

Lecture Notes in Computer Science 5679
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Zohra Bellahsène Ela Hunt
Michael Rys Rainer Unland (Eds.)

Database and
XML Technologies

6th International
XML Database Symposium, XSym 2009
Lyon, France, August 24, 2009
Proceedings

13

Volume Editors

Zohra Bellahsène
LIRMM - UMR 5506 CNRS, Université Montpellier II
Montpellier, France
E-mail: bella@lirmm.fr

Ela Hunt
Department of Computer Science, ETH Zurich
Zurich, Switzerland
E-mail: elahunt@inf.ethz.ch

Michael Rys
Microsoft Corporation
Redmond, WA, USA
E-mail: mrys@microsoft.com

Rainer Unland
ICB, University of Duisburg-Essen
Essen, Germany
E-mail: unlandr@informatik.uni-essen.de

Library of Congress Control Number: 2009932605

CR Subject Classification (1998): H.2, H.3, H.4, H.2.3, H.2.4, H.3.3, H.2.8

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-03554-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03554-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12728664 06/3180 5 4 3 2 1 0

Preface

Since its first edition in 2003, the XML Database Symposium series (XSym) has been
a forum for academics, practitioners, users and vendors, allowing all to discuss the use
of and synergy between database management systems and XML. The previous
symposia have provided opportunities for timely discussions on a broad range of
topics pertaining to the theory and practice of XML data management and its
applications. XSym 2009 continued this XSym tradition with a program consisting of
15 papers and a keynote shared with the 12th International Symposium on Database
Programming Languages (DBPL 2009). We received 26 paper submissions, out of
which eight papers were accepted as full papers, and seven as short/demo papers.
Each submitted paper underwent a rigorous and careful review by four referees for
long papers and three for the short ones.

The contributions in these proceedings are a fine sample of the very best current re-
search in XML query processing, including full text, keyword and loosely structured
queries, stream querying and joins, and materialized views. Among new theoretical
advances we included work on a lambda-calculus model of XML and XPath, on map-
ping from the enhanced entity-relationship conceptual model to the W3C XML
Schema Language, on transactions, and extensions to XPath. Finally, work on data
parallel algorithms, compression, and practical aspects of XQuery, including query
forms and the use of Prolog are also part of this volume.

The organizers would like to express their gratitude to the authors, for submitting
their work, and to the Program Committee, for providing very thorough evaluations of
the submitted papers and for the discussions that followed under significant time con-
straints. We also would like to thank the invited keynote speaker for the challenging
and thought-provoking contribution. Finally, we are also grateful to Microsoft for their
generous sponsorship, Andrei Voronkov and other contributors for the EasyChair
conference management system, and the local organizers for their effort in making
XSym 2009 a pleasant and successful event. Finally, we would also like to thank Al-
fred Hofmann and his great team from Springer for their support and cooperation in
putting this volume together.

June 2009 Zohra Bellahsène

Ela Hunt
Michael Rys

Rainer Unland

Organization

Steering Committee

Zohra Bellahsène LIRMM-CNRS/University Montpellier 2, France
Ela Hunt University of Strathclyde, Scotland, UK
Michael Rys Microsoft, USA
Rainer Unland University of Duisburg-Essen, Germany

Local Organization Chairs

Mohand Said Hacid Université Lyon 1, France
Jean Marc Petit INSA Lyon, France

International Program Committee

Alfredo Cuzzocrea CNR, Italy
Angela Bonifati CNR, Italy
Ashraf Aboulnaga University of Waterloo, Canada
Bernd Amann LIP 6 Université Pierre et Marie Curie, France
Carl-Christian Kanne University of Mannheim, Germany
Denilson Barbosa University of Alberta, Canada
Elisabeth Murisasco Université du Sud Toulon, France
Emmanuel Waller LRI, France
Giovanna Guerrini Università di Genova, Italy
Hakim Hacid Université Lyon 2, France
Ingo Frommholz University of Glasgow, Scotland, UK
Ioana Manolescu INRIA, France
Irini Fundulaki ICS-Forth, Greece
Jeffrey Xu Yu University of Hong Kong, China
John Wilson University of Strathclyde, Scotland, UK
Luc Moreau University of Southampton, UK
Marc Scholl Universität Konstanz, Germany
Marco Mesiti Università di Milano, Italy
Matthias Nicola IBM, USA
Mirian Halfeld Ferrari Alves Université François Rabelais de Tours, France
Nilesh Dalvi Yahoo, USA
Nikolaus Augsten Free University of Bozen-Bolzano, Italy
Norman May SAP, Germany
P. Sreenivasa Kumar IIT Madras, India
Peter Fischer ETH Zurich, Switzerland
Peter McBrien Imperial College, London, UK

 Organization VIII

Peter Wood Birkbeck College, University of London, UK
Sourav S Bhowmick NTU, Singapore
Stephane Bressan NUS, Singapore
Stratis Viglas University of Edinburgh, Scotland, UK
Tadeusz Pankowski Adam Mickiewicz University, Poznan, Poland
Werner Nutt Free University of Bozen-Bolzano, Italy
Zografoula Vagena Microsoft, UK

External Reviewers

Christian Grün Universität Konstanz, Germany

Table of Contents

XML Twig Queries

Ordered Backward XPath Axis Processing against XML Streams 1
Abdul Nizar M. and P. Sreenivasa Kumar

BPI-TWIG: XML Twig Query Evaluation . 17
Neamat El-Tazi and H.V. Jagadish

On the Efficiency of a Prefix Path Holistic Algorithm 25
Radim Bača and Michal Krátký

Query Execution

KSRQuerying: XML Keyword with Recursive Querying 33
Kamal Taha and Ramez Elmasri

The XML-λ XPath Processor: Benchmarking and Results 53
Jan Stoklasa and Pavel Loupal

XPath+: A Tool for Linked XML Documents Navigation 67
Paulo Caetano da Silva and Valéria Cesário Times

XML Document Parsing and Compression

A Data Parallel Algorithm for XML DOM Parsing 75
Bhavik Shah, Praveen R. Rao, Bongki Moon, and Mohan Rajagopalan

Optimizing XML Compression . 91
Gregory Leighton and Denilson Barbosa

XML Lossy Text Compression: A Preliminary Study 106
Angela Bonifati, Marianna Lorusso, and Domenica Sileo

XQuery

XQuery Full Text Implementation in BaseX . 114
Christian Grün, Sebastian Gath, Alexander Holupirek, and
Marc H. Scholl

Recommending XMLTable Views for XQuery Workloads 129
Iman Elghandour, Ashraf Aboulnaga, Daniel C. Zilio, and
Calisto Zuzarte

X Table of Contents

An Encoding of XQuery in Prolog . 145
Jesús M. Almendros-Jiménez

Universal XForms for Dynamic XQuery Generation 156
Susan Malaika and Keith Wells

XML Transaction Management and Schema Design

From Entity Relationship to XML Schema: A Graph-Theoretic
Approach . 165

Massimo Franceschet, Donatella Gubiani, Angelo Montanari, and
Carla Piazza

Atomicity for XML Databases . 180
Debmalya Biswas, Ashwin Jiwane, and Blaise Genest

Author Index . 189

Ordered Backward XPath Axis Processing

against XML Streams

Abdul Nizar M. and P. Sreenivasa Kumar

Dept. of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai, 600 036, India

{nizar,psk}@cse.iitm.ac.in

Abstract. Processing of backward XPath axes against XML streams
is challenging for two reasons: (i) Data is not cached for future access.
(ii) Query contains steps specifying navigation to the data that already
passed by. While there are some attempts to process parent and an-
cestor axes, there are very few proposals to process ordered backward
axes namely, preceding and preceding-sibling. For ordered backward axis
processing, the algorithm, in addition to overcoming the limitations on
data availability, has to take care of ordering constraints imposed by
these axes. In this paper, we show how backward ordered axes can be
effectively represented using forward constraints. We then discuss an
algorithm for XML stream processing of XPath expressions containing
ordered backward axes. The algorithm uses a layered cache structure to
systematically accumulate query results. Our experiments show that the
new algorithm gains remarkable speed up over the existing algorithm
without compromising on bufferspace requirement.

1 Introduction

Due to the wide-spread use of XML data, especially in the web context, content-
and structure-based filtering and information extraction from streamed XML
documents attracted interest of the research community. Majority of proposals
that process XPath expressions consisting of child (‘/’) and descendant (‘//’)
axes against XML streams use twigs to encode the query expression.

There are very few attempts to tackle the more challenging task of process-
ing backward (parent, ancestor, preceding, preceding-sibling) axes against XML
streams. The χαoς[1] system processes parent and ancestor axes in addition to
child and descendant axes while the SPEX system[2] processes all backward and
forward axes. In this paper, we present an efficient stream querying algorithm for
XPath expressions with ordered backward axes –preceding and preceding-sibling
axes in addition to child, descendant axes. Ordered forward axis processing is
discussed elsewhere [3].

The contributions of this paper are: (1) We show how conventional twig struc-
ture can be extended to represent the semantics of ordered backward axes –
preceding and preceding-sibling – using forward constraints. (2) We present a
stream querying algorithm for XPath expressions with those axes in addition

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 A. Nizar M. and P.S. Kumar

to child, descendant axes. (3) We experimentally show that the new algorithm
gains remarkable speed up over the existing algorithm without compromising on
bufferspace requirement.

The rest of the paper is organized as follows: Section 2 presents the back-
ground, motivates the work and glances over the related literature. In Section 3
we discuss the new framework and the matching algorithm. Section 4 presents
experimental results and Section 5 concludes the paper.

2 Motivation and Related Work

Stream processing of ordered backward axes, namely preceding and preceding-
sibling, is challenging for three reasons: (i) The streaming model assumes that
data is not cached for future access. (ii) The query contains steps specifying
navigations to data which have already passed by. (iii) The algorithm has to
take care of ordering constraints dictated by ordered axes.

A twig is a tree where nodes are labelled with node tests and edges are di-
rected. It is used to represent XPath expressions with child and descendant axes
(see Fig. 1; twigs T1a and T1b are isomorphic and equivalent). In a twig, edges
labelled ‘//’ (A-D edges) represent descendant axes while the remaining edges
(P-C edges) represent child axes. The node labelled r is the twig root and is
used to distinguish between twigs representing absolute (those starting with ‘/’)
and and relative (those starting with ‘//’) path expressions. The result node is
shown in black.

Fig. 1. Twigs Representing /a[.//b/c]//d

There have been many proposals to process un-ordered XPath axes (child, de-
scendant, parent, ancestor) against streaming data. Majority of these algorithms
use the basic twig structure and its extensions to encode the query expression
and systematically find matches [4,5,6,7]. The efficiency of twig-based algorithms
is attributed to the fact that completely nested structure of XML document can
be effectively combined with LIFO nature of stacks attached to the twig nodes
to find matches.

There are queries that can be effectively expressed using orderedbackward axes.

Example 1. In the context of surgical procedures which consist of a number of
procedures, actions, observations etc., the order in which events take place is
important. For instance the query “The observations that led to an immediate
surgery” can be expressed as //action[.=“immediate surgical intervention”] /pre-
ceding::observation.

Ordered Backward XPath Axis Processing against XML Streams 3

As the twig structure lacks order information, it can not convey the semantics
of ordered axes and hence the algorithms based on twigs can not be directly
extended to handle ordered axes. These circumstances motivate us to look into
a new way of representing backward ordered axes and a new stream querying
strategy based on the new model.

Related Work: XML stream querying is an active area of research and many
systems have been proposed in recent past ([8],[6],[4],[7], [1],[9],[10]).

The χαoς system proposed by Josifovsky et.al.[1] performs stream processing
of XPath expressions with child, descendant, parent and ancestor axes. The Tur-
boXPath system[9] handles stream processing of XQuery-like queries. The XSQ
system proposed in [10] handles complex XPath Queries with child, descendant
and closure axes with predicates and can handle aggregations. The system uses
a hierarchy of push-down transducers with associated buffers.

The TwigM algorithm proposed in [6] avoids proliferation of exponential num-
ber of twig matches in recursive XML streams by using compact encoding of po-
tential matches using a stack structure. The system proposed by Aneesh et.al.[4]
performs shared processing of twigs in document order by breaking twigs into
branch sequences, which are sequences around branch points. The system due to
Gou and Chirkova[7], which processes conventional twigs, achieves better time
and space performance than TwigM when processing recursive XML documents.
It can also handle predicates with boolean connectives. The authors propose two
variants of the algorithm – Lazy Querying (LQ) and Eager Querying (EQ) – of
comparable performance.

Ordered backward axis processing, to the best of our knowledge, is limited
to the SPEX system[2]. The system processes an XPath expression by mapping
it to a network of transducers. Most transducers used are single-state push-
down automata with output tape. Each transducer in the network processes the
XML stream it receives and transmits it, either unchanged or annotated with
conditions, to its successor transducers. The transducer of the result node holds
potential answers, to be output when conditions specified by the query are found
to be true by the corresponding transducers.

The algorithm discussed in [3] handles forward axes. The approach of rewriting
the expressions with backward axes into expressions using forward axes alone
and using the solution in [3] does not work as the rewriting process introduces
predicates with forward axes.

3 Handling Ordered Backward Axes

In this section, we discuss the algorithm for matching path expressions with
child, descendant, preceding-sibling and preceding axes. We start with matching
of expressions without predicates. Predicate handling is discussed in Section 3.3.

3.1 Representing Ordered Axes

We extend conventional twigs to what we call Order-aware Twigs(OaTs) to
represent XPath expressions with backward ordered axes. Note that the match

4 A. Nizar M. and P.S. Kumar

Fig. 2. Order-aware Twigs

of a twig against an XML document is conventionally defined as a mapping from
the nodes in the twig to the nodes in the document satisfying twig-node labels
and relationships between twig-nodes.

LR- and SLR-Orderings : To represent backward ordered axes, we add two types
of forward ordering constraints – LR (Left-to-Right)-Ordering and SLR (Sibling
Left-to-Right)-Ordering – to conventional twigs. LR-ordering is specified from
a node x to node y such that x and y appear in two disjoint downward paths
from the twig root r. It has the interpretation that, in a match of the twig
against some document D, the nodes – say p and q – matching x and y should
be such that q appears after p in document order in D, but is not a descendant
of p. LR-Ordering can effectively represent preceding axis appearing in the path
expressions. For instance, the expression /a//b/c/pr::d1 looks for d -nodes which
are appearing before the opening-tag of, but not an ancestor of, a c-node child of
a b-node descendant of the document root node a. To represent the axis pr::d, a
new node labelled d is connected to the root of the twig through an A-D edge and
an LR-edge (dashed edge) is added from node d to c (see twig T2 in Fig. 2(a)).
Clearly, semantics of T2 is the same as that of the query.

An SLR-Ordering is specified from a node x to a sibling node y such that x and
y are connected to their parent via P-C edges. It has the interpretation that in a
match of the twig against some document D, the nodes – say p and q – matching x
and y should be such that p and q are siblings and q appears after p in document
order in D. SLR-Ordering can effectively represent preceding-sibling axis. The
OaT T3 in Fig. 2(b) represents the XPath expression //b/d[ps::c] where SLR-
Ordering is shown using a solid arrow from c to d. If there is an (S)LR-Ordering
from node n1 to node n2 in an OaT, n1 is called the tail of the (S)LR-Ordering
and n2 is called the head.

Closure Edges : The basic OaTs need to be further extended to handle XPath
expressions containing an axis step with preceding-sibling axis that appears im-
mediately after an axis step with descendant axis. For example, in the query
/a//h/ps::f, f can be either left-sibling of an h-child of a or left-sibling of h-
child of descendant of a. We handle this situation by introducing a new type of
relationship edge known as the closure edge. A closure edge from node n1 to a

1 We use pr and ps as abbreviations for preceding and preceding-sibling, respectively.

Ordered Backward XPath Axis Processing against XML Streams 5

Fig. 3. Illustrating Transformation of Path Expression to OaT T5

node n2 with a wild card label (‘*’) indicates that in a match of the OaT, the
document node d2 matching with n2 can be either the same as the document
node d1 matching with n1 or a descendant of d1. n2 is called closure node. Twig
T4 in Fig. 2(c) shows the use of closure-edge to represent the path expression
/a//h/ps::f. Here the zig-zag edge between the a-node and the closure node is a
closure edge.

Figure 3 illustrates how an expression with child, descendant, preceding-sibling
and preceding axes is systematically translated into the equivalent OaT. It illus-
trates a special case where the expression has a preceding-sibling axis appearing
immediately after a preceding axis. A wild card node is introduced as parent of
h and g and an A-D edge is added from r to the wild card node. Note that there
is no need of a closure-edge from r to the dummy node as r is assumed to match
to a cosmic root that sits above the root of a document tree. Please see [3] for a
detailed account of translation of XPath expressions to OaTs.

From the discussion above and Fig. 3, it is clear that an axis step of the form
a/preceding-sibling::b adds a new P-C edge from parent of a to a new node b
and an SLR ordering from b to a. Similarly, a/preceding::b adds a new A-D edge
in the OaT from r to a new node b and an LR-edge from b to a. We term the
sub-tree rooted at a child of r a branch-tree.

If we assume that SLR and LR-Orderings are from left to right, the deepest,
left-most node in the left-most branch-tree is the result node and the deepest,
left-most node in each of the remaining branch-trees is an LR-head node. It may
also be noted that an LR-tail node is always a child or grand child of r.

Node Types: We classify nodes in the OaT into five types – result, SLR-head,
LR-head, SLR-parent and ordinary nodes. A node with SLR-Ordering specified
among its children is termed an SLR-parent node. A node not belonging to the
first four types is an ordinary node.

If a node e exists in the path from the SLR-parent node to the result or LR-
head node such that e is connected to its child by an A-D edge, it is called the
frontier node of the SLR-parent node. The child of r in the right-most branch
tree is called the output node as the results are output at this node.

In the OaT of Fig. 3(d), f is the result node, d is an SLR-head node, h is an
LR-head node, b is an SLR-parent node and c is an ordinary node. Also, c is the
frontier node for b. k is the output node of the OaT.

6 A. Nizar M. and P.S. Kumar

3.2 Matching Algorithm

As the input is a stream, the matching algorithm has to find the document nodes
that match with the OaT nodes in terms of labels and relationships and, in that
process, has to accumulate the nodes that are potential results. The algorithm
maintains a stack at every OaT node. Each stack frame represents an element
in the stream that matches with the query node to which stack is associated.
Let Nj be a node in the OaT and Ni be its parent. The topmost frame Fp in
Ni.stack that matches with a frame Fc in Nj.stack based on the relationship
constraint (P-C or A-D) specified between Ni and Nj is called the parent frame
of Fc. A stack frame has the following fields: (i) levelNo: depth, in the document
tree of the node represented by the frame. (ii)frameNo: A link to the parent
frame.

The algorithm starts by pushing a dummy frame 〈0, null〉 into the stack for
node r. It then responds to events generated by a SAX parser. The global variable
gDepth (initialized to 1) is maintained by the algorithm to keep track of depth
of nodes in the XML document tree being streamed in.

Fig. 4. Sample Document and OaT

The challenge is to accumulate results respecting order constraints dictated by
SLR- and LR-Orderings. For instance, in the context of OaT T6 and document
D1 in Fig. 4, suppose, during query processing, the potential result node f1 is
accumulated in the frame for c1 in c.stack. Since there is an SLR ordering from
c to d, f1 can be validated only after d2 is seen. Note that f2 accumulated in
the frame for c2 can not validated using d2 as it appears before c2.

LR-constraint handling is more involved. Once a potential result node satisfies
the conditions specified on a branch tree, we can check if the node satisfies
conditions laid down by the branch trees to the right. For instance, suppose
that the potential result nodes accumulate at the frame for b1 in b.stack. After
processing the close-tag of b1, these potential nodes satisfy conditions up to the
OaT node b. Now we can check if the nodes satisfy conditions on the branch
tree rooted at g. We use special kind of ‘layered’ caches associated with stack
frames to effectively accumulate the results.

Layered Caches : An s-cache is associated with each stack frame. Number of
layers in the s-cache is equal to the fanout of the OaT node to which the stack
is associated and each layer is associated with one child of the node in left-to-
right order. The stack frames in leaf nodes have single layer s-caches. Each stack

Ordered Backward XPath Axis Processing against XML Streams 7

frame of SLR-parent node has a layered t-cache. Number layers in this cache is
one less than fanout of the node the layers are associated with children of the
node other than the left-most one in left-to-right order. Each t-cache and s-cache
layer of the stack frames for nodes in the left-most branch tree can hold a set of
document node ids. In the case of stack frames of nodes in other branch-trees,
the s-cache and t-cache layers hold bucket pointers.

The stack frame of r has an rs-cache and an rt-cache in addition to the s-cache.
The rs-cache is similar to s-cache. Each rt-cache layer is a sequence of buckets
with each bucket holding a set of document node ids. Number of rt-cache layers
is one less than the number of branches of r and each layer is associated with
one branch tree of r other than the left-most one in left-to-right order.

Processing preceding-sibling Axis: We start with the matching algorithm
for path expressions without preceding axis and subsequently show how the al-
gorithm can incorporate preceding axis processing. Due to space constraints,
we exclude the discussion on closure node processing, the details of which are
available in [3]. Note that, if the path expression has no preceding axis, the cor-
responding OaT will appear as a single branch under the root. Fig. 5(a) shows
the partial OaT T6a having the left-most branch of OaT T6 in Fig. 4(a).

Algorithms 1 and 2 show the steps in open-tag event processing and close-tag
event processing, respectively. In the algorithms, the s-cache layer of the stack
frame F of a query node Nj corresponding to a child node Nk is denoted as
Nj .F.s-cache[Nk]. We also use the notation Nj.F.s-cache[i] to denote the ith

s-cache layer. Similar notation is used for t-cache.
The algorithms assume the following abstract functions:- (i) labelMap(x):

For an element with tag x, returns OaT nodes Nj such that Nj.label = x or
Nj .label =‘∗’. (ii) makeFrame(d, framePosn, f): Returns a new stack frame in
which depth and frameNo are equal to d and framePosn, respectively. It also
creates an empty s-cache of with size f (and a t-cache of size f − 1 for SLR-
parent nodes). For leaf nodes of the OaT, a single layer s-cache is created (iii)
reclaim(F): Reclaims the memory allocated to the stack frame F . (iv) parent()
and SLR-tail(): Return parent and SLR-tail of an OaT node, respectively. (v)
Standard stack functions pop(), push(), top() and isEmpty(). Here top() returns
position of the topmost stack frame.

The handlers operate on the elements of the document stream, which arrives
in document order. Intuitively, for an open-tag 〈x〉 of a document node e, the
open-tag handler pushes a frame into the stack of the OaT node with label x,
say Nj, if there is a chain of frames in the stacks of the nodes in the path from
r to Nj satisfying the P-C and A-D relationships specified along the path. This
condition can be checked incrementally by comparing depth of e with depth
value of the top-most stack frame in the parent of Nj (Algorithm 1, lines 5–8). If
the condition is satisfied, the top-most frame becomes parent frame of the frame
for e. When the close-tag 〈/x〉 of e is seen, the close-tag handler pops out and
processes the corresponding frame (Algorithm 2, lines 4–6). The actual steps
vary depending on the node type of Nj .

8 A. Nizar M. and P.S. Kumar

Algorithm 1. Open-Tag Event Handler
Data: Open tag 〈x〉 of an element in the stream
Open-Tag-Handler(x)1

d← gDepth← gDepth + 1;2

foreach Nj ∈ labelMap(x) do3

Np ← parent(Nj)4

if isEmpty(Np.Stack) then5

Continue with the next iteration;6

if (Nj is a child node) ∧ (d−Np.Stack[top(Np)].levelNo > 1) then7

Continue with the next iteration;8

F ← makeFrame(d, top(Ni.stack), Nj .fanOut)9

switch (Nj .nodetype) do10

case result node11

Add eid to F.s-cache[1];12

case SLR-head node13

Nt ← SLR-tail(Nj);14

if Np.stack[top(Np)].s-cache[Nt] is empty then15

Continue with the next iteration;16

Move id tuples in Np.stack[top(Np)].s-cache[Nt] to17

Np.stack[top(Np)].t-cache[Nj];

push(Nj .Stack, F)18

Open-Tag Handler: If Nj is an ordinary node or SLR-parent node, open-tag
handler pushes a frame for e to Nj .stack (Algorithm 1, line 18). If Nj is a result
node, the open-tag handler stores eid, the element’s unique id, in the only s-cache
layer the new frame before pushing to Nj.stack (line 12). If Nj is an SLR Head
Node, the open-tag handler does not push a frame to Nj.stack if the s-cache layer
corresponding to Nj’s tail node in the parent frame is empty, which indicates
that there are no potential result ids waiting for the the SLR condition to be
satisfied. This avoids subsequent close-tag processing for e thereby lightening
the load of the close-tag handler. Once the new frame is pushed to Nj .stack, the
result ids are moved to the t-cache layer for Nj in the parent frame (line 17).

Close-Tag Handler: If Nj is a not an SLR-head node, the close-tag handler
moves result ids in the last (or the only) s-cache layer to the appropriate s-cache
layer in the parent frame (Algorithm 2, lines 11–13). Otherwise, the result ids
in the t-cache layer corresponding to tail of Nj in the parent frame are moved
to the s-cache layer for Nj as they satisfy the SLR constraint at Nj (line 9).
Note that between open-tag and close-tag events of a document node e that
matches an SLR-head node, the potential result ids are temporarily kept in a
t-cache layer for the head node. Thus the t-cache layer acts as a transit point
of result ids between the open- and close-tag of e. The other option is to move
result ids from one s-cache layer to the next by the open-tag handler while
processing an SLR-head node. But this strategy can not be used in the presence

Ordered Backward XPath Axis Processing against XML Streams 9

Algorithm 2. Close-Tag Event Handler
Data: Close tag 〈/x〉 of an element in the stream
Close-Tag-Handler(x)1

gDepth← gDepth− 12

foreach Nj ∈labelMap(x) do3

if (isEmpty(Nj .Stack) ∨ Nj .Stack[top(Nj)].levelNo �= gDepth) then4

Continue with the next iteration;5

Fc ← pop(Nj .stack);Np ← parent(Nj);6

if SLR-Head node then7

Nt ← SLR-tail(Nj);8

Move ids in Np.stack[Fc.frameNo].t-cache[Nj] to9

Np.stack][Fc.frameNo].s-cache[Nj]
else if Result Node then10

Move ids in Fc.s-cache[1] to Np.stack[Fc.frameNo].s-cache[Nj]11

else12

Move ids in Fc.s-cache[Nj .fanOut] to13

Np.stack[Fc.frameNo].s-cache[Nj]

if Nj has an frontier node Ne and Ne.Stack is not empty then14

foreach k ∈ 1 . . . Nj .fanout do15

Move ids from Fc.s-cache[k] to Ne.Stack[top(Ne.Stack)].s-cache[1]16

if Nj is the output node then17

Output ids in Np.stack[Fc.frameNo].s-cache[Nj]18

Reclaim(Fc)19

of predicates, in which case a stack frame can be ‘evaluated’ only at close-tag. See
Section 3.3. The frame in an SLR-parent node Nj can have result ids which have
not yet satisfied the SLR conditions at the children of Nj. These ids are moved
to the top stack frame of the end-node, if any (lines 14–16), as they satisfy
conditions on OaT nodes below the frontier node but yet to satisfy conditions
on nodes above.

Example 2. We use OaT T6a, document D2 and stack snap-shots in Fig. 5 to
illustrate the algorithm. Here 〈x〉 is used to denote the frame for document node
x. Fig. 5(c) shows stack contents at the opening tag of node f1. Since there is a
sequence of frames in the stacks of nodes r and b which, along with f1, satisfies
relationships along the path r–b–c–f in the query, 〈f1〉 is pushed to Sf . Since f
is a result node, f1 is cached to the only cache layer in 〈f1〉. Fig. 5(d) shows
stack content after close-tag of c2. Potential result f1 is in 〈b2〉.s-cache[c]. At the
close-tag of 〈b2〉, the result id is in 〈b2〉.s-cache[c] which means that it has not yet
satisfied the SLR condition from c to d as b2 has no d-child appearing after c2.
Hence f1 can not be moved to the cache of the frame in r. However, as c is the
frontier node of b, f1 can be moved to 〈c1〉.s-cache[f] (Fig. 5(e)). Fig. 5(f) shows
the stack contents at the close-tag of c3. Both f1 and f2 are in 〈b1〉.s-cache[c].

10 A. Nizar M. and P.S. Kumar

Fig. 5. Illustrating preceding-sibling Axis Evaluation

Subsequently, open-tag of d2 moves the result ids from 〈b1〉.s-cache[c] to 〈b1〉.t-
cache[d]. The ids later move to 〈b1〉.s-cache[d] at the close-tag of d2 (Fig. 5(g)).
The result ids finally accumulate in 〈R〉.s-cache[b] at the close-tag of b1.

Processing preceding Axis: As discussed towards the end of Section 3.1, in
the OaT for an expression with preceding axis, the dummy root node r will have
more than one branch-tree under it and the left-most tree contains the result
node. The branch-trees are ‘linked’ by LR-edges. The algorithm for processing
such an OaT has to check if the result ids obtained after processing of one
branch-tree satisfy the constraints laid down by the remaining branch-trees, in
left-to-right order. We can arrive at the following intuitive observation:

Observation 1. A potential result node is said to satisfy the conditions laid
down by a branch tree b with respect to the XML stream if (i) it has already
satisfied the conditions of the branch trees to the left of b and (ii) a complete
match for branch tree b has been found in the stream ‘after’ condition (i) is
satisfied.

Processing of these branch-trees are quite similar to processing of the left-most
tree and is done by extending the open- and close-tag handlers to process LR-
edges. Snippets 1 and 2 show these extensions. We use R.rs-cache[Nj] (resp.,
R.rt-cache[Nj]) to represent the rs-cache (resp. rt-cache) layer corresponding to
the branch-tree containing a node Nj .

Close-Tag Handler: Snippet 1 shows additional steps in close-tag handler. Note
that, for the left-most branch-tree, after the close-tag processing of the frame
for a document node in the stack of a node Nj , the potential result ids are
accumulated in appropriate s-cache layer of the parent frame (see Algorithm 2).
If Nj is an LR-tail node, the accumulated ids satisfy the entire branch-tree and
hence can be moved R.rs-cache[Nj] (Snippet 1, line 20). For the remaining branch
trees, the LR-tail processing is different. Similarly, processing of the output node
needs alternative steps. We will discuss these variations slightly later.

Ordered Backward XPath Axis Processing against XML Streams 11

Snippet 1. Extending Close-Tag Handler for preceding Axis Processing
----------- Replace Lines 17-19 of Algorithm 2 ----------

if Nj is an LR-Tail node then18

if Np.stack[Fc.frameNo].s-cache[Nj] contains ids then19

Move ids in Np.stack[Fc.frameNo].s-cache[Nj] to R.rs-cache[Nj]20

else21

foreach p ∈ Np.stack[Fc.frameNo].s-cache[Nj] do22

R.rs-cache[Nj]← R.rs-cache[Nj] ∪ retriveBucketIds(p)23

if Nj is the output node then24

if Np.stack[Fc.frameNo].s-cache[Nj] contains ids then25

Output ids in Np.stack[Fc.frameNo].s-cache[Nj]26

else27

foreach p ∈ Np.stack[Fc.frameNo].s-cache[Nj] do28

resIds← retriveBucketIds(p)29

Output resIds30

Reclaim(Fc)31

Snippet 2. Extending Open-Tag Handler for preceding Axis Processing
------------- after Line 17 of Algorithm 1 -------------

case LR-head node1

Ni ← LR-tail(Nj);2

if R.rs-cache[Ni] is not empty then3

Move ids in R.rs-cache[Ni] to a new bucket in R.rt-cache[Nj]4

Add pointer ptr to the new bucket to F .s-cache[1];5

else if the last bucket in R.rt-cache[Ni] is non-empty then6

Add pointer ptr to the last bucket to F.s-cache[1];7

else8

Continue with the next iteration;9

Open-Tag Handler: Let Ni be the tail of an LR-head node Nj . At the opening tag
of an element e that matches with Nj , the potential result ids in R.rs-cache[Ni]
can not be moved to R.rs-cache[Nj] as it is unknown whether the conditions
dictated by other nodes related to Nj in the branch tree will be satisfied later by
the stream. For instance, in the context of OaT T6 and document D1 in Fig.6,
at the opening tag of h2, it is not known if the SLR-constraint from node h to
node i will be satisfied later in the stream and hence the potential result ids
accumulated in R.rs-cache[b] can not be moved to R.rs-cache[h].

At the same time, retaining the result ids in R.rs-cache[Ni] after opening tag
of e is seen and moving them to R.rs-cache[Nj] when the close-tag of e is seen
can lead to false positives. For instance, suppose that the node id f2 remains in
R.rs-cache[b] after opening-tag of h2. When close-tag for b3 is seen, f4 is moved
to R.rs-cache[b]. Subsequently, when close-tag for h3 seen, f4 is also moved
to R.rs-cache[h] with f1. This is an error since h3 can not decide the validity

12 A. Nizar M. and P.S. Kumar

Fig. 6. Illustrating preceding Axis Evaluation

of f4 which is its descendant. The layered rt-cache in R can be used to avoid
false positives. Intuitively, R.rt-cache[Nj] acts as a temporary store for result
ids in their transit from R.rs-cache[Ni] to R.rs-cache[Nj].

A frame has to be pushed to Nj .stack in two cases – If R.rs-cache[Ni] is not
empty or if R.rt-cache[Nj] contains at least one bucket of potential ids. The first
case indicates that there are some potential results waiting for the LR-ordering
constraint to be satisfied. In this case the result ids are moved to a new bucket
in R.rt-cache[Nj] and a pointer to this bucket is added in the s-cache of the new
frame in Nj .stack.

A frame has to be pushed Nj.stack in the second case also for the following
reason: Suppose a document node x matches Nj and the R.rs-cache[Ni] contains
potential result ids. The ids are moved to new bucket in R.rt-cache[Nj] and a
pointer to this bucket is added to the s-cache of the frame for x, which is pushed
to Nj.stack (lines 4-5 of Snippet 1). However, at this point it is not known
whether x, along with other nodes appearing in the stream will form a match
for the branch tree containing Nj. At the same time another document node y
appearing in the stream later may match with Nj and form, along with other
nodes of the stream, a match for the branch tree of Nj before x can do so. Thus,
a pointer to the last bucket in R.rt-cache[Nj] is added in the s-cache of the frame
for y. The ids in the bucket are accessed for further processing using the bucket
pointer corresponding to x or y depending on which becomes part of a match for
the branch tree containing Nj first (see condition (2) of Observation 1 above).

It may be observed that, an LR-head node and its branch tree are processed
in the same manner as the result node and its branch-tree except that pointers
to buckets in rt-cache are accumulated in s-cache of stack frames, instead of
document ids. During the close-tag processing of a stack frame in an LR-tail
node of these branch-trees, the accumulated bucket pointers are used to retrieve
potential result ids from the rt-cache layer. The ids then are moved to rs-cache
layer (line 23 of Snippet 1). The function retriveBucketIds(p) retrieves poten-
tial ids from the bucket pointed at by p and all the buckets appearing before it.

Ordered Backward XPath Axis Processing against XML Streams 13

Output node processing is exactly similar except that the ids regained from
buckets are output as results (line 29 of Snippet 1).

Example 3. We use OaT T6, document D3, and stack snapshots in Fig. 6 to
illustrate preceding axis processing. At the close-tag of b2, f2 moves to R.s-
cache[b]. As b is an LR-tail node, f2 further moves to R.rs-cache[b] (Fig. 6(c)).
At the open-tag of h2, the open-tag handler moves f2 to a new bucket in R.rt-
cache[h] and a pointer to the new bucket is added to 〈h2〉.s-cache[1] (Fig. 6(d)).

When open-tag of h3 is seen, R.rs-cache[b] is empty, but R.rt-cache[h] con-
tains a bucket with id f2. Hence pointer to this bucket is added to h3.s-cache[1]
in h.stack (Fig. 6(e)). This step is essential to ensure correct computation. For
instance, suppose i1 is not present in D3. Now, h2 has no i-node in the stream
to satisfy the SLR constraint from h to i. But h3 has node i2 to satisfy the said
constraint and hence satisfies the branch-tree.

Eventually the pointer reaches g2.s-cache[i] at the close-tag of i2. At the close-
tag of g2, pointer in g2.s-cache[i] is moved to R.s-cache[g]. Since g is an LR-tail
node the pointer can be used to move contents of the bucket in R.rt-cache[h] to
R.rs-cache[h]. Close-tag processing of g1 also examines the same bucket. As the
bucket is empty, no further action is needed.

(As a variation, suppose the document sub-tree containing g2, h3 and i2 ap-
pears under the node labelled X after b3. In this case the result f4 first moves
to R.rs-cache[b] and, at the open-tag of h3, to a new bucket in R.rt-cache[h]
(Fig. 6(f)). And a pointer to the new bucket appears in h3.s-cache[1]. which even-
tually reaches g2.s-cache[i] at the close-tag of i2. At the close-tag of g2, pointer
in g2.s-cache[i] is moved to R.s-cache[g]. Since g is an LR-tail node the pointer
in can be used to move contents of both buckets in R.rt-cache[h] to R.rs-cache[h].
This is in accordance with Observation 1.)

Since k is the output node, at the close-tag of k1, the pointer in R.s-cache[k]
is used to retrieve and output the result f2 in R.rt-cache[k].

Each rt-cache layer should be a sequence of buckets because maintaining the
layer as a simple id list can lead to false positives. For instance, suppose the
sub-tree rooted at X appears under g2 to the left of h3 in document D3 and that
i2 is not present in the document. After close-tag processing of b3, f4 is cached
to R.rs-cache[b]. At the open-tag of h3, f4 moves to R.rt-cache[h], which already
contains f2. At the close-tag of g1, f4 moves to R.rs-cache[h] along with f2 which
is an error. On the other hand, if R.rt-cache[h] is a linked list of buckets, f2 and
f4 will have separate buckets and only f2 will be moved to R.rs-cache[h] at the
close tag of g1.

3.3 Predicate Processing

The above algorithm can be extended to handle predicates involving child and
descendant axes by modifying the stack frame structure. In OaTs representing
path expressions with such predicates, the predicate expression appears as a
sub-tree under the node representing the associated axis step, as in the case of

14 A. Nizar M. and P.S. Kumar

conventional twigs. As predicates represent boolean conditions, they can be pro-
cessed by adding a bit-vector in the stack frames of query nodes in the predicate
sub-tree. Each position in the bit-vector is associated with one predicate child
of the node. During query processing, a bit-vector position is asserted if the cor-
responding predicate child matches with a node in the stream. During close-tag
event of a node, the bit-vector of the corresponding stack frame is ‘evaluated’.
We adopted techniques in [7] for predicate processing.

4 Experiments

In this section we compare performance of our algorithm with SPEX[2] on real
world and synthetic data sets. To the best our knowledge, SPEX is the only
stream query processing system that implements backward ordered axes. Java
implementation of the system is publicly available (http:://spex.sourceforge.net).
Our algorithm was also implemented in Java. Xerces SAX parser from http://
sax.sourceforge.net was used to parse the XML documents. We ran all our exper-
iments on a 1000 MHz AMD Athlon 3000+ machine with 2GB memory running
Linux. Java virtual machine (JVM) version 1.5 was used for conducting the tests.

We used two datasets in the experiments – SWISSPROT and TREEBANK[11].
SWISSPROT is a real world dataset. TREEBANK is a deeply recursive synthetic
dataset containing English sentences tagged with parts of speech.

Experiment 1: In this experiment, we compared the scalability of our system
(referred as RX) with SPEX. We tested scalability with respect to increasing
query size and increasing document size. Fig. 7(a) shows the test results for
scalability with document size for TREEBANK dataset. Randomly generated
document chunks of size (d) 0.1M, 0.2M, 0.3M and 0.4M were used and test was
done for random queries of axis-step count 3 and 9. Fig, 7(b) shows test results
for scalability with query size. Random queries of axis-step count (q) 3, 5, 7 and
9 were tested against documents of size 0.2M and 0.4M. Fig. 8(a) and Fig. 8(b)
shows scalability results on SWISSPROT dataset (q = 2, 4, 6, 8). In both cases
RX outperforms SPEX by wide margins. The improved performance of RX is
due to its increased ‘awareness’ about order and effective use of that information
to avoid processing of large number of elements in the stream. Note that, in RX,
no frame for an SLR-head node is stacked during open-tag processing if the
cache layer for the tail of the node is empty. Similar is the case with LR-head
node processing. This avoids the overhead due to close-tag processing of those
frames.

Experiment 2: In this experiment we examined the maximum result buffer sizes
for RX and SPEX. For each algorithm, we computed the maximum of the number
of result nodes maintained at various points of time during execution. This was
averaged over randomly created queries. The experiments were performed on
TREEBANK dataset as it is deeply recursive can lead to excessive number of
potential answers. Document sizes of 0.1M, 0.3M, 0.5M and 0.7M were used in
the experiment. Fig. 9 shows the result. It was found that RX uses the same
amount of bufferspace as SPEX.

Ordered Backward XPath Axis Processing against XML Streams 15

(a) Document Size vs Time (q=3,9) (b) Query Size vs Time (d=.2M, .4M)

Fig. 7. Scalability on TREEBANK

(a) Document Size vs Time (q=2,8) (b) Query Size vs Time (d=.2M, .4M)

Fig. 8. Scalability on SWISSPROT

Fig. 9. Maximum Buffer Size

5 Conclusion

In this paper, we demonstrated that ordered backward axes can be effectively
represented by extending conventional twigs and proposed an algorithm for pro-
cessing XPath expressions with ordered backward axes against streaming data.

16 A. Nizar M. and P.S. Kumar

It was found that the algorithm is both efficient and scalable and outperforms
the currently available algorithm without any additional buffer space. Explicit
forward constraints for representing backward ordered axes and an effective
framework for caching partial results at the query nodes have helped to detect
unwanted computations during matching and lead to significant improvement in
performance. It would be interesting to investigate how the current algorithm
can be extended to handle bigger XPath subsets.

References

1. Barton, C., Charles, P., Goyal, D., Raghavachari, M., Fontoura, M., Josifovski, V.:
Streaming XPath Processing with Forward and Backward Axes. In: ICDE,
pp. 455–466 (2003)

2. Olteanu, D.: SPEX: Streamed and progressive evaluation of XPath. IEEE Trans.
Knowl. Data Eng. 19(7), 934–949 (2007)

3. Abdul Nizar, M., Sreenivasa Kumar, P.: Efficient Evaluation of Forward XPath
Axes over XML Streams. In: 14th International Conference on Management of
Data (COMAD), pp. 217–228 (2008)

4. Raj, A., Sreenivasa Kumar, P.: Branch Sequencing Based XML Message Broker
Architecture. In: ICDE, pp. 217–228 (2007)

5. Chen, S., Li, H.G., Tatemura, J., Hsiung, W.P., Agrawal, D., Candan, K.S.:

Twig2stack: Bottom-up processing of generalized-tree-pattern queries over XML
documents. In: VLDB, pp. 283–294 (2006)

6. Chen, Y., Davidson, S.B., Zheng, Y.: An Efficient XPath Query Processor for XML
Streams. In: ICDE, p. 79 (2006)

7. Gou, G., Chirkova, R.: Efficient Algorithms for Evaluating XPath over Streams.
In: SIGMOD Conference, pp. 269–280 (2007)

8. Candan, K.S., Hsiung, W.P., Chen, S., Tatemura, J., Agrawal, D.: AFilter: Adapt-
able XML Filtering with Prefix-Caching and Suffix-Clustering. In: VLDB Confer-
ence, pp. 559–570 (2006)

9. Josifovski, V., Fontoura, M., Barta, A.: Querying XML streams. VLDB Jour-
nal 14(2), 197–210 (2005)

10. Peng, F., Chawathe, S.S.: XSQ: A streaming XPath engine. ACM Trans. Database
Systems 30(2), 577–623 (2005)

11. http://www.cs.washington.edu/research/xmldatasets/

http://www.cs.washington.edu/research/xmldatasets/

BPI-TWIG: XML Twig Query Evaluation

Neamat El-Tazi1 and H.V. Jagadish2

1 Faculty of Computers and Information, Information Systems Department,
Cairo University, Egypt
neamatab@umich.edu

2 Electrical Engineering and Computer Science Department, University of Michigan,
Ann Arbor, MI, USA

jag@umich.edu

Abstract. We propose a new algorithm, BPI-TWIG, to evaluate XML
twig queries. The algorithm uses a set of novel twig indices to reduce the
number of comparisons needed for the twig evaluation and transform
the join operation to an intersection operation between the contributing
twig paths inside the query. In this paper, we present our technique and
experimentally evaluate its performance.

Keywords: XML Query processing, Twig Queries.

1 Introduction

A twig pattern is a small tree whose nodes are tags, attributes or text values
and edges are either Parent-Child (P-C) edges or Ancestor-Descendant (A-D)
edges. Finding all the occurrences of a twig pattern specified by a selection
predicate on multiple elements in an XML document is a core operation for
efficient evaluation of XML queries. Indexing is often used to speed up database
operations that would otherwise be expensive. However, the number of possible
twig patterns is too large to be amenable to an index.

We note that the number of different path types, defined based purely on the
tags at nodes along a path, is usually quite small, even if the number of actual
paths is very large (and proportional to database size). This idea was exploited
in our previous work, BPI-CHAIN in [5], to develop a new efficient structural
join algorithm. However, this algorithm could address only chain queries.

The central idea of BPI-CHAIN no longer applies to twig queries: the number
of different twig types can be very large – we get combinatorial explosion. So
a direct application of the BPI-CHAIN idea is insufficient for the more general
problem. In this paper, we develop new indices named Twig indices, and use
these as a basis for a new algorithm to process twig queries called BPI-Twig.

2 Basic Data Structures

Definition 1 (Signature {s}). The signature of a node is its tag encoded as
an integer for convenience. The signature is used to identify the label not the
node, hence, we store only distinct labels.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 17–24, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 N. El-Tazi and H.V. Jagadish

Fig. 1. XML Tree

Definition 2 (Twig {Tw}). An XML twig, in our algorithm, is a
two-level tree combining a root and its children leaves presented as
Tw(nroot, n1, ..., nm, sroot, s1, ...sm), where nroot is the twig root node number
(node Identifier given to each node by traversing the XML document in depth
first order), each ni is a node number, m is the number of children in this twig
and si is the signature of node ni.

ID Twig Types (explanation) Signatures

TWT1 dblp (book, article) s1 s2 s11

TWT2 book (title, author) s2 s3 s 4

TWT3 author(nam e, address , age) s4 s5 s6

TWT4 nam e (fnam e) s5 s8

TWT5 address(zip, s tate) s7 s9 s10

TWT6 author (nam e, age) s4 s5 s6

TWT7 article (title, author) s11 s3 s4

TWT8 nam e (Fnam e, Lnam e) s5 s8 s12

Sig Twig Type

 Ids

s1 TWT1

s2 TWT2

s4 TWT3, TWT6

s5 TWT4, TWT8

s7 TWT5

s11 TWT7

Sig Twig Type

Identifiers

s3 TWT2, TWT7

s6 TWT3, TWT6

s8 TWT4, TWT8

s9 TWT5

s10 TWT5

s12 TWT8

Subtree PathTwig

Type

Path Twig ID

ST1 PTWT1 Tw1 Tw2 Tw3

ST1 PTWT2 Tw1 Tw2 Tw4 Tw5

ST1 PTWT3 Tw1 Tw2 Tw4 Tw6

ST2 PTWT4 Tw1 Tw7 Tw8

ST3 PTWT5 Tw1 Tw9 Tw10

ST4 PTWT5 Tw1 Tw12 Tw13

a) b)

c) d)

Signature Label

s1 dblp

s2 book

s3 title

s4 author

s5 nam e

s6 age

7 address

8 Fnam e

s9 zip

s10 state

s11 article

s12 Lnam e

e)

Fig. 2. a)Twig Types Index, b)Twigs Roots Index, c)Non Twig-Roots Index, d)Path
Twigs Index, e) List of Signatures

Definition 3 (Twig Type {TWT}). An XML Twig Type is the set of sig-
natures S(sroot, s1, ..., sm), where sroot is the signature of the Tw root, s1 is the
signature of the first child node of the root and sm is the signature of the last
child node of the Tw root. If duplicate signatures occur in Tw, only one of these
signatures is stored in the twig type.

In the Twigs index, we store distinct TWTs. There might be n number of Tw
having the same TWT. The TWT guarantees that a specific Tw, having that
type, contains a specific signature. We also maintain two indices Twig Roots

BPI-TWIG: XML Twig Query Evaluation 19

and Twig Leaf indices to help in finding all TWTs having a query labels as
their root or as their leaf in some cases. Figure 2b and c show the Twigs-Roots
index and Twig Leaf index for the XML tree in Figure 1 respectively.

Definition 4 (Path Twig {PTw}). A Path Twig is a set of Twigs on the
same path from the XML root until the leaf nodes of the last twig on this XML path,
considering only one link between any two consecutive levels in the XML tree.

Definition 5 (Path Twig Type {PTWT}). A Path Twig Type is the set
of (TWT) along a (PTw).

Definition 6 (Subtree {ST}). A Subtree is a tree having one of the second
level nodes of the main tree as its root. The tree in Figure 1 has four subtrees.

In the Path Twigs index, we store each PTw as Tw node numbers that occur
along the PTw, the key to this index is the PTWT and the ST that contains
that PTw.

Fig. 3. a)Path Twig Types Index, b)Twig IDs c)Path twig-Types - Subtrees Index

Path Twig Types Index. In this index, each PTWT is stored as an array of
TWT identifiers that occur along that path.

Path Twig Types - Subtrees Index. In order to reduce intermediate results,
we store the PTWT identifiers with the ST identifier so that, if we have multiple
PTWTs inside a query, we can intersect the STs of the PTWT to deduce which
subtrees that contain all these query PTWT. This will reduce the number of
subtrees fetched to perform the join.

3 Twig Query Evaluation Algorithm

To evaluate twig queries, we introduce the BPI-Twig algorithm. The input to
the algorithm is a query tree. The algorithm finds all Tws that match the input
query tree and outputs all node numbers contained inside those matched Tws.
Figure 4 presents all functions of the algorithm with their inputs and outputs.

20 N. El-Tazi and H.V. Jagadish

Twig Query

Decompose to
Query Twigs

Determine Join
Points

Get Query Twig
Type

Query Twigs

Join
Points

Query Twigs

Query Twigs
Types

Merge Twig
Types

Form Query
Path Twigs

Query Path Twigs

Result
QueryPathTwigTypes

Search Path
Twig Types

Form Query
Results

Result Path
Twig Types

Each result contains
Path Twig Type for

each query path twig.
Fetch Subtrees
for each result

Fetch Path Twig
IDs

Join

Subtrees
IDs

Path Twig
IDs

Fetch Twigs

Path Twig
IDs

Result
Twigs

Fig. 4. BPI-TWIG Evaluation Functions

author (s4)

Fname (s8) State (s10)

TWT3

s5 s7s6

TWT4 TWT8 TWT5

s8 s12s8 s10s9

TWT6

s5 s6

TWT4 TWT8

s8 s8 s12

a)

c)b)

Twig Type

Signature

Ances-Desc

TWT3

TWT3 TWT4

TWT5
Res1

TWT3

TWT3 TWT8

TWT5
Res2

Query PTWT PTWT

PTWT2

PTWT3

PTWT5

PTWT3

ST

ST1

ST3

ST1
Rejected

PTw

Tw1 Tw2 Tw4 Tw5

Tw1 Tw2 Tw4 Tw6
Join on author

Twig Results

(Nodes)

(n8,n10,n14)

Rejected

s10 doesn’t

exist

Query Label

d)

Fig. 5. Twig Query Evaluation Example

Example 1. Consider the twig query pattern author[.//Fname][.//state]
presented as a query tree in Figure 5a. The signatures of the three tags author,
Fname and state are s4, s8 and s10 respectively. Since the query Tw is only
one level twig, there is no decomposition involved. There is one join at the
root(author) level. Searching for the author(s4) in the Twig Roots index re-
turns two query TWTs which are TWT3 and TWT6. In Figure 5b, we use TWT3
as a starting point in our search and in Figure 5c, we use twig type TWT6 as
a starting point. We search for s8 and s910 inside the signatures of each TWT.

BPI-TWIG: XML Twig Query Evaluation 21

In Figure 5b, the two signatures s8 and s10 do not exist in TWT3. Therefore,
we search for TWTs having the signatures of TWT3 as their roots in the Twig
Roots index. The result is TWT4 and TWT8 for s5, TWT5 for s7.

For each output TWT, we still searching for signatures s8 and s10, we find s8
in TWT4 and TWT8. And signature s10 is found in TWT5. Since the two sig-
natures s8 and s10 are found as descendants to TWT3, therefore all the shaded
TWTs under TWT3 are considered in producing the result. On the other hand,
in Figure 5c, the same search is done but only s8 is found, therefore we do not
consider TWT6 a part of the result. We then merge the shaded TWTs into query
PTWT according to the results in each TWT. The first result of this query pat-
tern will contain the two query PTWT (TWT3, TWT4) and (TWT3, TWT5).
Query PTWT (TWT3, TWT4) contains s8(Fname) and (TWT3, TWT5) con-
tains s10(state). The second result contains the two query PTws(TWT3, TWT8)
and (TWT3, TWT5).

For each query result returned, we search for the PTWTs that have the same
TWT of the query PTWT in the Path Twig Types Index. For the first
result {(TWT3, TWT4), (TWT3, TWT5)}, the PTWT that contain each of
the query PTWT are PTWT2, that contains the twig types (TWT1, TWT2,
TWT3, TWT4), and PTWT3 that contains the twig types (TWT1, TWT2,
TWT3, TWT5). Both PTWTs have to be in the same ST. This is because the
query root is not the same as the XML document root. Therefore by searching
for STs for PTWT2 and PTWT3 in Path Twig Types -Subtrees index, we
find that both PTWTs occur in the same subtree, ST1. On the other hand,
the second result {(TWT3,TWT8), (TWT3,TWT5)} is contained in PTWT5
and PTWT3. These PTWTs occur in ST3 and ST1 respectively. The result is
rejected since there is no ST intersection.

For the passing result that contains PTWT2 and PTWT3, we search for
PTw Identifiers that has these types in the intersection ST1, using Path Twigs
index, the resulting PTws are Tw1, Tw2, Tw4, Tw5 and Tw1, Tw2, Tw4, Tw6
as shown in the second and third row of Figure 2d. These two PTws has to be
joined on the same position of the query root TWT. The third position is the
join position which can be known from the position of the query signature within
the TWT. Since the Tw in the third position in both PTws is the same, Tw4,
therefore, these two PTws join successfully and can be added to the output Tw
identifiers.

To output the result we start from the Tw identifier that has the same signa-
ture as the query root, Tw4. We fetch Tw4 from Twig Structure, and output
its root node n8, then fetch the next Tw in the first PTw {Tw1, Tw2, Tw4, Tw5}
which is Tw5, and output the node number that has the same signature Fname,
s8, node n10. Then fetch the last Tw from the second PTw {Tw1, Tw2, Tw4,
Tw6}, Tw6, and output the node number that has the same signature state,
s10, node n14. Therefore the output of the query is the triplet (n8, n10, n14).

An interesting point here is that if a query Tw has greater depth, it does not
mean that the number of joins increases. For instance, consider the follow-
ing query: //dblp/book[./title] [./author[./name] [./address[./city]

22 N. El-Tazi and H.V. Jagadish

[./state][./zip]] [./publisher[./name] [./phone[./areacode]
[./number]]]]. This query has only two query PTws and it contains only
a single join on the node(book).

4 Performance Evaluation

In this section, we present results of experiments to caompare the performance
of the proposed algorithm, BPI-TWIG with the state of the art LCS-TRIM
algorithm [3]. We chose LCS-TRIM as one base line because it is regarded as
the “best” structural join algorithm proposed thus far. We are grateful to the
inventors of LCS-TRIM for sharing their code with us to enable this comparison.
Both algorithms were implemented in C++ and all experiments were run on a
2GHz Intel CPU with 1 GB RAM running WinXP.

We used a popular XML data set: DBLP [7]. The data set characteristics are
presented in Table 1. As we can see, the size of the bitmap index structure is only
a small fraction of the size of the data set. In other words, the space overhead
for the Path Twig Types - Subtrees index to support BPI-TWIG is negligible.
Number of path twig types is very small compared to the number of twigs in
the XML document. The Twig IDs index stores the node numbers for each twig.
We do not access this index except to get the result nodes from the result path
twigs. Indeed, most of the evaluation time is taken in reporting node numbers to
the output. Against the data set we ran a number of queries shown in Table 2.

Table 1. Data set characteristics

DataSet size TWIG IDs Index Subtree Index Other Indices Total
DBLP 170MB 70MB 22MB 4MB
#Subtrees #TwigTypes #PathTwigTypes #Path Twigs

331285 328858 752 331285

Table 2. DBLP Twig Query Set

Q# Query Expression
Q1 //phdthesis[./year][./number]
Q2 //phdthesis[./year][./series][./number]
Q3 //book[./author][./cdrom]
Q4 //inproceedings[./author][./month]
Q5 //book[./author][./publisher]

Figure 6 presents the evaluation times for queries over the DBLP data set
using both BPI-TWIG and LCS-TRIM. We find that the improvement of BPI-
TWIG over LCS-TRIM for most queries is more than 99%. The output results
in these queries ranges from 1 to 1200 results. The improvement in Q5 is 98%
which is less than the other improvements because Q5 has approximately 1200
which takes more time than other queries in retrieving the twig node numbers.
It is clear that BPI-TWIG out performs LCS-TRIM in the figure.

BPI-TWIG: XML Twig Query Evaluation 23

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Q1 Q2 Q3 Q4 Q5

T
im

e
 (

m
s
)

BPI-Twig LCS-Trim

Fig. 6. DBLP Twig Queries Evaluation

4.1 Query Complexity Effect and Recursiveness Effect

Figure 7 is obtained by running against a synthetic data set generated using
Toxgene [8]. Q5 in the figure, has the form B[E][F [G][H [I[P][Q[R][S]]]]]. The
first four queries were prefixes of this query. The output size is constant. We have
seen in [5] how the length of chain makes a little difference to query evaluation
time. In Figure 7, time to execute queries increases linearly with number of
branching points (twigs) in the query.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

T
im

e
 (

m
s
)

Number of Twigs Response Time

Fig. 7. Change in BPI-TWIG evaluation time with Query Complexity

Since most of the computation is performed on the types level not the data
level, the effect of recursiveness on the query processing is not significant. On
the other hand, the existence of recursiveness might help more our approach by
minimizing the number of twig types available in the indexes. In addition to
minimizing the response time due to the smaller number of twig types available
in the indexes.

5 Related Work and Conclusion

Recently, new approaches have been introduced to evaluate twig queries such as
VIST [2], PRIX [4] and LCS-TRIM [3]. These approaches rely on subsequence

24 N. El-Tazi and H.V. Jagadish

matching for the query sequence inside the data sequence to get the result of
the join. In addition to the high maintenance cost for the built indices, other
drawbacks comes from the data representation itself. For instance, the worst case
storage requirement in VIST for a B-tree index used is higher than linear in the
total number of nodes of the XML document.

In this paper, we proposed a new technique, BPI-TWIG, to evaluate twig
queries in XML. BPI-TWIG maintains a small bit-mapped data structure with
which make it able to do very fast in-memory processing of parent-child and
ancestor-descendant structural joins within twig queries. The bulk of the time in
BPI-TWIG is spent in simply reading out the results. In other words, structural
join computation is essentially as fast as index look up, but without the need to
maintain unwieldy join indices. Our preliminary evaluation shows the algorithm
to be a viable solution to the twig query evaluation problems. The ideas presented
in this paper are very simple, but very effective. We hope that they can transform
how real systems compute structural joins in twig queries.

References

1. Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V.S., Nierman, A.,
Paparizos, S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.:
TIMBER: A Native System for Querying XML. VLDB Journal 11(4), 274–291
(2002)

2. Wang, H., Park, S., Fan, W., Yu, P.S.: Vist: A dynamic index method for querying
xml data by tree structures. In: SIGMOD Conference, pp. 110–121 (2003)

3. Tatikonda, S., Parthasarathy, S., Goyder, M.: LCS-Trim: Dynamic programming
meets xml indexing and querying. VLDB, 63–74 (2007)

4. Rao, P., Moon, B.: Prix: Indexing and querying xml using prüfer sequences. In:
ICDE, pp. 288–300 (2004)

5. El-Tazi, N., Jagadish, H.V.: BPI: XML Query Evaluation using Bitmapped Path
Indices. In: DATAX (2009)

6. El-Tazi, N.A., Jagadish, H.V.: Xml query evaluation using bitmapped path and twig
indices, http://www.eecs.umich.edu/db/BPI/appendix.pdf

7. DBLP computer science bibliography dataset,
http://kdl.cs.umass.edu/data/dblp/dblp-info.html

8. Barbosa, D., Mendelzon, A.O., Keenleyside, J., Lyons, K.A.: ToXgene: An extensible
template-based data generator for XML. In: WebDB, pp. 49–54 (2002)

http://www.eecs.umich.edu/db/BPI/appendix.pdf
http://kdl.cs.umass.edu/data/dblp/dblp-info.html

On the Efficiency of a Prefix Path Holistic

Algorithm�

Radim Bača and Michal Krátký

Department of Computer Science, Technical University of Ostrava
Czech Republic

{radim.baca,michal.kratky}@vsb.cz

Abstract. In recent years, many approaches to XML twig pattern
searching have been developed. Holistic approaches such as TwigStack
are particularly significant in that they provide a powerful theoretical
model for optimal processing of some query types. Holistic algorithms
use various partitionings of an XML document called streaming schemes
and they prove algorithm optimality depending on query characteristics.

In this article, we introduce a variant of the TwigStack algorithm
which can work with various streaming schemes. Its efficiency does not
deteriorate when the number of streams per query node is increased, as
it does in the case of the iTwigJoin algorithm. Since the indices utilized
by the iTwigJoin and our algorithm are exactly the same, we can use
heuristics to select the appropriate algorithm. The aim of this paper is to
show that the prefix path streaming scheme algorithms can be efficient
even for documents with many labeled paths.

1 Introduction

Recently, many approaches to the indexing of the XML data structure have been
developed [6, 18, 4, 1]. Twig pattern queries (TPQ) represent an important part
of the XPath and XQuery [17] languages used for XML data querying. We can
find some works integrating TPQ into XQuery algebra [12]. This is important
since we can not expect that we will process each query using a single algorithm.

There are many works comparing various algorithms and indices for TPQ
searching [18,9,8,1,4,11]. These works show that the inverted list with a special
purpose algorithm can speed up the query processing for many queries. We can
find different types of inverted lists depending on the key utilized. The most
common key is the element’s name [18, 9, 8, 1, 4] or the element’s root-to-node
labeled path [15,13,11,5,3]. During the TPQ processing where labeled paths are
used, we have to first match the TPQ in a DataGuide tree [2]. We retrieve the
set of the inverted list’s keys (labeled paths in this case) for each query node.
A TPQ algorithm using labeled paths can become quite inefficient as the size of
these sets grows [5].

� Work is partially supported by Grants of GACR No. 201/09/0990 and IGA, FEECS,
Technical University of Ostrava, No. BI 4569951, Czech Republic.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 25–32, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

26 R. Bača and M. Krátký

In [14], we can find a comparison of various approaches to TPQ processing
based on structural joins [18, 1], holistic joins [4, 5], and on sequence searching.
Holistic approaches were considered the most robust solution requiring no com-
plicated query optimization. Moreover, holistic approaches provide a powerful
theoretical background for optimal processing of some query types. This is quite
useful during the query processing since we can precisely determine the TPQ
processing complexity.

In this work, we address a problem of the iTwigJoin+PPS holistic algorithm
using labeled paths [5]. We show that our new algorithm is very useful when we
have a higher number of keys per query node during the query processing. Since
the indices utilized by both algorithms are the same, we can employ heuristics
to select the appropriate algorithm. We show that the prefix path streaming
algorithms can be efficient even for documents with many labeled paths.

This paper is organized as follows: In Section 2, we depict a model of an XML
document. Section 3 briefly describes the previously published theory behind
holistic approaches. In Section 4, we introduce our new holistic algorithm called
TwigStackSorting. Section 5 shows that our new algorithm is efficient even for
documents with many labeled paths.

2 Model

It is common to model an XML document as an XML tree, where the tree nodes
correspond to elements and attributes of an XML document. In what follows,
we shall simply write ‘node’ instead of the correct ‘tree node’. We can see an
example of the XML tree in Figure 1(a). Nodes in this XML tree are pre-order
numbered for easy reference in the following examples.

For each node n of an XML tree we define a labeled path as a sequence tag0/
tag1/ . . . /tagn of node tags lying on a path from the root to n. Every labeled
path occurs only once in a DataGuide tree [15].

Join algorithms are usually based on a labeling scheme, where a label is as-
signed to every node of an XML tree. Node label enables us to determine the
relationship between two nodes. Containment labeling scheme [18] is a frequently
used labeling scheme, which is also utilized in holistic approaches considered in
this article [4, 5].

a1

b1 b2 e1

b3

d1

d2

c1 c2

c3 c4

d4 d5e2

d3

a

b

b

c

c d

d d

d e

e

(a) (b)

Fig. 1. (a) XML tree (b) DataGuide of the XML tree

On the Efficiency of a Prefix Path Holistic Algorithm 27

2.1 Twig Query Pattern and Query Matching

A TPQ can be modeled as an unordered rooted query tree, where each node of
the query tree corresponds to a single query node, and the edges represent an
AD or PC relationship between the connected nodes. Query match of a TPQ in
an XML tree is one occurrence of the pattern in the XML tree. The solution is
one root-to-leaf path in a query match.

Example 1. (TPQ Examples) Let us have the TPQ Q //e[./c]//b. The query
matches of Q in the XML tree in Figure 1(a) are (e2, c3, b3), (e2, c4, b3). Solutions
of the path //e/c are (e2, c3) and (e2, c4).

TPQ can be understood as a single operator which is a part of an XQuery algebra
used by a query processor. In [12], a comprehensive attempt to incorporate the
TPQ into the XQuery algebra has been made. This algebra uses TPQs having
a single output query node. Similarly, XPath query language specifies a single
output query node in a TPQ. We can observe that even in the case of FLWOR
XQuery expression, where more than one query node of the twig is in the output,
the twig usually contains only one iterative query node (bounded with the for
clause). Therefore, the output of a TPQ processing is not a set of query matches
(as it is proposed in [4,5]), but the algorithm output includes a set of node labels
corresponding to the output query node. In many cases, this slight difference has
a significant impact on the efficiency of a holistic join algorithm. Let us discuss
this issue in more detail in the next section.

3 Holistic Algorithms

In this section, we briefly introduce holistic algorithms for a TPQ searching [4,
5, 10]. Holistic approaches use an abstract data type (ADT) called a stream.
A stream is an ordered set of equivalent node labels. The most common equiva-
lences (also known as streaming schemes [5]) are defined according to the node
name (tag streaming) or node labeled path (prefix path streaming - PPS).

A cursor pointing to the first node label is assigned to each stream. The
following operations are defined for the stream T :

– head(T) – returns the node label corresponding to the cursor’s position
– eof(T) – returns true if the cursor is at the end of T
– advance(T) – moves the cursor to the next node’s label

Let us note that the stream ADT is often implemented by an inverted list data
structure.

In any algorithm using the prefix path streaming, we must first find labeled
paths matching the query in the DataGuide tree. Since the DataGuide is a tree
as well, we can use some tag streaming holistic methods for the searching [2].
By PRUq we denote a set of labeled paths matching the query node q in the
DataGuide.

Example 2. Let us consider the XML document in Figure 1(a) and the TPQ
//b[./c]//d. Under LPS the PRUb = {Ta/b}, PRUc = {Ta/b/c}, and PRUd =
{Ta/b/b/d, Ta/b/d}.

28 R. Bača and M. Krátký

3.1 Holistic Algorithms

Holistic algorithms work in two phases:

– First phase – the algorithm scans whole streams and prunes useless nodes.
Nodes matching the TPQ are stored temporarily in stacks and solutions are
stored in persistent arrays during this phase.

– Merge phase – the algorithm merges solutions (stored in the persistent
arrays), prunes irrelevant solutions and outputs query matches.

In every step of the first phase, the algorithm checks all the query node’s streams
and searches for the nodes which match the query. The TwigStack algorithm [4]
has only one stream per query node, therefore, it decides whether the node
matches the query or is useless by using the head(T) node of each TPQ’s query
node stream. In the case of iTwigJoin [5], we have a set of streams per query
node and thus the situation is more complicated. The iTwigJoin algorithm uses
a soln(Tlp, q′) set, which is a set of streams Tlp′ of class q, where the relationship
between lp and lp′ satisfies the relationship between q and q′.

Sometimes during one step, the algorithm is not able to determine a stream,
where the head node is a part of a query match or is useless. We say that the
algorithm is optimal when the situation never occurs during the first phase. The
TwigStack and iTwigJoin+PPS algorithms are optimal for a TPQ having only
AD edges and iTwigJoin+PPS is optimal also for a query with one branching
node.

In connection with the issues mentioned in Section 2, we do not return query
matches. Therefore, the second phase becomes obsolete in the case of an optimal
holistic algorithm. An optimal holistic algorithm finds only relevant nodes and
returns nodes corresponding to the output query node found in the first phase,
therefore, the merge phase can be skipped.

Holistic approaches described in [4,5,10] also perform the second phase in the
case of an optimal algorithm because they return the result in a form of query
matches. In order to process the second phase efficiently we have to sort the so-
lutions founded in the first phase. Holistic approaches describe the node blocking
method to sort the solutions without excessive sorting algorithms. However, the
node blocking can lead to a repeated read and write of the same pages in the
secondary storage and it can be particularly inefficient when many nodes are
blocked.

4 The TwigStackSorting Algorithm

In this section, we describe the TwigStackSorting algorithm. The TwigStack-
Sorting modifies the TwigStack [4] in order to use the PPS scheme. This means
that TwigStackSorting is an alternative approach to iTwigJoin+PPS [5] since
they both use the same index structure.

The basic TwigStack algorithm remains the same with the only difference
being in the advance(q) and head(q) methods. Compared to the TwigStack al-
gorithm, we have more than one stream per query node. In this case, we have

On the Efficiency of a Prefix Path Holistic Algorithm 29

to keep streams for each query node q sorted according to the streams’ head. As
usual, we implement this by using an array of references to the streams’ head.
The advance(q) method first shifts the head of the current stream to the next
node. Therefore, the array of references must be re-sorted since it must handle
the order of streams sorted according to the streams’ head. The head(q) function
of the query node q simply selects the head of the lowest stream in the array.

Basically we merge streams corresponding to one query node into one stream.
However, this merging is simply performed during the TwigStackSorting run.

4.1 Analysis of the TwigStackSorting Algorithm

The correctness of the TwigStackSorting algorithm can be shown analogously
to TwigStack due to the fact that they both use the same stack mechanism.
Therefore, the space, time, and I/O complexity is the same as for TwigStack
if the algorithm is optimal. Due to this fact, TwigStackSorting is optimal for
queries having only AD axes. Let us note that I/O is usually lower for a PPS
algorithm than for TwigStack since the TPQ match in a DataGuide filters out
many irrelevant streams.

The iTwigJoin+PPS and TwigStackSorting algorithms use the same input
streams, however their performance can be significantly different. iTwigJoin+PPS
often searches the minimal value in the soln set and this operation has to be
performed with a time consuming sequence scan within the soln set of streams.
On the other hand, TwigStackSorting uses the binary search algorithm during
the advance(q) method with logarithmic complexity.

4.2 Prefix Path Streaming Optimality

Let us define a checking query node q of a TPQ as a query node having an
AD relationship with its parent query node and having a PC relationship in
a subtree. For example, the TPQ //a/b[/c]//d[//e]//f has single checking
node a and the TPQ //a/b[//c/d]/d/f has two checking nodes a and c.

It can be shown that a PPS algorithm is optimal when PRUq set of every
checking query node q does not contain two labeled paths, where one is prefix
of another one. This optimality condition may be applied to iTwigJoin+PPS as
well as to TwigStackSorting. Proof of this is out of the scope of this paper.

Example 3. (PPS optimality) Let us consider the TPQ //b[/c]/d and the XML
tree in Figure 1(a). In the case of TwigStack, we find the first output node d1

which is a part of the query match (b1, c1, d1). During the following steps, node
d2 is skipped and streams’ cursors are moved to nodes b2, c2, and d3. The nodes
do not form a query match, however we are not able to decide whether any
node matches the TPQ or is useless without a stream scan. In this situation,
TwigStack is blocked and it has to output the useless solution (b2, d3), which
will be pruned during the second phase of the algorithm.

Such a situation does not occur in the case of TwigStackSorting. We first
search the labeled paths which match the TPQ in the DataGuide from

30 R. Bača and M. Krátký

Figure 1(b). These labeled paths are a/b, a/b/c, a/b/d. One for each query
node. Therefore, the PRUd set includes only the stream Ta/b/d = {d1, d4} and
the problematic d3 node is omitted.

5 Experimental Results

In our experiments1, we compare TwigStackSorting with iTwigJoin+PPS. We
implemented these approaches in C++. We process experiments with the INEX
1.9 collection [7] which contains a higher number of labeled paths, therefore,
issues of iTwigJoin+PPS discussed in Section 4.1 can be clearly shown here.

5.1 Prefix Path Streaming Optimality

Table 1 shows the statistics of the various XML collections [16, 7]. The third
column shows the number of the PPS optimal tags. The PPS optimal tag x is a
tag which never has a tag x as an ancestor (i.e., it is not recursive). If the TPQ
has non-recursive nodes as checking query nodes, then the PPS holistic algorithm
will be optimal for such a TPQ. We can see that the number of optimal tags
is significant in each XML document. Therefore, the optimality mentioned in
Section 4.2 covers the significant number of queries.

Table 1. Statistics of various collections

Collection LP Tag PPS optimal tags
count count Count Ratio

TreeBank 338,749 251 234 93.33%
XMARK 548 548 75 97.40%
INEX-wiki 114,870 3,608 3,435 95.21%
INEX-1.9 16,018 217 190 87.56%
DBLP 170 41 39 97.56%
Nasa 110 69 69 100%
SwissProt 264 99 99 100%

5.2 Processing Time Results

We randomly selected 25 twig queries having six query nodes with a combination
of PC and AD edges. We chose PPS optimal queries with various number of
labeled paths per query node. Each query was processed three times with a cold
cache and then the average processing time per kilobyte read from the secondary
storage was computed.

In Figure 2, we show the dependency of the processing time on the number of
labeled paths. We also depict the fitting curve. In Figure 2(a), we see the prob-
lem of iTwigJoin+PPS mentioned in [5]. Its processing time per kilobyte grows
1 The experiments were executed on Intel Pentium 4 1.66Ghz, 2.0 MB L2 cache; 2GB

667MHz DDR2 SDRAM; Windows XP.

On the Efficiency of a Prefix Path Holistic Algorithm 31

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000
iTwigJoin+PPS Fitted
iTwigJoin+PPS Observed

Labeled paths per query node

P
ro

ce
ss

in
g

ti
m

e
p
er

k
B

[μ
s
]

0 50 100 150 200
150

200

250

300

350

400

450
TwigStackSorting Fitted

TwigStackSorting Observed

Labeled paths per query node

P
ro

ce
ss

in
g

ti
m

e
p
er

k
B

[μ
s
]

Fig. 2. Processing time depending on the number of labeled paths (a) iTwigJoin+PPS
(b) TwigStackSorting

quadratically with the number of labeled paths per query nodes. TwigStackSort-
ing is significantly more robust as we see in Figure 2(b).

There can be queries which are optimal for iTwigJoin+PPS, but they are
not optimal for TwigStackSorting. However, we experimentally evaluated that
the iTwigJoin algorithm is usually faster only for queries having less then five
labeled paths per query node.

6 Conclusion

We show that the holistic algorithm using labeled paths is very efficient even for
a higher number of labeled paths per query node. TwigStackSorting is shown
to be more robust and its performance does not deteriorate with an increase in
the number of labeled paths. We also discuss the optimality of PPS algorithms
since the PPS algorithms can be optimal for a significant number of twig queries.
This can be important for a query optimizer, which can precisely determine the
query processing cost. In our future work, we want to formalize the proposed
PPS optimality.

References

1. Al-Khalifa, S., Jagadish, H.V., Koudas, N.: Structural Joins: A Primitive for Ef-
ficient XML Query Pattern Matching. In: Proceedings of ICDE 2002. IEEE CS,
Los Alamitos (2002)

2. Bača, R., Krátký, M.: On the Efficient Search of an XML Twig Query in Large
DataGuide Trees. In: Proceedings of the Twelfth International Database Engineer-
ing & Applications Symposium, IDEAS 2008. ACM Press, New York (2008)

3. Bača, R., Krátký, M.: TJDewey – On the Efficient Path Labeling Scheme Holis-
tic Approach. In: Proceedings of Database Systems for Advanced Applications,
DASFAA 2009 International Workshops. Springer, Heidelberg (to appear, 2009)

4. Bruno, N., Srivastava, D., Koudas, N.: Holistic Twig Joins: Optimal XML Pat-
tern Matching. In: Proceedings of ACM SIGMOD 2002, pp. 310–321. ACM Press,
New York (2002)

32 R. Bača and M. Krátký

5. Chen, T., Lu, J., Ling, T.: On Boosting Holism in XML Twig Pattern Matching
Using Structural Indexing Techniques. In: Proceedings of ACM SIGMOD 2005,
pp. 455–466. ACM Press, New York (2005)

6. Florescu, D., Kossmann, D.: Storing and Querying XML Data using an RDMBS.
IEEE Data Engineering Bulletin 22(3), 27–34 (1999)

7. Fuhr, N., Gövert, N., Malik, S., Lalmas, M., Kazai, G.: INEX (2007),
http://inex.is.informatik.uni-duisburg.de/2007/

8. Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach a Relational DBMS
to Watch Its (Axis) Steps. In: Proceedings of VLDB 2003, pp. 524–535 (2003)

9. Tatarinov, I., et al.: Storing and Querying Ordered XML Using a Relational
Database System. In: Proceedings of ACM SIGMOD 2002, New York, USA,
pp. 204–215 (2002)

10. Lu, J., Ling, T., Chan, C., Chen, T.: From Region Encoding to Extended Dewey:
on Efficient Processing of XML Twig Pattern Matching. In: Proceedings of VLDB
2005, pp. 193–204 (2005)

11. Yoshikawa, T.S.M., Amagasa, T., Uemura, S.: XRel: a Path-based Approach to
Storage and Retrieval of XML Documents Using Relational Databases. ACM
Trans. Inter. Tech. 1(1), 110–141 (2001)

12. Michiels, P., Mihaila, G., Simeon, J.: Put a tree pattern in your algebra. In: Pro-
ceedings of the 23th International Conference on Data Engineering, ICDE 2007,
pp. 246–255 (2007)

13. Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1999)

14. Moro, M., Vagena, Z., Tsotras, V.: Tree-pattern Queries on a Lightweight XML
Processor. In: Proceedings of VLDB 2005, pp. 205–216 (2005)

15. Goldman, J.W.R.: DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. In: Proceedings of VLDB 1997, pp. 436–445 (1997)

16. University of Washington’s Database Group. The XML Data Repository (2002),
http://www.cs.washington.edu/research/xmldatasets/

17. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft
(November 12, 2003), http://www.w3.org/TR/xquery/

18. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: Proceedings of
ACM SIGMOD 2001, pp. 425–436 (2001)

http://inex.is.informatik.uni-duisburg.de/2007/
http://www.cs.washington.edu/research/xmldatasets/
http://www.w3.org/TR/xquery/

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 33–52, 2009.
© Springer-Verlag Berlin Heidelberg 2009

KSRQuerying: XML Keyword with Recursive Querying

Kamal Taha and Ramez Elmasri

Department of Computer Science and Engineering,
The University of Texas at Arlington, USA
{kamal.taha,elmasri}@uta.edu

Abstract. We propose an XML search engine called KSRQuerying. The search
engine employs recursive querying techniques, which allows a query to query
the results of a previous application of itself or of another query. It answers
recursive queries, keyword-based queries, and loosely structured queries.
KSRQuerying uses a sort-merge algorithm, which selects subsets from the set
of nodes containing keywords, where each subset contains the smallest number
of nodes that: (1) are closely related to each other, and (2) contain at least one
occurrence of each keyword. We experimentally evaluated the quality and
efficiency of KSRQuerying and compared it with 3 systems: XSeek, Schema-
Free XQuery, and XKSearch.

Keywords: XML, keyword search, loosely structured search, recursive querying.

1 Introduction

With the emergence of the World Wide Web, online businesses, and the concept of
ubiquitous computing, business’ XML databases are increasingly being queried
directly by customers. Business’ customers and employees may not be fully aware of
the exact structure of the underlying data, which prevents them from issuing structured
queries. Keyword-based querying does not require the user to be aware of the structure
of the underlying data nor elements’ label. Bur, the precision of results could be low.
On the other hand, Loosely Structured querying allows combining some structural
constraints within a keyword query, by specifying the context where a search term
should appear (combining keywords and element names). That is, it requires the user to
know only the labels of elements containing the keywords, but does not require him to
be aware of the structure of the underlying data. Thus, Loosely Structured querying
combines the convenience of Keyword-Based querying while enriching queries by
adding structural conditions, which leads to performance enhancement. We propose in
this paper an XML search engine called KSRQuerying. The search engine employs
recursive querying techniques, which allows a query to query the results of a previous
application of itself or of another query. The search engine answers recursive queries,
keyword-based queries, and loosely structured queries.

Extensive research has been done in XML keyword querying [13, 14, 21].
Computing the Lowest Common Ancestor (LCA) of elements containing keywords is
the common denominator among most proposed search engines. Despite the success of

34 K. Taha and R. Elmasri

these search engines, they suffer recall and precision limitations. The reason is that
these engines employ mechanisms for building relationships between data elements
based solely on their labels and proximity to one another while overlooking the contexts
of the elements. The context of a data element is determined by its parent, because a
data element is usually a characteristic of its parent. If for example a data element is
labeled title, we cannot determine whether it refers to a book title or a job title without
referring to its parent. KSRQuerying employs context-driven search techniques to avoid
the pitfalls of non context-driven systems. The engine also uses a stack sort-merge
algorithm, which selects subsets from the set of nodes containing keywords, where each
subset contains the smallest number of nodes that contain at least one occurrence of
each keyword. KSRQuerying enables the user to issue a query based on his degree of
knowledge of the underlying data as follows: (1) if the user knows only keywords, he
can submit a keyword-based query, (2) if he is unaware of the structure of the
underlying data, but is aware of the elements’ labels he can submit a loosely structured
query, and (3) if he is unaware of the structure of the underlying data and the query
requires transitive closure of a relation, he can submit a recursive query.

The rest of the paper is organized as follows. In section 2 we present related work.
In section 3 we present definitions of key concepts used in the paper. In section 4, we
present our context-driven search techniques. In section 5 we show how to select from
the set of nodes containing keywords subsets that are closely related to each other. In
sections 6 and 7 we show how answer nodes are determined. In section 8, we present
the system implementation and architecture. We present the experimental results in
section 9 and our conclusions in section 10.

2 Related Work

Researchers in the area of keyword search in relational databases [2, 3, 10] consider
the relational database as a graph, where nodes represent the tuples in the database
and edges represent the relationships between the nodes. The result of a query is a
sub-graph that contains all the query’s keywords. A number of studies [4, 5, 8]
propose modeling XML documents as graphs, and keyword queries are answered by
processing the graphs based on given schemas.

We proposed previously two XML search engines called OOXSearch [17] and
CXLEngine [18]. They differ from KSRQuerying in that: (1) they answer only
loosely structured queries, (2) they do not answer recursive queries, (3) they employ
Object Oriented techniques while KSRQuerying employ stack based sort-merge
algorithm, and (4) they may return results with low recall/precision for queries that
expand across an XML tree. The studies [13, 14, 21] are related to this paper, since
they propose semantic search techniques for establishing relationships between nodes
in XML documents modeled as trees. Despite their success, however, they suffer
recall and precision limitations as a result of overlooking nodes’ contexts. We take
[13, 14, 21] as samples of non-context driven search engines and overview below the
techniques employed by each of them. We compared the three systems experimentally
with KSRQuerying (see section 10).

XSeek [14]: [14] uses the approach of XKSearch for identifying search predicates by
determining SLCA (which [14] calls it VLCA nodes). The contribution of [14] is the

 KSRQuerying: XML Keyword with Recursive Querying 35

inference of result nodes that are desirable to be returned. Each desirable node is a
data node that either: (1) matches one of the query’s return nodes (if the label of node
n1 matches keyword k1 and there does not exist a descendant node n2 of n1 whose
label matches another keyword k2, n1 is considered a return node), or (2) matches a
predicate (a keyword that does not satisfy the condition in (1) is a predicate).

XKSearch [21]: [21] returns a subtree rooted at a node called the Smallest Lowest
Common Ancestor (SLCA), where the nodes of the subtree contain all the query’s
keywords and they have no descendant node(s) that also contain all the keywords.
Consider for example Fig. 2 and let node 8 contains the keyword “XQuery” instead of
“XML and the Web”. Now consider the query Q(“XQuery”, “Wilson”). Even though
the keyword “XQuery” is contained in both nodes 8 and 15, the answer subtree will
be the one rooted at node 10 (which is the SLCA of nodes 11 and 15) and not the one
rooted at node 7 (which is the LCA of nodes 11 and 8).

Schema-Free XQuery [13]: In [13], nodes a and b are not meaningfully related if
their Lowest Common Ancestor (LCA), node c is an ancestor of some node d, which
is a LCA of node b and another node that has the same label as a. Consider for
example nodes 2, 11, and 15 in Fig. 2. Nodes 15 title and 2 name are not related,
because their LCA (node 1) is an ancestor of node 10, which is the LCA of nodes 11
and 15, and node 11 has the same label as node 2. Therefore, node 15 is related to
node 11 and not to node 2 (name).

3 Concepts Used in KSRQuerying

In this section we present definitions of key notations and basic concepts used in the
paper. We model XML documents as rooted and labeled trees. A tree t is a tuple
t = (n, e, r, λt) where n is the set of nodes, e ⊆ n × n is the set of edges, r is the root
node of t, and λt : n → Σ is a node labeling function where Σ is an alphabet of node
labels. A node in a tree represents an element in an XML document. Nodes are
numbered for easy reference. We use the abbreviation IAN throughout the paper to
denote “Intended Answer Node”. An IAN is a requested return node containing the
data that the user is looking for, where the data is relevant to the query’s keywords.

Definition 3.1. Ontology Label (OL) and Ontology Label Abbreviation (OLA): Let

mm ′→ denote that class m is a subclass of class m′ in an Object-Oriented Ontology.

This relationship could be expressed also as m “is-a” m′ e.g. a customer “is a”
person. An Ontology Label m′ of a node m , where m is an interior node label in the
XML tree, is the most general superclass (root node) of m in a defined ontology
hierarchy. Fig.1 shows an example of ontology hierarchy. The Ontology Label of an
interior node m is expressed as)(mOL = m′ . Since customerÆperson in Fig.1, the
Ontology Label of node customer(1) in Fig. 2 is expressed as OL(customer) =
person. Taxonomically, m′ is a cluster set that contains entities sharing the same domain,
properties, and cognitive characteristics e.g. cluster person contains the entities
customer, author, etc. For each entity (interior node in an XML tree) m ∈ m′ ,

)(mOL = m′ . The framework of KSRQuerying applies the above mentioned clustering

36 K. Taha and R. Elmasri

publication person

 … …

 book magazine customer author editor
 field address
 … …
 specialty expertise shipTo site

Fig. 1. Example of ontology hierarchy

Table 1. OLs and OLAs of the parent nodes in Fig. 2

Parent nodes (with their IDs) OL

customer(1), author (10), editor(34), processer(22) person
book(7), magazine(31), latestPublication(14) publication
expertise(12), field(17), specialty (36) field
shipTo (19), site (24) address
currentOrder (3), previousOrder (27) order

 Robinson customer (1)
 …..

 name (2) currentOrder (3) previousOrder (27)

 orderNo (4) items (5) shipTo (19) processer (22) orderNo (28) items (29)

 10024 … …. 9576
 item (6) street(20) city(21) name (23) site (24) item (30) …

 XML and the Web Levine
 book (7) city (25) state (26) magazine (31)

 title(8) ISBN(9) author(10) field(17) title(32) ISBN(33) editor(34) specialty(36)

 87-11 -07559-7 area (18) ESPN

 name (11) expertise (12) latestPublication (14) 0-471-19047-0 name (35) area (37)
 Wilson databases

 databases area (13) XQuery title(15) ISBN(16) Sam

Fig. 2. Customer publication order (file: order.xml)

concept to all parent nodes in an XML tree, and the label of each of these clusters is
an Ontology Label (OL). Table 1 shows the Ontology Labels and clusters of parent
nodes in the XML tree in Fig. 2. The table is an alternative representation of the
information in Fig.1.

 KSRQuerying: XML Keyword with Recursive Querying 37

Definition 3.2. Canonical Tree (CT): Let),(nn′ denote that there is an edge from
node n′ to node n in the XML tree. We call n the child of n′ . A Canonical Tree T is
a pair,)(),(NnOLT ′= , where)(nOL ′ is the Ontology Label of an interior node n′ and N
is a finite set of leaf data nodes and/or attributes: N = { n | n is a leaf data node and

),(nn′ , or n is an attribute of n′ }. In Fig. 2 for example, the parent node
customer(1) and its leaf child data node name(2) constitute a Canonical Tree,
and node customer(1) is represented in the Canonical Tree by its Ontology Label
person (see the root Canonical Tree T1 in Fig. 3). A Canonical Tree is the simplest
semantically meaningful subtree. A data node by itself is an entity that is semantically
meaningless. The Ontology Label of a Canonical Tree is the Ontology Label of the
parent node component of the Canonical Tree. For example, the Ontology Label of
Canonical Tree T1 in Fig. 3 is the Ontology Label of the parent node customer (1),
which is person. A Canonical Tree is represented by a rectangle. The label above
the rectangle, which has the form Ti, represents the numeric ID of the Canonical Tree,
where 1 ≤ i ≤ |T|. For example, in the Canonical Trees Graph (see Definition 3.3)
shown in Fig. 3, the Ontology Label of the root Canonical Tree is person and its
numeric ID is T1. We use the abbreviation “CT” throughout the paper to denote
“Canonical Tree”.

 T1
 Robinson

 T2 T11

 1002 9576

 TT33
 T8 T9 TT1122

 XML and the Web 87-11-07559-7 Levine ESPN 0-471-19047-0

 T4 T7 T10

 Wilson Databases

 T5 T6 T13 T14

 Databases XQuery Sam

person
name(2)

 order
orderNo(28)

address
street(20) city(21)

publication
title(8) ISBN(9)

person
 name(11)

 field
area(37)

field
 area(13)

order
 orderNo(4)

person
name(23)

publication
title(32) ISBN(33)

publication
title(15) ISBN(16)

address
city(25) state(26)

 field
 area(18)

person
name(35)

Fig. 3. Canonical Trees Graph of the XML tree in Fig. 2

38 K. Taha and R. Elmasri

Definition 3.3. Canonical Trees Graph (CTG): A Canonical Trees Graph CTG is a
pair of sets, CTG= (TS , E), where TS is a finite set of CTs and E, the set of edges, is a
binary relation on TS, so that E ⊆ TS × TS. TS = {Ti | Ti is a CT, and 1 ≤ i ≤ | TS|).
The CTG is constructed as follows: If the two interior nodes n , n′ in the XML tree
both have leaf data nodes and/or attributes, and either (1) (n , n′) is an edge in the
XML tree, or (2) n is an ancestor of n′ in the XML tree, and there does not exist any
node n ′′ on the path from n to n′ where n ′′ has leaf data nodes or attributes, then

),(21 TT will be an edge in the CTG, where)),((11 NnOLT = and)),((22 NnOLT ′= and N1

is the set of leaf children data nodes/attributes of n and N2 is the set of leaf children
data nodes/attributes of n′ . In Fig. 2 for example, since node book(7) is a
descendant of node currentOrder(3) and there is no interior node in the path from
book(7) to currentOrder(3) that has a child data node(s)/attribute(s), CT T3 is a
child of CT T2 (see Fig. 3).

Definition 3.4. Keyword Context (KC): it is a CT containing one or more of a query’s
keywords.

Notation 3.1. OLT: OLT denotes the Ontology Label of CT T. In Fig. 3 for example

1TOL is person.

4 Determining the Immediate Relatives of Canonical Trees

Notation 4.1 Intended Answer Node (IAN)
When a user submits a query, he is usually looking for data that is relevant to the
query’s keywords. We call each one of the data nodes containing this data an Intended
Answer Node (IAN). Consider for example Fig. 2 and that the user submitted the
keyword-based query Q (“XQuery”). As the semantics of the query implies, the user
wants to know information about the book, whose title is “XQuery” (node 15). This
information is contained in nodes 11 and 16. Thus, each of nodes 11 and 16 is
considered an IAN.

We call each CT T that can contain an IAN for a KC an Immediate Relative (IR)
of the KC. We denote the set of CTs that are Immediate Relatives of the KC by IRKC.
Consider for example Figures 2 and 3 and the keyword-based query Q(“XQuery”).
XQuery is a publication’s title contained in node 15. It is intuitive that data node 16
and/or 11 be an IAN, but it is not intuitive that data node 2 be an IAN, because
“Robinson” did not order this publication. Since “XQuery” is contained in T6, we can
determine that each of the CTs containing nodes 16 and 11∈

6TIR while the CT

containing node 2 ∉
6TIR .

Table 2. Abbreviations of concepts used in the paper: Abr. denotes abbreviation

Abr. Concept Abr. Concept Abr. Concept

IAN Intended Answer Node LCA
Lowest Common
Ancestor

CTG Canonical Trees
Graph

CT Canonical Tree OL Ontology Label KC Keyword Context

IRT

Immediate Relatives of
CT T RKC

Related Keyword
Contexts

OLA Ontology Label
Abbreviation

 KSRQuerying: XML Keyword with Recursive Querying 39

Proposition 4.1. For CT T to be an Immediate Relative of a KC, its Ontology Label
should be different than both OLKC and

TOL ′ , whereT ′ is a CT located between T and

the KC in the CTG.

Proof (heuristics)
a) Since each IR of a KC can contain an IAN for the query, we are going to prove
heuristically that if OLT ≠ OLKC, then CT T can contain an IAN; otherwise, it
cannot. Let Ti and Tj be two distinct CTs having the same Ontology Label. Therefore,
the two CTs share common entity characteristics and some of their data nodes are
likely to have the same labels. Let n1, n2, n3, n4, n5, and n6 be data nodes, where n1, n2,
n3 ∈ Ti and n4, n5, n6 ∈ Tj. Let n1 and n4 have the same label l1, n2 and n5 have the
same label l2, n3 has the label l3, and n6 has the label l4. Let m

md ′ denote the distance

between data nodes m and m′ in the XML tree. Now consider the query Q(l1=”ki”,
l2?), and that the keyword “ki” is contained in data node n1 ∈ Ti (the KC is Ti) and l2 is
the label of the IAN. Intuitively, the IAN is n2 ∈ Ti and not n5 ∈ Tj, because 1

2

n
nd < 1

5

n
nd .

If the label of the IAN in the same query is l3 (instead of l2), then obviously the IAN is
n3 ∈ Ti. However, if the label of the IAN in the same query is l4, then the query is
meaningless and unintuitive. Now consider the query Q(l3 = “ki”, l1?). Intuitively, the
IAN is n1 and not n4 due to the proximity factor. If the label of the IAN in the same
query is l2 (instead of l1), intuitively the IAN is n2 and not n5. Thus, we can conclude
that in order for the query to be meaningful and intuitive, the IAN cannot be
contained in CT Tj if the keyword is contained in CT Ti. In other words, an IAN of a
query cannot be contained in a CT whose Ontology Label is the same as that of the
KC.
b) Let: (1) CT T ′ ∈ IRKC, (2) T ′ be a descendant of the KC, and (3) CT T be a
descendant of T ′ . In order for T to be an IR of the KC, intuitivelyT has to be an
Immediate Relative ofT ′ , because T ′ relates (connects) T with the KC. If T and

T ′ have the same Ontology Label, then T ∉ TIR ′ (according to the conclusion of

heuristics a); therefore, T ∉IRKC . Thus, in order for CT T ′ to be an Immediate
Relative of the KC, OLT ≠

TOL ′ . We now formalize the concept of Immediate

Relatives in Definition 4.1.

Definition 4.1. Immediate Relatives of a KC (IRKC)
The Immediate Relatives of a KC is a set IRKC, IRKC = { T ′ | T ′ is a CT whose Ontology
Label is different than OLKC and

TOL ′ , whereT ′ is a CT located between T and the

KC in the CTG}.

Proposition 4.2. If CT T ∉ IRKC and CT T ′ is related (connected) to the KC through
T , then CT T ′ ∉ IRKC.

Proof (induction): Every CT T has a domain of influence. This domain covers CTs,
whose degree of relativity to T is strong. Actually, these CTs are the Immediate
Relatives of T. If CT T ′ ∉ TIR , then the degree of relativity betweenT ′ and T is weak.

Intuitively, the degree of relativity between any other CT T ′′ and T is even weaker
ifT ′′ is connected to T throughT ′ , due to proximity factor.

40 K. Taha and R. Elmasri

We can determine IRKC by pruning from the CTG all CTs∉ IRKC, and the remaining
ones would be IRKC. We present below three properties that regulate the pruning
process. Properties 1 and 2 are based on Proposition 4.1 and property 3 is based on
Proposition 4.2.

Property 1: When computing IRKC, we prune from the CTG any CT, whose Ontology
Label is the same as the Ontology Label of the KC.

Property 2: When computing IRKC, we prune CT T ′ from the CTG if: (1) there is
another CT T ′′ betweenT ′ and the KC, and (2) the Ontology Label of T ′′ is the same
as that of T ′ .

Property 3: When computing IRKC, we prune from the CTG any CT that is related
(connected) to the KC through a CT T, T ∉ IRKC.

Example 1: Let us determine (recall Fig. 3). By applying property 2, CT T2 is
pruned because it is located in the path T12, T11, T1, T2 and its Ontology Label is the
same as the Ontology Label of CT T11, which is closer to CT T12. By applying
property 3, all CTs that are connected with CT T12 through CT T2 are pruned. The
remaining CTs in the CTG are (see Fig. 4-A).

Example 2: Let us determine
6TIR . By applying property 1, CT T3 is pruned because

its Ontology Label is the same as that of CT T6. By applying property 3, all CTs that
are connected with CT T6 through CT T3 are pruned. The remaining CTs in the CTG
are

6TIR (see Fig. 4-B).

Example 3: Figs. 4-C, D, E, and F show
1TIR ,

9TIR ,
7TIR , and

3TIR respectively.

A B C D E F

T1

T11

T12

T13 T14 T6T5

T4

T2

T9T3

T8

T7 T10

T1

T3 T8

T2

T9

T4 T7 T10

T2

T3 T8 T9

T4 T7
T10

T5

T1

T2 T11

T3 T8

T7

T12

T14

T1

Fig. 4. A)
12TIR B) 6TIR C) 1TIR D) 9TIR E) 7TIR F) 3TIR

We constructed an efficient algorithm called ComputeIR (see Fig. 5) for computing
IRKC. To compute IRKC, instead of examining each CT in the graph, we only examine
the CTs that are adjacent to any CTT ′ ∈ IRKC. That is, if the algorithm determines that
some CTT ′ ∈ IRKC, it will then examine the CTs that are adjacent to T ′ . However, if
the algorithm determines that T ′ ∉ IRKC, it will not examine any CTT ′′ that is
connected to the KC throughT ′ , because T ′′ is known to be not an IR of the KC
(according to property 3). The algorithm’s time complexity is

)
||

1
|(|∑

=

T

i
iTIRO .

12TIR

12TIR

 KSRQuerying: XML Keyword with Recursive Querying 41

ComputeIR (KC) {
1. T  KC
2. KC

KCS  null

3. IRKC  null
4. ExamineCT (T) {
5. for each CT T ′ ∈Adj [T] {
6. if (KCT OLOL ≠′

& T
KCT SOL ∉′)

7. then { IRKC = IRKC U T ′

8. T
KCS ′  T

KCS U TOL ′

9. ExamineCT (T ′)
 } /*end if */
 } /*end for */
} /* end ExamineCT */
} /* end the algorithm */

Fig. 5. Algorithm ComputeIR

5 Determining Related KCs

We select from the KCs subsets, where each subset contains the smallest number of
KCs that: (1) are closely related to each other, and (2) contain at least one occurrence
of each keyword. The KCs contained in each of these subsets are called Related
Keyword Contexts (RKC).

Definition 5.1. Canonical Relationship Tree
The Canonical Relationship Tree of CTs T and T ′ (denoted by TTR ′,) is the set of

CTs in the CTG located in the path from CT T to CT T ′ including CTs T and T ′ .
For example, the Canonical Relationship Tree of CTs T1 and T14 in Fig. 3 is the set
{T1, T11, T12, T17}.

Let S be the set of CTs containing the search terms of a query (the KCs). Let the
subset { T , T ′ } ⊆ S , and that this subset contains at least one occurrence of each

keyword. The KCs contained in set TTR ′, (the Canonical Relationship Tree of CTs
T and T ′) collectively

constitute the Related Keyword Contexts (RKC), if either: (1)

the CTs in set TTR ′, have distinct Ontology Labels, or (2) only T and T ′ have the
same Ontology label, which is different than the Ontology Labels of the other CTs in

TTR ′, . If set S contains n subsets satisfying the conditions specified above, there
will be n RKCs. We now formalize the concept of RKC in definition 5.2.

Definition 5.2. Related Keyword Contexts (RKC)
RKC is a set of CTs, where: (1) for each two distinct CTs Ti, Tj ∈ RKC, Ti ∈ jTIR , (2)

the CTs in set RKC contain at least one occurrence of each keyword, and (3) there
are no two CTs Ti, Tj ∈ RKC, where Ti and Tj contain the same keywords.

We now present Example 4 to illustrate the RKC concept.

42 K. Taha and R. Elmasri

Example 4: Consider Figures 2 and 3 and the keyword-based query: Q (“Levine”,
“databases”, title). The keyword “databases” is contained in nodes 13 and 18, and the
label title matches nodes 8, 15, and 32. We show below how by employing the RKC
concept we would be able to select from the set of nodes containing the keywords and
the label, the subset 8, 18, and 23 as the smallest number of nodes that are closely
related to one another and contain the two keywords and the label. As can be seen, the
semantics of the answer is correct, because the employee “Levine” (node 23)
processed the order of the publication whose title is contained in node 8 and the field
area of this publication is “databases” (node 18). On contrast, the Stack Algorithm of
[21] would answer the same query incorrectly by returning the set of nodes 15, 18,
and 23 and considering node 3 as their SLCA. As can be seen the semantics of the
answer is incorrect, because “Levine” (node 23) did not process an order of a
publication whose title is contained in node 15. The reason for the faulty answer is
that the Stack Algorithm of [21] does not employ context-driven search techniques.
Keyword “databases” is contained in CTs T5 and T7. The label ‘title’ is contained in
CTs T3, T6, and T12. Keyword “Levine” is contained in CT T9. Each of the following
Canonical Relationship Trees contains at least one occurrence of each keyword:

¾
539 ,, TTTR = {T9, T2, T3, T4, T5}. The relationship tree contains CTs T4 and T9,

which have the same Ontology Labels. Therefore, the KCs in the set do not
constitute RKC.

¾
739 ,, TTTR = {T9, T2, T3, T7}. There are no two or more CTs in the set having

the same Ontology Label. Therefore, the KCs T9, T3, and T7 constitute RKC.

¾
569 ,, TTTR = {T9, T2, T3, T4, T5, T6}. The relationship tree contains CTs T4 and

T9, which have the same Ontology Labels. Therefore, the KCs in the set do
not constitute RKC.

¾
769 ,, TTTR = {T9, T2, T3, T7, T4, T6}. The relationship tree contains CTs T4 and

T9, which have the same Ontology Labels. Therefore, the KCs in the set do
not constitute RKC.

¾
7129 ,, TTTR = {T12, T11, T1, T2, T9, T3, T4, T5}. The relationship tree contains

more than two CTs having the same Ontology Label. Therefore, the KCs in
the set do not constitute RKC.

¾
5129 ,, TTTR = {T12, T11, T1, T2, T9, T3, T7}. The relationship tree contains more

than two CTs having the same Ontology Label. Therefore, the KCs in the set
do not constitute RKC.

Thus, from the set of nodes containing the keywords and the label, the subset 8, 18,
and 23 are the smallest number of nodes that are closely related to one another and
contain the two keywords and the label.

6 Locating an IAN for a Recursive Query

KSRQuerying answers XML queries that require recursion using recursive querying
technique, which allows a query to query the results of a previous application of itself

 KSRQuerying: XML Keyword with Recursive Querying 43

or of another query. A query can be composed of more than one component. Each
component is composed of FROM, WHERE, and RETURN clauses. Fig. 6 shows a form
of a recursive query. The WHERE clause can contain one or more search predicates
connected using the n-ary connectives and, or, and not. A query can contain variable
names, each preceded by the construct ‘var’. A variable acts as handle for the data it
is bound to. In the query form shown in Fig. 6, variable X is bound to a node labeled
label1. This node contains data, which would be passed to query component Q2. The
node is contained in a CT T , T ∈I RKCT TIR

∈′ ′ , where T ′ is one of the query’s KCs

belonging to set RKC. That is, the node is contained in a CT located in the
intersection of the IRs of the CTs composing the query’s RKCs. Each IR is computed
using the three pruning properties described in section 4. The expression KC(var X)
in query component Q2, denotes: the CT containing the node bound by variable X is
the KC. Variable Y is bound to the data contained in the IAN. This IAN is located in a
CT ∈IRKC.

Q1:
FROM “XML doc”
WHERE k1 and k2 and…kn and var X = label1

RETURN TempResultConstruct (var X)

Q2:
FROM TempResultConstruct (var X), “XML doc”
WHERE KC (var X) and var Y = label2
RETURN FinalResultConstruct (var X) [var Y]

Fig. 6. Form of a recursive query

Example 5: Consider Fig. 2 and that while “Levine” (node 23) was processing an
order of a publication (whose subject area is “databases”), he discovered that he had
been making an error in all the previous orders, whose subject areas is “databases”.
Therefore, he decided to identify the names of the customers who placed these orders
to notify them. So, he constructed the recursive query shown in Fig. 7. Variable X in
query component Q1 is bound to the titles of the publications: (1) whose subject areas
is “databases”, and (2) which are processed by “Levine”. Using the technique
described in section 5 for computing RKC, we will find that RKC ={T9, T7}. Thus,
variable X will be bound to the value of node n labeled “title”, where n
∈{

7TIR I
9TIR }. Recall Figures 4-E and 4-D for

7TIR I
9TIR . Variable X will be

bound to the value of a node labeled “title” and contained in a CT located in:
{

7TIR I
9TIR } = { T2, T3, T8, T10}. Thus, variable X will be bound to node 8 contained

in T3. Q2 queries the results returned by Q1 to determine the names of the customers,
who ordered the publications, whose titles are the value of node 8. The KC in Q2 is
CT T3. Variable Y is bound to the IAN name, which will be located in a CT ∈

3TIR .

Recall Fig. 4-F for
3TIR . The IAN is node 2 contained in CT T1.

44 K. Taha and R. Elmasri

Q1:
FROM “file: order.xml”
WHERE “Levine” and “databases” and var X = title
RETURN publicationsTitles (var X)

Q2:
FROM publicationsTitles (var X), “file: order.xml”
WHERE KC (var X) and var Y = name
RETURN NameOfCustomers [var Y]

Fig. 7. Recursive query of Example 5

Example 6: Consider Fig. 2 and that the publication distributor wants to suggest
books for customers after their current orders are completed. The distributor believes
that a customer is likely to be interested in books that were previously ordered by the
author of the book, which the customer is currently ordering. That is, books that were
ordered by the author (node 10), who ordered them in a role of a customer (node 1).
The distributor submitted the recursive query shown in Fig. 8. Q1 will return the
name of the author of the book, which the customer is currently ordering. Q2 will
return the titles of the books that were previously ordered by this author. The KC of
Q1 is CT T3 and variable X will be bound to node 11 contained in T4 ∈ 3TIR (

3TIR =

{T1, T2, T4, T5, T7, T8, T9, T10}). Variable X will be bound to the data of node 11 in
each tuple containing the title of the book, which the customer is currently ordering
(node 8). In Q2, the CT containing node “customer/name”, (which is T1) is the KC.
Variable Y is bound to the IAN “node 8” contained in T3 ∈ 1TIR .

Q1:
FROM “file: order.xml”
WHERE book/title and var X = author/name

RETURN AuthorInfo (var X)

Q2: FROM AuthorInfo (var X), “file: order.xml”
WHERE KC (customer/name = var X) and var Y = book/title
RETURN RecommendedBooks [var y]

Fig. 8. Recursive query of example 6

7 Constructing the Answers for Loosely Structured and Keyword
Queriess

7.1 Forming an Answer Subtree for a Keyword-Based Query

The answer subtree for a keyword-based query is composed from the following CTs:
(1) the RKC, and (2) each CT Ti, I

RKCj

jT

T
IRiT

∈
∈ (the intersection of the Immediate

 KSRQuerying: XML Keyword with Recursive Querying 45

Relatives of the KCs composing the RKC). That is, the answer subtree is formed from
the RKC in addition to each CT Ti, where Ti is an Immediate Relative of each KC
∈RKC. This methodology of constructing an answer subtree guarantees that each
node in the answer subtree is semantically related to all nodes containing the
keywords and to all other nodes in the subtree. Thus, the described methodology
avoids returning results with low precision, which is one of the pitfalls of non context-
driven systems. There could be more than one answer subtree for a query. If there are
n RKCs, there would be n answer subtrees.

Example 7: Consider again the keyword-based query: Q (“Levine”, “databases”,
title), which we presented in Example 4. The RKC = {T9, T7, T3}. The answer
subtree is composed of the RKC and the result of the intersect operation:

9TIR
7TIR

3TIR . Recall Figs. 4-D, 4-E, and 4-F for
9TIR ,

7TIR , and
3TIR respectively.

9TIR
7TIR

3TIR = {T2, T8, T10}. So, the answer subtree is composed of the set {T9, T7, T3, T2, T8,

T10}. Let us call this set S. The answer subtree, is formed from the nodes components
in each CT ∈ S in addition to connective interior nodes.

7.2 Locating an IAN of a Loosely Structured Query

The key difference between keyword-based queries and loosely structured queries lies
in their search terms. The search term of the former is a keyword “k”, and each node
containing k is considered when computing RKC. The search term of the later is a
label-keyword pair (l = “k”), and only nodes whose labels is l and containing the
keyword k are considered when computing RKC. Thus, loosely structured querying
restricts the search. Consider for example Fig. 2 and consider that node 8 contains the
title “databases” instead of “XML and the Web”. If a keyword-based query contains
the keyword “databases”, then nodes 8, 13, and 18 will be considered when
computing RKC. If a loosely structured query contains the search term (title =
“databases”), only node 8 will be considered when computing RKC, since the label of
nodes 13 and 18 is not title. KSRQuerying answers a loosely structured query as
follows. If there is only one node matches each search term, the RKC will be
composed of the CTs containing these nodes (if there are n search terms, the RKC
will be composed of n CTs). Otherwise, KSRQuerying will use the approach
described in section 5 for determining RKC. After determining RKC, an IAN will be
contained in a CT Ti, I

RKCj

jT

T
IRiT

∈
∈ (Ti is an Immediate Relative of each CT∈RKC).

Example 8: Consider Figures 2 and 3 and the loosely structured query: Q (ISBN
=”87-11-07559-7”, ISBN = “0-471-19047-0”, name?). The query asks for the
name of the customer, who ordered publications, whose ISBNs are 87-11-07559-7
and 0-471-19047-0. Only node 9 matches the search term (ISBN = “87-11-07559-7”)
and only node 33 matches the search term (ISBN = “0-471-19047-0”). Thus, the RKC
will be composed of CTs T3 and T12, which contain nodes 9 and 33 respectively. The
IAN name should be located in the intersect

3TIR
12TIR = T1 (recall Fig. 6-F for

3TIR and Fig. 6-A for
12TIR). The IAN is node 2 contained in T1.

46 K. Taha and R. Elmasri

8 System Implementation and Architecture

Fig. 9 shows KSRQuerying system architecture. The XML schema describing the
structure of the XML document is input to the OntologyBuilder, which outputs to
the GraphBuilder the list of Ontology Labels corresponding to the interior nodes in
the XML schema. The OntologyBuilder uses an ontology editor tool to create
ontologies and populate them with instances. We used Protégé ontology editor [16] in
KSRQuerying prototype system. Using the input XML schema and the list of Ontology
Labels, the GraphBuilder creates a CTG, using Algorithm BuildCTreesGraph
(see Fig. 10). Using the input XML document, the CTG, and the query’s set of
keywords the KCdeterminer locates the KCs. The IRdeterminer uses algorithm
ComputeIR (recall Fig. 5) to compute for each CT T in the CTG its IRT and saves this
information in a hash table called IR_TBL for future references. When KSRQuerying
Query Engine receives a query, it computes its RKC, and it then accesses table IR_TBL to construct the answer. The query engine extracts the data contained in each
answer data node n∈ IRKC using XQuery Engine [23].

8.1 Determining Ontology Labels

There are many ontology editor tools available that can be used for determining the
Ontology Labels of nodes. [15] lists these tools. We used Protégé ontology editor [16]
in the prototype implementation of KSRQuerying. It allows a system administrator to
build taxonomies of concepts and relations and to add constraints onto domains of
relations. We experimented with KSRQuerying using a large number of XML docs
from INEX [11, 12] and XMark [22], and module OntologyBuilder (recall Fig. 9)
created an Ontology Label for each distinct tag name. We used Protégé for creating
about 25% of the ontologies and the other 75% were available in electronic form
(done by others) and we imported them to the system using namespaces co-
ordination. For each Ontology Label OLi, KSRQuerying stored in a table called
OL_TBL all tag names whose Ontology Label is OLi (e.g. table 1).

XML doc. XML schema

 Query Results

GraphBuilder OntologyBuilde

IRdeterminer
XQuery
Engine KCdeterminer

IR_TBL
XRKeyword Query Engine

Fig. 9. XRKeyword system architecture

 KSRQuerying: XML Keyword with Recursive Querying 47

8.2 Constructing Canonical Trees Graphs

Algorithm BuildCTreesGraph (see Fig. 10) constructs CTGs for XML trees. Its
input is the OL_TBL table (recall section 8.1) and the list of nodes adjacent to
each node in the XML tree. For example, the adjacency list of node 3 in Fig. 2 is
nodes 1, 4, 5, 19, and 22. Lines 1-12 construct the individual CTs and lines13-18
connect them by edges. Line 5 iterates over the nodes that are adjacent to an interior
node n. If n′ is a leaf data node (line 6), this node will be contained in set TZ, which
represents CT TZ (line 8 or 12). Function setParentComp in line 9 sets node n as the
parent node component of CT TZ. Line 10 stores all the parent nodes components of
CTs in set ParentComps. Function getCT in line 15 is input the closest ancestor
interior node m′ to interior node m, and it then outputs the numeric ID of the CT,
whose parent node component is m′ . The same function in line 16 outputs the
numeric ID of the CT, whose parent node component is m. Function setCTparent in
line 17, connects the two CTs that were output in lines 15 and 16 by an edge (setting
parent-child relationship). Line 18 sets the OL of m as the OL of CT Ty.

BuildCTreesGraph {
1. z = 0
2. for each node n ∈ OL_TBL {
3. flag = 0
4. z = z + 1
5. for each node n′ ∈ adj [n] {
6. if (isLeafNode (n′) = true) {
7. then if (flag = 0) {
8. then { TZ = TZ U n′
9. setParentComp (n ,TZ)
10. ParentComps = ParentComps + n
11. flag = 1 }
12. else TZ = TZ U n′ }/*end if*/ }/*end if*/

 }/*end for*/
 }/*end for*/

13. for each node m ∈ ParentComps {
14. m′  Closest ancestor node to m in set ParentComps
15. Tx  getCT (m′)
16. Ty  getCT (m)
17. setCTparent (Ty, Tx)
18. setOL (getOL (m), Ty)
 } /*end for */
 } /*end the algorithm*/

Fig. 10. Algorithm BuildCTreesGraph

9 Experimental Results

We have implemented KSRQuerying in Java and ran on an AMD Athlon XP 1800+
processor, with a CPU of 1.53 GHz and 736 MB of RAM, under Windows XP. We

48 K. Taha and R. Elmasri

experimentally evaluated the quality and efficiency of KSRQuerying and compared it
with XSeek [14], Schema-Free XQuery [13], and XKSearch [21]. The
implementation of Schema-Free XQuery [13] has been released as part of the
TIMBER project [20]. We used TIMBER for the evaluation of [13]. We implemented
the system of XKSearch [21] from scratch. As for XSeek [14], since it uses the same
approach of XKSearch [21] for identifying search predicates, we implemented it by
expanding the implementation of XKSearch to incorporate XSeek’s techniques that
inference desirable nodes.

9.1 Recall and Precision Evaluation

We evaluated the quality of results returned by KSRQuerying by measuring its recall
and precision and comparing it with [13, 14, 21]. We used the test data of INEX 2005
and 2006. KSRQuerying prototype system created an Ontology Label for each
distinct tag name in the test collections used in the experiments (recall section 8.1).

Some of the documents in the INEX 2005 [11] test collection are scientific articles
(marked up with XML tags) from publications of the IEEE Computer Society
covering a range of topics in the field of computer science. There are 170 tag names
used in the collection. On average an article contains 1,532 XML nodes, where the
average depth of an element is 6.9. We used in the experiments a set of 60 queries,
with query numbers 210-269.The test collection of INEX [12] is made from
English documents from Wikipedia project marked up with XML tags. On average an
article contains 161.35 XML nodes, where the average depth of an element is 6.72.
We used in the experiments a set of 40 queries, with query numbers 340-379.

There are two types of topics (i.e. queries) included in the INEX test collections,
Content-and-structure (CAS) queries and Content-only (CO) queries. All topics
contain the same three fields as traditional Information Retrieval (IR) topics: title,
description, and narrative. The title is the actual query submitted to the retrieval
system. The description and narrative describe the information need in natural
language. The difference between the CO and CAS topics lies in the topic title. In the
case of the CO topics, the title describes the information need as a small list of
keywords. In the case of CAS topics, the title describes the information need using
descendant axis (//), the Boolean and/or, and about statement (it is the IR counterpart
of contains function in XPath). CAS topics are loosely structured queries while CO
queries are keyword-based queries.

An INEX assessment records for a given topic and a given document, the degree of
relevance of the document component to the INEX topic. A component is judged on
two dimensions: relevance and coverage. Relevance judges whether the component
contains information relevant to the query subject and coverage describes how much
of the document component is relevant to the query subject. We compared the
answers obtained by each of the 4 systems to the answers deemed relevant by an
INEX assessment. For a given topic and assessment, we measured how many of the
XML nodes that are deemed relevant in the assessment are missing (for determining
recall) and how many more XML nodes are retrieved (for determining precision).
Fig. 11 shows the average recall and precision of the 4 systems using the 2005 and
2006 INEX test collections. As the Figure shows, the recall and precision of
KSRQuerying outperform those of [13, 14, 21], which we attribute to KSRQuerying’s

 KSRQuerying: XML Keyword with Recursive Querying 49

computation of IRKC and RKC and to the fact that the other 3 systems do not employ
context-driven search techniques. We reached this conclusion after observing that the
recall and precision of the 3 systems drop in each test data containing more than one
element having: (1) the same label but representing different types, (2) different labels
but representing the same type, and/or (3) a query’s search term has multiple matches.
The tests results showed that XSeek and XKSearch have the same recall, which is due
to the fact that XSeek uses the same approach of XKSearch for identifying search
predicates (see Figs. 11-a and 11-c). However, the tests results showed that the
precision of XSeek outperform XKSearch, which is due to XSeek’s inference
mechanism for determining desirable result nodes. The reason that the recall of [13]
outperforms [14] and [21] is because the technique it uses for building relationships is
based on the hierarchical relationships between the nodes, which alleviates node
labeling conflicts.

 KSRQuerying Schema-Free XQuery XSeek XKSearch

 a b c d

Fig. 11. (a) and (b) avg recall and precision of KSRQuerying, [13], [14], and [21] on INEX
2005. (c) and (d) avg recall and precision of KSRQuerying, [13], [14], and [21] on INEX 2006.

We show below sample of the queries used in the experiments and show how [13]
returned faulty answers. We also show how KSRQuerying answered the same queries
correctly. First, recall section 2 for the technique used by [13].

• Consider Fig. 12-A and the query Q (title = “Introduction”, image?). The query
asks for the image presented in the section titled “Introduction” (node 3). The
correct answer is node 6. But, [13] returned null. The reason is that the LCA of
nodes 3 and 6 is node 2, and node 2 is an ancestor of node 4, which is the LCA of
nodes 6 and 5, and node 5 has the same label as node 3. Therefore, [13]
considered node 6 is related to node 5 and not to node 3.

KSRQuerying answer: Let T denote a CT, whose nodes components are nodes 2 and
3. Let T ′ denote a CT, whose nodes components are nodes 4, 5, and 6. The KC is T.
KSRQuerying considers T ′ ∈ IRT, since T ′ does not satisfy properties 1, 2, and/or 3.
Therefore, it returned image node 6 ∈ T ′ as the answer.

• Consider Fig. 12-B, which presents information about a conference and its
collocated workshops. Nodes 4 and 7 contain the subject titles of the conference
and one of its workshops. Now consider the query Q (name =“ICDE”,
subjTitle?). The query asks for the subject title of the ICDE conference (node 2).
The correct answer is node 4. But, [13] returned both nodes 4 and 7, because the
LCA of each of them with node 2 is the same node (node 1).

50 K. Taha and R. Elmasri

KSRQuerying answer: Let T denote a CT, whose nodes components are nodes 1, 2,
3, and 4. Let T ′ denote a CT, whose nodes components are nodes 5, 6, and 7. The KC
is T. Since T and T ′ have the same Ontology Label, T ′ ∉ IRT (recall property 1).
Therefore, KSRQuerying returned only the subjTitle node 4∈ T.

A book B conference

title(1) author sec(2) sec name(2) date(3) subjTitle(4) workshops

 title(3) figure(4) ICDE workshop(5) ….

Introduction SWOD

 title(5) image(6) name(6) subjTitle(7)

Fig. 12. Fragments of XML documents taken from [11]

9.2 Search Performance Evaluation

To evaluate the query execution times of KSRQuerying under different document
sizes, we ran all the queries of XMark [22] using documents of variable sizes (200,
250, and 300 MBs). For each of the four document sizes, we ran all the 20 queries of
XMark and computed the average query execution time of KSRQuerying, [13], [14],
and [21]. For the sake of fair performance comparison with the other systems, we first
used each system Si to precompute the relationships between all nodes in all
documents (before queries are submitted to Si), saved the results for future accesses
by Si, and recorded the computation time “t”. We considered “t” as constant for Si:
avg query execution time of Si = (t + execution time of all queries)/number of queries.
For SRQuerying, “t” included the time for creating a CTG, IRs, and Ontology Labels
(but it did not include the time of building taxonomies of concepts for the previously
mentioned 25% of the tag names). Figure 13 shows the results. As can be seen, the
average query execution time of KSRQuerying is less than those of Schema-Free
XQuery and XSeek, and it is slightly higher than the average query execution time of
XKSearch. The slight performance of XKSearch over KSRQuerying is due to the

0
1
2
3
4
5
6
7
8
9

10

200 250 300

Ti
m

e
in

 T
ho

us
an

ds
 o

f m
s

Document size (MB)

KSRQuerying

[13]

[14]

[20]

Fig. 13. Execution times of KSRQuerying, [13, 14, 21] on XMark using variable document
sizes

 KSRQuerying: XML Keyword with Recursive Querying 51

overhead of applying the context-driven search techniques. The performance of
KSRQuerying over Schema-Free XQuery [13] and XSeek [14] is due to: (1)
KSRQuerying’s recursive querying capability, (2) the computation overhead of
XSeek’s inference mechanism for determining desirable results nodes, and (3) [13]
builds a relationship between each two nodes containing keywords, and then filter
results according to the search terms.

10 Conclusions

We proposed an XML search engine called KSRQuerying, which answers recursive
queries, keyword-based queries, and loosely structured queries. We experimentally
evaluated the quality and efficiency of KSRQuerying and compared it with the
systems proposed in [13, 14, 21]. The results showed that the recall and precision of
KSRQuerying outperform those of [13, 14, 21]. The tests results showed also that the
average query execution time of KSRQuerying is less than those of [13, 14] and is
slightly higher than [21]. KSRQuerying created an Ontology Label for each distinct
tag name in INEX [11, 12] and XMark [22]. We used Protégé for creating about 25%
of the ontologies and the other 75% were available in electronic form (done by others)
and we imported them to the system using namespaces co-ordination.

References

1. Alorescu, D., Manolescu, I.: Integrating Keyword Search into XML Query Processing.
Computer Networks 33, 119–135 (2002)

2. Agrawal, C., Das, G.: DBXplorer: a System for Keyword-Based Search Over Relational
Databases. In: ICDE 2002 (2002)

3. Aditya, B., Sudarshan, S.: BANKS: Browsing and keyword Searching in Relational
Databases. In: VLDB 2002 (2002)

4. Balmin, A., Koudas, N.: A System for Keyword Proximity Search on XML Databases. In:
VLDB 2003 (2003)

5. Balmin, A., Hristidis, V., Papakonstantinon, Y.: Keyword Proximity Search on XML
Graphs. In: ICDE 2003 (2003)

6. Balmin, A., Hristidis, V.: ObjectRank: Authority-Based Keyword Search in Databases. In:
VLDB 2004 (2004)

7. Botev, C., Shao, F.: XRANK: Ranked Keyword Search over XML Documents. In:
SIGMOD 2003 (2003)

8. Cohen, S., Kanza, Y.: Interconnection Semantics for Keyword Search in XML. In: CIKM
2005 (2005)

9. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in Relational Databases.
In: VLDB 2002 (2002)

10. Initiative for the Evaluation of XML Retrieval (INEX) (2005),
 http://inex.is.informatik.uni-duisburg.de/2005/

11. Initiative for the Evaluation of XML Retrieval (INEX) (2006),
 http://inex.is.informatik.uni-duisburg.de/2006/

12. Jagadish, H., Li, Y., Cong, Y.: Schema-Free XQuery. In: Proc. VLDB 2004 (2004)
13. Liu, Z., Chen, Y.: Identifying Meaningful Return Information for XML Keyword Search.

In: SIGMOD 2007 (2007)

52 K. Taha and R. Elmasri

14. List of Ontology editor tools,
 http://www.xml.com/2002/11/06/Ontology_Editor_Survey.html

15. Protégé ontology editor, http://protege.stanford.edu/
16. Taha, K., Elmasri, R.: OOXSearch: A Search Engine for Answering Loosely Structured

XML Queries Using OO Programming. In: Cooper, R., Kennedy, J. (eds.) BNCOD 2007.
LNCS, vol. 4587, pp. 82–100. Springer, Heidelberg (2007)

17. Taha, K., Elmasri, R.: CXLEngine: A Comprehensive XML Loosely Structured Search
Engine. In: Proc. DataX 2008 (2008)

18. ToXgene, a template-based generator for large XML documents,
 http://www.cs.toronto.edu/tox/toxgene/

19. TIMBER, http://www.eecs.umich.edu/db/timber/
20. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML

Databases. In: SIGMOD 2005 (2005)
21. XMark — An XML Benchmark Project,

 http://monetdb.cwi.nl/xml/downloads.html
22. XQEngine: downloaded from,

 http://sourceforge.net/projects/xqengine/

The XML-λ XPath Processor: Benchmarking

and Results

Jan Stoklasa and Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

stoklj2@fel.cvut.cz, loupalp@fel.cvut.cz

Abstract. This paper presents XML-λ, our approach to XML process-
ing based on the simply typed λ-calculus. A λ-calculus model of both the
XML and XPath languages is described and a prototype implementation
is investigated.

We benchmark the prototype implementation, comparing it to exist-
ing XPath processors — Apache Xalan, Saxon, and Sun’s Java JAXP.
Surprisingly, although the prototype is more of an idea validation tool
than a benchmark tuned software, XPath query evaluation is fast, es-
pecially on pre-loaded XML documents. Benchmark results support our
decision to use XML-λ as an XML database data storage model.

This work is part of a long-term effort targeted at designing a native
XML database management system built upon this theoretical model.

1 Introduction

XPath [2] is a fundamental W3C specification for addressing parts of an XML
document. It is used as a basic part in many other W3C specifications such as
XLink, XPointer, XSLT or XQuery.

Here, we publish our contribution to evaluate XPath expressions using a
λ-calculus based framework called XML-λ. This framework proposes a way of
modeling XML schema by a set of functions and also includes a definition of a
query language based on the simply typed λ-calculus. Apart from its formal spec-
ification, we already have a working prototype of an XPath processor. This paper
is devoted to comparing XML-λ performance with that of Apache Xalan [17],
Saxon [6], and Sun’s Java JAXP (the one available in Sun’s Java SE Runtime
Environment version 1.6) [16].

Contributions. The achievements depicted in this paper are results of our long-
running endeavor to propose and implement a functional approach for querying
and processing XML data. This work is a logical step forward to practical veri-
fication of the proposal.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 53–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 J. Stoklasa and P. Loupal

The main contributions of this article are the following:

– We prototype and examine a theoretically sound1 approach to XPath query
evaluation.

– We describe a prototype implementation of the XML-λ theoretical model
written in Java.

– We publish results of performance benchmarking the XML-λ prototype and
state-of-the-art XPath processors showing that the functional model per-
forms well in practice.

– We show that XML-λ is an appropriate model for data storage in an XML
database management system.

Structure. The rest of this paper is structured as follows: Section 2 lists related
projects and works. In Section 3 we briefly repeat basic facts about the XML-λ
Framework with links to more detailed description. Further, a short overview
of the processor implementation follows in Section 4. Main parts of this work,
specification of the benchmark and benchmark results are shown in Sections 5
and 6, respectively. Within Section 7 we discuss our results and then conclude
with outlook to future work in Section 8.

The complete list of XPath queries and corresponding results of the perfor-
mance benchmark is available at [15]. The subset of queries actually used in the
benchmark along with relevant results is listed in Appendix A and Appendix B,
respectively.

2 Related Work

Since we are not familiar with any similar work (i.e. benchmarking of an XPath
implementation based on λ-calculus model), in this section we deal with re-
lated topics: XPath semantics, XPath processors, XQuery processors, and XML
benchmarking.

XPath semantics. The World Wide Web Consortium, the originator of the
XPath language, published a semi-formal semantics of XPath and XQuery [3].
Wadler defined a denotational semantics for the XSLT pattern language [18]
(this language was consequently introduced as XPath) and proposed a set-based
model for it using this sort of semantics.

XPath processors. Usually, XPath processors are part of XSLT processors and
do not exist as standalone products. On the other hand, every XSLT processor
is able to execute ad-hoc XPath queries. Popular XPath/XSLT processors are
Saxon [6] and Apache Xalan [17].

XQuery processors. The XML Query Language (XQuery) is the most popular
language for XML nowadays with many existing implementations; the most ma-
ture are Galax [4] or eXist [10]. Indeed, our long-term effort is also targeted at
designing a native XML database that uses XQuery as a query language based
on the XML-λ as an XQuery implementation model.
1 The XML-λ soundness proof is part of a dissertation thesis to be submitted at the

Czech Technical University in Prague.

The XML-λ XPath Processor: Benchmarking and Results 55

XML benchmarking. Franceschet designed XPathMark [5], a set of tests evaluat-
ing both the correctness and performance of an XPath processor implementation
- the XML-λ benchmark described in this paper uses XPathMark.

The XMark Benchmark [14] is a toolkit for evaluating the performance of
XML databases and query processors. The xmlgen, a valuable tool generating
well-formed XML files according to a given XML Schema, is part of the toolkit
and is extensively used in the XML-λ benchmark.

The Kawa language framework [1] is a Java framework aiming to implement
dynamic languages on top of the Java Virtual Machine. A Scheme programming
language dialect called Kawa was implemented using the Kawa language frame-
work and there is also a partial XQuery implementation called Qexo. Comparing
XML-λ to Kawa, we conclude that the Kawa language framework is an inspir-
ing effort indeed, investigating XML query languages from the point of view of
dynamic programming languages implementation. XML-λ model stays closer to
the XML world, investigating XML query languages from the XML database
point of view.

3 The XML-λ Framework

XML-λ is a functional framework for processing XML. The original proposal
[12,13] defines its formal base and shows its usage primarily as a query language
for XML but there is also a consecutive work that introduces updates into the
language available in [8].

3.1 Concept and Basic Definitions

In XML-λ there are three important components related to its type system:
element types, element objects, and abstract elements. We can imagine these
components as the data dictionary in relational database systems. Note also
Figure 1 for relationships between basic terms of W3C standards and the XML-λ
Framework.

Element types are derived from a particular Document Type Definition (DTD).
For each element defined in the DTD there exists exactly one element type in
the set of all available element types (called TE). Consequently, we denote E as
a set of abstract elements.

Element objects are basically functions of type either E → String or E →
(E× . . .×E). Application of these functions to an abstract element allows access
to element’s content. Elements are, informally, values of element objects, i.e. of
functions. For each t ∈ TE there exists a corresponding t-object (an element
object of type t).

Finally, we can say that in XML-λ the instance of an arbitrary XML document
is represented by a subset of E and a set of respective t-objects.

3.2 Example

The following example describes the way that the type system TE (both element
types and functional types) is constructed and briefly explains how we access

56 J. Stoklasa and P. Loupal

Fig. 1. The relationship between W3C and XML-λ models

an XML instance. Note that the DTD we present in Figure 2 is the one we use
later in the benchmark.

<!ELEMENT site

(regions, categories, catgraph, people,

open_auctions, closed_auctions)>

<!ELEMENT categories (category+)>

<!ELEMENT category (name, description)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (text | parlist)>

<!ELEMENT text

(#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword

(#PCDATA | bold | keyword | emph)*>

<!ELEMENT parlist (listitem)*>

<!ELEMENT listitem (text | parlist)*>

Fig. 2. An example DTD

For given schema we construct the set of element types as

SITE : (REGIONS, CATEGORIES, CATGRAPH,
PEOPLE, OPEN AUCTIONS,
CLOSED AUCTIONS) >,

CATEGORIES : CATEGORY +,
CATEGORY : (NAME, DESCRIPTION),
NAME : String,
DESCRIPTION : (TEXT | PARLIST),
TEXT : (String | BOLD | KEY WORD | EMPH)∗,
KEY WORD :,

The XML-λ XPath Processor: Benchmarking and Results 57

(String | BOLD | KEY WORD | EMPH)∗,
PARLIST : LISTITEM∗,
LISTITEM : (TEXT | PARLIST)∗.
Further, we define functional types (denoted as t-objects) as

SITE : E → (E × E × E × E × E × E),
CATEGORIES : E → 2E,
CATEGORY : E → (E × E),
NAME : E → String,
DESCRIPTION : E → E,
TEXT : E → 2E ,
KEY WORD : E → 2E,
PARLIST : E → 2E,
LISTITEM : E → 2E.

Having looked at Figure 3, showing a fragment of an XML document valid
according to the auction.dtd (the original DTD used in the XPathMark project
[5]), we can see that there are thirteen abstract elements (members of E).

<?xml version="1.0" standalone="yes"?>

<site>

<regions>

<africa>

<item id="item0">

<location>United States</location>

<quantity>1</quantity>

<name>duty</name>

<payment>Creditcard</payment>

<description>

<parlist>

<listitem>

<text>page rous lady

<keyword>officer</keyword>

</text>

</listitem>

...

</site>

Fig. 3. Fragment of a valid XML instance document

In this scenario, for instance, the name-element object (a function of type
E → String) is defined exactly for one abstract element (the one obtained from
the <name>duty</name> XML element) and for this abstract element it returns
value “duty”.

As a more complex example, function item of type ITEM : E → (E × E ×
E×E×E×E), applied to the <item> element, returns a six-tuple — subset of this

58 J. Stoklasa and P. Loupal

Cartesian product. From the tuple we can then obtain its particular components
by performing name-based projections (through element type names).

3.3 Query Language

A typical query has an expression part — a predicate to be evaluated over data
— and a constructor part that wraps query result and forms the XML output.
We retain this model as well together with the fact that the expression part in
the XML-λ query language is based on λ-terms defined over the type system TE .

Main constructs of the language are variables, constants, tuples, use of pro-
jections and λ-calculus operations — applications and abstractions. Syntax of
this language is similar to λ expression, i.e. λ . . . (λ . . . (expression) . . .) . . . In
addition, there are also typical constructs such as logical connectives, constants
or relational predicates.

Due to paper length constraints we will not discuss principles of the language
in detail here (these can be found in [12] or [13]). As an example for the con-
struction of XML-λ queries, let us consider a query that returns all items from
a specified location. In XPath, we write this query as

//item[location = "United States"]

By an automated translation that is described in our previous work [9] we
obtain equivalent XML-λ query as follows

xmldata("auction.xml")
lambda x (/item(x) and

x/location="United States"))

3.4 Summary

There are still open issues related to the XML-λ Framework. Perhaps the main
drawback of our prototype implementation is the lack of optimizations and lim-
ited support for indexes – the only type of index supported is a parent-child
relationship index. Here, we see good research opportunities in (a) designing
additional indexes and (b) optimizing the XML-λ evaluation using functional
programming techniques such as lazy evaluation.

Notwithstanding, we already have a suitable software library to be embedded
into the ExDB database management system on which we are working [7]. Its
current implementation uses a basic persistent DOM storage but in the near
future we plan to replace it with the XML-λ Framework core libraries.

4 Processor Implementation

Our primary goal was to keep XML-λ prototype design as close to the theoretical
model as possible. It is a natural requirement with respect to the fact that this
prototype is a proof-of-concept implementation of the XML-λ Framework. Due
to space restriction, we just highlight the most important facts.

The XML-λ XPath Processor: Benchmarking and Results 59

XML documents are parsed by a SAX parser and turned into an in-memory
XML-λ model. Each document is realized as

1. a HashMap2 of element types,
2. an unordered set of AbstractElements,
3. two HashMaps of PCData and CData items, and
4. a HashMap of t-objects mapping parent-child relationships and a HashMap

storing inter-type relationships.

XPath queries are parsed using the ANTLR LL(k) tool [11]. The resulting Ab-
stract Syntax Tree (AST) is processed using the Visitor design pattern utilizing
a recursive descent parser. AST subtrees are evaluated and the value obtained
in the root of the AST is returned as the evaluation result.

The current version of the XPath processor does not support the complete
XPath 1.0 specification yet; notably the id() function and some of the navigation
axes are missing. Therefore we chose only a subset of queries for the experiment.

5 Benchmark Environment

The xmlgen tool, developed at CWI as a part of the XML Benchmark Project [14],
was used to generate a set of input XML files. Setting the XMark factor pa-
rameter values to 0.01, 0.02, 0.05, 0.1 and 0.2 in successive steps, the test set
containing 1.12 MB, 2.27 MB, 5.6 MB, 11.3 MB and 22.8 MB XML files was
obtained.

XPath queries used in this benchmark are a subset of queries used by the
XPath Performance Test [5]. The selection of XPath Performance Test queries
was determined by features supported by the XML-λ prototype implementation.
The current XML-λ prototype is able to correctly process 21 XPath Performance
Test queries: A1-A8, B1-B10, C2, C3, and E5.

Following XPath processors were tested: XML-λ Sun’s Java JAXP 1.4, Sa-
xon 9.1.0.2, and Apache Xalan 2.7.1. XPath processors were deployed as a set
of JAR files and a test harness program was written for each XPath processor.
XML parsing, XPath query compilation and XPath query evaluation times as
well as total time were measured.3

Shell scripts ran the XPath test harness programs in sequence increasing the
XML input file size. Result correctness was verified using the diff tool. The
Scheme programming language was used as a kind of metalanguage generating
shell script for each of the benchmark runs.

The benchmark was run on AMD Athlon X2 1.90 GHZ PC with 1 GB RAM
running Java Runtime Environment 6 on Windows XP. All the daemon programs

2 A HashMap data structure is implemented as a hash table in the Java library,
guaranteeing the O(1) amortized time complexity of an element object access.

3 XPath processors create indexes and auxiliary data structures during XML parsing
phase, therefore it makes sense to measure individual processing phases separately
and a total time as well.

60 J. Stoklasa and P. Loupal

(called services in Windows environment) were shut down to minimize external
interference and swap file usage was disabled.

In this benchmark, we were interested in time complexity of XPath processor
implementations, leaving space complexity and memory usage aside. However,
we monitored the memory usage of running XPath processor implementations
using operating system log and we plan to measure memory usage using the Java
jstat tool.

6 Results

All measured results are available on the web [15] as stated earlier. Now, let us
investigate in detail the C3 query:

/site/people/person[profile/@income =
/site/open_auctions/open_auction/current]
/name

We can see the result of C3 time measurement in Figure 4.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

s]

Document size [MB]

C3 - Total Query Processing Time

XML-Lambda
JAXP

Saxon
Xalan

Fig. 4. Total processing time of the C3 query

Without doubt, the best results are gained by the Saxon XPath processor.
It performs best for most queries and scales well for different document sizes.
On the other hand, none of the examined XML processors outperformed all the
competitors in all cases – e.g., Java JAXP is the fastest one processing small
instances of A1 query, but its results downgrade for larger instances.

An interesting detail to note is almost exact ratio 2:1 of Java JAXP results in
tests B9 and B10. This can be explained looking at B9 and B10 queries, with B9

The XML-λ XPath Processor: Benchmarking and Results 61

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

s]

Document size [MB]

B4 - Query Compilation Time

XML-Lambda JAXP Saxon Xalan

Fig. 5. B4 – query compilation time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

s]

Document size [MB]

B4 - Document Parsing Time

XML-Lambda JAXP Saxon Xalan

Fig. 6. B4 – document parsing time

using the or operator and B10 using and operator in the XPath filter clause. On a
typical XML file used here, the first operand (not(bidder/following::bidder)
or not(bidder/preceding::bidder)) evaluates to false in most cases, since

almost all auctions have more than one bidder. So it follows that in processing

62 J. Stoklasa and P. Loupal

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

s]

Document size [MB]

B4 - Query Evaluation Time

XML-Lambda JAXP Saxon Xalan

Fig. 7. B4 – query evaluation time

of the B9 query Java JAXP has to evaluate the second operand as well, but in
case of processing the B10 query the second operand can be ignored.

A detailed testcase. As a typical example, let us have a look at Figures 5, 6, and
7. These plots show results for the B4 query but such a behavior is typical for
most of the queries in the benchmark.

Note that the XML-λ document parsing performance lacks compared to DOM,
however the query compilation and query evaluation times are promising.

7 Discussion

Examining small document instances, the XML-λ processor slightly outperforms
Saxon and Xalan for most queries. For larger instances XML-λ document parsing
performance downgrades, but the query evaluation time is still excellent for most
queries.

Weak results gained by XML-λ for queries B5, B6, B9, B10 and E5 (and also
those for B9 and B10 achieved by Java JAXP and Xalan) are obviously caused
by lack of optimizations inside these processors. Detection of tautologies and
contradictions would improve these results significantly.

Naturally, for XML-λ we know the intimate reason for such behavior. Its data
model is based on sets and evaluating parent-child relationships and converting
sets to lists (and vice-versa) consumes plenty of time. The parent-child index
helps here, but we still plan to do more optimizations in the future.

We believe this once more stresses importance of a clear theoretical model be-
hind the XPath processor implementation. Ad-hoc implementations may

The XML-λ XPath Processor: Benchmarking and Results 63

experience unexpectedly low performance for some queries and it is hard to
reason about optimizations without formal semantics at hand.

8 Conclusions

We have performed the XPathMark performance benchmark on three state-of-
the-art XPath processors implemented in Java and compared the results with
our XML-λ prototype. With respect to the fact that the prototype is in an early
stage of development, we did not expect auspicious results. Despite it, the results
are undoubtedly comparable in most cases.

There are three main outcomes of this experiment related to the XML-λ
processor: (1) The benchmark has not found any serious functional errors in
the prototype. (2) For small document instances the XML-λ is the second best
implementation and for large instances it lacks on document parsing time but
performs well on query evaluation time. There is an important fact that all these
results were achieved without optimizations in the source code – the XML-λ
implementation in Java is isomorphic to the XML-λ formal semantics definition
without any performance tweaks in the source code. (3) Measuring just the
time spent evaluating the query (ignoring the query compilation and the XML
parsing phase), XML-λ performance is excellent. On the other hand, parsing
an XML document into the XML-λ model is 2-3 times slower than parsing
an XML document using DOM. These results support our claim that XML-λ
is an appropriate model for the data storage in the XML database where the
XML document parsing usually happens once followed by multiple queries being
processed.

Future Work. The aim of this submission was a preliminary check whether
the concept of the functional framework has a chance to survive in the quickly
evolving domain of XML. We can express our satisfaction with the results but
there is still a lot of work ahead. From the theoretical point of view, we plan to
extend our approach to XQuery. The fact that XPath 2.0 is its subset helps us
much but there are still open topics, namely FLWOR expressions and output
construction.

Simultaneously, we will improve the prototype implementation because there
is a lot of work to be done on various optimization methods.

References

1. Bothner, P.: The Kawa language framework,
http://www.gnu.org/software/kawa/

2. Clark, J., DeRose, S.: XML Path Language (XPath) 1.0 (November 1999),
http://www.w3.org/TR/xpath

3. Draper, D., Fankhauser, P., Fernández, M., Malhotra, A., Rose, K., Rys, M.,
Siméon, J., Wadler, P.: XQuery 1.0 and XPath 2.0 Formal Semantics (January
2007), http://www.w3.org/TR/xquery-semantics/

http://www.gnu.org/software/kawa/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery-semantics/

64 J. Stoklasa and P. Loupal

4. Fernández, M., Siméon, J.: Galax (2004),
http://www-db-out.bell-labs.com/galax/

5. Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Generated
Data. In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland,
R. (eds.) XSym 2005. LNCS, vol. 3671, pp. 129–143. Springer, Heidelberg (2005)

6. Kay, M.: Saxon - XSLT Transformer (2001), http://saxon.sourceforge.net/
7. Loupal, P.: Experimental DataBase (ExDB) Project Homepage,

http://swing.felk.cvut.cz/~loupalp

8. Loupal, P.: Updating typed XML documents using a functional data model. In:
Pokorný, J., Snášel, V., Richta, K. (eds.) DATESO. CEUR Workshop Proceedings,
vol. 235, CEUR-WS.org (2007)

9. Loupal, P., Richta, K.: Evaluation of XPath Fragments Using Lambda Calculi.
In: ITAT 2008 - Information Technologies - Applications and Theory, pp. 1–4.
Univerzita P.J.Šafárika, Košice (2008)

10. Meier, W.: eXist, http://exist.sourceforge.net/
11. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.

The Pragmatic Bookshelf (2007) ISBN: 9780978739256
12. Pokorný, J.: XML functionally. In: Desai, B.C., Kioki, Y., Toyama, M. (eds.) Pro-

ceedings of IDEAS2000, pp. 266–274. IEEE Comp. Society, Los Alamitos (2000)
13. Pokorný, J.: XML-λ: an extendible framework for manipulating XML data. In:

Proceedings of BIS 2002, Poznan, pp. 160–168 (2002)
14. Schmidt, A.R., Waas, F., Kersten, M.L., Florescu, D., Manolescu, I., Carey, M.J.,

Busse, R.: The XML Benchmark Project (April 2001)
15. Stoklasa, J., Loupal, P.: Complete Results of the XML-λ Benchmark,

http://f.lisp.cz/XmlLambda

16. Sun Microsystems, Inc.: Java API for XML Processing (JAXP) (2006),
https://jaxp.dev.java.net/

17. The Apache Software Foundation: Apache Xalan - XSLT Transformer (2001),
http://xml.apache.org/

18. Wadler, P.: A formal semantics of patterns in XSLT. In: Markup Technologies,
pp. 183–202. MIT Press, Cambridge (1999)

http://www-db-out.bell-labs.com/galax/
http://saxon.sourceforge.net/
http://swing.felk.cvut.cz/~loupalp
http://exist.sourceforge.net/
http://f.lisp.cz/XmlLambda
https://jaxp.dev.java.net/
http://xml.apache.org/

The XML-λ XPath Processor: Benchmarking and Results 65

A List of Queries

Table 1. Selected queries from the XPathMark benchmark

A1 /site/closed_auctions/closed_auction/annotation/description/text/keyword

A2 //closed_auction//keyword

A3 /site/closed_auctions/closed_auction//keyword

A4 /site/closed_auctions/closed_auction[annotation/description/text/keyword]/date

A5 /site/closed_auctions/closed_auction[descendant::keyword]/date

A6 /site/people/person[profile/gender and profile/age]/name

A7 /site/people/person[phone or homepage]/name

A8 /site/people/person[address and (phone or homepage) and (creditcard or profile)]/name

B1 /site/regions/*/item[parent::namerica or parent::samerica]/name

B2 //keyword/ancestor::listitem/text/keyword

B3 /site/open_auctions/open_auction/bidder[following-sibling::bidder]

B4 /site/open_auctions/open_auction/bidder[preceding-sibling::bidder]

B5 /site/regions/*/item[following::item]/name

B6 /site/regions/*/item[preceding::item]/name

B7 //person[profile/@income]/name

B8 /site/open_auctions/open_auction[bidder and not(bidder/preceding-sibling::bidder)]/interval

B9
/site/open_auctions/open_auction[(not(bidder/following::bidder) or

not(bidder/preceding::bidder)) or

(bidder/following::bidder and bidder/preceding::bidder)]/interval

B10
/site/open_auctions/open_auction[(not(bidder/following::bidder) or

not(bidder/preceding::bidder)) and

(bidder/following::bidder and bidder/preceding::bidder)]/interval

C2 /site/open_auctions/open_auction[bidder/increase = current]/interval

C3 /site/people/person[profile/@income = /site/open_auctions/open_auction/current]/name

E5 /site/regions/*/item[preceding::item[100] and following::item[100]]/name

B Benchmarking Results

Table 2. Total processing time for the C3 query [ms]

Document size [MB] 1 2 5 10 20

Saxon 641 766 1.266 2.234 4.469

XML-λ 453 703 1.906 4.672 13.126

Java XPath 609 1.390 6.110 20.173 66.910

Xalan 922 1.485 5.594 21.017 69.535

Table 3. Total processing time for the B9 and B10 queries for the Java XPath [ms]

Document size [MB] 1 2 5 10 20

B9 30.314 106.897 1.340.139 9.681.495 70.740.387

B10 15.000 53.768 642.756 4.858.452 35.399.742

66 J. Stoklasa and P. Loupal

Table 4. Complete results for the B4 query

Document size [MB] 1 2 5 10 20

XML-λ

Query compilation [ms] 46 47 47 46 47
Document parsing [ms] 375 609 1.765 4.516 12.814
Query evaluation [ms] 47 63 110 204 375
Total time [ms] 468 719 1.922 4.766 13.236

Java XPath

Query compilation [ms] 15 16 16 0 16
Document parsing [ms] 219 313 719 1.235 2.344
Query evaluation [ms] 188 265 625 1.172 2.297
Total time [ms] 422 594 1.360 2.407 4.657

Saxon

Query compilation [ms] 297 297 297 297 313
Document parsing [ms] 281 406 797 1.484 2.672
Query evaluation [ms] 16 16 16 32 47
Total time [ms] 594 719 1.110 1.813 3.032

Xalan

Query compilation [ms] 188 187 187 203 203
Document parsing [ms] 359 438 688 1.203 2.406
Query evaluation [ms] 156 266 672 1.500 2.594
Total time [ms] 703 891 1.547 2.906 5.203

Number of nodes in the result 602 928 2.446 5.102 9.955

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 67–74, 2009.
© Springer-Verlag Berlin Heidelberg 2009

XPath+: A Tool for Linked XML Documents Navigation

Paulo Caetano da Silva and Valéria Cesário Times

Federal University of Pernambuco, Center for Informatics, Brazil, P.O. BOX 7851
paulo.caetano@bcb.gov.br, vct@cin.ufpe.br

Abstract. Links are basic elements in the World Wide Web. The use of links in
XML documents goes further than in the WWW, since XML links express the
semantics of a relationship. XLink has been proposed by the W3C as a standard
for representing links in XML. However, most of the current query languages
found in literature, like XPath, do not support navigation over XML links, mak-
ing its adoption difficult by software developers. In this paper, an extension for
the XPath query language is proposed, namely XPath+, which provides a means
of navigating through both internal and external links. Particularly, both the
syntax and semantics of XPath+ are given, along with some results derived
from the implementation of our work.

Keywords: XPath+, XLink, XML, XPath, XBRL.

1 Introduction

As a result of the increasing need of data integration and data exchange, XML docu-
ments are turning into very large and interlinked files. Often, these documents have
complex link networks pointing to all kinds of resources. These resources should be
used only combined with the XML document, since their semantics are defined by the
link networks. The XML Linking Language (XLink) [1] is used to describe relation-
ships among resources included in XML documents by links. Processing documents
with link networks has become a challenging task, because query languages do not
support link traversing techniques. XPath [2] has been seen as a de facto standard in
the XML query research area. However, it does not provide a means of navigating
through XLink links. As a result, both the semantics and the processing issues con-
cerning link data are compromised. By the way of example, XBRL (eXtensible Busi-
ness Reporting Language) [3] is a XML-based language used to create business
reports, mostly adopted by the financial field. It uses plenty of XLink links in order to
express the semantics of instance elements. XBRL links establish associations among
business concepts and between concepts and the document. This structural character-
istic raises a strong need for XLink processors.

In this paper, we present the language XPath+, which is an extension of the XPath
language. It fully supports link traversing in XML documents, whether the link is
inside the document or in a separate linkbase. A link is used to associate two or more
resources, as distinct from a linkbase, which is a separate XML document that holds a
set of links. Our goal is to develop a system compliant with widely adopted technolo-
gies (XPath, Java and DOM), which can be used in a context of heterogeneous data

68 P. Caetano da Silva and V. Cesário Times

sources, allowing to query linked XML documents. This paper is organized as fol-
lows. Section 2 presents our contribution, the XPath+ language, including its syntax
and properties, together with some issues related to its application and query proces-
sor. Following this, section 3 discusses the usefulness of the XPath+ language in a
practical scenario, based on financial data represented in XBRL documents. Next,
section 4 presents a comparative analysis between XPath+ and some related work.
Finally, section 5 summarizes the proposed work and identifies some of the next tasks
of our research.

2 XPath+

This section presents a language that supports navigation over all links defined in the
XLink. For this, it was necessary to extend the XPath with new functions and axes.
XLink links can be found in an instance document or in a schema [4] or grouped in a
linkbase, by the use of the schemaLocation and xlink:href attributes. For all possible
link locations, see Figure 1. The main concepts added to XPath are the new axes link-
source and link-destination, whose semantics is similar to the XPath axes child and
parent. Using these axes, it is possible to navigate across resources, whether they are
local or remote elements.

Fig. 1. XML Link Document Chain

2.1 A Data Model for XML with XLink

A data model based on XML documents and a binary axis relations were defined by
Gottlob et al [5] to discuss an algorithm which evaluates XPath expressions and im-
proves the efficiency of queries regarding the time and space. Motivated by applica-
tions to XML, Libkin [6] examined query languages for unranked trees and presented
a set of definitions to handle XML data. However, these results do not deal with links.
In order to provide navigation over links, we have extended their results and thus, the
following definitions were obtained.

Definition 1. A labeled unranked rooted tree is a tree with no bound on the number
of children, in which each node is given a unique label s that is an element of N*

 XPath+: A Tool for Linked XML Documents Navigation 69

(i.e. finite strings of natural numbers). We then define a labeled unranked ordered
rooted tree T as a pair (D, <pre) where: (1) the string s (the empty string) is the root;
(2) D, the set of nodes called tree domain, is a prefix-closed finite subset D of N* such
that s ∈ D implies w ∈ D if and only if w <pre s. The relation <pre is the prefix relation
on the elements of D, such that w <pre s, if and only if the unique path from the root to
s passes through w. An XML document is a data structure defined as follows:

Definition 2. A XML document d is represented as the five-tuple (T, β, λ, Rχ, Rσ)
where: (1) T= (D, <pre) is a labeled unranked ordered rooted tree; (2) β is the set of
tags; (3) λ: D → β is a function which assigns one node in T to each XML tag; (4) Rχ
is a set of binary axis relations over β; (5) Rσ is a set of binary relations over β´× β´´,
where β´ and β´´ are sets of tags of documents d´ and d´´, respectively, with d´≠ d´´.

Definition 3 (axis function). Let d be a XML document (T, β, λ, Rχ, Rσ) . For an
XPath+ axis relation χ ⊆ Rχ we define a function fχ : ρ(β)→ P(β) (and thus overload
the relation name χ, as for example fchild), where ρ(β) is the power set of β, as fχ(X) =
{y ∈β | ∃x ∈ X such that (x,y) ∈ χ}.

In XPath+, besides the relationship among nodes in a given XML document we
also define the relationship among nodes of two distinct XML documents:

Definition 4 (σ link function). Let d´ and d´´ be documents (T´, β´, λ´, Rχ´, Rσ´) and
(T´´, β´´, λ´´, Rχ´´, Rσ´´), respectively. For an XPath+ relation σ ⊆ Rσ´ in d´ we
define a function gσ : P(β´)→ P(β´´) as gσ(X) ={ y ∈β´´ | ∃x ∈ X such that (x,y) ∈ σ}.

From the given definitions, it is possible to define the function that navigates over
XPath+ expressions. Let ϕ be a query expression, it can be expressed as ϕ = {(σ(xi)
|χ(i)}, where xi is an element defined in the hierarchy, and the query may be executed
on the hierarchy or on links. The NavigationPath function executes the queries and is
defined by the algorithm given in Figure 2. Its arguments are a query and a node list
that contains the elements of an XML document. The function evaluates the parame-
ters and defines if the query can be solved by an XPath processor. If this is not the
case and there are links in the query, then it is processed by an XPath+ processor,
using the xpath+Evaluator function, defined by the algorithm shown in Figure 2. The
xpath+Evaluator function receives as input parameters an XPath+ query and a node
list. Following this, it goes through the node list looking for arcs. When a reference to
a linkbase is found, the function checks if it references other arcs or linkbases and
then includes them in the search. Then, the function executes the same process on
schemas by considering all the link access ways.

2.2 Functions

In order to facilitate user navigation over elements that contain links, some functions
were added to the XPath specification. These functions are: (1) Function
fn:isLinkSource($arg as item()*) as item()*: returns a Boolean value that indicates if
the context node is a link source, that is, if there are any links whose from attribute
points to the context element; (2) Function fn:isLinkDestination($arg as item()*) as
item()*: returns a Boolean value that indicates if the context node is a link destination,
that is, if there are any links whose to attribute points to the context element. The
XPath+ version of some XPath functions are slightly different. The functions last(),
position() and count() must work also on node lists created by links. For example, the

70 P. Caetano da Silva and V. Cesário Times

link-destination:: axis is used in an expression and its result is a node list with five
elements. Consider that the function count() is then applied to the node list. As a re-
sult, the value five should be returned. If, instead, the function last() is applied to the
same list, the result should be the fifth element of that list. Finally, if the function
position() is applied, it should return the current position of a node in the list.

Fig. 2. NavigationPath and xpath+Evaluator Algorithms

2.3 Syntax and Semantics

The link-source:: axis selects a list of nodes having the source node as the context node.
In Figure 3, to find the elements that the bcb:currentAssets points to, the XPath+ ex-
pression is /link-source:: bcb:currentAssets. Likewise, the link-destination:: axis selects
a list of nodes whose links point to the context node. If one needs to find the children of
the assets element, the XPath+ expression is “/link-destination::bcb:assets”. Its result is
shown in Figure 5. These queries consider both the instance document and its schema,
which references the linkbases. Figure 4 shows a linkbase associated with the instance
given in Figure 3. XPath+ defines an abbreviated axis syntax, similar to the one used by
XPath. The Table 1 presents this syntax. The XPath+ grammar based on the EBNF
language is presented in [7].

Table 1. Xpath+ Abbreviated Syntax

Abbreviated
Syntax

Semantics

/*** selects the arcs among all the instance elements (e.g.: /inst.xml/***)
/<element>** selects all the arcs of the element (e.g.: /inst/assests**)

/// is similar to the XPath “//” operator and its semantics are equivalent to the ones of
the link-source:: operator.

... selects the nodes which the destination node is the context node links. It works
similarly to the XPath “..” operator and its semantics are identical to the link-
destination:: operator .

[[x]] selects the x-th element of a node list.

 XPath+: A Tool for Linked XML Documents Navigation 71

<?xml version="1.0"?>
<xbrl ... >
 <link:schemaRef xlink:type="simple" xlink:href="bcb_taxonomy.xsd"/>
 <bcb:assets id="id_assets" contextRef="c1" unitRef="u1">270190618</bcb:assets>
 <bcb:current_assets contextRef="c1" unitRef="u1">261376808</bcb:current_assets>
 <bcb:noncurrent_assets contextRef="c1"
 unitRef="u1">8813810</bcb:noncurrent_assets>
 <bcb:liabilities contextRef="c1" unitRef="u1">270190618</bcb:liabilities>
 <context id="c1"><!-- ... --></context>
 <unit id="u1"><!-- ... --></unit>
</xbrl>

Fig. 3. Instance document example – inst.xml

<link:linkbase . . .>
<definitionlink xlink:type="extended"
 xlink:role="http://www.xbrl.org/2003/role/link">
 <loc xlink:type="locator" xlink:href="bcb_taxonomy.xsd#assets"
 xlink:label="bcb_assets"/>
 <loc xlink:type="locator" xlink:href="bcb_taxonomy.xsd#current_assets"
 xlink:label="bcb_current_assets"/>
<definitionArc xlink:type="arc" xlink:show="replace" xlink:actuate="onRequest"
 xlink:from="bcb_assets" xlink:to="bcb_current_assets"
 xlink:arcrole="http://www.xbrl.org/2003/arcrole/general-special"/>
</definitionlink>
</linkbase>

Fig. 4. Linkbase example – definition.xml

Role: http://www.xbrl.org/2003/arcrole/general-special
Exist arc between current_assets and assets
Exist arc between noncurrent_assets and assets

Fig. 5. Example of link-destination use

2.4 XPath+ Processor Architecture

Figure 6 presents the components of the XPath+ processor architecture. As input, the
XPath+ processor receives one XML instance document, zero or more schemas that
validate the instance documents, zero or more related linkbases and an XPath+ query
expression. The main modules of the processor are: (1) the XPath+ parser processes
the queries and is responsible for syntax checking as well; (2) the XML parser uses
DOM [8] to create a memory representation of the input documents. It also validates
these documents according to their schemas; (3) the expansion module analyses the
XML documents in order to create their representation in memory using DOM. Then,
it goes through them looking for links or linkbase references and inserts the link rela-
tions in the memory representation as well; (4) the optimization module is supposed
to analyze the input queries and to rewrite them using optimization algorithms in
order to reduce queries processing time. However this module has not been imple-
mented yet; and (5) the executor module is the one that actually performs the query
processing. It applies the input query to the documents memory model and returns the
result as a node list, like XPath does. It is also able to interpret functions used in que-
ries. The function library contains the list of all the predefined XPath functions, as
well as the ones added by XPath+.

The XPath+ implementation is based on the Java platform. An extension of the
org.w3c.dom.xpath package was created so that the processor can handle both XPath+

72 P. Caetano da Silva and V. Cesário Times

and XPath expressions. DOM was adopted because it is a W3C standard, and thus it is
compatible with other XPath applications. The processor was implemented as a com-
ponent, to enhance the possibility of system integration. XLink defines arc roles, in
order to express the role played by the arcs when link traversing occurs. Two arcs
may have the same label (defined by xlink:label) if they have different roles. The
XPath+ processor deals with this issue. The complex nature of the link network may
result in link circles. The XPath+ processor stores the visited linkbases and schemas.
Thus it is able to detect when a second visit is done to the same document and it deals
with it accordingly. An instance document may not contain all the elements defined
on its schema, and some schema elements can be related and still not found in an
instance document. XPath+ considers only the elements found in the instance.

Fig. 6. The XPath+ Processor Architecture

3 A Case Study Based on XBRL Documents

The need for XLink support by the XPath language is noticed in an example of an
XBRL report, shown in Figure 3. This figure contains part of a balance sheet. Seman-
tically, current assets and noncurrent assets are some of the items that form what ac-
countants call assets. These three terms form a concept hierarchy. However, the
XBRL instance document does not show this hierarchy, the linkbase plays this role.
As Figure 4 shows, the linkbase uses arcs to define a generalization-specialization
relationship, and thus a concept hierarchy is created.

This example highlights the need for link traversing. Using XPath, it is not possible
to navigate over links, and thus it is not able, for exemple, to process a query regard-
ing the children of the bcb:assets element. Consider that a company manager needs
the value of the company assets stored in XBRL format. If he uses XPath to obtain
this value, first he has to talk to the company’s accountant. The accountant tells him
that those elements that constitute the assets value are current and noncurrent assets.
Then, he must open and analyse the XBRL file (see Figure 3) and look for elements,
one by one. Once he is aware of the position of all the assets elements, he finally
makes the query /xbrl[position() == 3] | /xbrl[position() == 4], which returns the
third and fourth elements of the XBRL document. Using XPath, an expert must be
involved in the querying process, to ensure that the correct elements are used. On the
other hand, if that manager uses XPath+, he will only have to write the following
query: /link-destination::bcb:assets. Figure 6 shows the XPath+ query result.

As the concept hierarchy is in a separated XML file (the linkbase), XPath cannot
identify that bcb:current_assets and bcb:noncurrent_assets are children of bcb:assets,

 XPath+: A Tool for Linked XML Documents Navigation 73

and therefore an expert, the company’s accountant, must provide the concept seman-
tics. It is an additional work needed to handle XPath. The XPath+ processor is able to
traverse arcs and get to the linkbase file, where the semantics are expressed. There-
fore, XPath+ plays the expert’s role in this context. Notice that in real applications the
node tree is usually much larger, which makes XPath queries more complex. Using
XPath+, link related query expressions are the same, whether executed on a long link
intensive file or in a short link free file.

Fig. 7. Screen result of the XPath+ query /linkdestination::bcb:assets

4 Related Work

Lizorkim and Lisovsky [9] defined several categories for XLink implementations.
Our work fits in the category of Applications Programming Interfaces for link man-
agement. Lizorkim’s and Lisovsky’s solution concept is similar to our work. They use
S-expressions in order to represent the XML document in a new format, SXML. S-
expression is a native type in the functional programming language Scheme, which is
one of the reasons for the adoption of this language. Scheme would avoid the imped-
ance mismatch problem. However, link navigation engines are usually part of a larger
architecture, written in an object-oriented language. Therefore, in our opinion, the use
of Scheme only changes the impedance mismatch trigger location. Besides, the cur-
rently used object-oriented languages fully support XML trees. A example is Java and
its DOM API. DOM is a W3C standard and thus can be reused in a number of appli-
cations. XPath+ is implemented based on Java and DOM.

May and Malheiro [10] use a logical data model of related XML documents in or-
der to work with links. By using the namespace dblink, it is possible to specify the
link behaviour when the query is made. The main difference between this approach
and XPath+ is the possibility to handle links that point to distributed sources. How-
ever, in order to use this functionality, it is necessary to modify files, making this
solution not practical to applications handling a large amount of XML data.

Laurent [11] proposes an approach using SAX [12], which creates a link collection
that can take requests from the applications to know which elements contain links, as
well the targets and behaviours of them. It is claimed that this way makes possible for
users to gain convenience, as they will not need to build XLink processing into SAX
handlers, thus helping the development of applications which deals with XLink.

74 P. Caetano da Silva and V. Cesário Times

XLink Processor [13] is a commercial solution based on Java and DOM and sup-
ports all kinds of XLink links. Another commercial solution based on Java and DOM
to manipulate only XBRL links is the Batavia XBRL Java Library [14]. Java XBRL
API Implementation [15] is an open source project, based on SAX, that provides an
XLink processor for XBRL documents. SAX is more memory efficient than DOM,
but it is not a W3C Recommendation. Besides to support any kind of relationship
based on XML Schema and XLink, not just a subgroup as defined by XBRL, XPath+
is not a proprietary solution.

5 Conclusion and Future Work

In this paper we presented the XPath+, an XPath extension that supports XLink links
traversing. Using XPath+, it is possible to navigate across link related documents.
XPath does not support such navigation. The extension is especially useful to deal
with linkbases, because it can associate linked XML elements. The XPath+ processor
is based on Java and DOM. As both technologies are widely adopted, XPath+ can be
used with plenty of existing applications. As an extension of XPath, the processor
handles both types of expressions. We intend to optimize the navigation over links.
One of the implementation problems we currently face is the execution time. We are
also working on the specification of an access control module using XPath+.

References

1. XML Linking Language (XLink) Version 1.0, http://www.w3.org/TR/xlink
2. XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath20
3. Extensible Business Reporting Language (XBRL) 2.1, http://www.xbrl.org
4. XML Schema, http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
5. Gottlob, G., Koch, C., Pichler, R.: XPath query evaluation: improving time and space effi-

ciency. In: 19th International Conference on Data Engineering, pp. 379–390
6. Libkin, L.: Logics For Unranked Trees: An Overview. Logical Methods in Computer

Science 2, 1–31 (2006)
7. Silva, P.C., Aquino, I.J.S., Times, V.C.: A Query Language For Navigation Over Links.

In: XIV Simpósio Brasileiro de Sistemas Multimídia e Web (2008)
8. Document Object Model,

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
9. Lizorkim, D.A., Lisovsky, K.Yu.: The Query Language to XML Documents Connected by

Link Links. Programming and Computer Software 31(3), 133–148 (2005)
10. May, W., Malheiro, D.: A Logical, Transparent Model for Querying Linked XML

Documents (2003)
11. XLinkFilter,

http://www.simonstl.com/projects/xlinkfilter/index.htm
12. Simple API for XML, http://www.saxproject.org/
13. XLiP,

http://software.fujitsu.com/eninterstage-xwand/ activity/
xbrltools/xlip/index.html

14. Batavia XBRL Java Library, http://www.batavia-xbrl.com
15. XBRLAPI Java XBRL API implementation, http://www.xbrlapi.org/

A Data Parallel Algorithm for XML DOM Parsing

Bhavik Shah1, Praveen R. Rao1, Bongki Moon2, and Mohan Rajagopalan3

1 University of Missouri-Kansas City
{BhavikShah,raopr}@umkc.edu

2 University of Arizona
bkmoon@cs.arizona.edu

3 Intel Research Labs
mohan.rajagopalan@intel.com

Abstract. The extensible markup language XML has become the de facto stan-
dard for information representation and interchange on the Internet. XML pars-
ing is a core operation performed on an XML document for it to be accessed and
manipulated. This operation is known to cause performance bottlenecks in ap-
plications and systems that process large volumes of XML data. We believe that
parallelism is a natural way to boost performance. Leveraging multicore proces-
sors can offer a cost-effective solution, because future multicore processors will
support hundreds of cores, and will offer a high degree of parallelism in hardware.
We propose a data parallel algorithm called ParDOM for XML DOM parsing,
that builds an in-memory tree structure for an XML document. ParDOM has two
phases. In the first phase, an XML document is partitioned into chunks and parsed
in parallel. In the second phase, partial DOM node tree structures created during
the first phase, are linked together (in parallel) to build a complete DOM node
tree. ParDOM offers fine-grained parallelism by adopting a flexible chunking
scheme – each chunk can contain an arbitrary number of start and end XML tags
that are not necessarily matched. ParDOM can be conveniently implemented us-
ing a data parallel programming model that supports map and sort operations.
Through empirical evaluation, we show that ParDOM yields better scalability
than PXP [23] – a recently proposed parallel DOM parsing algorithm – on com-
modity multicore processors. Furthermore, ParDOM can process a wide-variety
of XML datasets with complex structures which PXP fails to parse.

1 Introduction

The extensible markup language XML has become the de facto standard for information
representation and exchange on the Internet. Recent years have witnessed a multitude of
applications and systems that use XML such as web services and service oriented archi-
tectures (SOAs) [16], grid computing, RSS feeds, ecommerce sites, and most recently
the Office Open XML document standard (OOXML). Parsing is a core operation per-
formed before an XML document can be navigated, queried, or manipulated. Though
XML is simple to read and process by software, XML parsing is often reported to cause
performance bottlenecks for real-world applications [22,32]. For example, in a SOA
using web services technology, services are discovered, described, and invoked using
XML messages [10]. These messages can reach up to several megabytes in size, and
thus parsing can cause severe scalability problems.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 75–90, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 B. Shah et al.

Recently, high performance XML parsing has become a topic of considerable inter-
est (e.g., XML Screamer [19], schema-specific parser [11], PXP [23,24], Parabix [7]).
XMLScreamer and schema-specific parser leverage schema information for optimizing
tasks such as scanning, parsing, validation, and deserialization. On the other hand, PXP
and Parabix exploit parallel hardware to achieve high XML parsing performance. Our
work in this paper also exploits parallel hardware to achieve high parsing performance.

With the emergence of large-scale throughput oriented multicore processors [26][15],
we believe parallelism is a natural way to boost the performance of XML parsing.
Leveraging multicore processors can offer a cost-effective way to overcome the scala-
bility problems, given that future multicore processors will support hundreds of cores,
and thus, offer a high degree of parallelism in hardware. A data parallel programming
model offer numerous benefits for future multicore processors such as expressive power,
determinism, and portability [12]. For instance, traditional thread-based approaches suf-
fer from non-deterministic behavior and make programming difficult and error prone.
On the contrary, a program written in a data parallel language (e.g., Ct [13]) has deter-
ministic behavior whether running on one core or hundred cores. This eliminates data
races and improves programmer productivity. Thus, there has been a surge of interest to
develop data parallel models for forward scaling on future multicore processors [8,12].

With these factors in mind, we propose a data parallel XML parsing algorithm called
ParDOM. In this paper, we focus on XML DOM (Document Object Model) pars-
ing [30], because it is easy to use by a programmer and provides full navigation support
to an application, and it is widely supported in open-source and commercial tools (e.g.,
SAXON [18], Xerces [3], Intel Software Suite [1], MSXML [2]). Further, DOM pars-
ing poses a fundamental challenge of parallel tree construction. Since DOM parsing
requires documents to fit in main memory, we only consider XML documents that are
of several megabytes in size.

ParDOM is a two-phase algorithm. In the first phase, an XML document is parti-
tioned into chunks and are parsed in parallel. In the second phase, partial DOM node
tree structures created during the first phase, are linked together (in parallel) to build a
complete DOM node tree in memory. Our algorithm offers fine-grained parallelism by
adopting a flexible chunking scheme. Unlike a previous parallel algorithm called PXP
[23,24], wherein chunks represent subtrees of a DOM tree, ParDOM creates chunks
that can contain an arbitrary number of start and end XML tags that are not necessarily
matched. ParDOM can be conveniently implemented using a data parallel program-
ming model that supports map and sort operators. Through empirical evaluation, we
show that ParDOM yields better scalability than PXP on commodity multicore proces-
sors. Furthermore, ParDOM can process a wide-variety of XML datasets with complex
structures which PXP fails to parse.

2 Background and Motivation

2.1 XML Documents and Parsing Techniques

An XML document contains elements that are represented by start and end element
tags. Each element can contain other elements and values. An element can have a list
of (attribute, value) pairs associated with it. An XML document can be modeled as an

A Data Parallel Algorithm for XML DOM Parsing 77

ordered labeled tree. A well-formed XML document follows the XML syntax rules. For
example, each element has a start tag and a matching end tag.

title id

2Jack Jill XML 50.00

price

book

Attribute

Element

Text Value

Root Element

author author

(b) DOM node tree representation

Fig. 1. Example

For an XML document to
be accessed and manipulated,
it should first be parsed. Many
XML parsing models have been
developed that trade off between
the ease of use, APIs exposed to
applications, memory footprint,
parsing speed, and support for
XPath [5].

Among these, DOM parsing
and SAX parsing are widely
supported. Document Object
Model (DOM) [30] parsing
builds an in-memory tree repre-

sentation of an XML document by storing its elements, attributes, and values along
with their relationships. (Other DOM node types have been defined by W3C [30]. We
restrict ourselves to the most common ones: Element, Attribute, Text/Value.) A DOM
node tree aids easy navigation of XML documents and supports XPath [5]. A DOM tree
for a document is shown in Figure 1. The order of siblings in the tree follows the order
in which their elements appear in the document (a.k.a. document order).

SAX parsing [21] is an event based parsing approach. It is light-weight, fast, and
requires a smaller memory footprint than DOM parsing. However, an application is
responsible for maintaining an internal representation of a document if required. Newer
parsing models such as StAX [6] and VTD-XML were developed to improve over DOM
and SAX. The Binary XML standard [14], though not a parsing model, was proposed
to reduce the verbosity of XML documents and the cost of parsing. However, human-
readability is lost.

2.2 Prior Work on Parallel XML Parsing

Recently, Pan et al. proposed a parallel XML DOM parsing algorithm called PXP for
multicore processors [23]. This approach first constructs a skeleton of a document in
memory. Using the skeleton, the algorithm identifies chunks of the document that can
be parsed in parallel. (Each chunk denotes a subtree of the final DOM tree.) This task
requires recursively traversing the skeleton until enough chunks are created. After the
chunks are created, they are parsed in parallel to create the DOM tree. Subsequently,
Pan et al. proposed an improved algorithm to parallelize the skeleton construction [24].

However, these algorithms have the following shortcomings that motivate our re-
search. First, the skeleton requires extra memory that is proportional to the number of
node in the DOM tree. Further, the partitioning scheme based on subtrees can cause
load imbalance on processing cores for XML documents with irregular or deep tree
structures (e.g., TREEBANK with parts-of-speech tagging [29]). This scheme severely
limits the granularity of parallelism that can be achieved, and thus cannot scale with
increasing core count.

78 B. Shah et al.

Wu et al. proposed a parallel approach XML parsing and schema validation [31].
Although their chunking scheme during parsing is similar to that of ParDOM, the partial
DOM trees for each chunk are linked sequentially during post-processing. Parabix [7],
though not a parallel DOM parsing algorithm, exploits parallel hardware for speeding
up parsing by scanning the document faster. Rather than reading a byte-at-a-time from
an XML document, Parabix fetches and processes many bytes in parallel.

2.3 Prior Work on Data Parallel Programming Models

The emergence of multicore processors demands new solutions for expressing paral-
lelism in software to fully exploit their capabilities [4]. There has been a keen interest
in developing parallel programming models for this purpose. Intel’s Ct [13] supports a
data parallel programming model and aims on forward scaling for future multicore pro-
cessors. Data Parallel Haskell is another effort to exploit the power of multicores [8].

In recent years, programming models to support large-scale distributed computing
on commodity machines have been developed. The MapReduce paradigm and associ-
ated implementation was introduced by Google for performing data intensive computa-
tions that can be distributed across thousands of machines [9]. Hadoop (http://had
oop.apache.org) and Disco (http://discoproject.org) are two different
open source implementations of MapReduce. Phoenix [25] is a shared memory MapRe-
duce implementation. Recently, a distributed execution engine called Dyrad [17] was
proposed for coarse-grained data parallel applications.

3 Our Proposed Approach

We begin with a description of a serial algorithm for building a DOM tree. We present
a scenario to motivate the design of our parallel algorithm ParDOM. We focus on XML
documents whose DOM trees can fit in main memory. (For very large XML documents,
other parsing models (e.g., SAX [21]) should be used.) For ease of exposition, we focus
on elements, attributes, and text/values in XML documents. Although a text can appear
anywhere within the start and end tag of an element, we shall first assume that it is
strictly enclosed by start and end element tags, e.g., <author>Jack</author>.
Later in Section 4.4, we will discuss how to handle the case <author>US<first>
Jack</first>English</author>. Here US and English are text associated
with author according to the XML syntax.

3.1 A Serial Approach

A DOM tree can be built by extracting tokens (e.g., start and end tags) from a document
by reading it from the beginning. A stack S is maintained and is initially empty. This
stack essentially stores the information of all the ancestors (in the DOM tree) of the
current element being processed in the document. When a start element tag say <e>
is read, a DOM node de is created for element e and any (attribute,value) pair that is
associated with the element is parsed and stored, by creating the necessary DOM nodes.
If S is not empty, then this implies that de’s parent node has already been created.
Node de is linked as the rightmost child of its parent by consulting the top of stack S.

A Data Parallel Algorithm for XML DOM Parsing 79

(The order of siblings follows the order in which the elements appear in the document.)
The pair (de, e) is pushed onto the stack S. If e encloses text, then a DOM node for
the text is also created and linked as a “text” child of de. When an end element tag
say </e> is read, e is checked with the top of stack S. If the element names do not
match, then the parsing is aborted as the document is not well-formed. Otherwise, the
top of S is popped and the parsing continues. After the last character of the document
is processed, if S is empty, then the entire DOM tree has been constructed. Otherwise,
the document is not well-formed.

3.2 A Parallel Approach

Given an XML document, any data parallel algorithm would perform the following
tasks: (a) construct partial DOM structures on chunks of the XML document, and (b)
link the partial DOM structures. Suppose n processor cores are available, each core can
be assigned a set of chunks. Each core then processes one chunk at-a-time and establish
parent-child links as needed.

Example 1. Figure 2 shows three chunks 0, 8, and 20 whose partial DOM trees have
been constructed. Suppose elements Y and Z are child elements of X. The parent-child
links between them have been created as shown.

<X>

XXML document

Y
Z

 parent−child
links

<Y>

<Z>

chunk 8

chunk 20

chunk 0

Fig. 2. Partial DOM construction & linking process

Motivating Scenario: If the
linking tasks were to be done
concurrently with the partial
DOM construction tasks, then
synchronization is necessary to
ensure that parent-child links are
updated correctly without race
conditions. (Note that according
the XML standard, there is an
ordering among siblings based
on their relative positions in the
input document.) It is also possi-
ble that a parent DOM node has
not been created yet, while its

child DOM node (present in a subsequent chunk) has already been created. As a re-
sult, an attempt to create a link to the parent would have to wait. Mutexes can be used
for the purpose of synchronization. But can synchronization primitives be avoided al-
together? We believe this is possible, if we design a two-phase parallel algorithm. In
the first phase, partial DOM structures are created in parallel over all the chunks. Once
all the chunks have been processed, in the second phase, for each parent node, with at
least one child in a different chunk, all its child nodes appearing in subsequent chunks
are grouped together. Each group is processed by a single task, and all the missing
parent-child links are created. Such tasks can be executed in parallel.

Challenges in ParDOM: Two challenges arise in the design of our two-phase parallel
algorithm. First, to obtain fine-grained parallelism, each chunk should be created using

80 B. Shah et al.

a criteria independent of the underlying tree structure of a document. Second, the partial
DOM structure (created for a chunk) must be located and linked correctly in the final
DOM tree.

To address the first challenge, ParDOM adopts a flexible chunking scheme – each
chunk contains an arbitrary number of start and end tags that are not necessarily
matched. The required chunk size can be specified in many ways such as (a) the number
of bytes per chunk, (b) the number of XML tags per chunk, or (c) the number of start
tags per chunk. (We ensure that a start tag, end tag, or text is not split across different
chunks.)

Example 2. Consider an XML document in Figure 3. It is partitioned into three chunks
where the ith chunk (i ≥ 0) starts from the (3 ∗ i + 1)th start element tag.

To address the second challenge, ParDOM uses a simple numbering scheme for
XML elements and a stack P that stores the element numbers and names. Numbering
schemes were proposed in the past for indexing and querying XML data
(e.g., Extended-preorder [20], Dewey [27]). Essentially, each element is assigned a
unique id. Relationships between elements (e.g., parent-child, ancestor-descendant, sib-
ling) in an XML document tree can be inferred from their ids. ParDOM uses preorder
numbering, where each element’s id is the preorder number of its node in the XML
document tree. The ids can be computed on-the-fly while extracting tokens from a doc-
ument. Starting with a counter value of 0, each time a start element tag is seen, the
counter is incremented and its value is the preorder number of the element. The root
element is thus assigned the preorder number 1. In Figure 3, elements book, last,
and title are assigned preorder numbers 1, 4, and 7, respectively.

2,author

1, book

1, book

Stack P

Chunk 0

Chunk 1
preoder (last) = 4

Chunk 2
preoder (title) = 7

<book>
 <author>
 <first> X </first>
 <last> Y </last>
 </author>
 <author>
 <first> A </first>
 </author>
 <title> XML </title>
 <price> 100.00 </price>
</book>

preoder (book) = 1

Fig. 3. Three chunks and the state of stack P

While preorder numbers
can be used to determine the
ordering among siblings (by
sorting their ids), they can-
not determine parent-child or
ancestor-descendant relation-
ships between elements. The
parent-child relationship be-
tween elements is inferred
using the stack P that is
maintained similarly to stack
S described in Section 3.1.
Each entry in P is a pair
(id,element). Suppose the se-

rial algorithm is applied to an input document. When a new chunk is read, the top
of stack P , if P is not empty, denotes the element in some previous chunk whose end
tag has not yet been encountered. In addition, exactly one entry in P denotes the parent
of the first start element tag that appears in the current chunk (except for chunk 0).

Example 3. In Figure 3, the ids of the first elements in each chunk are shown. After
chunk 0 is processed, the state of stack P is shown. The top element author in P

A Data Parallel Algorithm for XML DOM Parsing 81

denotes the parent of last that appears in chunk 1. Similarly, the state of P is shown
after processing chunks 1 and 2.

When a chunk is parsed independently, if the state of stack P is known just after pro-
cessing the previous chunk, then the parent of every element in the chunk can be de-
termined. Thus the partial DOM structure constructed for the chunk can be correctly
linked to the final DOM tree. At first glance, it may seem that each chunk should be
parsed serially for correctness. However, this is not the case – only stack P should be
correctly initialized, and this can be done without actually constructing partial DOM
trees for a chunk.

One approach is to first read the entire document, compute preorder numbers (or
ids) of elements and update the stack P appropriately. At each chunk boundary, the
stack P is copied and stored. We call this copy of P a chunk boundary stack. Once all
chunk boundary stacks are created, the chunks can be parsed in parallel. Note that to
link the partial DOM structures into the final DOM tree, the references to DOM nodes
of elements whose end tags were not present in the chunk should be maintained.

4 Implementing ParDOM

ParDOM can be conveniently implemented in a data parallel programming model that
supports map and sort operators. Given a sequence of items, a map operation applies
a function f to each item in the sequence. Parallelism can be exploited for both the map
and sort operators. For subsequent discussions, we will use the term “a map task” to
refer to a map operator being applied to a single item in a sequence.

XML
document

map

map

map

map

map

sort
creation
Chunk

tree
DOM

Phase I Phase II

Fig. 4. Sequence of tasks in ParDOM

Figure 4 shows the
overall sequence of tasks
performed by ParDOM.
Phase I begins with chunk
creation that includes es-
tablishing chunk bound-
aries, assigning preorder
numbers to elements, and
creating chunk boundary
stacks. Then the map tasks
are run in parallel on
all the chunks – each
map task constructs par-

tial DOM trees on its chunk. Note that as soon as the boundary of a chunk is established
and its chunk boundary stack is constructed, a map task can be executed on that chunk.
A map task also outputs information regarding those elements whose parents appear in
some preceding chunks along with their parent ids. Once all the map tasks complete, in
Phase II, the information output by the map tasks are grouped according to the parent
node ids, using a sort operation. For each parent id, its group is processed by exactly one
map task. A map task creates missing parent-child links between a parent DOM node
and all its child DOM nodes in the group. It also ensures that siblings are in document

82 B. Shah et al.

Algorithm 1. Chunk creation

Global: int nodeId←0; int chunkId←0; intArray[] firstNodeId; stack P ; stackArray[] Pc;

procedure ChunkCreate(dataIn, size)
begin← dataIn;1:
end← begin + size + δ; /* avoid splitting XML tags and going beyond EOF */2:
foreach (e, type) ∈ [begin, end] do3:

switch type do4:
case START:5:

if first START tag in chunk then6:
Pc[chunkId]← P ; /* Copy stack P */7:
nodeId++; /* Next preorder number */8:
firstNodeId[chunkId]← nodeId;9:

end
P.push(nodeId, e);10:
break;11:

case END: P.pop(); break;12:
otherwise do nothing;13:

end
end
chunkId++;14:
dataIn← end + 1;15:

order. Since exactly one map task creates the missing parent-child links, no locks are
needed. Next, we describe the algorithmic details of each phase in ParDOM.

4.1 Phase I - Chunk Creation

The steps performed during chunk creation are shown in Algorithm 1. Each invoca-
tion of ChunkCreate() identifies the boundaries of a single chunk, computes preorder
numbers for the elements in it, and constructs its chunk boundary stack. The global
variables are used for preorder numbering of elements and for storing chunk bound-
ary stacks. The input arguments are dataIn, that points to the beginning of the current
chunk, and a suggested chunk size. Lines 1-2 set up the chunk boundaries, where δ is
chosen to ensure that a start tag, end tag, or text is not split across two chunks, and that
the last chunk does not span beyond the end-of-file. Line 3 simply denotes tokenization
of the chunk based on start and end XML tags. (The attributes and text/values are not
needed at this stage and are ignored.) As the document is processed, stack P is copied
and stored when the first start tag is encountered in a chunk (Line 7). Thus, a chunk
boundary stack Pc[chunkId] is created. (This differs slightly from our earlier discus-
sion where P would have been copied at the beginning of a chunk.) In addition, the
preorder number assigned to this element is stored (Line 9) so that during the execu-
tion of map tasks in Phase I, the element ids can be regenerated correctly. Finally, on
Line 15, dataIn is initialized to the beginning of the next chunk. The next invocation
of ChunkCreate() uses dataIn as its input. Whether a document is well-formed or
not can be checked during chunk creation.

A Data Parallel Algorithm for XML DOM Parsing 83

4.2 Phase I - Partial DOM Construction

Once Algorithm 1 completes on a chunk, a map task processes that chunk to create
partial DOM trees. Algorithm 2 describes the steps involved. A local stack T , initially
empty, is used to store an element’s id and a reference to its DOM node. It is updated
similar to stack P .

When a start of an element e is encountered, a DOM node is created, and the (at-
tribute,value) pairs are processed and stored (Line 6). If T is empty, then e’s parent
is in some previous chunk. The parent of e is known from the top entry of the chunk
boundary stack. A key-value pair is output where the key denotes the parent of e and
the value is a reference to the DOM node for e (Lines 9-10). If T is not empty, then e’s
parent is the top entry of T . The DOM node for e is added as the rightmost child of its
parent (Line 11).

When an end of an element e is encountered, stack T is checked. If T is empty, then
e’s start tag was present in some previous chunk. (Note that T cannot be empty at this
point for chunk 0 if the document is well-formed.) The chunk boundary stack is updated
if a start tag was already encountered while processing this chunk (Line 17). When a
text is encountered, it is associated with its element using stack T (Line 21).

Finally, we pop all entries in T (Lines 24-28). These correspond to elements whose
end tags were absent in the current chunk, and thus may have child elements in subse-
quent chunks. To link an element’s DOM node correctly to a child node, a reference to
it should be available in Phase II. To achieve this, a key-value pair is output where the
key is the element’s id and value is a special DOM node that contains the reference to
its actual DOM node (Line 27). This is done to distinguish this special node from other
DOM node references corresponding to child nodes output in Line 10.

Example 4. The partial DOM tree structures are shown in Figure 5 for the chunks in
Figure 3. The key-value pairs are output for chunk 1 and chunk 2. The key-value pairs
output in Line 27 are not shown.

4.3 Phase II - Linking Partial DOM Trees

author

firstlast title price

A XMLY 100.00

output(2,DOMnode(last))
output(1,DOMnode(author)) output(1,DOMnode(price))

output(1,DOMnode(title))

first

book

author

X

no output

Fig. 5. Partial DOM construction in Phase I

The linking process is
straightforward. The
key-value pairs out-
put in Phase I are
sorted by the key
i.e., parent id. (The
value component de-
notes a reference to a
DOM node.) For each
group of key-value
pairs with the same
key, a map task cre-
ates parent-child links
between DOM nodes,

84 B. Shah et al.

Algorithm 2. Map task for Phase I in ParDOM

procedure MapPhaseI(begin, end, chunkId)
stack T ; /* Each entry contains a DOM node ptr and node id */1:
nodeId← firstNodeId[chunkId];2:
foreach (e, type) ∈ [begin, end] do3:

switch type do4:
case START:5:

create DOM node for element e including its attributes, and also store6:
nodeId
let de denote a reference to e’s DOM node7:
if T is empty then8:

(parentId, tag)← Pc[chunkId].top()9:
Output(parentId,de) /* Like emitIntermediate() of MapReduce */10:

else
add de as the right most child of DOM node referenced by T.top()11:

end
T.push(de, nodeId);12:
nodeId++; break;13:

case END:14:
if T is EMPTY then15:

if a START tag was seen in chunk then16:
Pc[chunkId].pop();17:

end
else

T.pop();18:
end
break;19:

case TEXT:20:
store text as child of DOM node referenced by T.top();21:
break;22:

otherwise do nothing;23:
end
while T is EMPTY do24:

(nodeId, de)← T.top()25:
create a special node d∗ containing the reference de26:
Output(nodeId, d∗) /* Like emitIntermediate() of MapReduce */27:
T.pop()28:

end
end

and ensures that the child DOM nodes are in document order. Each DOM node stores
its node id and can be ordered by sorting on the node id. In the interest of space, the
algorithm is not outlined here.

Example 5. The partial DOM structures in Figure 5 are linked during phase II. The
DOM nodes for author, title, and price are linked as child nodes of book (with
id 1) after sorting them based on their node ids. The DOM node for last is linked to
author (with id 2).

4.4 Extensions and Memory Requirement

To support text that are not strictly enclosed within a start and end tag the following
modifications are needed. If the element containing the text appears in the same chunk,

A Data Parallel Algorithm for XML DOM Parsing 85

then it is linked to the text node. Otherwise, Algorithm 2 should be modified to output
a key-value pair (similar to Line 10) when a text appears as the first item. The parent is
known from the chunk boundary stack. In Phase II, this text will be linked to its element
DOM node.

In ParDOM, the additional memory required to store chunk boundary stacks depends
on the number of chunks and the maximum depth of the document tree. On the contrary,
PXP [23] consumes additional memory that is linear in the number of tree nodes for
skeleton construction.

5 Experimental Results

We compared ParDOM with PXP [23] – a data parallel DOM parsing algorithm. We
obtained a Linux binary for PXP from the authors. All experiments were conducted on a
machine running Fedora 8 with a Intel Core 2 Quad processor (2.40GHz). The machine
had 2GB RAM and 500GB disk space.

5.1 Using MapReduce to Implement ParDOM

We implemented ParDOM using Phoenix [25], which is a shared memory MapReduce
implementation written in C. The code was compiled using the GNU gcc compiler
version 4.0.2. The MapReduce model provides a convenient way for expressing the
two phases of ParDOM. This model has two phases, namely, the Map phase and the
Reduce phase. The input data is split, and each partition is provided to a Map task.
Each Map task can generate a set of key-value pairs. The intermediate key-value pairs
are merged and automatically grouped based on their key. In the Reduce phase, each
intermediate key along with all the associated values is processed by a Reduce task.
A MapReduce program written in Phoenix allows a user-defined split(), map(), and re-
duce() procedures. In our MapReduce implementation of ParDOM, split() implemented
Algorithm 1, map() implemented Algorithm 2, and reduce() implemented the steps de-
scribed in Section 4.3.

5.2 ParDOM vs. PXP

ParDOM and PXP were evaluated on a variety of XML datasets with different structural
characteristics and sizes.1 These datasets were obtained from University of Washing-
ton [29]. Figure 6 shows the characteristics of each dataset in terms of its size, number
of elements and attributes, and maximum tree depth. DBLP contains computer sci-
ence bibliographic information. SWISSPROT is a curated protein sequence database.
TREEBANK captures linguistic structure of a Wall Street Journal article using parts-
of-speech tagging. It has deep, irregular structure. LINEITEM contains data from the
TPC-H Benchmark [28].

PXP requires scanning the input document during a preparsing phase for construct-
ing a skeleton of the document. A skeleton is a light-weight representation of the
document’s structure and does not involve the creation of DOM tree nodes. Then the
document is partitioned into tasks (denoted by subtrees) using the skeleton, and these

1 These datasets are different from those used by the authors of PXP [23].

86 B. Shah et al.

tasks are run in parallel to create partial DOM trees. Preparsing and task partitioning are
performed sequentially. Finally, PXP requires a postprocessing phase to remove some
temporary DOM nodes.

ParDOM also requires scanning the input document during chunk creation (Algo-
rithm 1). However, a careful implementation in Phoenix allows us to interleave the
chunk creation phase with the Map tasks in Phase I. Note that once a chunk boundary
stack is computed for a chunk, it is ready to be processed by a Map task.

Dataset Size # of
elements

of
attributes

4042766127MB

SWISSPROT

depth
Max

109MB 5

TREEBANK

DBLP

3682MB 1

LINEITEM 30MB 3 1

2189859

3332130

2977031

2437666

1022976

Fig. 6. XML datasets and their characteristics

Measurements & Results.
For each dataset, we ran
ParDOM and PXP on 2,
3, and 4 cores. For Par-
DOM, chunks were cre-
ated by specifying bytes
per chunk, and each chunk
was extended to contain the
nearest end tag of an ele-
ment. The PXP code pro-

vided to us could not process XML documents beyond a certain size and crashed during
preparsing. Therefore, we created smaller datasets of size 8MB, 16MB, and 32MB from
our original datasets. We measured the wall-clock time and computed the average over
three runs. Each dataset was read once before parsing so that it is cached in the file
system buffer to avoid I/O while parsing.

To compute speedup, we ran a serial parsing algorithm (Section 3.1) and PXP on one
core. Let us call them as Ts and TPXP , respectively. ParDOM’s speedup was measured
by computing the ratio of Ts with its parallel parsing time. (The parallel parsing time
included the cost of chunk creation.) PXP’s speedup was measured by computing the
ratio of TPXP with its parallel parsing time. (The parallel parsing time included the
cost of preparsing.)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

2 3 4

S
pe

ed
up

of cores

ParDOM

PXP

ParDOM (8M)
ParDOM (16M)
ParDOM (32M)

PXP (8M)
PXP (16M)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

2 3 4

S
pe

ed
up

of cores

ParDOM

PXP

ParDOM (8M)
ParDOM (16M)
ParDOM (32M)

PXP (8M)
PXP (16M)
PXP (32M)

(a) LINEITEM (b) SWISSPROT

Fig. 7. Speedup measurements

A Data Parallel Algorithm for XML DOM Parsing 87

Speedup: Figure 7(a) and 7(b) show the speedup of ParDOM and PXP for LINEITEM
and SWISSPROT, respectively. The chunk size of 256KB was selected for ParDOM,
beyond which the parallel parsing time did not improve significantly. Clearly, ParDOM
had better speedup than PXP at 4 cores for both LINEITEM and SWISSPROT. Par-
DOM achieved a speedup of around 2.5 with 4 processing cores. (Note that PXP crashed
for 32MB of LINEITEM dataset during preparsing phase, and hence is not shown in the
plot.) Interestingly, PXP failed to parse TREEBANK and DBLP even for 8MB dataset
sizes and crashed. The crash occurred in the preparsing phase. In these datasets, the
fanout at nodes other than the root were not large. Further, TREEBANK had deep tree
structures. This clearly demonstrates the superiority of ParDOM over PXP for parallel
DOM parsing as it can process a variety of tree structures and document sizes.

Figure 8(a) shows the speedup for ParDOM on all the four datasets, each of size
64MB. We achieved the best speedup of 2.61. We observed similar trends in the speedup
for ParDOM when the original datasets in Figure 6 were used.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

2 3 4

S
pe

ed
up

of cores

SWISSPROT
TREEBANK

DBLP
LINEITEM

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64

A
vg

. t
im

e
ta

ke
n

(s
ec

)

Dataset size (MB)

DBLP
LINEITEM

SWISSPROT
TREEBANK

(a) (b)

Fig. 8. (a) Speedup of ParDOM (64MB). (b) Data scalability.

Data Scalability: To measure how ParDOM scales with increase in dataset size, we
measured the average parsing time (over 3 runs) for datasets size of 8MB, 16MB,
32MB, and 64MB. The results for 4 cores is plotted in Figure 8(b). For instance, Par-
DOM required 0.312 secs and 0.621 secs to process 32MB and 64MB of TREEBANK,
respectively.

For ParDOM, we measured the effectiveness of our simple chunking scheme on the
distribution of load among the Map tasks in Phase I. We used the original datasets in
Figure 6. A Map task that processed more elements created more DOM nodes. Figure 9
shows the mean and standard deviation of the number of elements processed per Map
task excluding the last Map task that can have a smaller chunk size. We observed that
for TREEBANK and LINEITEM the load was well-balanced among Map tasks as com-
pared to DBLP and SWISSPROT. This is evident from the smaller σ values. DBLP and
SWISSPROT datasets contained text of varied lengths that resulted in higher σ values.
Thus chunking based solely on bytes per chunk may not be ideal for such datasets.

We also measured the load during Phase II of ParDOM, by considering the number
of child nodes that were linked per task, excluding the root node. (The root node of

88 B. Shah et al.

each dataset had very large fanout.) The total, mean, and standard deviation for the
number of child links created are shown in Figure 9. Note that more tasks were required
for TREEBANK as compared to the other datasets because an average of 1.5 child
nodes were linked per task. SWISSPROT had larger fanout among nodes as compared
to DBLP and this is reflected in the total number of child nodes that were linked in
Phase II.

SWISSPROT

TREEBANK

DBLP

Mean σ

of elements
per Map task

Mean σTotal

24338.6 1545.3 1670 5.3 5.6

22789.8 725.0 4155 9.2 16.4

23323.3 274.6 1622 1.5 0.9

29041.9 33.1 425 5.4 4.8LINEITEM

Total # of parent−child links

Phase I created in Phase IIDataset

Fig. 9. Load measurement

Load Balancing: Finally,
we measured how much
time was spent in the
Map and Reduce phases
in our ParDOM imple-
mentation. We used the
original datasets for this
experiment. We observed
that in all cases the Re-
duce phase consumed less
than 8% of the total time.

6 Conclusions

ParDOM is a data parallel XML DOM parsing algorithm that can leverage multicore
processors for high performance XML parsing. ParDOM offers fine-grained parallelism
by using a flexible chunking scheme that is oblivious to the structure of the XML doc-
ument. ParDOM can be conveniently implemented in a data parallel language that sup-
ports map and sort operations. Our empirical results show that ParDOM provides
better scalability than PXP [23] on commodity multicore processors. Further, it can
process a wide variety of datasets as compared to PXP.

Acknowledgments. We thank the authors of PXP for their code and the anonymous
reviewers for their insightful comments.

References

1. Intel XML Software Suite Performance Paper,
http://intel.com/software/xmlsoftwaresuite

2. Microsoft XML Core Services (MSXML),
http://msdn.microsoft.com/en-us/xml/

3. Xerces-C++ XML Parser, http://xerces.apache.org/xerces-c/
4. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson,

D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel com-
puting research: A view from berkeley. Technical Report UCB/EECS-2006-183, EECS De-
partment, University of California, Berkeley (December 2006)

5. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J., Simon, J.: XML
path language (XPath) 2.0 W3C working draft 16. Technical Report WD-xpath20-20020816,
World Wide Web Consortium (August 2002)

http://intel.com/software/xmlsoftwaresuite
http://msdn.microsoft.com/en-us/xml/
http://xerces.apache.org/xerces-c/

A Data Parallel Algorithm for XML DOM Parsing 89

6. Cable, L., Chow, T.: JSR 173: Streaming API for XML (2007),
http://jcp.org/en/jsr/detail?id=173

7. Cameron, R.D., Herdy, K.S., Lin, D.: High performance XML parsing using parallel bit
stream technology. In: CASCON 2008: Proc. of the 2008 conference of the center for ad-
vanced studies on collaborative research, New York, pp. 222–235 (2008)

8. Chakravarty, M.M.T., Leshchinskiy, R., Jones, S.P., Keller, G., Marlow, S.: Data Parallel
Haskell: a status report. In: Proc. of the 2007 Workshop on Declarative Aspects of Multicore
Programming, Nice, France, January 2007, pp. 10–18 (2007)

9. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: Proc.
of the OSDI 2004, San Francisco, CA (December 2004)

10. Engelen, R.A.V.: A framework for service-oriented computing with C and C++ Web service
components. ACM Transactions on Internet Technology 8(3), 1–25 (2008)

11. Gao, Z., Pan, Y., Zhang, Y., Chiu, K.: A high performance schema-specific xml parser. In:
IEEE Intl. Conf. on e-Science and Grid Computing, December 2007, pp. 245–252 (2007)

12. Ghuloum, A., Smith, T., Wu, G., Zhou, X., Fang, J., Guo, P., So, B., Rajagopalan, M., Chen,
Y., Chen, B.: Future-proof data parallel algorithms and software on intel multi-core architec-
ture. Intel Technology Journal 11(4), 333–348 (2007)

13. Ghuloum, A., Sprangle, E., Fang, J., Wu, G., Zhou, X.: Ct: A Flexible Parallel Programming
Model for Tera-scale Architectures, 2007. Intel White Paper (2007)

14. Goldman, O., Lenkov, D.: XML Binary Characterization. Technical report, World Wide Web
Consortium (March 2005)

15. Grohoski, G.: Niagara 2: A highly threaded server-on-a-chip. In: 18th Hot Chips Symposium
(August 2006)

16. Huhns, M., Singh, M.P.: Service-Oriented Computing: Key Concepts and Principles. IEEE
Internet Computing 9(1), 75–81 (2005)

17. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel pro-
grams from sequential building blocks. In: Proc. of the 2nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007, pp. 59–72 (2007)

18. Kay, M.: SAXON: The XSLT and XQuery Processor,
http://saxon.sourceforge.net

19. Kostoulas, M.G., Matsa, M., Mendelsohn, N., Perkins, E., Heifets, A., Mercaldi, M.: XML
screamer: an integrated approach to high performance XML parsing, validation and dese-
rialization. In: Proc. of the 15th International Conference on World Wide Web, New York,
pp. 93–102 (2006)

20. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. In: Proc. of
the 27th VLDB Conference, Rome, Italy, September 2001, pp. 361–370 (2001)

21. Megginson, D.: Simple API for XML, http://sax.sourceforge.net/
22. Nicola, M., John, J.: XML parsing: a threat to database performance. In: Proc. of the 12th

International Conference on Information and Knowledge Management, pp. 175–178 (2003)
23. Pan, Y., Lu, W., Zhang, Y., Chiu, K.: A Static Load-Balancing Scheme for Parallel XML

Parsing on Multicore CPUs. In: Proc. of the 7th International Symposium on Cluster Com-
puting and the Grid (CCGRID), Washington D.C., May 2007, pp. 351–362 (2007)

24. Pan, Y., Zhang, Y., Chiu, K.: Simultaneous transducers for data-parallel XML parsing. In:
Proc. of Intl. Symposium on Parallel and Distributed Processing, April 2008, pp. 1–12 (2008)

25. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapRe-
duce for Multi-core and Multiprocessor Systems. In: Proceedings of the 13th International
Symposium on High-Performance Computer Architecture (HPCA), Phoenix, AZ (Feburary
2007)

26. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake,
A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P.: Larrabee: a
many-core x86 architecture for visual computing. ACM Trans. Graph. 27(3), 1–15 (2008)

http://jcp.org/en/jsr/detail?id=173
http://saxon.sourceforge.net
http://sax.sourceforge.net/

90 B. Shah et al.

27. Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang, C.: Storing
and Querying Ordered XML Using a Relational Database System. In: Proc. of the 2002
ACM-SIGMOD Conference, June 2002, pp. 204–215 (2002)

28. TPC. TPC-H (2002), http://www.tpc.org/tpch/
29. UW XML Repository (2001),

http://www.cs.washington.edu/research/xmldatasets
30. W3C. The document object model (1998), http://www.w3.org/DOM
31. Wu, Y., Zhang, Q., Yu, Z., Li, J.: A Hybrid Parallel Processing for XML Parsing and Schema

Validation. In: Proceedings of Balisage Markup Conference (2008)
32. Zhang, J., Lovette, K.: XimpleWare W3C Position Paper. In: W3C Workshop on Binary

Interchange of XML Information Item Sets (2003)

http://www.tpc.org/tpch/
http://www.cs.washington.edu/research/xmldatasets
http://www.w3.org/DOM

Optimizing XML Compression

Gregory Leighton and Denilson Barbosa

University of Alberta
Edmonton, AB, Canada

{gleighto,denilson}@cs.ualberta.ca

Abstract. The eXtensible Markup Language (XML) provides a pow-
erful and flexible means of encoding and exchanging data. As it turns
out, its main advantage as an encoding format (namely, its requirement
that all open and close markup tags are present and properly balanced)
yields also one of its main disadvantages: verbosity. XML-conscious com-
pression techniques seek to overcome this drawback. Many of these tech-
niques first separate XML structure from the document content, and
then compress each independently. Further compression gains can be re-
alized by identifying and compressing together document content that
is highly similar, thereby amortizing the storage costs of auxiliary infor-
mation required by the chosen compression algorithm. Additionally, the
proper choice of compression algorithm is an important factor not only
for the achievable compression gain, but also for access performance.
Hence, choosing a compression configuration that optimizes compression
gain requires one to determine (1) a partitioning strategy for document
content, and (2) the best available compression algorithm to apply to
each set within this partition. In this paper, we show that finding an op-
timal compression configuration with respect to compression gain is an
NP-hard optimization problem. This problem remains intractable even
if one considers a single compression algorithm for all content. We also
describe an approximation algorithm for selecting a partitioning strategy
for document content based on the branch-and-bound paradigm.

1 Introduction

The eXtensible Markup Language (XML) has become increasingly popular as
a data encoding format. XML has many benefits, but one notable weakness:
its verbosity, resulting from the high markup-to-content ratio imposed in large
part by requiring every markup tag to be properly closed. The increasing size
of XML datasets has motivated researchers to seek ways to reduce storage costs
by applying compression techniques. Because XML is inherently a textual for-
mat, the naive solution is to apply a generic text compression scheme. However,
such schemes are not aware of XML syntax, and therefore cannot easily ex-
ploit redundancies in the tree structure unambiguously induced by the proper
nesting of markup tags inside the XML document (such as repeated subtrees),
or even distinguish an element tag from a text segment. Thus, such a strategy
severely hinders query processing, which is fundamentally based on traversing
the structure of the document.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 91–105, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

92 G. Leighton and D. Barbosa

With such shortcomings in mind, many XML-conscious compression tech-
niques have been proposed in recent years. Among them, homomorphic ap-
proaches to XML compression (e.g., [1–6]) preserve the original tree structure
in the compressed representation by processing each node as it occurs during a
pre-order traversal. Permutation-based approaches (e.g., [7–11]) re-arrange the
document before performing compression, in an attempt to group “similar”
nodes together and therefore improve the achievable compression rate. A com-
monly used permutation strategy treats structure separately from content, and
then applies a partitioning strategy to group content nodes into a series of data
containers. However, there is an inherent tradeoff between the achievable com-
pression rate and access performance: in general, better compression tends to
occur by grouping large sets of nodes together before compression, yet such a
strategy will often hurt access time by increasing the number of decompression
operations needed to extract relevant document fragments.

In this paper, we focus on the permutation-based approaches, and seek to de-
termine the complexity of determining optimal strategies for container grouping
and compression algorithm selection such that the resulting compression con-
figuration maximizes the overall compression gain, while keeping compression
and/or decompression time and compression model storage requirements within
specified bounds. Arion et al [7] were the first to investigate (albeit informally)
the tradeoff between compression rate and query performance, given a set of
typical queries, a set of available compression algorithms, and a specific XML
database as inputs. We consider a more general setting that captures the prob-
lem outlined in [7] as well as additional application domains, including data
archiving and data exchange. We provide a complexity analysis indicating that
the difficulty of selecting an optimal compression configuration is NP-hard, and
also describe an approximation algorithm based on a branch-and-bound tech-
nique that finds the optimal compression configuration within polynomial time
(w.r.t. the document size and the number of available compression algorithms),
with the choice of appropriate parameter values.

The paper is structured as follows. Section 2 provides preliminary definitions
and a background into the problem. Section 3 investigates the difficulty of choos-
ing an optimal tradeoff between compression gain and query performance. Sec-
tion 4 describes an approximation algorithm for choosing a near-optimal com-
pression configuration, while Section 5 concludes the paper and outlines our
future work.

2 Preliminaries

2.1 XML Data Model

We recall that an XML document can be represented as a rooted, ordered, la-
beled tree (the document tree), in which the leaf nodes correspond to attribute
values and text segments (document content), while the interior nodes represent
attributes and elements (document structure). According to convention, we dis-
tinguish attribute names from elements by prepending the former with ‘@’. As

Optimizing XML Compression 93

users

user

@id favorites

movies music

user

@id favorites

movies

movie
movie movie

title titleyear year

Movie

title artist

song

-
-

Career in a

title year

prestige prestige

rating
rating rating rating

Fig. 1. Example XML document tree

an illustrative example application, we consider a social recommendation web-
site, where users share their opinions of movies, music, etc. with other users.
Additionally, users assign a prestige to other users, allowing them to express
their evaluation of the quality of those users’ recommendations. User account
data is stored as XML; Fig. 1 shows a fragment of the document tree.

Query languages for XML center around path expressions, which are used
to specify subsets of nodes within the document tree. The two most influential
XML query languages are XPath [12] and XQuery [13].

Example 1. For the example document tree of Fig. 1, the following XQuery
returns the titles of movies rated at least 4.5 by users with a prestige ranking
lower than 4.

let $movies := for $user in doc(‘‘ratings.xml’’)//user

where $user/prestige lt 4.0

return $user/favorites/movies/movie

for $movie in $movies

where $movie/rating ge 4.5

return $movie/title

This query returns <title>Smoke</title>.

2.2 XML Compression

Permutation-based strategies for XML-conscious compression separately com-
press the document structure and text content. The textual content is organized

94 G. Leighton and D. Barbosa

into containers, usually based on the path (or just the name) of the parent ele-
ment. The intuition for doing so is that values belonging to different instances
of the same element are likely to exhibit similarities that facilitate compression.
Fig. 2 shows the default path-based partitioning of the text content of the docu-
ment tree in Fig. 1, in which data values belonging to each distinct element and
attribute type stored in a separate container.

Further compression gains can often be realized by generalizing the parti-
tioning strategy to take into account additional factors, such as the data type
of the content (e.g., integers, dates, and strings). Grouping together multiple
containers with high pairwise similarity allows the containers to share the same
compression source model, reducing storage costs while simultaneously allowing
more complex models over the longer sequence to be built. Fig. 3 depicts a log-
ical partitioning strategy that extends the default strategy from Fig. 2. Here,
containers B, E, and H are grouped together, since user prestige, movie ratings,
and song ratings are highly similar (i.e., they all consist of a real number value
in the range [0.0, 5.0]). Similarly, since the titles of movies and songs and artist
names are all free-form text, it may prove beneficial to group together containers
C, F, and G.

The choice of a partitioning strategy can also impact the efficiency of ran-
dom access to nodes within the document tree. In particular, query performance
can be improved by choosing a partitioning strategy that places data segments
involved in a common query within the same container subset. Doing so can dra-
matically reduce the number of required decompression operations. For Ex. 1,
a beneficial partitioning strategy might instead group together containers B, C,
and E.

Proper algorithm selection is also an important factor to consider. Greater
compression can be realized by choosing a compression algorithm that is well-
suited for the type of data values stored in a container subset. Query performance
is also impacted by the choice of compression algorithm, as the time required
to carry out decompression adds to the query response time. Fig. 3 additionally
assigns a compression algorithm to each container subset (in this case, either
LZ77 or Huffman coding).

Furthermore, certain compression algorithms allow classes of operations to be
carried out without prior decompression; the choice of such an algorithm can
therefore speed up query performance. For example, using an order-preserving
algorithm to compress user prestige and movie rating values would allow the
comparisons in both where clauses of the XQuery in Ex. 1 to be computed within
the compressed domain, without requiring the decompression of each such value
beforehand.

We now consider the relevant measures used to evaluate solutions to XML
compression problems. Storage gain measures the relative amount of space saved
by applying a compression algorithm a to a container C, denoted as gain(C, a).
An effective measure must not only account for the size of the compressed rep-
resentation of C; it must also consider the additional space required to store

Optimizing XML Compression 95

A
/users /user/@id

B
/users/user/prestige

C
/users/user/ favorites/movies /movie/title

D
/users/user/favorites/movies/movie/year

E
/users/user/favorites/movies /movie/rat ing

F
/users/user/favorites/music/song/title

G
/users/user/favorites/music/song/artist

H
/users/user/favorites/music/song/rating

Fig. 2. A path-based partitioning of data values from the document of Fig. 1

auxilary data structures constructed by the compression source model (e.g., for
the Huffman algorithm, this would indicate the size of the generated tree; in
dictionary-based compression schemes, it would represent the size of the dictio-
nary). It is calculated as

gain(C, a) = 1 − compressed size of C + compression model size
original size of C

. (1)

This measurement is also applicable to sets of containers; given a subset S ⊆ C
and a compression algorithm a, gain(S, a) is calculated by first concatenating the
contents of each container in S, and then using the compressed and original sizes
of this concatenated container, together with the storage costs of the generated
compression model, in the above formula.

Compression cost and decompression cost measure, respectively, the time re-
quired to apply and reverse the compression process. Both time measures are
largely dependent on the contents of the container(s) being compressed, as well
as the compression algorithm being employed. By comp(S, a) and decomp(S, a),
we denote, respectively, the time required to compress and decompress the con-
tents of a container subset S that has been compressed with algorithm a.

In the sequel, we assume that all three measures can be calculated in polyno-
mial time (with respect to the size of the input container subset).

96 G. Leighton and D. Barbosa

Fig. 3. A compression configuration for the document in Fig. 1

3 Complexity Analysis of Compression Configuration
Selection

We recall from the discussion in Sec. 2.2 that our goal is to discover an optimal
compression configuration, specifying both a partitioning strategy of the con-
tainer set C and an assignment of a compression algorithm to each partition set.
In this section, we demonstrate the NP-hardness of this problem.

Definition 1. A configuration 〈P, α〉 consists of a partition P = {S1, . . . , St} of
C, and an algorithm assignment function α : P → A that assigns to each S ∈ P
a compression algorithm a ∈ A.

Definition 2. An instance of the optimization version of the optimal compres-
sion configuration problem consists of the following inputs: a set of available
compression algorithms A = {a1, . . . , aq}; a set of containers C = {C1, . . . , Cx};
gain : 2C ×A → Q, a function indicating the compression gain obtained when a
specific compression algorithm in A is applied to a specific container subset in
2C; comp : 2C × A → Q, a function indicating the time cost associated with a
compression of a specific container subset in 2C using a specific algorithm in A;
decomp : 2C × A → Q, a function indicating the time cost associated with de-
compressing a specific container subset in 2C that has previously been compressed
using a specific algorithm in A; Tc, an upper bound on total compression cost;
and Td, an upper bound on total decompression cost.

The goal is to discover a configuration 〈P, α〉 that maximizes∑
S∈P gain(S, α(S)) subject to the constraints

∑
S∈P comp(S, α(S)) ≤ Tc and∑

S∈P decomp(S, α(S)) ≤ Td.

Optimizing XML Compression 97

In the decision version of the problem, there is an additional input L ∈
Q∗ and a solver outputs “yes” if there exists a configuration 〈P, α〉 such that∑

S∈P gain(S, α(S)) ≥ L subject to the given constraints, and “no” otherwise.

Theorem 1. Selecting an optimal compression configuration is NP-hard.

The proof of Thm. 1 (given in [14]) immediately leads to the following additional
result.

Corollary 1. Selection of an optimal compression configuration remains
NP-hard when |A| = 1.

This indicates that the “hardness” of the overall problem is not caused by al-
gorithm selection, rather it is due to the difficulty of determining an optimal
container partitioning strategy.

4 An Approximation Algorithm for Compression
Configuration Selection

In this section, we describe an approximation algorithm for selecting an optimal
compression configuration. Throughout the discussion, we use the term container
subset to refer to one or more containers which have been grouped together,
and grouping to indicate a set of container subsets. A grouping which covers
all containers (i.e., assigns each container to exactly one container subset) is
referred to as a partitioning strategy.

In the first phase of the approximation algorithm (Sec. 4.4), a branch-and-
bound strategy is used to select a set of candidate partitioning strategies: a set
of partitioning strategies which are estimated to be highly compressible. In the
second phase (Sec. 4.5), this set of partitioning strategies is tested against the
set of available compression algorithms to determine the single compression con-
figuration that yields the highest compression gain, while obeying the specified
upper bounds on compression and decompression costs.

We first describe how container compressibility and storage costs are esti-
mated, and then discuss how these estimates are used in the computation of
compression gains. We then detail both phases of the approximation algorithm.

4.1 Estimating Compressibility

As a means of estimating the compressibility of a container’s contents (or of
the concatenated contents of multiple containers), we turn to Lempel and Ziv’s
method for calculating string complexity [15]. In this approach, which we refer
to as LZ76, the input string x is parsed once from left-to-right, and a set of
phrases Px are recursively built and added to a dictionary. Once parsing has
been completed, the complexity of x is

CLZ(x) =
|Px|
|x| , (2)

98 G. Leighton and D. Barbosa

the ratio of phrases per character. Lempel and Ziv showed that this approach
yields an approximation ratio of n

log n to Shannon’s entropy rate.
We now describe the parsing process of LZ76 in greater detail. (1) Initialize

the dictionary to be empty. (2) If the end of x has been reached, terminate. Oth-
erwise, read the next character from x and assign it to phrase p. If p matches an
existing entry in the dictionary, continue reading characters from x and append-
ing them to p until p no longer matches an existing dictionary entry. (3) Assign
p the next available index position, and add both the index value and p to the
dictionary. Return to step (2).

Example 2. For a container subset S with contents “aaabc”, the generated LZ76
dictionary will contain the four phrases 〈a〉, 〈aa〉, 〈b〉, and 〈c〉 and CLZ(S) =
4/5 = 0.8.

4.2 Estimating Storage Cost

To compute the storage gain for a container subset, we simulate the cost of trans-
mitting the dictionary using the coding strategy of LZ78 [16] (recalling that LZ78
utilizes the parsing strategy of LZ76 in concert with a specific coding strategy
for dictionary phrases). Each time a new phrase of length l is constructed, two
pieces of information are emitted to the compression stream: (1) a codeword
W , representing the index position of the existing phrase p of length l − 1 that
forms a prefix of the new phrase, and (2) the “innovative” character c that is
appended to p to form the new phrase. Since phrase indexing begins at 1, the
highest index value for a dictionary with t phrases will be t. Using a fixed-length
encoding, then, we can express each W value using log2(t) bits, requiring a total
of t · log2(t) bits to encode all codewords. Furthermore, a single character c is
emitted each time a new phrase is created, requiring an extra 8 · t bits (here,
we assume a text encoding that requires a single byte per character is in use;
multibyte formats can be incorporated by replacing 8 with the number of bits
per character used in the chosen encoding format).

Definition 3. The storage cost (expressed in bits) associated with a container
subset S is calculated as

storageCost(S) = t · (8 + log2(t)) (3)

where t is the total number of entries in the dictionary after an LZ76 parsing
of S.

The storage cost (expressed in bits) associated with a container grouping G is
calculated as

storageCost(G) =
∑
S∈G

storageCost(S). (4)

Optimizing XML Compression 99

4.3 Modeling Compression Gain

Two distinct gain measures are associated with each container grouping: the local
compression gain (localGain) indicates the compression gain obtained by using
the current grouping, while the maximum potential compression gain (mpGain)
indicates the highest possible compression gain that can be obtained moving
forward by chosing any partitioning strategy that “agrees with” the current
grouping (i.e., there exists no container C such that the current grouping and the
partitioning strategy place C within different container subsets). Both measures
are used in the first phase of the algorithm to guide the search for candidate
container partitioning strategies, and we presently describe how both measures
are calculated.

Definition 4. The local compression gain (expressed in bits) of a container
subset S, denoted localGain(S), is calculated as

localGain(S) = max{0, Γ (S)} , (5)

where

Γ (S) = 8 · |S| − (CLZ(S) · |S| + storageCost(S)) (6)

and |S| indicates the total byte length of the contents of S.

Eq. (5) ensures that compression is only applied if it results in a positive compres-
sion gain; otherwise, the subset S is left uncompressed, and localGain(S) = 0. In
Eq. (6), the sum of the estimated compressed size of S and the associated storage
cost is subtracted from the original bit length of S. This quantity represents the
total number of bits saved by applying compression to S. Note that while Eq. (6)
assumes a byte-level compression of container contents, text encoding schemes
using multiple bytes per character (e.g., Unicode formats) may be supported by
considering each byte as an individual token.

Definition 5. The local compression gain (expressed in bits) of a container
grouping G is calculated as

localGain(G) =
∑
S∈G

localGain(S) . (7)

Example 3. Recalling the example grouping S = {aaabc} from Ex. 2, Γ (S) =
5 · 8 − (0.8 · 5 + (4 · (8 + log 2(4)))) = −4 bits and therefore localGain(S) = 0
bits, indicating that S should be left uncompressed.

As mentioned above, the maximum potential compression gain is used to indi-
cate the upper bound on the achievable compression gain for any partitioning
strategy that agrees with the current grouping. Since the total number of char-
acters (i.e., the number of characters contained within the existing grouping G,
plus the number of unprocessed characters contained within containers that have
yet to be assigned to subsets) is fixed, so too is the first product in Eq. (6), and

100 G. Leighton and D. Barbosa

Input: D, the set of existing LZ76 dictionaries for the grouping G; ct, total
number of characters in all containers of C; cu, number of remaining
unprocessed characters.

Output: mpGain(G), indicating the maximum potential compression gain for
G.

1. Choose the dictionary d ∈ D containing the phrase of longest length, and let
Smax denote the container subset whose dictionary is d. In case of a tie,
choose the subset with the lowest CLZ value. Set nPhrases to be the number
of phrase entries in d, and maxPhraseLength to be the length of the longest
phrase, plus one.

2. While cu ≥ maxPhraseLength, simulate the creation of a new, longer phrase
by performing the following steps:
(a) Set cu = cu −maxPhraseLength.
(b) Set nPhrases = nPhrases + 1.
(c) Set maxPhraseLength = maxPhraseLength + 1.

3. If cu > 0, choose an existing phrase of length cu from d to cover the
remaining unprocessed characters.

4. Compute CLZ(Smax) = nPhrases
ct

, and use this value to recalculate
localGain(Smax).

5. Return mpGain(G) =
∑

S∈G\Smax
localGain(S) + localGain(Smax).

Algorithm 1. Calculation of maximum potential compression gain

maximizing compression gain over a subset S then requires the sum of CLZ(S)
and storageCost(S) to be minimized. From Eq. (2) and Eq. (3), one observes
that both quantities are minimized when the number of generated phrases is
also minimized. Equivalently, at each step during LZ76 parsing, one seeks to
generate the longest applicable phrase by appending an extra character to the
longest existing phrase in the dictionary. Alg. 1 illustrates how the maximum
potential gain is calculated for a grouping.

In the first step, the longest phrase over all subset dictionaries is identified.
For the container subset Smax whose dictionary contains this longest phrase,
the existing dictionary is extended with longer phrases, until no unprocessed
characters remain. More precisely, each iteration of step 2 creates a new phrase
one character longer than the previous longest phrase (as we are free to assign
arbitrary values to unprocessed characters, such a phrase can always be con-
structed), and applies it to the sequence of unprocessed characters. Eventually,
either all remaining characters will be processed, or the number of remaining
characters will be less than the longest phrase. In the latter case, a shorter exist-
ing phrase is reused to cover the remaining characters (step 3). Step 4 computes
the new value of CLZ(Smax), and updates the value of localGain(Smax). Finally,
step 5 computes the mpGain for the grouping G (expressed in bits) by summing
the updated localGain score for Smax with the existing localGain scores for the
remaining subsets in G.

Example 4. To illustrate the computation of mpGain, we recall from Ex. 2 the
previous example subset S = {aaabc}, and the dictionary of phrases

Optimizing XML Compression 101

{〈a〉, 〈aa〉, 〈b〉, 〈c〉} that results from an LZ76 parsing of S. Assume that there
is one additional container Cx with 5 characters. Alg. 1 first selects the longest
existing phrase 〈aa〉 and constructs a new phrase of length 3 (say, 〈aaa〉). Ap-
plying this to Cx leaves only 5 − 3 = 2 remaining unprocessed characters, a
number which is less than 3, the current maximum phrase length. Therefore, the
existing pattern 〈aa〉 is applied, and no unprocessed characters remain. Only one
additional pattern has been created, and the new complexity score is 5/10 = 0.5
symbols per character, while the updated storage cost is 5·(8+log2(5)) ≈ 51.6096
bits, and mpGain(S) ≈ 10 · 8 − (0.5 · 10 + 51.6096) ≈ 23.3904 bits.

4.4 Branch-and-Bound Algorithm for Selecting Candidate
Partitioning Strategies

In this phase, a search tree is constructed in which each node corresponds to a
particular grouping. Each node stores the localGain and mpGain values for its
associated grouping. The subtree rooted by a node n encompasses all groupings
that extend the grouping associated with n by assigning additional containers
to container subsets.

Before explaining the details of the branch-and-bound procedure, we begin
with an intuition as to why this technique is applicable to the subproblem of
choosing a container grouping. Recall that the mpGain indicates the highest
possible gain possible for any partitioning strategy based on the current group-
ing. In addition, we may also observe that mpGain(p) ≥ mpGain(c) for any
parent node p and child node c in the search tree. This is due to the fact that
there are fewer remaining unprocessed characters as one travels from p to c: in
particular, the placement of one additional container has been “fixed” by the
grouping associated with c. At the lowest level of the search tree, all contain-
ers have a fixed placement (i.e., each leaf node corresponds to a partitioning
strategy), and therefore mpGain will equal localGain for each leaf node.

Exploiting these properties of the mpGain measure provides us with our
bounding criterion: if the mpGain for a grouping is sufficiently less than the
best local gain value encountered thus far, the entire subtree rooted at the node
representing the grouping can be immediately eliminated from consideration (or
“killed”). We now are in a position to describe the specifics of the branch-and-
bound procedure.

The inputs to the procedure are a set of containers C, sorted in descending
order of their respective sizes, along with an additional parameter δ ∈ R+. The
latter specifies a threshold value used to determine whether a particular node
should be “killed”, or if it is worthwhile to continue branching into its subtree (in
which case it is considered to be a “live” node). During the search procedure,
the optimal local gain value encountered so far is stored in variable optGain.
The root node of the search tree is assigned the grouping {C1}, that is, a sin-
gle set containing only the first container. For i = 2, ..., |C|, the steps in Alg. 2
are carried out to enumerate the various choices for placement of each container

102 G. Leighton and D. Barbosa

Input: container Ci ∈ C, context node x, and a threshold value δ ∈ R+

Output: a set G of candidate container partitioning strategies
1. Construct as the leftmost child of x the grouping formed by adding the

single-container subset {Ci} to Gx.
2. For each existing subset S ∈ Gx, add a child to x corresponding to the

grouping formed by Gx \ {S} ∪ {S ∪ Ci}.
3. For each of the child nodes y created in steps 1 and 2, let Gy represent the

grouping associated with y and calculate localGain(Gy) and mpGain(Gy).
4. If one of the newly constructed children nodes y results in a localGain(Gy)

value that is higher than optGain, set optGain to this value.
5. “Kill” any child nodes y for which mpGain(Gy) < optGain− δ.

Algorithm 2. Construction of the branch-and-bound search tree

Ci within the context of an existing grouping (where each such choice corre-
sponds to a child node of the existing grouping node), and to determine the
optimal choice of placement among the alternatives. Note that in Alg. 2, x refers
to the node currently being evaluated in the tree, and Gx refers to the container
grouping associated with x.

For each “live” node p at level i in the tree, a set of child nodes are constructed;
each represents a different strategy for placing the container Ci+1 into either
a new subset, or within one of the existing container subsets present in the
grouping associated with p. Once all “live” nodes at level i have been branched,
mpGain and localGain values for all nodes at level i are computed, and if
necessary optGain is updated to reflect a new global maximum for localGain.
For each node having a localGain less than optGain, a test is carried out to
ensure that its mpGain falls within the range [optGain− δ, optGain]. If the test
fails, the node is “killed”. Further branching is only carried out at level i + 1 on
the remaining live nodes at level i; at each iteration, the unbranched node at
level i with the highest mpGain value is chosen. At level |C|, the remaining live
nodes will comprise the set G of candidate partitioning strategies.

We illustrate the working of the branch-and-bound procedure with the fol-
lowing example.

Example 5. Assume that we have the container set C = {C1, C2, C3}, where the
respective contents of the containers are C1 = {aaabcaaabcaaabcabcab}, C2 =
{15720653197608243849}, and C3 = {abcababcbaaaabcabcab}. We set δ = 30.0
bits. Fig. 4 depicts the search tree formed by this process. The best local gain
is achieved by the grouping {C1, C3}, {C2}; when we compare the mpGains of
the other nodes at level 3, only {C1}, {C2}, {C3} comes within δ = 30.0 bits of
this optimal local gain. Hence, only these two nodes remain alive, and the other
three are “killed”. Since all three containers have now been assigned, we return
the two remaining live nodes at level three as the set of candidate partitioning
strategies, G.

The pruning criterion in step 5 serves to reduce the size of the search space, yet
it is crucial to ensure that it does not result in the removal of the node with the

Optimizing XML Compression 103

{C1}
localGain = 50.4707
mpGain = 300.6970

{C1},{C2}
localGain = 50.4707
mpGain = 168.9804

{C1,C2}
localGain = 0

mpGain = 108.6180

{C1},{C2},{C3}
localGain = 100.9413
mpGain = 100.9413

{C1,C3},{C2}
localGain = 126.3966
mpGain = 126.3966

{C1},{C2,C3}
localGain = 50.4707
mpGain = 50.4707

{C1,C2},{C3}
localGain = 50.4707
mpGain = 50.4707

{C1,C2,C3}
localGain = 62.7933
mpGain = 62.7933

Fig. 4. Branch-and-bound search tree for Ex. 5

highest local compression gain (the optimal node). The following result proves
that the optimum node will never be “killed”.

Proposition 1. Alg. 2 ensures that the optimal node is always visited.

Proof. Given in [14].

4.5 Determining an Optimal Compression Configuration

Alg. 3 allows one to determine an optimal compression configuration from an
input set G of candidate partitioning strategies (obtained from Alg. 2) and set A
of compression algorithms, together with upper bounds on compression and de-
compression time, Tc and Td. The variable globalBestGain records the highest
overall compression gain from the partitioning strategy/algorithm assignment
combinations tested so far. Lines 2-29 iterate through each candidate partition-
ing strategy G ∈ G; each container subset S contained in G is tested (Lines 4-23)
to determine the compression algorithm a ∈ A that achieves the highest com-
pression gain (Lines 6-14). Before an algorithm is assigned to a container subset,
a test is performed to ensure that the required compression and decompression
time values fall below the respective bounds Tc and Td (Line 8).

At the conclusion of testing, if there is no available algorithm in A that sat-
isfies the time bounds for compression and decompression when applied to a
specific subset S, the entire partitioning strategy containing S is immediately
disqualified (Lines 15-16). Otherwise, the overall compression gain and compres-
sion/decompression time scores are updated for the partitioning strategy G, and
the appropriate compression algorithm is assigned to the active subset S (Lines
17-22). After each partitioning strategy G has been processed, a test is done
to determine whether it yields a better gain than the current globalBestGain;
if necessary, the globally-best compression configuration 〈P, arg〉 is updated to
store the current partitioning strategy G, along with the optimal algorithm se-
lection strategy αG found for G (Lines 24-28).

104 G. Leighton and D. Barbosa

Input: set of compression algorithms A, set of candidate container partitions G,
upper bound Tc ∈ Z+ on compression time, upper bound Td ∈ Z+ on
decompression time

Output: a compression configuration 〈P, α〉
globalBestGain← 0; P ← NULL; alg ← NULL;1

foreach G ∈ G do2

groupingCT ime← 0; groupingDT ime← 0; groupingGain← 0;3

foreach S ∈ G do4

maxGain← 0; bestCT ime← 0; bestDT ime← 0;5

bestAlgorithm← NULL;
foreach a ∈ A do6

gain← compressedGain(S, a);7

if gain > maxGain and8

groupingCT ime + compressT ime(S,a) ≤ Tc and
groupingDT ime + decompressT ime(S,a) ≤ Td then

bestCT ime← compressT ime(S,a);9

bestDT ime← decompressT ime(S,a);10

bestAlgorithm← a;11

maxGain← gain;12

end13

end14

if bestAlgorithm = NULL then15

goto line 4;16

else17

groupingCT ime← groupingCT ime + bestCT ime;18

groupingDT ime← groupingDT ime + bestDT ime;19

groupingGain← groupingGain + maxGain;20

αG(S)← bestAlgorithm;21

end22

end23

if groupingGain > globalBestGain then24

globalBestGain← groupingGain;25

P ← G;26

α← αG;27

end28

end29

return 〈P, α〉;30

Algorithm 3. Selecting a compression configuration

After all partitions in G have been processed, the optimal compression con-
figuration 〈P, α〉 is returned (Line 30).

5 Conclusion

In this paper, we demonstrated that determining an optimal configuration for
permutation-based XML compression is an NP-hard problem. We also described

Optimizing XML Compression 105

an approximation algorithm that allows one, with proper selection of parameter
values, to discover the optimal compression configuration in polynomial time
(w.r.t. the sizes of the document and the set of compression algorithms A). As
future work, we plan to implement this algorithm within our existing XML-
conscious compressor [8] and test its effectiveness via experimentation over a
range of real-world and synthetic XML documents.

References

1. Adiego, J., la Fuente, P.D., Navarro, G.: Combining structural and textual contexts
for compressing semistructured databases. In: ENC, pp. 68–73 (2005)

2. Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In:
DCC, pp. 163–172 (2001)

3. Cheney, J.: An empirical evaluation of simple DTD-conscious compression tech-
niques. In: WebDB, pp. 43–48 (2005)

4. Leighton, G., Müldner, T., Diamond, J.: TREECHOP: a tree-based query-able
compressor for XML. In: CWIT, pp. 115–118 (2005)

5. Min, J.K., Park, M.J., Chung, C.W.: XPRESS: A queriable compression for XML
data. In: SIGMOD, pp. 122–133 (2003)

6. Tolani, P.M., Haritsa, J.R.: XGRIND: A query-friendly XML compressor. In:
ICDE, pp. 225–234 (2002)

7. Arion, A., Bonifati, A., Manolescu, I., Pugliese, A.: XQueC: A query-conscious
compressed XML database. ACM TOIT 7(2), Article 10 (May 2007)

8. Leighton, G., Diamond, J., Müldner, T.: AXECHOP: a grammar-based compressor
for XML. In: DCC, p. 467 (2005)

9. Liefke, H., Suciu, D.: XMill: An efficient compressor for XML data. In: SIGMOD,
pp. 153–164 (2000)

10. Maneth, S., Mihaylov, N., Sakr, S.: XML tree structure compression. In: XANTEC,
pp. 243–247 (2008)

11. Skibinski, P., Grabowski, S., Swacha, J.: Effective asymmetric XML compression.
Software: Practice and Experience 38(10), 1027–1047 (2008)

12. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J. (eds.): XML path language (XPath) 2.0, W3C Recommendation
(January 2007), http://www.w3.org/TR/xpath20/

13. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.
(eds.): XQuery 1.0: An XML query language, W3C Recommendation (January
2007), http://www.w3.org/TR/xquery/

14. Leighton, G., Barbosa, D.: Optimizing XML compression (extended version).
CoRR abs/0905.4761 (2009), http://arxiv.org/abs/0905.4761

15. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf.
Theory 22(1), 75–81 (1976)

16. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://arxiv.org/abs/0905.4761

XML Lossy Text Compression:

A Preliminary Study

Angela Bonifati1,2, Marianna Lorusso2, and Domenica Sileo2

1 Italian National Research Council (CNR)
Via P. Bucci 41C, I-87036 Rende, Italy

bonifati@icar.cnr.it
2 Dipartimento di Matematica e Informatica, University of Basilicata

Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy
marianna.lorusso@gmail.com, domenica.sileo@gmail.com

Abstract. Lossy compression techniques have been applied to image
and text compression, yielding compression factors that are vastly supe-
rior to lossless compression schemes. In this paper, we present a prelim-
inary study on a set of lossy transformations for XML documents that
preserve the semantics. Inspired by previous techniques, e.g. lossy text
compression and literate programming, we apply a simple algorithm to
XML syntactic constructs to loose superfluous layout information and
redundant text. The obtained XML keeps the human-readability and
machine-readability properties. Additionally, it can lead to a consider-
able reduction of its space occupancy and boost the application of con-
ventional text compressors, thus representing a promising technology for
several data management tasks.

1 Introduction

Lossy compression leads to produce compressed files that cannot be recon-
structed in their original form. Such compression can be used alone or in con-
junction with lossless compression to improve the compression rate. We focus on
lossy compression techniques to be applied to synthetic languages and to nat-
ural language as well. An XML file is indeed a combination of both languages,
as it consists of syntactic constructs, such as elements, attributes, comments,
entities, processing instructions etc. and of natural text, which is embedded into
PCDATA nodes. As such, XML can be shrunk by eliminating layout informa-
tion, such as whitespaces and closing tags. Such techniques have been devised for
natural languages in lossy text compression [1], where thesauri-based compres-
sion is employed, by replacing words with their shorter synonyms. In synthetic
languages, the lossy text compression intends to compress the text but preserve
the semantics. For instance, source code can be compressed by eliminating su-
perfluous white space. The obtained program will not be human-readable as it
used to be, but will still be accepted by its compiler. Not only layout information
but also comments are eliminated from a source program in WEB [2], to obtain
a ‘tangled’ version of the language, which is not intended for human consump-
tion but only for compilers consumption. Literate programming aims at creating

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 106–113, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

XML Lossy Text Compression: A Preliminary Study 107

two versions of a given program, a compiler version and a pretty-printing tex
version, the latter being suitable as code documentation. Finally, the common
technique of omitting vowels from text, while being hardly suitable for practical
use, sacrifices readability for compression. Its variations include Speedwriting [3],
Braille [4] and Soundex [5].

All the aforementioned techniques are not directly applicable to XML syn-
tactic constructs and need to be customized. XML has a double-fold nature,
in that it has instructions (i.e. the components of the data model) and it also
encloses textual data. These data typically reside in the leaves and can be quite
large for full-text documents. Lossy compression of natural language has been
tackled in the past, by yielding outputs seldom readable by humans. Whereas
these solutions were acceptable for text, they are not viable for XML data, that
has to keep its human-readability and machine-readability at any rate.

Our first contribution has been that of devising a set of rules for lossy text
compression of an XML file. We have identified a set of rules applicable to the
syntactical constructs of an XML file, a set of rules for compressing its textual
content, and a set of rules to reduce its formatting content. We obtain two
variants of an XML file, that are both machine-readable, the first preserving
the well-formedness property, and the second sacrificing it for compression. We
call these variants WF -Lossy XML and T F -Lossy XML (WF -LX and T F -LX,
in short notation). Before explaining the acronyms, we observe that, while the
first of the two variants is still an XML file, thus can be processed as such, both
variants do keep the human-readability property. WF -LX files represent well-
formed Lossy XML files, whereas T F -LX represent text-formed Lossy XML
files, i.e. files that can be read as text, although their conversion to a well-
formed document is straightforward (cfr. Section 2). Our second contribution has
been that of implementing a Lossy XML Compressor (LXC), capable of yielding
both formats, and studying its effectiveness on several XML datasets. From our
analysis, we observed that our rules let achieve a moderate compression factor
in some of the considered datasets, and a significant reduction (up to 40%) in
a few other datasets. Our third contribution is that of identifying a class of
applications, in order to show the utility of our approach. It does appear that
some very interesting work can be done in this area.

The rest of the paper is organized as follows. Section 2 describes the rules
to obtain lossy XML files. Section 3 shows a set of experiments to gauge the
effectiveness of our technique and its usage in conjunction with ordinary com-
pressors. Section 4 discusses the related work. Finally, Section 5 concludes our
paper, and discusses future directions of our work.

2 Rules for XML Lossy Text Compression

We describe in the following the rules we have devised to compress the textual
content of an XML file in a lossy fashion. These rules are divided into three
main categories: (i) PCData rules, i.e. only applicable to the leaves of an XML
tree, being such leaves the PCData values of attributes or elements; (ii) Tag

108 A. Bonifati, M. Lorusso, and D. Sileo

TF−LXml

WF−LXml

Xml

LXC

Fig. 1. Lossy XML Compression (LXC) yields two output files

name rules, i.e. only applicable to intermediate nodes of an XML tree, i.e. to the
starting and closing tags of an element, to attribute names and to namespace
nodes; (iii) Formatting rules, i.e. applicable to various formatting characters
that lie in between nodes in an XML tree.

PCData Rules. The rules for PCDATA are as follows:

1. a sequence of one or more vowels is replaced with one vowel, typically the
first;

2. a sequence of one or more punctuation characters is replaced with the empty
sequence if there is a blank afterwards, otherwise with a whitespace; this rule
is not applied in cases where the punctuation is followed by a number, or
when the word begins with the character ‘&’ and ends with the character ‘;’
as this represents an entity;

3. a sequence of two or more formatting characters is replaced with one for-
matting character;

4. ’s and s’ (genitive inflection) are eliminated from words;
5. a word duplicate if it appears after the first duplicate is eliminated;
6. numbers written in letters are replaced with the corresponding digits;
7. whitespaces in the leading sentence of a given paragraph and whitespaces in

the trailing sentence of a paragraph are deleted;
8. if there is an acronym followed by its full expansion, the latter is eliminated;

any full expansion in the document is replaced by the acronym;
9. end of line characters are removed and replaced by a whitespace;

10. if a word that appears after the character ’.’, ’ !’ and ’?’ begins with a low-
ercase letter, the letter is converted in uppercase.

Formatting Rules. The rules for formatting are as follows:

1. end of line characters and lines of whitespaces are eliminated;
2. comments are removed;
3. indentation characters are removed;
4. sequences of two or more formatting characters are replaced with one for-

matting characters, typically the first;
5. leading and trailing whitespaces are removed.

XML Lossy Text Compression: A Preliminary Study 109

Table 1. Prioritized order among rules - table must be read per row ; TR (PR, FR,
resp.) stands for Tag Rule (PCData Rule, Formatting Rule, resp.)

FR3 FR2 TR3 FR5 PR8 PR4

PR5 PR10 PR2 PR6 FR4 PR3

PR1 PR7 TR2 TR1 PR9 FR1

Tag Rules. The rules for tag names, attributes and namespaces are as follows:

1. sequences of two or more vowels are replaced with one vowel, typically the
first;

2. characters ’. ’, ’-’ and ’ ’ are removed;
3. each closing tag name is eliminated, and left as the acute brackets with the

character ’/’ (i.e. </>).

We have prioritized the rules both within each class and across distinct classes.
This boils down to decide a global ordering for rules, which can be read per row
in Table 1. To give an intuition, rules need to be prioritized in order to avoid
redundant work (e.g. PCData rule 6 is applied before PCData rule 1, in order
to avoid collapsing consecutive vowels in numbers) and to guarantee that the
application of a rule is not void (e.g. PCData rule 10 is fired before PCData
rule 2, in order to avoid loosing the separation into sentences before removing
redundant punctuation characters). All rules must be applied to obtain a WF -
LX file. All rules but Tag Rule 3 are applied to obtain a T F -LX file.

Before discussing the implementation of our prototype, we would like to un-
derscore the importance of having Tag Rule TR3, which substitutes the final
closing tag of an element with its empty version </>. If such substitution takes
place, the obtained T F -LX document looses its well-formedness. However, such
document, as we will see from the experimental result, becomes more apt to
compression. Notwithstanding the advantages of keeping the document in tex-
tual format, one can always reconstruct the XML closing tags and transform
every T F -LX document into an WF -LX document. We also observe that a
depth-first encoding can be applied to T F -LX documents, similarly to that ap-
plied to n-ary trees or balanced mathematical expressions [6]. Indeed, closing
empty tags act as placeholders, and can be easily matched to opening tags dur-
ing document reconstruction. As such, closing tags resemble closing parentheses
in mathematical expressions. An balanced parentheses encoding [6] can be ap-
plied to the obtained lossy T F -LX document, which we plan to investigate as
future work.

3 Experimental Study

We have conducted an experimental study in order to gauge the effectiveness
of our technique and the succinctness of the obtained documents. In particular,

110 A. Bonifati, M. Lorusso, and D. Sileo

Table 2. XML documents used

Document d Size (KB) # Elems. # Attributes Max Depth Provenance

Path 203 2764 8627 10 [7]
XMark 113,794 1,666,315 381,878 13 [8]
DBLP 932,444 16,272,139 14,936,399 7 [9]

Shakespeare 274 6636 0 8 [10]
TreeBank 84,065 2,437,666 1 37 [9]
SwissProt 112,130 2,977,031 2,189,859 6 [9]

News 238,677 3,974,681 0 3 [11]

we have run a first set of experiments, aiming at measuring the compression ratio
of both WF -LX documents and T F -LX documents. Then, we have compared
these compression factors with existing compressors. Next, we have run a sec-
ond set of experiments, by sequencing the application of our lossy compression
technique and of general-purpose compressors. Finally, as a third set of exper-
iments, we have loaded our WF -LX documents into an XML database engine
and measured both the loading time and the query execution times.

3.1 Experimental Setting and Results

We have performed our experiments on a Windows XP Pro Laptop with 2.40
Ghz Intel Core Duo CPU P8600, and 4 GB RAM. The datasets used in the
experimental study are shown in Table 2. Their structure varies from flat
(e.g. DBLP) to deeply nested (e.g. XMark and TreeBank).

Figure 2 (top) shows the compression ratio obtained for the above datasets
by using our tool LXC. We can observe that the effectiveness of the rules is
higher once the textual content of a document is higher, and that the technique
performs quite well in some datasets, such as DBLP and TreeBank
(up to 47%). Such datasets exhibit both compressible tags and compressible tex-
tual content. The remaining datasets can achieve a moderate compression ratio,
that goes from 20% to 10%. In Figure 2 (bottom), we compare our results with
the compression ratios obtained by two general-purpose compressors, such as
GZip and BZip2 [12], two XML compressors, i.e. XMill [13] and Xmlppm [14],
and Huffword (word-oriented Huffman [15]). Although our technique is fairly
different from the opaque lossless compression obtained by the above tools, we
can observe that the compression ratio obtained by our lossy technique can be
up to an half of the compression ratio of both classical and XML compressors,
and can be comparable to the compression ratio achieved by Huffword on some
datasets.

We have next analyzed the impact of our technique on the effectiveness of
classical and XML compressors. Hence, we have sequentially applied our tech-
nique and classical compressors. We did not observe a significant variation of
the compression ratio for GZip, BZip2, XMill and Xmlppm. Indeed, by either

XML Lossy Text Compression: A Preliminary Study 111

Fig. 2. Compression Ratio (%) for various XML datasets of T F -LX against WF -
LX (top); Compression Ratio (%) for various XML datasets of T F -LX and WF -LX
(bottom) against other compression tools

applying GZip (BZip2, resp.) to T F -LX files1, or by applying GZip (BZip2,
Xmill, Xmlppm, resp.) to WF -LX files, the compression ratio of these tools is
the same of that achieved when working on the original document, or, in some
cases, slightly decreases. This demonstrates that the above compressors either
ignores the changes applied by our rules, or cannot take advantage of them.
Due to the lack of space, we opt not to present the above results and only
show the figures relative to Huffword. Indeed, this was the only compressor that
could exploit the reduction induced by our technique. Figure 3 shows the results
of applying Huffword to the T F -LX files, Huffword to the original files, and
Huffword to the WF -LX files, by using the datasets of Table 2. We can observe
that in most of the cases, lossy compression boosts Huffword compression ratio,
or, at least, does not change it. Only in one case, the compression ratio decreases,
and this happens with TreeBank. The motivation behind this is the fact that
TreeBank contains partially encrypted data, and these data cannot be processed
by our technique. This result lets us thinking that TreeBank compression ratio
would have improved if those data were decrypted.
1 We did not employ XMill and Xmlppm in this experiment, as these are not applicable

to T F -LX files.

112 A. Bonifati, M. Lorusso, and D. Sileo

Fig. 3. Compression Ratio (%) for various XML datasets of applying T F -LX and
Huffword, Huffword alone, and WF -LX and Huffword

To conclude our experiments, we showed the utility of WF -LX documents
into XML databases. We considered QizX [16], a quite fast XML database and
XQuery engine, and we uploaded TreeBank and DBLP2 after applying lossy
compression. We observed that the loading time of WF -LX documents was on
average 10% less than the loading time of the original documents. Then, we
executed a set of XPath queries on both datasets and observed a reduction of
20% of the query execution times on average.

4 Related Work

Techniques for word abbreviations have been the subject of past research on tex-
tual data [5], where various word abbreviation techniques are compared, among
which Soundex, a phonetic algorithm for indexing names patented by R.C. Rus-
sel in 1918. The Soundex indexing system is still in use nowadays by the US
Census, to systematically code persons’ names. Each word in the Soundex al-
phabet retained the same degree of discrimination of the original word, along
with the mnemonic similarity with the original word. Moreover, the procedure
can be applied on the fly, i.e. without any prior knowledge of the population of
words, and typically at any new person filed at Census. We observe that the no
storage or table lookup is necessary in our technique and the above principles
are as well satisfied by our rules. Whereas a large body of research studied the
problem of opaque compression for XML files [13,14,17,18], to the best of our
knowledge no previous work aimed at envisioning abbreviation techniques for
XML constructs and textual content. The only work we are aware of about lossy
compression is [19], but their aim is to build a synopsis of the original document,
reporting aggregate data, which is quite different from the text abbreviation rules
we have presented in this paper.

2 We only used TreeBank and DBLP in these experiments, as they obtained the highest
compression ratio under our technique.

XML Lossy Text Compression: A Preliminary Study 113

5 Conclusions and Future Perspectives

We have described our preliminary study on XML lossy text compression. We
believe that there exists several interesting directions of future research. In par-
ticular, many challenges are left to be addressed, such as designing a full-text
engine for T F -LX files and studying keyword-based queries for such documents.
Another important milestone is to devise an extension to XQuery that handles
queries on WF -LX files in the compressed domain, as in our past work [17].

References

1. Witten, I.H., Bell, T.C., Moffat, A., Nevill-Manning, C.G., Smith, T.C.,
Thimbleby, H.W.: Semantic and generative models for lossy text compression. The
Computer Journal 37(2), 83–87 (1994)

2. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97–111 (1984)
3. SpeedWriting, http://www.speedwriting.co.uk/
4. Braille, http://www.nfb.org/nfb/BrailleInitiative.asp
5. Bourne, C.P., Ford, D.F.: A study of methods for systematically abbreviating en-

glish words and names. J. ACM 8(4), 538–552 (1961)
6. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-

senting Trees of Higher Degree. Algorithmica 43(4), 275–292 (2005)
7. PathWays, http://www.genome.jp/kegg/xml
8. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: XMark:

A benchmark for XML data management. In: Proceedings of VLDB, pp. 974–985
(2002)

9. University of Washington’s XML repository (2004),
www.cs.washington.edu/research/xmldatasets

10. Ibiblio.org web site (2004),
www.ibiblio.org/xml/books/biblegold/examples/baseball/

11. AG’s corpus of News articles,
http://www.di.unipi.it/gulli/newsspace200.xml.bz

12. The bzip2 and libbzip2 Official Home Page (2002),
http://sources.redhat.com/bzip2/

13. Liefke, H., Suciu, D.: XMILL: An Efficient Compressor for XML Data. In: Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, Dallas, TX, USA, pp. 153–164. ACM, New York (2000)

14. Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In:
DCC, pp. 163–172 (2001)

15. Huffman, D.A.: A Method for Construction of Minimum-Redundancy Codes. In:
Proc. of the IRE, pp. 1098–1101 (1952)

16. Qizx, http://www.xfra.net/qizxopen/
17. Arion, A., Bonifati, A., Manolescu, I., Pugliese, A.: XQueC: A query-conscious

compressed XML database. ACM Trans. Internet Techn. 7(2) (2007)
18. Ng, W., Lam, Y.W., Cheng, J.: Comparative Analysis of XML Compression Tech-

nologies. World Wide Web Journal 9(1), 5–33 (2006)
19. Cannataro, M., Carelli, G., Pugliese, A., Saccá, D.: Semantic Lossy Compression

of XML Data. In: Proceedings of KRDB (2001)

http://www.speedwriting.co.uk/
http://www.nfb.org/nfb/BrailleInitiative.asp
http://www.genome.jp/kegg/xml
www.cs.washington.edu/research/xmldatasets
www.ibiblio.org/xml/books/biblegold/examples/baseball/
http://www.di.unipi.it/gulli/newsspace200.xml.bz
http://sources.redhat.com/bzip2/
http://www.xfra.net/qizxopen/

XQuery Full Text Implementation in BaseX

Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl

Department of Computer & Information Science
University of Konstanz

Box D 188, 78457 Konstanz, Germany
firstname.lastname@uni-konstanz.de

Abstract. BaseX is an early adopter of the upcoming XQuery Full
Text Recommendation. This paper presents some of the enhancements
made to the XML database to fully support the language extensions.
The system’s data and index structures are described, and implementa-
tion details are given on the XQuery compiler, which supports sequential
scanning, index-based, and hybrid processing of full-text queries. Exper-
imental analysis and an insight into visual result presentation of query
results conclude the presentation.

1 Introduction

XML has been widely adopted as an exchange and storage format for textual
data in both research and industry. The existence of more than fifty XQuery
processors clearly underlines the large interest in querying XML documents and
collections. While many of the database-driven implementations offer their own
extensions to support full-text requests, the upcoming XPath and XQuery Full
Text 1.0 Recommendation [1] will satisfy the need for a unified language ex-
tension and will most probably attract more developers and users from the
Information Retrieval community. The recommendation offers a wide range of
content-based query operations, classical retrieval tools such as Stemming and
Thesaurus support, and an implementation-defined scoring model that allows
developers to adapt their database to a large variety of use-cases and scenarios.

In this paper, we present aspects of the implementation of XQuery Full Text
in the database system BaseX [14,15,17]. GalaTex [7] and Quark [4] were two
systems that supported early versions of the proposal, and BaseX is, to the best
of our knowledge, the first implementation to fully support all features of the
specification. More implementations are expected to follow in the near future as
soon as the recommendation has reached its final state.

A simple full-text test looks nearly the same as a General Comparison in
XQuery [5]. An ftcontains expression can get pretty large, however, if the right-
hand side is extended by match options, positional filters or logical connectives:

/library/book[content ftcontains (‘‘biogenetics" ftor
(‘‘biology" ftand ‘‘genetics" ordered distance at most 5 words))

language ’en’ with stemming with thesaurus default]

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 114–128, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

XQuery Full Text Implementation in BaseX 115

Due to the complexity of the language extension, this paper will focus on
its core features. Special attention will be given to the discussion of different
execution plans. As full-text requests heavily depend on index structures, the
query compiler will try to use a full-text index whenever possible. If this strategy
fails, a sequential approach is chosen. A third, hybrid variant takes advantage of
the index, but processes all XML nodes sequentially.

While iterative query processing (streaming) adds some overhead to simple
database operations, it clearly wins when large intermediate and small final result
sets are to be expected. As all XQuery expressions in BaseX are implemented in
an iterative manner, the iterative approach was not only maintained for all full-
text operators, but even pushed down to the index methods and structures. This
way, execution times for small results will not suffer from bulky index results.

Many full-text queries produce large result sets with long textual contents.
Since, from the beginning, BaseX supported visual access to data and query
results, the graphical frontend was extended to meet the demand of visualizing
large text bodies and results in a compact way.

The paper is organized as follows: Section 2 presents the storage and index
structures that allow for efficient query evaluation. The sequential, index-based
and hybrid execution strategies are discussed in Section 3, and details on iterative
query evaluation are given in Section 4. Some performance results in Section 5
analyze execution times of the evaluation variants. Section 6 gives insight into
the visual presentation of full-text results; it is concluded by the summary in
Section 7.

2 Database Architecture

2.1 Document Storage

While many different XML storage models have been discussed over the last ten
years—and none of them has superseded the others—the Pre/Post encoding and
its variants have proven to generally yield good performance. It was introduced
by Grust [16] and successfully applied by the MonetDB/XQuery implementa-
tion [6]. Several variations of this encoding can be used to faithfully represent
the XML structure. In MonetDB, for example, XML nodes are mapped to a
pre/size/level triple. The attributes represent a node identifier, the number
of descendant nodes and the depth of a node inside the document tree.

As shown in Figure 1, BaseX stores a pre/dist/size combination for each
node. The size attribute is mainly used to speed up child and descendant traver-
sals, whereas dist contains the distance to the parent node, allowing access to
the parents and ancestors of a node in constant time. As we will see later, index-
based queries benefit greatly from fast access to ancestor nodes. A relative parent
encoding (the distance) was favored over an absolute reference as it has shown
to be update-invariant, i.e., sub-trees keep their original distance values if they
are moved to another place or inserted in a new document.

The main advantage of a flat storage of XML documents is that documents can
be sequentially parsed—a property that is particularly useful if many subsequent

116 C. Grün et al.

Document:

<A>

xw xy

<C>

<D>x</D>

<D>xy xw</D>

<D>x y</D>

</C>

<E>y x</E>

Tree with pre values:

1

A

2

B
����������

3

xw xy

11

E
����������

12

y x

4

C

5

D
��

��
�

6

x

7

D

8

xy xw

9

D
��

��
�

10

x y

Mapping:

pre dist size data

1 1 11 A
2 1 1 B
3 1 0 xw xy
4 3 6 C
5 1 1 D
6 1 0 x
7 3 1 D
8 1 0 xy xw
9 5 1 D

10 1 0 x y
11 10 1 E
12 1 0 y x

Fig. 1. Document Encoding in BaseX

nodes have to be accessed, which is the case, e.g., for traversals of the descendant
step. Next to that, the final table contains no variable-sized entries. As tags and
attribute names are indexed and texts and attribute values are separately stored,
tuples can be stored with a fixed size, and the memory/disk offset of XML nodes
can be calculated easily and accessed in constant time [14].

A closer look at the table attributes reveals some specific properties for each
node kind (element, attribute, text, etc.):

• the size value of text and attribute nodes will always be 0
• the number of distinct tag and attribute names is much smaller than the

number of document nodes
• as elements have a limited number of attributes, the dist value of attribute

nodes is small
• attributes, however, consist of two values (attribute name and value)

Based on these and some other observations, the storage of XML node tuples
can be compacted. This compression procedure further speeds up node access
by minimizing the tuple sizes.

The presented storage was simplified for the sake of clarity. The actual storage
model includes some other data structures, such as a directory to reference the
first pre values of the disk-based table blocks [14]. This extension is needed to
support update operations on the storage. The general access time, however, is
not affected by the extension. To get even better performance, the database table
can be completely kept in main-memory—a feature which is obviously limited
by the amount of available memory.

2.2 Index Structures

The presented storage is extended by a number of index structures. Name in-
dexes convert variable-sized tag and attribute names as well as namespaces to
fixed-size numeric references. An additional path summary maintains informa-
tion on all distinct location paths in an XML document [3,12]. Both indexes are

XQuery Full Text Implementation in BaseX 117

enriched by statistical data (number of occurrences, minimum and maximum
values of attached text nodes/attribute values), which are interpreted by the
query optimizer, as shown in Section 3. Value indexes reference all text nodes
and attribute values of a document. They are used to speed up content-based
queries. A classical example for the application of a value index is the combi-
nation of a location path filtered by an equality predicate: /A/C[D = ‘‘x"].
Query evaluation can be skipped at an early stage, if a value index indicates
that a query will yield zero hits. Among others, the attribute index is beneficial
to evaluate the XQuery fn:id() and fn:idref() functions.

(root)

6,0|10,0|12,1x
��

��
��

3,0|8,1w
��

��
�

3,1|8,0
y

��
��

� 10,1|12,0
y

��
��

Fig. 2. Compressed Trie: charac-
ters with pre,pos value pairs

To capture the challenges of XQuery Full
Text, all text nodes are tokenized, normal-
ized and stored in an additional full-text
index. The tokenization process is further
specified in Section 4.1 of the language spec-
ification [1]. Normalization includes the re-
moval of diacritics, a case insensitive repre-
sentation, optional stemming, etc. A Com-
pressed Trie [2,10] was implemented that,
apart from simple token requests, supports
flexible operations such as range, wildcard
and fuzzy queries. Figure 2 shows a trie struc-
ture (simplified) for the document from Figure 1. Each node contains characters
of the indexed token, and the pre,pos value pairs (pre0,pos0|. . .|pren,posn)
identify all occurrences of the token. The pre value references the text nodes
stored in the database table; the position within the text node is remembered
as pos value. As the index is built in document order, all stored pre,pos values
are automatically sorted—a property which comes in handy, as we will see in
Section 4.

Whereas many tries are designed to work in main memory, the presented
index exclusively operates on flattened and compressed array structures. This
way, it can be directly stored to disk, and access time and memory consump-
tion is minimized. As some index requests—such as a count() on the number of
results—will only access meta data, structural and reference data are stored in
separate containers. The structural container contains the indexed token charac-
ters, references to child nodes, the number of results, and offsets to the reference
container which contains all pre,pos pairs. More implementation details can be
found in [11].

3 Full-Text Evaluation Strategies

BaseX employs three different evaluation strategies for full-text queries: sequen-
tial scanning, index-based processing with path inversion and a hybrid approach.
All of them are presented here, along with a decision framework to select the
best mode. The following queries are used to illustrate the query evaluation
strategies:

118 C. Grün et al.

Q1: /A/C[D/text() ftcontains ‘‘x"]
Q2: //D[text() ftcontains ‘‘x"]
Q3: //*[text() ftcontains ftnot ‘‘x"]

3.1 Sequential Scanning

QueryPlan

LocationPath

Root child::A child::C

FTContains

LocationPath "x"

child::D child::text()

Fig. 3. Query Plan: sequential
processing of Query Q1

Query Q1 consists of child steps and a predi-
cate with an ftcontains expression. The cor-
responding sequential query plan (simplified)
is depicted in Figure 3. The evaluation requires
a sequential scan of the document. The Loca-
tionPath expression starts from the root node
and traverses all child nodes. Each A element
is passed on to the next child step, and the re-
sulting C elements are filtered by the FTCon-
tains expression. The left-hand LocationPath
yields all text() nodes of D elements, which
are checked for the token ‘‘x".

Obviously, with increasing document size, the sequential scan becomes a bot-
tleneck as all nodes addressed by the query have to be touched at least once.

3.2 Index-Based Processing with Path Inversion

In XML databases, a large variety of index types exists. Content (or value)
indexes facilitate direct access to text nodes in a document, and different variants
are found in practice:

• Some databases reference results on the document level. This is often done
if XML is stored in relational database columns. Queries on many small
documents can be accelerated by this approach, while there is no benefit for
single and large documents.

• Certain location paths can be pre-selected for being indexed. While this
seems promising at first glance, it often fails when queries are nested or
getting more complex. Moreover, users need explicit knowledge about the
existing index structure.

• Implementation-defined XQuery functions allow for a direct index access.
Knowledge on the database internals is needed, and, next to that, a query
compiler will not benefit from the indexes, as the user alone decides whether
the index is to be used.

To support arbitrary full-text expressions, we chose to index all text nodes by
default, regardless of their position in the document structure. As demonstrated
in the following, the query optimizer will rewrite and invert location paths and
predicates whenever an index access is possible.

In Figure 4, the index-based execution plan of Query Q1 is depicted. In con-
trast to the sequential scanning mode, which evaluates queries from the docu-
ment root down to leaf nodes, a bottom-up approach is pursued by first accessing

XQuery Full Text Implementation in BaseX 119

the full-text index and secondly traversing the path back from the leaf nodes to
the document root.

QueryPlan

LocationPath

FTIndex parent::D parent::C

"x" LocationPath

parent::A parent::doc()

Fig. 4. Query Plan: index-based process-
ing of Query Q1

First of all, the FTIndex operator
returns the references of all text nodes
containing the token ‘‘x". Next, par-
ent elements D and C are selected.
Finally, the ancestor path of the re-
maining nodes (including the docu-
ment node) is checked to dismiss re-
sults which do not comply with the
original query path. Path inversion
is possible due to the symmetries of
certain XPath axes. Forward-looking,
top-down variants have been discussed
in detail in [20], and some of them are
shown in Table 1. By extending them
to multiple location steps, they serve
well to dynamically rewrite a large
number of location paths.

Table 1. Location paths and their equivalents

Path Equivalent Path

/descendant-or-self::m/child::n /descendant::n[parent::m]

/descendant-or-self::m/descendant::n /descendant::n[ancestor::m]

p[ancestor::m]/self::n p/self::n[ancestor::m]

p/following::m/descendant::n p/following::n[ancestor::m]

QueryPlan

LocationPath

FTIndex parent::D

"x"

Fig. 5. Query Plan:
index-based processing
of Query Q2

The second Query Q2 (//D[text() ftcontains
‘‘x"]) introduces a descendant-or-self and child step,
which can be merged, in this case, to a single
descendant::D step. Queries with descendant steps
will be executed more slowly by some query engines, as
virtually all document nodes have to be touched and
checked for its node kind and tag name. The optimized,
index-based execution plan in Figure 5, however, is very
compact: as the descendant step in the original query
selects all D elements in the document, regardless of
their path to the root node, the ancestor and docu-
ment test can be completely skipped. As the additional
ancestor traversal, which has to be evaluated for each
single node, takes additional time, this query will be
executed even faster than Q1.

Value indexes can be used to find out, where a text is found in a document,
but not to find places of its absence. If a full-text query contains an ftnot

120 C. Grün et al.

expression, the option to use an index access with consecutive path inversion
turns out to be useless.

QueryPlan

LocationPath

Root descendant::*

FTIndexContains

LocationPath FTIndexNot

child::text() FTIndex

"x"

Fig. 6. Query Plan: hybrid pro-
cessing of Query Q3

However, the index can still be of value in
a sequential traversal, as the tokenization and
normalization of all touched text nodes can take
much longer than a simple reference test in a
modified FTNot operator implementation.

3.3 Hybrid Processing: Sequential
Evaluation with Index Usage

Figure 6 shows the resulting query plan
for Query Q3 (//*[text() ftcontains ftnot
‘‘x"]). It resembles the sequential execution
plan—except for the full-text expressions, which
are all index-aware. If the FTIndex operator is
called for the first time, the index is accessed
once. FTIndexNot checks for each node if it is
not part of the index result, and FTIndexCon-
tains works similar to the conventional FTCon-
tains operator, but basically avoids tokenizing
the current node. If the incoming nodes are guar-
anteed to be sorted, FTIndexNot will operate
even faster. As all index references are sorted
as well (see Section 2.2), it can completely run
in an iterative manner.

3.4 Choosing the Proper Processing Strategy

A two-step model is used by the query compiler for choosing the proper process-
ing strategy. In the first step, it is decided whether it is possible and efficient to
use the index, while the second step rewrites the affected operators in a positive
first case. The tag/attribute index and path summary are used to perform some
basic cost estimations, which influence the decision for or against index access.
The number of expected text nodes, their average text length (which influences
the time for tokenizing text nodes) and their position in the path summary are
considered as well as the number of index results, which can be requested from
the full-text index. If a query potentially allows performing several index re-
quests, it can be cheaper to only access the index once and process the other
predicates sequentially. Query execution can be completely skipped if the index
indicates that a term will yield no results at all.

For the sake of simplicity and to present but the core functionality, we have
limited the discussion to the optimization of basic location paths. A slightly more
complex query is shown in Figure 7. It contains a FLWOR expression, a general
comparison and an ftcontains expression with an additional ftand connective.
The query plan illustrates that the available indexes can be applied here as well.

XQuery Full Text Implementation in BaseX 121

QueryPlan

FLWOR

For
$p Return

LocationPath

InterSection self::
node()

LocationPath LocationPath

TextIndex parent::
country

parent::
address

parent::
person

"United States"

FTIntersection parent::
name

parent::
person

FTIndex FTIndex

"nikil" "stolovitch"

LocationPath

parent::
people

parent::
site

parent::
doc()

LocationPath

Variable
$p

child::
emailaddress

let $auction := doc(’XMark.xml’)

return

for $p in $auction/site/people/person

where $p/address/country = ’United States’

and $p/name ftcontains ’Nikil’ ftand

’Stolovitch’ case insensitive

return $p/emailaddress

Fig. 7. XQuery with FLWOR expression

4 Iterative Evaluation of XQuery Full Text

4.1 Sequential Evaluation

Iterative/pipelined query evaluation is a general database concept [13] which
is applied in a number of other XQuery implementations [8,9,18]. In contrast
to a conventional, set-based approach, items are processed one-by-one, which
guarantees constant memory consumption. The pipeline is only broken by so-
called blocking operators that need their complete input, which is the case for
sorting, for instance. Iterative evaluation can add some minimal overhead, but
it yields particularly good performance when the creation of large intermediate
results can be avoided, that are later reduced to a small, final result set.

Although the internal XQuery Full Text data model is complex, as scoring
values are calculated and word positions are passed on to evaluate so-called posi-
tional filters (such as word order or distances, see [1] for details), all expressions
can be evaluated in an iterative manner. The FTAnd, FTOr and FTUnaryNot
expressions are implemented similarly to their XQuery counterparts; both pro-
cessing modes handle one node per iterator step. Consider, e.g., the FTOr it-
erator that merges nodes with equal pre values and returns the node with the
smallest pre value and its corresponding pos values. The full-text references of
the remaining operands have to be temporarily cached as iterators return data
only once. Additionally, the FTMildNot operator, which has no XQuery equiv-
alent, has to check whether one occurrence of the first operand is not followed
by any other occurrence of the remaining operands.

122 C. Grün et al.

4.2 Index-Based Full-Text Iterator

As described in Section 2.2, the full-text index references pre and pos values for
each index term. Querying the index means that all references are fetched from
disk and returned via an iterator. But in many cases, the entire full-text data
is not needed to successfully evaluate a query. Therefore, the iterator concept
was pushed down to the index structures. The iterative implementation of the
FTIndex operator works as follows: After initializing the iterator with the struc-
tural data, all data for the first node reference (pre0) is read, i.e., all pre,pos
value pairs from pre0,pos0 to pre0, posn are processed and returned. In the
next iteration, the data stored for the reference pre1 is read and returned, and
so on. This process continues as long as more index results are requested, or all
references have been returned.

4.3 Iterator Trees: Processing Non-trivial Index Requests

Iterative index processing is simple and straightforward, as long as single index
terms are requested. If the index, returns results for wildcard queries, for in-
stance, the references of several index terms have to be merged and returned. As
all index references (i.e., their pre value) are sorted by document order, the iter-
ative approach can easily be extended to an arbitrary number of index iterators
and a union expression on top of them. Each single index access is managed by
an index iterator. It keeps the offset and number of pre,pos value pairs stored
for an index token.

The following wildcard example is based on the introductory XML document
and full-text index shown in Figures 1 and 2. For each index hit, which is recur-
sively matched by the trie algorithm, an index iterator is created. The resulting
index tree is evaluated every time an index result is requested. The pre,pos
value pairs with the smallest pre value are merged and returned.

The following example illustrates the presented approach. The full-text query
//*[text() ftcontains ‘‘x.*" with wildcards] yields all elements with a
text node that contains a token starting with the character ‘‘x". In our example,
three tokens (x, xw, xy) match the wildcard expression. The wildcard algorithm
creates an index iterator tree, which is depicted in Figure 8.

Each iterator, which represents one single token, returns results in the known
format pre0,pos0|. . .|pren,posn. At the first step, the smallest pre values have

6,0|10,0|12,1
x

		
		

		
	

3,0|8,1
xw

		
		

		
	

3,1|8,0
xy

3,0|3,1

6,0|10,0|12,1
x

		
		

		

8,1

xw
		

		
		

	

8,0

xy

6,0

10,0|12,1
x

		
		

		

8,1

xw
		

		
		

	

8,0

xy

Fig. 8. Index iterator for //*[text() ftcontains ‘‘x.*" with wildcards]

XQuery Full Text Implementation in BaseX 123

to be obtained. Therefore, each node of the iterator tree returns its smallest
pre value and the corresponding pos values. Next, the pos references of equal
pre values are merged. As shown in the figure, the root node now contains the
minimum pre value 3 and the merged pos values 0 and 1. The next step will
move pre value 6 to the top. After that, the second and third iterator will return
their values for pre value 8, and the index tree will be reduced to a single iterator,
which will return pre values 10 and 12.

5 Experimental Analysis

The following tests demonstrate the performance gains by applying indexes to
full-text querying. All tests were performed with BaseX 5.61. We used a 2.3 GHz
Intel Xeon CPU with 32 GB RAM as hardware and Suse Linux 10.2 and Java
1.5.0.16 as software. Four XMark instances (sized 11 MB, 111 MB, 1 GB and 11
GB) were generated and used as query input.

Table 2. Tested queries

Query

Q1 doc(’xmark’)//keyword[text() ftcontains ’barrel’]

Q2 for $mail in doc(’xmark’)/site/regions/*/item/mailbox/mail

where $mail//text/text() ftcontains ’seeking.*’ with wildcards

return $mail/from

Q3 for $item in doc(’xmark’)/site/regions/*/item

where $item//listitem/text/text() ftcontains ftnot ’preventions’

return <result>{ $item/location/text() }</result>

The three queries in Table 2 are supposed to summarize the discussed query
rewritings. Query Q1 contains a simple descendant step and an ftcontains
expression. Query Q2 uses a number of child steps to address the relevant text
nodes, and the full-text expression is extended by a wildcard option. An ftnot
operator is used in the third query Q3.

Query 11 MB 111 MB 1 GB 11 GB
Q1: Size 0,2 0,7 6 60
Q2: Size 1,5 14 118 1190
Q3: Size 16 165 1656 16602
Q1: Sequential 0.116 1.109 11.03 109.8
Q1: Index 0.001 0.003 0.017 0.128
Q2: Sequential 0.302 2.964 29.39 292.3
Q2: Index 0.006 0.041 0.396 3.831
Q3: Sequential 0.138 1.383 13.43 132.3
Q3: Hybrid 0.074 0.721 7.355 75.15

Table 3. Result size in KB, execution
times in seconds

All performance results are listed in
Table 3 and illustrated in Figure 9. The
times represent the average over several
runs (5-100 runs, depending on the doc-
ument size); they include the time for
parsing, compiling and evaluating the
query as well as printing the result. The
boxes show the result sizes in kilobytes.

As expected, all index-based queries
yield better results than their sequential
equivalents. The index-based version of
1 Open-source, available at http://www.basex.org

124 C. Grün et al.

11 MB 111 MB

Fig. 9. Performance results. Boxes/right axis: result size in KB, lines/left axis: execu-
tion time in seconds.

Q1 is evaluated fastest, as the resulting query plan (which is similar to Figure 5)
only contains the index access and a parent step. The scalability is sub-linear,
as the index version is about 1000 times faster than the sequential version with
the 11 GB input, compared to a factor of 100 for the 11 MB input. Q2 adds
some overhead with the wildcard operator, and the larger result size amounts
to a virtually linear execution time for both the sequential and the index-based
approach. Query Q3 demonstrates the potential of the hybrid query evaluation.
As tokenization of text nodes can be avoided, index-supported querying is about
twice as fast as pure sequential processing. In spite of the large result size, the
hybrid approach is still faster than the pure sequential solution for Query Q1.
Documents with larger text nodes (such as, e.g., the Wikipedia XML instances2)
will yield even better results if text tokenization can be avoided.

As the performance results indicate, there is a clear relationship between
the execution times and the data size. As larger XML instances yield larger
result sets, it is worth adding that the sequential and hybrid execution is mainly
dependent on the size of the input document, whereas the index-based variant
exclusively depends on the size of the query result.

6 Visualization of XML and Full-Text Results

Since the first release, BaseX offers a graphical frontend to visually explore
content and structure of stored XML data [15,17]. Figure 10 (background) shows
a Wikipedia fragment using the Treemap visualization [21]. Each element is
drawn as a rectangle and the element tag is printed in the upper left area of
this rectangle. The inherent structure of the instance is clearly recognizable:
A starting siteinfo element containing some meta data, which is followed by
several page elements each corresponding to a Wikipedia article. The structure
of the page elements is good to grasp as well: page elements contain a title,
id and revision element, which again contains elements, for instance the text

2 Available at http://download.wikimedia.org

XQuery Full Text Implementation in BaseX 125

Fig. 10. Treemap visualizations of XML data

element storing the full-text article. The space-filling treemap often allows the
viewer to comprehend the complete structure of a document at a glance. By
interacting with the treemap, e.g., zooming into a subarea, a higher level of
detail can be achieved. As such, an explorative browsing approach may be used
to obtain further details about the data instance. Rectangles corresponding to
result nodes of a query are highlighted using a contrasting color code.

It is in the nature of full-text queries to often produce large result sets with
long textual contents. Our standard text visualizations have shown to be insuffi-
cient in terms of compact result presentation and general overview over content
and structure. We chose to enhance the treemap visualization by a dynamic
abstraction layer using token/sentence thumbnails in combination with full-text
tooltips to overcome these deficiencies.

As previously discussed, full-text operators report the pre value and the token
position pos for each search term in a full-text query. Leveraging such informa-
tion, a visualization can provide a more compact and space-preserving treemap
layout by using thumbnail representations for tokens or, at a higher level, sen-
tences. The approach is straightforward. Whenever there is enough space to
place the original text into a rectangle, it is displayed as usual. If this is not

126 C. Grün et al.

Fig. 11. Full-text thumbnail and tooltip representation

Fig. 12. Split visual result presentation of a full-text query. Above: a sentence based
thumbnail representation with highlighted full-text tokens. Below: the textual repre-
sentation in the original document.

the case, tokens are replaced by thumbnails, following an approach by Kau-
gars [19]. The length of a thumbnail correlates with the size of the represented
text token. Line breaks between tokens are preserved.

Figure 11 illustrates the thumbnail representation. As the textual node of
the author element fits into the corresponding rectangle, it is displayed in its
readable format. The thumbnail representation is used for the text nodes of
the p elements. The black thumbnail entities denote periods or other sentence
terminators. As mentioned, the length of a thumbnail is relative to the length of
the represented token, as such the structure of the sentence is preserved. Once
the mouse cursor is moved over a thumbnail, the original text is displayed in a
tooltip.

Figure 10 (foreground) displays an area of 35 elements in a Wikipedia instance.
All occurrences of the term “the” are highlighted. The figure demonstrates an-
other abstraction layer (representing a whole sentence by a thumbnail) of the

XQuery Full Text Implementation in BaseX 127

visualization procedure. In one of the treemap rectangles, there is enough space
to fit in the textual content (“redirect alexander the great r from camelcase”).
However, it is yet too narrow to display the tokens “alexander” and “camelcase”
completely, so they are truncated to “alexan..” and “camelc..”. In the comment
elements, the token thumbnail representation is chosen. Once more, black rect-
angles indicate sentence delimiter. For the text elements, the sentence-based
thumbnail abstraction is chosen. Hereby we can observe two characteristics: For
text passages of median length the original sentences are still good to be recog-
nized. The longer text passages are, the darker they appear due to the increasing
number of delimiters. The structure of the text, however, is preserved in all ab-
straction levels.

Using dynamic thumbnail representation for full-text bodies allows space-
saving visual representations of large text bodies in a small display area. Com-
bined with tooltips, which additionally display preceding and following text
blocks of the selected token, it is possible to sequentially read and browse through
the compacted, thumbnailed text, as illustrated in Figure 12.

7 Summary

We presented aspects of the architecture of the XQuery Full Text Recommenda-
tion in BaseX, an open-source DBMS developed at U Konstanz. As one of, if not
the, first complete implementation of all language features, our system provides
simple sequential query processing algorithms that allow for pipelined process-
ing of operator sequences as well as (full-text) indexes to speed-up search. In
addition, a hybrid query execution strategy is employed whenever pure index-
based or sequential processing seems to promise only second-best performance.
Substantial query rewrite optimizations have already been incorporated, even
though BaseX does not yet involve a full-blown cost-based query optimizer try-
ing to always find the best possible plan.

Our initial performance evaluation proves perfect scalability of both, sequen-
tial and index-based execution plans. Actually, we were even able to take ad-
vantage of indexes for the evaluation of queries with negated full-text predicates
(Not expressions). Finally, BaseX’s visual querying interface and result display
has also been extended for full-text applications, such that matches w.r.t. full-
text predicates can be highlighted in query results. Several XML visualizations
are available in BaseX, e.g., the treemap that clearly show the document struc-
ture together with varying content detail, depending on document or result set
size. Using highlights and tooltips or split views, the system gives visual feedback
to the user as to where matching part of the XML document have been found.

Future work will include more subtle query optimization and index evaluation
strategies as well as additional functionality to cover language-specific full-text
features. Also, we plan to extend our visual querying interface and result display
with a variety of zoomable representations.

128 C. Grün et al.

References

1. Amer-Yahia, S., et al.: XQuery and XPath Full Text 1.0. W3C Candidate Recom-
mendation (May 2008), http://www.w3.org/TR/xpath-full-text-10

2. Aoe, J.-I., et al.: An Efficient Implementation of Trie Structures. Software – Prac-
tice and Experience 22(9), 695–721 (1992)

3. Barta, A., et al.: Benefits of Path Summaries in an XML Query Optimizer Support-
ing Multiple Access Methods. In: Proc. of the 31st VLDB Conference, Trondheim,
Norway, pp. 133–144 (2005)

4. Bhaskar, A., et al.: Quark: an efficient XQuery full-text implementation. In:
Proc. of the ACM SIGMOD Conference, Demo Tracks, Chicago, Illinois, USA,
pp. 781–783 (2006)

5. Boag, S., et al.: XQuery 1.0: An XML Query Language. W3C Recommendation
(January 2007), http://www.w3.org/TR/xquery

6. Boncz, P.A., et al.: MonetDB/XQuery: a fast XQuery processor powered by a
relational engine. In: Proc. of the ACM SIGMOD Conference, Chicago, Illinois,
USA, pp. 479–490 (2006)

7. Curtmola, E., et al.: GalaTex: A Conformant Implementation of the XQuery Full-
Text Language. In: Proc. of the 2nd XIME Workshop, Baltimore, Maryland, USA
(2005)

8. Fischer, P., et al.: MXQuery – a low-footprint, extensible XQuery Engine (2009),
http://www.mxquery.org

9. Florescu, D., et al.: The BEA/XQRL Streaming XQuery Processor. In: Proc. of
the 29th VLDB Conference, Berlin, Germany, pp. 997–1008 (2003)

10. Fredkin, E.: Trie Memory. J. CACM 3(9), 490–499 (1960)
11. Gath, S.: Processing and Visualizing XML Full-Text Data. Master’s thesis, Uni-

versity of Konstanz, Germany (2009)
12. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimiza-

tion in Semistructured Databases. In: Proc. of the 23rd VLDB Conference, Athens,
Greece, pp. 436–445 (1997)

13. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Computing
Surveys 25(2), 73–170 (1993)

14. Grün, C., et al.: Pushing XPath Accelerator to its Limits. In: Proc. of the 1st
ExpDB Workshop, Chicago, Illinois, USA (2006)

15. Grün, C., et al.: Visually Exploring and Querying XML with BaseX. In: Proc. of
the 12th BTW Conference, Demo Tracks, Aachen, Germany, pp. 629–632 (2007)

16. Grust, T.: Accelerating XPath Location Steps. In: Proc. of the ACM SIGMOD
Conference, Madison, Wisconsin, USA, pp. 109–120 (2002)

17. Holupirek, A., et al.: BaseX & DeepFS: Joint Storage for Filesystem and Database.
In: Proc. of the 12th EDBT Conference, pp. 1108–1111 (2009)

18. Hoschek, W.: Nux – an Open-Source Java toolkit for XML Processing (2006),
http://acs.lbl.gov/nux

19. Kaugars, K.J.: A Hierarchical Approach to Detail + Context Views. PhD thesis,
New Mexico State University, Las Cruces, NM, USA (1998)

20. Olteanu, D., et al.: XPath: Looking Forward. In: Proc. of the XMLDM Workshop,
pp. 109–127. Springer, Heidelberg (2002)

21. Shneiderman, B.: Tree Visualization with Tree-Maps: 2-d Space-Filling Approach.
ACM Trans. Graph. 11(1), 92–99 (1992)

http://www.w3.org/TR/xpath-full-text-10
http://www.w3.org/TR/xquery
http://www.mxquery.org
http://acs.lbl.gov/nux

Recommending XMLTable Views for XQuery

Workloads

Iman Elghandour1,�, Ashraf Aboulnaga1, Daniel C. Zilio2,
and Calisto Zuzarte2

1 University of Waterloo
2 IBM Toronto Lab

Abstract. Physical structures, for example indexes and materialized
views, can improve query execution performance by orders of magnitude.
Hence, it is important to choose the right configuration of these physical
structures for a given database. In this paper, we discuss the types of
materialized views that are suitable for an XML database. We then focus
on XMLTable materialized views and present a procedure to recommend
them given an XML database and a workload of XQuery queries. We
have implemented our XMLTable View Advisor in a prototype version
based on IBM R© DB2 R© V9.7, which supports both relational and XML
data, and we experimentally demonstrate the effectiveness of our advi-
sor’s recommendations.

1 Introduction

XML is becoming widely adopted as a data storage and representation format.
In addition to native XML database systems, most commercial database systems
now support an XML column type and have query optimizers that can handle
XML data and queries [6,21,22]. Furthermore, these database systems allow cre-
ating physical structures such as indexes and materialized views to improve the
query execution performance of XML queries. For large databases and complex
query workloads, it is challenging to choose the right configuration of physical
structures that also have a reasonable disk usage.

Recommending indexes and materialized views as part of the physical
database design process has previously been studied extensively in the context of
relational databases, and most commercial database systems now include Design
Advisors that automatically recommend various physical structures [2,23]. The
high-level outline of the recommendation process for XML databases is similar
to that for relational databases. However, recommending indexes and material-
ized views for XML databases presents some unique challenges that make the
problem more difficult than the relational case, and that lead to the details of
the solutions being significantly different.

� Supported by an IBM PhD Fellowship. Also affiliated with Alexandria University,
Alexandria, Egypt.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 129–144, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

130 I. Elghandour et al.

There are currently several types of materialized views for XML data. Dif-
ferent proposals have defined different view languages for XML data and have
studied matching these views with XML queries. In this paper, we discuss these
different approaches and we then focus on one of them, namely XMLTable mate-
rialized views. We discuss the advantages of using XMLTable materialized views,
which are relational in structure, to improve the performance of XQuery work-
loads. Next, we present a physical design advisor that recommends XMLTable
materialized views for XQuery workloads. We present an experimental study of
the the effectiveness of this XMLTable View Advisor.

The main issues that we address when recommending materialized views
are: (1) determining the candidate physical structures (materialized views) that
would be useful for a query or a workload consisting of a set of queries, (2)
expanding the set of candidates by adding new ones that are useful for multiple
queries in the workload, and (3) searching the space of possible materialized view
configurations for the optimal configuration that provides the maximum benefit
to the workload while satisfying disk, schema, and other system constraints. In
this paper, we present novel techniques to address each of these challenges. We
have implemented our XMLTable View Advisor in a prototype version of DB2
V9.7, which supports both relational and XML databases, and we have used
this implementation to verify the efficiency of our proposed advisor and the high
quality of the view configurations that it recommends.

The rest of the paper is organized as follows. We present related work in
Section 2. Next, we present our contributions, which can be summarized as
follows:

– A brief discussion of the existing materialized view languages for XML data
(Section 3).

– We propose an end to end solution for an XMLTable View Advisor that rec-
ommends relational materialized views that are constructed using the SQL
XMLTable function (Section 4). Within our solution for the XMLTable View
Advisor we make the following contributions: (1) a technique for enumerat-
ing XMLTable views that are useful for an XQuery query (Section 4.2), (2)
an algorithm that translates XQuery queries into relational queries that use
XMLTable views (Section 4.3), (3) a generalization algorithm that gener-
ates new XMLTable views that are useful for multiple queries in the current
workload (Section 5), and (4) a search algorithm that extends the heuris-
tic algorithm introduced in [10] to address the interaction between views
(Section 6).

– An implementation of the XMLTable View Advisor in a prototype version of
DB2 and an experimental study using the TPoX [19] benchmark (Section 7).

2 Related Work

In the past few years, there has been a considerable amount of work on au-
tomatic physical design for relational databases [2,23]. Unfortunately, none of

Recommending XMLTable Views for XQuery Workloads 131

these works extend directly to XML databases. The XML Index Advisor pro-
posed in [10] recommends XML indexes for an XML database given a workload
of XML queries. Our XML View Advisor expands on the Index Advisor by
recommending XMLTable views, which are more complex than the partial XML
indexes recommended by the Index Advisor. In this section, we first discuss exist-
ing approaches that decide on how to store the data based on its characteristics.
Next, we present previous cost based approaches that are used to recommend
materialized views for XML databases.

Our approach relies on recommending relational materialized views for XML
queries. Relational and XML data reside side by side in current database sys-
tems [6]. Query execution cost depends on the storage mode of the data, and
so there are situations where it is appropriate to use a relational representation
of the data and others where it is appropriate to use an XML representation. A
discussion of the factors affecting the choice of using a relational or XML repre-
sentation to store data is presented in [14,18]. The proposed solution is to find a
logical design for a database given the characteristics of the data to be stored in
it. However, application access patterns of the data are also important. These
access patterns can be exploited to add materialized views to the database to
enhance performance [12]. To incorporate both relational and XML data models
in the same database system, several hybrid XML-relational architectures are
presented in [13].

Another area where relational and XML data coexist is publishing relational
data as XML, an area that has been extensively studied in the last few years.
In these systems, data is stored in relational stores and published as an XML
schema, which requires translating XQuery queries into SQL queries, and trans-
lating relational data into XML data that satisfies the published XML schema.
Most publishing techniques have one fixed way to translate the relational data
into XML based on the XML schema. However, some research projects attempt
using a cost based analysis for choosing the best translation [7,9].

In MARS [9], the data is originally stored in relational and XML format,
in addition to partial views of the data that are of relational and XML types.
In that work, one virtual XML view is published and the incoming queries are
translated according to the source that is chosen to answer them. A cost based
analysis to choose the best query translation is proposed.

In LegoDB [7], the mapping between XML and relational views of the data is
also chosen according to a cost based approach. The application is represented
by a workload of queries and data statistics. A subset of the XML schema, called
p-schema, is used to describe the data. P-schema has the advantage that it can
be directly mapped to relational data, and also it is annotated by statistics
information. Initially, different candidate p-schemas are enumerated. Then, a
greedy heuristic search is used to find the best schema. The cost of a schema is
estimated by performing the mapping between the XML data and the relational
storage, translating the XML workload according to this mapping, importing the
XML statistics into the new relations, and finally, using a relational optimizer
to estimate the cost of the workload.

132 I. Elghandour et al.

An attempt to partially automate the logical design of a hybrid (Relational-
XML) database system is presented in [18]. The input to the proposed Schema
Advisor is an annotated information model that is considered as a conceptual
design for the database. Based on this annotated model, the schema advisor
analyzes different storage alternatives and chooses the best of them according
to a scoring function. Users of the system can also give their input to the tool
to guide the advisor process.

Another cost based approach for automating the logical design of XML
databases is proposed in the ULoad project [4]. That work uses the XML Ac-
cess Modules (XAMs) algebraic formalism to represent the data and its storage
structures. ULoad uses a fixed set of designs to choose from, but the users can
expand them with their own persistent data structures using the same graphical
language. A structural summary of the data is then used to estimate the cost of
answering a workload of queries given a configuration of XAMs.

3 Materialized Views for XML Data

Creating views of relational and XML data can take place on either the logical
or physical level or both. On the logical design level, data can be XML and be
published as relational views [13,17], or data can be relational and be published
as XML views [9,17]. Queries are written according to the published schema, so
if, for example, the published schema is XML and the data is stored in relational
format, we need to (1) translate the XML queries to SQL queries according to
the stored schema, and (2) transform the XML data to relational to be stored
in the relational store, and vice versa for query answers.

On the physical design level, materialized views of XML data can be in one
of the following forms:

1. Views of XML data fragments that are defined by XQuery queries [3,20]. The
queries written against the views are also in XQuery. Result containment is
checked to decide if a view can answer a query.

2. Views of XML data fragments that are defined by XPath path expres-
sions [5,16]. Queries can be either XPath or full XQuery. In the latter case,
indexes containing fragments of the data constitute the XML views.

3. Views of XML data elements and their values that are defined by XPath
path expressions and stored in relational tables. XQuery queries are then
translated into SQL queries to be executed on these materialized relational
views. This approach is close to shredding the XML data into relational
tables [7,8]. We adopt this approach in this paper and elaborate on it next.

3.1 XMLTable Views of XML Data

Using relational materialized views for XML data and queries allows us to benefit
from the rich and mature infrastructure for these views built into many database
systems. Using these views provides a simple and effective way to improve the
performance of XML workloads by leveraging existing infrastructure. Building

Recommending XMLTable Views for XQuery Workloads 133

Fig. 1. XMLTable view example

relational views of XML data requires a mechanism that maps between XML
elements and their corresponding column names in the relational views. For
example, in ROX [13], the XML Wrapper of IBM DB2 [15] is used to do this
mapping. The XML Wrapper allows CREATE NICKNAME statements that
include nicknames for XPath expressions in the XML document.

A new approach for creating relational views for XML data is to use the
XMLTable function [1,21]. XMLTable is a SQL table function that creates a
derived table based on XML data. The XMLTable function is applied on a ta-
ble with an XML-type column. Each row of the table has an XML document
in this XML-typed column, and the XMLTable functions maps elements occur-
ring in these XML documents to columns in the derived table generated by
the XMLTable function. The parameters of an XMLTable function are: (1) A
row generator, which is a path expression. Each element reachable by this path
expression corresponds to a tuple in the derived table. (2) Column navigators,
which are Xpath navigation patterns. Each column navigator is used to popu-
late a column in the derived table. The row generator specifies the rows in the
derived table generated by the XMLTable function, and the column navigators
specify the columns of these rows. Figure 1 illustrates an example SQL query
with an XMLTable function.

Using the XMLTable function to create relational views of the XML data
allows us to benefit from both the mature relational view matching [12] and
also XPath view matching [5,16]. The XMLTable is defined in the FROM clause
of a SELECT statement which allows two levels of matching of queries with
views. The optimizer matches queries that contain XMLTable functions with
XMLTable views. Next, XMLTable definitions of the query and view can use
XPath matching to find the needed compensation and so to rewrite the query to
use the view contents. A discussion of the possible techniques and issues related
to matching and rewriting queries to use XMLTable views is presented in [11].

In this paper, our goal is to recommend XMLTable materialized views that
benefit a workload of XQuery queries on data that is stored in an XML-typed
column of a table. This requires: (1) enumerating XMLTable views for an XQuery
query and translating the query to use the views, (2) expanding the set of can-
didate views, and (3) choosing the best set of views given a disk space budget.
We elaborate on these three steps in Sections 4-6, respectively.

134 I. Elghandour et al.

4 View Enumeration Process

4.1 Types of XMLTable Views

We employ a cost based analysis to choose the views that would benefit the
queries in the workload the most. The high level architecture of the XMLTable
View Advisor is as follows. First, we analyze each query in the workload and
enumerate its possible XMLTable view candidates. The set of XMLTable views
enumerated for all queries in the workload constitutes our basic set of candi-
date views. Next, we expand the set of candidate views by recommending more
general views that can answer more queries in the workload. Then, for each can-
didate view, we invoke the query optimizer in a special mode to estimate the
benefit of the view to the queries in the workload. Finally, we search the space of
candidates to find the best configuration of views that has the highest benefit to
the workload and fits into the given disk space budget. Our advisor architecture
is similar to that of the XML Index Advisor described in [10]. The proposed
advisor is based on employing common access patterns of XQuery queries to
decide on the views that are useful for them. For example, if a query frequently
accesses an element’s value in the XML data (an ID for instance), then it is
beneficial to extract it as a separate column in the XMLTable view.

The class of XQuery queries that we support includes queries with FOR, LET,
WHERE, and RETURN clauses. The RETURN clause can have either a simple
or a constructed expression. The general form of a query that we support is as
follows:

GQ

for $forVar in (ColumnName)/forExpr[forPredicate]
let $letVar := aggFn(letExpr)
where wherePredicate
return returnExpr

We use the following query Q1 on the TPoX [19] benchmark database as a
running example:

Q1: For every customer whose age is greater than 50 and has an ID
greater than 9000, return her name and the number of accounts she
has.

for $cust in ("CUSTACC.CADOC")/Customer[@id > 9000]
let $accounts := count($cust/Accounts/Account)
where $cust/age > 50
return

<print>
<name>$cust/name</name>
<accounts_number>$accounts</accounts_number>

</print>

Recommending XMLTable Views for XQuery Workloads 135

4.2 Enumerating Candidate Views

To enumerate candidate views for an XQuery, we parse the query and break it
down into its FOR, LET, WHERE, and RETURN clauses. Then, for each one
of these clauses we further break it into its components. We describe next how
we handle each clause in the candidate enumeration process (Algorithm 1).

Algorithm 1. enumerateCandidates(xquery)
1: for clause ∈ xquery do
2: if clause is forClause then
3: create a new view view and associate it with the variable $forVar
4: set the row generator of view to be forExpr
5: for p ∈ forPredicate do
6: add p to view as a column navigator
7: end for
8: else if clause is letClause then
9: create a new view view and associate it with the variable $letVar

10: if letExpr references an existing refView then
11: resolvedLetExpr ← append the row generator of refView and letExpr
12: set the row generator of view to be resolvedLetExpr
13: add column “.” to refView and a backward navigation path to view (these

columns are used to join the two views view and refView)
14: else
15: set the row generator of view to be letExpr
16: end if
17: if clause has aggFn then
18: add a SQL GROUP BY clause to view with all columns except the expres-

sion that appears in the aggFn
19: end if
20: else if clause is whereClause then
21: for p ∈ wherePredicate do
22: find refView that is referenced in p
23: add p to refView as a column navigator
24: end for
25: else if clause is returnClause then
26: for expr ∈ returnExpr do
27: find refView that is referenced in expr
28: add expr to refView as a column navigator
29: end for
30: end if
31: end for

FOR Clause. We divide the FOR clause into a variable, a path expression,
and its optional predicates. For every FOR clause: (1) we create a new view and
assign its row generator to be the path expression extractor in the FOR clause
(i.e. the path expression after removing any predicate values from it, forExpr in
GQ), (2) we record the variable name and the created view so we can add any

136 I. Elghandour et al.

expression that references it to the view as a column, and (3) finally, for every
path appearing in a predicate, we create a navigation path and add it to the
view. For example, when we parse the FOR clause of Q1, we create a new view
V1 that has the row generator /Customer and the column @id:

V1:
select u.cx0 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns

cx0 double path ’@id’) as u

LET Clause. Similar to the FOR clause, we parse the LET clause to find the
clause variable (letVar in GQ) and its binding expression (letExpr in GQ). In
addition, a LET clause might have an optional aggregation function that we only
take into account when we rewrite the XQuery to use the view and a binding ex-
pression that references a previously bound variable ($cust/Accounts/Account
in Q1). For an expression with a reference variable, we look up the expression
referenced by this variable (/Customer in this example) and concatenate it with
the rest of the expression to form the path expression we use for this clause. We
then create a new view with that new path expression as a row generator. We
add a column in each of the newly created view and the old one to be used for
joining them together in the translated query. The updated version of V1 and
the newly created V2 will be as follows:

V1:
select u.cx0, u.cx1 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns

cx0 double path ’@id’,
cx1 xml path ’.’) as u

V2:
select count(u.cy0) as ACc1, u.cy1 from CUSTACC, xmltable(

’$cadoc/Customer/Accounts/Account’ passing CUSTACC.CADOC as "cadoc"

columns

cy0 xml path ’.’,

cy1 double path ’parent::Accounts/parent::Customer’) as u

group by cy1

WHERE Clause. For every predicate appearing in a WHERE clause, we han-
dle each predicate expression by finding the view referenced by the variable that
appears in this expression, and adding a column to that view to correspond
to this navigation. To account for the predicate on age in Q1, view V1 is now
written as follows:

Recommending XMLTable Views for XQuery Workloads 137

V1:

select u.cx0, u.cx1, u.cx2 from CUSTACC, xmltable(
’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns

cx0 double path ’@id’,
cx1 xml path ’.’,
cx2 double path ’age’) as u

RETURN Clause. For all the expressions that appear in the RETURN clause,
we find all the variables that reference views and we find the views that they
reference. We add a column for each variable to the corresponding view. View
V1 can be updated now to have name as a column:

V1:
select u.cx0, u.cx1, u.cx2, u.cx3 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns

cx0 double path ’@id’,
cx1 xml path ’.’,
cx2 double path ’age’,
cx3 varchar(100) path ’name’) as u

4.3 Translating XQuery Queries into SQL Queries That Use
XMLTable Views

Current XML query optimizers lack the infrastructure to perform the matching
of XQuery queries with relational (XMLTable) views. Existing matching algo-
rithms match queries with XMLTable function to XMLTable views [11]. There-
fore, we outline in this section a procedure to translate XQuery queries into SQL
queries with XMLTable functions. The translation involves using views that are
similar to the ones being recommended, and hence we perform the candidate
enumeration step described in the previous section to find the best suitable view
for a query. Next, we use these recommended views to rewrite the query.

We examine the parsed XQuery, and then construct an SQL query based on
this information. We add all the recommended views to the FROM clause of
the SQL query. We then use the column names in the views in the SELECT
clause and WHERE clause according to the binding of variables and how they
appear in the original query. We also add joins between the views that are used
to rewrite the query when needed.

For example, we have recommended two views V1 and V2 for Q1 and we can
now construct the FROM clause as FROM V1, V2. Next, we examine the return
clause and construct the SELECT clause of the rewritten query. If the return
value is a simple XPath expression, then the corresponding column name is used,
otherwise if an XML fragment is constructed, an XQuery construction is done
using the XMLELEMENT function. Finally, we construct the WHERE clause

138 I. Elghandour et al.

as a conjunction of all the predicates that appear in the XQuery and those that
correspond to joins between views. The final rewritten query for Q1 is as follows:

Rewritten Query: RQ1
select XMLELEMENT(NAME "print" , XMLELEMENT(NAME "name" ,

Vv1.cx3) , XMLELEMENT(NAME "accounts_number" , Vv2.ACc1))
from (..same as V1..) as Vv1, (..same as V2..) as Vv2
where (Vv1.cx2 > 50) and (Vv1.cx0 > 9000)

and (Vv2.cy1 = Vv1.cx1)

5 Expanding the Set of Enumerated Views

In the XML Index Advisor [10], we have found that generalizing the index pat-
terns makes them useful for queries not seen in the workload that is used for
the recommendation. Similarly, creating views that answer multiple queries in
the workload and potential unseen queries can increase the usefulness of our
recommendations. Since our proposed view definition encapsulates both XPath
expressions and SQL query definitions, generalization can benefit from the index
generalization techniques we proposed in [10] and the query merging techniques
proposed in [23]. The possible generalization techniques include generalizing the
row generator or the column navigator of the view, and merging views. In ad-
dition, it is possible to use relational indexes on XMLTable views to increase
their benefit. We describe some of the possible query generalization forms that
we have explored in this section.

Generalizing Column Navigators to Include Subtrees. Most of the XML-
Table views that we recommend in the enumeration phase are a normalization
(flattening) of all the values that are being accessed in the workload queries. An
alternative approach is to recommend views that store sub-trees of the data as
XML columns. A recommended XMLTable view can now have the XPath path
expression to reach the data as the row generator and one column with a “.”
path expression to represent all the subtrees reachable by that row generator.
For example, V3 (below) is a generalization of V1. This approach is useful when
the query requires reconstructing the XML tree. This general view requires that
the matching infrastructure allows matching multiple columns in the query with
one column in the view and is also capable of performing XPath compensation.
For example matching view V3 with Vv0 in query RQ1 means matching columns
cx0, cx1, cx2 and cx3 in Vv0 with cx0 in V3 and requires navigating for @id,
age, and name, respectively, in the rewritten query that uses the view. Instead of
replacing the columns of a view with a “.” column, a less aggressive approach for
generalizing column navigators is to consider pairs of views that share the same
row generator and consider pairs of columns, one from each view, and generalize
these columns together using index generalization algorithms that we propose
in [10].

Recommending XMLTable Views for XQuery Workloads 139

V3:
select u.cx0 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns

cx0 int path ’.’) as u

Merging Views. A common generalization approach used in relational advisors
is view merging [23]. For XMLTable views, we merge views that have the same
row generator to produce a new view that has the set of column navigators that
appear in the merged views after removing duplicates. The goal of this approach
is to decrease the disk space required for views by removing duplicate columns
from the merged views, while still achieving the same performance.

Indexes on XMLTable Views. One approach to make XMLTable views more
useful is to build relational indexes on their columns and hence improve query
performance. This is possible since the XMLTable views are defined in the form
of SQL statements that produce relations. There can be many possible indexes
that can be built on the different columns of an XMLTable view to help the
view perform better. In this paper, we use a heuristic approach to select only
one index for each view. The chosen index has all the columns of the view that
have originally participated in a predicate in the XQuery that caused this view
to be recommended. This way we guarantee that these columns have relational
values that are used for lookup in the query. The index follows the same order
of the columns in the view. For example, the index that we recommend for view
V1 is “create index index1 on V1(cx0, cx2)”. For every candidate view, we
add to the search space another alternative structure which is composed of the
view with a relational index over its columns.

6 Searching for the Optimal View Configuration

To recommend a set of XMLTable views (a view configuration) for a workload,
we need to search the space of candidate views to find the best set of views that
fits into a given disk space budget. We generalize the search algorithms in [10]
to be able to search any physical structure (indexes, views, views with indexes
on them, etc.). The search problem can be modeled as a 0/1 knapsack problem.
The size of the knapsack is the disk space budget specified by the user. Each
candidate physical structure – which is an “item” that can be placed in the
knapsack – has a cost, which is its estimated size, and a benefit. We compute
the benefit of a physical structure as the difference between the workload cost
as estimated by the query optimizer before and after creating this structure.

XMLTable views can interact with each other in ways that reduce their total
benefit for a query workload. Our search algorithm takes such interactions into
consideration. The main types of interaction affecting the selection of views are:
(1) views that can be used together to rewrite a query, and (2) views that are
generated by merging other views. These interaction factors are similar to the

140 I. Elghandour et al.

Algorithm 2. heuristicSearch(candidates , diskConstraint)
1: sort candidates according to their benefit(cand)/cand .size ratio
2: recommended ← ∅, recommended .size ← 0, recommended .coverage ← ∅
3: while recommended .size < diskConstraint do
4: bestCand ← pick the next best cand in candidates
5: if recommended .coverage = ∅ or recommended .coverage∩bestCand .coverage = φ

then
6: addCandIfSpaceAvl (bestCand ,recommended)
7: else if recommended .coverage ≥ best .coverage then
8: replaceCandIfSpaceAvl (bestCand ,recommended ,recommended)
9: else
10: overlapConfig ← overlapCoverage(bestCand , recommended)
11: replaceCandIfSpaceAvl (bestCand ,overlapConfig ,recommended)
12: end if
13: end while
14: return recommended

ones encountered when searching the space of XML indexes, so we use a greedy
search algorithm as in [10], but we modify the heuristic rules used in this search
to deal with interactions so that they suit the view search problem.

The high level outline of the greedy search algorithm is as follows. First, we
estimate the size of each candidate view, and the total benefit of this view for
the workload. We then sort the candidate views according to their benefit/size
ratio. Finally, we add candidates to the output configuration in sorted order of
benefit/size ratio if they agree with the heuristic rules, starting with the highest
ratio, and we continue until the available disk space budget is exhausted. In [10]
we proposed heuristic rules that are based on index coverage. We define the view
coverage of a view as its view ID as well as the ID of the views that it subsumes.
Subsequently, the coverage of a configuration of views is the combination of
the view coverage of its constituent views. For example, if V3 is generated by
merging V1 and V2, then the coverage of V3 is the set of {1, 2, 3}. We refer to the
coverage of a candidate view (cand) or a group of views (config) as cand .coverage
and config.coverage respectively. We also refer to the size of a candidate view
(cand) as cand .size. Algorithm 2 outlines the the search algorithm. We use the
following functions to apply the heuristics and perform the search:

– benefit(config) returns the estimated benefit of the workload when this con-
figuration of views (or views with relational indexes on them) is created. It is
based on calling the query optimizer with and without the views in place and
computing the reduction in the optimizer’s estimated cost when the views
are in place.

– addCandIfSpaceAvl (cand , config) adds the candidate (cand) to the configu-
ration (config) if the cand .size + config.size ≤ diskConstraint . In addition,
if the condition holds, addCandIfSpaceAvl updates the size and coverage of
config.

Recommending XMLTable Views for XQuery Workloads 141

– replaceCandIfSpaceAvl (cand , subConfig, config) replaces the subConfig in
config with cand if the new configuration after performing the replacement
newConfig has a higher benefit than config and the added size is below a
threshold β. This is the heuristic that we add to the greedy search to deal
with view interactions. The value β is a threshold that specifies how much
increase in size we are willing to allow. We have found β = 10% to work well
in our experiments. Finally, if the condition holds and there is enough disk
space to do the replacement, replaceCandIfSpaceAvl updates the size and
coverage of config.

– overlapConfig(config1 , config2) scans a config2 and returns the minimal
subConfig configuration that has the view coverage of config1 .

7 Experiments

7.1 Experimental Setup

Since V9.1, DB2 supports both relational and XML data [6]. We have used
an initial prototype version of IBM DB2 V9.7 that was modified to support
creating materialized views using the XMLTable function [1]. The client side of
the XMLTable View Advisor is implemented in Java 1.6, and communicates with
the prototype server via JDBC. We have conducted our experiments on a Dell
PowerEdge 2850 server with two Intel Xeon 2.8GHz CPUs (with hyperthreading)
and 4GB of memory running SuSE Linux 10. The database is stored on a 146GB
10K RPM SCSI drive.

We used the TPoX [19] benchmark in our experiments. We generate the data
using a scale factor of 1GB. We evaluate our advisor on the standard 10 queries
that are part of the benchmark specification. We have made minor changes to
the workload queries to account for some implementation limitations.

Our XMLTable View Advisor implementation has some limitations due to the
existing DB2 prototype infrastructure. These limitations make our advisor un-
able to recommend views for certain XQuery query types. We can only use SQL
data types for columns that appear in the XMLTable functions, since casting
XML data into their corresponding relational data types fails in some cases. In
addition, columns in XMLTable functions can only be elements; hence, sub-trees
reachable by an XPath expression, or linear expressions that select several ele-
ments will be concatenated into one large string value. This is not the correct
approach when executing XQuery queries. Moreover, our implementation does
not support more than two joins per query. We have also left adding support
for structured queries, which are XQuery queries with a sub-query in the return
clause, for future work. However, these limitations have not prevented us from
verifying the usefulness of XMLTable views to answer XQuery queries.

7.2 Effectiveness of the XMLTable View Advisor Recommendations

Figure 2 shows the estimated (based on query optimizer estimates) and actual
(based on measured execution time) speedups for the TPoX workload. Speedup

142 I. Elghandour et al.

(a) Estimated speedup (b) Actual speedup

Fig. 2. Workload speedup for the recommended XMLTABLE views

(a) Estimated execution time (b) Actual execution time

Fig. 3. Query execution time per query for the recommended XMLTABLE views

is defined as the execution time (estimated or actual) of the workload when no
XML physical structures are created in the database divided by the execution
time of the workload with the view configuration recommended by our advisor is
in place. Both figures show that a maximum ratio of 1.6 (for the estimated work-
load execution speedup) and 1.3 (for the actual workload execution speedup) is
achieved when we create the recommended views. Since some queries in the
workload did not benefit from views, we also show the estimated and actual exe-
cution time of each query in Figure 3. Figures 3(a) and 3(b) show the estimated
and actual execution time per query for a configuration with no views and view
configurations of different sizes. Queries Q1, Q2, Q7, Q8, Q9, and Q10, which
range from simple navigation to join queries, have benefited from the recom-
mended XMLTable views. The actual speedup exceeded 3000 for some queries,
for example Q1 and Q7. The configuration which consists of all useful views has
a size of 115 MB, which also helped us to achieve an average speedup per query
of 639 (the speedup of queries that did not benefit from views is 1). Even for a
configuration size of 9.8 MB, the average speedup per query is 134 which proves
that XMLTable views can be useful for many query types.

Recommending XMLTable Views for XQuery Workloads 143

8 Conclusions

In this paper, we have presented an XMLTable View Advisor. This is a new
approach for building relational materialized views for XQuery workloads. Our
XMLTable View Advisor recommends relational views that are in the form of
XMLTable views. These views are useful in pre-navigating to queried values that
appear in the data. In addition, XMLTable view matching is based on relational
view matching and XPath matching, and hence we benefit from leveraging the al-
ready existing infrastructure of many database system query optimizers. We have
implemented our advisor in a prototype version of DB2, and our experiments
with this implementation show that our advisor can effectively recommend views
that result in orders of magnitude performance improvement for some queries.

References

1. XMLTABLE overview (2006),
http://publib.boulder.ibm.com/infocenter/db2luw/v9/

2. Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A.P., Narasayya, V.R.,
Syamala, M.: Database tuning advisor for Microsoft SQL Server 2005. In: VLDB
(2004)

3. Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y.: Structured materi-
alized views for XML queries. In: VLDB (2007)

4. Arion, A., Benzaken, V., Manolescu, I., Vijay, R.: ULoad: choosing the right storage
for your XML application. In: VLDB (2005)

5. Balmin, A., Özcan, F., Beyer, K., Cochrane, R.J., Pirahesh, H.: A framework for
using materialized XPath views in XML query processing. In: VLDB (2004)

6. Beyer, K., et al.: DB2 goes hybrid: Integrating native XML and XQuery with
relational data and SQL. IBM Systems Journal 45(2) (2006)

7. Bohannon, P., Freire, J., Haritsa, J.R., Ramanath, M.: LegoDB: Customizing re-
lational storage for XML documents. In: VLDB (2002)

8. Bohannon, P., Freire, J., Roy, P., Siméon, J.: From XML schema to relations: A
cost-based approach to XML storage. In: ICDE (2002)

9. Deutsch, A., Tannen, V.: MARS: A system for publishing XML from mixed and
redundant storage. In: VLDB (2003)

10. Elghandour, I., Aboulnaga, A., Zilio, D.C., Chiang, F., Balmin, A., Beyer, K.,
Zuzarte, C.: XML index recommendation with tight optimizer coupling. In: ICDE
(2008)

11. Godfrey, P., Gryz, J., Hoppe, A., Ma, W., Zuzarte, C.: Query rewrites with views
for XML in DB2. In: ICDE (2009)

12. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4)
(2001)

13. Halverson, A., Josifovski, V., Lohman, G.M., Pirahesh, H., Mörschel, M.: ROX:
Relational over XML. In: VLDB (2004)

14. Comparing XML and relational storage: A best practices guide. IBM: Storage best
practices (2005)

15. Josifovski, V., Massmann, S., Naumann, F.: Super-Fast XML wrapper generation
in DB2: A demonstration. In: ICDE (2003)

16. Mandhani, B., Suciu, D.: Query caching and view selection for XML databases. In:
VLDB (2005)

http://publib.boulder.ibm.com/infocenter/db2luw/v9/

144 I. Elghandour et al.

17. Manolescu, I., Florescu, D., Kossmann, D.: Answering XML queries on heteroge-
neous data sources. In: VLDB (2001)

18. Moro, M.M., Lim, L., Chang, Y.-C.: Schema advisor for hybrid relational-XML
DBMS. In: SIGMOD (2007)

19. Nicola, M., Kogan, I., Schiefer, B.: An XML transaction processing benchmark. In:
SIGMOD (2007), https://sourceforge.net/projects/tpox/

20. Onose, N., Deutsch, A., Papakonstantinou, Y., Curtmola, E.: Rewriting nested
XML queries using nested views. In: SIGMOD (2006)

21. Oracle Corp.: Oracle Database 11g Release 1 XML DB Developer’s Guide (2007),
http://www.oracle.com/pls/db111/

22. Rys, M.: XML and relational database management systems: Inside Microsoft SQL
Server 2005. In: SIGMOD (2005)

23. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A., Garcia-Arellano, C.,
Fadden, S.: DB2 design advisor: Integrated automatic physical database design. In:
VLDB (2004)

https://sourceforge.net/projects/tpox/
http://www.oracle.com/pls/db111/

An Encoding of XQuery in Prolog�

Jesús M. Almendros-Jiménez

Dpto. Lenguajes y Computación,
Universidad de Almeŕıa

jalmen@ual.es

Abstract. In this paper we describe the implementation of (a subset of)
the XQuery language using logic programming (in particular, by means
of Prolog). Such implementation has been developed using the Prolog
interpreter SWI-Prolog. XML files are handled by means of the XML
Library of SWI-Prolog. XPath/XQuery are encoded by means of Prolog
rules. Such Prolog rules are executed in order to obtain the answer of
the query.

1 Introduction

The W3C (World Wide Web Consortium) provides a suitable standard language
to express XML document transformations and to query data, the XQuery lan-
guage [14,11,15,10]. XQuery is a typed functional language containing XPath
[13] as a sublanguage. XPath supports navigation, selection and extraction of
fragments from XML documents. XQuery also includes the so-called flwor ex-
pressions (i.e. for-let-where-orderby-return expressions) to construct new
XML values and to join multiple documents. XQuery has static typed semantics
and a formal semantics which is part of the W3C standard [11,14].

In this paper we investigate how to implement (a subset of) the XQuery
language using logic programming (in particular, by means of Prolog). With
this aim:

1. XML documents can be handled in Prolog by means of the XML library
available in most Prolog interpreters (this is the case, for instance, of SWI-
Prolog [16] and CIAO [9]). Such library allows to load and parse XML files,
representing them in Prolog by means of a Prolog term.

2. We have to study how to implement XPath and XQuery by means of logic
programming. In other words, we have to study how to encode XPath and
XQuery queries by means of Prolog rules.

3. Such rules are executed in order to obtain the output of the query. The XML
library of Prolog is also used for generating the output.

In previous works we have already studied how to use logic programming for
processing XML data. This work continues this research line in the following
� This work has been partially supported by the Spanish MICINN under grant

TIN2008-06622-C03-03.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 145–155, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

146 J.M. Almendros-Jiménez

sense. In [4] we have studied how to encode XPath by means of rules and how
to define a Magic Set Transformation [6] in order to execute XPath queries by
means of Datalog following a Bottom-Up approach. In [5] we have described how
to encode XPath by means of rules but in this case, the execution model is
Top-Down, and therefore XPath can be executed by means of Prolog. In [3], we
have described how to encode XQuery by means of rules, following a Top-Down
approach, but with the aim to be integrated with the XPath encoding studied
in [5].

Now, in this paper, we have studied a different approach to the same problem:
how to encode XPath and XQuery by means of rules, but with the aim to inte-
grate the encoding with the XML library available in most Prolog interpreters.
Usually, Prolog libraries for XML allow to load a XML document from a file,
storing the XML document by means of a Prolog term representing the XML
tree. In our previous works [5,3], XML documents are represented by means of
rules and facts. The current proposal uses the encoding of XML documents by
means of a Prolog term. The difference of encoding of XML documents has as a
consequence that XPath and XQuery languages have now to be re-encoded for
admitting XML documents represented by means of a Prolog term. In order to
test our proposal we have developed a prototype which can be downloaded from
our Web page http://indalog.ual.es/XQuery.

With respect to existent XQuery implementations, our proposal uses as host
language a logic language based on rules like Prolog. As far as we know our
proposal is the first approach for implementing XQuery in logic programming.
The existent XQuery implementations either use functional programming (with
Objective Caml as host language) or Relational Database Management Systems
(RDBMS).

In the first case, the Galax implementation [12] encodes XQuery into Objective
Caml, in particular, encodes XPath. Since XQuery is a functional language (with
some extensions) the main encoding is related with the type system for allowing
XML documents and XPath expressions to occur in a functional expression.
With this aim an specific type system for handling XML tags, the hierarchical
structure of XML, and sequences of XML items is required. In addition, XPath
expressions can implemented from this representation. The XQuery expressions
which do not correspond to pure functional syntax can be also encoded in the
host language thanks to the type system.

In our case, SWI-Prolog lacks on a type system, however Prolog is able to
handle trees and the hierarchical structure of XML documents by means of
Prolog terms. The XML library of SWI-Prolog loads XML documents from a
file and represents them by means of a Prolog term of hierarchical structure.
XPath is implemented in our approach by traversing the hierarchical structure
of the Prolog term. XQuery is implemented by encoding the flwor expressions
by means of Prolog rules.

In the second case, XQuery has been implemented by using a RDBMS. It
evolves in most of cases the encoding of XML documents by means of relational
tables and the encoding of XPath and XQuery. The most relevant contribution

http://indalog.ual.es/XQuery

An Encoding of XQuery in Prolog 147

in this research line is MonetDB/XQuery [7]. It consists of the Pathfinder XQuery
compiler [8] on top of the MonetDB RDBMS, although Pathfinder can be de-
ployed on top of any RDBMS. MonetDB/XQuery encodes the XML tree struc-
ture in a relational table following a pre/post order traversal of the tree (with
some variant). XPath can be implemented from such table-based representation.
XQuery can be implemented by encoding flwor expressions into the relational
algebra, extended with the so-called loop-lifted staircase join.

Our implementation of XQuery use as host language Prolog instead of a RDB-
MS. The advantage of using Prolog is that Prolog can handle the hierarchical
structure of a XML document and does not need to encode the tree structure
of XML documents. However RDBMS implementations take advantage from
optimization techniques for RDBMSs. Since our implementation is based on the
encoding into Prolog we are limited in efficiency by the interpreter.

However, our approach has the following advantages. Our aim is the develop-
ment of a query language for the Semantic Web. In this context, XML documents
can be handled by means of XQuery, however, other kinds of Web documents
could be handled in our framework. More concretely, RDF and OWL docu-
ments. A suitable query language for such documents should include reasoning
and inference capabilities. Logic programming can be used for Web reasoning.
Therefore, a logic programming based implementation of XQuery would be eas-
ier integrated with rules for Web reasoning. In this line, we have already [1,2]
designed extensions of our framework for representing RDF and OWL by means
of rules, which can be integrated with our rule based implementation of XQuery.

The structure of the paper is as follows. Section 2 will show the representa-
tion of XML documents by means of SWI-Prolog; Section 3 will describe the
implementation of XPath into Prolog; Section 4 will define the translation of
XQuery expressions into Prolog rules; Section 5 will show the Eclipse based tool
developed in our framework; finally, Section 6 will conclude and present future
work.

2 Loading XML Documents by Means of the Prolog
Library

The SWI-Prolog library for loading XML documents stores the XML documents
by means of a Prolog term representing a tree. The representation of XML
documents is as follows. Each tag is represented as a Prolog term of the form
element(Tag, Attributes, Subelements) where Tag is the name of the XML
tag, Attributes is a Prolog list containing the attributes, and Subelements is
a list containing the subelements (i.e. subtrees) of the tag. For instance, let us
consider the XML document called “ex.xml” of Figure 1, represented in SWI-
Prolog like in the Figure 2.

For loading XML documents in our prototype we can use the predicate
load xml(+File,-Term) defined as follows:

load xml(File,Term):-load structure(File,Term,[dialect(sgml)]).

148 J.M. Almendros-Jiménez

<bib>
<book year=”1994”>

<title>TCP/IP Illustrated</title>
<author> <last>Stevens</last><first>W.</first> </author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price> </book>

<book year=”1992”>
<title>Advanced Programming in the Unix environment</title>
<author> <last>Stevens</last> <first>W.</first> </author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price> </book>

<book year=”2000”>
<title>Data on the Web</title>
<author> <last>Abiteboul</last> <first>Serge</first> </author>
<author> <last>Buneman</last> <first>Peter</first> </author>
<author> <last>Suciu</last> <first>Dan</first> </author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price> </book>

<book year=”1999”>
<title>The Economics of Technology and Content for Digital TV</title>
<editor> <last>Gerbarg</last> <first>Darcy</first>

<affiliation>CITI</affiliation> </editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book> </bib>

Fig. 1. XML document

[element(bib, [],
[element(book, [year=1994],
[element(title, [], [TCP/IP Illustrated]),
element(author, [], [element(last, [], [Stevens]), element(first, [], [W.])]),
element(publisher, [], [Addison-Wesley]),
element(price, [], [65.95])]),
element(book, [year=1992],
[element(title, [], [Advanced Programming in the Unix environment]),
element(author, [], [element(last, [], [Stevens]), element(first, [], [W.])]),
element(publisher, [], [Addison-Wesley]),
element(price, [], [65.95])]),
element(book, [year=2000],
...])]

Fig. 2. Representation of XML in SWI-Prolog

where load structure(+File,-Term,+Options) is the SWI-Prolog predicate of
the XML library for loading SGML documents. Similarly, we have implemented a
predicate called write xml(+File,+Term) for writing Prolog terms representing
a XML document into a file.

3 Implementing XPath by Means of Prolog

Now, we will present how XPath can be implemented by means of Prolog. We
restrict ourselves to XPath expressions of the form /tag1 . . . /tagn (/text()).
More complex XPath queries [13] can be expressed in XQuery, and therefore
this restriction does not reduce the expressivity power of our proposal. In Prolog,

An Encoding of XQuery in Prolog 149

XPath expressions will be represented by means of lists of the form [tag1, . . . , tagn,
(text)] in such a way that we have a predicate load xpath(+XPath,-ListXPath)
to transform Path expressions into the Prolog representation.

Now, the XPath language can be implemented in Prolog by means of a pred-
icate xpath(+ListXPath,+Tree,-Subtrees), where ListXPath is the Prolog
representation of an XPath expression, Tree is an input XML document and
Subtrees is a list of subtrees of the input document. Basically, the xpath pred-
icate traverses the Prolog tree representing a XML document and extracts in a
Prolog list the subtrees occurring in the given path. The predicate includes the
following rules, distinguishing cases in the form of the input document and the
XPath expression1:

xpath([text],[Tree|Trees],[Tree|Trees2]):-atomic(Tree),!,xpath([text],Trees,Trees2).
xpath([text],[|Trees],Trees2):-!,xpath([text],Trees,Trees2).
xpath([Tag],[element(Tag,Attr,SubTrees)|Trees],[element(Tag,Attr,SubTrees)|Trees2]):-!,

xpath([Tag],Trees,Trees2).
xpath([Tag],[|Trees],Trees2):-!,xpath([Tag],Trees,Trees2).

For instance, the following goal extracts the subtrees in the path ’bib/book/title’
from the document ’ex.xml’, and writes them into the file ’output.xml’:

?-load xml(’ex.xml’,Term), load xpath(’bib/book/title’,LXPath),
xpath(LXPath,Term,OutputTerm), write xml(’output.xml’,OutputTerm).

The previous goal generates the following sequence of items:

<title>TCP/IP Illustrated< /title>
<title>Advanced Programming in the Unix environment< /title>
<title>Data on the Web< /title>
<title>The Economics of Technology and Content for Digital TV< /title>

4 Implementing XQuery by Means of Prolog

Now, we will show how to encode XQuery in Prolog using the representation of
XML documents and the previous XPath implementation. We will focus on a
subset of XQuery, called XQuery core language, whose grammar can be defined
as follows.

Core XQuery
xquery:= dxpath | < tag >′ {′xquery, . . . , xquery′}′ < /tag > | flwr.
dxpath := doc(Doc) ’/’ xpath .
flwr:= for $var in vxpath [where constraint] return xqvar |

let $var := vxpath [where constraint] return xqvar.
xqvar:= vxpath | < tag >′ {′xqvar, . . . , xqvar′}′ < /tag > | flwr.
vxpath := $var | $var ’/’ xpath | dxpath .
xpath := text() | tag | xpath ’/’ tag. Op:= <= | >= | < | > | =.
constraint := vxpath Op value | vxpath Op vxpath | constraint Op constraint

1 From now on, we will show the main rules of each predicate, a full version can be
downloaded from http:://indalog.ual.es/XQuery

http:://indalog.ual.es/XQuery

150 J.M. Almendros-Jiménez

In the previous definition value is an string, integer, etc, Doc is a document
name, and Op is a boolean operator. The previous subset of the language allows
to express the following query:

<result>
for $Book in doc(’ex.xml’)/bib/book return
let $Year := $Book/book/@year
where $Year < 1995 return

<mybook> { $Year $Book/book/title } </mybook>
< /result>

Such query requests the year and title of books published before than 1995.
It represents the result as a sequence of XML items whose tag is mybook. The
answer of the query is:

<result>
<mybook>1994<title>TCP/IP Illustrated< /title>< /mybook>
<mybook>1992<title>Advanced Programming in the Unix environment</title>< /mybook>
< /result>

In order to encode XQuery into Prolog rules we have to take into account the
following elements:

– The main element of the encoding is a predicate called xquery/1 such that
xquery returns the XML tree representing the result of a query. For instance,
the previous query is executed by means of the goal ?- xquery(Tree) and
the Prolog answer is Tree=[element(result, [],[element(mybook,[],
[1994, ...].

– In order to define xquery/1, we have defined a predicate xquery/2 of the
form xquery(-Tree,+Number) where Tree is a Prolog term representing a
XML tree and Number is an identifier of the XML tree Tree. In order to build
the hierarchical structure of the output tree, each subtree is computed by
means to a call xquery(-Subtree,+Number), assuming subtrees are num-
bered by levels. Therefore, the structure of the xquery rules is as follows:

xquery([element(tag,[],Subtrees)],Number):-xquery(Subtree,Number+1),
xquery(SubtreeList,Number+2),
combine([Subtree,SubtreeList],Combination),
member(Subtrees,Combination).

whenever the element tag has as subtrees in the output document the ele-
ments Subtree and SubtreeList. The root of the output tree is numbered as 1.
Therefore xquery/1 is defined as xquery(Tree):-xquery(Tree,1). When
a subtree is a sequence of elements the call to xquery is combined with
a call to the Prolog predicate findall. For instance, findall(Eachelement,
xquery(Eachelement,Number+1),Subtree).

An Encoding of XQuery in Prolog 151

– The predicates xquery might call to the predicates flwr(-Tree,+Number)
which compute a flwr expression. Tree is the output of such expression,
and Number is the identifier of the Tree. In general, the structure of flwr
predicates is:

flwr(Tree,Number):-for exp(Tree,path(xqueryterm,xpath)).
flwr(Tree,Number):-let exp(Tree,path(xqueryterm,xpath)).

The predicates flwr call to the predicates for exp (and let exp), whenever
the flwr expression is a for expression and let expression, respectively.
xqueryterm is (i) either a variable of the form ’$X’ or (ii) a document name
of the form doc(docname). xpath is an XPath expression. The meaning of
flwr(Tree,Number) is that Tree (whose number is Number) is a Prolog
term whose value is the result of evaluating the “pseudo-expression”:

(i) “for Tree in xqueryterm/xpath” (and “let Tree := xqueryterm/xpath”),
whenever xqueryterm is a document name.

(ii) “for Tree in doc(docname)/pathtodoc” (and “let Tree := doc(docname)
/ pathtodoc”), whenever xqueryterm has the form ’$X’. Where the docu-
ment name associated to ’$X’ is doc(docname), and the path from ’$X’
to the document name is pathtodoc.

Let us remark that in our core language, each variable has an associated
document name, that is, each variable is used for traversing a given input
document. In addition, in case (ii), analysing the XQuery expression, a path
from the root of the document to the variable can be rebuilt.

– XQuery expressions of the form “doc(Doc)/xpath” are represented in Prolog
as xpath(’doc(docname)’,xpath) and XQuery boolean conditions “$X/xpath1
Op $Y/xpath2” are represented in Prolog as varpath(’$X’,xpath1) Op var-
path(’$Y’,xpath2).

– Our encoding makes a previous program transformation in which XQuery
expressions including a return expression involving XPath expressions, are
transformed into the so-called XPath-free return XQuery expressions, which
are equivalent. It will be explained in the following example.

For instance, the previous query can be encoded as follows. Firstly, our encod-
ing transforms the query into an equivalent XPath-free return XQuery
expression:

<result>
for $Book in doc(’ex.xml’)/bib/book return
let $Year := $Book/book/@year
where $Year < 1995 return
let $Book1 := $Book/book/title return
<mybook> { $Year $Book1 } </mybook>
< /result>

where a new variable $Book1 is introduced by means of a let expression in such a
way that now, the return expression does not include XPath expressions. Now,
the encoding is as follows:

152 J.M. Almendros-Jiménez

(1) xquery([element(result, [], A)], 1) :- xquery(A, 2).
(2) xquery(B, 2) :- findall(A, xquery([A], 3), B).
(3) xquery([element(mybook, [], A)], 3) :- xquery(A, 6).
(4) xquery(E, 6) :- findall(A, xquery([A], 7), C), findall(B, xquery(B, 8), D),

combine([C, D], F), member(E, F).
(5) xquery([A], 7) :- flwr(B, 7), member(A, B).
(6) xquery([A], 8) :- flwr(B, 8), member(A, B).

(7) flwr(A, 7) :- for exp(A, path(’$Year’, ’’)).
(8) flwr(A, 8) :- for exp(A, path(’$Book1’, ’’)).

(9) for exp(B, path(A, C)) :- atomic(A), is var(A,), !, for var(r, B, path(A, C)).
(10) for var(r, A, path(’$Year’, C)) :- xquery(B, 5), for exp(A, path(B, C)).
(11) for var(r, A, path(’$Book1’, C)) :- xquery(B, 9), for exp(A, path(B, C)).

(12) xquery([A], 5) :- flwr(B, 5), member(A, B).
(13) xquery([A], 9) :- flwr(B, 9), member(A, B).
(14) flwr(A, 5) :- let exp(A, path(’$Book’, ’book/year’)).
(15) flwr(A, 9) :- let exp(A, path(’$Book’, ’book/title’)).
(16) let exp(B, path(A, C)) :- atomic(A), is var(A,), !, let var(r, B, path(A, C)).
(17) let var(r, B, path(’$Book’, C)) :- xquery(A, 4),

where exp(r, ’$Book’, A, [varpath(’$Book’, ’book/year’)<’1995’]),
let exp(B, path(A, C)).

(18) xquery([A], 4) :- flwr(B, 4), member(A, B).
(19) flwr(A, 4) :- for exp(A, path(’doc(’ex.xml’)’, ’bib/book’)).

(20) for exp(C, path(A, D)) :- atomic(A), string to term(A, doc(B)), !,
execute term(B, C, D).

(21) execute term(A, E, B) :- load xml(A, D), load xpath(B, C), xpath(C, D, E).

The previous encoding can be summarized as follows:

– The rule (1) is the root of the encoding. It defines the Prolog tree element
(result, [], A) as the root of the output XML document, where the sub-
trees are computed in A by means of the rule (2).

– The rule (2) defines the subtrees of element(result, [], A). They are
included in a Prolog list of trees and they are computed by means of the rule
(3). The rule (3) computes the elements enclosed in the tag mybook.

– The rule (3) computes the elements element(mybook, [], A). The subele-
ments A of element(mybook, [], A) are couples of elements (representing
$Year, $Book1) which are computed by means of the rule (4).

– The values of $Year and $Book1 have to be computed by means of a flwr ex-
pression. The rules (5) and (6) call to the flwr predicate, defined by means
of rules (7) and (8). Following case (ii), rules (7) and (8) represent “for A
in doc(’ex.xm’)/bib/book/@year” and “for A in doc(’ex.xm’)/bib/book/title”,
respectively, given that: the document name associated to $Year and $Book1
is doc(’ex.xml’); the path from $Year to doc(’ex.xml’) is ’/bib/book/@year’,
and the path from $Book1 to doc(’ex.xml’) is ’/bib/book/title’.

– With the aim to obtain the previous behaviour the for exp predicate (in
rules (7) and (8)) calls by means of the rules (9), (10), (11), (12) and
(13) to let exp predicate in rules (14) and (15). Rules (14) and (15)
compute the value of the let expressions in which $Year and $Book1 are
involved.

– The rules (14) and (15) call to the rule (16), which in its turn calls to the
rule (17). The rule (17) calls to rules (18) and (19) in order to compute
the main for expression. Following (i) of previous description, the rule (19)

An Encoding of XQuery in Prolog 153

Fig. 3. Eclipse-XQuery-SWI-Prolog Tool

represents “for A in doc(’ex.xml’)/bib/book” which is the main flwr expres-
sion of the query. Moreover, the rule (17) checks the boolean condition of
the XQuery expression, that is, “$Year < 1995”.

– Finally, the rules (20) and (21) compute the main for expression by means
of the xpath predicate, defined in previous section.

5 A Tool for XQuery

Finally, we would like to show the main features of the tool we have designed
for XQuery. The tool has been developed taken as basis the Eclipse tool, in
which we have installed the PDT plugin for SWI-Prolog (available from
http://sewiki.iai.uni-bonn.de/research/pdt/users/start). In addition,
the Eclipse distribution provides support for graphical representation of XML
documents. In Figure 3 we can see an snapshot of the tool.

http://sewiki.iai.uni-bonn.de/research/pdt/users/start

154 J.M. Almendros-Jiménez

In order to execute XQuery expressions in the tool, we have to proceed as
follows:

– The XQuery expression is loaded into the Eclipse tool.
– Input XML documents can be loaded into Eclipse tool in order to be visu-

alized.
– A very simple configuration file (a Prolog program) called “query.pl” has to

be modified.
– The configuration file is executed by means of the SWI-Prolog plugin.
– Finally, output XML documents can be loaded into Eclipse tool in order to

be visualized.

6 Conclusions and Future Work

In this paper, we have studied how to encode XQuery expressions
into Prolog. It allows us to evaluate XQuery expressions against XML documents
using logic rules. We have developed a prototype available in
http://indalog.ual.es/XQuery. The distribution includes a package of exam-
ples of XQuery expressions which has been tested with our prototype. As future
work we would like to extend our prototype for reasoning with RDF/OWL in
XQuery. The theoretical background of such extension has been studied in [1,2].

References

1. Almendros-Jiménez, J.M.: An RDF Query Language based on Logic Programming.
Electronic Notes in Theoretical Computer Science 200(3) (2008)

2. Almendros-Jiménez, J.M.: Ontology Querying and Reasoning with XQuery. In:
Proceedings of the PLAN-X 2009: Programming Language Techniques for XML
(2009), http://db.ucsd.edu/planx2009/papers.html

3. Almendros-Jiménez, J.M., Becerra-Terón, A., Enciso-Baños, F.J.: Integrating
XQuery and Logic Programming. In: INAP 2007. LNCS (LNAI), vol. 5437,
pp. 117–135. Springer, Heidelberg (2009)

4. Almendros-Jiménez, J.M., Becerra-Terón, A., Enciso-Baños, F.J.: Magic sets for
the XPath language. Journal of Universal Computer Science 12(11), 1651–1678
(2006)

5. Almendros-Jiménez, J.M., Becerra-Terón, A., Enciso-Baños, F.J.: Querying XML
documents in logic programming. Journal of Theory and Practice of Logic Pro-
gramming 8(3), 323–361 (2008)

6. Beeri, C., Ramakrishnan, R.: On the Power of Magic. Journal of Logic Program-
ming, JLP 10(3,4), 255–299 (1991)

7. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In:
Proceedings of the 2006 ACM SIGMOD international conference on Management
of data, pp. 479–490. ACM, New York (2006)

8. Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
Pathfinder: XQuery - The Relational Way. In: Proc. of the International Conference
on Very Large Databases, pp. 1322–1325. ACM Press, New York (2005)

http://indalog.ual.es/XQuery
http://db.ucsd.edu/planx2009/papers.html

An Encoding of XQuery in Prolog 155

9. Cabeza, D., Hermenegildo, M.: Distributed WWW Programming using (Ciao-)
Prolog and the PiLLoW Library. Theory and Practice of Logic Programming 1(3),
251–282 (2001)

10. Chamberlin, D.: XQuery: An XML Query Language. IBM Systems Journal 41(4),
597–615 (2002)

11. Chamberlin, D., Draper, D., Fernández, M., Kay, M., Robie, J., Rys, M., Simeon,
J., Tivy, J., Wadler, P.: XQuery from the Experts. Addison Wesley, Boston (2004)

12. Marian, A., Simeon, J.: Projecting XML Documents. In: Proc. of International
Conference on Very Large Databases, Burlington, USA, pp. 213–224. Morgan Kauf-
mann, San Francisco (2003)

13. W3C. XML Path Language (XPath) 2.0. Technical report (2007), www.w3.org
14. W3C. XML Query Working Group and XSL Working Group, XQuery 1.0: An

XML Query Language. Technical report (2007), www.w3.org
15. Wadler, P.: XQuery: A Typed Functional Language for Querying XML. In:

Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS, vol. 2638, pp. 188–212. Springer,
Heidelberg (2003)

16. Wielemaker, J.: SWI-Prolog SGML/XML Parser, Version 2.0.5. Technical report,
Human Computer-Studies (HCS), University of Amsterdam (March 2005)

www.w3.org
www.w3.org

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 156–164, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Universal XForms for Dynamic XQuery Generation

Susan Malaika1 and Keith Wells2

1 IBM, 19 Skyline Drive,
Hawthorne, NY 10532

2 IBM, 3039 Cornwallis Road,
Research Triangle Park, NC 27709

{malaika,wellsk}@us.ibm.com

Abstract. This demonstration illustrates how a variety of queries can be built
dynamically by examining XML stored in databases through general purpose
XForms. The forms are called the Universal XForms for XQuery, and abbrevi-
ated to the Universal XForms. The Universal XForms help users to construct
XQueries through the provision of prompts, and do not require prior knowledge
of the structure of the data to be queried. Sample XML documents from more
than twenty industry formats constitute the base for illustrating the building of
queries in the demonstration.

Keywords: XML, XQuery, XForms, Database.

1 Introduction

XForms [1] is a W3C XML standard for presenting and collecting XML data.
XForms provides the human interaction and entry for business-critical data as well as
mechanisms for ensuring the correctness of the data with constraints and relevancy.
XForms can be used to visualize and provide input data, and as illustrated in this arti-
cle, to help users to define queries.

XQuery [2] is another W3C XML standard designed to query and manipulate col-
lections of XML data. For example, queries can be specified to search for all authors
in a set of XML instances stored in an XML database such as DB2 pureXML [3] or
eXist [4].

Increasingly XML industry formats [5], defined by industry consortia, are used for
information exchange because of the useful characteristics of XML, e.g., the ability to
define an extensible schema that can be combined with other schemas, the ease with
which XML can be processed without needing to consult its schema. Gradually, the
exchanged XML is also being stored, e.g., for audit or analysis.

When XML is stored in a database it becomes easy to give access to the stored data
through Web Services in a general way. The simplicity and ease arise from the fact
that the format of the stored data typically matches what the services need to expose
and consume. In other words, what is being stored is being exchanged and matches
external world entities such as insurance policies, product descriptions, and tax forms.
Thus, less server side customization is needed to support the services. The Universal
Services for pureXML [6] provide a simple set of general purpose services to access

 Universal XForms for Dynamic XQuery Generation 157

and manipulate stored XML. One of the operations in the Universal Services is an
XQuery service.

The demonstration [7] described in this article illustrates how an XForms document
[8] can provide assistance in dynamically building XQueries to access collections of
stored XML. The XForms document uses the XQuery service in the Universal Services
to examine the stored XML and to provide suitable XQuery prompts. The general pur-
pose XForms document does not require prior knowledge of the stored XML docu-
ments’ structure in order to generate syntactically correct XQueries. The XForms then
uses the same XQuery service that was the basis for dynamically building the XQuery
to execute the generated XQuery.

The demonstration illustrates how an XML end-to-end architecture that incorpo-
rates an XML database, along with declarative markup simplifies tools and applica-
tion development.

2 The Demonstration Architecture and Principles

The demonstration is built on a database that stores collections of well-formed XML
in columns in tables. The stored XML data is exposed in a variety of ways including
Universal Services (a fixed set of Web and RESTful Services). The demonstration is
built from general-purpose XForms and XQuery requests that are transmitted through
the XQuery service that is part of the Universal Services.

The demonstration has been built, rendered and tested with the Firefox XForms Ex-
tension [9], but it could easily be adapted for other XForms processors such as Ubiq-
uity XForms [10]. The Ubiquity-XForms open source project is an AJAX/JavaScript
implementation of the W3C XForms 1.1 specification. With Ubiquity, XForms such as
this could be rendered on any JavaScript-enabled browser; anywhere, anytime, for uni-
versal access.

The Universal XForms for Dynamic XQuery Generation are part of a larger dem-
onstration based on industry formats. You can build your own general purpose XML
end-to-end environment by following the steps described in Build an Application in a
Day [11].

One benefit of using XForms and XQuery with Universal Services over Java, is
that declarative markup is edited for building queries, which is then downloaded and
executed on the client. There is no need to modify any server side code in order to
make available a new or customized version of the Universal XForms for XQuery.
All that is required is that the modified Universal XForms be available for download.
XML declarative languages are used throughout the demonstrations, without convert-
ing the XML into intermediate Java objects. Note also that XForms make it possible
to add and remove controls because users made certain selections, e.g., the addition of
prompts for where clauses. Only the client (browser XForms) runtime is required to
achieve this flexibility.

The demonstration aims to produce syntactically correct XQuery requests that are
relevant to the underlying data, enabling authors to experiment and try out queries.
However, there is a second variant of the general purpose XForms labeled "debug". In
the debug version, the SOAP Envelope for both the Universal XQuery Service Re-
quest and Response are shown in an xforms:textarea. An author developing an
XQuery expression can view the SOAP Request and Response messages of the Uni-
versal XQuery Service.

158 S. Malaika and K. Wells

Universal
Services

Data

XML
Database

Web Server

Web
Services

Software or
User

Interaction

REST or SOAP
Software XHTML &

Feeds
XForms &

Lotus Forms

WSDL

Flex, Instant
Messaging XML

XML

Fig. 1. Diagram of the Demonstration Architecture

3 Stepping through the Demonstration

In this demonstration, XQueries are built dynamically in steps by examining the con-
tents of an XML collection and generating prompts to create the pieces for the next
portion of the XQuery expression. As a user makes choices in building an XQuery
expression, generated XQueries are executed with the results manipulated via XForms
to prompt a user for more information or to determine the next step in building an
XQuery expression, until finally, an XQuery expression is generated to reveal the
results from user's choices in previous steps.

This SOAP Envelope is used through-out this XQuery Demonstration:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope soapenv:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/" xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <runxqueryXML xmlns:xsd= "http://www.w3.org/2001/XMLSchema"
xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance">
 <query/>
 </runxqueryXML>
 </soapenv:Body>
</soapenv:Envelope>

In following sections, the <query/> element may be modified in the above SOAP En-
velope to invoke an XQuery Universal service.

3.1 Select the XML Collection to Query

What Happens. Because the demonstration is built on an XQuery enabled database
system that contains collections of XML in tables, the first step is to select the data-
base table and column name to identify the collection in the XQuery.

 Universal XForms for Dynamic XQuery Generation 159

Fig. 2. Browse DB2 pureXML With XForms

How It Works. In the XForms document, there is an <xforms:bind> element which
binds a calculate attribute to the <query/> element in the XQuery SOAP Envelope.

<xforms:bind node-
set="instance('instance_docTypes_Envelope')/soapenv:Body/*[local-
name() = 'runxqueryXML']/*[local-name() = 'query']"
 calculate="concat(
 concat(
 concat(
 concat(in-
stance('queryText_docTypes_instance')/queryParts/prefix,
instance('tableInformation_instance')),
'.'),
instance('columnInformation_instance')),
instance('queryText_docTypes_instance')/queryParts/postfix)"
id="docTypes_queryString_Bind"/>

The calculate attribute in this xforms:bind element is building the XQuery expression
by concatenating different fragments together using a combination of XPath and
XForms functions. The input fields for the Table Name and the Column Name are
bound to a specific instance data node. The data node changes when the user modifies
the input fields. In pseudo-code, the query is built with basic string concatenation.

query = prefix data + table + "." + columnName;

And finally the query element is transformed into an XQuery expression.

query = "fn:distinct-values(for $x in db2-fn:xmlcolumn(" + table +
"." + columnName + ")/* return <DocumentType> { fn:local-name($x) }
</DocumentType>)"

The following is an example of the pre- and post-processing strings used in the above
example.

<xforms:instance id="queryText_docTypes_instance">
 <queryInformation>
 <query/>
 <queryParts>
 <prefix> fn:distinct-values(for $x in db2-fn:xmlcolumn("
</prefix>
 <postfix> ")/* return <DocumentType> { fn:local-
name($x) } </DocumentType>)</postfix>
 </queryParts>
 </queryInformation>
</xforms:instance>

When the “Get Document Types" button is selected, an XForms submission invokes
the Universal XQuery Service with the query defined from above. Once the resulting
web service call returns, the data will be parsed and used in the next step.

160 S. Malaika and K. Wells

3.2 Select the Document Types to Be Queried

What Happens. The column can contain a varied set of well-formed XML docu-
ments. The general purpose XQuery forms enables the identification of the document
subset with a particular root element to query. The document selected should be typi-
cal of the documents that are to be queried, in that it contains representative elements
and attributes, to ensure appropriate prompts appear.

As a result of the previous step, all of the root elements queried from XML docu-
ments in pureXML for the combination of the Table Name and the Column Name
were returned, added to XForms instance data, and are now available to the
xforms:select1 control. You should see "product", "customerinfo", "PurchaseOrder"
and "a" in this list.

Fig. 3. Select the Document to be Queried

How It Works. In this step, a user selects one of the XML root elements from the list
and selects the Get Available Fields button. This starts an XForms submission process
to execute the following XQuery:

query = let $x :=
db2-fn:xmlcolumn(" + Table Name + '.' + Column Name + ")/*
[local-name()=' + Root Name + '] return $x[1]

If "PurchaseOrder" was selected from the xforms:select1 list, the result is the following:

<result>
 <PurchaseOrder
 xmlns="http://posample.org"
 PoNum="5000" OrderDate="2006-02-18" Status="Unshipped">
 <item>
 <partid>100-100-01</partid>
 <name>Snow Shovel, Basic 22 inch</name>
 <quantity>3</quantity>
 <price>9.99</price>
 </item>
 <item>
 <partid>100-103-01</partid>
 <name>Snow Shovel, Super Deluxe 26 inch</name>
 <quantity>5</quantity>
 <price>49.99</price>
 </item>
 </PurchaseOrder>
</result>

 Universal XForms for Dynamic XQuery Generation 161

3.3 Select the Elements and Attributes to Be Queried

What Happens. The document collection will typically contain many XML elements
and attributes. These are displayed with a prompt to create XQuery predicates. In the
following screenshot, you can see that both attributes and child elements of the root
node "product" selected from the XQuery in the previous step are presented in the
"Select a Field" xforms:select1 list. At this point, a user can choose which attribute or
child element of the "product" root node to add to the XQuery in one of the following
steps.

For example, a user selects the "name" attribute and then selects the Add Field En-
try button. Immediately, the user should see the appearance of additional "Select a
Field" prompts, allowing the user to select another Field for the XQuery being built.
In this step the user is determining which attribute or child element to query in all of
the DB2SMPL XML documents in pureXML database. Once the XQuery is built and
executed, these selections are displayed as tabular columns.

Fig. 4. Build the Query

How It Works. The attributes and child elements of the root node "product" were
gathered from the results of the XQuery in the previous step, and dynamically added
into an xforms:instance fragment. An xforms:repeat and associated xforms:insert and
xforms:delete allows for the addition and deletion of the "Select a Field" row.

3.4 Select an “Order by” Clause

What Happens. A selection list is displayed with elements and attributes in the docu-
ments that can be used to order the results.

162 S. Malaika and K. Wells

How It Works. The attributes and child elements collected in a previous step are pre-
sented in an xforms:select1 list, if a user decides to select one of these choices, an
"order by" statement with be concatenated to the XQuery string based on the user's
selection.

3.5 Select Optional Where Clauses

What Happens. When an "Add Where Clause?" is selected, extra input fields appear
to allow a user to select an element or attribute from the existing documents, together
with predicates.

Fig. 5. Use Where Clauses

How It Works. If a user decides to add a where clause to the XQuery being built,
then the "Add Where Clause?" should be selected. Once a user checks this box, addi-
tional prompts are displayed to guide the user through the process of building a where
clause for the XQuery expression. In this case, the user can select an attribute or child
element collected in a previous step, select the discrete operator for the where clause,
and add a string value for the where clause comparison. For example, a user may de-
cide to build a where clause to search for all price elements which are less than
$20.00. In this case, a where clause like the following will be added to the XQuery
expression:

where price < 20.00

3.6 Execute the Query

What Happens. When the "Execute Query" button is selected, the generated XQuery
will run. An example of an XQuery could be:

for $x in db2-fn:xmlcolumn("DB2SMPL.DOCUMENT")/*:PurchaseOrder
where $x/*:item/*:price < '20.00' and $x/*:item/*:price < '20.00'
order by $x/*:item/*:price
return <row> <entry nodeName="OrderDate"> { fn:data($x/@OrderDate) }
</entry> </row>

How It Works. A user would "select" the "Execute Query" button when satisfied with
the selections up to this point. The "Execute Query" button triggers an xforms: submis-
sion invocation of the Universal XQuery service with the generated query dynamically
created by the user.

 Universal XForms for Dynamic XQuery Generation 163

3.7 View the Results

After the XQuery is executed and the response returned, the columns for each field
defined during the "Select a Field" step will be displayed as table columns.

Fig. 6. View the Results

3.8 Possible Enhancements

There are a number of possible extensions to the Universal XForms. For example:

• Sample a few document to base XQuery generation on, or provide an option for
users to define the sample a few documents to query.

• Select a few documents that contain a greater variety of elements and attributes to
form the basis of the XQuery prompts.

• Enable a more complete XQuery generation, e.g., to include joins, construction,
and aggregation. Some queries can become quite complex and become difficult
to manually track. In cases like this, using an XQuery builder to set XQuery vari-
ables and template XML for the results could save time and frustration.

• Produce various layouts for query outputs, and provide mechanisms to handle
large outputs. Perhaps XQuery results could be tailored or customized for a spe-
cific layout using HTML, SVG, XForms or some other rendering technique.

164 S. Malaika and K. Wells

4 Summary

This article describes a demonstration that uses XForms to generate queries dynami-
cally that access XML instances stored in a database, without prior information on the
structure of the documents. The demonstration illustrates how an XML end-to-end
architecture, in conjunction with XML standard technologies, makes it easier to build
software solutions.

References

1. XForms at W3C, http://www.w3.org/MarkUp/Forms
2. XQuery at W3C, http://www.w3.org/TR/xquery
3. DB2 pureXML, http://www.ibm.com/software/data/db2/xml/
4. eXist, http://exist.sourceforge.net/
5. Get started with Industry Formats and Services with pureXML,

http://www.ibm.com/developerworks/db2/library/
techarticle/dm-0705malaika

6. Universal Services for pureXML using Data Web Services,
http://www.ibm.com/developerworks/db2/library/
techarticle/dm-0805malaika

7. pureXML Industry Formats and Services Demonstration,
http://www.alphaworks.ibm.com/tech/purexml

8. XForms and DB2 pureXML,
http://www.ibm.com/developerworks/db2/library/
techarticle/dm-0805malaika2

9. Mozilla XForms Extension,
https://addons.mozilla.org/en-US/firefox/addon/824

10. Ubiquity XForms, http://code.google.com/p/ubiquity-xforms
11. Build an Application in a Day,

http://www.ibm.com/developerworks/data/library/
techarticle/dm-0812malaika

From Entity Relationship to XML Schema:

A Graph-Theoretic Approach

Massimo Franceschet, Donatella Gubiani, Angelo Montanari, and Carla Piazza

Department of Mathematics and Computer Science, University of Udine
Via delle Scienze 206, 33100 Udine, Italy

Abstract. We propose a mapping from the Enhanced Entity Relation-
ship conceptual model to the W3C XML Schema Language with the fol-
lowing properties: information and integrity constraints are preserved, no
redundance is introduced, different hierarchical views of the conceptual
information are available, the resulting XML structure is highly con-
nected, and the design is reversible. We investigate two different ways
to nest the XML structure: a maximum connectivity nesting, that min-
imizes the number of schema constraints used in the mapping of the
conceptual schema reducing the validation overhead, and a maximum
depth nesting, that keeps low the number of (expensive) join operations
that are necessary to reconstruct the information at query time using the
mapped schema. We propose a graph-theoretic linear-time algorithm to
find a maximum connectivity nesting and show that finding a maximum
depth nesting is NP-complete. We complement our investigation with
an implementation of the devised translation and we embed the imple-
mented module in a software framework for the conceptual and logical
design of spatio-temporal databases.

1 Introduction

The inventors of XML intended to create a document format for web pages and
other narrative documents to be read by people. Despite these intentions, the
most common applications of XML today involve the storage and exchange of
data for use by computer applications. An XML database is a data persistence
software that allows one to store data in XML format. Two major classes of XML
database exist: XML-enabled databases, which map XML data to a traditional
database (such as a relational database), and native XML databases, which de-
fine a logical model for an XML document and stores and retrieves documents
according to that method.

The design of a database follows a consolidated methodology comprising con-
ceptual, logical, and physical modeling of the data. This paper is a contribu-
tion toward the development of design methodologies and tools for native XML
databases. We adopt, in the spirit of [1], the well-understood Entity Relation-
ship model, extended with specialization (ER for short), as the conceptual model
for native XML databases. Specialization is particularly relevant in the design
of semi-structured data. Moreover, we choose W3C XML Schema Language

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 165–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

166 M. Franceschet et al.

(XML Schema, hereinafter), as the schema language for XML. The major alter-
native is Document Type Definition (DTD), but DTD is strictly less expressive
than XML Schema; in particular, it lacks expressive means to specify integrity
constraints, which are fundamental in database design. The contributions of this
paper are precisely the following:

1. we propose a mapping from ER to XML Schema with the following prop-
erties: information and integrity constraints of the ER model are preserved,
no redundance is introduced, different hierarchical views of the conceptual
information are permitted, the resulting structure is highly connected, and
the design is reversible;

2. we give a graph-theoretic interpretation of the structure nesting problem,
that is, the problem of finding the best way to nest the elements correspond-
ing to entities and relationships of the ER schema. We propose a linear-time
algorithm to find a maximum connectivity nesting forest, that is, a nesting
forest with the highest number of edges, or, equivalently, with the lowest
number of trees. This is the forest that minimizes the number of schema
constraints used in the mapping of the conceptual schema and hence that
reduces the validation overhead to the minimum. Moreover, we show that the
problem of finding a maximum depth nesting forest, that is, a nesting forest
with the largest value for the summation of node depths, is NP-complete.
Such a forest minimizes the number of (expensive) join operations that are
necessary to reconstruct the information at query time using the mapped
schema and thus reduces the query evaluation time;

3. we implement the devised mapping and embed it into ChronoGeoGraph [2], a
software framework for the conceptual and logical design of spatio-temporal
XML and relational databases.

The outline of the papers follows. Section 2 contains the basic mapping from
ER to XML Schema. The structure nesting problem is investigated in Section 3.
Section 4 summarizes related work and proposes future research directions.

2 The Basic Mapping

This section describes the target schema language and provides the mapping of
the basic elements of an ER diagram into the target schema language.

2.1 The Target Schema Language

The XML data model is hierarchical and semistructured. XML elements may be
simple elements containing character data or they may nest other child elements,
generating a hierarchical tree-like structure. Moreover, elements of the same
type may have different structures, e.g., some child elements may be absent or
repeated an arbitrary number of times. By contrast, the relational data model
is flat and structured : table attributes must be atomic and tables have a rigid

From Entity Relationship to XML Schema 167

schema. We will deeply exploit the hierarchical and semistructured nature of the
XML data model in the proposed encoding of the ER conceptual model.

Representing XML Schema using its own syntax requires substantial space
and the reader (and sometimes the developer as well) gets lost in the imple-
mentation details. We embed ER schemas into a more succinct target schema
language for XML documents (XSL for short) whose expressive power lies be-
tween DTD and XML Schema. XSL allows sequences and choices of elements as
in DTD. XSL extends DTD with the following three constructs:

– occurrence constraints. These constrain the minimum and maximum number
of occurrences of an item. The minimum constraint is a natural number and
the maximum constraint is a natural number or the constant N denoting
a finite unbounded natural number. The notation is item[x,y], where x is
the minimum constraint, y is the maximum constraint, and item is a single
element, a sequence, or a choice. When both x and y are equal to 1, the
occurrence constraint may be omitted;

– key constraints. If A is an element and KA is a child element or attribute
of A, then the notation KEY(A.KA) means that KA is a key for element A.
Keys composed of more than one attribute are allowed;

– foreign key constraints. If A is an element with key KA, B is an element, and
FKA is a child element or attribute of B, then KEYREF(B.FKA --> A.KA)
means that FKA is a foreign key of B referring to the key KA of A.

Recall that DTD allows only the specification of [0,1] occurrence constraints
(denoted by ?), [0,N] occurrence constraints (denoted by *), and [1,N] occur-
rence constraints (denoted by +). Moreover, DTD offers a limited key/foreign
key mechanism by using ID-type and IDREF-type attributes. However, the
ID/IDREF mechanism is too simple for our goals, for instance it is not pos-
sible to restrict the scope of uniqueness for ID attributes to a fragment of the
entire document. Also, only individual attributes can be used as keys.

The mapping of XSL into W3C XML Schema is achieved as follows: sequence
and choice constructs correspond to sequence and choice schema elements; occur-
rence constraints are implemented with minOccurs and maxOccurs schema at-
tributes; key and foreign key constraints are captured by key and keyref schema
elements, respectively. A full example of XSL definition in given in Figure 2.

2.2 Mapping ER Elements

An ER schema contains entities and relationships between entities [3]. Both can
have attributes, which can be either simple, composed, or multi-valued. Some
entities are weak and are identified by proprietary entities through identifying
relationships. Moreover, some entities may be specialized into more specific enti-
ties. Specializations may be partial or total, disjoint or overlapping. Relationships
may involve two or more entities; each entity participates in a relationship with a
minimum and a maximum participation constraint. Integrity constraints associ-
ated with an ER schema comprise multi-valued attribute occurrence constraints,

168 M. Franceschet et al.

relationship participation and cardinality ratio constraints, specialization con-
straints (sub-entity inclusion, partial/total, disjoint/overlapping constraints), as
well as key and foreign key constraints. We refer to integrity constraints success-
fully represented in the target schema language as internal constraints, whereas
external constraints are those constraints that cannot be captured in the target
schema language due to lack of expressive power and must be validated using
an additional schema validator.

The mapping we propose has the following properties:

– it preserves all the information and as much as possible of integrity con-
straints of the original conceptual schema. An extension to the standard
XML Schema validator has been implemented in order to capture the con-
straints that are missed in the translation due to lack of expressiveness of
the target schema language;

– it does not include redundancy in the mapped schema: the original concep-
tual information is represented only once in the logical XML design;

– it allows different hierarchical views of the conceptual information; this per-
mits to adapt the structure of the logical schema taking into consideration
the typical (most frequent) transactions of the database management system;

– it achieves maximum connectivity in the nesting structure used to embed
the elements of the conceptual design. As we will show in Section 3, this
amounts to minimize the number of schema constraints used in the mapped
schema and hence the validation overhead;

– it allows to reverse the design: from the logical XML schema it is possible
to go back to the conceptual ER model.

Entities. Each entity is mapped to an element with the same name. Entity
attributes are mapped to child elements. The encoding of composed and multi-
valued attributes takes advantage of the flexibility of the XML data model:
composed attributes are translated by embedding the sub-attribute elements
into the composed attribute element; multi-valued attributes are encoded using
suitable occurrence constraints. An example is given in Figure 2. As opposed to
the relational mapping, no restructuring of the schema is necessary.

Relationships. Each binary relationship has two (left and right) participation
(or cardinality) constraints of the form (x, y), where x is a natural number and
stands for the minimum participation constraint, and y is a positive natural
number or the special character N that represents a finite and unbounded num-
ber and stands for the maximum participation (or cardinality ratio) constraint.
Typically, x is either 0 or 1, and y is either 1 or N. Hence, we have 24 = 16
typical cases.

Let us consider two entities A, with key KA, and B, with key KB, and a
binary relation R between A and B with left participation constraint (x1, y1) and
right participation constraint (x2, y2). We denote such a case with the notation
A (x1,y1)

←→ R (x2,y2)
←→ B. The encodings for all the typical cases are given in the

following:

From Entity Relationship to XML Schema 169

1. A (0,1)
←→ R (0,1)

←→ B. We have the two possible mappings shown below:

A(KA, R[0,1]) B(KB, R[0,1])
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA), KEY(B.KB), KEY(R.KB) KEY(B.KB), KEY(A.KA), KEY(R.KA)
KEYREF(R.KB --> B.KB) KEYREF(R.KA --> A.KA)

The two mappings are equivalent in terms of number of used constraints.
Notice that the constraint KEY(R.KB) is used to capture the right maximum
participation constraint in the left mapping: it forces the elements KB of R
to be unique, that is, each B element is assigned to at most one A element by
the relation R. Similarly for the constraint KEY(R.KA) in the right solution.

2. A (0,1)
←→ R (0,N)

←→ B. The preferred mapping is shown on the left below. The
solution on the right uses an extra constraint to capture the left maximum
cardinality.

A(KA, R[0,1]) B(KB, R[0,N])
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA), KEY(B.KB) KEY(B.KB), KEY(A.KA), KEY(R.KA)
KEYREF(R.KB --> B.KB) KEYREF(R.KA --> A.KA)

3. A (0,1)
←→ R (1,1)

←→ B. The suggested view is the left one shown below. The ele-
ment A is fully embedded into element B; hence no foreign key constraint
is necessary and the right minimum cardinality holds. The right maximum
cardinality is captured by KEY(B.KB). The solution given on the right uses
an additional key constraint for the left maximum cardinality as well as
an extra foreign key constraint; moreover, it looses the chance to nest the
resulting structure.

A(KA, R[0,1]) B(KB, R[1,1])
R(B) R(KA)
B(KB) A(KA)

KEY(A.KA), KEY(B.KB) KEY(B.KB), KEY(A.KA), KEY(R.KA)
KEYREF(R.KA --> A.KA)

4. A (0,1)
←→ R (1,N)

←→ B. The suggested mapping is given on the left below. The con-
straint KEY(R.KA) is used to capture the left maximum cardinality. The op-
posite solution misses the encoding of the right minimum cardinality, which
must be dealt with as an external constraint (added with clause CHECK).

B(KB, R[1,N]) A(KA, R[0,1])
R(KA) R(KB)

A(KA) B(KB)
KEY(B.KB), KEY(A.KA), KEY(R.KA) KEY(A.KA), KEY(B.KB)
KEYREF(R.KA --> A.KA) KEYREF(R.KB --> B.KB)

CHECK("Right min card")

170 M. Franceschet et al.

5. A (0,N)
←→ R (0,N)

←→ B. We have two symmetrical views using the same number
of constraints:

A(KA, R[0,N]) B(KB, R[0,N])
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA), KEY(B.KB) KEY(B.KB), KEY(A.KA)
KEYREF(R.KB --> B.KB) KEYREF(R.KA --> A.KA)

6. A (0,N)
←→ R (1,1)

←→ B. The best solution is the left one below that uses the full
nesting of elements. The opposite embedding, on the right, spends an extra
keyref constraint and does not achieve element nesting.

A(KA, R[0,N]) B(KB, R[1,1])
R(B) R(KA)
B(KB) A(KA)

KEY(A.KA), KEY(B.KB) KEY(B.KB), KEY(A.KA)
KEYREF(R.KA --> A.KA)

7. A (0,N)
←→ R (1,N)

←→ B. The mapping on the left is the one we propose. The
opposite embedding looses the right minimum participation constraint.

B(KB, R[1,N]) A(KA, R[0,N])
R(KA) R(KB)

A(KA) B(KB)
KEY(B.KB), KEY(A.KA) KEY(A.KA), KEY(B.KB)
KEYREF(R.KA --> A.KA) KEYREF(R.KB --> B.KB)

CHECK("Right min card")

8. A (1,1)
←→ R (1,1)

←→ B. Two symmetrical views are possible:

A(KA, R[1,1]) B(KB, R[1,1])
R(B) R(A)
B(KB) A(KA)

KEY(A.KA), KEY(B.KB) KEY(B.KB), KEY(A.KA)

9. A (1,1)
←→ R (1,N)

←→ B. The preferred mapping is the one given on the left below.
The opposite embedding fails to capture the right minimum cardinality.

B(KB, R[1,N]) A(KA, R[1,1])
R(A) R(KB)
A(KA) B(KB)

KEY(B.KB), KEY(A.KA) KEY(A.KA), KEY(B.KB)
KEYREF(R.KB --> B.KB)
CHECK("Right min card")

From Entity Relationship to XML Schema 171

10. A (1,N)
←→ R (1,N)

←→ B. Two symmetrical mapping are possible:

A(KA, R[1,N]) B(KB, R[1,N])
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA), KEY(B.KB) KEY(B.KB), KEY(A.KA)
KEYREF(R.KB --> B.KB) KEYREF(R.KA --> A.KA)
CHECK("Right min card") CHECK("Left min card")

Notice the use of an external constraint in both solutions to check the min-
imum participation constraint: this is the only case in the mapping of rela-
tionships in which we have to resort to external constraints in the preferred
mapping. One may be tempted to add, in the left case, the foreign key
KEYREF(B.KB --> R.KB) to check the missing constraint. The foreign key
would force each B instance to appear under an A instance and hence each
B instance would be associated with at least one A instance. Unfortunately,
such a foreign key is allowed in XML Schema only if R.KB is a key, which
is not possible since a B instance may be associated with more than one
A instance and hence there may exist repeated B instances under A. An
alternative bi-directional solution is the one that pairs the two described
mappings. Such a solution captures all integrity constraints specified at con-
ceptual level. It imposes, however, the verification of an additional inverse
relationship constraint, namely, if an instance x of A is inside an instance y
of B, then y must be inside x in the inverse relationship. Such a constraint
is not expressible in XML Schema.

The other six cases are the inverse of some of the above-described solutions.
For instance, A (0,N)

←→ R (0,1)
←→ B is the inverse of case 2. We have implemented

a similar strategy to map relationships of higher arity and relationships with
non-typical participation constraints, e.g., the constraint (2,10).

It is interesting to notice that, thanks to its hierarchical nature, the XML log-
ical model allows to capture more constraints specified at conceptual level than
the relational logical model. Indeed, for all relationships with one participation
constraint equal to (1,N), the minimum participation constraint is lost when
mapping the ER model into the relational model; furthermore, some constraints
in specialization are also missed [3].

Weak entities and identifying relationships. A weak entity always par-
ticipates in the identifying relationship with participation constraint equal to
(1,1). Hence, depending on the form of the second participation constraint, one
of the cases discussed above applies. The key of the weak entity is obtained by
composing its partial key with the key of the owner entity and the owner key
in the weak entity must match the corresponding key in the owner entity. For
instance, suppose we have A (0,N)

←→ R (1,1)
←→ B where B is weak and owned by A.

The translation is:

172 M. Franceschet et al.

A(KA, R[0,N])
R(B)

B(KB, KA)
KEY(A.KA), KEY(B.KB, B.KA)
CHECK(B.KA = A.KA)

The external constraint CHECK(B.KA = A.KA) cannot be avoided. Indeed, sup-
pose we remove the owner key KA from the weak entity B. We need to set a key
composed by the pair KA of A and KB of B that now lie at different nesting
levels. If we point the selector of the key schema element at the level of entity
A, then the field pointing to KB is invalid since it selects more than one node;
on the other hand, if we point the selector at the level of entity B, then the field
referring to KA is also not valid, since it must use the parent axis to ascend the
tree, but such an axis is not admitted in the XPath subset supported by W3C
XML Schema1.

Specialization. The mapping fully exploits the hierarchical nature of the XML
data model. Let us consider an entity A with key KA that specializes in two
entities B with attributes attB and C with attributes attC. If the specialization
is partial-overlapping, then the mapping is as follows:

A(KA, B[0,1], C[0,1])
B(attB)
C(attC)

KEY(A.KA)

Both B and C elements are embedded inside A element. Neither key nor for-
eign key constraints are necessary. The partial-overlapping constraint is captured
by using the occurrence specifiers: an A element may contain any subset of {B,
C}. If the specialization is total-overlapping, the regular expression in the first
clause must be replaced with (B, C[0,1]) | C: any non-empty subset of {B,
C} is permitted. In case of partial-disjoint specialization the regular expression
becomes (B | C)[0,1]: either B or C or none of them are included. Finally,
a total-disjoint specialization in encoded with the regular expression (B | C):
either B or C is present.

The generalization to the case of n sub-entities is immediate in all cases ex-
cept the total-overlapping case. Let a1, . . . , an be the sub-entities of a total-
overlapping specialization. We indicate with ρ(a1, . . . , an) the regular expression
allowing all non-empty subsets of sub-entities. Such an expression can be recur-
sively defined as follows:

ρ(a1, . . . , an) =
{

a1 if n = 1
(a1, a2[0, 1], . . . , an[0, 1]) | ρ(a2, . . . , an) if n > 1

1 See the official W3C XML Schema Language specification at the W3C site
http://www.w3.org/TR/xmlschema-1/#coss-identity-constraint. The authors
of [4] seem to have repeatedly missed this point.

From Entity Relationship to XML Schema 173

Fig. 1. A citation-enhanced bibliographic database

The size of the expression ρ(a1, . . . , an) is n · (n + 1)/2. Furthermore, the
regular expression is deterministic, in the sense that its standard automata-
theoretic translation is a deterministic automaton. This is relevant since both
DTD and XML Schema content models must be deterministic.

As a full example of the mapping, consider the ER schema in Figure 1. It
describes a citation-enhanced bibliography, a typical semi-structured data in-
stance. The mapped schema is shown in Figure 2. The XML Schema version is
available at ChronoGeoGraph web site [2].

3 Nesting the Structure

Nesting the XML structure has two advantages. The first advantage is the re-
duction of the number of constraints inserted in the mapped schema and hence
of the validation overhead. The second advantage is the decrease of the (ex-
pensive) join operations needed to reconstruct the information at query time.
Indeed, highly nested XML documents can be better exploited by tree-traversing
XML query languages like XPath. We illustrate these points with the following
example. Suppose we want to model a one-to-one relationship direction (dir)
between entities manager (man), with attributes ssn and name and key ssn, and
department dep, with attributes name and address and key name. A manager

174 M. Franceschet et al.

publication(title, year, citations, reference[0,N],

authorship[1,N], (article | book)[0,1])

reference(title)

authorship(name, contribution)

article(pages, abstract, (journal | conference))

journal(name, volume)

conference(name, place)

book(ISBM)

publisher(name, address, publishing[1,N])

publishing(title)

author(name, affiliation[1,N])

affiliation(institute, address)

KEY(publication.title), KEY(publisher.name)

KEY(author.name), KEY(publishing.title)

KEYREF(reference.title --> publication.title)

KEYREF(authorship.name --> author.name)

KEYREF(publishing.title --> publication.title)

Fig. 2. The mapping of the citation-enhanced bibliographic database

directs exactly one department and a department is directed by exactly one
manager. In the following, we propose a flat mapping (on the left) and a nested
mapping (on the right) of the corresponding ER fragment:

man(ssn, name, dir) man(ssn, name, dir)
dir(name) dir(dep)

dep(name, address) dep(name, address)
KEY(man.ssn) KEY(man.ssn)
KEY(dep.name) KEY(dep.name)
KEY(dir.name)
KEYREF(dep.name --> dir.name)
KEYREF(dir.name --> dep.name)

Notice that nesting saves three constraints over five (one key and two foreign
keys). Furthermore, suppose we want to retrieve the address of the department
directed by William Strunk. A first version of this query written in XPath and
working over the flat schema follows:

/dep[name = /man[name = "William Strunk"]/dir/name]/address

The query joins, in the outer filter, the name of the current department and
the name of the department directed by William Strunk. This amounts to jump
from the current node to the tree root. An alternative XPath query tailored for
the nested schema is given in the following:

/man[name = "William Strunk"]/dir/dep/address

From Entity Relationship to XML Schema 175

This version of the query fluently traverses the tree without jumps. The same
happens if the query is written in XQuery. We expect that the second version of
the query is processed more efficiently by most XML query processors.

In the mapping proposed in Section 2, nesting is achieved by using specializa-
tions and total functional relationships, which are relationships such that one of
the participating entities has a participation constraint equal to (1,1). While the
nesting structure of specialization is uniquely determined, this is not always the
case with the nesting structure induced by total functional relationships. Indeed,
it may happen that some entity can be nested in more than one other entity,
generating a nesting confluence. Moreover, nesting loops can occur. Both nesting
confluences and nesting loops must be broken to obtain a hierarchical nesting
structure. This can be done, however, in different ways. Hence, the problem of
finding the best nesting structure arises.

In the following, we formalize the nesting problem in graph theory. Let S
be an ER schema and G = (V, E) be a directed graph such that the nodes in
V are the entities of S that participate in some total functional relationship
and (A, B) ∈ E whenever there is a total functional relationship R relating A
and B such that B participates in R with cardinality constraint (1,1). Hence,
the direction of the graph edges indicates the entity nesting structure, that is,
(A, B) ∈ E whenever entity A contains entity B. We call G the nesting graph of
S. A nesting confluence corresponds to a node in the graph with more than one
predecessor and a nesting loop is a graph cycle. A spanning forest is a subgraph
G′ of G such that: (i) G′ and G share the same node set; (ii) each node in G′

has at most one predecessor; (iii) G′ has no cycles. Notice that each spanning
forest is a valid nesting solution since it contains neither confluences nor cycles.
In general, however, a graph has (exponentially) many spanning forests. We are
ready to define the following two nesting problems:

The maximum connectivity nesting problem (MCNP). Given a nesting graph G
for an ER schema, find a maximum connectivity spanning forest (MCSF),
that is, a spanning forest with the maximum number of edges, or, equiva-
lently, with the minimum number of trees;

The maximum depth nesting problem (MDNP). Given a nesting graph G for
an ER schema, find a maximum depth spanning forest (MDSF), that is, a
spanning forest with the maximum sum of node depths.

Notice that both problems always admit a solution which is not necessarily
unique. The MCNP finds a forest that minimizes the number of schema con-
straints when the forest is used to nest the entities. Indeed, as shown above,
each nesting edge reduces the number of constraints in the mapped schema and
hence the larger is the number of edges in the nesting graph, the lower is the
number of constraints in the resulting schema. On the other hand, the MDNP
finds a forest that minimizes the number of join operations that are necessary to
reconstruct the information at query time. Indeed, the deeper is a node in the
nesting forest, the larger is the number of nodes belonging to the nesting path
containing that node, and the lower is the chance of requiring a join operation
in a query involving that entity.

176 M. Franceschet et al.

The reader might wonder if a spanning forest with the maximum connectivity
is also a spanning forest with the maximum depth. The answer in negative, as
shown in the example depicted in Figure 3.

0 4 3

5

12

6 7

Fig. 3. A nesting graph: a MCSF is obtained by removing edges (1,2), (2,3), and (3,4).
It is composed of one tree, 7 edges, and the sum of node depths is 19. A MDSF is the
simple path from node 1 to node 7 plus the node 0. It comprises 2 trees, 6 edges, and
the sum of node depths is 21. Notice that in this case both solutions are unique.

In the following, we describe an efficient algorithm MCSF that finds a maxi-
mum connectivity spanning forest of a nesting graph G. A root node in a directed
graph is a node with no incoming edges. Given a node v in a graph G, a reach-
ability tree of v is a directed tree rooted at v containing a path for each node
reachable from v in G. Notice that at least one reachability tree exists for any
node v, that is, the shortest-path tree from v. The algorithm MCSF works as
follows:

1. compute the graph G′ of the strongly connected components (SCCs) of G;
2. let C1, . . . , Ck be the root nodes in G′. For i from 1 to k, compute the

reachability tree T (Ci) rooted at some node in Ci in the graph G and remove
all nodes in T (Ci) and all edges involving nodes in T (Ci) from G;

3. output the forest obtained by taking the disjoint union of all trees T (Ci) for
i from 1 to k.

Figure 4 illustrates an execution of the sketched algorithm.

1 2

4

3 7

5 6

8

9 10

1,2,3

4,5,6

7,8

9

10

Fig. 4. A nesting graph (left) and its SCC graph (right). Starting the visit from the
root component {1,2,3}, the resulting MCSF is shown in bold. A second MCSF is
obtained by starting the visit from the root component {9}.

Theorem 1. MCSF computes a maximum connectivity spanning forest of a
nesting graph G in time linear in the size of G.

From Entity Relationship to XML Schema 177

Proof. As far as the complexity of algorithm MCSF is concerned, the only crucial
point is the computation of the SCCs which can be performed in time Θ(|V |+|E|)
exploiting a double depth-first search [5].

As for correctness, we start observing that the MCNP is equivalent to the
problem of finding a spanning forest with minimum number of tree roots, since
in a graph with n nodes a forest has n− k edges if and only if it has k roots. We
proceed by induction on the number of SCCs of G. In the base case, suppose
G has one SCC. Then we can build a spanning forest having just one root,
since each node reaches all the nodes of G. In this case our algorithm correctly
computes a spanning forest having one root.

As for the inductive step, let us assume that we have proved the correctness
of our algorithm on graphs having at most r − 1 SCCs and let G be a graph
with r SCCs. The SCC graph G′ of G is an acyclic graph, hence there exists
at least one node C in G′ without outgoing edges, i.e., C is a SCC of G that
does not reach any other SCC. We distinguish two cases: (1) in G′ the node C
has at least one incoming edge; (2) in G′ the node C has no incoming edges. In
case (1) a spanning forest of G having minimum number of roots has the same
number of roots of a spanning forest of G \C having minimum number of roots.
By inductive hypothesis our algorithm is correct on G \ C, i.e., it determines a
spanning forest having the correct number of roots. Moreover, since C has at
least one incoming edge in G′, we have that C is not used by our algorithm as
root node of G′. Hence, our algorithm determines on G a forest having the same
number of roots of that determined on G \C. This means that our algorithm is
correct on G. In case (2), if a spanning forest of G \C having minimum number
of roots has k roots, then a spanning forest of G having minimum number of
roots has k +1 roots (and vice versa). In this case, since C does not reach and is
not reached by other components of G, our algorithm determines one tree rooted
at C and works on the remaining components as it works on G\C. Hence, since
by inductive hypothesis it is correct on G \ C, it is correct also on G. ��

On the other hand, the MDNP is hard and, unless P = NP, there is no efficient
algorithm that solves this problem.

Theorem 2. The maximum depth nesting problem is NP-complete.

Proof. (Sketch) We recall that an optimization problem is NP-complete if the
(standard) decision problem associated with it is NP-complete [5]. The decision
problem associated with our problem consists in deciding whether a graph has
a spanning forest of depth k. In the rest of this proof we denote such a problem
as DDNP.

Let G = (V, E) be a directed graph and F be a spanning forest of G. Let the
depth of F , denoted by SF , be the sum of depths of nodes in F . We say that a
spanning forest is a chain if it contains |V | − 1 nodes having one outgoing edge
and one leaf. We claim that: (1) SF ≤ (|V |·(|V |−1))/2; (2) SF = (|V |·(|V |−1))/2
iff F is a chain. The idea behind the proof is as follows: to maximize the depth
of a generic forest the nodes has to be pushed as deep as possible, leading to a
chain of nodes whose depth is clearly (|V | · (|V | − 1))/2.

178 M. Franceschet et al.

It is easy to see that DDNP is in NP: given a spanning forest F , its depth
SF can be computed in polynomial time. We show that DDNP is NP-hard by
reducing the Hamiltonian path problem – the problem of deciding whether there
exists a path that visits each node of a graph exactly once – to it. The above
claim allows us to prove that G has an Hamiltonian path if and only if there G
has a spanning forest of depth (|V | ·(|V |−1))/2. Indeed, if G has an Hamiltonian
path H , then H is a spanning forest of G. Moreover, since an Hamiltonian path
is a chain, we have SH = (|V | · (|V |−1))/2 (point (2) of the claim). On the other
hand, if G has a spanning forest of depth (|V | · (|V | − 1))/2, then by point (2)
of the claim G has a spanning forest which is a chain. A chain is nothing but an
Hamiltonian path, hence our graph has an Hamiltonian path. ��

4 Related and Future Work

There is a vast literature about the integration of XML with relational databases
– see [6] for a general comparison of XML and relational concepts and for ba-
sic kinds of mappings between them. We found, however, that this literature in
partly redundant (even when contributions come from the same authors) and
the corresponding citation network is quite disconnected. Nevertheless, we iden-
tified three main research themes connected to our work. The research theme
closest to the present contribution is that of mapping ER conceptual schemas
into some XML schema language. We would like to mention a couple of contribu-
tions: Kleiner and Lipeck [7] present a mapping from ER with specialization into
DTD that preserves information about the structure and as many constraints
as possible. The expressiveness limitations of DTD, however, reduce the num-
ber of preserved constraints, complicate the mapping, and do not allow a full
reversibility of the design. Elmasri et at. [1] design a system for generating user-
customized hierarchical views of an ER schema, creating XML Schemas from
such views and generating SQL queries to build XML instance documents from
data in a relational database with the same conceptual schema. In particular,
they describe an algorithm to eliminate graph cycles in the ER diagram subset
selected by the user.

A second related research topic is the translation of relational logical schemas
into some XML schema language. It is worth noticing, however, that, from the
point of view of integrity preservation, converting relational logical schemas is
easier than converting ER conceptual schemas. Indeed, as pointed out in Sec-
tion 2, the relational model allows to specify fewer integrity constraints than
the ER model. An informative contribution in this research line is [8], which
includes a survey of different techniques of representing many-to-many rela-
tionships within XML and gives many references to related works. In partic-
ular, Duta et al. [9] propose algorithms for transforming relational schemas
to XML Schema considering the following metrics in this order: constraint-
preservation, nested structure, compact structure, length of generated XML file,
similarity to the relational structure. The authors state that the incorporation of
a query metric (as investigated in this paper) in the translation criteria would be
desirable.

From Entity Relationship to XML Schema 179

A third relevant research thread is the development of conceptual models for
XML databases. Proposals include suitable extensions of the ER model, e.g.,
the ERX model [10], models based on UML [11] and ORM [12], and hierarchical
models, like ORA-SS [13]. Besides proposing a new conceptual model tailored
for XML, most contributions in this research line give automatic procedures to
map the conceptual model to some XML schema language. See [14] for a survey
comparing many conceptual models for XML including more references.

Future work comprises the investigation of polynomial-time approximation
algorithms for the maximum depth nesting problem and the integration of the
algorithms in the translation module. Moreover, we intend to test the translation,
validation, and query performance on a realistic case study.

References

1. Elmasri, R., Li, Q., Fu, J., Wu, Y.C., Hojabri, B., Ande, S.: Conceptual model-
ing for customized XML schemas. Data and Knowledge Engineering 54(1), 57–76
(2005)

2. Gubiani, D., Montanari, A.: ChronoGeoGraph: an expressive spatio-temporal con-
ceptual model. In: SEBD, pp. 160–171 (2007), http://dbms.dimi.uniud.it/cgg/

3. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 5th edn.
Addison-Wesley, Reading (2007)

4. Liu, C., Vincent, M.W., Liu, J.: Constraint preserving transformation from rela-
tional schema to XML Schema. World Wide Web 9(1), 93–110 (2006)

5. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
McGraw-Hill Higher Education, New York (2001)

6. Kappel, G., Kapsammer, E., Retschitzegger, W.: Integrating XML and relational
database systems. World Wide Web 7(4), 343–384 (2004)

7. Kleiner, C., Lipeck, U.W.: Automatic generation of XML DTDs from conceptual
database schemas. In: GI Jahrestagung (1), pp. 396–405 (2001)

8. Link, S., Trinh, T.: Know your limits: Enhanced XML modeling with cardinality
constraints. In: ER, pp. 19–30 (2007)

9. Duta, A.C., Barker, K., Alhajj, R.: Conv2XML: Relational schema conversion to
XML nested-based schema. In: ICEIS, pp. 210–215 (2004)

10. Psaila, G.: ERX: A conceptual model for XML documents. In: SAC, pp. 898–903
(2000)

11. Combi, C., Oliboni, B.: Conceptual modeling of XML data. In: SAC, pp. 467–473
(2006)

12. Bird, L., Goodchild, A., Halpin, T.A.: Object role modelling and XML-Schema.
In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920,
pp. 309–322. Springer, Heidelberg (2000)

13. Dobbie, G., Xiaoying, W., Ling, T., Lee, M.: Designing semistructured databases
using ORA-SS model. In: WISE (2001)

14. Necasky, M.: Conceptual modeling for XML: A survey. In: DATESO (2006)

http://dbms.dimi.uniud.it/cgg/

Atomicity for XML Databases�

Debmalya Biswas1, Ashwin Jiwane2, and Blaise Genest3

1 SAP Research, Vincenz-Priessnitz-Strasse 1, Karlsruhe, Germany
debmalya.biswas@sap.com

2 Department of Computer Science and Engineering, Indian Institute of Technology,
Mumbai, India

ashwinjiwane@cse.iitb.ac.in
3 IRISA/CNRS, Campus Universitaire de Beaulieu, Rennes, France

genest@crans.org

Abstract. With more and more data stored into XML databases, there
is a need to provide the same level of failure resilience and robustness that
users have come to expect from relational database systems. In this work,
we discuss strategies to provide the transactional aspect of atomicity
to XML databases. The main contribution of this paper is to propose
a novel approach for performing updates-in-place on XML databases,
with the undo statements stored in the same high level language as the
update statements. Finally, we give experimental results to study the
performance/storage trade-off of the updates-in-place strategy (based on
our undo proposal) against the deferred updates strategy to providing
atomicity.

1 Introduction

With more and more data stored into XML databases, there is a need to provide
the same level of failure resilience and robustness that users have come to expect
from relational database systems. A key ingredient to providing such guarantees
is the notion of transactions. Transactions have been around for the last 30 years
leading to their stable and efficient implementations in most current commercial
relational database systems. Unfortunately, (to the best of our knowledge) there
still does not exist a transactional implementation for XML databases. Here,
we are talking about native XML databases [1], and not relational databases
extended to store XML data [2] that in turn rely on the transactional features of
the underlying relational database. The need to be able to update XML however
has been widely recognized and addressed by both industry and researchers with
the recent publication of the W3C standard XQuery Update Facility 1.0 [3].
Researchers have also started exploring efficient locking protocols for XML [4,5].
In this work, we discuss strategies to provide a transactional implementation for
XML databases based on [1,3], with specific focus on the atomicity aspect.

� This work was partially done while the first and second authors were at
IRISA/INRIA, France. This work is supported by the CREATE ACTIVEDOC,
DOCFLOW and SecureSCM projects.

Z. Bellahsène et al. (Eds.): XSym 2009, LNCS 5679, pp. 180–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Atomicity for XML Databases 181

Transactions [6] provide an abstraction for a group of operations having the
following properties: A (Atomicity), C (Consistency), I (Isolation), D (Durabil-
ity). Atomicity refers to the property that either all the operations in a trans-
action are executed, or none. There are usually two strategies for performing
updates in an atomic fashion:

– Deferred Updates (UD): In this strategy, each transaction T has a corre-
sponding private workspace WT . For each update operation of T , a copy of
the data item is created in WT , and the update applied on the local copy.
Upon commit of T , the current values of the data items in WT need to
be reflected atomically to the actual database. As obvious, abortion is very
simple and can be achieved by simply purging WT .

– Updates-in-Place (UIP): Here, transactional updates are applied as and when
they occur. However, the disadvantage of UIP is the added complexity in
the abortion process. To provide atomicity in such a scenario, the “before
images” of all updated data items is usually maintained in a log, which can
then be used to undo the updates if required.

In this work, we study both approaches for providing atomicity to XML
databases. The main contribution of this paper is to propose a novel approach for
providing UIP on XML databases. Rather than maintaining the “before images”
data, our proposal stores undo operations written in the high level query/update
language. Basically, for each update, it generates the undo statements dynam-
ically (at run-time) that can be used to undo the effects of that update. The
transformation rules to dynamically generate the undo operations are presented
in Section 3.

The performance trade-off between UD and UIP depends upon the additional
overhead of creating and writing copies in UD, and depends upon the time
taken to create the undo operations and perform them in the event of a failure
in UIP. The amount of storage required to store the undo data is also an area of
concern for current database implementations. Long running transactions per-
forming large number of updates often have to be aborted due to insufficient
disk space (e.g., the “ORA: Snapshot Too Old” error). Thus, the undo storage
requirements of both strategies are important. In our case, the UD strategy in
particular leads to storage/performance trade-offs. Recall that for each update,
the UD strategy first creates copies of the data items (if they do not already
exist in its private workspace), and then performs the updates on the copies.
The additional create step per update can clearly be avoided if we create a copy
of the whole XML document for the first update on a document, then any subse-
quent updates on nodes of that document would not need the additional create
step. Obviously, this is not efficient from a storage perspective as it would lead
to storage redundancy unless all the nodes of a document are updated (as part
of one transaction).

We have implemented both the UD and UIP strategies for XML databases,
and provide experimental results with respect to the performance/storage trade-
off between the two strategies for the issues identified above in Section 4.

182 D. Biswas, A. Jiwane, and B. Genest

Note that this approach of using undo statements to preserve atomicity is in
line with using compensation [9] to semantically undo the effects of a transaction.
Here, it helps to recall that compensation is not equivalent to the traditional
database “undo”, rather it is another forward operation that moves the system
to an acceptable state on failure. While compensation mechanisms have been
accepted and are available in high level languages (e.g., compensation handlers
in BPEL [8]), they have not been studied for database updates (at least, not
explicitly). Implicitly, when we say that a bank withdrawal can be compensated
by a deposit operation, it corresponds to the effects of an update SQL being
compensated by another update SQL on the accounts table.

2 XML Update Syntax

In this section, we give a brief introduction to the XQuery Update Facility (XUp-
date) [3] for performing XML updates. XUpdate adds five new kinds of expres-
sions, called insert, delete, replace, rename, and transform expressions, to the
basic XQuery model [7]. For simplicity, we only focus on the insert, delete and
replace expressions, also referred to as the update expressions in general. The
main differences between XUpdate and SQL, apart from the hierarchical nature
of XML, arises from the significance of a node’s location in the XML document
(XML documents are basically ordered trees.). For example, let us consider the
syntax of the XUpdate insert expression:

InsertExpr ::= “insert” (“node” | “nodes”) SourceExpr TargetChoice TargetExpr
TargetChoice ::= ((“as” (“first” | “last”))? “into”) | “after” | “before”

An insert expression is an updating expression that inserts copies of zero
or more source nodes (given by SourceExpr) into a designated position with
respect to a target node (given by TargetExpr). The relative insert position is
given by TargetChoice having the following semantics: If before (or after) is
specified, then the inserted nodes become the preceding (or following) siblings
of the target node. If as first into (or as last into) is specified, then the inserted
nodes become the first (or last) children of the target node. For the detailed
specifications of InsertExpr, DeleteExpr and ReplaceExpr, the interested reader
is referred to [3].

The evaluation of an update expression results in a pending update list of
update primitives, which represents node state changes that have not yet been
applied. For example, if as first into is specified in the given insert expression,
then the pending update list would consist of update primitives of the form:

insertIntoAsFirst($target, $clist)

The effects of the above primitive can be interpreted as: Insert $clist nodes
as the leftmost children of the $target node. Note that the node operands of an
update primitive are represented by their node identifiers.

Atomicity for XML Databases 183

The pending update lists generated by evaluation of different update expres-
sions can be merged using the primitive mergeUpdates. Update primitives are
held on pending update lists until they are made effective by an applyUpdates
primitive.

We consider a pending update list consisting of a sequence of update (in-
sert/delete/replace) primitives as a transactional unit, with the applyUpdates
primitive acting as the corresponding Commit operation. The objective then is
to ensure that the update primitives in a pending list execute as an atomic unit,
i.e. either all the update primitives are applied or none. In the next section,
we show how to generate the corresponding undo primitive that can be used to
undo the effects of an update primitive in the event of a failure.

3 XML Undo Primitives

The underlying intuition of undo primitives is that the effects of an insert (delete)
primitive can be canceled by the subsequent execution of a delete (insert) prim-
itive. For example, for the update primitive:

insertBefore (t, {n1, n2, n3})

its undo primitive(s) would be:

delete(n1)
delete(n2)
delete(n3)

where t, n1, n2, n3 refer to node identifiers. Note that an update primitive
may lead to more than one undo primitive, and vice versa. Basically, for a given
pending update list, as its update primitives are processed one by one, we assume
that the same processor can use our mechanism to simultaneously generate (and
store) the respective undo primitives.

We give the undo generation rules of the different update primitives in the
sequel.

3.1 Insert

We start with the insert primitive.

insertBefore ($target as node(), $content as node()+)

Let $content = {n1, · · · , nm}. Then, its undo primitives are:

delete(nm), · · ·, delete(n1)

The undo primitives for the other insert primitives: insertAfter, insertInto,
insertIntoAsFirst and insertIntoAsLast, can be generated analogously.

184 D. Biswas, A. Jiwane, and B. Genest

3.2 Delete

The undo primitive generation of the delete primitive is slightly more compli-
cated. This is because of the lack of position specifier in the delete primitive:

delete($target as node())

That is, we do not know the position of the node to be deleted in the XML
document, and consequently do not know where to re-insert it (if required) to
undo the effects of the delete. If we assume some correlation between the node
identifier and its position in the document, then we can infer the position of the
node from its identifier. However, [3] does not impose any such restrictions on
the node identifier generation scheme, and neither do we assume the same here.
In the absence of such correlation, we first need to get the position details of the
node to be deleted before generating the corresponding undo primitive. There are
of course several ways of determining the relative position of the $target node in
the document, and the idea is to minimize the number of function calls needed.
An approach to generate the undo primitive based on the relative position of a
sibling node would be as follows:

$sibling = getNextSibling($target)
insertBefore ($sibling, $target)

The variant of the above approach based on the preceding sibling would be
as follows:

$sibling = getPreceedingSibling($target)
insertAfter ($sibling, $target)

While the above approaches require only a single additional function call, they
would not work if the $target node does not have any siblings (is the only child).
Then, we need to get the position of $target relative to its parent node.

$parent = getParent($target)
insertInto ($parent, $target)

Note that in the worst case (no siblings), the above approach leads to three
function calls, i.e. getNextSibling(), followed by getPreceedingSibling(), and fi-
nally getParent(). An alternate approach that also needs two additional function
calls would be as follows:

$parent = getParent($target)
$listChildren = getChildren($parent)
Let i be the position of $target in $listChildren, and ni refer to the node identifier
at position i in $listChildren.
if (i = 0)

then insertInto ($parent, $target)
else insertAfter (ni−1, $target)

Clearly, which approach is better depends on the underlying XML data char-
acteristics, and would be difficult to predict in advance.

Atomicity for XML Databases 185

We can offset the time taken by the additional functional calls by doing some
pre-processing. Note that on applyUpdates(), the update primitives in a pending
update list are processed in the following order [3]: insert, followed by replace,
finally followed by delete primitives. As the delete primitives are processed at
the end, the positions of the delete primitives can be pre-determined in parallel
while processing of the preceding insert and replace primitives.

3.3 Replace

The replace primitive is given below:

replaceNode ($target as node(), $replacement as node()*)

The semantics of the replace primitive is to replace the $target node by the
$replacement node(s). A replace primitive can be implemented as a combination
of insert and delete primitives as follows:

replaceNode ($target, $replacement)
⇔

insertAfter ($target, $replacement), delete ($target)

The undo primitives for replace can then be constructed as follows: Let
$replacement = {n1, · · · , nm}.

insertAfter (nm, $target)
delete(nm), · · ·, delete(n1)

The first insertAfter undo primitive relies on the semantics that insertion of
a list of nodes preserves their original source order, i.e. n2 is the right sibling of
n1, · · ·, nm is the rightmost sibling node to be inserted. Note that here we do
not need the additional function calls to generate the undo primitive of delete,
as is needed for standalone delete primitives (Section 3.2).

4 Experimental Analysis: Performance and Storage

The experiments were performed on the Active XML (AXML) [10] infrastruc-
ture. AXML provides a P2P based distributed XML repository. The XML repos-
itories in AXML are implemented based on the Exists XML database. Exists
currently does not provide any transactional features, at least not at the user
level. We have extended Exists to implement the transactional aspects discussed
in this paper.

As mentioned earlier, the main factors affecting the performance trade-off
between UD and UIP (implemented based on our proposal) can be summarized
as follows: the additional overhead of creating and writing copies in UD versus
the additional time needed to perform the undo operations in the event of a
failure. Fig. 1 gives some comparison results.

Clearly, if there are no failures, UIP is the fastest (no undoing is required,
while the time taken to create the undo operations is negligible). In the event

186 D. Biswas, A. Jiwane, and B. Genest

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90

No. of update primitives

T
im

e
(m

s)

Updates-in-place with
no Undo

Updates-in-place with
Undo

Deferred updates
(document wise)

Deferred updates
(node wise)

Fig. 1. Execution Time vs. Number of update primitives per transaction

% % Increase in
Document Node Execution Time

10 47 74 57.44680851
20 60 93 55
30 80 113 41.25
40 93 133 43.01075269
50 108 152 40.74074074
60 124 169 36.29032258
70 135 189 40
80 152 213 40.13157895
90 165 221 33.93939394

Execution Time (in ms)

Fig. 2. Performance/storage trade-off

of failures, undos are required. When the number of operations is small, (doc-
ument wise) UD fares slightly better. However, as the number of operations in
a transaction increases, this advantage seems to fade away. That is, in mean
value considering a reasonable number of failures, we expect UIP based on our
proposal to perform better than UD, and in particular for large transactions.

Fig. 2 shows the storage/performance trade-off between creating copies of the
whole document against that of the specific affected nodes at a time in UD. If
10% of the nodes of a document are updated, then creating and updating copies
node wise takes 57% more time than doing it document wise. On the other
hand, the storage space is ten times less than that required by the document
wise strategy. On the other hand, if 90% of the the document nodes are updated,
then the nodewise strategy only needs 33% more time than the document wise
strategy, while saving only 10% of storage space. While it is expected for the
overall execution time of the node wise strategy to increase as the percentage
of document nodes updated increases, the interesting result is that the percent-
age difference in execution time actually decreases (from 57% to 34%) as the
percentage node updation increases (from 10% to 90%). We infer that this de-
crease is because as the percentage of nodes updated in a document increases,
the probability of the same nodes being updated more than once also increases

Atomicity for XML Databases 187

(for whom, the overhead copy creation time is saved). Compared to UIP based
on our proposal, the storage space needed for UIP is very close to that needed
for node-wise UD strategy. That is, it seems that UIP is better both in terms
of storage space and execution time. The only drawback is obviously its more
complex implementation.

5 Conclusions

Transactional implementation for XML databases are still in their infancy, with
the recent release of the W3C specification to perform XML updates. With
updates, comes the natural requirement to be failure resilient, and hence trans-
actions. In this work, we considered the two main approaches for performing
updates in an atomic fashion: UD and UIP. We proposed a novel approach for
providing UIP on XML data, where the undo data required to perform rollback
in the event of a failure/abort is stored in the same high level language as the
update statements. This allows for a lightweight implementation (without go-
ing into the disk internal details) while providing comparable performance, as
verified by experimental results.

References

1. Open Source Native XML Database, http://exist.sourceforge.net/
2. XML Database Benchmark: Transaction Processing over XML (TPoX),

http://tpox.sourceforge.net/

3. XQuery Update Facility 1.0 Specification,
http://www.w3.org/TR/xquery-update-10/

4. Dekeyser, S., Hidders, J., Paredaens, J.: A Transactional Model for XML
Databases. World Wide Web 7(1), 29–57 (2002)

5. Haustein, M.P., Härder, T.: A Transactional Model for XML Databases. J. Data
Knowledge Engineering 61(3), 500–523 (2007)

6. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control. Morgan Kaufmann Publishers,
San Francisco (2001)

7. XQuery 1.0: An XML Query Language Specification,
http://www.w3.org/TR/xquery/

8. Business Process Execution Language for Web Services Specification,
http://www.ibm.com/developerworks/library/specification/ws-bpel/

9. Biswas, D.: Compensation in the World of Web Services Composition. In: Car-
doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 69–80. Springer,
Heidelberg (2005)

10. Active XML, http://activexml.net

http://exist.sourceforge.net/
http://tpox.sourceforge.net/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://activexml.net

Author Index

Aboulnaga, Ashraf 129
Almendros-Jiménez, Jesús M. 145

Bača, Radim 25
Barbosa, Denilson 91
Biswas, Debmalya 180
Bonifati, Angela 106

Caetano da Silva, Paulo 67
Cesário Times, Valéria 67

El-Tazi, Neamat 17
Elghandour, Iman 129
Elmasri, Ramez 33

Franceschet, Massimo 165

Gath, Sebastian 114
Genest, Blaise 180
Grün, Christian 114
Gubiani, Donatella 165

Holupirek, Alexander 114

Jagadish, H.V. 17
Jiwane, Ashwin 180

Krátký, Michal 25
Kumar, P. Sreenivasa 1

Leighton, Gregory 91
Lorusso, Marianna 106
Loupal, Pavel 53

Malaika, Susan 156
Montanari, Angelo 165
Moon, Bongki 75

Nizar M., Abdul 1

Piazza, Carla 165

Rajagopalan, Mohan 75
Rao, Praveen R. 75

Scholl, Marc H. 114
Shah, Bhavik 75
Sileo, Domenica 106
Stoklasa, Jan 53

Taha, Kamal 33

Wells, Keith 156

Zilio, Daniel C. 129
Zuzarte, Calisto 129

	Title Page
	Preface
	Organization
	Table of Contents
	XML Twig Queries
	Ordered Backward XPath Axis Processing against XML Streams
	Introduction
	Motivation and Related Work
	Handling Ordered Backward Axes
	Representing Ordered Axes
	Matching Algorithm
	Predicate Processing

	Experiments
	Conclusion
	References

	BPI-TWIG: XML Twig Query Evaluation
	Introduction
	Basic Data Structures
	Twig Query Evaluation Algorithm
	Performance Evaluation
	Query Complexity Effect and Recursiveness Effect

	Related Work and Conclusion
	References

	On the Efficiency of a Prefix Path Holistic Algorithm
	Introduction
	Model
	Twig Query Pattern and Query Matching

	Holistic Algorithms
	Holistic Algorithms

	The TwigStackSorting Algorithm
	Analysis of the TwigStackSorting Algorithm
	Prefix Path Streaming Optimality

	Experimental Results
	Prefix Path Streaming Optimality
	Processing Time Results

	Conclusion
	References

	Query Execution
	KSRQuerying: XML Keyword with Recursive Querying
	Introduction
	Related Work
	Concepts Used in KSRQuerying
	Determining the Immediate Relatives of Canonical Trees
	Determining Related KCs
	Locating an IAN for a Recursive Query
	Constructing the Answers for Loosely Structured and Keyword Queriess
	Forming an Answer Subtree for a Keyword-Based Query
	Locating an IAN of a Loosely Structured Query

	System Implementation and Architecture
	Determining Ontology Labels
	Constructing Canonical Trees Graphs

	Experimental Results
	Recall and Precision Evaluation
	Search Performance Evaluation

	Conclusions
	References

	The XML-λ XPath Processor: Benchmarking and Results
	Introduction
	Related Work
	The XML-λ Framework
	Concept and Basic Definitions
	Example
	Query Language
	Summary

	Processor Implementation
	Benchmark Environment
	Results
	Discussion
	Conclusions
	References
	A List of Queries
	B Benchmarking Results

	XPath+: A Tool for Linked XML Documents Navigation
	Introduction
	XPath+
	A Data Model for XML with XLink
	Functions
	Syntax and Semantics
	$XPath$+ Processor Architecture

	A Case Study Based on XBRL Documents
	Related Work
	Conclusion and Future Work
	References

	XML Document Parsing and Compression
	A Data Parallel Algorithm for XML DOM Parsing
	Introduction
	Background and Motivation
	XML Documents and Parsing Techniques
	Prior Work on Parallel XML Parsing
	Prior Work on Data Parallel ProgrammingModels

	Our Proposed Approach
	A Serial Approach
	A Parallel Approach

	Implementing $ParDOM$
	Phase I - Chunk Creation
	Phase I - Partial DOM Construction
	Phase II - Linking Partial DOM Trees
	Extensions and Memory Requirement

	Experimental Results
	Using MapReduce to Implement $ParDOM$
	$ParDOM$ vs. PXP

	Conclusions
	References

	Optimizing XML Compression
	Introduction
	Preliminaries
	XML Data Model
	XML Compression

	Complexity Analysis of Compression Configuration Selection
	An Approximation Algorithm for Compression Configuration Selection
	Estimating Compressibility
	Estimating Storage Cost
	Modeling Compression Gain
	Branch-and-Bound Algorithm for Selecting Candidate Partitioning Strategies
	Determining an Optimal Compression Configuration

	Conclusion
	References

	XML Lossy Text Compression: A Preliminary Study
	Introduction
	Rules for XML Lossy Text Compression
	Experimental Study
	Experimental Setting and Results

	Related Work
	Conclusions and Future Perspectives
	References

	X Query
	XQuery Full Text Implementation in BaseX
	Introduction
	Database Architecture
	Document Storage
	Index Structures

	Full-Text Evaluation Strategies
	Sequential Scanning
	Index-Based Processing with Path Inversion
	Hybrid Processing: Sequential Evaluation with Index Usage
	Choosing the Proper Processing Strategy

	Iterative Evaluation of XQuery Full Text
	Sequential Evaluation
	Index-Based Full-Text Iterator
	Iterator Trees: Processing Non-trivial Index Requests

	Experimental Analysis
	Visualization of XML and Full-Text Results
	Summary
	References

	Recommending XMLTable Views for XQuery Workloads
	Introduction
	Related Work
	Materialized Views for XML Data
	XMLTable Views of XML Data

	View EnumerationProcess
	Types of XMLTable Views
	Enumerating Candidate Views
	Translating XQuery Queries into SQL Queries That Use XMLTable Views

	Expanding the Set of Enumerated Views
	Searching for the Optimal View Configuration
	Experiments
	Experimental Setup
	Effectiveness of the XMLTable View Advisor Recommendations

	Conclusions
	References

	An Encoding of XQuery in Prolog
	Introduction
	Loading XML Documents by Means of the Prolog Library
	Implementing XPath by Means of Prolog
	Implementing XQuery by Means of Prolog
	ATool for X Query
	Conclusions and Future Work
	References

	Universal XForms for Dynamic XQuery Generation
	Introduction
	The Demonstration Architecture and Principles
	Stepping through the Demonstration
	Select the XML Collection to Query
	Select the Document Types to Be Queried
	Select the Elements and Attributes to Be Queried
	Select an “Order by” Clause
	Select Optional Where Clauses
	Execute the Query
	View the Results
	Possible Enhancements

	Summary
	References

	XML Transaction Management and Schema Design
	From Entity Relationship to XML Schema: A Graph-Theoretic Approach
	Introduction
	The Basic Mapping
	The Target Schema Language
	Mapping ER Elements

	Nesting the Structure
	Related and Future Work
	References

	Atomicity for XML Databases
	Introduction
	XML Update Syntax
	XML Undo Primitives
	Insert
	Delete
	Replace

	Experimental Analysis: Performance and Storage
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

