
A Sound Observational Semantics for Modal

Transition Systems

Dario Fischbein1, Victor Braberman2, and Sebastian Uchitel1,2

1 Imperial College London, 180 Queen’s Gate, London, SW7 2RH, UK
2 University of Buenos Aires, C1428EGA, Argentina

d.fischbein@doc.ic.ac.uk, {suchitel,vbraber}@dc.uba.ar

Abstract. Modal Transition Systems (MTS) are an extension of
Labelled Transition Systems (LTS) that distinguish between required,
proscribed and unknown behaviour and come equipped with a notion
of refinement that supports incremental modelling where unknown be-
haviour is iteratively elaborated into required or proscribed behaviour.
The original formulation of MTS introduces two alternative semantics
for MTS, strong and weak, which require MTS models to have the same
communicating alphabet, the latter allowing the use of a distinguished
unobservable action. In this paper we show that the requirement of fix-
ing the alphabet for MTS semantics and the treatment of observable
actions are limiting if MTS are to support incremental elaboration of
partial behaviour models. We present a novel semantics, branching al-
phabet semantics, for MTS inspired by branching LTS equivalence, we
show that some unintuitive refinements allowed by weak semantics are
avoided, and prove a number of theorems that relate branching refine-
ment with alphabet refinement and consistency. These theorems, which
do not hold for other semantics, support the argument for considering
branching implementation of MTS as the basis for a sound semantics to
support behaviour model elaboration.

1 Introduction

Labelled Transition Systems [13] (LTS) have been used successfully to reason
about system behaviour. Modal Transition Systems [16] (MTS) are an extension
of LTS that distinguish between required, proscribed and unknown behaviour.
MTS have been studied for some time as a means for formally describing partial
knowledge of the intended behaviour of software systems.

An MTS can be naturally interpreted as the set of implementations, in the
form of LTS, that conform to the MTS. Hence, with a view to support elaboration
of partial behaviour models operations over MTS and the implementations they
describe have been studied. These include refinement [1,11,19] (does an MTS
describe a subset of the implementations of another MTS?), consistency [19,7]
(is the intersection of implementations described by two MTS non-empty?) and
merge [15,7,19] (which are the implementations that conform to two MTS?).

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 215–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



216 D. Fischbein, V. Braberman, and S. Uchitel

The original formulation of MTS by Larsen [16] defined two semantics by
presenting two refinement relations between MTS. The first, strong refinement,
requires MTS to have the same alphabet, i.e. the same set of transition labels, the
second, weak refinement, allows the use of a distinguished unobservable action
as in, for instance, process algebraic approaches to behaviour modelling.

Although strong semantics for MTS has a number of convenient qualities
[7,16], the requirement of a fixed set of action labels and the inability to distin-
guish observable from non-observable actions results in a serious limitation for
using MTS as the basis for behaviour model elaboration: Incremental elaboration
typically involves gradually extending the scope of a description (i.e. augmenting
the alphabet of MTS ) and also merging models with different scopes.

Weak semantics for MTS supports the distinction between observable and
non-observable actions, hence when combined with hiding operations, MTS un-
der weak semantics supports a variety of elaboration tasks including merge [19,3].
However, as we show in this paper, this semantics allows some counter-intuitive
LTS implementations and lacks some expected theoretical properties. In partic-
ular, it does not behave as expected with respect to alphabet hiding.

In this paper we discuss the limitations of existing semantics for MTS and
propose a novel semantics, inspired by the notion of branching equivalence
and branching simulation [21,9] for LTS, that addresses these limitations. More
specifically, we present branching semantics for MTS and define notions of
branching implementation and branching alphabet implementation. We show
that unintuitive implementations allowed by weak semantics are avoided by
branching semantics and prove a number of theorems that relate branching
refinement with alphabet extension that do not hold for weak semantics. In
addition,we study the notion of consistency, a key notion in the context of par-
tial behaviour model elaboration, and show results for branching semantics that
do not hold for weak semantics, thus, further supporting the argument for con-
sidering branching implementation of MTS as the basis for a sound semantics
to support behaviour model elaboration.

2 Background

In this section, we recall definitions and fix notation for Labelled Transition
Systems, related equivalences, and Modal Transition Systems.

Labelled transition systems (LTSs) [13] are widely used for modelling and
analysing the behaviour of software systems. An LTS is a state transition system
where transitions are labelled with actions. The set of actions of an LTS is called
its communicating alphabet and constitutes the interactions that the modelled
system can have with its environment. In addition, LTSs can have transitions
labelled with τ , representing actions that are not observable by the environment.
Figure 2 shows an example of an LTS.

Definition 1. (Labelled Transition Systems) Let States be a universal set of
states, Actτ = Act ∪ {τ} where Act is the universal set of observable action
labels and τ an unobservable action label. A labelled transition system (LTS) is



A Sound Observational Semantics for Modal Transition Systems 217

a tuple P = (S, L, Δ, s0), where S ⊆ States is a finite set of states, L ⊆ Actτ a
set of labels, Δ⊆(S×L×S) a transition relation between states, and s0 ∈ S the
initial state. We use αP = L\{τ} to denote the communicating alphabet of P .

Given an LTS P = (S, L, Δ, s0) we say P transitions on � to P ′, denoted P
�−→

P ′, if P ′ = (S, L, Δ, s′0) and (s0, �, s
′
0) ∈ Δ. Similarly, we write P

�̂−→ P ′ to
denote that either P

�−→ P ′ or � = τ and P = P ′ are true. We use P
�=⇒ P ′ to

denote P ( τ−→)∗ �−→ ( τ−→)∗P ′, and P
�̂=⇒ P ′ to denote P ( τ−→)∗ �̂−→ ( τ−→)∗P ′.

A number of equivalence relations have been proposed that provide a criteria
for deciding if syntactically different LTS models describe the same behaviour.

Definition 2. (Strong Bisimulation Equivalence) Let ℘ be the universe of all
LTS, and P, Q ∈ ℘. P and Q are strong equivalent, written P ∼ Q, if αP = αQ
and (P, Q) is contained in some bisimulation relation R ⊆ ℘ × ℘ for which the
following holds for all � ∈ Actτ :

1. (P �−→ P ′) =⇒ (∃Q′ · Q �−→ Q′ ∧ (P ′, Q′) ∈ R)
2. (Q �−→ Q′) =⇒ (∃P ′ · P �−→ P ′ ∧ (P ′, Q′) ∈ R)

This equivalence does not distinguish τ as special or unobservable actions. A
property of this equivalence is that it preserves the branching structure of pro-
cesses [9]. In contrast Weak Bisimulation equivalence compares the observable
behaviour of models and ignores internal computations (τ -transitions). Some au-
thors call this equivalence observational equivalence, but we use this expression
to refer to any equivalence that considers τ -transitions as unobservable actions.

Definition 3. (Weak Bisimulation Equivalence) Let ℘ be the universe of all
LTS, and P, Q ∈ ℘. P and Q are weak bisimulation equivalent, written P ≈w Q,
if αP = αQ and (P, Q) is contained in some weak bisimulation relation R ⊆ ℘×℘
for which the following holds for all � ∈ Actτ :

1. (P �−→ P ′) =⇒ (∃Q′ · Q �̂=⇒ Q′ ∧ (P ′, Q′) ∈ R)

2. (Q �−→ Q′) =⇒ (∃P ′ · P �̂=⇒ P ′ ∧ (P ′, Q′) ∈ R)

Finally, branching equivalence is the coarsest observational equivalence that pre-
serves the branching structure of processes [9], it is coarser than strong equiva-
lence yet finer than weak bisimulation equivalence.

Definition 4. (Branching Bisimulation Equivalence)
Let ℘ be the universe of all LTS, and P, Q ∈ ℘. P and Q are branching

bisimulation equivalent, written P ≈b Q, if αP = αQ and (P, Q) is contained
in some observational bisimulation relation R ⊆ ℘ × ℘ for which the following
holds for all � ∈ Actτ :

1. (P �−→ P ′) =⇒ (∃Q′, Q′′ · Q τ̂=⇒ Q′ �̂−→ Q′′ ∧ (P, Q′) ∈ R ∧ (P ′, Q′′) ∈ R)

2. (Q �−→ Q′) =⇒ (∃P ′, P ′′ · P τ̂=⇒ P ′ �̂−→ P ′′ ∧ (P ′, Q) ∈ R ∧ (P ′′, Q′) ∈ R)



218 D. Fischbein, V. Braberman, and S. Uchitel

MTSs [16] extend LTSs by defining two sets of transitions. The first, similarly
to LTS, describe the actions provided by the system in different states. The
second set of transitions describes actions that may be provided by the system.
If there is no transition from that a state on a particular action in either set of
transitions, then the system will never provide the action on that state.

Definition 5. (Modal Transition Systems) A modal transition system (MTS)
M is a structure (S, L, Δr, Δp, s0), where Δr ⊆ Δp, (S, L, Δr, s0) is an LTS
representing required transitions of the system and (S, L, Δp, s0) is an LTS rep-
resenting possible (but not necessarily required) transitions of the system.

Given an MTS M = (S, L, Δr, Δp, s0) we say M transitions on � through a
required (resp. possible) transition to M ′, denoted M

�−→r M ′ (resp. M
�−→p

M ′), if M ′ = (S, L, Δr, Δp, s′0) and (s0, �, s
′
0) ∈ Δr (resp. (s0, �, s

′
0) ∈ Δp).

We refer to transitions in Δp \Δr as maybe transitions. Maybe transitions are
denoted with a question mark following the label. Note that LTS are a special
case of MTS where there are no maybe transitions.

3 Motivation

In this section we analyse the adequacy of existing MTS semantics for incremen-
tal modelling of system behaviour using a simple motivating example.

3.1 Motivating Example

Consider a behaviour model of the control software for an electronic device at
an early stage of the modelling process. The device offers different functions
grouped into several menus. The general behaviour of the system is basically
as follows: the user selects a desired menu and the system offers the functions
associated with the menu. If the user does not choose any function after an
elapsed time, the system beeps and returns to the initial state. The MTS that
models the controller’s behaviour is shown in Figure 1. Note that the model
abstracts away using τ transitions how the functionality selected by a user works.
From the initial state there are n transitions labelled menu1 to menun each one
representing the selection of a menu by the user. These transitions are either
required or maybe, the former corresponding to the menu items that must be in
the final product and the latter corresponding to those whose inclusion is still
in doubt. States labelled Mi model that the user has selected the menu i and
that a functions func1 to funcxi are available. The user can select one of these
functions and the system will do the associated task and and then return to the
initial state, or an internal timeout occurs, making the system leave the Mi state
and return to the initial state with a beep. This timeout is an internal event and
therefore not visible to the user, so it has been modelled with a τ transition.

The explanation given above for Figure 1, although intuitive, is informal. We
now discuss its precise meaning by recalling existing semantics for MTS.



A Sound Observational Semantics for Modal Transition Systems 219

A:

0 B

M111

1x1

Mnn1

nxn

beep

menu1

τ

func1

τ

funcx1

τ

menu
n?

τ

func1

τ

funcxn

τ

Fig. 1. MTS for Controller

B: 0 B

M111

1x1

beep

menu1

τ

func1

τ

funcx1

τ

Fig. 2. A strong refinement of Figure 1
where only menu1 is available

3.2 Strong Semantics

Strong refinement [16] of MTS captures the notion of elaboration of a partial
description into a more comprehensive one, in which some knowledge over the
maybe behaviour has been gained. It can be seen as being a “more defined than”
relation between two partial models. Intuitively, refinement in MTS is about con-
verting maybe transitions into required transitions or removing them altogether:
an MTS N refines M if N preserves all of the required and all of the proscribed
behaviours of M . Alternatively, an MTS N refines M if N can simulate the
required behaviour of M , and M can simulate the possible behaviour of N .

Definition 6 (Strong Refinement). [16] Let δ be the universe of all MTS. N
is a refinement of M , written M � N , if αM = αN and (M, N) is contained in
some refinement relation R ⊆ δ×δ for which the following holds for all � ∈ Actτ :

1. (M �−→r M ′) =⇒ (∃N ′ · N �−→r N ′ ∧ (M ′, N ′) ∈ R)
2. (N �−→p N ′) =⇒ (∃M ′ · M �−→p M ′ ∧ (M ′, N ′) ∈ R)

Note that strong refinement for MTS does not distinguish τ as an unobservable
action and is equivalent to strong bisimulation when restricted to LTS models.

Consider the MTS shown in Figure 1. If modellers decide to exclude menun

then the model that would represent that decision is the one shown in Fig-
ure 2. According to strong semantics this latter model is a valid possible evo-
lution of the initial one since the MTS A is refined by the MTS B (A � B),
incorporating as new knowledge that the menun has been removed from the
functionalities of the system. The refinement relation between these models is
R = {(0, 0), (B, B), (M1, M1), (11, 11), . . . , (1x1 , 1x1)}.

Note the MTS B in Figure 2 has no maybe transitions, thus it can be consid-
ered an LTS. We say that it is an implementation of the model in Figure 1.



220 D. Fischbein, V. Braberman, and S. Uchitel

Definition 7 ((Strong) Implementation). We say that an LTS I = (SI , LI ,
ΔI , i0) is a (strong) implementation of an MTS M = (SM , LM , Δr

M , Δp
M , m0),

written M � I, if M � MI with MI = (SI , LI , ΔI , ΔI , i0). We also define the
set of implementations of M as I[M ] = {I LTS | M � I}.
In fact, we shall consider the strong semantics of an MTS as its set of strong
implementations and interpret strong refinement as the partial order determined
by the subset relation over sets of strong implementations. Note that Larsen’s
strong refinement relation is transitive [16] and therefore it is straightforward to
proof that M � M ′ implies I[M ] ⊇ I[M ′], which means that the � relation is
of great use to reason efficiently about elaborating partial models. Although it
was thought that I[M ] ⊇ I[M ′] ⇔ M � M ′ [10] this is not the case [6].

C: 0 B

M111

1x1

2x1

beep

menu1

τ

func1

τ

funcx1
readList

showList

Fig. 3. A model where the behaviour of
functionality associated to funcx1 has
been detailed

I:

0 B

M111

1x1

beep

menu1

τ

func1

τ

funcx1

τ

menun

Fig. 4. A valid implementation of the ini-
tial model according to weak refinement

Strong semantics does not adequately support iterative model elaboration
because in practice such an activity often requires progressively extending the
alphabet of the system to describe behaviour aspects that previously had not
been taken into account. For instance, we may want to produce a model for
the electronic device’s controller which describes in more detail how a particular
function works (see Figure 3, states 1x1 and 2x1), and then check if this model
conforms to the initial, more abstract model of the controller. Such check cannot
be done with strong semantics as the models have different alphabets. A standard
workaround for checking if Figure 3 conforms to Figure 1 is to hide actions
readList and showList (i.e. replace them with τ) to obtain models with the
same alphabet and then comparing them. Strong refinement is not appropriate in
this case as it does not consider τ transitions as unobservable. Indeed, the model
obtained by hiding readList and showList in Figure 3 is not a strong refinement
of Figure 1. However, these models can be compared using an observational
semantics. We discuss this below.

3.3 Weak Semantics

Weak MTS refinement also defined by Larsen [11] allows comparing the observ-
able behaviour of models while ignoring the possible differences that they may



A Sound Observational Semantics for Modal Transition Systems 221

have in terms of internal computation. In other words, this notion of refinement
considers τ -labelled transitions differently from other transitions.

Definition 8 (Weak Refinement). [11] N is a weak refinement of M , written
M �w N , if αM = αN and (M, N) is contained in some refinement relation
R ⊆ δ × δ for which the following holds for all � ∈ Actτ :

1. (M �−→r M ′) =⇒ (∃N ′ · N �̂=⇒r N ′ ∧ (M ′, N ′) ∈ R)

2. (N �−→p N ′) =⇒ (∃M ′ · M �̂=⇒p M ′ ∧ (M ′, N ′) ∈ R)

It is worth noting that weak refinement results in weak LTS bisimulation when
restricted to MTS with no maybe transitions, and that strong MTS refinement
implies weak refinement. Finally, as with strong refinement, a notion of imple-
mentation can be defined between MTSs and LTSs, the weak semantics of MTS
can be defined in terms of sets of weak implementations, and it can be shown
that �w implies inclusion of weak implementations.

Returning to our running example, recall model C described in Figure 3.
If we hide actions readList and showList and then use weak refinement to
compare it with the initial model A, we can conclude that C is a refinement of A
based upon the weak refinement relation R = {(0, 0), (B, B), (M1, M1), (11, 11),
. . . , (1x1, 1x1) , (0, 2x1)}. Thus, as expected, under weak semantics the more
detailed model C is an adequate elaboration of the initial model A.

One of the problems of weak MTS semantics is that it allows implementations
that can be considered unintuitive: Consider the MTS I in Figure 4 which is an
implementation of the original controller MTS A based on the weak implemen-
tation relation R = {(0, 0), (B, B), (M1, M1), (11, 11), . . . , (1x1 , 1x1)}.

Note that in A (Figure 1) the availability of menun is yet to be defined, but
if the system were to have this menu included we would expect all the function-
alities associated with this menu to be reachable by the user. However in the
implementation proposed above the user never has the possibility of selecting
functionalities func1 . . . funcxn after selecting menun. This breaks the intu-
ition behind the notion of implementation. The implementation shown above is
not satisfactory since it does not reflect the expected behaviour: if a menu is
included, all its associated functionality will be available to users. This example
shows that weak semantics does not seem to be adequate to support evolving
software modelling since it accepts as valid refinements counter intuitive imple-
mentations. In subsequent sections we shall also show that weak semantics lacks
some properties that relate refinement with action hiding, these properties are
linked to some degree with the existence of such unintuitive implementations
that weak semantics allows.

In summary, we have seen that although an observational semantics is required
to support incremental elaboration of partial behaviour models, the observa-
tional semantics based on weak refinement not adequately fit with the intended
meaning of MTS. In the next sections we show a semantics that not only resolves
the case discussed above but that also provides a number of theoretical results
that support the argument for a novel observational semantics for MTS.



222 D. Fischbein, V. Braberman, and S. Uchitel

4 Branching Semantics

In the previous section we analysed the shortcomings of strong and weak se-
mantics as a foundation for characterising conformance and supporting model
elaboration. Succinctly, strong semantics does not distinguish unobservable ac-
tions and hence does not support comparing models whose behaviour has been
described to varying levels of detail. The latter allows implementations of partial
models that contradict the intuition modellers may have of conformance. We now
define a novel semantics for MTS that draws from desirable characteristics of
both weak and strong semantics, in other words it is an observational semantics
that captures the intuition that modellers might have of refinement. This novel
semantics is based on LTS branching bisimulation.

� �

(a)

� �̂

τ̂

(b)

� �̂

τ̂

τ̂

(c)

Fig. 5. Depiction of how a transition is
simulated in bisimulation: (a) strong; (b)
branching; (c) weak

M

I

M ′

I ′

branching
α extension

branching
α extension

branching
impl

branching
impl

branching α impl

Fig. 6. Informally, alphabet extension
and branching implementations commute

Unlike strong bisimulation, branching bisimulation allows one LTS to simulate
the occurrence of an � transition in the other LTS by taking a number of τ tran-
sitions beforehand. Unlike weak bisimulation, branching bisimulation requires
the intermediate states reached through τ transitions to fall within the equiva-
lence relation. Figure 5 shows a graphical representation of how an � transition
is simulated in each of these three bisimulations. A branching implementation
relation for MTS can be derived from LTS branching bisimulation in a similar
manner as weak and strong implementation can be derived from weak and strong
bisimulation.

Definition 9 (Branching Implementation Relation). A branching imple-
mentation relation is a binary relation R from MTS to LTS such that whether
(M, I) ∈ R and � ∈ Actτ the following holds:

1. (M �−→r M ′) =⇒ (∃ I0, . . . , In, I ′) · (I0 = I ∧ Ii
τ−→ Ii+1 ∀ 0 ≤ i < n ∧

In
�̂−→ I ′ ∧ (M ′, I ′) ∈ R ∧ (M, Ii) ∈ R ∀ 0 ≤ i ≤ n)

2. (I �−→ I ′) =⇒ (∃M0, . . . , Mn, M ′) · (M0 = M∧Mi
τ−→p Mi+1 ∀ 0 ≤ i < n ∧

Mn
�̂−→p M ′ ∧ (M ′, I ′) ∈ R ∧ (Mi, I) ∈ R ∀ 0 ≤ i ≤ n)

Definition 10 (Branching Implementation). Let M be an MTS and I be
an LTS, we say that I is a branching implementation of M , M �b I, if there



A Sound Observational Semantics for Modal Transition Systems 223

exists a branching implementation relation R such as (M, I) ∈ R. We also define
the set of implementations of M as Ib[M ] = {I LTS | M �b I}.
As expected if this relation is restricted to LTS it coincides with branching
equivalence. It can also be easily proved that if M �b I and I ≈b I ′ then
M �b I ′, and so this novel implementation relation is a sound extension of
branching equivalence. It is worth mentioning that this new implementation
relation does not accept as a valid implementation of model A depicted on
Figure 1 the counter intuitive implementation shown on Figure 4.

Recalling that an MTS semantics is completely defined by stating which are
valid implementations for a model, we define branching semantics based on the
novel implementation relation instead of a refinement relation. An associated
notion of refinement comes naturally as N is a refinement of M if all the imple-
mentations of N are implementations of M , as stated on definition 11.

Definition 11 (Branching Refinement). Let M and N be MTSs, we say
that N is a refinement of M , written M �b N , iff Ib[M ] ⊇ Ib[N ].

Unlike refinement notions given by a simulation relation between MTSs this
refinement notion is by definition complete. A co-inductive relation between MTS
that implies branching implementation relation, mimicking Larsen’s strong and
weak refinement can easily be defined too. In the following section we will see
how it is possible to demonstrate properties of this complete notion of refinement
and to compare it against weak and strong refinement.

Definition 12 (Hiding). Let M = (S, L, Δr, Δp, s0) be an MTS and X ⊆ Act.
M with actions X hidden, denoted M\X, is an MTS (S, L\X, Δr′

, Δp′
, s0),

where Δr′
= {(s, �, s′) | � �∈X ∧ (s, �, s′)∈Δr} ∪ {(s, τ, s′) | �∈X ∧ (s, �, s′)∈Δr}

and analogously for Δp′
. We use M@X to denote M\(Act\X).

Branching refinement, similarly to weak refinement, does not allow for the com-
parison of models with different alphabets. However, we can do so by using the
hiding operator, i.e. hiding the new labels of the extended alphabet. For exam-
ple, given a model M and a model N , the latter with an alphabet that extends
the alphabet of M , i.e. αM ⊆ αN , in order to assess whether N is a refinement
of M we compute M � N@αM .

This operation gives a new refinement, therefore defining a new semantics for
MTSs for which is possible to extend the alphabet of the models. In previous
work [19,2] a similar extension has been applied to weak semantics, although
this has been done implicitly without distinguishing between weak semantics
and the extended alphabet semantics. However, since the set of implementations
defined by branching implementation and the set obtained by applying this new
refinement operator are different, they refer to two different semantics and we
will make that distinction clear by formally defining this new semantics.

Definition 13 (Branching Alphabet Refinement). An MTS N is a branch-
ing alphabet refinement of an MTS M , written M �ab N , if αM ⊆ αN and
M �b N@αM .



224 D. Fischbein, V. Braberman, and S. Uchitel

Note that this new semantics is an extension of branching semantics, as they be-
have in the same way when comparing models with identical alphabets. Similarly,
we can define Weak Alphabet Refinement as an extension of weak refinement.

We now show that a sound relationship between branching implementation
semantics and alphabet extension exists, but previously we define formally equiv-
alence and alphabet extension for MTS.

Definition 14 (Equivalence). Given a refinement for MTS, �, we say that
M and N are equivalent, written M ≈ N , iff M � N and N � M . We shall
sometimes subindex ≈ to explicit the underlying refinement relation, e.g. ≈b for
branching refinement �b.

Definition 15 (Alphabet Extension). Given an observational refinement for
MTS, �, we say that M ′ is an alphabet extension of M iff M ′@αM ≈w M .

Theorem 1 (Branching semantics is sound w.r.t Alphabet Extension).
Let M be an MTS and I be an LTS such that I is a branching implementation of
M , i.e. M �b I. Given M ′ an MTS such that is a branching alphabet extension
of M then there exists I ′ a branching alphabet extension of I such that M ′ �b I ′.

Intuitively, if a model M is extended into a model M ′ then all implementations of
M can be extended to be an implementation of M ′. Figure 6 provides an intuition
of Theorem 1. We say, informally, that the diagram commutes, meaning that it
is possible to obtain the same result by taking an implementation of M and then
extending the alphabet of that implementation; or by extending the alphabet of
M and then taking an implementation of that model.

From an engineering perspective this result implies that whatever implemen-
tation we have in mind for a given partial model, refining the alphabet of the
partial model will not rule out that implementation: extending the original im-
plementation to make it an implementation of the new model is possible.

It is important to note that it is not possible to formulate a similar soundness
result as the one above under weak semantics:

Remark 1 (Weak semantics is not sound w.r.t Alphabet Extension). Let M and
M ′ be MTSs such that M ′ is a weak alphabet extension of M . It is not the case
that for all LTS I such that M �w I then there exists I ′ such that M ′ �w I ′

and I ′ is weak alphabet extension of I.

Proof. Consider the example described in the previous section. Assume we ex-
tend model A given in Figure 4 to produce A′ by extending its alphabet with
the label timeout, and replacing τ transitions from Mi to state B with a timeout
transition. It would be reasonable to expect that model I could be extended
with timeout into a I ′ to obtain an implementation of A′. However, this is not
possible. If we analyse this in further detail, we can see that we would need I ′ to
be able to perform a timeout after menun and before reaching state B. Hence,
I ′ would have a new state in between menun and timeout. This leads to one of
two options, either the new state does not simulate the require behaviour of Mn

because it does not have transitions func1...funcxn, and therefore I ′ could not



A Sound Observational Semantics for Modal Transition Systems 225

be an implementation of A′; or it does have those transitions and refines state
Mn, but in this case I ′@αI would not be equivalent to I since I does not have
any of the functionalities available after menun and therefore I ′ could not be an
alphabet extension of I.

Summarising, in this section we have defined a new observational semantics for
MTS that preserves the branching structure and resolves the unintuitive example
provided in the motivation section. Furthermore, we have formally defined an
extension of this semantics that supports not only the elaboration of model
behaviour but also the extension of their alphabets, laying the foundations for
a sound elaboration process where the level of the detail of the models can be
increased over time. We have also shown that extending the alphabet of a partial
behaviour model is a sound operation with respect branching semantics, while
it is not for weak semantics.

5 Consistency

In this section we discuss the notion of consistency which is central to MTS se-
mantics. We provide a complete characterization of consistency under branching
semantics (result unavailable for weak semantics) and show that, unlike in weak
semantics, consistency is preserved by hiding non-shared actions.

In order to support elaboration of partial behaviour models, a number of
operations over MTS have been studied. Most notably, Larsen defined two co-
inductive relations [16,11] which allow checking efficiently if there is a subset
relation between the implementations of two MTS. This allows elaborating an
MTS and checking if the new MTS effectively only “adds information”, i.e. re-
duces acceptable implementations, to the first MTS. Another useful operation
is that of merge [7,19], which attempts to produce an MTS that characterises
the common implementations of two given MTS. This operation which is a form
of conjunction [15] supports composing partial descriptions provided by differ-
ent modellers possibly with different scopes or viewpoints of the same system.
Finally, checking if two partial descriptions are consisent, in other words that
there is at least one implementation that conforms to both descriptions is a pre-
condition for merging and a usefull operation in its own right for understanding
the relation between different partial descriptions.

In this section, we analyse the notion of consistency under branching semantics
and also compare with weak semantics. The study of a co-inductive refinement
relation, which can be easily formulated, and merge under branching semantics is
left out of this paper due to space restrictions and the fact that within consistency
lie some key results that distinguish branching from weak semantics. We start
with a formal definition of consistency.

Definition 16 (Consistency). Two MTSs M and N are consistent if there
exists an MTS P such that P is a common refinement of M and N .

The problem of characterising consistency has been solved for strong semantics
in [7] where a sufficient and necessary condition for determining if there exist



226 D. Fischbein, V. Braberman, and S. Uchitel

a common strong refinement for two models is presented. We now define a new
relation, branching alphabet consistency relation, and show that it characterises
branching alphabet consistency.

Definition 17 (Branching Alphabet Consistency Relation). A branching
alphabet consistency relation is a binary relation C ⊆ δ × δ, such that the
following conditions hold for all (M, N) ∈ C:

1. (M
�−→r M ′) =⇒ (∃N0, . . . , Nn, N ′) · ((Ni

v−→p Ni+1 ∧ v �∈ αM) ∀ 0 ≤ i < n ∧
N0 = N ∧ Nn

�̂−→p N ′ ∧ (M, Ni) ∈ C ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ C

2. (N
�−→r N ′) =⇒ (∃M0, . . . , Mn, M ′) · ((Mi

v−→p Mi+1 ∧ v �∈ αN) ∀ 0 ≤ i < n ∧
M0 = M ∧ Mn

�̂−→p M ′ ∧ (Mi, N) ∈ C ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ C

Intuitively, this relation requires that one model provides as possible behaviour
at least all the required behaviour of the other, and vice versa.

The branching consistency relation defined above characterises branching al-
phabet consistency in the sense that there is a branching alphabet consistency
relation between two MTS if and only if there exists an LTS that is a branching
alphabet implementation of the two MTS.

Theorem 2 (Characterisation of Branching Alphabet Consistency).
MTSs M and N are branching alphabet consistent if and only if there exists
a branching alphabet consistency relation CMN such that (M, N) is in CMN .

Note that the Branching Alphabet Consistency Relation is equivalent to branch-
ing bisimulation when restricted to LTSs with the same alphabet This result is
as expected, since an LTS is an MTS that characterises only one implementa-
tion, itself. Hence, it can only be consistent with any LTS that is equivalent to
it; equivalence which in this case is that of LTS branching bisimulation.

Similar results do not exist for weak semantics. In [2] a first attempt to charac-
terise weak consistency was published, however the definition has some problems.
An improvement of the weak consistency relation in [2] is:

Definition 18. (Weak Alphabet Consistency Relation) A weak alphabet con-
sistency relation is a binary relation C ⊆ ℘×℘, such that the following conditions
hold for all (M, N) ∈ C:

1. (M
�−→r M ′) =⇒ (∃N ′) · (N v�̂w

=⇒p N ′ ∧ v, w ∈ (αN \ αM)∗ ∧ (M ′, N ′) ∈ C))

2. (N
�−→r N ′) =⇒ (∃M ′) · (M v�̂w

=⇒p M ′ ∧ v, w ∈ (αM \ αN)∗ ∧ (M ′, N ′) ∈ C))

Theorem 3 (Characterisation of Weak Consistency). Two MTSs M and
N , such that αM = αN , are weak consistent if and only if there exists a weak
alphabet consistency relation CMN such that (M, N) is contained in CMN .

The weak alphabet consistency relation restricted to models with the same
alphabet characterises weak consistency, this can be easily proved using the
Theorem 1 presented in [7]. However, it does not characterise weak alphabet
consistency. Figure 7 shows a counter example, models M and N with alphabets



A Sound Observational Semantics for Modal Transition Systems 227

M :
(αM = {a, x, y})

0 1 2

34

a? a?

y?x

N :
(αN = {x, y})

0 1
y

Fig. 7. Counter example for weak alphabet consistency characterisation

αM = {a, x, y} and αM = {x, y} are not consistent but CMN = {(0, 0), (3, 1)} is
a valid relation. Definition 18 can be made more restrictive giving it a branching
feel in line with [2] obtaining a relation that is a sufficient but not a necessary
condition for weak alphabet consistency. This relation is out of the scope of this
paper and for space limitation is not included.

In the same way Theorem 1 relates refinement with alphabet extension, it is
interesting and relevant to analyse the relation between consistency and alpha-
bet extension. Here we also find that the expected results hold for branching
semantics but do not for weak semantics.

The following theorem establishes that models are branching alphabet con-
sistent if and only if they are branching consistent over their common alphabet.

Theorem 4. Let M and N be MTSs, and A = αM ∩ αN be the common
alphabet of M and N . M@A and N@A are branching consistent iff M and N
are branching alphabet consistent.

From an engineering point of view this theorem expresses the fact that in order
to assess whether two models are consistent it is sufficient to evaluate whether
they are consistent in their common alphabet. On the other hand, it tells us
that given two consistent models with the same alphabet it is possible to elabo-
rate those models independently, extending their alphabets over different labels,
knowing that the models will always remain consistent. This is a useful feature,
especially when comparing two models taken from different viewpoints of the
system, and for which there is a requirement to increase the level of detail with
regards to different aspects. Interestingly, the natural candidate for weak alpha-
bet consistency relation does not satisfy the left-to-right implication of the above
theorem. In other words that if two models are weak consistent, extending them
over new labels does not guarantee that they will remain consistent.

A related result, that in a way is more general than Theorem 4 is shown below.
Note that the converse Theorem 5 is not generally true, but in the particular
case of Theorem 4 the converse is also true and it can be trivially proved.

Theorem 5. Let M ′ and N ′ be MTSs, and A = αM ′ ∩ αN ′ be the common
alphabet of M ′ and N ′. If there exist M and N MTSs such as M ′@A �ab M ,
N ′@A �ab N and M and N are branching alphabet consistent then M ′ and N ′

are branching alphabet consistent.

In summary, have provided a complete characterization for consistency under
branching semantics and shown that it has the expected properties when con-
sidered in the context of alphabet extension. These results do not exist for weak
refinement of MTS.



228 D. Fischbein, V. Braberman, and S. Uchitel

6 Related Work

Various authors have contributed to the study of MTS and other partial be-
haviour modelling formalisms. Our definition of Modal Transition Systems differs
from the original [16] in that MTS can have different communication alphabets.
Expliciting the communication alphabet allows scoping models and capturing
the fact that components control and monitor a subset of all events [12].

Related work regarding MTS refinement and simulation has been discussed
extensively throughout the paper. Our notions of branching refinement and
branching implementation are heavily inspired on that of branching bisimula-
tion, although as shown, the extension of branching bisimulation from LTS to
MTS cannot be done straightforwardly. Numerous other refinement notions ex-
ist, both for LTS (such as trace, failures [18], and testing [4] refinement) and
for other state-based modelling formalisms such as kripke structures. We have
also compared extensively the notion of refinement we propose with respect to
strong [16] and weak refinement [16] over MTS. Regarding consistency, as men-
tioned previously, a characterization of consistency under strong semantics has
been developed previously [7], while up to now no characterization of consistency
for weak nor weak alphabet semantics had been provided (the definition in [2]
fails to do so completely). In [8] we sketch the idea of a branching semantics
however the theoretical results presented in this paper are novel.

Numerous extensions and variants of MTS exist such as Mixed Transition
Systems [5] and disjunctive modal transition systems [14]. The semantics we
propose could be studied for these formalisms too. We believe that existing
weak and strong refinement notions in these settings will suffer from the same
shortcomings as in MTSs. A slightly different approach to modelling unknown
behaviour is taken in [20,17]. In [20] Partial Labelled Transition Systems, each
state is associated with a set of actions that are explicitly proscribed from hap-
pening. Extended Transition Systems [17] also associate a set of actions with
each state, but in this case it models the actions for which the state has been
fully described. The relation between these models and MTS, and in particular,
our notion of refinement has yet to be studied.

In [1] a study of the complexity of different decision problems for MTS and
Mixed transition systems is presented. In particular it is shown that thorough
refinement for strong and weak semantics is PSPACE-hard, considering that
branching alphabet refinement is between these two is expected to have the
same complexity but further study is necessary.

7 Conclusions and Future Work

In this paper we have analysed the limitations of existing semantics for MTS and
presented a new observational semantics, called branching semantics, based on
the notion of branching equivalence. Furthermore, we have shown how this new
semantics does not allow for the counter-intuitive implementations permitted



A Sound Observational Semantics for Modal Transition Systems 229

by weak semantics. Moreover, in order to allow for the elaboration of models’
alphabets, we have distinguished branching semantics from branching alphabet
semantics. Lastly, we have shown how branching alphabet semantics presents a
series of desirable properties that are not valid for weak semantics, making it a
more adequate option for model elaboration.

In future work we aim to study the problem of merging under alphabet branch-
ing semantics.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Complexity of
decision problems for mixed and modal specifications. In: Amadio, R.M. (ed.)
FOSSACS 2008. LNCS, vol. 4962, pp. 112–126. Springer, Heidelberg (2008)

2. Brunet, G.: A Characterization of Merging Partial Behavioural Models. Master’s
thesis, Univ. of Toronto (January 2006)

3. Brunet, G., Chechik, M., Uchitel, S.: Properties of behavioural model merging. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 98–114.
Springer, Heidelberg (2006)

4. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
Formal Asp. Comput. 5(1), 1–20 (1993)

5. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, The Netherlands (July 1996)

6. Fischbein, D., Uchitel, S.: Behavioural model elaboration using mts. In:
“Copenhagen” Meeting on Modal Transition Systems (2007)

7. Fischbein, D., Uchitel, S.: On correct and complete strong merging of partial be-
haviour models. In: SIGSOFT 2008/FSE-16, pp. 297–307. ACM Press, New York
(2008)

8. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: ROSATEA (2006)

9. van Glabbeek, R.: What is branching time semantics and why to use it? In:
Nielsen, M. (ed.) The Concurrency Column, pp. 190–198 (1994); Bulletin of the
EATCS 53

10. Huth, M.: Refinement is complete for implementations. Formal Asp. Com-
put. 17(2), 113–137 (2005)

11. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In:
Logic at Botik, pp. 163–180 (1989)

12. Jackson, M.: Software requirements & specifications: a lexicon of practice, princi-
ples and prejudices. ACM Press/Addison-Wesley Publishing Co. (1995)

13. Keller, R.M.: Formal verification of parallel programs. Commun. ACM (1976)
14. Larsen, K., Xinxin, L.: Equation Solving Using Modal Transition Systems. In: 5th

Annual IEEE Symposium on Logic in Computer Science, pp. 108–117 (1990)
15. Larsen, K.G., Steffen, B., Weise, C.: A constraint oriented proof methodology

based on modal transition systems. In: Brinksma, E., Steffen, B., Cleaveland, W.R.,
Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019. Springer,
Heidelberg (1995)

16. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS (1988)



230 D. Fischbein, V. Braberman, and S. Uchitel

17. Milner, R.: A modal characterisation of observable machine-behaviour. In:
Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer,
Heidelberg (1981)

18. Schneider, S., Schneider, S.A.: Concurrent and Real Time Systems: The CSP Ap-
proach. John Wiley & Sons, Inc., New York (1999)

19. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Taylor, R.N.,
Dwyer, M.B. (eds.) SIGSOFT FSE, pp. 43–52. ACM Press, New York (2004)

20. Uchitel, S., Kramer, J., Magee, J.: Behaviour Model Elaboration using Partial
Labelled Transition Systems. In: ESEC/FSE 2003, pp. 19–27 (2003)

21. van Gabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. J. ACM 43(3), 555–600 (1996)


	A Sound Observational Semantics for Modal Transition Systems
	Introduction
	Background
	Motivation
	Motivating Example
	Strong Semantics
	Weak Semantics

	Branching Semantics
	Consistency
	Related Work
	Conclusions and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




