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Abstract. The hairpin completion is a natural operation of formal lan-
guages which has been inspired by molecular phenomena in biology and
by DNA-computing. The hairpin completion of a regular language is
linear context-free and we consider the problem to decide whether the
hairpin completion remains regular. This problem has been open since
the first formal definition of the operation.

In this paper we present a positive solution to this problem. Our solu-
tion yields more than decidability because we present a polynomial time
procedure. The degree of the polynomial is however unexpectedly high,
since in our approach it is more than n14. Nevertheless, the polynomial
time result is surprising, because even if the hairpin completion H of a
regular language L is regular, there can be an exponential gap between
the size of a minimal DFA for L and the size of a smallest NFA for H.

1 Introduction

The origin of this paper is motivated by biological and DNA-computing. But
although our motivation is based on biological phenomena, the present paper is
more about an interesting decidability result on regular languages. Let us explain
the background first and the connection to Formal Language Theory later.

Single-stranded DNA (ssDNA) are composed by nucleotides which differ from
each other by their bases: A (adenine), G (guanine), C (cytosine), and T (thymine).
Therefore each ssDNA may be viewed as a finite string over the four-letter
alphabet {A, C, G, T }. Two single strands can bind to each other forming the
secondary structure of DNA if they are pairwise Watson-Crick complementary:
A is complementary to T , and C to G. The binding of two strands is also called
annealing.

An intramolecular base pairing, known as hairpin, is a pattern that can occur
in single-stranded DNA and, more commonly, in RNA. Hairpin or hairpin-free
structures have numerous applications to DNA computing and molecular ge-
netics. In many DNA-based algorithms, these DNA molecules cannot be used
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in the subsequent computations. Therefore, it is important to design methods
for constructing sets of DNA sequences which are unlikely to lead to “bad” hy-
bridizations. This problem was considered in a series of papers, see e.g. [2,3,4,7,8].

In [1,12] a new formal operation on words is introduced, namely the hair-
pin completion. It consists of three biological principles. Besides the Watson-
Crick complementarity and annealing the third biological phenomenon is that of
lengthening DNA by polymerases. In our case the phenomenon produces a com-
plete molecule as follows: one starts with hairpins which are here single strands
such that for each of them one end is annealed to a part of itself by Watson-Crick
complementarity; and a polymerization buffer with many copies of the four nu-
cleotides. Then polymerases will concatenate to the hairpin by complementing
the template.

What happens in this situation is, informally, best explained in Fig. 1. In that
picture as in the rest of the paper we mean by putting a bar on a word (like α )
to read it from right-to-left in addition to replacing a by a for letters.

γ α β α annealing

γ
α

β

α

lengthening

γ
α

β

α
γ

strand hairpin hairpin completion

Fig. 1. Hairpin completion of a strand

This is a good starting point to translate the biologically inspired motivation
to a purely abstract formalism. On that level, we have just a finite alphabet Σ
together with an involution. This is a bijection ¯ : Σ → Σ such that a = a for
all a ∈ Σ. In the concrete situation above Σ = {A, C, G, T } and A = T and
C = G. We extend the involution to words a1 · · · an by a1 · · · an = an · · · a1 .
(Just like taking inverses in groups.)

We start with a (formal) language L ⊆ Σ∗ (the set of strands). Then hairpin
completion can arise in one-sided way. The right-sided hairpin completion of L
is formally defined by the set of words γαβα γ with γαβα ∈ L being the strand
and γαβα γ being the completion, see again Fig. 1. Still inspired by biological
facts, a binding in a hairpin can be stable, only if α is long enough, say |α| ≥ 10.
Formally we fix a (small) constant k and ask |α| ≥ k. The left-sided hairpin
completion can be defined analogously.

Clearly, the hairpin completion of a finite language is finite. If L is regu-
lar then, sometimes the right/left-sided k-hairpin completion is regular again,
sometimes it is not. But then it is a linear context-free language as the reader
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will immediately recognize. For example, if L = ab∗bkcb k, then the right-sided
k-hairpin completion is not regular, but linear context-free, because it is:

{
abmbkcb kb na

∣
∣ m ≥ n

}
.

This leads to a first natural decidability problem:

Problem 1. Is it decidable whether the right-sided k-hairpin completion of a
regular language is regular again?

We can see directly from the hairpin picture that it is not always natural
to distinguish between left and right. Therefore we consider the two-sided case,
too. The (two-sided) hairpin completion of L is therefore defined by the set of
words γαβα γ with either γαβα ∈ L or αβα γ ∈ L or both. If we simply speak
about the hairpin completion we always mean the two-sided case. As above
we see two possibilities, and, moreover, we see that the behaviors are different.
Let us consider L = ab∗bkcb k ∪ bkcb kb ∗a . The right- and left-sided k-hairpin
completion is still not regular, but the two-sided is.

However, if we consider L = a+bkcb k, then neither the right- nor the two-sided
k-hairpin completion is regular. They are identical and equal to:

{
anbkcb ka n

∣
∣ n ≥ 1

}
.

This leads to a second natural decidability problem:

Problem 2. Is it decidable whether the k-hairpin completion of a regular lan-
guage is regular again?

The initial work [1] has been followed up by several related papers [6,9,10,11,12],
where both the hairpin completion as well as its inverse operation, namely the
hairpin reduction, considered as formal operations on strings and languages were
further investigated. But the decidability status of Problems 1 and 2 remained
open. Actually, the difficulty in solving Problems 1 and 2 is perhaps not that
surprising since we are immediately confronted with decidability questions on
linear context-free languages. Every linear context-free language is a weak code
image of an hairpin completion of some regular language. (A weak code is a
homomorphism which is the identity on a subset of letters and maps the other
letters to the empty word.) To see this let us quote a theorem from [1]:

Theorem 1. A language is linear context-free if and only if it is the weak-code
image of the hairpin completion of a regular language.

Natural problems well-known to be undecidable for context-free languages are
already undecidable for linear context-free languages, see e.g. [5] for a classical
reference. In particular it is undecidable whether linear context-free languages
are universal or equal to a given regular language or whether a linear context-free
language is regular.

Thus, Problems 1 and 2 are problems about a subclass of linear context-free
languages where no general results were known to solve them. In this paper we
give positive answers to both problems. Actually, they are decidable in polyno-
mial time (if the input size is given as the size of a DFA for L plus the size of a
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DFA accepting the reversal language of L. Clearly, there might be an exponential
gap between these sizes.)

The history of the solution shows several steps. First we solved Problem 1
and we realized that, retrospective, it was not difficult to find the solution, but
we had no good estimation for the complexity. The solution to Problem 2 was
much more difficult, and it became rather technical. The complexity was again
unclear. A very rough estimation led us to something like triple exponential,
but we worked in syntactic monoids and raised, whenever possible, elements to
idempotent powers. So it was clear that there was room for improvement, and
the intermediate results were never published.

The present solution is more ambitious. We prove a polynomial time result,
which is more than expected when we started our work. What we find also quite
amazing is the following: We treat natural problems about regular languages
which we now know to be decidable in polynomial time. But the degree for the
polynomial as we present the algorithm here might be about 20. So it is very
high. With more efforts we were able to bring the degree down to 14, but this
is not shown here. Such a huge time complexity is however no indication that
for real life examples the problem is difficult. For most regular languages L it is
probably very easy to decide whether the k-hairpin completion is regular again.
Being regular is the exception and puts many constraints on L as we will see
below. The formal statement of our result is in Section 3.

2 Notation

We assume the reader to be familiar with the fundamental concepts of formal
language theory, context-free grammars and automata theory, see [5]. We also
use syntactic monoids, but very little of this rich theory. What we use is the
following elementary fact. If L is a regular language then there is a constant
s ∈ N such that for all words x, y, z we have xysz ∈ L if and only if xy2sz ∈ L.
Note that this implies xysz ∈ L if and only if x(ys)+z ⊆ L.

We use non-deterministic finite automata (NFA) and deterministic finite au-
tomata (DFA). Whenever convenient we use that all states are reachable and
co-reachable. Thus, if g is a state then there is a path from the initial state to g
and a path from g to some final state.

An alphabet is a finite set of letters. Here the alphabet is Σ. The set of words
over Σ is denoted Σ∗, as usual, and the empty word is denoted by 1. Given a
word w, we denote by |w| its length. If w = xyz for some x, y, z ∈ Σ∗, then
x, y, z are called prefix, factor, suffix, respectively. For the prefix relation we also
use the notation x ≤ w. By a proper factor y of w we mean a factor such that
x �= w, but in our paper we allow x = 1.

As said above, Σ is equipped with an involution such that a = a for all letters
a ∈ Σ. The involution is extended to words by 1 = 1 and uv = v u , thus the
involution reverses the order as well. Due to this law some authors call it an anti-
involution, but we prefer our convention (which is also the more standard one).
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If L is a language, then its reversal language is given by reading words right-
to-left, i.e. by the set of words an · · ·a1 where a1 · · ·an ∈ L and ai ∈ Σ. Note
that a DFA of minimal size for the reversal language yields also a DFA for
L = {w ∈ Σ∗ | w ∈ L} of exactly the same size, and vice versa.

We intend to solve Problem 1 and 2 simultaneously, therefore we introduce a
more general notion of hairpin completion.

Throughout the paper L and R denote two regular languages and k > 0 is a
positive integer. We define the hairpin completion H(L, R, k) by

H(L, R, k) = {γαβα γ | (γαβα ∈ L ∨ αβα γ ∈ R) ∧ |α| = k }
Note that the definition does not change if we replace |α| = k by |α| ≥ k . For
simplicity of the presentation we treat k as a (small) constant.

3 Main Result

Note that the right-sided k-hairpin completion is nothing butH(L, ∅, k), whereas
the two-sided version appears as H(L, L, k). Thus, the notion H(L, R, k) is
adopted to treat both cases simultaneously.

Problem 3. Input: A DFA accepting L of at most n states and a DFA accepting
the reversal language of L (or for L ) of at most n states.

Question: Is the hairpin completion H(L, R, k) regular?

The purpose of this paper is to prove the following theorem.

Theorem 2. Let Σ be a fixed alphabet and k > 0 be a constant. Let L and R be
regular languages. Then it is decidable whether the hairpin completion H(L, R, k)
is regular.

As we have explained above, Problem 3 is more general than Problem 1 and 2.
Obviously, for Problem 1 we do not need a DFA for the reversal language.

An NFA of minimal size accepting the hairpin completion may have exponen-
tially more states than a DFA for L and L . Thus, although we have a polynomial
time decision algorithm there is no time to construct the NFA (in plain form).

Indeed let
Ln = {bvakbak | v ∈ {a, b}n}.

Then we have H(Ln, ∅, k) = H(Ln, Ln, k) = {bvakbakvb | v ∈ {a, b}n}.
Thus, the sizes of a minimal DFA accepting Ln and Ln are in O(n). But every

NFA accepting H(Ln, ∅, k) must keep track of v and thus its size is in Ω(2n).
The proof of Theorem 2 is quite technical and relies on some non-standard

constructions for finite automata and context-free grammars.
The key idea is to use a linear grammar which produces exactly those γαβα γ

where |γ| is minimal. We show that, due to the minimality of |γ|, the context-
free grammar has either a very special structure or the hairpin completion is not
regular. This leads to a series of decidable conditions for the regularity of the
hairpin completion which are either sufficient or necessary. The last test in this
series yields the result.
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3.1 An NFA for L and R

Regular languages can be specified by deterministic finite automata (DFA). A
DFA is essentially a finite set Q together with a monoid action of Σ∗ on the right.
The action is written as a product q · u with the usual laws q · uv = (q · u) · v
and q · 1 = q, where q ∈ Q and u, v ∈ Σ∗. By 1 we denote the empty word
and the neutral element in other monoids. The action is defined by a function
Q×Σ∗ → Q. In the following we assume that the regular language L is specified
by a DFA with state set QL, q0,L ∈ QL as initial state, and FL ⊆ QL as final
states. We fix nL = |QL| to be the number of states. For R we need however a
DFA reading R from right-to-left. Such an automaton is essentially equivalent
to a DFA accepting the reversal language of R.

We start with a finite set QR and a left-action of Σ∗. For simplicity we use a
product sign again, but we write it on the left: u · q satisfying uv · q = u · (v · q)
and 1 · q = q. We choose QR, q0,R ∈ QR and FR ⊆ QR such that

R = {u ∈ Σ∗ | u · q0,R ∈ FR} .

Let nR = |QR|. For the rest of the paper we fix n = nL + nR. We view n as
input size for our decidability problem (stated in Theorem 2) to test whether
the hairpin completion H(L, R, k) is regular.

What we are really interested in is the product automaton with state space

Q = QL ×QR.

Although we started with deterministic automata, we content to read Q as the
state space of a non-deterministic automaton which accepts L reading words
from left-to-right and accepts R reading words from right-to-left. Since this con-
struction is crucial, we make it precise: Let P = (p1, p2), Q = (q1, q2) be states of
Q and a ∈ Σ be a letter. We define an arc (P, a, Q), if p1 ·a = q1 and p2 = a · q2.
Note that P may have several outgoing arcs labeled by a because for each p2

and each a there might be several q2 with p2 = a · q2.
Let u ∈ Σ∗ be a word. Then for each pair (p, q) there is a unique pair (r, s) ∈

QR × QL such that there is u-labeled path in the NFA from (p, r) to (s, q).
Moreover the path is uniquely defined. This is easily seen by induction on the
length of u.

In particular, u is in L if and only if there is such a path from (q0,L, r) to
(s, q0,R) with s ∈ FL. By symmetry, u is in R if and only if r ∈ FR for that
path.

Now for each pair (P, Q) ∈ Q ×Q we define a regular language R[P, Q] by

R[P, Q] = {u ∈ Σ∗ | There is a u-labeled path from P to Q} .

There are at most n4 such regular languages and for each of them we can test
emptiness in polynomial time. For P = (p, r) and Q = (s, q) we obtain

R[P, Q] = {u ∈ Σ∗ | p · u = s ∧ r = u · q} .
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3.2 A First Linear Context-Free Grammar

We continue with the same notations. In addition we view each symbol [P, Q]
with (P, Q) ∈ Q × Q as a variable of a context-free grammar. First we define
productions of the form

[P, Q] −→ a[R, S]a

with a ∈ Σ. We do so for all [P, Q], [R, S] and a, where (P, a, R) and (S, a , Q)
are arcs in the NFA above. For example, let P = (p1, p2) and R = (r1, r2), then
we must have p1 · a = r1 and p2 = a · r2.

Moreover, we introduce chain rules

[P, Q] −→ R0[P, Q],

where Ri[P, Q] denotes a variable for 0 ≤ i < k; and Rk[P, Q] denotes a new
terminal symbol. Of course, the idea is that we are free to substitute Rk[P, Q]
by the regular language R[P, Q].

The index i can be viewed as a level where we produce the words α and α
used in the hairpin. This idea leads us to the third type of productions. These
productions are of the form

Ri−1[P, Q] −→ aRi[R, S]a

where 1 ≤ i ≤ k and again a ∈ Σ. In order to have rules of the third type we
impose again that (P, a, R) and (S, a , Q) are arcs in the NFA above.

We obtain a linear grammar with variables [P, Q], Ri[P, Q], 0 ≤ i < k, and
terminal symbols a, a , and Rk[P, Q] with a ∈ Σ, and Ri[P, Q] as above. Note
that the symbols R0[P, Q] produce finite languages of the form αRk[R, S]α with
|α| = k. In particular, replacing the symbol Rk[R, S] by the language R[R, S],
the symbol R0[P, Q] produces a regular language, too.

Consider next a derivation

[P, Q] ∗=⇒ γRi[R, S]γ .

Let P = (p1, p2), Q = (q1, q2), R = (r1, r2), S = (s1, s2) be states in the NFA
and w ∈ Ri[R, S] be a word.

This implies:

p1 · γ = r1, p2 = γ · r2,
r1 · w = s1, r2 = w · s2,
s1 · γ = q1, s2 = γ · q2.

In particular, we have

p1 · γwγ = q1, p2 = γwγ · q2.

For the other direction, assume we have p1 · γwγ = q1 and p2 = γwγ · q2

with |γ| ≥ k. Then, for each 1 ≤ i ≤ k, there are uniquely defined symbols
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[P, Q],Ri[R, S] with P = (p1, p2), Q = (q1, q2), R = (r1, r2), S = (s1, s2) and a
word w ∈ Ri[R, S] such that we find a derivation:

[P, Q] ∗=⇒ γRi[R, S]γ .

In the next step we fix six states P0 = (p1, p2), Q0 = (q1, q2), R0 = (r1, r2),
S0 = (s1, s2), I0 = (i1, i2), and J0 = (j1, j2), with the following properties:

1.) p1 = q0,L is the initial state in the DFA above accepting L.
2.) q2 = q0,R is the initial state in the right-to-left DFA above accepting R.
3.) Either s1 ∈ FL or r2 ∈ FR or both.
4.) There is a k-step derivation R0[R0, S0]

k=⇒ αRk[I0, J0]α .

The number of possible ways to choose these six states is bounded by n5
L ·n5

R,
hence at most n10. By symmetry we assume in addition that we have s1 ∈ FL,
thus whenever [P0, Q0]

∗=⇒ γR0[R0, S0]γ and w ∈ R[R0, S0], then we know
γw ∈ L.

We continue as follows: We choose the variable [P0, Q0] to be the single ax-
iom of the linear grammar G0 we are going to define. We restrict the terminal
alphabet to be the set Σ ∪ {Rk[I0, J0]}.

Next, we remove more productions and variables. On level 0 we only keep
one single variable, namely R0[R0, S0]. Thus, all terminal derivations admit the
form:

[P0, Q0]
∗=⇒ γR0[R0, S0]γ

k=⇒ γαRk[I0, J0]α γ .

So far, the productions can be assumed to be of three types:

[P, Q] −→ a[R, S]a ,

[R0, S0] −→ R0[R0, S0],

Ri−1[P, Q] −→ aRi[R, S]a

Now we remove all productions [P, Q] −→ a[R, S]a where P = (p1, p2) and

Q = (q1, q2) with either q1 ∈ FL or p2 ∈ FR or both. Let us call this new linear
grammar G0. Derivation in the grammar G0 look as follows.:

[P0, Q0]
∗=⇒ γ1[P, Q]γ1

∗=⇒ γR0[R0, S0]γ
k=⇒ γαRk[I0, J0]α γ .

Now let β ∈ R[I0, J0] and w = αβα , then we know that either γw = γαβα ∈ L
or wγ = αβα γ ∈ R or both, but every prefix of γwγ belonging to L is a prefix
of γw and every suffix belonging to R is a suffix of wγ.

As usual, the generated language is called L(G0). By H(G0) we mean the
language where we substitute the terminal symbolRk[I0, J0] by the (non-empty)
regular language R[I0, J0]. Thus,

H(G0) =
{

γαβα γ

∣
∣∣
∣ [P0, Q0]

∗=⇒
G0

γαRk[I0, J0]α γ ∧ β ∈ R[I0, J0]
}

.
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By the very construction H(G0) ⊆ H(L, R, k). Moreover, every word in the
hairpin completion H(L, R, k) belongs to one of these H(G0). Thus, H(L, R, k)
is regular if and only if for all these H(G0) we find regular languagesR(G0) such
that H(G0) ⊆ R(G0) ⊆ H(L, R, k).

Thus, it is enough to show that we can decide in polynomial time whether
there is such a regular language R(G0) for a given grammar G0 as above.

Note that we can test in polynomial time whether L(G0) ⊆ Σ∗Rk[I0, J0]Σ∗ is
finite. In the case that L(G0) is finite, we are done, because H(G0) is obtained by
substituting Rk[I0, J0] by a regular language. So we can chooseR(G0) = H(G0).

In the spirit of an algorithm we could also say:

Test 1. Check whether L(G0) is finite. If yes, we construct the next grammar
of this type.

We continue with the linear grammar G0 under the assumption that L(G0) is
infinite and that the grammar is reduced. This means all symbols are reachable
and productive. Since L(G0) is infinite there must be variables of the form [P, Q]
and non-trivial derivations:

[P, Q] +=⇒
G0

[P, Q].

There are at most n4 such symbols. They are called self-reproducing symbols in
the following. Let us fix one self-reproducing symbol and denote it by [P ′, Q′].
We define a linear context-free grammar G1 and a language L(G1) given as the
following set:

{
πγαRk[I0, J0]α γ π

∣
∣∣
∣ [P0, Q0]

≤n4

=⇒
G0

π[P ′, Q′]π ∗=⇒
G0

πγαRk[I0, J0]α γ π

}
.

This gives us at most n4 grammars G1 of polynomial size such that L(G0) is,
up to finitely many elements, the union of languages L(G1). Note also that each
language L(G1) is infinite by construction.

As above, we also have a linear context-free language H(G1) by defining:

H(G1) = {πγαβα γ π | πγαRk[I0, J0]α γ π ∈ L(G1) ∧ β ∈ R[I0, J0]} .

This reduces the proof of Theorem 2 to the following statement: We can
decide in polynomial time whether there is a regular language R such that
H(G1) ⊆ R ⊆ H(L, R, k).

For [P ′, Q′] we compute two words π and p with length 0 < |π| , |p| ≤ n4 such
that we have:

[P0, Q0]
+=⇒
G1

π[P ′, Q′]π +=⇒
G1

πp[P ′, Q′]p π .

N.B., there are perhaps many choices for π and p, but we content to fix one
pair (π, p) for each [P ′, Q′]. As we will see below, the solution to Problems 1
and 2 can be based on these fixed pairs!
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The main idea is from now to investigate the effect of pumping the word
p under the assumption that the hairpin completion is regular. This means we
consider derivations [P0, Q0]

+=⇒
G1

πps[P ′, Q′]p s π , where s is huge andH(L, R, k)

is regular.
Consider some β ∈ R[I0, J0] and πvαRk[I0, J0]α v π ∈ L(G1). The choice of

the word p implies [P ′, Q′] +=⇒
G1

p[P ′, Q′]p and hence, for all s ∈ N we have

zs = πpsvαβα v p s π ∈ H(G1)

and the word πpsvαβα is the longest prefix of zs in L; and moreover, if a suffix
of zs belongs to R, then it is a suffix of αβα v p s π .

Assume for a moment that H(L, R, k) is regular, then we find s > 0 such that
ps is idempotent in the syntactic monoid of H(L, R, k). However, this means
that πpsyvαβα v p s π ∈ H(L, R, k) where s is perhaps large, but y can be taken
as huge as we need. Now, for the hairpin we do not have the option to build it
on the right, because αβα v p s π is too short compared to length of the whole
word (it must cover more than half of the length). Thus, we must use the longest
prefix πpsyvαβα in L for the hairpin. But this implies that vα is a prefix of some
power of p.

This leads to the following lemma:

Lemma 1. Let H(L, R, k) be regular. Then vα is a prefix of some power of the
word p for all derivations [P ′, Q′] ∗=⇒

G1
vαRk[I0, J0]α v .

Proof. This is clear, choose some β ∈ R[I0, J0] and derivation [P0, Q0]
∗=⇒

G1

πvαβα v π ; and argue as above.

We have also the following complexity result:

Lemma 2. There is a polynomial time algorithm which checks whether for all
derivations [P ′, Q′] ∗=⇒

G1
vαRk[I0, J0]α v if we have that vα is a prefix of some

power of p.

Proof. This follows from a standard construction. For the language

X =
{
wRk[I0, J0]w′ ∈ Σ∗Rk[I0, J0]Σ∗ ∣

∣ w is no prefix of a word in p+
}

we find a DFA with |p| + 3 states. Therefore we can check in polynomial time
whether the following intersection is empty:

X ∩
{

vαRk[I0, J0]α v ∈ Σ∗Rk[I0, J0]Σ∗
∣
∣
∣∣ [P ′, Q′] ∗=⇒

G1
vαRk[I0, J0]α v

}

The intersection is empty if and only if for all derivations

[P ′, Q′] ∗=⇒
G1

vαRk[I0, J0]α v

we have that vα is a prefix of some power of p.
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This gives a non-trivial necessary condition.

Test 2. We check for all self-reproducing symbols [P ′, Q′] the condition in
Lemma 2.

If one of the test fails, we know that the hairpin completion H(L, R, k) is
not regular. Thus, in the following we assume that all self-reproducing symbols
[P ′, Q′] passed this test.

3.3 Candidates

Thus by Test 2, for the rest of the proof we assume that all self-reproducing
symbols [P ′, Q′] produce only terminal words of the form psp′αRk[I0, J0]α p′ p s

where s ≥ 0 and p′ ≤ p and p′α is a prefix of some power of p. This condition
remains valid if we replace p by some fixed power, say pk. In particular, we
may assume henceforth that |p| ≥ k and therefore α becomes a prefix of some
conjugated word q = p′′p′ with p = p′p′′.

We use all these (at most n4) symbols [P ′, Q′] and we collect all words p and
all their conjugates q = p′′p′ in a list of candidates C. This list contains at most
n8 words, and q ∈ C defines a word α of length k such that α ≤ q.

We now need the reference to specific states in the DFAs. We have P0 =
(q0,L, p2) and P ′ = (p′1, p′2) and hence q0,L · π = p′1 and p′1 · p = p′1. Let q = p′′p′

with p = p′p′′ and c ∈ QL such that c = p′1 · p′. Then we have c · q = c, too.
Moreover, let J0 = (j1, j2) and f = j1 · α , then we know that f ∈ FL and

(starting in f) reading any non-empty prefix of a word in q +p′ π cannot take
us back to a final state. For the symmetric consideration we content that if
d = p′ π · q0,R ∈ QR, then d = q · d.

The next step is to create a list L of tuples

(c, d, e, f, g, h, q) ∈ QL ×QR ×QL ×QL ×QR ×QR × C,
which satisfy the following additional conditions:

1.) f ∈ FL and reading any non-empty prefix of a word in q + cannot take us
back from f to a final state.

2.) c = c · q and d = q · d.
3.) e · q = e and f · q n = e.
4.) g = q · g and g = qn · h.

There are at most n14 elements in L. We consider (c, d, e, f, g, h, q) one after
another. For each tuple we define α ≤ q by |α| = k. We define a finite (!)
language Π by all words π ∈ Σ∗ satisfying the following conditions:

1.) |π| ≤ 2n4 + k.
2.) q0,L · π = c, and d = π · q0,R,
3.) For all η ≤ π we have e · η /∈ FL.
4.) For all suffixes σ of π we have σ · g /∈ FR.

Note that an NFA of polynomial size for Π can be constructed in polynomial
time, but the size of Π can be exponential, |Π | ≤ |Σ|2n4+k. We also define a
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(possibly infinite) regular language B by all words β ∈ Σ∗ satisfying c·αβα = f ,
h = αβα · d, and qα is not a prefix of αβ. Again, an NFA of polynomial size for
B can be constructed in polynomial time.

The idea behind this definition is as follows. Assume πqtqnαβα q nq s π is in
the hairpin closure, then we see these states as follows:

q0,L
π−→ c

qtqn

−→ c
αβα−→ f

q n

−→ e
q s

−→ e
π−→

π←− g
qt

←− g
qn

←− h
αβα←− d

q nq s

←− d
π←− q0,R

Let

H(c, d, e, f, g, h, q) =
{
πqtαβα q s π

∣
∣ π ∈ Π ∧ β ∈ B ∧ 0 ≤ s ≤ t

}
.

Then obviously, H(c, d, e, f, g, h, q) ⊆ H(L, R, k) because πqtαβα ∈ L. We
claim that for the grammar G1 as above and all words w ∈ H(G1) there exists
at least one tuple (c, d, e, f, g, h, q) ∈ L such that w ∈ H(c, d, e, f, g, h, q).

The crucial observation here is that we have introduced the states h and g
just for the following purpose: We can write a word w = αβ′α as w = qjαβα
such that qα is not a prefix of αβ. Then let h = αβα · d. The words w which
play a role for H(G1) are of the type that if we are during the right-to-left run
in state h after reading αβα , then for some perhaps huge t we reach the state
g = qt · h with g = q · g. Indeed, we can use g = p′′ · p′2 where P ′ = (p′1, p

′
2). But

this means g = qn · h, too. We obtain a symmetric statement for e and f .
Thus, H(L, R, k) is regular if and only if for all (c, d, e, f, g, h, q) ∈ L we find

regular languages R such that H(c, d, e, f, g, h, q) ⊆ R ⊆ H(L, R, k).
Note that for πqtαβα q sπ in H(c, d, e, f, g, h, q) the longest prefix in L is the

word πqtαβα , but we lost the control over the suffixes which are in R.
Clearly,

{
πqtαβα q s π

∣
∣ π ∈ Π ∧ β ∈ B ∧ 0 ≤ s < n ∧ s ≤ t

} ⊆ H(L, R, k)

is a regular language because Π is finite and B is regular. Thus all we will have
to show is the following.

Proposition 1. Let

H = H(c, d, e, f, g, h, q, n) =
{
πqtαβα q s π

∣
∣ π ∈ Π ∧ β ∈ B ∧ n ≤ s ≤ t

}
.

Then we can decide in polynomial time whether there is a regular language R
such that H ⊆ R ⊆ H(L, R, k).

For the proof of Proposition 1 we start with the following test.

Test 3. Check in polynomial time whether there exists a suffix σ of qn such that
σ · h ∈ FR is a final state for R.

If Test 3 yields yes, then we can put

R =
{
πqtαβα q s π

∣
∣ π ∈ Π ∧ β ∈ B ∧ n ≤ s ∧ n ≤ t

}
.
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The set R is regular and satisfies H ⊆ R ⊆ H(L, R, k).
Thus, for the rest we assume that Test 3 is negative. Then the language H

has some additional special features.
For zt,s = πqtαβα q sπ ∈ H with π ∈ Π and β ∈ B and n ≤ s ≤ t we

know that the prefix π′qtαβα belongs to L and it is the longest prefix with this
property. If a suffix of zt,s belongs to R, then it is a suffix of αβα q sπ , due
to Test 3. Moreover, qα is not a prefix of αβ which was the main purpose of
defining B in such a way.

Let us assume that H(L, R, k) is regular, then there exists some x > n such
that q x is idempotent in the syntactic monoid of H(L, R, k). Consider t + 1 =
s = 2x.

Consider zt = πqtαβα q t+1 π with π ∈ Π and β ∈ B. As q x is idempotent
and π′qtαβα q t+1−x π′ ∈ H(L, R, k) we see that zt ∈ H(L, R, k), too. Since qα
is not a prefix of αβ the longest prefix in L becomes too short to create a hairpin
completion for πqtαβα q t+1 π ; we must use a suffix in R for that purpose. The
longest suffix in R has the form δu ∈ R with |δ| = k, and it is a suffix of
αβα q t+1 π . Moreover as |α| = |δ| we see that πqtα must be a prefix of u .

Thus, we must be able to write

αβα q = vδwδ v

such that δwδ v q tπ ∈ R. Now consider some huge y, say y > |zt|. Then
πqtαβα q t+1+xy π ∈ H(L, R, k), too. Similar to an earlier observation this says
that we can write vδ = qmq′δ with m ≥ 0 and q′δ is a proper prefix of qα. But
we cannot have m > 0, since, again, qα is not a prefix of αβ.

Thus, if H(L, R, k) is regular, then vδ < qα and αβα q = vδuδ v such that
δuδ v · d ∈ FR.

This leads finally to another necessary condition. If H(L, R, k) is regular, then
it must pass the following test:

Test 4. Check in polynomial time whether for all β ∈ B there exist v, δ with
|δ| = k, vδ ≤ qα and αβα q = vδw with |w| ≥ |vδ| and δw · d ∈ FR.

In order to perform a test in polynomial time we start with any NFA accepting
the language

{αβα q | β ∈ B} .
Then we may take e.g. the cross product with the NFA constructed in Section 3.1,
which, in particular, knows the state inQR. This means if, in the new automaton,
state Q knows r ∈ QR and if we can reach via a word z a final state, then we
may infer r = z ·d. (This is because we may assume that in the right-to-left DFA
d is an initial state for the right quotient R(q nπ )−1.) Recall that whenever we
investigate properties of NFA, we first do a clean-up. Thus, we assume that all
states are reachable and co-reachable.

We continue to modify the new NFA as follows. We duplicate each state Q
several times so that each state becomes the form [i, Q, j] with i ∈ {0, . . . , |q|, ∗}
and j ∈ {0, . . . , |q| + 2k, ∗}, where ∗ is a special symbol standing for integers
greater than |q|, respectively greater than |q|+ 2k.



On the Hairpin Completion of Regular Languages 183

After a transformation we may assume that if the NFA accepts a word uz
with |u| = i and |z| = j, then we are sure that reading u we reach some state
[i, Q, j]. Vice versa if we reach after reading u a state [i, Q, j], then |u| = i and
|z| = j for every word z which takes [i, Q, j] to some final state.

We duplicate the states again, and we introduce upper and lower states. We
start in the upper part, but as soon as we deviate from reading a prefix qα we
switch to the lower part. We switch also to the lower part if j < k. Once we are
in the lower part we remain there. Note that the last k states on an accepting
path are lower.

On every accepting path there is exactly one upper state U where the next
state is a lower state.

Remember that our NFA of Section 3.1 transfers the following property: If we
accept now a word uz with |u| = i and if after reading u we reach [i, Q, j], then
we know the state z · d of the right-to-left DFA for R. Let us mark all upper
states [i, Q, j] as good, if both z · d ∈ FR and i + 2k ≤ j.

It is clear that every accepting path must go through some good upper state,
otherwise Test 4 fails. This can be decided via a reachability algorithm. Finally
consider all accepting paths and compute the set of good upper states [i, Q, j]
which are seen first on such paths. For each such states all outgoing paths of
length k must stay in the upper part, otherwise Test 4 fails. If no such [i, Q, j]
leads to a failure, Test 4 is positive.

Now, all tests have been performed; and we get our result due to the following
conclusion: Assume Test 4 is positive. Then we have for all s, t ≥ n the following
fact:

zt,s = πqtαβα q q sπ ∈ H(L, R, k)

Indeed for t > s this holds because πqtαβα ∈ L. For n ≤ t ≤ s we use
that there exist v, δ with |δ| = k, vδ ≤ pα, and αβα q = vδw with |w| ≥ |vδ|,
and δwπ · q0,R ∈ FR. Thus zt,s = πqtvδuδ v q sπ and zt,s ∈ H(L, R, k) because
δuδ v q sπ ∈ R.

Open problems

We conclude with four questions which might be interesting for future research.

Question 1. What is the complexity of our decision algorithm in terms of n, if
we start with a finite monoid of size n recognizing both L and R?

Question 2. What is the practical performance of our decision algorithm?
Let us define the partial hairpin completion of L by the set of words γαβα γ ′

where γ′ is a prefix γ and γαβα ∈ L or γ is a prefix γ′ and αβα γ ′ ∈ L. (In
particular, L becomes a subset of its partial hairpin completion.)

Question 3. Is it decidable whether the partial hairpin completion applied to
a regular language is regular again?
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Given a language L we can iterate the (partial) hairpin completion and can
define the iterated (partial) hairpin completion as the union over all iterations.

Question 4. Is it decidable whether the iterated (partial) hairpin completion
applied to a regular language (finite language resp.) is regular again?
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