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Abstract. In this note, we report on the first large-scale and practi-
cal application of secure multiparty computation, which took place in
January 2008. We also report on the novel cryptographic protocols that
were used.

1 Introduction

In this paper, we present the implementation of a secure system for trading
quantities of a certain commodity among many buyers and sellers, a so-called
double auction. In the particular case where our system has been deployed, it
was used by Danish farmers to trade contracts for sugar beet production on
a nation-wide market. The system was implemented using secure multiparty
computation (MPC) This allowed us to ensure that each bid submitted to the
auction was kept encrypted from the time it left the bidder’s computer, no single
party had access to the bids at any time. Nevertheless the system could efficiently
compute the price at which contracts should be traded. This was, to the best
of our knowledge, the first large-scale practical application of secure multiparty
computation.

Below, we first explain the application scenario and the reasons why multi-
party computation turned out to be a good solution. We then explain in detail
the cryptographic protocols used and prove their security. In doing so, we pro-
pose a logarithmic-round comparison protocol that is much more practical than
the one from [13] for numbers of realistic size. Finally, we describe the system
that was implemented and report on how it performed.
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2 The Application Scenario

In this section we describe the practical case in which our system has been
deployed. In [1], preliminary plans for this scenario and results from a small-
scale demo were described.

In Denmark, several thousand farmers produce sugar beets, which are sold
to the company Danisco, the only sugar beets processor on the Danish market.
Farmers have contracts that give them rights and obligation to deliver a certain
amount of beets to Danisco, who pay them according to a pricing scheme that
is an integrated part of the contracts. These contracts can be traded between
farmers, but trading has historically been very limited and has primarily been
done via bilateral negotiations.

In recent years, however, the EU drastically reduced the support for sugar
beet production. This and other factors meant that there was now an urgent
need to reallocate contracts to farmers where productions pays off best. It was
realized that this was best done via a nation-wide exchange, a double auction.

Market Clearing Price. Details of the particular business case can be found in
[2]. Here, we briefly summarize the main points while more details on the actual
computation to be done are given later. A double auction includes several buyers
and sellers and the goal is to find the so called market clearing price, which is
a price per unit of the commodity that is traded. What happens is that each
buyer places a bid by specifying, for each potential price, how much he is willing
to buy at that price. Similarly sellers say how much they are willing to sell at
each price1. All bids go to an auctioneer, who computes, for each price, the
total supply and demand in the market. Since we can assume that supply grows
and demand decreases with increasing price, there is a price where total supply
equals total demand, and this is the price we are looking for. Finally, all bidders
who specified a non-zero amount to trade at the market clearing price get to
sell/buy the amount at this price.

Ensuring Privacy of Bids. A satisfactory implementation of such an auction
has to take some security concerns into account: Bids clearly reveal information,
e.g., on a farmer’s economic position and his productivity, and therefore farmers
would be reluctant to accept Danisco acting as auctioneer, given its position
in the market. This is because Danisco could potentially misuse knowledge of
the bids in the ongoing renegotiations of the contracts (including the pricing
scheme). And even if Danisco would never do so, the mere fear of this happening
could affect the way farmers bid and lead to a suboptimal result of the auction.
On the other hand, the entitled quantities in a given contract are administrated
by Danisco (and adjusted frequently according to the EU administration) and in
some cases the contracts act as security for debt that farmers have to Danisco.
Hence running the auction independently of Danisco is not acceptable either.

1 In real life, a bidder would only specify where the quantity he wants to trade changes,
and by how much. The quantities to trade at other prices then follow from this.
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Finally, the solution of delegating the legal and practical responsibility by paying
e.g. a consultancy house to be the trusted auctioneer would have been a very
expensive solution.

The solution decided on was to implement an electronic double auction, where
the role of the auctioneer would be played by three parties, namely represen-
tatives for Danisco, DKS (the sugar beet growers’ association) and the SIMAP
research project (the project in which the authors of this paper participated).
By interacting with each other, these three parties together could form a “vir-
tual auctioneer”, computing the market clearing price and quantities to trade,
just as described above. This was implemented using secure multiparty compu-
tation technology: each bidder sends his bid in appropriately encrypted form to
the three parties, who then compute on the data while it is still in protected
form. Therefore, no single party ever has access to any bid in the clear. Still, by
collaborating, the parties can produce the required output.

A three party solution was selected, partly because it was natural in the given
scenario, but also because it allowed using very efficient cryptographic protocols
to do the secure computation.

Motivation. It is interesting to ask what motivated DKS and Danisco to try
using such a new and untested technology? One important factor was simply the
obvious need for a nation-wide exchange for production rights, which had not
existed before, so the opportunity to have a cheap electronic solution –secure
or not– was certainly a major reason. We do believe, however, that security
also played a role. An on-line survey carried out in connection with the auction
showed that farmers do care about keeping their bids private (see table in Fig. 1).
Also, in an interview with the involved decision markers from Danisco and DKS
these confidentiality issues were well recognized.

Now, if Danisco and DKS would have tried to run the auction using con-
ventional methods, one or more persons would have had to have access to the
bids, or control over the system holding the bids in cleartext. As a result, some
security policy would have had to be agreed, answering questions such as: who
should have access to the data and when? who has responsibility if data leaks,
and what are the consequences?

Since the parties have conflicting interests, this could have lead to very lengthy
discussions, possibly bringing the whole project to a halt. Using a consultancy
house as mediator would not have solved these problems: the parties would still
have had to agree on whether the mediator’s security policy was satisfactory. As
it happened, there was no need for this kind of negotiation, since the multiparty
computation ensured that no one needed to have access to bids at any point.
In an interview with the decision makers, they recognized that this fact made it
easy to communicate the security policy to the farmers.

Security and Risks. One must of course consider which attacks such a system
might be subjected to. Attacks from external parties, hackers, etc. is of course
an issue that must be considered in practice, but such attacks are not special to
our system and are therefore less interesting for the discussion in this paper.
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Fig. 1. Farmers’ confidentiality expectations. (Numbers from survey based on questions
asked to the farmers after they had submitted their bids.)

A more interesting question is whether the participants themselves might at-
tack the system. With respect to the three parties doing the secure computation,
the situation was as follows: none of the parties seriously suspected that any of
the others would actively and maliciously attack the system. On the other hand,
giving all the sensitive data in the clear to one party was not acceptable, and
moreover, none of the parties wanted the responsibility of having to store the sen-
sitive data – this would immediately lead to all the practical problems described
above, with security policies and procedures.

A suitable solution was therefore a protocol where one assumes that all parties
act as they are supposed to, but where no party ever gets access to any sensitive
information. This is known as semi-honest security and this is the model we
chose for our system. In a nutshell, semi-honest security can be described as a
model where one can “choose not to know” any sensitive data and therefore does
not have to assume sole responsibility for keeping them secret.

With respect to malicious attacks from bidders, we estimated that the risk of
this happening in our particular case was not large enough to motivate the extra
cost of protecting against it: Bidders have a clear interest in the auction working
properly, and would anyway have to reverse engineer an applet supplied by the
system to even start an attack. Still, in other scenarios, or perhaps in future
instances of this auction, malicious attacks from the client side might be a valid
concern, and we therefore show below protocols that protect against malicious
bidders.

Alternative Cryptographic Solutions. One might also ask if the full power of
multiparty computation was actually needed? Our solution ensures that no single
player has any sensitive information, and it might seem that one could solve the
problem more efficiently in a similar trust model using a trick often used in
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voting protocols: one party P1 receives the bids in encrypted form from the
bidders, however, the bids are encrypted with the public key of another party
P2. Then P1 sends the encryptions, randomized and in permuted order to P2 who
decrypts the bids and computes the market clearing price. While this achieves
some security because P2 does not know who placed which bids, we have to
remember that bids contain much more information than what is conveyed by
the result (the market clearing price), e.g., one can see the quantities people were
willing to buy or sell at other prices than the clearing price. In principle, this
type of information is highly valuable for a monopolist such as Danisco in order
to exercise its market power, e.g., in terms of setting the price of an extension
or a reduction of the total processing capacity. To what extend such a situation
is relevant in practice is not easy to answer. Our conclusion was that using full-
blown multiparty computation is a better solution because it frees us from even
having to consider the question.

3 Introduction to Multiparty Computation

In the model of multiparty computation considered in this paper, we have a
number of input clients I1, ..., Im and a number of servers P1, . . . , Pn. The input
clients each hold inputs x1, . . . , xm, and we then want to securely compute some
function f on these inputs, where f(x1, . . . , xn) = y becomes public, but we
want to make sure that y is the only information on x1, ..., xm that is revealed.
This should hold, even if players exhibit some amount of adversarial behavior.
The goal can be accomplished by an interactive protocol π that the players
execute. Intuitively, we want that executing π is equivalent to having a trusted
party T that receives privately xi from Ii, computes the function, and returns
y to everyone2. With such a protocol we can –in principle– solve virtually any
cryptographic protocol problem. The general theory of MPC was founded in the
late 80-ties [16,3,7]. The theory was later developed in several ways – see for
instance [21,18,8]. An overview of the theoretical results known can be found
in [6].

Despite the obvious potential that MPC has in solving a wide range of prob-
lems, we have seen virtually no practical applications of MPC in the past. This
is probably in part due to the fact that direct implementation of the first general
protocols would lead to very inefficient solutions. Another factor has been a gen-
eral lack of understanding in the general public of the potential of the technology.
A lot of research has gone into solving the efficiency problems, both for general
protocols [11,17,9] and for special types of computations such as voting [4,12].

A different line of research has had explicit focus on a range of economic ap-
plications, which are particularly interesting for practical use. This approach was
taken, for instance, by two research projects that the authors of this paper have
been involved in: SCET (Secure Computing, Economy and Trust)3 and SIMAP
2 This “equivalence” can be formalized using, for instance, Canetti’s Universal Com-

posability framework[5].
3 see http://sikkerhed.alexandra.dk/uk/projects/scet

http://sikkerhed.alexandra.dk/uk/projects/scet
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(Secure Information Management and Processing)4 which has been responsible
for the practical application of MPC described in this paper. In the economic
field of mechanism design the concept of a trusted third party has been a cen-
tral assumption since the 70’s [15,19,10]. Ever since the field was initiated it
has grown in momentum and turned into a truly cross disciplinary field. Today,
many practical mechanisms require a trusted third party and it is natural to
consider the possibility of implementing such a party using MPC. In particular,
we have considered:

– Various types of auctions that involves sealed bids for different reasons. The
most well-known is probably the standard highest bid auction with sealed
bids, however, in terms of turnover another common variant is the so called
double auction with many sellers and buyers. This auction handles scenarios
where one wants to find a fair market price for a commodity given the existing
supply and demand in the market.

– Benchmarking, where several companies want to combine information on
how their businesses are running, in order to compare themselves to best
practice in the area. The benchmarking process is either used for learning,
planning or motivation purposes. This of course has to be done while pre-
serving confidentiality of companies’ private data.

When looking at such applications, one finds that the computation needed is
basically elementary arithmetic on integers of moderate size, say around 32 bits.
More concretely, quite a wide range of the cases require only addition, multi-
plication and comparison of integers. As far as addition and multiplication is
concerned, this can be handled quite efficiently by well-known generic MPC
protocols. What they really do is actually operations modulo some prime p, be-
cause the protocols are based on secret sharing over Zp. But by choosing p large
enough compared to the input numbers, we can avoid modular reductions and
get efficient integer addition and multiplication.

This is efficient because each number is shared “in one piece” using a linear
secret sharing scheme, so that secure addition, for instance, requires only one
local addition by each player. Unfortunately, this also implies that comparison
is much harder and cannot be done efficiently using generic methods. So instead
one must develop special purpose techniques for comparison. One example of
this is the constant-round comparison protocol from [13], which is improved on
in this work.

In summary, this means that the protocols we developed for our auction sys-
tem are in fact useful for a large range of applications, since they tend to use
the same set of arithmetic operations as those needed for the auction.

4 The Cryptographic Protocols

Recall that the scenario we have includes input clients I1, . . . , Im who deliver
inputs to a multiparty computation, that is to be executed by servers P1, . . . , Pn.
4 see http://sikkerhed.alexandra.dk/uk/projects/simap

http://sikkerhed.alexandra.dk/uk/projects/simap
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In the types of cases we are interested in, m is very large and variable while we
think of n as a small constant. In our concrete case, we had n = 3 and m was
about 1200.

The input from client Ii is an ordered list of non-negative integers
{xij | j = 1, . . . , P}, where index j refers to one of the P possible prices per
unit, in increasing order. Such a list is called a bid. A bid can be a sell bid
in which case the list is non-decreasing, or a buy bid in which case it is non-
increasing. For a buy bid, xij is the quantity the bidder wants to buy at the i’th
price per unit, similarly for sell bids, the elements of which we will denote by
yij . Due to the practical constraints it must be possible to deliver these inputs
non-interactively (and securely) to the servers.

The secure computation consists of computing the total demand and supply
at each price, namely

dj =
∑

i

xij , sj =
∑

i

yij , j = 1, . . . , P ,

and to finally find the index j0 for which dj0 − sj0 = 0, or rather an index where
the difference is as close to 0 as possible. Since quantities are specified in units of
fixed size, we cannot expect to find a price where supply exactly meets demand.
This also means that there has to be agreed rules for how one handles cases
where we must live with a price where supply is larger than demand or vice
versa. Such rules were agreed for our concrete case, but the details of this are
outside the scope of this paper.

In any case, since supply increases and demand decreases with increasing
price, we can find the index we are looking for by binary search over the indices
1, . . . , P : We start by comparing dP/2 to sP/2. If the result is that dP/2 was
larger, then j0 ≥ P/2, else j0 < P/2. Depending on the result, we do a similar
comparison in the middle of the top or bottom half of the interval. Continuing
in this way, we can find j0 using secure comparisons between dj and sj for log P
values of j.

Note that it is secure to make the comparison results public: we want j0 to
be public anyway, and from this, the result of the comparison between dj and
sj already follows for any j. Finally j0 is made public, as well as xij0 , yij0 for all
i, i.e., the quantity each bidder said he would buy or sell at the market clearing
price.

It will therefore be sufficient to design a protocol that (in the given scenario)
implements the ideal functionality in Fig. 2.

We will assume a static and passive adversary who may corrupt any number
of input clients and any minority of the servers. We show below that we can
allow active corruption of the clients at the expense of some efficiency. In our
concrete case, however, we have estimated that the risk of active attacks from
clients was too small to motivate paying the loss in efficiency – see more details
below. We assume secure point-to-point channels between the servers, this can
be implemented with standard tools.

Our implementation will be based on standard Shamir secret sharing among
the n servers, using a prime field Zp where p is chosen such that its bit length
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Functionality F :

1. On input Input(x1, . . . , xP ) from an input client Ij , where x1, . . . , xP is a
list of integers where each number is at most � bits long, for some fixed �,
and where the list is either increasing or decreasing. The ideal functionality F
stores the numbers in uniquely named registers and notifies all players and the
adversary that an input list has been received from Ij along with the names
of the registers in which the numbers are stored.

2. On input C = A + B, where A, B, C are names of registers of F , F adds the
numbers in A and B and stores the result in C.

3. On input C = A × B where A, B, C are names of registers of F , F multiplies
the numbers in A and B and stores the result in C.

4. On input ConstantMult(a,B) where a ∈ Zp and B is a register, F multiplies
the number in B by a and stores the result in B.

5. On input Compare(A,B), F sends 1 to all servers if the number in A is larger
than the number in B and 0 otherwise.

6. On input Open(A), F sends the number stored in register A to all servers.
7. On input RandomBit(A), F chooses a random 0/1 value and places it in register

A.

Fig. 2. The ideal functionality F implemented by our protocols

is � + κ, where κ is a parameter that controls the statistical security of the
comparison protocol. In our concrete case � was 32 and p was 65 bits long).

We set t = �(n − 1)/2�, so a number is secret shared by choosing a random
polynomial f of degree at most t with f(0) = x, and the shares of x are then
f(1), . . . , f(n). By [x] we denote a set of shares of the number x, suppressing for
readability the random coins used in the sharing.

Let F ′ be the functionality that is the same as F , but does not have the
comparison command. In the following we will first describe how to implement
F ′, and then show how to implement F based on F ′.

Setting up Public Keys. Our implementation assumes that public/secret key
pairs have been set up by the servers before the computation starts, and that
the public keys are available to the clients. More precisely, for every maximal
unqualified set A of servers (i.e., |A| = t), we need that all servers not in A
have a secret key skA, and the public key pkA is available to all players (input
clients Ij and servers Pi). This can be accomplished in our scenario by having
one server in the complement of A generate pkA, skA, send skA to all servers not
in A and pkA to all players.

Non-Interactive Input. The first issue is now how to implement the command
where a client inputs numbers x1, . . . , xP . The naive solution of simply secret
sharing each xi and encrypt each share under the corresponding server’s public
key has the problem that it would expand the data a client needs to send by a
multiplicative factor of at least the number of servers.
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Instead, we propose a variant of a non-interactive VSS technique from [14]. We
describe it here for simplicity in our concrete case where n = 3. In this case the
key set-up above becomes the following: we need 3 key pairs (pki, ski), i = 1, 2, 3,
and server i has the two keys skj where j �= i. Now let fi(x), i = 1, 2, 3 denote
polynomials of degree at most 1 satisfying that fi(0) = 1, fi(i) = 0. One can
now communicate a list of numbers x1, . . . , xP in Zp to the servers in encrypted
form as follows:

1. Choose keys K1, K2, K3 for a pseudorandom function (PRF) F that takes
an index j as input and produces output in Zp

5.
2. Output encryptions Epki(Ki), i = 1, 2, 3.
3. For j = 1, . . . , P , compute and output

yj = FK1(j) + FK2(j) + FK3(j) + xj mod p .

Each server Pa can now process such an encryption and compute a Shamir share
of each number:

1. Decrypt the two ciphertexts Epki(Ki) where i �= a.
2. Compute your share sharea,j of xj as follows: sharea,j =

yj − FK1(j)f1(a) − FK2(j)f2(a) − FK3(j)f3(a)

bearing in mind that since fa(a) = 0, it does not matter that you don’t know
Ka.

It is straightforward to see that if we define the polynomial gj as gj = yj −
FK1(j)f1−FK2(j)f2−FK3(j)f3, then indeed deg(g) ≤ 1, gj(0) = xj and gj(a) =
sharea,j so that a valid set of shares has indeed been computed.

Generalizing this to an arbitrary number of servers and Shamir sharing with
threshold t is straightforward: we use the general key set-up above with a key
pair (pkA, skA) for every set of servers of size t, and skA is given to all servers
not in A. We then use the polynomials fA of degree at most t where fA(0) = 1
and fA(i) = 0 for all i ∈ A. Of course, this does not scale well to large n, but
we will not need this in our application.

This method has a number of advantages:

1. Except for an additive overhead depending on the number of servers, the
encrypted list is the same size as the list itself.

2. Assuming the decryption algorithm of the public key system is deterministic,
the decryption process always results in consistent shares of some list of
values.

3. If a server loses its secret keys, they can be reconstructed with help from the
other servers.

4. We only need communication from clients to servers. This is very convenient
in a practical setting where we can control the configuration of the (relatively
few) servers, but not the (many) clients – some might e.g. sit behind a firewall
making it hard to send data from the servers to the clients.

5 One can e.g. use a PRF F ′ with output in {0, 1}�log p�+κ, interpret the output as a
number y ∈ {0, . . . , 2�log p�+κ − 1} and let F (x) = F ′(x) mod p.
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Addition and Multiplication. After the input phase, all values are shared
using polynomials of degree ≤ t. We thus can implement addition and multipli-
cation using well known standard protocols and assuming as invariant that all
numbers that F would store in a register are in the real protocol secret shared
among the players. The addition command on input [a], [b] is done by having
servers locally add their shares of a and b, clearly [a] + [b] = [a + b] since the
sharing is linear. Likewise, multiplication by a constant is done by having each
server multiply his share by the public constant. Multiplication is done by hav-
ing server Pi multiply his shares of a, b: di = aibi. He then forms shares [di] and
sends them to the servers. Finally, all servers compute [ab] =

∑
i λi[di], where

the λi are Lagrange interpolation coefficients that are chosen to reconstructing
g(0) from g(1), . . . , g(n) for a polynomial g of degree ≤ 2t. Since 2t < n it is
possible to compute such λi.

Random Bits. For the RandomBit, we borrow a trick from [13]: All servers
secret share a random value, and add all shares locally, to form a sharing [u] of a
random unknown u. We then compute [v] = [u2 mod p] and open v. If v = 0 we
start over, otherwise we publicly compute a square root w of v, say we choose
the smallest one. We compute w−1[u] mod p which will be 1 with probability
1/2 and −1 with probability 1/2. Therefore, [(w−1u+1)2−1 mod p] will produce
the random shared binary value we wanted.

Lemma 1. If the encryption used is semantically secure and the PRF used is
secure, then the above protocol implements F ′ securely against a static, passive
adversary corrupting any number of clients and at most t servers.

Proof. We must provide a simulator that can, by only interacting with F ′, on
behalf of the corrupted parties, simulate any adversary’s view of the real life
protocol. The simulator first generates key pairs (pkA, skA) as described above,
sends the public keys to the adversary as well as those secrets that are to be
known by corrupt players.

We first show how to simulate the input operation. If the client sending input
is corrupt then since he follows the protocol by assumption, the simulator can
compute the input that is encrypted by monitoring the computing done by the
client. The simulator sends these inputs to F ′. When F ′ says that inputs were
received from an honest input client, the simulator generates an encrypted list of
input numbers following the protocol, using 0 for all input numbers. It sends this
as the simulated message from the client. The other commands are simulated
in the standard way: when an honest server secret shares a value, the simulator
generates (up to) t uniform field elements to simulate shares of corrupt players.
When a sharing is opened, the simulator is given the value to open by F ′ and
it completes the set of shares already known to the adversary to a complete set
consistent with the value to open.

To argue that the simulation of the input command is indistinguishable from
the real protocol, we note that it is clearly perfect for the case of a corrupt client,
as we run F ′ on the input shared by the corrupted client. For simulation of an
honest client, assume some set of t servers A is corrupt, let Real denote the view
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of these corrupted parties in the real protocol, let Sim denote their view in the
simulation, and consider a variant of the real process Hyb1 where all encryptions
under pkA are replaced by encryptions of zero. Likewise, we construct Hyb2 by
replacing in the simulation all encryptions under pkA by encryptions of zero.
Assuming semantic security, Hyb1 is computationally indistinguishable from the
real process, and Hyb2 is computationally indistinguishable from the simulation.
In proving this we use, of course, that the adversary does not know skA. Namely,
if there exists an environment and adversary for which one could distinguish, we
could break semantic security: We get pkA from an oracle as well as encryptions
that are either encryptions of zeros or encryptions of the messages that would
normally be used. A successful distinguisher now breaks semantic security. In
both Hyb1 and Hyb2, the use to the PRF can be replaced by oracle access to
the function without changing anything. We can then form two new processes
Hyb′

1,Hyb′
2 by replacing the PRF oracle by a random oracle. This leads to

indistinguishable processes by security of the PRF. Finally note that Hyb′
1 =

Hyb′
2 because the only part that may now depend on the input is the number yj .

But this is in one case xj + r mod p where r is uniform in Zp and independent of
xj and in the other case 0+ r mod p. This gives, of course the same distribution,
so our conclusion now follows from transitivity of indistinguishability.

Finally, the simulation of the commands other than input is perfect by stan-
dard arguments.

In the protocol above, we have assumed that the numbers in bids have the correct
form, in particular they are significantly smaller than p. Assuming only passive
attacks, one does not have to check for this, but one may still ask if we could
protect efficiently against malicious clients?

Input without Trusting the Clients. The method described above produces
consistently shared numbers no matter what the client does, but in principle
allows a client to send numbers that are too large, possibly causing the compu-
tation to fail. We can protect against this as well, namely we would fix the size
of the pseudorandom values FKi(j) to be �+κ bits, choose the length of p to be
2(� + κ + log T ) bits where T is the number of maximal unqualified sets A, and
otherwise do the same protocol as above to send inputs.

Each yj in the message sent by the client should be a sum of T pseudorandom
values and the actual secret to be shared. By choice of the size of p, this sum
will not involve any reduction modulo p, if yj is correctly constructed. So we
can demand that each yj is at most a κ + � + log T bit number and reject the
input otherwise. Even if a yj is not correctly constructed, this guarantees that
the secret we end up getting shares of will be of form yj − ∑

A FKA(j), and
must therefore be numerically much smaller than p, in fact it must be in the
interval [−2κ+�+log T ..2κ+�+log T ]. One can easily see that once we know such
a constraint on the numbers we work with, the comparison protocol we show
later can be used, indeed the only assumption it makes is that the numbers to
compare are sufficiently smaller than p. The servers can therefore check that the
input numbers are positive and increasing or decreasing as required.
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Finally, the public-key encryption used must be chosen ciphertext secure in
order to cope with malicious input clients, and each plaintext encrypted must
include an identification of the intended receiver.

Changing the protocol as described here costs us an increase in size of p
which implies a general loss of efficiency, an increase in size of data, and extra
work to check the form of bids. On the other hand, to actually cheat, a bidder
would have to write his own client program and convince the server side that
the normal client was still used. For our concrete case, we estimated that the
risk of bidders cheating in this way was too small to motivate the extra cost of
protecting against it.

As an aside, we note that it can be shown that sending bids that are not
increasing or decreasing cannot be to a bidders advantage and so this is in any
case a minor concern.

4.1 Adding Secure Comparison

It remains to describe how to compare numbers securely. We show how to do this
assuming access to the functionality F ′. Then this, the results from the previous
section and the UC composition theorem gives us the desired implementation of
F . Recall that numbers to compare are assumed to be of length at most � bits,
and the prime used for secret sharing is � + κ bits long.

In the description of the protocol below, we refer to arithmetic on objects
written as [d]. In this protocol, where we assume access to F ′, this should be
understood as referring to a register held by F ′, containing the number d. In the
actual implementation [d] would be a secret-sharing of d.

We will need an operator on bit-pairs, �, defined as
(

x

X

)
�

(
y

Y

)
=

(
x ∧ y

x ∧ (X ⊕ Y ) ⊕ X

)
,

where ∧ denotes the Boolean AND operator. Note that if we have [a], [b], where
a, b are guaranteed to be 0/1 values, then [a⊕b] can be computed using operations
from F ′, as [a]+[b]−2[ab]. So we can assume that ⊕ on binary values is available,
as if it was an operation implemented in F ′, and so � can also be implemented.
It is easy to verify that � is associative.

The comparison protocol is given in Fig. 3. Some intuition on the protocol:
when comparing values d and s, it is easy to see that the comparison result
follows from the �’th bit of 2� + d − s (counting the bits from zero). This bit is
extracted in two steps: First the problem is transformed to one where the binary
representation of involved numbers is available. This transformed instance can
then be solved easily.

Lemma 2. When given access to functionality F ′, the above comparison pro-
tocol implements the comparison operation with statistical security in O(log �)
rounds.

Proof. Once we note that none of the additions or subtractions we do can cause
reductions modulo p because of the size for p that we have chosen, it should be
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Comparison protocol:
Input: [d], [s]. Output: 1 if d ≥ s, 0 otherwise

1. For i = 0, . . . , �+κ+1, call RandomBit to generate [ri] for random ri ∈ {0, 1}.
Compute [r] =

∑
i 2i[ri].

2. Compute [a] = 2�+κ+1 − [r] + 2� + [d] − [s]. Open a, and compute the bits ai

of a.
3. Our goal is now to compute the �’th bit of a + r = 2�+κ+1 + 2� + d − s. Note

that we have a and [ri]’s available. Compute

(
[z]

[Z]

)
=

(
[a�−1 ⊕ r�−1]

[a�−1]

)
� · · · �

(
[a0 ⊕ r0]

[a0]

)
�

(
0

0

)
.

Now Z is the carry bit at position � when doing the addition a + r.
4. Compute [res] = a� ⊕ [r�] ⊕ [Z], open and output res.

Fig. 3. The comparison protocol implementing the command Compare given F ′

straightforward that the protocol outputs the correct result, if indeed Z is the
�’th carry bit from the addition of a and r, as claimed. To see this, note that
the computation of carry-bits can be perceived as follows. If ai �= ri, then the
present carry-bit ci is propagated on up, ci+1 = ci. However, if ai = ri, then
the next carry-bit is set to their value, ci+1 = ai = ri. The goal is therefore to
determine the value of ai at the most significant (left most) bit-position i < �
where ai = ri. Now, looking at the definition of �, one can verify that it outputs
the y-pair when x = 1, otherwise the x-pair is output, and hence Z indeed ends
up being the desired carry bit. Note that the

(
0
0

)
on the right is added to handle

the case where ai �= ri for all i.
As for the round complexity, note that since � is associative, the expression in

Step 3 can be evaluated in a standard tree-like fashion which will take O(log �)
rounds since there are � + 1 operands and the � operation executes in constant-
round.

Finally, note that an execution of the protocol can be simulated by choosing
a uniform κ + � + 2 bit number r and outputting 2κ+�+1 + 2� − r to play the
role of a. Note that this is the only actual communication in the protocol since
everything else happens internally in F ′. Since d, s are only �-bit numbers this
simulation has statistical distance 2−κ from the real distribution of a.

In [13] a (more complicated) constant-round comparison was proposed. However,
our solution is much more practical for the size of numbers in question: The
diamond operator executes in three rounds, so only 3 log 32 = 15 rounds are
required for its repeated application. This implies less than 20 rounds overall.
In comparison, the solution in [13] requires more than 100 rounds, and though
more efficient constant-rounds solutions have been proposed, these are nowhere
near as efficient as the present for the input sizes in question.

Lemmas 2 and 1 and the UC composition theorem now immediately imply
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Theorem 1. If the encryption used is semantically secure and the PRF used
is secure, then the protocol for implementing F ′ together with the comparison
protocol securely implement F against a static, passive adversary corrupting any
number of clients and at most t servers.

A Trick to Improve Efficiency. We can do the computation involving binary
values in the comparison more efficiently by adding to F ′ a command that, given
a register [ri] containing a binary value, produces a new register containing the
same binary value, but now interpreted as an element in GF (28), denoted [ri]256.
The ⊕ operation is now simply addition in GF (28). The idea behind this is of
course that we will implement [ri]256 as sharing over the field GF (28) so that
secure ⊕ becomes only a local addition and so is much faster than before. This
reduces the diamond operator to a single round implying only log 32 = 5 rounds
for the repeated application and less than 10 rounds overall.

This only leaves the question of how to do the conversion. We do this by having
each server produce [sj ], [bj]256 for a random bit bj, and random κ-bit number
sj , chosen such that its least significant bit is bj. It is now (statistically) secure to
open ri +

∑
j sj . The least significant bit of this number equals ri ⊕ b1⊕· · ·⊕ bn.

Adding this bit to the shares of [b1 ⊕ · · · ⊕ bn]256 produces [ri]256.
We leave the (straightforward) formal proof that this is secure to the reader.

5 The Auction Implementation

In the system that was deployed, a web server was set up for receiving bids, and
three servers were set up for doing the secure computation. Before the auction
started, public/private key pairs were generated for the computation servers, and
a representative for each involved organization stored the private key material
on a USB stick, protected under a password.

Each bidder logged into the webserver and an applet was downloaded to his
PC together with the public keys of the computation servers. After the user
typed in his bid, the applet secret shared the bids, and encrypted the shares
under the server public keys. Finally the entire set of ciphertexts were stored in
a database by the webserver.

As for security precautions on the client side, we did not explicitly imple-
ment any security against cheating bidders, as mentioned and motivated in the
previous section. Moreover, we considered security against third-party attacks
on client machines as being the user’s responsibility, and so did not explicitly
handle this issue.

After the deadline for the auction had passed, the servers were connected
to the database and each other, and the market clearing price was securely
computed, as well as the quantity each bidder would buy/sell at that price.
The representative for each of the involved parties triggered the computation by
inserting his USB stick and entering his password on his own machine.

The system worked with a set of 4000 possible values for the price, meaning
that the market clearing price could be found using about 12 secure comparisons.
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The bidding phase ran smoothly, with very few technical questions asked by
users. The only issue was that the applet on some PC’s took up to a minute to
complete the encryption of the bids. It is not surprising that the applet needed
a non-trivial amount of time, since each bid consisted of 4000 numbers that had
to be handled individually. A total of 1229 bidders participated in the auction,
each of these had the option of submitting a bid for selling, for buying, or both.
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Fig. 4. Timings

The secure computation we implemented is slightly more complicated than
the one we described in the previous theory section. This is because we have to
take into account the possibility that there may not exist a price for which supply
matches demand exactly. However, there must exists a maximal price for which
demand is at least supply, and likewise a minimal price for which supply is at
least demand. These will be an upper, respectively a lower bound on the market
clearing price (MCP). The parties doing the computation are told these upper
and lower bounds and must then decide what MCP should be based on these
bounds, and rules that are agreed on in advance. The computation therefore
involves the following steps:

decrypt to shares (buyers). the servers shares of buy bids are decrypted
decrypt to shares (sellers). the servers shares of sell bids are decrypted
first search. an upper bound on the MCP is located
second search. a lower bound on the MCP is located
marginal search. bids which may help resolve the MCP if the upper and lower

bound do not match are located
open marginal bids. bids which may help resolve the MCP if the upper and

lower bound do not match are opened
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Fig. 5. Detailed Timings

open final bids (buyers). for each bidder the buying bids to be realised based
on the MCP are opened

open final bids (sellers). for each bidder the selling bids to be realised based
on the MCP are opened

Fig. 4 shows how much time is spent on the computation for different sizes
of input (we did not time the real auction, as we did not find it appropriate to
compute anything else than what was told to the participants. Timings where
however performed in exactly the same setup, except that random bids where
used). Both the timing runs as well as the actual auction used three Dell laptops
(Latitude D630) with 4 GiB RAM (Java being allocated 1500 MiB on each
machine), Intel Centrino Dual Core 2.2 GHz processor, running Windows XP
Pro, and connected through an Ethernet LAN using a 100 Mbps switch.

In the figure, the number of prices is constant, but the number of bidders
vary. Since the number of secure comparisons we need for the search steps only
depend on the number of prices, we expect that the time needed to decrypt
shares will dominate the time for searching when the number of bidders is large
enough. Fig. 5 shows that this happens when the number of bidders reaches 500.
This is not surprising, as the input to the computation, with e.g. 1229 bidders,
consist of about 9 million individual numbers.

The lesson to learn here is that the optimized comparison protocol we have
developed is efficient enough that it is not a limitation in our scenario, except
perhaps in cases with a very small number of bidders. The potential for fur-
ther optimization therefore lies in the procedure with which shares of bids are
encrypted and decrypted. The low-level tools used for this (to do public-key
crypto and PRF) were standard off-the-shelf, and there may therefore be faster
solutions even without changing the protocols. It should be noted, however, that
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all this only holds for a double auction (where the number of comparisons does
not depend on the number of bidders). For a standard first- or second-price auc-
tion, the number of comparisons grows with the number of bidders, and here the
comparison time is very critical for a large auction.

The actual computation was done January 14, 2008. As a result of the auction,
about 25 thousand tons of production rights changed owner. To the best of our
knowledge, this was the first large-scale and genuinely practical application of
multiparty computation.

6 Conclusion

How successful have we been with the auction system, and does the technology
have further potential in practice?

Other than the fact that the system worked and produced correct results, it is
noteworthy that about 80% of the respondents in an on-line survey said that it
was important to them that the bids were kept confidential, and also that they
were happy about the confidentiality that the system offered. Of course, one
should not interpret this as support for the particular technical solution we chose,
most farmers would not have any idea what multiparty computation is. But it
is nevertheless interesting that confidentiality is seen as important. While it is
sometimes claimed that ordinary people do not care about security, we believe
our experience shows that they sometimes do care. Our impression is that this
has to do with the fact that money is involved, and also that other parties are
involved with interests that clearly conflict with yours. For instance, given the
history of the sugar beet market, there is little doubt that “confidentiality” for
the farmers include confidentiality against Danisco. Danisco and DKS have been
satisfied with the system, and at the time of writing, the auction has already
been run successfully a second time.

During the experiment we have therefore become convinced that the ability
of multiparty computation to keep secret everything that is not intended to be
public, really is useful in practice. As discussed earlier, it short-circuits discus-
sions and concerns about which parts of the data are sensitive and what common
security policy one should have for handling such data.

It is sometimes claimed that the same effect can be achieved by using secure
hardware: just send all input data privately to the device which then does the
computation internally, and outputs the result. Superficially, this may seem to
be a very simple solution that also keeps all private data private. Taking a
closer look, however, it is not hard to see that the hardware solution achieves
something fundamentally different from what multiparty computation does, even
if one believes that the physical protection cannot be broken: note that we are
still in a situation where some component of our system –the hardware box–
has access to all private data in cleartext. If we had been talking about an
abstract ideal functionality, this would –by definition– not be a problem. But
a real hardware box is a system component like any other: it must be securely
installed, administrated, updated, backed up, etc. In this sense the hardware
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solution is not fundamentally different from a solution using an ordinary central
server to receive the bids and do the computation. In both cases, the actual
security level achieved depends on many factors, including whether the system
is administrated according to appropriate procedures. Therefore, both solutions
have all the practical problems we pointed out earlier with agreeing on common
procedures and security policies if parties have conflicting interests. In addition,
since both solutions have a component which becomes a single point of attack,
they may be less robust than a distributed solution against outsider attacks.

We believe that a much more natural use of secure hardware is for each party
in a multiparty computation to use it in order to improve his own security, i.e.,
to make sure that the protocol messages is the only data his system leaks.

Another standard alternative to MPC is to pay a trusted party such as a
consultancy house to do the computation. We said earlier that the parties in our
scenario decided against this because it would have been much more expensive.
One could claim, of course, that this was only because the alternative was to have
a research team do the whole thing for free – and that hence the experiment does
not show that MPC is commercially viable. While the experiment has certainly
not produced a business plan, we wish to point out that an MPC based solution
only has to be developed once and costs can then be amortized over many
applications. In some cases one may not even need to adapt the system – for
instance, in the case of the sugar beet auction it is very likely that the same
auction will be run once a year for some time to come.

In conclusion, we expect that multiparty computation will turn out to be
useful in many practical scenarios in the future.
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