
The PlusCal Algorithm Language

Leslie Lamport

Microsoft Research

Abstract. Algorithms are different from programs and should not be
described with programming languages. The only simple alternative to
programming languages has been pseudo-code. PlusCal is an algorithm
language that can be used right now to replace pseudo-code, for both
sequential and concurrent algorithms. It is based on the TLA+ specifi-
cation language, and a PlusCal algorithm is automatically translated to
a TLA+ specification that can be checked with the TLC model checker
and reasoned about formally.

1 Introduction

PlusCal is a language for writing algorithms, including concurrent algorithms.
While there is no formal distinction between an algorithm and a program, we
know that an algorithm like Newton’s method for approximating the zeros of a
real-valued function is different from a program that implements it. The difference
is perhaps best described by paraphrasing the title of Wirth’s classic book [1]: a
program is an algorithm plus an implementation of its data operations.

The data manipulated by algorithms are mathematical objects like numbers
and graphs. Programming languages can represent these mathematical objects
only by programming-language objects like bit strings and pointers, introducing
implementation details that are irrelevant to the algorithm. The customary way
to eliminate these irrelevant details is to use pseudo-code. There are two obvious
problems with pseudo-code: it has no precise meaning, and it can be checked
only by hand—a notoriously unreliable method of finding errors.

PlusCal is designed to replace pseudo-code for describing algorithms. A Plus-
Cal algorithm is translated to a TLA+ specification [2]. That specification can
be debugged (and occasionally even completely verified) with the TLC model
checker [3]. A TLA+ specification is a formula of TLA, a logic invented expressly
for proving properties of systems, so properties of an algorithm can be proved
by reasoning about its translation.

There are other languages that might be satisfactory replacements for pseudo-
code in a Utopian world where everyone has studied the language. A researcher
can use PlusCal in his next paper; a professor can use it in her next lecture.
PlusCal code is simple enough that explaining it is almost as easy as explaining
the pseudo-code that it replaces. I know of no other language that can plau-
sibly make this claim and has the expressive power to replace pseudo-code for

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 36–60, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



The PlusCal Algorithm Language 37

both sequential and concurrent algorithms. Other languages used to describe
algorithms are discussed in the conclusion.

PlusCal’s simplicity comes from its simple, familiar programming language
constructs that make it resemble a typical toy language. For example, here is
the “Hello World” program:

--algorithm HelloWorld
begin print “Hello, world.”
end algorithm

PlusCal has the expressive power to replace pseudo-code because of its rich
expression language. A PlusCal expression can be any expression of TLA+, which
means it can be anything expressible in set theory and first-order logic. This gives
PlusCal’s expression language all the power of ordinary mathematics, making
it infinitely more powerful than the expression language of any programming
language.

Programming languages have two other deficiencies that make them unsuit-
able as algorithm languages:

– They describe just one way to compute something. An algorithm might
require that a certain operation be executed for all values of i from 1 to
N ; most programming languages must specify in which order those execu-
tions are performed. PlusCal provides two simple constructs for expressing
nondeterminism.

– Execution of an algorithm consists of a sequence of steps. An algorithm’s
computational complexity is the number of steps it takes to compute the
result, and defining a concurrent algorithm requires specifying what consti-
tutes a single (atomic) step. Programming languages provide no well-defined
notion of a program step. PlusCal uses labels to describe an algorithm’s steps.
Describing the grain of atomicity is crucial for concurrent algorithms, but is
often unimportant for sequential algorithms. Labels can therefore be omitted
and the translator instructed to choose the steps, which it makes as large
possible to facilitate model checking.

PlusCal combines five important features: simple conventional program con-
structs, extremely powerful expressions, nondeterminism, a convenient way to
describe the grain of atomicity, and model checking. The only novel aspect of
any of these features is the particular method of using labels to indicate atomic
actions. While the individual features are not new, their combination is. PlusCal
is the only language I know of that has them all. This combination of features
makes it ideal for writing algorithms.

PlusCal can be used not only in publications and in the classroom, but also in
programming. Although most programming involves simple data manipulation, a
program sometimes contains a nontrivial algorithm. It is more efficient to debug
the algorithm by itself, rather than debugging it and its implementation at the



38 L. Lamport

same time. Writing the algorithm in PlusCal and debugging it with TLC before
implementing it is a good way to do this.

Being easy to read does not necessarily make PlusCal easy to write. Like any
powerful language, PlusCal has rules and restrictions that are not immediately
obvious. Because of its inherent simplicity, the basic language should not be
hard to learn. What many programmers and computer scientists will find hard
is learning to take advantage of the power of the expression language. TLA+

expressions use only basic math—that is, predicate logic, sets, and functions
(which include tuples and records). However, many computer scientists would
have difficulty describing even something as simple as a graph in terms of sets
and functions. With PlusCal, the writer of an algorithm can reveal to the reader
as much or as little of the underlying math as she wishes.

PlusCal’s features imply its limitations. Programming languages are complex
because of constructs like objects and variable scoping that are useful for writing
large programs. PlusCal’s simplicity limits the length of the algorithms it can
conveniently describe. The largest algorithm I have written in it is about 500
lines. I expect that PlusCal would not work well for algorithms of more than one
or two thousand lines. (However, a one-line PlusCal assignment statement can
express what in a programming language requires a multi-line loop or the call
of a complicated procedure.) Programming languages are inexpressive because
they must yield efficient code. While it is possible to restrict PlusCal so it can
be compiled into efficient code, any such restriction would reduce its utility
for writing algorithms. PlusCal is for writing algorithms, not for writing large
specifications or efficient programs.

The semantics of PlusCal is specified formally by its translation to TLA+.
A TLA+ specification of the translation is included in the PlusCal distribution,
which is available on the Web [4]. (The translator, which is written in Java,
has the option of performing the translation by executing this specification with
TLC.) The translation is described in Section 4. However, except for its expres-
sions, PlusCal is so simple and most of its constructs so banal that there is no
need to give a rigorous semantics here. Instead, the language is explained in
Section 2 by a series of examples. Section 3 describes the few features not con-
tained in the examples, and Section 5 completes the language description by
explaining the constraints on where labels may and may not appear. To con-
vince the reader that nothing is being hidden, a grammar of the full language
(excluding its expressions) appears in the appendix. A language manual is avail-
able on the PlusCal Web site.

No attempt is made here to describe the complete language of TLA+ expres-
sions. The TLA+ notation used in the examples is explained only where it does
not correspond to standard mathematical usage. The PlusCal language manual
briefly explains TLA+ and its expressions. The semantics of TLA+ expressions
is trivial in the sense that a semantics consists of a translation to ordinary
mathematics, and TLA+ expressions are expressions of ordinary mathematics.
A precise explanation of all the TLA+ operators that can appear in a PlusCal
expression is given in Section 16.1 of the TLA+ manual [2].



The PlusCal Algorithm Language 39

2 Some Examples

A PlusCal algorithm can be written in either of two syntaxes—the clearer but
longer p-syntax (p for prolix ), or the more compact c-syntax that will look
familiar to most programmers. The first two examples use the p-syntax; the next
two use the c-syntax. The grammar given in the appendix is for the c-syntax.

2.1 Euclid’s Algorithm

The first example is a simple version of Euclid’s algorithm from Sedgewick’s
textbook [5, page 8]. The algorithm computes the GCD of two natural numbers
m and n by setting u to m and v to n and executing the following pseudo-code.

while u �= 0 do
if u < v then swap u and v end if ;
u : = u − v

end while ;

Upon termination, v equals the GCD of m and n. The PlusCal version appears in
Figure 1 on this page. (Symbols are actually typed as ascii strings—for example,
“∈” is typed “\in”.) The variable declarations assert that the initial values of m
and n are in the set 1 . .K of integers from 1 through K , and that u and v initially
equal m and n, respectively. (We will see later where K is declared.) Assignment
statements separated by || form a multi-assignment, executed by first evaluating
all the right-hand expressions and then performing all the assignments. The
assert statement checks the correctness of the algorithm, where IsGCD(v , m, n)
will be defined to be true iff v is the GCD of m and n, for natural numbers v ,
m, and n.

The algorithm appears in a comment in a TLA+ module, as shown in Figure 2
on the next page. The module’s extends statement imports the Naturals mod-
ule, which defines arithmetic operators like subtraction and “ . .”, and a special
TLC module that is needed because of the algorithm’s assert statement. The
constant declaration declares the algorithm parameter K . The module next
defines Divides(i , j ) to be true for natural numbers i and j iff i divides j , and
it uses Divides to define IsGCD .

--algorithm EuclidSedgewick
variables m ∈ 1 . .K , n ∈ 1 . .K , u = m, v = n
begin while u �= 0 do

if u < v then u : = v || v : = u end if ;
u : = u − v

end while ;
assert IsGCD(v , m, n)

end algorithm

Fig. 1. Euclid’s algorithm in PlusCal



40 L. Lamport

module Euclid

extends Naturals, TLC

constant K

Divides(i , j )
Δ
= ∃ k ∈ 0 . . j : j = i ∗ k

IsGCD(i , j , k)
Δ
= Divides(i , j )

∧ Divides(i , k)
∧ ∀ r ∈ 0 . . j ∪ 0 . . k :

Divides(r , j ) ∧ Divides(r , k) ⇒ Divides(r , i)

(∗ --algorithm EuclidSedgewick
. . .
end algorithm ∗)

\* begin translation
Translator puts TLA+ specification here

\* end translation

Fig. 2. The module containing the PlusCal code for Euclid’s algorithm

The translator inserts the algorithm’s translation, which is a TLA+ specifica-
tion, between the begin and end translation comment lines, replacing any
previous version. The translator also writes a configuration file that controls the
TLC model checker. We must add to that file a command that specifies the value
of K . TLC checks that the assertion is satisfied and that execution terminates
for all K 2 possible choices of the variables’ initial values. For K = 50, this takes
about 25 seconds. (All execution times are for a 2.4 GHz personal computer.)

Remarks. The operation of swapping u and v can of course be expressed with-
out a multiple assignment by declaring an additional variable t and writing:

t : = u; u : = v ; v : = t

It can also be written as follows.

with t = u do u : = v ; v : = t end with

The with statement declares t to be local to the do clause.
Instead of restricting m and n to lie in the range 1 . .K , it would be more

natural to allow them to be any positive integers. We do this by replacing 1 . .K
with the set of positive integers; here are three ways to express that set in TLA+,
where Nat is defined in the Naturals module to be the set of all natural numbers:

Nat \ {0} {i ∈ Nat : i > 0} {i + 1 : i ∈ Nat}
To check the resulting algorithm, we would tell TLC to substitute a finite set of
numbers for Nat .

As this example shows, PlusCal is untyped. Type correctness is an invari-
ance property of an algorithm asserting that, throughout any execution, the



The PlusCal Algorithm Language 41

values of the variables belong to certain sets. A type invariant for algorithm
EuclidSedgewick is that the values of u and v are integers. For a type invariant
like this whose proof is trivial, a typed language allows type correctness to be
verified by type checking. If the proof is not completely trivial, as for the type
invariant that u and v are natural numbers, type correctness cannot be veri-
fied by ordinary type checking. (If natural number is a type, then type checking
is undecidable for a Turing complete language with subtraction.) These type
invariants are easily checked by TLC.

2.2 The Quicksort Partition Operation

What most distinguishes the version of Euclid’s algorithm given above from a
program in an ordinary language is the expression IsGCD(v , m, n). It hints at
the expressive power that PlusCal obtains by using TLA+ as its expression lan-
guage. I now present a more compelling example of this: the partition operation
of the quicksort algorithm [6].

Consider a version of quicksort that sorts an array A[1], . . . , A[N ] of numbers.
It uses the operation Partition(lo, hi) that chooses a value pivot in lo . . (hi −
1) and permutes the array elements A[lo], . . . ,A[hi ] to make A[i ] ≤ A[j ] for
all i in lo . . pivot and j in (pivot +1) . . hi . It is easy to describe a particular
implementation of this operation with a programming language. The following
PlusCal statement describes what the operation Partition(lo, hi) is supposed to
do, not how it is implemented. The code assumes that Perms(A) is defined to
be the set of permutations of A.

with piv ∈ lo . . (hi−1),
B ∈ {C ∈ Perms(A) :

(∀ i ∈ 1 . . (lo − 1) ∪ (hi + 1) . .N : C [i ] = A[i ] )
∧ (∀ i ∈ lo . . piv , j ∈ (piv + 1) . . hi : C [i ] ≤ C [j ] ) }

do pivot : = piv ;
A : = B

end with

This with statement is executed by nondeterministically choosing values of piv
and B from the indicated sets and then executing the do clause. TLC will check
the algorithm with all possible executions of this statement.

The operator Perms is defined in TLA+ as follows, using local definitions
of Auto(S ) to be the set of automorphisms of S , if S is a finite set, and of �
to be function composition. (Arrays are what mathematicians call functions. In
TLA+, [A → B ] is the set of functions with domain A and range a subset of B ,
and domain F is the domain of F if F is a function.)

Perms(B) Δ=

let Auto(S ) Δ= {f ∈ [S → S ] : ∀ y ∈ S : ∃ x ∈ S : f [x ] = y}
f � g Δ= [x ∈ domain g 
→ f [g[x ]]]

in {B � f : f ∈ Auto(domain B)}



42 L. Lamport

Using the description above of the partition operation and this definition of
Perms, TLC will check partial correctness and termination of the usual recursive
version of quicksort for all 4-element arrays A with values in a set of 4 numbers
in about 100 seconds.

Remarks. This example is not typical. It was chosen to illustrate two things:
how nondeterminism can be conveniently expressed by means of the with state-
ment, and the enormous expressive power that PlusCal achieves by its use of
ordinary mathematical expressions. The definition of Perms is the TLA+ state-
ment of one that many mathematicians would write, but few computer scientists
would. Almost all computer scientists would define Perms(B) by recursion on
the number of elements in B , the way it would be computed in most program-
ming languages. (Such a definition can also be written in TLA+.) To appreciate
the power of ordinary mathematics, the reader should try to write a recursive
definition of Perms.

A standard computer science education does not provide the familiarity with
simple math needed to make the definition of Perms easy to understand. A text-
book writer therefore might not want to include it in a description of quicksort.
Because the definition is external to the PlusCal code, the writer has the option
of omitting it and informally explaining the meaning of Perms(B). On the other
hand, a professor might want to take advantage of the opportunity it provides
for teaching students some math.

2.3 The Fast Mutual Exclusion Algorithm

An example of a multiprocess algorithm is provided by the Fast Mutual Exclusion
Algorithm [7]. The algorithm has N processes, numbered from 1 through N .
Figure 3 on the next page is the original description of process number i , except
with the noncritical section and the outer infinite loop made explicit. Angle
brackets enclose atomic operations (steps). For example, the evaluation of the
expression y �= 0 in the first if statement is performed as a single step. If that
expression equals true, then the next step of the process sets b[i ] to false. The
process’s next atomic operation is the execution of the await statement, which
is performed only when y equals 0. (The step cannot be performed when y is
not equal to 0.)

A PlusCal version of the algorithm appears in Figure 4 on the next page.
The preceding examples use PlusCal’s p-syntax; this example is written in Plus-
Cal’s alternative c-syntax. The PlusCal version differs from the original pseudo-
code in the following nontrivial ways.

– It explicitly declares the global variables x , y, and b and their initial values,
as well as the process-local variable j , whose initial value is not specified.
(The TLA+ expression [v ∈ S 
→ e] is the function F with domain S such
that F [v ] = e for all v in S .)

– It declares a set of processes with identifiers in the set 1 . .N (one process
for each identifier). Within the body of the process statement, self denotes
the identifier of the process.



The PlusCal Algorithm Language 43

ncs: noncritical section;
start : 〈b[i ] := true〉;

〈x := i〉;
if 〈y �= 0〉 then 〈b[i ] := false〉;

await 〈y = 0〉;
goto start fi;

〈y := i〉;
if 〈x �= i〉 then 〈b[i ] := false〉;

for j := 1 to N do await 〈¬b[j ]〉 od;
if 〈y �= i〉 then await 〈y = 0〉;

goto start fi fi;
critical section;
〈y := 0〉;
〈b[i ] := false〉;
goto ncs

Fig. 3. Process i of the Fast Mutual Exclusion Algorithm, based on the original de-
scription. It assumes that initially x = y = 0 and b[i ] = false for all i in 1 . .N .

--algorithm FastMutex

{ variables x = 0, y = 0, b = [i ∈ 1 . .N �→ false] ;

process (Proc ∈ 1 . .N )

variable j ;

{ ncs: skip ; (∗The Noncritical Section ∗)
start : b[self ] : = true ;

l1: x : = self ;
l2: if (y �= 0) { l3: b[self ] : = false ;

l4: await y = 0 ;
goto start } ;

l5: y : = self ;
l6: if (x �= self ) { l7: b[self ] : = false ;

j : = 1 ;
l8: while (j ≤ N ) { await ¬b[j ] ;

j : = j + 1 } ;
l9: if (y �= self ) { l10: await y = 0 ;

goto start }} ;
cs: skip ; (∗The Critical Section ∗)

l11: y : = 0 ;
l12: b[self ] : = false ;

goto ncs }}

Fig. 4. The Fast Mutual Exclusion Algorithm in PlusCal

– The critical and noncritical sections are represented by atomic skip instruc-
tions. (Because TLA specifications are closed under stuttering steps [8, 2],
this algorithm actually describes nonatomic critical and noncritical sections



44 L. Lamport

that can do anything except modify the variables x , y, b, and j or jump to
a different part of the process.)

– The grain of atomicity is expressed by labels. A single atomic step consists
of an execution starting at a label and ending at the next label. For example,
the execution of the test y �= 0 at label l2 is atomic because a single step
that begins at l2 ends when control reaches either l3 or l4.

– A while loop implements the original’s for statement.

As this example shows, a PlusCal await statement can occur within a larger
atomic action. A step containing the statement “await P” can be executed only
when P evaluates to true. This statement is equivalent to the dynamic logic
statement “P?” [9].

For this algorithm, mutual exclusion means that no two processes are simulta-
neously at control point cs . The translation introduces a variable pc to represent
the control state, where control in process p is at cs iff cs [p] equals “cs”. Mutual
exclusion is therefore asserted by the invariance of:

∀ p, q ∈ 1 . .N : (p �= q) ⇒ ¬((pc[p] = “cs”) ∧ (pc[q] = “cs”))

TLC can check mutual exclusion and the absence of deadlock for all executions
in about 15 seconds for N = 3 and 15 minutes for N = 4. It takes TLC about 5
times as long to check the absence of livelock as well, assuming weak fairness of
each process’s actions. (Fairness is discussed in Section 4.3.)

Remarks. Observe how similar the PlusCal version is to the pseudo-code, pre-
sented almost exactly as previously published. The 15 lines of pseudo-code are
expressed in PlusCal with 17 lines of statements plus 4 lines of declarations.
Those declarations include specifications of the initial values of variables, which
are not present in the pseudo-code and are expressed by accompanying text. The
extra two lines of PlusCal statements arise from converting a for to a while.
(For simplicity, TLA+ has no for or until statement.)

Readers who had never seen PlusCal would need the following explanation of
the code in Figure 4.

The process declaration asserts that there are N processes, numbered
from 1 through N , and gives the code for process self . Execution from
one label to the next is an atomic action, and an await P statement can
be executed only when P is true. Variable declarations specify the initial
value of variables, b being initially equal to an array with b[i ] = false
for each process i .

Compare this with the following explanation that would be needed by readers
of the pseudo-code in Figure 3.

The algorithm has N processes, numbered from 1 through N ; the code
of process i is given. Angle brackets enclose atomic operations, and an
await P statement can be executed only when P is true. Variables x
and y are initially equal to 0, and b[i ] is initially equal to false for each
process i .



The PlusCal Algorithm Language 45

Instead of asserting mutual exclusion by a separate invariant, we can replace
the critical section’s skip statement by the following assertion that no other
process is in its critical section.

assert ∀ p ∈ 1 . .N \ {self } : pc[p] �= “cs”

Correctness of the algorithm does not depend on the order in which a process
examines other processes’ variables. The published version of the algorithm used
a for loop to examine them in one particular order because there was no simple
standard construct for examining them in an arbitrarily chosen order. To allow
the iterations of the loop body to be performed in any order, we just replace the
corresponding PlusCal code of Figure 4 with the following.

j : = 1 . .N ;
l8: while (j �= {}) { with (e ∈ j ) { await ¬b[e] ;

j : = j \ {e} } } ;

Weak fairness of each process’s actions prevents a process from remaining
forever in its noncritical section—something that a mutual exclusion algorithm
must allow. Absence of livelock should be checked under the assumption of weak
fairness for each process’s actions other than the noncritical section action. Sec-
tion 4.3 explains how such a fairness assumption is asserted.

2.4 The Alternating Bit Protocol

Our final example is the alternating bit protocol, which is a distributed message-
passing algorithm [10, Section 22.3]. A sender and a receiver process communi-
cate over lossy FIFO channels, as pictured here.

Sender Receiver
�

�

msgC

ackC

To send a message m, the sender repeatedly sends the pair 〈m, sbit 〉 on channel
msgC , where sbit equals 0 or 1. The sender acknowledges receipt of the message
by repeatedly sending sbit on channel ackC . Upon receipt of the acknowledge-
ment, the sender complements sbit and begins sending the next message.

The PlusCal version of the algorithm appears in Figure 5 on the next page. To
understand it, you must know how finite sequences are represented in TLA+’s
standard Sequences module. A sequence σ of length N is a function (array) whose
domain (index set) is 1 . .N , where σ[i ] is the ith element of the sequence. The
Head and Tail operators are defined as usual, Len(σ) is the length of sequence
σ, and Append(σ, e) is the sequence obtained by appending the element e to
the tail of σ. Tuples are just finite sequences, so the pair 〈a, b 〉 is a two-element
sequence and 〈a, b 〉[2] equals b.

The algorithm assumes that the set Msg of possible messages is defined or
declared and that Remove(i , σ) is the sequence obtained by removing the ith

element of σ if 1 ≤ i ≤ Len(σ). It can be defined in the TLA+ module by



46 L. Lamport

--algorithm ABProtocol

{ variables input = 〈 〉; output = 〈 〉; msgC = 〈 〉; ackC = 〈 〉;
macro Send(m, chan) { chan : = Append(chan, m) }
macro Rcv(v , chan) { await chan �= 〈 〉;

v : = Head(chan);
chan : = Tail(chan) }

process (Sender = “S”)

variables next = 1; sbit = 0; ack ;

{ s: while (true) {
either with (m ∈ Msg) { input : = Append(input , m) }
or { await next ≤ Len(input);

Send(〈input [next ], sbit 〉, msgC ) }
or { Rcv(ack , ackC );

if (ack = sbit) { next : = next + 1;
sbit : = (sbit + 1) % 2 }}}}

process (Receiver = “R”)

variables rbit = 1; msg ;
{ r : while (true) {

either Send(rbit , ackC )
or { Rcv(msg , msgC );

if (msg [2] �= rbit) { rbit : = (rbit + 1) % 2
output : = Append(output , msg [1])}}}}

process (LoseMsg = “L”)

{ l : while (true) {
either with (i ∈ 1 . .Len(msgC )) { msgC : = Remove(i ,msgC )}
or with (i ∈ 1 . .Len(ackC )) { ackC : = Remove(i , ackC ) }}}

}

Fig. 5. The Alternating Bit Protocol in PlusCal

Remove(i , seq) Δ= [ j ∈ 1 . . (Len(seq) − 1) 
→
if j < i then seq[j ] else seq[j + 1] ]

The channels msgC and ackC are represented by variables whose values are
finite sequences, initially equal to the empty sequence 〈 〉. The variable input
is the finite sequence of messages that the sender has decided to send and the
variable output is the sequence of messages received by the receiver; initially
both equal the empty sequence.

The operations of sending and receiving a message on a channel are repre-
sented by the macros Send and Rcv . Macros are expanded syntactically. For
example, the statement Send(rbit , ackC ) is replaced by

ackC : = Append(ackC , rbit)



The PlusCal Algorithm Language 47

which appends rbit to the sequence ackC . If v and chan are variables and chan
equals a finite sequence, then the operation Rcv(v , chan) can be executed iff
chan is non-empty, in which case it sets v to the first element of chan and
removes that element from chan.

There are three processes: the sender, the receiver, and a LoseMsg process that
models the lossiness of the channels by nondeterministically deleting messages
from them. The process declaration Sender = “S” indicates that there is a single
Sender process with identifier the string “S”; it is equivalent to the declaration
Sender ∈ {“S”}. The only new PlusCal construct in the processes’ code is

either S 1 or S 2 . . . or Sn

which executes S i for a nondeterministically chosen i .
The three processes run forever. The presence of just one label in each process

means that the execution of one iteration of its while statement’s body is a single
atomic action. The sender can either choose a new message to send and append it
to input , send the current message input [next ], or receive an acknowledgement
(if ackC is non-empty). The receiver can either receive a message and, if the
message has not already been received, append it to output ; or it can send an
acknowledgement. A single step of the LoseMsg process removes an arbitrarily
chosen message from either msgC or ackC . If msgC is the empty sequence, then
1 . .Len(msgC ) is the empty set and only the or clause of the LoseMsg process
can be executed. If both msgC and ackC equal the empty sequence, then the
LoseMsg process is not enabled and can perform no step. (See Section 4.2 below
for an explanation of why this is the meaning of the process’s code.)

The important safety property satisfied by the algorithm is that the receiver
never receives an incorrect message. This means that the sequence output of
received messages is an initial subsequence of the sequence input of messages
chosen to be sent. This condition is asserted by the predicate output � input ,
where � is defined by:

s � t Δ= (Len(s) ≤ Len(t)) ∧ (∀ i ∈ 1..Len(s) : s [i ] = t [i ])

Section 4.3 discusses the desired liveness property, that every chosen message is
eventually received.

Algorithm ABProtocol has an infinite number of reachable states. The se-
quence input can become arbitrarily long and, even if the sender puts only a
single message in input , the sequences msgC and argC can become arbitrarily
long. TLC will run forever on an algorithm with an infinite set of reachable
states unless it finds an error. (TLC will eventually exceed the capacity of some
data structure and halt with an error, but that could take many years because
it keeps on disk the information about what states it has found.) We can bound
the computation by telling TLC to stop any execution of the algorithm when it
reaches a state not satisfying a specified constraint. For example, the constraint

(Len(input) < 4) ∧ (Len(msgC ) < 5) ∧ (Len(ackC ) < 5)



48 L. Lamport

stops an execution when input has 4 messages or one of the channels has 5
messages. With this constraint and a set Msg containing 3 elements, TLC model
checks the algorithm in 7.5 seconds.

Remarks. It may appear that, by introducing the LoseMsg process, we are
forcing the channels to lose messages. This is not the case. As discussed in Sec-
tion 4.3 below, an algorithm’s code describes only what steps may be executed; it
says nothing about what steps must be executed. Algorithm ABProtocol ’s code
does not require the LoseMsg process ever to delete a message, or the Sender
process ever to send one. Section 4.3 explains how to specify what the algorithm
must do.

Each process of the algorithm consists of an infinite loop whose body nonde-
terministically chooses one atomic action to execute. This structure is typical of
high-level versions of distributed algorithms.

This example shows that PlusCal can easily describe a distributed message-
passing algorithm, even though it has no special constructs for sending and
receiving messages. Adding such constructs could eliminate the four lines of
macros. However, what operations should they specify? Are messages broadcast
or sent on point-to-point channels? Are they always delivered in order? Can
they be lost? Can the same message be received twice? Different distributed
algorithms make different assumptions about message passing, and I know of
no simple construct that covers all possibilities. Any particular kind of message
passing that is easy to explain should be easy to describe in PlusCal.

3 The Complete Language

We have seen almost all the PlusCal language constructs. The major omissions
are the following (written in the p-syntax).

– TLA+ has notation for records, where a record is a function whose domain
is a finite set of strings and a.b is syntactic sugar for a[“b”]. PlusCal allows
the usual assignment to fields of a record, as in

v .a : = 0; A[0].b : = 42;
TLC will report an error if it tries to execute this code when v is not a
record with an a component or A is not an array with A[0] a record having a
b component. This usually implies that v and A must be initialized to values
of the correct “type”.

– The if statement has optional elsif clauses (only in the p-syntax) followed
by an optional else clause.

– PlusCal has procedure declarations and call and return statements. Since
call is a statement, it does not return a value. The customary approach of
making procedure calls part of expression evaluation would make specifying
steps problematic, and allowing return values would complicate the trans-
lation. Procedures can easily return values by setting global variables (or
process-local variables for multiprocess algorithms).



The PlusCal Algorithm Language 49

– PlusCal has an optional define statement for inserting TLA+ definitions. It
goes immediately after the declarations of the algorithm’s global variables
and permits operators defined in terms of those variables to be used in the
algorithm’s expressions.

The description of the language is completed in Section 5, which explains where
labels are forbidden or required.

4 The TLA+ Translation

4.1 An Example

A TLA+ specification describes a set of possible behaviors, where a behavior is a
sequence of states and a state is an assignment of values to variables. The heart
of a TLA+ specification consists of an initial predicate and a next-state action.
The initial predicate specifies the possible initial states, and the next-state action
specifies the possible state transitions. An action is a formula containing primed
and unprimed variables, where unprimed variables refer to the old state and
primed variables refer to the new state. For example, the action x ′ = x + y ′

specifies all transitions in which the value of x in the new state equals the sum
of its value in the old state and the value of y in the new state.

The translation from PlusCal to TLA+ is illustrated with the version of Eu-
clid’s algorithm from Section 2.1. The algorithm is shown in Figure 6 on the
next page with the two labels, L1 and L2, implicitly added by the translator.
Also shown is the implicit label Done that represents the control point at the
end of the algorithm.

The translation appears in Figure 7 on the next page. It uses the TLA+

notation that a list of formulas bulleted with ∧ or ∨ symbols denotes their
conjunction or disjunction. Indentation is significant and is used to eliminate
parentheses. (This notation makes large formulas easier to read, and engineers
generally like it; but it confuses many computer scientists. The notation can be
used in PlusCal expressions.)

The important parts of the translation are the definitions of the initial pred-
icate Init and the next-state action Next . The predicate Init is obtained in the
obvious way from the variable declaration, with the variable pc that represents
the control state initialized to the initial control point—that is, to the string
“L1”.

Actions L1 and L2 specify the transitions representing execution steps starting
at the corresponding control points. The conjunct pc = “L1” of action L1 asserts
that a transition can occur only in a starting state in which the value of the
variable pc is “L1”. (A conjunct containing no primed variables is an enabling
condition.) The expression unchanged f is an abbreviation for f ′ = f , so the
conjunct unchanged 〈u, v 〉 asserts that the values of u and v are left unchanged
by the transition. The imported TLC module defines Assert(A,B) to equal A,
but TLC halts and prints the value B and a trace of the current execution if it
evaluates the expression when A equals false.



50 L. Lamport

--algorithm EuclidSedgewick
variables m ∈ 1 . .K , n ∈ 1 . .K , u = m, v = n
begin L1: while u �= 0 do

if u < v then u : = v || v : = u end if ;
L2: u : = u − v

end while ;
assert IsGCD(v , m, n)

Done:
end algorithm

Fig. 6. Euclid’s algorithm, showing labels L1 and L2 implicitly added by the translator
and the implicit label Done

Init
Δ
= ∧ m ∈ 0 . .K

∧ n ∈ 1 . .K
∧ u = m
∧ v = n
∧ pc = “L1”

L1
Δ
= ∧ pc = “L1”

∧ if u �= 0 then ∧ if u < v then ∧ u ′ = v
∧ v ′ = u

else unchanged 〈u, v 〉
∧ pc′ = “L2”

else ∧ Assert(IsGCD(v , m,n), “Failure of assertion at. . . ”)
∧ pc′ = “Done”
∧ unchanged 〈u, v 〉

∧ unchanged 〈m,n 〉
L2

Δ
= ∧ pc = “L2”

∧ u ′ = u − v
∧ pc′ = “L1”
∧ unchanged 〈m,n, v 〉

vars
Δ
= 〈m,n, u, v , pc 〉

Next
Δ
= L1 ∨ L2 ∨ (pc = “Done” ∧ unchanged vars)

Spec
Δ
= Init ∧ �[Next ]vars

Fig. 7. The translation of Euclid’s algorithm

The next-state action Next allows all transitions that are allowed by L1 or L2,
or that leave the tuple vars of all the algorithm variables unchanged (are stut-
tering steps [8, 2]) when a terminated state has been reached. This last disjunct
keeps TLC from reporting deadlock when the algorithm terminates. (An algo-
rithm deadlocks when no further step is possible; termination is just deadlock we
want to occur.) Since every TLA specification allows stuttering steps, this disjunct
does not change the meaning of the specification, just the way TLC checks it.



The PlusCal Algorithm Language 51

Finally, Spec is defined to be the TLA formula that describes the safety part
of the algorithm’s complete specification. Proving that the algorithm satisfies a
safety property expressed by a temporal formula P means proving Spec ⇒ P .
Most PlusCal users can ignore Spec.

4.2 Translation as Semantics

A classic way of stating that a programming language is poorly defined is to say
that its semantics is specified by the compiler. A goal of PlusCal was to make
an algorithm’s translation so easy to understand that it is a useful specification
of the algorithm’s meaning. To achieve this goal, the following principles were
maintained:

T1. The only TLA+ variables used in the translation are the ones declared in
the algorithm plus pc. (Algorithms with procedures also use a variable stack
for saving return locations and values of local procedure variables.)

T2. All identifiers declared or defined in the translation (including bound vari-
ables) are taken from the algorithm text, except for a few standard ones
like Init and Next . (“Algorithm text” includes labels implicitly added by
the translator.)

T3. There is a one-to-one correspondence between expressions in the translation
and expressions in the algorithm. (The only exceptions are the expressions
for pushing and popping items on the stack in the translation of procedure
call and return statements.)

It may seem that PlusCal is so simple that its semantics is obvious. However, a
naive user might be puzzled by what the following statement in a multiprocess
algorithm does when x equals 0:

L1: x : = x − 1; await x ≥ 0; y : = x ;
L2: . . .

Is x decremented but y left unchanged? Is the execution aborted and the original
value of x restored? The statement’s translation is:

L1 Δ= ∧ pc = “L1”
∧ x ′ = x − 1
∧ x ′ ≥ 0
∧ y ′ = x ′

∧ unchanged . . .

Action L1 equals false when x = 0, which is satisfied by no step, so the state-
ment cannot be executed while x is less than 1. Statement L1 is equivalent to

await x > 0; x : = x − 1; y : = x ;

because the two statements’ translations are mathematically equivalent. Realiz-
ing this might help users think in terms of what a computation does rather than
how it does it.



52 L. Lamport

Even a fairly sophisticated user may have trouble understanding this
statement:

L1: with i ∈ {1, 2} do await i = 2
end with ;

L2: . . .

Is it possible for an execution to deadlock because the with statement selects
i = 1 and the await statement then waits forever for i to equal 2? The answer is
probably not obvious to readers unfamiliar with dynamic logic. The translation
of statement L1 is:

L1 Δ= ∧ pc = “L1”
∧ ∃ i ∈ {1, 2} : i = 2
∧ pc′ = “L2”
∧ unchanged 〈. . .〉

It should be clear to anyone who understands simple predicate logic that the
second conjunct equals true, so statement L1 is equivalent to skip.

These two examples are contrived. The first will not occur in practice because
no one will put an await statement after an assignment within a single step,
but the second abstracts a situation that occurs in real examples. Consider the
LoseMsg process in the alternating bit protocol of Figure 5. It may not be
clear what the either/or statement means if one or both channels are empty.
Examining the TLA+ translation reveals that the disjunct of the next-state
action that describes steps of this process is:

∧ pc[“L”] = “l”
∧ ∨ ∧ ∃ i ∈ 1 . .Len(msgC ) : msgC ′ = Remove(i ,msgC )

∧ unchanged ackC
∨ ∧ ∃ i ∈ 1 . .Len(ackC ) : ackC ′ = Remove(i , ackC )
∧ unchanged msgC

∧ pc′ = [pc except ! [“L”] = “l”]
∧ unchanged 〈input , output ,next , sbit , ack , rbit ,msg 〉

(The reader should be able to deduce the meaning of the except construct and,
being smarter than the translator, should realize that the action’s first conjunct
implies that its third conjunct is a complicated way of asserting pc′ = pc.) If
msgC is the empty sequence, then Len(msgC ) = 0, so 1 . .Len(msgC ) equals
the empty set. Since ∃ i ∈ {} : . . . equals false, this action’s second conjunct
is equal to the conjunct’s second disjunct. Hence, when msgC equals the empty
sequence, a step of the LoseMsg process can only be one that removes a message
from ackC . If ackC also equals the empty sequence, then the entire action equals
false, so in this case the process can do nothing.

It is not uncommon to specify the semantics of a programming language by
a translation to another language. However, the TLA+ translation can explain
to ordinary users the meanings of their programs. The translation is written in



The PlusCal Algorithm Language 53

the same module as the algorithm. The use of labels to name actions makes it
easy to see the correspondence between the algorithm’s code and disjuncts of
the next-state action. (The translator can be directed to report the names and
locations in the code of all labels that it adds.)

The semantics of PlusCal is defined formally by a TLA+ specification of the
translator as a mapping from an algorithm’s abstract syntax tree to the sequence
of tokens that form its TLA+ specification [4]. The part of the specification that
actually describes the translation is about 700 lines long (excluding comments).
This specification is itself executable by TLC. The translator has a mode in which
it parses the algorithm, writes a module containing the TLA+ representation of
the abstract syntax tree, calls TLC to execute the translation’s specification for
that syntax tree, and uses TLC’s output to produce the algorithm’s TLA+ trans-
lation. (The abstract syntax tree does not preserve the formatting of expressions,
so this translation may be incorrect for algorithms with expressions that use the
TLA+ bulleted conjunction/disjunction list notation.)

4.3 Liveness

An algorithm’s code specifies the steps that may be taken; it does not require
any steps to be taken. In other words, the code specifies the safety properties of
the algorithm. To deduce liveness properties, which assert that something does
eventually happen, we have to add liveness assumptions to assert when steps
must be taken. These assumptions are usually specified as fairness assumptions
about actions [11]. The two common types of fairness assumption are weak and
strong fairness of an action. Weak fairness of action A asserts that an A step
must occur if A remains continuously enabled. Strong fairness asserts that an A
step must occur if A keeps being enabled, even if it is also repeatedly disabled.

For almost all sequential (uniprocess) algorithms, the only liveness require-
ment is termination. It must be satisfied under the assumption that the algo-
rithm keeps taking steps as long as it can, which means under the assumption
of weak fairness of the entire next-state action. (Since there is no other process
to disable an action, weak fairness is equivalent to strong fairness for sequential
algorithms.) The PlusCal translator can be directed to create the appropriate
TLA+ translation and TLC configuration file to check for termination.

For multiprocess algorithms, there is an endless variety of liveness require-
ments. Any requirement other than termination must be defined by the user in
the TLA+ module as a temporal-logic formula, and the TLC configuration file
must be modified to direct TLC to check that it is satisfied. The three most
common fairness assumptions are weak and strong fairness of each process’s
next-state action and weak fairness of the entire next-state action—the latter
meaning that the algorithm does not halt if any process can take a step, but
individual processes may be starved. The PlusCal translator can be directed to
add one of these three fairness assumptions to the algorithm’s TLA+ transla-
tion. However, there is a wide variety of other fairness assumptions made by
algorithms. These must be written by the user as temporal-logic formulas.



54 L. Lamport

As an example, let us return to algorithm ABProtocol of Section 2.4. A live-
ness property we might want to require is that every message that is chosen is
eventually delivered. Since the safety property implies that incorrect messages
are not delivered, it suffices to check that enough message are delivered. This is
expressed by the following temporal logic formula, which asserts that for any i ,
if input ever contains i elements then output will eventually contain i elements:

∀ i ∈ Nat : (Len(input) = i) � (Len(output) = i)

The algorithm satisfies this property under the assumption of strong fairness of
the following operations:

– The sender’s first or clause, which can send a message
– The sender’s second or clause, which can receive an acknowledgement.
– The receiver’s either clause, which can send an acknowledgement.
– The receiver’s or clause, which can receive a message.

The translation defines the formula Sender to be the sender’s next-state action.
It is the disjunction of three formulas that describe the three clauses of the
either/or statement. The first or clause is the only one that can modify msgC ,
so the action describing that clause is Sender ∧ (msgC ′ �= msgC ). Similarly, the
sender’s last or clause is described by the action Sender ∧ (ackC ′ �= ackC ). The
relevant receiver actions are defined similarly. The complete TLA+ specification
of the algorithm, with these four strong fairness conditions, is the following
formula:

∧ Spec
∧ SFvars(Sender ∧ (ackC ′ �= ackC ))
∧ SFvars(Sender ∧ (msgC ′ �= msgC ))
∧ SFvars(Receiver ∧ (ackC ′ �= ackC ))
∧ SFvars(Receiver ∧ (msgC ′ �= msgC ))

This specification makes no fairness assumption on the sender’s operation of
choosing a message to send or on the LoseMsg process’s operation of deleting a
message. Those operations need never be executed.

To check the liveness property ∀ i ∈ Nat . . . , we must tell TLC to substitute
a finite set for Nat . With the constraint described in Section 2.4, it suffices to
substitute 0 . . 4 for Nat . It then takes TLC about 3.5 minutes to check that
the algorithm satisfies the liveness property, about 30 times as long as the 7.5
seconds taken to check safety. This ratio of 30 is unusually large for such a small
example; it arises because the liveness property being checked is essentially the
conjunction of five formulas that are checked separately—one for each value of
i . For a single value of i , the ratio of liveness to safety checking is about the
same factor of 5 as for the Fast Mutual Exclusion Algorithm.

Fairness is subtle. Many readers may not understand why these four fairness
assumptions are sufficient to ensure that all messages are received, or why strong



The PlusCal Algorithm Language 55

fairness of the complete next-state actions of the sender and receiver are not. The
ability to mechanically check liveness properties is quite useful. Unfortunately,
checking liveness is inherently slower than checking safety and cannot be done on
as large an instance of an algorithm. Fortunately, liveness errors tend to be less
subtle than safety errors and can usually be caught on rather small instances.

5 Labeling Constraints

PlusCal puts a number of restrictions on where labels can and must appear.
They are added to keep the TLA+ translation simple—in particular, to achieve
the principles T1–T3 described in Section 4.2. Here are the restrictions. (They
can be stated more succinctly, but I have split apart some rules when different
cases have different rationales.)

A while statement must be labeled.
Programming languages need loops to describe simple computations; PlusCal
does not. For example, it is easy to write a single PlusCal assignment statement
that sets x [i ] to the ith prime, for all i in the domain of x . In PlusCal, a loop
is a sequence of repeated steps. Eliminating this restriction would require an
impossibly complicated translation.

In any control path, there must be a label between two assignments to the same
variable. However, a single multi-assignment statement may assign values to
multiple components of the same (array- or record-valued) variable.

This is at worst a minor nuisance. Multiple assignments to a variable within
a step can be eliminated by using a with statement—for example, replacing

x : = f (x ); . . . ; x : = g(x , y)
by

with temp = f (x ) do . . . ; x : = g(temp, y) end with
A translation could perform such a rewriting, but that would require violating
T2.

A statement must be labeled if it is immediately preceded by an if or either
statement that contains a goto, call, return, or labeled statement within it.

Without this restriction, the translation would have to either duplicate ex-
pressions, violating T3, or else avoid such duplication by giving expressions
names, violating T2.

The first statement of a process or of a uniprocess algorithm must be labeled.
This is a natural requirement, since a step is an execution from one label to
the next.

The do clause of a with statement cannot contain any labeled statements.
Allowing labels within a with statement would require the with variables to
become TLA+ variables, violating T1.



56 L. Lamport

A statement other than a return must be labeled if it is immediately preceded
by a call ; and a procedure’s first statement must be labeled.

This means that executing a procedure body requires at least one complete
step. There is no need for intra-step procedure executions in PlusCal; any-
thing they could compute can be described by operators defined in the TLA+

module.

A statement that follows a goto or return must be labeled.
This just rules out unreachable statements.

A macro body cannot contain any labeled statements.
A macro can be used multiple times within a single process, where it makes no
sense for the same label to appear more than once. Related to this constraint
is the restriction that a macro body cannot contain a while, call, return, or
goto statement.

6 Conclusion

PlusCal is a language for writing algorithms. It is designed not to replace pro-
gramming languages, but to replace pseudo-code. Why replace pseudo-code? No
formal language can be as powerful or easy to write. Nothing can beat the con-
venience of inventing new constructs as needed and letting the reader try to
deduce their meaning from informal explanations.

The major problem with pseudo-code is that it cannot be tested, and untested
code is usually incorrect. In August of 2004, I did a Google search for quick sort
and tested the first ten actual algorithms on the pages it found. Of those ten, four
were written in pseudo-code; they were all incorrect. The only correct versions
were written in executable code; they were undoubtedly correct only because
they had been debugged.

Algorithms written in PlusCal can be tested with TLC—either by complete
model checking or by repeated execution, making nondeterministic choices ran-
domly. It takes effort to write an incorrect sorting algorithm that correctly sorts
all arrays of length at most 4 with elements in 1 . . 4. An example of an incor-
rect published concurrent algorithm and how its error could have been found by
using PlusCal appears elsewhere [12].

Another advantage of an algorithm written in PlusCal is that it has a precise
meaning that is specified by its TLA+ translation. The translation can be a
practical aid to understanding the meaning of the code. Since the translation is
a formula of TLA, a logic with well-defined semantics and proof rules [13], it can
be used to reason about the algorithm with any desired degree of rigor.

We can use anything when writing pseudo-code, including PlusCal. Pseudo-
code is therefore, in principle, more expressive than PlusCal. In practice, it isn’t.
All pseudo-code I have encountered is easily translated to PlusCal. The Fast Mu-
tual Exclusion Algorithm of Section 2.3 is typical. The PlusCal code looks very
much like the pseudo-code and is just a little longer, mostly because of variable



The PlusCal Algorithm Language 57

declarations. Those declarations specify the initial values of variables, which
are usually missing from the pseudo-code and are explained in accompanying
text. What is not typical about the Fast Mutual Exclusion example is that the
pseudo-code describes the grain of atomicity. When multiprocess algorithms are
described with pseudo-code, what constitutes an atomic action is usually either
described in the text or else not mentioned, leaving the algorithm essentially
unspecified. PlusCal forces the user to make explicit the grain of atomicity. She
must explicitly tell the translator if she wants it to insert labels, which yields
the largest atomic actions that PlusCal permits.

As dramatically illustrated by the quicksort partition example, PlusCal makes
it easy to write algorithms not usually expressed in pseudo-code. The alternating
bit protocol is another algorithm that is not easily written in ordinary pseudo-
code. Of the first ten descriptions of the protocol found in January of 2008 by a
Google search for alternating bit protocol, five were only in English, four were in
different formal languages, and one described the processes in a pictorial finite-
state machine language and the channels in English. None used pseudo-code. Of
these five formal languages, all but finite-state machines were inscrutable to the
casual reader. (Finite-state machines are simple, but too inexpressive to be used
as an algorithm language.)

PlusCal is a language with simple program structures and arbitrary mathe-
matical expressions. The existing programming language that most closely re-
sembles it is SETL [14]. The SETL language provides many of the set-theoretic
primitives of TLA+, but it lacks the ability to define new operators mathemat-
ically; they must be described by procedures for computing them. Moreover,
SETL cannot conveniently express concurrency or nondeterminism.

There are quite a few specification languages that can be used to describe and
mechanically check algorithms. Many of them, including Alloy [15] and TLA+

itself, lack simple programming-language constructs like semicolon and while
that are invaluable for expressing algorithms clearly and simply. Some are more
complicated than PlusCal because they are designed for system specifications
that are larger and more complicated than algorithms. Others, such as Spin [16]
and SMV [17], are primarily input languages for model checkers and are little
better than programming languages at describing mathematical operators. Fur-
thermore, many of these specification methods cannot express fairness, which is
an important aspect of concurrent algorithms. I know of no specification lan-
guage that combines the expressiveness and simplicity of PlusCal.

The one formal language I know of that has the replacement of pseudo-code
as a stated goal is AsmL, the abstract state machine language of Gurevich
et al. [18]. It is a reasonable language for writing sequential algorithms, though
its use of types and objects make it more complicated and somewhat less ex-
pressive than PlusCal. However, while AsmL has ordinary control statements
like while, they can appear only within an atomic step. This makes AsmL un-
suitable for replacing pseudo-code for multiprocess algorithms. Also, it cannot
be used to express fairness.



58 L. Lamport

There are a number of toy programming languages that might be used for writ-
ing algorithms. All the ones I know of that can be compiled and executed allow
only the simple expressions typical of programming languages. We could look to
paper languages for better constructs than PlusCal’s. Perhaps the most popular
proposals for novel language constructs are Dijkstra’s guarded commands [19],
Hoare’s CSP [20], and functional languages. Guarded command constructs are
easily expressed with either/or and with statements, which provide more flexi-
bility in specifying the grain of atomicity; the lack of shared variables and depen-
dence on a particular interprocess communication mechanism make it difficult
to write algorithms like Fast Mutual Exclusion and the Alternating Bit Protocol
in CSP; and I have never seen a published concurrent or distributed synchro-
nization algorithm described functionally. As the basis for an easy-to-understand
algorithm language, it is hard to justify alternatives to the familiar constructs
like assignment, if/then, and while that have been used for decades and appear
in the most popular programming languages.

If simplicity is the goal, why add the await, with, and either/or constructs
that were shown in Section 4.2 to be subtle? These constructs are needed to ex-
press interprocess synchronization and nondeterminism, and there are no stan-
dard ones that can be used instead. The subtlety of these constructs comes from
the inherent subtlety of the concepts they express.

Finally, one might want to use a different expression language than TLA+.
To achieve expressiveness and familiarity, the language should be based on or-
dinary mathematics—the kind taught in introductory math classes. A number
of languages have been designed for expressing mathematics formally. I obvi-
ously prefer TLA+, but others may have different preferences. A replacement
for TLA+ should be suitable not just as an expression language, but as a target
language for a translator and as a language for expressing liveness properties,
including fairness. It should also permit model checking of algorithms.

Upon being shown PlusCal, people often ask if it can be used as a program-
ming language. One can undoubtedly define subsets of the expression language
that permit compilation into reasonably efficient code. However, it is not clear
if there is any good reason to do so. The features that make programming lan-
guages ill-suited to writing algorithms are there for a reason. For example, strong
typing is important in a programming language; but one reason PlusCal is good
for writing algorithms is the simplicity that comes from its being untyped.

PlusCal is meant to replace pseudo-code. It combines the best features of
pseudo-code with the ability to catch errors by model checking. It is suitable for
use in books, in articles, and in the classroom. It can also be used by programmers
to debug their algorithms before implementing them.

References

1. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood
Cliffs (1975)

2. Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2003),
http://lamport.org



The PlusCal Algorithm Language 59

3. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999)

4. Lamport, L.: The PlusCal algorithm language,
http://research.microsoft.com/users/lamport/tla/pluscal.html

The page can also be found by searching the Web for the 25-letter string obtained
by removing the “-” from uid-lamportpluscalhomepage

5. Sedgewick, R.: Algorithms. Addison-Wesley, Reading (1988)
6. Hoare, C.A.R.: Algorithm 64: Quicksort. Communications of the ACM 4, 321

(1961)
7. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems 5, 1–11 (1987)
8. Lamport, L.: What good is temporal logic? In: Mason, R.E.A. (ed.) Information Pro-

cessing 83: Proceedings of the IFIP 9th World Congress, Paris, IFIP, pp. 657–668.
North-Holland, Amsterdam (1983)

9. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Symposium
on Foundations of Computer Science, pp. 109–121. IEEE, Los Alamitos (1976)

10. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Mateo (1995)
11. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer,

Heidelberg (1986)
12. Lamport, L.: Checking a multithreaded algorithm with +CAL. In: Dolev, S. (ed.)

DISC 2006. LNCS, vol. 4167, pp. 151–163. Springer, Heidelberg (2006)
13. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming

Languages and Systems 16, 872–923 (1994)
14. Schwartz, J.T., Dewar, R.B., Schonberg, E., Dubinsky, E.: Programming with sets:

An Introduction to SETL. Springer, New York (1986)
15. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology 11, 256–290 (2002)
16. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
17. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-

drecht (1993)
18. Gurevich, Y.: Can abstract state machines be useful in language theory? Theoret-

ical Computer Science 376, 17–29 (2007)
19. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs

(1976)
20. Hoare, C.A.R.: Communicating sequential processes. Communications of the

ACM 21, 666–677 (1978)

Appendix: The C-Syntax Grammar

Here is a simplified BNF grammar for PlusCal’s c-syntax. Terminals like begin
are distinguished by font and are sometimes quoted like “(” to avoid ambiguity.
The grammar omits restrictions on where labels may or must not occur, on what
statements may occur in the body of a macro, and on the use of reserved tokens
like if and := in identifiers and expressions.

Algorithm ::= --algorithm Id
{ [VarDecls ] [Definitions ] Macro∗

Procedure∗ (CompoundStmt | Process+) }

Definitions ::= define { Defs } [;]



60 L. Lamport

Macro ::= macro Id “(” [Id (, Id)∗ ] “)” CompoundStmt [;]

Procedure ::= procedure Id “(” [PVarDecl (, PVarDecl)∗ ] “)”
[PVarDecls ] CompoundStmt [;]

Process ::= process “(” Id (= | \in) Expr “)”
[VarDecls ] CompoundStmt [;]

PVarDecls ::= variable[s] ( Id [ = Expr ] (;|,) )+

VarDecls ::= variable[s] ( Id [ (= | \in) Expr ] (;|,) )+

CompoundStmt ::= { Stmt [; Stmt ]∗ [;] }

Stmt ::= [Id :] (UnlabeledStmt | CompoundStmt)

UnlabeledStmt ::= Assign | If | While | Either | With | | Await | Print |
Assert | skip | return | Goto | [call] Call

Assign ::= LHS := Expr ( “||” LHS := Expr)∗

LHS ::= Id (“[” Expr (,Expr)∗ “]” | “.” Id)∗

If ::= if “(” Expr “)” Stmt [else Stmt ]

While ::= while “(” Expr “)” Stmt

Either ::= either Stmt (or Stmt )+

With ::= with “(” Id ( = | \in ) Expr
( (; | ,) Id ( = | \in ) Expr )∗ [; | ,] “)” Stmt

Await ::= ( await | when ) Expr

Print ::= print Expr

Assert ::= assert Expr

Goto ::= goto Id

Call ::= Id “(” [Expr (, Expr)∗ ] “)”

Id ::= A TLA+ identifier (string of letters, digits, and “ ”s not all digits).

expr ::= A TLA+ expression.

Defs ::= A sequence of TLA+ definitions.


	The PlusCal Algorithm Language
	Introduction
	Some Examples
	Euclid’s Algorithm
	The Quicksort Partition Operation
	The Fast Mutual Exclusion Algorithm
	The Alternating Bit Protocol

	The Complete Language
	The TLA$^{+}$ Translation
	An Example
	Translation as Semantics
	Liveness

	Labeling Constraints
	Conclusion
	References
	Appendix: The C-Syntax Grammar



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




