
Chapter 8

Integral Extensions

The concept of an integral ring extension is a generalization of the concept
of an algebraic field extension. In the first section of this chapter, we develop
the algebraic theory of integral extensions, and introduce the concept of a
normal ring. Section 8.2 studies the morphism Spec(S) → Spec(R) induced
from an integral extension R ⊆ S. In Section 8.3, we turn our attention to
affine algebras again. We prove the Noether normalization theorem, and use
it to prove, among other results, that all maximal ideals of an affine domain
have equal height.

8.1 Integral Closure

In the previous section we have considered ring homomorphisms ϕ: R → S.
We will now assume that ϕ is injective, so we view R as a subring of S or
(equivalently) S as a ring extension of R.

Definition 8.1. Let S be a ring and R ⊆ S a subring.

(a) Let s ∈ S. A monic polynomial

g = xn + a1x
n−1 + · · · + an−1x + an ∈ R[x]

with g(s) = 0 is called an integral equation for s over R.
(b) An element s ∈ S is called integral over R if there exists an integral

equation for s over R. (The difference between this definition and that of
“algebraic” is that here we insist that the polynomial equation for s be
monic.)

(c) S is called integral over R if all elements from S are integral over R.
In this case we call S an integral extension of R.

Example 8.2. (1)
√

2 ∈ R is integral over Z. The ring Z[
√

2] is an integral
extension of Z.
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94 8 Integral Extensions

(2) 1/
√

2 ∈ R is not integral over Z (although it is algebraic). To see this,
assume

1√
2

n + a1
1√

2
n−1 + · · · + an−1

1√
2

+ an = 0

with ai ∈ Z. Observe that 1 and
√

2 are linearly independent over Q.
Multiplying the above equation by

√
2

n
and picking out the summands

that lie in Q yields
1 + 2a2 + 4a4 + · · · = 0,

a contradiction.
(3) s = 1+

√
5

2 ∈ R is integral over Z, since s2 − s− 1 = 0. Therefore s is also
integral over R := Z

[√
5
] ⊂ R (the subalgebra generated by

√
5). What

is remarkable about this is that there exists an algebraic equation for s
over R of degree 1 (so s ∈ Quot(R)), but the smallest integral equation
has degree 2. �

We wish to prove that products and sums of integral elements are again
integral. The proof is quite similar to the standard proof of the analogous
result in field theory, and requires the following lemma.

Lemma 8.3 (Integral elements and finite modules). Let S be a ring, R ⊆ S
a subring, and s ∈ S. Then the following statements are equivalent:

(a) The element s is integral over R.
(b) The subalgebra R[s] ⊆ S generated by s is finitely generated as an R-

module.
(c) There exists an R[s]-module M with Ann(M) = {0} such that M is

finitely generated as an R-module.

Proof. Assume that s is integral over R, so we have an integral equation
xn + a1x

n−1 + · · ·+ an−1x+ an ∈ R[x] for s. We claim that R[s] is generated
by the si, i ∈ {0, . . . , n − 1}, i.e.,

R[s] =
(
1, s, . . . , sn−1

)
R

=
n−1∑

i=0

Rsi =: N.

Indeed, for k ≥ n, we have sk = − (
a1s

k−1 + · · · + ansk−n
)
, so it follows by

induction that all sk lie in N . So (a) implies (b). Moreover, it is clear that (b)
implies (c): Take M = R[s], then 1 ∈ M , so Ann(M) = {0}.

Now assume (c). We have M = (m1, . . . , mr)R, so for each i ∈ {1, . . . , r}
there exist ai,j ∈ R with s · mi =

∑r
j=1 ai,jmj . By Lemma 7.2 this implies

det (δi,js − ai,j)1≤i,j≤r ∈ Ann(M),

so by hypothesis the determinant is zero. Therefore det (δi,jx − ai,j)1≤i,j≤r ∈
R[x] is an integral equation for s. �	
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The following theorem is in perfect analogy to the result that a finitely
generated field extension is finite if and only if it is algebraic. It also implies
that sums and products of integral elements are again integral.

Theorem 8.4 (Generated by integral elements implies integral). Let S be a
ring and R ⊆ S a subring such that S = R[a1, . . . , an] is finitely generated as
an R-algebra. Then the following statements are equivalent:

(a) All ai are integral over R.
(b) S is integral over R.
(c) S is finitely generated as an R-module.

Proof. Clearly (b) implies (a). We use induction on n to show that (a)
implies (c). We may assume n > 0. By induction, S′ := R[a1, . . . , an−1]
is finitely generated as an R-module, so S′ = (m1, . . . , mr)R =

∑r
i=1 Rmi

with mi ∈ S′. We also have that an is integral over S′, so Lemma 8.3 yields
S′[an] =

∑l
j=1 S′nj with nj ∈ S. Putting things together, we obtain

S = S′[an] =
l∑

j=1

r∑

i=1

Rminj,

so (c) holds.
Finally, (c) implies (b) by Lemma 8.3 (take M = S in Lemma 8.3(c)). �	

Corollary 8.5 (Integral elements form a subalgebra). Let S be a ring and
R ⊆ S a subring. Then the set

S′ := {s ∈ S | s is integral over R} ⊆ S

is an R-subalgebra.

Proof. Clearly all elements from R lie in S′. So all we need to show is that if
a, b ∈ S′, then also a + b ∈ S′ and a · b ∈ S′. But this follows since R[a, b] is
integral over R by Theorem 8.4. �	

We obtain a further consequence of Lemma 8.3 and Theorem 8.4.

Corollary 8.6 (Towers of integral extensions). Let T be a ring and R ⊆
S ⊆ T subrings. If T is integral over S and S is integral over R, then T
is integral over R.

Proof. For every t ∈ T we have an integral equation

tn + s1t
n−1 + · · · + sn−1t + sn = 0

with si ∈ S. So t is integral over S′ := R[s1, . . . , sn] ⊆ S. By Lemma 8.3,
S′[t] is finitely generated as an S′-module, and by Theorem 8.4, S′ is finitely
generated as an R-module. It follows that S′[t] is finitely generated as an
R-module, so applying Lemma 8.3 again shows that t is integral over R. �	
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Corollary 8.5 prompts the following definition.

Definition 8.7.

(a) Let S be a ring and R ⊆ S a subring. Then the set S′ of all elements
from S that are integral over R is called the integral closure of R in S.
If S′ = R, we say that R is integrally closed in S.

(b) An integral domain R is called normal if it is integrally closed in its field
of fractions Quot(R). One can extend this definition to rings that need
not be integral domains by calling a ring normal if it is integrally closed
in its total ring of fractions. In this book, normality is understood in the
above narrower sense.

(c) If R is an integral domain, the normalization of R, often written as R̃,
is the integral closure of R in its field of fractions Quot(R). Observe that
R̃ is normal by Corollary 8.6.

(d) An irreducible affine variety X over a field K is called normal if the
coordinate ring K[X ] is normal.

Before giving some examples, we prove an elementary result.

Proposition 8.8. Every factorial ring is normal.

Proof. Let R be a factorial ring, and let a/b ∈ Quot(R) be integral over R
with a, b ∈ R coprime. So we have

an

bn
+ a1

an−1

bn−1
+ · · · + an−1

a

b
+ an = 0

with ai ∈ R. Multiplying this by bn shows that b divides an, so every prime
factor of b divides a. By the coprimality, b has no prime factors, so it is
invertible in R. Therefore a/b ∈ R. �	
Example 8.9. (1) By Proposition 8.8, Z is normal, and so is every polynomial

ring K[x1, . . . , xn] over a field.
(2) By Example 8.2(3), R := Z

[√
5
]

is not normal. In fact, the normalization
is

R̃ = Z

[(
1 +

√
5
)

/2
]

=: S.

To see this, let a + b
√

5 ∈ Q
[√

5
]

= Quot(S) (with a, b ∈ Q) be inte-
gral over S. Since S is integral over Z by Theorem 8.4, a+b

√
5 is integral

over Z by Corollary 8.6, and so is a − b
√

5 (satisfying the same integral
equation over Z). So the sum 2a and the product a2 − 5b2 of these two
elements are also integral over Z. Since Z is integrally closed, it follows
that 2a ∈ Z and a2 − 5b2 ∈ Z. Now it is easy to see that this implies
a + b

√
5 ∈ S.

It may be interesting to note that the ring S is actually factorial.
(3) A rather different case is R = Z

[√−5
] ⊆ C. For an element a + b

√−5 ∈
Q

[√−5
]
, we obtain the conditions 2a ∈ Z and a2+5b2 ∈ Z for integrality
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over Z. It is easy to see that this implies a, b ∈ Z, so R is normal. However,
R is not factorial, as the nonunique factorization

6 = 2 · 3 = (1 +
√−5)(1 −√−5) (8.1)

shows. In fact, one needs to show that the factors in (8.1) really are
irreducible, and that the factorizations are essentially distinct, i.e., not
the same up to the order of the factors and up to invertible elements. For
z = a + b

√−5 ∈ R, write N(z) := a2 + 5b2 = z · z (z times its complex
conjugate) for the so-called norm of z. Assume that 2 = z1z2 with zi ∈ R.
Since the norm is multiplicative, it follows that 4 = N(z1) · N(z2). But
2 does not occur as a norm of an element of R, so z1 or z2 has norm 1.
But this means z1 = ±1 or z2 = ±1, so z1 or z2 is invertible. Since
every invertible element of R has norm 1, 2 itself is not invertible, so 2
is irreducible in R. Since 3 is not a norm, either, it follows by the same
argument that 3 and 1 ± √−5 are irreducible, too. Finally, none of the
quotients (1 ± √−5)/2 and (1 ± √−5)/3 lie in R, so the factorizations
in (8.1) are essentially different.
This example shows that the converse of Proposition 8.8 does not hold.

(4) Let K be an algebraically closed field. An example from geometry is the
singular cubic curve

X = VK2

(
y2 − x2(x + 1)

)

over a field K, which is shown in Fig. 8.1, and which has a (visible)
singular point at the origin. The coordinate ring of X is

Fig. 8.1. A singular cubic curve

A := K[X ] = K[x, y]
/(

y2 − x2(x + 1)
)

=: K[x, y].

We have
(y/x)2 − x − 1 = 0,
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so y/x ∈ Quot(A) is integral over A. The above equation also tells us
that x and y = (y/x) ·x lie in K [y/x], so A ⊆ K [y/x] ⊆ Ã. Since K [y/x]
is normal by Example 8.9(1), we obtain

Ã = K [y/x] .

It is interesting to consider the morphism of varieties induced by the
embedding A ↪→ Ã. This is given by

K1 → X, ζ 
→ (ζ2 − 1, ζ3 − ζ).

Observe that K1 has no singular points, and that every nonsingular point
of X has precisely one preimage in K1, whereas the unique singular point
of X has two preimages. So the normalization amounts to a desingular-
ization here. As we will see later, these observations are no coincidence.
In fact, we will prove in Section 14.1 that normality and nonsingularity
coincide in dimension 1. This is one (but not the only) reason why normal
rings are interesting. �

As the following proposition shows, normality is a local property, meaning
that it holds globally if and only if it holds locally everywhere.

Proposition 8.10 (Normal rings and localization). For an integral domain
R, the following statements are equivalent:

(a) R is normal.
(b) For every multiplicative subset U ⊂ R with 0 /∈ U , the localization U−1R

is normal.
(c) For every maximal ideal m ∈ Specmax(R), the localization Rm is normal.

Proof. Let K = Quot(R) be the field of fractions. Assume that R is normal,
and let U ⊂ R be a multiplicative subset with 0 /∈ U . We have U−1R ⊆ K
and Quot(U−1R) = K. To show that U−1R is normal, let a ∈ K be integral
over U−1R. Then there exist u ∈ U and a1, . . . , an ∈ R such that

an +
a1

u
an−1 + · · · + an−1

u
a +

an

u
= 0.

Multiplying this by un yields an integral equation for ua over R. So by
assumption, ua ∈ R, so a ∈ U−1R. We have shown that the statement (a)
implies (b). Clearly (b) implies (c).

Now assume that (c) holds, and let a ∈ K be integral over R. Consider
the ideal I := {b ∈ R | ba ∈ R} ⊆ R. For every m ∈ Specmax(R), a is integral
over Rm, so a ∈ Rm by assumption. It follows that there exists b ∈ I \m. This
means that I is not contained in any maximal ideal. But if I � R, Zorn’s
lemma would yield the existence of a maximal ideal containing I. So 1 ∈ I,
and a ∈ R follows. So we have shown that (c) implies (a). �	
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Proposition 8.10 implies that an irreducible affine variety X is normal if
and only if for every point x ∈ X the local ring K[X ]x is normal. Normality
also behaves well with respect to passing from R to the polynomial ring R[x],
as Exercise 8.7 shows.

We finish the section with a lemma that will be used in Chapter 12. If R
is an integral domain, then an element s ∈ Quot(R) is said to be almost
integral (over R) if there exists a nonzero c ∈ R such that csn ∈ R for all
nonnegative integers n.

Lemma 8.11 (Almost integral elements). In the above setting, if s is inte-
gral, then it is almost integral. If R is Noetherian, the converse holds.

Proof. By Lemma 8.3, s is integral if and only if R[s] ⊆ Quot(R) is finitely
generated as an R-module. In this case there exists c ∈ R \ {0} such that
cf ∈ R for all f ∈ R[s]. In particular, csn ∈ R for all n.

Conversely, if s is almost integral, then R[s] is contained in c−1R ⊆
Quot(R), which is finitely generated (by c−1) as an R-module. If R is Noe-
therian, it follows with Theorem 2.10 that the same holds for R[s]. �	

8.2 Lying Over, Going Up, and Going Down

If R ⊆ S is an extension of rings, we have a map f : Spec(S) → Spec(R), Q 
→
R∩Q, induced from the inclusion. We know from Exercise 4.2 that this map
is dominant. The following theorem shows that if S is integral over R, then f
is, in fact, surjective, and its fibers are finite if S is finitely generated as an
R-algebra.

Theorem 8.12 (Lying over and going up). Let R ⊆ S be an integral exten-
sion of rings, P ∈ Spec(R) a prime ideal, and I ⊆ S an ideal with R∩I ⊆ P .
(Notice that the zero ideal always satisfies the condition on I.) Set

M := {Q ∈ Spec(S) | R ∩ Q = P and I ⊆ Q} .

Then the following hold:

(a) M is nonempty.
(b) There exist no Q, Q′ ∈ M with Q � Q′.
(c) If S is finitely generated as an R-algebra, then M is finite.

The keywords “lying over” and “going up,” with which we advertised The-
orem 8.12, refer to the following: A prime ideal Q ∈ Spec(S) with R∩Q = P
is said to lie over P . If additionally I is contained in Q, we say that we are
going up from I. The situation is illustrated in Fig. 8.2.

Proof of Theorem 8.12. With S′ := S/I, R′ := R/(R ∩ I), and P ′ :=
P/(R∩ I), we have an integral extension R′ ⊆ S′, and Lemma 1.22 yields an
inclusion-preserving bijection
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R ∩ I

P

I

����

Q

����

R

S

Fig. 8.2. Lying over and going up

M → {Q′ ∈ Spec(S′) | R′ ∩ Q′ = P ′} .

Substituting all objects by their primed versions, we may therefore assume
that I = {0}. By Proposition 7.11, we have to show that the fiber ring S[P ] is
not the zero ring (implying (a)), has Krull dimension 0 (implying (b)), and
has a finite spectrum if S is finitely generated (implying (c)).

By way of contradiction, assume that S[P ] = {0}. By the definition of S[P ],
this is equivalent to the existence of u ∈ R \ P with u ∈ (P )S . Forming the
localization SP := (R \ P )−1S, we obtain 1 ∈ (PP )SP

, so

1 =
n∑

i=1

siai with si ∈ SP , ai ∈ PP .

Form S̃ := RP [s1, . . . , sn] ⊆ SP . Then the above equation implies (PP )S̃ = S̃,
which we may write as PP S̃ = S̃. Since S̃ is an integral extension of RP , it is
finitely generated as an RP -module by Theorem 8.4. Applying Nakayama’s
lemma (Theorem 7.3) yields S̃ = {0}. Since RP is embedded into S̃, this
contradicts the fact that local rings are never zero. So we conclude that S[P ]

is nonzero.
The homomorphism

K := Quot (R/P ) → S[P ],
a + P

b + P

→ a + (P )S

b + (P )S
,

makes S[P ] into a K-algebra. The hypothesis that S is integral over R trans-
lates into the fact that S[P ] is algebraic over K. So if Q ∈ Spec

(
S[P ]

)
, then

the quotient ring S[P ]/Q is algebraic over K as well, and Lemma 1.1(a) yields
that S[P ]/Q is a field. This shows that dim

(
S[P ]

)
= 0.

Finally, if S is finitely generated as an R-algebra, then S[P ] is an affine
K-algebra, so Theorem 5.11 yields that Specmax

(
S[P ]

)
is finite. Since S[P ]

has dimension 0, Spec
(
S[P ]

)
= Specmax

(
S[P ]

)
, so we are done. �	
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Let R ⊆ S be an integral extension of rings. If P0 � P1 � · · · � Pn is a
chain of prime ideals Pi ∈ Spec(R), we can use Theorem 8.12 to construct
a chain Q0 ⊆ · · · ⊆ Qn of prime ideals in Spec(S) with R ∩ Qi = Pi. In
particular, all inclusions of the Qi are proper. So dim(S) ≥ n, which implies

dim(R) ≤ dim(S). (8.2)

On the other hand, if Q ∈ Spec(S) is a prime ideal and Q0 � Q1 � · · · �

Qn ⊆ Q is a chain of prime ideals in Spec(S), then Pi := R ∩ Qi yields a
chain in Spec(S), and it follows from Theorem 8.12(b) that the inclusions of
the Pi are proper. So with P := R ∩ Q we obtain

ht(Q) ≤ ht(P ). (8.3)

This implies
dim(S) ≤ dim(R). (8.4)

By putting (8.2) and (8.4) together, we obtain the following corollary.

Corollary 8.13. Let R ⊆ S be an integral extension of rings. Then

dim(R) = dim(S).

We now pose the question whether the reverse inequality of (8.3) also
holds, i.e., whether (8.3) is in fact an equality. For proving this, we need to
start with a chain of prime ideals in Spec(R) that are all contained in P ,
and construct an equally long chain of prime ideals in Spec(S) that are all
contained in Q. The way to do this is to work our way downwards from Q.
But what we need for being able to do this is the going down property, which
was discussed in Section 7.2 (see on page 85). We have proved the following:

Corollary 8.14. Let R ⊆ S be an integral extension of rings such that going
down holds for the inclusion R ↪→ S. If Q ∈ Spec(S) and P := R ∩ Q, then

ht(P ) = ht(Q).

Unfortunately, going down does not always hold for integral ring exten-
sions, as Exercise 8.9 shows. We have proved that a sufficient condition for
going down is freeness (see Lemma 7.16). However, freeness is rarely found
for integral extensions. We will exhibit another sufficient condition for going
down (see Theorem 8.17). For proving this, we need two lemmas. The effort
is worth it, since the reverse inequality of (8.3) is of crucial importance for
proving some important results about affine algebras, such as Theorem 8.22
and its corollaries. The first lemma is a result from field theory. The proof uses
some standard results from field theory, which we will quote from Lang [33].

Lemma 8.15 (Elements fixed by field automorphisms). Let N be a field of
characteristic p ≥ 0 and let K ⊆ N be a subfield such that N is finite and
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normal over K (see Lang [33, Chapter VII, Theorem 3.3] for the definition of
a normal field extension). Let G := AutK(N) be the group of automorphisms
of N fixing K elementwise. Then for every α ∈ NG in the fixed field of G,
there exists n ∈ N0 such that αpn ∈ K. If N is separable over K, then n = 0,
so α ∈ K.

Proof. In the separable case, the lemma follows directly from Galois theory.
The proof we give works for the separable case, too.

Let g = irr(α, K) ∈ K[x] be the minimal polynomial of α over K. Let
N be the algebraic closure of N , and let β ∈ N be a zero of g. Since
K[α] ∼= K[x]/(g) ∼= K[β] with an isomorphism sending α to β, we have a
homomorphism σ: K[α] → N of K-algebras with σ(α) = β. By Lang [33,
Chapter VII, Theorem 2.8], this extends to a homomorphism σ: N → N . The
normality of N implies σ ∈ G (see Lang [33, Chapter VII, Theorem 3.3]).
Since σ(α) = β, the hypothesis of the lemma implies β = α. So α is the only
zero of g, and we obtain g = (x − α)m with m ∈ N. Write m = k · pn with
p � k. If N is separable over K, then g has to be separable, so m = 1 and
n = 0. We have

g = (x − α)m = (xpn − αpn

)k = xkpn − k · αpn · x(k−1)pn

+ (lower terms),

so g ∈ K[x] implies apn ∈ K. �	
Lemma 8.16. Let N be a field and K ⊆ N a subfield such that N is finite
and normal over K. Let R ⊆ K be a subring that is integrally closed in K,
and let S ⊆ N be the integral closure of R in N . Then for two prime ideals
Q, Q̃ ∈ Spec(S) with R ∩ Q = R ∩ Q̃, there exists σ ∈ G := AutK(N) with
Q̃ = σ(Q).

Proof. Let a ∈ Q̃. Then the product
∏

σ∈G σ(a) lies in NG, so by Lemma 8.15
there exists n ∈ N0 with

b :=
∏

σ∈G

σ(a)pn ∈ K, (8.5)

where p = char(K) and n = 0 if p = 0. Since a is integral over R and all
σ ∈ G fix R elementwise, all σ(a) are integral over R as well. So b is integral
over R, too, and (8.5) implies b ∈ R. Moreover, b is an S-multiple of a, so
b ∈ R ∩ Q̃ = R ∩ Q ⊆ Q. Since Q is a prime ideal, it follows from (8.5) that
there exists σ ∈ G with σ(a) ∈ Q. Since this holds for all a ∈ Q̃, we conclude
that

Q̃ ⊆
⋃

σ∈G

σ(Q).

By the prime avoidance lemma (Lemma 7.7), this implies that there exists
σ ∈ G with Q̃ ⊆ σ(Q). Since σ fixes R elementwise, we have R ∩ σ(Q) =
R ∩ Q = R ∩ Q̃, so by Theorem 8.12(b), the inclusion Q̃ ⊆ σ(Q) cannot be
strict. �	
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Theorem 8.17 (Going down for integral extensions of normal rings). Let S
be a ring and R ⊆ S a subring such that

(1) S is an integral domain,
(2) R is normal,
(3) S is integral over R, and
(4) S is finitely generated as an R-algebra.

Then going down holds for the inclusion R ↪→ S. In particular, the conclusion
of Corollary 8.14 holds.

Proof. The proof is not difficult but a bit involved. Fig. 8.3 shows what is
going on. Given prime ideals P ∈ Spec(R) and Q′ ∈ Spec(S) with P ⊆Q′, we
need to produce Q ∈ Spec(S) with R∩Q = P and Q ⊆ Q′. The field of frac-
tions L := Quot(S) is a finite field extension of K := Quot(R). By Lang [33,
Chapter VII, Theorem 3.3], there exists a finite normal field extension N
of K such that L ⊆ N . Let T ⊆ N be the integral closure of R in N , so
S ⊆ T . By Theorem 8.12, there exist Z̃, Z ′ ∈ Spec(T ) such that R ∩ Z̃ = P

and S ∩ Z ′ = Q′. We cannot assume that Z̃ is contained in Z ′. However,
applying Theorem 8.12 again, we see that there exists Z̃ ′ ∈ Spec(T ) such
that R ∩ Z̃ ′ = R ∩ Q′ and Z̃ ⊆ Z̃ ′. We have

R ∩ Z ′ = R ∩ S ∩ Z ′ = R ∩ Q′ = R ∩ Z̃ ′.

So by Lemma 8.16 there exists σ ∈ AutK(N) with Z ′ = σ(Z̃ ′). Set Z := σ(Z̃)
and Q := S ∩ Z ∈ Spec(S). Then

R ∩ Q = R ∩ Z = R ∩ σ(Z̃) = R ∩ Z̃ = P

and
Q = S ∩ σ(Z̃) ⊆ S ∩ σ(Z̃ ′) = S ∩ Z ′ = Q′.

This finishes the proof. �	

P

R ∩ Q′

R

����� Q

���� Q′

S

����� Z

����� Z′

� σ
Z̃

� σ
Z̃′

�
�
�

�
�

�
T

Fig. 8.3. Going down: given P and Q′, construct Q
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We finish this section by drawing some conclusions about geometric
properties of normalization.

Proposition 8.18 (Geometric properties of normalization). Let R be an
integral domain with normalization R̃, and consider the morphism
f : Spec(R̃) → Spec(R) induced from the inclusion R ⊆ R̃. Then

(a) dim(R̃) = dim(R).
(b) The morphism f is surjective.
(c) Let P ∈ Spec(R) be such that RP is normal. Then the fiber f−1 ({P})

consists of one point.

Proof. Parts (a) and (b) follow from Corollary 8.13 and Theorem 8.12(a).
To prove (c), take P ∈ Spec(R) with RP normal. Both RP and R̃ are con-

tained in Quot(R). With U := R\P we have U−1R̃ ⊆ Quot(R) = Quot(RP ),
and U−1R̃ is integral over RP , so U−1R̃ = RP by the normality of RP . Let
Q ∈ Spec(R̃) be in the fiber of P , so R ∩ Q = P . By Theorem 6.5 it follows
that U−1Q ∈ Spec(U−1R̃) = Spec(RP ), and R̃ ∩ U−1Q = Q, so R ∩ U−1Q =
P . But Theorem 6.5 also says that PP is the only prime ideal in RP whose
intersection with R is P , so U−1Q = PP . It follows that Q = R̃∩PP , showing
uniqueness. �	

8.3 Noether Normalization

We now turn our attention to the special case of affine algebras. Let A be an
affine K-algebra with dim(A) = n. By Theorem 5.9, there exist algebraically
independent elements a1, . . . , an ∈ A such that A is algebraic over the sub-
algebra K[a1, . . . , an]. As we will see in the following theorem, more can be
said.

Theorem 8.19 (Noether normalization). Let A �= {0} be an affine
K-algebra. Then there exist algebraically independent elements c1, . . . , cn ∈ A
(with n ∈ N0) such that A is integral over the subalgebra C := K[c1, . . . , cn].
In particular, A is finitely generated as a C-module, and C is isomorphic to
a polynomial ring (with C = K if n = 0).

If c1, . . . , cn ∈ A are algebraically independent and A is integral over
K[c1, . . . , cn], then n = dim(A).

Proof. Write A as a quotient ring of a polynomial ring: A = K[x1, . . . , xm]/I.
We use induction on m for proving the first statement. There is nothing to
show for m = 0. If I = {0}, we can set ci = xi + I, and again there is nothing
to show. If I �= {0}, choose f ∈ I \ {0}. We can write f as

f =
∑

(i1,...,im)∈S

αi1,...,im · xi1
1 · · ·xim

m
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with ∅ �= S ⊂ N
m
0 a finite subset and αi1,...,im ∈ K \ {0}. Choose d > deg(f)

(in fact, it suffices to choose d bigger than all xi-degrees of f). Then the
function s: S → N0, (i1, . . . , im) 
→ ∑m

j=1 ij ·dj−1 is injective. For i = 2, . . . , m

set yi := xi − xdi−1

1 . Then

f = f
(
x1, y2 + xd

1 , . . . , ym + xdm−1

1

)

=
∑

(i1,...,im)∈S

αi1,...,im

(
x

s(i1,...,im)
1 + gi1,...,im(x1, y2, . . . , ym)

)

with gi1,...,im polynomials satisfying degx1
(gi1,...,im) < s(i1, . . . , im). We have

exactly one (i1, . . . , im) ∈ S such that k := s(i1, . . . , im) becomes maximal.
Since A �= {0}, f is not constant, so k > 0. We obtain

f = αi1,...,im · xk
1 + h(x1, y2, . . . , ym)

with degx1
(h) < k, so

xk
1 + α−1

i1,...,im
h(x1, y2, . . . , ym) ∈ I.

Set B := K[y2 + I, . . . , ym + I] ⊆ A. Then A = B[x1 + I], and the above
equation and Theorem 8.4 show that A is integral over B. By induction, there
exist algebraically independent c1, . . . , cn ∈ B such that B is integral over
K[c1, . . . , cn], and the same follows for A by Corollary 8.6.

The statement n = dim(A) follows from Corollaries 5.7 and 8.13. �	
The above proof can be turned into an algorithm for computing c1, . . . , cn.

This algorithm uses Gröbner bases and is dealt with in Exercise 9.12.

Remark 8.20. In Exercise 8.10, the following stronger (but slightly less gen-
eral) version of Noether normalization is shown: If the field K is infinite and
A = K[a1, . . . , am], then the elements c1, . . . , cn satisfying Theorem 8.19 can
be chosen as linear combinations

ci = ai +
m∑

j=n+1

γi,j · aj (γi,j ∈ K)

of the “original” generators ai. �

It is not hard to give geometric interpretations of Noether normalization.
In fact, Theorem 8.19 tells us that for an affine variety X of dimension n over
a field K, there exists a morphism

f : X → Kn

induced by the inclusion C ⊆ K[X ], and by Theorem 8.12, f is surjective and
has finite fibers. So Noether normalization tells us that every affine variety
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may be interpreted as a “finite covering” of some Kn. A slightly different
interpretation is that Noether normalization provides a new coordinate sys-
tem such that the first n coordinates can be set to arbitrary values, which will
be attained by finitely many points from the variety. So the first n coordi-
nates act as “independent parameters.” With both interpretations, it makes
intuitive sense that X should have dimension n, which is a further indication
that our definition of dimension is a good one. In Exercise 8.11, a further
interpretation of Noether normalization as a “global system of parameters”
is given.
Example 8.21. Consider the affine variety X = VK2(x1x2 − 1), which is a
hyperbola as shown in Fig. 8.4. We write xi for the image of xi in the coor-
dinate ring K[X ] = K[x1, x2]/(x1x2 − 1) = K[x1, x2]. Notice that K[X ] is
not integral over K[x1] or over K[x2]. Motivated by Remark 8.20, we try
c = x1 − x2 and find

0 = x1x2 − 1 = x2
1 − x1c − 1,

so K[X ] is integral over C := K[c]. The morphism induced by the embedding
C ↪→ K[X ] is f : X → K1, (ξ1, ξ2) 
→ ξ1 − ξ2. It is surjective, and all η ∈ K
with η2 �= −4 have two preimages, as indicated by the arrows in Fig. 8.4. �
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Fig. 8.4. A hyperbola and Noether normalization

We now turn our attention to chains of prime ideals in an affine algebra.
Generally, in a set M whose elements are sets, a maximal chain is a subset
C ⊆ M that is totally ordered by inclusion “⊆” such that C ⊆ D ⊆ M with
D totally ordered implies C = D. In particular, a chain

P0 � P1 � · · · � Pn

of prime ideals Pi ∈ Spec(R) in some ring is maximal if no further prime ideal
can be added into the chain by insertion or by appending at either end. In
general rings, it is not true that all maximal chains of prime ideals have equal
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length. Examples for this are affine algebras that are not equidimensional,
or, more subtly, the ring studied in Exercise 8.12. However, the following
theorem says that this is the case for affine domains.

Theorem 8.22 (Chains of prime ideals in an affine algebra). Let A be an
affine algebra and let

P0 � P1 � · · · � Pn (8.6)

be a maximal chain of prime ideals Pi ∈ Spec(A). Then

n = dim (A/P0) .

In particular, if A is equidimensional (which is always the case if A is an
affine domain), then every maximal chain of prime ideals of A has length
equal to dim(A).

Proof. We use induction on n. Substituting A by A/P0, we may assume that
A is an affine domain and P0 = {0}. If n = 0, then P0 is a maximal ideal, so
A is a field and we are done. So we may assume n > 0. Applying Lemma 1.22
yields a maximal chain P1/P1 � P2/P1 � · · · � Pn/P1 of prime ideals in
A/P1. Using induction, we obtain n − 1 = dim (A/P1). So we need to show
that dim (A/P1) = dim(A) − 1.

Using Noether normalization (Theorem 8.19), we obtain C ⊆ A with A
integral over C and C isomorphic to a polynomial ring. By the maximal-
ity of (8.6), we have ht(P1) = 1. By Proposition 8.8, C is normal, so all
hypotheses of Theorem 8.17 are satisfied. We obtain ht(C ∩ P1) = 1. By
the implication (b) ⇒ (a) of Theorem 5.13, this implies dim (C/(C ∩ P1)) =
dim(C) − 1. Since A/P1 is integral over C/(C ∩ P1), Corollary 8.13 yields

dim (A/P1) = dim (C/(C ∩ P1)) = dim(C) − 1 = dim(A) − 1.

This finishes the proof. �	
A ring R is called catenary if for two prime ideals P ⊆ Q in Spec(R), all

maximal chains of prime ideals between P and Q have the same length. So
Theorem 8.22 implies that all affine algebras are catenary. It is not easy to
find examples of noncatenary rings (see Nagata [41, Appendix, Example E2],
Matsumura [37, Example 14E], or Hutchins [28, Example 27]). We get two
immediate consequences of Theorem 8.22. The first one says that in affine
domains, the height of an ideal and the dimension of the quotient ring behave
complementarily.

Corollary 8.23 (Dimension and height). Let A be an affine domain or,
more generally, an equidimensional affine algebra. If I ⊆ A is an ideal, then

ht(I) = dim(A) − dim (A/I) .
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Proof. If I is a prime ideal, there exists a maximal chain C ⊆ Spec(A) with
I ∈ C, so the result follows from Theorem 8.22, Lemma 1.22, and Defini-
tion 6.10(a). For I = A, it follows from Definition 6.10(b). For all other I,
Definition 6.10(b) and the fact that

dim(A/I) = max
{
dim(A/P ) | P ∈ VSpec(A)(I)

}

allow reduction to the case that I is a prime ideal. �	
The following corollary is about the height of maximal ideals in affine

algebras. In the case of a maximal ideal m ∈ Specmax(K[X ]) belonging to a
point x ∈ X of an affine variety, it says that the height of m is equal to the
largest dimension of an irreducible component of X containing x.

Corollary 8.24 (Height of maximal ideals). Let A be an affine algebra with
minimal prime ideals P1, . . . , Pn. (There are finitely many Pi by Corollar-
ies 2.12 and 3.14(a).) If m ∈ Specmax(A) is a maximal ideal, then

ht(m) = max {dim(A/Pi) | Pi ⊆ m} .

In particular, if A is an affine domain or, more generally, equidimensional,
then all maximal ideals have ht(m) = dim(A).

Proof. This is an immediate consequence of Theorem 8.22. �	
To get a better appreciation of the last three results, it is important to

see an example of a Noetherian domain (= a Noetherian integral domain) for
which they fail. Such an example is given in Exercise 8.12.

The following result restates the principal ideal theorem (Theorem 7.5)
for the special case of affine domains. Corollary 8.23 allows us to convert
the statement from Theorem 7.5 on height into a statement on dimension.
The theorem exemplifies the common paradigm that “imposing n further
equations makes the dimension of the solution set go down by at most n.”

Theorem 8.25 (Principal ideal theorem for affine domains). Let A be an
affine domain or, more generally, an equidimensional affine algebra, and let
I = (a1, . . . , an) ⊆ A be an ideal generated by n elements. Then every prime
ideal P ∈ Spec(A) that is minimal over I satisfies

dim(A/P ) ≥ dim(A) − n.

In particular, if I �= A, then

dim(A/I) ≥ dim(A) − n,

and if equality holds, then A/I is equidimensional.

Proof. By Theorem 7.5, every P ∈ Spec(A) that is minimal over I satisfies
ht(P ) ≤ n, so
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dim(A/P ) ≥ dim(A) − n

by Corollary 8.23. The other claims follows directly from this. �	
If f1, . . . , fn ∈ K[x1, . . . , xm] are polynomials over an algebraically closed

field, then by Theorem 8.25, the affine variety in X = VKm(f1, . . . , fn) is
empty or has dimension at least m − n. If the dimension is equal to m − n,
then X is called a complete intersection (“intersection” referring to the
intersection of the hypersurfaces given by the fi). So the second assertion of
Theorem 8.25 tells us that complete intersections are equidimensional. By a
slight abuse of terminology, an affine K-algebra A is also called a complete
intersection if A ∼= K[x1, . . . , xm]/(f1, . . . , fn) with dim(A) = m − n ≥ 0.

Geometrically, the first part of Theorem 8.25 gives a dimension bound for
the intersection of affine varieties X, Y ⊆ Km, where X is equidimensional
and Y is given by n equations. A generalization is contained in Exercise 8.14.

We will close this chapter by proving that the normalization of an affine
domain is again an affine domain, and applying this result to affine varieties.
Although this material is interesting, it will be used in this book only in
Chapter 14 to prove two results: the existence of a desingularization of an
affine curve, and the fact that the integral closure of Z in a number field is
Noetherian (which follows from Lemma 8.27). So readers may choose to skip
the rest of this chapter.

Theorem 8.26. Let A be an affine domain. Then the normalization Ã of A
is an affine domain, too.

Proof. By Noether normalization (Theorem 8.19), we have a subalgebra
R⊆A which is isomorphic to a polynomial algebra, such that A is integral
over R. In particular, N := Quot(A) is a finite field extension of Quot(R),
and Ã is the integral closure of R in N . So the result follows from the follow-
ing lemma. �	
Lemma 8.27 (Integral closure in a finite field extension). Let R be a Noe-
therian domain and N a finite field extension of L := Quot(R). Assume
that

(a) R is normal and N is separable over L, or
(b) R is isomorphic to a polynomial ring over a field.

Then the integral closure S of R in N is finitely generated as an R-module
(and therefore also as an R-algebra).

Proof. Choose generators of N as an extension of L, and let N ′ be the split-
ting field of the product of the minimal polynomials of the generators. Then
N ′ is a finite normal field extension of L with N ⊆ N ′, and if N is separable
over L, so is N ′. Since S is a submodule of the integral closure S′ of R in
N ′, it suffices to show that S′ is a finitely generated R-module (use Theo-
rem 2.10). So we may assume that N is normal over L. Let G := AutL(N)
and consider the trace map
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Tr : N → NG, x 
→
∑

σ∈G

σ(x).

It follows from the linear independence of homomorphisms into a field (see
Lang [33, Chapter VIII, Theorem 4.1]) that Tr is nonzero. It is clearly
L-linear. Let b1, . . . , bm ∈ N be an L-basis of N . By Lemma 8.15, there
exists a power q of the characteristic of L (with q = 1 if N is separable over
L) such that Tr(bi)q ∈ L for all i.

We first treat the (harder) case that R ∼= K[x1, . . . , xn] with K a field. In
fact, we may assume R = K[x1, . . . , xn]. Let K ′ be a finite field extension
of K containing qth roots of all coefficients appearing in Tr(bi)q as rational
functions in the xj . Then Tr(bi) ∈ K ′(x1/q

1 , . . . , x
1/q
n ) =: L′. (For this contain-

ment to make sense without any homomorphism linking L′ and N , it is useful
to embed both fields in an algebraic closure of L.) So R′ := K ′[x1/q

1 , . . . , x
1/q
n ]

satisfies the following properties: (i) R′ is finitely generated as an R-module,
(ii) R′ is normal (by Example 8.9(1)), and (iii) Tr(bi) ⊆ Quot(R′) for all i.

In the case that R is normal and N is separable over L, these three
properties are satisfied for R′ := R.

Since L ⊆ Quot(R′), property (iii) implies Tr(N) ⊆ Quot(R′). For s ∈ S,
Tr(s) is integral over R, and therefore Tr(s) ∈ R′ by (ii). Every x ∈ N is
algebraic over L, so there exists 0 �= a ∈ R with ax ∈ S. Indeed, choosing
a common denominator a ∈ R of the coefficients of an integral equation of
degree n for x over L = Quot(R) and multiplying the equation by an yields
an integral equation for ax over R. Therefore we may assume that the basis
elements bi lie in S. So S is contained in the R-module

M := {x ∈ N | Tr(xbi) ∈ R′ for all i = 1, . . . , m} ⊆ N.

There is an R-linear map

ϕ: M → (R′)m, x 
→ (Tr(xb1), . . . , Tr(xbm)) .

To show that ϕ is injective, let x ∈ M with ϕ(x) = 0. By the L-linearity of
the trace map, this implies Tr(xy) = 0 for all y ∈ N , so x = 0 since Tr �= 0.
So S is isomorphic to a submodule of (R′)m. But (R′)m is finitely generated
over R by the property (i) of R′, and the result follows by Theorem 2.10. �	

It is tempting to hope that for every Noetherian domain R, the normaliza-
tion R̃ is finitely generated as an R-module. However, Nagata [41, Appendix,
Example E5] has an example in which R̃ is not even Noetherian.

Corollary 8.28 (Normalization of an affine variety). Let X be an irredu-
cible affine variety over an algebraically closed field K. Then there exists
a normal affine variety X̃ with a surjective morphism f : X̃ → X such that:
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(a) dim(X̃) = dim(X).
(b) All fibers of f are finite, and if x ∈ X is a point where the local ring

K[X ]x is normal, then the fiber of x consists of one point.

Proof. By Theorem 8.26, the normalization Ã of the coordinate ring A :=
K[X ] is an affine domain, so by Theorem 1.25(b) there exists an affine variety
X̃ with K[X̃] ∼= Ã. The inclusion A ⊆ Ã induces a morphism f : X̃ →
X . Clearly X̃ is normal, and from Proposition 8.18 we obtain part (a), the
surjectivity of f , and the statement on the fibers of points with Ax normal.
The finiteness of the fibers follows from Theorem 8.12(c). �	

The behavior of the morphism f from Corollary 8.28 can be observed very
well in Example 8.9(4). Exercise 8.8 deals with a universal property of X̃ , as
constructed in the above proof. Together with (a) and (b) of Corollary 8.28,
this characterizes X̃ up to isomorphism. The variety X̃, or sometimes also
X̃ together with the morphism f , is called the normalization of X . In
Section 14.1 we will see that if X is a curve, normalization is the same as
desingularization.

Exercises for Chapter 8

8.1 (Rings of invariants of finite groups). In this exercise we prove that
rings of invariants of finite groups are finitely generated under very general
assumptions. The proof is due to Emmy Noether [43]. Let S be a ring with
a subring R ⊆ S, and let G ⊆ AutR(S) be a finite group of automorphisms
of S as an R-algebra (i.e., the elements of G fix R pointwise). Write

SG := {a ∈ S | σ(a) = a for all σ ∈ G} ⊆ S

for the ring of invariants. Observe that SG is a sub-R-algebra of S.

(a) Show that S is integral over SG. In particular, dim
(
SG

)
= dim(S).

(b) Assume that S is finitely generated as an R-algebra. Show that SG has
a finitely generated subalgebra A ⊆ SG such that S is integral over A.

(c) Assume in addition that R is Noetherian. Show that SG is finitely
generated as an R-algebra. In particular, SG is Noetherian.

8.2 (Rings of invariants are normal). Let R be a normal ring, and let
G ⊆ Aut(R) be a group of automorphisms of R. Show that RG, the ring of
invariants, is normal, too.

*8.3 (The intersection of localizations). Let R be a normal Noetherian
domain. Show that
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R =
⋂

P∈Spec(R),
ht(P )=1

RP .

(Notice that all RP are contained in Quot(R), so the intersection makes
sense.)
Hint: For a/b ∈ Quot(R) \R, consider an ideal P that is maximal among all
colon ideals (b) : (a′) with a′ ∈ (a) \ (b).

8.4 (Quadratic extensions of polynomial rings). Let f ∈ K[x1, . . . , xn]
be a polynomial with coefficients in a field of characteristic not equal
to 2. Assume that f is not a square of a polynomial. Show that the ring
R := K[x1, . . . , xn, y]/(y2 − f) (with y a further indeterminate) is normal if
and only if f is square-free.

8.5 (A normality criterion). Let R be a ring with an element a ∈ R such
that

(1) a is not a zero divisor.
(2) the ideal (a) is a radical ideal.
(3) the localization Ra is a normal domain.

Show that R is a normal domain.
Use this to show that for every field K and every positive integer q, the

ring
K[x1, x2, y1, y2, z]/(zq − (x1y1)q−1z − xq

1y2 − yq
1x2)

(with x1, x2, y1, y2, and z indeterminates) is a normal domain.

8.6 (Normalization). Assume that K contains a primitive third root of
unity. Compute the normalization R̃ of R = K[x3

1, x
2
1x2, x

3
2].

Hint: You may use Exercise 8.2. Alternatively, you may do the exercise
without using the hypothesis on K.

*8.7 (Normalization of polynomial rings). Let R be a Noetherian
domain. Show that

R̃[x] = R̃[x]

(i.e., the normalization of the polynomial ring over R is equal to the polyno-
mial ring over the normalization). Conclude that R[x] is normal if and only
if R is normal.
Hint: The hard part is to show that a polynomial f =

∑n
i=0 aixi ∈ Quot(R)[x]

that is integral over R[x] lies in R̃[x]. This can be done as follows: Show that
there exists 0 �= u ∈ R such that ufk ∈ R[x] for all k ≥ 0. Conclude that
R[an] is finitely generated as an R-module. Then use induction on n.
Remark: The result is also true if R is not Noetherian. In fact, one can reduce
to the Noetherian case by substituting R with a finitely generated subring in
the above proof idea.
(Solution on page 222)
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8.8 (The universal property of normalization). Show that the variety
X̃ constructed in the proof of Corollary 8.28 satisfies the following univer-
sal property. If Y is a normal affine K-variety with a dominant morphism
g: Y → X (this means that the image g(Y ) is dense in X), then there exists
a unique morphism h: Y → X̃ with f ◦ h = g.

8.9 (Where going down fails). In this exercise we study an example of
an integral extension of rings in which going down fails. Let K be a field of
characteristic �= 2, S = K[x, y] the polynomial ring in two indeterminates,
and

R := K[a, b, y] ⊂ S with a = x2 − 1 and b = xa.

(a) Show that S is the normalization of R.
(b) Show that

P :=
(
a − (y2 − 1), b − y(y2 − 1)

)
R
⊂ R

is a prime ideal, and P is contained in the prime ideal

Q′ := (x − 1, y + 1)S ∈ Spec(S).

(c) Show that the unique ideal Q ∈ Spec(S) with R ∩ Q = P is

Q := (x − y)S

and conclude that going down fails for the inclusion R ↪→ S.
(d) Compare this example to Example 8.9(4). Try to give a geometric

interpretation to the failure of going down for R ↪→ S.
Hint: The generators of R satisfy the equation b2 − a2 · (a + 1) = 0.

8.10 (Noether normalization with linear combinations). Prove the
statement in Remark 8.20.
Hint: Mimic the proof of Theorem 8.19, but set yi := xi − βixm with βi ∈ K
(i = 1, . . . , m − 1).

*8.11 (Noether normalization and systems of parameters). Let X �=
∅ be an equidimensional affine variety over a field K and let c1, . . . , cn ∈
A := K[X ] be as in Theorem 8.19. Let x ∈ X be a point with corresponding
maximal ideal m := {f ∈ A | f(x) = 0}. Show that

ai :=
ci − ci(x)

1
∈ Am (i = 1, . . . , n)

provides a system of parameters of the local ring K[X ]x = Am at x. An
interpretation of this result is that Noether normalization provides a global
system of parameters or, from a reverse angle, that systems of parameters
are a local version of Noether normalization.
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Hint: With I := (c1 − c1(x), . . . , cn − cn(x))A, first prove that A/I is
Artinian. Then use Nakayama’s lemma to show that mk

m ⊆ Im for some k.
(Solution on page 223)

8.12 (A Noetherian domain where Theorem 8.22 fails). Let R =
K[[x]] be a formal power series ring over a field, and S = R[y] a polyno-
mial ring. Exhibit two maximal ideals in Specmax(S) of different height. So S
is a Noetherian domain for which Theorem 8.22 and Corollaries 8.23 and 8.24
fail.

8.13 (Hypotheses of Theorem 8.25). Use the following example to show
that the hypothesis on equidimensionality cannot be dropped from Theo-
rem 8.25:

A = K[x1, x2, x3, x4]/(x1 − x4, x
2
1 − x2x4, x

2
1 − x3x4)

and a = x1 − 1, the class of x1 − 1 in A. Explain why this also shows that
if K[x1, . . . , xm]/(f1, . . . , fn) is a complete intersection, this need not imply
that K[x1, . . . , xm]/(f1, . . . , fn−1) is a complete intersection, too.

8.14 (A dimension theorem). Let X and Y be two equidimensional affine
varieties both of which lie in Kn. Show that every irreducible component Z
of X ∩ Y satisfies

dim(Z) ≥ dim(X) + dim(Y ) − n.

Hint: With Δ := {(x, x) | x ∈ Kn} ⊂ K2n the diagonal, show that X ∩ Y ∼=
(X × Y ) ∩ Δ and conclude the result from that.

8.15 (Right or wrong?). Decide whether each of the following statements
is true or false. Give reasons for your answers.

(a) Let K be a finite field and let X be a set. Then the ring S = {f : X →
K | f is a function} (with pointwise operations) is an integral extension
of K (which is embedded into S as the ring of constant functions).

(b) If R ⊆ S is an integral ring extension, then for every P ∈ Spec(R) the
set {Q ∈ Spec(S) | R ∩ Q = P} is finite.

(c) If A is an affine domain that can be generated by dim(A) + 1 elements,
then A is a complete intersection.

(d) If A is an affine algebra that can be generated by dim(A) + 1 elements,
then A is a complete intersection.

(e) If an affine domain is a complete intersection, it is normal.
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