
ν-Types for Effects and Freshness Analysis

Massimo Bartoletti1, Pierpaolo Degano2, Gian Luigi Ferrari2,
and Roberto Zunino3

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Italy

Abstract. We define a type and effect system for a λ-calculus extended
with side effects, in the form of primitives for creating and accessing
resources. The analysis correctly over-approximates the sequences of re-
source accesses performed by a program at run-time. To accurately anal-
yse the binding between the creation of a resource and its accesses, our
system exploits a new class of types. Our ν-types have the form νN. τ�H ,
where the names in N are bound both in the type τ and in the effect H ,
that represents the sequences of resource accesses.

1 Introduction

The paramount goal of static analysis is that of constructing sound, and as
precise as possible, approximations to the behaviour of programs. Various kinds
of behaviour have been studied, to guarantee that the analysed programs enjoy
some properties of interest: for instance, that a program has no type errors,
that communication channels are used correctly, that the usage of resources
respects some prescribed policy, etc. In the classical approach to type systems,
one approximates values and expressions as types, and at the same time checks
the desired property over the constructed abstraction.

Separating the concerns of constructing the approximation and of verifying
it has some advantages, however. First, once the first step is done, one can
check the same abstract behaviour against different properties. Second, one can
independently improve the accuracy of the first analysis and the efficiency of the
verification algorithm. Third, if we devise a complete verification technique (for
a given abstraction), then we have a good characterization of the accuracy of
the abstraction with respect to the property of interest.

In this paper, we propose a new sort of types (called ν-types) for classifying
programs according to their abstract behaviour, that we define as follows. Call
resource any program object (a variable, a channel, a kernel service, etc.) relevant
for the property of interest, and call event any action performed on a resource (a
variable assignment, an output along a channel, a system call, etc.). Then, the
abstract behaviour we are concerned with is the set of all the possible sequences
of events (histories) that can result from the execution of a program.

Our reference program model is a call-by-value λ-calculus extended with side
effects, that model events, and with a primitive for creating new resources. Our

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 80–95, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ν-Types for Effects and Freshness Analysis 81

ν-types have the form νN. τ � H , where the names n ∈ N are bound both in
the type τ and in the effect H , that is a history expression that represents the
possible histories. Essentially, history expressions are Basic Process Algebra [7]
processes extended with name restriction à la π-calculus [14]. We showed in [5]
that history expressions are a suitable model upon which one can develop sound
and complete techniques for verifying history-based usage policies of programs.

The possibility of creating new resources poses the non-trivial problem of
correctly recording the binding of a fresh name with its possible uses in types
and effects. For instance, consider the following function:

f = λy.new x in α(x); x

Each application of f creates a new resource r, fires the event α(r), and finally
returns r. A suitable ν-type for f would then be (1 → (νn.{n} � α(n))) � ε.
The unit type 1 for the parameter y is irrelevant here. Since f is a function,
the actual effect is empty, denoted by the history expression ε. The return type
νn. {n} � α(n) correctly predicts the behaviour of applying f . The binder νn
guarantees the freshness of the name n in the type {n} – which indicates that
f will return a fresh resource r – and in the history expression α(n). Indeed,
νn. α(n) abstracts from any sequence α(r), where r is a fresh resource.

Consider now the following term:

let f = λy.new x in α(x); x in β(f∗; f∗)
Here we apply f twice to the value ∗, and we fire β on the resource that results
from the second application of f . A suitable ν-type for the above would be:

1 � (νn. α(n)) · (νn′. α(n′) · β(n′))

The first part νn. α(n) of the history expression describes the behaviour of the
first application of f , while the second part νn′. α(n′) · β(n′) approximates the
second application, and firing β on the returned name n′. The binders ensure
that the resources represented by n and n′ are kept distinct.

As a more complex example, consider the following recursive function (where z
stands for the whole function g within its body):

g = λzx.new y in (α(y); (b(x)) ?x : (b′(y)) ? z y : z x)

The function g creates a new resource upon each loop; if g ever terminates, it
either returns the resource passed as parameter, or one of the resources created.
If no further information is known about the boolean predicates b and b′, we
cannot statically predict which resource is returned. A suitable ν-type for g is:

({?} → ({?} � μh. νn. α(n) · (h + ε))) � ε

Being g a function, its actual effect is ε. Its functional type is {?} → {?}, meaning
that g takes as parameter any resource, and it returns an unknown resource. The
latent effect μh. νn. α(n)·(h+ε) represents the possible histories generated when
applying g, i.e. any finite sequence α(r0) · · ·α(rk) such that ri �= rj for all i �= j.

The examples given above witness some inherent difficulties of handling new
names in static analysis. We take as starting point the type and effect system

82 M. Bartoletti et al.

of [18], which handles a λ-calculus with side effects, but without resource cre-
ation. We extend the calculus of [18] with the new primitive, and we give it a
big-step operational semantics. We then define effects (i.e. history expressions)
and our ν-types, together with a subtyping/subeffecting relation. We introduce
then a type and effect system for our calculus, which associates any well-typed
term with a ν-type that correctly approximates the possible run-time histories.
We finally present some possible extensions to our work. Further typing examples
and the proofs of our statements can be found in [6].

Related work. Our investigation started in [1] to deal with history-based ac-
cess control in a calculus with side effects, but without creation of resources. In
a subsequent paper [3] we featured a preliminary treatment of resource creation,
through a conservative extension of simple types. The idea was that of using a
special event new(n) as a “weak” binder – a sort of gensym() – instead of using
explicit ν-binders. While this allowed for reusing some of the results of [18], e.g.
type inference, it also required a further analysis step, called “bindification” to
place the ν-binders at the right points in the inferred effect. A first drawback
of this approach is that bindification is not always defined, because the intro-
duced scopes of names may interfere dangerously, e.g. in new(n) · new(n) · α(n).
A second, more serious, drawback is that our theory of weak binders resulted
too complex to be usable in practice [4]. Several definitions (e.g. the bound and
free names, the semantics of history expressions, and the subeffecting relation)
needed particular care to deal with the corner cases, so leading to extremely
intricate proofs. The ν-types presented here are an attempt to solve both these
problems. For the first problem, bindification is no longer needed, because ν-
binders are already embodied into types. For the second problem, we found the
proofs about ν-types, although not immune from delicate steps (e.g. checking
capture avoidance in α-conversions) are far easier than those with weak binders.
Another technical improvement over [3] is the Subject Reduction Lemma. Ac-
tually, in [3] we used a small-step semantics, which “consumes” events as they
are fired. As a consequence, the effect of an term cannot be preserved under
transitions. To prove type soundness, we had then to deal with a weak version of
Subject Reduction, where the effects before and after a transition are in a some-
what convoluted relation. The proof of this statement was extremely complex,
because of the weak induction hypothesis. Unlike [3], here we adopt a big-step
semantics, which does not consume events. This allows us to establish Subject
Reduction in the classical form, where the type is preserved under transitions.

In [2] we combined a type and effect analysis and a model-checking technique
in a unified framework, to statically verify history-based policies of programs, in
a λ-calculus enriched with primitives to create and use resources, and lexically-
scoped usage policies. The present paper extends some results of [2] by presenting
further technical achievements about the type and effect system and its relation
with the program semantics, in a cleaner setting.

A number of formal techniques have been developed to handle binding and
freshness of names. The language FreshML [17] has constructors and destructors
for handling bound names. This allows for elegantly manipulating object-level

ν-Types for Effects and Freshness Analysis 83

syntactical structures up-to α-conversion, so relieving programmers from the
burden of explicitly handling capture-avoidance. The FreshML type system how-
ever has a different goal than ours, since it extends the ML type system, while
it is not concerned with approximating run-time histories like ours.

Skalka and Smith [18,19] proposed a λ-calculus with local checks that enforce
linear μ-calculus properties [8] on the past history. A type and effect system ap-
proximates the possible run-time histories, whose validity can be statically ver-
ified by model checking μ-calculus formulae over Basic Process Algebras [7,10].
Compared with our type system, [18] also allows for let-polymorphism, subtyp-
ing of functional types, and type inference – but it does not handle resource
creation. In Sec. 5 we further discuss these issues.

Regions have been used in type and effect systems [20,15] to approximate new
names in impure call-by-value λ-calculi. The static semantics of [15], similarly
to ours, aims at over-approximating the set of run-time traces, while that of [20]
only considers flat sets of events. A main difference from our approach is that,
while our ν-types deal with the freshness of names, both [20] and [15] use uni-
versal polymorphism for typing resource creations. Since a region n stands for
a set of resources, in an effect α(n) · β(n) their static approximation does not
ensure that α and β act on the same resource. This property can instead be
guaranteed in our system through the effect νn.(α(n) ·β(n)). This improvement
in the precision of approximations is crucial, since it allows us to model-check
in [5] regular properties of traces (e.g. permit read(file) only after an open(file))
that would otherwise fail with the approximations of [20,15].

Igarashi and Kobayashi [12] extended the λ-calculus with primitives for cre-
ating and accessing resources, and for defining their permitted usage patterns.
An execution is resource-safe when the possible patterns are within the permit-
ted ones. A type system guarantees well-typed expressions to be resource-safe.
Types abstract the usages permitted at run-time, while typing rules check that
resource accesses respect the deduced permitted usages. Since the type system
checks resource-safety while constructing the types, type inference is undecidable
in the general case. Separating the analysis of effects from their verification, as
we did here, led to a simpler model of types. Also, it allowed us to obtain in [5] a
sound, complete and PTIME verification algorithm for checking approximations
against usage policies. Clearly, also [12] would be amenable to verification, pro-
vided that one either restricts the language of permitted usages to a decidable
subset, or one uses a sound but incomplete algorithm.

The λν-calculus of [16] extends the pure λ-calculus with names. In contrast
to λ-bound variables, nothing can be substituted for a name, yet names can
be tested for equality. Reduction is confluent, and it allows for deterministic
evaluation; also, all the observational equivalences of the pure λ-calculus still hold
in λν. Unlike our calculus, names cannot escape their static scope, e.g. νn.n is
stuck. Consequently, the type system of λν is not concerned with name extrusion
(and approximation of traces), which is a main feature of ours.

Types and effects are also successfully used in process calculi. Honda, Yoshida
and Carbone [11] defined multi-party session types to ensure a correct

84 M. Bartoletti et al.

orchestration of complex systems. Unlike ours, their types do not contain ν
binders: the main feature there is not tracking name flow, but reconciling global
and local views of multi-party protocols. Igarashi and Kobayashi [13] and Chaki,
Rajamani and Rehof [9] defined behavioural types for the π-calculus. In both
these proposals, a π-calculus process is abstracted into a CCS-like processes,
with no operators for hiding or creating names. Abstractions with ν-binders,
however, make it possible to statically verify relevant usage properties about the
fresh resources used by a program (see e.g. [5]).

2 A Calculus for Resource Access and Creation

In our model, resources are system objects that can either be statically available
in the environment (Ress, a finite set), or be dynamically created (Resd, a de-
numerable set). Resources are accessed through a given finite set of actions. An
event α(r) abstracts from accessing the resource r through the action α. When
the target resource of an action α is immaterial, we stipulate that α acts on some
special (static) resource, and we write just α for the event. A history is a finite
sequence of events. In Def. 1 we introduce the needed syntactic categories.

Definition 1. Syntactic categories

r, r′, . . . ∈ Res = Ress ∪ Resd resources (static/dynamic)
α, α′, . . . ∈ Act actions (a finite set)
α(r), . . . ∈ Ev = Act × Res events (η, η′, . . . ∈ Ev∗ are histories)
x, x′, . . . ∈ Var variables
n, n′, . . . ∈ Nam names

We consider an impure call-by-value λ-calculus with primitives for creating and
accessing resources. The syntax is in Def. 2. Variables, abstractions, applications
and conditionals are as expected. The definition of guards b in conditionals is
irrelevant here, and so it is omitted. The variable z in λzx. e is bound to the
whole abstraction, so to allow for an explicit form of recursion. The parameter
of an event may be either a resource or a variable. The term new represents the
creation of a fresh resource. The term ! models an aborted computation.

Definition 2. Syntax of terms

e, e′ ::= x variable
r resource
(b) ? e : e′ conditional
λzx. e abstraction (x, z ∈ Var)
e e′ application
α(ξ) event (ξ ∈ Var ∪ Res)
new resource creation
! aborted computation

ν-Types for Effects and Freshness Analysis 85

Values v, v′, . . . ∈ Val are variables, resources, abstractions, and the term ! . We
write ∗ for a fixed, closed value. We shall use the following abbreviations, the
first four of which are quite standard:

λz . e = λzx. e if x �∈ fv(e) λx. e = λzx. e if z �∈ fv(e)

e; e′ = (λ. e′) e (let x = e in e′) = (λx. e′) e

new x in e = (λx. e) (new) α(e) = (let z = e in α(z))

Some auxiliary notions are needed to define the operational semantics of terms.
A history context is a finite representation of an infinite set of histories that
only differ for the choice of fresh resources. For instance, the set of histories
{α(r) | r ∈ Res } is represented by the context new x in α(x); •. Contexts
composition is crucial for obtaining compositionality.

Definition 3. History contexts

A history context C is inductively defined as follows:

C ::= • | α(ξ); C | new x in C

The free and the bound variables fv(C) and bv (C) of C are defined as expected.
We write C[C′] for C[C′[•]], also assuming the needed α-conversions of vari-
ables so to ensure bv(C) ∩ bv(C′) = ∅ (note that bn(C) ∩ fn(C′) �= ∅ is ok).

We specify in Def. 4 our operational semantics of terms, in a big-step style.
Transitions have the form e

C==⇒ v, meaning that the term e evaluates to the
value v, while producing a history denoted by C.

Definition 4. Big-step semantics of terms

The big-step semantics of a term e is defined by the relation e
C==⇒ v, which is

the least relation closed under the rules below.

E-Val v
•==⇒ v E-Bang e

•==⇒ ! E-If

eB(b)
C==⇒ v

(b) ? ett : eff
C==⇒ v

E-Ev α(ξ)
α(ξ); •

====⇒ ∗ E-New new new x in •=======⇒ x

E-Beta

e
C==⇒ λzx. e′′ e′ C′

==⇒ v′ �= ! e′′{v′/x, λzx. e′′/z} C′′
==⇒ v

e e′
C[C′[C′′]]

======⇒ v

E-BetaBang1

e
C==⇒ !

e e′ C==⇒ !
E-BetaBang2

e
C==⇒ v �= ! e′ C′

==⇒ !

e e′
C[C′]

====⇒ !

The rules (E-Val) and (E-Ev) are straightforward. The rule (E-Bang) aborts
the evaluation of a term, so allowing us to observe the finite prefixes of its

86 M. Bartoletti et al.

histories. For conditionals, the rule (E-If) assumes as given a total function
B that evaluates the boolean guards. The rule (E-New) evaluates a new to
a variable x, and records in the context new x in • that x may stand for
any (fresh) resource. The last three rules are for β-reduction of an application
e e′. The rule (E-Beta) is used when both the evaluations of e and e′ terminate;
(E-BetaBang1) is for when the evaluation of e has been aborted; (E-BetaBang2)
is used when the evaluation e terminates while that of e′ has been aborted.

Example 1. Let e = (λy. α(y))new. We have that:

λy. α(y) •==⇒ λy. α(y) new new x in •=======⇒ x α(x)
α(x);•

====⇒ ∗

e
new x in α(x);•

==========⇒ ∗

Consider now the following two recursive functions:

f = λzx. (α; zx) g = λzx.new y in (b(x)) ? y : z∗

The function f fires the event α and recurse. The function g creates a new
resource upon each loop; if it ever terminates, it returns the last resource created.
For all k ≥ 0 and for all contexts C, let Ck be inductively defined as C0 = • and

Ck+1 = C[Ck]. Then, for all k ≥ 0, we have that f∗ (α;•)k

====⇒ ! , and, assuming

b(x) non-deterministic, g∗ (new w in •)k

=========⇒ ! and g∗ (new w in •)k[new y in •]
=================⇒ y. ��

We now define the set of histories H(e) that a term e can produce at run-time. To
this purpose, we exploit the auxiliary operator H(C, R), that constructs the set
of histories denoted by the context C under the assumption that R is the set of
available resources (Def. 5). Note that all the histories in H(e) are “truncated”
by a !. Only looking at H(e), gives then no hint about the termination of e.
However, this is not an issue, since our goal is not checking termination, but
approximating all the possible histories a term can produce.

Definition 5. Run-time histories

For each history context C such that fv (C) = ∅, for all R ⊆ Res, and for all
terms e, we define H(C, R) and H(e) inductively as follows:

H(•, R) = { !}
H(α(r); C, R) = { !} ∪ {α(r)η | η ∈ H(C, R) }

H(new x in C, R) = { !} ∪
⋃

r �∈R∪Ress
H(C{r/x}, R ∪ {r})

H(e) = { η ∈ H(C, ∅) | e
C==⇒ v }

Example 2. Recall from Ex. 1 the term e = (λy. α(y))new. All the possible
observations (i.e. the histories) of the runs of e are represented by H(e) =
H(new x in α(x); •, ∅) = { !} ∪

⋃
r∈Res{α(r) !}. Note how the variable x in

C was instantiated with all the possible fresh resources r. ��

ν-Types for Effects and Freshness Analysis 87

3 Effects and Subeffecting

History expressions are used to approximate the behaviour of terms. They in-
clude ε, representing the empty history, variables h, events α(ρ), resource cre-
ation νn.H , sequencing H ·H ′, non-deterministic choice H +H ′, recursion μh.H ,
and !, a nullary event that models an aborted computation. Hereafter, we as-
sume that actions can also be fired on a special, unknown resource denoted by
“?”, typically due to approximations made by the type and effect system. In
νn. H , the free occurrences of the name n in H are bound by ν; similarly acts
μh for the variable h. The free variables fv (H) and the free names fn(H) are
defined as expected. A history expression H is closed when fv (H) = ∅ = fn(H).

Definition 6. Syntax of history expressions

H, H ′ ::= ε empty
! truncation
h variable
α(ρ) event (ρ ∈ Res ∪ Nam ∪ {?})
νn.H resource creation
H · H ′ sequence
H + H ′ choice
μh.H recursion

We define below a denotational semantics of history expressions. Compared
with [18,3], where labelled transition semantics were provided, here we find a
denotational semantics more suitable, e.g. for reasoning about the composition
of effects. Some auxiliary definitions are needed.

The binary operator � (Def. 7) composes sequentially a history η with a set
of histories X , while ensuring that all the events after a ! are discarded. For
instance, H = (μh. h) ·α(r) will never fire the event α(r), because of the infinite
loop that precedes the event. In our semantics, the first component μh. h will
denote the set of histories { !}, while α(r) will denote { ! , α(r), α(r) !}. Combining
the two semantics results in { !} � { ! , α(r), α(r) !} = { !}.
Definition 7. Let X ⊆ Ev∗ ∪ Ev∗ ! , and x ∈ Ev ∪ { !}. We define x�X and its
homomorphic extension η � X, where η = a1 · · · an, as follows:

x � X =

{
{ x η | η ∈ X } if x �= !
{x} if x = !

η � X = a1 � · · · � an � X

The operator � (Def. 8) defines sequential composition between semantic func-
tions, i.e. functions from (finite) sets of resources to sets of histories. To do that,
it records the resources created, so to avoid that a resource is generated twice.
For instance, let H = (νn. α(n)) · (νn′. α(n′)). The component νn′. α(n′) must
not generate the same resources as the component νn. α(n), e.g. α(r0)α(r0) is
not a possible history of H . The definition of � exploits the auxiliary function
R, that singles out the resources occurring in a history η. Also, ↓∈ R(η) indicates
that η is terminating, i.e. it does not contain any !’s denoting its truncation.

88 M. Bartoletti et al.

Definition 8. Let Y0, Y1 : Pfin(Res) → P(Ev∗∪Ev∗ !). The composition Y0 �Y1

is defined as follows:

Y0 � Y1 = λR.
⋃
{ η0 � Y1(R ∪ R(η0)) | η0 ∈ Y0(R) }

where, for all histories η, R(η) ⊆ Res ∪ {↓} is defined inductively as follows:

R(ε) = {↓} R(η α(ρ)) =

{
R(η) ∪ {r} if ρ = r and ! �∈ η

R(η) if ρ =?
R(η !) = R(η)\{↓}

The denotational semantics �H�θ of history expressions (Def. 9) is a function
from finite sets of resources to the cpo D0 of sets X of histories such that (i)
! ∈ X , and (ii) η ! ∈ X whenever η ∈ X . The finite set of resources collects
those already used, so making them unavailable for future creations. As usual,
the parameter θ binds the free variables of H (in our case, to values in D0).
Note that the semantics is prefix-closed, i.e. for each H and R, the histories in
�H�(R) comprise all the possible truncated prefixes.

Definition 9. Denotational semantics of history expressions

Let D0 be the following cpo of sets of histories ordered by set inclusion: D0 =
{X ⊆ Ev∗ ∪ Ev∗ ! | ! ∈ X ∧ ∀η ∈ X : η ! ∈ X }. The set { !} is the bottom
element of D0. Let Dden = Pfin(Res) → D0 be the cpo of functions from the
finite subsets of Res to D0. Note that the bottom element ⊥ of Dden is λR. { !}.
Let H be a history expression such that fn(H) = ∅, and let θ be a mapping from
variables h to functions in Dden such that dom(θ) ⊇ fv(H). The denotational
semantics �H�θ is a function in Dden, inductively defined as follows.

�ε�θ = λR. { ! , ε} � !�θ = ⊥ �h�θ = θ(h) �H · H ′
�θ = �H�θ � �H ′

�θ

�νn. H�θ = λR.
⋃

r �∈R∪Ress
�H{r/n}�θ(R ∪ {r}) �H + H ′

�θ = �H�θ � �H ′
�θ

�α(ρ)�θ = λR. { ! , α(ρ), α(ρ) !} �μh.H�θ =
⊔

i≥0 f i(⊥) f(Z) = �H�θ{Z/h}

The first three rules are straightforward. The semantics of H · H ′ combines the
semantics of H and H ′ with the operator �. The semantics of νn. H joins the
semantics of H , where the parameter R is updated to record the binding of n
with r, for all the resources r not yet used in R. The semantics of H + H ′ is
the least upper bound of the semantics of H and H ′. The semantics of an event
comprises the possible truncations. The semantics of a recursion μh. H is the
least upper bound of the ω-chain f i(λR.{ !}), where f(Z) = �H�θ{Z/h}.

We first check that the above semantics is well-defined. First, the image of
the semantic function is indeed in D0: it is easy to prove that, for all H , θ
and R, ! ∈ �H�θ(R) and η ! ∈ �H�θ(R) whenever η ∈ �H�θ(R). Lemma B3 [6]
guarantees that the least upper bound in the last equation exists (since f is
monotone). Also, since f is continuous and ⊥ is the bottom of the cpo Dden, by
the Fixed Point theorem the semantics of μh. H is the least fixed point of f .

ν-Types for Effects and Freshness Analysis 89

Example 3. Consider the following history expressions:

H0 = μh. α(r) · h H1 = μh. h · α(r) H2 = μh. νn. (ε + α(n) · h)

Then, �H0�(∅) = α(r)∗!, i.e. H0 generates histories with an arbitrary, finite num-
ber of α(r). Note that all the histories of H0 are non-terminating (as indicated
by the !) since there is no way to exit from the recursion. Instead, �H1�(∅) = {!},
i.e. H1 loops forever, without generating any events. The semantics of �H2�(∅)
consists of all the histories of the form α(r1) · · ·α(rk) or α(r1) · · ·α(rk)!, for all
k ≥ 0 and pairwise distinct resources ri. ��
We now define a preorder H � H ′ betweeen history expressions, that we shall
use in subtyping. Roughly, when H � H ′ holds, the histories of H are included in
those of H ′. The preorder � includes equivalence, and it is closed under contexts.
A history expression H can be arbitrarily “weakened” to H +H ′. An event α(ρ)
can be weakened to α(?), as ? stands for an unknown resource.

Definition 10. Subeffecting

The relation = over history expressions is the least congruence including
α-conversion such that the operation + is associative, commutative and idem-
potent; · is associative, has identity ε, and distributes over +, and:

μh.H = H{μh. H/h} μh.μh′.H = μh′.μh.H νn.νn′.H = νn′.νn.H

νn.ε = ε νn.(H + H ′) = (νn.H) + H ′ if n �∈ fn(H ′)

νn.(H ·H ′)=H ·(νn.H ′) if n �∈ fn(H) νn.(H ·H ′)=(νn.H)·H ′ if n �∈ fn(H ′)

The relation � over history expressions is the least precongruence such that:

H � H ′ if H = H ′ H � H + H ′ α(ρ) � α(?)

We now formally state that the subeffecting relation agrees with the semantics
of history expressions, i.e. it implies trace inclusion. Actually, this turns out to
be a weaker notion than set inclusion, because the rule α(ρ) � α(?) allows for
abstracting some resource with a ?. We then render trace inclusion with the
preorder ⊆? defined below. Intuitively, η ⊆? η′ means that η concretizes each
unknown resource in η′ with some r ∈ Res.

Definition 11. The preorder ⊆? between histories is inductively defined as:

ε ⊆? ε η α(ρ) ⊆? η′ α(ρ′) if η ⊆? η′ and ρ′ ∈ {ρ, ?} η ! ⊆? η′ ! if η ⊆? η′

The preorder ⊆? is extended to sets of histories as follows:

I ⊆? J if ∀η ∈ I : ∃η′ ∈ J : η ⊆? η′

The correctness of subeffecting is stated in Lemma 1 below. When H = H ′

(resp. H � H ′), the histories of H are equal to (resp. are ⊆? of) those of H ′.

Lemma 1. For all closed history expressions H, H ′ and for all R ⊆ Res:
– if H = H ′ then �H�(R) = �H ′

�(R)
– if H � H ′ then �H�(R) ⊆? �H ′

�(R).

90 M. Bartoletti et al.

4 ν-Types and Type and Effect System

In this section we introduce ν-types, and we use them to define a type and effect
system for the calculus of Section 2 (Def. 14). Informally, a term with ν-type
ζ = νN. τ � H will have the pure type τ , and the effect of its evaluation will be
a history included in the denotation of the history expression H . The heading
νN is used to bind the names n ∈ N both in τ and H . Pure types comprise:

– the unit type 1, inhabited by the value ∗ (and by !).
– sets S, to approximate the possible targets of actions. Sets S either contain

resources and (possibly) one name, or we have S = {?}, meaning that the
target object is unknown.

– functional types τ → ζ. The type ζ is a ν-type, that may comprise the latent
effect associated with an abstraction.

Example 4. The term e = (b) ? r : r′ has type {r, r′} � ε (we omit the νN when
N = ∅). The pure type {r, r′} means that e evaluates to either r or r′, while
producing an empty history (denoted by the history expression ε).

The term e′ = new x in α(x); x creates a new resource r, fires on it the action
α, and then evaluates to r. A suitable type for e′ is then νn. {n} � α(n).

The function g = λzy.new x in (α(x); (b) ? x : z x), instead, has type 1 →
({?} � μh. νn. α(n) · (ε + h)) � ε. The latent effect μh. νn. α(n) · (ε + h) records
that g is a recursive function that creates a fresh resource upon each recursion
step. The type {?} says that g will return a resource with unknown identity,
since it cannot be predicted when the guard b will become true. ��
Type environments are finite mappings from variables and resources to pure
types. Roughly, a typing judgment Δ � e : νN. τ � H means that, in a type
environment Δ, the term e evaluates to a value of type νN. τ , and it produces a
history represented by νN. H . Note however that the ν-type νN. τ � H is more
precise than taking νN. τ and νN. H separately. Indeed, in the ν-type the names
N indicate exactly the same fresh resources in both τ and H .

Definition 12. Types, type environments, and typing judgements

S ::= R | R ∪ {n} | {?} R ⊆ Res, n ∈ Nam, S �= ∅ resource sets
τ ::= 1 | S | τ −→ ζ pure types
ζ ::= νn. ζ | τ � H ν-types
Δ ::= ∅ | Δ; r : {r} | Δ; x : τ x �∈ dom(Δ) type environments
Δ � e : ζ typing judgements

We also introduce the following shorthands (we write N �∩M for N ∩M = ∅):

νN. ζ = νn1 · · · νnk. ζ if N = {n1, . . . nk}
H · ζ = νN. τ � H · H ′ if ζ = νN. τ � H ′ and N �∩ fn(H)

We say νN. τ � H is in ν-normal form (abbreviated νNF) when N ⊆ fn(τ).

ν-Types for Effects and Freshness Analysis 91

We now define the subtyping relation � on ν-types. It builds over the subeffecting
relation between history expressions (Def. 10). The first equation in Def. 13
below is a variant of the usual name extrusion. The first two rules for � allow
for weakening a pure type S to a wider one, or to the pure type {?}. The last
rule extends to ν-types the relations � over pure types and over effects.

Definition 13. Subtypes

The equational theory of types includes that of history expressions (if H = H ′

then τ � H = τ � H ′), α-conversion of names, and the following equation:

νn. (τ � H) = τ � (νn. H) if n �∈ fn(τ)

The relation � over pure types is the least preorder including = such that:

S � S′ if S ⊆ S′ and S �= {?} S � {?}

νN. τ � H � νN. τ ′ � H ′ if τ � τ ′ and H � H ′ and (fn(τ ′) \ fn(τ))�∩ N

Note that the side condition in the last rule above prevents from introducing
name captures. For instance, let ζ = νn. {r} � α(n) and ζ′ = νn. {r, n} � α(n).
Since n ∈ fn({r, n}) \ fn({r}), then ζ �� ζ′. Indeed, by the equational theory:

ζ = {r} � νn. α(n) = {r} � νn′. α(n′)

After an α-conversion, the subtyping ζ � ζ′′ = {r, n}� νn′. α(n′) holds. Indeed,
in ζ′′ the name n′ upon which α acts has nothing to do with name n in the pure
type {r, n}, while in ζ′ both α and the pure type refer to the same name.

Remark 1. Note that it is always possible to rewrite any type νN. τ �H in νNF.
To do that, let N̂ = N ∩ fn(τ), and let Ň = N \ fn(τ). Then, the equational
theory of types gives: νN. τ � H = νN̂ . τ � (νŇ .H).

We now state in Lemma 2 a fundamental result about subtyping of ν-types.
Roughly, whenever ζ � ζ′, it is possible to α-convert the names of ζ so to
separately obtain subtyping between the pure types of ζ and ζ′, and subeffecting
between their effects. Note that Remark 1 above enables us to use Lemma 2 on
any pair of types, after rewriting them in νNF.

Lemma 2. Let νN. τ � H � νN ′. τ ′ � H ′, where both types are in νNF.

– If τ ′ �= {?}, then there exists a bijective function σ : N ↔ N ′ such that
τσ � τ ′ and Hσ � H ′.

– If τ ′ = {?}, then τ � τ ′ and νN.H � H ′.

Example 5. Let ζ = νn. {n} � α(n), let ζ′ = νn′. {n′, r} � α(n′) + α(r), and let
ζ′′ = {?}�νn′′. α(n′′)+α(?). By using Lemma 2 on ζ � ζ′, we obtain σ = {n′/n}
such that {n}σ � {n′, r} and α(n)σ � α(n′) + α(r). By Lemma 2 on ζ′ � ζ′′,
we find {n′, r} � {?} and νn′. α(n′) + α(r) � νn′′. α(n′′) + α(?). ��

92 M. Bartoletti et al.

Definition 14. Type and effect system

T-Unit Δ � ∗ : 1 � ε T-Bang Δ � ! : ζ T-Var Δ; ξ : τ � ξ : τ � ε

T-New Δ � new : νn. {n} � ε T-Ev Δ; ξ : S � α(ξ) : 1 �
∑

ρ∈S α(ρ)

T-AddVar

Δ � e : ζ

Δ; ξ : τ � e : ζ
T-Abs

Δ; x : τ ; z : τ −→ ζ � e : ζ

Δ � λzx.e : (τ −→ ζ) � ε

T-Wk

Δ � e : ζ

Δ � e : ζ′
ζ � ζ′ T-If

Δ � e : ζ Δ � e′ : ζ

Δ � (b) ? e : e′ : ζ

T-App

Δ � e : νN.(τ → ζ) � H Δ � e′ : νN ′.(τ � H ′)

Δ � e e′ : ν(N ∪ N ′). (H · H ′ · ζ)

N �∩ N ′

N �∩ fn(Δ) �∩ N ′

N �∩ fn(H ′)

Here we briefly comment on the most peculiar typing rules.

– (T-Bang) An aborted computation can be given any type, modelling the fact
that nothing is known about the behaviour of the term that was aborted.

– (T-New) The type of a new is a set {n}, where n is bound by an outer νn,
and the actual effect is empty. (We could instead record the resource creation
in the effect, by handling new as we currently do for (λx. αcreated(x); x)new.)

– (T-Ev) An event α(ξ) has type 1, provided that the type of ξ is a set S. The
effect of α(ξ) can be any of the accesses α(ρ) for ρ included in S.

– (T-Abs) The actual effect of an abstraction is the empty history expression,
while the latent effect (included in the type ζ) is equal to the actual effect
of the function body. Note that ζ occurs twice in the premise: to unify those
occurrences, usually one has to resort to recursive history expressions μh. H .

– (T-Wk) This rule allows for weakening of ν-types, according to Def. 13.
– (T-App) The effects in the rule for application are concatenated according

to the evaluation order of the call-by-value semantics (function, argument,
latent effect). The side conditions ensure that there is no clash of names. In
particular, the disjointness condition makes sure that the names created by
the function are never used by the argument.

Example 6. We have the following typing judgements, in the (omitted) empty
typing environment (detailed typing derivations can be found in [6]):

� e1 = (b) ? λzx. α : λzx. β : (1 → (1 � α + β)) � ε

� e2 = λgx. (b′) ? ∗ : g(e1 x) : (1 → (1 � μh. ε + (α + β) · h)) � ε

� e3 = α(new x in (b) ? x : r) : 1 � νn. (α(n) + α(r))
� e4 = let f = (λx.new y in α(y); y) in β(f∗; f∗)

: 1 � (νn. α(n)) · (νn′. α(n′) · β(n′))
� e5 = let g = (new y in λx. α(y); y) in β(g∗; g∗) : 1 � νn. α(n) · α(n) · β(n)
� e6 = (λzx.new y in (b) ? α(y) : β(y); zx) ∗ : 1 � μh. νn. (α(n) + β(n) · h)
� e7 = α((λzx.new y in (b) ? y : β(y); zx) ∗) : 1 � (μh. νn. (ε + β(n) · h)) · α(?)

ν-Types for Effects and Freshness Analysis 93

The effects of e4 and e5 correctly represent the fact that two distinct resources
are generated by e4, while the evaluation of e5 creates a single fresh resource.
The effect of e6 is a recursion, at each step of which a fresh resource is generated.
The effect of e7 is more peculiar: it behaves similarly to e6 until the recursion is
left, when the last generated resource is exported. Since its identity is lost, the
event α is fired on the unknown resource “?”. ��
The following lemma relates the histories denoted by a context C with the typing
of any term of the form C[v]. More precisely, the histories of C are included
(modulo concretization of ?) in those denoted by the effect in the ν-type. Since
the big-step semantics of terms produces both a value v and a context C, this
result will be pivotal in proving the correctness of our type and effect system.
Lemma 3. For all closed history contexts C, values v, and sets of resources R:

Δ � C[v] : νN. τ � H =⇒ H(C, R) ⊆? �νN. H�(R)

We now establish a fundamental result about typing, upon which the proof of
the Subject Reduction lemma is based. Roughly, given a history context C and a
term e, it allows for constructing a type for C[e] from a type for e, and viceversa.
The information needed to extend/reduce a type is contained in T (C, Δ), that
extracts from C a set of binders, a history expression, and a type environment.

Definition 15. For all C and Δ, we inductively define T (C, Δ) as follows:
T (•, Δ) = (ε, ∅)

T (α(ξ); C′, Δ) = (
∑

ρ∈Δ(ξ) α(ρ) · H ′, Δ′) if T (C′, Δ) = (H ′, Δ′)

T (new x in C′, Δ) = (νn.H ′, Δ′; x :{n}) if T (C′, Δ; x :{n}) = (H ′, Δ′), n �∈ Δ

Hereafter, when writing T (C, Δ) = (νN. H, Δ′) we always assume N = fn(Δ′).
This is always possible by the equational theory of history expressions (Def. 10).

Lemma 4. Let T (C, Δ) = (νN. H, Δ′). Then, for all terms e:
– Δ; Δ′ � e : ζ′ =⇒ Δ � C[e] : νN. H · ζ′

– Δ � C[e] : ζ =⇒ ∃ζ′ : Δ; Δ′ � e : ζ′ and νN. H · ζ′ � ζ

We state below the Subject Reduction Lemma, crucial for proving our type
and effect system correct. We state it in the traditional form where the type is
preserved under computations. This was made possible by the big-step semantics
of terms, where all the information about the generated histories is kept in a
history context. Note instead this were not the case for a small-step operational
semantics, like the one in [3], where histories grow along with computations.
This would require Subject Reduction to “consume” the target type, to render
the events fired, and the resources created, in execution steps. Not preserving
the type would make the inductive statement harder to to write and to prove.

Lemma 5 (Subject Reduction). If Δ � e : ζ and e
C==⇒ v, then Δ � C[v] : ζ.

Theorem 1 below guarantees that our type and effect system correctly approx-
imates the dynamic semantics, i.e. the effect of a term e represents all the pos-
sible run-time histories of e. As usual, precision is lost with conditionals and with

94 M. Bartoletti et al.

recursive functions. Also, you may lose the identity of names exported by recur-
sive functions (see e.g. the type of e7 in Ex. 6).

Theorem 1 (Correctness of effects). For all closed terms e:

Δ � e : νN. τ � H =⇒ H(e) ⊆? �νN. H�(∅)

Proof. By Def. 5, H(e) =
⋃

e
C==⇒v

H(C, ∅). Let C and v be such that e
C==⇒ v.

By Lemma 5, Δ � C[v] : νN. τ � H . By Lemma 3, H(C, ∅) ⊆? �νN. H�(∅).
Therefore, H(e) ⊆? �νN. H�(∅). ��

5 Conclusions

We studied how to correctly and precisely record creation and use of resources
in a type and effect system for an extended λ-calculus. To do that, we used the
ν-quantifier for denoting freshness in types and effects. The main technical result
is Theorem 1, which guarantees the type of a program correctly approximates
its run-time histories. This enables us to exploit the model-checking technique
of [2] to verify history-based usage policies of higher-order programs.

Future Work. To improve the accuracy of types, we plan to relax the constraint
that a single name can appear in pure types S. For instance, consider the term:

e = new x in new y in (β(x); β(y); (b) ? x : y))

Currently, we have the judgements � e : {?} � νn. νn′. β(n) · β(n′), and thus
� α(e) : 1 � νn. νn′. β(n) · β(n′) · α(?) whereas by relaxing the single-name
assumption on pure types S, we would have the more precise judgements � e :
ν{n, n′}. {n, n′}�β(n) ·β(n′) and � α(e) : 1�νn.νn′. β(n) ·β(n′) ·(α(n)+α(n′)).

A further improvement would come from allowing subtyping of functional
types, e.g. by extending Def. 13 with the rule τ → ζ � τ ′ → ζ′ if τ ′ � τ and
ζ � ζ′ (i.e. contravariant in the argument and covariant in the result). Let e.g.
f = λx. ((b) ? λ. α : x); x. With the current definition, we have � f (λ. β) : (1 →
(1 � α + β)) � ε. Note that the function λ. α is discarded, and so we would like
to have instead � f (λ. β) : (1 → (1�β))�ε, which is more accurate. Subtyping
of functional types would allow for such a judgement, using the weakening 1 →
(1 � β) � 1 → (1 � α + β) within the typing judgement of f .

The above constraints have been introduced in our model in order to simplify
the proofs, only (for instance, the restriction about the number of names in set
types helps in the proof of Lemma B20 [6]). Even when exploiting these con-
straints, the technical burden in our proofs is still quite heavy: yet, we conjecture
that these restrictions could be lifted without invalidating our main results.

We plan to develop a type and effect inference algorithm, taking [19] as a
starting point. The subtype relation of [19] enjoys some nice properties, e.g.
principal types, which we expect to maintain in our setting. The main differ-
ence is that, while [19] constructs and resolves separately type constraints and
effect constraints, ours demands for dealing with subtyping constraints between

ν-Types for Effects and Freshness Analysis 95

whole ν-types. The key issue is unifying α-convertible terms, which we expect
to manage by exploiting nominal unification [21].

Acknowledgements. This work has been partially supported by EU-FETPI
Global Computing Project IST-2005-16004 SENSORIA (Software Engineering
for Service-Oriented Overlay Computers) and by the MIUR-PRIN project SOFT
(Tecniche Formali Orientate alla Sicurezza).

References
1. Bartoletti, M., Degano, P., Ferrari, G.L.: History based access control with lo-

cal policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332.
Springer, Heidelberg (2005)

2. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. To appear in ACM Tran. Progr. Lang. and Sys.

3. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Types and effects for resource
usage analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47.
Springer, Heidelberg (2007)

4. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Hard life with weak binders.
In: Proc. EXPRESS (2008)

5. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies.
In: Proc. Trustworthy Global Computing (2008)

6. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: ν-types for effects and freshness
analysis.TechnicalReportDISI-09-033,DISI -Università degli Studi diTrento (2009)

7. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science 37 (1985)

8. Bradfield, J.: On the expressivity of the modal μ-calculus. In: Puech, C., Reischuk,
R. (eds.) STACS 1996. LNCS, vol. 1046. Springer, Heidelberg (1996)

9. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-
passing programs. In: Proc. POPL (2002)

10. Esparza, J.: On the decidability of model checking for several μ-calculi and Petri
nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787. Springer, Heidelberg (1994)

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. POPL (2008)

12. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Proc. POPL (2002)
13. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theoretical

Computer Science 311(1-3) (2004)
14. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I and II. In-

formation and Computation 100(1) (September 1992)
15. Nielson, H.R., Nielson, F.: Higher-order concurrent programs with finite commu-

nication topology. In: Proc. POPL (1994)
16. Odersky, M.: A functional theory of local names. In: Proc. POPL (1994)
17. Shinwell, M.R., Pitts, A.M., Gabbay, M.: FreshML: programming with binders

made simple. In: Proc. ICFP (2003)
18. Skalka, C., Smith, S.: History effects and verification. In: Chin, W.-N. (ed.) APLAS

2004. LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004)
19. Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order programs.

Journal of Functional Programming 18(2) (2008)
20. Talpin, J.-P., Jouvelot, P.: Polymorphic type, region and effect inference. Journal

of Functional Programming 2(3) (1992)
21. Urban, C., Pitts, A.M., Gabbay, M.: Nominal unification. Theoretical Compututer

Science 323(1-3) (2004)

	ν-Types for Effects and Freshness Analysis
	Introduction
	A Calculus for Resource Access and Creation
	Effects and Subeffecting
	ν-Types and Type and Effect System
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

