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Abstract. “Classical” program development by refinement [12,2,3] is a
technique for ensuring that source-level program code remains faithful
to the semantic goals set out in its corresponding specification. Until
recently the method has not extended to security-style properties, prin-
cipally because classical refinement semantics is inadequate in security
contexts [7].

The Shadow semantics introduced by Morgan [13] is an abstraction
of probabilistic program semantics [11], and is rich enough to distinguish
between refinements that do preserve noninterference security properties
and those that don’t. In this paper we give a formal development of Pri-
vate Information Retrieval [4]; in doing so we extend the general theory
of secure refinement by introducing a new kind of security annotation
for programs.

Keywords: Proofs of security, program semantics, compositional secu-
rity, refinement of ignorance.

1 Introduction

Abstraction and refinement are together one of the core techniques in any formal
verifier’s toolkit. Yet to date they are rarely applied in security analysis; indeed
until recently refinement and security were considered uneasy bedfellows, with
any attempt to reconcile the two bound for paradox and confusion [7].

Morgan’s Shadow semantics [13] for “noninterference security” based origi-
nally on an abstraction of probabilistic program semantics [11] succeeded after
all in bringing about a détente between nondeterminism (the mathematical en-
capsulation of abstraction) and hidden state (the mathematical encapsulation
of secrets). Noninterference security [6] formalises our intuitive notion of “se-
curity leaks” — in programming terms it characterises scenarios where data
intended to be kept private are exposed by inadvertent correlations with other
observable program behaviour. By a careful treatment of nondeterminism and
hidden state, the Shadow semantics automatically selects refinements which are
“security-aware”: a valid “secure refinement” is now not only functionally- but
also security-wise compatible with its specification. In some cases this might
mean absolute confidentiality; but there are many applications where the re-
quired functionality logically forces a disclosure, at least in part. Shadow secu-
rity proofs guarantee therefore that any implementation leaks no more than the
specification demands.
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The Shadow approach is distinguished from other methods for security anal-
ysis in its emphasis on compositionality and the development-by-hierarchy that
compositionality supports. Specifications are now programs too –though most
likely inefficient and tacit as to algorithmic detail– yet as we have learned from
many years’ experience with the refinement calculus, a focus on what we want
pays off “in spades” for understanding systems. Adding detail devolves to the
validation of refinement steps, each one small enough for the proofs to be –
almost– automatic, and furthermore achieved at the source level. And, as for
classical refinement, we often call on specifications of sub-protocols wherever
this simplifies the reasoning, leading to the method’s ability to accommodate
protocols of unbounded state [10].

Our contribution. in this paper is a formal development of a scheme for Private
Information Retrieval in public databases [4]. In doing so we extend the theory
by the introduction of “visibility annotations” for reasoning about the extent to
which a secret is revealed during program execution.

We begin with a summary and commentary on the basics for non-interference
security using the Shadow semantics. Throughout we use left-associating dot
for function application, so that f.x.y means (f(x))(y) or f(x, y), and we take
(un-)Currying for granted where necessary. Comprehensions/quantifications are
written uniformly, as (Qx: T |R·E) for quantifier Q, bound variable(s) x of type(s)
T , range-predicate R (probably) constraining x and element-constructor E in
which x (probably) appears free: for sets the opening “(Q” is “{” and the closing
“)” is “}” so that e.g. the comprehension {x, y: N | y=2x · yz} is the set of
numbers z, 2z, 4z, · · · .

2 Semantics for Programming with Secrets

A non-interference -secure program is one where an attacker (discussed below)
cannot infer “hidden” variables’ initial values from “visible” variables’ values
(initial or final). With just two variables v, h of class visible, hidden resp. sup-
pose a possibly nondeterministic program r takes initial states (v, h) to sets
of final visible states v′ and so is of type V → H → PV , where V ,H are the
value sets corresponding to the types of v, h. Such a program r is then non-
interference -secure just when for any initial visible the set of possible final
visibles is independent of the initial hidden [8,15], that is for any v:V we have(∀h0, h1:H · r.v.h0 = r.v.h1

)
.

In our approach [13] we extend this view, in several stages. The first is to
concentrate on final- (rather than initial) hidden values and therefore to model
programs as V→H→P(V×H). For two such programs r{1,2} we say that r1 � r2,
that r1 “is securely refined by” r2, whenever both the following hold:

(i) For any initial state v, h each possible r2 outcome v′, h′ is also a possible
r1 outcome, that is for all v:V and h:H we have r1.v.h ⊇ r2.v.h .
This is the classical “can reduce nondeterminism” form of refinement.
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(ii) For all v:V , h:H and v′:V satisfying
(∃h′

2:H · (v′, h′
2) ∈ r2.v.h

)
, we have

that (v′, h′) ∈ r1.v.h implies (v′, h′) ∈ r2.v.h for all h′:H.
This second condition says that for any observed visibles v, v′ and any ini-
tial h the attacker’s “deductive powers” w.r.t. final h′’s cannot be improved
by refinement: there can only be more possibilities, never fewer.

In this simple setting, as an example restrict all our variables’ types so that
V=H={0, 1}, and let r1 be the program that can produce from any initial values
(v, h) any one of the four possible (v′, h′) final values in V ×H (so that the final
values of v and h are uncorrelated). Then the program r2 that can produce only
the two final values {(0, 0), (0, 1)} is a secure refinement of r1; but the program r3

that produces only the two final values {(0, 0), (1, 1)} is not a secure refinement
(although it is a classical one).

The difference between r2 and r3 is that although r2 reduces r1’s visible non-
determinism, it does not affect the hidden nondeterminism in h′. In r3, however,
variables v′ and h′ have become correlated.

2.1 The Shadow H of h Records h’s Inferred Values

In r1 above the set of possible final values of h′ was {0, 1} for each v′ separately.
This set is called “The Shadow,” and represents explicitly an attacker’s ignorance
of h′: it is the smallest set of possibilities he can infer. In r2 that shadow was the
same; but in r3 the shadow was smaller, just {v′} for each v′, and that is why
r3 was not a secure refinement of r1.

In the shadow semantics we track this inference, so that our program state
becomes a triple (v, h, H) with H a subset of H — and in each triple the H
contains exactly those (other) values that h might have had, including the one it
actually does have. The (extended) output triples of the three example programs
are then respectively

r1 — {(0, 0, {0, 1}), (0, 1, {0, 1}), (1, 0, {0, 1}), (1, 1, {0, 1})}
r2 — {(0, 0, {0, 1}), (0, 1, {0, 1})}
r3 — {(0, 0, {0}), (1, 1, {1})} ,

and we have r1 � r2 because r1’s set of outcomes includes all of r2’s. But for r3

we find that its outcome (0, 0, {0}) does not occur among r1’s outcomes, nor is
there even an r1-outcome (0, 0, H ′) with H ′ ⊆ {0} that would satisfy (ii). That,
again, is why r1 	� r3.

For sequential composition of shadow-enhanced programs, not only final- but
also initial triples (v, h, H) must be dealt with: the final triples of a first com-
ponent become initial triples for a second. We now define the shadow semantics
exactly, in stages, by showing how those triples are generated for straight-line
programs.

2.2 The Shadow Semantics of Atomic Programs

A classical program r is an input-output relation between V ×H -pairs. Consid-
ered as a single, atomic action its shadow-enhanced semantics addShadow.r is a
relation between V ×H × PH -triples and is defined as follows:
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Program P Semantics [[P ]].v.h.H

Publish a value reveal E.v.h { (v, h, {h′: H | E.v.h′ = E.v.h}) }

Assign to visible v:= E.v.h { (E.v.h, h, {h′: H | E.v.h′ = E.v.h}) } �
Assign to hidden h:= E.v.h { (v, E.v.h, {h′: H · E.v.h′}) } �

Choose visible v:∈S.v.h {v′: S.v.h · (v′, h, {h′: H | v′ ∈ S.v.h′}) } �
Choose hidden h:∈S.v.h {h′: S.v.h · (v, h′, {h′: H; h′′: S.v.h′ · h′′}) } �

Execute atomically 〈〈P 〉〉 addShadow.(“classical semantics of P”)
Sequential composition P1; P2 lift.[[P2]].([[P1]].v.h.H)

Demonic choice P1 � P2 [[P1]].v.h.H ∪ [[P2]].v.h.H

Conditional if E.v.h then Pt else Pf fi [[Pt]].v.h.{h′: H | E.v.h′ = true}
� E.v.h �

[[Pf ]].v.h.{h′: H | E.v.h′ = false}

The syntactically atomic commands A marked � have the property that A = 〈〈A〉〉.
This is deliberate: syntactic atoms execute atomically. The function lift.[[P2]] applies
[[P2]] to all triples in its set-valued argument, un-Currying each time, and then takes
the union of all results.
The extension to many variables v1, v2, · · · and h1, h2, · · · , including local declarations,
is straightforward [13, 14].

Fig. 1. Semantics of non-looping commands

Definition 1. Atomic shadow semantics. Given a classical program r:V→H→
P(V×H) we define its shadow enhancement addShadow.r of type V→H→PH→
P(V ×H× PH) so that addShadow.r.v.h.H 
 (v′, h′, H ′) just when

(i) we have both r.v.h 
 (v′, h′) — classical
(ii) and H ′ = {h′:H | (∃h′′: H · r.v.h′′ 
 (v′, h′)

) } . — shadow
�

Clause (i) says that the classical projection of addShadow.r’s behaviour is the
same as the classical behaviour of just r itself. Clause (ii) says that the final
shadow H ′ contains all those values h′ compatible with allowing the original
hidden value to range as h′′ over the initial shadow H .

2.3 Security-Aware Program Refinement

Equality of programs is a special case of refinement, whence compositionality is
a special case of monotonicity: two programs with equal semantics in isolation
must remain equal in all contexts. With those ideas in place, we define refinement
as follows:

Definition 2. Refinement For programs P{1,2} we say that P1 is securely
refined by P2 and write P1 � P2 just when for all v, h, H we have
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(∀ (v′, h′, H ′
2): [[P2]].v.h.H ·(∃H ′
1:PH | H ′

1 ⊆ H ′
2 · (v′, h′, H ′

1) ∈ [[P1]].v.h.H
)

) ,

with [[·]] as defined in Fig. 1.
This means that for each initial triple (v, h, H) every final triple (v′, h′, H ′

2)
produced by P2 must be “justified” by the existence of a triple (v′, h′, H ′

1), with
equal or smaller shadow, produced by P1 under the same circumstances. �

3 Programming with Hidden State

What makes security analysis difficult is the seeming incompatibility of both
keeping a secret and using it in “public computations.” In this section we sum-
marise the characteristics of the Shadow semantics that allow us to analyse the
extent to which information is revealed at runtime.

Runtime visibility and in-visibility. A visible variable is one whose runtime
value can be “observed” after each (atomic) execution. For example, the resolu-
tion of the nondeterministic choice in the program v:∈{0, 1} can be determined
simply by reading the final value of the visible variable v. Assignments to hidden
variables, in contrast, cannot be observed directly. Thus the program h:∈{0, 1}
reveals nothing about h at runtime beyond what can be gleaned statically by
examining the source code: we deduce that it is either 0 or 1; but we don’t know
which.

Interaction and information flow. More interesting is when visible and in-
visible variables interact, for that is where correlations are formed. Direct pub-
lication of the hidden state results in a direct correlation, for example v:=h
effectively announces h’s value. Moreover once the information is in the pub-
lic domain, no amount of track-covering can erase the knowledge. The program
v:= h; v:= 0 also leaks h, even though v is overwritten immediately afterwards —
that is because our attack model [10] assumes that an observer can see the the re-
sults of visible computations after each “atomic step,” which is normally defined
by sequential composition (but see atomicity below). In addition an observer
may make deductions based on his run-time observations and the structure of
the program code. Thus in principle attackers have perfect recall [13,14].

This curious interaction of hidden and visible assignments means sequential
composition becomes a somewhat strange operator — for instance it no longer
satisfies the rule (v:=h; v:= 0) = v:= 0. Luckily these idiosyncracies are limited
to visible/hidden interactions, with the classical rules continuing to apply as
normal in the cases where the reasoning is entirely between visible variables.

Compositionality and refinement. Two programs are judged to be the same
if and only if they are both functionally equivalent and have identical “secu-
rity defences.” The latter is crucial to our hierarchical development method, for
it implies that one program may be replaced by its equivalent in any context,
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without fear of unanticipated security flaws. In our examples below we will use
not-necessarily-executable programs as specifications to articulate our overall
security goals.

When reasoning about programs we are able to assume the normal struc-
tural rules, so for example P�Q � P , and (if E.v.h then Pt else Pf fi); Q =
if E.v.h then Pt; Q else Pf ; Q fi. We also use the fact that decreasing visibility
is always a secure refinement, i.e. |[vis x · · · ]| � |[hid x · · · ]|, where we have used
“visibility declarations” (discussed below) to assign the visibility attribute to the
variable x.

Atomicity: controlling granularity. Explicit atomicity is necessary for hiding
the results of intermediate computations when secrecy demands it. For example
the process of encryption typically is achieved as a result of a number of steps,
and it is only safe to publish the final result after obliterating the intermediate
computations. We use 〈〈P 〉〉 to mean that the internals of program P are not re-
vealed at runtime — and within those brackets 〈〈·〉〉 we can therefore use classical
equality reasoning. Proper refinement however is not allowed.

That is, within the safety of atomicity brackets, classical equality reasoning is
reinstated so that 〈〈v:=h; v:= 0〉〉 = 〈〈v:= 0〉〉; but we cannot for example reason
via refinement that (h:= 0 � h:= 1) � h:= 0 implies

h:∈{0, 1} = 〈〈h:= 0 � h:= 1〉〉 � 〈〈h:= 0〉〉 = h:= 0 ,

becuase the middle (refinement) step fails.
Removing atomicity brackets is possible only under certain circumstances.

The following lemma sets out one such case.

Lemma 1. atomicity and composition [10]. Given two programs P{1,2} over
v, h we have 〈〈P1; P2〉〉 = 〈〈P1〉〉; 〈〈P2〉〉 just when v’s intermediate value, i.e. “at
the semicolon,” can be deduced from its endpoint values, i.e. initial and final,
possibly in combination. The semicolon is interpreted classically on the left, and
as in Fig. 1 on the right. �

Lem. 1 prevents us from removing the atomicity brackets for 〈〈v:=h; v:= 0〉〉,
but allows it for 〈〈v:= {0, 1}; h:= v⊕E〉〉, for example. In the former case the
intermediate value of v (equal to the hidden h) cannot be deduced from its
final value (the constant 0); in the latter case, v’s final value is the same as its
intermediate value, and atomicity offers no further protection.

Before beginning our real case studies, we elaborate on our treatment of multi-
agent systems, and encryption.

4 Agents, Views and Proofs

Our cases studies below are all examples of “multi-agent systems” in that they are
composed of a number of independent components, which collaborate to achieve
an overall goal. When secrecy is an issue, each agent only has a “partial view”
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of the system state, and has complementary security goals with respect to
the other agents and to the system as a whole. We use the extension of the
Shadow semantics introduced elsewhere [10] to express the differing views of the
agents in the system. Essentially the simple semantics can reflect a single agent’s
viewpoint.

Multiple agents, and the attacker’s capabilities. Let A be an agent in a
multi-agent system; the above simple semantics reflects A’s viewpoint, say, by
interpreting variables declared to be vislist as visible (vis) variables if A is in
list and as hidden (hid) variables otherwise. More precisely,

– var means the associated variable’s visibility is unknown or irrelevant.
– vis means the associated variable is visible to all agents.
– hid means the associated variable is hidden from all agents.
– vislist means the associated variable is visible to all agents in the (non-

empty) list, and is hidden from all others (including third parties).
– hidlist means the associated variable is hidden from all agents in the list,

and is visible to all others (including third parties).

For example |[visA a;visB b;vis c; c:= a⊕b]| from A’s viewpoint the specification
would be interpreted with a and c visible and b hidden; for B the interpretation
hides a instead of b. For a third party X , say, both a, b are hidden but c is still
visible. We say that a system is generally secure provided that it is specifically
secure (as determined by the Shadow semantics) from all its viewpoints. For
us this means that the proof must be checked for all those viewpoints; happily
many of these can be carried out schematically.

Visibility declarations can be thought of as placing access restrictions on vari-
ables; it does not mean that the value of the variables must always remain
unknown to agents not on its visibility list: that depends on the code, since e.g.
hidden h is known to all once the statement v:=h has been executed. They do
however have an impact on which refinements will be judged ultimately to be
valid.

5 The General Encryption Lemma

Our first case study is a small “toolkit” security idiom which occurs in many
protocols: it is the splitting into two pieces of some hidden information, with
only “one half” of it then subsequently revealed: the key to the protocols is that
this does not introduce a security vulnerability. Perhaps the simplest case is

|[ vis v; hid h; h:∈{0, 1}; v:= E⊕h ]| , (1)

where all types are Boolean (equiv. {0, 1}) and ⊕ is exclusive-or. No matter
what the visibility characteristics of E might be, the code above reveals nothing
(more) about it. In this section, we will discuss a symmetric version of this, and
in more general terms than Booleans and exclusive-or.
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5.1 The Symmetric Encryption Lemma

With (1) as motivation, we reason about two agents A, B in some context where
expression E is meaningful. We take A’s point of view, and show as follows that
(1) is equivalent to skip, and so changes nothing (global) but –more significantly–
reveals nothing about E:

|[ visA a;visB b; (a⊕b):=E ]| “from (1)”

= |[ visA a;visB b; 〈〈(a⊕b):=E〉〉 ]| “statement is atomic already”

= |[ visA a;visB b; 〈〈a:∈E ; b:=E⊕a〉〉 ]| “E is the type of a, b, E; see (i) below ♥”

= |[ visA a;visB b; 〈〈a:∈E〉〉; 〈〈b:=E⊕a〉〉 ]| “atomicity lemma”

= |[ visA a;visB b; a:∈E ; b:=E⊕a ]| “statements are atomic anyway”

= |[ visA a; a:∈E ; |[ visB b; b:=E⊕a ]| ]| “b is not free in E ; see (ii) below ♥”

= |[ visA a; a:∈E ; skip ]| “b is hidden from A �”

= |[ visA a; a:∈E ]| “skip”

= skip . “a is a local visible”

The proof for B’s point of view is symmetric.1 The crucial features ♥ of the
derivation are these:

(i) The correctness of this step has both classical and security aspects. The
classical aspect is simply that we must have (E⊕a) ⊕ a = E.

The security aspect is that, within atomicity brackets 〈〈·〉〉, only equality
reasoning is allowed; proper refinement is not, and this concerns the in-
troduction of the type-set E . That set must capture precisely the possible
values of a that could result from the (previous) statement (a⊕b):= E, no
more and no less — otherwise it’s not an equality. Putting that in words
we would say “For all values of E and all a∈E there must be some b∈E
so that a = E⊕b, and furthermore E contains all the values that a could
have.”

(ii) In this step we moved a:∈E out of the scope of b. This is possible only
because in choosing E from which to pick a we were able to ignore b, i.e.
that the choice-range for a is independent of b (and E).

In the next section we illustrate the above Boolean-based encryption with a
simple scheme for secure messaging.

6 Secure Messaging in an Untrusted Medium

Sender S is eager to tell R a secret but, as they live far apart, he cannot whis-
per it in his ear. Instead he sends it with messengers X, Y even though he does
not trust either one separately not to read the message he is delivering. First S
splits s into two “shares” sx and sy in such as way that their exclusive-or is equal
to s, i.e. so that sx⊕sy = s. He gives sx to X and sy to Y with the instruction to

1 The � is referred to in §8.2.
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visS s;visR r;
visSX sx;visSY sy ;
visX x;visY y;
visRX rx;visRY ry;

(sx⊕sy):= s; ⇐ S splits the message in two.
(sx⊕sy):= s; ⇐ S splits the message in two.
x, y:= sx, sy; ⇐ Messages sent from S to X and to Y separately.
rx, ry:= x, y; ⇐ Messages sent from X and Y to R.
r:= rx ⊕ ry . ⇐ R recombines the two halves.

We write (sx⊕sy):= s for the (atomic) choice over all possibilities of splitting the mes-
sage s, equivalent to the specification statement sx, sy :[sx⊕sy = s] and interpreted
atomically[12].

Fig. 2. Abstract messaging with non-colluding messengers

deliver their messages to R. Once R receives the two halves he can reassemble
them at his leisure to reveal s. The code, including its visibility declarations, is
set out at Fig. 2.

Clearly this scheme transfers s to R; as for security, it seems intuitive that if
s is split so that neither X nor Y learns its contents, then the message passing
reveals no more. Our goal in this section is to check formally that the intuition
is sound. We begin with an “obviously correct” specification, namely an atomic
transaction between R and S:

visS s; visR r; r:= s , (2)

which is “as if ” the message were indeed whispered; but that is not directly
executable because r and s are local only to R and S respectively. Nevertheless
it precisely sets out the limited circulation of s — X and Y are excluded from
the the visibility lists, and therefore neither X nor Y can know s. The next step
is to ensure that the restricted circulation is maintained in spite of introducing
untrustworthy agents.

Following the refinement tradition, we gradually introduce the message-
passing infrastructure, making sure as we do so that neither by publication
nor by careless program structure can X or Y glean anything about s. As we
introduce detail it becomes important to identify what is already known, and
by whom — we use a new technique of “visibility annotations”2 to formalise
exactly that.

Definition 3. The statement reveallistE is just reveal E if the viewpoint is in
agent-list list, and is skip otherwise.

Definition 4. We say that an expression E is effectively list-visible at a point
in a program just when putting a statement reveallistE there would not alter the
program’s meaning.
2 Thanks to Carroll Morgan for suggesting visibility annotations.
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In our case we need to know at what point in the transaction we can assume
who knows what; in practice to determine the visibility of an expression we use
the visibility declarations as well as other information which has already been
revealed. Thus an expression is said to be effectively visible (at a point) just
when its value is determined by variables visible (at that same point) and any
other expressions that are effectively visible at that point.

Now we begin with the simple specification (2), embellishing it until we reach
the message-passing scheme at Fig. 2. At each stage we sill use visibility anno-
tations, visibility declarations or simple program algebra to justify the equality
between programs.

Step 1: Visibility annotations. We start by analysing the visibility of s both
before and after the assignment in (2); we use the visibility annotations. First, it
is clear that r is effectively S-visible after the statement, and that s is effectively
R-visible both before and after. Obvious or not, we check this as follows: we use
Def. 4 to put revealS r and revealR s before and after the assignment.

First, we see that r is effectively S-visible after the assignment:

r:= s; revealS r
= r:= s; revealS s “ r = s at that point”

= r:= s . “s is S-visible by declaration”

Similarly s R-visible after the assignment:

r:= s; revealR s
= r:= s; revealR r “as above”

= r:= s .

And finally s is r-visible before the assignment:

(revealR s); r:= s
= r:= s; revealR r “ s is unchanged”

= r:= s . “as above”

The last one is interesting, since operationally one would be inclined to say
that s is not R-visible before the statement, since we “can’t yet know s” before
that assignment has occurred. But here (yet again) is where a logical view helps
us to avoid confusions that operational reasoning can cause.

Referring to the “attack model” sketched above, we’d say under an attack
from R we’d have that s is visible before the statement r:= s just when R really
can see it. But he can’t see it, can he...? Nevertheless he can reason as if he
could: whatever reasoning he wanted to do with s at that point he simply defers,
first allowing the program to run one further step. Then s really is visible (by
inference, since it’s now sitting in r), and then R can go back and continue the
reasoning based on s that he had put on hold.



The Secret Art of Computer Programming 71

Step 2: Splitting the message. Now we have learned about R and S’s view-
points, we can start adding details of the message-passing. We use encryption
to split s, but we need to show that still only R and S learn s. What we need
to show is that

(2) = |[visRXS sx;visRY S sy; (sx⊕sy):= s]|; r:= s ,

where we have used the specification statement to make mutually secret shares
sx and sy.

Here although the encryption guarantees that neither X nor Y learn any-
thing, to ensure equality with the specification, we need to check that the secu-
rity refinement holds from all points of view, and that includes R and S. The
problematic case is R, because on the right since R can see sx and sy, he would
learn the secret before the assignment to his variable r. Although we don’t really
“care” about that (after all, he is the intended recipient of s) in our formal proof
we are made to care, and rightly so — information can be unintentionally leaked
and if an agent learns something “early” then he becomes a security risk when
he was not intended to be. In this case early knowledge is not a problem, as our
visibility analysis above has already checked for us.

1. From S’s point of view, everything is visible in the new block (no security
problems), and the (generalised) assignment is to new local variables (no
classical problems).

2. From X (Y )’s point of view, it’s an instance of the encryption lemma.
3. From R’s point of view (the only interesting one), we would formerly have

been stuck because sx, sy are both visible to R but s is hidden from R. But
now we can see that although s is hidden from R by declaration, nevertheless
it is R-visible (from Step 1 above) and so this case reduces to (1).

Step 3: Delivering the messages. The next step introduces the messengers
X and Y , who now carry their halves in variables x and y and give them to R.

visR r; visS s; r:= s
= (sx⊕sy):= s; r:= s “visRXS sx;visRY S sy”

= (sx⊕sy):= s; “visRX x;visRY y”

x, y:= sx, sy;
r:= s

= (sx⊕sy):= s; “visR rx, ry”

x, y:= sx, sy;
rx, ry:= x, y;
r:= s

= (sx⊕sy):= s; “program algebra”

x, y:= sx, sy;
rx, ry:= x, y;
r:= rx⊕ry .

For the final step from here to Fig. 2, we use the general refinement rule for
reducing visibilities, replacing visRXS sx;visRY S sy by visX sx;visY sy.
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7 Secure Remote Computations

We now take another step towards our principal case study. Private Informa-
tion Retrieval is very similar to secure message-passing as above, but includes
structured set-valued messages, and remote computation. We begin by working
towards a more general instance of the encryption lemma.

7.1 The Exclusive-or Algebra of Subsets

We take as our type E the powerset P[0..N) of the natural numbers below
N , which we will abbreviate PN . For our operation ⊕ we take the symmet-
ric set-difference, which we will write Δ so that for N0,1∈PN we have N0ΔN1 =
N0−N1 ∪ N1−N0

3. As payoff for our generality above, we have immediately for
E∈PN the equality

|[ visA a:PN ;visB b: PN ; (aΔb):=E ]| = skip . (3)

It’s just the encryption lemma for subsets. Here’s how we can use it.

7.2 Secure Use of a Remote Super-Computer

Suppose some user-agent U wants to compute y:=F.x with visA x, y, so that the
variables involved are visible only to him. (We do not specify the types of x, y
at this stage.) The function F is public; but unfortunately it is so complicated
that A does not have the resources to compute it. His first thought is to ship y
off to a super-computer -agent A who will compute it for him, thus he hopes for

y:= F.x � |[ visA a, a′; a:=x; a′:= F.a; y:= a′ ]| ,

in which a:= x sends the argument from U to A, and y:= a′ returns the result.
The computation a′:=F.a is then carried out entirely by A.

Although this is a classical refinement (obviously), it is not a secure one: the
problem is that A learns the values of x, y, and they are supposed to be private
to U .

Now let us suppose that the function F distributes ⊕ (over the types of x, y),
that is that F.(x0⊕x1) = F.x0⊕F.x1. Moreover we assume that U values his
privacy so much that he is prepared to pay for two super-computer runs, the
second one’s being run by Agent B. He now proposes the refinement

y:= F.x � |[ visA a;visB b; (a⊕b):= x; y:= F.a⊕F.b ]|
in which, to reduce clutter, we have suppressed the assignments (like a:=x above)
that are simply to do with passing values from one agent to another.

The classical correctness of this second refinement-proposal depends on the
⊕-distributivity of F , which we have assumed; but what about its security cor-
rectness? That follows from the Encryption Lemma, since we can derive
3 This operator Δ really is just exclusive-or ⊕ in different clothes: regard the sets as

characteristic functions, and then apply the ordinary Boolean exclusive-or pointwise
to those functions.



The Secret Art of Computer Programming 73

y:=F.x

= |[ visA a;visB b; (a⊕b):= x ]|;
y:=F.x

“Encryption Lemma”

= |[ visA a;visB b;
(a⊕b):=x;
y:=F.(a⊕b)

]|

“scope and context”

= |[ visA a;visB b;
(a⊕b):=x;
y:=F.a ⊕ F.b

]|

“⊕-distributivity of F”

This solves U ’s privacy problems — though he does have to pay for two runs of
the function F .

7.3 Explicit Message-Passing

Naturally the two statements (a⊕b):=x and y:= F.a⊕F.b above must themselves
be implemented via explicit message passing. For the first we argue by analogy
with the two-messengers approach of §6, as follows:

(a⊕b):=x

= |[ visUA xA;visUB xB ;
(xA⊕xB):= x;
a, b:= xa, xb

]|

“Encryption Lemma, scoping and context”

� |[ visU xA, xB ;
(xA⊕xB):= x;
a, b:= xa, xb

]| .

“reduce visibility”

For the second, similar reasoning (which we elide) gives

y:=F.a ⊕ F.b

� |[ visU yA, yB;
visA zA;visB zB;
zA, zB:= F.a, F.b;
yA, yB:= zA, zB; y:= yA ⊕ yB

]| .

“as above”

Put together with the refinement of the previous section (and exploiting mono-
tonicity), we have the overall refinement shown in Fig. 3.
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y:= F.x

� |[ visU xA, xB, yA, yB;
visA zA;visB zB;

(xA⊕xB):=x; ⇐ Split x into two shares.
a, b:= xa, xb; ⇐ Send them to Agents A, B separately.
zA, zB := F.a, F.b; ⇐ Agents A, B compute F on their respective arguments.
yA, yB := zA, zB; ⇐ The results are sent back to U .
y:= yA ⊕ yB ⇐ Agent U combines the result shares to get the answer.

]|

“composition of the above”

Fig. 3. Using two remote super computers to calculate an expensive function privately

8 Private Information Retrieval

This is our principal case study. In publicly accessible databases security is not
about protecting data, but rather about protecting users –this can be an issue if
the data concerns medical or share price information– because the user may want
his request to be confidential. Hence the objective of private information retrieval
schemes (PIR) is that the requests themselves should remain anonymous.

It has been shown that when the data is stored on a single server (a “single-
server model”) the only way to achieve the anonymity of requests is for the
user to download the entire database for local (and therefore private) perusal
[4], but the cost of this confidentiality is extremely poor performance. Current
research on PIR aims to minimise communication complexity, and in this section
we study a scheme introduced by Chor et al. [4].

The idea is to uses some number d ≥ 2 of copies of the database servers. As
in the message-passing example above the user splits the request into d shares,
sending each share to each server. The trick is to make sure that the shares
(a) reveal no information about the actual request (to either server or a third
party), and (b) can nevertheless be reconstructed by the user to reveal his actual
request.

Chor explains that the performance reduction only emerges when in fact d > 2,
but that the security aspects are well illustrated (but more easily!) for d=2.
Following his advice we begin our formalisation for d=2, and in any case study
only the security aspects in detail. We assume a database D of N (bit-sized)
records addressable with an index 1 ≤ i ≤ N ; we use U for the user, and A,
B for the two servers, each of which host (identical) copies DA and DB of D.
Chor’s informal description of the two-server model is as follows:

Let U ’s secret request be some 1 ≤ c ≤ N , and he wants to know D.c
(equivalently DA.c or DB.c). He chooses randomly a subset S ∈ PN ,
and then sends (all of) S to A and S � c to B, where

S � c := if (c∈S) then S\c else S ∪ {c} fi.
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Next A sends to U the result yA:= (⊕i∈SDA.i), and B similarly sends
yB:= (⊕i∈S�zDB.i); finally U decrypts the two replies by computing
yA ⊕ yB.

The functional correctness of this scheme can be seen easily because of the
definition of �. Note that S � c simply includes c if c 	∈ S, or it removes it if it is
already in S. That means that c occurs in exactly one of S or S � c, but all the
other items in S appear in both subsets. Thus in the final computation of the
exclusive or, all the terms D.i cancel out except for D.c and hence yA⊕yB = D.c
as required.

The security correctness is slightly more involved, but still intuitive. Since the
set S is chosen at random from all possible subsets of {1 . . .N} when a server
receives the subset it does not know whether the real query c is contained in the
subset or not.4 Moreover S � c also appears equally likely amongst all subsets,
therefore provided A and B do not collude, they are individually none the wiser
as to the actual request.

8.1 Solving the PIR Problem with Algebra

Using our results from §5, we can legitimise Chor’s approach easily.
First, note that Chor’s S � c is just S ⊕ {c} in our terms. This establishes

the connection with exclusive-or. Second, Chor’s operation (⊕i∈SDA.i) (and
equivalently (⊕i∈SDB.i) is our function F — and it distributes ⊕. This means
the refinement of Fig. 3 applies immediately, once we notice that D.c = DA.c =
DB.c = F.{c}. Thus we obtain by instantiation the refinement of Fig. 4, in which
our initial split (xAΔxB):= {c} is equivalent to Chor’s xA:∈PN ; xB:= xA�c.

8.2 Collusion and Visibility Declarations

The above derivation explicitly separates the U/A and U/B correspondence by
enforced by the visibility declarations visA and visB; for Chor that separation is
articulated by the“non-collusion” assumption, and theorems there depend upon
it. Here there is a similar dependency, and indeed the validity of refinement
depends upon it.

To investigate what would happen if A and B do collude, we rename all the
A/B variables to belong to a single server C variable, and attempt the same
derivation. 5This means that all visA;visB declarations become visC — then a
careful review of the proofs shows that the original encryption §5, on which the
whole security is built fails at the step labelled �. In this case, the relabelling
would make both a, b variables visC , so that the comment “b is hidden . . .” is
invalid, preventing the replacement of the assignment to b with skip.
4 Of course if the two servers share their partial information by colluding then the

value z is revealed. We discuss collusion later.
5 We do this since we do not assume anything about the nature of the collusion, except

that the servers are able to share all correspondence.



76 A.K. McIver

u:= D.c

� |[ visU xA, xB: PN ; yA, yB:Bool;
visA zA:Bool;visB zB :Bool;

(xAΔxB):= {c}; ⇐ Split c into two “subset” shares.
a, b:= xa, xb; ⇐ Send to the servers separately.
zA:= (⊕i∈aDA.i); ⇐ Each computes the ⊕ of its shares.
zB := (⊕i∈bDB .i); ⇐ · · ·
yA, yB := zA, zB; ⇐ Each sends the result back to the requester.
u:= yA ⊕ yB ⇐ The results are ⊕-ed together.

]|

“instantiating Fig. 3”

Fig. 4. Using two remote databases to perform a lookup privately

8.3 Efficient Perfect Information Retrieval

The solution presented in §8 actually does not reduce the overhead on the net-
work at all — in fact it is the same as the single-server solution where the whole
database must be sent to U .

The full solution, combining privacy and a reduction in average network traffic
— from O(N) to O(

√
N) (for example) — needs strictly more than two servers,

and a structured addressing scheme. Again each server is sent an apparently
random set of requests for which it must compute the ⊕ of the results, and
return to the user, who can then reassemble to uncover the request. Although
the addressing scheme is somewhat detailed, the principles for correctness, and
the machinery for proof remain the same, namely generalised encryption §5.1
and the exclusive-or algebra §7.1.

9 Conclusions and Future Work

We have shown how to validate a well known protocol for Perfect Information
Retrieval using a novel refinement-style development. Our approach emphasises a
hierarchical analysis which refinement supports, allowing us to use specifications
of sub-protocols in our proofs. Critically the proofs are carried out ultimately at
the level of source code, thus legitimising noninterference security goals at that
level of detail.

The relationship to other formal semantics of non-intereference has been sum-
marised in detail elsewhere [13,14]; it is comparable to Leino [8] and Sabelfeld
[15], but differs in details; and it shares the goals of the pioneering work of Mantel
[9] and Engelhardt [5].

Our work sits between two communities. On the one hand there are those who
reason about code at the source level, and in some cases build (semi-)automated
tools to help them do so. Reasoning that way about security however is quite
rare; and this community generally does not study the advanced theoretical
models of semantics for security for their own sake.
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On the other hand, there are those who study or create the mathematics upon
which cryptography and secrecy depend. But it is rare to find there a serious
interest as well in the problems of transferring their insights to the source-code
level6.

We try to place our contribution in between the two groups, drawing inspi-
ration from the concerns of both and hoping in return to contribute something
towards bridging the gap.

Thus although there are many ingenious protocols involving secret informa-
tion, there is as yet limited support for their code-level justification: most new
algorithmic/theoretical insights are presented as a mixture of pseudo-code and
English (or other natural language). Our work can be seen as an early step
towards bridging the cryptographic/software gap.

Future work on this topic will be to develop a “probabilistic Shadow” to enable
stronger cryptographic guarantees, quantitative rather than only qualitative, to
be faithfully transferred to source-level computer code.
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