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Abstract. We design a deadlock-free semantics for a concurrent, func-
tional and imperative programming language where locks are implicitly
and univocally associated with pointers. The semantics avoids unsafe
states by relying on a static analysis of programs, by means of a type
and effect system. The system uses singleton reference types, which allow
us to have a precise information about the pointers that are anticipated
to be locked by an expression.

1 Introduction

In this paper we revisit, from a programming language perspective, one of the
most annoying problems with concurrent systems, namely the risk of entering
into a deadlocked situation. Deadlocks arise in particular from synchronization
mechanisms like locking, when several threads of computation are circularly
blocked, each waiting for a resource that is locked by another thread. As is well-
known, locking is sometimes necessary. To illustrate this, as well as some other
points, we shall use an example which is often considered as regards synchro-
nization problems. This is the example of manipulating bank accounts. In our
setting, a bank account will simply be a memory location containing an integer
value.1 Now suppose that we want to define a function to deposit some amount
x on the account y. Using ML’s notation (! y) to get the contents of the memory
location y (i.e. to dereference it, in ML’s jargon where memory locations are
called references – we shall also use the word “pointer”), this function can be
defined as λxλy(y := ! y + x). There is a problem however with this definition,
which is that two concurrent deposits may have the effect of only one of them,
if both read the current amount before it has been updated by the other thread.

To solve this problem, it is enough to make the deposit function taking, for
the update operation y := ! y + x, an exclusive access to the bank account to
update, that is y. In this paper we shall assume that there is in the programming
language a construct, say (lock y in e), to lock the reference y for the purpose
of performing the operation e with an exclusive access to y. Indeed, we think
that the programmer should be offered constructs to control access to mem-
ory locations (as they appear in the language), rather than having to explicitly
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manipulate locks. In other words, we are assuming here that the locks are, trans-
parently for the programmer, associated with the resources, as in Java. Then
we can conveniently define the deposit function as follows:

deposit = λxλy(lock y in y := ! y + x)

Similarly, we can define a function to withdraw some amount from an account:

withdraw = λxλy(lock y in (if ! y ≥ x then (y := ! y − x) else error))

From this we can define another function, to transfer some amount x from an
account y to another one z, as λxλyλz((withdraw xy) ; (depositxz)). It has been
argued (see [9]) that this function should ensure the property that another thread
cannot see the intermediate state where y has decreased, but z has not yet been
credited. This can be achieved by defining

transfer = λxλyλz(lock y in (withdraw xy) ; (deposit xz))

We are assuming here that the locks are reentrant: a thread that temporarily
“possesses” a reference, like y in this example, is not blocked in locking it twice.
Now suppose that two transfers are performed concurrently, from account a to
account b, and in the converse direction. That is, we have to execute something
like

(transfer 100 a b) ‖ (transfer 10 b a) (1)

Clearly there is a danger of deadlock here: if both operations first perform the
withdrawals, locking respectively a and b, they are then blocked in trying to lock
the other account in order to perform the deposits.

There are three ways out of deadlocks, that have been identified long ago in
the area of operating systems development (see [2]):

(i) deadlock prevention aims at only accepting for execution concurrent sys-
tems that are determined to be deadlock-free, in the sense that none of their
interleaved executions runs into a deadlock;

(ii) deadlock avoidance aims at ensuring, by monitoring the execution at run-
time, that unsafe states that could lead to a deadlocked situation are
avoided;

(iii) deadlock detection and recovery uses run-time monitoring and rollback
mechanisms to analyse the current state, and undo some computations2

in case there is a deadlock.

Despite the existence of the well-known Dijkstra’s Banker’s algorithm, solutions
(i) and (iii) are, by far, the most popular. Deadlock detection and recovery is sim-
ilar to optimistic concurrency control in database transactions implementation.
By contrast, deadlock avoidance may be qualified as pessimistic concurrency.
(See [7] for a recent use of this technique).

Solution (i), deadlock prevention, lends itself to using static analysis tech-
niques. Indeed, a lot of work has been done in this direction – see [1,3,5,10,11],
to mention just a few recent works on this topic. One has to notice that, with
2 Provided these are not irrevocable, such as I/O operations.



142 G. Boudol

no exception, all these works (also including [7]) use the standard approach to
precluding deadlocks, which is to assume an ordering on locking to prevent cir-
cularities. This is an assumption we would like to avoid: in our bank account
example, where one can do concurrent transfers from an account to another in
any direction, like in Example (1), such an assumption would entail that there
should be a unique lock associated with all the accounts, which obviously limits
the concurrency in a drastic, and sometimes unjustified way. In this paper we
shall explore a different direction, namely (ii), deadlock avoidance.

To implement solution (ii), one has to know in advance what are the resources
that are needed, in an exclusive way, by a thread. Then this also seems amenable
to static analysis techniques. This is what this paper is proposing: we define, for a
standard multithreaded programming style, a type and effect system that allows
us to design a prudent semantics, that is then proved to be deadlock-free. The
idea is quite simple: one should not lock a pointer whenever one anticipates, by
typing, to take some other pointer that is currently held by another thread. As
one can see, this is much lighter than implementing optimistic concurrency, and
the proof of correctness is not very complicated. Surprisingly enough, I could not
find in the literature any reference to a similar work – except [12], which however
uses a Petri net model, and Discrete Control Theory –, so ours appears to be the
first one to define a deadlock-free semantics, following the deadlock avoidance
approach, based on a type and effect system for standard multithreading.

To conclude this introduction, let us discuss some more technical points of
our contribution. In analysing an expression such as (lock e0 in e1), we need a
way to get, statically, an approximative idea of what will be the value of e0, the
pointer to be locked, in order to assign it as an effect to the locking expression,
and then use it in the types. An idea could be to use dependent types, but
dependent types for imperative, call-by-value languages is a topic which largely
remains unexplored, and the existing proposals (see [8] for instance) seem to be
over-elaborate for our purpose. A standard approach to statically get information
about pointer accesses is to use regions in a type and effect system [6]: in an ML-
like language, one assigns (distinct) region names to the subexpressions (ref e)
creating a reference, and one can then record as an effect the region where a
reference that has to be locked resides. In this way, locks are actually associated
with regions, rather than with references. However, this is too coarse grained
for our purpose: again using the bank account example, we could define a (very
simplified) function for creating accounts with an initial value as λx(ref x), but
then, this would mean that all accounts would be assigned the same lock, and
we already rejected such a scenario.

To solve this problem, we shall introduce in the programming language a
new construct (cref e) which is a function that, when applied to some (dummy)
argument, then creates a reference with initial value the one of e. Typically,
(cref e)() has the same meaning as (ref e). We shall then restrict, by typing, the
use of such a function f to a particular form, namely (let x = (f()) in e) where e
does not export x. In this way, we shall be able to know exactly the name of the
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pointer denoted by e0 in (lock e0 in e1)3, using singleton types [4], which are both
dependent types of a very simple kind, as well as types with (singleton) regions.
This provides us with a fine grained locking policy, where locks are univocally
associated with references.

Note. For lack of space, the proofs are omitted, or only sketched.

2 Source and Target Languages

Our source language is an extension of CoreML, that is a functional (embedding
the call-by-value λ-calculus) and imperative language, enriched with concurrent
programming primitives, namely a thread spawning construct (thread e) and a
locking construct (lock e0 in e1). The main feature of ML we are interested in
here is not the polymorphic let, but rather the explicit distinction between values
and references to values. Typically, in ML – as opposed to Scheme or Java for
instance –, one cannot write x := x+1, because x cannot be both an integer, as in
x+1, and a reference to an integer, as in x := 1. As explained in the Introduction,
we refine the reference creation construct (ref e) of ML into (cref e), which is a
function that needs to be applied (to a dummy argument) to actually create
a mutable reference, with the value of e as initial value. Then (ref e) is here
an abbreviation for ((cref e)()). For simplicity, we omit from the language the
constructs relying on basic types such as the booleans or integers. Considering
these constructs (and recursion) does not cause any technical difficulty, and we
shall use them in the examples. The syntax of our source language is as follows:

v, w . . . ::= x | λxe values

e ::= v | (e1e0) expressions (functional)

| (cref e) | (! e) | (e0 := e1) (imperative)

| (thread e) | (lock e0 in e1) (concurrent)

The abstraction λxe is the only binder in this language. We denote by {x �→v}e
the capture-avoiding substitution of the variable x by the value v in its free oc-
currences in e, and we shall always consider expressions up to α-conversion, that
is up to the renaming of bound variables. We shall use the standard abbreviation
(let x = e0 in e1) for (λxe1e0), also denoted e0 ; e1 whenever x is not free in e1.
The use of expressions e reducing to values of the form (cref v) will be restricted,
by typing, to a particular form, namely (let x = (e()) in e′). A particular case of
this is (let x = (ref e) in e′).

In order to be evaluated (or executed), the expressions of the source language
will be first translated into a slightly different language. This run-time language,
or more appropriately target language differs from the source one on the following
points:

(i) the construct (cref e) is removed, as well as the values (cref v);

3 This does not mean that one can statically predict which pointers will be created at
run-time, since an expression such as (let x = ((cref e)()) in e′) can be passed as an
argument, and duplicated.
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(ii) references (or pointers), ranged over by p, q . . . are introduced. These are
run-time values;

(iii) the locking construct (lock e0 in e1) is replaced by the family of constructs
(lockϕ e0 in e1) where ϕ is any effect, that is any finite set of pointer names
(either constant or variable);

(iv) a family of constructs (e\p)ψ,P is introduced, to represent the fact that
the pointer p is currently held, and will be released upon termination of
e. In this construct ψ and P are finite sets of pointers (they are there for
technical convenience only);

(v) a construct (new x in e), also written simply νxe, is introduced for creating
new pointers. This is a binder for x.

An expression (cref e) of the source language will be represented as

(let x = e in λy((y := x) ; y))

in the target language, where it will take (and return) a pointer as argument
(see the next Section). The (pointer) variables occurring in the effect ϕ in
(lockϕ e0 in e1) are free in this expression. An expression of the target language
is called pure if it does not contain any pointer (which does not mean that its
evaluation does not produce side effects). In particular, a pure expression does
not contain any subexpression of the form (e\p)ψ,P .

3 Translation

In this section we define a translation, guided by a type and effect system, from
the source language into the target language. The purpose of this translation is
twofold:

(i) we compute the effect ϕ of an expression e, which is the set of pointers that
this expression may have to lock during its execution. This effect is then
used to annotate, by translating them, the expressions (lock e′ in e) (which
are also the ones which produce an effect, namely of locking the pointer
denoted by e′), in order to guide the evaluation, avoiding deadlocks. This is
the main purpose of the type and effect system.

(ii) we restrict the use of expressions of the form (cref e) in a way that allows
us to have, in the types, a precise information about the pointer names.

The types for the source language are as follows:

τ, σ, θ . . . ::= unit | θ refx | θ cref | (τ
ϕ−→ σ)

Here θ refx is a singleton type [4], meaning that the only value of this type
is the pointer name x. (This is a very primitive form of dependent type.) We

abbreviate (τ ∅−→ σ) into (τ → σ). In (θ refx
ϕ−→ σ) the (pointer) variable x

is universally quantified, with scope ϕ and σ, and will be instantiated when
applying a function of this type. The capture-avoiding substitution {x �→y}τ is
defined in the standard way, and we always consider types up to α-conversion,
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Γ, x : τ �s x : ∅, τ ⇒ x

Γ, x : τ �s e : ϕ, σ ⇒ e

Γ �s λxe : ∅, (τ ϕ−→ σ) ⇒ λxe Γ �s () : ∅, unit ⇒ ()

Γ �s e0 : ϕ0, (τ
ϕ2−−→ σ) ⇒ e0 Γ �s e1 : ϕ1, τ ⇒ e1

Γ �s (e0e1) : ϕ0 ∪ ϕ1 ∪ ϕ2, σ ⇒ (e0e1)
τ 	= θ refx

Γ �s e0 : ϕ0, (θ refx
ϕ2−−→ σ) ⇒ e0 Γ �s e1 : ϕ1, θ refy ⇒ e1

Γ �s (e0e1) : ϕ0 ∪ ϕ1 ∪ {x 
→y}ϕ2, {x 
→y}σ ⇒ (e0e1)

Γ �s e0 : ϕ0, θ cref ⇒ e0 Γ, x : θ refx �s e1 : ϕ1, τ ⇒ e1

Γ �s (λxe1(e0())) : ϕ0 ∪ (ϕ1 − {x}), τ ⇒ νy (λxe1(e0y))
y fresh, x 	∈ Γ, ϕ0, τ

Γ �s e : ϕ, θ ⇒ e

Γ �s (cref e) : ϕ, θ cref ⇒ (λxλy((y := x) ; y)e)

Γ �s e : ϕ, θ refx ⇒ e

Γ �s (! e) : ϕ, θ ⇒ (! e)

Γ �s e0 : ϕ0, θ refx ⇒ e0 Γ �s e1 : ϕ1, θ ⇒ e1

Γ �s (e0 := e1) : ϕ0 ∪ ϕ1, unit ⇒ (e0 := e1)

Γ �s e : ϕ, unit ⇒ e

Γ �s (thread e) : ∅, unit ⇒ (thread e)

Γ �s e0 : ϕ0, θ refx ⇒ e0 Γ �s e1 : ϕ1, τ ⇒ e1

Γ �s (lock e0 in e1) : {x} ∪ ϕ0 ∪ ϕ1, τ ⇒ (lockϕ1 e0 in e1)

Figure 1: Type and Effect System (Source Language)

that is, up to the renaming of bound variables. The typing judgements for the
source language are as follows:

Γ �s e : ϕ, τ

where Γ is a typing context, that is a mapping from a finite set dom(Γ ) of
variables to types. In this judgement the effect ϕ is the set of pointer names that
the expression e may have to lock during its evaluation. In the following we shall
only consider well-formed judgements, meaning that if a type θ refx occurs in
the judgement then x does not occur in θ, and if Γ (y) = θ refx then y = x. This
assumption is left implicit in the following.

We shall give a simultaneous definition for both the type and effect system
and the translation from the source to the target languages. That is, we define
inductively the predicate

Γ �s e : ϕ, τ ⇒ e

meaning that the source expression e is well-typed in the typing context Γ , with
effect ϕ and type τ , and translates into the target expression e. The rules are
given in Figure 1, where, when we write x �∈ Γ, ϕ, τ , we mean that x does not oc-
cur in Γ (neither in the domain, nor in the types assigned by this typing context),
nor in ϕ, nor in τ . By forgetting the “⇒ e” parts one obtains the rules of the
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type system for the source language. One should notice that if Γ �s e : ϕ, τ ⇒ e
then e is pure. One should also notice that the type and effect system only builds
effects, but does not (other than by implicit type unification, as usual) use them
to constrain the typing.

The most interesting rule is the one for the (lock e0 in e1) constructs. This
expression is the only one introducing an effect, which is the name of the pointer
that is intended to be locked, that is the reference resulting from the evaluation
of e0. In the translation of this expression, that is (lockϕ1 e0 in e1), one records
the anticipated effect ϕ1 of e1. Indeed, the operational semantics will rely on the
idea that, in order to avoid deadlocks, one should not lock the pointer which
is denoted by e0 if a pointer from ϕ1 is already held by another thread. Notice
that the use of a singleton type for e0, namely θ refx, allows us to build the effect
as a set of names (i.e. variables, in the source language), and not expressions
(or regions).

As announced, reference creation is restricted to the form (let x = (e0()) in e1),
where the name (that is, x) of the reference in known in e1. In the translation
of this expression, namely νy (let x = (e0y) in e1), one first creates, by means
of νy, a fresh pointer name (see the following Section), which is passed as an
argument, and then bound to the value v “handled” by e0 (as one can see, e0 is
constrained, by typing, to reduce to an expression of the form λz((z := v) ; z)).
By reduction the name y will be substituted for x in e1, and in particular in the
effects involving the name x, in subexpressions of the form (lockϕ in ).

One can see that, assuming that we have the obvious typing rules for boolean
and integer constructs, the deposit and transfer functions considered in the In-
troduction can be typed as follows, using polymorphic types, where y and z are
universally quantified:

Γ �s deposit : ∅, int → (int refy
{y}−−→ unit)

Γ �s transfer : ∅, int → (int refy → (int refz
{y,z}−−−→ unit))

and their definitions are translated as follows:

λxλy(lock∅ y in y := ! y + x)

λxλyλz(lock{y,z} y in (withdraw xy) ; (deposit xz))

Then (assuming that error has any type) one can check that the following is
typable, in a context where the functions deposit, withdraw and transfer have
been defined, as above:

let create account = λx(cref x) in

let a = (create account 100)() in

let b = (create account 10)() in

((thread (transfer 50 ab))) ; (deposit 10 b)

(2)
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and the translation is, with some optimization in the translation of create account:

let create account = λxλy((y := x) ; y) in

new y in let a = (create account 100)y in

new z in let b = (create account 10)z in

((thread (transfer 50 ab))) ; (deposit 10 b)

4 Prudent Operational Semantics

As usual, evaluation consists in reducing a redex (reducible expression) in an
evaluation context, possibly performing a side effect. In our (run-time) language,
redexes and evaluation contexts are defined as follows:

r ::= (λxev) | (! p) | (p := v) redexes

| (thread e) | (lockψ p in e) | (v\p)ψ,P | νxe
E ::= [] | E[F] evaluation contexts

F := ([] e) | (v []) frames

| (cref []) | (! []) | ([] := e) | (v := [])

| (lockψ [] in e) | ([]\p)ψ,P
To define the semantics of reentrant locks, we shall use the set �E	 of pointers
held in the context E, computed by a kind of “stack inspection” mechanism, as
follows:

�[] = ∅
�E[F] = �E ∪ �F where �F =

{ {p} if F = ([]\p)ψ,P
∅ otherwise

We now describe our operational semantics for expressions of the target language,
defined as a small-step transition system between configurations (S,L, T ) where
S is the store, that is a partial mapping from a finite set dom(S) of pointers to
values, L is a finite set of locked pointers, and T is a multiset of threads, which
are simply expressions. The store is only partial because in some state, some
pointers may have been created but not yet initialized. As regards the store, we
shall use the following notations: S+ p, where p �∈ dom(S), is the store obtained
by adding p to dom(S), but not providing a value for p; S[p := v], where p is
supposed to be in dom(S), is the store obtained by initializing or updating the
value of p to be v. The set L is the set of pointers that are currently held by
some thread. As regards multisets, our notations are as follows. Given a set X ,
a multiset over X is a mapping E from X to the set N of non-negative integers,
indicating the multiplicity E(x) of an element. We denote by x the singleton
multiset such that x(y) = (if y = x then 1 else 0). Multiset union E ‖E′ is given
by (E ‖E′)(x) = E(x) + E′(x). In the following we only consider multisets of
expressions, ranged over by T .

The semantics is given in Figure 2, that we now comment. The general form
of the rules is

(S,L,E[r] ‖ T ) → (S′, L′,E[e] ‖T ′)
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(S,L,E[(λxev)] ‖T ) → (S,L,E[{x 
→v}e] ‖T )

(S,L,E[(! p)] ‖T ) → (S,L,E[v] ‖T ) S(p) = v

(S,L,E[(p := v)] ‖T ) → (S[p := v], L,E[()] ‖T )

(S,L,E[(thread e)] ‖T ) → (S,L,E[()] ‖T ‖ e)
(S,L,E[(lockψ p in e)] ‖T ) → (S,L,E[e] ‖T ) p ∈ �E
(S,L,E[(lockψ p in e)] ‖T ) → (S,L′,E[(e\p)ψ,P ] ‖T ) p 	∈ �E & (♠) &

P = dom(S)
(S,L,E[(v\p)ψ,P ] ‖T ) → (S,L− {p},E[v] ‖T )

(S,L,E[νxe] ‖T ) → (S + p,L,E[{x 
→p}e] ‖ T ) p 	∈ dom(S)

(♠) L ∩ ({p} ∪ (ψ − �E)) = ∅, L′ = L ∪ {p}
Figure 2: Prudent Operational Semantics

meaning that any thread ready to be reduced can be non-deterministically cho-
sen for evaluation. Again, the most interesting case is the one of expressions
(lockψ e0 in e1). To evaluate such an expression, one first has to evaluate e0,
since (lockψ [] in e1) is [part of] an evaluation context. The expected result is
a pointer p. Then, to reduce (lockψ p in e1), one first looks in the evaluation
context E to see if the thread has already locked p, that is p ∈ �E	. If this is the
case, the locking instruction is ignored, that is (lockψ p in e1) is reduced to e1,
with no effect. Otherwise, one consults the set L to see if p, or any pointer in
ψ, is locked by another thread. If this is the case, the expression (lockψ p in e1)
is blocked, waiting for this condition to become false. Otherwise, the pointer p
is locked,4 and one proceeds executing e1 in a context where the fact that p is
currently held is recorded, namely ([]\p)ψ,P . On termination of e1, the pointer p
is released. One should compare the precondition in (♠) for taking a lock with
the usual one, which is L∩{p} = ∅. It is then obvious that our prudent semantics
avoids some paths explored in the standard interleaving semantics.

Notice that the sets ψ and P in the context ([]\p)ψ,P are actually not used in
the operational semantics, and could therefore be removed from the syntax. We
include them for the sole purpose of proving our safety result. Here ψ is the set
of pointers that are anticipated, by the (lockψ p in e1) instruction, as possibly
locked in the future, before p is released. The set P is the one of known pointers
at the time where p is locked.

In the following we shall only consider well-formed configurations, which are
triples (S,L, T ) such that if a pointer p occurs in the configuration, either in some
thread or in some value in the store, or in L, then p ∈ dom(S). It is easy to check
that well-formedness is preserved by reduction, since references are allocated in
the store when they are created.

4 The computations expressed by (♠) must be performed in an atomic way. This
means that in an implementation one would use a global lock on the set L.
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In the rest of this section we establish some results about the operational
semantics, and discuss it on an example. Let us say that a configuration (S,L, T )
is regular if it satisfies

(i) T = E[(e\p)ψ,P ] ‖ T ′ ⇒ p 	∈ �E & (T ′ = E′[e′] ‖T ′′ ⇒ p 	∈ �E′)
(ii) p ∈ L ⇔ ∃E, e, ψ, P, T ′. T = E[(e\p)ψ,P ] ‖ T ′

Clearly, if e is a pure expression, the initial configuration (∅, ∅, e) is regular.
Moreover, this property is preserved by reduction:
Lemma 4.1. If (S,L, T ) is regular and (S,L, T ) → (S′, L′, T ′) then (S′, L′, T ′)
is regular.

The following notion of a safe expression is central to our safety result:
Definition (Safe Expression) 4.2. A closed pure expression e of the target

language is safe if (∅, ∅, e) ∗→ (S,L, T ) implies

T = E[(E′[(lockψ1 p1 in e)]\p0)ψ0,P0 ] ‖T ′ & p1 ∈ P0 ⇒ p1 ∈ ψ0

That is, when a reference p1 is about to be locked while some other pointer p0

was previously locked by the same thread, with p1 known to exist at that point,
then the possibility of locking p1 was anticipated when locking p0. (this is where
we need ψ and P in (e\p)ψ,P ).
Definition (Deadlock) 4.3. A configuration (S,L, T ) is deadlocked if

T = E0[(lockψ0 p0 in e1)] ‖ · · · ‖En[(lockψn pn in en)] ‖T ′

with n > 0 and pi+1 ∈ �Ei	 (mod n+ 1). A pure expression e is deadlock-free if
no configuration reachable from (∅, ∅, e) is deadlocked.

The main property of our operational semantics is the following:
Proposition 4.4. Any safe expression is deadlock-free.

Proof Sketch: let us assume the contrary, that is (∅, ∅, e) ∗→ (S,L, T ) where
(S,L, T ) is deadlocked. For simplicity, let us assume that there are two threads
in T that block each other, that is

T = E0
0[(E

0
1[(lockϕ0 p1 in e0)]\p0)ψ0,P0 ] ‖E1

0[(E
1
1[(lockϕ1 p0 in e1)]\p1)ψ1,P1 ] ‖ T ′

(the general case where there is a cycle of blocked threads of length greater than
2 is just notationally more cumbersome). Since e is safe, we have p1 ∈ ψ0 if
p1 ∈ P0, and p0 ∈ ψ1 if p0 ∈ P1. Assume for instance that p0 is the pointer that
is locked the first (and then not released), that is:

(∅, ∅, e) ∗→ (S0, L0,E
0
0[(lockψ0 p0 in e′0)] ‖T0)

→ (S0, L
′
0,E

0
0[(e

′
0\p0)ψ0,P0 ] ‖T0) P0 = dom(S0)

∗→ (S1, L1,E
0
0[(e

′′
0\p0)ψ0,P0 ] ‖E1

0[(lockψ1 p1 in e′1)] ‖T1)

→ (S1, L
′
1,E

0
0[(e

′′
0\p0)ψ0,P0 ] ‖E1

0[(e
′
1\p1)ψ1,P1 ] ‖ T1) P1 = dom(S1)

∗→ (S,L, T )
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Since e is pure, the configurations reachable from (∅, ∅, e) are regular (Lemma
4.1), and therefore p0 ∈ L1 ⊆ P1, but then reducing (lockψ1 p1 in e′1) in the
context of L1 is not possible – a contradiction.

To conclude this section, let us revisit and discuss Example (2), where the mul-
tiset of threads is

(transfer 50 a b) ‖(deposit 10 b)

Assuming that the pointers a and b contain some integers in the store, with
S(a) ≥ 50, and both of them are free (i.e. not locked), one can see that a
reachable state is (S, {a}, ((a := ! a− 50)\a) ‖(deposit 10 b)), where we omit the
ψ and P components annotating the context ( \a). Then, from this state one
can reach for instance the state

(S, {a, b}, ((a := !a− 50)\a) ‖((b := ! b+ 10)\b))
This means that there is some real concurrency in executing a transfer from a to b
and a deposit to b in parallel, even though both these operations need to lock b at
some point. However, if (deposit 10 b) starts executing, this blocks (transfer 50 a b),
because the latter cannot lock a, while anticipating to lock b, since b is already
locked. Then the condition (♠) is sometimes too strong in preventing deadlocks,
precluding some harmless interleavings, and one may wonder how we could relax
it, adopting for instance a more informative structure than L for locked pointers.
However, one must be careful with pointer creation, as the following example
shows:

new x in lock∅ x in new y in (thread (lock{x} y in (lock∅ x in ())));

(lock∅ y in ())

Starting with S = ∅ = L, this expression reduces to({p 
→ , q 
→ }, {p}, ((lock∅ q in ())\p)∅,{p} ‖(lock{p} q in (lock∅ p in ()))
)

where the second thread is (as it should be) not allowed to lock q. Notice that to
detect a potential cycle out of the static information contained in this expression
one has to look into the evaluation context.

5 Safety

In this section we establish our main result (Type Safety, Theorem 5.8 below),
stating that typable expressions are safe. The types for the target language are
as follows:

ρ ::= x | p pointer names

τ, σ, θ . . . ::= unit | θ refρ | (τ
ϕ−→ σ) types

We define a translation τ ⇒ τ from the types of the source language to the types
of the target language by

θ cref ⇒ (θ refx → θ refx)
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Γ, x : τ �t x : ∅, τ Γ, p : θ refp �t p : ∅, θ refp

Γ, x : τ �t e : ϕ, σ

Γ �t λxe : ∅, (τ ϕ−→ σ)

x 	∈ Γ

Γ �t () : ∅, unit

Γ �t e0 : ϕ0, (τ
ϕ2−−→ σ) Γ �t e1 : ϕ1, τ

Γ �t (e0e1) : ϕ0 ∪ ϕ1 ∪ ϕ2, σ
τ 	= θ refx

Γ �t e0 : ϕ0, (θ refx
ϕ2−−→ σ) Γ �t e1 : ϕ1, θ refρ

Γ �t (e0e1) : ϕ0 ∪ ϕ1 ∪ {x 
→ρ}ϕ2, {x 
→ρ}σ
Γ �t e : ϕ, θ refρ

Γ �t (! e) : ϕ, θ

Γ �t e0 : ϕ0, θ refρ Γ �t e1 : ϕ1, θ

Γ �t (e0 := e1) : ϕ0 ∪ ϕ1, unit

Γ �t e : ϕ, unit

Γ �t (thread e) : ∅, unit

Γ �t e0 : ϕ0, θ refρ Γ �t e1 : ϕ1, τ

Γ �t (lockϕ1 e0 in e1) : {ρ} ∪ ϕ0 ∪ ϕ1, τ

Γ �t e : ϕ, τ

Γ �t (e\p)ψ,P : ϕ, τ
ϕ ∩ P ⊆ ψ, P ⊆ dom(Γ )

Γ, x : θ refx �t e : ϕ, τ

Γ �t νxe : ϕ− {x}, τ
x 	∈ Γ, τ

Figure 3: Type and Effect System (Target Language)

(where x is not in θ). The judgements of the type system for the target language
are Γ �t e : ϕ, τ where Γ , the typing context, is a mapping from a finite set
dom(Γ ) of variables and pointers to types.

As in the case of the source language, we only consider well-formed judge-
ments, meaning that if a type θ refρ occurs in the judgement then ρ does not oc-
cur in θ, and if Γ (ρ′) = θ refρ then ρ′ = ρ. The typing rules are given in Figure 3.
These are essentially the same as for the source language, with some new rules.
One should in particular notice the constraints on the typing of (e\p)ψ,P : the
anticipated effect of e must be recorded, as far as the known pointers are con-
cerned, in the ψ component. This is the condition that will ensure the safety of
typable expressions. First, we wish to show that the translation from the source
to the target language preserves typability. To this end, we need a standard
weakening property:
Lemma (Weakening) 5.1. If Γ �t e : ϕ, τ and x and p do not occur in this
judgement then Γ, x : σ �t e : ϕ, τ and Γ, p : θ �t e : ϕ, τ .
Then we have, denoting by Γ the typing context obtained from Γ by translating
the types assigned to the variables:
Lemma 5.2. If Γ �s e : ϕ, τ ⇒ e then Γ �t e : ϕ, τ .
Proof Sketch: by induction on the definition of Γ �s e : ϕ, τ ⇒ e. The only
cases to consider are the rule for (λxe1(e0())) with e0 of type θ cref, using the
Lemma 5.1, and the rules for (cref e) and e = (lock e0 in e1).
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Some obvious properties are:
Remark 5.3.
(i) If Γ �t v : ϕ, τ then ϕ = ∅, and if τ = θ refρ then v = ρ.

(ii) If Γ �t e : ϕ, τ and x is free in e then x ∈ dom(Γ ).
(iii) If Γ �t e : ϕ, τ and p occurs in e then p ∈ dom(Γ ).

Lemma (Strengthening) 5.4.
(i) If Γ, x : τ �t e : ϕ, τ and x is not free in e then Γ �t e : ϕ, σ.

(ii) If Γ, p : σ �t e : ϕ, τ and p does not occur in e then Γ �t e : ϕ, τ .
Our type safety result is established following the standard steps (see [13]), that
is, the main property to show is that typability is preserved by reduction (the so-
called “Subject Reduction” property). To this end, we need a lemma regarding
typing and substitution, and another one regarding the typing of expressions of
the form E[e] (the “Replacement Lemma”). We denote by {x �→ρ}(Γ �t e : ϕ, τ)
the substitution of x by ρ in all its free occurrences in this judgement. This is
only defined if x ∈ dom(Γ ) & ρ ∈ dom(Γ ) ⇒ Γ (x) = Γ (ρ).
Lemma (Substitution) 5.5.
(i) If Γ �t e : ϕ, τ and ρ′ ∈ dom(Γ ) ⇒ Γ (ρ′) = θ refρ′ for ρ′ ∈ {x, ρ} then
{x �→ρ}(Γ �t e : ϕ, τ).
(ii) If x �∈ Γ then Γ, x : σ �t e : ϕ, τ & Γ �t v : ∅, σ ⇒ Γ �t {x �→v}(e : ϕ, τ).
Proof Sketch:
(i) The proof, by induction on the inference of Γ �t e : ϕ, τ , is straightforward.
(ii) This is a standard property, established by induction on the inference of
Γ, x : σ �t e : ϕ, τ (using the Weakening Lemma 5.1, and the previous point).
In the case where e = (lockϕ1 e0 in e1) with Γ, x : σ �t e0 : ϕ0, θ refx and
Γ, x : σ �t e1 : ϕ1, τ , we have σ = θ refx by the well-formedness assumption, and
we use Remark 5.3(i), that is v = x.

Lemma (Replacement) 5.6. If Γ �t E[e] : ϕ, τ then there exist ψ and σ such
that Γ �t e : ψ, σ and if Γ ′ �t e′ : ψ′, σ with Γ ⊆ Γ ′ and ψ′ ∩ dom(Γ ) ⊆ ψ then
there exists ϕ′ such that Γ ′ �t E[e′] : ϕ′, τ with ϕ′ ∩ dom(Γ ) ⊆ ϕ.

Proof Sketch: by induction on the evaluation context, and then by case on
the frame F such that E = E′[F]. We only examine some cases.

• F = (lockϕ′′ [] in e′′). We have ϕ = {ρ}∪ψ∪ϕ′′ with Γ �t e : ψ, θ refρ for some
θ and Γ �t e′′ : ϕ′′, τ . If Γ ′ �t e′ : ψ′, θ refρ with Γ ⊆ Γ ′ and ψ′ ∩ dom(Γ ) ⊆ ψ
then Γ ′ �t (lockϕ′′ e′ in e′′) : {ρ}∪ψ′∪ϕ′′, τ , and we conclude using the induction
hypothesis on E′.

• F = ([]\p)ϕ′′,P . We have Γ �t e : ϕ, τ with ϕ ∩ P ⊆ ϕ′′ and P ⊆ dom(Γ ). If
Γ ′ �t e′ : ϕ′, τ with Γ ⊆ Γ ′ and ϕ′∩dom(Γ ) ⊆ ϕ then ϕ′∩P ⊆ ϕ′′, and therefore
Γ ′ �t (e′\p)ϕ′′,P : ϕ′, τ , and we conclude using the induction hypothesis on E′.
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In order to show the type safety result, we have to extend the typing to config-
urations. The extension of typing to multisets of threads, that is Γ � T , is given
by

Γ �t e : ϕ, τ

Γ � e
Γ � T Γ � T ′

Γ � T ‖T ′

Typing the store is defined as follows:

Γ � S ⇔def

{
dom(S) ⊆ dom(Γ ) &

∀p. Γ (p) = θ refp & S(p) = v ⇒ Γ �t v : ∅, θ
Finally one defines

Γ � (S,L, T ) ⇔def Γ � S & Γ � T
Proposition (Subject Reduction) 5.7. If Γ � (S,L, T ) and (S,L, T ) →
(S′, L′, T ′) then Γ ′ � (S′, L′, T ′) for some Γ ′ such that Γ ⊆ Γ ′.
Proof Sketch: by case on the transition (S,L, T ) → (S′, L′, T ′), where T =
E[r] ‖T ′′ and r is the redex that is reduced. We only examine some cases.
• r = (λxev). We have S′ = S, L′ = L and T ′ = E[{x �→v}e] ‖T ′′. There are
two cases.
(i) Γ, x : ζ �t e : ϕ, σ and Γ �t v : ∅, ζ with ζ �= θ refy and Γ �t r : ϕ, σ. We use
the Substitution Lemma 5.5(ii) and the Replacement Lemma 5.6.
(ii) Γ, x : θ refy �t e : ϕ, σ and Γ �t v : ∅, θ refρ with Γ �t r : {y �→ρ}(ϕ, σ)
then by the well-formedness assumption we have y = x, and v = ρ by Remark
5.3(i), and therefore by the Substitution Lemma 5.5(i) we have Γ �t {x �→v}e :
{y �→ρ}(ϕ, σ), and we conclude using the Replacement Lemma 5.6.
• r = (lockψ p in e). We have S = S′ and Γ �t r : {p} ∪ ψ, τ with Γ = Γ ′, p :
θ refp and Γ �t e : ψ, τ . There two cases.
(i) p ∈ �E	 and L′ = L and T ′ = E[e]. We use the Replacement Lemma 5.6 to
conclude.
(ii) p �∈ �E	, L′ = L ∪ {p} and T ′ = E[(e\p)ψ,P ] where P = dom(S). Then
P ⊆ dom(Γ ), and therefore Γ �t (e\p)ψ,P : ψ, τ , and we conclude using the
Replacement Lemma 5.6.
• r = νxe. We have S′ = S + p where p �∈ dom(S) and L′ = L and T =
E[{x �→p}e] ‖T ′′. Then Γ �t νxe : ϕ−{x}, τ with x �∈ Γ, τ and Γ, x : θ refx �t e :
ϕ, τ . By the Strengthening Lemma 5.4 (and well-formedness of configurations) we
may assume that p �∈ dom(Γ ), and therefore Γ, p : θ refp �t {x �→p}e : {x �→p}ϕ, τ
by the Substitution Lemma 5.5(i), and we use the Replacement Lemma 5.6 to
conclude.
Theorem (Type Safety) 5.8. For any closed expression e of the source lan-
guage, if Γ �s e : ϕ, τ ⇒ e then e is safe.

Proof: this is a consequence of Lemma 5.2 and the Subject Reduction property,
since if

E[(E′[(lockψ1 p1 in e)]\p0)ψ0,P0 ]

is typable, we have p1 ∈ P0 ⇒ p1 ∈ ψ0, for

Γ �t E′[(lockψ1 p1 in e)] : ϕ, τ ⇒ p1 ∈ ϕ ∩ dom(Γ )
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An obvious consequence of this result and Proposition 4.4 is that, if the closed
expression e of the source language is typable, and translates into e, then ex-
ecuting the latter (in the initial configuration where S = ∅ = L) is free from
deadlocks.

6 Conclusion

Designing a semantics for shared variable concurrency that is provably free of
deadlocks is a step towards a modular concurrent programming style, where
one can compose a system from several (typable) threads and modules without
running the risk of entering into a deadlock. We have proposed such a deadlock-
free semantics, that relies on a static analysis of programs which is not much
more constraining than usual typing. Moreover, thanks to the use of singleton
reference types, we obtain a fine grained locking policy, where each pointer has
its own lock. That is, the programmer does not have to think about locks, but
only about pointers.
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