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Abstract. The problem of protecting user’s privacy in Location-Based
Services (LBS) has been extensively studied recently and several defense
techniques have been proposed. In this contribution, we first present a
categorization of privacy attacks and related defenses. Then, we consider
the class of defense techniques that aim at providing privacy through
anonymity and in particular algorithms achieving “historical k-
anonymity” in the case of the adversary obtaining a trace of requests
recognized as being issued by the same (anonymous) user. Finally, we in-
vestigate the issues involved in the experimental evaluation of anonymity
based defense techniques; we show that user movement simulations based
on mostly random movements can lead to overestimate the privacy pro-
tection in some cases and to overprotective techniques in other cases.
The above results are obtained by comparison to a more realistic simu-
lation with an agent-based simulator, considering a specific deployment
scenario.

1 Introduction

Location-based services (LBS) have recently attracted much interest from both
industry and research. Currently, the most popular commercial service is proba-
bly car navigation, but many other services are being offered and more are being
experimented, as less expensive location aware devices are reaching the market.
Consciously or unconsciously, many users are ready to give up one more piece of
their private information in order to access the new services. Many other users,
however, are concerned with releasing their exact location as part of the service
request or with releasing the information of having used a particular service [1].
To safeguard user privacy while rendering useful services is a critical issue on
the growth path of the emerging LBS.

An obvious defense against privacy threats is to eliminate from the request any
data that can directly reveal the issuer’s identity, possibly using a pseudonym
whenever this is required (e.g., for billing through a third party). Unfortunately,
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simply dropping the issuer’s personal identification data may not be sufficient
to anonymize the request. For example, the location and time information in
the request may be used, with the help of external knowledge, to restrict the
possible issuer to a small group of users. This problem is well-known for the
release of data in databases tables [2]. In that case, the problem is to protect
the association between the identity of an individual and a tuple containing her
sensitive data; the attributes whose values could possibly be used to restrict the
candidate identities for a given tuple are called quasi-identifiers [3,4].

For some LBS, anonymity may be hard to achieve and alternative approaches
have been proposed, including obfuscation of sensitive information and the use
of private information retrieval (PIR) techniques. For example, sensitive service
parameters (possibly including location) can be generalized, partly suppressed,
transformed, or decomposed using multiple queries in order to obfuscate their
real precise value, while preserving an acceptable quality of service.

While the main goal of this contribution is to illustrate anonymity-based pri-
vacy protection techniques, the first two sections are devoted to a categorization
of LBS privacy attacks, and to the classification of the main proposed defense
techniques, including private information obfuscation and PIR, according to the
threats they have been designed for, and according to other general features.
This contribution does not discuss techniques aimed to the off-line anonymiza-
tion of sets of trajectories (as in [5]), but only on techniques that are incremen-
tally applied to service requests at the time they are issued. In Section 4, we
focus on anonymity-based approaches and we show how historical k-anonymity
can be achieved when an adversary has the ability to recognize sequences of
requests by the same issuer. In Section 5, we report an experimental evalua-
tion of anonymization algorithms showing the impact of realistic user movement
simulations in these evaluations. Section 6 identifies some interesting research
directions, and Section 7 concludes the chapter.

2 A Classification of Attacks to LBS Privacy

There is a privacy threat whenever an adversary is able to associate the identity
of a user to information that the user considers private. In the case of LBS, this
sensitive association can be possibly derived from location-based requests issued
to service providers. More precisely, the identity and the private information of
a single user can be derived from requests issued by a group of users as well as
from available background knowledge. Figure 1 shows a graphical representation
of this general privacy threat in LBS.

A privacy attack is a specific method used by an adversary to obtain the
sensitive association. Privacy attacks can be divided into categories mainly de-
pending on several parameters that characterize the adversary model. An ad-
versary model has three main components: a) the target private information, b)
the ability to obtain the messages exchanged during service provisioning, and c)
the background knowledge and the inferencing abilities available to the adversary.
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Fig. 1. General privacy threat in LBS

The target private information is the type of information that the adversary
would like to associate with a specific individual, like e.g., her political orien-
tation, or, more specifically, her location. Different classes of adversaries may
also have different abilities to obtain the messages exchanged with the service
provider, either by eavesdropping the communication channels or by accessing
stored data at the endpoints of the communication. This determines, for exam-
ple, the availability to the adversary of a single message or multiple messages,
messages from a specific user or from multiple users, etc.. Finally, the adver-
sary may have access to external knowledge, like e.g., phone directories, lists of
members of certain groups, voters lists, and even presence information for cer-
tain locations, and may be able to perform inferences, like joining information
from messages with external information as well as more involved reasoning. For
example, even when a request does not explicitly contain the sensitive associa-
tion (e.g., by using pseudo-identifiers to avoid identification of the issuer), the
adversary may re-identify the issuer by joining location data in the request with
presence data from external sources.

Regarding background knowledge, two extreme cases can be considered. When
no background knowledge is available, a privacy threat exists if the sensitive
association can be obtained only from the messages in the service protocol.
When “complete” background knowledge is available, the sensitive association is
included and the privacy violation occurs independently from the service request.

Hence, privacy attacks should not only be categorized in terms of the target
private information, and of the availability to the adversary of service protocol
messages (the first two of the main components mentioned above), but also
in terms of the available background knowledge and inferencing abilities. In
the following, we list some categories of privacy attacks specifically enabled by
background knowledge.

– Attacks exploiting quasi-identifiers in requests;
– Snapshot versus historical attacks;
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– Single- versus multiple-issuer attacks;
– Attacks exploiting knowledge of the defense;

Each category is discussed in the rest of this section.

2.1 Attacks Exploiting Quasi-Identifiers

Either part of the sensitive association can be discovered by joining information
in a request with external information. When we discover the identity of the
issuer (or even restrict the set of candidate issuers) we call the part of the
request used in the join quasi-identifier. For example, when the location data
in the request can be joined with publicly available presence data to identify
an individual, we say that location data act as quasi-identifier. Similarly to
privacy preserving database publication, the recognition of what can act as quasi-
identifier in service request is essential to identify the possible attacks (as well
as to design appropriate defenses).

2.2 Snapshot versus Historical Attacks

Most of the approaches presented so far in the literature [6,7,8,9] have proposed
techniques to ensure a user’s privacy in the case in which the adversary can
acquire a single request issued by that user. More specifically, these approaches
do not consider attacks based on the correlation of requests made at different
time instants. An example are attacks exploiting the ability of the adversary to
link a set of requests, i.e., to understand that the requests have been issued by
the same (anonymous) user.

When historical correlation is ignored, we say that the corresponding threats
are limited to the snapshot case. Intuitively, it is like the adversary can only
obtain a snapshot of the messages being exchanged for the service at a given
instant, while not having access to the complete history of messages.

In contrast with the snapshot case, in the historical case it is assumed that the
adversary is able to link a set of requests. Researchers [10,11] have considered
such a possibility. Several techniques exist to link different requests to the same
user, with the most trivial ones being the observation of the same identity or
pseudo-identifier in the requests, and others being based on spatiotemporal cor-
relations. We call request trace a set of requests that the adversary can correctly
associate to a single user. More dangerous threats can be identified in contexts
characterized by the historical case as explained in [12].

2.3 Single versus Multiple-Issuer Attacks

When the adversary model limits the requests that can be obtained to those
being issued by a single (anonymous) user, we say that all the attacks are
single-issuer attacks. When the adversary model admits the possibility that
multiple requests from multiple users are acquired, and the adversary is able to
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understand if two requests are issued by different users, we have a new important
category of attacks, called multiple-issuer attacks. Note that this is an orthogonal
classification with respect to snapshot and historical. Example 1 shows that, in
the multiple-issuer case, an adversary can infer the sensitive association for a
user even if the identity of that user is not revealed to the adversary.

Example 1. Suppose Alice issues a request r and that the adversary can only
understand that the issuer is one of the users in a set S of potential issuers.
However, if all of the users in S issue requests from which the adversary can infer
the same private information inferred from r, then the adversary can associate
that private information to Alice as well.

In the area of privacy in databases, this kind of attack is known as homogeneity
attack [13]. In LBS, differently from the general case depicted in Figure 1), in
the snapshot, multiple-issuer case, a single request for each user in a group is
considered. More involved and dangerous threats can occur in the historical,
multiple-issuer case.

2.4 Attacks Exploiting Knowledge of the Defense

In the security research area, it is frequently assumed that the adversary knows
the algorithms used for protecting information, and indeed the algorithms are
often released to the public. We have shown [14] that the first proposals for LBS
privacy protection ignored this aspect leading to solutions subject to so called
inversion attacks. As an example of these attacks, consider spatial cloaking as
a defense technique, and suppose that a request with a certain cloaked region
is observed by the adversary. Suppose also that he gets to know the identity of
the four potential issuers of that request, since he knows who was in that region
at the time of the request; Still he cannot identify who, among the four, is the
actual issuer, since cloaking has been applied to ensure 4-anonymity. However, If
he knows the cloaking algorithm, he can simulate its application to the specific
location of each of the candidates, and exclude any candidate for which the
resulting cloaked region is different from the one in the observed request. Some
of the proposed algorithms are indeed subject to this attack. Kalnis et al. [8] show
that each generalization function satisfying a property called reciprocity is not
subject to the inversion attack. In our chapter, depending on the assumption in
the adversary model about the knowledge of the defense algorithm we distinguish
def-aware attacks from def-unaware attacks.

3 Defenses to LBS Privacy Threats

Defense techniques can be categorized referring to the attacks’ classification
reported above, depending on which specific attacks they have been designed for.
However, there are other important criteria to distinguish defense approaches:
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1. Defense technique: Identity anonymity versus private information obfusca-
tion versus encryption

2. Defense architecture: Centralized versus decentralized
3. Defense validation: Theoretical versus experimental.

The different defense techniques can be classified as anonymity-based if they
aim at protecting the association between an individual and her private in-
formation by avoiding the re-identification of the individual through a request
(or a sequence of requests). This is achieved by transforming the parts of the
original request acting as quasi-identifiers to obtain a generalized request. On
the contrary, techniques based on private information obfuscation aim to pro-
tect the same association by transforming the private information contained in
the original request, often assuming that the identity of the individual can be
obtained. Finally, encryption-based techniques use private information retrieval
(PIR) methods that can potentially protect both the identity of the issuer and
the private information in the request.

Centralized defense architectures assume the existence of one or more trusted
entities acting as a proxy for service requests and responses between the users
and the service providers. The main role of the proxy is to transform requests
and possibly responses according to different techniques in order to preserve the
privacy of the issuers. Decentralized architectures, on the contrary do not assume
intermediate entities between users and service providers. Among the benefits
of centralized architectures are a) the ability of the proxy to use information
about a group of users (e.g., their location) in order to more effectively preserve
their privacy, and b) the availability of more computational and communication
resources than the users’ devices. The main drawbacks are considered the over-
heads in updating on the proxy the information about the users, and the need
for the user to trust these entities.

A third criteria to distinguish the defenses that have been proposed is the
validation method that has been used. In some cases, formal results, based on
some assumptions, have been provided so that a certain privacy is guaranteed
in all scenarios in which the assumptions hold. In other cases, only an experi-
mental evaluation, usually based on synthetic data, is provided. It will be clear
later in this contribution that this approach may be critical if the actual service
deployment environment does not match the one used in the evaluation.

In this section we classify the main proposals appeared in the literature ac-
cording to this categorization.

3.1 Anonymity Based Defenses

Most of the techniques proposed in the LBS literature to defend privacy through
anonymity consider the location as a quasi-identifier. Indeed, it is implicitly or
explicitly assumed that background knowledge can in some cases lead an ad-
versary to infer the identity of the issuer given her location at a given time.
Consequently, the target private information for the considered attacks is usually
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the specific service being requested, or the location of the issuer whenever that
location cannot be used as quasi-identifier.1

When the location acts as a quasi-identifier, the defense technique transforms
the location information in the original request into a generalized location. In the
following we call anonymity set of a generalized request, the set of users that,
considering location information as quasi-identifier, are not distinguishable from
the issuer.

Centralized Defenses against Snapshot, Single-Issuer and Def-Unaware
Attacks. Anonymity based defenses with centralized architectures assume the
existence of a trusted proxy that is aware of the movements of a large number
of users. We call this proxy Location-aware Trusted Server (LTS).

The first generalization algorithm that appeared in the literature is named
IntervalCloaking [7]. The paper proposes to generalize the requests along the
spatial and/or temporal dimension. For what concerns the spatial dimension,
the idea of the algorithm is to iteratively divide the total region monitored by
the LTS. At each iteration the current area qprev is partitioned into quadrants
of equal size. If less than k users are located in the quadrant q where the issuer
of the request is located, then qprev is returned. Otherwise, iteration continues
considering q as the next area. For what concerns the temporal dimension, the
idea is to first generalize the spatial location (with the above algorithm) at a
resolution not finer than a given threshold. Then, the request is delayed until k
users pass through the generalized spatial location. This defense algorithm has
only been validated through experimental results.

An idea similar to the spatial generalization of IntervalCloaking is used by
Mokbel et al. [9] that propose Casper, a framework for privacy protection that
includes a generalization algorithm. The main difference with respect to Interval-
Cloaking is that, in addition to the anonymity parameter k, the user can specify
the minimum size of the area that is sent to the SP. While it is not explicit in the
paper, the idea seems to be that, in addition to k-anonymity, the algorithm also
provides a form of location obfuscation. Similarly to IntervalCloaking, Casper
has been validated through experimental results.

Centralized Defenses against Snapshot, Single-Issuer and Def-Aware
Attacks. Many papers extend IntervalCloaking to provide defenses techniques
that guarantee anonymity when more conservative assumptions are made for
the adversary model. Kalnis et al. [8], propose the Hilbert Cloak algorithm that
provides anonymity also in the case in which the adversary knows the general-
ization function. The idea of Hilbert Cloak is to exploit the Hilbert space filling
curve to define a total order among users’ locations. Then, Hilbert Cloak par-
titions the users into blocks of k: the first block from the user in position 0 to
the user in position k − 1 and so on (note that the last block can contain up
to 2 · k − 1 users). The algorithm then returns the minimum bounding rectangle
(MBR) computed considering the position of the users that are in the same block
1 Indeed, location cannot be the target private information when it can be found

explicitly associated with identities in background knowledge.
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as the issuer. The correctness of the Hilbert Cloak algorithm is formally provided
and the performance of the algorithm has been also experimentally evaluated.

A different algorithm, called CliqueCloak is proposed by Gedik et al. [15]. The
main difference with respect to the IntervalCloaking algorithm is that Clique-
Cloak computes the generalization among the users that actually issue a request
and not among the users that are potential issuers. Indeed, CliqueCloak collects
original requests without forwarding them to the SP until it is possible to find
a spatiotemporal generalization that includes at least k pending requests. Then,
the requests are generalized and forwarded to the SP. The advantage of the pro-
posed technique, whose correctness is formally proved, is that it allows the users
to personalize the degree of anonymity as well as the maximum tolerable spatial
and temporal generalizations. However, the algorithm has high computational
costs and it can be efficiently executed only for small values of k.

In [14] Mascetti et al. present other three generalization algorithms that are
proved to guarantee anonymity against snapshot, single-issuer and def-aware
attacks. The aim is to provide anonymity while minimizing the size of the gen-
eralized location. The algorithm with the best performance with respect to this
metric is called Grid. Intuitively, this algorithm partitions all users according
to their position along one dimension. Then, it considers the users in the same
block as the issuer and it partitions them according to their location along the
other dimension. Finally, each block has at least cardinality k and the algorithm
computes the generalized location as the minimum bounding rectangle (MBR)
that covers the location of the users in the same block as the issuer.

Decentralized Defenses against Snapshot, Single-Issuer Attacks. Some
papers propose defense techniques that do not require a centralized architecture.
Chow et al. [16] propose a decentralized solution called CloakP2P in which it is
assumed that users can communicate with each other using an ad-hoc network.
Basically, before sending the request, a user looks for the k − 1 closest users in
the neighborhood through the ad-hoc network. The location information of the
request is then generalized to the region containing these users and the request
is issued to the server through one of these users that is randomly selected.
This algorithm guarantees privacy only against def-unaware attacks and it is
evaluated through experimental results only.

Privè is a distributed protocol based on the Hilbert Cloak algorithm ([17]).
In this case, the data structure that contains the positions of the users on the
Hilbert curve is a B+-tree that is distributed among the users in the system. The
generalization is a distributed algorithm that traverses the tree starting from the
root and finds the set of users containing the issuer. The algorithm is proven to
be correct and guarantees privacy also against def-aware attacks. However, this
solution suffers from some scalability issues. To address these issues, Ghinita et
al. [18] propose the MobiHide algorithm which improves the scalability but that
does not guarantee anonymity if the generalization algorithm is known to the
adversary. The algorithm is formally validated.

A different decentralized solution is proposed by Hu et al. [19]. The main
characteristic of the proposed technique is that it does not require the users to
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disclose their locations during the anonymization process. Indeed, it is assumed
that a user’s devices is able to measure the closeness from its peers through
its omnidirectional antenna (using WiFi signal, for example). When a request
is generalized, the distance information is used to compute the anonymity set
and the generalized location is obtained through a secure computation among
the users in the anonymity set. The proposed approach is safe against def-aware
attacks and its correctness is formally proved.

Centralized Defenses against Historical, Single-Issuer Attacks. Several
papers further extend the ideas of IntervalCloaking to provide a defense in the
historical case. The problem of anonymity in the historical, single-issuer case has
been first investigated in [12]. In the paper it is shown that the defense technique
for the snapshot case cannot be straightforwardly applied to provide protection
against a historical attack. In addition, a centralized algorithm is proposed. The
model proposed in the paper is used in this contribution and is presented in
details in Section 4.

Following the main ideas presented in [12] other anonymization techniques
for the historical case have been proposed in [20,21]. The work in [20] also aims
at providing protection against a def-aware attack, however it is not clear if
the proposed algorithm achieves this goal since it is only evaluated through
experimental results. The work in [21] proposes two generalization algorithms,
the first one, called plainKAA, exploits the same general idea presented in [12].
The second one is an optimization of the first, based on the idea that in the
generalization of the requests the users that were not in the anonymity set of
a previous request can contribute to anonymity protection. It is unclear if this
optimization can preserve historical k-anonymity. Both algorithms are validated
through experimental results only.

Mascetti et al. propose a formal model for the historical case [22] and exper-
imentally show that, under certain conservative assumptions, it is not possible
to guarantee anonymity without generalizing the user locations to large areas.
Under these assumptions, considered in most of the related work on the snaphot
case, the adversary knows the association between each user identity and the
location of that user. The ProvidentHider algorithm is proposed to guarantee
anonymity in the historical case under the relaxed assumptions that the adver-
sary knows this association only when users are located in certain areas (e.g.,
workplaces). The correctness of the algorithm is formally proved and its appli-
cability is experimentally evaluated.

Centralized Defenses against Multiple-Issuer Attacks. Preliminary re-
sults on the privacy leaks determined by multiple-issuer attacks are reported
in [23]. Defenses for this kind of attacks are based on accurately generalizing
location (as a quasi-identifier) in order to obtain QI-groups of requests with a
certain degree of diversity in private values. A defense against multiple-issuer
attacks both in the snapshot and in a limited version of the historical case is
proposed by Riboni et Al. [24] using a combination of identity anonymity and
private information obfuscation techniques. Further research is needed along this
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line. For example, to understand under which conditions close values in private
information can really be considered different (e.g., location areas).

3.2 Defenses Based on Private Information Obfuscation

As mentioned at the beginning of this section, these defenses aim at obfuscating
private information released by users’ requests as opposed to generalizing quasi-
identifiers. To the best of our knowledge, all of the techniques in this category
consider location as the private information to be protected, and implicitly or
explicitly assume that user identity is known to the adversary or could be discov-
ered. In the following of this chapter, we use location obfuscation to denote the
general category of defenses aimed at obfuscating the exact location as private
information of the (possibly identified) issuer.

Differently from the anonymity based defenses considering location as quasi-
identifier, in this case it is less important to know the location of other users
in order to provide privacy protection. For this reason, most of the location
obfuscation techniques do not require a common location-aware trusted entity
and, according to our categorization, they have a decentralized architecture.
Sometimes these defenses are also claimed to provide a form of k-anonymity,
leading to confusion with anonymity based defenses. The underlying idea is that
due to the obfuscation, the location of the issuer (who is possibly not anonymous
at all) cannot be distinguished among k possible locations. In order to avoid
confusion this property should be called location anonymity.

The idea of protecting location privacy by obfuscating location information
was first proposed by Gruteser et al. [25]. The technique is aimed at avoiding the
association of a user with a sensitive area she is crossing or approaching. The
proposed defense is based on appropriately suspending user requests, ensuring
that the location of the user may be confused among at least other k areas. The
proposed technique require a centralized entity, but it should not be difficult to
modify the proposed algorithm so that it could be run directly on the users’
mobile device. This defense algorithm is only validated via experiments. It is
also not clear which privacy guarantees are provided if the adversary knows the
algorithm.

Duckham et al. propose a protocol that allows a user to obtain the result
of 1-NN (Nearest Neighbor) queries among a set of points of interest without
disclosing her exact location [26]. The protocol is iterative. At the first iteration
the user sends her obfuscated location to the SP that replies with the pair 〈q, C〉
where q is the point of interest having the highest confidence C of being the
closest to the user. At each following iteration, the user can decide whether to
provide additional location information in order to obtain a result with higher
confidence. It is not specified how the generalization of the user’s location is
computed.

A different approach, proposed by Kido et al. [27], consists in sending, to-
gether with the real request, a set of fake requests. Since the adversary cannot
distinguish the real request from the fake ones, it cannot discover the real loca-
tion of the issuer, among the locations of the fake requests. This decentralized
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solution is effective also in the case in which the adversary knows the defense
function. However, this solution has the problem that, in order to effectively
protect the location information, a high number of fake requests should be sent
hence impacting on the communication costs. The technique is validated through
experimental results only.

In [28], Ardagna et al. propose to use a combination of location obfuscation
techniques and a metric to measure the obfuscation achieved. The difference
with respect to other approaches is that the resulting obfuscation area may not
contain the actual location of the issuer; moreover, the location measurement
error introduced by sensing technologies is taken into account. It is not formally
proved that the proposed defense protects against def-aware attacks. According
to our categorization, the paper considers a centralized architecture, even if the
proposed obfuscation techniques can be probably run on the client side.

Recently, Yiu et al. [29] proposed a different solution to obfuscate location
information, specific for LBS requests that require K-NN queries. The idea of
the algorithm, named SpaceTwist, is to issue each request as if it would origi-
nate from a location different from the real user location. The request may be
repeated (from the same fake location) incrementally retrieving more nearest
neighbor resources, until a satisfactory answer for the real location is obtained.
This solution is particularly interesting since it does not require the existence
of the centralized entity that provide privacy protection and involves no range
NN queries on the server side. In the paper it is also formally shown how the
adversary can compute the area where the user is possibly located under the
assumptions that the adversary only knows the fake location, the number of
requested resources, the replies from the server and the termination condition of
the algorithm.

Referring to our categorization of attacks, the existing location obfuscation de-
fenses focus on snapshot and single-issuer attacks. Example 2 shows that, in some
cases, a historical attack can further restrict the possible locations of a user.

Example 2. A request issued by Alice is obfuscated in such a way that an ad-
versary only knows that Alice is located in an area A1 at time t1. After a short
time, Alice issues a second request that is obfuscated in such a way that the
adversary knows that Alice is located somewhere in area A2 at time t2. Now,
assume that there is a subregion A′ of A2 such that, due to speed constraints,
no matter where Alice were located in A1 at time t1, she has no way to get to
A′ at time t2. Now the adversary knows that at time t2, Alice cannot be located
in A′ and hence she must be in A2 \ A′.

Encryption Based Defenses. We call encryption based, the defense proposals
based on private information retrieval (PIR) techniques. The general objective
of a PIR protocol is to allow a user to issue a query to a database without
the database learning the query. In [30] this techniques is used to protect users’
privacy in the LBS that computes 1-NN queries. The proposed solution is proved
to solve the privacy problem under the most conservative assumptions about
the adversary model as it does not reveal any information about the requests
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to the adversary. Nevertheless, some concerns arises about the applicability of
the proposed technique. First, the proposed solution applies to 1-NN queries
only and it is not clear how it could be extended to other kinds of queries like
K-NN queries or range queries. Second, this technique has high computational
and communication overhead. Indeed, the experimental results shown in the
paper give evidence that, also using a small database of objects to be retrieved,
the computation time on the server side is in the order of seconds, while the
communication cost is in the order of megabytes. In particular, the amount of
data that needs to be exchanged between the server and the client is larger
than the size of the database itself. It is not clear for which kind of services this
overhead could be tolerable.

4 Historical k-Anonymity

Most of the defenses presented in Section 3 deal with snapshot attacks, while
less attention has been given to historical attacks, namely those attacks that
take advantage of the acquisition of a history of requests that can be recog-
nized as issued by the same (anonymous) user. We believe that the conditions
enabling this kind of attacks are very likely to occur in LBS. In this section,
we present a general algorithm for providing historical anonymity as a defense
against historical attacks. Consistently with the categorization of attacks and
defenses presented in Sections 2 and 3 we formally characterize the attack we
are dealing with, and the proposed defense. We then present the algorithm and
provide its analysis.

In the following, the format of a LBS request is represented by the triple:
〈IdData, STData, SSData〉. IdData may be empty, contain the identity of
the issuer, or a pseudo-identifier. STData contains spatiotemporal information
about the location of the user performing the request, and the time the request
was issued. This information may be a point in 3-dimensional space (with time
being the third dimension) or an uncertainty region in the same space. STData
is partitioned into SData and TData that contain the spatial and temporal in-
formation about the user, respectively. SSData contains (possibly generalized)
parameters characterizing the required service and service provider. An origi-
nal request is denoted with r, while the same request transformed by a defense
technique is denoted with r′.

4.1 Attack Category

Before we categorize attack and defense we are interested in, we use Example 3
to show that defense techniques for the snapshot cases cannot straightforwardly
be used in the historical case. This example also provides our motivation for the
attack and defense categories.

Example 3. Suppose Alice requires 3-anonymity and issues a request r. An al-
gorithm safe against def-aware attacks is used to generalize r into a request r′

whose spatiotemporal region includes only Alice, Bob, and Carl. Afterwards,
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Alice issues a new request r1 that is generalized into a request r′1 whose spa-
tiotemporal region includes only Alice, Ann, and John. Suppose the adversary is
able to link requests r′ and r′1, i.e., he is able to understand that the two requests
have been issued by the same user. The adversary can observe that neither Bob
nor Carl can be the issuer of r′1, because they are not in the spatiotemporal
region of r′1; Consequently, they cannot be the issuers of r′ either. Analogously,
considering the spatiotemporal region in r′, he can derive that Ann and John
cannot be the issuers of the two request. Therefore, the adversary can identify
Alice as the issuer of r′ and r′1.

In this example, in addition to adversary’s ability of using location as quasi-
identifier, the ability to link requests is crucial for the attack to be successful.
In a general scenario, in terms of the privacy attack dimensions identified in
Section 2, we deal with attacks that:

1. Exploit location and time as quasi-identifiers in requests, that is, the adver-
sary can identify users by their location information;

2. Use historical request traces, that is, the adversary can link requests that
have been issued by the same user;

3. Do not correlate requests or sequences of requests issued by different users.
This is equivalent to consider single-issuer attacks only.

4. Exploit knowledge of the defense, that is, we assume that the adversary
knows the defense algorithm.

We will formalize items 1. and 2. below in order to analyze our defense rigor-
ously, and the remaining items are exactly as discussed in the snapshot attack
cases.

Location as Quasi-Identifier. Item 1. can be formalized as follows. For users’
locations, we assume that the adversary has the knowledge expressed as the
following Ident function:

Identt : the Areas −→ the User sets,

that is, given an area A, Identt(A) is the set of users whom, through certain
means, the adversary has identified to be located in area A at time t. In the
following, when no confusion arises, we omit the time instant t. We further
assume that this knowledge is correct in the sense that these identified users in
reality are indeed in area A at the time.

For a given user i, if there exists an area A such that i ∈ Ident(A), then we
say i is identified by the adversary. Furthermore, we say that i is identified in
A. Note that there may be users who are also in A but the adversary does not
identify them. This may happen either because the adversary is not aware of the
presence of users in A, or because the adversary cannot identify these users even
if he is aware of their presence. We do not distinguish these two cases as we shall
see later that the distinction of the two cases does not make any perceptible
difference in the ability of the adversary when the total population is large.
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Clearly, in reality, there are lots of different sources of external information
that can lead the adversary to estimate the location of users. Some may lead the
adversary to know that a user is in a certain area, but not the exact location.
For example, an adversary may know that Bob is in a pub (due to his use of a
fidelity card at the pub), but may not know which room he is in. Some statistical
analysis may be done to derive the probability that Bob is in a particular room,
but this is beyond the scope of this chapter.

The most conservative assumption regarding this capability of the adversary is
that Ident(A) will give exactly all the users for each area A. It can be seen that if
the privacy of the user is guaranteed in this most conservative assumption, then
privacy is also guaranteed against any less precise Ident function. However, this
conservative assumption is unlikely true in reality, while some observed that this
assumption degenerates the quality of service unnecessarily. It will be interesting
to see how much privacy and quality of service change with more realistic Ident
functions.

Another function we assume to be known to the adversary is the following:

Numt : the Areas −→ [0,∞),

that is, given an area A, Numt(A) gives an estimate of the number of users
in the area at time t. This is useful to the adversary to derive some statistical
information when Ident function does not recognize all the users in an area.
This function can be obtained from statistical information publicly available or
through some kind of counting mechanism such as tickets to a theater. Again,
when no confusion arises, we do not indicate the time instant t.

Request Traces Recognized by the Adversary. In item (2) of the attack
category, we assume that the adversary has the ability to link requests of the
same user. This is formalized as the following function L:

L : the Requests −→ the Request sets,

that is, given a (generalized) request r′, L(r′) gives a set of requests such that
the adversary has concluded, through certain means, are issued by the same user
who issued the request r′. In other words, all the requests in L(r′) are linked to
r′, although the adversary may still not know who the user is.

4.2 Defense Category

We now turn to discuss the category for our proposed defense strategy. The
attacks being targeted by our defense are historical attacks more precisely de-
scribed in Section 4.1. Moreover, based on the categorization of Section 3, our
defense technique has the following characteristics:

1. Defense technique: we are using anonymity, or more specifically historical
k-anonymity

2. Defense architecture: centralized; we are using LTS as our centralized defense
server.
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3. Defense Validation: we validate the effectiveness and efficiency via experi-
ments.

As indicated in item (1) above, we use a notion of historical anonymity [12] to
provide the basis for defense. To define the notion of historical anonymity, it is
reasonable to assume that the LTS not only stores in its database the set of re-
quests issued by each user, but also stores for each user the sequence of her location
updates. This sequence is called Personal History of Locations (PHL). More for-
mally, the PHL of user u is a sequence of 3D points (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉),
where 〈xi, yi〉, for i = 1, . . . , m, represents the position of u (in two-dimensional
space) at the time instant ti.

A PHL (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉) is defined to be LT-consistent with a set
of requests r1, . . . , rn issued to a SP if for each request ri there exists an element
〈xj , yj, tj〉 in the PHL such that the area of ri contains the location identified
by the point xj , yj and the time interval of ri contains the instant tj .

Then, given the set R̄ of all requests issued to a certain SP, a subset of
requests R̄′ = {r1, . . . , rm} issued by the same user u is said to satisfy Historical
k-Anonymity if there exist k−1 PHLs P1, . . . , Pk−1 for k−1 users different from
u, such that each Pj , j = 1, . . . , k − 1, is LT-consistent with R′.

The open problem in this case is how to generalize each request in order to
obtain traces that are historical k-anonymous. One problem is that the LTS has
to generalize each request when it is issued, without having the knowledge of the
future users’ locations nor the future requests that are to be issued. A separate
problem is to avoid long traces; indeed, the longer is a trace, the more each
request needs to be generalized in order to guarantee historical k-anonymity.

4.3 The Greedy Algorithm for Historical k-Anonymity

We now present a generalization algorithms for historical anonymity. In the
next subsection we will analyze the anonymity achieved by a set of general-
ized requests. In the experimental section, we will present an evaluation of the
effectiveness of the algorithm.

Our algorithm uses a snapshot anonymization algorithm, like Grid, as pre-
sented in Section 3. We modify this algorithm by adding the requirement that
the perimeter of the MBR be always smaller than a user-given maxP value. To
achieve this, we basically recursively shrink the obtained MBR from the snapshot
algorithm until its perimeter is smaller than maxP .

The idea of the Greedy algorithm was first proposed in [12] and a similar al-
gorithm was also described in [21]. Greedy is aimed at preserving privacy under
the attack given in Section 4.1. This algorithm computes the generalization of
the first request r in a trace using an algorithm for the snapshot case. (In our
implementation, we use Grid as the snapshot algorithm to compute the gener-
alization of the first request.) When this first request is generalized, the set A
of users located in the generalized location for the first request is stored. The
generalized locations of each subsequent request r′ that is linked with r is then
taken as the MBR of the location of the users in A at the time of r′. As in the
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Algorithm 1. Greedy

Input: a request r, an anonymity set A, anonymity level k, and a maximum perimeter
maxP .
Output: a generalized request r′ and an anonymity set A′.
Method:

1: find the MBR of all the current locations (at the time of request r) of users in A
(note that if A = ∅ then the MBR is empty).

2: if (the perimeter of the MBR is smaller than maxP ) then
3: if (|A| > 1) then
4: replace the spatial information in r with the MBR, obtaining r′

5: let A′ = A
6: else
7: call Grid algorithm∗ with r, k, and maxP , obtaining r′

8: let A′ be the set of users currently in the spatial region of r′

9: end if
10: else
11: recursively shrink the MBR until its perimeter is smaller than maxP
12: replace the spatial region in r with the resulting MBR, obtaining r′

13: let A′ be the set of users currently located in the resulting MBR
14: if (|A′| ≤ 1) then
15: call Grid algorithm with r, k, and maxP , obtaining r′

16: let A′ be the set of users currently in the spatial region of r′

17: end if
18: end if
19: return r′ and A′
∗ Instead of Grid, other snapshot algorithms can be used here.

modification of the Grid algorithm, when the MBR is smaller than maxP , we
will recursively shrink it and exclude the users that fall out of the region. Al-
gorithm 1 gives the pseudocode. This algorithm is called initially with the first
request r and empty set A = ∅, and subsequently, it is called with the successive
request and the A′ returned from the previous execution.

4.4 Analysis of Anonymity

A successive use of Algorithm 1 returns a sequence of generalized requests for the
user, and these generalized requests are forwarded to the SP. The question we
have now is how much privacy protection such a sequence of generalized requests
provides. That is, we want to find the following function:

Att : the Request set × the Users −→ [0, 1],

Intuitively, given a (generalized) request r′ and a user i, Att(r′, i) gives the
probability that the adversary can derive, under the assumption of the attack
category of Section 4.1, that i is the issuer of r′ among all the users.

In the following of this section we show how to specify the attack function.
Once the attack function is specified, we can use the following formula to evaluate
the privacy value of a request:
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Privacy(r′) = 1 − Att(r′, issuer(r′)) (1)

Intuitively, this value is the probability that the adversary will not associate the
issuer of request r′ to r′.

In order to specify the Att function, we introduce the function Inside(i, r′)
that indicates the probability of user i to be located in r′.Sdata at the time
of the request. Intuitively, Inside(i, r′) = 1 if user i is identified by the ad-
versary as one of the users that are located in r′.Sdata at time r′.T data, i.e.,
i ∈ Identt(r′.Sdata) when t = r′.T data. On the contrary, Inside(i, r′) = 0 if
i is recognized by the adversary as one of the users located outside r′.Sdata
at time r′.T data, i.e., there exists an area A with A ∩ r′.Sdata = ∅ such that
i ∈ Ident(A). Finally, if neither of the above cases hold, then the adversary
does not know where i is. There is still a probability that i is in r′.Sdata. This
is a much more involved case, and we first analyze the simple case, in which
the adversary cannot link r′ to any other requests, i.e., there is no historical
information about the issuer of r′. In this case, theoretically, this probability is
the number of users in r′.Sdata that are not recognized by the adversary (i.e.,
Num(r′.Sdata)− |Ident(r′.Sdata)|) divided by all the users who are not recog-
nized by the adversary anywhere (i.e., |I| − |Ident(Ω)|, where I is the set of all
users, and Ω is the entire area for the application). Formally,

Inside(i, r′) =

⎧
⎨

⎩

1 if i ∈ Ident(r′.Sdata)
0 if ∃A : A ∩ r′.Sdata = ∅ and i ∈ Ident(A)
Num(r′.Sdata)−|Ident(r′.Sdata)|

|I|−|Ident(Ω)| otherwise
(2)

Example 4. Consider the situation shown in Figure 2(a) in which there is the
request r′ such that, at time r′.T data, there are three users in r′.Sdata: one of
them is identified as i1, the other two are not identified. The adversary can also
identify users i2 and i3 outside r′.Sdata at time r′.T data. Assume that the set
I contains 100 users.

Clearly, i2 and i3 have zero probability of being the issuers, since they are
identified outside r′.Sdata and due to the assumption that the spatial region of
any generalized request must contain the spatial region of the original request.
That is, Inside(i2, r′) = Inside(i3, r′) = 0. On the contrary, the adversary is

(a) First request, r′. (b) Second request, r′′.

Fig. 2. Example of attack
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sure about the fact that i1 is located in r′.Sdata, i.e., Inside(i1, r′) = 1. By
Formula 2, for each user i in I \ {i1, i2, i3}, Inside(i, r′) = 2/97.

However, when the adversary is assumed to link r′ to other requests, then we
need to be more careful. We define Inside(i, L(r′)) to be the probability that i
is located in r.STdata for each request r in L(r′). To calculate Inside(i, L(r′)),
we need to know the probability of a user i in area B at time t if we know that
the same user was in a series areas A1, . . . , Ap at time t1, . . . , tp, respectively,
i.e., we need estimate the conditional probability:

P (Insidet(i, B)|Insidet1(i, A1), . . . , Insidetp(i, Ap)).

This conditional probability depends on many factors, including the distance
between these areas and the assumed moving speed of the user. We may use
historical data to study this conditional probability. Absent of the knowledge of
user’s moving speed or historical data, in this contribution, we use a simplifying
independence assumption that the probability of a user in A is independent of
where the user has been in the past. Hence, we assume

Inside(i, L(r′)) = Πr∈L(r′)Inside(i, r),

where Inside(i, r) is as given in Formula 2.

Example 5. Continue from Example 4 and assume a second request r′′ (see Fig-
ure 2(b)) is issued after r′ and that r′′ is linked with r′, so L(r′′) = {r′, r′′}.
We call L(r′′) a trace and denote it τ . At time r′′.T data, there are 4 users in-
side r′′.Sdata, two of which are identified as i1 and i2. No user is identified
outside r′′.Sdata. From the above discussion, it follows that Inside(i2, τ) =
Inside(i3, τ) = 0 since i2 and i3 are identified outside the first generalized re-
quest r′. All the other users have a non-zero probability of being inside the
generalized location of each request in the trace. In particular, Inside(i1, τ) = 1
since i1 is recognized in both requests. Consider a user i ∈ I \ {i1, i2, i3}. Since
Inside(i, r′) = 2/97 and Inside(i, r′′) = 2/98, we have Inside(i, τ) = 0.00042, a
very small number.

Now we can obtain the attack formula:

Att(r′, i) =
Inside(i, L(r′))

∑
i′∈I Inside(i′, L(r′))

(3)

Example 6. Continue from Example 5. We now know Att(r′′, i1) = 1/(1 + 97 ∗
0.00042) ≈ 96%, Att(r′′, i2) = Att(r′′, i3) = 0, and Att(r′′, i) = 0.00042/(1+97∗
0.00042) ≈ 0 for each user i in I \ {i1, i2, i3}.
From this example, we can observe that the independence assumption causes an
overestimate of the probability of i1 to be the issuer, but an underestimate of the
probability of users other than i1, i2, and i3. If we knew that a user in r′.Sdata
is very likely to be in r′′.Sdata (at the respective times), then the estimate of
the attack values in Example 6 needs to be revised.
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5 Impact of Realistic Simulations on the Evaluation of
Anonymity-Based Defense Techniques

As we motivated in the previous sections, the correctness of an anonymity-
preserving technique can be formally proved based on the specific assumptions
made on the adversary model. However, in practice, different adversaries may
have different background knowledge and inferencing abilities. Hence, one ap-
proach consists in stating conservative assumptions under which anonymity can
be guaranteed against a broad range of potential adversaries. The drawback of
this approach is clear from the conservative assumptions about location knowl-
edge considered so far by anonymity based solutions: in order to protect from the
occasional knowledge by the adversary about people present at a given location
(unknown to the defender), it is (often implicitly) assumed the same knowledge
for all locations. Such assumptions are not realistic and lead to overprotect the
users’ anonymity, hence negatively impacting on the quality of service. A differ-
ent approach, taken by several researcher is experimental evaluation. Since large
set of real, accurate data are very hard to obtain, in most cases experiments
are based on synthetic data generated through simulators. In this section we
focus on validating anonymity-based defense techniques, and we show that in
order to obtain significant results, simulations must be very carefully designed.
In addition to evaluating the Greedy algorithm as a representative of historical
anonymity based defenses, we are interested in the following more general ques-
tions: a) how much does the adversary model affect the privacy obtained by the
defense according to the evaluation?, and b) how much does the specific service
deployment model affect the results of the evaluation?

5.1 The MilanoByNight Simulation

In order to carefully design the simulation, we concentrate on a specific class
of LBS called friend-finder. A friend-finder reveals to a participating user the
presence of other close-by participants belonging to a particular group (friends
is only one example), possibly showing their position on a map. In particular,
we consider the following service: a user issues a request specifying a threshold
distance δA and the group of target participants (e.g., the users sharing a certain
interest). The SP replies with the set of participants belonging to that group
whose location is not farther than δA from the issuer.

A first privacy threat for a user of the friend-finder service is the association
of that user’s identity with the service parameters and, in particular, with the
group of target participants, since this can reveal the user’s interests or other
private information. Even if the user’s identity is not explicit in a request, an
adversary can obtain this association, by using the location information of a
request as a quasi-identifier.

A second privacy threat is the association of the user’s identity with the
locations visited by that user2. We recall that this association takes place
2 A obfuscation-based defense against this threat, specifically designed for the friend-

finder service, has recently been proposed [31].
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independently from the service requests if the adversary’s background location
knowledge is “complete” (see Section 2). However, consider the case in which the
background knowledge is “partial” i.e., it contains the association between user
identity and location information only for some users in some locations at some
time instants. Example 7 shows how, in this case, an adversary can exploit a set
of friend-finder requests to derive location information that are not included in
the background knowledge.

Example 7. User A issues a friend-finder request r1. An adversary obtains r1 and
discovers that A is the issuer by joining the location information in the request
with his background knowledge (i.e., the location information of r1 is used as
quasi-identifier). Then, A moves to a different location and issues a request r2.
The adversary obtains r2, but in this case his background knowledge does not
contain sufficient information to identify the issuer of the request. However, if
the adversary can understand that r1 and r2 are linked (i.e., issued from the
same issuer), then he derives that A is also the issuer of r2 and hence obtains
new location information about A.

We suppose that the friend-finder service is primarily used by people during
entertainment hours, especially at night. Therefore, the ideal dataset for our
experiments should represent movements of people on a typical Friday or Satur-
day night in a big city, when users tend to move to entertainment places. To our
knowledge, currently there are no datasets like this publicly available, specially
considering that we want to have large scale, individual, and precise location
data (i.e., with the same approximation of current consumer GPS technology).

Relevant Simulation Parameters. For our experiments we want to artifi-
cially generate movements for 100, 000 users on the road network of Milan3.
The total area of the map is 324 km2, and the resulting average density is 308
users/km2. The simulation includes a total of 30, 000 home buildings and 1, 000
entertainment places; the first value is strictly related to the considered num-
ber of users, while the second is based on real data from public sources which
also provide the geographical distribution of the places. Our simulation starts
at 7 pm and ends at 1 am. During these hours, each user moves from house to
an entertainment place, spends some time in that place, and possibly moves to
another entertainment place or goes back home.

All probabilities related to users’ choices are modeled with probability distri-
butions. In order to have a realistic model of these distributions, we prepared
a survey to collect real users data. We are still collecting data, but the cur-
rent parameters are based on interviews of more than 300 people in our target
category.

Weaknesses of Mostly Random Movement Simulations. Many papers in
the field of privacy preservation in LBS use artificial data generated by moving
object simulators to evaluate their techniques. However, most of the simulators
3 100, 000 is an estimation of the number of people participating in the service we

consider.
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are usually not able to reproduce a realistic behavior of users. For example,
objects generated by the Brinkhoff generator [32] cannot be aggregated in certain
places (e.g., entertainment places). Indeed, once an object is instantiated, the
generator chooses a random destination point on the map; after reaching the
destination, the object disappears from the dataset. For the same reason, it is
not possible to reproduce simple movement patterns (e.g.: a user going out from
her home to another place and then coming back home), nor to simulate that a
user remains for a certain time in a place.

Despite these strong limitations, we made our best effort to use the Brinkhoff
simulator to generate a set of user movements with characteristics as close as pos-
sible to those described above. For example, in order to simulate entertainment
places, some random points on the map, among those points on the trajectories
of users, were picked. The simulation has the main purpose of understanding
if testing privacy preservation over random movement simulations gives signifi-
cantly different results with respect to more realistic simulations.

Generation of User Movements with a Context Simulator. In order to
obtain a dataset consistent with the parameters specified above, we need a more
sophisticated simulator. For our experiments, we have chosen to customize the
Siafu context simulator [33]. With a context simulator it is possible to design
models for agents, places and context. Therefore, it is possible to define particular
places of aggregation and make users dynamically choose which place to reach
and how long to stay in that place.

The most relevant parameters characterizing the agents’ behavior are derived
from our survey. For example, one parameter that characterizes the behavior of
the agents is the average time spent in an entertainment place; This value was
collected in our survey and resulted to have the following values: 9.17% of the
users stays less than 1 hour, 34.20% stays between 1 and 2 hours, 32.92% stays
between 2 and 3 hours, 16.04% stays between 3 and 4 hours, and 7.68% stays
more than 4 hours. Details on the simulation can be found in [34].

5.2 Experimental Settings

In our experiments we used two datasets of users movements. The dataset AB
(Agent-Based) was generated with the customized Siafu simulator, while the
dataset MRM (Mostly Random Movement) was created with the Brinkhoff
simulator. In both cases, we simulate LBS requests for the friend-finder ser-
vice by choosing random users in the simulation, we compute for each request
the generalization according to a given algorithm, and finally we evaluate the
anonymity of the resulting request as well as the Quality of Service (QoS).

Different metrics can be defined to measure QoS for different kind of services.
For instance, for the friend-finder service we are considering, it would be possible
to measure how many times the generalization leads the SP to return an incorrect
result i.e., the issuer is not notified of a close-by friend or, vice versa, the issuer
is notified for a friend that is not close-by. While this metric is useful for this
specific application, we want to measure the QoS independently from the specific
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kind of service. For this reason, in this chapter we evaluate how QoS degrades
in terms of the perimeter of the generalized location.

In addition to the dataset of user movements, we identified other two pa-
rameters characterizing the deployment model that significantly affect the ex-
perimental results: the number of users in the system, which remains almost
constant at each time instant and the user-required degree of indistinguisha-
bility k. These two parameters, together with the most important others, are
reported in Table 1, with the values in bold denoting default values.

We also identified three relevant parameters that characterize the adversary
model. The parameter Pid−in indicates the probability that the adversary can
identify a user when she is located in a entertainment place while Pid−out is the
probability that the adversary identifies a user in any other location (e.g., while
moving from home to a entertainment place). While we also perform experiments
where the two probabilities are the same, our scenario suggests as much more
realistic a higher value for Pid−in (it is considered ten times higher than Pid−out).
This is due to the fact that restaurants, pubs, movie theaters, and similar places
are likely to have different ways to identify people (fidelity or membership cards,
WiFi hotspots, cameras, credit card payments, etc.) and in several cases more
than one place is owned by the same company that may have an interest in
collecting data about its customers. Finally, Plink indicates the probability that
two consecutive requests can be identified as issued by the same user.4 While
we perform our tests considering a full range of values, the specific default value
reported in the table is due to a recent study on the ability of linking positions
based on spatiotemporal correlation [35].

Table 1. Parameter values

Parameter Values

dataset AB , MRM

number of users 10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k

k 10, 20, 30, 40, 50, 60

Pid−in 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Pid−out 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

Plink 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.87, 0.9, 1.0

The experimental results we show in this section are obtained by running the
simulation for 100 issuers and then computing the average values.

In our experiments we evaluated two generalization algorithms. One algorithm
is Greedy which is described in Section 4 and is a representative of the histor-
ical generalization algorithm proposed so far [12,20,21]. The other algorithm is
Grid which is briefly described in Section 3.1 is a representative of the snapshot
generalization algorithms. In [14] Grid is shown to have better performance (in
terms of the quality of service) when compared to other snapshot generalization
4 The limitation to consecutive requests is because in our specific scenario we assume

linking is performed mainly through spatiotemporal correlation.
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algorithms like, for example, Hilbert Cloak. We also evaluated the privacy threat
when no privacy preserving algorithm is applied. The label NoAlg is used in the
figures to identify results in this particular case.

5.3 Impact of the Adversary Model on the Evaluation of the
Generalization Algorithms

We now present a set of experiments aimed at evaluating the impact of the
adversary model on the anonymity provided by the generalization algorithms.

Two main parameters characterizing the adversary model are Pid−in and
Plink. In Figure 3(a) we show the average anonymity for different values of
Pid−in when, in each test, Pid−out is set to Pid−in/10. As expected, considering
a trace of requests, the higher is the probability of identifying users in one or
more of the regions from which the requests in the trace were performed, the
smaller is the level of anonymity.
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Fig. 3. Average anonymity

Figure 3(b) shows the impact of Plink on the average privacy. As expected,
high values of Plink lead to small values of privacy. Our results show that the
relation between the Plink and privacy is not linear. Indeed, privacy depends
almost linearly on the average length of the traces identified by the adversary.
In turn, the average length of the traces grows almost exponentially with the
value of Plink.

To summarize the first set of experiments, our findings show that the param-
eters that characterize the adversary model significantly affect the evaluation of
the generalization algorithms. This implies that when a generalization algorithm
is evaluated it is necessary to estimate realistic values for these parameters. In-
deed, an error in the estimation may lead to misleading results.

5.4 Impact of the Deployment Model on the Evaluation of the
Generalization Algorithms

We now show a set of experimental results designed to evaluate the impact of
the deployment model on the evaluation of the generalization algorithms.
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Fig. 4. Performance evaluation for different values of the total population

Figure 4(a) shows that the average privacy obtained with Greedy and Grid
is not significantly affected by the size of the total population. Indeed, both
algorithms, independently from the total number of users, try to have generalized
locations that cover the location of k users, so the privacy of the requests is not
affected. However, when the density is high, the two algorithms can generalize
to a small area, while when the density is low, a larger area is necessary to
cover the location of k users (see Figure 4(b)). On the contrary, the privacy
obtained when no generalization is performed is significantly affected by the
total population. Indeed, a higher density increases the probability of different
users to be in the same location and hence it increases privacy also if the requests
are not generalized.

The set of tests reported in in Figure 5 compares the privacy achieved by the
Greedy algorithm on the two datasets for different values of k and for different
values of QoS. The experiments on MRM were repeated trying also larger val-
ues for the QoS threshold (maxP = 2000 and maxP = 4000), so three different
versions of MRM appear in the figures. In order to focus on these parame-
ters only, in these tests the probability of identification was set to the same
value for any place (Pid−in = Pid−out = 0.1), and for the MRM dataset the
issuer of the requests was randomly chosen only among those that stay in the
simulation for 3 hours, ignoring the ones staying for much shorter time that in-
evitably are part of this dataset. This setting allowed us to compare the results
on the two datasets using the same average length of traces identified by the
adversary.

Figure 5(a) shows that the average privacy of the algorithm evaluated on
the AB dataset is much higher than on the MRM dataset. This is mainly
motivated by the fact that in AB users tend to concentrate in a few locations
(the entertainment places) and this enhances privacy. This is also confirmed by a
similar test performed without using any generalization of locations; we obtained
values constantly higher for the AB dataset (the average privacy is 0.67 in AB
and 0.55 in MRM).

In Figure 5(b) we show the QoS achieved by the algorithm in the two datasets
with respect to the average privacy achieved. This result confirms that the level
of privacy evaluated on the AB dataset using small values of k and maxP for
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Fig. 6. Average privacy using AB and MRM data sets. Pid−out = Pid−in/10.

the algorithm cannot be observed on the MRM dataset even with much higher
values for these parameters.

From the experiments shown in Figure 5 we can conclude that if the MRM
dataset is used as a benchmark to estimate the values of k and maxP that
are necessary to provide a desired average level of privacy, then the results will
suggest the use of values that are over-protective. As a consequence, it is possible
that the service will exhibit a much lower QoS than the one that could be
achieved with the same algorithm.

The above results may still support the safety of using MRM , since according
to what we have seen above a technique achieving a certain level of privacy may
only do better in a real scenario. However, our second set of experiments shows
that this is not the case.

In Figure 6 we show the results we obtained by varying the probability of
identification. For this test, we considered two sets of issuers in the MRM data
set. One set is composed by users that stay in the simulation for 3 hours, (MRM
long traces, in Figure 6), while the other contains issuers randomly chosen in the
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entire set of users (MRM all traces, in Figure 6), hence including users staying
in the simulation for a much shorter time.

In Figure 6(a) and 6(b) we can observe that the execution on the MRM
dataset leads to evaluate a privacy level that is higher than the one obtained
on the AB dataset. In particular, the evaluation of the Grid algorithm using
the MRM dataset (Figure 6(b)), would suggest that the algorithm is able to
provide a high privacy protection. However, when evaluating the same algorithm
using the more realistic dataset AB, this conclusion seems to be incorrect. In
this case, the evaluation on the MRM dataset may lead to underestimate the
privacy risk, and hence to deploy services based on generalization algorithms
that may not provide the minimum required level of privacy.

6 Open Problems

As seen from the previous sections, progress has been made in protecting users’
privacy in using location based services. However, much research is still needed.
In this section we discuss some open problems that are immediately related to
the anonymity-based techniques we discussed in this contribution.

Recognizing the dynamic role of quasi-identifiers and of private information. All
the techniques proposed so far in the literature assume that the informations
in the request acting as quasi-identifier or as private information do not change
among different requests. However, it should be observed that this may not al-
ways be the case. Indeed, in a realistic scenario, only some locations can act as
quasi-identifiers, and, similarly, only some service requests contain private infor-
mation (location and/or service parameters). The proper recognition of the role
of information in the requests is crucial in designing an effective defense tech-
nique. Indeed, over conservative assumptions lead to quality of service degrada-
tion, and ignoring the role of data as quasi-identifier or private information in a
request leads to privacy violation.

Pattern-based quasi-identifiers. In the historical case the adversary can observe
some movement patterns. In this case, even if a single request contains no in-
formation acting as quasi-identifier, the sequence of movements can lead to the
identification of the issuer. Consider the following example: a user issues several
linkable requests from her home (location A) and workplace (location B). As-
sume that, since the requests are generalized to areas containing public places,
the adversary cannot restrict the set of possible issuers by considering each single
request. However, if the adversary is able to extract a movement pattern from
the requests, he can infer that the issuer most probably lives in location A and
works in location B, and this information is a quasi-identifier [12,36].

Personalization of the degree of anonymity. In our discussion we never consid-
ered issues related to the personalization of defense parameters, as for example,
the degree of anonymity k to be enforced. Some approaches (e.g. [9]) actually
explicitly allow different users to specify different values of k. A natural ques-
tion is if the other techniques can be applied and can be considered safe even in
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this case. Once again, to answer this question it is essential to consider which
knowledge an adversary may obtain. The degree of anonymity k desired by each
user at the time of a request is not assumed to be known by the adversary (even
in the def-aware attacks) in the presented algorithms, hence the algorithms that
are safe against the corresponding attacks remain safe even when personalized
values for k are considered.

However, it may be reasonable to consider attacks in which the adversary may
obtain information about k. In the multiple-issuer case, the adversary may use,
for example, data mining techniques to figure out the k value. Example 8 shows
that, in such a scenario, the presented algorithms need to be extended in order
to provide an effective defense.

Example 8. Alice issues a request r asking a degree of anonymity k = 2. Using
a defense algorithm against def-aware attacks, r is generalized to the request
r′ that has a spatiotemporal region containing only Alice and Bob. Since the
generalization algorithm is safe against def-aware attacks, if r were issued by
Bob with k = 2, then it would be generalized to r′. However, if the adversary
knows that Bob always issues requests with k ≥ 3, then he knows that if the
issuer of r were Bob, the request would have been generalized to a request r′′

different from r′, because the spatiotemporal region of r′′ should include at least
3 users. Hence the adversary would identify Alice as the issuer of r′.

Deployment-aware data generator. Earlier, we claimed that the experimental
evaluation of LBS privacy preserving techniques should be based on user move-
ment datasets obtained through simulations tailored to the specific deployment
scenario of the target services. Our results support our thesis for the class of
LBS known as friend-finder services, for defense techniques based on spatial
cloaking, and for attack models that include the possibility for the adversary to
occasionally recognize people in certain locations. These results can be extended
to other types of LBS, other defense techniques, and various types of attacks.
Thus, we believe a significant effort should be devoted to the development of
new flexible and efficient context-aware user movement simulators, as well as
to the collection of real data, possibly even in an aggregated form, to properly
tune the simulations. In our opinion this is a necessary step to have significant
common benchmarks to evaluate LBS privacy preserving techniques.

7 Conclusion

In this contribution, we introduced the privacy problem in LBS by categoriz-
ing both attacks and existing defense techniques. We then discussed the use of
anonymity for protection, focusing on the notion of historical k-anonymity and
on the techniques to ensure this form of anonymity. Finally, we provided a perfor-
mance evaluation of these techniques depending on the adversary model and on
the specific service deployment model. Based on our extensive work on the simu-
lation environment, we believe that the design of realistic simulations for specific
services, possibly driven by real data, is today one of the main challenges in this
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field, since proposed defenses need serious evaluation, and theoretical validation
is important but has several limits, mainly due to the conservative assumptions
that seem very hard to avoid.
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