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Abstract. In higher-order process calculi the values exchanged in communica-
tions may contain processes. There are only two capabilities for received pro-
cesses: execution and forwarding. Here we propose a limited form of forwarding:
output actions can only communicate the parallel composition of statically known
closed processes and processes received through previously executed input ac-
tions. We study the expressiveness of a higher-order process calculus featuring
this style of communication. Our main result shows that in this calculus termina-
tion is decidable while convergence is undecidable.

1 Introduction

Higher-order process calculi are calculi in which processes can be communicated.
They have been put forward in the early 1990s, with CHOCS [1], Plain CHOCS [2],
the Higher-Order π-calculus [3], and others. Higher-order (or process-passing) concur-
rency is often presented as an alternative paradigm to the first order (or name-passing)
concurrency of the π-calculus for the description of mobile systems. These calculi are
inspired by, and formally close to, the λ-calculus, whose basic computational step —
β-reduction — involves term instantiation. As in the λ-calculus, a computational step in
higher-order calculi results in the instantiation of a variable with a term, which is then
copied as many times as there are occurrences of the variable.

HOCORE is a core calculus for higher-order concurrency, recently introduced in [4].
It is minimal, in that only the operators strictly necessary to obtain higher-order com-
munications are retained. This way, continuations following output messages have been
left out, so communication in HOCORE is asynchronous. More importantly, HOCORE

has no restriction operator. Thus all channels are global, and dynamic creation of new
channels is impossible. This makes the absence of recursion also relevant, as known
encodings of fixed-point combinators in higher-order process calculi require the restric-
tion operator. The grammar of HOCORE processes is:

P ::= a(x). P | a〈P 〉 | P ‖ P | x | 0 (∗)
An input prefixed process a(x). P can receive on name (or channel) a a process to
be substituted in the place of x in the body P ; an output message a〈P 〉 can send P
(the output object) on a; parallel composition allows processes to interact. Despite this
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minimality, via a termination preserving encoding of Minsky machines [5], HOCORE

was shown to be Turing complete. Therefore, in HOCORE, properties such as termina-
tion (i.e. non existence of divergent computations) and convergence (i.e. existence of
a terminating computation) are both undecidable. In contrast, somewhat surprisingly,
strong bisimilarity is decidable, and several sensible bisimilarities coincide with it.

In this paper, we shall aim at identifying the intrinsic source of expressive power in
HOCORE. A substantial part of the expressive power of a concurrent language comes
from the ability of accounting for infinite behavior. In higher-order process calculi there
is no explicit operator for such a behavior, as both recursion and replication can be
encoded. We then find that infinite behavior resides in the interplay of higher-order
communication, in particular, in the ability of forwarding a received process within
an arbitrary context. For instance, consider the process R = a(x). b〈Px〉 (here Px

stands for a process P with free occurrences of a variable x). Intuitively, R receives
a process on name a and forwards it on name b. It is easy to see that since objects in
output actions are built following the syntax given by (∗), the actual structure of Px

can be fairly complex. One could even “wrap” the process to be received in x using an
arbitrary number of k “output layers”, i.e., by letting Px ≡ b1〈b2〈. . . bk〈x〉〉 . . .〉. This
nesting capability embodies a great deal of the expressiveness of HOCORE: as a matter
of fact, the encoding of Minsky machines in [4] depends critically on nesting-based
counters. Therefore, investigating suitable limitations to the kind of processes that can
be communicated in an output action appears as a legitimate approach to assess the
expressive power of higher-order concurrency.

With the above consideration in mind, in this paper we propose HO−f , a sublanguage
of HOCORE in which output actions are limited so as to rule out the nesting capability
(Section 2). In HO−f , output actions can communicate the parallel composition of two
kinds of objects: (i) statically known closed processes (i.e. that do not contain free
variables), and (ii) processes received through previously executed input actions. Hence,
the context in which the output action resides can only contribute to communication
by “appending” pieces of code that admit no inspection, available in the form of a
black-box. More formally, the grammar of HO−f processes is that in (∗), except for the
production for output actions, which is replaced by the following one:

a〈x1 ‖ · · · ‖ xk ‖ P 〉
where k ≥ 0 and P is a closed process. This modification directly restricts forwarding
capabilities for output processes, which in turn, leads to a more limited structure of
processes along reductions.

The limited style of higher-order communication enforced in HO−f is relevant from
a pragmatic perspective. In fact, communication in HO−f is inspired by those cases in
which a process P is communicated in a translated format [[P ]], and the translation is
not compositional. That is, the cases in which, for any process context C, the translation
of C[P ] cannot be seen as a function of the translation of P , i.e. there exists no context
D such that [[C[P ]]] = D[P ]. This setting can be related to several existing program-
ming scenarios. The simplest example is perhaps mobility of already compiled code,
on which it is not possible to apply inverse translations (such as reverse engineering).
Other examples include proof-carrying code [6] and communication of obfuscated code
[7]. The former features communication of executable code that comes with a certifi-
cate: a recipient can only check the certificate and decide whether to execute the code
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or not. The latter consists of the communication of source code that is made difficult to
understand for, e.g., security/copyright reasons, while preserving its functionality.

The main contribution of the paper is the study of the expressiveness of HO−f in
terms of decidability of termination and convergence. Our main results are:

1. Similarly as HOCORE, HO−f is Turing complete (Section 3). The calculus thus
retains a significant expressive power despite of the limited forwarding capability.
This result is obtained by exhibiting an encoding of Minsky machines.

2. In sharp contrast with HOCORE, termination in HO−f is decidable (Section 4). This
result is obtained by appealing to the theory of well-structured transition systems
[8], following the approach used in [9].

As for (1), it is worth commenting that the encoding is not faithful in the sense that,
unlike the encoding of Minsky machines in HOCORE, it may introduce computations
which do not correspond to the expected behavior of the modeled machine. Such com-
putations are forced to be infinite and thus regarded as non-halting computations which
are therefore ignored. Only the finite computations correspond to those of the encoded
Minsky machine. This way, we prove that a Minsky machine terminates if and only if
its encoding in HO−f converges. Consequently, convergence in HO−f is undecidable.

As for (2), the use of the theory of well-structured transition systems is certainly not
a new approach to obtain expressiveness results. However, to the best of our knowledge,
this is the first time it is applied in the higher-order setting. This is significant because
the adaptation to the HO−f case is far from trivial. Indeed, as we shall discuss, this ap-
proach relies on approximating an upper bound on the depth of the (set of) derivatives
of a process. By depth of a process we mean its maximal nesting of input/output actions.
Notice that, even with the limitation on forwarding enforced by HO−f , because of the
“term copying” feature of higher-order calculi, variable instantiation might lead to a po-
tentially larger process. Hence, finding suitable ways of bounding the set of derivatives
of a process is rather challenging and needs care.

We comment further on the consequences of our results in Section 5. In this presen-
tation we omit most proofs; these can be found in the extended version [10].

2 The Calculus

We now introduce the syntax and semantics of HO−f . We use a, b, c to range over
names, and x, y, z to range over variables; the sets of names and variables are disjoint.

P, Q ::= a〈x1 ‖ · · · ‖ xk ‖ P 〉 (with k ≥ 0, fv(P ) = ∅) output

| a(x).P input prefix

| P ‖ Q parallel composition

| x process variable

| 0 nil

An input a(x). P binds the free occurrences of x in P . We write fv(P ) and bv(P )
for the set of free and bound variables in P , respectively. A process is closed if it does
not have free variables. We abbreviate a(x). P , with x �∈ fv(P ), as a. P , a〈0〉 as a, and
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P1 ‖ . . .‖Pk as
∏k

i=1Pi. Hence, an output action can be written as a〈∏k∈K xk ‖P 〉. We
write

∏n
1 P as an abbreviation for the parallel composition of n copies of P . Further,

P{Q/x} denotes the substitution of the free occurrences of x with process Q in P .
The Labeled Transition System (LTS) of HO−f is defined on closed processes. There

are three forms of transitions: τ transitions P
τ−→ P ′; input transitions P

a(x)−−−→ P ′,
meaning that P can receive at a a process that will replace x in the continuation P ′;

and output transitions P
a〈P ′〉−−−−→ P ′′ meaning that P emits P ′ at a, and in doing so it

evolves to P ′′. We use α to indicate a generic label of a transition.

INP a(x).P
a(x)−−−→ P OUT a〈P 〉 a〈P 〉−−−→ 0

ACT1
P1

α−→ P ′
1

P1 ‖ P2
α−→ P ′

1 ‖ P2

TAU1
P1

a〈P 〉−−−→ P ′
1 P2

a(x)−−−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2{P/x}

(We have omitted ACT2 and TAU2, the symmetric counterparts of the last two rules.)

Remark 1. Since we consider closed processes, in rule ACT1, P2 has no free variables
and no side conditions are necessary. As a consequence, alpha-conversion is not needed.

Definition 1. The structural congruence relation is the smallest congruence generated
by the following laws:

P ‖ 0 ≡ P, P1 ‖ P2 ≡ P2 ‖ P1, P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3.

The alphabet of an HO−f process is defined as follows:

Definition 2 (Alphabet of a process). Let P be a HO−f process. The alphabet of P ,
denoted A(P ), is inductively defined as:

A(0) = ∅ A(P ‖ Q) = A(P ) ∪A(Q) A(x) = {x}

A(a(x).P ) = {a, x} ∪ A(P ) A(a〈P 〉) = {a} ∪ A(P )

Proposition 1. Let P be a HO−f process. The set A(P ) is finite. Also, if P
α−→ P ′ then

A(P ′) ⊆ A(P ).

The internal runs of a process are given by sequences of reductions. Given a process P ,
its reductions P −→ P ′ are defined as P

τ−→ P ′. We denote with −→∗ the reflexive
and transitive closure of −→; notation −→j is to stand for a sequence of j reductions.
We use P � to denote that there is no P ′ such that P −→ P ′. Following [9] we now
define process convergence and process termination. Observe that termination implies
convergence while the opposite does not hold.

Definition 3. Let P be a HO−f process. We say that P converges iff there exists P ′

such that P −→∗ P ′ and P ′
�. We say that P terminates iff there exist no {Pi}i∈N

such that P0 =P and Pj −→Pj+1 for any j.

Termination and convergence are sometimes also referred to as universal and existential
termination, respectively.
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Table 1. Reduction of Minsky machines

M-INC
i : INC(rj) m

′
j = mj + 1 m

′
1−j = m1−j

(i, m0, m1) −→M (i + 1, m
′
0, m

′
1)

M-JMP
i : DECJ(rj , s) mj = 0

(i, m0, m1) −→M (s, m0, m1)

M-DEC
i : DECJ(rj , s) mj �= 0 m

′
j = mj − 1 m

′
1−j = m1−j

(i, m0, m1) −→M (i + 1, m
′
0, m

′
1)

3 Convergence Is Undecidable

In this section we show that HO−f is powerful enough to model Minsky machines [5],
a Turing complete model. We present an encoding that is not faithful: unlike the en-
coding of Minsky machines in HOCORE, it may introduce computations which do not
correspond to the expected behavior of the modeled machine. Such computations are
forced to be infinite and thus regarded as non-halting computations which are therefore
ignored. Only finite computations correspond to those of the encoded Minsky machine.
More precisely, given a Minsky machine N , its encoding [[N ]] has a terminating compu-
tation if and only if N terminates. This allows to prove that convergence is undecidable.

We begin by briefly recalling the definition of Minsky machines; we then present the
encoding into HO−f and discuss its correctness.

Minsky machines. A Minsky machine is a Turing complete model composed of a set
of sequential, labeled instructions, and two registers. Registers rj (j ∈ {0, 1}) can hold
arbitrarily large natural numbers. Instructions (1 : I1), . . . , (n : In) can be of two kinds:
INC(rj) adds 1 to register rj and proceeds to the next instruction; DECJ(rj , s) jumps to
instruction s if rj is zero, otherwise it decreases register rj by 1 and proceeds to the next
instruction. A Minsky machine includes a program counter p indicating the label of the
instruction being executed. In its initial state, the machine has both registers set to 0 and
the program counter p set to the first instruction. The Minsky machine stops whenever
the program counter is set to a non-existent instruction, i.e. p > n. A configuration
of a Minsky machine is a tuple (i, m0, m1); it consists of the current program counter
and the values of the registers. Formally, the reduction relation over configurations of a
Minsky machine, denoted −→M, is defined in Table 1.

In the encoding of a Minsky machine into HO−f we will find it convenient to have a
simple form of guarded replication. This construct can be encoded in HO−f as follows.

Input-guarded replication. We follow the standard encoding of replication in higher-
order process calculi, adapting it to input-guarded replication so as to make sure that
diverging behaviors are not introduced. As there is no restriction in HO−f , the encoding
is not compositional and replications cannot be nested. In [4] the following encoding is
shown to preserve termination.

Definition 4. Assume a fresh name c. The encoding of input-guarded replication is as
follows:

[[!a(z). P ]]i! = a(z). (Qc ‖ P ) ‖ c〈a(z). (Qc ‖ P )〉
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Table 2. Encoding of Minsky machines

REGISTER rj [[rj = m]]M =
Qm

1 uj

INSTRUCTIONS (i : Ii)
[[(i : INC(rj))]]M = !pi. (uj ‖ setj(x). setj〈x ‖ INCj〉 ‖ pi+1)
[[(i : DECJ(rj , s))]]M = !pi. mi

‖ !mi. (loop ‖ uj . loop. setj(x). setj〈x ‖ DECj〉 ‖ pi+1)
‖ !mi. setj(x). (x ‖ setj〈0〉 ‖ ps))

where
INCj = loop ‖ checkj . loop DECj = checkj

where Qc = c(x). (x ‖ c〈x〉), P contains no replications (nested replications are
forbidden), and [[·]]i! is an homomorphism on the other process constructs in HO−f .

Encoding Minsky machines into HO−f . The encoding of Minsky machines into
HO−f is denoted by [[·]]M and presented in Table 2. We begin by defining the encoding
of the configurations of a Minsky machine; we then discuss the encodings of registers
and instructions.

Definition 5 (Encoding of Configurations). Let N be a Minsky machine with registers
r0, r1 and instructions (1 : I1), . . . , (n : In). For j ∈ {0, 1}, suppose fresh, pairwise
different names rj , p1, . . . , pn, setj , loop, checkj . Also, let DIV be a divergent process
(e.g. w ‖ !w. w). Given the encodings in Table 2, we have:

1. The initial configuration (1, 0, 0) of N is encoded as:

[[(1, 0, 0)]]M ::= p1 ‖
n∏

i=1

[[(i : Ii)]]M ‖ loop. DIV ‖ set0〈0〉 ‖ set1〈0〉 .

2. A configuration (i, m0, m1) of N , after kj increments and lj decrements of register
rj , is encoded as:

[[(i, m0, m1)]]M = pi ‖ [[r0 = m0]]M ‖ [[r1 = m1]]M ‖
n∏

i=1

[[(i : Ii)]]M ‖

loop. DIV ‖ set0〈LOG0[k0, l0]〉 ‖ set1〈LOG1[k1, l1]〉 .

A register rj that stores the number m is encoded as the parallel composition of m
copies of the unit process uj . To implement the test for zero it is necessary to record
how many increments and decrements have been performed on the register rj . This is
done by using a special process LOGj , which is communicated back and forth on name
setj . More precisely, every time an increment instruction occurs, a new copy of the
process uj is created, and the process LOGj is updated by adding the process INCj in
parallel. Similarly for decrements: a copy of uj is consumed and the process DECj is
added to LOGj . As a result, after k increments and l decrements on register rj , we have
that LOGj =

∏
k INCj ‖ ∏

l DECj , which we abbreviate as LOGj [k, l].
Each instruction (i : Ii) is a replicated process guarded by pi, which represents the

program counter when p = i. Once pi is consumed, the instruction is active and an in-
teraction with a register occurs. We already described the behavior of increments. Let us
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now focus on decrements, the instructions that can introduce divergent —unfaithful—
computations. In this case, the process can internally choose either to actually perform
a decrement and proceed with the next instruction, or to jump. This can be seen as a
guess the process makes on the actual number stored by the register rj . Therefore, two
situations can occur:

1. The process chooses to decrement rj . In this case instruction pi+1 is immediately
enabled, and the process launches process loop and then tries to consume a copy
of uj . If this operation succeeds (i.e. the content of rj is greater than 0) then a syn-
chronization with the input on loop that guards the updating of LOGj (represented
as an output on name setj) takes place. Otherwise, the unit process uj could not
be consumed (i.e. the content of rj is zero and the process made a wrong guess).
Process loop then synchronizes with the external process loop. DIV, thus spawning
a divergent computation.

2. The process chooses to jump to instruction ps. In this case instruction ps is imme-
diately enabled, and it is necessary to check if the actual value stored by rj is zero.
To do so, the process receives the process LOGj and launches it. If the number of
increments is equal to the number of decrements then complementary signals on
the name checkj will match each other. In turn, this allows each signal loop exe-
cuted by an INCj process to be matched by a complementary one. Otherwise, then
it is the case that at least one of those loop signals remains active (i.e. the content
of the register is not zero); a synchronization with the process loop. DIV then takes
place, and a divergent computation is spawned.

Before executing the instructions, we require both registers in the Minsky machine
to be set to zero. This is to guarantee correctness: starting with values different from
zero in the registers (without proper initialization of the logs) can lead to inconsisten-
cies. For instance, the test for zero would succeed (i.e. without spawning a divergent
computation) even for a register whose value is different from zero.

We now state that the encoding is correct.

Theorem 1. Let N be a Minsky machine with registers r0 = m0, r1 = m1, instructions
(1 : I1), . . . , (n : In), and configuration (i, m0, m1). Then (i, m0, m1) terminates if
and only if process [[(i, m0, m1)]]M converges.

As a consequence of this theorem we have that convergence is undecidable.

Corollary 1. Convergence is undecidable in HO−f .

4 Termination Is Decidable

In this section we prove that termination is decidable for HO−f processes. As hinted at
in the introduction, this is in sharp contrast with the analogous result for HOCORE. The
proof appeals to the theory of well-structured transition systems, whose main definitions
and results we summarize next.
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Well-Structured Transition Systems. The following results and definitions are from
[8], unless differently specified. Recall that a quasi-order (or, equivalently, preorder) is
a reflexive and transitive relation.

Definition 6 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order ≤ over a
set X such that, for any infinite sequence x0, x1, x2 . . . ∈ X , there exist indexes i < j
such that xi ≤ xj .

Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an infinite
increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .). Thus well-quasi-
orders exclude the possibility of having infinite strictly decreasing sequences.

We also need a definition for (finitely branching) transition systems. This can be
given as follows. Here and in the following →∗ denotes the reflexive and transitive
closure of the relation →.

Definition 7 (Transition system). A transition system is a structure TS = (S,→),
where S is a set of states and →⊆ S × S is a set of transitions. We define Succ(s)
as the set {s′ ∈ S | s → s′} of immediate successors of S. We say that TS is finitely
branching if, for each s ∈ S, Succ(s) is finite.

Fact 1. The LTS for HO−f given in Section 2 is finitely branching.

The function Succ will also be used on sets by assuming the point-wise extension of
the above definitions. The key tool to decide several properties of computations is the
notion of well-structured transition system. This is a transition system equipped with
a well-quasi-order on states which is (upward) compatible with the transition relation.
Here we will use a strong version of compatibility; hence the following definition.

Definition 8 (Well-structured transition system). A well-structured transition system
with strong compatibility is a transition system TS = (S,→), equipped with a quasi-
order ≤ on S, such that the two following conditions hold:

1. ≤ is a well-quasi-order;
2. ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all transi-

tions s1 → s2 , there exists a state t2 such that t1 → t2 and s2 ≤ t2 holds.

The following theorem is a special case of Theorem 4.6 in [8] and will be used to obtain
our decidability result.

Theorem 2. Let TS = (S,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, decidable ≤, and computable Succ. Then the exis-
tence of an infinite computation starting from a state s ∈ S is decidable.

We will also need a result due to Higman [11] which allows to extend a well-quasi-order
from a set S to the set of the finite sequences on S. More precisely, given a set S let us
denote by S∗ the set of finite sequences built by using elements in S. We can define a
quasi-order on S∗ as follows.

Definition 9. Let S be a set and ≤ a quasi-order over S. The relation ≤∗ over S∗ is
defined as follows. Let t, u ∈ S∗, with t = t1t2 . . . tm and u = u1u2 . . . un. We have



On the Expressiveness of Forwarding in Higher-Order Communication 163

that t ≤∗ u if and only if there exists an injection f from {1, 2, . . .m} to {1, 2, . . . n}
such that ti ≤ uf(i) and i ≤ f(i) for i = 1, . . . , m.

The relation ≤∗ is clearly a quasi-order over S∗. It is also a wqo, since we have the
following result.

Lemma 1 ([11]). Let S be a set and ≤ a wqo over S. Then ≤∗ is a wqo over S∗.

Finally we will use also the following proposition, whose proof is immediate.

Proposition 2. Let S be a finite set. Then the equality is a wqo over S.

Termination is Decidable in HO−f . Here we prove that termination is decidable in
HO−f . The crux of the proof consists in finding an upper bound for a process and
its derivatives. This is possible in HO−f because of the limited structure allowed in
output actions. We proceed as follows. First we define a notion of normal form for
HO−f processes. We then characterize an upper bound for the derivatives of a given
process, and define an ordering over them. This ordering is then shown to be a wqo
that is strongly compatible with respect to the LTS of HO−f given in Section 2. The
decidability result is then obtained by resorting to the results from [8] reported before.

Definition 10 (Normal Form). Let P ∈ HO−f . P is in normal form iff

P =
l∏

k=1

xk ‖
m∏

i=1

ai(yi). Pi ‖
n∏

j=1

bj〈P ′
j〉

where each Pi and P ′
j are in normal form.

Lemma 2. Every process P ∈ HO−f is structurally congruent to a normal form.

We now define an ordering over normal forms. Intuitively, a process is larger than an-
other if it has more parallel components.

Definition 11 (Relation
). Let P, Q ∈ HO−f . We write P 
 Q iff there exist x1 . . . xl,
P1 . . . Pm, P ′

1 . . . P ′
n, Q1 . . .Qm, Q′

1 . . . Q′
n, and R such that

P ≡ ∏l
k=1 xk ‖ ∏m

i=1 ai(yi). Pi ‖ ∏n
j=1 bj〈P ′

j〉
Q ≡ ∏l

k=1 xk ‖ ∏m
i=1 ai(yi). Qi ‖ ∏n

j=1 bj〈Q′
j〉 ‖ R

with Pi 
 Qi and P ′
j 
 Q′

j , for i ∈ [1. . m] and j ∈ [1. . n].

The normal form of a process can be intuitively represented in a tree-like manner. More
precisely, given the process in normal form

P =
l∏

k=1

xk ‖
m∏

i=1

ai(yi). Pi ‖
n∏

j=1

bj〈P ′
j〉

we shall decree its associated tree to have a root node labeled x1, . . . , xk. This root node
has m + n children, corresponding to the the trees associated to processes P1, . . . , Pm

and P ′
1, . . . , P

′
m; the outgoing edges connecting the root node and the children are la-

beled a1(y1), . . . , am(ym) and b1, . . . , bn.
This intuitive representation of processes in normal form as trees will be useful to

reason about the structure of HO−f terms. We begin by defining the depth of a process.
Notice that such a depth corresponds to the maximum depth of its tree representation.
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Definition 12 (Depth). Let P =
∏l

k=1 xk ‖ ∏m
i=1 ai(yi). Pi ‖ ∏n

j=1 bj〈P ′
j〉 be a

HO−f process in normal form. The depth of P is given by

depth(P ) = max{1 + depth(Pi), 1 + depth(P ′
j) | i ∈ [1. . m] ∧ j ∈ [1. . n]}.

Given a natural number n and a process P , the set PP,n contains all those processes in
normal form that can be built using the alphabet of P and whose depth is at most n.

Definition 13. Let n be a natural number and P ∈ HO−f . We define the set PP,n as
follows:

PP,n = {Q | Q ≡ ∏
k∈K xk ‖ ∏

i∈I ai(yi). Qi ‖ ∏
j∈J bj〈Q′

j〉
∧ A(Q) ⊆ A(P )
∧ Qi, Q

′
j ∈ PP,n−1 ∀i ∈ I, j ∈ J}

where PP,0 contains processes that are built out only of variables in A(P ).

As it will be shown later, the set of all derivatives of P is a subset of PP,2·depth(P ).
When compared to processes in languages such as Milner’s CCS, higher-order pro-

cesses have a more complex structure. This is because, by virtue of reductions, an arbi-
trary process can take the place of possibly several occurrences of a single variable. As
a consequence, the depth of (the syntax tree of) a process cannot be determined (or even
approximated) before its execution: it can vary arbitrarily along reductions. Crucially,
in HO−f it is possible to bound such a depth. Our approach is the following: rather than
solely depending on the depth of a process, we define measures on the relative position
of variables within a process. Informally speaking, such a position will be determined
by the number of prefixes guarding a variable. Since variables are allowed only at the
top level of the output objects, their relative distance will remain invariant during re-
ductions. This allows to obtain a bound on the structure of HO−f processes. Finally, it
is worth stressing that even if the same notions of normal form, depth, and distance can
be defined for HOCORE, a finite upper bound for such a language does not exist. We
first define the maximum distance between a variable and its binder.

Definition 14. Let P =
∏

k∈K xk ‖ ∏
i∈I ai(yi). Pi ‖ ∏

j∈J bj〈P ′
j〉 be a HO−f pro-

cess in normal form. We define the maximum distance of P as:

maxDistance(P ) = max{maxDistyi(Pi),

maxDistance(Pi), maxDistance(P ′
j) | i ∈ I, j ∈ J}

where

maxDistx(P )=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if P = x,

1 + maxDistx(Pz) if P = a(z). Pz ∧ x �= z,

1 + maxDistx(P ′) if P = a〈P ′〉,
max{maxDistx(R),maxDistx(Q)} if P = R ‖ Q,

0 otherwise.

Lemma 3 (Properties of maxDistance). Let P be a HO−f process. It holds that:

1. maxDistance(P ) ≤ depth(P )
2. For every Q such that P

α−→ Q, maxDistance(Q) ≤ maxDistance(P ).
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We now define the maximum depth of processes that can be communicated. Notice that
the continuations of inputs are considered as they could become communication objects
themselves along reductions:

Definition 15. Let P =
∏

k∈K xk ‖ ∏
i∈I ai(yi). Pi ‖ ∏

j∈J bj〈P ′
j〉 be a HO−f pro-

cess in normal form. We define the maximum depth of a process that can be communi-
cated (maxDepCom(P )) in P as:

maxDepCom(P ) = max{maxDepCom(Pi), depth(P ′
j) | i ∈ I, j ∈ J} .

Lemma 4 (Properties of maxDepCom). Let P be a HO−f process. It holds that:

1. maxDepCom(P ) ≤ depth(P )
2. For every Q such that P

α−→ Q, maxDepCom(Q) ≤ maxDepCom(P ).

Notation 1. We use P
α̃−−→ P ′ if, for some n ≥ 0, there exist α1, . . . , αn such that

P
α1−→ · · · αn−−→ P ′.

Generalizing Lemmata 3 and 4 we obtain:

Corollary 2. Let P be a HO−f process. For every Q such that P
α̃−−→ Q, it holds that:

1. maxDistance(Q) ≤ depth(P )
2. maxDepCom(Q) ≤ depth(P ).

We are interested in characterizing the derivatives of a given process P . We shall show
that they are over-approximated by means of the set PP,2·depth(P ). We will investigate
the properties of the relation 
 on such an approximation; such properties will also hold
for the set of derivatives.

Definition 16. Let P ∈ HO−f . Then we define Deriv(P ) = {Q | P −→∗ Q}
The following results hold because of the limitations we have imposed on the output
actions for HO−f processes. Any process that can be communicated in P is in PP,n−1

and its maximum depth is also bounded by depth(P ). The deepest position for a vari-
able is when it is a leaf in the tree associated to the normal form of P . That is, when its
depth is exactly depth(P ). Hence the following:

Proposition 3. Let P be a HO−f process. Suppose, for some n, that P ∈ PP,n. For
every Q such that P

α−→ Q, it holds that Q ∈ PP,2·n.

The lemma below generalizes Proposition 3 to a sequence of transitions.

Lemma 5. Let P be a HO−f process. Suppose, for some n, that P ∈ PP,n. For every

Q such that P
α̃−−→ Q, it holds that Q ∈ PP,2·n.

Corollary 3. Let P ∈ HO−f . Then Deriv(P ) ⊆ PP,2·depth(P ).

To prove that 
 is a wqo, we first show that it is a quasi order.

Proposition 4. The relation 
 is a quasi-order.

We are now in place to state that 
 is a wqo.
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Theorem 3 (Well-quasi-order). Let P ∈ HO−f and n ≥ 0. The relation 
 is a well-
quasi-order over PP,n.

Proof. The proof is by induction on n.
(–) Let n = 0. Then PP,0 contains processes containing only variables taken from

A(P ). The equality on finite sets is a well-quasi-ordering; by Lemma 1 (Higman’s
Lemma) also =∗ is a well quasi-ordering: it corresponds to the ordering 
 on processes
containing only variables.

(–) Let n > 0. Take an infinite sequence of processes s = P1, P2, . . . , Pl, . . . with
Pl ∈PP,n. We shall show that the thesis holds by means of successive filterings of the
normal forms of the processes in s. By Lemma 2 there exist Kl, Il and Jl such that

Pl ≡
∏

k∈Kl

xk ‖
∏

i∈Il

ai(yi). P
l
i ‖

∏

j∈Jl

bj〈P ′l
j 〉

with P l
i and P ′l

j ∈ PP,n−1. Hence each Pl can be seen as composed of 3 finite se-

quences: (i) x1 . . . xk, (ii) a1(y1). P l
1 . . . ai(yi). P l

i , and (iii) b1〈P ′l
1 〉 . . . bj〈P ′l

j 〉. We
note that the first sequence is composed of variables from the finite set A(P ) whereas
the other two sequences are composed by elements in A(P ) and PP,n−1. Since we have
an infinite sequence ofA(P )∗, as A(P ) is finite, by Proposition 2 and Lemma 1 we have
that =∗ is a wqo over A(P )∗. By inductive hypothesis, we have that 
 is a wqo on
PP,n−1, hence by Lemma 1 relation 
∗ is a wqo on P∗

P,n−1. We start filtering out s by
making the finite sequences x1 . . . xk increasing with respect to =∗; let us call this sub-
sequence t. Then we filter out t, by making the finite sequence a1(y1). P l

1 . . . ai(yi). P l
i

increasing with respect to both 
∗ and =∗. This is done in two steps: first, by consid-
ering the relation =∗ on the subject of the actions (recalling that ai, yi ∈ A(P )), and
then by applying another filtering to the continuation using the inductive hypothesis.
For the first step, it is worth remarking that we do not consider symbols of the alphabet
but pairs of symbols. Since the set of pairs on a finite set is still finite, we know by
Higman’s Lemma that =∗ is a wqo on the set of sequences of pairs (ai, yi). For the
sequence of outputs b1〈P ′l

1 〉 . . . bj〈P ′l
j 〉 this is also done in two steps: the subject of the

outputs are ordered with respect to =∗ and the objects of the output action are ordered
with respect to 
∗ using the inductive hypothesis. At the end of the process we obtain
an infinite subsequence of s that is ordered with respect to 
. ��

The last thing to show is that the well-quasi-ordering 
 is strongly compatible with
respect to the LTS associated to HO−f . We need the following auxiliary lemma:

Lemma 6. Let P, P ′, Q, and Q′ be HO−f processes in normal form such that P 
 P ′

and Q 
 Q′. Then it holds that P{Q/x} 
 P ′{Q′
/x}.

Theorem 4 (Strong Compatibility). Let P, Q, P ′ ∈ HO−f . If P 
 Q and P
α−→ P ′

then there exists Q′ such that Q
α−→ Q′ and P ′ 
 Q′.

Theorem 5. Let P ∈ HO−f . The transition system (Deriv(P ),−→,
) is a finitely
branching well-structured transition system with strong compatibility, decidable
, and
computable Succ.
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Proof. The transition system of HO−f is finitely branching (Fact 1). The fact that 

is a well-quasi-order on Deriv(P ) follows from Corollary 3 and Theorem 3. Strong
compatibility follows from Theorem 4. ��
We can now state the main result of the section. It follows from Theorems 2 and 5.

Corollary 4. Let P ∈ HO−f . Termination of P is decidable.

5 Concluding Remarks

We have studied HO−f , a higher-order process calculus featuring a limited form of hig-
her-order communication. In HO−f , output actions can only include previously rece-
ived processes in composition with closed ones. This is reminiscent of programming
scenarios with forms of code mobility in which the recipient is not authorized or capable
of accessing/modifying the structure of the received code. We have shown that such a
weakening of the forward capabilities of higher-order processes has consequences both
on the expressiveness of the language and on the decidability of termination.

As for the expressiveness issues, by exhibiting an encoding of Minsky machines into
HO−f , we have shown that convergence is undecidable. Hence, from an absolute ex-
pressiveness standpoint, HO−f is Turing complete. Now, given the analogous result for
HOCORE [4], a relative expressiveness issue also arises. Indeed, our encoding of Min-
sky machines into HO−f is not faithful, which reveals a difference on the criteria each
encoding satisfies. This reminds us of the situation in [12], where faithful and unfaith-
ful encodings of Turing complete formalisms into calculi with interruption and com-
pensation are compared. Using the terminology in [12], we can say that the presented
encoding satisfies a weakly Turing completeness criterion, as opposed to the (stronger)
Turing completeness criterion that is satisfied by the encoding of Minsky machines into
HOCORE in [4]. The discrepancy on the criteria satisfied by each encoding might be in-
terpreted as an expressiveness gap between HO−f and HOCORE; nevertheless, it seems
clear that the loss of expressiveness resulting from limiting the forwarding capabilities
in HOCORE is much less dramatic than what one would have expected.

We have shown that the communication style of HO−f causes a separation result
with respect to HOCORE. In fact, because of the limitation on output actions, it was
possible to prove that termination in HO−f is decidable. This is in sharp contrast with
the situation in HOCORE, for which termination is undecidable. In HO−f , it is possible
to provide an upper bound on the depth (i.e. the level of nesting of actions) of the
(set of) derivatives of a process. In HOCORE such an upper bound does not exist. This
was essential for obtaining the decidability result; for this, we appealed to the approach
developed in [9], which relies on the theory of well-structured transition systems [8]. As
far as we are aware, this approach to studying expressiveness issues has not previously
been used in the higher-order setting. The decidability of termination might shed light
on the development of verification techniques for higher-order processes.

The HO−f calculus is a sublanguage of HOCORE. As such, HO−f inherits the many
results and properties of HOCORE [4]; most notably, a notion of (strong) bisimilarity
which is decidable and coincides with a number of sensible equivalences in the higher-
order context. Our results thus complement those in [4] and deepen our understanding
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of the expressiveness of core higher-order calculi as a whole. Furthermore, by recalling
that CCS without restriction is not Turing complete and has decidable convergence,
the present results shape an interesting expressiveness hierarchy, namely one in which
HOCORE is strictly more expressive than HO−f (because of the discussion above), and
in which HO−f is strictly more expressive than CCS without restriction.

Remarkably, our undecidability result can be used to prove that (weak) barbed bisim-
ilarity is undecidable in the calculus obtained by extending HO−f with restriction. Con-
sider the encoding of Minsky machines used in Section 3 to prove the undecidability of
convergence in HO−f . Consider now the restriction operator (νx̃) used as a binder for
the names in the tuple x̃. Take a Minsky machine N (it is not restrictive to assume that
it executes at least one increment instruction) and its encoding P , as defined in Defi-
nition 5. Let x̃ be the tuple of the names used by P , excluding the name w. We have
that N terminates if and only if (νx̃)P is (weakly) barbed equivalent to the process
(νd)(d | d | d. (w | !w. w)).

Related Work. The most closely related work is [4], which was already discussed
along the paper. We do not know of other works that study the expressiveness of higher-
order calculi by restricting higher-order outputs. The recent work [13] studies finite-
control fragments of Homer [14], a higher-order process calculus with locations. While
we have focused on decidability of termination and convergence, in [13] the interest is
in decidability of barbed bisimilarity. One of the approaches explored in [13] is based on
a type system that bounds the size of processes in terms of their syntactic components
(e.g. number of parallel components, location nesting). Although the restrictions such a
type system imposes might be considered as similar in spirit to the limitation on outputs
in HO−f (in particular, location nesting resembles the output nesting HO−f forbids), the
fact that the synchronization discipline in Homer depends heavily on the structure of
locations makes it difficult to establish a more detailed comparison with HO−f .

Also similar in spirit to our work, but in a slightly different context, are some stud-
ies on the expressiveness (of fragments) of the Ambient calculus [15]. Ambient and
higher-order calculi are related in that both allow the communication of objects with
complex structure. Some works on the expressiveness of fragments of Ambient cal-
culi are similar to ours. In particular, [16] shows that termination is decidable for the
fragment without both restriction (as HO−f and HOCORE) and movement capabilities,
and featuring replication; in contrast, the same property turns out to be undecidable for
the fragment with recursion. Hence, the separation between fragments comes from the
source of infinite behavior, and not from the structures allowed in output action, as in
our case. However, we find that the connections between Ambient-like and higher-order
calculi are rather loose, so a proper comparison is difficult also in this case.

Future Work. As already mentioned, a great deal of the expressive power in higher-
order calculi resides in the interplay of input and output actions. Here we have studied
an alternative for limiting output capabilities; it would be interesting to investigate if
suitable limitations on input actions are possible, and whether they have influence on
expressiveness. Another interesting direction would be to compare higher-order and
Ambient calculi from the expressiveness point of view.
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