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Abstract. We define context-free grammars with Büchi acceptance con-
dition generating languages of countable words. We establish several
closure properties and decidability results for the class of Büchi context-
free languages generated by these grammars. We also define context-free
grammars with Müller acceptance condition and show that there is a lan-
guage generated by a grammar with Müller acceptance condition which
is not a Büchi context-free language.

1 Introduction

A word over an alphabet Σ is an isomorphism type of a labeled linear order.
In this paper, in addition to finite words and ω-words, we also consider words
whose underlying linear order is any countable linear order, including scattered
and dense linear orders, cf. [21].

Finite automata on ω-words were introduced by Büchi [9]. He used automata
to prove the decidability of the monadic second-order theory of the ordinal ω.
Automata on ω-words have since been extended to automata on ordinal words
beyond ω, cf. [10,11,1,25,26], to words whose underlying linear order is not nec-
essarily well-ordered, cf. [3,8], and to automata on finite and infinite trees, cf.
[14,22,20]. Many decidability results have been obtained using the automata the-
oretic approach, both for ordinals and other linear orders, and for first-order and
monadic second-order theories in general.

Countable words were first investigated in [13], where they were called “ar-
rangements”. It was shown that any arrangement can be represented as the fron-
tier word (i.e., the sequence of leaf labels) of a possibly infinite labeled binary
tree. Moreover, it was shown that words definable by finite recursion schemes are
exactly those words represented by the frontiers of regular trees. These words
were called regular in [6]. Courcelle [13] raised several problems that were later
solved in the papers [17,23,5]. In [23], it was shown that it is decidable for two
regular trees whether they represent the same regular word. In [17], an infinite
collection of regular operations has been introduced and it has been shown that
each regular word can be represented by a regular expression. Complete axiom-
atizations have been obtained in [4] and [5] for the subcollections of the regular
operations that allow for the representation of the regular ordinal words and
the regular scattered words, respectively. Complete axiomatization of the full
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collection of the regular operations has been obtained in [6], where it is also
proved that there is a polynomial time algorithm to decide whether two regular
expressions represent the same regular word. In [8,3], the authors proposed reg-
ular expressions to represent languages (i.e., sets) of scattered countable words
and languages of possibly dense words with no upper bound on the size of the
words. They have established Kleene theorems stating that a language of infinite
words is recognizable by a finite automaton iff it can be represented by a regular
expression.

In addition to automata and expressions (or terms), a third common way
of representing languages of finite words is by generative grammars. Context-
free grammars have been used to generate languages of ω-words in [12] and in
[18]. However, we are not aware of any work on context-free grammars as a
device generating languages of countable words possibly longer than ω, except
for the recent [15] that deals only with linear grammars. In this paper we consider
languages of countable words generated by context-free grammars equipped with
a Büchi-type acceptance condition, called BCFG’s. A BCFG is a system G =
(N, Σ, P, S, F ), where (N, Σ, P, S) is an ordinary context-free grammar and F ⊆
N is the set of repeated (or final) nonterminals. A derivation tree t of a grammar
G is a possibly infinite tree whose vertices are labeled in the set N ∪ Σ ∪ {ε},
so that each vertex is labeled by a nonterminal in N , a letter in the terminal
alphabet Σ, or by the empty word ε. The labeling is locally consistent with
the rules contained in P in the usual way. Moreover, it is required that each
derivation tree satisfies the “Büchi condition F”, i.e., on each infinite path of t
at least one repeated nonterminal has to occur infinitely many times. The frontier
of a derivation tree t determines a countable word w over the alphabet N ∪ Σ.
When w is a word over the terminal alphabet Σ and the root of t is labeled
by the start symbol S, we say that w is contained in the Büchi context-free
language generated by G. The language class BCFL consists of all such Büchi
context-free languages.

It is well-known (see e.g., [16]) that ordinary context-free languages of finite
words are precisely the frontier languages of sets of finite trees recognizable by
finite tree automata. Tree automata over infinite trees have been introduced
in [20]. Just as automata over ω-words, a tree automaton may be equipped
with different acceptance conditions such as the Büchi and Müller acceptance
conditions, or the Rabin, Streett and parity conditions, cf. [19,24]. In the setting
of ω-words, these conditions are equally powerful (at least for nondeterministic
automata). Nevertheless, some yield more succinct representation than others,
or have different algorithmic properties. On the other hand, in the setting of
infinite trees, the Büchi acceptance condition is strictly less powerful than the
Müller acceptance condition which is equivalent to the Rabin, Streett, and parity
conditions, cf. [19,24]. While in the present paper we are mainly concerned with
the Büchi condition for generating context-free languages of countable words, we
still show that the Müller condition is strictly more powerful also in the setting
of countable words. This result is not immediate from the tree case.
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2 Linear Orders and Words

In this section we recall some concepts for linear orders and words. A good
reference on linear orders is [21].

A partial order, or partial ordering is a set P equipped with a (partial) order
relation usually denoted ≤. We sometimes write x < y if x ≤ y and x �= y. A
linear order is a partial order (P,≤) whose order relation is total, so that x ≤ y
or y ≤ x for all x, y ∈ P . A countable (finite or infinite, respectively) linear order
is a linear order which is a countable (finite or infinite, respectively) set. When
(P,≤) and (Q,≤) are linear orders, an isomorphism (embedding, respectively)
(P,≤)→ (Q,≤) is a bijection (injection, respectively) h : P → Q such that x ≤ y
implies h(x) ≤ h(y) for all x, y ∈ P . When two linear orders are isomorphic, we
also say that they have the same order type (or isomorphism type).

Below when there is no danger of confusion, we will denote a linear order just
by P, Q, . . .. Suppose that P is a linear order. Then any subset X of P determines
a sub-order of P whose order relation is the restriction of the order relation of
P to X . Note that the inclusion function X ↪→ P is an embedding of X into P .
When in addition X is such that for all x, y ∈ X and z ∈ P , x < z < y implies
that z ∈ X , then we call X an interval. In particular, for any x, y ∈ P , the set
[x, y] = {z : x ≤ z ≤ y} is an interval.

We recall that a linear order (P,≤) is a well-order if each nonempty subset
of P has a least element, and is dense if it has at least two elements and for any
x < y in P there is some z with x < z < y.1 A quasi-dense linear order is a
linear order (P,≤) containing a dense linear sub-order, so that P has a subset
P ′ such that (P ′,≤) is a dense order. Finally, a scattered linear order is a linear
order which is not quasi-dense.

It is clear that every finite linear order is a well-order, every well-order is a
scattered order, and every dense order is quasi-dense. It is well-known that up
to isomorphism there are 4 countable dense linear orders, the rationals Q with
the usual order, Q endowed with a least or a greatest element, and Q endowed
with both a least and a greatest element.

An ordinal is an order type of a well-order. The finite ordinals n are the
isomorphism types of the finite linear orders. As usual, we denote by ω the least
infinite ordinal, which is the order type of the finite ordinals, and of the positive
integers N equipped with the usual order. The order type of Q is denoted η.

When τ and τ ′ are order types, we say that τ ≤ τ ′ if there is an embedding
of a linear order of type τ into a linear order of type τ ′. The relation ≤ defined
above is a linear order of the ordinals.

We define several operations on linear orders. First, the reverse (P,≤′) of a
linear order (P,≤) is defined by x ≤′ y iff y ≤ x, for all x, y ∈ P . We will
sometimes denote the reverse order (P,≤′) by P r. It is clear that the reverse of
a scattered (dense, respectively) linear order is scattered (dense, respectively).

Suppose that P and Q are linear orders. Then the sum P + Q is the linear
order on the disjoint union of P and Q such that P and Q are intervals of P +Q

1 In [21], a singleton linear order is also called dense.
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and x ≤ y holds for all x ∈ P and y ∈ Q. There is a more general notion.
Suppose that I is a linear order and for each i ∈ I, Pi is a linear order. Then
the generalized sum P =

∑
i∈I Pi is obtained by replacing each point i of I with

the linear order Pi. Formally, the generalized sum P is the linear order on the
disjoint union

⋃
i∈I Pi equipped with the order relation such that each Pi is an

interval and for all i, j ∈ I with i < j, if x ∈ Pi and y ∈ Pj then x < y. The
generalized sum gives rise to a product operation. Let P and Q be linear orders,
and for each y ∈ Q, let Py be an isomorphic copy of P . Then P ×Q is defined as
the linear order

∑
y∈Q Py. Note that this linear order is isomorphic to the linear

order on the cartesian product of P and Q equipped with the order relation
(x, y) ≤ (x′, y′) iff y < y′ or (y = y′ and x ≤ x′).

Lemma 1. [21] Any scattered generalized sum of scattered linear orders is scat-
tered. Similarly, any well-ordered generalized sum of well-orders is a well-order.
Every quasi-dense linear order is a dense generalized sum of (nonempty) scat-
tered linear orders.

Thus, when I is a scattered linear order and for each i ∈ I, Pi is a scattered
linear order, then so is

∑
i∈I Pi, and similarly for well-orders. And if P is a

quasi-dense linear order, then there is a dense linear order D and (nonempty)
scattered linear orders Px, x ∈ D such that P is isomorphic to

∑
x∈D Px.

The above operations preserve isomorphism, so that they give rise to corre-
sponding operations τ + τ ′ and τ × τ ′ on order types. In particular, the sum
and product of two ordinals is well-defined (and is an ordinal). The reverse of
an order type τ will be denoted −τ . The ordinals are also equipped with the
exponentiation operation, cf. [21].

An alphabet Σ is a finite nonempty set. A word over an alphabet Σ is a labeled
linear order, i.e., a system u = (P,≤, λ), where (P,≤) is a linear order, sometimes
denoted dom(u), and λ is a labeling function P → Σ. The underlying linear order
dom(ε) of the empty word ε is the empty linear order. We say that a word is
finite (infinite or countable, respectively), if its underlying linear order is finite
(infinite or countable, respectively). An isomorphism of words is an isomorphism
of the underlying linear orders that preserves the labeling. Embeddings of words
are defined in the same way. We usually identify isomorphic words. We will say
that a word u is a subword of a word v if there is an embedding u ↪→ v. When
in addition the image of the underlying linear order of u is an interval of the
underlying linear order of v we call u a factor of v.

The order type of a word is the order type of its underlying linear order. Thus,
the order type of a finite word is a finite linear order. A word whose order type
is ω is called an ω-word.

Let Σ = {a, b}. Some examples of words over Σ are the finite word aab which
is the (isomorphism class of the) 3-element labeled linear order 0 < 1 < 2 whose
points are labeled a, a and b, in this order, and the infinite words aω and a−ω,
whose order types are ω and −ω, respectively, with each point labeled a. For
another example, consider the linear order Q of the rationals and label each
point a. The resulting word of order type η is denoted aη. More generally, let Σ
be the alphabet {a1, . . . , an} of size n. Then up to isomorphism there is a unique
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labeling of the rationals such that between any two points there are n points
labeled a1, . . . , an, respectively. This word is denoted (a1, . . . , an)η, cf. [17].

The reverse of a word u = (P,≤, λ) is ur = (P,≤′, λ), where (P,≤′) is the
reverse of (P,≤). Suppose that u = (P,≤, λ) and v = (Q,≤, λ′) are words over Σ.
Then their concatenation (or product) uv is the word over Σ whose underlying
linear order is P + Q and whose labeling function agrees with λ on points in P ,
and with λ′ on points in Q. More generally, when I is a linear order and ui is a
word over Σ with underlying linear order Pi = dom(ui), for each i ∈ I, then the
generalized concatenation

∏
i∈I ui is the word whose underlying linear order is∑

i∈I Pi and whose labeling function agrees with the labeling function of Pi on
the elements of each Pi. In particular, when u0, u1, . . . , un, . . . are words over Σ,
and I is the linear order ω or its reverse, then

∏
i∈I ui is the word u0u1 . . . un . . .

or . . . un . . . u1u0, respectively. When ui = u for each i, these words are denoted
uω and u−ω, respectively.

In the sequel, we will make use of the substitution operation on words. Suppose
that u is a word over Σ and for each letter a ∈ Σ, ua is a word over Δ. Then the
word u[a ← ua]a∈Σ obtained by substituting ua for each occurrence of a letter
a in u (or replacing each occurrence of a letter a with ua) is formally defined as
follows. Let u = (P,≤, λ) and ua = (Pa,≤a, λa) for each a ∈ Σ. Then for each
i ∈ P let ui = (Pi,≤i, λi) be an isomorphic copy of Pλ(i). We define

u[a← ua]a∈Σ =
∏

i∈P

ui.

Note that when u = aω, then u[a ← v] is vω , and similarly for v−ω . For any
words u1, . . . , un over an alphabet Σ, we define

(u1, . . . , un)η = (a1, . . . , an)η[a1 ← u1, . . . , an ← un].

We call a word over an alphabet Σ well-ordered, scattered, dense, or quasi-
dense if its underlying linear order has the appropriate property. For example,
the words aω, aωbωa, (aω)ω over the alphabet {a, b} are well-ordered, the words
aωa−ω, a−ωaω are scattered, the words aη, aηbaη, (a, b)η are dense, and the words
(ab)η, (aω)η, (aηb)ω are quasi-dense. From Lemma 1 we immediately have:

Lemma 2. Any scattered generalized product of scattered words is scattered.
Any well-ordered generalized product of well-ordered words is well-ordered. More-
over, every quasi-dense word is a dense product of (nonempty) scattered words.

As already mentioned, we will usually identify isomorphic words, so that a word
is an isomorphism type (or isomorphism class) of a labeled linear order. When
Σ is an alphabet, we let Σ∗, Σω and Σ∞ respectively denote the set of all finite
words, ω-words, and countable words over Σ. Σ+ is the set of all finite nonempty
words. The length of a finite word w will be denoted |w|.

A language over Σ is any subset L of Σ∞. When L ⊆ Σ∗ or L ⊆ Σω, we
sometimes call L a language of finite words or ω-words, or an ω-language.

Languages are equipped with several operations, including the usual set the-
oretic operations. We now define the generic operation of language substitution.
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Suppose that u ∈ Σ∞ and for each a ∈ Σ, La ⊆ Δ∞. Then the words in
the language u[a ← La]a∈Σ ⊆ Δ∞ are obtained from u by substituting in all
possible ways a word in La for each occurrence of each letter a ∈ Σ. Different
occurrences of the same letter a may be replaced by different words in La.

Formally, suppose that u = (P,≤, λ). For each x ∈ P with λ(x) = a, let us
choose a word ux = (Px,≤x, λx) which is isomorphic to some word in La. Then
the language u[a← La]a∈Σ consists of all words

∏
x∈P ux.

Suppose now that L ⊆ Σ∞ and for each a ∈ Σ, La ⊆ Δ∞. Then

L[a← La]a∈Σ =
⋃

u∈L

u[a← La]a∈Σ .

We call L[a ← La]a∈Σ the language obtained from L by substituting the lan-
guage La for each a ∈ Σ.

As mentioned above, set theoretic operations on languages in Σ∞ have their
standard meaning. Below we define some other operations.

Let L, L1, L2, . . . , Lm ⊆ Σ∞. Then we define:

1. L1L2 = ab[a← L1, b← L2] = {uv : u ∈ L1, v ∈ L2}.
2. L∗ = {a}∗[a← L] = {u1 . . . un : n < ω, ui ∈ L}.
3. Lω = {aω}[a← L] = {u0u1 . . . un . . . : ui ∈ L}.
4. L−ω = {a−ω}[a← L] = {. . . un . . . u1u0 : ui ∈ L}.
5. (L1, . . . , Lm)η = η(a1, . . . , am)[a1 ← L1, . . . , am ← Lm].
6. L∞ = {a}∞[a← L].

The above operations are respectively called concatenation, star, ω-power, −ω-
power, η-power, and ∞-power.

Some more operations. The reverse Lr of a language L ⊆ Σ∞ is defined as
Lr = {ur : u ∈ L}. The prefix language Pre(L) is given by Pre(L) = {u : ∃v uv ∈
L} and the suffix language Suf(L) is defined symmetrically. The infix (or factor)
language In(L) is {u : ∃v, w vuw ∈ L}, and the language Sub(L) of subwords
of L is the collection of all words u such that there is an embedding u ↪→ v for
some v ∈ L.

3 Büchi Context-Free Languages

Recall that an ordinary context-free grammar (CFG) is a system G=(N, Σ, P, S)
where N and Σ are the disjoint alphabets of nonterminals and terminal symbols
(or letters), P is a finite set of productions of the form A → p where A ∈ N
and p ∈ (N ∪ Σ)∗, and S ∈ N is the start symbol. Each context-free grammar
G = (N, Σ, P, S) generates a context-free language L(G) ⊆ Σ∗ which can be
defined either by using the derivation relation ⇒∗ or by using the concept of
derivation trees.

We recall that for finite words p, q ∈ (N ∪Σ)∗ it holds that p⇒ q if p and q
can be written as p = p1Ap2, q = p1rp2 such that A→ r is in P . The relations
⇒+ and ⇒∗ are respectively the transitive closure and the reflexive-transitive
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closure of the direct derivation relation⇒. The context-free language generated
by G is L(G) = {u ∈ Σ∗ : S ⇒∗ u}. Two context-free grammars G and G′

having the same terminal alphabet are called equivalent if L(G) = L(G′). We
let CFL denote the class of all context-free languages.

A derivation tree is a partial mapping t : N∗ → N ∪ Σ ∪ {ε} whose domain
dom(t) is finite, nonempty and prefix closed (i.e., uv ∈ dom(t) ⇒ u ∈ dom(t)).
The elements of dom(t) are the vertices of t, and for any vertex v, t(v) is the
label of v. The empty word ε is the root of t, and t(ε) is the root symbol. The
vertices in dom(t) are equipped with both the lexicographic order and the prefix
order. Let x, y ∈ dom(t). We say that x ≤ y in the prefix order if y = xz for
some z ∈ N∗. Moreover, we say that x < y in the lexicographic order if x = uiz
and y = ujz′ for some u, z, z′ ∈ N∗ and i, j ∈ N with i < j. The leaves of
t are the maximal elements of dom(t) with respect to the prefix order. When
x, y ∈ dom(t) and y = xi for some i ∈ N, then we say that y is the ith successor
of x and x is the predecessor of y. The function t is required to satisfy the local
consistency condition that whenever t(u) = A with A ∈ N and u is not a leaf,
then either A → ε ∈ P and t(u1) = ε and t(ui) is not defined for any i ∈ N

with i > 1, or there is a production A → p such that |p| = n with n > 0 and
t(ui) is defined for some i ∈ N iff i ≤ n, moreover, t(ui) is the ith letter of p
for each i ≤ n. The frontier of t is the linearly ordered set of leaves whose order
is the lexicographic order. The frontier determines a word in (N ∪ Σ)∗ whose
underlying linear order is obtained from the frontier of t by removing all those
vertices whose label is ε. The labeling function is the restriction of the function
t to the remaining vertices. This word is sometimes called the frontier word of
t. It is well-known that a word u in Σ∗ belongs to L(G) iff there is a derivation
tree whose root is labeled S and whose frontier word is u.

We now define context-free grammars generating countable words.

Definition 1. A context-free grammar with Büchi acceptance condition, or
BCFG is a system G = (N, Σ, P, S, F ) where N, Σ, P, S are the same as above,
and F ⊆ N is the set of repeated nonterminals.

Note that each BCFG has an underlying CFG. Suppose G = (N, Σ, P, S, F ) is
a BCFG. A derivation tree t is defined as above except that dom(t) may now
be infinite. However, we require that at least one repeated nonterminal occurs
infinitely often along each infinite path. When the root symbol of t is A and the
frontier word of t is p, we also write A ⇒∞ p. (Here, it is allowed that A is a
terminal in which case A = p.) The language (of countable words) generated by
G is L∞(G) = {u ∈ Σ∞ : S ⇒∞ u}. When G and G′ are BCFG’s with the same
terminal alphabet Σ generating the same language, then we say that G and G′

are equivalent.

Definition 2. We call a set L ⊆ Σ∞ a Büchi context-free language, or a BCFL,
if it can be generated by some BCFG, i.e., when L = L∞(G) for some BCFG
G = (N, Σ, P, S, F ).

Suppose that G = (N, Σ, P, S, F ) is a BCFG with underlying CFG G′ =
(N, Σ, P, S). Then we define L∗(G) as the CFL L(G′). Note that in general it



192 Z. Ésik and S. Iván

does not hold that L∗(G) = L∞(G)∩Σ∗. Later we will see that for every BCFG
G = (N, Σ, P, S, F ) it holds that L∞(G) ∩Σ∗ is a CFL. It is clear that CFL ⊆
BCFL, for if G = (N, Σ, P, S, F ) is a BCFG with F = ∅, then L∞(G) = L∗(G).

Example 1. Consider the sequence (wn)n<ω of words over {a} defined induc-
tively by w0 = a, and for each n < ω, wn+1 = wω

n . Note that the order type of
wn is ωn. For each n, the BCFG Gn = (N, {a}, P, Sn, N) with

N = {S0, . . . , Sn} and P = {S0 → a} ∪ {Si → Si−1Si : 1 ≤ i ≤ n}
generates the singleton language {wn}, cf. [7]. Using this, it follows that the
BCFG G′

n = (N ∪ {S}, {a}, P ∪ {S → Si : 0 ≤ i ≤ n}, S, N) generates the set
{wi : 0 ≤ i ≤ n}.
Example 2. Let Σ be an alphabet and let a1, . . . , an ∈ Σ be letters in Σ. The
singleton language containing the word (a1, . . . , an)η is a BCFL generated by
G = ({S}, Σ, {S → Sa1Sa2 . . . SanS}, S, {S}).
Example 3. Consider the language L over the 1-letter alphabet {a} consisting of
all words in {a}∞ whose domain is well-ordered of order type < ωn. Then L is
generated by the BCFG G = (N, {a}, P, Sn, N − {Sn}) with N = {Sn, . . . , S0}
and P = {Si → ε : 0 ≤ i ≤ n} ∪ {S0 → a} ∪ {Si → Si−1Si : 1 ≤ i ≤ n}.

Let L′ be the subset of L consisting of those words whose domain is a limit
ordinal. Then L′ is the set of all finite concatenations of the words wi, 1 ≤ i < n
of Example 1. L′ is generated by the BCFG G = (N, {a}, P, S, N − {S}) with
N = {S, S0, . . . , Sn−1} and

P = {S → SiS : 1 ≤ i < n} ∪ {S → ε} ∪ {S0 → a} ∪ {Si → Si−1Si : 1 ≤ i < n}.
Example 4. The language {aωb−ω}∗ ∪ {aωb−ω}ω is a BCFL generated by G =
(N, {a, b}, P, S, N) with N = {S, X} and P = {S → XS, S → ε, X → aXb}.
Example 5. Using the fact (see e.g., Theorem 2.5 in [21]) that any countable
linear order can be embedded into Q, we get that Σ∞ is a BCFL for any alphabet
Σ, generated by the BCFG G = ({S}, Σ, {S → ε, S → SS} ∪ {S → SaS : a ∈
Σ}, S, {S}).

4 Normal Forms

The results of this section show that each BCFG can be transformed in polyno-
mial time into an equivalent BCFG which is “weakly ε-free” and does not contain
useless nonterminals nor any chain productions. Moreover, each BCFG can be
transformed into an equivalent “ε-free” BCFG having no useless nonterminals.

Definition 3. Let G = (N, Σ, P, S, F ) be a BCFG. We say that a nonterminal
A is useful if there exist words p, q ∈ (N ∪Σ)∗ and u ∈ Σ∞ such that S ⇒∗ pAq
and A⇒∞ u. We say that G contains no useless nonterminals if either N = {S},
P = ∅ and F = ∅, or each nonterminal is useful.
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Note that when G = (N, Σ, P, S, F ) contains no useless nonterminals, then
L∞(G) is empty iff N = {S}, P = ∅ and F = ∅. Moreover, if L∞(G) is not
empty, then for each A ∈ N there are words u, v ∈ Σ∞ with S ⇒∞ uAv.

Definition 4. Let G = (N, Σ, P, S, F ) be a BCFG. We call G weakly ε-free if
either L∞(G) = ∅, or for each nonterminal A there is a nonempty word u ∈ Σ∞

with A⇒∞ u, or S → ε is the only production.

As usual, a chain production is of the form A→ B, where A, B are nonterminals.

Proposition 1. For each BCFG G one can construct in polynomial time an
equivalent weakly ε-free BCFG G′ without any chain productions which contains
no useless nonterminals.

Definition 5. We say that the BCFG G = (N, Σ, P, S, F ) is ε-free if the follow-
ing conditions hold: 1. G is weakly ε-free. 2. Except possibly for the production
S → ε, the right side of any other production is a nonempty word. Moreover,
if S → ε is a production, then S does not occur on the right side of any other
production. 3. For each derivation tree t whose frontier determines a nonempty
word in Σ∞ there is a derivation tree t′ with the same root symbol and fron-
tier word which is well-founded in the following strict sense: For each vertex
x ∈ dom(t′), the subtree t′|x of t′ rooted at x has at least one leaf labeled in Σ.

Proposition 2. For each BCFG G one can construct in polynomial time an
equivalent ε-free grammar without useless nonterminals.

Proposition 3. Suppose that G = (N, Σ, P, S, F ) is an ε-free BCFG. Then
L∞(G) ∩Σ∗ = L∗(G).

Corollary 1. A language L ⊆ Σ∗ is in BCFL iff L is in CFL.

Remark 1. Suppose that G = (N, Σ, P, S, F ) is a BCFG with F = N . By an
argument similar to the proof of the well-known pumping lemma for ordinary
context-free languages we show that if L∞(G) ∩ Σ∗ is infinite, then L∞(G)
contains an infinite word. Indeed, without loss of generality we may assume that
G is ε-free without chain productions and useless nonterminals. Since L∞(G)∩Σ∗

is infinite, there is a word w ∈ L∞(G) ∩ Σ+ with a finite strictly well-founded
derivation tree rooted S such that at least one nonterminal is repeated along
some path. This implies that w can be written as xyuvz such that yv �= ε and
for some nonterminal A we have S ⇒∗ xAz, A ⇒∗ yAv and A ⇒∗ u. Since
F = N we have A ∈ F . Thus, S ⇒∞ xyωv−ωz, showing that L∞(G) contains
the infinite word xyωv−ωz.

5 Closure Properties

In this section we establish the fact that BCFL’s are effectively closed under
substitution and use this result to derive the closure of BCFL’s under the opera-
tions of union, concatenation, ω-power, −ω-power, η-power and ∞-power. Recall
the definition of language substitution from Section 2.
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Theorem 1. If the languages L, La, a ∈ Σ are BCFL’s then so is L′ = L[a←
La]a∈Σ. Moreover, given BCFG’s generating the languages L, La, a ∈ Σ, one
can effectively construct a BCFG generating L′.

Corollary 2. The class BCFL is effectively closed under binary set union, con-
catenation, ω-power, −ω-power, η-power and ∞-power.

Thus, for example, given a BCFG generating L, one can effectively construct a
BCFG generating Lη. Moreover, for any ordinary context-free language L ⊆ Σ∗,
Lω, L−ω, Lη, L∞ are BCFL’s. We mention the following results.

Proposition 4. If L is a Büchi context-free language, then Lr, Pre(L), Suf(L),
In(L) and Sub(L) are all effectively Büchi context-free languages.

Proposition 5. For every alphabet Σ, the set of all dense words in Σ∞ and the
set of all quasi-dense words in Σ∞ are BCFL’s.

Remark 2. Since a language of finite words L ⊆ Σ∗ is a BCFL iff it is a CFL,
and since CFL’s are not closed under intersection, it follows that BCFL’s are
not closed under complementation and intersection either.

6 Some Decidable Properties

In this section we show that it is decidable in polynomial time for a Büchi context
free language given by a BCFG whether it is empty, consists of finite words,
consists of infinite words, consists of ω-words, consists of well-ordered words,
consists of scattered words, or it consists of dense words. We also establish a
limitedness property of BCFL’s.

Let G = (N, Σ, P, S, F ) be a BCFG. We define a directed graph ΓG whose
set of vertices is N . There is an edge A → B exactly when B occurs on the
right side of a production whose left side is A. We partition N into strongly
connected components. As usual, the strongly connected components can be
partially ordered by S ≤ S′ iff there is a sequence of nonterminals A0, . . . , Am

such that A0 ∈ S′, Am ∈ S and for each i < m there is an edge from Ai to Ai+1.
The first fact is clear, since for every BCFG one can construct in polynomial

time an equivalent BCFG without useless nonterminals.

Theorem 2. It is decidable in polynomial time whether a BCFG generates an
empty language.

Theorem 3. Let G = (N, Σ, P, S, F ) be a weakly ε-free BCFG having no use-
less nonterminal. Then L∞(G) contains an infinite word iff there is a strongly
connected component S of ΓG which contains a nonterminal in F , and there is
a production A → p with A ∈ S such that |p| ≥ 2 and at least one nonterminal
in S occurs in p.

Corollary 3. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G consists of finite words.



Context-Free Languages of Countable Words 195

Theorem 4. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G = (N, Σ, P, S, F ) contains only infinite words.

Below, we will make use of the notion of the rank of a scattered countable word.
Let Σ be an alphabet. We define the sequence (V Σ

α )α of subsets of Σ∞, where
α ranges over all countable ordinals. Let V Σ

0 = Σ∗. Then for any countable
ordinal α > 0, let V Σ

α be the least set of words closed under finite concatenation
which contains

⋃
β<α V Σ

β together with all words of the form u0u1 . . . ui . . . and
. . . ui . . . u1u0, where each ui, i < ω is in V Σ

βi
for some βi with βi < α. The

following fact is immediate from Hausdorff’s theorem [21].

Proposition 6. A word in Σ∞ is scattered iff it belongs to V Σ
α for some count-

able ordinal α.

Definition 6. The rank of a scattered word w in Σ∞ is the least ordinal α such
that w is in V Σ

α . If this ordinal is finite we say that w is of finite rank.

Example 6. Consider the following languages over the singleton alphabet. Let
L0 = {a} and Ln+1 = {wω , w−ω : w ∈ Ln}, for all n < ω. Then for each n and
for each word w ∈ Ln, we have that w is scattered of rank n. In particular, let
w0 = a and wn+1 = wω

n , for all n < ω. Then each wn is scattered of rank n.

Example 7. For any alphabet Σ and n < ω, the set Ln of all scattered words in
Σ∞ of rank at most n is a BCFL: L0 = Σ∗ and Ln+1 = (Lω

n ∪ L−ω
n )∗.

Theorem 5. Let G = (N, Σ, P, S, F ) be a weakly ε-free BCFG with no useless
nonterminals. Then L∞(G) consists of scattered words iff for each strongly con-
nected component S of ΓG with S ∩ F �= ∅ and for each production A→ p with
A ∈ S, the word p contains at most one occurrence of a nonterminal in S.
Corollary 4. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G contains only scattered words.

Corollary 5. Suppose that G = (N, Σ, P, S, F ) is a BCFG such that L∞(G)
contains only scattered words. Then the rank of each word in L∞(G) is at most
the number of nonterminals in N .

Corollary 6. Let w0 = a and wn+1 = (wn)ω for all n < ω. There exists no
BCFL consisting only of scattered words containing all words wn, for all n < ω.
In particular, for any alphabet Σ, the set of all scattered words in Σ∞ is not a
BCFL. Similarly, the set of all well-ordered words in Σ∞ is not a BCFL.

The language of all quasi-dense words in Σ∞ is a BCFL, while its complement,
the language of all scattered words in Σ∞ is not. Thus we have:

Corollary 7. For every alphabet Σ, including the singleton alphabet, the set of
all BCFL’s in Σ∞ is not closed under complementation.
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Definition 7. Suppose that L ⊆ Σ∞ is a language consisting of scattered words
of finite rank bounded by some n < ω. Then we define the rank of L as the
maximum rank of a word in L.

Theorem 6. There is a polynomial time algorithm to compute the rank of a
BCFL of scattered words generated by a BCFG.

Theorem 7. Let G = (N, Σ, P, S, F ) be a weakly ε-free BCFG with no useless
nonterminals. Then L∞(G) contains only well-ordered words iff for each strongly
connected component S of ΓG containing a nonterminal in F and for each pro-
duction A→ p with A ∈ S, if p contains a nonterminal in S then it contains a
single occurrence of such a nonterminal, and moreover, this nonterminal is the
rightmost letter of p.

Corollary 8. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G contains only well-ordered words.

Theorem 8. Suppose that G = (N, Σ, P, S.F ) is a weakly ε-free BCFG without
useless nonterminals and chain productions. Then L∞(G) consists of finite and
ω-words iff the following holds: Whenever S is a strongly connected component
of ΓG containing a nonterminal in F such that for at least one production whose
left side is in S, the right side of the production contains a nonterminal in S,
and whenever A ∈ S, then there is no finite derivation S ⇒∗ pAp′ for any words
p, p′ ∈ (N ∪Σ)∗ such that p′ �= ε.

Corollary 9. It can be decided in polynomial time whether the language gener-
ated by a BCFG contains only finite or ω-words, or only ω-words.

Theorem 9. It is decidable in polynomial time for a BCFG G = (N, Σ, P, S, F )
whether each word in L∞(G) is dense.

7 A Comparison

In this section, we compare the class of regular ω-languages [19] and the class
of context-free ω-languages as defined by Cohen and Gold [12] with the class of
those ω-languages that are BCFL’s.

Recall that a Büchi automaton is a system A = (Q, Σ, δ, q0, F ) which consists
of an alphabet Q of states, an alphabet Σ of letters, a transition relation δ ⊆
Q × Σ × Q, an initial state q0 ∈ Q and a set F of repeated states. A run of
the automaton A on a word w = a0a1 . . . ∈ Σω is a sequence of states q0, q1, . . .
where q0 is the initial state and (qi, ai, qi+1) ∈ δ holds for all i. Moreover, it
is required that at least one state in F occurs infinitely often in the run. The
automaton A accepts the language L(A) ⊆ Σω consisting of those words having
at least one run. An ω-language is regular if some Büchi automaton accepts it.

Proposition 7. Every regular language L ⊆ Σω is a BCFL.
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Theorem 10. An ω-language is a BCFL if and only if it is context-free in the
sense of Cohen and Gold [12].

Remark 3. The papers [8,3] define finite automata acting on infinite words and
using this automaton model, provide a definition of recognizable languages of
both countable words and all words with no upper bound on the cardinality of
the word. Here we briefly compare BCFL’s with the class REC of recognizable
languages of countable words. On one hand, for any alphabet Σ, the set of all
well-ordered words in Σ∞ is in REC but not in BCFL. On the other hand, any
nonregular context-free language in Σ∗ is a BCFL which is not in REC. Thus,
the two classes REC and BCFL are incomparable.

8 An Undecidable Property

The main result of this section is that for any fixed alphabet Σ, it is undecidable
whether a BCFL given by a BCFG is the universal language Σ∞.

First we note that the language Σ+∞ = Σ∞ΣΣ∞ of all nonempty words in
Σ∞ is a BCFL. Next, the set of all words in Σ∞ with no first letter is also a
BCFL since it can be given as (Σ+∞)−ω ∪{ε}. Consider now the set of all words
in Σ∞ having a first letter. This set can be subdivided into two sets: 1. All words
starting with an ω-word which is a BCFL given by ΣωΣ∞. 2. All words starting
with a nonempty finite word followed by a word that does not have a first letter.
This is again a BCFL given by the expression Σ+((Σ+∞)−ω ∪ {ε}).

Suppose now that G = (N, Σ, P, S) is an ordinary CFG with no ε-productions
generating the language of finite words L = L(G) ⊆ Σ+. Then consider the
following language L′ ⊆ Σ∞. L′ consists of all words in Σ∞ not having a first
letter together with all words that start with an ω-word as well as those words
starting with a finite word in L followed by a word not having a first letter. An
expression for this language is ((Σ+∞)−ω ∪ {ε})∪ΣωΣ∞ ∪L((Σ+∞)−ω ∪ {ε}),
showing that L′ is a BCFL.

Lemma 3. L′ = Σ∞ iff L = Σ+.

Since it is undecidable for an ordinary context-free grammar without
ε-productions over a fixed alphabet of size at least two whether it generates the
language of all finite nonempty words, and since BCFL’s are effectively closed
under the operations that appear in the above expressions, we immediately have
that the universality problem is undecidable for BCFL’s.

Proposition 8. Let Σ be an alphabet of size at least two. Then it is undecidable
for a BCFG G = (N, Σ, P, S, F ) whether L∞(G) = Σ∞.

Theorem 11. It is undecidable for a BCFG G over the unary alphabet {a}
whether L∞(G) = {a}∞.
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9 Müller Context-Free Languages

In this section we define context-free grammars with Müller acceptance condition
and show that their generative power strictly exceeds the generating power of
context-free grammars with Büchi acceptance condition.

Definition 8. A context-free grammar with Müller acceptance condition, or
MCFG is a system G = (N, Σ, P, S,F) where (N, Σ, P, S) is an (ordinary) CFG
and F is a set of subsets of N .

When G is such an MCFG, a derivation tree t over G is defined as for BCFG’s
except that we require that for every infinite path π of t, the set of nonterminals
occurring infinitely often as a vertex label along π belongs to F . We write X ⇒∞

p when there is a derivation tree with root symbol X and frontier word p.

Definition 9. Let G = (N, Σ, P, S,F) be an MCFG. The language L∞(G) gen-
erated by G is the collection of all words u ∈ Σ∞ that are frontier words of some
derivation tree whose root symbol is S. A language L ⊆ Σ∞ is called a Müller
context-free language, or an MCFL, if L is generated by some MCFG.

Theorem 12. BCFL is strictly included in MCFL.

In fact, an MCFL that is not a BCFL is provided by Corollary 6.

10 Conclusion and Further Research Topics

We have defined two types of context-free grammars generating languages of
countable words, BCFG’s and MCFG’s, corresponding to the Büchi- and Müller-
type acceptance conditions of automata on ω-words and automata on infinite
trees. We showed that BCFG’s can be transformed into equivalent BCFG’s that
are (weakly) ε-free and do not have chain productions or useless nonterminals.
We established several closure properties of the class BCFL of languages that
can be generated by BCFG’s. We proved that many properties, including several
order theoretic properties of BCFL’s are decidable in polynomial time, whereas
the universality problem is undecidable even for the single letter alphabet. We
showed that the BCFL’s of finite words are exactly the usual CFL’s, and that the
ω-languages that are BCFL’s are exactly the context-free ω-languages of Cohen
and Gold [12]. We showed that every BCFL of scattered words consists of words
of finite bounded rank. Finally we showed that there is a language that can be
generated by an MCFG which is not a BCFL.

It follows from our proof of Theorem 4 that it is decidable in polynomial time
whether a finite word belongs to the language generated by a BCFG. The same
question for regular words seems very interesting, where a regular word may be
defined as a word generated by a BCFG which contains exactly one production
for each nonterminal.

The present paper focuses on BCFG’s and BCFL’s. It would be interesting to
see how much differently MCFG’s behave. We have seen that they have a strictly
larger generative power, and they also have different algorithmic properties. It
would also be interesting to develop a suitable pushdown automaton model.
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