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Abstract. Online trading invariably involves dealings between
strangers, so it is important for one party to be able to judge objec-
tively the trustworthiness of the other. In such a setting, the decision
to trust a user may sensibly be based on that user’s past behaviour.
We introduce a specification language based on linear temporal logic
for expressing a policy for categorising the behaviour patterns of a user
depending on its transaction history. We also present an algorithm for
checking whether the transaction history obeys the stated policy. To be
useful in a real setting, such a language should allow one to express
realistic policies which may involve parameter quantification and quan-
titative or statistical patterns. We introduce several extensions of linear
temporal logic to cater for such needs: a restricted form of universal and
existential quantification; arbitrary computable functions and relations
in the term language; and a “counting” quantifier for counting how many
times a formula holds in the past. We then show that model checking
a transaction history against a policy, which we call the history-based
transaction monitoring problem, is PSPACE-complete in the size of the
policy formula and the length of the history, assuming that the under-
lying interpreted functions and relations are polynomially computable.
The problem becomes decidable in polynomial time when the policies
are fixed. We also consider the problem of transaction monitoring in
the case where not all the parameters of actions are observable. We for-
mulate two such “partial observability” monitoring problems, and show
their decidability under certain restrictions.

1 Introduction

Internet mediated trading is now a common way of exchanging goods and services
between parties who may not have engaged in transactions with each other
before. The decision of a seller/buyer to engage in a transaction is usually based
on the “reputation” of the other party, which is often provided via the online
trading system itself. These so-called reputation systems can take the form of
numerical ratings, which can be computed based on feedback from users (cf. [11]
for a survey of reputation systems). While many reputation systems used in
practice seem to serve their purposes, they are not without problems (cf. [11])
and can be too simplistic in some cases. For example, in eBay.com, the rating
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of a seller/buyer consists of two components: the number of positive feedbacks
she gets, and the number of negative feedbacks. A seller with, say 90 positive
feedbacks and 1 negative feedback may be considered trustworthy by some. But
one may want to correlate a feedback with the monetary value of the transaction
by checking if the one negative feedback was for a very expensive item, or one
may want to check other more general relations between different parameters of
past transactions.

Here, we consider an alternative (and complementary) method to describe the
reputation of a seller/buyer, by specifying explicitly what constitutes a “good”
and a “bad” seller/buyer based on the observed patterns of past transactions.
More specifically, we introduce a formal language based on linear temporal logic
for encoding the desired patterns of behaviours, and a mechanism for check-
ing these patterns against a concrete history of transactions. The latter is often
referred to as the monitoring problem since the behaviour of users is being moni-
tored, but here, it is just a specific instance of model checking for temporal logic.
The patterns of behaviours, described in the logical language, serve as a concise
description of the policies for the user on whether to engage with a particular
seller/buyer. The approach we follow here is essentially an instance of history-
based access control (see e.g., [2,4,8,9,10,13]). More precisely, our work is closely
related to that of Krukow et al. [13,14].

There are two main ideas underlying the design of our language:

– Transactions vs. individual actions: Following Krukow et al., we are mainly
interested in expressing properties about transactions seen as a logically
connected grouping of actions, for example because they represent a run of
a protocol. A history in our setting is a list of such transactions, in contrast
to the more traditional notion of history as a list of individual actions (i.e., a
trace), e.g., as in [8,10], which is common in monitoring program execution.

– Closed world assumption: The main idea underlying the design of our quan-
tified policies is that a policy should only express properties of objects which
are observed in the history. For example, in monitoring a typical online trans-
action, it makes sense to talk about properties that involve “all the payments
that have been made”. Thus, if we consider a formalisation of events using
predicates, where pay(100) denotes the payment of 100 dollars (say), then
we can specify a policy like the one below left which states that all payments
must obey ψ:

∀x. pay(x)→ ψ(x) ∀x. ¬pay(x)→ ψ(x)

However, it makes less sense to talk about “for all dollar amounts that a seller
did not pay”, like the policy above right, since this involves infinitely many
possibility (e.g., the seller paid 100, but did not pay 110, did not pay 111,
etc.). We therefore restrict our quantification in policies to have a “positive
guard”, guaranteeing that we always quantify over the finitely many values
that have already been observed in the history.

An important consequence of the closed world assumption is that we can only
describe relations between known individual objects. Thus we can enrich our
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logical language with computable functions over these objects and computable
relations between these objects without losing decidability of the model checking
problem. One such useful extension is arithmetic, which allows one to describe
constraints on various quantities and values of transactions.

Our base language for describing policies is the pure past fragment of linear
temporal logic [16] since it has been used quite extensively by others [4,10,13,17]
for similar purposes. However, the following points distinguish our work from
related work in the literature, within the context of history-based access control:

– We believe our work is the first to incorporate both quantified policies
and computable functions/relations within the same logic. Combining un-
restricted quantifiers with arbitrary computable functions easily leads to
undecidability (see Section 7).

– We extend temporal logic with a “counting quantifier”, which counts how
many times a policy has been satisfied in the past. A similar counting mech-
anism was proposed in [13,14] as a part of a meta-policy language. But in
our work, it is a part of the same logic.

– We consider new monitoring problems based on a notion of partial observ-
ability which seem to arise quite naturally in online trading platforms where
a user (or a system provider) cannot directly observe all parameters of an ac-
tion. For instance, in eBay, it may not be always possible to observe whether
payments have been made, or it may be possible to observe a payment but
not the exact amount paid. We model unobservable parameters in an action
as variables representing unknown values. Given a policy and a history con-
taining unknown parameters, we ask whether the policy is satisfied under
some substitution of the variables (the potential satisfiability problem), or
under all substitutions (the adherence problem).

The rest of the paper is organised as follows. Section 2 introduces our policy lan-
guage PTLTLFO , for “past time linear temporal logic with first-order (guarded)
quantifiers”, and defines its semantics. Section 3 presents some examples using
PTLTLFO for specifying access control policies, which include formalisations
of known security policies. Section 4 considers the model checking problem for
PTLTLFO which we show to be pspace-complete. Fixing the policies reduces
the complexity to ptime. Section 5 presents an extension of PTLTLFO with a
counting quantifier allowing us to express that a policy depends on the number
of times another policy was satisfied in the past. The model checking problem for
this extension remains pspace-complete. In Section 6, we consider more general
(undecidable) monitoring problems where not all the parameters of an action can
be observed. By restricting the class of allowed functions and relations, we can
obtain decidability of both the potential satisfiability and adherence problems,
for example, when the term language of the logic is restricted to linear arithmetic.
Section 7 discusses possible decidable extensions to the guarded quantifiers.
Section 8 concludes the paper and discusses related work.

Due to space limit, detailed proofs are omitted, but they can be found in a
technical report [3].
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2 The Policy Language: Definitions and Notation

Since we are interested in the notion of history-based access control, our defini-
tion of history is similar of that of [14]. A history is organised as a list of sessions.
Each session is a finite set of events, or actions. Each event is represented by
a predicate. A session represents a “world” in the sense of a Kripke semantics
where the underlying frame is linear and discrete.

The term structures of our policy language are made up of variables and
interpreted multi-sorted function symbols. Function symbols of zero arity are
called constants. Terms are ranged over by s, t, u. Variables of the language,
denoted by x, y, z, range over certain domains, such as strings, integers, or other
finite domains. We call these domains base types or simply types. We assume a
distinguished type prop which denotes the set of propositions of the logic, and
which must not be used in the types of the function symbols and variables. That
is, we do not allow logical formulae to appear at the term level. Function symbols
and variables are typed.

We assume an interpretation where distinct constants of the same type map
to distinct elements of the type. We shall use the same symbol, say a, to refer
both to an element of some type τ and the constant representing this element.
Function symbols of one or more arities admit a fixed interpretation, which can
be any total recursive function. We shall assume the usual function symbols for
arithmetic, +, −, ×, etc., with the standard interpretations. The language we are
about to define is open to additional interpreted function symbols, e.g., string
related operations, etc. We shall use f, g, h to range over function symbols of
arity one or more, and a, b, c, d to range over constants. We also assume a set of
interpreted relations, in particular, those for arithmetic, e.g., <, =, ≥, etc. These
interpreted relations are ranged over by R. All the interpreted functions and
relations have first-order types, i.e., their types are of the form τ1×· · ·× τn → τ,
where τ and τ1, . . . , τn are base types. We shall restrict to computable relations
R. Of course, there is also the (rigidity) assumption that the function f , constant
c and relation R have the same fixed interpretation over all worlds.

Since our term language contains interpreted symbols, we assume that there
is a procedure for evaluating terms into values. We also assume that each term
can be evaluated to a unique value. Given a term t, we shall denote with t ↓ the
unique value denoted by this term, e.g., if t = (2+3) then t ↓= 5. Given an atomic
formula p(t1, . . . , tn), we shall write p(t1, . . . , tn) ↓ to denote p(t1 ↓, . . . , tn ↓).
The policy language is given by the following grammar:

ψ ::= p(t1, . . . , tm) | R(t1, . . . , tn) | ψ ∧ ψ | ¬ψ
| X−1 ψ | ψ Sψ | ∀(x1, . . . , xn) : p. ψ,

where X−1 is referred to as the “previously”-operator, and S as the “since”-
operator. In the quantified formula ∀(x1, . . . , xn) : p. ψ, where n ≥ 1, the sym-
bol p is an n-ary predicate of type τ1 × · · · × τn → prop, and each xi is of
type τi. The intended interpretation of this quantification is that the predi-
cate p defines a subtype of τ1 × · · · × τn, which is determined by the occur-
rence of p in the world (session) in which the formula resides. For example,
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(h, i) |= p(t1, . . . , tn) iff p(t1 ↓, . . . , tn ↓) ∈ hi

(h, i) |= R(t1, . . . , tn) iff R(t1 ↓, . . . , tn ↓) is true

(h, i) |= ψ1 ∧ ψ2 iff (h, i) |= ψ1 and (h, i) |= ψ2

(h, i) |= ¬ψ iff (h, i) �|= ψ

(h, i) |= X−1 ψ iff i > 1 and (h, i− 1) |= ψ

(h, i) |= ψ1 Sψ2 iff there exists j ≤ i such that (h, j) |= ψ2 and

for all k, if j < k ≤ i then (h, k) |= ψ1

(h, i) |= ∀(x1, . . . , xn) : p. ψ iff for all c1, . . . , cn, if p(c1, . . . , cn) ∈ hi

then (h, i) |= ψ[x1 := c1, . . . , xn := cn].

Fig. 1. Semantics of PTLTLF O

in a world consisting of {p(1, 1), p(1, 2), p(1, 3), q(4)} the predicate p represents
the set {(1, 1), (1, 2), (1, 3)}, i.e., a subset of N × N . We shall often abbreviate
∀(x1, . . . , xn) : p. ψ as simply ∀�x : p. ψ when the exact arity and the information
about each xi is not important or can be inferred from context. The notions of
free and bound variables are defined as usual. A formula is closed if it has no
occurrences of free variables.

Definition 1. An event (or an action) is a predicate p(c1, . . . , cn) where each
ci is a constant and p is an uninterpreted predicate symbol. A session is a finite
set of events. A history is a finite list of sessions.

A standard definition for the semantics of first-order logic uses a mapping of free
variables in a formula to elements of the types of the variables. To simplify the
semantics, we shall consider only closed formulae. The semantics for quantified
statements is then defined by closing these statements under variable mappings.
We use the notation σ and θ to range over partial maps from variables to elements
of types. We usually enumerate them as, e.g., [x1 := a1, . . . , xn := an]. Since we
identify a constant with the element represented by that constant, a variable
mapping is both a semantic and a syntactic concept. The latter means that we
can view a variable mapping as a substitution. Given a formula ψ and variable
mapping σ, we write ψσ to denote a formula resulting from replacing each free
variable x in ψ with the constant σ(x). From now on, we shall use the term
variable mapping and substitution interchangeably.

We shall be concerned with judgements of the form (h, i) |= ψ, where h is a
history, i is an index referring to the i-th session in h, and ψ is a closed formula.
The judgement reads “ψ is true at the i-th world in the history h”. We denote
with |h| the length of h, and with hi the i-th element of h when i ≤ |h|.
Definition 2. The forcing relation (h, i) |= ψ, where h is a history, i an integer,
and ψ a formula, is defined inductively as shown in Figure 1 where 1 ≤ i ≤ |h|.
We denote with h |= ψ the relation (h, |h|) |= ψ. The boolean connectives ∨
(disjunction) and→ (implication) are defined in the standard way using negation
and conjunction. We derive the operators F−1 ϕ ≡ 
Sϕ (“sometime in the
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past”), and G−1 ϕ ≡ ¬F−1 (¬ϕ) (“always in the past”), where 
 (“true”) is
short for p ∨ ¬p.
Note that allowing unrestricted quantifiers can cause model checking to become
undecidable, depending on the interpreted functions and relations. For example,
if we allow arbitrary arithmetic expressions in the term language, then we can
express solvability of Diophantine equations, which is undecidable [15].

3 Some Example Policies

Let us now examine some example policies known from the literature, and our
means of expressing them concisely and accurately. We also examine some poli-
cies from applications other than monitoring users in online trading systems
to demonstrate that our language can model the requirements of other related
domains as well if they can be expressed as trace-based properties.

One-out-of-k policy. The one-out-of-k policy as described in [8] concerns the
monitoring of web-based applications. More specifically, it concerns monitoring
three specific situations: connection to a remote site, opening local files, and
creating subprocesses. We model this as follows, with the set of events being

open(file,mode): request to open the file file in mode, mode, where file is a
string containing the absolute path, and mode can be either ro (for read-
only) or rw (for read-write). There can be other modes but for simplicity we
assume just these two;

read/write/create(file): request to read/write/create a file;
connect: request to open a socket (to a site which is irrelevant for now);
subproc: request to create a subprocess.

We assume some operators for string manipulation: the function path(file)
which returns the absolute path to the directory in which the file resides, and
the equality predicate = on strings. The history in this setting is one in which
every session is a singleton set. Consider one of the policies as described in [8]:
allow a program to open local files in user-specified directories for modifications
only if it has created them, and it has neither tried to connect to a remote site
nor tried to create a sub-process. Suppose that we allow only one user-specified
directory called “Document”. Then this policy can be expressed as:

∀(x,m) : open.m = rw→ [ path(x) = “Document” ∧ F−1 create(x) ∧
¬F−1 connect ∧ ¬F−1 subproc].

Chinese wall policy. The Chinese wall policy [6] is a common access control
policy used in financial markets for managing conflicts of interests. In this setting,
each object for which access is requested, is classified as belonging to a company
dataset, which in turn belongs to a conflict of interest class. The idea is that a
user (or subject) that accessed an object that belonged to a company A in the
past will not be allowed to access another object that belongs to a company B
which is in the same conflict of interest class as A.
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To model this policy, we assume the following finite sets: U for users, O for
objects, D for company datasets, and C for the names of the conflict of interest
class. The event we shall be concerned with is access of an object o by a user u.
We shall assume that this event carries information about the company dataset
to which the object belongs, and the name of the conflict of interest class to which
the company dataset belongs. That is, access is of type U ×O×D×C → prop.
A history in this case is a sequence of singletons containing the access event.
The policy, as given in [6], specifies among others that

“access is only granted if the object requested: 1.) is in the same company
dataset as an object already accessed by that subject, or 2.) belongs to
an entirely different conflict of interest class.”

Implicit in this description is that first access (i.e., no prior history) is always
allowed. We can model the case where no prior history exists simply using the
formula ¬X−1
. This policy can be expressed in our language as follows:

∀(u, o, d, c) : access. ¬X−1
 ∨
(X−1 F−1 ∃(u′, o′, d′, c′) : access. u = u′ ∧ d = d′) ∨
(X−1 G−1 ∀(u′, o′, d′, c′) : access. u = u′ → ¬(c = c′)).

eBay.com. Consider a scenario where a potential buyer wants to engage in a
bidding process on an online trading system like eBay.com, but the buyer wants
to impose some criteria on what kind of sellers she trusts. A simple policy would
be something like “only deal with a seller who was never late in delivery of
items”. In this model, a session in a history represents a complete exchange
between buyer and seller, e.g., the bidding process, winning the bid, payment,
confirmation of payment, delivery of items, confirmation of delivery, and the
feedbacks. We consider the following events (in the history of a seller):

win(X,V ): the bidder won the bid for item X for value V.
pay(T,X, V ): payment of item X at date T of the sum V (numerical value of

dollars).
post(X,T ): the item X is delivered within T days1.
negative, neutral, positive: represents negative, neutral and positive feedbacks.

There are other actions and parameters that we can formalise, but these are
sufficient for an illustration. Now, suppose the buyer sets a criterion such that a
posting delay greater than 10 days after payment is unacceptable. This can be
expressed as:

G−1 [∀(t, x, v) : pay. ∃(y, t′) : post. x = y ∧ t′ ≤ 10]. (1)

Of course, for such a simple purpose, one use eBay’s rating system, which com-
putes the number of feedbacks in each category (positive, neutral and negative).
However, the seller’s rating may sometimes be too coarse a description of a
1 Note that on actual eBay, no concrete number of days is given, but instead buyers

can rate the time for posting and handling in the feedback forums in a range of 1–5.
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seller’s reputation. For instance, one is probably willing to trust a seller with
some negative feedbacks, as long as those feedbacks refer to transactions involv-
ing only small values. A buyer can specify that she would trust a seller who never
received negative feedbacks for transactions above a certain value, say, 200 dol-
lars. This can be specified as follows: G−1 [∀(t, x, v) : pay. v ≥ 200→ ¬negative].

4 Model Checking PTLTLFO

We now consider the model checking problem for PTLTLFO , i.e., deciding
whether h |= ϕ holds. We show that the problem is pspace-complete, even
in the case where no interpreted functions or relations occur in the formula.

We prove the complexity of our model checking problem via a terminating
recursive algorithm. The algorithm is presented abstractly via a set of rules which
successively transform a triple 〈h, i, ϕ〉 of a history, an index and a formula, and
return a truth value of either t or f to indicate that (h, i) |= ϕ (resp. (h, i) �|= ϕ).
We write 〈h, i, ϕ〉 ⇓ v to denote this relation and overload the logical connectives
∧, ∨ and ¬ to denote operations on boolean values, e.g., t ∧ t = t, etc. Since
ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧X−1 (ψ1 Sψ2)), we shall use the following semantic clause
for ψ1 Sψ2 which is equivalent: (h, i) |= ψ1 Sψ2 if and only if

(h, i) |= ψ2 or [(h, i) |= ψ1 and i > 1 and (h, i− 1) |= ψ1 Sψ2].

The rules for the evaluation judgement are given in Figure 2. To evaluate the
truth value of 〈h, i, ϕ〉, we start with the judgement 〈h, i, ϕ〉 ⇓ v where v is
still unknown. We then successively apply the transformation rules bottom up,
according to the main connective of ϕ and the index i. Each transformation step
will create n-child nodes with n unknown values. Only at the base case (i.e.,
id, R, or X−1

1) the value of v is explicitly computed and passed back to the
parent nodes. A run of this algorithm can be presented as a tree whose nodes
are the evaluation judgements which are related by the transformation rules. A
straightforward simultaneous induction on the derivation trees yields:

Lemma 1. The judgement 〈h, i, ϕ〉 ⇓ t is derivable if and only if (h, i) |= ϕ and
the judgement 〈h, i, ϕ〉 ⇓ f is derivable if and only if (h, i) �|= ϕ.

Theorem 1. Let ϕ be a PTLTLFO formula and h a history. If the interpreted
functions and relations in ϕ are in pspace, then deciding whether h |= ϕ holds
is pspace-complete.

Although the model checking problem is pspace-complete, in practice, one often
has a fixed policy formula which is evaluated against different histories. Then,
it makes sense to ask about the complexity of the model checking problem with
respect to the size of histories only (while restricting ourselves to interpreted
functions and relations computable in polynomial time).

Theorem 2. The decision problem for h |= ϕ, where ϕ is fixed, is solvable in
polynomial time.
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(id)
if p(�t)↓ ∈ hi then v := t else v := f

〈h, i, p( �t )〉 ⇓ v (R)
if R(�t)↓ is true then v := t else v := f

〈h, i, R(�t)〉 ⇓ v

(¬)
〈h, i, ψ〉 ⇓ v

〈h, i,¬ψ〉 ⇓ ¬v (∧)
〈h, i, ψ1〉 ⇓ v1 〈h, i, ψ2〉 ⇓ v2

〈h, i, ψ1 ∧ ψ2〉 ⇓ v1 ∧ v2

(∀)
〈h, i, ϕ(�t1)〉 ⇓ v1 · · · 〈h, i, ϕ(�tn)〉 ⇓ vn

〈h, i,∀�x : p.ϕ(�x)〉 ⇓ ∧n
i=1 vi

where {ϕ(�t1), · · · , ϕ(�tn)} = {ϕ(�x) | p(�x) ∈ hi}

(S )
〈h, i, ψ1〉 ⇓ v1 〈h, i, ψ2〉 ⇓ v2 〈h, i− 1, ψ1 Sψ2〉 ⇓ v3

〈h, i, ψ1 Sψ2〉 ⇓ v2 ∨ (v1 ∧ v3) i > 1

(S 1)
〈h, 1, ψ2〉 ⇓ v

〈h, 1, ψ1 Sψ2〉 ⇓ v (X−1 )
〈h, i− 1, ϕ〉 ⇓ v
〈h, i,X−1 ϕ〉 ⇓ v i > 1 (X−1

1)
v := f

〈h, 1,X−1 ϕ〉 ⇓ v

Fig. 2. Evaluation rules for deciding whether (h, i) |= ϕ

An easy explanation for the above hardness result is via a polynomial time
encoding of the PSPACE-complete QBF-problem (cf. [18] and Appendix). Given
a boolean expression like E(x1, x2, x3) ≡ (x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) and the QBF-
formula F ≡ ∀x1. ∃x2. ∀x3. E(x1, x2, x3), we can construct a corresponding
PTLTLFO -formula, ϕ ≡ ∀x1 : p1. ∃x2 : p2. ∀x3 : p3. E

′(x1, x2, x3) where
E′(x1, x2, x3) ≡ (true(x1)∨¬true(x2))∧(¬true(x2)∨true(x3)), and a history, h
below, representing all possible interpretations of F ’s variables in a single session:

h = {p1(0), p1(1), p2(0), p2(1), p3(0), p3(1), true(1)}.

It is then easy to see that F evaluates to 
 if and only if h |= ϕ holds.
On the surface it seems that this “blow up” is caused by the multiple occur-

rences of the same predicate symbol in a single session. It is therefore natural
to ask whether the complexity of the problem can be reduced if we consider
histories where every predicate symbol can occur at most once in every ses-
sion. Surprisingly, however, even with this restriction, model checking remains
pspace-complete. Consider, for example, the following polynomial encoding of
the above QBF-instance, using this restriction:

{p3(0), true(1)}; {p3(1), true(1)}; . . . ; {p1(0), true(1)}; {p1(1), true(1)} |=
G−1 ∀x1 : p1. F−1 ∃x2 : p2. G−1 ∀x3 : p3. E

′(x1, x2, x3)).

Definition 3. A history h is said to be trace-like if for all i such that 1 ≤ i ≤ |h|,
for all p, �t and �s, if p(�t) ∈ hi and p(�s) ∈ hi, then �t = �s.

Theorem 3. Let ϕ be a PTLTLFO formula and h a trace-like history. If the
interpreted functions and relations in ϕ are in pspace, then deciding whether
h |= ϕ holds is pspace-complete.
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We have implemented a prototypic model checker for PTLTLFO 2. The model
checker accepts two user inputs: a PTLTLFO policy and a history which is then
checked against the policy. We use FOL-RuleML [5] as the input format for the
policy since it is due for standardisation as the W3C’s first-order logic exten-
sion to RuleML [1]. Thus users can even specify policies using graphical XML-
editors with a FOL-RuleML DTD extended by our temporal operators. The
model checker is currently not optimised for performance, but demonstrates the
feasibility and practicality of our approach. to The above web site contains Ocaml
source code (as well as a statically linked binary for Linux) and some example
policies from Section 3 stored in XML-format.

5 Extending PTLTLFO with a Counting Quantifier

We now consider an extension of our policy language with a counting quantifier.
The idea is that we want to count how many times a policy was satisfied in the
past, and use this number to write another policy. The language of formulae is
extended with the construct Nx : ψ. φ(x) where x binds over the formula φ(x)
and is not free in ψ. The semantics is as follows:

(h, i) |= Nx : ψ. φ(x) iff (h, i) |= φ(n),

where n = |{j | 1 ≤ j ≤ i and (h, j) |= ψ}|.
Krukow et al. also consider a counting operator, #, which applies to a for-

mula. Intuitively, #ψ counts the number of sessions in which ψ is true, and can
be used inside other arithmetic expressions like #ψ ≤ 5. The advantage of our
approach is that we can still maintain a total separation of these arithmetic
expressions and other underlying computable functions from the logic, thus al-
lowing us to modularly extend these functions. Another difference is that our
extension resides in the logic itself, thus allowing one to express policies that
combine counting with other logical operators.

Examples: Consider a “meta” policy such as: “engage only with a seller whose
past transactions with negative feedbacks constitute at most a quarter of the
total transactions”. This can be expressed succinctly as

Nx : negative. Ny : 
. x
y
≤ 1

4

since Ny : 
 instantiates y to be the length of the transaction history to date.
A more elaborate example is the formula in Eq. (1) without the G−1 -operator:

ψ ≡ ∀(t, x, v) : pay. ∃(y, t′) : post. x = y ∧ t′ ≤ 10.

Then one can specify a policy that demands that “the seller’s delivery is mostly
on-time”, where mostly can be given as a percentage, such as 90%, via:

Nx : ψ. Ny : 
. x
y
≤ 0.9.

2 See http://code.google.com/p/ptltl-mc/
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Theorem 4. If the interpreted functions and relations are in pspace, then the
model checking problem for PTLTLFO with the counting quantifier is pspace-
complete.

6 Partial Observability

In some online transaction systems, like eBay, certain events may not be wholly
observable all the time, even to the system providers, e.g., payments made
through a third-party outside the control of the provider3. We consider sce-
narios where some information is missing from the history of a client (buyer or
seller) and the problem of enforcing security policies in this setting.

Examples: Consider the policy ψ ≡ G−1 [∀(x, v) : win.∃(t, y, u) : pay.x =
y ∧ v = u] which states that every winning bid must be paid with the agreed
dollar amount. The history below, where X represents an unknown amount, can
potentially satisfy ψ when X = 100 (say):

h = {win(a, 100), pay(1, a, 100), post(a, 5)};
{win(a, 100), pay(2, a,X), post(a, 4), positive}

Of course it is also possible that the actual amount paid is less than 100, in
which case the policy is not satisfied. There are also cases in which the values of
the unknowns do not matter. For instance, a system provider may not be able
to verify payments, but it may deduce that if a buyer leaves a positive remark,
that payment has been made. That is, a policy like the following:

ϕ′ ≡G−1 [∀(x, v) : win.∃(t, y, u) : pay.x = y ∧ (u = v ∨ positive)].
In this case, we see that h still satisfies ϕ′ under all substitutions for X .

We consider two problems arising from partial observability. For this, we ex-
tend slightly the notion of history and sessions.

Definition 4. A partially observable session, or po-session for short, is a finite
set of predicates of the form p(u1, . . . , un), where p is an uninterpreted predicate
symbol and each ui is either a constant or a variable. A partially observable
history (po-history) is a finite list of po-sessions.

Given a po-history h, we denote with V (h) the set of variables occurring in h. In
the following, we consider formulae which may have occurrences of free variables.
The notation V (ψ) denotes the set of free variables in the formula ψ.

Definition 5. Given a po-history h, a natural number i, and a formula ψ such
that V (ψ) ⊆ V (h), we say that h potentially satisfies ψ at i, written (h, i) � ψ,
if there exists a substitution σ such that dom(σ) = V (h) and (hσ, i) |= ψσ. We
say that h adheres to ψ at i, written (h, i) � ψ, if (hσ, i) |= ψσ for all σ such
that dom(σ) = V (h).
3 eBay asks users for confirmation of payment, but does not check whether the

payment goes through. This is modelled by an unknown amount in the payment
parameters.
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Note that the adherence problem is just the dual of the potential satisfiability
problem, i.e., (h, i) � ψ if and only if (h, i) �� ¬ψ. In general the potential satis-
fiability problem is undecidable, since one can encode solvability of general Dio-
phantine equations: Let D(x1, . . . , xn) be a set of Diophantine equations whose
variables are among x1, . . . , xn. Assume that we have n uninterpreted unary
predicate symbols p1, · · · , pn which take an integer argument. Then solvability
of D(x1, . . . , xn) is reducible to the problem

{p1(x1), . . . , pn(xn)} � ∃x1 : p1. · · · ∃xn : pn.ψ(x1, . . . , xn)

where ψ(x1, . . . , xn) is the conjunction of all the equations in D(x1, . . . , xn).
However, we can obtain decidability results if we restrict the term language.

We consider here such a restriction where the term language is the language of
linear arithmetic over integers, i.e., terms of the form (modulo associativity and
commutativity of +): k1x1 + · · · + knxn + c, where c and each ki are integers.
We also assume the standard relations on integers =, ≥ and ≤ . It is useful to
introduce a class of constraint formulae generated from the following grammar:

C ::= 
 | ⊥ | t1 = t2 | t1 ≤ t2 | t1 ≥ t2 | C1 ∧ C2 | C1 ∨C2 | ¬C.

A constraint C is satisfiable if there exists a substitution σ such that Cσ is
true. Satisfiability of constraint formulae is decidable (see [12] for a list of algo-
rithms). The decidability proof of the potential satisfiability problem involves a
transformation of the judgement (h, i) � ψ into an equivalent constraint formula.

Lemma 2. For every h, i, and ψ, there exists a constraint formula C such that
(h, i) � ψ if and only if C is satisfiable.

Theorem 5. The potential satisfiability problem and the adherence problem for
PTLTLFO with linear arithmetic are decidable.

We note that the transformation of (h, i) � ψ to C above may result in an
exponential blow-up (see [3] for more details).

7 Extended Guarded Quantifiers

An underlying design principle for our quantified policies is the closed-world
assumption (CWA). The guarded quantifier in PTLTLFO is the most basic
quantifier, and by no means the only one that enforces CWA. It is a natural to
ask what other extensions achieve the same effect.

We mentioned earlier that introducing negation in the guard leads to unde-
cidability. Surprisingly, simple extensions with unrestricted disjunction or the
S -operator also lead to undecidability, as we shall see shortly. Let us first fix the
language with extended guarded quantifiers, whose syntax is as follows:

∀�x : ψ(�x). ϕ(�x) ∃�x : ψ(�x). ϕ(�x).
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Here the formula ψ(�x) is a guard, and �x are its only free variables. The semantics
of the quantifiers are a straightforward extension of that of PTLTLFO , i.e.,

(h, i) |= ∀(x1, . . . , xn) : ψ(x1, . . . , xn). ϕ iff for all c1, . . . , cn,
if (h, i) |= ψ(c1, . . . , cn) then (h, i) |= ϕ[x1 := c1, . . . , xn := cn].

Now consider a guarded quantifier that allows unrestricted uses of disjunction.
Suppose ϕ(�x), where �x range over integers, is a formula encoding some gen-
eral Diophantine equation. Let ψ(�x, y) be a guard formula p(�x)∨ q(y), for some
predicate p and q of appropriate types. Then satisfiability of the entailment
{q(0)} |= ∃(�x, y) : ψ(�x, y). ϕ(�x) is equivalent to the validity of the first-order for-
mula ∃�x. ϕ(�x), which states the solvability of the Diophantine equations in ϕ(�x).
This means that the model checking problem for PTLTLFO with unrestricted
disjunctive guards is undecidable. The cause of this undecidability is that satis-
fiability of the guard, relative to the history, is independent of the variables �x.
Similar observations can be made regarding the unrestricted uses of the “since”
operator, e.g., if we replace the guard ψ(�x, y) with p(�x)S q(y).

Unrestricted uses of function symbols in guarded quantifiers can also lead to
violation of CWA. For instance, in checking {p(0)} |= ∀(x, y) : p(x+ y). ϕ(x, y),
we have to consider infinitely many combinations of x and y such that x+y = 0.

The above considerations led us to the following guarded extension to the
quantifiers of PTLTLFO . Simple guards are formulae generated by the grammar:

γ ::= p(�u) | γ ∧ γ | G−1 γ | F−1 γ

Here the list �u is a list of variables and constants. We write γ(�x) to denote a
simple guard whose only free variables are �x. Positive guards G(�x) over variables
�x are formulae whose only variables are �x, as generated by the grammar:

G(�x) ::= γ(�x) | G(�x) ∧G(�x) | G(�x) ∨G(�x) | G−1G(�x) | F−1G(�x) | G(�x)SG(�x).

Let PTLTLFO+ denote the extension of PTLTLFO with positive guards. We
show that the model checking problem for PTLTLFO+ is decidable. The key to
this is the finiteness of the set of “solutions” for a guard formula.

Definition 6. Let G(�x) be a positive guard and let h be a history. The guard
instantiation problem, written (h,G(�x)), is the problem of finding a list �u of
constants such that h |= G(�u) holds. Such a list is called a solution of the guard
instantiation problem.

Lemma 3. Let G(�x) be a positive guard over variables �x and let h be a history.
Then the set of solutions for the problem (h,G(�x)) is finite. Moreover, every
solution uses only constants that appear in h.

Theorem 6. Let ϕ be a PTLTLFO+ formula and h a history. The model check-
ing problem h |= ϕ is decidable.
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8 Conclusions and Related Work

We have presented a formal language for expressing history-based access control
policies based on the pure past fragment of linear temporal logic, extended to
allow certain guarded quantifiers and arbitrary computable functions and rela-
tions. As our examples show, these extensions allow us to write complex poli-
cies concisely, while retaining decidability of model checking. Adding a counting
quantifier allows us to express some statistical properties in policies. We also
consider the monitoring problem in the presence of unobservable or unknown
action parameters. We believe this is the first formulation of the problem in the
context of monitoring.

There is much previous work in the related area of history-based access con-
trol [2,4,8,9,10,13]. Counting the occurrence of specific events was previously
described in [7], where a stream-based approach to runtime verification was pre-
sented. There, the monitoring algorithm incrementally constructs output streams
from input streams, while maintaining a store of partially evaluated expressions
for forward references. This way one can count, for example, how often an in-
put stream carried a certain value. Our transaction-based approach to defin-
ing policies separates us from the more traditional trace-based approaches in
program execution monitoring. Our work is closely related to Krukow, et al.
[13,14], but there are a few important differences. Their definition of sessions
allows events to be partially ordered using event structures [19] whereas our no-
tion of a session as a set with no structure is simpler. The latter is not a real
limitation since ordering of events can be explicitly encoded in our setup us-
ing first-order quantifiers and a rich term language allowing extra parameters,
interpreted functions, timestamps and arithmetic. In the first-order case, they
forbid multiple occurrences of the same event in a session, i.e., they correspond
to our trace-like histories (see Section 4). Their language does not allow arbi-
trary computable functions and relations, since allowing these features in the
presence of quantifiers can lead to undecidability of model checking. Our policy
language is thus more expressive than theirs in describing quantitative properties
of histories.

For propositional LTL, there exist efficient means of monitoring, e.g., as in
[4,10]. There a so-called monitor device is generated for a policy which reads a
history as it unfolds and which does not need to re-apply a costly model checking
procedure when new sessions are added. Instead in [10], only the truth values of
certain subformulae of the policy are kept with respect to the previous session,
in order to compute the truth value of the subformulae with respect to the new
session; that is, the complexity of the monitor does not depend on the length of
a history. Let us refer to policies which can be monitored this way as monitorable
policies. Obviously, not all policies in PTLTLFO are monitorable. For example,
in a policy such as ∀x : p. G−1 ∃y : q. y ≤ x, we must, for each new x : p,
check all the previous sessions in the history whether or not there exists a y : q,
such that y ≤ x holds. A policy such as the one given in the eBay.com example in
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Section 3, however, can be monitored efficiently as it does not involve the same
nesting of temporal modalities under the scope of quantifiers:

ϕ ≡ G−1 ϕ1 where ϕ1 ≡ ∀(t, x, v) : pay. ∃(y, t′) : post. x = y ∧ t′ ≤ 10.

We can evaluate it w.r.t. the current session only, and keep track of the results
from previous evaluations using two arrays of truth values, pre and now like in
[10], to store the truth values of subformulae w.r.t. the current (now) and the
previous (pres) session. In this example, it is sufficient that pre and now each
have two entries; the first corresponds to the truth value ϕ1 and the second to
ϕ. The values of now are updated for each new session, and subsequently copied
to pre. The condition induced by the G−1 -operator is that ϕ1 has to be true
now, and previously, for all sessions, i.e., now[2]← now[1] ∧ pre[2].

An obvious class of monitorable policy is one obtained by substituting propo-
sitional variables in a propositional LTL formula with closed first-order formulae
(without temporal operators). In this case, with straightforward modifications,
the procedure in [10] can be applied to construct efficient monitors. It will be
interesting to investigate other restrictions to PTLTLFO which are monitorable.
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