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Abstract. In the recent years, several new classes of contextual gram-
mars have been introduced to give an appropriate model description to
natural languages. With this aim, some new families of contextual lan-
guages have been introduced based on maximal and depth-first condi-
tions and analyzed in the framework of so-called mildly context sensitive
languages. However, the relationship among these families of languages
have not yet been analyzed in detail. In this paper, we investigate the re-
lationship between the families of languages whose grammars are based
on maximal and depth-first conditions. We prove an interesting result
that all these families of languages are incomparable to each other, but
they are not disjoint.

Keywords: internal contextual grammars, maximal, depth-first,
incomparable.

1 Introduction

Contextual grammars produce languages starting from a finite set of axioms and
adjoining contexts, iteratively, according to the selector present in the current
sentential form. As introduced in [15], if the contexts are adjoined at the ends of
the strings, the grammar is called external. Internal contextual grammars were
introduced by Păun and Nguyen in 1980 [20], where the contexts are adjoined
to the selector strings which appear as substrings of the derived string. The
main motivation for introducing contextual grammars was to obtain languages
that are more appropriate from natural languages point of view. In fact, the
class of languages should (i) contain basic non-context-free languages, (ii) be
parsable in polynomial time (iii) contain semilinear languages only, and these
three properties together define the so-called mildly context sensitive (MCS)
formalisms and languages, as introduced by A.K. Joshi in 1985 [5].
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When contextual grammars are analyzed from the perspective of MCS for-
malisms, the basic classes, external and internal contextual languages fail to
contain some desirable non-context-free languages. Further, they contain non-
semilinear languages too [4],[6]. Also, at present only exponential time algorithms
are known for the membership problem of internal contextual grammars [2] and
whether it can be solved in polynomial time algorithm remains open [8]. There-
fore, some attempts have been made in the last decade or so to introduce variants
of contextual grammars by restricting the selector chosen in the derivation, to ob-
tain certain specific classes of contextual languages which satisfy the above said
MCS properties. The first such main variant was depth-first contextual grammars
[18] where the main catch is to track the previously adjoined contexts in the selec-
tor. Though this idea might be useful while parsing (especially for backtracking),
these grammars fail to generate one of the basic non-context-free languages, like
multiple agreement: {anbncn | n ≥ 1}. So, other new classes of grammars have
been introduced, for instance, maximal contextual grammars [17]. Though they
generate the basic non-context-free languages, they also generate non-semilinear
languages [16]. Besides, in [2], it was proved that these maximal and internal
contextual grammars can be transformed into equivalent dynamic range concate-
nation grammars, an extended formalism of range concatenation grammars [1]).
However, parsing dynamic range concatenation grammar allows exponential time
complexity and thus this strategy is not useful.

Further, in [11], a variant namely maximal depth-first grammars have been
introduced, by combining the maximal and depth-first conditions. Like maxi-
mal grammars, the family of languages generated by these grammars contain
non-context-free languages, but their membership and semilinear problems have
been left open. Later in [12], two variants, namely end-marked maximal depth-
first and inner end-marked maximal depth-first grammars have been introduced
with the aim to solve the membership problem and semilinearity issue for max-
imal depth-first derivation. In [7], Ilie considered a new variant called maximal
local. Ilie showed that the languages generated by maximal local grammars with
regular selectors contain basic non-context-free languages and the membership
problem for these languages is solvable in polynomial time. But the question of
semilinearity was left open for these languages and in [11], a restricted variant
of maximal local contextual grammars, called absorbing right context grammar
has been introduced in order to solve the semilinear problem of maximal local.

Many of these variants were obtained by refining the previous variants (i.e.,
imposing further restrictions in the existing variants) with the hope that they
could clear the failed properties of MCS and at the same time the properties
which are shown to satisfy are also preserved. Out of all these variants discussed
above, the classes of languages generated by maximal local, absorbing right con-
text, inner end-marked depth-first grammars with regular selectors were shown
to satisfy the properties of MCS languages [9],[11],[12]. Since all the above vari-
ants have been introduced with a single aim to satisfy the properties of MCS
languages (and thus to give a model description for natural languages from the
domain of contextual grammars), the relative expressive power of these variants
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have not been discussed so far. Our motivation in this paper is to analyze the
expressive power of these grammars.

When several classes of grammars originate from one grammar, it would be
interesting to analyze their power of generating languages and to form the hi-
erarchical structures with the results we obtain. When such hierarchical order
is not possible between the families of languages, they become incomparable. In
this paper, we analyze the generative power of the above mentioned variants of
the internal contextual grammars with regular selectors. We prove that all these
families of the above said variants are incomparable to one another. Also, we
prove that they are not disjoint as there are common languages that are shared
by these families of languages.

As a word of caution we would like to mention that so far no unanimous
definition of MCS has been agreed to. For example, the semilinear property is
considered to be too strong and is replaced by a weaker property, constant growth
property. Also non-compliance of these mentioned properties does not rule out
a formalism being useful, for example, “back-end” general formalisms like range
concatenation grammars [1] or abstract categorial grammars [19]. Also, several
other variants of contextual grammars have been introduced and analyzed from
the perspective of formal languages. However, we do not discuss them here as
it is out of scope of this paper and we refer to the monograph [21] for more
variants.

2 Preliminaries

We assume the readers are familiar with the basic formal language theory no-
tions. We refer to [22] for more details on formal language theory. We now present
the definition of a few classes of contextual grammars considered in this paper.

An internal contextual grammar is G = (V, A, (S1, C1), . . . , (Sm, Cm)), m ≥ 1,
where V is an alphabet, A ⊆ V ∗ is a finite set called axioms, Sj ⊆ V ∗, 1 ≤ j ≤ m,
are the sets of selectors or choice, and Cj ⊆ V ∗×V ∗, Cj finite, 1 ≤ j ≤ m, are the
sets of contexts associated with the selector Sj . The usual derivation in the inter-
nal mode is defined as x =⇒in y iff x = x1x2x3, y = x1ux2vx3, for x1, x2, x3 ∈
V ∗, x2 ∈ Sj , (u, v) ∈ Cj , 1 ≤ j ≤ m.

Given an internal contextual grammar G as above, the maximal and depth-
first derivations are given as below. In maximal mode (denoted by max), at
each derivation, the chosen selector x2 ∈ Si, for the next derivation should be
of maximal length than the other possible selectors x′

2 ∈ Si (for the formal
representation of maximal condition, refer the below condition (iii) alone). In
depth-first mode (denoted by df), for every derivation, the selector for the next
derivation must contain one of the contexts u or v which was adjoined in the
previous derivation (for the formal representation of depth-first condition, refer
below condition (ii) alone). Next, we define maximal depth-first grammar, ob-
tained by combining maximality and depth-first conditions. More formally, given
a contextual grammar G as above, a maximal depth-first derivation (denoted by
mdf) in G is a derivation w1 =⇒mdf w2 =⇒mdf . . . =⇒mdf wn, n ≥ 1, where
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(i) w1 ∈ A, w1 =⇒in w2 (i.e., in the usual internal mode),
(ii) For each i = 2, 3, . . . , n − 1, if wi−1 = z1z2z3, wi = z1uz2vz3 ((u, v) is the

context adjoined to wi−1 in order to get wi), then wi = x1x2x3, wi+1 =
x1sx2tx3, such that x2 ∈ Sj , (s, t) ∈ Cj , for some j, 1 ≤ j ≤ m, and
x2 contains one of the contexts u or v as a substring (thus, satisfying the
depth-first condition). Note that here the chosen next selector contains not
any s or t occurred in the string, but the same s or t adjoined in the previous
derivation step.

(iii) For each i = 2, 3, . . . , n − 1, if wi =⇒df wi+1, then there will be no other
derivation in G with wi =⇒df w′

i+1 such that wi = x′
1x

′
2x

′
3, x′

2 ∈ Sj and
|x′

2| > |x2| where x2 ∈ Sj (note that the selector x2 is of maximal length
with respect to Sj only, and not with respect to all selectors).

Given a contextual grammar G, we next define the local mode in the follow-
ing way. For z ∈ A, z =⇒in x such that z = z1z2z3, x = z1uz2vz3, z2 ∈
Sk, (u, v) ∈ Ck, for z1, z2, z3 ∈ V ∗, 1 ≤ k ≤ m, then x =⇒loc y is called local
with respect to z =⇒ x, iff we have u = u′u′′, v = v′v′′, u′, u′′, v′, v′′ ∈ V ∗, y =
z1u

′su′′z2v
′tv′′z3, for u′′z2v

′ ∈ Sj , (s, t) ∈ Cj , 1 ≤ j ≤ m. That is, at each
derivation, the contexts are introduced adjacent to the contexts (or to the side
of the previous selector itself, when u′′ = λ = v′) which were introduced in the
previous derivation. Note that, at every derivation, the selector may expand on
its left side or right side or both sides, but expands not more than the contexts
introduced in the previous derivation step. Therefore, once a selector is chosen,
that selector should be a subword for the selectors used in the further derivations
(this point is often used in the proofs). When the maximality condition is in-
cluded with this local variant, the grammar is said to be maximal local (denoted
by mloc).

Now, we define a variant obtained by imposing further restriction to the above
mloc grammar and we call it as absorbing right contextual grammar (denoted by
arc) [11]. In this variant, the selector (say yi+1) for the next derivation (step) is
obtained by adjoining the first half v′i of the current right context to the current
selector yi where vi = v′iv

′′
i , |v′i| = � |vi|

2 �, |v′′| = 	 |vi|
2 
. That is, yi+1 = yiv

′
i, yi ∈

Sj , yi ∈ V ∗, v′i ∈ V +.
An end-marked maximal depth-first (denoted by emdf) contextual gram-

mar [12] is a construct G = (V, A, {(S1, C1), . . . , (Sm, Cm)}), m ≥ 1, where
V, A, S1, . . . Sm, are as mentioned in the definition of internal contextual gram-
mar and Cj ⊆ (V +

{L,R} × V ∗) ∪ (V ∗ × V +
{L,R}), Cj finite, 1 ≤ j ≤ m, are the

set of contexts. The elements of Cj ’s are of the form (uL, v), (uR, v), (u, vL), and
(u, vR). The suffix L and R represents end marker (left and right) for the selector
of the next derivation. uL (or vL) indicates the selector for the next derivation
should start with u (or v), thus u (or v) is the left end of the next selector.
Similarly, uR (or vR) indicates the selector for the next derivation should end
with the context u (or v). Given such a grammar G, an emdf derivation in G is
a derivation w1 =⇒emdf w2 =⇒emdf . . . =⇒emdf wn, n ≥ 1, where

– w1 ∈ A, w1 =⇒ w2 in the usual way,
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– For each i = 2, 3, . . . , n − 1, if wi−1 = z1z2z3, wi = z1uz2vz3, such that
z2 ∈ Sk, 1 ≤ k ≤ m, then wi = x1x2x3, wi+1 = x1sx2tx3, such that
x2 ∈ Sj , 1 ≤ j ≤ m, and x2 will be one of the following four cases:
(i) x2 = uz′2, u �= λ, if (uL, v) ∈ Ck, with z′2 ∈ V ∗ is of maximal (i.e., there

exists no z′′2 ∈ V ∗, such that uz′′2 ∈ Sj , with |z′′2 | > |z′2|).
(ii) x2 = z′1u, u �= λ, if (uR, v) ∈ Ck, with z′1 ∈ V ∗ is of maximal (i.e., there

exists no z′′1 ∈ V ∗, such that z′′1u ∈ Sj , with |z′′1 | > |z′1|).
(iii) x2 = z′2v, v �= λ, if (u, vR) ∈ Ck, with z′2 ∈ V ∗ is of maximal (i.e., there

exists no z′′2 ∈ V ∗, such that z′′2v ∈ Sj , with |z′′2 | > |z′2|).
(iv) x2 = vz′3, v �= λ, if (u, vL) ∈ Ck, with z′3 ∈ V ∗ is of maximal (i.e., there

exists no z′′3 ∈ V ∗, such that vz′′3 ∈ Sj , with |z′′2 | > |z′2|).
Now, we introduce the next variant. Given a emdf grammar G, we can de-

fine the inner end-marked maximal depth-first grammar (denoted by iemdf) by
imposing the following changes in the grammar and in derivation.

– Cj ⊆ (V +
L × V ∗) ∪ (V ∗ × V +

R ).
– As the elements of Cj ’s are of the form (uL, v) and (u, vR), the cases (ii) and

(iv) discussed above are void and only the cases (i) and (iii) are valid.
– The selector for the next derivation should lie inside the contexts u and

v which were adjoined in the previous derivation. More precisely, the next
chosen selector cannot have both the adjoined contexts u and v, but it may
contain the proper prefixes of v (if u is end-marked, i.e., uL) or proper
suffixes of u (if v is end-marked, i.e., vR). Obviously the end-marked context
is included in the next chosen selector in order to satisfy the depth-first and
end-marked conditions. More formally, if u and v are the contexts adjoined
to the selector, say z2, then the next selector, say x2, will be a strict subword
of uz2v and x2 should either begin with u or end with v.

From the above definitions, we can see that the definition of each of the gram-
mars is interlinked with the other and all the grammars share the maximality
condition in common (except arc) and many grammars share the depth-first con-
dition also (some grammars share this condition partially, like mloc and arc).

The language generated by a grammar G in the mode β, β ∈
{max, mdf, mloc, arc, emdf, iemdf} is given by Lβ(G) = {w ∈ V ∗ | x =⇒∗

β

w, x ∈ A}, where =⇒∗
β is the reflexive transitive closure of the relation =⇒β .

If all the sets of selectors S1, . . . , Sm are in a family F of languages, then we
say that the grammar G is with F choice. As usual, the family of languages
for G working in β ∈ {max, mdf, mloc, arc, emdf, iemdf} mode with F choice
is given as ICCmax(F ), ICCmdf (F ), ICCmloc(F ), ICCarc(F ), ICCemdf (F ), and
ICCiemdf (F ), respectively. In this paper, we consider F ∈ {FIN, REG}.

The following assumption is made throughout this paper. We do not consider
the empty contexts (λ, λ) here, but one-sided contexts of the form (λ, v), (u, λ)
are considered (but the λ context cannot be an end-marker). Also, the underlined
symbols denote the newly inserted contexts and the word in between the two
down arrows indicates the selector used for the next derivation. We call maximal
length as maximal in many places for the sake of brevity. Also, we refer the
selector for the next derivation as simply next selector in many occurrences.
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3 Results

In this section, we discuss the generative power of the internal contextual gram-
mars when we put different types of restrictions on the derivations such as
max, mloc, arc, mdf, emdf, iemdf . Here, the generative power of a class of gram-
mars deals with the limitation of the grammars in generating the languages
(like what languages can or cannot be produced by these grammars). We aim to
show that there are some languages which can be generated when putting one
type of restriction on the derivation but they cannot be generated when some
other types of restriction is imposed on the derivation. Also we aim to show that
there are lanaguges which can be generated by all types of restricted derivations
mentioned in the previous section.

Lemma 1. ICCα(FIN) ⊂ ICCα(REG), α ∈ {max, mdf, mloc, arc, emdf,
iemdf}.
Proof. The relation ICCα(FIN) ⊆ ICCα(REG) is obvious. The strict inclusion
follows from the following result. Consider the crossed dependency language
L1 = {anbmcndm | n, m ≥ 1}. This language cannot be generated by any of the
above α grammars with finite choice since in order to increase the occurrences
of a, c equally and b, d equally, the grammar needs regular selectors of the form
ak1b+ck2 and bk3c+dk4 , k1, k2, k3, k4 ≥ 0, respectively. However, in previous pa-
pers ([7],[9],[11],[12],[17]), all these grammars were shown to generate L1 with
regular selectors. ��
Lemma 2. L2 = {a, b}+ ∈ ICCα(REG), α ∈ {max, mdf, mloc, arc, emdf,
iemdf}.
Proof. The language L2 = {a, b}+ can be generated by Gα =
({a, b}, {a, b}, ({a, b}, {(aL, λ), (bL, λ)})) for α ∈ {max, mdf, emdf, iemdf} (for
max, mdf modes, there is no suffix L in the contexts). Any string w = w1 . . . wn ∈
L2 can be produced by starting from wn, adding the context on the left, itera-
tively. For β = {mloc, arc} modes, Gβ = ({a, b}, {a, b}, ({a, b}+, {(λ, a), (λ, b)})).
It is easy to see that L(Gβ) = L2. ��
The above result shows that the language {a, b}+ is included in all families of
languages ICCα(REG), α ∈ {max, mdf, mloc, arc, emdf, iemdf}.
Lemma 3. ICCα(REG) − ICCmax(REG) �= ∅, α ∈ {mdf, mloc, arc, emdf,
iemdf}.
Proof. The language L3 = {an | n ≥ 1} ∪ {anbncn | n ≥ 1} can be generated by
the grammars

Gmdf = ({a, b, c}, {a, aa, abc}, (aa, (a, λ)), (b+c+, (ab, c))).
Gmloc = ({a, b, c}, {a, aa, abc}, (aa, (a, λ)), (b+c, (ab, c))).
Garc = ({a, b, c}, {a, aa, abc}, (aa+, (λ, a)), (b+, (a, bc))).

G{emdf,iemdf} = ({a, b, c}, {a, aa, abc}, (aa, (aL, λ)), (b+c+, (ab, cR))).

In order to get a better understanding on how the strings are generated using these
grammars, we provide some details about the selectors used in the derivations.
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To generate the strings of the form an, aa (or aa+ for arc mode) is chosen
as selector for all derivations and a is adjoined to the side of the selector. For
strings of the other part of the language (anbncn), the selector b+c+ covers the
adjoined right context c in mdf mode. In mloc mode, we have u′

2 = a, u′′
2 = b

and v′2 = λ, v′′2 = c, at every derivation. In arc mode, every time the selector
b+ absorbs half of the right context b in bc. In emdf mode, whenever (aL, λ) is
introduced, the next selector starts with a (a is the left end of the selector aa)
and whenever (ab, cR) is introduced, the next selector ends with the adjoined
right context c (c is the right end of the selector b+c+). In iemdf mode, the
condition (uL, v) or (u, vR) is satisfied and the selector is inside the previously
introduced contexts. In all modes, the selectors are chosen of maximal length.

However, the language L3 is not in ICCmax(REG). Assume that the language
L3 ∈ ICCmax(REG) for a maximal grammar Gmax. In order to generate the
strings an, n ≥ 1, we need a selector ak, k ≥ 0, with the context (ai1 , ai2), i1+i2 ≥
1. Now, consider a string apbpcp for a large p ≥ k. As the context (ai1 , ai2) can
be applied to apbpcp by choosing a subword ak in ap, we can produce strings of
the form ap+i1+i2bpcp /∈ L3. A contradiction. ��
The following result is the counterpart for the above lemma.

Lemma 4. ICCmax(REG) − ICCβ(REG) �= ∅, β ∈ {mdf, mloc, arc, emdf,
iemdf}.
Proof. Consider the language L4 = {ancbnamcbm | n, m ≥ 0}. It is in
ICCmax(FIN), because this language can be generated by the grammar Gmax =
({a, b, c}, cc, (c, (a, b))). By Lemma 1, L4 ∈ ICCmax(REG).

However, L4 /∈ ICCβ(REG) for the above β. Assume that L4 ∈ ICCβ(REG)
for any grammar Gβ = ({a, b, c}, A, (S1, C1), . . . , (Sr, Cr)). First, we give the
proof for the case β = mdf . As axiom is also present in the language, the axiom
A must have a word of the form aicbiajcbj, i, j ≥ 0, and a context of the form
(ak, bk), k ≥ 1, is adjoined to such a word, then either the number of occurrences
of a and b around the first c, or the number of occurrences of a and b around the
second c is increased. Assume that the occurrences of a and b around the first c
is increased equally (the case of a and b increased equally around the second c is
symmetric). Therefore, we have aicbiajcbj =⇒ ai1akai2cbi3bkbi4ajcbj for i1+i2 =
i3 + i4 = i. The derivation must continue using a selector which covers at least
one of the contexts ak or bk. Continuing the derivation in this fashion, at some
point of time, we have to increase the number of occurrences of a and b around
the second c. In such a case, we have to use a context of the form (ap, bp), p ≥ 1,
and the selector should contain the subword bk which was introduced in the
previous derivation. As ap is a left context, it cannot be added to the right
side of bk and so ap should be adjoined to the left of bk (but not necessarily
immediate left). Then, we will have unequal number of a and b around the
second c, which results in a word not in L4. Other possibilities of derivations
also lead to generation of strings not in the language. Therefore, L(Gmdf ) = L4 is
impossible. For β = emdf mode, as the definition is based on depth-first concept,
the above argument about the context and selector are applicable. Continuing in
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that line, we have the context (ak, bk) is end-marked. Therefore, we have either
ak

L,R or bk
L,R. Obviously, ak

R and bk
L are failed to increase the occurrences of a and

b around the second c. If ak
L is the case, the occurrences of a around the second c

cannot be increased and if bk
R is the case, the occurrences of b around the second

c cannot be increased, thus unequal occurrences a and b is generated. It is not
hard to come-up with a similar argument to prove that the language cannot
be generated by iemdf grammars. Now, let us take β = mloc. By definition of
the grammar, every time the contexts are introduced adjacent to the previously
introduced contexts or to the previously used selector, pumping equal number
of a and b is possible only on one part of the language. Otherwise, we can derive
a word which is not in the language using a similar technique as above.

Finally, let us consider the case for β = arc. From the language, it is obvious
that no selector can have both c as a subword. Otherwise, b and a cannot be
increased in between the two c. Since the selector accumulates only on its right
side in this mode, if we use a selector contains the second c as a subword in
the axiom, then we cannot pump equal occurrences of a and b around the first
c. On the other hand, if we choose a selector which contains the first c as a
subword, then a∗cb+ will be a selector for further derivations. However, from
this selector, we can increase the occurrences of a only in the second part, thus
unequal number of a and b around the second c is generated. A contradiction.

��
From Lemma 2, 3 and 4, we have the following theorem.

Theorem 1. ICCmax(REG) is incomparable with the families ICCα(REG),
for α ∈ {mdf, mloc, arc, emdf, iemdf}, but not disjoint.

Lemma 5. ICCα(REG) − ICCmdf (REG) �= ∅, α ∈ {mloc, arc, emdf, iemdf}.

Proof. Consider the language L5 = {ancbn | n ≥ 1}∪{an | n ≥ 1}. This language
is in the family ICCα(REG) for the above α. Because this language can be gen-
erated by the grammar Garc = ({a, b, c}, {acb, a, aa}, (aa+, (λ, a)), (cb+, (a, b))),
in arc mode. For maximal local mode, the grammar Gmloc =
({a, b, c}, {acb, a, aa}, (aa, (λ, a)), (acb, (a, b))) generates L5. Note that, the
selector aa cannot be used in the subword a+cb+ since once a selector is chosen
in this mode, it will always be a subword to the further subwords. For emdf and
iemdf , the grammar G5 = ({a, b, c}, {acb, a, aa}, (aa+, (λ, aR)), (acb+, (a, bR)))
generates L5.

However, L5 /∈ ICCmdf (REG). On contrary, let us assume that L5 ∈
ICCmdf (REG) for a mdf grammar Gmdf . In order to generate the strings of
the first part, we need a context of the form (am, bm), m ≥ 1. In order to obtain
words of the form an for a large n, we need a context (ai, aj), i+j ≥ 1, associated
with the selector ak, k ≥ 1. Assume a word am+rcbm+r in the language where
m+ r ≥ k. Also, assume that this word is derived from arcbr, r ≥ 1 by adjoining
the context (am, bm). The selector for the next derivation should contain one
of the contexts am or bm. Now we can use the selector ak and obtain a word
ai+j+m+rcbm+r /∈ L5. A contradiction. ��
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Lemma 6. ICCα(REG) − ICCβ(REG) �= ∅, α ∈ {mloc, mdf, emdf},
β ∈ {arc, iemdf}.
Proof. Consider the marked mirror image language L6 = {wcwr | w ∈ {a, b}∗}.
This language can be generated by the grammars

Gmloc = ({a, b, c}, c, (c, {(a, a), (b, b)})).
Gmdf = ({a, b, c}, c, ({w′cw′′ | w′, w′′ ∈ {a, b}∗}, {(a, a), (b, b)})).
Gemdf = ({a, b, c}, c, ({w′cw′′ | w′, w′′ ∈ {a, b}∗}, {(aL, a), (bL, b)})).

However, this language does not belong to ICCarc(REG), ICCiemdf (REG). Be-
cause, for any type of grammar, generating the strings of the form wcwr is
possible only when the context of the form (ai, ai), i ≥ 1 or (bj , bj), j ≥ 1, is
adjoined to the selector c in each derivation, or when the above contexts are
adjoined to the selector w′cw′′, w′, w′′ ∈ {a, b}∗ and the selector w′cw′′ is of
maximal length. So, starting from c, either the selector c should absorb both
right and left context or should not absorb any context. In arc grammars, as the
selector absorbs the right context only, we cannot generate the language L6 or
otherwise, we can generate words which are not in L6. In iemdf mode, though
the selector can absorb right and left contexts, it is not permitted to absorb both
contexts at a time since the chosen selector for the next derivation should be
inside the adjoined contexts. Therefore, choosing a selector w′cw′′ of maximal
length is not possible. ��
From Lemma 2, 5 and 6, we have the following theorem.

Theorem 2. ICCmdf (REG) is incomparable with ICCiemdf (REG), but not
disjoint.

Lemma 7. ICCα(REG) − ICCβ(REG) �= ∅, α ∈ {arc, iemdf}, β ∈ {mloc,
mdf, emdf}.
Proof. Consider the non-marked duplication language L7 = {ww | w ∈ {a, b}∗}.
This language can be generated by the grammars

Garc = ({a, b}, λ, ({w′ | w′ ∈ {a, b}∗}, {(a, a), (b, b)})),
Giemdf = ({a, b}, λ, ({w′ | w′ ∈ {a, b}∗}, {(a, aR), (b, bR)})).

In arc mode, starting with the initial selector λ, it accumulates the right context
a or b every time. In iemdf mode, every time, the selector for the next derivation
is chosen inside the adjoined contexts (but right context is included for meeting
the depth-first condition) and of maximal length. A sample derivation in α mode
α ∈ {arc, iemdf} is given as

λ =⇒α w1
↓w1

↓ =⇒α w1w2
↓w1w2

↓ =⇒α w1w2w3
↓w1w2w3

↓ =⇒∗
α ww.

However L7 does not belong to ICCβ(REG) for the above β. In order to
generate the strings of the form ww, at each derivation, from the derived string
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w′′ ∈ L7, the context (x, x), x ∈ {a, b}+ is adjoined at the beginning of w′′(left
context x) and at the center of w′′(right context x) or at the center of w′′(left
context x) and at the end of w′′(right context x). This implies, the chosen selector
should expand only at one side from the center. Assume that w′ ∈ L7 is derived
from w′′ in such a way. Then, w′ = zxzx or w′ = xzxz, for z ∈ {a, b}∗, x ∈
{a, b}+ is the context adjoined and w′′ = zz. For β = mloc mode, at each
derivation, the contexts are adjoined to the side of previously adjoined contexts
and the selector (which is over {a, b}) is chosen of maximal length, from w′ we
can derive zyxzxy /∈ L7 or yxzxyz /∈ L7, where y is the context adjoined (which
should be near the last adjoined context x). Next, we assume β = emdf . In emdf
mode, we have the contexts are end-marked, thus (x{L,R}, x) or (x, x{L,R}) is
the case. If (xR, x) is the case, we have w′ = zxRzx or xRzxz and from w′ we
obtain, w′ =⇒ yRzxyzx or w′ =⇒ yRxyzxz /∈ L7 for the adjoined context y.
Though yRzxyzx ∈ L7, in the next derivation while adjoining another context
(y′

R, y′), we would have y′
Ryy′zxyzx /∈ L7. If (xL, x) is the case, we have w′ =

zxLzx or w′ = xLzxz and from w′, we obtain w′ =⇒ zyLxzxy /∈ L7 or w′ =⇒
yLxyzxz /∈ L7, where is the adjoined context. For the other case (x, x{L,R}), a
similar proof can be given. Note that it is look like L7 can be generated in emdf
mode (from w′ = zxRzx), if the contexts of the form (xR, x) and (y, yL) are
applied alternatively, however, since their corresponding selectors are same, the
contexts need not be applied alternatively and one context can be applied two
times to arrive to a contradiction. For β = mdf mode, assume that w′ = zxzx or
xzxz ∈ L7 is derived from w′′ = zz. Since w′ ∈ {a, b}∗, and the selector is over
{a, b} with maximal length, from w′ we can derive yzxzxy /∈ L7 or yxzxzy /∈ L7.

��
The above result is the converse relation for the Lemma 6. Therefore from the
above two lemmas and Lemma 2, we have the following theorem.

Theorem 3. The families ICCarc(REG) and ICCiemdf (REG) are incompara-
ble with the families ICCβ(REG), β ∈ {mloc, mdf, emdf}, but not disjoint.

Lemma 8. ICCarc(REG) − ICCiemdf (REG) �= ∅.
Proof. Consider the language L8 = {bnamcbnambn | n, m ≥ 0}. This language
can be generated by Garc = ({a, b, c}, c, (cb∗, {(b, bb), (a, a)}), (cb∗a∗, (a, a))). Ini-
tially, starting with the axiom c, the arc grammar generates strings of the form
bncb2n, n ≥ 1, using the context (b, bb). As half of the right context is absorbed
every time to the selector, the next selector (for the word bncb2n) will be cbn

and now the context (a, a) is applied several times to generate the language L8.
A sample derivation in arc mode is given by

c =⇒arc b↓cb↓b =⇒arc bb↓cbb↓bb =⇒arc bbb↓cbbb↓bbb =⇒∗
arc bn−1b↓cbn−1b↓bbn−1

=⇒arc bna↓cbna↓bn =⇒arc bnaa↓cbnaa↓bn =⇒∗
arc bnamcbnambn.

However, this language does not belong to ICCiemdf (REG). On contrary, let
us assume an iemdf grammar generates L8. Notice that the occurrences of b are
pumped equally at three places in the language. In general, no internal contextual
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grammar can pump more than two occurrences since at every derivation, we ad-
join only two contexts. Therefore, the necessary occurrences of b must be pumped
before a is pumped, using a context of the form (bi, b2i), i ≥ 1, with the associated
selector is of the form b∗cb∗. Since the contexts are end-marked, we have either
bi
L or bb2i

R . If bb2i
R is the case, then the occurrences of a cannot be inserted in be-

tween bs. When bi
L is the case, we can only generate bncbnbn and the occurrences

of a cannot be inserted at the correct place on the left of c (a sample derivation is
c =⇒iemdf

↓bLcb↓b =⇒iemdf
↓bLbcbb↓bb =⇒iemdf

↓bLbbcbbb↓bbb =⇒∗ bncbnbn).
Note that, in iemdf mode, the selector should not cover both the adjoined
contexts. ��
Lemma 9. ICCα(REG) − ICCarc(REG) �= ∅, α ∈ {iemdf, mdf}.
Proof. Consider the language L9 = {anbncbn | n ≥ 1}. This language can
be generated by the grammar Gα = ({a, b, c}, abcb, (b+cb+, (ab, bR))), α ∈
{mdf, iemdf} (for mdf grammar, there is no subscript R in the context).

However, L9 /∈ ICCarc(REG). On contrary, let us assume that L9 ∈
ICCarc(REG) for an arc grammar Garc. As c is a marker in the language, it is
easy to see that any context which uses to generate the language will be of the form
(aibi, bi), i ≥ 1, and the associated selector will be of the form bj1cbj2 , j1, j2 ≥ 1.
In this mode, the selector never absorbs the left context. So, there is no change
in the left end of the selector in every derivation. In order to generate the strings
of the language, at each derivation, the selector should absorb the substring bi

from the left adjoined context aibi. Otherwise, the symbols a and b do not occur
in order. This results misplaced occurrences of a and b in the generated string. A
contradiction. ��
From the above two lemmas and Lemma 2, we have the following result.

Theorem 4. ICCarc(REG) is incomparable with ICCiemdf (REG), but not
disjoint.
Lemma 10. ICCmdf (REG) − ICCmloc(REG) �= ∅.
Proof. Consider the language L10 = {ancbn+mdam | n, m ≥ 1}. This can be
generated by Gmdf = ({a, b, c, d}, acbbda, (cb+, (a, b)), (b+d, (b, a))). However this
language is not in ICCmloc(REG). Assume that L10 ∈ ICCmloc(REG) for a
mloc grammar. To generate the language, the grammar will have the contexts of
the form (ai, bi) and (bj , aj), i, j ≥ 1, and their associated selectors will be of
the form ak1cbk2 , bk3dak4 , respectively for k1, k2, k3, k4 ≥ 0. Consider the word
an′

cbn′
bda ∈ L10 for a large n′ (thus the word is not in the axiom). To reach

this word from the axiom, we might have used the context (ai, bi) (may be sev-
eral times) and the selector ak1cbk2 . As we work in mloc mode, any further se-
lector must have this selector as a subword. However, from this word, we cannot
reach a word an′

cbn′+m′
dam′ ∈ L10 for a large m′. To reach this word, the selector

bk3dak4 must be used, but it does not have the previously used selector ak1cbk2 as a
substring. A similar argument can be given to the word an′

cbn′+m′
dam′

, if we drive
from acbm′

dam′
, for a large m′. ��

From Lemma 2, 5 and 10, we have the following result.
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Theorem 5. ICCmdf (REG) is incomparable with ICCmloc(REG), but not dis-
joint.

Lemma 11. ICCmdf (REG) − ICCemdf (REG) �= ∅.
Proof. Consider the language L11 = {ancbmcbmcan | n, m ≥ 1}. This can
be generated by Gmdf = ({a, b, c}, acbcbca, (b+cb+, (b, b)), (a∗cb+cb+ca∗, (a, a))).
However this language is not in ICCemdf (REG). On contrary, let L11 ∈
ICCemdf (REG) for a emdf grammar Assume that first we pump the occurrences
of b and then the occurrences of a. As b is equally pumped around the second c,
there will be a context of the form (bi, bi), i ≥ 1. As at least one of the context is
end-marked, we have either bi

L or bi
R. Let the left context be end-marked. Then,

if bi
L is the case, then the next selector should begin with bi and therefore the left

context used in the next derivation should be adjoined to the left of bi
L. Hence,

we cannot pump the occurrences of a on the left of first c, using a context of the
form (aj , aj), j ≥ 1. Similarly, if bi

R is the case, then the next selector should end
with bi and therefore the right context used in the next derivation should be ad-
joined to the right of bi. Hence, we cannot pump the occurrences of a on the right
of third c, using a context of the form (ap, ap), p ≥ 1. Otherwise, we can produce a
word which is not in the language. We can give a similar proof if the right context
bi is end-marked. If we assume that first we pump the occurrences of a and then
b, then there should be a context of the form (ak, ak), k ≥ 1, in order to pump
the occurrences of a equally at the ends. As one of the contexts is end-marked, we
have either ak

L or ak
R. We assume that the left context ak is end-marked (i.e., ak

L

or ak
R). Then, it is easy to see that we cannot pump the occurrences of b equally

around the second c. If the right context ak is end-marked, we can give a similar
reasoning for not pumping the occurrences b equally. ��
From Lemma 2, 5 and 11, we have the following result.

Theorem 6. ICCmdf (REG) is incomparable with ICCemdf (REG), but not
disjoint.

Lemma 12. ICCemdf (REG) − ICCβ(REG) �= ∅, β ∈ {max, mloc, mdf, arc,
iemdf}.
Proof. Consider the language L12 = {a2mcam+n−1ca2n | n, m ≥ 1}. This can
be generated by the grammar Gemdf = ({a, c}, {aacacaa}, (aa+ca+, {(aaL, a),
(aa, aL)}), (acaa+, (a, aaR))). Intuitively, the first selector aa+caa+ is used to in-
crease the necessary occurrences of m and 2m of a around the first c and the sec-
ond selector acaa+ is used to increase the necessary occurrences of n and 2n of a
around the second c. Whenever, the first selector aa+ca+ and the context (aaL, a)
is applied, we can continue further derivations with the same selector aa+ca+ it-
self. If the context (aa, aL) is applied, in the next derivation the second selector
acaa+ must be chosen. Once this selector is chosen, the same selector acaa+ can
only be used in the further derivations and choosing the first selector is not pos-
sible thereafter. However, this does not affect generating the language L12 as the
first selector can be used for the required 2m and m occurrences of as and then
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the second selector can be used to generate the required number of n and 2n oc-
currences of as. Note that, due to the maximal condition of the selector, whenever
the context (aaL, a) or (aa, aL) is applied, the right context a is always adjoined
just before the second c and this feature helps to switch over to use the second
selector. It is easy to see that L(Gemdf ) = L12.

However, the language L12 is not in ICCβ(REG) for the above β. As-
sume that the language L12 ∈ ICCβ(REG) for any grammar Gβ =
({a, b, c}, A, (S1, C1), . . . , (Sr, Cr)). In order to pump the as around the first c we
need a context of the form (a2i, ai), i ≥ 1, and the associated selector will be of the
form ak1cak2 , k1, k2 ≥ 0. Similarly, in order to pump the as around the second c we
need a context of the form (aj , a2j), j ≥ 1, and the associated selector will be of the
form ak3cak4 , k3, k4 ≥ 0. Let β = max, mdf. Assume that a2m′

cam′
an′

ca2n′ ∈ L12

is obtained by adjoining the context (a2i, ai) and the selector is used around the
second c (i.e., ak1cak2); the other case of adjoining the context (aj , a2j) is similar.
Since the right context ai can be covered by the as in between the two cs (i.e.,
by the selector ak3cak4) and the chosen selector can be locally maximal, we can
adjoin the context (aj , a2j) and derive a word a2m′

ajcam′
a2jan′

ca2n′
/∈ L12. For

β = mloc, arc mode, we can generate only one part of the language as we have
seen that these variants do not pump symbols across the two markers. The case
β = iemdf mode is similar to arc, mloc, mldf , because the next selector should be
inside the adjoined contexts, thus the selector cannot go across the two markers.

��
From Lemma 2, 6 and 12, we have the following result.

Theorem 7. ICCemdf (REG) is incomparable with ICCiemdf (REG), but not
disjoint.

Lemma 13. ICCmloc(REG) − ICCemdf (REG) �= ∅.
Proof. Consider the language L13 = {an | n ≥ 1}∪{bn | n ≥ 1}∪{ancbn | n ≥ 1}.
This can be generated by the mloc grammar Gmloc = ({a, b, c}, {a, aa, b, bb, acb},
(aa, (λ, a)), (bb, (λ, b)), (acb, (a, b))). However, this language cannot be generated
by an emdf grammar. Assume that L13 ∈ ICCemdf (REG) for any grammar
Gemdf = ({a, b, c}, A, (S1, C1), . . . , (Sr, Cr)). In order to generate the strings an

and bn, we need contexts of the form (ai1
E , ai2

E ), i1+i2 ≥ 1, and (bj1
E , bj2

E ), j1+j2 ≥
1, with their associated selectors of the form ai, i ≥ 1, and bj, j ≥ 1. Also, in order
to generate the strings ancbn, we need a context of the form (ak

E , bk
E), k ≥ 1, with

the associated selector of the form ak1cbk2 , k1, k2 ≥ 1. The suffix E denotes the
(right or the left) end-marker. Consider a word an′

cbn′ ∈ L12 for a large n′. Then,
to reach this word, we should have used the context (ak

E , bk
E). In emdf mode, at

each derivation, the selector should cover and start/end with one of the adjoined
contexts. Therefore, the next selector should start or end with the context ak

(the other case for the context bk is similar). Such a context can be covered by a
selector am′

, thus we can apply the context (ai1 , ai2) to an′
cbn′

, resulting a word
an′+i1+i2cbn′

/∈ L13. A contradiction. ��
From the above two lemmas and Lemma 2, we have the following theorem.
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Theorem 8. ICCmloc(REG) is incomparable with ICCemdf (REG), but not
disjoint.

4 Conclusion

In this paper, we have considered the generative power of various classes of in-
ternal contextual grammars where the restrictions are considered in the deriva-
tions, namely, max, mloc, mdf, arc, emdf, iemdf . We conjecture that Lemma 2
can be strengthened as the class of regular languages is in the family of languages
ICCα(REG) for the variants discussed in this paper.

In the Chomsky hierarchy of languages, when the restrictions are increased in
the form of production rules (from unrestricted to context sensitive (i.e. context
dependent), from context dependent to context-free, from context-free to regu-
lar), the generative power of the class of grammars is decreased. On the other
hand, in regulated rewriting, when the rules are context-free (for instance, ma-
trix grammars, programmed grammars, periodically time varying grammars and
grammars with regular control), putting restrictions in the manner of applying the
rules, the generative power of the grammars is increased (but for type-3 rules of
regulated rewriting, the generative power is unaltered) [3],[22]. Therefore, it will
be a nice result in the field of formal languages to show that there are families
of languages whose grammars are obtained by imposing more restrictions on the
manner of applying the rules, but the generative power of the grammars is neither
increased nor decreased; they are incomparable. In this paper, we have identified
the families of languages in the domain of contextual grammars which possess this
interesting property. Also, we showed that there are languages which are common
to all these families of languages. Hence these families are not disjoint.

Thus, we have found that there is a class of languages obtained by putting re-
strictions in the derivation of the same basic class of grammars (internal contex-
tual grammars) whose behaviour is different from the existing class of grammars
in formal languages theory. How these restrictions play a role in natural language
processing is an interesting problem which could be explored in future. A study
of descriptional complexity measures of the internal contextual grammars under
these restrictions can also be explored. We refer to [10], [13], [14] for recent works
where descriptional complexity measures of internal contextual grammars and
ambiguity of contextual languages were considered.
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16. Marcus, S., Martin-Vide, C., Păun, Gh.: Contextual grammars as generative models

of natural languages. Computational Linguistics 24(2), 245–274 (1998)
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