

Lecture Notes in Computer Science 5684
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martin Leucker Carroll Morgan (Eds.)

Theoretical Aspects
of Computing -
ICTAC 2009

6th International Colloquium
Kuala Lumpur, Malaysia, August 16-20, 2009
Proceedings

13

Volume Editors

Martin Leucker
TU München
Institut für Informatik
Garching, Germany
E-mail: leucker@in.tum.de

Carroll Morgan
University of New South Wales
School of Computer Science and Engineering
Sydney, Australia
E-mail: carrollm@cse.unsw.edu.au

Library of Congress Control Number: 2009931537

CR Subject Classification (1998): F.1, F.3, F.4, F.2, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-03465-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03465-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12727575 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at ICTAC 2009: the 6th International
Colloquium on Theoretical Aspects of Computing held August 18–20, 2009 in
Kuala Lumpur, Malaysia, hosted by Universiti Kebangsaan Malaysia.

The ICTAC series was founded by the International Institute for Software
Technology of the United Nations University (UNU-IIST). It brings together
practitioners and researchers from academia, industry and government to present
results and to exchange ideas and experience addressing challenges in both the-
oretical aspects of computing and in the exploitation of theory through meth-
ods and tools for system development. The series also promotes cooperation in
research and education between participants and their institutions, from devel-
oping and industrial countries, in accordance with the mandate of the United
Nations University. The previous ICTAC colloquia were held in Guiyang, China
(2004, LNCS 3407), Hanoi, Vietnam (2005, LNCS 3722), Tunis, Tunisia (2006,
LNCS 4281), Macao SAR, China (2007, LNCS 4711), and Istanbul, Turkey
(2008, LNCS 5160).

This year, 81 submissions were received, distributed over 70 full research
papers and 11 tool papers. Each submission was reviewed by at least three Pro-
gram Committee members. We thank the members of the Program Committee
and the other specialist referees for the effort and skill that they invested in the
review and selection process, which was managed using EasyChair. The Com-
mittee decided to accept 20 papers: 17 full research papers and 3 tool papers.
The program and the proceedings, moreover, contain keynote talks from four
invited speakers: Zuohua Ding, Leslie Lamport, Annabelle McIver, and Sriram
Rajamani. Each invited speaker also offered a tutorial on their work, and these
were held before the conference.

ICTAC 2009 was accompanied by the Third International Workshop on Har-
nessing Theories for Tool Support in Software, chaired by Einar Broch Johnsen
and Volker Stolz.

Events such as ICTAC are community efforts and cannot succeed without
the generosity of sponsors. ICTAC 2009 was kindly supported by UNU-IIST,
Universiti Kebangsaan Malaysia. Leslie Lamport’s lecture was made possible by
financial support from Formal Methods Europe.

We are grateful to our publisher, especially to Alfred Hofmann and Ursula
Barth at Springer for their help in creating this volume. Finally, we would like
to thank our fellow organizers of ICTAC 2009: the local organizers in Malaysia,
our Workshop Chair Abhik Roychoudhury, and, at UNU-IIST, Kitty Chan. We
were greatly helped by the advice, experience and enthusiasm of Zhiming Liu
and the ICTAC Steering and Advisory Committees.

June 2009 Martin Leucker
Carroll Morgan

Conference Organization

Conference Committee

General Chairs Abdullah Mohd Zin (Universiti Kebangsaan Malaysia)
Jeff Sanders (UNU-IIST)

Program Chairs Martin Leucker (TU München)
Carroll Morgan (University of New South Wales)

Workshop Chair Abhik Roychoudhury (National University of Singapore)
Local Organization Zarina Shukur, Nazlia Omar, Syahanim Mohd Salleh,

Mastura Sahak (Universiti Kebangsaan Malaysia)

ICTAC Steering Committee

John S. Fitzgerald Newcastle University, UK
Martin Leucker TU München, Germany
Zhiming Liu (Chair) UNU-IIST, Macao, SAR
Tobias Nipkow TU München, Germany
Augusto Sampaio Universidade Federal de Pernambuco, Brazil
Natarajan Shankar SRI, USA
Jim Woodcock University of York, UK

Program Committee

Parosh Abdulla
Keijiro Araki
Farhad Arbab
Christel Baier
Mario Bravetti
Ana Cavalcanti
Deepak D’Souza
Van Hung Dang
David Deharbe
Wei Dong
Kokichi Futatsugi
John Fitzgerald
Wan Fokkink
Marcelo Frias
Paul Gastin
Susanne Graf
Lindsay Groves
Anne Haxthausen

Moonzoo Kim
Kim G. Larsen
Insup Lee
Kamal Lodaya
Larissa Meinicke
Ugo Montanari
Ahmed Patel
Pekka Pihlajasaari
Abhik Roychoudhury
Hassen Saidi
Augusto Sampaio
Cesar Sanchez
Marjan Sirjani
Sofiene Tahar
Serdar Tasiran
Helmut Veith
Mahesh Viswanathan
Tomas Vojnar

VIII Organization

Ji Wang
Jim Woodcock
Husnu Yenigun

Naijun Zhan
Huibiao Zhu

External Reviewers

Naeem Abbasi
Nikola Benes
Chiranjib Bhattacharyya
Benedikt Bollig
Pontus Boström
Marius Bozga
Anne Brüggemann-Klein
Diego Caminha
Marco Carbone
Jonathan Cederberg
Rohit Chadha
Taolue Chen
Yuki Chiba
Vivien Chinnapongse
Vincenzo Ciancia
Wilhelm Dahlöf
Alexandre David
Anuj Dawar
Arnab De
Nikhil Dinesh
Simon Doherty
Harrison Duong
Rachid Echahed
Christian Eisentraut
Tayfun Elmas
Miguel Valero Espada
Pascal Fontaine
Martin Fränzle
Han Gao
Dinesh Garg
Nils Gesbert
Fatemeh Ghassemi
Ankit Goel
Navin Goyal
Susanne Graf
Hervé Grall
Alexander Gruler
Roberto Guanciale
Bjørn Haagensen

Yousra Ben Daly Hlaoui
Lukas Holik
Andreas Holzer
Hans Hüttel
Juliano Iyoda
Mohammad Javad Izadi
Naiyong Jin
Kalpesh Kapoor
Telikepalli Kavitha
Ramtin Khosravi
Sascha Klueppelholz
K Narayan Kumar
R Ravi Kumar
Shigeru Kusakabe
Anna Labella
Alberto Lluch Lafuente
Zdenek Letko
Qin Li
Xinxin Liu
Jaghoori Mohammad Mahdi
Nicolas Markey
Frederic Mesnard
Marius Mikucionis
Hiroshi Mochio
Laurent Mounier
Narasimha Murthy
Masaki Nakamura
Rajeev Narayanan
Martin Neuhäus̈er
Thomas Noll
Ulrik Nyman
Kazuhiro Ogata
Yoichi Omori
Adriano Peron
Paul Pettersson
Damien Pous
Pavithra Prabhakar
Vinayak Prabhu
M. Praveen

Organization IX

Adam Rogalewicz
Hamideh Sabouri
Jacques Sakarovitch
Sylvain Schmitz
Philippe Schnoebelen
Uwe Schöning
Maria Grazia Scutellà
Ali Sezgin
Simoni Shah
Zhiqiang Shi
Leila Silva
Pavel Smrz
Oleg Sokolsky

Daniel Thoma
Claus Thrane
Ninh Thuan Truong
Hoang Truong
Ing Ren Tsang
Shmuel Ur
Kapil Vaswani
Björn Victor
Ha Nguyen Viet
Ramesh Viswanathan
Pascal Weil
Andrew West

Table of Contents

Invited Papers

Static Analysis of Concurrent Programs Using Ordinary Differential
Equations . 1

Zuohua Ding

The PlusCal Algorithm Language . 36
Leslie Lamport

The Secret Art of Computer Programming . 61
Annabelle K. McIver

Verification, Testing and Statistics . 79
Sriram K. Rajamani

Full Research Papers

ν-Types for Effects and Freshness Analysis . 80
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and
Roberto Zunino

A First-Order Policy Language for History-Based Transaction
Monitoring . 96

Andreas Bauer, Rajeev Goré, and Alwen Tiu

Checking Thorough Refinement on Modal Transition Systems Is
EXPTIME-Complete . 112

Nikola Beneš, Jan Křet́ınský, Kim G. Larsen, and Jǐŕı Srba

Transmission Protocols for Instruction Streams . 127
J.A. Bergstra and C.A. Middelburg

A Deadlock-Free Semantics for Shared Memory Concurrency 140
Gérard Boudol

On the Expressiveness of Forwarding in Higher-Order
Communication . 155

Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro

On the Hairpin Completion of Regular Languages . 170
Volker Diekert, Steffen Kopecki, and Victor Mitrana

Context-Free Languages of Countable Words . 185
Zoltan Ésik and Szabolcs Iván

XII Table of Contents

Automatic Conflict Detection on Contracts . 200
Stephen Fenech, Gordon J. Pace, and Gerardo Schneider

A Sound Observational Semantics for Modal Transition Systems 215
Dario Fischbein, Victor Braberman, and Sebastian Uchitel

Regular Expressions with Numerical Constraints and Automata with
Counters . 231

Dag Hovland

On the Relative Expressive Power of Contextual Grammars with
Maximal and Depth-First Derivations . 246

Lakshmanan Kuppusamy and Kamala Krithivasan

Integration Testing from Structured First-Order Specifications via
Deduction Modulo . 261

Delphine Longuet and Marc Aiguier

A Minimized Assumption Generation Method for Component-Based
Software Verification . 277

Pham Ngoc Hung, Toshiaki Aoki, and Takuya Katayama

A Formal Approach to Heuristically Test Restorable Systems 292
Pablo Rabanal, Ismael Rodŕıguez, and Fernando Rubio

Constrained Reachability of Process Rewrite Systems 307
Tayssir Touili

Input-Output Model Programs . 322
Margus Veanes and Nikolaj Bjørner

Tool Papers

IMITATOR: A Tool for Synthesizing Constraints on Timing Bounds of
Timed Automata . 336

Étienne André

GSPeeDI – A Verification Tool for Generalized Polygonal Hybrid
Systems . 343

Hallstein Asheim Hansen and Gerardo Schneider

Hierarchical Graph Rewriting as a Unifying Tool for Analyzing and
Understanding Nondeterministic Systems . 349

Kazunori Ueda, Takayuki Ayano, Taisuke Hori,
Hiroki Iwasawa, and Seiji Ogawa

Author Index . 357

Static Analysis of Concurrent Programs Using
Ordinary Differential Equations�

Zuohua Ding

Center of Math Computing and Software Engineering
Zhejiang Sci-Tech University

Hangzhou, Zhejiang, 310018, P.R. China
zouhuading@hotmail.com

Abstract. Static analysis may cause state space explosion problem. In
this paper we demonstrate how ordinary differential equations can be
used to check the deadlocks and boundedness of the programs. We hope
that our method can avoid explosion of state space entirely. A concurrent
program is represented by a family of differential equations of a restricted
type, where each equation describes the program state change. This fam-
ily of equations are shown analytically to have a unique solution. Each
program state is measured by a time-dependent function that indicates
the extent to which the state can be reached in execution. It is shown
that 1) a program deadlocks iff every state measure converges to either
0 or 1 as time increases. Thus instead of exploring states, the solution of
a family of differential equations is analyzed. 2) a program is bounded
iff every state measure converges to a bounded nonnegative number.

Keywords: Concurrent program, State explosion, Ordinary differential
equation, Deadlock detection, Boundedness checking.

1 Introduction

Static analysis is an approach to program behavior verification without execu-
tion. The approach is particularly useful in identifying program design errors
prior to implementation. It has been demonstrated that detecting errors early
in the lifecycle greatly reduces the cost of fixing those errors. A number of static
concurrency analysis techniques have been proposed.

They span such approaches as reachability-based analysis techniques [22] [26]
[38] [54] [69] [76], symbolic model checking [8] [47], flow equations [14], and
dataflow analysis [23] [45] [60].

• Reachability analysis. Analysis using explicit state enumeration is conducted
by constructing an equivalent state machine of the program against which
properties can be checked. A major problem of reachability analysis is that
the search space involved can expand exponentially with the increase in the
number of concurrent processes. Reduction techniques have been proposed
to alleviate the problem by not having to construct the entire state graph.

� Supported by NSF of China(No.90818013).

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 1–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 Z. Ding

• Symbolic model checking. It has been widely used to verify designs of dig-
ital circuits against properties expressed in branching-time temporal logic
CTL. The state space is represented symbolically by a logical formula cap-
tured using a Binary Decision Diagram (BDD). The technique works well
for hardware designs with regular logical structures. For such systems, BDD
representations can reduce the state space from exponential order of the
number of state variables to linear. However, it is less likely to achieve sim-
ilar reductions in software specifications whose logical structures are less
regular.

• Flow equation. The necessary conditions for the existence of an execution
trace that violates a specified property are expressed using a set of inequali-
ties. These inequalities are then solved using standard integer linear program-
ming packages. Nonexistence of solutions guarantees the satisfiability of the
property while existence of solutions yields an inconclusive result. The tech-
nique has the advantage that the number of inequalities is essentially linear
to the number of concurrent processes in a program. However, integer linear
programming problems are generally NP-hard, and the standard techniques
involved are potentially exponential.

• Data flow analysis. By approximating the execution model of a program,
properties can be efficiently checked using a polynomial algorithm. However
the conclusion thus obtained is usually either complete or sound but not
both.

These techniques and approaches have been used in several analysis tools such as
Flow equation in INCA [14], data flow analysis in FLAVERS [23], Reachability
Analysis in SPIN [34], Symbolic model checking in SMV [12] and SMC [67].

In general all existing approaches appear to be very sensitive to the size of the
program being analyzed in terms of the use of concurrency constructs and the
number of asynchronous processes. While analysis may be partitioned in some
cases, in other cases it suffers from combinatorial explosion: static concurrency
analysis of arbitrary programs has been shown to be NP-hard [69]. Particularly,
reachability analysis may cause state space explosion problem since it has to
exhaustively explore all the reachable state space to detect concurrency errors.
Although many techniques have been proposed to combat this explosion, such
as state space reductions [27] [42] [71] [72], compositional techniques [75], ab-
straction [10], the state explosion problem still is the main technical obstacle to
transition from research to practice.

Traditionally, concurrent systems are described as discrete event system mod-
els which are suited to model system concurrency. However, the discrete will lead
to state explosion problem since model checkers build a finite state transition
system and exhaustively explore the reachable state space searching for viola-
tions of the properties under investigation [11]. Hence, to thoroughly solve the
state explosion problem, one solution is that the discrete event system models
should be continunized to continuous system models, such that the systems can
be described with analytic expressions. Therefore, instead of counting states, we
can analyze the solutions of the analytic expressions.

Static Analysis of Concurrent Programs 3

Petri net seems a good candidate that bridges discrete event systems and
continuous systems. On one hand, Petri nets have been used extensively as tools
for the modeling, analysis and synthesis of discrete event systems. Petri nets
offer advantages over finite automata, particularly when the issues of model
complexity and concurrency of processes are of concern. On the other hand,
a continuous system can be approximated by a Petri net [57] and a Petri net
model is used as discrete event representation of the continuous variable system
by Lunze et al. [43].

However, Petri nets also suffer from the state explosion problem while doing
reachability analysis[49] even through there are some net reduction methods.
One way to tackle that problem is to use some kind of relaxation by removing
the integrality constraints. This relaxation leads to a continuous-time formalism:
Continuous Petri Net (CPN) by David and Alla[15][16]. The price being paid
is losing certain possibilities of analysis, but we can avoid the state explosion
problem inherited from the discrete systems and take advantage of the extensive
theory about continuous systems. A continuous Petri net, in fact, is an approxi-
mation of the timed (discrete) Petri net. The semantics of a continuous Petri net
is defined by a set of ordinary differential equations (ODEs), where one equa-
tion describes the continuous changes over time on the marking value of a given
place. Different firing styles in the CPN can lead to different semantics of CPN.
In this paper, we consider a modified VCPNs in which the instantaneous firing
speeds depend on the markings such that the markings are continuous without
points of discontinuity.

Based on CPN, we will build differential equation model for concurrent pro-
grams. Each equation model consists of six types of ordinary differential equa-
tions. Each equation describes a state change of the program. A state can be
measured by the time-dependent nonnegative number, called state measure,
which indicates that the state can be reached to some extent when the pro-
gram is in execution. Given a time instant, instead of displaying one state at a
time as in the discrete event systems, a program will have all states shown up,
with the state measure attached to each state. This information can help us to
perform static analysis for the programs.

In this paper we focus on deadlock detection and boundedness checking.
Deadlock problem has been extensively studied in the in the literature [4] [7]

[35] [39] [40] [53] [55] [61] [66] [74] [77]. There are several kinds of deadlock
models [65], but we only consider two kinds of deadlock models in this pa-
per: Communication(OR) model and Resource Sharing(AND) model. The first
model comes from the situation that the processes of a concurrent program do
not share the address spaces and the communication and synchronization are
achieved through message passing. The second model comes from the situation
that the processes of a concurrent program share the address space and the
synchronization is achieved by the use of monitor and condition queues.

Boundedness is one of the most important properties of discrete Petri nets. It
can be used to check if the system has congestion or resource leak. Determining
the boundedness of a Petri net is usually through creating reachable graph or

4 Z. Ding

coverability tree [31] [25]. However, it is time consuming to create reachable
graph or coverability tree, and sometime the state explosion problem may be
hit. It is shown that the boundedness of Petri net is equivalent to the stability
of the corresponding equation model.

Since it is hard to find explicit analytic solutions for nonlinear ordinary differ-
ential equations, we turn to find numerical solutions instead. With Matlab solver,
we can get the numerical solutions. The computation error does not affect the
performance.

This paper is organized as the following. Section 2 simply describes how to
build Petri net model representation for concurrent programs. Section 3 defines a
new type of continuous Petri net based on the discrete Petri net. Section 4 builds
differential equation model for concurrent programs based on continuous Petri
net. In Section 5, we prove the existence and uniqueness of the solutions of the
differential equation model. In Section 6, we show how to compute state measures
of a program in different situations. Section 7 gives sufficient and necessary
conditions for a program to have deadlocks. Section 8 provides us an easy way to
check the boundedness of a system. Section 9 explains why using Matlab to find
the numerical solutions of the differential equation model. Section 10, Section 11
and section 12 are the case studies. Gas station problem, dinning philosophers
and traffic network have been used as the examples. The last section, Section
13, is the discussion and conclusion of the paper.

2 Petri Net Representation of Concurrent Programs

Petri net models of concurrent programs have existed for some time. There are
several ways to build (discrete) Petri net models from program languages such
as from Ada [64] [44], CSP [70] [50] [59], and C [41].

The general principle to translate a program to a Petri net is that the resulting
Petri net should capture essential details of the program’s execution behavior
that allow an analysis algorithm to distinguish between executions that are guar-
anteed to satisfy the property that is being evaluated from those that may fail
to satisfy the property.

Although the languages are different, before translation, Coarsening step is
always necessary: By removing all statements that do not affect program (static)
behavior, we can get a ’skeleton’ of the program. Here the ’affect’ is kind of fuzzy,
but it will be clear when applied to concrete languages.

While building a Petri net, we may obtain some ’valued-oriented’ constructs
such as parameters, variables that define the dynamic state of a program. We
use special variables, called state variables, to record them at each place such
that when the system is executed from one place to another place, state vari-
able’s values will be changed. These variables are usually extracted from con-
trol constructs and concurrent constructs. Since we focus on static analysis,
these variables are only used to define program state. We have the following
definition.

Static Analysis of Concurrent Programs 5

Definition 1. (Program State) A program state is defined as a family of vari-
ables whose values have changed.

Definition 2. An event is defined as an activity of the program and can change
the state of the program.

Definition 3. A Petri net is a directed bipartite graph that can be written as
a tuple (P, T, F, M0), where P is the set of places, T is the set of transitions,
F ⊂ (P × T) ∪ (T × P) is the set of arcs, and M0 is the initial marking.

In our Petri net model, a place is used to denote a program state and a transition
is used to denote an event. The initial marking indicates the start state.

Events are regarded as instantaneous. If we wish to represent an activity
with duration, we must introduce two events to represent its start and finish
so that other events can occur between them. The semantics of the original
language determines the boundaries between events. Typical events might be
send message, receive message, user defined event/action, read, write, system
events, etc.

In this paper, most of the events come from the synchronization [5]. In the
case of disjoint address spaces, the synchronization for concurrent programs is
through message passing between processes. Message passing are classified as
Synchronous and Asynchronous. Synchronous message passing means that the
sending operation needs to wait until an acknowledgment is received. Asyn-
chronous message passing means that the sending operation can proceed without
waiting for the message to arrive at its destination. In both cases, the receiving
side is blocked. In the case of shared address spaces, the synchronization for
concurrent systems is achieved by the use of monitor and condition queues. In
general, processes are not independent. Often a process depends on the resource
released by another process. If the process is not available, the process must
wait until the process is available and at this moment the process is blocked.
The process will be resumed after obtaining all the required resources.

Generally, the translation is on the control flow (such as if, loop, and se-
lect statements) and concurrent constructs. We are not going to give detailed
translation rules for all programming languages, actually it is impossible and
not necessary since different programming language may have different syntax,
semantics and different concurrent constructs. We only focus on the rules to
use Petri net to represent synchronization, which have been successfully imple-
mented to Ada in our case study sections. For other rules on control flow, one
may use Ada-Petri net rules[64] as a reference.

Rules For Message Passing
Asynchronous message passing mechanism can be translated to the Petri net

as Fig. 1 shows. In the picture, p1 → t1 → p2 represents process A, and p3 →
t2 → p4 represents process B. On the sending side, process A sends message
to p from transition t1, meanwhile it continues to execute to place p2. On the
receiving side, process B receives message from p at transition t2, and t2 is
enabled. Hence both processes can continue the execution.

6 Z. Ding

p1

p2

t1
p

t2

p3

p4

A

B

Fig. 1. Petri net for asynchronous message passing

Synchronous message passing mechanism can be translated to the Petri net as
Fig. 2 shows. In the figure, p1 → t1 → p(i) → t2 → p2 represents process process
A, and p3 → t3 → p4 represents process B. First, process A sends message
to p(s) from transition t1 and then waits for a response from process B. After
getting request from p(s), t3 is enabled, and process B sends response back to
p(e), meanwhile it continues to execute to p4. Finally, process A get response
from p(e) and thus t2 is enabled. Hence A can continuou execution to p2.

p(i)

p1(s)

p1(e)

t1

t2

t3

p1

p2

p3

p4

A

B

Fig. 2. Petri net for synchronous message passing (I)

Since an activity may cover a fragment of code, thus synchronous message
passing may have more general Petri net translation as shown in Fig. 3. In the
picture, p1 → t1 → p1(i) → t2 → p2 represents process process A, p3 → t3 →
p4 → t4 → p2(i) → t5 → p5 → t6 → p6 represents process B, and p7 → t7 → p8
represents process C. First, process A sends message to p1(s) from transition
t1 and then waits for a response from process B. After getting request from
p1(s), t3 is enabled. Thus, process B continues execution to t4 and sends request
to p2(s) to other process from t4, and so on. Eventually process C will get request

Static Analysis of Concurrent Programs 7

p1(i)

p1(s)

p1(e)

t1

t2

t3

t4

p2(i)

p1

p2

p3

p4

A

B

t5

p2(s)

p2(e)

p3(s)

p3(e)p5

p6

t6

t7

p7

p8

C

Fig. 3. Petri net for synchronous message passing (II)

from p3(s) and thus transition t7 is enabled. Process c then sends response back
to p3(e) to the sending process. Finally process A will get response from p1(e)
which get response from B at transition t2. At this moment, all processes can
continue the execution.

In this way, we get Petri nets with the property: Each transition has at most
two input arcs and at most two output arcs.

Definition 4. A Place/Transition Chain is a net: All transitions are connected
by a head place that has one output arc and no input arc, an end place that
has one input arc and no output arc, and places that has one input arc and one
output arc. If the head place and the end place are overlapping, then the chain
is called Place/Transition Cycle.

Definition 5. A place/transition cycle is called Process Cycle for Communication
Model, if every transition in the cycle is: 1) a transition that has one input arc
and one output arc; this transition is called Internal Transition of the cycle, 2) a
transition that has one input arc and two output arcs; this transition is called
Output Transition of the cycle, here one output arc is to construct the cycle and
the other is for the output of the cycle, 3) a transition that has two input arcs
and one output arc; this transition is called Input Transition of the cycle, here one
input arc is to construct the cycle and the other is for the input of the cycle, 4)
a transition that has two input arcs and two output arcs; this transition is called
Input-Output Transition of the cycle, here one input arc and one output arc are
used to construct the cycle and the other two are used for the input and output
of the cycle, respectively.

Thus, each process in the communication model consists of one or many process
cycles depending on if the process contains no or some select controls.

8 Z. Ding

Rules For Resource Sharing
There are two cases.

1) A process requires one resource as shown in Fig, 4. p1 → t1 → p2 → t2 → p3
represents process A. Place r represents a resource. If the required resource r is
available, then the transition t1 will be fired and the marking at place p1 will be
moved to place p2, and finally transition t2 will release the resource back.

A

r

t1

t2

p1

p2

p3

Fig. 4. One resource is required by the process

p1

p2

p3

p4

r1

r2

t1

t2

t3

t4

p5

Fig. 5. Two resources are required by the process

2) A process requires two or more resources as shown in Fig. 5. p1 → t1 →
p2 → t2 → p3 → t3 → p4 → t4 → p5 represents process A. Places r1 and r2
represent two resources. If r1 is available, then transition t1 is fired, and the
marking is moved from p1 to p2. If resource r2 is also available, then transition
t2 is fired and the marking in p2 is moved to p3, otherwise, the process is waiting

Static Analysis of Concurrent Programs 9

at p2. Thereafter, transition t3 will release one resource, either r1 or r2, say r1
in the picture. Finally, transition t4 will release another resource r2.

Definition 6. A place/transition cycle is called Process Cycle for Resource Model,
if every transition in the cycle is: 1) a transition that has one input arc and
one output arc; this transition is called Internal Transition of the cycle, 2) a
transition that has one input arc and two output arcs; this transition is called
Output Transition of the cycle, here one output arc is to construct the cycle and
the other is for the output of the cycle, 3) a transition that has two input arcs
and one output arc; this transition is called Input Transition of the cycle, here
one input arc is to construct the cycle and the other is for the input of the cycle.

Thus, each process in the resource sharing model consists of one or many process
cycles depending on if the process has alternative required resources.

3 From Discrete Petri Net to Continuous Petri Net

The Petri net obtained in the last section is discrete Petri net, in which the
number of marks in the places are integers. A transition is enabled if each in-
put place of the transition is marked with a token. An enabled transition fires
by removing a token from each input place and adding a token to each output
place. A transition that is never enabled is called dead. A marking of a Petri
net is reachable if there exists a chain of transition firings that leads from initial
marking to the marking. Thus, a Petri net, by successive firing of enabled tran-
sitions, generates a graph whose nodes are reachable markings and whose edges
represent transition firings. Such Petri net can keep the properties consistent
with the program, especially the deadlock.

After translation, a program can be represented as several process cycles that
interact to each other through input/output places. We assume that each process
cycle has one start state, meaning that only one place has a token from the
start. While executing, if a place has a token, then the process is currently at
the state of this place; otherwise, the process is not at the state of this place.
Each input/output place may have big number of tokens, indicating that the
data are waiting in the buffer to be processed.

Now check the following example to find out how the data is processed. As
shown in Figure 6(a), a process cycle has places p1, p2, . . . and has an input
place pi at transition t1. We assume that place p1 has a token, meaning that the
process is visiting this place, and pi has 3 tokens, meaning that there are three
data in the buffer.

The process has to visit place p1 for 3 times to move away all 3 tokens in
the place pi. In other words, 3× 1 tokens will be moved from place p1 as shown
in Figure 6(b)(c). Thus the tokens in the input place pi can be regarded as an
impact factor while tokens are moved from the process place p1. If the number
of data in the buffer is big, and a program has many such buffers, then we will
get large number of reacheable markings which could limit the use of discrete
Petri nets.

10 Z. Ding

p1

p2

t1

pi

k1

p1

p2

t1

pi

k1

p1

p2

t1

pi

k1

(a) (b) (c)

Fig. 6. Marking changes in discrete Petri net

Now we assume that the marking is moving as a continuous flow, then the
marking moving rate can be regarded as the product of k1×m1(t)×mi(t). In the
product, k1 is maximum firing speed of t1, and k1 = 1

δ1
, here δ1 is the time delay

for transition t1 that can be obtained from program execution or from design
phase; m1(t) and mi(t) are the markings of p1 and pi at time t, respectively.
This can be pictured in Fig. 7.

p1

p2

t1

pi

k1

m1(t)

m2(t)

m1(t)m2(t)

Fig. 7. Continuous flow in Petri net

Based on this idea, we propose a new continuous Petri net model. In this
model, the instantaneous firing speed of a transition is proportional to the prod-
uct of the markings of the input places.

Definition 7. A Continuous Petri Net is a tuple ConPN =< P, T, Apre, Apost,
v >, where

1. P = {p1, p2, ..., pn} is a finite nonempty set of places,
2. T = {t1, t2, ..., tm} is a finite nonempty set of transitions,
3. Apre = {p → t} is a set of directed arcs which connect places with transitions,

Apost = {t → p} is a set of directed arcs which connect transitions to places,
4. v : T → (0,∞) is a mapping to assign a firing constant to each transition.

Static Analysis of Concurrent Programs 11

Definition 8. Let I = [0,∞) be the time interval and let mi : I → [0,∞), i =
1, 2, . . . , n be a set of mappings that associated with place pi. A marking of a
Continuous Petri Net ConPN =< P, T, Apre, Apost, v > is a mapping

m : I → [0,∞)n, m(τ) = (m1(τ), m2(τ), . . . , mn(τ)).

Definition 9. A marked ConPN is a 2-tuple (N, M0) where
- N is a ConPN,
- M0 = (m1(0), m2(0), . . . , mn(0)) is its initial marking, where mi(0) takes

value 1 or 0.

A place holding initial marking 1 is called start place. The marking of a place can
be used to measure how often this place has been visited. We have the definition:

Definition 10. (State Measure) Given any time moment t ∈ [0,∞), the state
can be reached to some degree. This degree is called State Measure, denoted as
m(t). State measures take nonnegative real numbers as their values.

All the mi defined above are the state measures. Note that state measure is dif-
ferent from probability since the state measures for the places between processes
may exceed 1 in some cases. Later, we will prove that the state measures of each
process cycle take values from [0,1]. For a state s in the process, if m(t) = 1,
then we say that the program is completely in the state s, or simply in the state
s. If m(t) = 0, then we say that the program is not in the state s.

A transition is enabled if all the input places have nonzero markings. Only
enabled transitions can be fired. So, if new marking is moved into a place, we say
that the state is increasing; if some marking is moved out from a place, we say
that the state is decreasing. The change rate of state measure can be calculated
as the following.

Let p1 and p2 be the input places of a transition t and their markings are
m1(τ) and m2(τ), respectively. Let v be the firing constant associated with t,
then the firing rate is defined as the product v∗m1(τ)∗m2(τ), where ∗ represents
the regular multiplication. This expression contains the enabling information: if
one of m1 and m2 is zero, then the marking moving rate is 0, meaning the
transition is not enabled.

Note: In the definition of Continuous Petri net defined by David and Alla, the
firing rate is define by vmin{m1(τ), m2(τ)}. If both m1 and m2 are less than
one, then

m1(τ) ∗ m2(τ) < min{m1(τ), m2(τ)}.
If at least one of m1 and m2 is bigger than one, then

m1(τ) ∗ m2(τ) > min{m1(τ), m2(τ)}.

Therefore, our definition magnifies the states, which is useful when we study the
state trend. Our definition is to make the state marking differential, thus the
state change is continuous without points of discontinuity.

12 Z. Ding

Gilbert and Heiner [24] have successfully used the similar continuous Petri
net model to study biochemical systems to explore in a general manner possi-
ble observable behaviors, where the firing rates of all the atomic actions is the
product of the concentrations of the involved substances. Here concentrations
are continuous functions, which are the state measure functions in our paper.
It is worthy to mention that a tool, called Snoopy, developed by Scheibler [63],
can be used to simulate Continuous Petri net. It can give the state measures at
a given time.

We will use our new continuous Petri net model to study the program proper-
ties, particular the deadlock and boundedness, and find equivalent descriptions
that can be easily used to check these two properties. Note that there are no
changes for the net structure and initial markings while discrete Petri net is
continunized.

Definition 11. A stationary state of a marked ConPN is the state in which all
transitions are firing.

4 Building a Differential Equation Model

The net marking (state) changing depends on the program structures and the
firing rates. Based on the semantics defined in the above section, the marking at
each place can be represented by a differential equation. We have the following
cases.

1) No inputs for the net as Fig. 8 shows.

p1

p

t1

t2

m1

m

d1

d2

Fig. 8. Net without inputs

(a) Place has no choice. In (a), there are two internal transitions t1 and t, and
two places p1 and p. Place p gets marking from place p1. Let the marking at place
p1 and p be m1 and m, respectively. Assume the firing constants at transition
t1 and t are d1 and d, respectively. Then the marking m can be represented as

m′(τ) = d1m1(τ) − dm(τ).

(b) Place has choice. In (b), there are three internal transitions t1, t2 and
t3, and two places p1 and p. Place p gets marking from place p1 and then en-
ables either transitions t2 or t3. Let the marking at place p1 and p be m1 and m,

Static Analysis of Concurrent Programs 13

respectively. Assume the firing constants at transition t1, t2 and t3 are d1, d2
and d3, respectively. Then the marking m can be represented as

m′(τ) = d1m1(τ) − (d2 + d3)m(τ).

2) One input for the net as Fig. 9 shows.
(a) Input transition followed by internal transition. As Fig. 9(a) shows, tran-

sition t1 is an input transition and t is an internal transition. Place p will get
marking from place p1 and p2. Let the markings at places p1, p2 and p be m1,
m2 and m, respectively. Assume that the firing constants at transition t1 and t
are d1 and d, respectively. Then the marking m can be represented as

m′(τ) = d1m1(τ) ∗ m2(τ) − dm(τ).

p1

p

t1

t

m1

m

d1

d

m2

p2 p1

p

t1

t

m1

m

d1

d

m2

p2

(a) (b)

Fig. 9. Net with one input

(b) Internal transition followed by input transition. As Fig. 9(b) shows, tran-
sition t1 is an internal transition and t is an input transition. Place p will get
marking from place p1, but will together with place p2 send some marking out.
Let the markings at places p1, p2 and p be m1, m2 and m, respectively. Assume
the firing constants at transition t1 and t are d1 and d, respectively. Then the
marking m can be represented as

m′(τ) = d1m1(τ) − dm(τ) ∗ m2(τ).

3) Two inputs for the net as Fig. 10 shows.

p1

p̄

t1

t

m1

m

d1

d

m3

p3

m2

p2

Fig. 10. Net with two inputs

14 Z. Ding

Input transition t1 has two input places m1 and m2 and input transition t2
has two input places m and m3. Assume the firing constants at transition t1 and
t are d1 and d, respectively. Then the marking m can be represented as

m′(τ) = d1m1(τ) ∗ m2(τ) − dm(τ) ∗ m3(τ).

4) One sharing resource for two processes as shown in Fig. 11.

m1

m2

t1

m3

d1 d3t3

m
k 1− k

m4

d2 d4

Fig. 11. Two processes sharing one resource

Let the resource be r. We assign a time-dependent function k(t), called control
function, to the resource to assist building equations. k(t) takes value 0 or 1 and
is piecewise continuous. In this picture, the firing rate of transition t1 of the
first process is m1 ∗ k ∗ r, while the firing rate of t3 of the second process is
m3 ∗ (1 − k) ∗ r. The corresponding differential equations are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

m′
1 = ()1 − d1 ∗ m1 ∗ k ∗ r,

m′
2 = d1 ∗ m1 ∗ k ∗ r − d2 ∗ m2,

m′
3 = ()2 − d3 ∗ m3(1 − k)r,

m′
4 = d3m3(1 − k)r − d4m4.

Here we use () to represent some other state measures. If more than two processes
are involved in sharing resource r, say 3 processes p1, p2 and p3, then we will have
two control functions: k1(t) and k2(t). Let t1, t3 and t5 be the input transitions

m1

m2

t1

t2

m3

m4

m5

t3

t4

t5

t6

t7

t8

r1

r2k1
k2

1− k2

m6

m7

m8

Fig. 12. Two processes sharing two resources

Static Analysis of Concurrent Programs 15

that need resource. The firing rates to the transitions are: ()1 ∗ k1 ∗ r, ()2 ∗ (1 −
k1) ∗ k2 ∗ r, and ()3 ∗ (1 − k1) ∗ (1 − k2) ∗ r, respectively.

5) Two sharing resource for two processes as Fig. 12 shows.
Let the two resources be r1 and r2. Two control functions k1(t) and k2(t) are

assigned to r1 and r2, respectively. The corresponding differential equations are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m′
1 = ()1 − d1m1k1r1,

m′
2 = d1m1k1r1 − d2m2(1 − k2)r2,

m′
3 = d2m2(1 − k2)r2 − d3m3,

m′
4 = d3m3 − d4m4,

m′
5 = ()2 − d5k2r2m5,

m′
6 = d5m5k2r2 − d6m6,

m′
7 = d6m6 − d7m7,

m′
8 = d7m7 − d8m8,

r′1 = d3m3 − d1k1r1m1,

r′2 = d4m4 + d7m7 − d2(1 − k2)r2m2 − d5m5k2r2.

Generally, if there are n resources, we will assign n control functions k1(t),
k2(t),. . . , kn(t) to the resources. All the functions form a vector, (k1, k2, . . . , kn),
called control vector. Since ki(t) is piecewise continuous, on some fixed time in-
tervals, we will have 2n different differential equation groups. The control vector
plays crucial role in the property analysis. Different property may require differ-
ent technique to handle this vector since the values of the control functions are
nondeterministic.

5 The Existence and Uniqueness of the Solutions for the
Equation Model

From above section, we can model a system with a group of differential equations.
But we still do not know if the group of equations have solutions. This requires
a rigorous proof.

For a process cycle, let m be any state and assume its incoming transition
is t1 and the outgoing transition is t2 as shown in Fig. 13(a), then we have the
following 4 cases to compute the state measure of m: 1) t1 and t2 have no inputs,
2) t1 has input mi1 and t2 does not have input, 3) t1 has no input and t2 has
input mi2 , 4) t1 and t2 have inputs mi1 and mi2 , respectively.

Hence, there are four equations corresponding to the cases:

m′ = d1 ∗ m1 − d2 ∗ m, (1)
m′ = d1 ∗ m1 ∗ mi1 − d2 ∗ m, (2)
m′ = d1 ∗ m1 − d2 ∗ m ∗ mi2 , (3)
m′ = d1 ∗ m1 ∗ mi1 − d2 ∗ m ∗ mi2 . (4)

16 Z. Ding

t1

t2
m1 m

d1

m2

d2

d1 t1

m

m1

t2d2

mi1

mi2

(a) (b)

mr

Fig. 13. (a) Process Cycle, (b) Interaction between two process cycles

For the input/output states between two processes as shown in Fig. 13(b),
their state measures can be calculate as

m′ = d2m2 − d1m1m, or m′ = d2m2mI − d1m1m.

Here m1 and m2 are the states in two different process cycles.
Generally, let xi be the variables in the differential equation group. There are

six types of equations.

• Type 1 [Internal]. x′
i = di−1xi−1 − dixi. Here xi and xi−1 are the states of

the same process.
• Type 2 [Input-before]. x′

i = di−1xi−1xk−dixi. Here xi and xi−1 are the states
of the same process. xk is the input to this process.

• Type 3 [Input-after]. x′
i = di−1xi−1 − dixixk. Here xi and xi−1 are the states

of the same process. xk is the input to this process.
• Type 4 [Input-before-after]. x′

i = di−1xi−1xk − dixixl. Here xi and xi−1 are
the states of the same process. xk and xl are the inputs to this process.

• Type 5 [Asynchronous]. x′
k = dixi − di′xi′xk. Here xi and xi′ are the states

of two different processes respectively. xk is the message between these two
processes.

• Type 6 [Synchronous]. x′
k = dixixl − di′xi′xk. Here xi and xi′ are the states

of two different processes respectively. xk and xl are the messages between
these two processes, where xl is usually indicates the request that can be
calculated by Type 5 and xk is the reply.

For each process cycle, we have a group of differential equations, each equation
is one type of Type 1-Type 4. Formally, we have

Definition 12. A differential equation group is called Process Equation Group
if each equation of the group is one type of Type 1-Type 4,

∑
x′

i = 0, and∑
xi(0) = 1.

For the messages between processes, they can be represented by Type 5 or Type
6. Formally, we have

Definition 13. A differential equation is called Connection Equation if the equa-
tion is one of Type 5 or Type 6 and the equation contains states of other two
Process Equation Groups.

Static Analysis of Concurrent Programs 17

Note: 1) From the calculation point view, Type 3 is the same as Type 5 and Type
4 is the same as Type 6. 2) Notice that in the above six equations, the right hand
side of each equation may have more than two items, but in that situation the
extra items will be controlled by Control Functions. For the convenience, we only
consider two items on the right side.

Consider a system described by a set of differential equations containing n
variables x1, x2, . . . , xn, each equation is one of Type 1 - Type 6, and the equations
can be further grouped as Process Equation Groups and Connection Equations.
Without confusion, we use six types of equations to represent the whole equation
group. Let the set of equations be the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
x′

i = di−1xi−1 − dixi

x′
i = di−1xi−1xk − dixi

x′
i = di−1xi−1 − dixixk

x′
i = di−1xi−1xk − dixixl

x′
k = dixi − di′xi′xk

x′
k = dixixl − di′xi′xk

...

where xi can be any variables for the Process Equation Group and xk can be
any variables for the Connection Equations. The above equation group can also
be rewritten as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
xi

xi

xi

xi

xk

xk

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
di−1xi−1 − dixi

di−1xi−1xk − dixi

di−1xi−1 − dixixk

di−1xi−1xk − dixixl

dixi − di′xi′xk

dixixl − di′xi′xk

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
xi

xi

xi

xi

xk

xk

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, f(t, x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
di−1xi−1 − dixi

di−1xi−1xk − dixi

di−1xi−1 − dixixk

di−1xi−1xk − dixixl

dixi − di′xi′xk

dixixl − di′xi′xk

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

18 Z. Ding

Then x ∈ Rn, f : [0, +∞) × Rn → Rn and the above equation group can be
represented as

x′ = f(t, x).

Since the system has start states, thus x has initial value, for example x(0) = x0.
Hence the solution existence problem is transformed to the existence problem of
initial value problem

x′ = f(t, x), t ≥ 0, x(0) = x0.

Let T > 0 be any finite number and we consider the interval [0, T] ⊂ [0, +∞).
Let

C([0, T], Rn) = {x : [0, T] → Rn such thatx is continuous on [0, T]},
and the mapping f : [0, T]× Rn → Rn is continuous. The initial value problem:

x′ = f(t, x), t ∈ [0, T], x(0) = x0

is to find solution x ∈ C([0, T], Rn) such that

x′(t) = f(t, x(t)), t ∈ [0, T].

We have the following equivalent description.

Proposition 14. A function x ∈ C([0, T], Rn) with continuous derivative on
[0, T] is a solution of the initial value problem if and only if

x(t) = x(0) +
∫ t

0
f(s, x(s))ds.

Based on this proposition, we may consider the map F : C([0, T], Rn) → C([0, T],
Rn) define by

(Fx)(t) := x0 +
∫ t

0
f(s, x(s))ds, t ∈ [0, T].

Therefore, our initial problem is equivalent to finding a fixed point of F . We
will use the following famous fixed point theorem to prove the existence of fixed
point of F .

Theorem 15. ([68], p.29) Let E be a Banach space and let F : E → E be a
continuous compact map. If the set

Ω := {x ∈ E : λx = F (x) for some λ > 1}
is bounded, then F has a fixed point.

In this theorem, a Banach space E is a metric space E that is complete under
the metric, i.e. all Cauchy sequences have limits in E. For more information
about Banach space, we refer to [28]. Let ‖.‖ be the norm of space Rn. Then
C([0, T], Rn) is a Banach space with norm

‖x‖∞ = sup{‖x(t)‖ : t ∈ [0, T]}.
Theorem 16. Mapping F has a unique fixed point in C([0, T], Rn).

Static Analysis of Concurrent Programs 19

6 Computing Program States

Since the differential equation model contains nonlinear ordinary differential
equations, it is in general hard to give analytic expressions to the solutions. Nev-
ertheless, we may compute the solution trend and estimate the solution range.
The proofs in this paper are omitted. The readers can get the details from us.

We need the following The Second Mean Value Theorem for integrals, which
can be found in almost all calculus books, but could be in different forms. We
choose it from [46], p.222.

Theorem 17. Assume function f is integral in [a, b]. If function g is nonneg-
ative and integrable, and increasing on [a, b], then there exists η ∈ [a, b], such
that ∫ b

a

f(x)g(x)dx = g(b)
∫ b

η

f(x)dx.

Sketch of the proof: Let

F (x) =
∫ b

x

f(t)dt, x ∈ [a, b].

Since f is integrable on [a, b], F is continuous on [a, b]. Thus F has maximum
M and minimum m. If g(b) = 0, then g(x) ≡ 0, x ∈ [a, b]. In this situation, the
formula is true for all η. Now let g(b) > 0, then the formula is

F (η) =
∫ b

η

f(t)dt =
1

g(b)

∫ b

a

f(x)g(x)dx.

It is equivalent to prove that

m ≤ 1
g(b)

∫ b

a

f(x)g(x)dx ≤ M,

which is also equivalent to prove that

mg(b) ≤
∫ b

a

f(x)g(x)dx ≤ Mg(b).

The rest is omitted.
We assume that each process has one start place. Each resource is a start

place. Without specifying, t always represents time in the following results.

Proposition 18. For any place/transition cycle, if it has at most one start
place, then for any state measure m in the cycle, the limit as t → ∞ of m(t) exists
and is in the set [0,1] no matter how the firing rates are chosen. Particularly,
1) If the cycle does not contain start place, then all state measures are 0. 2) If
the cycle contains one start place, and all the inputs to the cycle have positive
state measures, then for any state measure m in the cycle, the limit as t → ∞
of m(t) exists and is in the set (0, 1).

20 Z. Ding

Corollary 19. If a state measure converges to zero in some firing constants,
then it can not converge to zero no matter how to choose firing constants.

Proposition 20. If the ConPN of a program reaches stationary state, then for
each process, its state measures converge to numbers in [0, 1] no matter how the
firing constants are chosen.

Note: We did not count the input places and the output places between processes.
Their state measures may exceed 1, unless they also in some place/ transition
cycle.

From this proposition, we may infer that the discrete state has been
continunized.

Definition 21. Two place/transition cycles are said in the same state measure
class if both cycles satisfy the one of the following at the same time: 1) all state
measures in the cycle converge to the numbers in (0, 1), 2) for any state measure
m in the cycle, either m converges 0 or m converges to 1.

Lemma 22. Given a process cycle, we have the following results. 1) If we add
an internal transition to the cycle, then the modified cycle is in the same state
class as the old one. 2) If we add an internal transition as a choice to a chain
that does not have input transitions, then the modified cycle is in the same state
class as the old one.

Theorem 23. Given a process, if it has at least one input with state measure 0,
then every state measure of the process either converges to 1 or converges to 0.

Theorem 24. Given a process cycle, if it does not have inputs, then every state
measure of the process cycle converges to a number in (0, 1).

7 Detecting Deadlock with Equations

This section shows that program deadlock has an equivalent description using
the solutions of differential equations. The proofs are omitted.

Deadlock detection problem has been extensively studied in the literature [7]
[39] [66] [74]. There are several deadlock models as listed in [65], but in this
paper, we consider following two models.

Communication Model(OR). In this model, a concurrent system consists of
a set of processes that communicate with one another via message passing. A
process first sends requests (messages) to its dependents capable of servicing the
request and waits for at least one response. This is because the request can be
served by one of the dependents. So, the process waits for the first acknowledg-
ment, and then proceeds with its computation on the acknowledged dependent.
The above model is an abstract of a system of processes with CSP-like com-
munication [32]. A process in CSP executing an alternative guarded command
may wait for messages from several processes; a guard succeeds and execution

Static Analysis of Concurrent Programs 21

continues when a message is received from any one of those processes. Commu-
nication deadlock has been studied by Huang [35], Zhou and Tai [77], Ng and
Ravishankar [53], Rontogiannis et al. [61], etc.

Resource Model(AND). In this model, processes are permitted to request a
set of resources or resources are sharable. A process is blocked until it is granted
all the resources it has requested. A shared resource is not available for exclusive
use until all its shared lock holders have released the lock. Deadlock situations
may arise if and only if the following four resource competition conditions hold
simultaneously [58] [74]: (1) mutual exclusion, (2) hold and wait, (3) no preemp-
tion, and (4) circular wait. We assume that when a process has exclusive access
to a shared resource it releases it in finite time. Resource sharing deadlock has
been studied by Obermarck [55],Badal [4], Lee [40], etc.

There are no commonly accepted definitions for deadlock, even through Lee [40]
gave a formal definition. However, it seems all agree that the deadlock is a
program state in which all processes (tasks) are blocked waiting for something
that will never happen. Both models can be used a directed graph, known as
the wait-for graph (WFG) [66] to describe the dependency relationship among
processes.

For Communication model, WFG is used to describe the processes’s wait-for
situation. Detecting a cycle in the WFG is not a sufficient condition for deadlock.
As pointed out by Holt [33], a knot is a sufficient condition for deadlock while a
cycle is only a necessary condition. Algorithms proposed for this model can be
found in [51] [48] [18] [9].

For Resource model, a resource deadlock involves a directed cycle instead of
a knot in WFG. A cycle in a WFG is a necessary and sufficient condition for
deadlock in the this model. Many non real-time algorithms have been proposed
based on this model such as [9] [55].

We need the following definition to describe program deadlocks.

Definition 25. Given a place / transition chain, if every output transition is
directly followed by an input transition, then this chain is called require-provide
chain. Further more, if the chain is closed, then it is called require-provide loop.

The following theorem gives a sufficient and necessary condition for a program
with communication model to have deadlocks. Note that in the following, the
state measures of the program are actually the state measures of the correspond-
ing ConPN.

Theorem 26. [Communication Model] A program has a deadlock if and only if
every state measure m(t) of the program either converges to 1 (including iden-
tically to 1) or converges to 0 (including identically to 0) as t → ∞ no matter
how the firing constants are chosen.

The next theorem gives a sufficient and necessary condition for a program with
resource sharing model to have deadlocks.

Theorem 27. [Resource Model] A program has a deadlock if and only if there
exists a time moment t0, such that from that moment, each control function k(t)

22 Z. Ding

will have a fixed value(0 or 1) and every state measure m(t) of the program either
converges to 1 or converges to 0 as t → ∞ no matter how the firing constants
are chosen.

Corollary 28. [Resource Model] A program has a deadlock if and only if there
exists a combination of k(0)’s such that every state measure m(t) of the program
either converges to 1 or converges to 0 as t → ∞ no matter how the firing
constants are chosen.

Corollary 28 provides us an way to check the deadlocks of the program. However,
the number of combinations of all k(0) could increase exponentially as the num-
ber of control functions increases. Thus, we need to find a way to get rid of most
of the combinations. A technique has been developed. The following is a simple
description. Let k be the value of a control function at 0. A condition cond is
associated with k: if k = 1, then (k = 1) � cond; if k = 0, then (k = 0) �¬ cond.
Let k1(t), k2(t) be two control functions associated with resource r1 and r2. Pro-
cess A requires r1 and r2 at the same time. Assume that (k1(0) = 1) � cond1,
and (k2(0) = 1) � cond2. If the system deadlocks, then process A can not have
resources r1 and r2 at the same time: we say that cond1 and cond2 are not com-
patible. This is equivalent to saying that (k1(0) = 1) and (k2(0) = 1) can not be
true at the same time. Thus we can eliminate the combinations k1(0)+k2(0) = 2.
In this way, we can eliminate most of the combinations of control functions at
0. This technique is the condition checking referred to above; it has been used in
our previous work on test case generation [21].

8 Boundedness Checking

Boundedness is one of the most important properties of discrete Petri nets. The
follows are some concepts for boundedness.

A marking of (P, T, F, M0) is a mapping M : P → N . The expression
M

t→ M ′ denotes that the marking M enables transition t, and that M ′ is
the marking reached by the occurence of t. The expression M

σ→ M ′, where σ
is a sequence σ = t1t2 . . . tn of transitions, denotes that there exist markings
M1, M2, . . . , Mn−1 such that M

t1→ M1
t2→ M2 . . . Mn−1

tn→ M ′. Such an expres-
sion is called occurrence sequence. We also say that a sequence σ of transitions
is an occurence sequence of (P, T, F, M0) if there exits a marking M such that
M0

σ→ M .
A marking M ′ is reachable from M if there exists an occurence sequence

M
σ→ M ′. The reachable markings of a system (P, T, F, M0) are the markings

reachable from M0.
A System is b-bounded if M(p) ≤ b for every place p and every reachable

markings, and bounded if it is b-bounded for some number b.
Determining the boundedness of a Petri net is usually through creating cover-

ability graph or coverability tree [31] [25]. However, creating coverability graph
and coverability tree is time consuming, and sometime the state explosion prob-
lem may be hit. We define stability for the continuous Petri net and prove that

Static Analysis of Concurrent Programs 23

the stability of continuous Petri net is equivalent to the boundedness of the
corresponding discrete Petri net. Accordingly, we can check the boundedness of
discrete Petri net by analyzing the solutions of differential equation group.

Definition 29. (Stable State) Let m be the state measure of a state. If there
exists a number c > 0 such that m(t) ≤ c, t ∈ [0, +∞), then the state is stable.

Definition 30. (Stable System) If there exists a number c > 0 such that m(t) ≤
c, t ∈ [0, +∞) for all states of the program, then the corresponding differential
equation system is stable.

Theorem 31. A Petri net is bounded if and only if the corresponding differential
equation system is stable.

Corollary 32. If if every state measure of the continuous Petri net converges
to a nonnegative constant, then the corresponding discrete Petri net is bounded.

From the proof of Theorem 31, we found that the if we set all k(t) = 1
2 , we

will have the same equivalent result. Thus, in the practice, to save time, we may
compute the equation model with k(t) = 1

2 instead of the equation model with
k(t) = {0, 1}. An explanation is that when the system is running, two processes
have the same chance to get the resources. However, this method is only used
for boundedness checking.

9 Numerical Solution

Generally speaking, it is hard to find explicit analytic solutions for nonlinear
ordinary differential equations, thus most of the time, we turn to find numerical
solutions instead. However, numerical solutions may give us computational er-
rors due to the algorithm and the machine. Since Matlab is a standard solver for
ordinary differential equations, we may use some functions in Matlab to solve our
equations. In this situation, the computation error can come from two sources:
truncation error (because a truncated Taylor Series is used in the computa-
tion), and rounding error (because a finite number of binary digits is used inside
the machine). Since in our equation group, all coefficients di are set to 1, the
equations exhibit non-stiffness [29]. Hence we have used the function ode45 for
non-stiffness to compute the solutions of our equation groups. ode45 is designed
to handle the following general problem

dx

dt
= f(t, x), x(t0) = x0,

where t is the independent variable and x is a vector of dependent variables to
be found.

For the truncation error, since ode45 is the implementation of combined fourth
and fifth-order Runge-Kutta method, and the fourth-order Runge-Kutta method
has local truncation error O(h5) and the fifth-order Runge-Kutta method has

24 Z. Ding

local truncation error O(h6), where h is the step size, thus the global truncation
error of ode45 is O(h5) [29]. Noticing that the fifth-order Runge-Kutta method
can automatically adjust the step size, thus ode45 can approximate to the given
accuracy by setting opts with command odeset. Regarding the rounding error,
since ode45 is absolute stable [2], the rounding error tends to zero during the
iteration process.

Thus we check the system deadlocks by analyzing the behaviour of the nu-
merical solution instead of that of original analytic solution.

10 Case Study (I): The Gas-Station Problem

The Gas-Station problem which models activities of an automated gas station
was originally described in [30]. It was first modeled with an Ada tasking pro-
gram for detecting deadlocks. Thereafter, this example has been widely studied
for property analysis, specially deadlock analysis [22] [13] [52]. Generally, the
automated gas station consists of a set of cashiers, a set of pumps and a set of
customers. The scenario is as follows: customers arrive and pay the casher for
gas. The cashier activates a pump, at which the customer then pumps gas. When
the customer is finished, the pump reports the amount of gas actually pumped
to the cashier, who then gives the customer the change.

We have checked for 3, 5, 7 and 10 customers, and the experimental data is
displayed in Table 1. The experiments were conducted on a Dell computer with
2.33GHz Intel(R) Core(TM)2 CPU and 1.96G memory.

Table 1. Data of checking gas-station problem with equation model

of Customers 3 5 7 10
Memory(M) 0.176 0.215 0.253 0.289
Time(second) 0.0568 0.0572 0.0578 0.0585

For comparison, we quote the data from TOTAL in the Table 2. This table
shows the best cases when different optimization methods are applied. We have
also used SPIN to check the gas-station problem and the experimental data is
displayed in Table 3.

Based on the above experimental data, we find that as the number of cus-
tomers increases, TOTAL needs the most time. We also noticed that there is a
little difference between SPIN and ODE in this example: The increasing speeds

Table 2. Data of checking gas station problem with TOTAL

of Customers 3 5 7 10
Method nrt nrt+sym nrt+sym nrt+sym

Time(second) 2 3 6 17

Static Analysis of Concurrent Programs 25

Table 3. Data of checking gas station problem with SPIN

of Customers 3 5 7 10
state 66 78 90 108

Memory 2.501 2.501 2.501 2.501
Time(second) 0.0035 0.004 0.005 0.005

Fig. 14. Computing time for gas-station problem

of time and memory for SPIN are smaller than those for ODE. The reason is
that in SPIN, although the number of customer process increases, the states
being checked increase slowly since there are no communications among these
customers, thus the customers does not affect much of the performance of SPIN.
However, for ODE method, as the number of customer increases, the number of
ODE will increases, hence, the time and the memory will increase accordingly.
Fig. 14 displays the increasing trend of computing time when TOTAL, SPIN
and ODE are applied.

11 Case Study (II): Dining Philosophers

Dijkstra’s [17] dining philosopher problem is a very well-known example of a con-
current program. Although not a very realistic problem, it does contain a nontriv-
ial deadlock and is probably the most commonly analyzed example [3] [22] [38].
A group of N philosophers is sitting around a table. The philosophers alternate
between thinking and eating. Initially n forks are placed on the table between
each pair of philosophers. In order to eat, a philosopher must first pick up both
forks next to him. The forks are put down when the philosopher finishes eating
and starts thinking. This problem is interesting because of the possibility of a
circular deadlock. Deadlock may occur if all philosophers pick up their forks in
the same order, say, the right fork followed by the left fork. In this case, there is
one deadlock state corresponding to the situation in which all philosophers have
picked up their right fork and are waiting for their left fork.

26 Z. Ding

Table 4. Data of checking DP with equation model when condition checking is applied

of Philosophers 5 10 20 30 100 200 400
of combinations 25 210 220 230 2100 2200 2400

Memory(M) 0.029 0.057 0.113 0.169 4.01 9.37 20.55
Total Time(second) 0.016 0.021 0.03 0.05 0.179 2.53 4.87

Our experiments were again conducted on a Dell computer with 2.33GHz
Intel(R) Core(TM)2 CPU and 1.96G memory. Table 4 displays the required
time and memory to find deadlocks for 5, 10, 20, 30, 100, 200, 400 philosophers
with condition checking. It takes us 4.87 seconds and 20.55M memory to check
400 philosophers; that includes condition checking and equation solving.

We compare our results with those from SPIN [34], TOTAL [22] and PAT [56].
SPIN is a traditional model checking tool, TOTAL has many optimization meth-
ods, and PAT contains the most recent technology.

Checking With SPIN. By mapping a Petri net to Promela, we can use SPIN to
check the dining philosophers. Noticing that in our case each task has 5 states
instead of 3 states, as used in the reduced net [22], we have more states to check.
For example, for 5 dining philosophers, our net has 55 = 3125 states, while the
reduced net has 35 = 243 states. Table 5 shows the data of our experiment on
the computer: Intel(R) Xeon(R) with E5410@2.33GHz CPU and 12GB memory.
The search mode of SPIN is ’exhaustive’.

Table 5. Data of checking dining philosophers with SPIN in the search mode
“exhaustive”

of Philosophers 5 6 7 8 9 10
Memory(M) 2.696 4.454 16.856 106.114 776.583 9318.996
of States 4201 2.7 × 104 1.7 × 105 1.2 × 106 7.7 × 106 9.24 × 107

Time(second) 0.009 0.053 0.37 2.78 87.8 1053.6

The states in the table are the generated states. By experimenting, we found
that memory and time increase so quickly that we could not even complete 11
philosophers. Changing the search mode to ‘supertrace/bitstate’, we obtained
the data in Table 6.

We found that the memory and the time used are almost double ours. We also
noticed an interesting phenomenon: below number 13, SPIN seems to explore
the complete state space, and above 14, SPIN tries a different search order.

Checking With TOTAL. In [22], the experiments with the 3-philosopher version
show that each of the methods (net reduction, stubborn sets, sleep sets, net
symmetry) can substantially reduce the size of the state space. However, the
growth of the state space is still exponential in the number of philosophers
when a single method is used. Their experiments stop at 3 philosophers without

Static Analysis of Concurrent Programs 27

Table 6. Data of checking dining philosophers with SPIN in the search mode “super-
trace/bitstate”

of Philosophers Memory(M) # of States Time(second)
5 16.539 4201 0.0114
10 16.539 3 × 107 91.9
13 16.539 3.7 × 107 124
14 16.539 57 0.007
20 16.539 125 0.052
30 16.539 235 0.088
100 16.636 1005 0.363
200 18.437 2135 4.95
400 38.621 4225 9.63

optimization, at 20 with net reduction (nrt) only, at 5 with symmetry (sym)
only, at 5 with sleep sets (sl) only, and at 10 with stubborn sets (st) only. The
reason is that ‘since either the computation has exhausted all resources or the
computation time exceeds one hour’. The maximum number of philosophers they
can check is 400 if all methods are combined, and then the computation time is
681 seconds. Table 7 displays the best results when different methods are applied
or their combinations are applied.

Table 7. Data of checking dining philosophers with TOTAL

of Philosophers 5 10 20 100 200 400
Method sym/sl st nrt nrt+sl nrt+sl nrt+st+sym

Time(second) 164/2 58 626 27 111 681

Checking With PAT. The PAT group provided us the data in Table 8. PAT, like
SPIN, performs on-the-fly search and the search stops as soon as a counterex-
ample is found. From the table we know that the time increases rapidly from
200 philosophers to 400 philosophers. As the PAT group mentioned, in this case
PAT happens to pick up the right trace to start with and quickly find a deadlock
state, and it is possible that if a different search order is chosen, it will take much
more time to find such a state.

Table 8. Data of checking dining philosophers with PAT

of Philosophers 5 10 20 100 200 400
Memory(M) 0.196 0.614 1.496 9.497 51.145 365.731
of States 53 138 383 5943 21893 83794

Time(second) 0.001 0.002 0.01 1.07 9.11 113.7

28 Z. Ding

Fig. 15. Computing time for dining philosopher problem

Based on the above data, we conclude that our method can significantly re-
duce the computing time and memory usage. For example, for 400 philosophers,
TOTAL needs 681 seconds (memory is not given in [22]), PAT uses 113.7 sec-
onds and 365.731M memory, and SPIN needs 9.63 seconds and 38.621M memory,
while our method uses only 4.87 seconds and 20.55M. Fig. 15 displays the in-
creasing trend of computing time when different methods are applied.

12 Case Study (III): Traffic Network

We apply our technique to check the boundedness of a traffic network, and
thus analyze the impact of traffic light on the traffic network. Fig. 16 is a traffic
network that describes two road intersection, where m1, m2, m3 and m4 represent
4 phase green light states. m5, m6, m7, m8 are the interaction places between
traffic lights and the four road traffics. m9, m13, m17, m21, m25, m26, m27, m28
represent road traffics, m11, m15, m19, m23 represent traffic waiting for the left
turn, m12, m16, m20, m24 represent the traffic waiting for the right turn, and m29
simply represents all other traffics surrounding this road intersection.

We assume that traffic rate is 1 car / second, thus all the firing rates related
to traffic are d = 1. Let d1, d2, d3 and d4 be the firing rates associated with traffic
lights. Thus the signal period of traffic lights are 1

di
, i = 1, 2, 3, 4. For example,

if d1 = 0.2, then the traffic light changes every 1
0.2 = 5 seconds. The equation

model is represented in the following.
The initial values are m1(0) = m9(0) = m13(0) = m17(0) = m21(0) = 1, all

others 0. If we set d1 = d2 = d3 = d4 = 1, the solution of the equation group by
Matlab is plotted in Fig. 17.

We see that m5, m6, m7, m8 → ∞ as t → ∞. Thus from Theorem 31, the
system is unbounded. This implies that the signal data can not be digested
and has been accumulated. Further analysis shows that the traffic lights keep
changing signaling, but the road traffics do not have enough time to follow,
which means that the road traffics can not digest the signals. Consequently, we
will have a heavy traffic on the road.

Static Analysis of Concurrent Programs 29

m1

m2

m3

m4

m5

m6
m7

m8

m9

m10

m11 m12

m13

m14

m15 m16

m17

m18

m19 m20

m21

m22

m23 m24

m25 m26 m27
m28

m29

d1

d2 d3

d4

d5

d6

d7

d8

d9 d10

d11

d12

d13

d14

d15 d16

d17

d18

d19

d20

d21 d22

d23

d24

d25

d26

d27

d28

d29
d30 d31

d32

d33 d34 d35
d36

1

1 1 1 1

Fig. 16. Petri net model of traffic network

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

m
ar

ki
ng

m5

m6

m7

m8

Fig. 17. State measures of traffic network

As a comparison, we have implemented an algorithm from [31] to generate
coverability tree to check the boundedness. The interface to generate the tree is
shown in Figure 18. It took 21607 seconds (almost 6 hours) to build the tree.
However, it only took 0.015 seconds to calculate the solutions of the equation
model.

30 Z. Ding

Fig. 18. A prototype to generate coverability tree

⎧⎪⎪⎨⎪⎪⎩

m′
1 = d4m4 − d1m1

m′
2 = d1m1 − d2m2

m′
3 = d2m2 − d3m3

m′
4 = d3m3 − d4m4

m′
5 = d1m1 − 0.5m5m11 − 0.5m5m15

m′
6 = d2m2 − 0.25m6m12 − 0.25m6m16

m′
7 = d3m3 − 0.5m7m19 − 0.5m7m23

m′
8 = d4m4 − 0.25m8m20 − 0.25m8m24

m′
9 = 0.25m29 − m9

m′
10 = m9 − m10

m′
11 = 0.5m10 − 0.5m5m11

m′
12 = 0.5m10 − 0.25m6m12

m′
13 = 0.25m29 − m13

m′
14 = m13 − m14

m′
15 = 0.5m14 − 0.5m5m15

m′
16 = 0.5m14 − 0.25m6m16

m′
17 = 0.25m29 − m17

m′
18 = m17 − m18

m′
19 = 0.5m18 − 0.5m7m19

m′
20 = 0.5m18 − 0.25m8m20

m′
21 = 0.25m29 − m21

m′
22 = m21 − m22

m′
23 = 0.5m22 − 0.5m7m23

m′
24 = 0.5m22 − 0.25m8m24

m′
25 = 0.5m7m23 + 0.125m6m16 + 0.125m8m20 − m25

m′
26 = 0.5m7m19 + 0.125m6m12 + 0.125m8m24 − m26

m′
27 = 0.5m5m211 + 0.125m6m16 + 0.125m8m24 − m27

m′
28 = 0.5m5m15 + 0.125m6m12 + 0.125m8m20 − m28

m′
29 = m25 + m26 + m27 + m28 − m29

Static Analysis of Concurrent Programs 31

13 Discussion and Conclusion

We have used six types of ordinary differential equations to describe concur-
rent programs, where each equation describes the state change of the program.
By analyzing the solutions, we may check the deadlocks and boundedness of a
program. With our method, the the complexity is determined by solving one
equation group(for communication model) or by solving one equation group and
the checking condition compatibility(for resource sharing model). While using
the existing static analysis techniques, since model checkers build a finite state
transition system and exhaustively explore the reachable state space searching
for violations of the property [11], it is hard to avoid hitting state explosion
problem even some state reduction techniques have been used.

There still exist a lot of issues to be solved before our technique offers im-
provement in real time over the state of the art. The follows are some examples:

– Computing. As one might concern, if the system is very large, particular the
system has huge number of tasks, then the equation model will be very big.
A single equation group may contain huge number of equations. For example
to model a system with 1020 states that has been used for Symbolic Model
Checking by Burch et al.[6], we need to solve 1020 equations. Matlab may
not have enough power to perform such computing. A solution is to solve
the equation group in parallel. Currently, we are developing a computing
algorithm based on the work by Intievergelt[36].

– Property. Since Matlab can not give us analytic representations for the so-
lutions of nonlinear ordinary differential equations, therefore, we are unable
to further analyze the properties of the solutions. If the number of the equa-
tions is huge, we do require a tool to analyze the numerical solutions, not
just to check the curves from Matlab.

– Performance. From equation model, we know that the program states are
determined by the program structures and the firing constants. We have
already investigated the role of concurrent structures in the computing of
program states. For the firing constants, we have not come out of any results
yet, however, we do experienced that the firing constants affect the state
measures in the experiments. Hopefully, we will find some explicit formulas
for firing constants in the performance analysis of the programs.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology 6(3), 213–249 (1997)

2. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. Society for Industrial & Applied Math-
ematis, Philadelphia (1998)

3. Avrunin, G.S., Buy, U.A., Corbett, J.C., Dillon, L.K., Wileden, J.C.: Automated
Analysis of Concurrent Systems with the Constrained Expression Toolset. IEEE
Transactions on Software Engineering 17(11), 1204–1222 (1991)

32 Z. Ding

4. Badal, D.Z.: The Distributed Deadlock Detection Algorithm. ACM Transactions
on Computer Systems 4(4), 320–377 (1986)

5. Ben-Ari, M.: Principles of Concurrent and Distributed Programming, 2nd edn.
Addison-Wesley, Reading (2006)

6. Burch, J.R., Clarke, E.M., Long, D.E.: Representing circuts more efficiently in
symbolic model checking, In. In: Proceedings of the 28th Design Automation Con-
ference, pp. 403–407. IEEE Computer Society Press, Los Alamltos (1991)

7. Boukerche, A., Tropper, C.: A Distributed Graph Algorithm for the Detection
of Local Cycles and Knots. IEEE Trans. Parallel and Distributed Systems 9(8),
748–757 (1998)

8. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic Model Checking:
1020 States and Beyond. Information and Computation 9(2), 142–170 (1992)

9. Chandy, K.M., Misra, J., Haas, L.M.: Distributed Deadlock Detection. ACM Trans-
actions on Computer Systems 1(2), 144–156 (1983)

10. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM
Transactions on Programming Language Systems 16(5), 1512–1542 (1994)

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

12. Clarke, E., McMillan, K., Campos, S., Hartonas-Garmhausen, V.: Symbolic
Model Checking. In: Proceedings of 8th Computer Aided Verification Conference.
Springer, Berlin (1996)

13. Corbett, J.C.: Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Transactions on Software Engineering 22(3), 161–180 (1996)

14. Corbett, J.C., Avrunin, G.S.: Using integer programming to verify general safety
and liveness properties. Formal Methods in System Desin 6, 97–123 (1995)

15. David, R., Alla, H.: Continuous Petri nets. In: Proceedings of 8th European Work-
shop on Application and Theory of Petri nets, Zaragoza, Spain, pp. 275–294 (1987)

16. David, R., Alla, H.: Autonomous and timed continuous Petri nets. In: Proceed-
ings of 11th Int. Conf. on Application and Theory of Petri nets, Paris, France,
pp. 367–381 (1990)

17. Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informat 2,
115–138 (1971)

18. Dijkstra, E.W., Scholten, C.S.: Termination Detection for Diffusing Computations.
Information Processing Letters 11(1), 1–4 (1980)

19. Ding, Z., Xiao, L., Hu, J.: Performance analysis of service composition using or-
dinary differential equations. In: Proceedings of FTDCS 2008, Kunming, China,
October 21-23. IEEE Computer Society Press, Los Alamitos (2008)

20. Ding, Z., Zhang, K.: Performance analysis of concurrent programs using ordinary
differential equations. In: COMPSAC 2008, Turku, Finland, July 28-August 1.
IEEE Computer Society Press, Los Alamitos (2008)

21. Ding, Z., Zhang, K., Hua, J.: A Rigorous Approach Towards Test Case Generation.
Information Sciences 178, 4057–4079 (2008)

22. Duri, S., Buy, U., Devarapalli, R., Shatz, S.M.: Application and Experimental
Evaluation of State Space Reduction Methods for Deadlock Analysis in Ada. ACM
Transactions on Software Engneering and Methodology 3(4), 340–380 (1994)

23. Dwyer, M.B., Clarke, L.A.: Data flow analysis for verifying properties of concurrent
programs. In: Proc. Second Symp. Foundations of Software Enginemng, pp. 62–75
(1994)

24. Gilbert, D., Heiner, M.: From Petri nets to differential equations-an integrative
approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S.
(eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)

Static Analysis of Concurrent Programs 33

25. Goltz, U., Reisig, W.: Weighted Synchronic Distance. In: Application and Theory
of Petri Nets, Informatik Fachberichte, vol. 52. Springer, Heidelberg (1982)

26. Dwyer, M.B., Clarke, L.A.: A compact Petri Net Representation and Its Impli-
cations for Analysis. IEEE Transactions on Software Engineering 22(11), 794–811
(1996)

27. Godefroid, P., Pirottin, D.: Refining Dependendes Improves Partial- Order veri-
fication Methods. In: Courcoubetis (ed.) Proc. Fifth lnt’l conf: Computer Aided
Verfication, Elounda, Greece, pp. 438–449 (1993)

28. Hale, J.K.: Ordinary Differential Equations. Interscience, New York (1969)
29. Hairer, E., Nφrsett, S.P., Wanner, G.: Solving Ordinary Differential Equations(I),

Nonstiff Problems, 2nd edn. Springer, Heidelberg (1993)
30. Helmbold, D., Luckham, D.: Debugging Ada tasking programs. IEEE Soft-

ware 2(2), 47–57 (1985)
31. Herrmann, J.W., Lin, E.: Petri Nets: Tutorial and Applications. In: The 32th

Annual Symposium of the Washington Operations Research-Management Science
Council, Washington, D.C., November 5 (1997)

32. Hoare, C.A.R.: Communicating sequential processes. Communication of
ACM 21(8), 666–677 (1978)

33. Holt, R.C.: Some Deadlock Properties on Computer Systems. ACM Compuling
Surveys 4(3), 179–196 (1972)

34. Holzmann, G.J.: Basic Spin Manual (1980),
http://cm.bell-labs.com/netlib/spin/whatispin.html

35. Huang, S.T.: A Distributed Deadlock Detection Algorithm for CSP-Like Com-
munication. ACM Transactions on Programming Languages and Systems 12(1),
102–122 (1990)

36. Intievergelt, J.: Parallel methods for integrating ordinary differential equations.
Communications of the ACM 7(12), 731–733 (1964)

37. Juan, E., Tsai, J.J.P., Murata, T.: Compositional verification of concurrent systems
using Petri-nets-based condensation rules. ACM Transactions on Programming
Languages and Systems 20(3), 917–979 (1998)

38. Karam, G.M., Buhr, R.J.: Starvation and Critical Race Analyzers For Ada. IEEE
Transactions on Software Engineering 16(8), 829–843 (1990)

39. Kim, Y.M., Lai, T.H., Soundarajan, N.: Efficient Distributed Deadlock Detection
and Resolution Using Probes, Tokens, and Barriers. In: Proc. Int’l Conf. Parallel
and Distributed Systems, pp. 584–591 (1997)

40. Lee, S.: Fast, Centralized Detection and Resolution of Distributed Deadlocks
in the Generalized Model. IEEE Transactions on Software Engineering 30(9),
561–573 (2004)

41. Lin, B.: Efficient Compilation of Process-based Concurrent Programs Without
Run-time Scheduling. In: Proceedings of Design, Automation, and Test in Europe
(DATE), Paris, pp. 211–217 (1998)

42. Long, D.L., Clarke, L.A.: Task Interaction Graphs for Concurrency Analysis. In:
Proc. 11th lntl. Conf. Software Eng, Pittsburgh, Penn, pp. 44–52 (1989)

43. Lunze, J., Nixdorf, B., Richter, H.: Hybrid modelling of continuous-variable systems
with application to supervisory control. In: Proceedings of the European Control
Conference 1997, Brussels, Belgium (1997)

44. Mandrioli, D., Zicari, R., Ghezzi, C., Tisato, F.: Modeling the Ada Task System
by Petri nets. Computer Languages 10(1), 43–61 (1985)

45. Masticola, S.P., Ryder, E.G.: Static Infinite Wait Anomaly Detection in Polynomial
Time. In: Proceedings of 1990 International Conference on Parallel Processing,
vol. 2, pp. 78–87 (1990)

http://cm.bell-labs.com/netlib/spin/whatispin.html

34 Z. Ding

46. Math Department, East China Normal University: Mathematics Analysis (I)(II),
3rd edn. High education Press, China (2001)

47. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston
(1993)

48. Misra, J., Chandy, K.M.: A Distributed Graph Algorithm: Knot Detection. ACM
Transactions on Programming Languages and Systems 4(4), 678–686 (1982)

49. Molloy, M.K.: Fast bounds for stochastic Petri nets. In: International Workshop
on Timed Petri Nets, Torino, July 1985, pp. 244–249 (1985)

50. Morgan, E.T., Razouk, R.R.: Interactive State Space Analysis of Concurrent Sys-
tems. IEEE Transitions on Software Engineering 12(10), 1080–1091 (1987)

51. Natarajan, N.: A Distributed Scheme for Detecting Communication Deadlocks.
IEEE Transactions on Software Engineering SE-12(4), 531–537 (1986)

52. Naumovich, G., Avrunin, G., Clarke, L.: Applying Static Analysis to Software
Architectures. ACM SIGSOFT Notes 22(6), 77–93 (1997)

53. Ng, W.K., Ravishankar, C.V.: On-Line Detection and Resolution of Communica-
tion Deadlocks. In: Proc. 27th Ann. Hawaii Int’l Conf. System Science, pp. 524–533
(1994)

54. Notomi, M., Murata, T.: Hierarchical Reachability Graph of Bounded Petri Nets for
Concurrent-Software Analysis. IEEE Transactions on Software Engineering 20(5),
325–336 (1994)

55. Obermarck, R.: Distributed Deadlock Detection Algorithm. ACM Trans. Database
Syst. 7(2), 187–208 (1982)

56. PAT, http://www.comp.nus.edu.sg/~pat/
57. Peleties, P., DeCarlo, R.: Analysis of hybrid systems using symbolic dynamics and

Petri nets. Automatica 30(9), 1421–1427 (1994)
58. Peterson, J.L., Silberschatz, A.: Operating System Concepts. Addison-Wesley,

Reading (1983)
59. Pezzé, M., Taylor, R.N., Young, M.: Graph Models for Reachability Analysis. ACM

Transactions on Software Engmeermg and Methodology 4(2), 171–213 (1995)
60. Reif, J.H., Smolka, S.A.: Data flow analysis of distributed communicating processes.

Journal of Parallel Programming 19(1), 1–30 (1990)
61. Rontogiannis, P., Pavlides, G., Levy, A.: Distributed Algorithm for Communication

Deadlock Detection. Information and Software Technology 33(7), 483–488 (1991)
62. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Co., New York (1988)
63. Scheibler, D.: A Software Tool for Design and Simulation of Continuous Petri Nets

(in German), Master Thesis, BTU Cottbus, Dep. of CS (2006)
64. Shatz, S.M., Mai, K., Black, C., Tu, S.: Design and Implementation of A Petri

Net-based Toolkit for Ada Tasking analysis. IEEE Trans. Par. Dist. Syst. 1(4),
424–441 (1990)

65. Shih, C.-S., Stankovic, J.A.: Distributed Deadlock Detection in Ada Runtime En-
vironments (1990)

66. Singhal, M.: Deadlock Detection in Distributed Systems. IEEE Computer 22, 37–48
(1989)

67. Sistla, A.P., Miliades, L., Gyuris, V.: SMC: A symmetry based model checker for
verification of liveness properties. In: Proceedings of 9th Computer Aided Verifi-
cation Conference, Haifa, Israel (1997)

68. Smart, D.R.: Fixed Point Theorems. Cambridge Univ. Press, Cambridge (1974)
69. Taylor, R.: A general purpose algorithm for analyzing concurrent programs. Com-

munication of ACM 26(5), 362–376 (1983)
70. Tsai, J.P., Xu, K.: An empirical evaluation of deadlock detection in software ar-

chitecture specifications. Annals of Software Engineering 7, 95–126 (1999)

http://www.comp.nus.edu.sg/~pat/

Static Analysis of Concurrent Programs 35

71. Tu, S., Shatz, S.M., Murata, T.: Theory and Application of Petri Net Reduction
for Ada-Tasking Deadlock Analysls. Tech. Report 91-15, EECS Dept., Univ. of
Illinois, Chicago (1991)

72. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

73. Wang, X., Kwiatkowska, M.: Compositional state space reduction using untangled
actions. Electronic Notes in Computer Science 175(3), 27–46 (2007)

74. Wojcik, B.E., Wojcik, Z.M.: Sufficient Condition for a Communication Deadlock
and Distributed Deadlock Detection. IEEE Transactions on Software Engineer-
ing 5(12), 1587–1595 (1989)

75. Yeh, W.J., Young, M.: Compositional Reachabhty Analysls Uslng procesS Algebra.
In: Roc. Symp. Testing, Analysis, and Verfication (TAV4), pp. 178–187. ACM
SIGSOFT, New York (1991)

76. Young, M., Taylor, R.N., Forester, K., Brodbeck, D.: Integrated Concurrency
Analysis In A Software Development Environment. In: Proceedings of the ACM
SIGSOFT 1989 3rd Symposium on Software Testing, Analysis and Verification.
Software Engineering Notes, vol. 14(8), pp. 200–209 (1989)

77. Zhou, J., Tai, K.C.: Deadlock Analysis of Synchronous Message-Passing Programs.
In: Proceedings of the International Symposium on Software Engineering for Par-
allel and Distributed Systems, pp. 62–69 (1999)

The PlusCal Algorithm Language

Leslie Lamport

Microsoft Research

Abstract. Algorithms are different from programs and should not be
described with programming languages. The only simple alternative to
programming languages has been pseudo-code. PlusCal is an algorithm
language that can be used right now to replace pseudo-code, for both
sequential and concurrent algorithms. It is based on the TLA+ specifi-
cation language, and a PlusCal algorithm is automatically translated to
a TLA+ specification that can be checked with the TLC model checker
and reasoned about formally.

1 Introduction

PlusCal is a language for writing algorithms, including concurrent algorithms.
While there is no formal distinction between an algorithm and a program, we
know that an algorithm like Newton’s method for approximating the zeros of a
real-valued function is different from a program that implements it. The difference
is perhaps best described by paraphrasing the title of Wirth’s classic book [1]: a
program is an algorithm plus an implementation of its data operations.

The data manipulated by algorithms are mathematical objects like numbers
and graphs. Programming languages can represent these mathematical objects
only by programming-language objects like bit strings and pointers, introducing
implementation details that are irrelevant to the algorithm. The customary way
to eliminate these irrelevant details is to use pseudo-code. There are two obvious
problems with pseudo-code: it has no precise meaning, and it can be checked
only by hand—a notoriously unreliable method of finding errors.

PlusCal is designed to replace pseudo-code for describing algorithms. A Plus-
Cal algorithm is translated to a TLA+ specification [2]. That specification can
be debugged (and occasionally even completely verified) with the TLC model
checker [3]. A TLA+ specification is a formula of TLA, a logic invented expressly
for proving properties of systems, so properties of an algorithm can be proved
by reasoning about its translation.

There are other languages that might be satisfactory replacements for pseudo-
code in a Utopian world where everyone has studied the language. A researcher
can use PlusCal in his next paper; a professor can use it in her next lecture.
PlusCal code is simple enough that explaining it is almost as easy as explaining
the pseudo-code that it replaces. I know of no other language that can plau-
sibly make this claim and has the expressive power to replace pseudo-code for

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 36–60, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The PlusCal Algorithm Language 37

both sequential and concurrent algorithms. Other languages used to describe
algorithms are discussed in the conclusion.

PlusCal’s simplicity comes from its simple, familiar programming language
constructs that make it resemble a typical toy language. For example, here is
the “Hello World” program:

--algorithm HelloWorld
begin print “Hello, world.”
end algorithm

PlusCal has the expressive power to replace pseudo-code because of its rich
expression language. A PlusCal expression can be any expression of TLA+, which
means it can be anything expressible in set theory and first-order logic. This gives
PlusCal’s expression language all the power of ordinary mathematics, making
it infinitely more powerful than the expression language of any programming
language.

Programming languages have two other deficiencies that make them unsuit-
able as algorithm languages:

– They describe just one way to compute something. An algorithm might
require that a certain operation be executed for all values of i from 1 to
N ; most programming languages must specify in which order those execu-
tions are performed. PlusCal provides two simple constructs for expressing
nondeterminism.

– Execution of an algorithm consists of a sequence of steps. An algorithm’s
computational complexity is the number of steps it takes to compute the
result, and defining a concurrent algorithm requires specifying what consti-
tutes a single (atomic) step. Programming languages provide no well-defined
notion of a program step. PlusCal uses labels to describe an algorithm’s steps.
Describing the grain of atomicity is crucial for concurrent algorithms, but is
often unimportant for sequential algorithms. Labels can therefore be omitted
and the translator instructed to choose the steps, which it makes as large
possible to facilitate model checking.

PlusCal combines five important features: simple conventional program con-
structs, extremely powerful expressions, nondeterminism, a convenient way to
describe the grain of atomicity, and model checking. The only novel aspect of
any of these features is the particular method of using labels to indicate atomic
actions. While the individual features are not new, their combination is. PlusCal
is the only language I know of that has them all. This combination of features
makes it ideal for writing algorithms.

PlusCal can be used not only in publications and in the classroom, but also in
programming. Although most programming involves simple data manipulation, a
program sometimes contains a nontrivial algorithm. It is more efficient to debug
the algorithm by itself, rather than debugging it and its implementation at the

38 L. Lamport

same time. Writing the algorithm in PlusCal and debugging it with TLC before
implementing it is a good way to do this.

Being easy to read does not necessarily make PlusCal easy to write. Like any
powerful language, PlusCal has rules and restrictions that are not immediately
obvious. Because of its inherent simplicity, the basic language should not be
hard to learn. What many programmers and computer scientists will find hard
is learning to take advantage of the power of the expression language. TLA+

expressions use only basic math—that is, predicate logic, sets, and functions
(which include tuples and records). However, many computer scientists would
have difficulty describing even something as simple as a graph in terms of sets
and functions. With PlusCal, the writer of an algorithm can reveal to the reader
as much or as little of the underlying math as she wishes.

PlusCal’s features imply its limitations. Programming languages are complex
because of constructs like objects and variable scoping that are useful for writing
large programs. PlusCal’s simplicity limits the length of the algorithms it can
conveniently describe. The largest algorithm I have written in it is about 500
lines. I expect that PlusCal would not work well for algorithms of more than one
or two thousand lines. (However, a one-line PlusCal assignment statement can
express what in a programming language requires a multi-line loop or the call
of a complicated procedure.) Programming languages are inexpressive because
they must yield efficient code. While it is possible to restrict PlusCal so it can
be compiled into efficient code, any such restriction would reduce its utility
for writing algorithms. PlusCal is for writing algorithms, not for writing large
specifications or efficient programs.

The semantics of PlusCal is specified formally by its translation to TLA+.
A TLA+ specification of the translation is included in the PlusCal distribution,
which is available on the Web [4]. (The translator, which is written in Java,
has the option of performing the translation by executing this specification with
TLC.) The translation is described in Section 4. However, except for its expres-
sions, PlusCal is so simple and most of its constructs so banal that there is no
need to give a rigorous semantics here. Instead, the language is explained in
Section 2 by a series of examples. Section 3 describes the few features not con-
tained in the examples, and Section 5 completes the language description by
explaining the constraints on where labels may and may not appear. To con-
vince the reader that nothing is being hidden, a grammar of the full language
(excluding its expressions) appears in the appendix. A language manual is avail-
able on the PlusCal Web site.

No attempt is made here to describe the complete language of TLA+ expres-
sions. The TLA+ notation used in the examples is explained only where it does
not correspond to standard mathematical usage. The PlusCal language manual
briefly explains TLA+ and its expressions. The semantics of TLA+ expressions
is trivial in the sense that a semantics consists of a translation to ordinary
mathematics, and TLA+ expressions are expressions of ordinary mathematics.
A precise explanation of all the TLA+ operators that can appear in a PlusCal
expression is given in Section 16.1 of the TLA+ manual [2].

The PlusCal Algorithm Language 39

2 Some Examples

A PlusCal algorithm can be written in either of two syntaxes—the clearer but
longer p-syntax (p for prolix), or the more compact c-syntax that will look
familiar to most programmers. The first two examples use the p-syntax; the next
two use the c-syntax. The grammar given in the appendix is for the c-syntax.

2.1 Euclid’s Algorithm

The first example is a simple version of Euclid’s algorithm from Sedgewick’s
textbook [5, page 8]. The algorithm computes the GCD of two natural numbers
m and n by setting u to m and v to n and executing the following pseudo-code.

while u �= 0 do
if u < v then swap u and v end if ;
u : = u − v

end while ;

Upon termination, v equals the GCD of m and n. The PlusCal version appears in
Figure 1 on this page. (Symbols are actually typed as ascii strings—for example,
“∈” is typed “\in”.) The variable declarations assert that the initial values of m
and n are in the set 1 . .K of integers from 1 through K , and that u and v initially
equal m and n, respectively. (We will see later where K is declared.) Assignment
statements separated by || form a multi-assignment, executed by first evaluating
all the right-hand expressions and then performing all the assignments. The
assert statement checks the correctness of the algorithm, where IsGCD(v , m, n)
will be defined to be true iff v is the GCD of m and n, for natural numbers v ,
m, and n.

The algorithm appears in a comment in a TLA+ module, as shown in Figure 2
on the next page. The module’s extends statement imports the Naturals mod-
ule, which defines arithmetic operators like subtraction and “ . .”, and a special
TLC module that is needed because of the algorithm’s assert statement. The
constant declaration declares the algorithm parameter K . The module next
defines Divides(i , j) to be true for natural numbers i and j iff i divides j , and
it uses Divides to define IsGCD .

--algorithm EuclidSedgewick
variables m ∈ 1 . .K , n ∈ 1 . .K , u = m, v = n
begin while u �= 0 do

if u < v then u : = v || v : = u end if ;
u : = u − v

end while ;
assert IsGCD(v , m, n)

end algorithm

Fig. 1. Euclid’s algorithm in PlusCal

40 L. Lamport

module Euclid

extends Naturals, TLC

constant K

Divides(i , j) Δ= ∃ k ∈ 0 . . j : j = i ∗ k

IsGCD(i , j , k) Δ= Divides(i , j)
∧ Divides(i , k)
∧ ∀ r ∈ 0 . . j ∪ 0 . . k :

Divides(r , j) ∧ Divides(r , k) ⇒ Divides(r , i)

(∗ --algorithm EuclidSedgewick
. . .
end algorithm ∗)

* begin translation

Translator puts TLA+ specification here
* end translation

Fig. 2. The module containing the PlusCal code for Euclid’s algorithm

The translator inserts the algorithm’s translation, which is a TLA+ specifica-
tion, between the begin and end translation comment lines, replacing any
previous version. The translator also writes a configuration file that controls the
TLC model checker. We must add to that file a command that specifies the value
of K . TLC checks that the assertion is satisfied and that execution terminates
for all K 2 possible choices of the variables’ initial values. For K = 50, this takes
about 25 seconds. (All execution times are for a 2.4 GHz personal computer.)

Remarks. The operation of swapping u and v can of course be expressed with-
out a multiple assignment by declaring an additional variable t and writing:

t : = u; u : = v ; v : = t

It can also be written as follows.

with t = u do u : = v ; v : = t end with

The with statement declares t to be local to the do clause.
Instead of restricting m and n to lie in the range 1 . .K , it would be more

natural to allow them to be any positive integers. We do this by replacing 1 . .K
with the set of positive integers; here are three ways to express that set in TLA+,
where Nat is defined in the Naturals module to be the set of all natural numbers:

Nat \ {0} {i ∈ Nat : i > 0} {i + 1 : i ∈ Nat}
To check the resulting algorithm, we would tell TLC to substitute a finite set of
numbers for Nat .

As this example shows, PlusCal is untyped. Type correctness is an invari-
ance property of an algorithm asserting that, throughout any execution, the

The PlusCal Algorithm Language 41

values of the variables belong to certain sets. A type invariant for algorithm
EuclidSedgewick is that the values of u and v are integers. For a type invariant
like this whose proof is trivial, a typed language allows type correctness to be
verified by type checking. If the proof is not completely trivial, as for the type
invariant that u and v are natural numbers, type correctness cannot be veri-
fied by ordinary type checking. (If natural number is a type, then type checking
is undecidable for a Turing complete language with subtraction.) These type
invariants are easily checked by TLC.

2.2 The Quicksort Partition Operation

What most distinguishes the version of Euclid’s algorithm given above from a
program in an ordinary language is the expression IsGCD(v , m, n). It hints at
the expressive power that PlusCal obtains by using TLA+ as its expression lan-
guage. I now present a more compelling example of this: the partition operation
of the quicksort algorithm [6].

Consider a version of quicksort that sorts an array A[1], . . . , A[N] of numbers.
It uses the operation Partition(lo, hi) that chooses a value pivot in lo . . (hi−
1) and permutes the array elements A[lo], . . . ,A[hi] to make A[i] ≤ A[j] for
all i in lo . . pivot and j in (pivot +1) . . hi . It is easy to describe a particular
implementation of this operation with a programming language. The following
PlusCal statement describes what the operation Partition(lo, hi) is supposed to
do, not how it is implemented. The code assumes that Perms(A) is defined to
be the set of permutations of A.

with piv ∈ lo . . (hi−1),
B ∈ {C ∈ Perms(A) :

(∀ i ∈ 1 . . (lo − 1) ∪ (hi + 1) . .N : C [i] = A[i])
∧ (∀ i ∈ lo . . piv , j ∈ (piv + 1) . . hi : C [i] ≤ C [j]) }

do pivot : = piv ;
A : = B

end with

This with statement is executed by nondeterministically choosing values of piv
and B from the indicated sets and then executing the do clause. TLC will check
the algorithm with all possible executions of this statement.

The operator Perms is defined in TLA+ as follows, using local definitions
of Auto(S) to be the set of automorphisms of S , if S is a finite set, and of �
to be function composition. (Arrays are what mathematicians call functions. In
TLA+, [A→ B] is the set of functions with domain A and range a subset of B ,
and domain F is the domain of F if F is a function.)

Perms(B) Δ=

let Auto(S) Δ= {f ∈ [S → S] : ∀ y ∈ S : ∃ x ∈ S : f [x] = y}
f � g Δ= [x ∈ domain g
→ f [g[x]]]

in {B � f : f ∈ Auto(domain B)}

42 L. Lamport

Using the description above of the partition operation and this definition of
Perms, TLC will check partial correctness and termination of the usual recursive
version of quicksort for all 4-element arrays A with values in a set of 4 numbers
in about 100 seconds.

Remarks. This example is not typical. It was chosen to illustrate two things:
how nondeterminism can be conveniently expressed by means of the with state-
ment, and the enormous expressive power that PlusCal achieves by its use of
ordinary mathematical expressions. The definition of Perms is the TLA+ state-
ment of one that many mathematicians would write, but few computer scientists
would. Almost all computer scientists would define Perms(B) by recursion on
the number of elements in B , the way it would be computed in most program-
ming languages. (Such a definition can also be written in TLA+.) To appreciate
the power of ordinary mathematics, the reader should try to write a recursive
definition of Perms.

A standard computer science education does not provide the familiarity with
simple math needed to make the definition of Perms easy to understand. A text-
book writer therefore might not want to include it in a description of quicksort.
Because the definition is external to the PlusCal code, the writer has the option
of omitting it and informally explaining the meaning of Perms(B). On the other
hand, a professor might want to take advantage of the opportunity it provides
for teaching students some math.

2.3 The Fast Mutual Exclusion Algorithm

An example of a multiprocess algorithm is provided by the Fast Mutual Exclusion
Algorithm [7]. The algorithm has N processes, numbered from 1 through N .
Figure 3 on the next page is the original description of process number i , except
with the noncritical section and the outer infinite loop made explicit. Angle
brackets enclose atomic operations (steps). For example, the evaluation of the
expression y �= 0 in the first if statement is performed as a single step. If that
expression equals true, then the next step of the process sets b[i] to false. The
process’s next atomic operation is the execution of the await statement, which
is performed only when y equals 0. (The step cannot be performed when y is
not equal to 0.)

A PlusCal version of the algorithm appears in Figure 4 on the next page.
The preceding examples use PlusCal’s p-syntax; this example is written in Plus-
Cal’s alternative c-syntax. The PlusCal version differs from the original pseudo-
code in the following nontrivial ways.

– It explicitly declares the global variables x , y, and b and their initial values,
as well as the process-local variable j , whose initial value is not specified.
(The TLA+ expression [v ∈ S
→ e] is the function F with domain S such
that F [v] = e for all v in S .)

– It declares a set of processes with identifiers in the set 1 . .N (one process
for each identifier). Within the body of the process statement, self denotes
the identifier of the process.

The PlusCal Algorithm Language 43

ncs: noncritical section;
start : 〈b[i] := true〉;

〈x := i〉;
if 〈y �= 0〉 then 〈b[i] := false〉;

await 〈y = 0〉;
goto start fi;

〈y := i〉;
if 〈x �= i〉 then 〈b[i] := false〉;

for j := 1 to N do await 〈¬b[j]〉 od;
if 〈y �= i〉 then await 〈y = 0〉;

goto start fi fi;
critical section;
〈y := 0〉;
〈b[i] := false〉;
goto ncs

Fig. 3. Process i of the Fast Mutual Exclusion Algorithm, based on the original de-
scription. It assumes that initially x = y = 0 and b[i] = false for all i in 1 . .N .

--algorithm FastMutex

{ variables x = 0, y = 0, b = [i ∈ 1 . .N �→ false] ;
process (Proc ∈ 1 . .N)

variable j ;
{ ncs: skip ; (∗The Noncritical Section ∗)
start : b[self] : = true ;

l1: x : = self ;
l2: if (y �= 0) { l3: b[self] : = false ;

l4: await y = 0 ;
goto start } ;

l5: y : = self ;
l6: if (x �= self) { l7: b[self] : = false ;

j : = 1 ;
l8: while (j ≤ N) { await ¬b[j] ;

j : = j + 1 } ;
l9: if (y �= self) { l10: await y = 0 ;

goto start }} ;
cs: skip ; (∗The Critical Section ∗)

l11: y : = 0 ;
l12: b[self] : = false ;

goto ncs }}

Fig. 4. The Fast Mutual Exclusion Algorithm in PlusCal

– The critical and noncritical sections are represented by atomic skip instruc-
tions. (Because TLA specifications are closed under stuttering steps [8, 2],
this algorithm actually describes nonatomic critical and noncritical sections

44 L. Lamport

that can do anything except modify the variables x , y, b, and j or jump to
a different part of the process.)

– The grain of atomicity is expressed by labels. A single atomic step consists
of an execution starting at a label and ending at the next label. For example,
the execution of the test y �= 0 at label l2 is atomic because a single step
that begins at l2 ends when control reaches either l3 or l4.

– A while loop implements the original’s for statement.

As this example shows, a PlusCal await statement can occur within a larger
atomic action. A step containing the statement “await P” can be executed only
when P evaluates to true. This statement is equivalent to the dynamic logic
statement “P?” [9].

For this algorithm, mutual exclusion means that no two processes are simulta-
neously at control point cs . The translation introduces a variable pc to represent
the control state, where control in process p is at cs iff cs [p] equals “cs”. Mutual
exclusion is therefore asserted by the invariance of:

∀ p, q ∈ 1 . .N : (p �= q)⇒ ¬((pc[p] = “cs”) ∧ (pc[q] = “cs”))

TLC can check mutual exclusion and the absence of deadlock for all executions
in about 15 seconds for N = 3 and 15 minutes for N = 4. It takes TLC about 5
times as long to check the absence of livelock as well, assuming weak fairness of
each process’s actions. (Fairness is discussed in Section 4.3.)

Remarks. Observe how similar the PlusCal version is to the pseudo-code, pre-
sented almost exactly as previously published. The 15 lines of pseudo-code are
expressed in PlusCal with 17 lines of statements plus 4 lines of declarations.
Those declarations include specifications of the initial values of variables, which
are not present in the pseudo-code and are expressed by accompanying text. The
extra two lines of PlusCal statements arise from converting a for to a while.
(For simplicity, TLA+ has no for or until statement.)

Readers who had never seen PlusCal would need the following explanation of
the code in Figure 4.

The process declaration asserts that there are N processes, numbered
from 1 through N , and gives the code for process self . Execution from
one label to the next is an atomic action, and an await P statement can
be executed only when P is true. Variable declarations specify the initial
value of variables, b being initially equal to an array with b[i] = false

for each process i .

Compare this with the following explanation that would be needed by readers
of the pseudo-code in Figure 3.

The algorithm has N processes, numbered from 1 through N ; the code
of process i is given. Angle brackets enclose atomic operations, and an
await P statement can be executed only when P is true. Variables x
and y are initially equal to 0, and b[i] is initially equal to false for each
process i .

The PlusCal Algorithm Language 45

Instead of asserting mutual exclusion by a separate invariant, we can replace
the critical section’s skip statement by the following assertion that no other
process is in its critical section.

assert ∀ p ∈ 1 . .N \ {self } : pc[p] �= “cs”

Correctness of the algorithm does not depend on the order in which a process
examines other processes’ variables. The published version of the algorithm used
a for loop to examine them in one particular order because there was no simple
standard construct for examining them in an arbitrarily chosen order. To allow
the iterations of the loop body to be performed in any order, we just replace the
corresponding PlusCal code of Figure 4 with the following.

j : = 1 . .N ;
l8: while (j �= {}) { with (e ∈ j) { await ¬b[e] ;

j : = j \ {e} } } ;

Weak fairness of each process’s actions prevents a process from remaining
forever in its noncritical section—something that a mutual exclusion algorithm
must allow. Absence of livelock should be checked under the assumption of weak
fairness for each process’s actions other than the noncritical section action. Sec-
tion 4.3 explains how such a fairness assumption is asserted.

2.4 The Alternating Bit Protocol

Our final example is the alternating bit protocol, which is a distributed message-
passing algorithm [10, Section 22.3]. A sender and a receiver process communi-
cate over lossy FIFO channels, as pictured here.

Sender Receiver
�

�

msgC

ackC

To send a message m, the sender repeatedly sends the pair 〈m, sbit 〉 on channel
msgC , where sbit equals 0 or 1. The sender acknowledges receipt of the message
by repeatedly sending sbit on channel ackC . Upon receipt of the acknowledge-
ment, the sender complements sbit and begins sending the next message.

The PlusCal version of the algorithm appears in Figure 5 on the next page. To
understand it, you must know how finite sequences are represented in TLA+’s
standard Sequences module. A sequence σ of length N is a function (array) whose
domain (index set) is 1 . .N , where σ[i] is the ith element of the sequence. The
Head and Tail operators are defined as usual, Len(σ) is the length of sequence
σ, and Append(σ, e) is the sequence obtained by appending the element e to
the tail of σ. Tuples are just finite sequences, so the pair 〈a, b 〉 is a two-element
sequence and 〈a, b 〉[2] equals b.

The algorithm assumes that the set Msg of possible messages is defined or
declared and that Remove(i , σ) is the sequence obtained by removing the ith

element of σ if 1 ≤ i ≤ Len(σ). It can be defined in the TLA+ module by

46 L. Lamport

--algorithm ABProtocol

{ variables input = 〈 〉; output = 〈 〉; msgC = 〈 〉; ackC = 〈 〉;
macro Send(m, chan) { chan : = Append(chan, m) }
macro Rcv(v , chan) { await chan �= 〈 〉;

v : = Head(chan);
chan : = Tail(chan) }

process (Sender = “S”)
variables next = 1; sbit = 0; ack ;
{ s: while (true) {

either with (m ∈ Msg) { input : = Append(input , m) }
or { await next ≤ Len(input);

Send(〈input [next], sbit 〉, msgC) }
or { Rcv(ack , ackC);

if (ack = sbit) { next : = next + 1;
sbit : = (sbit + 1) % 2 }}}}

process (Receiver = “R”)
variables rbit = 1; msg ;
{ r : while (true) {

either Send(rbit , ackC)
or { Rcv(msg , msgC);

if (msg [2] �= rbit) { rbit : = (rbit + 1) % 2
output : = Append(output , msg [1])}}}}

process (LoseMsg = “L”)
{ l : while (true) {

either with (i ∈ 1 . .Len(msgC)) { msgC : = Remove(i ,msgC)}
or with (i ∈ 1 . .Len(ackC)) { ackC : = Remove(i , ackC) }}}

}

Fig. 5. The Alternating Bit Protocol in PlusCal

Remove(i , seq) Δ= [j ∈ 1 . . (Len(seq) − 1)
→
if j < i then seq[j] else seq[j + 1]]

The channels msgC and ackC are represented by variables whose values are
finite sequences, initially equal to the empty sequence 〈 〉. The variable input
is the finite sequence of messages that the sender has decided to send and the
variable output is the sequence of messages received by the receiver; initially
both equal the empty sequence.

The operations of sending and receiving a message on a channel are repre-
sented by the macros Send and Rcv . Macros are expanded syntactically. For
example, the statement Send(rbit , ackC) is replaced by

ackC : = Append(ackC , rbit)

The PlusCal Algorithm Language 47

which appends rbit to the sequence ackC . If v and chan are variables and chan
equals a finite sequence, then the operation Rcv(v , chan) can be executed iff
chan is non-empty, in which case it sets v to the first element of chan and
removes that element from chan.

There are three processes: the sender, the receiver, and a LoseMsg process that
models the lossiness of the channels by nondeterministically deleting messages
from them. The process declaration Sender = “S” indicates that there is a single
Sender process with identifier the string “S”; it is equivalent to the declaration
Sender ∈ {“S”}. The only new PlusCal construct in the processes’ code is

either S 1 or S 2 . . . or Sn

which executes S i for a nondeterministically chosen i .
The three processes run forever. The presence of just one label in each process

means that the execution of one iteration of its while statement’s body is a single
atomic action. The sender can either choose a new message to send and append it
to input , send the current message input [next], or receive an acknowledgement
(if ackC is non-empty). The receiver can either receive a message and, if the
message has not already been received, append it to output ; or it can send an
acknowledgement. A single step of the LoseMsg process removes an arbitrarily
chosen message from either msgC or ackC . If msgC is the empty sequence, then
1 . .Len(msgC) is the empty set and only the or clause of the LoseMsg process
can be executed. If both msgC and ackC equal the empty sequence, then the
LoseMsg process is not enabled and can perform no step. (See Section 4.2 below
for an explanation of why this is the meaning of the process’s code.)

The important safety property satisfied by the algorithm is that the receiver
never receives an incorrect message. This means that the sequence output of
received messages is an initial subsequence of the sequence input of messages
chosen to be sent. This condition is asserted by the predicate output � input ,
where � is defined by:

s � t Δ= (Len(s) ≤ Len(t)) ∧ (∀ i ∈ 1..Len(s) : s [i] = t [i])

Section 4.3 discusses the desired liveness property, that every chosen message is
eventually received.

Algorithm ABProtocol has an infinite number of reachable states. The se-
quence input can become arbitrarily long and, even if the sender puts only a
single message in input , the sequences msgC and argC can become arbitrarily
long. TLC will run forever on an algorithm with an infinite set of reachable
states unless it finds an error. (TLC will eventually exceed the capacity of some
data structure and halt with an error, but that could take many years because
it keeps on disk the information about what states it has found.) We can bound
the computation by telling TLC to stop any execution of the algorithm when it
reaches a state not satisfying a specified constraint. For example, the constraint

(Len(input) < 4) ∧ (Len(msgC) < 5) ∧ (Len(ackC) < 5)

48 L. Lamport

stops an execution when input has 4 messages or one of the channels has 5
messages. With this constraint and a set Msg containing 3 elements, TLC model
checks the algorithm in 7.5 seconds.

Remarks. It may appear that, by introducing the LoseMsg process, we are
forcing the channels to lose messages. This is not the case. As discussed in Sec-
tion 4.3 below, an algorithm’s code describes only what steps may be executed; it
says nothing about what steps must be executed. Algorithm ABProtocol ’s code
does not require the LoseMsg process ever to delete a message, or the Sender
process ever to send one. Section 4.3 explains how to specify what the algorithm
must do.

Each process of the algorithm consists of an infinite loop whose body nonde-
terministically chooses one atomic action to execute. This structure is typical of
high-level versions of distributed algorithms.

This example shows that PlusCal can easily describe a distributed message-
passing algorithm, even though it has no special constructs for sending and
receiving messages. Adding such constructs could eliminate the four lines of
macros. However, what operations should they specify? Are messages broadcast
or sent on point-to-point channels? Are they always delivered in order? Can
they be lost? Can the same message be received twice? Different distributed
algorithms make different assumptions about message passing, and I know of
no simple construct that covers all possibilities. Any particular kind of message
passing that is easy to explain should be easy to describe in PlusCal.

3 The Complete Language

We have seen almost all the PlusCal language constructs. The major omissions
are the following (written in the p-syntax).

– TLA+ has notation for records, where a record is a function whose domain
is a finite set of strings and a.b is syntactic sugar for a[“b”]. PlusCal allows
the usual assignment to fields of a record, as in

v .a : = 0; A[0].b : = 42;
TLC will report an error if it tries to execute this code when v is not a
record with an a component or A is not an array with A[0] a record having a
b component. This usually implies that v and A must be initialized to values
of the correct “type”.

– The if statement has optional elsif clauses (only in the p-syntax) followed
by an optional else clause.

– PlusCal has procedure declarations and call and return statements. Since
call is a statement, it does not return a value. The customary approach of
making procedure calls part of expression evaluation would make specifying
steps problematic, and allowing return values would complicate the trans-
lation. Procedures can easily return values by setting global variables (or
process-local variables for multiprocess algorithms).

The PlusCal Algorithm Language 49

– PlusCal has an optional define statement for inserting TLA+ definitions. It
goes immediately after the declarations of the algorithm’s global variables
and permits operators defined in terms of those variables to be used in the
algorithm’s expressions.

The description of the language is completed in Section 5, which explains where
labels are forbidden or required.

4 The TLA+ Translation

4.1 An Example

A TLA+ specification describes a set of possible behaviors, where a behavior is a
sequence of states and a state is an assignment of values to variables. The heart
of a TLA+ specification consists of an initial predicate and a next-state action.
The initial predicate specifies the possible initial states, and the next-state action
specifies the possible state transitions. An action is a formula containing primed
and unprimed variables, where unprimed variables refer to the old state and
primed variables refer to the new state. For example, the action x ′ = x + y ′

specifies all transitions in which the value of x in the new state equals the sum
of its value in the old state and the value of y in the new state.

The translation from PlusCal to TLA+ is illustrated with the version of Eu-
clid’s algorithm from Section 2.1. The algorithm is shown in Figure 6 on the
next page with the two labels, L1 and L2, implicitly added by the translator.
Also shown is the implicit label Done that represents the control point at the
end of the algorithm.

The translation appears in Figure 7 on the next page. It uses the TLA+

notation that a list of formulas bulleted with ∧ or ∨ symbols denotes their
conjunction or disjunction. Indentation is significant and is used to eliminate
parentheses. (This notation makes large formulas easier to read, and engineers
generally like it; but it confuses many computer scientists. The notation can be
used in PlusCal expressions.)

The important parts of the translation are the definitions of the initial pred-
icate Init and the next-state action Next . The predicate Init is obtained in the
obvious way from the variable declaration, with the variable pc that represents
the control state initialized to the initial control point—that is, to the string
“L1”.

Actions L1 and L2 specify the transitions representing execution steps starting
at the corresponding control points. The conjunct pc = “L1” of action L1 asserts
that a transition can occur only in a starting state in which the value of the
variable pc is “L1”. (A conjunct containing no primed variables is an enabling
condition.) The expression unchanged f is an abbreviation for f ′ = f , so the
conjunct unchanged 〈u, v 〉 asserts that the values of u and v are left unchanged
by the transition. The imported TLC module defines Assert(A,B) to equal A,
but TLC halts and prints the value B and a trace of the current execution if it
evaluates the expression when A equals false.

50 L. Lamport

--algorithm EuclidSedgewick
variables m ∈ 1 . .K , n ∈ 1 . .K , u = m, v = n
begin L1: while u �= 0 do

if u < v then u : = v || v : = u end if ;
L2: u : = u − v

end while ;
assert IsGCD(v , m, n)

Done:
end algorithm

Fig. 6. Euclid’s algorithm, showing labels L1 and L2 implicitly added by the translator
and the implicit label Done

Init
Δ= ∧ m ∈ 0 . .K

∧ n ∈ 1 . .K
∧ u = m
∧ v = n
∧ pc = “L1”

L1 Δ= ∧ pc = “L1”
∧ if u �= 0 then ∧ if u < v then ∧ u ′ = v

∧ v ′ = u
else unchanged 〈u, v 〉

∧ pc′ = “L2”
else ∧ Assert(IsGCD(v , m,n), “Failure of assertion at. . . ”)

∧ pc′ = “Done”
∧ unchanged 〈u, v 〉

∧ unchanged 〈m,n 〉
L2 Δ= ∧ pc = “L2”

∧ u ′ = u − v
∧ pc′ = “L1”
∧ unchanged 〈m,n, v 〉

vars
Δ= 〈m,n, u, v , pc 〉

Next
Δ= L1 ∨ L2 ∨ (pc = “Done” ∧ unchanged vars)

Spec
Δ= Init ∧ �[Next]vars

Fig. 7. The translation of Euclid’s algorithm

The next-state action Next allows all transitions that are allowed by L1 or L2,
or that leave the tuple vars of all the algorithm variables unchanged (are stut-
tering steps [8, 2]) when a terminated state has been reached. This last disjunct
keeps TLC from reporting deadlock when the algorithm terminates. (An algo-
rithm deadlocks when no further step is possible; termination is just deadlock we
want to occur.) Since every TLA specification allows stuttering steps, this disjunct
does not change the meaning of the specification, just the way TLC checks it.

The PlusCal Algorithm Language 51

Finally, Spec is defined to be the TLA formula that describes the safety part
of the algorithm’s complete specification. Proving that the algorithm satisfies a
safety property expressed by a temporal formula P means proving Spec ⇒ P .
Most PlusCal users can ignore Spec.

4.2 Translation as Semantics

A classic way of stating that a programming language is poorly defined is to say
that its semantics is specified by the compiler. A goal of PlusCal was to make
an algorithm’s translation so easy to understand that it is a useful specification
of the algorithm’s meaning. To achieve this goal, the following principles were
maintained:

T1. The only TLA+ variables used in the translation are the ones declared in
the algorithm plus pc. (Algorithms with procedures also use a variable stack
for saving return locations and values of local procedure variables.)

T2. All identifiers declared or defined in the translation (including bound vari-
ables) are taken from the algorithm text, except for a few standard ones
like Init and Next . (“Algorithm text” includes labels implicitly added by
the translator.)

T3. There is a one-to-one correspondence between expressions in the translation
and expressions in the algorithm. (The only exceptions are the expressions
for pushing and popping items on the stack in the translation of procedure
call and return statements.)

It may seem that PlusCal is so simple that its semantics is obvious. However, a
naive user might be puzzled by what the following statement in a multiprocess
algorithm does when x equals 0:

L1: x : = x − 1; await x ≥ 0; y : = x ;
L2: . . .

Is x decremented but y left unchanged? Is the execution aborted and the original
value of x restored? The statement’s translation is:

L1 Δ= ∧ pc = “L1”
∧ x ′ = x − 1
∧ x ′ ≥ 0
∧ y ′ = x ′

∧ unchanged . . .

Action L1 equals false when x = 0, which is satisfied by no step, so the state-
ment cannot be executed while x is less than 1. Statement L1 is equivalent to

await x > 0; x : = x − 1; y : = x ;

because the two statements’ translations are mathematically equivalent. Realiz-
ing this might help users think in terms of what a computation does rather than
how it does it.

52 L. Lamport

Even a fairly sophisticated user may have trouble understanding this
statement:

L1: with i ∈ {1, 2} do await i = 2
end with ;

L2: . . .

Is it possible for an execution to deadlock because the with statement selects
i = 1 and the await statement then waits forever for i to equal 2? The answer is
probably not obvious to readers unfamiliar with dynamic logic. The translation
of statement L1 is:

L1 Δ= ∧ pc = “L1”
∧ ∃ i ∈ {1, 2} : i = 2
∧ pc′ = “L2”
∧ unchanged 〈. . .〉

It should be clear to anyone who understands simple predicate logic that the
second conjunct equals true, so statement L1 is equivalent to skip.

These two examples are contrived. The first will not occur in practice because
no one will put an await statement after an assignment within a single step,
but the second abstracts a situation that occurs in real examples. Consider the
LoseMsg process in the alternating bit protocol of Figure 5. It may not be
clear what the either/or statement means if one or both channels are empty.
Examining the TLA+ translation reveals that the disjunct of the next-state
action that describes steps of this process is:

∧ pc[“L”] = “l”
∧ ∨ ∧ ∃ i ∈ 1 . .Len(msgC) : msgC ′ = Remove(i ,msgC)
∧ unchanged ackC
∨ ∧ ∃ i ∈ 1 . .Len(ackC) : ackC ′ = Remove(i , ackC)
∧ unchanged msgC

∧ pc′ = [pc except ![“L”] = “l”]
∧ unchanged 〈input , output ,next , sbit , ack , rbit ,msg 〉

(The reader should be able to deduce the meaning of the except construct and,
being smarter than the translator, should realize that the action’s first conjunct
implies that its third conjunct is a complicated way of asserting pc′ = pc.) If
msgC is the empty sequence, then Len(msgC) = 0, so 1 . .Len(msgC) equals
the empty set. Since ∃ i ∈ {} : . . . equals false, this action’s second conjunct
is equal to the conjunct’s second disjunct. Hence, when msgC equals the empty
sequence, a step of the LoseMsg process can only be one that removes a message
from ackC . If ackC also equals the empty sequence, then the entire action equals
false, so in this case the process can do nothing.

It is not uncommon to specify the semantics of a programming language by
a translation to another language. However, the TLA+ translation can explain
to ordinary users the meanings of their programs. The translation is written in

The PlusCal Algorithm Language 53

the same module as the algorithm. The use of labels to name actions makes it
easy to see the correspondence between the algorithm’s code and disjuncts of
the next-state action. (The translator can be directed to report the names and
locations in the code of all labels that it adds.)

The semantics of PlusCal is defined formally by a TLA+ specification of the
translator as a mapping from an algorithm’s abstract syntax tree to the sequence
of tokens that form its TLA+ specification [4]. The part of the specification that
actually describes the translation is about 700 lines long (excluding comments).
This specification is itself executable by TLC. The translator has a mode in which
it parses the algorithm, writes a module containing the TLA+ representation of
the abstract syntax tree, calls TLC to execute the translation’s specification for
that syntax tree, and uses TLC’s output to produce the algorithm’s TLA+ trans-
lation. (The abstract syntax tree does not preserve the formatting of expressions,
so this translation may be incorrect for algorithms with expressions that use the
TLA+ bulleted conjunction/disjunction list notation.)

4.3 Liveness

An algorithm’s code specifies the steps that may be taken; it does not require
any steps to be taken. In other words, the code specifies the safety properties of
the algorithm. To deduce liveness properties, which assert that something does
eventually happen, we have to add liveness assumptions to assert when steps
must be taken. These assumptions are usually specified as fairness assumptions
about actions [11]. The two common types of fairness assumption are weak and
strong fairness of an action. Weak fairness of action A asserts that an A step
must occur if A remains continuously enabled. Strong fairness asserts that an A
step must occur if A keeps being enabled, even if it is also repeatedly disabled.

For almost all sequential (uniprocess) algorithms, the only liveness require-
ment is termination. It must be satisfied under the assumption that the algo-
rithm keeps taking steps as long as it can, which means under the assumption
of weak fairness of the entire next-state action. (Since there is no other process
to disable an action, weak fairness is equivalent to strong fairness for sequential
algorithms.) The PlusCal translator can be directed to create the appropriate
TLA+ translation and TLC configuration file to check for termination.

For multiprocess algorithms, there is an endless variety of liveness require-
ments. Any requirement other than termination must be defined by the user in
the TLA+ module as a temporal-logic formula, and the TLC configuration file
must be modified to direct TLC to check that it is satisfied. The three most
common fairness assumptions are weak and strong fairness of each process’s
next-state action and weak fairness of the entire next-state action—the latter
meaning that the algorithm does not halt if any process can take a step, but
individual processes may be starved. The PlusCal translator can be directed to
add one of these three fairness assumptions to the algorithm’s TLA+ transla-
tion. However, there is a wide variety of other fairness assumptions made by
algorithms. These must be written by the user as temporal-logic formulas.

54 L. Lamport

As an example, let us return to algorithm ABProtocol of Section 2.4. A live-
ness property we might want to require is that every message that is chosen is
eventually delivered. Since the safety property implies that incorrect messages
are not delivered, it suffices to check that enough message are delivered. This is
expressed by the following temporal logic formula, which asserts that for any i ,
if input ever contains i elements then output will eventually contain i elements:

∀ i ∈ Nat : (Len(input) = i) � (Len(output) = i)

The algorithm satisfies this property under the assumption of strong fairness of
the following operations:

– The sender’s first or clause, which can send a message
– The sender’s second or clause, which can receive an acknowledgement.
– The receiver’s either clause, which can send an acknowledgement.
– The receiver’s or clause, which can receive a message.

The translation defines the formula Sender to be the sender’s next-state action.
It is the disjunction of three formulas that describe the three clauses of the
either/or statement. The first or clause is the only one that can modify msgC ,
so the action describing that clause is Sender ∧ (msgC ′ �= msgC). Similarly, the
sender’s last or clause is described by the action Sender ∧ (ackC ′ �= ackC). The
relevant receiver actions are defined similarly. The complete TLA+ specification
of the algorithm, with these four strong fairness conditions, is the following
formula:

∧ Spec
∧ SFvars(Sender ∧ (ackC ′ �= ackC))
∧ SFvars(Sender ∧ (msgC ′ �= msgC))
∧ SFvars(Receiver ∧ (ackC ′ �= ackC))
∧ SFvars(Receiver ∧ (msgC ′ �= msgC))

This specification makes no fairness assumption on the sender’s operation of
choosing a message to send or on the LoseMsg process’s operation of deleting a
message. Those operations need never be executed.

To check the liveness property ∀ i ∈ Nat . . . , we must tell TLC to substitute
a finite set for Nat . With the constraint described in Section 2.4, it suffices to
substitute 0 . . 4 for Nat . It then takes TLC about 3.5 minutes to check that
the algorithm satisfies the liveness property, about 30 times as long as the 7.5
seconds taken to check safety. This ratio of 30 is unusually large for such a small
example; it arises because the liveness property being checked is essentially the
conjunction of five formulas that are checked separately—one for each value of
i . For a single value of i , the ratio of liveness to safety checking is about the
same factor of 5 as for the Fast Mutual Exclusion Algorithm.

Fairness is subtle. Many readers may not understand why these four fairness
assumptions are sufficient to ensure that all messages are received, or why strong

The PlusCal Algorithm Language 55

fairness of the complete next-state actions of the sender and receiver are not. The
ability to mechanically check liveness properties is quite useful. Unfortunately,
checking liveness is inherently slower than checking safety and cannot be done on
as large an instance of an algorithm. Fortunately, liveness errors tend to be less
subtle than safety errors and can usually be caught on rather small instances.

5 Labeling Constraints

PlusCal puts a number of restrictions on where labels can and must appear.
They are added to keep the TLA+ translation simple—in particular, to achieve
the principles T1–T3 described in Section 4.2. Here are the restrictions. (They
can be stated more succinctly, but I have split apart some rules when different
cases have different rationales.)

A while statement must be labeled.
Programming languages need loops to describe simple computations; PlusCal
does not. For example, it is easy to write a single PlusCal assignment statement
that sets x [i] to the ith prime, for all i in the domain of x . In PlusCal, a loop
is a sequence of repeated steps. Eliminating this restriction would require an
impossibly complicated translation.

In any control path, there must be a label between two assignments to the same
variable. However, a single multi-assignment statement may assign values to
multiple components of the same (array- or record-valued) variable.

This is at worst a minor nuisance. Multiple assignments to a variable within
a step can be eliminated by using a with statement—for example, replacing

x : = f (x); . . . ; x : = g(x , y)
by

with temp = f (x) do . . . ; x : = g(temp, y) end with
A translation could perform such a rewriting, but that would require violating
T2.

A statement must be labeled if it is immediately preceded by an if or either
statement that contains a goto, call, return, or labeled statement within it.

Without this restriction, the translation would have to either duplicate ex-
pressions, violating T3, or else avoid such duplication by giving expressions
names, violating T2.

The first statement of a process or of a uniprocess algorithm must be labeled.
This is a natural requirement, since a step is an execution from one label to
the next.

The do clause of a with statement cannot contain any labeled statements.
Allowing labels within a with statement would require the with variables to
become TLA+ variables, violating T1.

56 L. Lamport

A statement other than a return must be labeled if it is immediately preceded
by a call ; and a procedure’s first statement must be labeled.

This means that executing a procedure body requires at least one complete
step. There is no need for intra-step procedure executions in PlusCal; any-
thing they could compute can be described by operators defined in the TLA+

module.

A statement that follows a goto or return must be labeled.
This just rules out unreachable statements.

A macro body cannot contain any labeled statements.
A macro can be used multiple times within a single process, where it makes no
sense for the same label to appear more than once. Related to this constraint
is the restriction that a macro body cannot contain a while, call, return, or
goto statement.

6 Conclusion

PlusCal is a language for writing algorithms. It is designed not to replace pro-
gramming languages, but to replace pseudo-code. Why replace pseudo-code? No
formal language can be as powerful or easy to write. Nothing can beat the con-
venience of inventing new constructs as needed and letting the reader try to
deduce their meaning from informal explanations.

The major problem with pseudo-code is that it cannot be tested, and untested
code is usually incorrect. In August of 2004, I did a Google search for quick sort
and tested the first ten actual algorithms on the pages it found. Of those ten, four
were written in pseudo-code; they were all incorrect. The only correct versions
were written in executable code; they were undoubtedly correct only because
they had been debugged.

Algorithms written in PlusCal can be tested with TLC—either by complete
model checking or by repeated execution, making nondeterministic choices ran-
domly. It takes effort to write an incorrect sorting algorithm that correctly sorts
all arrays of length at most 4 with elements in 1 . . 4. An example of an incor-
rect published concurrent algorithm and how its error could have been found by
using PlusCal appears elsewhere [12].

Another advantage of an algorithm written in PlusCal is that it has a precise
meaning that is specified by its TLA+ translation. The translation can be a
practical aid to understanding the meaning of the code. Since the translation is
a formula of TLA, a logic with well-defined semantics and proof rules [13], it can
be used to reason about the algorithm with any desired degree of rigor.

We can use anything when writing pseudo-code, including PlusCal. Pseudo-
code is therefore, in principle, more expressive than PlusCal. In practice, it isn’t.
All pseudo-code I have encountered is easily translated to PlusCal. The Fast Mu-
tual Exclusion Algorithm of Section 2.3 is typical. The PlusCal code looks very
much like the pseudo-code and is just a little longer, mostly because of variable

The PlusCal Algorithm Language 57

declarations. Those declarations specify the initial values of variables, which
are usually missing from the pseudo-code and are explained in accompanying
text. What is not typical about the Fast Mutual Exclusion example is that the
pseudo-code describes the grain of atomicity. When multiprocess algorithms are
described with pseudo-code, what constitutes an atomic action is usually either
described in the text or else not mentioned, leaving the algorithm essentially
unspecified. PlusCal forces the user to make explicit the grain of atomicity. She
must explicitly tell the translator if she wants it to insert labels, which yields
the largest atomic actions that PlusCal permits.

As dramatically illustrated by the quicksort partition example, PlusCal makes
it easy to write algorithms not usually expressed in pseudo-code. The alternating
bit protocol is another algorithm that is not easily written in ordinary pseudo-
code. Of the first ten descriptions of the protocol found in January of 2008 by a
Google search for alternating bit protocol, five were only in English, four were in
different formal languages, and one described the processes in a pictorial finite-
state machine language and the channels in English. None used pseudo-code. Of
these five formal languages, all but finite-state machines were inscrutable to the
casual reader. (Finite-state machines are simple, but too inexpressive to be used
as an algorithm language.)

PlusCal is a language with simple program structures and arbitrary mathe-
matical expressions. The existing programming language that most closely re-
sembles it is SETL [14]. The SETL language provides many of the set-theoretic
primitives of TLA+, but it lacks the ability to define new operators mathemat-
ically; they must be described by procedures for computing them. Moreover,
SETL cannot conveniently express concurrency or nondeterminism.

There are quite a few specification languages that can be used to describe and
mechanically check algorithms. Many of them, including Alloy [15] and TLA+

itself, lack simple programming-language constructs like semicolon and while
that are invaluable for expressing algorithms clearly and simply. Some are more
complicated than PlusCal because they are designed for system specifications
that are larger and more complicated than algorithms. Others, such as Spin [16]
and SMV [17], are primarily input languages for model checkers and are little
better than programming languages at describing mathematical operators. Fur-
thermore, many of these specification methods cannot express fairness, which is
an important aspect of concurrent algorithms. I know of no specification lan-
guage that combines the expressiveness and simplicity of PlusCal.

The one formal language I know of that has the replacement of pseudo-code
as a stated goal is AsmL, the abstract state machine language of Gurevich
et al. [18]. It is a reasonable language for writing sequential algorithms, though
its use of types and objects make it more complicated and somewhat less ex-
pressive than PlusCal. However, while AsmL has ordinary control statements
like while, they can appear only within an atomic step. This makes AsmL un-
suitable for replacing pseudo-code for multiprocess algorithms. Also, it cannot
be used to express fairness.

58 L. Lamport

There are a number of toy programming languages that might be used for writ-
ing algorithms. All the ones I know of that can be compiled and executed allow
only the simple expressions typical of programming languages. We could look to
paper languages for better constructs than PlusCal’s. Perhaps the most popular
proposals for novel language constructs are Dijkstra’s guarded commands [19],
Hoare’s CSP [20], and functional languages. Guarded command constructs are
easily expressed with either/or and with statements, which provide more flexi-
bility in specifying the grain of atomicity; the lack of shared variables and depen-
dence on a particular interprocess communication mechanism make it difficult
to write algorithms like Fast Mutual Exclusion and the Alternating Bit Protocol
in CSP; and I have never seen a published concurrent or distributed synchro-
nization algorithm described functionally. As the basis for an easy-to-understand
algorithm language, it is hard to justify alternatives to the familiar constructs
like assignment, if/then, and while that have been used for decades and appear
in the most popular programming languages.

If simplicity is the goal, why add the await, with, and either/or constructs
that were shown in Section 4.2 to be subtle? These constructs are needed to ex-
press interprocess synchronization and nondeterminism, and there are no stan-
dard ones that can be used instead. The subtlety of these constructs comes from
the inherent subtlety of the concepts they express.

Finally, one might want to use a different expression language than TLA+.
To achieve expressiveness and familiarity, the language should be based on or-
dinary mathematics—the kind taught in introductory math classes. A number
of languages have been designed for expressing mathematics formally. I obvi-
ously prefer TLA+, but others may have different preferences. A replacement
for TLA+ should be suitable not just as an expression language, but as a target
language for a translator and as a language for expressing liveness properties,
including fairness. It should also permit model checking of algorithms.

Upon being shown PlusCal, people often ask if it can be used as a program-
ming language. One can undoubtedly define subsets of the expression language
that permit compilation into reasonably efficient code. However, it is not clear
if there is any good reason to do so. The features that make programming lan-
guages ill-suited to writing algorithms are there for a reason. For example, strong
typing is important in a programming language; but one reason PlusCal is good
for writing algorithms is the simplicity that comes from its being untyped.

PlusCal is meant to replace pseudo-code. It combines the best features of
pseudo-code with the ability to catch errors by model checking. It is suitable for
use in books, in articles, and in the classroom. It can also be used by programmers
to debug their algorithms before implementing them.

References

1. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood
Cliffs (1975)

2. Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2003),
http://lamport.org

The PlusCal Algorithm Language 59

3. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999)

4. Lamport, L.: The PlusCal algorithm language,
http://research.microsoft.com/users/lamport/tla/pluscal.html

The page can also be found by searching the Web for the 25-letter string obtained
by removing the “-” from uid-lamportpluscalhomepage

5. Sedgewick, R.: Algorithms. Addison-Wesley, Reading (1988)
6. Hoare, C.A.R.: Algorithm 64: Quicksort. Communications of the ACM 4, 321

(1961)
7. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems 5, 1–11 (1987)
8. Lamport, L.: What good is temporal logic? In: Mason, R.E.A. (ed.) Information Pro-

cessing 83: Proceedings of the IFIP 9th World Congress, Paris, IFIP, pp. 657–668.
North-Holland, Amsterdam (1983)

9. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Symposium
on Foundations of Computer Science, pp. 109–121. IEEE, Los Alamitos (1976)

10. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Mateo (1995)
11. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer,

Heidelberg (1986)
12. Lamport, L.: Checking a multithreaded algorithm with +CAL. In: Dolev, S. (ed.)

DISC 2006. LNCS, vol. 4167, pp. 151–163. Springer, Heidelberg (2006)
13. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming

Languages and Systems 16, 872–923 (1994)
14. Schwartz, J.T., Dewar, R.B., Schonberg, E., Dubinsky, E.: Programming with sets:

An Introduction to SETL. Springer, New York (1986)
15. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology 11, 256–290 (2002)
16. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
17. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-

drecht (1993)
18. Gurevich, Y.: Can abstract state machines be useful in language theory? Theoret-

ical Computer Science 376, 17–29 (2007)
19. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs

(1976)
20. Hoare, C.A.R.: Communicating sequential processes. Communications of the

ACM 21, 666–677 (1978)

Appendix: The C-Syntax Grammar

Here is a simplified BNF grammar for PlusCal’s c-syntax. Terminals like begin
are distinguished by font and are sometimes quoted like “(” to avoid ambiguity.
The grammar omits restrictions on where labels may or must not occur, on what
statements may occur in the body of a macro, and on the use of reserved tokens
like if and := in identifiers and expressions.

Algorithm ::= --algorithm Id
{ [VarDecls] [Definitions] Macro∗

Procedure∗ (CompoundStmt | Process+) }

Definitions ::= define { Defs } [;]

60 L. Lamport

Macro ::= macro Id “(” [Id (, Id)∗] “)” CompoundStmt [;]

Procedure ::= procedure Id “(” [PVarDecl (, PVarDecl)∗] “)”
[PVarDecls] CompoundStmt [;]

Process ::= process “(” Id (= | \in) Expr “)”
[VarDecls] CompoundStmt [;]

PVarDecls ::= variable[s] (Id [= Expr] (;|,))+

VarDecls ::= variable[s] (Id [(= | \in) Expr] (;|,))+

CompoundStmt ::= { Stmt [; Stmt]∗ [;] }

Stmt ::= [Id :] (UnlabeledStmt | CompoundStmt)

UnlabeledStmt ::= Assign | If |While | Either |With | | Await | Print |
Assert | skip | return | Goto | [call] Call

Assign ::= LHS := Expr (“||” LHS := Expr)∗

LHS ::= Id (“[” Expr (,Expr)∗ “]” | “.” Id)∗

If ::= if “(” Expr “)” Stmt [else Stmt]

While ::= while “(” Expr “)” Stmt

Either ::= either Stmt (or Stmt)+

With ::= with “(” Id (= | \in) Expr
((; | ,) Id (= | \in) Expr)∗ [; | ,] “)” Stmt

Await ::= (await | when) Expr

Print ::= print Expr

Assert ::= assert Expr

Goto ::= goto Id

Call ::= Id “(” [Expr (, Expr)∗] “)”

Id ::= A TLA+ identifier (string of letters, digits, and “ ”s not all digits).

expr ::= A TLA+ expression.

Defs ::= A sequence of TLA+ definitions.

The Secret Art of Computer Programming

Annabelle K. McIver�

Dept. Computer Science, Macquarie University, NSW 2109 Australia

Abstract. “Classical” program development by refinement [12,2,3] is a
technique for ensuring that source-level program code remains faithful
to the semantic goals set out in its corresponding specification. Until
recently the method has not extended to security-style properties, prin-
cipally because classical refinement semantics is inadequate in security
contexts [7].

The Shadow semantics introduced by Morgan [13] is an abstraction
of probabilistic program semantics [11], and is rich enough to distinguish
between refinements that do preserve noninterference security properties
and those that don’t. In this paper we give a formal development of Pri-
vate Information Retrieval [4]; in doing so we extend the general theory
of secure refinement by introducing a new kind of security annotation
for programs.

Keywords: Proofs of security, program semantics, compositional secu-
rity, refinement of ignorance.

1 Introduction

Abstraction and refinement are together one of the core techniques in any formal
verifier’s toolkit. Yet to date they are rarely applied in security analysis; indeed
until recently refinement and security were considered uneasy bedfellows, with
any attempt to reconcile the two bound for paradox and confusion [7].

Morgan’s Shadow semantics [13] for “noninterference security” based origi-
nally on an abstraction of probabilistic program semantics [11] succeeded after
all in bringing about a détente between nondeterminism (the mathematical en-
capsulation of abstraction) and hidden state (the mathematical encapsulation
of secrets). Noninterference security [6] formalises our intuitive notion of “se-
curity leaks” — in programming terms it characterises scenarios where data
intended to be kept private are exposed by inadvertent correlations with other
observable program behaviour. By a careful treatment of nondeterminism and
hidden state, the Shadow semantics automatically selects refinements which are
“security-aware”: a valid “secure refinement” is now not only functionally- but
also security-wise compatible with its specification. In some cases this might
mean absolute confidentiality; but there are many applications where the re-
quired functionality logically forces a disclosure, at least in part. Shadow secu-
rity proofs guarantee therefore that any implementation leaks no more than the
specification demands.
� We acknowledge the support of the Australian Research Council Grant DP0879529.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 61–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 A.K. McIver

The Shadow approach is distinguished from other methods for security anal-
ysis in its emphasis on compositionality and the development-by-hierarchy that
compositionality supports. Specifications are now programs too –though most
likely inefficient and tacit as to algorithmic detail– yet as we have learned from
many years’ experience with the refinement calculus, a focus on what we want
pays off “in spades” for understanding systems. Adding detail devolves to the
validation of refinement steps, each one small enough for the proofs to be –
almost– automatic, and furthermore achieved at the source level. And, as for
classical refinement, we often call on specifications of sub-protocols wherever
this simplifies the reasoning, leading to the method’s ability to accommodate
protocols of unbounded state [10].

Our contribution. in this paper is a formal development of a scheme for Private
Information Retrieval in public databases [4]. In doing so we extend the theory
by the introduction of “visibility annotations” for reasoning about the extent to
which a secret is revealed during program execution.

We begin with a summary and commentary on the basics for non-interference
security using the Shadow semantics. Throughout we use left-associating dot
for function application, so that f.x.y means (f(x))(y) or f(x, y), and we take
(un-)Currying for granted where necessary. Comprehensions/quantifications are
written uniformly, as (Qx:T |R·E) for quantifier Q, bound variable(s) x of type(s)
T , range-predicate R (probably) constraining x and element-constructor E in
which x (probably) appears free: for sets the opening “(Q” is “{” and the closing
“)” is “}” so that e.g. the comprehension {x, y: N | y=2x · yz} is the set of
numbers z, 2z, 4z, · · · .

2 Semantics for Programming with Secrets

A non-interference -secure program is one where an attacker (discussed below)
cannot infer “hidden” variables’ initial values from “visible” variables’ values
(initial or final). With just two variables v, h of class visible, hidden resp. sup-
pose a possibly nondeterministic program r takes initial states (v, h) to sets
of final visible states v′ and so is of type V → H → PV , where V ,H are the
value sets corresponding to the types of v, h. Such a program r is then non-
interference -secure just when for any initial visible the set of possible final
visibles is independent of the initial hidden [8,15], that is for any v:V we have(∀h0, h1:H · r.v.h0 = r.v.h1

)
.

In our approach [13] we extend this view, in several stages. The first is to
concentrate on final- (rather than initial) hidden values and therefore to model
programs as V→H→P(V×H). For two such programs r{1,2} we say that r1 � r2,
that r1 “is securely refined by” r2, whenever both the following hold:

(i) For any initial state v, h each possible r2 outcome v′, h′ is also a possible
r1 outcome, that is for all v:V and h:H we have r1.v.h ⊇ r2.v.h .
This is the classical “can reduce nondeterminism” form of refinement.

The Secret Art of Computer Programming 63

(ii) For all v:V , h:H and v′:V satisfying
(∃h′

2:H · (v′, h′
2) ∈ r2.v.h

)
, we have

that (v′, h′) ∈ r1.v.h implies (v′, h′) ∈ r2.v.h for all h′:H.
This second condition says that for any observed visibles v, v′ and any ini-
tial h the attacker’s “deductive powers” w.r.t. final h′’s cannot be improved
by refinement: there can only be more possibilities, never fewer.

In this simple setting, as an example restrict all our variables’ types so that
V=H={0, 1}, and let r1 be the program that can produce from any initial values
(v, h) any one of the four possible (v′, h′) final values in V ×H (so that the final
values of v and h are uncorrelated). Then the program r2 that can produce only
the two final values {(0, 0), (0, 1)} is a secure refinement of r1; but the program r3
that produces only the two final values {(0, 0), (1, 1)} is not a secure refinement
(although it is a classical one).

The difference between r2 and r3 is that although r2 reduces r1’s visible non-
determinism, it does not affect the hidden nondeterminism in h′. In r3, however,
variables v′ and h′ have become correlated.

2.1 The Shadow H of h Records h’s Inferred Values

In r1 above the set of possible final values of h′ was {0, 1} for each v′ separately.
This set is called “The Shadow,” and represents explicitly an attacker’s ignorance
of h′: it is the smallest set of possibilities he can infer. In r2 that shadow was the
same; but in r3 the shadow was smaller, just {v′} for each v′, and that is why
r3 was not a secure refinement of r1.

In the shadow semantics we track this inference, so that our program state
becomes a triple (v, h,H) with H a subset of H — and in each triple the H
contains exactly those (other) values that h might have had, including the one it
actually does have. The (extended) output triples of the three example programs
are then respectively

r1 — {(0, 0, {0, 1}), (0, 1, {0, 1}), (1, 0, {0, 1}), (1, 1, {0, 1})}
r2 — {(0, 0, {0, 1}), (0, 1, {0, 1})}
r3 — {(0, 0, {0}), (1, 1, {1})} ,

and we have r1 � r2 because r1’s set of outcomes includes all of r2’s. But for r3
we find that its outcome (0, 0, {0}) does not occur among r1’s outcomes, nor is
there even an r1-outcome (0, 0, H ′) with H ′ ⊆ {0} that would satisfy (ii). That,
again, is why r1 �� r3.

For sequential composition of shadow-enhanced programs, not only final- but
also initial triples (v, h,H) must be dealt with: the final triples of a first com-
ponent become initial triples for a second. We now define the shadow semantics
exactly, in stages, by showing how those triples are generated for straight-line
programs.

2.2 The Shadow Semantics of Atomic Programs

A classical program r is an input-output relation between V ×H -pairs. Consid-
ered as a single, atomic action its shadow-enhanced semantics addShadow.r is a
relation between V ×H × PH -triples and is defined as follows:

64 A.K. McIver

Program P Semantics [[P]].v.h.H

Publish a value reveal E.v.h { (v, h, {h′: H | E.v.h′ = E.v.h}) }

Assign to visible v:= E.v.h { (E.v.h, h, {h′: H | E.v.h′ = E.v.h}) } �
Assign to hidden h:= E.v.h { (v, E.v.h, {h′: H · E.v.h′}) } �

Choose visible v:∈S.v.h {v′: S.v.h · (v′, h, {h′: H | v′ ∈ S.v.h′}) } �
Choose hidden h:∈S.v.h {h′: S.v.h · (v, h′, {h′: H; h′′: S.v.h′ · h′′}) } �

Execute atomically 〈〈P 〉〉 addShadow.(“classical semantics of P”)
Sequential composition P1; P2 lift.[[P2]].([[P1]].v.h.H)

Demonic choice P1 � P2 [[P1]].v.h.H ∪ [[P2]].v.h.H

Conditional if E.v.h then Pt else Pf fi [[Pt]].v.h.{h′: H | E.v.h′ = true}
� E.v.h �

[[Pf]].v.h.{h′: H | E.v.h′ = false}

The syntactically atomic commands A marked � have the property that A = 〈〈A〉〉.
This is deliberate: syntactic atoms execute atomically. The function lift.[[P2]] applies
[[P2]] to all triples in its set-valued argument, un-Currying each time, and then takes
the union of all results.
The extension to many variables v1, v2, · · · and h1, h2, · · · , including local declarations,
is straightforward [13, 14].

Fig. 1. Semantics of non-looping commands

Definition 1. Atomic shadow semantics. Given a classical program r:V→H→
P(V×H) we define its shadow enhancement addShadow.r of type V→H→PH→
P(V ×H× PH) so that addShadow.r.v.h.H � (v′, h′, H ′) just when

(i) we have both r.v.h � (v′, h′) — classical
(ii) and H ′ = {h′:H | (∃h′′:H · r.v.h′′ � (v′, h′)

) } . — shadow
�

Clause (i) says that the classical projection of addShadow.r’s behaviour is the
same as the classical behaviour of just r itself. Clause (ii) says that the final
shadow H ′ contains all those values h′ compatible with allowing the original
hidden value to range as h′′ over the initial shadow H .

2.3 Security-Aware Program Refinement

Equality of programs is a special case of refinement, whence compositionality is
a special case of monotonicity: two programs with equal semantics in isolation
must remain equal in all contexts. With those ideas in place, we define refinement
as follows:

Definition 2. Refinement For programs P{1,2} we say that P1 is securely
refined by P2 and write P1 � P2 just when for all v, h,H we have

The Secret Art of Computer Programming 65

(∀ (v′, h′, H ′
2): [[P2]].v.h.H ·(∃H ′
1:PH | H ′

1 ⊆ H ′
2 · (v′, h′, H ′

1) ∈ [[P1]].v.h.H
)

) ,

with [[·]] as defined in Fig. 1.
This means that for each initial triple (v, h,H) every final triple (v′, h′, H ′

2)
produced by P2 must be “justified” by the existence of a triple (v′, h′, H ′

1), with
equal or smaller shadow, produced by P1 under the same circumstances. �

3 Programming with Hidden State

What makes security analysis difficult is the seeming incompatibility of both
keeping a secret and using it in “public computations.” In this section we sum-
marise the characteristics of the Shadow semantics that allow us to analyse the
extent to which information is revealed at runtime.

Runtime visibility and in-visibility. A visible variable is one whose runtime
value can be “observed” after each (atomic) execution. For example, the resolu-
tion of the nondeterministic choice in the program v:∈{0, 1} can be determined
simply by reading the final value of the visible variable v. Assignments to hidden
variables, in contrast, cannot be observed directly. Thus the program h:∈{0, 1}
reveals nothing about h at runtime beyond what can be gleaned statically by
examining the source code: we deduce that it is either 0 or 1; but we don’t know
which.

Interaction and information flow. More interesting is when visible and in-
visible variables interact, for that is where correlations are formed. Direct pub-
lication of the hidden state results in a direct correlation, for example v:=h
effectively announces h’s value. Moreover once the information is in the pub-
lic domain, no amount of track-covering can erase the knowledge. The program
v:= h; v:= 0 also leaks h, even though v is overwritten immediately afterwards —
that is because our attack model [10] assumes that an observer can see the the re-
sults of visible computations after each “atomic step,” which is normally defined
by sequential composition (but see atomicity below). In addition an observer
may make deductions based on his run-time observations and the structure of
the program code. Thus in principle attackers have perfect recall [13,14].

This curious interaction of hidden and visible assignments means sequential
composition becomes a somewhat strange operator — for instance it no longer
satisfies the rule (v:=h; v:= 0) = v:= 0. Luckily these idiosyncracies are limited
to visible/hidden interactions, with the classical rules continuing to apply as
normal in the cases where the reasoning is entirely between visible variables.

Compositionality and refinement. Two programs are judged to be the same
if and only if they are both functionally equivalent and have identical “secu-
rity defences.” The latter is crucial to our hierarchical development method, for
it implies that one program may be replaced by its equivalent in any context,

66 A.K. McIver

without fear of unanticipated security flaws. In our examples below we will use
not-necessarily-executable programs as specifications to articulate our overall
security goals.

When reasoning about programs we are able to assume the normal struc-
tural rules, so for example P�Q � P , and (if E.v.h then Pt else Pf fi);Q =
if E.v.h then Pt;Q else Pf ;Q fi. We also use the fact that decreasing visibility
is always a secure refinement, i.e. |[vis x · · ·]| � |[hid x · · ·]|, where we have used
“visibility declarations” (discussed below) to assign the visibility attribute to the
variable x.

Atomicity: controlling granularity. Explicit atomicity is necessary for hiding
the results of intermediate computations when secrecy demands it. For example
the process of encryption typically is achieved as a result of a number of steps,
and it is only safe to publish the final result after obliterating the intermediate
computations. We use 〈〈P 〉〉 to mean that the internals of program P are not re-
vealed at runtime — and within those brackets 〈〈·〉〉 we can therefore use classical
equality reasoning. Proper refinement however is not allowed.

That is, within the safety of atomicity brackets, classical equality reasoning is
reinstated so that 〈〈v:=h; v:= 0〉〉 = 〈〈v:= 0〉〉; but we cannot for example reason
via refinement that (h:= 0 � h:= 1) � h:= 0 implies

h:∈{0, 1} = 〈〈h:= 0 � h:= 1〉〉 � 〈〈h:= 0〉〉 = h:= 0 ,

becuase the middle (refinement) step fails.
Removing atomicity brackets is possible only under certain circumstances.

The following lemma sets out one such case.

Lemma 1. atomicity and composition [10]. Given two programs P{1,2} over
v, h we have 〈〈P1;P2〉〉 = 〈〈P1〉〉; 〈〈P2〉〉 just when v’s intermediate value, i.e. “at
the semicolon,” can be deduced from its endpoint values, i.e. initial and final,
possibly in combination. The semicolon is interpreted classically on the left, and
as in Fig. 1 on the right. �

Lem. 1 prevents us from removing the atomicity brackets for 〈〈v:=h; v:= 0〉〉,
but allows it for 〈〈v:= {0, 1};h:= v⊕E〉〉, for example. In the former case the
intermediate value of v (equal to the hidden h) cannot be deduced from its
final value (the constant 0); in the latter case, v’s final value is the same as its
intermediate value, and atomicity offers no further protection.

Before beginning our real case studies, we elaborate on our treatment of multi-
agent systems, and encryption.

4 Agents, Views and Proofs

Our cases studies below are all examples of “multi-agent systems” in that they are
composed of a number of independent components, which collaborate to achieve
an overall goal. When secrecy is an issue, each agent only has a “partial view”

The Secret Art of Computer Programming 67

of the system state, and has complementary security goals with respect to
the other agents and to the system as a whole. We use the extension of the
Shadow semantics introduced elsewhere [10] to express the differing views of the
agents in the system. Essentially the simple semantics can reflect a single agent’s
viewpoint.

Multiple agents, and the attacker’s capabilities. Let A be an agent in a
multi-agent system; the above simple semantics reflects A’s viewpoint, say, by
interpreting variables declared to be vislist as visible (vis) variables if A is in
list and as hidden (hid) variables otherwise. More precisely,

– var means the associated variable’s visibility is unknown or irrelevant.
– vis means the associated variable is visible to all agents.
– hid means the associated variable is hidden from all agents.
– vislist means the associated variable is visible to all agents in the (non-

empty) list, and is hidden from all others (including third parties).
– hidlist means the associated variable is hidden from all agents in the list,

and is visible to all others (including third parties).

For example |[visA a;visB b;vis c; c:= a⊕b]| from A’s viewpoint the specification
would be interpreted with a and c visible and b hidden; for B the interpretation
hides a instead of b. For a third party X , say, both a, b are hidden but c is still
visible. We say that a system is generally secure provided that it is specifically
secure (as determined by the Shadow semantics) from all its viewpoints. For
us this means that the proof must be checked for all those viewpoints; happily
many of these can be carried out schematically.

Visibility declarations can be thought of as placing access restrictions on vari-
ables; it does not mean that the value of the variables must always remain
unknown to agents not on its visibility list: that depends on the code, since e.g.
hidden h is known to all once the statement v:=h has been executed. They do
however have an impact on which refinements will be judged ultimately to be
valid.

5 The General Encryption Lemma

Our first case study is a small “toolkit” security idiom which occurs in many
protocols: it is the splitting into two pieces of some hidden information, with
only “one half” of it then subsequently revealed: the key to the protocols is that
this does not introduce a security vulnerability. Perhaps the simplest case is

|[vis v; hid h; h:∈{0, 1}; v:=E⊕h]| , (1)

where all types are Boolean (equiv. {0, 1}) and ⊕ is exclusive-or. No matter
what the visibility characteristics of E might be, the code above reveals nothing
(more) about it. In this section, we will discuss a symmetric version of this, and
in more general terms than Booleans and exclusive-or.

68 A.K. McIver

5.1 The Symmetric Encryption Lemma

With (1) as motivation, we reason about two agents A,B in some context where
expression E is meaningful. We take A’s point of view, and show as follows that
(1) is equivalent to skip, and so changes nothing (global) but –more significantly–
reveals nothing about E:

|[visA a;visB b; (a⊕b):=E]| “from (1)”
= |[visA a;visB b; 〈〈(a⊕b):=E〉〉]| “statement is atomic already”
= |[visA a;visB b; 〈〈a:∈E ; b:=E⊕a〉〉]| “E is the type of a, b, E; see (i) below ♥”
= |[visA a;visB b; 〈〈a:∈E〉〉; 〈〈b:=E⊕a〉〉]| “atomicity lemma”
= |[visA a;visB b; a:∈E ; b:=E⊕a]| “statements are atomic anyway”
= |[visA a; a:∈E ; |[visB b; b:=E⊕a]|]| “b is not free in E ; see (ii) below ♥”
= |[visA a; a:∈E ; skip]| “b is hidden from A �”
= |[visA a; a:∈E]| “skip”
= skip . “a is a local visible”

The proof for B’s point of view is symmetric.1 The crucial features ♥ of the
derivation are these:

(i) The correctness of this step has both classical and security aspects. The
classical aspect is simply that we must have (E⊕a)⊕ a = E.

The security aspect is that, within atomicity brackets 〈〈·〉〉, only equality
reasoning is allowed; proper refinement is not, and this concerns the in-
troduction of the type-set E . That set must capture precisely the possible
values of a that could result from the (previous) statement (a⊕b):=E, no
more and no less — otherwise it’s not an equality. Putting that in words
we would say “For all values of E and all a∈E there must be some b∈E
so that a = E⊕b, and furthermore E contains all the values that a could
have.”

(ii) In this step we moved a:∈E out of the scope of b. This is possible only
because in choosing E from which to pick a we were able to ignore b, i.e.
that the choice-range for a is independent of b (and E).

In the next section we illustrate the above Boolean-based encryption with a
simple scheme for secure messaging.

6 Secure Messaging in an Untrusted Medium

Sender S is eager to tell R a secret but, as they live far apart, he cannot whis-
per it in his ear. Instead he sends it with messengers X,Y even though he does
not trust either one separately not to read the message he is delivering. First S
splits s into two “shares” sx and sy in such as way that their exclusive-or is equal
to s, i.e. so that sx⊕sy = s. He gives sx to X and sy to Y with the instruction to

1 The � is referred to in §8.2.

The Secret Art of Computer Programming 69

visS s;visR r;
visSX sx;visSY sy ;
visX x;visY y;
visRX rx;visRY ry;

(sx⊕sy):= s; ⇐ S splits the message in two.
(sx⊕sy):= s; ⇐ S splits the message in two.
x, y:= sx, sy; ⇐ Messages sent from S to X and to Y separately.
rx, ry:= x, y; ⇐ Messages sent from X and Y to R.
r:= rx ⊕ ry . ⇐ R recombines the two halves.

We write (sx⊕sy):= s for the (atomic) choice over all possibilities of splitting the mes-
sage s, equivalent to the specification statement sx, sy :[sx⊕sy = s] and interpreted
atomically[12].

Fig. 2. Abstract messaging with non-colluding messengers

deliver their messages to R. Once R receives the two halves he can reassemble
them at his leisure to reveal s. The code, including its visibility declarations, is
set out at Fig. 2.

Clearly this scheme transfers s to R; as for security, it seems intuitive that if
s is split so that neither X nor Y learns its contents, then the message passing
reveals no more. Our goal in this section is to check formally that the intuition
is sound. We begin with an “obviously correct” specification, namely an atomic
transaction between R and S:

visS s; visR r; r:= s , (2)

which is “as if ” the message were indeed whispered; but that is not directly
executable because r and s are local only to R and S respectively. Nevertheless
it precisely sets out the limited circulation of s — X and Y are excluded from
the the visibility lists, and therefore neither X nor Y can know s. The next step
is to ensure that the restricted circulation is maintained in spite of introducing
untrustworthy agents.

Following the refinement tradition, we gradually introduce the message-
passing infrastructure, making sure as we do so that neither by publication
nor by careless program structure can X or Y glean anything about s. As we
introduce detail it becomes important to identify what is already known, and
by whom — we use a new technique of “visibility annotations”2 to formalise
exactly that.

Definition 3. The statement reveallistE is just reveal E if the viewpoint is in
agent-list list, and is skip otherwise.

Definition 4. We say that an expression E is effectively list-visible at a point
in a program just when putting a statement reveallistE there would not alter the
program’s meaning.
2 Thanks to Carroll Morgan for suggesting visibility annotations.

70 A.K. McIver

In our case we need to know at what point in the transaction we can assume
who knows what; in practice to determine the visibility of an expression we use
the visibility declarations as well as other information which has already been
revealed. Thus an expression is said to be effectively visible (at a point) just
when its value is determined by variables visible (at that same point) and any
other expressions that are effectively visible at that point.

Now we begin with the simple specification (2), embellishing it until we reach
the message-passing scheme at Fig. 2. At each stage we sill use visibility anno-
tations, visibility declarations or simple program algebra to justify the equality
between programs.

Step 1: Visibility annotations. We start by analysing the visibility of s both
before and after the assignment in (2); we use the visibility annotations. First, it
is clear that r is effectively S-visible after the statement, and that s is effectively
R-visible both before and after. Obvious or not, we check this as follows: we use
Def. 4 to put revealS r and revealR s before and after the assignment.

First, we see that r is effectively S-visible after the assignment:

r:= s; revealS r
= r:= s; revealS s “ r = s at that point”
= r:= s . “s is S-visible by declaration”

Similarly s R-visible after the assignment:

r:= s; revealR s
= r:= s; revealR r “as above”
= r:= s .

And finally s is r-visible before the assignment:

(revealR s); r:= s
= r:= s; revealR r “ s is unchanged”
= r:= s . “as above”

The last one is interesting, since operationally one would be inclined to say
that s is not R-visible before the statement, since we “can’t yet know s” before
that assignment has occurred. But here (yet again) is where a logical view helps
us to avoid confusions that operational reasoning can cause.

Referring to the “attack model” sketched above, we’d say under an attack
from R we’d have that s is visible before the statement r:= s just when R really
can see it. But he can’t see it, can he...? Nevertheless he can reason as if he
could: whatever reasoning he wanted to do with s at that point he simply defers,
first allowing the program to run one further step. Then s really is visible (by
inference, since it’s now sitting in r), and then R can go back and continue the
reasoning based on s that he had put on hold.

The Secret Art of Computer Programming 71

Step 2: Splitting the message. Now we have learned about R and S’s view-
points, we can start adding details of the message-passing. We use encryption
to split s, but we need to show that still only R and S learn s. What we need
to show is that

(2) = |[visRXS sx;visRY S sy; (sx⊕sy):= s]|; r:= s ,

where we have used the specification statement to make mutually secret shares
sx and sy.

Here although the encryption guarantees that neither X nor Y learn any-
thing, to ensure equality with the specification, we need to check that the secu-
rity refinement holds from all points of view, and that includes R and S. The
problematic case is R, because on the right since R can see sx and sy, he would
learn the secret before the assignment to his variable r. Although we don’t really
“care” about that (after all, he is the intended recipient of s) in our formal proof
we are made to care, and rightly so — information can be unintentionally leaked
and if an agent learns something “early” then he becomes a security risk when
he was not intended to be. In this case early knowledge is not a problem, as our
visibility analysis above has already checked for us.

1. From S’s point of view, everything is visible in the new block (no security
problems), and the (generalised) assignment is to new local variables (no
classical problems).

2. From X (Y)’s point of view, it’s an instance of the encryption lemma.
3. From R’s point of view (the only interesting one), we would formerly have

been stuck because sx, sy are both visible to R but s is hidden from R. But
now we can see that although s is hidden from R by declaration, nevertheless
it is R-visible (from Step 1 above) and so this case reduces to (1).

Step 3: Delivering the messages. The next step introduces the messengers
X and Y , who now carry their halves in variables x and y and give them to R.

visR r; visS s; r:= s
= (sx⊕sy):= s; r:= s “visRXS sx;visRY S sy”
= (sx⊕sy):= s; “visRX x;visRY y”

x, y:= sx, sy;
r:= s

= (sx⊕sy):= s; “visR rx, ry”
x, y:= sx, sy;
rx, ry:= x, y;
r:= s

= (sx⊕sy):= s; “program algebra”
x, y:= sx, sy;
rx, ry:= x, y;
r:= rx⊕ry .

For the final step from here to Fig. 2, we use the general refinement rule for
reducing visibilities, replacing visRXS sx;visRY S sy by visX sx;visY sy.

72 A.K. McIver

7 Secure Remote Computations

We now take another step towards our principal case study. Private Informa-
tion Retrieval is very similar to secure message-passing as above, but includes
structured set-valued messages, and remote computation. We begin by working
towards a more general instance of the encryption lemma.

7.1 The Exclusive-or Algebra of Subsets

We take as our type E the powerset P[0..N) of the natural numbers below
N , which we will abbreviate PN . For our operation ⊕ we take the symmet-
ric set-difference, which we will write Δ so that for N0,1∈PN we have N0ΔN1 =
N0−N1 ∪ N1−N0

3. As payoff for our generality above, we have immediately for
E∈PN the equality

|[visA a:PN ;visB b: PN ; (aΔb):=E]| = skip . (3)

It’s just the encryption lemma for subsets. Here’s how we can use it.

7.2 Secure Use of a Remote Super-Computer

Suppose some user-agent U wants to compute y:=F.x with visA x, y, so that the
variables involved are visible only to him. (We do not specify the types of x, y
at this stage.) The function F is public; but unfortunately it is so complicated
that A does not have the resources to compute it. His first thought is to ship y
off to a super-computer -agent A who will compute it for him, thus he hopes for

y:=F.x � |[visA a, a′; a:=x; a′:=F.a; y:= a′]| ,

in which a:= x sends the argument from U to A, and y:= a′ returns the result.
The computation a′:=F.a is then carried out entirely by A.

Although this is a classical refinement (obviously), it is not a secure one: the
problem is that A learns the values of x, y, and they are supposed to be private
to U .

Now let us suppose that the function F distributes ⊕ (over the types of x, y),
that is that F.(x0⊕x1) = F.x0⊕F.x1. Moreover we assume that U values his
privacy so much that he is prepared to pay for two super-computer runs, the
second one’s being run by Agent B. He now proposes the refinement

y:=F.x � |[visA a;visB b; (a⊕b):= x; y:=F.a⊕F.b]|
in which, to reduce clutter, we have suppressed the assignments (like a:=x above)
that are simply to do with passing values from one agent to another.

The classical correctness of this second refinement-proposal depends on the
⊕-distributivity of F , which we have assumed; but what about its security cor-
rectness? That follows from the Encryption Lemma, since we can derive
3 This operator Δ really is just exclusive-or ⊕ in different clothes: regard the sets as

characteristic functions, and then apply the ordinary Boolean exclusive-or pointwise
to those functions.

The Secret Art of Computer Programming 73

y:=F.x

= |[visA a;visB b; (a⊕b):= x]|;
y:=F.x

“Encryption Lemma”

= |[visA a;visB b;
(a⊕b):=x;
y:=F.(a⊕b)

]|

“scope and context”

= |[visA a;visB b;
(a⊕b):=x;
y:=F.a⊕ F.b

]|

“⊕-distributivity of F”

This solves U ’s privacy problems — though he does have to pay for two runs of
the function F .

7.3 Explicit Message-Passing

Naturally the two statements (a⊕b):=x and y:=F.a⊕F.b above must themselves
be implemented via explicit message passing. For the first we argue by analogy
with the two-messengers approach of §6, as follows:

(a⊕b):=x

= |[visUA xA;visUB xB ;
(xA⊕xB):= x;
a, b:= xa, xb

]|

“Encryption Lemma, scoping and context”

� |[visU xA, xB ;
(xA⊕xB):= x;
a, b:= xa, xb

]| .

“reduce visibility”

For the second, similar reasoning (which we elide) gives

y:=F.a⊕ F.b

� |[visU yA, yB;
visA zA;visB zB;
zA, zB:=F.a, F.b;
yA, yB:= zA, zB; y:= yA ⊕ yB

]| .

“as above”

Put together with the refinement of the previous section (and exploiting mono-
tonicity), we have the overall refinement shown in Fig. 3.

74 A.K. McIver

y:= F.x

� |[visU xA, xB, yA, yB;
visA zA;visB zB;

(xA⊕xB):=x; ⇐ Split x into two shares.
a, b:= xa, xb; ⇐ Send them to Agents A, B separately.
zA, zB := F.a, F.b; ⇐ Agents A, B compute F on their respective arguments.
yA, yB := zA, zB; ⇐ The results are sent back to U .
y:= yA ⊕ yB ⇐ Agent U combines the result shares to get the answer.

]|

“composition of the above”

Fig. 3. Using two remote super computers to calculate an expensive function privately

8 Private Information Retrieval

This is our principal case study. In publicly accessible databases security is not
about protecting data, but rather about protecting users –this can be an issue if
the data concerns medical or share price information– because the user may want
his request to be confidential. Hence the objective of private information retrieval
schemes (PIR) is that the requests themselves should remain anonymous.

It has been shown that when the data is stored on a single server (a “single-
server model”) the only way to achieve the anonymity of requests is for the
user to download the entire database for local (and therefore private) perusal
[4], but the cost of this confidentiality is extremely poor performance. Current
research on PIR aims to minimise communication complexity, and in this section
we study a scheme introduced by Chor et al. [4].

The idea is to uses some number d ≥ 2 of copies of the database servers. As
in the message-passing example above the user splits the request into d shares,
sending each share to each server. The trick is to make sure that the shares
(a) reveal no information about the actual request (to either server or a third
party), and (b) can nevertheless be reconstructed by the user to reveal his actual
request.

Chor explains that the performance reduction only emerges when in fact d > 2,
but that the security aspects are well illustrated (but more easily!) for d=2.
Following his advice we begin our formalisation for d=2, and in any case study
only the security aspects in detail. We assume a database D of N (bit-sized)
records addressable with an index 1 ≤ i ≤ N ; we use U for the user, and A,
B for the two servers, each of which host (identical) copies DA and DB of D.
Chor’s informal description of the two-server model is as follows:

Let U ’s secret request be some 1 ≤ c ≤ N , and he wants to know D.c
(equivalently DA.c or DB.c). He chooses randomly a subset S ∈ PN ,
and then sends (all of) S to A and S � c to B, where

S � c := if (c∈S) then S\c else S ∪ {c} fi.

The Secret Art of Computer Programming 75

Next A sends to U the result yA:= (⊕i∈SDA.i), and B similarly sends
yB:= (⊕i∈S�zDB.i); finally U decrypts the two replies by computing
yA ⊕ yB.

The functional correctness of this scheme can be seen easily because of the
definition of �. Note that S � c simply includes c if c �∈ S, or it removes it if it is
already in S. That means that c occurs in exactly one of S or S � c, but all the
other items in S appear in both subsets. Thus in the final computation of the
exclusive or, all the terms D.i cancel out except for D.c and hence yA⊕yB = D.c
as required.

The security correctness is slightly more involved, but still intuitive. Since the
set S is chosen at random from all possible subsets of {1 . . .N} when a server
receives the subset it does not know whether the real query c is contained in the
subset or not.4 Moreover S � c also appears equally likely amongst all subsets,
therefore provided A and B do not collude, they are individually none the wiser
as to the actual request.

8.1 Solving the PIR Problem with Algebra

Using our results from §5, we can legitimise Chor’s approach easily.
First, note that Chor’s S � c is just S ⊕ {c} in our terms. This establishes

the connection with exclusive-or. Second, Chor’s operation (⊕i∈SDA.i) (and
equivalently (⊕i∈SDB.i) is our function F — and it distributes ⊕. This means
the refinement of Fig. 3 applies immediately, once we notice that D.c = DA.c =
DB.c = F.{c}. Thus we obtain by instantiation the refinement of Fig. 4, in which
our initial split (xAΔxB):= {c} is equivalent to Chor’s xA:∈PN ;xB:= xA�c.

8.2 Collusion and Visibility Declarations

The above derivation explicitly separates the U/A and U/B correspondence by
enforced by the visibility declarations visA and visB; for Chor that separation is
articulated by the“non-collusion” assumption, and theorems there depend upon
it. Here there is a similar dependency, and indeed the validity of refinement
depends upon it.

To investigate what would happen if A and B do collude, we rename all the
A/B variables to belong to a single server C variable, and attempt the same
derivation. 5This means that all visA;visB declarations become visC — then a
careful review of the proofs shows that the original encryption §5, on which the
whole security is built fails at the step labelled �. In this case, the relabelling
would make both a, b variables visC , so that the comment “b is hidden . . .” is
invalid, preventing the replacement of the assignment to b with skip.
4 Of course if the two servers share their partial information by colluding then the

value z is revealed. We discuss collusion later.
5 We do this since we do not assume anything about the nature of the collusion, except

that the servers are able to share all correspondence.

76 A.K. McIver

u:= D.c

� |[visU xA, xB: PN ; yA, yB:Bool;
visA zA:Bool;visB zB :Bool;

(xAΔxB):= {c}; ⇐ Split c into two “subset” shares.
a, b:= xa, xb; ⇐ Send to the servers separately.
zA:= (⊕i∈aDA.i); ⇐ Each computes the ⊕ of its shares.
zB := (⊕i∈bDB .i); ⇐ · · ·
yA, yB := zA, zB; ⇐ Each sends the result back to the requester.
u:= yA ⊕ yB ⇐ The results are ⊕-ed together.

]|

“instantiating Fig. 3”

Fig. 4. Using two remote databases to perform a lookup privately

8.3 Efficient Perfect Information Retrieval

The solution presented in §8 actually does not reduce the overhead on the net-
work at all — in fact it is the same as the single-server solution where the whole
database must be sent to U .

The full solution, combining privacy and a reduction in average network traffic
— from O(N) to O(

√
N) (for example) — needs strictly more than two servers,

and a structured addressing scheme. Again each server is sent an apparently
random set of requests for which it must compute the ⊕ of the results, and
return to the user, who can then reassemble to uncover the request. Although
the addressing scheme is somewhat detailed, the principles for correctness, and
the machinery for proof remain the same, namely generalised encryption §5.1
and the exclusive-or algebra §7.1.

9 Conclusions and Future Work

We have shown how to validate a well known protocol for Perfect Information
Retrieval using a novel refinement-style development. Our approach emphasises a
hierarchical analysis which refinement supports, allowing us to use specifications
of sub-protocols in our proofs. Critically the proofs are carried out ultimately at
the level of source code, thus legitimising noninterference security goals at that
level of detail.

The relationship to other formal semantics of non-intereference has been sum-
marised in detail elsewhere [13,14]; it is comparable to Leino [8] and Sabelfeld
[15], but differs in details; and it shares the goals of the pioneering work of Mantel
[9] and Engelhardt [5].

Our work sits between two communities. On the one hand there are those who
reason about code at the source level, and in some cases build (semi-)automated
tools to help them do so. Reasoning that way about security however is quite
rare; and this community generally does not study the advanced theoretical
models of semantics for security for their own sake.

The Secret Art of Computer Programming 77

On the other hand, there are those who study or create the mathematics upon
which cryptography and secrecy depend. But it is rare to find there a serious
interest as well in the problems of transferring their insights to the source-code
level6.

We try to place our contribution in between the two groups, drawing inspi-
ration from the concerns of both and hoping in return to contribute something
towards bridging the gap.

Thus although there are many ingenious protocols involving secret informa-
tion, there is as yet limited support for their code-level justification: most new
algorithmic/theoretical insights are presented as a mixture of pseudo-code and
English (or other natural language). Our work can be seen as an early step
towards bridging the cryptographic/software gap.

Future work on this topic will be to develop a “probabilistic Shadow” to enable
stronger cryptographic guarantees, quantitative rather than only qualitative, to
be faithfully transferred to source-level computer code.

References

1. Abadi, M., Rogoway, P.: Reconciling two views of crytography (the computa-
tional soundness of formal encrytion) . In: Watanabe, O., Hagiya, M., Ito, T.,
van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22.
Springer, Heidelberg (2000)

2. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

3. Back, R.-J.R.: Correctness preserving program refinements: Proof theory and
applications. Tract 131, Mathematisch Centrum, Amsterdam (1980)

4. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–982 (1999)

5. Engelhardt, K., van der Meyden, R., Moses, Y.: A refinement theory that supports
reasoning about knowledge and time. In: Nieuwenhuis, R., Voronkov, A. (eds.)
LPAR 2001. LNCS, vol. 2250, pp. 125–141. Springer, Heidelberg (2001)

6. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proc IEEE Symp
on Security and Privacy, pp. 75–86 (1984)

7. Jacob, J.: Security specifications. In: IEEE Symposium on Security and Privacy,
pp. 14–23 (1988)

8. Leino, K.R.M., Joshi, R.: A semantic approach to secure information flow. Science
of Computer Programming 37(1–3), 113–138 (2000)

9. Mantel, H.: Preserving information flow properties under refinement. In: Proc IEEE
Symp. Security and Privacy, pp. 78–91 (2001)

10. McIver, A.K., Morgan, C.C.: Sums and lovers: Case studies in security, composi-
tionality and refinement. Submitted to Formal Methods 2009 (2009)

6 How many serious programmers do not understand the simple theory of lists under-
lying Mergesort, say? Not many. How many serious implementations of Mergesort
contain at least one bug? Probably quite a lot: because of aliasing, source-level rea-
soning over linked lists is difficult. There really is a gap.

In the area of unifying the cryptological and formal methods communities there
is some work, notably Abadi and Rogoway [1].

78 A.K. McIver

11. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Tech. Mono Comp. Sci. Springer, New York (2005)

12. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall,
Englewood Cliffs (1994), web.comlab.ox.ac.uk/oucl/publications/books/PfS/

13. Morgan, C.C.: The Shadow Knows: Refinement of ignorance in sequential pro-
grams. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359–378. Springer,
Heidelberg (2006); Treats Dining Cryptographers

14. Morgan, C.C.: The Shadow Knows: Refinement of ignorance in sequential pro-
grams. Science of Computer Programming 74(8) (2009); Treats Oblivious Transfer

15. Sabelfeld, A., Sands, D.: A PER model of secure information flow. Higher-Order
and Symbolic Computation 14(1), 59–91 (2001)

web.comlab.ox.ac.uk/oucl/publications/books/PfS/

Verification, Testing and Statistics

Sriram K. Rajamani

Microsoft Research India
sriram@microsoft.com

Formal verification is the holy grail of software validation. Practical applications
of verification run into two major challenges. The first challenge is in writing
detailed specifications, and the second challenge is in scaling verification algo-
rithms to large software. In this talk, we present possible approaches to address
these problems:

– We propose using statistical techniques to raise the level of abstraction,
and automate the tedium in writing detailed specifications. We present our
experience with the Merlin project [4], where we have used probabilistic
inference to infer specifications for secure information flow, and discovered
several vulnerabilities in web applications.

– We propose combining testing with verification to help scalability, an reduc-
ing false errors. We present our experience with the Yogi project [1,2,3,5],
where we have built a verifier that combines static analysis with testing to
find bugs and verify properties of low-level systems code.

Acknowledgment. We thank our collaborators Anindya Banerjee, Nels Beck-
man, Bhargav Gulavani, Patrice Godefroid, Tom Henzinger, Yamini Kannan,
Ben Livshits, Aditya Nori, Rob Simmons, Sai Tetali and Aditya Thakur.

References

1. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA 2008: International Symposium on Software Testing and Analysis, pp. 3–14.
ACM Press, New York (2008)

2. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional May-Must Pro-
gram Analysis: Unleashing The Power of Alternation. Microsoft Research Technical
Report MSR-TR-2009-2, Microsoft Research (2009)

3. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.:
SYNERGY: A new algorithm for property checking. In: FSE 2006: Foundations
of Software Engineering, pp. 117–127. ACM Press, New York (2006)

4. Livshits, B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: Specification Infer-
ence for Explicit Information Flow Problems. To appear in PLDI 2009: Programming
Language Design and Implementation. ACM Press, New York (2009)

5. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The Yogi Project: Software
Property Checking via Static Analysis and Testing. In: TACAS 2009: Tools and
Algorithms for Constuction and Analysis of Systems. LNCS, vol. 5509, pp. 178–181.
Springer, Heidelberg (2009)

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, p. 79, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ν-Types for Effects and Freshness Analysis

Massimo Bartoletti1, Pierpaolo Degano2, Gian Luigi Ferrari2,
and Roberto Zunino3

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Italy

Abstract. We define a type and effect system for a λ-calculus extended
with side effects, in the form of primitives for creating and accessing
resources. The analysis correctly over-approximates the sequences of re-
source accesses performed by a program at run-time. To accurately anal-
yse the binding between the creation of a resource and its accesses, our
system exploits a new class of types. Our ν-types have the form νN. τ�H ,
where the names in N are bound both in the type τ and in the effect H ,
that represents the sequences of resource accesses.

1 Introduction

The paramount goal of static analysis is that of constructing sound, and as
precise as possible, approximations to the behaviour of programs. Various kinds
of behaviour have been studied, to guarantee that the analysed programs enjoy
some properties of interest: for instance, that a program has no type errors,
that communication channels are used correctly, that the usage of resources
respects some prescribed policy, etc. In the classical approach to type systems,
one approximates values and expressions as types, and at the same time checks
the desired property over the constructed abstraction.

Separating the concerns of constructing the approximation and of verifying
it has some advantages, however. First, once the first step is done, one can
check the same abstract behaviour against different properties. Second, one can
independently improve the accuracy of the first analysis and the efficiency of the
verification algorithm. Third, if we devise a complete verification technique (for
a given abstraction), then we have a good characterization of the accuracy of
the abstraction with respect to the property of interest.

In this paper, we propose a new sort of types (called ν-types) for classifying
programs according to their abstract behaviour, that we define as follows. Call
resource any program object (a variable, a channel, a kernel service, etc.) relevant
for the property of interest, and call event any action performed on a resource (a
variable assignment, an output along a channel, a system call, etc.). Then, the
abstract behaviour we are concerned with is the set of all the possible sequences
of events (histories) that can result from the execution of a program.

Our reference program model is a call-by-value λ-calculus extended with side
effects, that model events, and with a primitive for creating new resources. Our

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 80–95, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ν-Types for Effects and Freshness Analysis 81

ν-types have the form νN. τ � H , where the names n ∈ N are bound both in
the type τ and in the effect H , that is a history expression that represents the
possible histories. Essentially, history expressions are Basic Process Algebra [7]
processes extended with name restriction à la π-calculus [14]. We showed in [5]
that history expressions are a suitable model upon which one can develop sound
and complete techniques for verifying history-based usage policies of programs.

The possibility of creating new resources poses the non-trivial problem of
correctly recording the binding of a fresh name with its possible uses in types
and effects. For instance, consider the following function:

f = λy.new x in α(x);x

Each application of f creates a new resource r, fires the event α(r), and finally
returns r. A suitable ν-type for f would then be (1 → (νn.{n} � α(n))) � ε.
The unit type 1 for the parameter y is irrelevant here. Since f is a function,
the actual effect is empty, denoted by the history expression ε. The return type
νn. {n} � α(n) correctly predicts the behaviour of applying f . The binder νn
guarantees the freshness of the name n in the type {n} – which indicates that
f will return a fresh resource r – and in the history expression α(n). Indeed,
νn. α(n) abstracts from any sequence α(r), where r is a fresh resource.

Consider now the following term:

let f = λy.new x in α(x);x in β(f∗; f∗)
Here we apply f twice to the value ∗, and we fire β on the resource that results
from the second application of f . A suitable ν-type for the above would be:

1 � (νn. α(n)) · (νn′. α(n′) · β(n′))

The first part νn. α(n) of the history expression describes the behaviour of the
first application of f , while the second part νn′. α(n′) · β(n′) approximates the
second application, and firing β on the returned name n′. The binders ensure
that the resources represented by n and n′ are kept distinct.

As a more complex example, consider the following recursive function (where z
stands for the whole function g within its body):

g = λzx.new y in (α(y); (b(x)) ?x : (b′(y)) ? z y : z x)

The function g creates a new resource upon each loop; if g ever terminates, it
either returns the resource passed as parameter, or one of the resources created.
If no further information is known about the boolean predicates b and b′, we
cannot statically predict which resource is returned. A suitable ν-type for g is:

({?} → ({?}� μh. νn. α(n) · (h + ε))) � ε

Being g a function, its actual effect is ε. Its functional type is {?} → {?}, meaning
that g takes as parameter any resource, and it returns an unknown resource. The
latent effect μh. νn. α(n)·(h+ε) represents the possible histories generated when
applying g, i.e. any finite sequence α(r0) · · ·α(rk) such that ri �= rj for all i �= j.

The examples given above witness some inherent difficulties of handling new
names in static analysis. We take as starting point the type and effect system

82 M. Bartoletti et al.

of [18], which handles a λ-calculus with side effects, but without resource cre-
ation. We extend the calculus of [18] with the new primitive, and we give it a
big-step operational semantics. We then define effects (i.e. history expressions)
and our ν-types, together with a subtyping/subeffecting relation. We introduce
then a type and effect system for our calculus, which associates any well-typed
term with a ν-type that correctly approximates the possible run-time histories.
We finally present some possible extensions to our work. Further typing examples
and the proofs of our statements can be found in [6].

Related work. Our investigation started in [1] to deal with history-based ac-
cess control in a calculus with side effects, but without creation of resources. In
a subsequent paper [3] we featured a preliminary treatment of resource creation,
through a conservative extension of simple types. The idea was that of using a
special event new(n) as a “weak” binder – a sort of gensym() – instead of using
explicit ν-binders. While this allowed for reusing some of the results of [18], e.g.
type inference, it also required a further analysis step, called “bindification” to
place the ν-binders at the right points in the inferred effect. A first drawback
of this approach is that bindification is not always defined, because the intro-
duced scopes of names may interfere dangerously, e.g. in new(n) · new(n) · α(n).
A second, more serious, drawback is that our theory of weak binders resulted
too complex to be usable in practice [4]. Several definitions (e.g. the bound and
free names, the semantics of history expressions, and the subeffecting relation)
needed particular care to deal with the corner cases, so leading to extremely
intricate proofs. The ν-types presented here are an attempt to solve both these
problems. For the first problem, bindification is no longer needed, because ν-
binders are already embodied into types. For the second problem, we found the
proofs about ν-types, although not immune from delicate steps (e.g. checking
capture avoidance in α-conversions) are far easier than those with weak binders.
Another technical improvement over [3] is the Subject Reduction Lemma. Ac-
tually, in [3] we used a small-step semantics, which “consumes” events as they
are fired. As a consequence, the effect of an term cannot be preserved under
transitions. To prove type soundness, we had then to deal with a weak version of
Subject Reduction, where the effects before and after a transition are in a some-
what convoluted relation. The proof of this statement was extremely complex,
because of the weak induction hypothesis. Unlike [3], here we adopt a big-step
semantics, which does not consume events. This allows us to establish Subject
Reduction in the classical form, where the type is preserved under transitions.

In [2] we combined a type and effect analysis and a model-checking technique
in a unified framework, to statically verify history-based policies of programs, in
a λ-calculus enriched with primitives to create and use resources, and lexically-
scoped usage policies. The present paper extends some results of [2] by presenting
further technical achievements about the type and effect system and its relation
with the program semantics, in a cleaner setting.

A number of formal techniques have been developed to handle binding and
freshness of names. The language FreshML [17] has constructors and destructors
for handling bound names. This allows for elegantly manipulating object-level

ν-Types for Effects and Freshness Analysis 83

syntactical structures up-to α-conversion, so relieving programmers from the
burden of explicitly handling capture-avoidance. The FreshML type system how-
ever has a different goal than ours, since it extends the ML type system, while
it is not concerned with approximating run-time histories like ours.

Skalka and Smith [18,19] proposed a λ-calculus with local checks that enforce
linear μ-calculus properties [8] on the past history. A type and effect system ap-
proximates the possible run-time histories, whose validity can be statically ver-
ified by model checking μ-calculus formulae over Basic Process Algebras [7,10].
Compared with our type system, [18] also allows for let-polymorphism, subtyp-
ing of functional types, and type inference – but it does not handle resource
creation. In Sec. 5 we further discuss these issues.

Regions have been used in type and effect systems [20,15] to approximate new
names in impure call-by-value λ-calculi. The static semantics of [15], similarly
to ours, aims at over-approximating the set of run-time traces, while that of [20]
only considers flat sets of events. A main difference from our approach is that,
while our ν-types deal with the freshness of names, both [20] and [15] use uni-
versal polymorphism for typing resource creations. Since a region n stands for
a set of resources, in an effect α(n) · β(n) their static approximation does not
ensure that α and β act on the same resource. This property can instead be
guaranteed in our system through the effect νn.(α(n) ·β(n)). This improvement
in the precision of approximations is crucial, since it allows us to model-check
in [5] regular properties of traces (e.g. permit read(file) only after an open(file))
that would otherwise fail with the approximations of [20,15].

Igarashi and Kobayashi [12] extended the λ-calculus with primitives for cre-
ating and accessing resources, and for defining their permitted usage patterns.
An execution is resource-safe when the possible patterns are within the permit-
ted ones. A type system guarantees well-typed expressions to be resource-safe.
Types abstract the usages permitted at run-time, while typing rules check that
resource accesses respect the deduced permitted usages. Since the type system
checks resource-safety while constructing the types, type inference is undecidable
in the general case. Separating the analysis of effects from their verification, as
we did here, led to a simpler model of types. Also, it allowed us to obtain in [5] a
sound, complete and PTIME verification algorithm for checking approximations
against usage policies. Clearly, also [12] would be amenable to verification, pro-
vided that one either restricts the language of permitted usages to a decidable
subset, or one uses a sound but incomplete algorithm.

The λν-calculus of [16] extends the pure λ-calculus with names. In contrast
to λ-bound variables, nothing can be substituted for a name, yet names can
be tested for equality. Reduction is confluent, and it allows for deterministic
evaluation; also, all the observational equivalences of the pure λ-calculus still hold
in λν. Unlike our calculus, names cannot escape their static scope, e.g. νn.n is
stuck. Consequently, the type system of λν is not concerned with name extrusion
(and approximation of traces), which is a main feature of ours.

Types and effects are also successfully used in process calculi. Honda, Yoshida
and Carbone [11] defined multi-party session types to ensure a correct

84 M. Bartoletti et al.

orchestration of complex systems. Unlike ours, their types do not contain ν
binders: the main feature there is not tracking name flow, but reconciling global
and local views of multi-party protocols. Igarashi and Kobayashi [13] and Chaki,
Rajamani and Rehof [9] defined behavioural types for the π-calculus. In both
these proposals, a π-calculus process is abstracted into a CCS-like processes,
with no operators for hiding or creating names. Abstractions with ν-binders,
however, make it possible to statically verify relevant usage properties about the
fresh resources used by a program (see e.g. [5]).

2 A Calculus for Resource Access and Creation

In our model, resources are system objects that can either be statically available
in the environment (Ress, a finite set), or be dynamically created (Resd, a de-
numerable set). Resources are accessed through a given finite set of actions. An
event α(r) abstracts from accessing the resource r through the action α. When
the target resource of an action α is immaterial, we stipulate that α acts on some
special (static) resource, and we write just α for the event. A history is a finite
sequence of events. In Def. 1 we introduce the needed syntactic categories.

Definition 1. Syntactic categories

r, r′, . . . ∈ Res = Ress ∪ Resd resources (static/dynamic)
α, α′, . . . ∈ Act actions (a finite set)
α(r), . . . ∈ Ev = Act× Res events (η, η′, . . . ∈ Ev∗ are histories)
x, x′, . . . ∈ Var variables
n, n′, . . . ∈ Nam names

We consider an impure call-by-value λ-calculus with primitives for creating and
accessing resources. The syntax is in Def. 2. Variables, abstractions, applications
and conditionals are as expected. The definition of guards b in conditionals is
irrelevant here, and so it is omitted. The variable z in λzx. e is bound to the
whole abstraction, so to allow for an explicit form of recursion. The parameter
of an event may be either a resource or a variable. The term new represents the
creation of a fresh resource. The term ! models an aborted computation.

Definition 2. Syntax of terms

e, e′ ::= x variable
r resource
(b) ? e : e′ conditional
λzx. e abstraction (x, z ∈ Var)
e e′ application
α(ξ) event (ξ ∈ Var ∪ Res)
new resource creation
! aborted computation

ν-Types for Effects and Freshness Analysis 85

Values v, v′, . . . ∈ Val are variables, resources, abstractions, and the term ! . We
write ∗ for a fixed, closed value. We shall use the following abbreviations, the
first four of which are quite standard:

λz . e = λzx. e if x �∈ fv(e) λx. e = λzx. e if z �∈ fv(e)

e; e′ = (λ. e′) e (let x = e in e′) = (λx. e′) e

new x in e = (λx. e) (new) α(e) = (let z = e in α(z))

Some auxiliary notions are needed to define the operational semantics of terms.
A history context is a finite representation of an infinite set of histories that
only differ for the choice of fresh resources. For instance, the set of histories
{α(r) | r ∈ Res } is represented by the context new x in α(x); •. Contexts
composition is crucial for obtaining compositionality.

Definition 3. History contexts

A history context C is inductively defined as follows:

C ::= • | α(ξ); C | new x in C

The free and the bound variables fv(C) and bv (C) of C are defined as expected.
We write C[C′] for C[C′[•]], also assuming the needed α-conversions of vari-
ables so to ensure bv(C) ∩ bv(C′) = ∅ (note that bn(C) ∩ fn(C′) �= ∅ is ok).

We specify in Def. 4 our operational semantics of terms, in a big-step style.
Transitions have the form e

C==⇒ v, meaning that the term e evaluates to the
value v, while producing a history denoted by C.

Definition 4. Big-step semantics of terms

The big-step semantics of a term e is defined by the relation e
C==⇒ v, which is

the least relation closed under the rules below.

E-Val v
•==⇒ v E-Bang e

•==⇒ ! E-If

eB(b)
C==⇒ v

(b) ? ett : eff
C==⇒ v

E-Ev α(ξ)
α(ξ); •

====⇒ ∗ E-New new new x in •=======⇒ x

E-Beta

e
C==⇒ λzx. e

′′ e′ C′
==⇒ v′ �= ! e′′{v′/x, λzx. e

′′/z} C′′
==⇒ v

e e′
C[C′[C′′]]

======⇒ v

E-BetaBang1

e
C==⇒ !

e e′ C==⇒ !
E-BetaBang2

e
C==⇒ v �= ! e′ C′

==⇒ !

e e′
C[C′]

====⇒ !

The rules (E-Val) and (E-Ev) are straightforward. The rule (E-Bang) aborts
the evaluation of a term, so allowing us to observe the finite prefixes of its

86 M. Bartoletti et al.

histories. For conditionals, the rule (E-If) assumes as given a total function
B that evaluates the boolean guards. The rule (E-New) evaluates a new to
a variable x, and records in the context new x in • that x may stand for
any (fresh) resource. The last three rules are for β-reduction of an application
e e′. The rule (E-Beta) is used when both the evaluations of e and e′ terminate;
(E-BetaBang1) is for when the evaluation of e has been aborted; (E-BetaBang2)
is used when the evaluation e terminates while that of e′ has been aborted.

Example 1. Let e = (λy. α(y))new. We have that:

λy. α(y) •==⇒ λy. α(y) new new x in •=======⇒ x α(x)
α(x);•

====⇒ ∗
e

new x in α(x);•
==========⇒ ∗

Consider now the following two recursive functions:

f = λzx. (α; zx) g = λzx.new y in (b(x)) ? y : z∗
The function f fires the event α and recurse. The function g creates a new
resource upon each loop; if it ever terminates, it returns the last resource created.
For all k ≥ 0 and for all contexts C, let Ck be inductively defined as C0 = • and

Ck+1 = C[Ck]. Then, for all k ≥ 0, we have that f∗ (α;•)k

====⇒ ! , and, assuming

b(x) non-deterministic, g∗ (new w in •)k

=========⇒ ! and g∗ (new w in •)k[new y in •]
=================⇒ y. ��

We now define the set of historiesH(e) that a term e can produce at run-time. To
this purpose, we exploit the auxiliary operator H(C,R), that constructs the set
of histories denoted by the context C under the assumption that R is the set of
available resources (Def. 5). Note that all the histories in H(e) are “truncated”
by a ! . Only looking at H(e), gives then no hint about the termination of e.
However, this is not an issue, since our goal is not checking termination, but
approximating all the possible histories a term can produce.

Definition 5. Run-time histories

For each history context C such that fv (C) = ∅, for all R ⊆ Res, and for all
terms e, we define H(C,R) and H(e) inductively as follows:

H(•, R) = { !}
H(α(r);C,R) = { !} ∪ {α(r)η | η ∈ H(C,R) }

H(new x in C,R) = { !} ∪⋃r �∈R∪Ress
H(C{r/x}, R ∪ {r})

H(e) = { η ∈ H(C, ∅) | e C==⇒ v }

Example 2. Recall from Ex. 1 the term e = (λy. α(y))new. All the possible
observations (i.e. the histories) of the runs of e are represented by H(e) =
H(new x in α(x); •, ∅) = { !} ∪ ⋃r∈Res{α(r) !}. Note how the variable x in
C was instantiated with all the possible fresh resources r. ��

ν-Types for Effects and Freshness Analysis 87

3 Effects and Subeffecting

History expressions are used to approximate the behaviour of terms. They in-
clude ε, representing the empty history, variables h, events α(ρ), resource cre-
ation νn.H , sequencing H ·H ′, non-deterministic choice H+H ′, recursion μh.H ,
and ! , a nullary event that models an aborted computation. Hereafter, we as-
sume that actions can also be fired on a special, unknown resource denoted by
“?”, typically due to approximations made by the type and effect system. In
νn.H , the free occurrences of the name n in H are bound by ν; similarly acts
μh for the variable h. The free variables fv (H) and the free names fn(H) are
defined as expected. A history expression H is closed when fv (H) = ∅ = fn(H).

Definition 6. Syntax of history expressions

H,H ′ ::= ε empty
! truncation
h variable
α(ρ) event (ρ ∈ Res ∪Nam ∪ {?})
νn.H resource creation
H ·H ′ sequence
H + H ′ choice
μh.H recursion

We define below a denotational semantics of history expressions. Compared
with [18,3], where labelled transition semantics were provided, here we find a
denotational semantics more suitable, e.g. for reasoning about the composition
of effects. Some auxiliary definitions are needed.

The binary operator � (Def. 7) composes sequentially a history η with a set
of histories X , while ensuring that all the events after a ! are discarded. For
instance, H = (μh. h) ·α(r) will never fire the event α(r), because of the infinite
loop that precedes the event. In our semantics, the first component μh. h will
denote the set of histories { !}, while α(r) will denote { ! , α(r), α(r) !}. Combining
the two semantics results in { !} � { ! , α(r), α(r) !} = { !}.
Definition 7. Let X ⊆ Ev∗ ∪ Ev∗ ! , and x ∈ Ev ∪ { !}. We define x�X and its
homomorphic extension η �X, where η = a1 · · · an, as follows:

x�X =

{
{ x η | η ∈ X } if x �= !
{x} if x = !

η �X = a1 � · · · � an �X

The operator � (Def. 8) defines sequential composition between semantic func-
tions, i.e. functions from (finite) sets of resources to sets of histories. To do that,
it records the resources created, so to avoid that a resource is generated twice.
For instance, let H = (νn. α(n)) · (νn′. α(n′)). The component νn′. α(n′) must
not generate the same resources as the component νn. α(n), e.g. α(r0)α(r0) is
not a possible history of H . The definition of � exploits the auxiliary function
R, that singles out the resources occurring in a history η. Also, ↓∈ R(η) indicates
that η is terminating, i.e. it does not contain any ! ’s denoting its truncation.

88 M. Bartoletti et al.

Definition 8. Let Y0, Y1 : Pfin(Res)→ P(Ev∗∪Ev∗ !). The composition Y0 �Y1
is defined as follows:

Y0 � Y1 = λR.
⋃ { η0 � Y1(R ∪ R(η0)) | η0 ∈ Y0(R) }

where, for all histories η, R(η) ⊆ Res ∪ {↓} is defined inductively as follows:

R(ε) = {↓} R(η α(ρ)) =

{
R(η) ∪ {r} if ρ = r and ! �∈ η

R(η) if ρ =?
R(η !) = R(η)\{↓}

The denotational semantics �H�θ of history expressions (Def. 9) is a function
from finite sets of resources to the cpo D0 of sets X of histories such that (i)
! ∈ X , and (ii) η ! ∈ X whenever η ∈ X . The finite set of resources collects
those already used, so making them unavailable for future creations. As usual,
the parameter θ binds the free variables of H (in our case, to values in D0).
Note that the semantics is prefix-closed, i.e. for each H and R, the histories in
�H�(R) comprise all the possible truncated prefixes.

Definition 9. Denotational semantics of history expressions

Let D0 be the following cpo of sets of histories ordered by set inclusion: D0 =
{X ⊆ Ev∗ ∪ Ev∗ ! | ! ∈ X ∧ ∀η ∈ X : η ! ∈ X }. The set { !} is the bottom
element of D0. Let Dden = Pfin(Res) → D0 be the cpo of functions from the
finite subsets of Res to D0. Note that the bottom element ⊥ of Dden is λR. { !}.
Let H be a history expression such that fn(H) = ∅, and let θ be a mapping from
variables h to functions in Dden such that dom(θ) ⊇ fv(H). The denotational
semantics �H�θ is a function in Dden, inductively defined as follows.

�ε�θ = λR. { ! , ε} � !�θ = ⊥ �h�θ = θ(h) �H ·H ′
�θ = �H�θ � �H ′

�θ

�νn.H�θ = λR.
⋃

r �∈R∪Ress
�H{r/n}�θ(R ∪ {r}) �H + H ′

�θ = �H�θ � �H ′
�θ

�α(ρ)�θ = λR. { ! , α(ρ), α(ρ) !} �μh.H�θ =
⊔

i≥0 f i(⊥) f(Z) = �H�θ{Z/h}

The first three rules are straightforward. The semantics of H ·H ′ combines the
semantics of H and H ′ with the operator �. The semantics of νn.H joins the
semantics of H , where the parameter R is updated to record the binding of n
with r, for all the resources r not yet used in R. The semantics of H + H ′ is
the least upper bound of the semantics of H and H ′. The semantics of an event
comprises the possible truncations. The semantics of a recursion μh.H is the
least upper bound of the ω-chain f i(λR.{ !}), where f(Z) = �H�θ{Z/h}.

We first check that the above semantics is well-defined. First, the image of
the semantic function is indeed in D0: it is easy to prove that, for all H , θ
and R, ! ∈ �H�θ(R) and η ! ∈ �H�θ(R) whenever η ∈ �H�θ(R). Lemma B3 [6]
guarantees that the least upper bound in the last equation exists (since f is
monotone). Also, since f is continuous and ⊥ is the bottom of the cpo Dden, by
the Fixed Point theorem the semantics of μh.H is the least fixed point of f .

ν-Types for Effects and Freshness Analysis 89

Example 3. Consider the following history expressions:

H0 = μh. α(r) · h H1 = μh. h · α(r) H2 = μh. νn. (ε + α(n) · h)

Then, �H0�(∅) = α(r)∗!, i.e. H0 generates histories with an arbitrary, finite num-
ber of α(r). Note that all the histories of H0 are non-terminating (as indicated
by the !) since there is no way to exit from the recursion. Instead, �H1�(∅) = {!},
i.e. H1 loops forever, without generating any events. The semantics of �H2�(∅)
consists of all the histories of the form α(r1) · · ·α(rk) or α(r1) · · ·α(rk)!, for all
k ≥ 0 and pairwise distinct resources ri. ��
We now define a preorder H � H ′ betweeen history expressions, that we shall
use in subtyping. Roughly, when H � H ′ holds, the histories of H are included in
those of H ′. The preorder � includes equivalence, and it is closed under contexts.
A history expression H can be arbitrarily “weakened” to H +H ′. An event α(ρ)
can be weakened to α(?), as ? stands for an unknown resource.

Definition 10. Subeffecting

The relation = over history expressions is the least congruence including
α-conversion such that the operation + is associative, commutative and idem-
potent; · is associative, has identity ε, and distributes over +, and:

μh.H = H{μh.H/h} μh.μh′.H = μh′.μh.H νn.νn′.H = νn′.νn.H

νn.ε = ε νn.(H + H ′) = (νn.H) + H ′ if n �∈ fn(H ′)

νn.(H ·H ′)=H ·(νn.H ′) if n �∈ fn(H) νn.(H ·H ′)=(νn.H)·H ′ if n �∈ fn(H ′)

The relation � over history expressions is the least precongruence such that:

H � H ′ if H = H ′ H � H + H ′ α(ρ) � α(?)

We now formally state that the subeffecting relation agrees with the semantics
of history expressions, i.e. it implies trace inclusion. Actually, this turns out to
be a weaker notion than set inclusion, because the rule α(ρ) � α(?) allows for
abstracting some resource with a ?. We then render trace inclusion with the
preorder ⊆? defined below. Intuitively, η ⊆? η′ means that η concretizes each
unknown resource in η′ with some r ∈ Res.

Definition 11. The preorder ⊆? between histories is inductively defined as:

ε ⊆? ε η α(ρ) ⊆? η′ α(ρ′) if η ⊆? η′ and ρ′ ∈ {ρ, ?} η ! ⊆? η′ ! if η ⊆? η′

The preorder ⊆? is extended to sets of histories as follows:

I ⊆? J if ∀η ∈ I : ∃η′ ∈ J : η ⊆? η′

The correctness of subeffecting is stated in Lemma 1 below. When H = H ′

(resp. H � H ′), the histories of H are equal to (resp. are ⊆? of) those of H ′.

Lemma 1. For all closed history expressions H,H ′ and for all R ⊆ Res:
– if H = H ′ then �H�(R) = �H ′

�(R)
– if H � H ′ then �H�(R) ⊆? �H ′

�(R).

90 M. Bartoletti et al.

4 ν-Types and Type and Effect System

In this section we introduce ν-types, and we use them to define a type and effect
system for the calculus of Section 2 (Def. 14). Informally, a term with ν-type
ζ = νN. τ � H will have the pure type τ , and the effect of its evaluation will be
a history included in the denotation of the history expression H . The heading
νN is used to bind the names n ∈ N both in τ and H . Pure types comprise:

– the unit type 1, inhabited by the value ∗ (and by !).
– sets S, to approximate the possible targets of actions. Sets S either contain

resources and (possibly) one name, or we have S = {?}, meaning that the
target object is unknown.

– functional types τ → ζ. The type ζ is a ν-type, that may comprise the latent
effect associated with an abstraction.

Example 4. The term e = (b) ? r : r′ has type {r, r′}� ε (we omit the νN when
N = ∅). The pure type {r, r′} means that e evaluates to either r or r′, while
producing an empty history (denoted by the history expression ε).

The term e′ = new x in α(x);x creates a new resource r, fires on it the action
α, and then evaluates to r. A suitable type for e′ is then νn. {n}� α(n).

The function g = λzy.new x in (α(x); (b) ?x : z x), instead, has type 1 →
({?}� μh. νn. α(n) · (ε + h)) � ε. The latent effect μh. νn. α(n) · (ε + h) records
that g is a recursive function that creates a fresh resource upon each recursion
step. The type {?} says that g will return a resource with unknown identity,
since it cannot be predicted when the guard b will become true. ��
Type environments are finite mappings from variables and resources to pure
types. Roughly, a typing judgment Δ � e : νN. τ � H means that, in a type
environment Δ, the term e evaluates to a value of type νN. τ , and it produces a
history represented by νN.H . Note however that the ν-type νN. τ � H is more
precise than taking νN. τ and νN.H separately. Indeed, in the ν-type the names
N indicate exactly the same fresh resources in both τ and H .

Definition 12. Types, type environments, and typing judgements

S ::= R | R ∪ {n} | {?} R ⊆ Res, n ∈ Nam, S �= ∅ resource sets
τ ::= 1 | S | τ −→ ζ pure types
ζ ::= νn. ζ | τ � H ν-types
Δ ::= ∅ | Δ; r : {r} | Δ; x : τ x �∈ dom(Δ) type environments
Δ � e : ζ typing judgements

We also introduce the following shorthands (we write N �∩M for N ∩M = ∅):
νN. ζ = νn1 · · · νnk. ζ if N = {n1, . . . nk}
H · ζ = νN. τ � H ·H ′ if ζ = νN. τ � H ′ and N �∩ fn(H)

We say νN. τ � H is in ν-normal form (abbreviated νNF) when N ⊆ fn(τ).

ν-Types for Effects and Freshness Analysis 91

We now define the subtyping relation� on ν-types. It builds over the subeffecting
relation between history expressions (Def. 10). The first equation in Def. 13
below is a variant of the usual name extrusion. The first two rules for � allow
for weakening a pure type S to a wider one, or to the pure type {?}. The last
rule extends to ν-types the relations � over pure types and over effects.

Definition 13. Subtypes

The equational theory of types includes that of history expressions (if H = H ′

then τ � H = τ � H ′), α-conversion of names, and the following equation:

νn. (τ � H) = τ � (νn.H) if n �∈ fn(τ)

The relation � over pure types is the least preorder including = such that:

S � S′ if S ⊆ S′ and S �= {?} S � {?}
νN. τ � H � νN. τ ′ � H ′ if τ � τ ′ and H � H ′ and (fn(τ ′) \ fn(τ))�∩N

Note that the side condition in the last rule above prevents from introducing
name captures. For instance, let ζ = νn. {r} � α(n) and ζ′ = νn. {r, n}� α(n).
Since n ∈ fn({r, n}) \ fn({r}), then ζ �� ζ′. Indeed, by the equational theory:

ζ = {r}� νn. α(n) = {r}� νn′. α(n′)

After an α-conversion, the subtyping ζ � ζ′′ = {r, n}� νn′. α(n′) holds. Indeed,
in ζ′′ the name n′ upon which α acts has nothing to do with name n in the pure
type {r, n}, while in ζ′ both α and the pure type refer to the same name.

Remark 1. Note that it is always possible to rewrite any type νN. τ �H in νNF.
To do that, let N̂ = N ∩ fn(τ), and let Ň = N \ fn(τ). Then, the equational
theory of types gives: νN. τ � H = νN̂ . τ � (νŇ .H).

We now state in Lemma 2 a fundamental result about subtyping of ν-types.
Roughly, whenever ζ � ζ′, it is possible to α-convert the names of ζ so to
separately obtain subtyping between the pure types of ζ and ζ′, and subeffecting
between their effects. Note that Remark 1 above enables us to use Lemma 2 on
any pair of types, after rewriting them in νNF.

Lemma 2. Let νN. τ � H � νN ′. τ ′ � H ′, where both types are in νNF.

– If τ ′ �= {?}, then there exists a bijective function σ : N ↔ N ′ such that
τσ � τ ′ and Hσ � H ′.

– If τ ′ = {?}, then τ � τ ′ and νN.H � H ′.

Example 5. Let ζ = νn. {n}� α(n), let ζ′ = νn′. {n′, r} � α(n′) + α(r), and let
ζ′′ = {?}�νn′′. α(n′′)+α(?). By using Lemma 2 on ζ � ζ′, we obtain σ = {n′/n}
such that {n}σ � {n′, r} and α(n)σ � α(n′) + α(r). By Lemma 2 on ζ′ � ζ′′,
we find {n′, r} � {?} and νn′. α(n′) + α(r) � νn′′. α(n′′) + α(?). ��

92 M. Bartoletti et al.

Definition 14. Type and effect system

T-Unit Δ � ∗ : 1 � ε T-Bang Δ � ! : ζ T-Var Δ; ξ : τ � ξ : τ � ε

T-New Δ � new : νn. {n}� ε T-Ev Δ; ξ : S � α(ξ) : 1 �
∑

ρ∈S α(ρ)

T-AddVar

Δ � e : ζ

Δ; ξ : τ � e : ζ
T-Abs

Δ;x : τ ; z : τ −→ ζ � e : ζ

Δ � λzx.e : (τ −→ ζ) � ε

T-Wk

Δ � e : ζ

Δ � e : ζ′
ζ � ζ′ T-If

Δ � e : ζ Δ � e′ : ζ

Δ � (b) ? e : e′ : ζ

T-App

Δ � e : νN.(τ → ζ) � H Δ � e′ : νN ′.(τ � H ′)

Δ � e e′ : ν(N ∪N ′). (H ·H ′ · ζ)
N �∩N ′

N �∩ fn(Δ) �∩N ′

N �∩ fn(H ′)

Here we briefly comment on the most peculiar typing rules.

– (T-Bang) An aborted computation can be given any type, modelling the fact
that nothing is known about the behaviour of the term that was aborted.

– (T-New) The type of a new is a set {n}, where n is bound by an outer νn,
and the actual effect is empty. (We could instead record the resource creation
in the effect, by handling new as we currently do for (λx. αcreated(x);x)new.)

– (T-Ev) An event α(ξ) has type 1, provided that the type of ξ is a set S. The
effect of α(ξ) can be any of the accesses α(ρ) for ρ included in S.

– (T-Abs) The actual effect of an abstraction is the empty history expression,
while the latent effect (included in the type ζ) is equal to the actual effect
of the function body. Note that ζ occurs twice in the premise: to unify those
occurrences, usually one has to resort to recursive history expressions μh.H .

– (T-Wk) This rule allows for weakening of ν-types, according to Def. 13.
– (T-App) The effects in the rule for application are concatenated according

to the evaluation order of the call-by-value semantics (function, argument,
latent effect). The side conditions ensure that there is no clash of names. In
particular, the disjointness condition makes sure that the names created by
the function are never used by the argument.

Example 6. We have the following typing judgements, in the (omitted) empty
typing environment (detailed typing derivations can be found in [6]):

� e1 = (b) ? λzx. α : λzx. β : (1→ (1 � α + β)) � ε

� e2 = λgx. (b′) ? ∗ : g(e1 x) : (1→ (1 � μh. ε + (α + β) · h)) � ε

� e3 = α(new x in (b) ?x : r) : 1 � νn. (α(n) + α(r))
� e4 = let f = (λx.new y in α(y); y) in β(f∗; f∗)

: 1 � (νn. α(n)) · (νn′. α(n′) · β(n′))
� e5 = let g = (new y in λx. α(y); y) in β(g∗; g∗) : 1 � νn. α(n) · α(n) · β(n)
� e6 = (λzx.new y in (b) ?α(y) : β(y); zx) ∗ : 1 � μh. νn. (α(n) + β(n) · h)
� e7 = α((λzx.new y in (b) ? y : β(y); zx) ∗) : 1 � (μh. νn. (ε + β(n) · h)) · α(?)

ν-Types for Effects and Freshness Analysis 93

The effects of e4 and e5 correctly represent the fact that two distinct resources
are generated by e4, while the evaluation of e5 creates a single fresh resource.
The effect of e6 is a recursion, at each step of which a fresh resource is generated.
The effect of e7 is more peculiar: it behaves similarly to e6 until the recursion is
left, when the last generated resource is exported. Since its identity is lost, the
event α is fired on the unknown resource “?”. ��
The following lemma relates the histories denoted by a context C with the typing
of any term of the form C[v]. More precisely, the histories of C are included
(modulo concretization of ?) in those denoted by the effect in the ν-type. Since
the big-step semantics of terms produces both a value v and a context C, this
result will be pivotal in proving the correctness of our type and effect system.
Lemma 3. For all closed history contexts C, values v, and sets of resources R:

Δ � C[v] : νN. τ � H =⇒ H(C,R) ⊆? �νN.H�(R)

We now establish a fundamental result about typing, upon which the proof of
the Subject Reduction lemma is based. Roughly, given a history context C and a
term e, it allows for constructing a type for C[e] from a type for e, and viceversa.
The information needed to extend/reduce a type is contained in T (C,Δ), that
extracts from C a set of binders, a history expression, and a type environment.

Definition 15. For all C and Δ, we inductively define T (C,Δ) as follows:
T (•, Δ) = (ε, ∅)

T (α(ξ);C′, Δ) = (
∑

ρ∈Δ(ξ) α(ρ) ·H ′, Δ′) if T (C′, Δ) = (H ′, Δ′)

T (new x in C′, Δ) = (νn.H ′, Δ′;x :{n}) if T (C′, Δ;x :{n}) = (H ′, Δ′), n �∈ Δ

Hereafter, when writing T (C,Δ) = (νN.H,Δ′) we always assume N = fn(Δ′).
This is always possible by the equational theory of history expressions (Def. 10).

Lemma 4. Let T (C,Δ) = (νN.H,Δ′). Then, for all terms e:
– Δ;Δ′ � e : ζ′ =⇒ Δ � C[e] : νN.H · ζ′
– Δ � C[e] : ζ =⇒ ∃ζ′ : Δ;Δ′ � e : ζ′ and νN.H · ζ′ � ζ

We state below the Subject Reduction Lemma, crucial for proving our type
and effect system correct. We state it in the traditional form where the type is
preserved under computations. This was made possible by the big-step semantics
of terms, where all the information about the generated histories is kept in a
history context. Note instead this were not the case for a small-step operational
semantics, like the one in [3], where histories grow along with computations.
This would require Subject Reduction to “consume” the target type, to render
the events fired, and the resources created, in execution steps. Not preserving
the type would make the inductive statement harder to to write and to prove.

Lemma 5 (Subject Reduction). If Δ � e : ζ and e
C==⇒ v, then Δ � C[v] : ζ.

Theorem 1 below guarantees that our type and effect system correctly approx-
imates the dynamic semantics, i.e. the effect of a term e represents all the pos-
sible run-time histories of e. As usual, precision is lost with conditionals and with

94 M. Bartoletti et al.

recursive functions. Also, you may lose the identity of names exported by recur-
sive functions (see e.g. the type of e7 in Ex. 6).

Theorem 1 (Correctness of effects). For all closed terms e:

Δ � e : νN. τ � H =⇒ H(e) ⊆? �νN.H�(∅)

Proof. By Def. 5, H(e) =
⋃

e
C==⇒v
H(C, ∅). Let C and v be such that e

C==⇒ v.
By Lemma 5, Δ � C[v] : νN. τ � H . By Lemma 3, H(C, ∅) ⊆? �νN.H�(∅).
Therefore, H(e) ⊆? �νN.H�(∅). ��

5 Conclusions

We studied how to correctly and precisely record creation and use of resources
in a type and effect system for an extended λ-calculus. To do that, we used the
ν-quantifier for denoting freshness in types and effects. The main technical result
is Theorem 1, which guarantees the type of a program correctly approximates
its run-time histories. This enables us to exploit the model-checking technique
of [2] to verify history-based usage policies of higher-order programs.

Future Work. To improve the accuracy of types, we plan to relax the constraint
that a single name can appear in pure types S. For instance, consider the term:

e = new x in new y in (β(x);β(y); (b) ?x : y))

Currently, we have the judgements � e : {?} � νn. νn′. β(n) · β(n′), and thus
� α(e) : 1 � νn. νn′. β(n) · β(n′) · α(?) whereas by relaxing the single-name
assumption on pure types S, we would have the more precise judgements � e :
ν{n, n′}. {n, n′}�β(n) ·β(n′) and � α(e) : 1�νn.νn′. β(n) ·β(n′) ·(α(n)+α(n′)).

A further improvement would come from allowing subtyping of functional
types, e.g. by extending Def. 13 with the rule τ → ζ � τ ′ → ζ′ if τ ′ � τ and
ζ � ζ′ (i.e. contravariant in the argument and covariant in the result). Let e.g.
f = λx. ((b) ?λ. α : x);x. With the current definition, we have � f (λ. β) : (1 →
(1 � α + β)) � ε. Note that the function λ. α is discarded, and so we would like
to have instead � f (λ. β) : (1→ (1�β))�ε, which is more accurate. Subtyping
of functional types would allow for such a judgement, using the weakening 1→
(1 � β) � 1→ (1 � α + β) within the typing judgement of f .

The above constraints have been introduced in our model in order to simplify
the proofs, only (for instance, the restriction about the number of names in set
types helps in the proof of Lemma B20 [6]). Even when exploiting these con-
straints, the technical burden in our proofs is still quite heavy: yet, we conjecture
that these restrictions could be lifted without invalidating our main results.

We plan to develop a type and effect inference algorithm, taking [19] as a
starting point. The subtype relation of [19] enjoys some nice properties, e.g.
principal types, which we expect to maintain in our setting. The main differ-
ence is that, while [19] constructs and resolves separately type constraints and
effect constraints, ours demands for dealing with subtyping constraints between

ν-Types for Effects and Freshness Analysis 95

whole ν-types. The key issue is unifying α-convertible terms, which we expect
to manage by exploiting nominal unification [21].

Acknowledgements. This work has been partially supported by EU-FETPI
Global Computing Project IST-2005-16004 SENSORIA (Software Engineering
for Service-Oriented Overlay Computers) and by the MIUR-PRIN project SOFT
(Tecniche Formali Orientate alla Sicurezza).

References
1. Bartoletti, M., Degano, P., Ferrari, G.L.: History based access control with lo-

cal policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332.
Springer, Heidelberg (2005)

2. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. To appear in ACM Tran. Progr. Lang. and Sys.

3. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Types and effects for resource
usage analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47.
Springer, Heidelberg (2007)

4. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Hard life with weak binders.
In: Proc. EXPRESS (2008)

5. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies.
In: Proc. Trustworthy Global Computing (2008)

6. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: ν-types for effects and freshness
analysis.TechnicalReportDISI-09-033,DISI -Università degli Studi diTrento (2009)

7. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science 37 (1985)

8. Bradfield, J.: On the expressivity of the modal μ-calculus. In: Puech, C., Reischuk,
R. (eds.) STACS 1996. LNCS, vol. 1046. Springer, Heidelberg (1996)

9. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-
passing programs. In: Proc. POPL (2002)

10. Esparza, J.: On the decidability of model checking for several μ-calculi and Petri
nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787. Springer, Heidelberg (1994)

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. POPL (2008)

12. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Proc. POPL (2002)
13. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theoretical

Computer Science 311(1-3) (2004)
14. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I and II. In-

formation and Computation 100(1) (September 1992)
15. Nielson, H.R., Nielson, F.: Higher-order concurrent programs with finite commu-

nication topology. In: Proc. POPL (1994)
16. Odersky, M.: A functional theory of local names. In: Proc. POPL (1994)
17. Shinwell, M.R., Pitts, A.M., Gabbay, M.: FreshML: programming with binders

made simple. In: Proc. ICFP (2003)
18. Skalka, C., Smith, S.: History effects and verification. In: Chin, W.-N. (ed.) APLAS

2004. LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004)
19. Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order programs.

Journal of Functional Programming 18(2) (2008)
20. Talpin, J.-P., Jouvelot, P.: Polymorphic type, region and effect inference. Journal

of Functional Programming 2(3) (1992)
21. Urban, C., Pitts, A.M., Gabbay, M.: Nominal unification. Theoretical Compututer

Science 323(1-3) (2004)

A First-Order Policy Language for
History-Based Transaction Monitoring

Andreas Bauer, Rajeev Goré, and Alwen Tiu

Logic and Computation Group
College of Engineering and Computer Science

The Australian National University

Abstract. Online trading invariably involves dealings between
strangers, so it is important for one party to be able to judge objec-
tively the trustworthiness of the other. In such a setting, the decision
to trust a user may sensibly be based on that user’s past behaviour.
We introduce a specification language based on linear temporal logic
for expressing a policy for categorising the behaviour patterns of a user
depending on its transaction history. We also present an algorithm for
checking whether the transaction history obeys the stated policy. To be
useful in a real setting, such a language should allow one to express
realistic policies which may involve parameter quantification and quan-
titative or statistical patterns. We introduce several extensions of linear
temporal logic to cater for such needs: a restricted form of universal and
existential quantification; arbitrary computable functions and relations
in the term language; and a “counting” quantifier for counting how many
times a formula holds in the past. We then show that model checking
a transaction history against a policy, which we call the history-based
transaction monitoring problem, is PSPACE-complete in the size of the
policy formula and the length of the history, assuming that the under-
lying interpreted functions and relations are polynomially computable.
The problem becomes decidable in polynomial time when the policies
are fixed. We also consider the problem of transaction monitoring in
the case where not all the parameters of actions are observable. We for-
mulate two such “partial observability” monitoring problems, and show
their decidability under certain restrictions.

1 Introduction

Internet mediated trading is now a common way of exchanging goods and services
between parties who may not have engaged in transactions with each other
before. The decision of a seller/buyer to engage in a transaction is usually based
on the “reputation” of the other party, which is often provided via the online
trading system itself. These so-called reputation systems can take the form of
numerical ratings, which can be computed based on feedback from users (cf. [11]
for a survey of reputation systems). While many reputation systems used in
practice seem to serve their purposes, they are not without problems (cf. [11])
and can be too simplistic in some cases. For example, in eBay.com, the rating

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 96–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A First-Order Policy Language for History-Based Transaction Monitoring 97

of a seller/buyer consists of two components: the number of positive feedbacks
she gets, and the number of negative feedbacks. A seller with, say 90 positive
feedbacks and 1 negative feedback may be considered trustworthy by some. But
one may want to correlate a feedback with the monetary value of the transaction
by checking if the one negative feedback was for a very expensive item, or one
may want to check other more general relations between different parameters of
past transactions.

Here, we consider an alternative (and complementary) method to describe the
reputation of a seller/buyer, by specifying explicitly what constitutes a “good”
and a “bad” seller/buyer based on the observed patterns of past transactions.
More specifically, we introduce a formal language based on linear temporal logic
for encoding the desired patterns of behaviours, and a mechanism for check-
ing these patterns against a concrete history of transactions. The latter is often
referred to as the monitoring problem since the behaviour of users is being moni-
tored, but here, it is just a specific instance of model checking for temporal logic.
The patterns of behaviours, described in the logical language, serve as a concise
description of the policies for the user on whether to engage with a particular
seller/buyer. The approach we follow here is essentially an instance of history-
based access control (see e.g., [2,4,8,9,10,13]). More precisely, our work is closely
related to that of Krukow et al. [13,14].

There are two main ideas underlying the design of our language:

– Transactions vs. individual actions: Following Krukow et al., we are mainly
interested in expressing properties about transactions seen as a logically
connected grouping of actions, for example because they represent a run of
a protocol. A history in our setting is a list of such transactions, in contrast
to the more traditional notion of history as a list of individual actions (i.e., a
trace), e.g., as in [8,10], which is common in monitoring program execution.

– Closed world assumption: The main idea underlying the design of our quan-
tified policies is that a policy should only express properties of objects which
are observed in the history. For example, in monitoring a typical online trans-
action, it makes sense to talk about properties that involve “all the payments
that have been made”. Thus, if we consider a formalisation of events using
predicates, where pay(100) denotes the payment of 100 dollars (say), then
we can specify a policy like the one below left which states that all payments
must obey ψ:

∀x. pay(x)→ ψ(x) ∀x. ¬pay(x)→ ψ(x)

However, it makes less sense to talk about “for all dollar amounts that a seller
did not pay”, like the policy above right, since this involves infinitely many
possibility (e.g., the seller paid 100, but did not pay 110, did not pay 111,
etc.). We therefore restrict our quantification in policies to have a “positive
guard”, guaranteeing that we always quantify over the finitely many values
that have already been observed in the history.

An important consequence of the closed world assumption is that we can only
describe relations between known individual objects. Thus we can enrich our

98 A. Bauer, R. Goré, and A. Tiu

logical language with computable functions over these objects and computable
relations between these objects without losing decidability of the model checking
problem. One such useful extension is arithmetic, which allows one to describe
constraints on various quantities and values of transactions.

Our base language for describing policies is the pure past fragment of linear
temporal logic [16] since it has been used quite extensively by others [4,10,13,17]
for similar purposes. However, the following points distinguish our work from
related work in the literature, within the context of history-based access control:

– We believe our work is the first to incorporate both quantified policies
and computable functions/relations within the same logic. Combining un-
restricted quantifiers with arbitrary computable functions easily leads to
undecidability (see Section 7).

– We extend temporal logic with a “counting quantifier”, which counts how
many times a policy has been satisfied in the past. A similar counting mech-
anism was proposed in [13,14] as a part of a meta-policy language. But in
our work, it is a part of the same logic.

– We consider new monitoring problems based on a notion of partial observ-
ability which seem to arise quite naturally in online trading platforms where
a user (or a system provider) cannot directly observe all parameters of an ac-
tion. For instance, in eBay, it may not be always possible to observe whether
payments have been made, or it may be possible to observe a payment but
not the exact amount paid. We model unobservable parameters in an action
as variables representing unknown values. Given a policy and a history con-
taining unknown parameters, we ask whether the policy is satisfied under
some substitution of the variables (the potential satisfiability problem), or
under all substitutions (the adherence problem).

The rest of the paper is organised as follows. Section 2 introduces our policy lan-
guage PTLTLFO , for “past time linear temporal logic with first-order (guarded)
quantifiers”, and defines its semantics. Section 3 presents some examples using
PTLTLFO for specifying access control policies, which include formalisations
of known security policies. Section 4 considers the model checking problem for
PTLTLFO which we show to be pspace-complete. Fixing the policies reduces
the complexity to ptime. Section 5 presents an extension of PTLTLFO with a
counting quantifier allowing us to express that a policy depends on the number
of times another policy was satisfied in the past. The model checking problem for
this extension remains pspace-complete. In Section 6, we consider more general
(undecidable) monitoring problems where not all the parameters of an action can
be observed. By restricting the class of allowed functions and relations, we can
obtain decidability of both the potential satisfiability and adherence problems,
for example, when the term language of the logic is restricted to linear arithmetic.
Section 7 discusses possible decidable extensions to the guarded quantifiers.
Section 8 concludes the paper and discusses related work.

Due to space limit, detailed proofs are omitted, but they can be found in a
technical report [3].

A First-Order Policy Language for History-Based Transaction Monitoring 99

2 The Policy Language: Definitions and Notation

Since we are interested in the notion of history-based access control, our defini-
tion of history is similar of that of [14]. A history is organised as a list of sessions.
Each session is a finite set of events, or actions. Each event is represented by
a predicate. A session represents a “world” in the sense of a Kripke semantics
where the underlying frame is linear and discrete.

The term structures of our policy language are made up of variables and
interpreted multi-sorted function symbols. Function symbols of zero arity are
called constants. Terms are ranged over by s, t, u. Variables of the language,
denoted by x, y, z, range over certain domains, such as strings, integers, or other
finite domains. We call these domains base types or simply types. We assume a
distinguished type prop which denotes the set of propositions of the logic, and
which must not be used in the types of the function symbols and variables. That
is, we do not allow logical formulae to appear at the term level. Function symbols
and variables are typed.

We assume an interpretation where distinct constants of the same type map
to distinct elements of the type. We shall use the same symbol, say a, to refer
both to an element of some type τ and the constant representing this element.
Function symbols of one or more arities admit a fixed interpretation, which can
be any total recursive function. We shall assume the usual function symbols for
arithmetic, +, −, ×, etc., with the standard interpretations. The language we are
about to define is open to additional interpreted function symbols, e.g., string
related operations, etc. We shall use f, g, h to range over function symbols of
arity one or more, and a, b, c, d to range over constants. We also assume a set of
interpreted relations, in particular, those for arithmetic, e.g., <, =, ≥, etc. These
interpreted relations are ranged over by R. All the interpreted functions and
relations have first-order types, i.e., their types are of the form τ1×· · ·× τn → τ,
where τ and τ1, . . . , τn are base types. We shall restrict to computable relations
R. Of course, there is also the (rigidity) assumption that the function f , constant
c and relation R have the same fixed interpretation over all worlds.

Since our term language contains interpreted symbols, we assume that there
is a procedure for evaluating terms into values. We also assume that each term
can be evaluated to a unique value. Given a term t, we shall denote with t ↓ the
unique value denoted by this term, e.g., if t = (2+3) then t ↓= 5. Given an atomic
formula p(t1, . . . , tn), we shall write p(t1, . . . , tn) ↓ to denote p(t1 ↓, . . . , tn ↓).
The policy language is given by the following grammar:

ψ ::= p(t1, . . . , tm) | R(t1, . . . , tn) | ψ ∧ ψ | ¬ψ
| X−1 ψ | ψ Sψ | ∀(x1, . . . , xn) : p. ψ,

where X−1 is referred to as the “previously”-operator, and S as the “since”-
operator. In the quantified formula ∀(x1, . . . , xn) : p. ψ, where n ≥ 1, the sym-
bol p is an n-ary predicate of type τ1 × · · · × τn → prop, and each xi is of
type τi. The intended interpretation of this quantification is that the predi-
cate p defines a subtype of τ1 × · · · × τn, which is determined by the occur-
rence of p in the world (session) in which the formula resides. For example,

100 A. Bauer, R. Goré, and A. Tiu

(h, i) |= p(t1, . . . , tn) iff p(t1 ↓, . . . , tn ↓) ∈ hi

(h, i) |= R(t1, . . . , tn) iff R(t1 ↓, . . . , tn ↓) is true

(h, i) |= ψ1 ∧ ψ2 iff (h, i) |= ψ1 and (h, i) |= ψ2

(h, i) |= ¬ψ iff (h, i) �|= ψ

(h, i) |= X−1 ψ iff i > 1 and (h, i− 1) |= ψ

(h, i) |= ψ1 Sψ2 iff there exists j ≤ i such that (h, j) |= ψ2 and

for all k, if j < k ≤ i then (h, k) |= ψ1

(h, i) |= ∀(x1, . . . , xn) : p. ψ iff for all c1, . . . , cn, if p(c1, . . . , cn) ∈ hi

then (h, i) |= ψ[x1 := c1, . . . , xn := cn].

Fig. 1. Semantics of PTLTLF O

in a world consisting of {p(1, 1), p(1, 2), p(1, 3), q(4)} the predicate p represents
the set {(1, 1), (1, 2), (1, 3)}, i.e., a subset of N × N . We shall often abbreviate
∀(x1, . . . , xn) : p. ψ as simply ∀�x : p. ψ when the exact arity and the information
about each xi is not important or can be inferred from context. The notions of
free and bound variables are defined as usual. A formula is closed if it has no
occurrences of free variables.

Definition 1. An event (or an action) is a predicate p(c1, . . . , cn) where each
ci is a constant and p is an uninterpreted predicate symbol. A session is a finite
set of events. A history is a finite list of sessions.

A standard definition for the semantics of first-order logic uses a mapping of free
variables in a formula to elements of the types of the variables. To simplify the
semantics, we shall consider only closed formulae. The semantics for quantified
statements is then defined by closing these statements under variable mappings.
We use the notation σ and θ to range over partial maps from variables to elements
of types. We usually enumerate them as, e.g., [x1 := a1, . . . , xn := an]. Since we
identify a constant with the element represented by that constant, a variable
mapping is both a semantic and a syntactic concept. The latter means that we
can view a variable mapping as a substitution. Given a formula ψ and variable
mapping σ, we write ψσ to denote a formula resulting from replacing each free
variable x in ψ with the constant σ(x). From now on, we shall use the term
variable mapping and substitution interchangeably.

We shall be concerned with judgements of the form (h, i) |= ψ, where h is a
history, i is an index referring to the i-th session in h, and ψ is a closed formula.
The judgement reads “ψ is true at the i-th world in the history h”. We denote
with |h| the length of h, and with hi the i-th element of h when i ≤ |h|.
Definition 2. The forcing relation (h, i) |= ψ, where h is a history, i an integer,
and ψ a formula, is defined inductively as shown in Figure 1 where 1 ≤ i ≤ |h|.
We denote with h |= ψ the relation (h, |h|) |= ψ. The boolean connectives ∨
(disjunction) and→ (implication) are defined in the standard way using negation
and conjunction. We derive the operators F−1 ϕ ≡ "Sϕ (“sometime in the

A First-Order Policy Language for History-Based Transaction Monitoring 101

past”), and G−1 ϕ ≡ ¬F−1 (¬ϕ) (“always in the past”), where " (“true”) is
short for p ∨ ¬p.
Note that allowing unrestricted quantifiers can cause model checking to become
undecidable, depending on the interpreted functions and relations. For example,
if we allow arbitrary arithmetic expressions in the term language, then we can
express solvability of Diophantine equations, which is undecidable [15].

3 Some Example Policies

Let us now examine some example policies known from the literature, and our
means of expressing them concisely and accurately. We also examine some poli-
cies from applications other than monitoring users in online trading systems
to demonstrate that our language can model the requirements of other related
domains as well if they can be expressed as trace-based properties.

One-out-of-k policy. The one-out-of-k policy as described in [8] concerns the
monitoring of web-based applications. More specifically, it concerns monitoring
three specific situations: connection to a remote site, opening local files, and
creating subprocesses. We model this as follows, with the set of events being

open(file,mode): request to open the file file in mode, mode, where file is a
string containing the absolute path, and mode can be either ro (for read-
only) or rw (for read-write). There can be other modes but for simplicity we
assume just these two;

read/write/create(file): request to read/write/create a file;
connect: request to open a socket (to a site which is irrelevant for now);
subproc: request to create a subprocess.

We assume some operators for string manipulation: the function path(file)
which returns the absolute path to the directory in which the file resides, and
the equality predicate = on strings. The history in this setting is one in which
every session is a singleton set. Consider one of the policies as described in [8]:
allow a program to open local files in user-specified directories for modifications
only if it has created them, and it has neither tried to connect to a remote site
nor tried to create a sub-process. Suppose that we allow only one user-specified
directory called “Document”. Then this policy can be expressed as:

∀(x,m) : open.m = rw→ [path(x) = “Document” ∧ F−1 create(x) ∧
¬F−1 connect ∧ ¬F−1 subproc].

Chinese wall policy. The Chinese wall policy [6] is a common access control
policy used in financial markets for managing conflicts of interests. In this setting,
each object for which access is requested, is classified as belonging to a company
dataset, which in turn belongs to a conflict of interest class. The idea is that a
user (or subject) that accessed an object that belonged to a company A in the
past will not be allowed to access another object that belongs to a company B
which is in the same conflict of interest class as A.

102 A. Bauer, R. Goré, and A. Tiu

To model this policy, we assume the following finite sets: U for users, O for
objects, D for company datasets, and C for the names of the conflict of interest
class. The event we shall be concerned with is access of an object o by a user u.
We shall assume that this event carries information about the company dataset
to which the object belongs, and the name of the conflict of interest class to which
the company dataset belongs. That is, access is of type U ×O×D×C → prop.
A history in this case is a sequence of singletons containing the access event.
The policy, as given in [6], specifies among others that

“access is only granted if the object requested: 1.) is in the same company
dataset as an object already accessed by that subject, or 2.) belongs to
an entirely different conflict of interest class.”

Implicit in this description is that first access (i.e., no prior history) is always
allowed. We can model the case where no prior history exists simply using the
formula ¬X−1". This policy can be expressed in our language as follows:

∀(u, o, d, c) : access. ¬X−1" ∨
(X−1 F−1 ∃(u′, o′, d′, c′) : access. u = u′ ∧ d = d′) ∨
(X−1 G−1 ∀(u′, o′, d′, c′) : access. u = u′ → ¬(c = c′)).

eBay.com. Consider a scenario where a potential buyer wants to engage in a
bidding process on an online trading system like eBay.com, but the buyer wants
to impose some criteria on what kind of sellers she trusts. A simple policy would
be something like “only deal with a seller who was never late in delivery of
items”. In this model, a session in a history represents a complete exchange
between buyer and seller, e.g., the bidding process, winning the bid, payment,
confirmation of payment, delivery of items, confirmation of delivery, and the
feedbacks. We consider the following events (in the history of a seller):

win(X,V): the bidder won the bid for item X for value V.
pay(T,X, V): payment of item X at date T of the sum V (numerical value of

dollars).
post(X,T): the item X is delivered within T days1.
negative, neutral, positive: represents negative, neutral and positive feedbacks.

There are other actions and parameters that we can formalise, but these are
sufficient for an illustration. Now, suppose the buyer sets a criterion such that a
posting delay greater than 10 days after payment is unacceptable. This can be
expressed as:

G−1 [∀(t, x, v) : pay. ∃(y, t′) : post. x = y ∧ t′ ≤ 10]. (1)

Of course, for such a simple purpose, one use eBay’s rating system, which com-
putes the number of feedbacks in each category (positive, neutral and negative).
However, the seller’s rating may sometimes be too coarse a description of a
1 Note that on actual eBay, no concrete number of days is given, but instead buyers

can rate the time for posting and handling in the feedback forums in a range of 1–5.

A First-Order Policy Language for History-Based Transaction Monitoring 103

seller’s reputation. For instance, one is probably willing to trust a seller with
some negative feedbacks, as long as those feedbacks refer to transactions involv-
ing only small values. A buyer can specify that she would trust a seller who never
received negative feedbacks for transactions above a certain value, say, 200 dol-
lars. This can be specified as follows: G−1 [∀(t, x, v) : pay. v ≥ 200→ ¬negative].

4 Model Checking PTLTLFO

We now consider the model checking problem for PTLTLFO , i.e., deciding
whether h |= ϕ holds. We show that the problem is pspace-complete, even
in the case where no interpreted functions or relations occur in the formula.

We prove the complexity of our model checking problem via a terminating
recursive algorithm. The algorithm is presented abstractly via a set of rules which
successively transform a triple 〈h, i, ϕ〉 of a history, an index and a formula, and
return a truth value of either t or f to indicate that (h, i) |= ϕ (resp. (h, i) �|= ϕ).
We write 〈h, i, ϕ〉 ⇓ v to denote this relation and overload the logical connectives
∧, ∨ and ¬ to denote operations on boolean values, e.g., t ∧ t = t, etc. Since
ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧X−1 (ψ1 Sψ2)), we shall use the following semantic clause
for ψ1 Sψ2 which is equivalent: (h, i) |= ψ1 Sψ2 if and only if

(h, i) |= ψ2 or [(h, i) |= ψ1 and i > 1 and (h, i− 1) |= ψ1 Sψ2].

The rules for the evaluation judgement are given in Figure 2. To evaluate the
truth value of 〈h, i, ϕ〉, we start with the judgement 〈h, i, ϕ〉 ⇓ v where v is
still unknown. We then successively apply the transformation rules bottom up,
according to the main connective of ϕ and the index i. Each transformation step
will create n-child nodes with n unknown values. Only at the base case (i.e.,
id, R, or X−1

1) the value of v is explicitly computed and passed back to the
parent nodes. A run of this algorithm can be presented as a tree whose nodes
are the evaluation judgements which are related by the transformation rules. A
straightforward simultaneous induction on the derivation trees yields:

Lemma 1. The judgement 〈h, i, ϕ〉 ⇓ t is derivable if and only if (h, i) |= ϕ and
the judgement 〈h, i, ϕ〉 ⇓ f is derivable if and only if (h, i) �|= ϕ.

Theorem 1. Let ϕ be a PTLTLFO formula and h a history. If the interpreted
functions and relations in ϕ are in pspace, then deciding whether h |= ϕ holds
is pspace-complete.

Although the model checking problem is pspace-complete, in practice, one often
has a fixed policy formula which is evaluated against different histories. Then,
it makes sense to ask about the complexity of the model checking problem with
respect to the size of histories only (while restricting ourselves to interpreted
functions and relations computable in polynomial time).

Theorem 2. The decision problem for h |= ϕ, where ϕ is fixed, is solvable in
polynomial time.

104 A. Bauer, R. Goré, and A. Tiu

(id)
if p(t)↓ ∈ hi then v := t else v := f

〈h, i, p(t)〉 ⇓ v
(R)

if R(t)↓ is true then v := t else v := f

〈h, i, R(t)〉 ⇓ v

(¬)
〈h, i, ψ〉 ⇓ v

〈h, i,¬ψ〉 ⇓ ¬v
(∧)

〈h, i, ψ1〉 ⇓ v1 〈h, i, ψ2〉 ⇓ v2

〈h, i, ψ1 ∧ ψ2〉 ⇓ v1 ∧ v2

(∀) 〈h, i, ϕ(t1)〉 ⇓ v1 · · · 〈h, i, ϕ(tn)〉 ⇓ vn

〈h, i,∀	x : p.ϕ(x)〉 ⇓ ∧n
i=1 vi

where {ϕ(t1), · · · , ϕ(tn)} = {ϕ(x) | p(x) ∈ hi}

(S)
〈h, i, ψ1〉 ⇓ v1 〈h, i, ψ2〉 ⇓ v2 〈h, i− 1, ψ1 Sψ2〉 ⇓ v3

〈h, i, ψ1 Sψ2〉 ⇓ v2 ∨ (v1 ∧ v3)
i > 1

(S 1)
〈h, 1, ψ2〉 ⇓ v

〈h, 1, ψ1 Sψ2〉 ⇓ v
(X−1)

〈h, i− 1, ϕ〉 ⇓ v

〈h, i,X−1 ϕ〉 ⇓ v
i > 1 (X−1

1)
v := f

〈h, 1, X−1 ϕ〉 ⇓ v

Fig. 2. Evaluation rules for deciding whether (h, i) |= ϕ

An easy explanation for the above hardness result is via a polynomial time
encoding of the PSPACE-complete QBF-problem (cf. [18] and Appendix). Given
a boolean expression like E(x1, x2, x3) ≡ (x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) and the QBF-
formula F ≡ ∀x1. ∃x2. ∀x3. E(x1, x2, x3), we can construct a corresponding
PTLTLFO -formula, ϕ ≡ ∀x1 : p1. ∃x2 : p2. ∀x3 : p3. E′(x1, x2, x3) where
E′(x1, x2, x3) ≡ (true(x1)∨¬true(x2))∧(¬true(x2)∨true(x3)), and a history, h
below, representing all possible interpretations of F ’s variables in a single session:

h = {p1(0), p1(1), p2(0), p2(1), p3(0), p3(1), true(1)}.

It is then easy to see that F evaluates to " if and only if h |= ϕ holds.
On the surface it seems that this “blow up” is caused by the multiple occur-

rences of the same predicate symbol in a single session. It is therefore natural
to ask whether the complexity of the problem can be reduced if we consider
histories where every predicate symbol can occur at most once in every ses-
sion. Surprisingly, however, even with this restriction, model checking remains
pspace-complete. Consider, for example, the following polynomial encoding of
the above QBF-instance, using this restriction:

{p3(0), true(1)}; {p3(1), true(1)}; . . . ; {p1(0), true(1)}; {p1(1), true(1)} |=
G−1 ∀x1 : p1. F−1 ∃x2 : p2. G−1 ∀x3 : p3. E′(x1, x2, x3)).

Definition 3. A history h is said to be trace-like if for all i such that 1 ≤ i ≤ |h|,
for all p, �t and �s, if p(�t) ∈ hi and p(�s) ∈ hi, then �t = �s.

Theorem 3. Let ϕ be a PTLTLFO formula and h a trace-like history. If the
interpreted functions and relations in ϕ are in pspace, then deciding whether
h |= ϕ holds is pspace-complete.

A First-Order Policy Language for History-Based Transaction Monitoring 105

We have implemented a prototypic model checker for PTLTLFO 2. The model
checker accepts two user inputs: a PTLTLFO policy and a history which is then
checked against the policy. We use FOL-RuleML [5] as the input format for the
policy since it is due for standardisation as the W3C’s first-order logic exten-
sion to RuleML [1]. Thus users can even specify policies using graphical XML-
editors with a FOL-RuleML DTD extended by our temporal operators. The
model checker is currently not optimised for performance, but demonstrates the
feasibility and practicality of our approach. to The above web site contains Ocaml
source code (as well as a statically linked binary for Linux) and some example
policies from Section 3 stored in XML-format.

5 Extending PTLTLFO with a Counting Quantifier

We now consider an extension of our policy language with a counting quantifier.
The idea is that we want to count how many times a policy was satisfied in the
past, and use this number to write another policy. The language of formulae is
extended with the construct Nx : ψ. φ(x) where x binds over the formula φ(x)
and is not free in ψ. The semantics is as follows:

(h, i) |= Nx : ψ. φ(x) iff (h, i) |= φ(n),

where n = |{j | 1 ≤ j ≤ i and (h, j) |= ψ}|.
Krukow et al. also consider a counting operator, #, which applies to a for-

mula. Intuitively, #ψ counts the number of sessions in which ψ is true, and can
be used inside other arithmetic expressions like #ψ ≤ 5. The advantage of our
approach is that we can still maintain a total separation of these arithmetic
expressions and other underlying computable functions from the logic, thus al-
lowing us to modularly extend these functions. Another difference is that our
extension resides in the logic itself, thus allowing one to express policies that
combine counting with other logical operators.

Examples: Consider a “meta” policy such as: “engage only with a seller whose
past transactions with negative feedbacks constitute at most a quarter of the
total transactions”. This can be expressed succinctly as

Nx : negative. Ny : ".
x

y
≤ 1

4

since Ny : " instantiates y to be the length of the transaction history to date.
A more elaborate example is the formula in Eq. (1) without the G−1 -operator:

ψ ≡ ∀(t, x, v) : pay. ∃(y, t′) : post. x = y ∧ t′ ≤ 10.

Then one can specify a policy that demands that “the seller’s delivery is mostly
on-time”, where mostly can be given as a percentage, such as 90%, via:

Nx : ψ. Ny : ".
x

y
≤ 0.9.

2 See http://code.google.com/p/ptltl-mc/

106 A. Bauer, R. Goré, and A. Tiu

Theorem 4. If the interpreted functions and relations are in pspace, then the
model checking problem for PTLTLFO with the counting quantifier is pspace-
complete.

6 Partial Observability

In some online transaction systems, like eBay, certain events may not be wholly
observable all the time, even to the system providers, e.g., payments made
through a third-party outside the control of the provider3. We consider sce-
narios where some information is missing from the history of a client (buyer or
seller) and the problem of enforcing security policies in this setting.

Examples: Consider the policy ψ ≡ G−1 [∀(x, v) : win.∃(t, y, u) : pay.x =
y ∧ v = u] which states that every winning bid must be paid with the agreed
dollar amount. The history below, where X represents an unknown amount, can
potentially satisfy ψ when X = 100 (say):

h = {win(a, 100), pay(1, a, 100), post(a, 5)};
{win(a, 100), pay(2, a,X), post(a, 4), positive}

Of course it is also possible that the actual amount paid is less than 100, in
which case the policy is not satisfied. There are also cases in which the values of
the unknowns do not matter. For instance, a system provider may not be able
to verify payments, but it may deduce that if a buyer leaves a positive remark,
that payment has been made. That is, a policy like the following:

ϕ′ ≡G−1 [∀(x, v) : win.∃(t, y, u) : pay.x = y ∧ (u = v ∨ positive)].

In this case, we see that h still satisfies ϕ′ under all substitutions for X .
We consider two problems arising from partial observability. For this, we ex-

tend slightly the notion of history and sessions.

Definition 4. A partially observable session, or po-session for short, is a finite
set of predicates of the form p(u1, . . . , un), where p is an uninterpreted predicate
symbol and each ui is either a constant or a variable. A partially observable
history (po-history) is a finite list of po-sessions.

Given a po-history h, we denote with V (h) the set of variables occurring in h. In
the following, we consider formulae which may have occurrences of free variables.
The notation V (ψ) denotes the set of free variables in the formula ψ.

Definition 5. Given a po-history h, a natural number i, and a formula ψ such
that V (ψ) ⊆ V (h), we say that h potentially satisfies ψ at i, written (h, i) � ψ,
if there exists a substitution σ such that dom(σ) = V (h) and (hσ, i) |= ψσ. We
say that h adheres to ψ at i, written (h, i) � ψ, if (hσ, i) |= ψσ for all σ such
that dom(σ) = V (h).
3 eBay asks users for confirmation of payment, but does not check whether the

payment goes through. This is modelled by an unknown amount in the payment
parameters.

A First-Order Policy Language for History-Based Transaction Monitoring 107

Note that the adherence problem is just the dual of the potential satisfiability
problem, i.e., (h, i) � ψ if and only if (h, i) �� ¬ψ. In general the potential satis-
fiability problem is undecidable, since one can encode solvability of general Dio-
phantine equations: Let D(x1, . . . , xn) be a set of Diophantine equations whose
variables are among x1, . . . , xn. Assume that we have n uninterpreted unary
predicate symbols p1, · · · , pn which take an integer argument. Then solvability
of D(x1, . . . , xn) is reducible to the problem

{p1(x1), . . . , pn(xn)} � ∃x1 : p1. · · · ∃xn : pn.ψ(x1, . . . , xn)

where ψ(x1, . . . , xn) is the conjunction of all the equations in D(x1, . . . , xn).
However, we can obtain decidability results if we restrict the term language.

We consider here such a restriction where the term language is the language of
linear arithmetic over integers, i.e., terms of the form (modulo associativity and
commutativity of +): k1x1 + · · · + knxn + c, where c and each ki are integers.
We also assume the standard relations on integers =, ≥ and ≤ . It is useful to
introduce a class of constraint formulae generated from the following grammar:

C ::= " | ⊥ | t1 = t2 | t1 ≤ t2 | t1 ≥ t2 | C1 ∧ C2 | C1 ∨C2 | ¬C.

A constraint C is satisfiable if there exists a substitution σ such that Cσ is
true. Satisfiability of constraint formulae is decidable (see [12] for a list of algo-
rithms). The decidability proof of the potential satisfiability problem involves a
transformation of the judgement (h, i) � ψ into an equivalent constraint formula.

Lemma 2. For every h, i, and ψ, there exists a constraint formula C such that
(h, i) � ψ if and only if C is satisfiable.

Theorem 5. The potential satisfiability problem and the adherence problem for
PTLTLFO with linear arithmetic are decidable.

We note that the transformation of (h, i) � ψ to C above may result in an
exponential blow-up (see [3] for more details).

7 Extended Guarded Quantifiers

An underlying design principle for our quantified policies is the closed-world
assumption (CWA). The guarded quantifier in PTLTLFO is the most basic
quantifier, and by no means the only one that enforces CWA. It is a natural to
ask what other extensions achieve the same effect.

We mentioned earlier that introducing negation in the guard leads to unde-
cidability. Surprisingly, simple extensions with unrestricted disjunction or the
S -operator also lead to undecidability, as we shall see shortly. Let us first fix the
language with extended guarded quantifiers, whose syntax is as follows:

∀�x : ψ(�x). ϕ(�x) ∃�x : ψ(�x). ϕ(�x).

108 A. Bauer, R. Goré, and A. Tiu

Here the formula ψ(�x) is a guard, and �x are its only free variables. The semantics
of the quantifiers are a straightforward extension of that of PTLTLFO , i.e.,

(h, i) |= ∀(x1, . . . , xn) : ψ(x1, . . . , xn). ϕ iff for all c1, . . . , cn,
if (h, i) |= ψ(c1, . . . , cn) then (h, i) |= ϕ[x1 := c1, . . . , xn := cn].

Now consider a guarded quantifier that allows unrestricted uses of disjunction.
Suppose ϕ(�x), where �x range over integers, is a formula encoding some gen-
eral Diophantine equation. Let ψ(�x, y) be a guard formula p(�x)∨ q(y), for some
predicate p and q of appropriate types. Then satisfiability of the entailment
{q(0)} |= ∃(�x, y) : ψ(�x, y). ϕ(�x) is equivalent to the validity of the first-order for-
mula ∃�x. ϕ(�x), which states the solvability of the Diophantine equations in ϕ(�x).
This means that the model checking problem for PTLTLFO with unrestricted
disjunctive guards is undecidable. The cause of this undecidability is that satis-
fiability of the guard, relative to the history, is independent of the variables �x.
Similar observations can be made regarding the unrestricted uses of the “since”
operator, e.g., if we replace the guard ψ(�x, y) with p(�x)S q(y).

Unrestricted uses of function symbols in guarded quantifiers can also lead to
violation of CWA. For instance, in checking {p(0)} |= ∀(x, y) : p(x + y). ϕ(x, y),
we have to consider infinitely many combinations of x and y such that x+y = 0.

The above considerations led us to the following guarded extension to the
quantifiers of PTLTLFO . Simple guards are formulae generated by the grammar:

γ ::= p(�u) | γ ∧ γ | G−1 γ | F−1 γ

Here the list �u is a list of variables and constants. We write γ(�x) to denote a
simple guard whose only free variables are �x. Positive guards G(�x) over variables
�x are formulae whose only variables are �x, as generated by the grammar:

G(�x) ::= γ(�x) | G(�x) ∧G(�x) | G(�x) ∨G(�x) | G−1 G(�x) | F−1 G(�x) | G(�x)SG(�x).

Let PTLTLFO+ denote the extension of PTLTLFO with positive guards. We
show that the model checking problem for PTLTLFO+ is decidable. The key to
this is the finiteness of the set of “solutions” for a guard formula.

Definition 6. Let G(�x) be a positive guard and let h be a history. The guard
instantiation problem, written (h,G(�x)), is the problem of finding a list �u of
constants such that h |= G(�u) holds. Such a list is called a solution of the guard
instantiation problem.

Lemma 3. Let G(�x) be a positive guard over variables �x and let h be a history.
Then the set of solutions for the problem (h,G(�x)) is finite. Moreover, every
solution uses only constants that appear in h.

Theorem 6. Let ϕ be a PTLTLFO+ formula and h a history. The model check-
ing problem h |= ϕ is decidable.

A First-Order Policy Language for History-Based Transaction Monitoring 109

8 Conclusions and Related Work

We have presented a formal language for expressing history-based access control
policies based on the pure past fragment of linear temporal logic, extended to
allow certain guarded quantifiers and arbitrary computable functions and rela-
tions. As our examples show, these extensions allow us to write complex poli-
cies concisely, while retaining decidability of model checking. Adding a counting
quantifier allows us to express some statistical properties in policies. We also
consider the monitoring problem in the presence of unobservable or unknown
action parameters. We believe this is the first formulation of the problem in the
context of monitoring.

There is much previous work in the related area of history-based access con-
trol [2,4,8,9,10,13]. Counting the occurrence of specific events was previously
described in [7], where a stream-based approach to runtime verification was pre-
sented. There, the monitoring algorithm incrementally constructs output streams
from input streams, while maintaining a store of partially evaluated expressions
for forward references. This way one can count, for example, how often an in-
put stream carried a certain value. Our transaction-based approach to defin-
ing policies separates us from the more traditional trace-based approaches in
program execution monitoring. Our work is closely related to Krukow, et al.
[13,14], but there are a few important differences. Their definition of sessions
allows events to be partially ordered using event structures [19] whereas our no-
tion of a session as a set with no structure is simpler. The latter is not a real
limitation since ordering of events can be explicitly encoded in our setup us-
ing first-order quantifiers and a rich term language allowing extra parameters,
interpreted functions, timestamps and arithmetic. In the first-order case, they
forbid multiple occurrences of the same event in a session, i.e., they correspond
to our trace-like histories (see Section 4). Their language does not allow arbi-
trary computable functions and relations, since allowing these features in the
presence of quantifiers can lead to undecidability of model checking. Our policy
language is thus more expressive than theirs in describing quantitative properties
of histories.

For propositional LTL, there exist efficient means of monitoring, e.g., as in
[4,10]. There a so-called monitor device is generated for a policy which reads a
history as it unfolds and which does not need to re-apply a costly model checking
procedure when new sessions are added. Instead in [10], only the truth values of
certain subformulae of the policy are kept with respect to the previous session,
in order to compute the truth value of the subformulae with respect to the new
session; that is, the complexity of the monitor does not depend on the length of
a history. Let us refer to policies which can be monitored this way as monitorable
policies. Obviously, not all policies in PTLTLFO are monitorable. For example,
in a policy such as ∀x : p. G−1 ∃y : q. y ≤ x, we must, for each new x : p,
check all the previous sessions in the history whether or not there exists a y : q,
such that y ≤ x holds. A policy such as the one given in the eBay.com example in

110 A. Bauer, R. Goré, and A. Tiu

Section 3, however, can be monitored efficiently as it does not involve the same
nesting of temporal modalities under the scope of quantifiers:

ϕ ≡ G−1 ϕ1 where ϕ1 ≡ ∀(t, x, v) : pay. ∃(y, t′) : post. x = y ∧ t′ ≤ 10.

We can evaluate it w.r.t. the current session only, and keep track of the results
from previous evaluations using two arrays of truth values, pre and now like in
[10], to store the truth values of subformulae w.r.t. the current (now) and the
previous (pres) session. In this example, it is sufficient that pre and now each
have two entries; the first corresponds to the truth value ϕ1 and the second to
ϕ. The values of now are updated for each new session, and subsequently copied
to pre. The condition induced by the G−1 -operator is that ϕ1 has to be true
now, and previously, for all sessions, i.e., now[2]← now[1] ∧ pre[2].

An obvious class of monitorable policy is one obtained by substituting propo-
sitional variables in a propositional LTL formula with closed first-order formulae
(without temporal operators). In this case, with straightforward modifications,
the procedure in [10] can be applied to construct efficient monitors. It will be
interesting to investigate other restrictions to PTLTLFO which are monitorable.

References

1. The RuleML Initiative. Document located, http://www.ruleml.org/
2. Bartoletti, M., Degano, P., Ferrari, G.L.: History-based access control with lo-

cal policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332.
Springer, Heidelberg (2005)

3. Bauer, A., Goré, R., Tiu, A.: A decidable policy language for history-based trans-
action monitoring. Technical report, The Australian National University (2009),
http://arxiv.org/abs/0903.2904

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006)

5. Boley, H., Dean, M., Grosof, B., Sintek, M., Spencer, B., Tabet, S., Wagner, G.:
FOL RuleML: The First-Order Logic Web Language (2005),
http://www.ruleml.org/fol

6. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium
on Security and Privacy. IEEE, Los Alamitos (1989)

7. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: Runtime monitoring of synchronous
systems. In: TIME. IEEE, Los Alamitos (2005)

8. Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile
code. In: ACM Conference on Computer and Communications Security, pp. 38–48
(1998)

9. Fong, P.W.L.: Access control by tracking shallow execution history. In: IEEE
Symposium on Security and Privacy, pp. 43–55. IEEE Computer Society Press,
Los Alamitos (2004)

10. Havelund, K., Rosu, G.: Synthesizing Monitors for Safety Properties. In:
Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 342. Springer,
Heidelberg (2002)

http://www.ruleml.org/
http://arxiv.org/abs/0903.2904
http://www.ruleml.org/fol

A First-Order Policy Language for History-Based Transaction Monitoring 111

11. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

12. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)
13. Krukow, K., Nielsen, M., Sassone, V.: A framework for concrete reputation-systems

with applications to history-based access control. In: ACM Conf. Comp. and Com-
mun. Sec. (2005)

14. Krukow, K., Nielsen, M., Sassone, V.: A logical framework for reputation systems
and history based access control. Journal of Computer Security (to appear) (2008)

15. Matiyasevich, Y.: Hilbert’s 10th Problem. MIT Press, Cambridge (1993)
16. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977, pp. 46–57 (1977)
17. Roger, M., Goubault-Larrecq, J.: Log auditing through model-checking. In: CSFW,

pp. 220–234. IEEE, Los Alamitos (2001)
18. Sipser, M.: Introduction to the Theory of Computation. Intl. Thomson Publishing

(1996)
19. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of logic in com-

puter science. semantic modelling, vol. 4. Oxford University Press, Oxford (1995)

Checking Thorough Refinement on Modal
Transition Systems Is EXPTIME-Complete

Nikola Beneš1,�, Jan Křet́ınský1,��, Kim G. Larsen2,���, and Jǐŕı Srba2,†

1 Faculty of Informatics, Masaryk Univ., Botanická 68a, 60200 Brno, Czech Republic
2 Department of Computer Science, Aalborg Univ., Selma Lagerlöfs Vej 300, 9220

Aalborg East, Denmark

Abstract. Modal transition systems (MTS), a specification formalism
introduced more than 20 years ago, has recently received a considerable
attention in several different areas. Many of the fundamental questions
related to MTSs have already been answered. However, the problem of
the exact computational complexity of thorough refinement checking be-
tween two finite MTSs remained unsolved.

We settle down this question by showing EXPTIME-completeness of
thorough refinement checking on finite MTSs. The upper-bound result
relies on a novel algorithm running in single exponential time providing a
direct goal-oriented way to decide thorough refinement. If the right-hand
side MTS is moreover deterministic, or has a fixed size, the running time
of the algorithm becomes polynomial. The lower-bound proof is achieved
by reduction from the acceptance problem of alternating linear bounded
automata and the problem remains EXPTIME-hard even if the left-hand
side MTS is fixed.

1 Introduction

Modal transition systems (MTS) is a specification formalism which extends the
standard labelled transition systems with two types of transitions, the may tran-
sitions that are allowed to be present in an implementation of a given modal
transition system and must transitions that must be necessarily present in any
implementation. Modal transition systems hence allow to specify both safety and
liveness properties. The MTS framework was suggested more than 20 years ago
by Larsen and Thomsen [14] and has recently brought a considerable attention
due to several applications to e.g. component-based software development [16,7],
interface theories [20,17], modal abstractions and program analysis [11,12,15] and
other areas [10,21], just to mention a few of them. A renewed interest in tool
support for modal transition systems is recently also emerging [8,9]. A recent

� Partially supported by the Academy of Sciences of the Czech Republic, project
No. 1ET408050503.

�� Partially supported by the research centre ITI, project No. 1M0545.
��� Partially supported by the VKR Center of Excellence MT-LAB.

† Partially supported by Ministry of Education of the Czech Republic, project
No. MSM 0021622419.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 112–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Checking Thorough Refinement on MTS Is EXPTIME-Complete 113

overview article on the theoretical foundations of MTSs and early tool develop-
ment is available in [1].

Modal transition systems were designed to support component-based system
development via a stepwise refinement process where abstract specifications are
gradually refined into more concrete ones until an implementation of the system
(where the may and must transitions coincide) is obtained. One of the fundamen-
tal questions is the decidability of a thorough refinement relation between two
specifications S and T . We say that S thoroughly refines T iff every implementa-
tion of S is also an implementation of T . While for a number of other problems,
like the common implementation problem, a matching complexity lower and up-
per bounds were given [2,13,3], the question of the exact complexity of thorough
refinement checking between two finite MTSs remained unanswered.

In this paper, we prove EXPTIME-completeness of thorough refinement
checking between two finite MTSs. The hardness result is achieved by a re-
duction from the acceptance problem of alternating linear bounded automata,
a well known EXPTIME-complete problem, and it improves the previously es-
tablished PSPACE-hardness [2]. The main reduction idea is based on the fact
that the existence of a computation step between two configurations of a Turing
machine can be locally verified (one needs to consider the relationships between
three tape symbols in the first configuration and the corresponding three tape
symbols in the second one, see e.g. [19, Theorem 7.37]), however, a nonstandard
encoding of computations of Turing machines (which is crucial for our reduction)
and the addition of the alternation required a nontrivial technical treatment.
Moreover, we show that the problem remains EXPTIME-hard even if the left-
hand side MTS is of a constant size. Some proof ideas for the containment in
EXPTIME were mentioned in [2] where the authors suggest a reduction of the
refinement problem to validity checking of vectorized modal μ-calculus, which
can be solved in EXPTIME—the authors in [2] admit that such a reduction relies
on an unpublished popular wisdom, and they only sketch the main ideas hinting
at the EXPTIME algorithm. In our paper, we describe a novel technique for
deciding thorough refinement in EXPTIME. The result is achieved by a direct
goal-oriented algorithm performing a least fixed-point computation, and can be
easily turned into a tableau-based algorithm. As a corollary, we also get that if
the right-hand side MTS is deterministic (or of a constant size), the algorithm
for solving the problem runs in deterministic polynomial time.

A full version of the paper is available in [6].

2 Basic Definitions

A modal transition system (MTS) over an action alphabet Σ is a triple
(P, ���,−→), where P is a set of processes and −→ ⊆ ��� ⊆ P × Σ × P are
must and may transition relations, respectively. The class of all MTSs is denoted
by MTS. Because in MTS whenever S

a−→ S′ then necessarily also S
a��� S′,

we adopt the convention of drawing only the must transitions S
a−→ S′ in such

cases. An MTS is finite if P and Σ are finite sets.

114 N. Beneš et al.

•
T1

a��•
S a

��� � � •
S1

a

�� ��� •
T

a ��
�

� �

a ������ •
U a

��� � � •
U1

a

��

•
T2

Fig. 1. S ≤t T but S �≤m T , and S �≤t U and S �≤m U

An MTS is an implementation if ��� = −→. The class of all implementations is
denoted iMTS and as in implementations the must and may relations coincide,
we can consider such systems as the standard labelled transition systems.

Definition 2.1. Let M1 = (P1, ���1,−→1), M2 = (P2, ���2,−→2) be MTSs
over the same action alphabet Σ and S ∈ P1, T ∈ P2 be processes. We say that
S modally refines T , written S ≤m T , if there is a relation R ⊆ P1 × P2 such
that (S, T) ∈ R and for every (A,B) ∈ R and every a ∈ Σ:

1. if A
a���1 A′ then there is a transition B

a���2 B′ s.t. (A′, B′) ∈ R, and
2. if B

a−→2 B′ then there is a transition A
a−→1 A′ s.t. (A′, B′) ∈ R.

We often omit the indices in the transition relations and use symbols ��� and
−→ whenever it is clear from the context what transition system we have in
mind. Note that on implementations modal refinement coincides with the clas-
sical notion of strong bisimilarity, and on modal transition systems without any
must transitions it corresponds to the well-studied simulation preorder.

Example 2.2. Consider processes S and T in Fig. 1. We prove that S does not
modally refine T . Indeed, there is a may-transition S

a��� S1 on the left-hand
side which has to be matched by entering either T1 or T2 on the right-hand side.
However, in the first case there is a move T1

a−→ T on the right-hand side which
cannot be matched from S1 as it has no must-transition under a. In the second
case there is a may-transition S1

a��� S on the left-hand side which cannot be
matched by any may-transition from T2. Hence there cannot be any relation
of modal refinement containing the pair S and T , which means that S �≤m T .
Similarly, one can argue that S �≤m U . ��

We shall now observe that the modal refinement problem, i.e. the question
whether a given process modally refines another given process, is tractable for
finite MTSs.

Theorem 2.3. The modal refinement problem for finite MTSs is P-complete.

Proof. Modal refinement can be computed in polynomial time by the standard
greatest fixed-point computation, similarly as in the case of strong bisimulation.
P-hardness of modal refinement follows from P-hardness of bisimulation [4] (see
also [18]). ��

Checking Thorough Refinement on MTS Is EXPTIME-Complete 115

We proceed with the definition of thorough refinement, a relation that holds
for two modal specification S and T iff any implementation of S is also an
implementation of T .

Definition 2.4. For a process S let us denote by �S� = {I ∈ iMTS | I ≤m S}
the set of all implementations of S. We say that S thoroughly refines T , written
S ≤t T , if �S� ⊆ �T �.

Clearly, if S ≤m T then also S ≤t T because the relation ≤m is transitive. The
opposite implication, however, does not hold as demonstrated by the processes
S and T in Fig. 1 where one can easily argue that every implementation of S is
also an implementation of T . On the other hand, S �≤t U because a process with
just a single a-transition is an implementation of S but not of U .

3 Thorough Refinement Is EXPTIME-Hard

In this section we prove that the thorough refinement relation ≤t on finite modal
transition systems is EXPTIME-hard by reduction from the acceptance problem
of alternating linear bounded automata.

3.1 Alternating Linear Bounded Automata

Definition 3.1. An alternating linear bounded automaton (ALBA) is a tuple
M = (Q,Q∀, Q∃, Σ, Γ, q0, qacc, qrej ,�,%, δ) where Q is a finite set of control
states partitioned into Q∀ and Q∃, universal and existential states, respectively,
Σ is a finite input alphabet, Γ ⊇ Σ is a finite tape alphabet, q0 ∈ Q is the initial
control state, qacc ∈ Q is the accepting state, qrej ∈ Q is the rejecting state,
�,% ∈ Γ are the left-end and the right-end markers that cannot be overwritten
or moved, and δ : (Q � {qacc, qrej}) × Γ → 2Q×Γ×{L,R} is a computation step
function such that for all q, p ∈ Q if δ(q,�) � (p, a,D) then a = �, D = R; if
δ(q,%) � (p, a,D) then a = %, D = L; if δ(q, a) � (p,�, D) then a = �; and if
δ(q, a) � (p,%, D) then a = %.
Remark 3.2. W.l.o.g. we assume that Σ = {a, b}, Γ = {a, b,�,%}, Q∩Γ = ∅ and
that for each q ∈ Q∀ and a ∈ Γ it holds that δ(q, a) has exactly two elements
(q1, a1, D1), (q2, a2, D2) where moreover a1 = a2 and D1 = D2. We fix this
ordering and the successor states q1 and q2 are referred to as the first and the
second successor, respectively. The states qacc, qrej have no successors.

A configuration of M is given by the state, the position of the head and the
content of the tape. For technical reasons, we write it as a word over the alphabet
Ξ = Q ∪ Γ ∪ {�,%, ∃, ∀, 1, 2, ∗} (where ∃, ∀, 1, 2, ∗ are fresh symbols) in the
following way. If the tape contains a word �w1aw2%, where w1, w2 ∈ Γ ∗ and a ∈
Γ , and the head is scanning the symbol a in a state q, we write the configuration
as �w1αβqaw2% where αβ ∈ {∃∗, ∀1, ∀2}.

The two symbols αβ before the control state in every configuration are non-
standard, though important for the encoding of the computations into modal

116 N. Beneš et al.

transition systems to be checked for thorough refinement. Intuitively, if a con-
trol state q is preceded by ∀1 then it signals that the previous configuration (in
a given computation) contained a universal control state and the first successor
was chosen; similarly ∀2 reflects that the second successor was chosen. Finally, if
the control state is preceded by ∃∗ then the previous control state was existential
and in this case we do not keep track of which successor it was, hence the symbol
∗ is used instead. The initial configuration for an input word w is by definition
�∃∗q0w%.

Depending on the present control state, every configuration is called either
universal, existential, accepting or rejecting.

A step of computation is a relation→ between configurations defined as follows
(where w1, w2 ∈ Γ ∗, αβ ∈ {∀1, ∀2, ∃∗}, a, b, c ∈ Γ , i ∈ {1, 2}, and w1aw2 and
w1caw2 both begin with � and end with %):
– w1αβqaw2 → w1b∀ipw2

if δ(q, a) � (p, b, R), q ∈ Q∀ and (p, b, R) is the i’th successor,
– w1αβqaw2 → w1b∃∗pw2

if δ(q, a) � (p, b, R) and q ∈ Q∃,
– w1cαβqaw2 → w1∀ipcbw2

if δ(q, a) � (p, b, L), q ∈ Q∀ and (p, b, L) is the i’th successor, and
– w1cαβqaw2 → w1∃∗pcbw2

if δ(q, a) � (p, b, L) and q ∈ Q∃.

Note that for an input w of length n all reachable configurations are of length
n + 5. A standard result is that one can efficiently compute the set Comp ⊆
Ξ10 of all compatible 10-tuples such that for each sequence C = c1c2 · · · ck

of configurations c1, c2, . . . , ck, with the length of the first configuration being
l = |c1| = n + 5, we have c1 → c2 → · · · → ck iff for all i, 0 ≤ i ≤ (k − 1)l − 5,

(C(i + 1), C(i + 2), C(i + 3), C(i + 4), C(i + 5),
C(i + 1 + l), C(i + 2 + l), C(i + 3 + l), C(i + 4 + l), C(i + 5 + l)) ∈ Comp .

A computation tree for M on an input w ∈ Σ∗ is a tree T satisfying the
following: the root of T is (labeled by) the initial configuration, and whenever
N is a node of T labeled by a configuration c then the following holds:

– if c is accepting or rejecting then N is a leaf;
– if c is existential then N has one child labeled by some d such that c→ d;
– if c is universal then N has two children labelled by the first and the second

successor of c, respectively.

Without loss of generality, we shall assume from now on that any computation
tree forM on an input w is finite (see e.g. [19, page 198]) and that every accepting
configuration contains at least four other symbols following after the state qacc.

We say that M accepts w iff there is a (finite) computation tree forM on w
with all leaves labelled with accepting configurations. The following fact is well
known (see e.g. [19]).

Proposition 3.3. Given an ALBA M and a word w, the problem whether M
accepts w is EXPTIME-complete.

Checking Thorough Refinement on MTS Is EXPTIME-Complete 117

3.2 Encoding of Configurations and Computation Trees

In this subsection we shall discuss the particular encoding techniques necessary
for showing the lower bound. For technical convenience we will consider only
tree encodings and so we first introduce the notion of tree-thorough refinement.

Definition 3.4. Let Tree denote the class of all MTSs with their graphs being
trees. We say that a process S tree-thoroughly refines a process T , denoted by
S ≤tt T , if �S� ∩ Tree ⊆ �T � ∩ Tree.

Lemma 3.5. For any two processes S and T , S ≤tt T iff S ≤t T .

Proof. The if case is trivial. For the only if case, we define an unfold U(S) of
a process S over an MTS M = (P, ���,−→) with an alphabet Σ to be a process
S over an MTS U(M) = (P ∗, ���U ,−→U) over the same alphabet and where
P ∗ is the set of all finite sequences over the symbols from P . The transition
relations are defined as follows: for all a ∈ Σ, T,R ∈ P and α ∈ P ∗, whenever
T

a��� R then αT
a���U αTR, and whenever T

a−→ R then αT
a−→U αTR. Since

the transitions in U(S) depend only on the last symbol, we can easily see that
U(S) ≤m S and S ≤m U(S) for every process S.

Let I be now an implementation of S. Its unfold U(I) is also an implementa-
tion of S by U(I) ≤m I ≤m S and the transitivity of ≤m. By our assumption
that S ≤tt T and the fact that U(I) is a tree, we get that U(I) is also an imple-
mentation of T . Finally, I ≤m U(I) ≤m T and the transitivity of ≤m allow us
to conclude that I is an implementation of T . ��

Let M = (Q,Q∀, Q∃, Σ, Γ, q0, qacc, qrej ,�,%, δ) be an ALBA and w ∈ Σ∗ an
input word of length n. We shall construct (in polynomial time) modal tran-
sition systems L and R such that M accepts w iff L �≤tt R. The system L
will encode (almost) all trees beginning with the initial configuration, while the
implementations of R encode only the incorrect or rejecting computation trees.

Configurations, i.e. sequences of letters from Ξ, are not encoded straightfor-
wardly as sequences of actions (the reason why this naive encoding does not
work is explained later on in Remark 3.12). Instead we have to use two aux-
iliary actions π a σ. The intended implementations of L and R will alternate
between the actions π and σ on a linear path, while the symbols in the encoded
configuration are present as side-branches on the path.

Formally, a sequence a1a2a3 · · ·an ∈ Ξ∗ is encoded as

• • • •

•
begin

π
�� •

σ
��

a1

��

•
π
�� •

σ
��

a2

��

•
π
�� •

σ
��

a3

��

· · · •
π
�� •

σ
��

an

��

•
end

and denoted by code(a1a2 · · · an).
We now describe how to transform computation trees into their corresponding

implementations. We simply concatenate the subsequent codes of configurations

118 N. Beneš et al.

in the computation tree such that the end node of the previous configuration
is merged with the begin node of the successor configuration. Whenever there
is a (universal) branching in the tree, we do not branch in the corresponding
implementation at its beginning but we wait until we reach the occurrence of
∀. The branching happens exactly before the symbols 1 or 2 that follow after
∀. This occurs in the same place on the tape in both of the configurations due
to the assumption that the first and the second successor move simultaneously
either to the left or to the right, and write the same symbol (see Remark 3.2).
A formal definition of the encoding of computation trees into implementations
follows.

•
π ��•
σ ��

c1= ��

...
π
��•

σ ��

cn=� ��

•
π ��•
σ ��

d1= ��

...
π
��•

σ ��

∀ ��

•
π

��							 π

		

•
σ ��

1 �� •
σ ��

2 ��

...
π
��

...
π
��•

σ ��

d1
n=� �� •

σ ��

d2
n=� ��

• •

Fig. 2. Comp. Tree Encoding

Definition 3.6 (Encoding computation trees into implementations).
Let T be a (finite) computation tree. We define its tree implementation code(T)
inductively as follows:

– if T is a leaf labelled with a configuration c
then code(T) = code(c);

– if the root of T is labelled by an existen-
tial configuration c with a tree T ′ being its
child, then code(T) is rooted in the begin
node of code(c), followed by code(T ′) where
the end node of code(c) and the begin node
of code(T ′) are identified;

– if the root of T is labelled by a universal con-
figuration c with two children d1 . . . ∀1 . . . d1

n

and d1 . . . ∀2 . . . d2
n that are roots of the sub-

trees T1 and T2, respectively, then code(T)
is rooted in the begin node of code(c), fol-
lowed by two subtrees code(T1) and code(T2)
where the nodes in code(d1 . . .∀) of the ini-
tial part of code(T1) are identified with the
corresponding nodes in the initial part of
code(T2) (note that by Remark 3.2 this pre-
fix is common in both subtrees), and finally
the end node of code(c) is identified with now
the common begin node of both subtrees.

Fig. 2 illustrates this definition on a part of a
computation tree, where the first configuration
c1 . . . cn is universal and has two successor con-
figurations d1 . . . ∀1 . . . d1

n and d1 . . . ∀2 . . . d2
n.

3.3 The Reduction—Part 1

We now proceed with the reduction. As mentioned earlier, our aim is to con-
struct for a given ALBAM and a string w two modal transition systems L and
R such that L �≤tt R iff M accepts w. Implementations of L will include all

Checking Thorough Refinement on MTS Is EXPTIME-Complete 119

code of the initial configuration︸ ︷︷ ︸
• • for all a ∈ Ξ � {∀}

L• π �� •
�
��

σ �� π �� •
�
��

σ ��M•
π

� � �

π ��

�

Ma• a ��
σ

�� •

• •2��

σ

• 1 ��
σ

��

• M∀• ∀ ��

σ��

•

•
M ′

π

��

π

��

Fig. 3. Full specification of the process L

(also incorrect) possible computation trees. We only require that they start with
the encoding of the initial configuration and do not “cheat” in the universal
branching (i.e. after the encoding of every symbol ∀ there must follow a branch-
ing such that at least one of the branches encodes the symbol 1 and at least
another one encodes the symbol 2).

As L should capture implementations corresponding to computations starting
in the initial configuration, we set L to be the begin of code(�∃∗q0w%) and denote
its end by M . After the initial configuration has been forced, we allow all possible
continuations of the computation. This can be simply done by setting

M
π��� Ma

Ma
σ−→M

Ma
a−→ Xa

for all letters a ∈ Ξ � {∀} and there are no outgoing transitions from Xa.

for all a ∈ Ξ � {∀}
M•

π

� � � � � � �Ma• a ��

σ

��
Xa•

Finally, we add a fragment of MTS into the constructed process L which will
guarantee the universal branching as mentioned above whenever the symbol ∀
occurs on a side-branch. The complete modal transition system L is now depicted
in Fig. 3.

We shall now state some simple observations regarding tree implementations
of the process L.

Proposition 3.7. Every tree implementation I of the process L satisfies that

120 N. Beneš et al.

1. every branch in I is labelled by an alternating sequence of π and σ actions,
beginning with the action π, and if the branch is finite then it ends either
with the action σ or with an actions a ∈ Ξ � {∀}, and

2. every state in I with an incoming transition under the action π has at least
one outgoing transition under the action σ and at least one outgoing transi-
tion under an action a ∈ Ξ, and

3. whenever from any state in I there are two outgoing transitions under some
a ∈ Ξ and b ∈ Ξ then a = b, and moreover no further actions are possible
after taking any transition under a ∈ Ξ, and

4. every branch in I longer than 2(n+5) begins with the encoding of the initial
configuration �∃∗q0w% where n = |w|, and

5. every state in I with an incoming transition under σ from a state where the
action ∀ is enabled satisfies that every outgoing transition under π leads to
a state where either the action 1 or 2 is enabled (but not both at the same
time), and moreover it has at least one such transition that enables the action
1 and at least one that enables the action 2.

Of course, not every tree implementation of the process L represents a correct
computation tree of the given ALBA. Implementations of L can widely (even
uncountably) branch at any point and sequences of configurations they encode
on some (or all) of their branches may not be correct computations of the given
ALBA. Nevertheless, the encoding of any computation tree of the given ALBA
is an implementation of the processes L, as stated by the following lemma.

Lemma 3.8. Let T be a computation tree of an ALBAM on an input w. Then
code(T) ≤m L.

Proof (Sketch). To show that the implementation code(T) modally refines L
is rather straightforward. The implementation code(T) surely starts with the
encoding of the initial configuration and all symbols a ∈ Ξ � {∀} on the side-
branches in code(T) can be matched by entering Ma in the right-hand side
process M . In case that the implementation contains a side-branch with the
symbol ∀, the specification M will enter the state M∀ and require that two
branches with labels 1 and 2 follow, however, from definition of code(T) this is
clearly satisfied. ��

3.4 The Reduction—Part 2

We now proceed with the construction of the right-hand side process R. Its
implementations should be the codes of all incorrect or rejecting computation
trees. To cover the notion of incorrect computation, we define a so-called bad
path (see page 116 for definition of the relation Comp).

Definition 3.9. A sequence

c1c2c3c4c5 a1a2 . . . an−6an−5︸ ︷︷ ︸
n−5 elements from Ξ

d1d2d3d4d5

is called a bad path if (c1, c2, c3, c4, c5, d1, d2, d3, d4, d5) ∈ Ξ10 � Comp.

Checking Thorough Refinement on MTS Is EXPTIME-Complete 121

• • •

•
R

Ξ′
�{qacc}

��

���
π ������� •

V1

Ξ′

���
�

�
�

�
�

�
�

�
�

�
�

�
�

c1

��

σ �� •
W1

Ξ′

���
�

�
�

�
�

�
�

�
�

�
π �� •

V2

Ξ′

���
�

�
�

�
�

�
�

�

c2

��

σ �� · · · π �� •
Vj

Ξ′

���
�
�
�
�
�

σ �� · · · π �� •
Vn+5

Ξ′

���
�

�
�

�
�

�
�

�
�

�
�

�

d5

��

U•

Ξ′

��
�

� �

Fig. 4. A fragment of the system R for a bad path c1c2c3c4c5 . . . d1d2d3d4d5

To cover the incorrect or rejecting computations, we loop in the process R un-
der all actions, including the auxiliary ones, except for qacc. For convenience
we denote Ξ ′ = Ξ ∪ {π, σ}. For any bad path, the process R can at any time
nondeterministically guess the beginning of its first quintuple, realize it, then
perform n− 5 times a sequence of π and σ, and finally realize the second quin-
tuple. Moreover, we have to allow all possible detours of newly created branches
to end in the state U where all available actions from Ξ ′ are always enabled and
hence the continuation of any implementation is modally refined by U . Formally,
for any (c1, c2, c3, c4, c5, d1, d2, d3, d4, d5) ∈ Ξ10 � Comp we add (disjointly) the
following fragment into the process R (see also Fig. 4).

R
π��� V1

Vj
π−→Wj

σ−→ Vj+1 for 1 ≤ j < n + 5
Vj

cj−→ Xj for 1 ≤ j ≤ 5

Vn+j
dn+j−→ X5+j for 1 ≤ j ≤ 5

Vj
x��� U,Wj

x��� U, Vn+5
x��� U for 1 ≤ j < n + 5 and x ∈ Ξ ′

U
x��� U for all x ∈ Ξ ′

R
x��� R for all x ∈ Ξ ′ � {qacc}

We also add ten new states N1, . . . , N10 and the following transitions: R
π���

N1
Ξ′
��� N2

Ξ′
��� N3

Ξ′
��� N4

Ξ′
��� . . .

Ξ′
��� N10 and N1

qacc−→ N10 where any transition
labelled by Ξ ′ is the abbreviation for a number of transitions under all actions
from Ξ ′.

Remark 3.10. We do not draw these newly added states N1, . . . , N10 into Fig. 4
in order not to obstruct its readability. The reason why these states are added
is purely technical. It is possible that there is an incorrect computation that
ends with the last symbol qacc but it cannot be detected by any bad path as

122 N. Beneš et al.

defined in Definition 3.9 because that requires (in some situations) that there
should be present at least four other subsequent symbols. By adding these new
states into the process R, we guarantee that such situations where a branch in
a computation tree ends in qacc without at least four additional symbols will be
easily matched in R by entering the state N1. ��
Lemma 3.11. Let I be a tree implementation of L such that every occurrence
of qacc in I is either preceded by a code of a bad path or does not continue with
the encoding of at least four other symbols. Then I ≤m R.

Proof (Sketch). All branches in I that do not contain qacc can be easily matched
by looping in R and all branches that contain an error (bad path) before qacc

appears on that branch are matched by entering the corresponding state V1 and
at some point ending in the state U which now allows an arbitrary continuation
of the implementation I (including the occurrence of the state qacc). ��
Remark 3.12. Lemma 3.11 demonstrates the point where we need our special
encoding of configurations using the alternation of π and σ actions together with
side-branches to represent the symbols in the configurations. If the configurations
were encoded directly as sequences of symbols on a linear path, the construction
would not work. Indeed, the must path of alternating σ and π actions in the
process R is necessary to ensure that the bad path entered in the left-hand side
implementation I is indeed realizable. This path cannot be replaced by a linear
path of must transitions containing directly the symbols of the configurations
because the sequence of n− 5 symbols in the middle of the bad sequence would
require exponentially large MTS to capture all such possible sequences explicitly
and the reduction would not be polynomial. ��
Let us now finish the definition of the process R. Note that in ALBA even
rejecting computation trees can still contain several correct computation paths
ending in accepting configurations. We can only assume that during any universal
branching in a rejecting tree, at least one of the two possible successors forms
a rejecting branch. The process R must so have the possibility to discard the
possibly correct computation branch in universal branching and it suffices to
make sure that the computation will continue with only one of the branches.

So in order to finish the construction of R we add an additional fragment to
R as depicted in Fig. 5 (it is the part below R that starts with branching to U1
and U2).

The construction of the process R is now finished (recall that the part of
the construction going from R to the right is repeated for any bad path of the
machine M). Because the newly added part of the construction does not use
any must transitions, it does not restrict the set of implementations and hence
Lemma 3.11 still holds. The following two lemmas show that the added part of
the construction correctly handles the universal branching.

Lemma 3.13. Let I be a tree implementation of L which is not, even after
removing any of its branches, a code of any accepting computation tree ofM on
the input w. Then I ≤m R.

Checking Thorough Refinement on MTS Is EXPTIME-Complete 123

• •

R•

Ξ′
�{qacc}

��

���

π

���
�

�
�

π

���
�

�
�

π
������� •
V1

Ξ′

���������������

c1

��

σ
�� •
W1

Ξ′

���
�

�
�

�
�

�
�

�
� π

�� · · ·
π
�� •

Ξ′

���
�
�
�
�
� σ

�� · · ·
π
�� •
Vn+5

Ξ′

���
�

�
�

�
�

�
�

�
�

d5

��

•
U1

∀ ����

σ

���
�

• •
U2

∀��� �

σ

���
�

•

σ

��

!

"
#

$
%

&

1
���
� •π��� �

π

���
� • π ����

π

���
� •

σ

��

'
(

)
*

+
�

,

2
���
�

U•

Ξ′

��
�

� �

• •
2

 -
-

-
σ

!!.
.

. •
σ

 -
-

-
1

!!.
.

. •

• U ′
•

Ξ′

��
�

� �

•

Fig. 5. Full specification of the process R

Proof (Sketch). We should prove that in the universal branching in I, the spec-
ification R can choose one of the two possible continuations and discard the
checking of the other one. This is achieved by entering either the state U1 or
U2 whenever the next side-branch in I contains the symbol ∀. From U1 the con-
tinuation under the second successor is discarded by entering the state U ′ and
symmetrically from U2 the continuation under the first successor is discarded.
We argued in Lemma 3.11 for the rest. ��
Lemma 3.14. Let T be an accepting computation tree of an ALBA M on the
input w. Then code(T) �≤m R.

Proof (Sketch). Indeed, in code(T) any branch ends in a configuration containing
qacc and there is no error (bad path), so clearly code(T) �≤m R. ��

3.5 Summary

We can now combine the facts about the constructed systems L and R.

Theorem 3.15. An ALBA M accepts an input w iff L �≤t R.

Proof. If M accepts the input w then clearly it has an accepting computation
tree T . By Lemma 3.8 code(T) ≤m L and by Lemma 3.14 code(T) �≤m R. This
implies that L �≤t R.

On the other hand, ifM does not accept w then none of the tree implemen-
tations of L represents a code of an accepting computation tree ofM on w. By
Lemma 3.13 this means that any tree I such that I ≤m L satisfies that I ≤m R
and hence L ≤tt R which is by Lemma 3.5 equivalent to L ≤t R. ��

124 N. Beneš et al.

Corollary 3.16. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-hard.

In fact, we can strengthen the result by adapting the above described reduction
to the situation where the left-hand side system is of a fixed size (see [6]).

Theorem 3.17. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-hard even if the left-hand side system is fixed.

4 Thorough Refinement Is in EXPTIME

In this section we provide a direct algorithm for deciding thorough refinement
between MTSs in EXPTIME. Given two processes A and B over some finite-
state MTSs, the algorithm will decide if there exists an implementation I that
implements A but not B, i.e. I ≤m A and I �≤m B.

For a modal transition systems B, we introduce the syntactical notation B to
denote the semantical complement of B, i.e. I ≤m B iff I �≤m B. Our algorithm
now essentially checks for consistency (existence of a common implementation)
between A and B with the outcome that they are consistent if and only if A �≤t B.

In general, we shall check for consistency of sets of the form {A,B1, . . . , Bk} in
the sense of existence of an implementation I such that I ≤m A but I �≤m Bi for
all i ∈ {1, . . . , k}. Before the full definition is given, let us get some intuition by
considering the case of consistency of a simple pair A,B. During the arguments,
we shall use CCS-like constructs (summation and action-prefixing) for defining
implementations.

Clearly, if for some B′ with B
a−→ B′ and for all Ai with A

a−→ Ai we can
find an implementation Ii implementing Ai but not B′ (i.e. we demonstrate
consistency between all the pairs Ai, B′), we can claim consistency between A
and B: as a common implementation I simply take H +

∑
i a.Ii, where H is

some arbitrary implementation of A with all a-derivatives removed.
We may also conclude consistency of A and B, if for some A′ with A

a��� A′,
we can find an implementation I ′ of A′, which is not an implementation of any
B′ where B

a��� B′. Here a common implementation would simply be H + a.I ′

where H is an arbitrary implementation of A. However, in this case we will need
to determine consistency of the set {A′} ∪ {B′ | B a��� B′} which is in general
not a simple pair.

Definition 4.1. Let M = (P, ���,−→) be an MTS over the action alphabet Σ.
The set of consistent sets of the form {A,B1, . . . , Bk}, where A,B1, . . . , Bk ∈ P ,
is the smallest set Con such that {A,B1, . . . , Bk} ∈ Con whenever k = 0 or for
some a ∈ Σ and some J ⊆ {1, . . . , k}, where for all j ∈ J there exists B′

j such
that Bj

a−→ B′
j, we have

1. {A′, B′
j | j ∈ J} ∈ Con for all A′ with A

a−→ A′, and

2. {A�, B′
� | B�

a��� B′
�} ∪ {B′

j | j ∈ J} ∈ Con for all � �∈ J and some A� with

A
a��� A�.

Checking Thorough Refinement on MTS Is EXPTIME-Complete 125

Lemma 4.2. Given processes A,B1, . . . , Bk of some finite MTS, there exists an
implementation I such that I ≤m A and I �≤m Bi for all i ∈ {1, . . . , k} if and
only if {A,B1, . . . , Bk} ∈ Con.

Computing the collection of consistent sets {A,B1, . . . , Bk} over an MTS
(P, ���,−→) may be done as a simple (least) fixed-point computation. The
running time is polynomial in the number of potential sets of the form
{A,B1, . . . , Bk} where A,B1, . . . , Bk ∈ P , hence it is exponential in the number
of states of the underlying MTS. This gives an EXPTIME algorithm to check
for thorough refinement.

Theorem 4.3. The problem of checking thorough refinement on finite modal
transition systems is decidable in EXPTIME.

Example 4.4. Consider S and T from Fig. 1. We have already mentioned in Sec-
tion 2 that S ≤t T . To see this, we will attempt (and fail) to demonstrate con-
sistency of {S, T} according to Definition 4.1, which essentially asks for a finite
tableau to be constructed. Now, in order for {S, T} to be concluded consistent,
we have to establish consistency of {S1, T 1, T 2}— as T has no must-transitions
the only choice for J is J = ∅. Now, to establish consistency of {S1, T 1, T 2} both
J = ∅ and J = {1} are possibilities. However, in both cases the requirement will
be that {S, T} must be consistent. Given this cyclic dependency together with
the minimal fixed-point definition of Con it follows that {S, T} is not consistent,
and hence that S ≤t T . ��
Example 4.5. Consider S and U from Fig. 1. Here S �≤t U clearly with I = a.0 as
a witness implementation. Let us demonstrate consistency of {S,U}. Choosing
J = ∅, this will follow from the consistency of {S1, U1}. To conclude this, note
that J = {1} will leave us with the empty collection of sets—as S1 has no must-
transitions—all of which are obviously consistent. ��
Note that in the case of B being deterministic, we only need to consider pairs
of the form {A,B} for determining consistency. This results in a polynomial
time algorithm (see also [5] for an alternative proof of this fact). Similarly, if the
process B is of a constant size, our algorithm runs in polynomial time as well.

Corollary 4.6. The problem of checking thorough refinement between a given
finite modal transition system and a finite deterministic or fixed-size modal tran-
sition system is in P.

To conclude, by Theorem 4.3 and Corollary 3.16 we get our main result.

Theorem 4.7. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-complete.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bulletin of the EATCS 1995, 94–129 (2008)

2. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Complexity of
decision problems for mixed and modal specifications. In: Amadio, R.M. (ed.)
FOSSACS 2008. LNCS, vol. 4962, pp. 112–126. Springer, Heidelberg (2008)

126 N. Beneš et al.

3. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: EXPTIME-
complete decision problems for mixed and modal specifications. In: Proc. of
EXPRESS 2008 (July 2008)

4. Balcazar, J.L., Gabarró, J., Santha, M.: Deciding bisimilarity is P-complete. Formal
aspects of computing 4(6A), 638–648 (1992)

5. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: On determinism in modal transi-
tion systems. Theoretical Computer Science (to appear) (2008)

6. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: Checking thorough refinement
on modal transition systems is EXPTIME-complete. Technical report FIMU-RS-
2009-03, Faculty of Informatics, Masaryk University, Brno (2009)

7. Bertrand, N., Pinchinat, S., Raclet, J.-B.: Refinement and consistency of timed
modal specifications. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA
2009. LNCS, vol. 5457, pp. 152–163. Springer, Heidelberg (2009)

8. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The modal transi-
tion system analyser. In: Proc. of ASE 2008, pp. 475–476. IEEE Computer Society
Press, Los Alamitos (2008)

9. D’Ippolito, N., Fischbein, D., Foster, H., Uchitel, S.: MTSA: Eclipse support
for modal transition systems construction, analysis and elaboration. In: Proc. of
(ETX 2007), pp. 6–10. ACM Press, New York (2007)

10. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. of Logic and Alg. Program. 77(1-2), 20–39 (2008)

11. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

12. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation
for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155–169. Springer, Heidelberg (2001)

13. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

14. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. of LICS 1988,
pp. 203–210. IEEE Computer Society Press, Los Alamitos (1988)

15. Nanz, S., Nielson, F., Nielson, H.R.: Modal abstractions of concurrent behaviour.
In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 159–173.
Springer, Heidelberg (2008)

16. Raclet, J.-B.: Residual for component specifications. In: Proc. of the 4th Interna-
tional Workshop on Formal Aspects of Component Software (2007)

17. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories. In: Proc. of ACSD 2009 (to appear, 2009)

18. Sawa, Z., Jančar, P.: Behavioural equivalences on finite-state systems are
PTIME-hard. Computing and informatics 24(5), 513–528 (2005)

19. Sipser, M.: Introduction to the Theory of Computation. Course Technology (2006)
20. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: FSE 2004,

pp. 43–52. ACM, New York (2004)
21. Wei, O., Gurfinkel, A., Chechik, M.: Mixed transition systems revisited. In: Jones,

N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 349–365. Springer,
Heidelberg (2009)

Transmission Protocols for Instruction Streams

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG Amsterdam, The Netherlands

J.A.Bergstra@uva.nl, C.A.Middelburg@uva.nl

Abstract. Sequential programs under execution produce behaviours to
be controlled by some execution environment. Threads as considered in
basic thread algebra model such behaviours: upon each action performed
by a thread, a reply from an execution environment – which takes the
action as an instruction to be processed – determines how the thread
proceeds. In this paper, we are concerned with the case where the exe-
cution environment is remote: we study some transmission protocols for
passing instructions from a thread to a remote execution environment.

1 Introduction

The behaviours produced by sequential programs under execution are behaviours
to be controlled by some execution environment. The execution environment con-
cerned is increasingly more a remote execution environment. The objective of
the current paper is to clarify the phenomenon of remotely controlled program
behaviours. With the current paper, we carry on the line of research with which
a start was made in [1]. This line of research concerns forms of sequential pro-
grams and behaviours produced by sequential programs under execution (see
e.g. [2,3,4]).

Basic thread algebra [1], BTA in short, is a form of process algebra tailored
to the description and analysis of the behaviours produced by sequential pro-
grams under execution.1 Threads as considered in basic thread algebra model
behaviours to be controlled by some execution environment. Threads proceed
by performing steps, called basic actions in what follows, in a sequential fashion.
The execution environment of a thread takes the basic actions performed by the
thread as instructions to be processed. Upon each basic action performed by
the thread, a reply from the execution environment determines how the thread
proceeds. To achieve the objective of the current paper, we study some trans-
mission protocols for passing instructions from a thread to a remote execution
environment.

General process algebras, such as ACP [5,6], CCS [7,8] and CSP [9,10], are
too general for the description and analysis of the behaviours produced by se-
quential programs under execution. That is, it is quite awkward to describe and

1 In [1], basic thread algebra is introduced under the name basic polarized process
algebra.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 127–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

128 J.A. Bergstra and C.A. Middelburg

analyse behaviours of this kind using such a general process algebra. However,
the behaviours considered in basic thread algebra can be viewed as processes that
are definable over ACP, see e.g. [11]. This allows for the transmission protocols
mentioned above to be described and their correctness to be verified using ACP
or rather ACPτ , an extension of ACP which supports abstraction from internal
actions. We consider first a very simple transmission protocol and then a more
complex one that is more efficient.

This paper is organized as follows. First, we give brief summaries of BTA
(Section 2) and ACPτ (Section 3). Next, we make mathematically precise the
connection between behaviours as considered in BTA and processes as considered
in ACPτ (Section 4). After that, we describe and analyse the above-mentioned
transmission protocols (Sections 5 and 6). Finally, we make some concluding
remarks (Section 7).

2 Thread Algebra

In this section, we review BTA (Basic Thread Algebra). BTA is concerned
with behaviours as exhibited by sequential programs under execution. These
behaviours are called threads.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions has
been given. A thread performs basic actions in a sequential fashion. Upon each
basic action performed, a reply from the execution environment of the thread
determines how it proceeds. The possible replies are the Boolean values T and F.

To build terms, BTA has the following constants and operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ A, the binary postconditional composition operator �a�.

We assume that there are infinitely many variables, including x, y, z. Terms
are built as usual. We use infix notation for the postconditional composition
operator.

The thread denoted by a closed term of the form p �a� q will first perform
a, and then proceed as the thread denoted by p if the reply from the execution
environment is T and proceed as the thread denoted by q if the reply from the
execution environment is F. The threads denoted by D and S will become inactive
and terminate, respectively. This implies that each closed BTA term denotes a
thread that will become inactive or terminate after it has performed finitely
many basic actions. Infinite threads can be described by guarded recursion.

A guarded recursive specification over BTA is a set of recursion equations
E = {X = tX | X ∈ V }, where V is a set of variables and each tX is a BTA
term of the form D, S or t �a� t′ with t and t′ that contain only variables
from V . We write V(E) for the set of all variables that occur in E. We are
only interested in models of BTA in which guarded recursive specifications have
unique solutions, such as the projective limit model of BTA presented in [12].

For each guarded recursive specification E and each X ∈ V(E), we introduce a
constant 〈X |E〉 standing for the unique solution of E for X . The axioms for these

Transmission Protocols for Instruction Streams 129

Table 1. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

constants are given in Table 1. In this table, we write 〈tX |E〉 for tX with, for all
Y ∈ V(E), all occurrences of Y in tX replaced by 〈Y |E〉. X , tX and E stand for
an arbitrary variable, an arbitrary BTA term and an arbitrary guarded recursive
specification over BTA, respectively. Side conditions are added to restrict what
X , tX and E stand for.

In the sequel, we will make use of a version of BTA in which the following
additional assumptions relating to A are made: (i) a fixed but arbitrary set F
of foci has been given; (ii) a fixed but arbitrary set M of methods has been
given; (iii) A = {f.m | f ∈ F ,m ∈M}. These assumptions are based on the
view that the execution environment provides a number of services. Performing
a basic action f.m is taken as making a request to the service named f to process
command m. As usual, we will write B for the set {T,F}.

3 Process Algebra

In this section, we review ACPτ (Algebra of Communicating Processes with
abstraction). This is the process algebra that will be used in Section 4 to make
precise what processes are produced by the threads denoted by closed terms of
BTA with guarded recursion. For a comprehensive overview of ACPτ , the reader
is referred to [6,13].

In ACPτ , it is assumed that a fixed but arbitrary set A of atomic actions,
with τ, δ /∈ A, and a fixed but arbitrary commutative and associative function
| : A×A→ A∪{δ} have been given. The function | is regarded to give the result
of synchronously performing any two atomic actions for which this is possible,
and to give δ otherwise. In ACPτ , τ is a special atomic action, called the silent
step. The act of performing the silent step is considered unobservable. Because
it would otherwise be observable, the silent step is considered an atomic action
that cannot be performed synchronously with other atomic actions.

ACPτ has the following constants and operators:

– for each e ∈ A, the atomic action constant e ;
– the silent step constant τ ;
– the deadlock constant δ ;
– the binary alternative composition operator + ;
– the binary sequential composition operator · ;
– the binary parallel composition operator ‖ ;
– the binary left merge operator '' ;
– the binary communication merge operator | ;

130 J.A. Bergstra and C.A. Middelburg

Table 2. Axioms of ACPτ

x + y = y + x A1

(x + y) + z = x + (y + z) A2

x + x = x A3

(x + y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x + δ = x A6

δ · x = δ A7

x ‖ y = x �� y + y �� x + x | y CM1

a �� x = a · x CM2

a · x �� y = a · (x ‖ y) CM3

(x + y) �� z = x �� z + y �� z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

x · τ = x B1

x · (τ · (y + z) + y) = x · (y + z) B2

∂H(a) = a if a /∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

τI(a) = a if a /∈ I TI1

τI(a) = τ if a ∈ I TI2

τI(x + y) = τI(x) + τI(y) TI3

τI(x · y) = τI(x) · τI(y) TI4

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

τ | a = δ C4

– for each H ⊆ A, the unary encapsulation operator ∂H ;
– for each I ⊆ A, the unary abstraction operator τI .

We assume that there are infinitely many variables, including x, y, z. Terms are
built as usual. We use infix notation for the binary operators.

Let p and q be closed ACPτ terms, e ∈ A, and H, I ⊆ A. Intuitively, the
constants and operators to build ACPτ terms can be explained as follows:

– e first performs atomic action e and next terminates successfully;
– τ performs an unobservable atomic action and next terminates successfully;
– δ can neither perform an atomic action nor terminate successfully;
– p + q behaves either as p or as q, but not both;
– p · q first behaves as p and on successful termination of p it next behaves

as q;
– p ‖ q behaves as the process that proceeds with p and q in parallel;
– p '' q behaves the same as p ‖ q, except that it starts with performing an

atomic action of p;
– p | q behaves the same as p ‖ q, except that it starts with performing an

atomic action of p and an atomic action of q synchronously;
– ∂H(p) behaves the same as p, except that atomic actions from H are blocked;
– τI(p) behaves the same as p, except that atomic actions from I are turned

into unobservable atomic actions.

Transmission Protocols for Instruction Streams 131

Table 3. RDP, RSP and AIP

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

∧
n≥0 πn(x) = πn(y)⇒ x = y AIP

π0(a) = δ PR1

πn+1(a) = a PR2

π0(a · x) = δ PR3

πn+1(a · x) = a · πn(x) PR4

πn(x + y) = πn(x) + πn(y) PR5

πn(τ) = τ PR6

πn(τ · x) = τ · πn(x) PR7

The axioms of ACPτ are given in Table 2. CM2–CM3, CM5–CM7, C1–C4,
D1–D4 and TI1–TI4 are actually axiom schemas in which a, b and c stand for
arbitrary constants of ACPτ , and H and I stand for arbitrary subsets of A.

A recursive specification over ACPτ is a set of recursion equations E =
{X = tX | X ∈ V }, where V is a set of variables and each tX is an ACPτ term
containing only variables from V . Let t be an ACPτ term without occurrences
of abstraction operators containing a variable X . Then an occurrence of X in
t is guarded if t has a subterm of the form e · t′ where e ∈ A and t′ is a term
containing this occurrence of X . Let E be a recursive specification over ACPτ .
Then E is a guarded recursive specification if, in each equation X = tX ∈ E:
(i) abstraction operators do not occur in tX and (ii) all occurrences of variables
in tX are guarded or tX can be rewritten to such a term using the axioms of
ACPτ in either direction and/or the equations in E except the equation X = tX
from left to right. We only consider models of ACPτ in which guarded recursive
specifications have unique solutions, such as the models of ACPτ presented in [6].

For each guarded recursive specification E and each variable X that occurs in
E, we introduce a constant 〈X |E〉 standing for the unique solution of E for X .
The axioms for these constants are RDP and RSP given in Table 3. In RDP, we
write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of Y in tX replaced
by 〈Y |E〉. RDP and RSP are actually axiom schemas in which X stands for an
arbitrary variable, tX stands for an arbitrary ACPτ term, and E stands for an
arbitrary guarded recursive specification over ACPτ .

Closed terms of ACP with guarded recursion that denote the same process can-
not always be proved equal by means of the axioms of ACP together with RDP
and RSP. To remedy this, we introduce AIP (Approximation Induction Princi-
ple). AIP is based on the view that two processes are identical if their approxi-
mations up to any finite depth are identical. The approximation up to depth n
of a process behaves the same as that process, except that it cannot perform any
further atomic action after n atomic actions have been performed. AIP is given in
Table 3. Here, approximation up to depth n is phrased in terms of a unary projec-
tion operator πn. The axioms for these operators are axioms PR1–PR7 in Table 3.
PR1–PR7 are actually axiom schemas in which a stands for arbitrary constants
of ACPτ different from τ and n stands for an arbitrary natural number.

132 J.A. Bergstra and C.A. Middelburg

Table 4. Defining equations for process extraction operation

|X|c = X

|S|c = stop

|D|c = i · δ
|t1 � f.m� t2|c = sf (m) · (rf (T) · |t1|c + rf (F) · |t2|c)
|〈X|E〉|c = 〈X| {Y = |tY |c | Y = tY ∈ E}〉

We will write
∑

i∈S pi, where S = {i1, . . . , in} and pi1 , . . . , pin are ACPτ

terms, for pi1 + . . . + pin . The convention is that
∑

i∈S pi stands for δ if S = ∅.
We will often write X for 〈X |E〉 if E is clear from the context. It should be
borne in mind that, in such cases, we use X as a constant.

4 Process Extraction

In this section, we use ACPτ with guarded recursion to make mathematically
precise what processes are produced by the threads denoted by closed terms of
BTA with guarded recursion.

For that purpose, A and | are taken such that the following conditions are
satisfied:

A ⊇ {sf (d) | f ∈ F , d ∈M∪ B} ∪ {rf(d) | f ∈ F , d ∈M∪ B} ∪ {stop, i}
and for all f ∈ F , d ∈M∪ B, and e ∈ A:

sf (d) | rf (d) = i ,

sf (d) | e = δ if e �= rf(d) ,

e | rf (d) = δ if e �= sf(d) ,

stop | e = δ ,

i | e = δ .

Actions of the forms sf (d) and rf (d) are send and receive actions, respectively,
stop is an explicit termination action, and i is a concrete internal action.

The process extraction operation | | determines, for each closed term p of
BTA with guarded recursion, a closed term of ACPτ with guarded recursion
that denotes the process produced by the thread denoted by p. The process
extraction operation | | is defined by |p| = τ{stop}(|p|c), where | |c is defined by
the equations given in Table 4 (for f ∈ F and m ∈ M).

Two atomic actions are involved in performing a basic action of the form f.m:
one for sending a request to process command m to the service named f and
another for receiving a reply from that service upon completion of the processing.
For each closed term p of BTA with guarded recursion, |p|c denotes a process
that in the event of termination performs a special termination action just before
termination. Abstracting from this termination action yields the process denoted
by |p|. Some atomic actions introduced above are not used in the definition of
the process extraction operation for BTA. Those atomic actions are commonly

Transmission Protocols for Instruction Streams 133

used in the definition of the process extraction operation for extensions of BTA
in which operators for thread-service interaction occur, see e.g. [11].

Let p be a closed term of BTA with guarded recursion. Then we say that |p|
is the process produced by p.

The process extraction operation preserves the axioms of BTA with guarded
recursion. Roughly speaking, this means that the translations of these axioms are
derivable from the axioms of ACPτ with guarded recursion. Before we make this
fully precise, we have a closer look at the axioms of BTA with guarded recursion.

A proper axiom is an equation or a conditional equation. In Table 1, we do not
find proper axioms. Instead of proper axioms, we find axiom schemas without
side conditions and axiom schemas with side conditions. The axioms of BTA
with guarded recursion are obtained by replacing each axiom schema by all its
instances.

We define a function | | from the set of all equations and conditional equations
of BTA with guarded recursion to the set of all equations of ACPτ with guarded
recursion as follows:

|t1 = t2| = |t1| = |t2| ,
|E ⇒ t1 = t2| = {|t′1| = |t′2| | t′1 = t′2 ∈ E} ⇒ |t1| = |t2| .

Proposition 1. Let φ be an axiom of BTA with guarded recursion. Then |φ| is
derivable from the axioms of ACPτ with guarded recursion.

Proof. The proof is trivial. ��
Proposition 1 would go through if no abstraction of the above-mentioned special
termination action was made. Notice further that ACPτ without the silent step
constant and the abstraction operator, better known as ACP, would suffice if no
abstraction of the special termination action was made.

5 A Simple Protocol

In this section, we consider a very simple transmission protocol for passing in-
structions from a thread to a remote execution environment.

At the location of the thread concerned, two atomic actions are involved in per-
forming a basic action: one for sending a message containing the basic action via
a transmission channel to a receiver at the location of the execution environment
and another for receiving a reply via a transmission channel from the receiver upon
completion of the processing at the location of the execution environment. The
receiver waits until a message containing a basic action can be received. Upon re-
ception of a message containing a basic action f.m, the receiver sends a request
to process command m to the service named f at the location of the execution
environment. Next, the receiver waits until a reply from that service can be re-
ceived. Upon reception of a reply, the receiver forwards the reply to the thread.
Deadlocking and terminating are treated like performing basic actions.

We write A′ for the set A∪ {stop, dead}.

134 J.A. Bergstra and C.A. Middelburg

Table 5. Process extraction for remotely controlled threads

|X|rct = X

|S|rct = s1(stop)

|D|rct = s1(dead)

|t1 � a� t2|rct = s1(a) · (r4(T) · |t1|rct + r4(F) · |t2|rct)
|〈X|E〉|rct = 〈X| {Y = |tY |rct | Y = tY ∈ E}〉

For the purpose of describing the very simple transmission protocol outlined
above in ACPτ , A and | are taken such that, in addition to the conditions
mentioned at the beginning of Section 4, the following conditions are satisfied:

A ⊇ {si(d) | i ∈ {1, 2} , d ∈ A′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′}
∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, d ∈ A′, r ∈ B, and e ∈ A:

si(d) | ri(d) = j ,

si(d) | e = δ if e �= ri(d) ,

e | ri(d) = δ if e �= si(d) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e �= rj(r) ,

e | rj(r) = δ if e �= sj(r) ,

We introduce a process extraction operation | |rct which determines, for each
closed term p of BTA with guarded recursion, a closed term of ACPτ with
guarded recursion that denotes the process produced by the thread denoted by
p in the case where the thread is remotely controlled. This operation is defined
by the equations given in Table 5 (for a ∈ A).

Let p be a closed term of BTA with guarded recursion. Then the process
representing the remotely controlled thread p is described by

∂H(|p|rct ‖ CHA ‖ CHR ‖ RCV) ,

where

CHA =
∑
d∈A′

r1(d) · s2(d) · CHA ,

CHR =
∑
r∈B

r3(r) · s4(r) · CHR ,

RCV =
∑

f.m∈A′
r2(f.m) · sf(m) · (rf (T) · s3(T) + rf (F) · s3(F)) · RCV

+ r2(stop) + r2(dead) · i · δ
and

H = {si(d) | i ∈ {1, 2} , d ∈ A′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′}
∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} .

Transmission Protocols for Instruction Streams 135

CHA is the transmission channel for messages containing basic actions, CHR is
the transmission channel for replies, and RCV is the receiver.

If we abstract from all atomic actions for sending and receiving via the
transmission channels CHA and CHR, then the processes denoted by |p| and
∂H(|p|rct ‖ CHA ‖ CHR ‖ RCV) are equal modulo an initial silent step.

Theorem 1. For each closed term p of BTA with guarded recursion:

τ · |p| = τ · τ{j}(∂H(|p|rct ‖ CHA ‖ CHR ‖ RCV)) .

Proof. By AIP, it is sufficient to prove that for all n ≥ 0:

πn(τ · |p|) = πn(τ · τ{j}(∂H(|p|rct ‖ CHA ‖ CHR ‖ RCV))) .

This is easily proved by induction on n and in the inductive step by case dis-
tinction on the structure of p, using the axioms of ACPτ and RDP. ��

6 A More Complex Protocol

In this section, we consider a more complex transmission protocol for passing
instructions from a thread to a remote execution environment.

The general idea of this protocol is that:

– while the last basic action performed by the thread in question is processed
at the location of the receiver, the first basic actions of the two ways in which
the thread may proceed are transmitted together to the receiver;

– while the choice between those two basic actions is made by the receiver on
the basis of the reply produced at the completion of the processing, the reply
is transferred to the thread.

To simplify the description of the protocol, the following extensions of ACP
from [14] will be used:

– We will use conditionals. The expression p� b� q, is to be read as if b then
p else q. The defining equations are

x �T� y = x and x �F� y = y .

– We will use the generalization of restricted early input action prefixing to
process prefixing. Restricted early input action prefixing is defined by the
equation erD

i (u) ; t =
∑

d∈D ri(d) · t[d/u]. We use the extension to processes
to express binary parallel input: (erD1

i (u1)‖ erD2
j (u2)) ;P . For this particular

case, we have the following equation:

(erD1
i (u1) ‖ erD2

j (u2)) ; t =
∑

d1∈D1

ri(d1) · (erD2
j (u2) ; t[d1/u1])

+
∑

d2∈D2

rj(d2) · (erD1
i (u1) ; t[d2/u2]) .

136 J.A. Bergstra and C.A. Middelburg

Table 6. Alternative process extraction for remotely controlled threads

|X|rct2 = X

|S|rct2 = s1(stop)

|D|rct2 = s1(dead)

|t1 � a� t2|rct2 = s1(a, init(t1), init(t2)) · (r4(T) · |t1|′rct2 + r4(F) · |t2|′rct2)
|〈X|E〉|rct2 = 〈X| {Y = |tY |rct2 | Y = tY ∈ E}〉

|X|′rct2 = X

|S|′rct2 = s1(void)

|D|′rct2 = s1(void)

|t1 � a� t2|′rct2 = s1(init(t1), init(t2)) · (r4(T) · |t1|′rct2 + r4(F) · |t2|′rct2)
|〈X|E〉|′rct2 = 〈X| {Y = |tY |′rct2 | Y = tY ∈ E}〉

init(S) = stop

init(D) = dead

init(t1 � a� t2) = a

init(〈X|E〉) = init(〈tX |E〉) if X = tX ∈ E

We write A′′
2 for the set A′ ×A′, A′′

3 for the set A×A′ ×A′, and A′′ for the
set A′′

2 ∪A′′
3 ∪ {stop, dead, void}.

For the purpose of describing the more complex transmission protocol outlined
above in ACPτ , A and | are taken such that, in addition to the conditions
mentioned at the beginning of Section 4, the following conditions are satisfied:

A ⊇ {si(d) | i ∈ {1, 2} , d ∈ A′′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′′}
∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, d ∈ A′′, r ∈ B, and e ∈ A:

si(d) | ri(d) = j ,

si(d) | e = δ if e �= ri(d) ,

e | ri(d) = δ if e �= si(d) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e �= rj(r) ,

e | rj(r) = δ if e �= sj(r) ,

We introduce a process extraction operation | |rct2 which determines, for each
closed term p of BTA with guarded recursion, a closed term of ACPτ with
guarded recursion that denotes the process produced by the thread denoted by
p in the case where the thread is remotely controlled by means of the alternative
transmission protocol. This operation is defined by the equations given in Table 6
(for a ∈ A).

Transmission Protocols for Instruction Streams 137

Let p be a closed term of BTA with guarded recursion. Then the process
representing the remotely controlled thread p is described by

∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2) ,

where

CHA2 =
∑

d∈A′′
r1(d) · s2(d) · CHA2 ,

CHR =
∑
r∈B

r3(r) · s4(r) · CHR ,

RCV2 =
∑

(f.m,a,a′)∈A′′
3

r2(f.m, a, a′) · sf (m)

· (rf (T) · RCV ′
2 (T, a) + rf (F) · RCV ′

2 (F, a′))

+ r2(stop) + r2(dead) · i · δ ,

RCV ′
2 (r, f.m) = (s3(r) ‖ sf (m)) · RCV ′′

2 ,

RCV ′
2 (r, stop) = r2(void) ,

RCV ′
2 (r, dead) = r2(void) · i · δ ,

RCV ′′
2 = (erA

′′
2

2 (u, v) ‖ erB

f (β)) ; (RCV ′
2 (β, u) �β � RCV ′

2 (β, v))

and

H = {si(d) | i ∈ {1, 2} , d ∈ A′′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′′}
∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} .

Notice that the first cycle of the alternative transmission protocol differs fairly
from all subsequent ones. This difference gives rise to a slight complication in
the proof of Theorem 2 below.

If we abstract from all atomic actions for sending and receiving via the
transmission channels CHA2 and CHR, then the processes denoted by |p| and
∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2) are equal modulo an initial silent step.

Theorem 2. For each closed term p of BTA with guarded recursion:

τ · |p| = τ · τ{j}(∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2)) .

Proof. By AIP, it is sufficient to prove that for all n ≥ 0:

πn(τ · |p|) = πn(τ · τ{j}(∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2))) .

For n = 0, 1, 2, this is easily proved. For n ≥ 3, it is easily proved in the cases
p ≡ S and p ≡ D, but in the case p ≡ p1 � f.m� p2 we get:

τ · sf(m) · (rf (T) · πn−2(|p1|) + rf (F) · πn−2(|p2|))
= τ · sf (m)

· (rf(T) · πn−2(τ{j}(∂H(|p1|′rct2 ‖ CHA2 ‖ CHR ‖RCV ′
2 (T, init(p1)))))

+ rf (F) · πn−2(τ{j}(∂H(|p2|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2 (F, init(p2)))))) .

138 J.A. Bergstra and C.A. Middelburg

We have that

πn−2(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2 (T, init(p′)))))

= πn−2(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2 (F, init(p′)))))

in the cases p′ ≡ S and p′ ≡ D, but not in the case p′ ≡ p′1� f ′.m′ �p′2. Therefore,
we cannot prove

πn(τ · |p|) = πn(τ · τ{j}(∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2)))

by induction on n. However, in the case p′ ≡ p′1 � f ′.m′ � p′2 we have that

rf (r) · πn−2(|p′|)
= rf (r) · sf ′(m′) · πn−3(rf ′(T) · |p′1|+ rf ′(F) · |p′2|)

and

rf (r) · πn−2(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2 (r, f ′.m′))))

= rf (r) · sf ′(m′) · πn−3(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′′
2))) .

Therefore, it is sufficient to prove that for all closed terms p1 and p2 of BTA
with guarded recursion, f ∈ F and m ∈M, for all n ≥ 0:

πn(τ · (rf(T) · |p1|+ rf (F) · |p2|))
= πn(τ · τ{j}(∂H(|p1 � f.m� p2|′rct2 ‖ CHA2 ‖CHR ‖ RCV ′′

2))) .

This is easily proved by induction on n and in the inductive step by case dis-
tinction on the structure of p1 and p2, using the axioms of ACPτ , RDP and the
axioms concerning process prefixing and conditionals given in [14]. ��

7 Conclusions

Using ACPτ , we have described a very simple transmission protocol for pass-
ing instructions from a thread to a remote execution environment and a more
complex one that is more efficient, and we have verified the correctness of these
protocols. In this way, we have clarified the phenomenon of remotely controlled
program behaviours to a certain extent.

One option for future work is to describe the protocols concerned in a version
of ACP with discrete relative timing (see e.g. [15,16]) and then to show that the
more complex one leads to a speed-up indeed. Another option for future work is
to devise, describe and analyse more efficient protocols, such as protocols that
allow for two or more instructions to be processed in parallel.

By means of the protocols, we have presented a way to deal with the in-
struction streams that turn up with remotely controlled program behaviours.
By that we have ascribed a sense to the term instruction stream which makes
clear that an instruction stream is dynamic by nature, in contradistinction with
an instruction sequence. We have not yet been able to devise a basic definition
of instruction streams.

Transmission Protocols for Instruction Streams 139

References

1. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic
and Algebraic Programming 51(2), 125–156 (2002)

2. Bergstra, J.A., Bethke, I., Ponse, A.: Decision problems for pushdown threads.
Acta Informatica 44(2), 75–90 (2007)

3. Bergstra, J.A., Middelburg, C.A.: Program algebra with a jump-shift instruction.
Journal of Applied Logic 6(4), 553–563 (2008)

4. Ponse, A., van der Zwaag, M.B.: An introduction to program and thread algebra.
In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS,
vol. 3988, pp. 445–458. Springer, Heidelberg (2006)

5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1–3), 109–137 (1984)

6. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

7. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

8. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31(3), 560–599 (1984)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

11. Bergstra, J.A., Middelburg, C.A.: Thread algebra with multi-level strategies. Fun-
damenta Informaticae 71(2–3), 153–182 (2006)

12. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 1–21. Springer, Heidelberg (2003)

13. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer, Berlin (2000)

14. Baeten, J.C.M., Bergstra, J.A.: On sequential composition, action prefixes and
process prefix. Formal Aspects of Computing 6(3), 250–268 (1994)

15. Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of
Computing 8(2), 188–208 (1996)

16. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in
Theoretical Computer Science, An EATCS Series. Springer, Berlin (2002)

A Deadlock-Free Semantics for Shared Memory
Concurrency�

Gérard Boudol

INRIA, 06902 Sophia Antipolis, France

Abstract. We design a deadlock-free semantics for a concurrent, func-
tional and imperative programming language where locks are implicitly
and univocally associated with pointers. The semantics avoids unsafe
states by relying on a static analysis of programs, by means of a type
and effect system. The system uses singleton reference types, which allow
us to have a precise information about the pointers that are anticipated
to be locked by an expression.

1 Introduction

In this paper we revisit, from a programming language perspective, one of the
most annoying problems with concurrent systems, namely the risk of entering
into a deadlocked situation. Deadlocks arise in particular from synchronization
mechanisms like locking, when several threads of computation are circularly
blocked, each waiting for a resource that is locked by another thread. As is well-
known, locking is sometimes necessary. To illustrate this, as well as some other
points, we shall use an example which is often considered as regards synchro-
nization problems. This is the example of manipulating bank accounts. In our
setting, a bank account will simply be a memory location containing an integer
value.1 Now suppose that we want to define a function to deposit some amount
x on the account y. Using ML’s notation (! y) to get the contents of the memory
location y (i.e. to dereference it, in ML’s jargon where memory locations are
called references – we shall also use the word “pointer”), this function can be
defined as λxλy(y := ! y + x). There is a problem however with this definition,
which is that two concurrent deposits may have the effect of only one of them,
if both read the current amount before it has been updated by the other thread.

To solve this problem, it is enough to make the deposit function taking, for
the update operation y := ! y + x, an exclusive access to the bank account to
update, that is y. In this paper we shall assume that there is in the programming
language a construct, say (lock y in e), to lock the reference y for the purpose
of performing the operation e with an exclusive access to y. Indeed, we think
that the programmer should be offered constructs to control access to mem-
ory locations (as they appear in the language), rather than having to explicitly

� Work partially supported by the ANR-SETI-06-010 grant.
1 The operations we shall consider dealing with accounts should actually be packaged

into a module.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 140–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Deadlock-Free Semantics for Shared Memory Concurrency 141

manipulate locks. In other words, we are assuming here that the locks are, trans-
parently for the programmer, associated with the resources, as in Java. Then
we can conveniently define the deposit function as follows:

deposit = λxλy(lock y in y := ! y + x)

Similarly, we can define a function to withdraw some amount from an account:

withdraw = λxλy(lock y in (if ! y ≥ x then (y := ! y − x) else error))

From this we can define another function, to transfer some amount x from an
account y to another one z, as λxλyλz((withdraw xy) ; (depositxz)). It has been
argued (see [9]) that this function should ensure the property that another thread
cannot see the intermediate state where y has decreased, but z has not yet been
credited. This can be achieved by defining

transfer = λxλyλz(lock y in (withdraw xy) ; (deposit xz))

We are assuming here that the locks are reentrant: a thread that temporarily
“possesses” a reference, like y in this example, is not blocked in locking it twice.
Now suppose that two transfers are performed concurrently, from account a to
account b, and in the converse direction. That is, we have to execute something
like

(transfer 100 a b) ‖ (transfer 10 b a) (1)

Clearly there is a danger of deadlock here: if both operations first perform the
withdrawals, locking respectively a and b, they are then blocked in trying to lock
the other account in order to perform the deposits.

There are three ways out of deadlocks, that have been identified long ago in
the area of operating systems development (see [2]):

(i) deadlock prevention aims at only accepting for execution concurrent sys-
tems that are determined to be deadlock-free, in the sense that none of their
interleaved executions runs into a deadlock;

(ii) deadlock avoidance aims at ensuring, by monitoring the execution at run-
time, that unsafe states that could lead to a deadlocked situation are
avoided;

(iii) deadlock detection and recovery uses run-time monitoring and rollback
mechanisms to analyse the current state, and undo some computations2

in case there is a deadlock.

Despite the existence of the well-known Dijkstra’s Banker’s algorithm, solutions
(i) and (iii) are, by far, the most popular. Deadlock detection and recovery is sim-
ilar to optimistic concurrency control in database transactions implementation.
By contrast, deadlock avoidance may be qualified as pessimistic concurrency.
(See [7] for a recent use of this technique).

Solution (i), deadlock prevention, lends itself to using static analysis tech-
niques. Indeed, a lot of work has been done in this direction – see [1,3,5,10,11],
to mention just a few recent works on this topic. One has to notice that, with
2 Provided these are not irrevocable, such as I/O operations.

142 G. Boudol

no exception, all these works (also including [7]) use the standard approach to
precluding deadlocks, which is to assume an ordering on locking to prevent cir-
cularities. This is an assumption we would like to avoid: in our bank account
example, where one can do concurrent transfers from an account to another in
any direction, like in Example (1), such an assumption would entail that there
should be a unique lock associated with all the accounts, which obviously limits
the concurrency in a drastic, and sometimes unjustified way. In this paper we
shall explore a different direction, namely (ii), deadlock avoidance.

To implement solution (ii), one has to know in advance what are the resources
that are needed, in an exclusive way, by a thread. Then this also seems amenable
to static analysis techniques. This is what this paper is proposing: we define, for a
standard multithreaded programming style, a type and effect system that allows
us to design a prudent semantics, that is then proved to be deadlock-free. The
idea is quite simple: one should not lock a pointer whenever one anticipates, by
typing, to take some other pointer that is currently held by another thread. As
one can see, this is much lighter than implementing optimistic concurrency, and
the proof of correctness is not very complicated. Surprisingly enough, I could not
find in the literature any reference to a similar work – except [12], which however
uses a Petri net model, and Discrete Control Theory –, so ours appears to be the
first one to define a deadlock-free semantics, following the deadlock avoidance
approach, based on a type and effect system for standard multithreading.

To conclude this introduction, let us discuss some more technical points of
our contribution. In analysing an expression such as (lock e0 in e1), we need a
way to get, statically, an approximative idea of what will be the value of e0, the
pointer to be locked, in order to assign it as an effect to the locking expression,
and then use it in the types. An idea could be to use dependent types, but
dependent types for imperative, call-by-value languages is a topic which largely
remains unexplored, and the existing proposals (see [8] for instance) seem to be
over-elaborate for our purpose. A standard approach to statically get information
about pointer accesses is to use regions in a type and effect system [6]: in an ML-
like language, one assigns (distinct) region names to the subexpressions (ref e)
creating a reference, and one can then record as an effect the region where a
reference that has to be locked resides. In this way, locks are actually associated
with regions, rather than with references. However, this is too coarse grained
for our purpose: again using the bank account example, we could define a (very
simplified) function for creating accounts with an initial value as λx(ref x), but
then, this would mean that all accounts would be assigned the same lock, and
we already rejected such a scenario.

To solve this problem, we shall introduce in the programming language a
new construct (cref e) which is a function that, when applied to some (dummy)
argument, then creates a reference with initial value the one of e. Typically,
(cref e)() has the same meaning as (ref e). We shall then restrict, by typing, the
use of such a function f to a particular form, namely (let x = (f()) in e) where e
does not export x. In this way, we shall be able to know exactly the name of the

A Deadlock-Free Semantics for Shared Memory Concurrency 143

pointer denoted by e0 in (lock e0 in e1)3, using singleton types [4], which are both
dependent types of a very simple kind, as well as types with (singleton) regions.
This provides us with a fine grained locking policy, where locks are univocally
associated with references.

Note. For lack of space, the proofs are omitted, or only sketched.

2 Source and Target Languages

Our source language is an extension of CoreML, that is a functional (embedding
the call-by-value λ-calculus) and imperative language, enriched with concurrent
programming primitives, namely a thread spawning construct (thread e) and a
locking construct (lock e0 in e1). The main feature of ML we are interested in
here is not the polymorphic let, but rather the explicit distinction between values
and references to values. Typically, in ML – as opposed to Scheme or Java for
instance –, one cannot write x := x+1, because x cannot be both an integer, as in
x+1, and a reference to an integer, as in x := 1. As explained in the Introduction,
we refine the reference creation construct (ref e) of ML into (cref e), which is a
function that needs to be applied (to a dummy argument) to actually create
a mutable reference, with the value of e as initial value. Then (ref e) is here
an abbreviation for ((cref e)()). For simplicity, we omit from the language the
constructs relying on basic types such as the booleans or integers. Considering
these constructs (and recursion) does not cause any technical difficulty, and we
shall use them in the examples. The syntax of our source language is as follows:

v, w . . . ::= x | λxe values

e ::= v | (e1e0) expressions (functional)

| (cref e) | (! e) | (e0 := e1) (imperative)

| (thread e) | (lock e0 in e1) (concurrent)

The abstraction λxe is the only binder in this language. We denote by {x
→v}e
the capture-avoiding substitution of the variable x by the value v in its free oc-
currences in e, and we shall always consider expressions up to α-conversion, that
is up to the renaming of bound variables. We shall use the standard abbreviation
(let x = e0 in e1) for (λxe1e0), also denoted e0 ; e1 whenever x is not free in e1.
The use of expressions e reducing to values of the form (cref v) will be restricted,
by typing, to a particular form, namely (let x = (e()) in e′). A particular case of
this is (let x = (ref e) in e′).

In order to be evaluated (or executed), the expressions of the source language
will be first translated into a slightly different language. This run-time language,
or more appropriately target language differs from the source one on the following
points:

(i) the construct (cref e) is removed, as well as the values (cref v);

3 This does not mean that one can statically predict which pointers will be created at
run-time, since an expression such as (let x = ((cref e)()) in e′) can be passed as an
argument, and duplicated.

144 G. Boudol

(ii) references (or pointers), ranged over by p, q . . . are introduced. These are
run-time values;

(iii) the locking construct (lock e0 in e1) is replaced by the family of constructs
(lockϕ e0 in e1) where ϕ is any effect, that is any finite set of pointer names
(either constant or variable);

(iv) a family of constructs (e\p)ψ,P is introduced, to represent the fact that
the pointer p is currently held, and will be released upon termination of
e. In this construct ψ and P are finite sets of pointers (they are there for
technical convenience only);

(v) a construct (new x in e), also written simply νxe, is introduced for creating
new pointers. This is a binder for x.

An expression (cref e) of the source language will be represented as

(let x = e in λy((y := x) ; y))

in the target language, where it will take (and return) a pointer as argument
(see the next Section). The (pointer) variables occurring in the effect ϕ in
(lockϕ e0 in e1) are free in this expression. An expression of the target language
is called pure if it does not contain any pointer (which does not mean that its
evaluation does not produce side effects). In particular, a pure expression does
not contain any subexpression of the form (e\p)ψ,P .

3 Translation

In this section we define a translation, guided by a type and effect system, from
the source language into the target language. The purpose of this translation is
twofold:

(i) we compute the effect ϕ of an expression e, which is the set of pointers that
this expression may have to lock during its execution. This effect is then
used to annotate, by translating them, the expressions (lock e′ in e) (which
are also the ones which produce an effect, namely of locking the pointer
denoted by e′), in order to guide the evaluation, avoiding deadlocks. This is
the main purpose of the type and effect system.

(ii) we restrict the use of expressions of the form (cref e) in a way that allows
us to have, in the types, a precise information about the pointer names.

The types for the source language are as follows:

τ, σ, θ . . . ::= unit | θ refx | θ cref | (τ
ϕ−→ σ)

Here θ refx is a singleton type [4], meaning that the only value of this type
is the pointer name x. (This is a very primitive form of dependent type.) We

abbreviate (τ ∅−→ σ) into (τ → σ). In (θ refx
ϕ−→ σ) the (pointer) variable x

is universally quantified, with scope ϕ and σ, and will be instantiated when
applying a function of this type. The capture-avoiding substitution {x
→y}τ is
defined in the standard way, and we always consider types up to α-conversion,

A Deadlock-Free Semantics for Shared Memory Concurrency 145

Γ, x : τ �s x : ∅, τ ⇒ x

Γ, x : τ �s e : ϕ, σ ⇒ e

Γ �s λxe : ∅, (τ ϕ−→ σ) ⇒ λxe Γ �s () : ∅, unit ⇒ ()

Γ �s e0 : ϕ0, (τ
ϕ2−−→ σ) ⇒ e0 Γ �s e1 : ϕ1, τ ⇒ e1

Γ �s (e0e1) : ϕ0 ∪ ϕ1 ∪ ϕ2, σ ⇒ (e0e1)
τ �= θ refx

Γ �s e0 : ϕ0, (θ refx
ϕ2−−→ σ) ⇒ e0 Γ �s e1 : ϕ1, θ refy ⇒ e1

Γ �s (e0e1) : ϕ0 ∪ ϕ1 ∪ {x �→y}ϕ2, {x �→y}σ ⇒ (e0e1)
Γ �s e0 : ϕ0, θ cref ⇒ e0 Γ, x : θ refx �s e1 : ϕ1, τ ⇒ e1

Γ �s (λxe1(e0())) : ϕ0 ∪ (ϕ1 − {x}), τ ⇒ νy (λxe1(e0y))
y fresh, x �∈ Γ, ϕ0, τ

Γ �s e : ϕ, θ ⇒ e

Γ �s (cref e) : ϕ, θ cref ⇒ (λxλy((y := x) ; y)e)
Γ �s e : ϕ, θ refx ⇒ e

Γ �s (! e) : ϕ, θ ⇒ (! e)

Γ �s e0 : ϕ0, θ refx ⇒ e0 Γ �s e1 : ϕ1, θ ⇒ e1

Γ �s (e0 := e1) : ϕ0 ∪ ϕ1, unit ⇒ (e0 := e1)
Γ �s e : ϕ, unit ⇒ e

Γ �s (thread e) : ∅, unit ⇒ (thread e)
Γ �s e0 : ϕ0, θ refx ⇒ e0 Γ �s e1 : ϕ1, τ ⇒ e1

Γ �s (lock e0 in e1) : {x} ∪ ϕ0 ∪ ϕ1, τ ⇒ (lockϕ1 e0 in e1)

Figure 1: Type and Effect System (Source Language)

that is, up to the renaming of bound variables. The typing judgements for the
source language are as follows:

Γ �s e : ϕ, τ

where Γ is a typing context, that is a mapping from a finite set dom(Γ) of
variables to types. In this judgement the effect ϕ is the set of pointer names that
the expression e may have to lock during its evaluation. In the following we shall
only consider well-formed judgements, meaning that if a type θ refx occurs in
the judgement then x does not occur in θ, and if Γ (y) = θ refx then y = x. This
assumption is left implicit in the following.

We shall give a simultaneous definition for both the type and effect system
and the translation from the source to the target languages. That is, we define
inductively the predicate

Γ �s e : ϕ, τ ⇒ e

meaning that the source expression e is well-typed in the typing context Γ , with
effect ϕ and type τ , and translates into the target expression e. The rules are
given in Figure 1, where, when we write x �∈ Γ, ϕ, τ , we mean that x does not oc-
cur in Γ (neither in the domain, nor in the types assigned by this typing context),
nor in ϕ, nor in τ . By forgetting the “⇒ e” parts one obtains the rules of the

146 G. Boudol

type system for the source language. One should notice that if Γ �s e : ϕ, τ ⇒ e
then e is pure. One should also notice that the type and effect system only builds
effects, but does not (other than by implicit type unification, as usual) use them
to constrain the typing.

The most interesting rule is the one for the (lock e0 in e1) constructs. This
expression is the only one introducing an effect, which is the name of the pointer
that is intended to be locked, that is the reference resulting from the evaluation
of e0. In the translation of this expression, that is (lockϕ1 e0 in e1), one records
the anticipated effect ϕ1 of e1. Indeed, the operational semantics will rely on the
idea that, in order to avoid deadlocks, one should not lock the pointer which
is denoted by e0 if a pointer from ϕ1 is already held by another thread. Notice
that the use of a singleton type for e0, namely θ refx, allows us to build the effect
as a set of names (i.e. variables, in the source language), and not expressions
(or regions).

As announced, reference creation is restricted to the form (let x = (e0()) in e1),
where the name (that is, x) of the reference in known in e1. In the translation
of this expression, namely νy (let x = (e0y) in e1), one first creates, by means
of νy, a fresh pointer name (see the following Section), which is passed as an
argument, and then bound to the value v “handled” by e0 (as one can see, e0 is
constrained, by typing, to reduce to an expression of the form λz((z := v) ; z)).
By reduction the name y will be substituted for x in e1, and in particular in the
effects involving the name x, in subexpressions of the form (lockϕ in).

One can see that, assuming that we have the obvious typing rules for boolean
and integer constructs, the deposit and transfer functions considered in the In-
troduction can be typed as follows, using polymorphic types, where y and z are
universally quantified:

Γ �s deposit : ∅, int → (int refy
{y}−−→ unit)

Γ �s transfer : ∅, int→ (int refy → (int refz
{y,z}−−−→ unit))

and their definitions are translated as follows:

λxλy(lock∅ y in y := ! y + x)

λxλyλz(lock{y,z} y in (withdraw xy) ; (deposit xz))

Then (assuming that error has any type) one can check that the following is
typable, in a context where the functions deposit, withdraw and transfer have
been defined, as above:

let create account = λx(cref x) in

let a = (create account 100)() in

let b = (create account 10)() in

((thread (transfer 50 ab))) ; (deposit 10 b)

(2)

A Deadlock-Free Semantics for Shared Memory Concurrency 147

and the translation is, with some optimization in the translation of create account:

let create account = λxλy((y := x) ; y) in

new y in let a = (create account 100)y in

new z in let b = (create account 10)z in

((thread (transfer 50 ab))) ; (deposit 10 b)

4 Prudent Operational Semantics

As usual, evaluation consists in reducing a redex (reducible expression) in an
evaluation context, possibly performing a side effect. In our (run-time) language,
redexes and evaluation contexts are defined as follows:

r ::= (λxev) | (! p) | (p := v) redexes

| (thread e) | (lockψ p in e) | (v\p)ψ,P | νxe

E ::= [] | E[F] evaluation contexts

F := ([] e) | (v []) frames

| (cref []) | (! []) | ([] := e) | (v := [])

| (lockψ [] in e) | ([]\p)ψ,P

To define the semantics of reentrant locks, we shall use the set (E) of pointers
held in the context E, computed by a kind of “stack inspection” mechanism, as
follows:

�[]� = ∅
�E[F]� = �E� ∪ �F� where �F� =

{ {p} if F = ([]\p)ψ,P

∅ otherwise

We now describe our operational semantics for expressions of the target language,
defined as a small-step transition system between configurations (S,L, T) where
S is the store, that is a partial mapping from a finite set dom(S) of pointers to
values, L is a finite set of locked pointers, and T is a multiset of threads, which
are simply expressions. The store is only partial because in some state, some
pointers may have been created but not yet initialized. As regards the store, we
shall use the following notations: S + p, where p �∈ dom(S), is the store obtained
by adding p to dom(S), but not providing a value for p; S[p := v], where p is
supposed to be in dom(S), is the store obtained by initializing or updating the
value of p to be v. The set L is the set of pointers that are currently held by
some thread. As regards multisets, our notations are as follows. Given a set X ,
a multiset over X is a mapping E from X to the set N of non-negative integers,
indicating the multiplicity E(x) of an element. We denote by x the singleton
multiset such that x(y) = (if y = x then 1 else 0). Multiset union E ‖E′ is given
by (E ‖E′)(x) = E(x) + E′(x). In the following we only consider multisets of
expressions, ranged over by T .

The semantics is given in Figure 2, that we now comment. The general form
of the rules is

(S, L,E[r] ‖ T)→ (S′, L′,E[e] ‖T ′)

148 G. Boudol

(S,L, E[(λxev)] ‖T) → (S, L,E[{x �→v}e] ‖T)

(S, L, E[(! p)] ‖T) → (S, L,E[v] ‖T) S(p) = v

(S, L, E[(p := v)] ‖T) → (S[p := v], L,E[()] ‖T)

(S, L,E[(thread e)] ‖T) → (S, L,E[()] ‖T ‖ e)

(S, L,E[(lockψ p in e)] ‖T) → (S, L,E[e] ‖T) p ∈ �E�
(S, L,E[(lockψ p in e)] ‖T) → (S, L′,E[(e\p)ψ,P] ‖T) p �∈ �E� & (♠) &

P = dom(S)
(S, L,E[(v\p)ψ,P] ‖T) → (S, L− {p},E[v] ‖T)

(S, L, E[νxe] ‖T) → (S + p,L, E[{x �→p}e] ‖ T) p �∈ dom(S)

(♠) L ∩ ({p} ∪ (ψ − �E�)) = ∅, L′ = L ∪ {p}
Figure 2: Prudent Operational Semantics

meaning that any thread ready to be reduced can be non-deterministically cho-
sen for evaluation. Again, the most interesting case is the one of expressions
(lockψ e0 in e1). To evaluate such an expression, one first has to evaluate e0,
since (lockψ [] in e1) is [part of] an evaluation context. The expected result is
a pointer p. Then, to reduce (lockψ p in e1), one first looks in the evaluation
context E to see if the thread has already locked p, that is p ∈ (E). If this is the
case, the locking instruction is ignored, that is (lockψ p in e1) is reduced to e1,
with no effect. Otherwise, one consults the set L to see if p, or any pointer in
ψ, is locked by another thread. If this is the case, the expression (lockψ p in e1)
is blocked, waiting for this condition to become false. Otherwise, the pointer p
is locked,4 and one proceeds executing e1 in a context where the fact that p is
currently held is recorded, namely ([]\p)ψ,P . On termination of e1, the pointer p
is released. One should compare the precondition in (♠) for taking a lock with
the usual one, which is L∩{p} = ∅. It is then obvious that our prudent semantics
avoids some paths explored in the standard interleaving semantics.

Notice that the sets ψ and P in the context ([]\p)ψ,P are actually not used in
the operational semantics, and could therefore be removed from the syntax. We
include them for the sole purpose of proving our safety result. Here ψ is the set
of pointers that are anticipated, by the (lockψ p in e1) instruction, as possibly
locked in the future, before p is released. The set P is the one of known pointers
at the time where p is locked.

In the following we shall only consider well-formed configurations, which are
triples (S,L, T) such that if a pointer p occurs in the configuration, either in some
thread or in some value in the store, or in L, then p ∈ dom(S). It is easy to check
that well-formedness is preserved by reduction, since references are allocated in
the store when they are created.

4 The computations expressed by (♠) must be performed in an atomic way. This
means that in an implementation one would use a global lock on the set L.

A Deadlock-Free Semantics for Shared Memory Concurrency 149

In the rest of this section we establish some results about the operational
semantics, and discuss it on an example. Let us say that a configuration (S,L, T)
is regular if it satisfies

(i) T = E[(e\p)ψ,P] ‖ T ′ ⇒ p �∈ �E� & (T ′ = E′[e′] ‖T ′′ ⇒ p �∈ �E′�)
(ii) p ∈ L ⇔ ∃E, e, ψ, P, T ′. T = E[(e\p)ψ,P] ‖ T ′

Clearly, if e is a pure expression, the initial configuration (∅, ∅, e) is regular.
Moreover, this property is preserved by reduction:
Lemma 4.1. If (S,L, T) is regular and (S,L, T)→ (S′, L′, T ′) then (S′, L′, T ′)
is regular.

The following notion of a safe expression is central to our safety result:
Definition (Safe Expression) 4.2. A closed pure expression e of the target

language is safe if (∅, ∅, e) ∗→ (S,L, T) implies

T = E[(E′[(lockψ1 p1 in e)]\p0)ψ0,P0] ‖T ′ & p1 ∈ P0 ⇒ p1 ∈ ψ0

That is, when a reference p1 is about to be locked while some other pointer p0
was previously locked by the same thread, with p1 known to exist at that point,
then the possibility of locking p1 was anticipated when locking p0. (this is where
we need ψ and P in (e\p)ψ,P).
Definition (Deadlock) 4.3. A configuration (S,L, T) is deadlocked if

T = E0[(lockψ0 p0 in e1)] ‖ · · · ‖En[(lockψn pn in en)] ‖T ′

with n > 0 and pi+1 ∈ (Ei) (mod n+ 1). A pure expression e is deadlock-free if
no configuration reachable from (∅, ∅, e) is deadlocked.

The main property of our operational semantics is the following:
Proposition 4.4. Any safe expression is deadlock-free.

Proof Sketch: let us assume the contrary, that is (∅, ∅, e) ∗→ (S,L, T) where
(S,L, T) is deadlocked. For simplicity, let us assume that there are two threads
in T that block each other, that is

T = E0
0[(E

0
1[(lockϕ0 p1 in e0)]\p0)ψ0,P0] ‖E1

0[(E
1
1[(lockϕ1 p0 in e1)]\p1)ψ1,P1] ‖ T ′

(the general case where there is a cycle of blocked threads of length greater than
2 is just notationally more cumbersome). Since e is safe, we have p1 ∈ ψ0 if
p1 ∈ P0, and p0 ∈ ψ1 if p0 ∈ P1. Assume for instance that p0 is the pointer that
is locked the first (and then not released), that is:

(∅, ∅, e) ∗→ (S0, L0,E
0
0[(lockψ0 p0 in e′0)] ‖T0)

→ (S0, L
′
0,E

0
0[(e′0\p0)ψ0,P0] ‖T0) P0 = dom(S0)

∗→ (S1, L1,E
0
0[(e′′0\p0)ψ0,P0] ‖E1

0[(lockψ1 p1 in e′1)] ‖T1)

→ (S1, L
′
1,E

0
0[(e′′0\p0)ψ0,P0] ‖E1

0[(e′1\p1)ψ1,P1] ‖ T1) P1 = dom(S1)
∗→ (S, L, T)

150 G. Boudol

Since e is pure, the configurations reachable from (∅, ∅, e) are regular (Lemma
4.1), and therefore p0 ∈ L1 ⊆ P1, but then reducing (lockψ1 p1 in e′1) in the
context of L1 is not possible – a contradiction.

To conclude this section, let us revisit and discuss Example (2), where the mul-
tiset of threads is

(transfer 50 a b) ‖(deposit 10 b)

Assuming that the pointers a and b contain some integers in the store, with
S(a) ≥ 50, and both of them are free (i.e. not locked), one can see that a
reachable state is (S, {a}, ((a := ! a− 50)\a) ‖(deposit 10 b)), where we omit the
ψ and P components annotating the context (\a). Then, from this state one
can reach for instance the state

(S, {a, b}, ((a := !a− 50)\a) ‖((b := ! b + 10)\b))
This means that there is some real concurrency in executing a transfer from a to b
and a deposit to b in parallel, even though both these operations need to lock b at
some point. However, if (deposit 10 b) starts executing, this blocks (transfer 50 a b),
because the latter cannot lock a, while anticipating to lock b, since b is already
locked. Then the condition (♠) is sometimes too strong in preventing deadlocks,
precluding some harmless interleavings, and one may wonder how we could relax
it, adopting for instance a more informative structure than L for locked pointers.
However, one must be careful with pointer creation, as the following example
shows:

new x in lock∅ x in new y in (thread (lock{x} y in (lock∅ x in ())));

(lock∅ y in ())

Starting with S = ∅ = L, this expression reduces to({p �→ , q �→ }, {p}, ((lock∅ q in ())\p)∅,{p} ‖(lock{p} q in (lock∅ p in ()))
)

where the second thread is (as it should be) not allowed to lock q. Notice that to
detect a potential cycle out of the static information contained in this expression
one has to look into the evaluation context.

5 Safety

In this section we establish our main result (Type Safety, Theorem 5.8 below),
stating that typable expressions are safe. The types for the target language are
as follows:

ρ ::= x | p pointer names

τ, σ, θ . . . ::= unit | θ refρ | (τ
ϕ−→ σ) types

We define a translation τ ⇒ τ from the types of the source language to the types
of the target language by

θ cref ⇒ (θ refx → θ refx)

A Deadlock-Free Semantics for Shared Memory Concurrency 151

Γ, x : τ �t x : ∅, τ Γ, p : θ refp �t p : ∅, θ refp

Γ, x : τ �t e : ϕ, σ

Γ �t λxe : ∅, (τ ϕ−→ σ)
x �∈ Γ

Γ �t () : ∅, unit

Γ �t e0 : ϕ0, (τ
ϕ2−−→ σ) Γ �t e1 : ϕ1, τ

Γ �t (e0e1) : ϕ0 ∪ ϕ1 ∪ ϕ2, σ
τ �= θ refx

Γ �t e0 : ϕ0, (θ refx
ϕ2−−→ σ) Γ �t e1 : ϕ1, θ refρ

Γ �t (e0e1) : ϕ0 ∪ ϕ1 ∪ {x �→ρ}ϕ2, {x �→ρ}σ
Γ �t e : ϕ, θ refρ

Γ �t (! e) : ϕ, θ

Γ �t e0 : ϕ0, θ refρ Γ �t e1 : ϕ1, θ

Γ �t (e0 := e1) : ϕ0 ∪ ϕ1, unit

Γ �t e : ϕ, unit

Γ �t (thread e) : ∅, unit

Γ �t e0 : ϕ0, θ refρ Γ �t e1 : ϕ1, τ

Γ �t (lockϕ1 e0 in e1) : {ρ} ∪ ϕ0 ∪ ϕ1, τ

Γ �t e : ϕ, τ

Γ �t (e\p)ψ,P : ϕ, τ
ϕ ∩ P ⊆ ψ, P ⊆ dom(Γ)

Γ, x : θ refx �t e : ϕ, τ

Γ �t νxe : ϕ− {x}, τ
x �∈ Γ, τ

Figure 3: Type and Effect System (Target Language)

(where x is not in θ). The judgements of the type system for the target language
are Γ �t e : ϕ, τ where Γ , the typing context, is a mapping from a finite set
dom(Γ) of variables and pointers to types.

As in the case of the source language, we only consider well-formed judge-
ments, meaning that if a type θ refρ occurs in the judgement then ρ does not oc-
cur in θ, and if Γ (ρ′) = θ refρ then ρ′ = ρ. The typing rules are given in Figure 3.
These are essentially the same as for the source language, with some new rules.
One should in particular notice the constraints on the typing of (e\p)ψ,P : the
anticipated effect of e must be recorded, as far as the known pointers are con-
cerned, in the ψ component. This is the condition that will ensure the safety of
typable expressions. First, we wish to show that the translation from the source
to the target language preserves typability. To this end, we need a standard
weakening property:
Lemma (Weakening) 5.1. If Γ �t e : ϕ, τ and x and p do not occur in this
judgement then Γ, x : σ �t e : ϕ, τ and Γ, p : θ �t e : ϕ, τ .

Then we have, denoting by Γ the typing context obtained from Γ by translating
the types assigned to the variables:
Lemma 5.2. If Γ �s e : ϕ, τ ⇒ e then Γ �t e : ϕ, τ .

Proof Sketch: by induction on the definition of Γ �s e : ϕ, τ ⇒ e. The only
cases to consider are the rule for (λxe1(e0())) with e0 of type θ cref, using the
Lemma 5.1, and the rules for (cref e) and e = (lock e0 in e1).

152 G. Boudol

Some obvious properties are:
Remark 5.3.
(i) If Γ �t v : ϕ, τ then ϕ = ∅, and if τ = θ refρ then v = ρ.

(ii) If Γ �t e : ϕ, τ and x is free in e then x ∈ dom(Γ).
(iii) If Γ �t e : ϕ, τ and p occurs in e then p ∈ dom(Γ).

Lemma (Strengthening) 5.4.
(i) If Γ, x : τ �t e : ϕ, τ and x is not free in e then Γ �t e : ϕ, σ.

(ii) If Γ, p : σ �t e : ϕ, τ and p does not occur in e then Γ �t e : ϕ, τ .

Our type safety result is established following the standard steps (see [13]), that
is, the main property to show is that typability is preserved by reduction (the so-
called “Subject Reduction” property). To this end, we need a lemma regarding
typing and substitution, and another one regarding the typing of expressions of
the form E[e] (the “Replacement Lemma”). We denote by {x
→ρ}(Γ �t e : ϕ, τ)
the substitution of x by ρ in all its free occurrences in this judgement. This is
only defined if x ∈ dom(Γ) & ρ ∈ dom(Γ) ⇒ Γ (x) = Γ (ρ).
Lemma (Substitution) 5.5.
(i) If Γ �t e : ϕ, τ and ρ′ ∈ dom(Γ) ⇒ Γ (ρ′) = θ refρ′ for ρ′ ∈ {x, ρ} then
{x
→ρ}(Γ �t e : ϕ, τ).
(ii) If x �∈ Γ then Γ, x : σ �t e : ϕ, τ & Γ �t v : ∅, σ ⇒ Γ �t {x
→v}(e : ϕ, τ).
Proof Sketch:
(i) The proof, by induction on the inference of Γ �t e : ϕ, τ , is straightforward.
(ii) This is a standard property, established by induction on the inference of
Γ, x : σ �t e : ϕ, τ (using the Weakening Lemma 5.1, and the previous point).
In the case where e = (lockϕ1 e0 in e1) with Γ, x : σ �t e0 : ϕ0, θ refx and
Γ, x : σ �t e1 : ϕ1, τ , we have σ = θ refx by the well-formedness assumption, and
we use Remark 5.3(i), that is v = x.

Lemma (Replacement) 5.6. If Γ �t E[e] : ϕ, τ then there exist ψ and σ such
that Γ �t e : ψ, σ and if Γ ′ �t e′ : ψ′, σ with Γ ⊆ Γ ′ and ψ′ ∩ dom(Γ) ⊆ ψ then
there exists ϕ′ such that Γ ′ �t E[e′] : ϕ′, τ with ϕ′ ∩ dom(Γ) ⊆ ϕ.

Proof Sketch: by induction on the evaluation context, and then by case on
the frame F such that E = E′[F]. We only examine some cases.

• F = (lockϕ′′ [] in e′′). We have ϕ = {ρ}∪ψ∪ϕ′′ with Γ �t e : ψ, θ refρ for some
θ and Γ �t e′′ : ϕ′′, τ . If Γ ′ �t e′ : ψ′, θ refρ with Γ ⊆ Γ ′ and ψ′ ∩ dom(Γ) ⊆ ψ
then Γ ′ �t (lockϕ′′ e′ in e′′) : {ρ}∪ψ′∪ϕ′′, τ , and we conclude using the induction
hypothesis on E′.

• F = ([]\p)ϕ′′,P . We have Γ �t e : ϕ, τ with ϕ ∩ P ⊆ ϕ′′ and P ⊆ dom(Γ). If
Γ ′ �t e′ : ϕ′, τ with Γ ⊆ Γ ′ and ϕ′∩dom(Γ) ⊆ ϕ then ϕ′∩P ⊆ ϕ′′, and therefore
Γ ′ �t (e′\p)ϕ′′,P : ϕ′, τ , and we conclude using the induction hypothesis on E′.

A Deadlock-Free Semantics for Shared Memory Concurrency 153

In order to show the type safety result, we have to extend the typing to config-
urations. The extension of typing to multisets of threads, that is Γ � T , is given
by

Γ �t e : ϕ, τ

Γ � e

Γ � T Γ � T ′

Γ � T ‖T ′

Typing the store is defined as follows:

Γ � S ⇔def

{
dom(S) ⊆ dom(Γ) &

∀p. Γ (p) = θ refp & S(p) = v ⇒ Γ �t v : ∅, θ
Finally one defines

Γ � (S,L, T) ⇔def Γ � S & Γ � T

Proposition (Subject Reduction) 5.7. If Γ � (S,L, T) and (S,L, T) →
(S′, L′, T ′) then Γ ′ � (S′, L′, T ′) for some Γ ′ such that Γ ⊆ Γ ′.
Proof Sketch: by case on the transition (S,L, T) → (S′, L′, T ′), where T =
E[r] ‖T ′′ and r is the redex that is reduced. We only examine some cases.
• r = (λxev). We have S′ = S, L′ = L and T ′ = E[{x
→v}e] ‖T ′′. There are
two cases.
(i) Γ, x : ζ �t e : ϕ, σ and Γ �t v : ∅, ζ with ζ �= θ refy and Γ �t r : ϕ, σ. We use
the Substitution Lemma 5.5(ii) and the Replacement Lemma 5.6.
(ii) Γ, x : θ refy �t e : ϕ, σ and Γ �t v : ∅, θ refρ with Γ �t r : {y
→ρ}(ϕ, σ)
then by the well-formedness assumption we have y = x, and v = ρ by Remark
5.3(i), and therefore by the Substitution Lemma 5.5(i) we have Γ �t {x
→v}e :
{y
→ρ}(ϕ, σ), and we conclude using the Replacement Lemma 5.6.
• r = (lockψ p in e). We have S = S′ and Γ �t r : {p} ∪ ψ, τ with Γ = Γ ′, p :
θ refp and Γ �t e : ψ, τ . There two cases.
(i) p ∈ (E) and L′ = L and T ′ = E[e]. We use the Replacement Lemma 5.6 to
conclude.
(ii) p �∈ (E), L′ = L ∪ {p} and T ′ = E[(e\p)ψ,P] where P = dom(S). Then
P ⊆ dom(Γ), and therefore Γ �t (e\p)ψ,P : ψ, τ , and we conclude using the
Replacement Lemma 5.6.
• r = νxe. We have S′ = S + p where p �∈ dom(S) and L′ = L and T =
E[{x
→p}e] ‖T ′′. Then Γ �t νxe : ϕ−{x}, τ with x �∈ Γ, τ and Γ, x : θ refx �t e :
ϕ, τ . By the Strengthening Lemma 5.4 (and well-formedness of configurations) we
may assume that p �∈ dom(Γ), and therefore Γ, p : θ refp �t {x
→p}e : {x
→p}ϕ, τ
by the Substitution Lemma 5.5(i), and we use the Replacement Lemma 5.6 to
conclude.
Theorem (Type Safety) 5.8. For any closed expression e of the source lan-
guage, if Γ �s e : ϕ, τ ⇒ e then e is safe.

Proof: this is a consequence of Lemma 5.2 and the Subject Reduction property,
since if

E[(E′[(lockψ1 p1 in e)]\p0)ψ0,P0]
is typable, we have p1 ∈ P0 ⇒ p1 ∈ ψ0, for

Γ �t E′[(lockψ1 p1 in e)] : ϕ, τ ⇒ p1 ∈ ϕ ∩ dom(Γ)

154 G. Boudol

An obvious consequence of this result and Proposition 4.4 is that, if the closed
expression e of the source language is typable, and translates into e, then ex-
ecuting the latter (in the initial configuration where S = ∅ = L) is free from
deadlocks.

6 Conclusion

Designing a semantics for shared variable concurrency that is provably free of
deadlocks is a step towards a modular concurrent programming style, where
one can compose a system from several (typable) threads and modules without
running the risk of entering into a deadlock. We have proposed such a deadlock-
free semantics, that relies on a static analysis of programs which is not much
more constraining than usual typing. Moreover, thanks to the use of singleton
reference types, we obtain a fine grained locking policy, where each pointer has
its own lock. That is, the programmer does not have to think about locks, but
only about pointers.

References

1. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data-races and deadlocks. In: OOPSLA 2002, pp. 211–230 (2002)

2. Coffman Jr, E.G., Elphick, M.J., Shoshani, A.: System Deadlocks. ACM Comput.
Surveys 3(2), 67–78 (1971)

3. Flanagan, C., Abadi, M.: Types for safe locking. In: Swierstra, S.D. (ed.) ESOP
1999. LNCS, vol. 1576, pp. 91–108. Springer, Heidelberg (1999)

4. Hayashi, S.: Singleton, union and intersection types for program extraction. In:
Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 701–730. Springer,
Heidelberg (1991)

5. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006)

6. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL 1988,
pp. 47–57 (1988)

7. McCloskey, B., Zhou, F., Gray, D., Brewer, E.: Autolocker: synchronization infer-
ence for atomic sections. In: POPL 2006, pp. 346–358 (2006)

8. Nanevski, A., Morrisett, G., Shinnar, A., Birkedal, L.: Ynot: dependent types for
imperative programs. In: ICFP 2008, pp. 229–240 (2008)

9. Peyton Jones, S.L.: Beautiful concurrency. In: Oram, A., Wilson, G. (eds.) Beau-
tiful Code. O’Reilly, Sebastopol (2007)

10. Suenaga, K.: Type-based deadlock-freedom verification for non-block-structured
lock primitives and mutable references. In: Ramalingam, G. (ed.) APLAS 2008.
LNCS, vol. 5356, pp. 155–170. Springer, Heidelberg (2008)

11. Vasconcelos, V., Martins, F., Cogumbreiro, T.: Type inference for deadlock detec-
tion in a multithreaded polymorphic typed assembly language. In: Proceedings of
PLACES 2009 (2009)

12. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.: The theory of deadlock
avoidance via discrete control. In: POPL 2009, pp. 252–263 (2009)

13. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information and
Computation 115(1), 38–94 (1994)

On the Expressiveness of Forwarding in Higher-Order
Communication�

Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy

Abstract. In higher-order process calculi the values exchanged in communica-
tions may contain processes. There are only two capabilities for received pro-
cesses: execution and forwarding. Here we propose a limited form of forwarding:
output actions can only communicate the parallel composition of statically known
closed processes and processes received through previously executed input ac-
tions. We study the expressiveness of a higher-order process calculus featuring
this style of communication. Our main result shows that in this calculus termina-
tion is decidable while convergence is undecidable.

1 Introduction

Higher-order process calculi are calculi in which processes can be communicated.
They have been put forward in the early 1990s, with CHOCS [1], Plain CHOCS [2],
the Higher-Order π-calculus [3], and others. Higher-order (or process-passing) concur-
rency is often presented as an alternative paradigm to the first order (or name-passing)
concurrency of the π-calculus for the description of mobile systems. These calculi are
inspired by, and formally close to, the λ-calculus, whose basic computational step —
β-reduction — involves term instantiation. As in the λ-calculus, a computational step in
higher-order calculi results in the instantiation of a variable with a term, which is then
copied as many times as there are occurrences of the variable.

HOCORE is a core calculus for higher-order concurrency, recently introduced in [4].
It is minimal, in that only the operators strictly necessary to obtain higher-order com-
munications are retained. This way, continuations following output messages have been
left out, so communication in HOCORE is asynchronous. More importantly, HOCORE

has no restriction operator. Thus all channels are global, and dynamic creation of new
channels is impossible. This makes the absence of recursion also relevant, as known
encodings of fixed-point combinators in higher-order process calculi require the restric-
tion operator. The grammar of HOCORE processes is:

P ::= a(x).P | a〈P 〉 | P ‖ P | x | 0 (∗)
An input prefixed process a(x).P can receive on name (or channel) a a process to
be substituted in the place of x in the body P ; an output message a〈P 〉 can send P
(the output object) on a; parallel composition allows processes to interact. Despite this

� Research partially funded by EU Integrated Projects HATS (contract number 231620) and
SENSORIA (contract number 016004).

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 155–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

156 C. Di Giusto, J.A. Pérez, and G. Zavattaro

minimality, via a termination preserving encoding of Minsky machines [5], HOCORE

was shown to be Turing complete. Therefore, in HOCORE, properties such as termina-
tion (i.e. non existence of divergent computations) and convergence (i.e. existence of
a terminating computation) are both undecidable. In contrast, somewhat surprisingly,
strong bisimilarity is decidable, and several sensible bisimilarities coincide with it.

In this paper, we shall aim at identifying the intrinsic source of expressive power in
HOCORE. A substantial part of the expressive power of a concurrent language comes
from the ability of accounting for infinite behavior. In higher-order process calculi there
is no explicit operator for such a behavior, as both recursion and replication can be
encoded. We then find that infinite behavior resides in the interplay of higher-order
communication, in particular, in the ability of forwarding a received process within
an arbitrary context. For instance, consider the process R = a(x). b〈Px〉 (here Px

stands for a process P with free occurrences of a variable x). Intuitively, R receives
a process on name a and forwards it on name b. It is easy to see that since objects in
output actions are built following the syntax given by (∗), the actual structure of Px

can be fairly complex. One could even “wrap” the process to be received in x using an
arbitrary number of k “output layers”, i.e., by letting Px ≡ b1〈b2〈. . . bk〈x〉〉 . . .〉. This
nesting capability embodies a great deal of the expressiveness of HOCORE: as a matter
of fact, the encoding of Minsky machines in [4] depends critically on nesting-based
counters. Therefore, investigating suitable limitations to the kind of processes that can
be communicated in an output action appears as a legitimate approach to assess the
expressive power of higher-order concurrency.

With the above consideration in mind, in this paper we propose HO−f , a sublanguage
of HOCORE in which output actions are limited so as to rule out the nesting capability
(Section 2). In HO−f , output actions can communicate the parallel composition of two
kinds of objects: (i) statically known closed processes (i.e. that do not contain free
variables), and (ii) processes received through previously executed input actions. Hence,
the context in which the output action resides can only contribute to communication
by “appending” pieces of code that admit no inspection, available in the form of a
black-box. More formally, the grammar of HO−f processes is that in (∗), except for the
production for output actions, which is replaced by the following one:

a〈x1 ‖ · · · ‖ xk ‖ P 〉
where k ≥ 0 and P is a closed process. This modification directly restricts forwarding
capabilities for output processes, which in turn, leads to a more limited structure of
processes along reductions.

The limited style of higher-order communication enforced in HO−f is relevant from
a pragmatic perspective. In fact, communication in HO−f is inspired by those cases in
which a process P is communicated in a translated format [[P]], and the translation is
not compositional. That is, the cases in which, for any process context C, the translation
of C[P] cannot be seen as a function of the translation of P , i.e. there exists no context
D such that [[C[P]]] = D[P]. This setting can be related to several existing program-
ming scenarios. The simplest example is perhaps mobility of already compiled code,
on which it is not possible to apply inverse translations (such as reverse engineering).
Other examples include proof-carrying code [6] and communication of obfuscated code
[7]. The former features communication of executable code that comes with a certifi-
cate: a recipient can only check the certificate and decide whether to execute the code

On the Expressiveness of Forwarding in Higher-Order Communication 157

or not. The latter consists of the communication of source code that is made difficult to
understand for, e.g., security/copyright reasons, while preserving its functionality.

The main contribution of the paper is the study of the expressiveness of HO−f in
terms of decidability of termination and convergence. Our main results are:

1. Similarly as HOCORE, HO−f is Turing complete (Section 3). The calculus thus
retains a significant expressive power despite of the limited forwarding capability.
This result is obtained by exhibiting an encoding of Minsky machines.

2. In sharp contrast with HOCORE, termination in HO−f is decidable (Section 4). This
result is obtained by appealing to the theory of well-structured transition systems
[8], following the approach used in [9].

As for (1), it is worth commenting that the encoding is not faithful in the sense that,
unlike the encoding of Minsky machines in HOCORE, it may introduce computations
which do not correspond to the expected behavior of the modeled machine. Such com-
putations are forced to be infinite and thus regarded as non-halting computations which
are therefore ignored. Only the finite computations correspond to those of the encoded
Minsky machine. This way, we prove that a Minsky machine terminates if and only if
its encoding in HO−f converges. Consequently, convergence in HO−f is undecidable.

As for (2), the use of the theory of well-structured transition systems is certainly not
a new approach to obtain expressiveness results. However, to the best of our knowledge,
this is the first time it is applied in the higher-order setting. This is significant because
the adaptation to the HO−f case is far from trivial. Indeed, as we shall discuss, this ap-
proach relies on approximating an upper bound on the depth of the (set of) derivatives
of a process. By depth of a process we mean its maximal nesting of input/output actions.
Notice that, even with the limitation on forwarding enforced by HO−f , because of the
“term copying” feature of higher-order calculi, variable instantiation might lead to a po-
tentially larger process. Hence, finding suitable ways of bounding the set of derivatives
of a process is rather challenging and needs care.

We comment further on the consequences of our results in Section 5. In this presen-
tation we omit most proofs; these can be found in the extended version [10].

2 The Calculus

We now introduce the syntax and semantics of HO−f . We use a, b, c to range over
names, and x, y, z to range over variables; the sets of names and variables are disjoint.

P, Q ::= a〈x1 ‖ · · · ‖ xk ‖ P 〉 (with k ≥ 0, fv(P) = ∅) output

| a(x).P input prefix

| P ‖ Q parallel composition

| x process variable

| 0 nil

An input a(x).P binds the free occurrences of x in P . We write fv(P) and bv(P)
for the set of free and bound variables in P , respectively. A process is closed if it does
not have free variables. We abbreviate a(x).P , with x �∈ fv(P), as a.P , a〈0〉 as a, and

158 C. Di Giusto, J.A. Pérez, and G. Zavattaro

P1 ‖ . . .‖Pk as
∏k

i=1Pi. Hence, an output action can be written as a〈∏k∈K xk ‖P 〉. We
write

∏n
1P as an abbreviation for the parallel composition of n copies of P . Further,

P{Q/x} denotes the substitution of the free occurrences of x with process Q in P .
The Labeled Transition System (LTS) of HO−f is defined on closed processes. There

are three forms of transitions: τ transitions P
τ−→ P ′; input transitions P

a(x)−−−→ P ′,
meaning that P can receive at a a process that will replace x in the continuation P ′;

and output transitions P
a〈P ′〉−−−−→ P ′′ meaning that P emits P ′ at a, and in doing so it

evolves to P ′′. We use α to indicate a generic label of a transition.

INP a(x).P
a(x)−−−→ P OUT a〈P 〉 a〈P 〉−−−→ 0

ACT1
P1

α−→ P ′
1

P1 ‖ P2
α−→ P ′

1 ‖ P2

TAU1
P1

a〈P 〉−−−→ P ′
1 P2

a(x)−−−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2{P/x}

(We have omitted ACT2 and TAU2, the symmetric counterparts of the last two rules.)

Remark 1. Since we consider closed processes, in rule ACT1, P2 has no free variables
and no side conditions are necessary. As a consequence, alpha-conversion is not needed.

Definition 1. The structural congruence relation is the smallest congruence generated
by the following laws:

P ‖ 0 ≡ P, P1 ‖ P2 ≡ P2 ‖ P1, P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3.

The alphabet of an HO−f process is defined as follows:

Definition 2 (Alphabet of a process). Let P be a HO−f process. The alphabet of P ,
denotedA(P), is inductively defined as:

A(0) = ∅ A(P ‖ Q) = A(P) ∪A(Q) A(x) = {x}

A(a(x).P) = {a, x} ∪ A(P) A(a〈P 〉) = {a} ∪ A(P)

Proposition 1. Let P be a HO−f process. The setA(P) is finite. Also, if P
α−→ P ′ then

A(P ′) ⊆ A(P).

The internal runs of a process are given by sequences of reductions. Given a process P ,
its reductions P −→ P ′ are defined as P

τ−→ P ′. We denote with −→∗ the reflexive
and transitive closure of −→; notation −→j is to stand for a sequence of j reductions.
We use P � to denote that there is no P ′ such that P −→ P ′. Following [9] we now
define process convergence and process termination. Observe that termination implies
convergence while the opposite does not hold.

Definition 3. Let P be a HO−f process. We say that P converges iff there exists P ′

such that P −→∗ P ′ and P ′ �. We say that P terminates iff there exist no {Pi}i∈N

such that P0 =P and Pj−→Pj+1 for any j.

Termination and convergence are sometimes also referred to as universal and existential
termination, respectively.

On the Expressiveness of Forwarding in Higher-Order Communication 159

Table 1. Reduction of Minsky machines

M-INC
i : INC(rj) m

′
j = mj + 1 m

′
1−j = m1−j

(i, m0, m1) −→M (i + 1, m
′
0, m

′
1)

M-JMP
i : DECJ(rj , s) mj = 0

(i, m0, m1) −→M (s, m0, m1)

M-DEC
i : DECJ(rj , s) mj �= 0 m

′
j = mj − 1 m

′
1−j = m1−j

(i, m0, m1) −→M (i + 1, m
′
0, m

′
1)

3 Convergence Is Undecidable

In this section we show that HO−f is powerful enough to model Minsky machines [5],
a Turing complete model. We present an encoding that is not faithful: unlike the en-
coding of Minsky machines in HOCORE, it may introduce computations which do not
correspond to the expected behavior of the modeled machine. Such computations are
forced to be infinite and thus regarded as non-halting computations which are therefore
ignored. Only finite computations correspond to those of the encoded Minsky machine.
More precisely, given a Minsky machine N , its encoding [[N]] has a terminating compu-
tation if and only if N terminates. This allows to prove that convergence is undecidable.

We begin by briefly recalling the definition of Minsky machines; we then present the
encoding into HO−f and discuss its correctness.

Minsky machines. A Minsky machine is a Turing complete model composed of a set
of sequential, labeled instructions, and two registers. Registers rj (j ∈ {0, 1}) can hold
arbitrarily large natural numbers. Instructions (1 : I1), . . . , (n : In) can be of two kinds:
INC(rj) adds 1 to register rj and proceeds to the next instruction; DECJ(rj , s) jumps to
instruction s if rj is zero, otherwise it decreases register rj by 1 and proceeds to the next
instruction. A Minsky machine includes a program counter p indicating the label of the
instruction being executed. In its initial state, the machine has both registers set to 0 and
the program counter p set to the first instruction. The Minsky machine stops whenever
the program counter is set to a non-existent instruction, i.e. p > n. A configuration
of a Minsky machine is a tuple (i,m0,m1); it consists of the current program counter
and the values of the registers. Formally, the reduction relation over configurations of a
Minsky machine, denoted−→M, is defined in Table 1.

In the encoding of a Minsky machine into HO−f we will find it convenient to have a
simple form of guarded replication. This construct can be encoded in HO−f as follows.

Input-guarded replication. We follow the standard encoding of replication in higher-
order process calculi, adapting it to input-guarded replication so as to make sure that
diverging behaviors are not introduced. As there is no restriction in HO−f , the encoding
is not compositional and replications cannot be nested. In [4] the following encoding is
shown to preserve termination.

Definition 4. Assume a fresh name c. The encoding of input-guarded replication is as
follows:

[[!a(z). P]]i! = a(z). (Qc ‖ P) ‖ c〈a(z). (Qc ‖ P)〉

160 C. Di Giusto, J.A. Pérez, and G. Zavattaro

Table 2. Encoding of Minsky machines

REGISTER rj [[rj = m]]M =
Qm

1 uj

INSTRUCTIONS (i : Ii)
[[(i : INC(rj))]]M = !pi. (uj ‖ setj(x). setj〈x ‖ INCj〉 ‖ pi+1)
[[(i : DECJ(rj , s))]]M = !pi. mi

‖ !mi. (loop ‖ uj . loop. setj(x). setj〈x ‖ DECj〉 ‖ pi+1)
‖ !mi. setj(x). (x ‖ setj〈0〉 ‖ ps))

where
INCj = loop ‖ checkj . loop DECj = checkj

where Qc = c(x). (x ‖ c〈x〉), P contains no replications (nested replications are
forbidden), and [[·]]i! is an homomorphism on the other process constructs in HO−f .

Encoding Minsky machines into HO−f . The encoding of Minsky machines into
HO−f is denoted by [[·]]M and presented in Table 2. We begin by defining the encoding
of the configurations of a Minsky machine; we then discuss the encodings of registers
and instructions.

Definition 5 (Encoding of Configurations). Let N be a Minsky machine with registers
r0, r1 and instructions (1 : I1), . . . , (n : In). For j ∈ {0, 1}, suppose fresh, pairwise
different names rj , p1, . . . , pn, setj , loop, checkj . Also, let DIV be a divergent process
(e.g. w ‖ !w.w). Given the encodings in Table 2, we have:

1. The initial configuration (1, 0, 0) of N is encoded as:

[[(1, 0, 0)]]M ::= p1 ‖
n∏

i=1

[[(i : Ii)]]M ‖ loop. DIV ‖ set0〈0〉 ‖ set1〈0〉 .

2. A configuration (i,m0,m1) of N , after kj increments and lj decrements of register
rj , is encoded as:

[[(i, m0, m1)]]M = pi ‖ [[r0 = m0]]M ‖ [[r1 = m1]]M ‖
n∏

i=1

[[(i : Ii)]]M ‖

loop. DIV ‖ set0〈LOG0[k0, l0]〉 ‖ set1〈LOG1[k1, l1]〉 .

A register rj that stores the number m is encoded as the parallel composition of m
copies of the unit process uj . To implement the test for zero it is necessary to record
how many increments and decrements have been performed on the register rj . This is
done by using a special process LOGj , which is communicated back and forth on name
setj . More precisely, every time an increment instruction occurs, a new copy of the
process uj is created, and the process LOGj is updated by adding the process INCj in
parallel. Similarly for decrements: a copy of uj is consumed and the process DECj is
added to LOGj . As a result, after k increments and l decrements on register rj , we have
that LOGj =

∏
k INCj ‖

∏
l DECj , which we abbreviate as LOGj [k, l].

Each instruction (i : Ii) is a replicated process guarded by pi, which represents the
program counter when p = i. Once pi is consumed, the instruction is active and an in-
teraction with a register occurs. We already described the behavior of increments. Let us

On the Expressiveness of Forwarding in Higher-Order Communication 161

now focus on decrements, the instructions that can introduce divergent —unfaithful—
computations. In this case, the process can internally choose either to actually perform
a decrement and proceed with the next instruction, or to jump. This can be seen as a
guess the process makes on the actual number stored by the register rj . Therefore, two
situations can occur:

1. The process chooses to decrement rj . In this case instruction pi+1 is immediately
enabled, and the process launches process loop and then tries to consume a copy
of uj . If this operation succeeds (i.e. the content of rj is greater than 0) then a syn-
chronization with the input on loop that guards the updating of LOGj (represented
as an output on name setj) takes place. Otherwise, the unit process uj could not
be consumed (i.e. the content of rj is zero and the process made a wrong guess).
Process loop then synchronizes with the external process loop. DIV, thus spawning
a divergent computation.

2. The process chooses to jump to instruction ps. In this case instruction ps is imme-
diately enabled, and it is necessary to check if the actual value stored by rj is zero.
To do so, the process receives the process LOGj and launches it. If the number of
increments is equal to the number of decrements then complementary signals on
the name checkj will match each other. In turn, this allows each signal loop exe-
cuted by an INCj process to be matched by a complementary one. Otherwise, then
it is the case that at least one of those loop signals remains active (i.e. the content
of the register is not zero); a synchronization with the process loop. DIV then takes
place, and a divergent computation is spawned.

Before executing the instructions, we require both registers in the Minsky machine
to be set to zero. This is to guarantee correctness: starting with values different from
zero in the registers (without proper initialization of the logs) can lead to inconsisten-
cies. For instance, the test for zero would succeed (i.e. without spawning a divergent
computation) even for a register whose value is different from zero.

We now state that the encoding is correct.

Theorem 1. Let N be a Minsky machine with registers r0 = m0, r1 = m1, instructions
(1 : I1), . . . , (n : In), and configuration (i,m0,m1). Then (i,m0,m1) terminates if
and only if process [[(i,m0,m1)]]M converges.

As a consequence of this theorem we have that convergence is undecidable.

Corollary 1. Convergence is undecidable in HO−f .

4 Termination Is Decidable

In this section we prove that termination is decidable for HO−f processes. As hinted at
in the introduction, this is in sharp contrast with the analogous result for HOCORE. The
proof appeals to the theory of well-structured transition systems, whose main definitions
and results we summarize next.

162 C. Di Giusto, J.A. Pérez, and G. Zavattaro

Well-Structured Transition Systems. The following results and definitions are from
[8], unless differently specified. Recall that a quasi-order (or, equivalently, preorder) is
a reflexive and transitive relation.

Definition 6 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order ≤ over a
set X such that, for any infinite sequence x0, x1, x2 . . . ∈ X , there exist indexes i < j
such that xi ≤ xj .

Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an infinite
increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .). Thus well-quasi-
orders exclude the possibility of having infinite strictly decreasing sequences.

We also need a definition for (finitely branching) transition systems. This can be
given as follows. Here and in the following →∗ denotes the reflexive and transitive
closure of the relation→.

Definition 7 (Transition system). A transition system is a structure TS = (S,→),
where S is a set of states and →⊆ S × S is a set of transitions. We define Succ(s)
as the set {s′ ∈ S | s → s′} of immediate successors of S. We say that TS is finitely
branching if, for each s ∈ S, Succ(s) is finite.

Fact 1. The LTS for HO−f given in Section 2 is finitely branching.

The function Succ will also be used on sets by assuming the point-wise extension of
the above definitions. The key tool to decide several properties of computations is the
notion of well-structured transition system. This is a transition system equipped with
a well-quasi-order on states which is (upward) compatible with the transition relation.
Here we will use a strong version of compatibility; hence the following definition.

Definition 8 (Well-structured transition system). A well-structured transition system
with strong compatibility is a transition system TS = (S,→), equipped with a quasi-
order ≤ on S, such that the two following conditions hold:

1. ≤ is a well-quasi-order;
2. ≤ is strongly (upward) compatible with→, that is, for all s1 ≤ t1 and all transi-

tions s1 → s2 , there exists a state t2 such that t1 → t2 and s2 ≤ t2 holds.

The following theorem is a special case of Theorem 4.6 in [8] and will be used to obtain
our decidability result.

Theorem 2. Let TS = (S,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, decidable ≤, and computable Succ. Then the exis-
tence of an infinite computation starting from a state s ∈ S is decidable.

We will also need a result due to Higman [11] which allows to extend a well-quasi-order
from a set S to the set of the finite sequences on S. More precisely, given a set S let us
denote by S∗ the set of finite sequences built by using elements in S. We can define a
quasi-order on S∗ as follows.

Definition 9. Let S be a set and ≤ a quasi-order over S. The relation ≤∗ over S∗ is
defined as follows. Let t, u ∈ S∗, with t = t1t2 . . . tm and u = u1u2 . . . un. We have

On the Expressiveness of Forwarding in Higher-Order Communication 163

that t ≤∗ u if and only if there exists an injection f from {1, 2, . . .m} to {1, 2, . . . n}
such that ti ≤ uf(i) and i ≤ f(i) for i = 1, . . . ,m.

The relation ≤∗ is clearly a quasi-order over S∗. It is also a wqo, since we have the
following result.

Lemma 1 ([11]). Let S be a set and ≤ a wqo over S. Then ≤∗ is a wqo over S∗.

Finally we will use also the following proposition, whose proof is immediate.

Proposition 2. Let S be a finite set. Then the equality is a wqo over S.

Termination is Decidable in HO−f . Here we prove that termination is decidable in
HO−f . The crux of the proof consists in finding an upper bound for a process and
its derivatives. This is possible in HO−f because of the limited structure allowed in
output actions. We proceed as follows. First we define a notion of normal form for
HO−f processes. We then characterize an upper bound for the derivatives of a given
process, and define an ordering over them. This ordering is then shown to be a wqo
that is strongly compatible with respect to the LTS of HO−f given in Section 2. The
decidability result is then obtained by resorting to the results from [8] reported before.

Definition 10 (Normal Form). Let P ∈ HO−f . P is in normal form iff

P =
l∏

k=1

xk ‖
m∏

i=1

ai(yi). Pi ‖
n∏

j=1

bj〈P ′
j〉

where each Pi and P ′
j are in normal form.

Lemma 2. Every process P ∈ HO−f is structurally congruent to a normal form.

We now define an ordering over normal forms. Intuitively, a process is larger than an-
other if it has more parallel components.

Definition 11 (Relation,). Let P,Q ∈ HO−f . We write P , Q iff there exist x1 . . . xl,
P1 . . . Pm, P ′

1 . . . P ′
n, Q1 . . .Qm, Q′

1 . . . Q′
n, and R such that

P ≡ ∏l
k=1 xk ‖

∏m
i=1 ai(yi). Pi ‖ ∏n

j=1 bj〈P ′
j〉

Q ≡ ∏l
k=1 xk ‖

∏m
i=1 ai(yi). Qi ‖∏n

j=1 bj〈Q′
j〉 ‖ R

with Pi , Qi and P ′
j , Q′

j , for i ∈ [1. .m] and j ∈ [1. .n].

The normal form of a process can be intuitively represented in a tree-like manner. More
precisely, given the process in normal form

P =
l∏

k=1

xk ‖
m∏

i=1

ai(yi). Pi ‖
n∏

j=1

bj〈P ′
j〉

we shall decree its associated tree to have a root node labeled x1, . . . , xk. This root node
has m + n children, corresponding to the the trees associated to processes P1, . . . , Pm

and P ′
1, . . . , P

′
m; the outgoing edges connecting the root node and the children are la-

beled a1(y1), . . . , am(ym) and b1, . . . , bn.
This intuitive representation of processes in normal form as trees will be useful to

reason about the structure of HO−f terms. We begin by defining the depth of a process.
Notice that such a depth corresponds to the maximum depth of its tree representation.

164 C. Di Giusto, J.A. Pérez, and G. Zavattaro

Definition 12 (Depth). Let P =
∏l

k=1 xk ‖
∏m

i=1 ai(yi).Pi ‖
∏n

j=1 bj〈P ′
j〉 be a

HO−f process in normal form. The depth of P is given by

depth(P) = max{1 + depth(Pi), 1 + depth(P ′
j) | i ∈ [1. . m] ∧ j ∈ [1. . n]}.

Given a natural number n and a process P , the set PP,n contains all those processes in
normal form that can be built using the alphabet of P and whose depth is at most n.

Definition 13. Let n be a natural number and P ∈ HO−f . We define the set PP,n as
follows:

PP,n = {Q | Q ≡ ∏k∈K xk ‖
∏

i∈I ai(yi). Qi ‖ ∏j∈J bj〈Q′
j〉

∧ A(Q) ⊆ A(P)
∧ Qi, Q

′
j ∈ PP,n−1 ∀i ∈ I, j ∈ J}

where PP,0 contains processes that are built out only of variables in A(P).

As it will be shown later, the set of all derivatives of P is a subset of PP,2·depth(P).
When compared to processes in languages such as Milner’s CCS, higher-order pro-

cesses have a more complex structure. This is because, by virtue of reductions, an arbi-
trary process can take the place of possibly several occurrences of a single variable. As
a consequence, the depth of (the syntax tree of) a process cannot be determined (or even
approximated) before its execution: it can vary arbitrarily along reductions. Crucially,
in HO−f it is possible to bound such a depth. Our approach is the following: rather than
solely depending on the depth of a process, we define measures on the relative position
of variables within a process. Informally speaking, such a position will be determined
by the number of prefixes guarding a variable. Since variables are allowed only at the
top level of the output objects, their relative distance will remain invariant during re-
ductions. This allows to obtain a bound on the structure of HO−f processes. Finally, it
is worth stressing that even if the same notions of normal form, depth, and distance can
be defined for HOCORE, a finite upper bound for such a language does not exist. We
first define the maximum distance between a variable and its binder.

Definition 14. Let P =
∏

k∈K xk ‖
∏

i∈I ai(yi).Pi ‖
∏

j∈J bj〈P ′
j〉 be a HO−f pro-

cess in normal form. We define the maximum distance of P as:

maxDistance(P) = max{maxDistyi(Pi),

maxDistance(Pi), maxDistance(P ′
j) | i ∈ I, j ∈ J}

where

maxDistx(P)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if P = x,

1 + maxDistx(Pz) if P = a(z). Pz ∧ x �= z,

1 + maxDistx(P ′) if P = a〈P ′〉,
max{maxDistx(R),maxDistx(Q)} if P = R ‖ Q,

0 otherwise.

Lemma 3 (Properties of maxDistance). Let P be a HO−f process. It holds that:

1. maxDistance(P) ≤ depth(P)
2. For every Q such that P

α−→ Q, maxDistance(Q) ≤ maxDistance(P).

On the Expressiveness of Forwarding in Higher-Order Communication 165

We now define the maximum depth of processes that can be communicated. Notice that
the continuations of inputs are considered as they could become communication objects
themselves along reductions:

Definition 15. Let P =
∏

k∈K xk ‖
∏

i∈I ai(yi).Pi ‖
∏

j∈J bj〈P ′
j〉 be a HO−f pro-

cess in normal form. We define the maximum depth of a process that can be communi-
cated (maxDepCom(P)) in P as:

maxDepCom(P) = max{maxDepCom(Pi), depth(P ′
j) | i ∈ I, j ∈ J} .

Lemma 4 (Properties of maxDepCom). Let P be a HO−f process. It holds that:

1. maxDepCom(P) ≤ depth(P)
2. For every Q such that P

α−→ Q, maxDepCom(Q) ≤ maxDepCom(P).

Notation 1. We use P
α̃−−→ P ′ if, for some n ≥ 0, there exist α1, . . . , αn such that

P
α1−→ · · · αn−−→ P ′.

Generalizing Lemmata 3 and 4 we obtain:

Corollary 2. Let P be a HO−f process. For every Q such that P
α̃−−→ Q, it holds that:

1. maxDistance(Q) ≤ depth(P)
2. maxDepCom(Q) ≤ depth(P).

We are interested in characterizing the derivatives of a given process P . We shall show
that they are over-approximated by means of the set PP,2·depth(P). We will investigate
the properties of the relation, on such an approximation; such properties will also hold
for the set of derivatives.

Definition 16. Let P ∈ HO−f . Then we define Deriv(P) = {Q | P −→∗ Q}
The following results hold because of the limitations we have imposed on the output
actions for HO−f processes. Any process that can be communicated in P is in PP,n−1
and its maximum depth is also bounded by depth(P). The deepest position for a vari-
able is when it is a leaf in the tree associated to the normal form of P . That is, when its
depth is exactly depth(P). Hence the following:

Proposition 3. Let P be a HO−f process. Suppose, for some n, that P ∈ PP,n. For
every Q such that P

α−→ Q, it holds that Q ∈ PP,2·n.

The lemma below generalizes Proposition 3 to a sequence of transitions.

Lemma 5. Let P be a HO−f process. Suppose, for some n, that P ∈ PP,n. For every

Q such that P
α̃−−→ Q, it holds that Q ∈ PP,2·n.

Corollary 3. Let P ∈ HO−f . Then Deriv(P) ⊆ PP,2·depth(P).

To prove that , is a wqo, we first show that it is a quasi order.

Proposition 4. The relation , is a quasi-order.

We are now in place to state that , is a wqo.

166 C. Di Giusto, J.A. Pérez, and G. Zavattaro

Theorem 3 (Well-quasi-order). Let P ∈ HO−f and n ≥ 0. The relation , is a well-
quasi-order over PP,n.

Proof. The proof is by induction on n.
(–) Let n = 0. Then PP,0 contains processes containing only variables taken from

A(P). The equality on finite sets is a well-quasi-ordering; by Lemma 1 (Higman’s
Lemma) also =∗ is a well quasi-ordering: it corresponds to the ordering, on processes
containing only variables.

(–) Let n > 0. Take an infinite sequence of processes s = P1, P2, . . . , Pl, . . . with
Pl ∈PP,n. We shall show that the thesis holds by means of successive filterings of the
normal forms of the processes in s. By Lemma 2 there exist Kl, Il and Jl such that

Pl ≡
∏

k∈Kl

xk ‖
∏
i∈Il

ai(yi). P l
i ‖

∏
j∈Jl

bj〈P ′l
j 〉

with P l
i and P ′l

j ∈ PP,n−1. Hence each Pl can be seen as composed of 3 finite se-

quences: (i) x1 . . . xk, (ii) a1(y1).P l
1 . . . ai(yi).P l

i , and (iii) b1〈P ′l
1 〉 . . . bj〈P ′l

j 〉. We
note that the first sequence is composed of variables from the finite set A(P) whereas
the other two sequences are composed by elements inA(P) and PP,n−1. Since we have
an infinite sequence ofA(P)∗, asA(P) is finite, by Proposition 2 and Lemma 1 we have
that =∗ is a wqo over A(P)∗. By inductive hypothesis, we have that , is a wqo on
PP,n−1, hence by Lemma 1 relation ,∗ is a wqo on P∗

P,n−1. We start filtering out s by
making the finite sequences x1 . . . xk increasing with respect to =∗; let us call this sub-
sequence t. Then we filter out t, by making the finite sequence a1(y1).P l

1 . . . ai(yi).P l
i

increasing with respect to both ,∗ and =∗. This is done in two steps: first, by consid-
ering the relation =∗ on the subject of the actions (recalling that ai, yi ∈ A(P)), and
then by applying another filtering to the continuation using the inductive hypothesis.
For the first step, it is worth remarking that we do not consider symbols of the alphabet
but pairs of symbols. Since the set of pairs on a finite set is still finite, we know by
Higman’s Lemma that =∗ is a wqo on the set of sequences of pairs (ai, yi). For the
sequence of outputs b1〈P ′l

1 〉 . . . bj〈P ′l
j 〉 this is also done in two steps: the subject of the

outputs are ordered with respect to =∗ and the objects of the output action are ordered
with respect to ,∗ using the inductive hypothesis. At the end of the process we obtain
an infinite subsequence of s that is ordered with respect to ,. ��

The last thing to show is that the well-quasi-ordering , is strongly compatible with
respect to the LTS associated to HO−f . We need the following auxiliary lemma:

Lemma 6. Let P, P ′, Q, and Q′ be HO−f processes in normal form such that P , P ′

and Q , Q′. Then it holds that P{Q/x} , P ′{Q′
/x}.

Theorem 4 (Strong Compatibility). Let P,Q, P ′ ∈ HO−f . If P , Q and P
α−→ P ′

then there exists Q′ such that Q
α−→ Q′ and P ′ , Q′.

Theorem 5. Let P ∈ HO−f . The transition system (Deriv(P),−→,,) is a finitely
branching well-structured transition system with strong compatibility, decidable,, and
computable Succ.

On the Expressiveness of Forwarding in Higher-Order Communication 167

Proof. The transition system of HO−f is finitely branching (Fact 1). The fact that ,
is a well-quasi-order on Deriv(P) follows from Corollary 3 and Theorem 3. Strong
compatibility follows from Theorem 4. ��
We can now state the main result of the section. It follows from Theorems 2 and 5.

Corollary 4. Let P ∈ HO−f . Termination of P is decidable.

5 Concluding Remarks

We have studied HO−f , a higher-order process calculus featuring a limited form of hig-
her-order communication. In HO−f , output actions can only include previously rece-
ived processes in composition with closed ones. This is reminiscent of programming
scenarios with forms of code mobility in which the recipient is not authorized or capable
of accessing/modifying the structure of the received code. We have shown that such a
weakening of the forward capabilities of higher-order processes has consequences both
on the expressiveness of the language and on the decidability of termination.

As for the expressiveness issues, by exhibiting an encoding of Minsky machines into
HO−f , we have shown that convergence is undecidable. Hence, from an absolute ex-
pressiveness standpoint, HO−f is Turing complete. Now, given the analogous result for
HOCORE [4], a relative expressiveness issue also arises. Indeed, our encoding of Min-
sky machines into HO−f is not faithful, which reveals a difference on the criteria each
encoding satisfies. This reminds us of the situation in [12], where faithful and unfaith-
ful encodings of Turing complete formalisms into calculi with interruption and com-
pensation are compared. Using the terminology in [12], we can say that the presented
encoding satisfies a weakly Turing completeness criterion, as opposed to the (stronger)
Turing completeness criterion that is satisfied by the encoding of Minsky machines into
HOCORE in [4]. The discrepancy on the criteria satisfied by each encoding might be in-
terpreted as an expressiveness gap between HO−f and HOCORE; nevertheless, it seems
clear that the loss of expressiveness resulting from limiting the forwarding capabilities
in HOCORE is much less dramatic than what one would have expected.

We have shown that the communication style of HO−f causes a separation result
with respect to HOCORE. In fact, because of the limitation on output actions, it was
possible to prove that termination in HO−f is decidable. This is in sharp contrast with
the situation in HOCORE, for which termination is undecidable. In HO−f , it is possible
to provide an upper bound on the depth (i.e. the level of nesting of actions) of the
(set of) derivatives of a process. In HOCORE such an upper bound does not exist. This
was essential for obtaining the decidability result; for this, we appealed to the approach
developed in [9], which relies on the theory of well-structured transition systems [8]. As
far as we are aware, this approach to studying expressiveness issues has not previously
been used in the higher-order setting. The decidability of termination might shed light
on the development of verification techniques for higher-order processes.

The HO−f calculus is a sublanguage of HOCORE. As such, HO−f inherits the many
results and properties of HOCORE [4]; most notably, a notion of (strong) bisimilarity
which is decidable and coincides with a number of sensible equivalences in the higher-
order context. Our results thus complement those in [4] and deepen our understanding

168 C. Di Giusto, J.A. Pérez, and G. Zavattaro

of the expressiveness of core higher-order calculi as a whole. Furthermore, by recalling
that CCS without restriction is not Turing complete and has decidable convergence,
the present results shape an interesting expressiveness hierarchy, namely one in which
HOCORE is strictly more expressive than HO−f (because of the discussion above), and
in which HO−f is strictly more expressive than CCS without restriction.

Remarkably, our undecidability result can be used to prove that (weak) barbed bisim-
ilarity is undecidable in the calculus obtained by extending HO−f with restriction. Con-
sider the encoding of Minsky machines used in Section 3 to prove the undecidability of
convergence in HO−f . Consider now the restriction operator (νx̃) used as a binder for
the names in the tuple x̃. Take a Minsky machine N (it is not restrictive to assume that
it executes at least one increment instruction) and its encoding P , as defined in Defi-
nition 5. Let x̃ be the tuple of the names used by P , excluding the name w. We have
that N terminates if and only if (νx̃)P is (weakly) barbed equivalent to the process
(νd)(d | d | d. (w | !w.w)).

Related Work. The most closely related work is [4], which was already discussed
along the paper. We do not know of other works that study the expressiveness of higher-
order calculi by restricting higher-order outputs. The recent work [13] studies finite-
control fragments of Homer [14], a higher-order process calculus with locations. While
we have focused on decidability of termination and convergence, in [13] the interest is
in decidability of barbed bisimilarity. One of the approaches explored in [13] is based on
a type system that bounds the size of processes in terms of their syntactic components
(e.g. number of parallel components, location nesting). Although the restrictions such a
type system imposes might be considered as similar in spirit to the limitation on outputs
in HO−f (in particular, location nesting resembles the output nesting HO−f forbids), the
fact that the synchronization discipline in Homer depends heavily on the structure of
locations makes it difficult to establish a more detailed comparison with HO−f .

Also similar in spirit to our work, but in a slightly different context, are some stud-
ies on the expressiveness (of fragments) of the Ambient calculus [15]. Ambient and
higher-order calculi are related in that both allow the communication of objects with
complex structure. Some works on the expressiveness of fragments of Ambient cal-
culi are similar to ours. In particular, [16] shows that termination is decidable for the
fragment without both restriction (as HO−f and HOCORE) and movement capabilities,
and featuring replication; in contrast, the same property turns out to be undecidable for
the fragment with recursion. Hence, the separation between fragments comes from the
source of infinite behavior, and not from the structures allowed in output action, as in
our case. However, we find that the connections between Ambient-like and higher-order
calculi are rather loose, so a proper comparison is difficult also in this case.

Future Work. As already mentioned, a great deal of the expressive power in higher-
order calculi resides in the interplay of input and output actions. Here we have studied
an alternative for limiting output capabilities; it would be interesting to investigate if
suitable limitations on input actions are possible, and whether they have influence on
expressiveness. Another interesting direction would be to compare higher-order and
Ambient calculi from the expressiveness point of view.

On the Expressiveness of Forwarding in Higher-Order Communication 169

Acknowledgments. We are grateful to Julian Gutierrez for his helpful comments on
an earlier version of this paper.

References

1. Thomsen, B.: A calculus of higher order communicating systems. In: Proc. of POPL 1989,
pp. 143–154. ACM Press, New York (1989)

2. Thomsen, B.: Plain CHOCS: A second generation calculus for higher order processes. Acta
Inf. 30(1), 1–59 (1993)

3. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci. (1992)

4. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decidability of
higher-order process calculi. In: Proc. of LICS 1908, pp. 145–155. IEEE Computer Society
Press, Los Alamitos (2008)

5. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs
(1967)

6. Necula, G.C., Lee, P.: Safe, untrusted agents using proof-carrying code. In: Vigna, G. (ed.)
Mobile Agents and Security. LNCS, vol. 1419, pp. 61–91. Springer, Heidelberg (1998)

7. Collberg, C.S., Thomborson, C.D., Low, D.: Manufacturing cheap, resilient, and stealthy
opaque constructs. In: Proc. of POPL 1998, pp. 184–196. ACM Press, New York (1998)

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput.
Sci. 256(1-2), 63–92 (2001)

9. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, replication,
and iteration in process calculi. Math. Struct. Comp. Sci. (to appear, 2009)

10. Di Giusto, C., Pérez, J.A., Zavattaro, G.: On the Expressiveness of Forwarding in Higher-
Order Communication (Extended Version) (2009),
http://www.cs.unibo.it/~perez/hocore

11. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Math-
ematical Society (3) 2(7), 326–336 (1952)

12. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and compensa-
tion. Math. Struct. Comp. Sci. (to appear, 2009)

13. Bundgaard, M., Godskesen, J.C., Haagensen, B., Huttel, H.: Decidable fragments of a higher
order calculus with locations. In: Proc. of EXPRESS 2008. Electronic Notes in Theoretical
Computer Science. Elsevier, Amsterdam (2008) (to appear)

14. Bundgaard, M., Godskesen, J.C., Hildebrandt, T.: Bisimulation congruences for homer —
a calculus of higher order mobile embedded resources. Technical Report TR-2004-52,
IT University of Copenhagen (2004)

15. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
16. Busi, N., Zavattaro, G.: On the expressive power of movement and restriction in pure mobile

ambients. Theor. Comput. Sci. 322(3), 477–515 (2004)

http://www.cs.unibo.it/~perez/hocore

On the Hairpin Completion of Regular
Languages

Volker Diekert1, Steffen Kopecki1, and Victor Mitrana2

1 Universität Stuttgart, FMI, Germany
2 Faculty of Mathematics, University of Bucharest, Romania

and
Department of Information Systems and Computation

Technical University of Valencia, Spain
diekert@fmi.uni-stuttgart.de, steffen.kopecki@web.de,

mitrana@fmi.unibuc.ro

Abstract. The hairpin completion is a natural operation of formal lan-
guages which has been inspired by molecular phenomena in biology and
by DNA-computing. The hairpin completion of a regular language is
linear context-free and we consider the problem to decide whether the
hairpin completion remains regular. This problem has been open since
the first formal definition of the operation.

In this paper we present a positive solution to this problem. Our solu-
tion yields more than decidability because we present a polynomial time
procedure. The degree of the polynomial is however unexpectedly high,
since in our approach it is more than n14. Nevertheless, the polynomial
time result is surprising, because even if the hairpin completion H of a
regular language L is regular, there can be an exponential gap between
the size of a minimal DFA for L and the size of a smallest NFA for H.

1 Introduction

The origin of this paper is motivated by biological and DNA-computing. But
although our motivation is based on biological phenomena, the present paper is
more about an interesting decidability result on regular languages. Let us explain
the background first and the connection to Formal Language Theory later.

Single-stranded DNA (ssDNA) are composed by nucleotides which differ from
each other by their bases: A (adenine), G (guanine), C (cytosine), and T (thymine).
Therefore each ssDNA may be viewed as a finite string over the four-letter
alphabet {A,C,G, T }. Two single strands can bind to each other forming the
secondary structure of DNA if they are pairwise Watson-Crick complementary:
A is complementary to T , and C to G. The binding of two strands is also called
annealing.

An intramolecular base pairing, known as hairpin, is a pattern that can occur
in single-stranded DNA and, more commonly, in RNA. Hairpin or hairpin-free
structures have numerous applications to DNA computing and molecular ge-
netics. In many DNA-based algorithms, these DNA molecules cannot be used

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 170–184, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Hairpin Completion of Regular Languages 171

in the subsequent computations. Therefore, it is important to design methods
for constructing sets of DNA sequences which are unlikely to lead to “bad” hy-
bridizations. This problem was considered in a series of papers, see e.g. [2,3,4,7,8].

In [1,12] a new formal operation on words is introduced, namely the hair-
pin completion. It consists of three biological principles. Besides the Watson-
Crick complementarity and annealing the third biological phenomenon is that of
lengthening DNA by polymerases. In our case the phenomenon produces a com-
plete molecule as follows: one starts with hairpins which are here single strands
such that for each of them one end is annealed to a part of itself by Watson-Crick
complementarity; and a polymerization buffer with many copies of the four nu-
cleotides. Then polymerases will concatenate to the hairpin by complementing
the template.

What happens in this situation is, informally, best explained in Fig. 1. In that
picture as in the rest of the paper we mean by putting a bar on a word (like α)
to read it from right-to-left in addition to replacing a by a for letters.

γ α β α annealing

γ
α

β

α

lengthening

γ
α

β

α
γ

strand hairpin hairpin completion

Fig. 1. Hairpin completion of a strand

This is a good starting point to translate the biologically inspired motivation
to a purely abstract formalism. On that level, we have just a finite alphabet Σ
together with an involution. This is a bijection ¯ : Σ → Σ such that a = a for
all a ∈ Σ. In the concrete situation above Σ = {A,C,G, T } and A = T and
C = G. We extend the involution to words a1 · · · an by a1 · · · an = an · · · a1 .
(Just like taking inverses in groups.)

We start with a (formal) language L ⊆ Σ∗ (the set of strands). Then hairpin
completion can arise in one-sided way. The right-sided hairpin completion of L
is formally defined by the set of words γαβα γ with γαβα ∈ L being the strand
and γαβα γ being the completion, see again Fig. 1. Still inspired by biological
facts, a binding in a hairpin can be stable, only if α is long enough, say |α| ≥ 10.
Formally we fix a (small) constant k and ask |α| ≥ k. The left-sided hairpin
completion can be defined analogously.

Clearly, the hairpin completion of a finite language is finite. If L is regu-
lar then, sometimes the right/left-sided k-hairpin completion is regular again,
sometimes it is not. But then it is a linear context-free language as the reader

172 V. Diekert, S. Kopecki, and V. Mitrana

will immediately recognize. For example, if L = ab∗bkcb k, then the right-sided
k-hairpin completion is not regular, but linear context-free, because it is:{

abmbkcb kb na
∣∣ m ≥ n

}
.

This leads to a first natural decidability problem:

Problem 1. Is it decidable whether the right-sided k-hairpin completion of a
regular language is regular again?

We can see directly from the hairpin picture that it is not always natural
to distinguish between left and right. Therefore we consider the two-sided case,
too. The (two-sided) hairpin completion of L is therefore defined by the set of
words γαβα γ with either γαβα ∈ L or αβα γ ∈ L or both. If we simply speak
about the hairpin completion we always mean the two-sided case. As above
we see two possibilities, and, moreover, we see that the behaviors are different.
Let us consider L = ab∗bkcb k ∪ bkcb kb ∗a . The right- and left-sided k-hairpin
completion is still not regular, but the two-sided is.

However, if we consider L = a+bkcb k, then neither the right- nor the two-sided
k-hairpin completion is regular. They are identical and equal to:{

anbkcb ka n
∣∣ n ≥ 1

}
.

This leads to a second natural decidability problem:

Problem 2. Is it decidable whether the k-hairpin completion of a regular lan-
guage is regular again?

The initial work [1] has been followed up by several related papers [6,9,10,11,12],
where both the hairpin completion as well as its inverse operation, namely the
hairpin reduction, considered as formal operations on strings and languages were
further investigated. But the decidability status of Problems 1 and 2 remained
open. Actually, the difficulty in solving Problems 1 and 2 is perhaps not that
surprising since we are immediately confronted with decidability questions on
linear context-free languages. Every linear context-free language is a weak code
image of an hairpin completion of some regular language. (A weak code is a
homomorphism which is the identity on a subset of letters and maps the other
letters to the empty word.) To see this let us quote a theorem from [1]:

Theorem 1. A language is linear context-free if and only if it is the weak-code
image of the hairpin completion of a regular language.

Natural problems well-known to be undecidable for context-free languages are
already undecidable for linear context-free languages, see e.g. [5] for a classical
reference. In particular it is undecidable whether linear context-free languages
are universal or equal to a given regular language or whether a linear context-free
language is regular.

Thus, Problems 1 and 2 are problems about a subclass of linear context-free
languages where no general results were known to solve them. In this paper we
give positive answers to both problems. Actually, they are decidable in polyno-
mial time (if the input size is given as the size of a DFA for L plus the size of a

On the Hairpin Completion of Regular Languages 173

DFA accepting the reversal language of L. Clearly, there might be an exponential
gap between these sizes.)

The history of the solution shows several steps. First we solved Problem 1
and we realized that, retrospective, it was not difficult to find the solution, but
we had no good estimation for the complexity. The solution to Problem 2 was
much more difficult, and it became rather technical. The complexity was again
unclear. A very rough estimation led us to something like triple exponential,
but we worked in syntactic monoids and raised, whenever possible, elements to
idempotent powers. So it was clear that there was room for improvement, and
the intermediate results were never published.

The present solution is more ambitious. We prove a polynomial time result,
which is more than expected when we started our work. What we find also quite
amazing is the following: We treat natural problems about regular languages
which we now know to be decidable in polynomial time. But the degree for the
polynomial as we present the algorithm here might be about 20. So it is very
high. With more efforts we were able to bring the degree down to 14, but this
is not shown here. Such a huge time complexity is however no indication that
for real life examples the problem is difficult. For most regular languages L it is
probably very easy to decide whether the k-hairpin completion is regular again.
Being regular is the exception and puts many constraints on L as we will see
below. The formal statement of our result is in Section 3.

2 Notation

We assume the reader to be familiar with the fundamental concepts of formal
language theory, context-free grammars and automata theory, see [5]. We also
use syntactic monoids, but very little of this rich theory. What we use is the
following elementary fact. If L is a regular language then there is a constant
s ∈ N such that for all words x, y, z we have xysz ∈ L if and only if xy2sz ∈ L.
Note that this implies xysz ∈ L if and only if x(ys)+z ⊆ L.

We use non-deterministic finite automata (NFA) and deterministic finite au-
tomata (DFA). Whenever convenient we use that all states are reachable and
co-reachable. Thus, if g is a state then there is a path from the initial state to g
and a path from g to some final state.

An alphabet is a finite set of letters. Here the alphabet is Σ. The set of words
over Σ is denoted Σ∗, as usual, and the empty word is denoted by 1. Given a
word w, we denote by |w| its length. If w = xyz for some x, y, z ∈ Σ∗, then
x, y, z are called prefix, factor, suffix, respectively. For the prefix relation we also
use the notation x ≤ w. By a proper factor y of w we mean a factor such that
x �= w, but in our paper we allow x = 1.

As said above, Σ is equipped with an involution such that a = a for all letters
a ∈ Σ. The involution is extended to words by 1 = 1 and uv = v u , thus the
involution reverses the order as well. Due to this law some authors call it an anti-
involution, but we prefer our convention (which is also the more standard one).

174 V. Diekert, S. Kopecki, and V. Mitrana

If L is a language, then its reversal language is given by reading words right-
to-left, i.e. by the set of words an · · ·a1 where a1 · · ·an ∈ L and ai ∈ Σ. Note
that a DFA of minimal size for the reversal language yields also a DFA for
L = {w ∈ Σ∗ | w ∈ L} of exactly the same size, and vice versa.

We intend to solve Problem 1 and 2 simultaneously, therefore we introduce a
more general notion of hairpin completion.

Throughout the paper L and R denote two regular languages and k > 0 is a
positive integer. We define the hairpin completion H(L,R, k) by

H(L,R, k) = {γαβα γ | (γαβα ∈ L ∨ αβα γ ∈ R) ∧ |α| = k }
Note that the definition does not change if we replace |α| = k by |α| ≥ k . For
simplicity of the presentation we treat k as a (small) constant.

3 Main Result

Note that the right-sided k-hairpin completion is nothing butH(L, ∅, k), whereas
the two-sided version appears as H(L,L, k). Thus, the notion H(L,R, k) is
adopted to treat both cases simultaneously.

Problem 3. Input: A DFA accepting L of at most n states and a DFA accepting
the reversal language of L (or for L) of at most n states.

Question: Is the hairpin completion H(L,R, k) regular?

The purpose of this paper is to prove the following theorem.

Theorem 2. Let Σ be a fixed alphabet and k > 0 be a constant. Let L and R be
regular languages. Then it is decidable whether the hairpin completion H(L,R, k)
is regular.

As we have explained above, Problem 3 is more general than Problem 1 and 2.
Obviously, for Problem 1 we do not need a DFA for the reversal language.

An NFA of minimal size accepting the hairpin completion may have exponen-
tially more states than a DFA for L and L . Thus, although we have a polynomial
time decision algorithm there is no time to construct the NFA (in plain form).

Indeed let
Ln = {bvakbak | v ∈ {a, b}n}.

Then we have H(Ln, ∅, k) = H(Ln, Ln, k) = {bvakbakvb | v ∈ {a, b}n}.
Thus, the sizes of a minimal DFA accepting Ln and Ln are in O(n). But every

NFA accepting H(Ln, ∅, k) must keep track of v and thus its size is in Ω(2n).
The proof of Theorem 2 is quite technical and relies on some non-standard

constructions for finite automata and context-free grammars.
The key idea is to use a linear grammar which produces exactly those γαβαγ

where |γ| is minimal. We show that, due to the minimality of |γ|, the context-
free grammar has either a very special structure or the hairpin completion is not
regular. This leads to a series of decidable conditions for the regularity of the
hairpin completion which are either sufficient or necessary. The last test in this
series yields the result.

On the Hairpin Completion of Regular Languages 175

3.1 An NFA for L and R

Regular languages can be specified by deterministic finite automata (DFA). A
DFA is essentially a finite set Q together with a monoid action of Σ∗ on the right.
The action is written as a product q · u with the usual laws q · uv = (q · u) · v
and q · 1 = q, where q ∈ Q and u, v ∈ Σ∗. By 1 we denote the empty word
and the neutral element in other monoids. The action is defined by a function
Q×Σ∗ → Q. In the following we assume that the regular language L is specified
by a DFA with state set QL, q0,L ∈ QL as initial state, and FL ⊆ QL as final
states. We fix nL = |QL| to be the number of states. For R we need however a
DFA reading R from right-to-left. Such an automaton is essentially equivalent
to a DFA accepting the reversal language of R.

We start with a finite set QR and a left-action of Σ∗. For simplicity we use a
product sign again, but we write it on the left: u · q satisfying uv · q = u · (v · q)
and 1 · q = q. We choose QR, q0,R ∈ QR and FR ⊆ QR such that

R = {u ∈ Σ∗ | u · q0,R ∈ FR} .

Let nR = |QR|. For the rest of the paper we fix n = nL + nR. We view n as
input size for our decidability problem (stated in Theorem 2) to test whether
the hairpin completion H(L,R, k) is regular.

What we are really interested in is the product automaton with state space

Q = QL ×QR.

Although we started with deterministic automata, we content to read Q as the
state space of a non-deterministic automaton which accepts L reading words
from left-to-right and accepts R reading words from right-to-left. Since this con-
struction is crucial, we make it precise: Let P = (p1, p2), Q = (q1, q2) be states of
Q and a ∈ Σ be a letter. We define an arc (P, a,Q), if p1 ·a = q1 and p2 = a · q2.
Note that P may have several outgoing arcs labeled by a because for each p2
and each a there might be several q2 with p2 = a · q2.

Let u ∈ Σ∗ be a word. Then for each pair (p, q) there is a unique pair (r, s) ∈
QR × QL such that there is u-labeled path in the NFA from (p, r) to (s, q).
Moreover the path is uniquely defined. This is easily seen by induction on the
length of u.

In particular, u is in L if and only if there is such a path from (q0,L, r) to
(s, q0,R) with s ∈ FL. By symmetry, u is in R if and only if r ∈ FR for that
path.

Now for each pair (P,Q) ∈ Q ×Q we define a regular language R[P,Q] by

R[P,Q] = {u ∈ Σ∗ | There is a u-labeled path from P to Q} .

There are at most n4 such regular languages and for each of them we can test
emptiness in polynomial time. For P = (p, r) and Q = (s, q) we obtain

R[P,Q] = {u ∈ Σ∗ | p · u = s ∧ r = u · q} .

176 V. Diekert, S. Kopecki, and V. Mitrana

3.2 A First Linear Context-Free Grammar

We continue with the same notations. In addition we view each symbol [P,Q]
with (P,Q) ∈ Q × Q as a variable of a context-free grammar. First we define
productions of the form

[P,Q] −→ a[R,S]a

with a ∈ Σ. We do so for all [P,Q], [R,S] and a, where (P, a,R) and (S, a ,Q)
are arcs in the NFA above. For example, let P = (p1, p2) and R = (r1, r2), then
we must have p1 · a = r1 and p2 = a · r2.

Moreover, we introduce chain rules

[P,Q] −→ R0[P,Q],

where Ri[P,Q] denotes a variable for 0 ≤ i < k; and Rk[P,Q] denotes a new
terminal symbol. Of course, the idea is that we are free to substitute Rk[P,Q]
by the regular language R[P,Q].

The index i can be viewed as a level where we produce the words α and α
used in the hairpin. This idea leads us to the third type of productions. These
productions are of the form

Ri−1[P,Q] −→ aRi[R,S]a

where 1 ≤ i ≤ k and again a ∈ Σ. In order to have rules of the third type we
impose again that (P, a,R) and (S, a ,Q) are arcs in the NFA above.

We obtain a linear grammar with variables [P,Q], Ri[P,Q], 0 ≤ i < k, and
terminal symbols a, a , and Rk[P,Q] with a ∈ Σ, and Ri[P,Q] as above. Note
that the symbols R0[P,Q] produce finite languages of the form αRk[R,S]α with
|α| = k. In particular, replacing the symbol Rk[R,S] by the language R[R,S],
the symbol R0[P,Q] produces a regular language, too.

Consider next a derivation

[P,Q] ∗=⇒ γRi[R,S]γ .

Let P = (p1, p2), Q = (q1, q2), R = (r1, r2), S = (s1, s2) be states in the NFA
and w ∈ Ri[R,S] be a word.

This implies:

p1 · γ = r1, p2 = γ · r2,
r1 · w = s1, r2 = w · s2,
s1 · γ = q1, s2 = γ · q2.

In particular, we have

p1 · γwγ = q1, p2 = γwγ · q2.

For the other direction, assume we have p1 · γwγ = q1 and p2 = γwγ · q2
with |γ| ≥ k. Then, for each 1 ≤ i ≤ k, there are uniquely defined symbols

On the Hairpin Completion of Regular Languages 177

[P,Q],Ri[R,S] with P = (p1, p2), Q = (q1, q2), R = (r1, r2), S = (s1, s2) and a
word w ∈ Ri[R,S] such that we find a derivation:

[P,Q] ∗=⇒ γRi[R,S]γ .

In the next step we fix six states P0 = (p1, p2), Q0 = (q1, q2), R0 = (r1, r2),
S0 = (s1, s2), I0 = (i1, i2), and J0 = (j1, j2), with the following properties:

1.) p1 = q0,L is the initial state in the DFA above accepting L.
2.) q2 = q0,R is the initial state in the right-to-left DFA above accepting R.
3.) Either s1 ∈ FL or r2 ∈ FR or both.
4.) There is a k-step derivation R0[R0, S0]

k=⇒ αRk[I0, J0]α .

The number of possible ways to choose these six states is bounded by n5
L ·n5

R,
hence at most n10. By symmetry we assume in addition that we have s1 ∈ FL,
thus whenever [P0, Q0]

∗=⇒ γR0[R0, S0]γ and w ∈ R[R0, S0], then we know
γw ∈ L.

We continue as follows: We choose the variable [P0, Q0] to be the single ax-
iom of the linear grammar G0 we are going to define. We restrict the terminal
alphabet to be the set Σ ∪ {Rk[I0, J0]}.

Next, we remove more productions and variables. On level 0 we only keep
one single variable, namely R0[R0, S0]. Thus, all terminal derivations admit the
form:

[P0, Q0]
∗=⇒ γR0[R0, S0]γ

k=⇒ γαRk[I0, J0]α γ .

So far, the productions can be assumed to be of three types:

[P,Q] −→ a[R,S]a ,

[R0, S0] −→ R0[R0, S0],

Ri−1[P,Q] −→ aRi[R,S]a

Now we remove all productions [P,Q] −→ a[R,S]a where P = (p1, p2) and

Q = (q1, q2) with either q1 ∈ FL or p2 ∈ FR or both. Let us call this new linear
grammar G0. Derivation in the grammar G0 look as follows.:

[P0, Q0]
∗=⇒ γ1[P,Q]γ1

∗=⇒ γR0[R0, S0]γ
k=⇒ γαRk[I0, J0]α γ .

Now let β ∈ R[I0, J0] and w = αβα , then we know that either γw = γαβα ∈ L
or wγ = αβα γ ∈ R or both, but every prefix of γwγ belonging to L is a prefix
of γw and every suffix belonging to R is a suffix of wγ.

As usual, the generated language is called L(G0). By H(G0) we mean the
language where we substitute the terminal symbolRk[I0, J0] by the (non-empty)
regular language R[I0, J0]. Thus,

H(G0) =
{
γαβα γ

∣∣∣∣ [P0, Q0]
∗=⇒

G0
γαRk[I0, J0]α γ ∧ β ∈ R[I0, J0]

}
.

178 V. Diekert, S. Kopecki, and V. Mitrana

By the very construction H(G0) ⊆ H(L,R, k). Moreover, every word in the
hairpin completion H(L,R, k) belongs to one of these H(G0). Thus, H(L,R, k)
is regular if and only if for all these H(G0) we find regular languages R(G0) such
that H(G0) ⊆ R(G0) ⊆ H(L,R, k).

Thus, it is enough to show that we can decide in polynomial time whether
there is such a regular language R(G0) for a given grammar G0 as above.

Note that we can test in polynomial time whether L(G0) ⊆ Σ∗Rk[I0, J0]Σ∗ is
finite. In the case that L(G0) is finite, we are done, because H(G0) is obtained by
substituting Rk[I0, J0] by a regular language. So we can choose R(G0) = H(G0).

In the spirit of an algorithm we could also say:

Test 1. Check whether L(G0) is finite. If yes, we construct the next grammar
of this type.

We continue with the linear grammar G0 under the assumption that L(G0) is
infinite and that the grammar is reduced. This means all symbols are reachable
and productive. Since L(G0) is infinite there must be variables of the form [P,Q]
and non-trivial derivations:

[P,Q] +=⇒
G0

[P,Q].

There are at most n4 such symbols. They are called self-reproducing symbols in
the following. Let us fix one self-reproducing symbol and denote it by [P ′, Q′].
We define a linear context-free grammar G1 and a language L(G1) given as the
following set:{

πγαRk[I0, J0]α γ π

∣∣∣∣ [P0, Q0]
≤n4

=⇒
G0

π[P ′, Q′]π ∗=⇒
G0

πγαRk[I0, J0]α γ π

}
.

This gives us at most n4 grammars G1 of polynomial size such that L(G0) is,
up to finitely many elements, the union of languages L(G1). Note also that each
language L(G1) is infinite by construction.

As above, we also have a linear context-free language H(G1) by defining:

H(G1) = {πγαβα γ π | πγαRk[I0, J0]α γ π ∈ L(G1) ∧ β ∈ R[I0, J0]} .

This reduces the proof of Theorem 2 to the following statement: We can
decide in polynomial time whether there is a regular language R such that
H(G1) ⊆ R ⊆ H(L,R, k).

For [P ′, Q′] we compute two words π and p with length 0 < |π| , |p| ≤ n4 such
that we have:

[P0, Q0]
+=⇒
G1

π[P ′, Q′]π +=⇒
G1

πp[P ′, Q′]p π .

N.B., there are perhaps many choices for π and p, but we content to fix one
pair (π, p) for each [P ′, Q′]. As we will see below, the solution to Problems 1
and 2 can be based on these fixed pairs!

On the Hairpin Completion of Regular Languages 179

The main idea is from now to investigate the effect of pumping the word
p under the assumption that the hairpin completion is regular. This means we
consider derivations [P0, Q0]

+=⇒
G1

πps[P ′, Q′]p s π , where s is huge andH(L,R, k)

is regular.
Consider some β ∈ R[I0, J0] and πvαRk[I0, J0]α v π ∈ L(G1). The choice of

the word p implies [P ′, Q′] +=⇒
G1

p[P ′, Q′]p and hence, for all s ∈ N we have

zs = πpsvαβα v p s π ∈ H(G1)

and the word πpsvαβα is the longest prefix of zs in L; and moreover, if a suffix
of zs belongs to R, then it is a suffix of αβα v p s π .

Assume for a moment that H(L,R, k) is regular, then we find s > 0 such that
ps is idempotent in the syntactic monoid of H(L,R, k). However, this means
that πpsyvαβα v p s π ∈ H(L,R, k) where s is perhaps large, but y can be taken
as huge as we need. Now, for the hairpin we do not have the option to build it
on the right, because αβα v p s π is too short compared to length of the whole
word (it must cover more than half of the length). Thus, we must use the longest
prefix πpsyvαβα in L for the hairpin. But this implies that vα is a prefix of some
power of p.

This leads to the following lemma:

Lemma 1. Let H(L,R, k) be regular. Then vα is a prefix of some power of the
word p for all derivations [P ′, Q′] ∗=⇒

G1
vαRk[I0, J0]α v .

Proof. This is clear, choose some β ∈ R[I0, J0] and derivation [P0, Q0]
∗=⇒

G1

πvαβα v π ; and argue as above.

We have also the following complexity result:

Lemma 2. There is a polynomial time algorithm which checks whether for all
derivations [P ′, Q′] ∗=⇒

G1
vαRk[I0, J0]α v if we have that vα is a prefix of some

power of p.

Proof. This follows from a standard construction. For the language

X =
{
wRk[I0, J0]w′ ∈ Σ∗Rk[I0, J0]Σ∗ ∣∣ w is no prefix of a word in p+}

we find a DFA with |p| + 3 states. Therefore we can check in polynomial time
whether the following intersection is empty:

X ∩
{
vαRk[I0, J0]α v ∈ Σ∗Rk[I0, J0]Σ∗

∣∣∣∣ [P ′, Q′] ∗=⇒
G1

vαRk[I0, J0]α v

}
The intersection is empty if and only if for all derivations

[P ′, Q′] ∗=⇒
G1

vαRk[I0, J0]α v

we have that vα is a prefix of some power of p.

180 V. Diekert, S. Kopecki, and V. Mitrana

This gives a non-trivial necessary condition.

Test 2. We check for all self-reproducing symbols [P ′, Q′] the condition in
Lemma 2.

If one of the test fails, we know that the hairpin completion H(L,R, k) is
not regular. Thus, in the following we assume that all self-reproducing symbols
[P ′, Q′] passed this test.

3.3 Candidates

Thus by Test 2, for the rest of the proof we assume that all self-reproducing
symbols [P ′, Q′] produce only terminal words of the form psp′αRk[I0, J0]αp′ p s

where s ≥ 0 and p′ ≤ p and p′α is a prefix of some power of p. This condition
remains valid if we replace p by some fixed power, say pk. In particular, we
may assume henceforth that |p| ≥ k and therefore α becomes a prefix of some
conjugated word q = p′′p′ with p = p′p′′.

We use all these (at most n4) symbols [P ′, Q′] and we collect all words p and
all their conjugates q = p′′p′ in a list of candidates C. This list contains at most
n8 words, and q ∈ C defines a word α of length k such that α ≤ q.

We now need the reference to specific states in the DFAs. We have P0 =
(q0,L, p2) and P ′ = (p′1, p′2) and hence q0,L · π = p′1 and p′1 · p = p′1. Let q = p′′p′

with p = p′p′′ and c ∈ QL such that c = p′1 · p′. Then we have c · q = c, too.
Moreover, let J0 = (j1, j2) and f = j1 · α , then we know that f ∈ FL and

(starting in f) reading any non-empty prefix of a word in q +p′ π cannot take
us back to a final state. For the symmetric consideration we content that if
d = p′ π · q0,R ∈ QR, then d = q · d.

The next step is to create a list L of tuples

(c, d, e, f, g, h, q) ∈ QL ×QR ×QL ×QL ×QR ×QR × C,
which satisfy the following additional conditions:

1.) f ∈ FL and reading any non-empty prefix of a word in q + cannot take us
back from f to a final state.

2.) c = c · q and d = q · d.
3.) e · q = e and f · q n = e.
4.) g = q · g and g = qn · h.

There are at most n14 elements in L. We consider (c, d, e, f, g, h, q) one after
another. For each tuple we define α ≤ q by |α| = k. We define a finite (!)
language Π by all words π ∈ Σ∗ satisfying the following conditions:

1.) |π| ≤ 2n4 + k.
2.) q0,L · π = c, and d = π · q0,R,
3.) For all η ≤ π we have e · η /∈ FL.
4.) For all suffixes σ of π we have σ · g /∈ FR.

Note that an NFA of polynomial size for Π can be constructed in polynomial
time, but the size of Π can be exponential, |Π | ≤ |Σ|2n4+k. We also define a

On the Hairpin Completion of Regular Languages 181

(possibly infinite) regular language B by all words β ∈ Σ∗ satisfying c·αβα = f ,
h = αβα · d, and qα is not a prefix of αβ. Again, an NFA of polynomial size for
B can be constructed in polynomial time.

The idea behind this definition is as follows. Assume πqtqnαβα q nq s π is in
the hairpin closure, then we see these states as follows:

q0,L
π−→ c

qtqn

−→ c
αβα−→ f

q n

−→ e
q s

−→ e
π−→

π←− g
qt

←− g
qn

←− h
αβα←− d

q nq s

←− d
π←− q0,R

Let

H(c, d, e, f, g, h, q) =
{
πqtαβα q s π

∣∣ π ∈ Π ∧ β ∈ B ∧ 0 ≤ s ≤ t
}
.

Then obviously, H(c, d, e, f, g, h, q) ⊆ H(L,R, k) because πqtαβα ∈ L. We
claim that for the grammar G1 as above and all words w ∈ H(G1) there exists
at least one tuple (c, d, e, f, g, h, q) ∈ L such that w ∈ H(c, d, e, f, g, h, q).

The crucial observation here is that we have introduced the states h and g
just for the following purpose: We can write a word w = αβ′α as w = qjαβα
such that qα is not a prefix of αβ. Then let h = αβα · d. The words w which
play a role for H(G1) are of the type that if we are during the right-to-left run
in state h after reading αβα , then for some perhaps huge t we reach the state
g = qt · h with g = q · g. Indeed, we can use g = p′′ · p′2 where P ′ = (p′1, p

′
2). But

this means g = qn · h, too. We obtain a symmetric statement for e and f .
Thus, H(L,R, k) is regular if and only if for all (c, d, e, f, g, h, q) ∈ L we find

regular languages R such that H(c, d, e, f, g, h, q) ⊆ R ⊆ H(L,R, k).
Note that for πqtαβα q sπ in H(c, d, e, f, g, h, q) the longest prefix in L is the

word πqtαβα , but we lost the control over the suffixes which are in R.
Clearly,{

πqtαβα q s π
∣∣ π ∈ Π ∧ β ∈ B ∧ 0 ≤ s < n ∧ s ≤ t

} ⊆ H(L,R, k)

is a regular language because Π is finite and B is regular. Thus all we will have
to show is the following.

Proposition 1. Let

H = H(c, d, e, f, g, h, q, n) =
{
πqtαβα q s π

∣∣ π ∈ Π ∧ β ∈ B ∧ n ≤ s ≤ t
}
.

Then we can decide in polynomial time whether there is a regular language R
such that H ⊆ R ⊆ H(L,R, k).

For the proof of Proposition 1 we start with the following test.

Test 3. Check in polynomial time whether there exists a suffix σ of qn such that
σ · h ∈ FR is a final state for R.

If Test 3 yields yes, then we can put

R =
{
πqtαβα q s π

∣∣ π ∈ Π ∧ β ∈ B ∧ n ≤ s ∧ n ≤ t
}
.

182 V. Diekert, S. Kopecki, and V. Mitrana

The set R is regular and satisfies H ⊆ R ⊆ H(L,R, k).
Thus, for the rest we assume that Test 3 is negative. Then the language H

has some additional special features.
For zt,s = πqtαβα q sπ ∈ H with π ∈ Π and β ∈ B and n ≤ s ≤ t we

know that the prefix π′qtαβα belongs to L and it is the longest prefix with this
property. If a suffix of zt,s belongs to R, then it is a suffix of αβα q sπ , due
to Test 3. Moreover, qα is not a prefix of αβ which was the main purpose of
defining B in such a way.

Let us assume that H(L,R, k) is regular, then there exists some x > n such
that q x is idempotent in the syntactic monoid of H(L,R, k). Consider t + 1 =
s = 2x.

Consider zt = πqtαβα q t+1 π with π ∈ Π and β ∈ B. As q x is idempotent
and π′qtαβα q t+1−x π′ ∈ H(L,R, k) we see that zt ∈ H(L,R, k), too. Since qα
is not a prefix of αβ the longest prefix in L becomes too short to create a hairpin
completion for πqtαβα q t+1 π ; we must use a suffix in R for that purpose. The
longest suffix in R has the form δu ∈ R with |δ| = k, and it is a suffix of
αβα q t+1 π . Moreover as |α| = |δ| we see that πqtα must be a prefix of u .

Thus, we must be able to write

αβα q = vδwδ v

such that δwδ v q tπ ∈ R. Now consider some huge y, say y > |zt|. Then
πqtαβα q t+1+xy π ∈ H(L,R, k), too. Similar to an earlier observation this says
that we can write vδ = qmq′δ with m ≥ 0 and q′δ is a proper prefix of qα. But
we cannot have m > 0, since, again, qα is not a prefix of αβ.

Thus, if H(L,R, k) is regular, then vδ < qα and αβα q = vδuδ v such that
δuδ v · d ∈ FR.

This leads finally to another necessary condition. If H(L,R, k) is regular, then
it must pass the following test:

Test 4. Check in polynomial time whether for all β ∈ B there exist v, δ with
|δ| = k, vδ ≤ qα and αβα q = vδw with |w| ≥ |vδ| and δw · d ∈ FR.

In order to perform a test in polynomial time we start with any NFA accepting
the language

{αβα q | β ∈ B} .
Then we may take e.g. the cross product with the NFA constructed in Section 3.1,
which, in particular, knows the state inQR. This means if, in the new automaton,
state Q knows r ∈ QR and if we can reach via a word z a final state, then we
may infer r = z ·d. (This is because we may assume that in the right-to-left DFA
d is an initial state for the right quotient R(q nπ)−1.) Recall that whenever we
investigate properties of NFA, we first do a clean-up. Thus, we assume that all
states are reachable and co-reachable.

We continue to modify the new NFA as follows. We duplicate each state Q
several times so that each state becomes the form [i, Q, j] with i ∈ {0, . . . , |q|, ∗}
and j ∈ {0, . . . , |q| + 2k, ∗}, where ∗ is a special symbol standing for integers
greater than |q|, respectively greater than |q|+ 2k.

On the Hairpin Completion of Regular Languages 183

After a transformation we may assume that if the NFA accepts a word uz
with |u| = i and |z| = j, then we are sure that reading u we reach some state
[i, Q, j]. Vice versa if we reach after reading u a state [i, Q, j], then |u| = i and
|z| = j for every word z which takes [i, Q, j] to some final state.

We duplicate the states again, and we introduce upper and lower states. We
start in the upper part, but as soon as we deviate from reading a prefix qα we
switch to the lower part. We switch also to the lower part if j < k. Once we are
in the lower part we remain there. Note that the last k states on an accepting
path are lower.

On every accepting path there is exactly one upper state U where the next
state is a lower state.

Remember that our NFA of Section 3.1 transfers the following property: If we
accept now a word uz with |u| = i and if after reading u we reach [i, Q, j], then
we know the state z · d of the right-to-left DFA for R. Let us mark all upper
states [i, Q, j] as good, if both z · d ∈ FR and i + 2k ≤ j.

It is clear that every accepting path must go through some good upper state,
otherwise Test 4 fails. This can be decided via a reachability algorithm. Finally
consider all accepting paths and compute the set of good upper states [i, Q, j]
which are seen first on such paths. For each such states all outgoing paths of
length k must stay in the upper part, otherwise Test 4 fails. If no such [i, Q, j]
leads to a failure, Test 4 is positive.

Now, all tests have been performed; and we get our result due to the following
conclusion: Assume Test 4 is positive. Then we have for all s, t ≥ n the following
fact:

zt,s = πqtαβα q q sπ ∈ H(L,R, k)

Indeed for t > s this holds because πqtαβα ∈ L. For n ≤ t ≤ s we use
that there exist v, δ with |δ| = k, vδ ≤ pα, and αβα q = vδw with |w| ≥ |vδ|,
and δwπ · q0,R ∈ FR. Thus zt,s = πqtvδuδ v q sπ and zt,s ∈ H(L,R, k) because
δuδ v q sπ ∈ R.

Open problems

We conclude with four questions which might be interesting for future research.

Question 1. What is the complexity of our decision algorithm in terms of n, if
we start with a finite monoid of size n recognizing both L and R?

Question 2. What is the practical performance of our decision algorithm?
Let us define the partial hairpin completion of L by the set of words γαβα γ ′

where γ′ is a prefix γ and γαβα ∈ L or γ is a prefix γ′ and αβα γ ′ ∈ L. (In
particular, L becomes a subset of its partial hairpin completion.)

Question 3. Is it decidable whether the partial hairpin completion applied to
a regular language is regular again?

184 V. Diekert, S. Kopecki, and V. Mitrana

Given a language L we can iterate the (partial) hairpin completion and can
define the iterated (partial) hairpin completion as the union over all iterations.

Question 4. Is it decidable whether the iterated (partial) hairpin completion
applied to a regular language (finite language resp.) is regular again?

Acknowledgement

We thank the anonymous referees for many useful remarks and hints.

References

1. Cheptea, D., Martin-Vide, C., Mitrana, V.: A new operation on words suggested by
DNA biochemistry: Hairpin completion. Transgressive Computing, 216–228 (2006)

2. Deaton, R., Murphy, R., Garzon, M., Franceschetti, D., Stevens, S.: Good en-
codings for DNA-based solutions to combinatorial problems. Proc. of DNA-based
computers DIMACS Series 44, 247–258 (1998)

3. Garzon, M., Deaton, R., Neathery, P., Murphy, R., Franceschetti, D., Stevens, E.:
On the encoding problem for DNA computing. In: The Third DIMACS Workshop
on DNA-Based Computing, pp. 230–237 (1997)

4. Garzon, M., Deaton, R., Nino, L., Stevens Jr., S., Wittner, M.: Genome encoding
for DNA computing. In: Proc. Third Genetic Programming Conference, pp. 684–690
(1998)

5. Hopcroft, J.E., Ulman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

6. Ito, M., Leupold, P., Mitrana, V.: Bounded hairpin completion. In: LATA. LNCS,
vol. 5457, pp. 434–445. Springer, Heidelberg (2009)

7. Kari, L., Konstantinidis, S., Losseva, E., Sośık, P., Thierrin, G.: Hairpin structures
in DNA words. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,
pp. 158–170. Springer, Heidelberg (2006)

8. Kari, L., Mahalingam, K., Thierrin, G.: The syntactic monoid of hairpin-free lan-
guages. Acta Inf. 44(3-4), 153–166 (2007)

9. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On some algorithmic problems regarding
the hairpin completion. Discrete Applied Mathematics 27, 71–72 (2006)

10. Manea, F., Mitrana, V.: Hairpin completion versus hairpin reduction. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541.
Springer, Heidelberg (2007)

11. Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion. In:
12th International Conference on Automata and Formal Languages, pp. 302–313
(2008)

12. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired
by the DNA hairpin formation: Completion and reduction. Theor. Comput.
Sci. 410(4-5), 417–425 (2009)

Context-Free Languages of Countable Words�

Zoltán Ésik and Szabolcs Iván

Dept. of Computer Science, University of Szeged, Hungary

Abstract. We define context-free grammars with Büchi acceptance con-
dition generating languages of countable words. We establish several
closure properties and decidability results for the class of Büchi context-
free languages generated by these grammars. We also define context-free
grammars with Müller acceptance condition and show that there is a lan-
guage generated by a grammar with Müller acceptance condition which
is not a Büchi context-free language.

1 Introduction

A word over an alphabet Σ is an isomorphism type of a labeled linear order.
In this paper, in addition to finite words and ω-words, we also consider words
whose underlying linear order is any countable linear order, including scattered
and dense linear orders, cf. [21].

Finite automata on ω-words were introduced by Büchi [9]. He used automata
to prove the decidability of the monadic second-order theory of the ordinal ω.
Automata on ω-words have since been extended to automata on ordinal words
beyond ω, cf. [10,11,1,25,26], to words whose underlying linear order is not nec-
essarily well-ordered, cf. [3,8], and to automata on finite and infinite trees, cf.
[14,22,20]. Many decidability results have been obtained using the automata the-
oretic approach, both for ordinals and other linear orders, and for first-order and
monadic second-order theories in general.

Countable words were first investigated in [13], where they were called “ar-
rangements”. It was shown that any arrangement can be represented as the fron-
tier word (i.e., the sequence of leaf labels) of a possibly infinite labeled binary
tree. Moreover, it was shown that words definable by finite recursion schemes are
exactly those words represented by the frontiers of regular trees. These words
were called regular in [6]. Courcelle [13] raised several problems that were later
solved in the papers [17,23,5]. In [23], it was shown that it is decidable for two
regular trees whether they represent the same regular word. In [17], an infinite
collection of regular operations has been introduced and it has been shown that
each regular word can be represented by a regular expression. Complete axiom-
atizations have been obtained in [4] and [5] for the subcollections of the regular
operations that allow for the representation of the regular ordinal words and
the regular scattered words, respectively. Complete axiomatization of the full
� Research supported by grant no. K 75249 from the National Foundation of Hungary

for Scientific Research.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 185–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

186 Z. Ésik and S. Iván

collection of the regular operations has been obtained in [6], where it is also
proved that there is a polynomial time algorithm to decide whether two regular
expressions represent the same regular word. In [8,3], the authors proposed reg-
ular expressions to represent languages (i.e., sets) of scattered countable words
and languages of possibly dense words with no upper bound on the size of the
words. They have established Kleene theorems stating that a language of infinite
words is recognizable by a finite automaton iff it can be represented by a regular
expression.

In addition to automata and expressions (or terms), a third common way
of representing languages of finite words is by generative grammars. Context-
free grammars have been used to generate languages of ω-words in [12] and in
[18]. However, we are not aware of any work on context-free grammars as a
device generating languages of countable words possibly longer than ω, except
for the recent [15] that deals only with linear grammars. In this paper we consider
languages of countable words generated by context-free grammars equipped with
a Büchi-type acceptance condition, called BCFG’s. A BCFG is a system G =
(N,Σ, P, S, F), where (N,Σ, P, S) is an ordinary context-free grammar and F ⊆
N is the set of repeated (or final) nonterminals. A derivation tree t of a grammar
G is a possibly infinite tree whose vertices are labeled in the set N ∪ Σ ∪ {ε},
so that each vertex is labeled by a nonterminal in N , a letter in the terminal
alphabet Σ, or by the empty word ε. The labeling is locally consistent with
the rules contained in P in the usual way. Moreover, it is required that each
derivation tree satisfies the “Büchi condition F”, i.e., on each infinite path of t
at least one repeated nonterminal has to occur infinitely many times. The frontier
of a derivation tree t determines a countable word w over the alphabet N ∪ Σ.
When w is a word over the terminal alphabet Σ and the root of t is labeled
by the start symbol S, we say that w is contained in the Büchi context-free
language generated by G. The language class BCFL consists of all such Büchi
context-free languages.

It is well-known (see e.g., [16]) that ordinary context-free languages of finite
words are precisely the frontier languages of sets of finite trees recognizable by
finite tree automata. Tree automata over infinite trees have been introduced
in [20]. Just as automata over ω-words, a tree automaton may be equipped
with different acceptance conditions such as the Büchi and Müller acceptance
conditions, or the Rabin, Streett and parity conditions, cf. [19,24]. In the setting
of ω-words, these conditions are equally powerful (at least for nondeterministic
automata). Nevertheless, some yield more succinct representation than others,
or have different algorithmic properties. On the other hand, in the setting of
infinite trees, the Büchi acceptance condition is strictly less powerful than the
Müller acceptance condition which is equivalent to the Rabin, Streett, and parity
conditions, cf. [19,24]. While in the present paper we are mainly concerned with
the Büchi condition for generating context-free languages of countable words, we
still show that the Müller condition is strictly more powerful also in the setting
of countable words. This result is not immediate from the tree case.

Context-Free Languages of Countable Words 187

2 Linear Orders and Words

In this section we recall some concepts for linear orders and words. A good
reference on linear orders is [21].

A partial order, or partial ordering is a set P equipped with a (partial) order
relation usually denoted ≤. We sometimes write x < y if x ≤ y and x �= y. A
linear order is a partial order (P,≤) whose order relation is total, so that x ≤ y
or y ≤ x for all x, y ∈ P . A countable (finite or infinite, respectively) linear order
is a linear order which is a countable (finite or infinite, respectively) set. When
(P,≤) and (Q,≤) are linear orders, an isomorphism (embedding, respectively)
(P,≤)→ (Q,≤) is a bijection (injection, respectively) h : P → Q such that x ≤ y
implies h(x) ≤ h(y) for all x, y ∈ P . When two linear orders are isomorphic, we
also say that they have the same order type (or isomorphism type).

Below when there is no danger of confusion, we will denote a linear order just
by P,Q, Suppose that P is a linear order. Then any subset X of P determines
a sub-order of P whose order relation is the restriction of the order relation of
P to X . Note that the inclusion function X ↪→ P is an embedding of X into P .
When in addition X is such that for all x, y ∈ X and z ∈ P , x < z < y implies
that z ∈ X , then we call X an interval. In particular, for any x, y ∈ P , the set
[x, y] = {z : x ≤ z ≤ y} is an interval.

We recall that a linear order (P,≤) is a well-order if each nonempty subset
of P has a least element, and is dense if it has at least two elements and for any
x < y in P there is some z with x < z < y.1 A quasi-dense linear order is a
linear order (P,≤) containing a dense linear sub-order, so that P has a subset
P ′ such that (P ′,≤) is a dense order. Finally, a scattered linear order is a linear
order which is not quasi-dense.

It is clear that every finite linear order is a well-order, every well-order is a
scattered order, and every dense order is quasi-dense. It is well-known that up
to isomorphism there are 4 countable dense linear orders, the rationals Q with
the usual order, Q endowed with a least or a greatest element, and Q endowed
with both a least and a greatest element.

An ordinal is an order type of a well-order. The finite ordinals n are the
isomorphism types of the finite linear orders. As usual, we denote by ω the least
infinite ordinal, which is the order type of the finite ordinals, and of the positive
integers N equipped with the usual order. The order type of Q is denoted η.

When τ and τ ′ are order types, we say that τ ≤ τ ′ if there is an embedding
of a linear order of type τ into a linear order of type τ ′. The relation ≤ defined
above is a linear order of the ordinals.

We define several operations on linear orders. First, the reverse (P,≤′) of a
linear order (P,≤) is defined by x ≤′ y iff y ≤ x, for all x, y ∈ P . We will
sometimes denote the reverse order (P,≤′) by P r. It is clear that the reverse of
a scattered (dense, respectively) linear order is scattered (dense, respectively).

Suppose that P and Q are linear orders. Then the sum P + Q is the linear
order on the disjoint union of P and Q such that P and Q are intervals of P +Q

1 In [21], a singleton linear order is also called dense.

188 Z. Ésik and S. Iván

and x ≤ y holds for all x ∈ P and y ∈ Q. There is a more general notion.
Suppose that I is a linear order and for each i ∈ I, Pi is a linear order. Then
the generalized sum P =

∑
i∈I Pi is obtained by replacing each point i of I with

the linear order Pi. Formally, the generalized sum P is the linear order on the
disjoint union

⋃
i∈I Pi equipped with the order relation such that each Pi is an

interval and for all i, j ∈ I with i < j, if x ∈ Pi and y ∈ Pj then x < y. The
generalized sum gives rise to a product operation. Let P and Q be linear orders,
and for each y ∈ Q, let Py be an isomorphic copy of P . Then P ×Q is defined as
the linear order

∑
y∈Q Py. Note that this linear order is isomorphic to the linear

order on the cartesian product of P and Q equipped with the order relation
(x, y) ≤ (x′, y′) iff y < y′ or (y = y′ and x ≤ x′).

Lemma 1. [21] Any scattered generalized sum of scattered linear orders is scat-
tered. Similarly, any well-ordered generalized sum of well-orders is a well-order.
Every quasi-dense linear order is a dense generalized sum of (nonempty) scat-
tered linear orders.

Thus, when I is a scattered linear order and for each i ∈ I, Pi is a scattered
linear order, then so is

∑
i∈I Pi, and similarly for well-orders. And if P is a

quasi-dense linear order, then there is a dense linear order D and (nonempty)
scattered linear orders Px, x ∈ D such that P is isomorphic to

∑
x∈D Px.

The above operations preserve isomorphism, so that they give rise to corre-
sponding operations τ + τ ′ and τ × τ ′ on order types. In particular, the sum
and product of two ordinals is well-defined (and is an ordinal). The reverse of
an order type τ will be denoted −τ . The ordinals are also equipped with the
exponentiation operation, cf. [21].

An alphabet Σ is a finite nonempty set. A word over an alphabet Σ is a labeled
linear order, i.e., a system u = (P,≤, λ), where (P,≤) is a linear order, sometimes
denoted dom(u), and λ is a labeling function P → Σ. The underlying linear order
dom(ε) of the empty word ε is the empty linear order. We say that a word is
finite (infinite or countable, respectively), if its underlying linear order is finite
(infinite or countable, respectively). An isomorphism of words is an isomorphism
of the underlying linear orders that preserves the labeling. Embeddings of words
are defined in the same way. We usually identify isomorphic words. We will say
that a word u is a subword of a word v if there is an embedding u ↪→ v. When
in addition the image of the underlying linear order of u is an interval of the
underlying linear order of v we call u a factor of v.

The order type of a word is the order type of its underlying linear order. Thus,
the order type of a finite word is a finite linear order. A word whose order type
is ω is called an ω-word.

Let Σ = {a, b}. Some examples of words over Σ are the finite word aab which
is the (isomorphism class of the) 3-element labeled linear order 0 < 1 < 2 whose
points are labeled a, a and b, in this order, and the infinite words aω and a−ω,
whose order types are ω and −ω, respectively, with each point labeled a. For
another example, consider the linear order Q of the rationals and label each
point a. The resulting word of order type η is denoted aη. More generally, let Σ
be the alphabet {a1, . . . , an} of size n. Then up to isomorphism there is a unique

Context-Free Languages of Countable Words 189

labeling of the rationals such that between any two points there are n points
labeled a1, . . . , an, respectively. This word is denoted (a1, . . . , an)η, cf. [17].

The reverse of a word u = (P,≤, λ) is ur = (P,≤′, λ), where (P,≤′) is the
reverse of (P,≤). Suppose that u = (P,≤, λ) and v = (Q,≤, λ′) are words over Σ.
Then their concatenation (or product) uv is the word over Σ whose underlying
linear order is P + Q and whose labeling function agrees with λ on points in P ,
and with λ′ on points in Q. More generally, when I is a linear order and ui is a
word over Σ with underlying linear order Pi = dom(ui), for each i ∈ I, then the
generalized concatenation

∏
i∈I ui is the word whose underlying linear order is∑

i∈I Pi and whose labeling function agrees with the labeling function of Pi on
the elements of each Pi. In particular, when u0, u1, . . . , un, . . . are words over Σ,
and I is the linear order ω or its reverse, then

∏
i∈I ui is the word u0u1 . . . un . . .

or . . . un . . . u1u0, respectively. When ui = u for each i, these words are denoted
uω and u−ω, respectively.

In the sequel, we will make use of the substitution operation on words. Suppose
that u is a word over Σ and for each letter a ∈ Σ, ua is a word over Δ. Then the
word u[a ← ua]a∈Σ obtained by substituting ua for each occurrence of a letter
a in u (or replacing each occurrence of a letter a with ua) is formally defined as
follows. Let u = (P,≤, λ) and ua = (Pa,≤a, λa) for each a ∈ Σ. Then for each
i ∈ P let ui = (Pi,≤i, λi) be an isomorphic copy of Pλ(i). We define

u[a← ua]a∈Σ =
∏
i∈P

ui.

Note that when u = aω, then u[a ← v] is vω , and similarly for v−ω . For any
words u1, . . . , un over an alphabet Σ, we define

(u1, . . . , un)η = (a1, . . . , an)η[a1 ← u1, . . . , an ← un].

We call a word over an alphabet Σ well-ordered, scattered, dense, or quasi-
dense if its underlying linear order has the appropriate property. For example,
the words aω, aωbωa, (aω)ω over the alphabet {a, b} are well-ordered, the words
aωa−ω, a−ωaω are scattered, the words aη, aηbaη, (a, b)η are dense, and the words
(ab)η, (aω)η, (aηb)ω are quasi-dense. From Lemma 1 we immediately have:

Lemma 2. Any scattered generalized product of scattered words is scattered.
Any well-ordered generalized product of well-ordered words is well-ordered. More-
over, every quasi-dense word is a dense product of (nonempty) scattered words.

As already mentioned, we will usually identify isomorphic words, so that a word
is an isomorphism type (or isomorphism class) of a labeled linear order. When
Σ is an alphabet, we let Σ∗, Σω and Σ∞ respectively denote the set of all finite
words, ω-words, and countable words over Σ. Σ+ is the set of all finite nonempty
words. The length of a finite word w will be denoted |w|.

A language over Σ is any subset L of Σ∞. When L ⊆ Σ∗ or L ⊆ Σω, we
sometimes call L a language of finite words or ω-words, or an ω-language.

Languages are equipped with several operations, including the usual set the-
oretic operations. We now define the generic operation of language substitution.

190 Z. Ésik and S. Iván

Suppose that u ∈ Σ∞ and for each a ∈ Σ, La ⊆ Δ∞. Then the words in
the language u[a ← La]a∈Σ ⊆ Δ∞ are obtained from u by substituting in all
possible ways a word in La for each occurrence of each letter a ∈ Σ. Different
occurrences of the same letter a may be replaced by different words in La.

Formally, suppose that u = (P,≤, λ). For each x ∈ P with λ(x) = a, let us
choose a word ux = (Px,≤x, λx) which is isomorphic to some word in La. Then
the language u[a← La]a∈Σ consists of all words

∏
x∈P ux.

Suppose now that L ⊆ Σ∞ and for each a ∈ Σ, La ⊆ Δ∞. Then

L[a← La]a∈Σ =
⋃
u∈L

u[a← La]a∈Σ .

We call L[a ← La]a∈Σ the language obtained from L by substituting the lan-
guage La for each a ∈ Σ.

As mentioned above, set theoretic operations on languages in Σ∞ have their
standard meaning. Below we define some other operations.

Let L,L1, L2, . . . , Lm ⊆ Σ∞. Then we define:

1. L1L2 = ab[a← L1, b← L2] = {uv : u ∈ L1, v ∈ L2}.
2. L∗ = {a}∗[a← L] = {u1 . . . un : n < ω, ui ∈ L}.
3. Lω = {aω}[a← L] = {u0u1 . . . un . . . : ui ∈ L}.
4. L−ω = {a−ω}[a← L] = {. . . un . . . u1u0 : ui ∈ L}.
5. (L1, . . . , Lm)η = η(a1, . . . , am)[a1 ← L1, . . . , am ← Lm].
6. L∞ = {a}∞[a← L].

The above operations are respectively called concatenation, star, ω-power, −ω-
power, η-power, and ∞-power.

Some more operations. The reverse Lr of a language L ⊆ Σ∞ is defined as
Lr = {ur : u ∈ L}. The prefix language Pre(L) is given by Pre(L) = {u : ∃v uv ∈
L} and the suffix language Suf(L) is defined symmetrically. The infix (or factor)
language In(L) is {u : ∃v, w vuw ∈ L}, and the language Sub(L) of subwords
of L is the collection of all words u such that there is an embedding u ↪→ v for
some v ∈ L.

3 Büchi Context-Free Languages

Recall that an ordinary context-free grammar (CFG) is a system G=(N,Σ, P, S)
where N and Σ are the disjoint alphabets of nonterminals and terminal symbols
(or letters), P is a finite set of productions of the form A → p where A ∈ N
and p ∈ (N ∪ Σ)∗, and S ∈ N is the start symbol. Each context-free grammar
G = (N,Σ, P, S) generates a context-free language L(G) ⊆ Σ∗ which can be
defined either by using the derivation relation ⇒∗ or by using the concept of
derivation trees.

We recall that for finite words p, q ∈ (N ∪Σ)∗ it holds that p⇒ q if p and q
can be written as p = p1Ap2, q = p1rp2 such that A→ r is in P . The relations
⇒+ and ⇒∗ are respectively the transitive closure and the reflexive-transitive

Context-Free Languages of Countable Words 191

closure of the direct derivation relation⇒. The context-free language generated
by G is L(G) = {u ∈ Σ∗ : S ⇒∗ u}. Two context-free grammars G and G′

having the same terminal alphabet are called equivalent if L(G) = L(G′). We
let CFL denote the class of all context-free languages.

A derivation tree is a partial mapping t : N∗ → N ∪ Σ ∪ {ε} whose domain
dom(t) is finite, nonempty and prefix closed (i.e., uv ∈ dom(t) ⇒ u ∈ dom(t)).
The elements of dom(t) are the vertices of t, and for any vertex v, t(v) is the
label of v. The empty word ε is the root of t, and t(ε) is the root symbol. The
vertices in dom(t) are equipped with both the lexicographic order and the prefix
order. Let x, y ∈ dom(t). We say that x ≤ y in the prefix order if y = xz for
some z ∈ N∗. Moreover, we say that x < y in the lexicographic order if x = uiz
and y = ujz′ for some u, z, z′ ∈ N∗ and i, j ∈ N with i < j. The leaves of
t are the maximal elements of dom(t) with respect to the prefix order. When
x, y ∈ dom(t) and y = xi for some i ∈ N, then we say that y is the ith successor
of x and x is the predecessor of y. The function t is required to satisfy the local
consistency condition that whenever t(u) = A with A ∈ N and u is not a leaf,
then either A → ε ∈ P and t(u1) = ε and t(ui) is not defined for any i ∈ N
with i > 1, or there is a production A → p such that |p| = n with n > 0 and
t(ui) is defined for some i ∈ N iff i ≤ n, moreover, t(ui) is the ith letter of p
for each i ≤ n. The frontier of t is the linearly ordered set of leaves whose order
is the lexicographic order. The frontier determines a word in (N ∪ Σ)∗ whose
underlying linear order is obtained from the frontier of t by removing all those
vertices whose label is ε. The labeling function is the restriction of the function
t to the remaining vertices. This word is sometimes called the frontier word of
t. It is well-known that a word u in Σ∗ belongs to L(G) iff there is a derivation
tree whose root is labeled S and whose frontier word is u.

We now define context-free grammars generating countable words.

Definition 1. A context-free grammar with Büchi acceptance condition, or
BCFG is a system G = (N,Σ, P, S, F) where N,Σ, P, S are the same as above,
and F ⊆ N is the set of repeated nonterminals.

Note that each BCFG has an underlying CFG. Suppose G = (N,Σ, P, S, F) is
a BCFG. A derivation tree t is defined as above except that dom(t) may now
be infinite. However, we require that at least one repeated nonterminal occurs
infinitely often along each infinite path. When the root symbol of t is A and the
frontier word of t is p, we also write A ⇒∞ p. (Here, it is allowed that A is a
terminal in which case A = p.) The language (of countable words) generated by
G is L∞(G) = {u ∈ Σ∞ : S ⇒∞ u}. When G and G′ are BCFG’s with the same
terminal alphabet Σ generating the same language, then we say that G and G′

are equivalent.

Definition 2. We call a set L ⊆ Σ∞ a Büchi context-free language, or a BCFL,
if it can be generated by some BCFG, i.e., when L = L∞(G) for some BCFG
G = (N,Σ, P, S, F).

Suppose that G = (N,Σ, P, S, F) is a BCFG with underlying CFG G′ =
(N,Σ, P, S). Then we define L∗(G) as the CFL L(G′). Note that in general it

192 Z. Ésik and S. Iván

does not hold that L∗(G) = L∞(G)∩Σ∗. Later we will see that for every BCFG
G = (N,Σ, P, S, F) it holds that L∞(G) ∩Σ∗ is a CFL. It is clear that CFL ⊆
BCFL, for if G = (N,Σ, P, S, F) is a BCFG with F = ∅, then L∞(G) = L∗(G).

Example 1. Consider the sequence (wn)n<ω of words over {a} defined induc-
tively by w0 = a, and for each n < ω, wn+1 = wω

n . Note that the order type of
wn is ωn. For each n, the BCFG Gn = (N, {a}, P, Sn, N) with

N = {S0, . . . , Sn} and P = {S0 → a} ∪ {Si → Si−1Si : 1 ≤ i ≤ n}
generates the singleton language {wn}, cf. [7]. Using this, it follows that the
BCFG G′

n = (N ∪ {S}, {a}, P ∪ {S → Si : 0 ≤ i ≤ n}, S,N) generates the set
{wi : 0 ≤ i ≤ n}.
Example 2. Let Σ be an alphabet and let a1, . . . , an ∈ Σ be letters in Σ. The
singleton language containing the word (a1, . . . , an)η is a BCFL generated by
G = ({S}, Σ, {S → Sa1Sa2 . . . SanS}, S, {S}).
Example 3. Consider the language L over the 1-letter alphabet {a} consisting of
all words in {a}∞ whose domain is well-ordered of order type < ωn. Then L is
generated by the BCFG G = (N, {a}, P, Sn, N − {Sn}) with N = {Sn, . . . , S0}
and P = {Si → ε : 0 ≤ i ≤ n} ∪ {S0 → a} ∪ {Si → Si−1Si : 1 ≤ i ≤ n}.

Let L′ be the subset of L consisting of those words whose domain is a limit
ordinal. Then L′ is the set of all finite concatenations of the words wi, 1 ≤ i < n
of Example 1. L′ is generated by the BCFG G = (N, {a}, P, S,N − {S}) with
N = {S, S0, . . . , Sn−1} and

P = {S → SiS : 1 ≤ i < n} ∪ {S → ε} ∪ {S0 → a} ∪ {Si → Si−1Si : 1 ≤ i < n}.
Example 4. The language {aωb−ω}∗ ∪ {aωb−ω}ω is a BCFL generated by G =
(N, {a, b}, P, S,N) with N = {S,X} and P = {S → XS, S → ε,X → aXb}.
Example 5. Using the fact (see e.g., Theorem 2.5 in [21]) that any countable
linear order can be embedded into Q, we get that Σ∞ is a BCFL for any alphabet
Σ, generated by the BCFG G = ({S}, Σ, {S → ε, S → SS} ∪ {S → SaS : a ∈
Σ}, S, {S}).

4 Normal Forms

The results of this section show that each BCFG can be transformed in polyno-
mial time into an equivalent BCFG which is “weakly ε-free” and does not contain
useless nonterminals nor any chain productions. Moreover, each BCFG can be
transformed into an equivalent “ε-free” BCFG having no useless nonterminals.

Definition 3. Let G = (N,Σ, P, S, F) be a BCFG. We say that a nonterminal
A is useful if there exist words p, q ∈ (N ∪Σ)∗ and u ∈ Σ∞ such that S ⇒∗ pAq
and A⇒∞ u. We say that G contains no useless nonterminals if either N = {S},
P = ∅ and F = ∅, or each nonterminal is useful.

Context-Free Languages of Countable Words 193

Note that when G = (N,Σ, P, S, F) contains no useless nonterminals, then
L∞(G) is empty iff N = {S}, P = ∅ and F = ∅. Moreover, if L∞(G) is not
empty, then for each A ∈ N there are words u, v ∈ Σ∞ with S ⇒∞ uAv.

Definition 4. Let G = (N,Σ, P, S, F) be a BCFG. We call G weakly ε-free if
either L∞(G) = ∅, or for each nonterminal A there is a nonempty word u ∈ Σ∞

with A⇒∞ u, or S → ε is the only production.

As usual, a chain production is of the form A→ B, where A,B are nonterminals.

Proposition 1. For each BCFG G one can construct in polynomial time an
equivalent weakly ε-free BCFG G′ without any chain productions which contains
no useless nonterminals.

Definition 5. We say that the BCFG G = (N,Σ, P, S, F) is ε-free if the follow-
ing conditions hold: 1. G is weakly ε-free. 2. Except possibly for the production
S → ε, the right side of any other production is a nonempty word. Moreover,
if S → ε is a production, then S does not occur on the right side of any other
production. 3. For each derivation tree t whose frontier determines a nonempty
word in Σ∞ there is a derivation tree t′ with the same root symbol and fron-
tier word which is well-founded in the following strict sense: For each vertex
x ∈ dom(t′), the subtree t′|x of t′ rooted at x has at least one leaf labeled in Σ.

Proposition 2. For each BCFG G one can construct in polynomial time an
equivalent ε-free grammar without useless nonterminals.

Proposition 3. Suppose that G = (N,Σ, P, S, F) is an ε-free BCFG. Then
L∞(G) ∩Σ∗ = L∗(G).

Corollary 1. A language L ⊆ Σ∗ is in BCFL iff L is in CFL.

Remark 1. Suppose that G = (N,Σ, P, S, F) is a BCFG with F = N . By an
argument similar to the proof of the well-known pumping lemma for ordinary
context-free languages we show that if L∞(G) ∩ Σ∗ is infinite, then L∞(G)
contains an infinite word. Indeed, without loss of generality we may assume that
G is ε-free without chain productions and useless nonterminals. Since L∞(G)∩Σ∗

is infinite, there is a word w ∈ L∞(G) ∩ Σ+ with a finite strictly well-founded
derivation tree rooted S such that at least one nonterminal is repeated along
some path. This implies that w can be written as xyuvz such that yv �= ε and
for some nonterminal A we have S ⇒∗ xAz, A ⇒∗ yAv and A ⇒∗ u. Since
F = N we have A ∈ F . Thus, S ⇒∞ xyωv−ωz, showing that L∞(G) contains
the infinite word xyωv−ωz.

5 Closure Properties

In this section we establish the fact that BCFL’s are effectively closed under
substitution and use this result to derive the closure of BCFL’s under the opera-
tions of union, concatenation, ω-power, −ω-power, η-power and ∞-power. Recall
the definition of language substitution from Section 2.

194 Z. Ésik and S. Iván

Theorem 1. If the languages L, La, a ∈ Σ are BCFL’s then so is L′ = L[a←
La]a∈Σ. Moreover, given BCFG’s generating the languages L, La, a ∈ Σ, one
can effectively construct a BCFG generating L′.

Corollary 2. The class BCFL is effectively closed under binary set union, con-
catenation, ω-power, −ω-power, η-power and ∞-power.

Thus, for example, given a BCFG generating L, one can effectively construct a
BCFG generating Lη. Moreover, for any ordinary context-free language L ⊆ Σ∗,
Lω, L−ω, Lη, L∞ are BCFL’s. We mention the following results.

Proposition 4. If L is a Büchi context-free language, then Lr, Pre(L), Suf(L),
In(L) and Sub(L) are all effectively Büchi context-free languages.

Proposition 5. For every alphabet Σ, the set of all dense words in Σ∞ and the
set of all quasi-dense words in Σ∞ are BCFL’s.

Remark 2. Since a language of finite words L ⊆ Σ∗ is a BCFL iff it is a CFL,
and since CFL’s are not closed under intersection, it follows that BCFL’s are
not closed under complementation and intersection either.

6 Some Decidable Properties

In this section we show that it is decidable in polynomial time for a Büchi context
free language given by a BCFG whether it is empty, consists of finite words,
consists of infinite words, consists of ω-words, consists of well-ordered words,
consists of scattered words, or it consists of dense words. We also establish a
limitedness property of BCFL’s.

Let G = (N,Σ, P, S, F) be a BCFG. We define a directed graph ΓG whose
set of vertices is N . There is an edge A → B exactly when B occurs on the
right side of a production whose left side is A. We partition N into strongly
connected components. As usual, the strongly connected components can be
partially ordered by S ≤ S′ iff there is a sequence of nonterminals A0, . . . , Am

such that A0 ∈ S′, Am ∈ S and for each i < m there is an edge from Ai to Ai+1.
The first fact is clear, since for every BCFG one can construct in polynomial

time an equivalent BCFG without useless nonterminals.

Theorem 2. It is decidable in polynomial time whether a BCFG generates an
empty language.

Theorem 3. Let G = (N,Σ, P, S, F) be a weakly ε-free BCFG having no use-
less nonterminal. Then L∞(G) contains an infinite word iff there is a strongly
connected component S of ΓG which contains a nonterminal in F , and there is
a production A → p with A ∈ S such that |p| ≥ 2 and at least one nonterminal
in S occurs in p.

Corollary 3. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G consists of finite words.

Context-Free Languages of Countable Words 195

Theorem 4. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G = (N,Σ, P, S, F) contains only infinite words.

Below, we will make use of the notion of the rank of a scattered countable word.
Let Σ be an alphabet. We define the sequence (V Σ

α)α of subsets of Σ∞, where
α ranges over all countable ordinals. Let V Σ

0 = Σ∗. Then for any countable
ordinal α > 0, let V Σ

α be the least set of words closed under finite concatenation
which contains

⋃
β<α V Σ

β together with all words of the form u0u1 . . . ui . . . and
. . . ui . . . u1u0, where each ui, i < ω is in V Σ

βi
for some βi with βi < α. The

following fact is immediate from Hausdorff’s theorem [21].

Proposition 6. A word in Σ∞ is scattered iff it belongs to V Σ
α for some count-

able ordinal α.

Definition 6. The rank of a scattered word w in Σ∞ is the least ordinal α such
that w is in V Σ

α . If this ordinal is finite we say that w is of finite rank.

Example 6. Consider the following languages over the singleton alphabet. Let
L0 = {a} and Ln+1 = {wω , w−ω : w ∈ Ln}, for all n < ω. Then for each n and
for each word w ∈ Ln, we have that w is scattered of rank n. In particular, let
w0 = a and wn+1 = wω

n , for all n < ω. Then each wn is scattered of rank n.

Example 7. For any alphabet Σ and n < ω, the set Ln of all scattered words in
Σ∞ of rank at most n is a BCFL: L0 = Σ∗ and Ln+1 = (Lω

n ∪ L−ω
n)∗.

Theorem 5. Let G = (N,Σ, P, S, F) be a weakly ε-free BCFG with no useless
nonterminals. Then L∞(G) consists of scattered words iff for each strongly con-
nected component S of ΓG with S ∩ F �= ∅ and for each production A→ p with
A ∈ S, the word p contains at most one occurrence of a nonterminal in S.
Corollary 4. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G contains only scattered words.

Corollary 5. Suppose that G = (N,Σ, P, S, F) is a BCFG such that L∞(G)
contains only scattered words. Then the rank of each word in L∞(G) is at most
the number of nonterminals in N .

Corollary 6. Let w0 = a and wn+1 = (wn)ω for all n < ω. There exists no
BCFL consisting only of scattered words containing all words wn, for all n < ω.
In particular, for any alphabet Σ, the set of all scattered words in Σ∞ is not a
BCFL. Similarly, the set of all well-ordered words in Σ∞ is not a BCFL.

The language of all quasi-dense words in Σ∞ is a BCFL, while its complement,
the language of all scattered words in Σ∞ is not. Thus we have:

Corollary 7. For every alphabet Σ, including the singleton alphabet, the set of
all BCFL’s in Σ∞ is not closed under complementation.

196 Z. Ésik and S. Iván

Definition 7. Suppose that L ⊆ Σ∞ is a language consisting of scattered words
of finite rank bounded by some n < ω. Then we define the rank of L as the
maximum rank of a word in L.

Theorem 6. There is a polynomial time algorithm to compute the rank of a
BCFL of scattered words generated by a BCFG.

Theorem 7. Let G = (N,Σ, P, S, F) be a weakly ε-free BCFG with no useless
nonterminals. Then L∞(G) contains only well-ordered words iff for each strongly
connected component S of ΓG containing a nonterminal in F and for each pro-
duction A→ p with A ∈ S, if p contains a nonterminal in S then it contains a
single occurrence of such a nonterminal, and moreover, this nonterminal is the
rightmost letter of p.

Corollary 8. It is decidable in polynomial time whether the language L∞(G)
generated by a given BCFG G contains only well-ordered words.

Theorem 8. Suppose that G = (N,Σ, P, S.F) is a weakly ε-free BCFG without
useless nonterminals and chain productions. Then L∞(G) consists of finite and
ω-words iff the following holds: Whenever S is a strongly connected component
of ΓG containing a nonterminal in F such that for at least one production whose
left side is in S, the right side of the production contains a nonterminal in S,
and whenever A ∈ S, then there is no finite derivation S ⇒∗ pAp′ for any words
p, p′ ∈ (N ∪Σ)∗ such that p′ �= ε.

Corollary 9. It can be decided in polynomial time whether the language gener-
ated by a BCFG contains only finite or ω-words, or only ω-words.

Theorem 9. It is decidable in polynomial time for a BCFG G = (N,Σ, P, S, F)
whether each word in L∞(G) is dense.

7 A Comparison

In this section, we compare the class of regular ω-languages [19] and the class
of context-free ω-languages as defined by Cohen and Gold [12] with the class of
those ω-languages that are BCFL’s.

Recall that a Büchi automaton is a system A = (Q,Σ, δ, q0, F) which consists
of an alphabet Q of states, an alphabet Σ of letters, a transition relation δ ⊆
Q × Σ × Q, an initial state q0 ∈ Q and a set F of repeated states. A run of
the automaton A on a word w = a0a1 . . . ∈ Σω is a sequence of states q0, q1, . . .
where q0 is the initial state and (qi, ai, qi+1) ∈ δ holds for all i. Moreover, it
is required that at least one state in F occurs infinitely often in the run. The
automaton A accepts the language L(A) ⊆ Σω consisting of those words having
at least one run. An ω-language is regular if some Büchi automaton accepts it.

Proposition 7. Every regular language L ⊆ Σω is a BCFL.

Context-Free Languages of Countable Words 197

Theorem 10. An ω-language is a BCFL if and only if it is context-free in the
sense of Cohen and Gold [12].

Remark 3. The papers [8,3] define finite automata acting on infinite words and
using this automaton model, provide a definition of recognizable languages of
both countable words and all words with no upper bound on the cardinality of
the word. Here we briefly compare BCFL’s with the class REC of recognizable
languages of countable words. On one hand, for any alphabet Σ, the set of all
well-ordered words in Σ∞ is in REC but not in BCFL. On the other hand, any
nonregular context-free language in Σ∗ is a BCFL which is not in REC. Thus,
the two classes REC and BCFL are incomparable.

8 An Undecidable Property

The main result of this section is that for any fixed alphabet Σ, it is undecidable
whether a BCFL given by a BCFG is the universal language Σ∞.

First we note that the language Σ+∞ = Σ∞ΣΣ∞ of all nonempty words in
Σ∞ is a BCFL. Next, the set of all words in Σ∞ with no first letter is also a
BCFL since it can be given as (Σ+∞)−ω ∪{ε}. Consider now the set of all words
in Σ∞ having a first letter. This set can be subdivided into two sets: 1. All words
starting with an ω-word which is a BCFL given by ΣωΣ∞. 2. All words starting
with a nonempty finite word followed by a word that does not have a first letter.
This is again a BCFL given by the expression Σ+((Σ+∞)−ω ∪ {ε}).

Suppose now that G = (N,Σ, P, S) is an ordinary CFG with no ε-productions
generating the language of finite words L = L(G) ⊆ Σ+. Then consider the
following language L′ ⊆ Σ∞. L′ consists of all words in Σ∞ not having a first
letter together with all words that start with an ω-word as well as those words
starting with a finite word in L followed by a word not having a first letter. An
expression for this language is ((Σ+∞)−ω ∪ {ε})∪ΣωΣ∞ ∪L((Σ+∞)−ω ∪ {ε}),
showing that L′ is a BCFL.

Lemma 3. L′ = Σ∞ iff L = Σ+.

Since it is undecidable for an ordinary context-free grammar without
ε-productions over a fixed alphabet of size at least two whether it generates the
language of all finite nonempty words, and since BCFL’s are effectively closed
under the operations that appear in the above expressions, we immediately have
that the universality problem is undecidable for BCFL’s.

Proposition 8. Let Σ be an alphabet of size at least two. Then it is undecidable
for a BCFG G = (N,Σ, P, S, F) whether L∞(G) = Σ∞.

Theorem 11. It is undecidable for a BCFG G over the unary alphabet {a}
whether L∞(G) = {a}∞.

198 Z. Ésik and S. Iván

9 Müller Context-Free Languages

In this section we define context-free grammars with Müller acceptance condition
and show that their generative power strictly exceeds the generating power of
context-free grammars with Büchi acceptance condition.

Definition 8. A context-free grammar with Müller acceptance condition, or
MCFG is a system G = (N,Σ, P, S,F) where (N,Σ, P, S) is an (ordinary) CFG
and F is a set of subsets of N .

When G is such an MCFG, a derivation tree t over G is defined as for BCFG’s
except that we require that for every infinite path π of t, the set of nonterminals
occurring infinitely often as a vertex label along π belongs to F . We write X ⇒∞

p when there is a derivation tree with root symbol X and frontier word p.

Definition 9. Let G = (N,Σ, P, S,F) be an MCFG. The language L∞(G) gen-
erated by G is the collection of all words u ∈ Σ∞ that are frontier words of some
derivation tree whose root symbol is S. A language L ⊆ Σ∞ is called a Müller
context-free language, or an MCFL, if L is generated by some MCFG.

Theorem 12. BCFL is strictly included in MCFL.

In fact, an MCFL that is not a BCFL is provided by Corollary 6.

10 Conclusion and Further Research Topics

We have defined two types of context-free grammars generating languages of
countable words, BCFG’s and MCFG’s, corresponding to the Büchi- and Müller-
type acceptance conditions of automata on ω-words and automata on infinite
trees. We showed that BCFG’s can be transformed into equivalent BCFG’s that
are (weakly) ε-free and do not have chain productions or useless nonterminals.
We established several closure properties of the class BCFL of languages that
can be generated by BCFG’s. We proved that many properties, including several
order theoretic properties of BCFL’s are decidable in polynomial time, whereas
the universality problem is undecidable even for the single letter alphabet. We
showed that the BCFL’s of finite words are exactly the usual CFL’s, and that the
ω-languages that are BCFL’s are exactly the context-free ω-languages of Cohen
and Gold [12]. We showed that every BCFL of scattered words consists of words
of finite bounded rank. Finally we showed that there is a language that can be
generated by an MCFG which is not a BCFL.

It follows from our proof of Theorem 4 that it is decidable in polynomial time
whether a finite word belongs to the language generated by a BCFG. The same
question for regular words seems very interesting, where a regular word may be
defined as a word generated by a BCFG which contains exactly one production
for each nonterminal.

The present paper focuses on BCFG’s and BCFL’s. It would be interesting to
see how much differently MCFG’s behave. We have seen that they have a strictly
larger generative power, and they also have different algorithmic properties. It
would also be interesting to develop a suitable pushdown automaton model.

Context-Free Languages of Countable Words 199

References

1. Bedon, N.: Finite automata and ordinals. Theor. Comp. Sci. 156, 119–144 (1996)
2. Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of

words indexed by linear orderings. In: Hirsch, E.A., Razborov, A.A., Semenov, A.,
Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 76–85. Springer, Heidelberg
(2008)

3. Bès, A., Carton, O.: A Kleene theorem for languages of words indexed by lin-
ear orderings. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572,
pp. 158–167. Springer, Heidelberg (2005)

4. Bloom, S.L., Choffrut, Ch.: Long words: the theory of concatenation and ω-power.
Theor. Comp. Sci. 259, 533–548 (2001)

5. Bloom, S.L., Ésik, Z.: Axiomating omega and omega-op powers of words. Theor.
Inform. Appl. 38, 3–17 (2004)

6. Bloom, S.L., Ésik, Z.: The equational theory of regular words. Inform. and Com-
put. 197, 55–89 (2005)

7. Bloom, S.L., Ésik, Z.: Regular and algebraic words and ordinals. In:
Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS,
vol. 4624, pp. 1–15. Springer, Heidelberg (2007)

8. Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. System Sci. 73,
1–24 (2007)

9. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundlagen Math. 6, 66–92 (1960)

10. Büchi, J.R.: The monadic second order theory of ω1. In: Decidable theories, II.
Lecture Notes in Math., vol. 328, pp. 1–127. Springer, Heidelberg (1973)

11. Choueka, Y.: Finite automata, definable sets, and regular expressions over ωn-
tapes. J. Comput. System Sci. 17(1), 81–97 (1978)

12. Cohen, R.S., Gold, A.Y.: Theory of ω-languages, parts one and two. Journal of
Computer and System Science 15, 169–208 (1977)

13. Courcelle, B.: Frontiers of infinite trees. RAIRO Theor. Inf. 12, 319–337 (1978)
14. Doner, J.: Tree acceptors and some of their applications. J. Comput. System Sci. 4,

406–451 (1970)
15. Ésik, Z., Ito, M., Kuich, W.: Linear languages of finite and infinite words (to appear)
16. Gécseg, F., Steinby, M.: Tree automata. Akadémiai Kiadó, Budapest (1984)
17. Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite

words. RAIRO Theor. Inf. 14, 131–141 (1980)
18. Nivat, M.: Sur les ensembles de mots infinis engendrés par une grammaire

algébrique (French). RAIRO Inform. Théor. 12(3), 259–278 (1978)
19. Perrin, D., Pin, J.-E.: Infinite Words. Elsevier, Amsterdam (2004)
20. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.

Trans. Amer. Math. Soc. 141, 1–35 (1969)
21. Rosenstein, J.G.: Linear Orderings. Academic Press, London (1982)
22. Thatcher, J.W.,Wright, J.B.:Generalized finite automata theorywith an application

to a decision problem of second-order logic. Math. Systems Theory 2, 57–81 (1968)
23. Thomas, W.: On frontiers of regular sets. RAIRO Theor. Inf. 20, 371–381 (1986)
24. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer

Science, vol. B, pp. 135–191. Elsevier, Amsterdam (1990)
25. Wojciechowski, J.: Classes of transfinite sequences accepted by finite automata.

Fundamenta Informaticæ 7, 191–223 (1984)
26. Wojciechowski, J.: Finite automata on transfinite sequences and regular expres-

sions. Fundamenta Informaticæ 8, 379–396 (1985)

Automatic Conflict Detection on Contracts�

Stephen Fenech1, Gordon J. Pace1, and Gerardo Schneider2

1 Dept. of Computer Science, University of Malta, Malta
2 Dept. of Informatics, University of Oslo, Norway

{sfen002,gordon.pace}@um.edu.mt, gerardo@ifi.uio.no

Abstract. Many software applications are based on collaborating, yet compet-
ing, agents or virtual organisations exchanging services. Contracts, expressing
obligations, permissions and prohibitions of the different actors, can be used to
protect the interests of the organisations engaged in such service exchange. How-
ever, the potentially dynamic composition of services with different contracts, and
the combination of service contracts with local contracts can give rise to unex-
pected conflicts, exposing the need for automatic techniques for contract analysis.
In this paper we look at automatic analysis techniques for contracts written in the
contract language CL. We present a trace semantics of CL suitable for conflict
analysis, and a decision procedure for detecting conflicts (together with its proof
of soundness, completeness and termination). We also discuss its implementation
and look into the applications of the contract analysis approach we present. These
techniques are applied to a small case study of an airline check-in desk.

1 Introduction

Today’s trend towards Service-Oriented Architectures (SOA), in which different decou-
pled services distributed not only on different machines within a single organisation but
also outside of it, provides new challenges to reliability and trust. Since an organisation
may need to execute code provided by third parties, it requires mechanisms to protect
itself — one such mechanism is the use of contracts giving restrictions on the service
behaviours. Clearly, it is important that such contracts are conflict-free — meaning that
the contracts will never lead to conflicting or contradictory directives.

Services are frequently composed of different sub-services, each of which comes
with its own contract. The top-level service, not only needs to ensure that each single
contract is conflict-free, but also that the composition of all the contracts is itself also
conflict-free. This is true not only for SOA but for any application domain with a need
to specify and monitor prescriptive behaviour.

The concept of contracts has been widely interpreted in the literature, from sim-
ple pre/post-conditions, to QoS properties. In this paper, we take the deontic view of
contracts — a contract specifies the normative behaviour of a system, specifying obli-
gations, permissions and prohibitions of actions, as well as the reparations in case of
not respecting an obligation or prohibition. We build upon the contract language CL
[10], which enables formal specification of deontic electronic contracts, and we extend

� Partially supported by the Nordunet3 project COSoDIS: “Contract-Oriented Software Devel-
opment for Internet Services”.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 200–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatic Conflict Detection on Contracts 201

the trace semantics given in [6] in order to define and discover potential conflicts in
contracts.

Although useful for runtime monitoring of CL contracts, the semantics given in [6] is
not concerned with permissions, and it loses the deontic information (obligations, etc.)
of the parties involved in the contract, making it unsuitable for conflict analysis. In this
paper, we present an extension of this trace semantics to support conflict analysis, which
is proved correct with respect to the original trace semantics. Based on the extended
semantics we define the concept of conflicting contracts, and develop and prove the
correctness of a decision procedure to detect conflicts in CL contracts. The algorithm
has also been implemented into the tool CLAN for CL contract analysis.

The paper is organised as follows. We start by presenting CL in section 2, whose
deontic trace semantics is introduced in section 3. The definition and algorithm for con-
flict analysis is then presented in section 4, where we also present theoretical results
concerning correctness of the algorithm. Section 5 presents a small case study to illus-
trate the use of the analysis, which is compared to related work in section 6. We finally
conclude in section 7.

2 The Contract Language CL
Deontic logic [13] enables reasoning about non-normative and normative behaviour
(e.g., obligations, permissions and prohibitions), including not only the ideal behaviours
but also the exceptional and actual behaviours. One of the main problems of the logic
is the difficulty theoreticians have to define a consistent yet expressive formal system,
free from paradoxes [8].

Instead of trying to solve the problem of having a complete paradox-free deontic
logic, CL has been designed with the aim to be used on a restricted application domain:
electronic contracts. In this way the expressivity of the logic is reduced, resulting in
a language free from most classical paradoxes, but still of practical use. CL is based
on a combination of deontic, dynamic and temporal logics, allowing the representation
of obligations, permissions and prohibitions, as well as temporal aspects. Moreover,
it also gives a means to specify exceptional behaviours arising from the violation of
obligations (what is to be demanded in case an obligation is not fulfilled) and of prohi-
bitions (what is the penalty in case a prohibition is violated). These are usually known
in the deontic community as Contrary-to-Duties (CTDs) and Contrary-to-Prohibitions
(CTPs) respectively. CL contracts are written using the following syntax:

C := CO | CP | CF | C ∧ C | [β]C | " | ⊥
CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α)
α := 0 | 1 | a | a | α & α | α;α | α + α

β := ε | 0 | 1 | a | a | β & β | β;β | β + β | β∗

202 S. Fenech, G.J. Pace, and G. Schneider

Being CL an action-based language, we assume a non-empty set of actions Σ =
{a, b, . . .}, together with the three special actions 0, 1 and ε explained below. A contract
clause C can be either an obligation (CO), a permission (CP) or a prohibition (CF)
clause, a conjunction of two clauses, the trivially satisfied contract ("), the impossible
contract (⊥) or a clause preceded by the dynamic logic square brackets. OC(α) is in-
terpreted as the obligation to perform α in which case, if violated, then the reparation
contract C must be executed (a CTD). An obligation clause may be an exclusive dis-
junction of two other obligation clauses. This is interpreted as being obliged to satisfy
one of the obligations but not both. FC(α) is interpreted as forbidden to perform α and
if α is performed then the reparation C must be executed (a CTP). In what follows we
will write F (α) (respectively O(α)) instead of F⊥(α) (respectively O⊥(α)) to denote
that there is no CTP (respectively CTD) associated. [β]C is interpreted as if action β1 is
performed then the contract C must be executed — if β is not performed, the contract
is trivially satisfied. The conjunction of two clauses is interpreted as both clauses have
to be satisfied. The trivially satisfied contract " is satisfied by any sequence of actions
whereas the impossible contract ⊥ cannot be satisfied with any sequence of actions. ε
is an empty action, 1 is the action that matches any action, while 0 is the impossible
action.

Action expressions can be constructed from basic ones using the operators &, ;, +
and ∗ where & stands for the actions occurring concurrently, ; stands for the actions
to occur in sequence, + stands for a choice between actions and ∗ is the Kleene star.
· is the complement, so a means “any action except a”. In the rest of the paper α&
will denote basic actions or complex actions constructed from basic actions only us-
ing the concurrent operator & (for example a, a&b). It can be shown that every action
expression can be transformed into an equivalent representation where & appears only
at the innermost level. This representation is referred to as the canonical form. In the
rest of this paper we assume that action expressions have been reduced to this form.
We also allow the negation of compound actions in the formal syntax (and semantics).
However, one can push negations on action expressions down to the constituent ac-
tions. Throughout the rest of the paper, whenever the negation of action expressions is
used, it is assumed that the expression will be reduced appropriately. Following [10],
we assume there is an action dictionary containing all possible actions, including which
actions are contradictory: we write a#b to denote that a and b are contradictory (for
instance “send a message shorter than 5 characters” and “send a message longer than
10 characters”).

In order to avoid paradoxes the operators combining obligations, permissions and
prohibitions are restricted syntactically. See [10,6] for more details on CL.

As a simple example, let us consider the following clause from an airline company
contract: ‘When checking in, the traveller is obliged to have a luggage within the weight
limit — if exceeded, the traveller is obliged to pay extra.’ This would be represented in
CL as [checkIn]OO(pay)(withinWeightLimit).

1 Note that the only differences between the syntactic categories representing actions (α and β)
is ·∗. α is restricted to be used only under obligations, permissions and prohibitions, while β
only in “conditions”.

Automatic Conflict Detection on Contracts 203

3 Deontic Trace Semantics

In this section, we will introduce a new finite trace semantics of CL that includes deontic
information — which obligations, permissions and prohibitions are enacted at each step
of the trace. This will enable us to detect conflicts in a contract, by looking at finite
traces allowed by the semantics leading to incompatible normative behaviour — for
example both obliging and forbidding the same action at the same time.

Let us consider a simple example to better understand the need of a finite trace
semantics with deontic information. Let C = [a]O(b) ∧ [b]F (b) be a contract on
the action alphabet {a, b} we want to check for conflicts. According to the CL (in-
finite) trace semantics given in [6], the set of traces “accepted” by the contract C is
{〈a, b, any〉 | any = (a + b)ω} ∪ {〈b, a, any〉 | any = (a + b)ω}. According to the
semantics, no trace starting with action {a, b} (i.e., with a and b occurring concurrently)
will be accepted by the contract, since this would imply a contract violation due to the
enacted conflicting obligation and prohibition. Moreover, there is no deontic informa-
tion in the trace, making it difficult to capture the notion of conflict. Since our aim is
to obtain a witness of such a conflict, and in particular a systematic way to obtain an
automaton that recognises such prefixes containing conflicts, it is necessary to extend
the trace semantics. This extension includes: (1) The addition of deontic information
(which obligations, permissions and prohibitions are satisfied at any moment), (2) The
addition of a trace semantics for permission (this was not present in the original trace
semantics), (3) The addition of the possibility to “accept” certain finite prefixes (in order
to get the witness for conflicts). With this new semantics we will be able to automati-
cally obtain an automaton accepting exactly the (finite prefix) traces “accepted” by the
contract, including those witnesses for conflict detection.

For a contract with action alphabet Σ, we will introduce its deontic alphabet Σd

which consists of Oa, Pa and Fa for each action a ∈ Σ, that will be used to represent
which normative behaviour is enacted at a particular moment. Given a set of concurrent
actions α, we will write Oα to represent {Oa | a ∈ α}.

Given a CL contract C with action alphabet Σ, the semantics will be expressed in
the form σ, σd 	 C, where σ is a finite trace of sets of concurrent actions in Σ and σd

is a finite trace consisting on sets of sets2 of deontic information in Σd. The statement
σ, σd 	 C is said to be well-formed if length(σ) = length(σd). In the rest of the paper
we will consider only well-formed semantic statements.

A well-formed statement σ, σd 	 C will correspond to the statement that action
sequence σ is possible under (will not break) contract C, with σd being the deontic
statements enforced from the contract.

Let us consider again the contract C = [a]O(b) ∧ [b]F (b), and the trace σ =
〈{a}, {b}〉, then σd = 〈{∅}, {{Ob}}〉, and we have that σ, σd 	 C. The contract
C′ = F (c) ∧ [1](O(a) ∧ F (b)), for example, stipulates that it is forbiden to perform
action c and that after the execution of any action, there is an obligation to perform an a
(while prohibiting the execution of b), so we can write σd = 〈{{Fc}}, {{Oa}, {Fb}}〉.
The contract allows the execution of actions a and b concurrently, and then a concur-
rently with c (σ = 〈{a, b}, {a, c}〉), and we have that σ, σd 	 C′. As a final example, let

2 This is needed to distinguish choices from conjunction.

204 S. Fenech, G.J. Pace, and G. Schneider

σ, σd 	 C if length(σ) = length(σd) = 0 (1)

σ, σd 	 � if σd(0) = ∅ and σ(1..), σd(1..) 	 � (2)

σ, σd 	 C1 ∧ C2 if σ, σ′
d 	 C1 and σ, σ′′

d 	 C2 and σd = σ′
d ∪ σ′′

d (3)

σ, σd 	 C1 ⊕ C2 if (σ, σd 	 C1 and σ, σd � C2) or (σ, σd 	 C2 and σ, σd � C1) (4)

σ, σd 	 [ε]C if σ, σd 	 C (5)

σ, σd 	 [α&]C if (α& �⊆ σ(0)⇒ σ, σd 	 �) and (6)

(α& ⊆ σ(0)⇒ (σd(0) = ∅ and σ(1..), σd(1..) 	 C)) (7)

σ, σd 	 [α&]C if (α& ⊆ σ(0)⇒ σ, σd 	 �) and (8)

(α& � σ(0)⇒ (σd(0) = ∅ and σ(1..), σd(1..) 	 C)) (9)

σ, σd 	 [β; β′]C if σ, σd 	 [β][β′]C (10)

σ, σd 	 [β + β′]C if σ, σd 	 [β]C ∧ [β′]C (11)

σ, σd 	 [β∗]C if σ, σd 	 C ∧ [β][β∗]C (12)

σ, σd 	 OC(α&) if σd(0) = Oα& and (13)

(α& ⊆ σ(0)⇒ σ(1..), σd(1..) 	 �) and (14)

(α& �⊆ σ(0)⇒ σ(1..), σd(1..) 	 C) (15)

σ, σd 	 OC(α; α′) if σ, σd 	 OC(α) ∧ [α]OC(α′) (16)

σ, σd 	 OC(α + α′) if σ, σd 	 O�(α) ∧O�(α′) ∧ [α + α′]C (17)

σ, σd 	 FC(α&) if σd(0) = Fα& and (18)

(α& ⊆ σ(0)⇒ σ(1..), σd(1..) 	 C) and (19)

(α& � σ(0)⇒ σ(1..), σd(1..) 	 �) (20)

σ, σd 	 FC(α; α′) if σ, σd 	 F⊥(α) or σ, σd 	 [α]FC(α′) (21)

σ, σd 	 FC(α + α′) if σ, σd 	 FC(α) ∧ FC(α′) (22)

σ, σd 	 P (α&) if σd(0) = Pα& and σ(1..), σd(1..) 	 � (23)

σ, σd 	 P (α; α′) if σ, σd 	 P (α) ∧ [α]P (α′) (24)

σ, σd 	 P (α + α′) if σ, σd 	 P (α) ∧ P (α′) (25)

Fig. 1. The deontic trace semantics of CL

us consider the contract C′′ = [a]O(b+c)∧[b]F (b). In this case, due to the choice inside
the obligation, we get that given the trace σ = 〈{a}, {b}〉 then σd = 〈{∅}, {{Ob, Oc}}〉,
and we have that σ, σd 	 C′′.

Given two traces σ1 and σ2, we will use σ1;σ2 to denote their concatenation, and
σ1 ∪ σ2 (provided the length of σ1 is equal to that of σ2) to denote the point-wise union
of the traces: 〈σ1(0) ∪ σ2(0), σ1(1) ∪ σ2(1), . . . σ1(n) ∪ σ2(n)〉. In what follows we
explain our new trace semantics, shown in Fig. 1.3

Basic conditions: Empty traces satisfy any contract, as shown in Fig. 1-(1).

3 Due to lack of space, we do not present the trivial cases of actions 0 and 1, and they are omitted
in the rest of the paper.

Automatic Conflict Detection on Contracts 205

Done, Break: The simplest definitions are those of the trivially satisfiable contract ",
and the unsatisfiable contract ⊥. In the case of ⊥, only an empty sequence will
not have yet broken the contract, while in the case of ", any sequence of actions
satisfies the contract (whenever no obligation, prohibition, or permission is present
on the trace). See Fig. 1 line (2).

Conjunctions: For the conjunction of two contracts, the action trace must satisfy both
contracts, and the deontic traces are combined point-wise. See Fig. 1 line (3).

Exclusive disjunction: Similar to conjunctions. See Fig. 1 line (4). (Note that the rule
is valid only for C1 and C2 being both of the form CO , or CP . In the rest of the
paper we will continue to write C1 ⊕ C2 with the understanding that the above
restriction applies.)

Conditions: Conditions are handled structurally. Note that using the normal form de-
fined in [6], one can push concurrent actions to the bottom level. See Fig. 1 lines
(5)–(12).

Obligations: Obligations, like conditions, are defined structurally on action expres-
sions. The base case of the action simply consisting of a conjunction of actions
that can be dealt with by ensuring that if the actions are present in the action trace,
then the contract is satisfied, otherwise the reparation is enacted. The case for the
sequential composition of two action sequences is handled simply by rewriting into
a pair of obligations. The case of choice (+) is the most complex case, in which we
have to consider the possibility of having either obligation satisfied or neither sat-
isfied, hence triggering the reparation. Recall that the star operator cannot appear
within obligations. See Fig. 1 lines (13)–(17).

Prohibitions: Dealing with prohibitions is similar to obligations, with the main differ-
ence being that prohibition of choice is more straightforward to express. See Fig. 1
lines (18)–(22).

Permissions: The aim of the original trace semantics of CL [6] was to provide a lin-
ear time semantics to the language, appropriate for applications such as runtime
verification. Since a single linear trace does not give any information whether a
permission clause has been found to be in conflict with other clauses or not, the
original semantics simply discarded permission clauses. However, to reason about
conflicts, the fact that a permission operator has been enacted is important. See
Fig. 1 lines (23)–(25) for the semantics.

4 Conflict Analysis

Conflicts in contracts arise from four different reasons. The first two reasons are being
obliged and forbidden to perform the same action (e.g., O(a) ∧ F (a)), and being per-
mitted and forbidden to perform the same action (e.g., P (a)∧F (a)). In the first conflict
we would end up in a situation where whatever is performed will violate the contract.
The second conflict would not result in having a trace that violates the contract since in
the trace semantics permissions cannot be broken, however, we can still identify these
situations due to the deontic trace. The remaining two kinds of conflicts correspond to
obligations of contradictory actions (e.g., O(a)∧O(b) with a#b), and permissions and
obligations of contradictory actions (e.g., P (a) ∧O(b) with a#b).

206 S. Fenech, G.J. Pace, and G. Schneider

Before defining formally what a conflict-free contract is, we recall our motivating
example, the contract [a]O(b) ∧ [b]F (b) with allowed actions a and b. It is clear that
both traces σ1 = 〈{a}, {b}〉 and σ2 = 〈{b}, {a}〉 satisfy the contract. However, any
trace starting with concurrent actions {a, b} (e.g., 〈{a, b}, {b}〉) will not be accepted by
the contract since any action following it will violate either the obligation to perform b
or the prohibition from performing b. In this case, since unspecified, the reparation is
the ⊥ clause which cannot be satisfied regardless of what action is performed.

In what follows we define the notion of conflict-free contract at the semantic level,
formalising the four cases. We show how to obtain an automaton from a contract and
discuss an automata-based model checking algorithm for detecting conflicts.

Definition 1. For a given trace σd of a contract C, let D,D′ ⊆ σd(i) (with i ≥ 0). We
say that D is in conflict with D′ if and only if there exists at least one element e ∈ D
such that:

e = Oa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Pa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Fa ∧ (Pa ∈ D′ ∨Oa ∈ D′).

A contract C is said to be conflict-free if for all traces σ and σd such that σ, σd 	 C,
then for any D,D′ ⊆ σd(i) (0 ≤ i ≤ len(σd)), D and D′ are not in conflict.

Let us consider the contract C = [a]O(b + c) ∧ [b]F (b), then we have that C is not
conflict-free since 〈{a, b}, {b}〉, 〈{∅}, {{Ob, Oc}, {Fb}}〉 	 C, and there are D,D′ ⊆
σd(1) such that D and D′ are in conflict. To see this, let us take D = {Ob, Oc} and
e = Ob. We have then that for D′ = {Fb}, Fb ∈ D′ (satisfying the first line of
definition 1).

We have then characterised the notion of conflict in contracts by analysing the set of
traces accepted by the contract. We now show how to generate a finite-state automaton
from a CL contract C, with the property that the language accepted by the automaton
corresponds to the traces given by the semantics of the contract. We also define the
notion of conflict in the generated automaton.

Generation of an automaton from a CL contract. Given a contract C, over an action
alphabet Σ and corresponding deontic alphabet Σd, we can construct an automaton
A(C) = 〈S,A&, s0, T, V, l, δ〉 where S is the set of states, A& is the set of concurrent
actions from Σ, s0 is the initial state, T ⊆ S×A&×S is the set of labelled transitions,
V is a special violation state, l is a function labelling states with the CL clause that
holds in that state (l : S → CL) and δ : S → 2Σd is a function labelling states with
the set of deontic notions that hold in that state. We say that a run (sequence of states)
is accepted by the automaton if none of the states of the run is V . Similarly, we say
that the automaton accepts a word w, consisting of a sequence of actions, if none of the
actions of w is the label of a transition containing the state V , in which case we write
Accept(A(C), w). Note that the automaton is deterministic.

The construction of the automaton uses the residual contract function f which, given
a CL formula C and an action α, will return the clause that needs to hold in the following
step, similarly to the CTL sub-formula construction [2]. f is defined in Fig. 2. The

Automatic Conflict Detection on Contracts 207

f : CL ×A& → CL
f(�, ϕ) = �
f(⊥, ϕ) = ⊥

f(C1 ∧ C2, ϕ) = f(C1, ϕ) ∧ f(C2, ϕ)

f(C1 ⊕C2, ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
� if (f(C1, ϕ) = � ∧ f(C2, ϕ) = ⊥)∨

(f(C1, ϕ) = ⊥ ∧ f(C2, ϕ) = �)
⊥ if (f(C1, ϕ) = f(C2, ϕ) = �)∨

(f(C1, ϕ) = f(C2, ϕ) = ⊥)
f(C1, ϕ)⊕ f(C2, ϕ) otherwise

f([α&]C, ϕ) =
{

C if α& ⊆ ϕ
� otherwise

f([α&]C, ϕ) =
{

C if α& � ϕ
� otherwise

f([α; α′]C, ϕ) =

{
C if (α; α′)/ϕ = 0

[(α; α′)/ϕ]C otherwise
f([α + α′]C, ϕ) = f([α]C, ϕ) ∧ f([α′]C, ϕ)

f([β; β′]C, ϕ) = f([β][β′]C, ϕ)
f([β + β′]C, ϕ) = f([β]C ∧ [β′]C, ϕ)

f([β∗]C, ϕ) = f(C ∧ [β][β∗]C, ϕ)

f(OC(α&), ϕ) =
{� if α& ⊆ ϕ

C otherwise
f(OC(α; α′), ϕ) = f(OC(α) ∧ [α]OC(α′), ϕ)

f(OC(α + α′), ϕ) =

⎧⎨⎩
� if f(O⊥(α), ϕ) = � or f(O⊥(α′), ϕ) = �
C if f(O⊥(α), ϕ) = ⊥ and f(O⊥(α′), ϕ) = ⊥
OC(α + α′/ϕ) otherwise

f(FC(α&), ϕ) =
{

C if α& ⊆ ϕ
� otherwise

f(FC(α; α′), ϕ) = f([α]FC(α′), ϕ)
f(FC(α + α′), ϕ) = f(FC(α) ∧ FC(α′))

f(P (α&), ϕ) = �
f(P (α · α′), ϕ) = f(P (α) ∧ [α]P (α′), ϕ)

f(P (α + α′), ϕ) = f(P (α) ∧ P (α′), ϕ)

Fig. 2. The residual function f

binary operator / used in f , that gives the tail of the left-hand side sequence of actions
if its head matches the right-hand side action, is defined inductively as follows:

α′
&/α& = ε if α′

& ⊆ α&, otherwise 0
(0;α)/α& = 0
(1;α)/α& = α

(α;α′)/α& = (α/α&);α′

(α + α′)/α& = α/α& + α′/α&

For example, (a; b)/a will give b whereas ((a; b) + (a; c))/a will result in b + c.
The automaton is built using the construction function fc shown in Fig. 3, that takes

as argument an initial state s0 where l(s0) = C. Besides the residual function f , fc

208 S. Fenech, G.J. Pace, and G. Schneider

fc(s) = if l(s) = 1 then
T := T ∪ (s, 1, s)

if l(s) = 0 then
V := s
T := T ∪ (V, 1, V)

otherwise ∀a ∈ A&

if ∃ s′ ∈ S s.t. l(s′) = f(l(s), a)
then T := T ∪ (s, a, s′)
otherwise

new s′

l(s′) := f(l(s), a)
S := S ∪ s′

T := T ∪ (s, a, s′)
d(s′) := fd(l(s′))
fc(s′)

Fig. 3. The construction function fc

fd(C1 ∧ C2) = fd(C1) ∪ fd(C2)
fd(O(α&)) = {{Oa1}, . . . , {Oan}}
fd(F (α&)) = {{Fa1}, . . . , {Fan}}
fd(P (α&)) = {{Pa1}, . . . , {Pan}}
fd(O(α + α′)) = {x ∪ y | x ∈ fd(O(α))

and y ∈ fd(O(α′))}
fd(otherwise) = ∅

Fig. 4. The deontic labelling function fd

uses function fd (shown in Fig. 4) that adds all the relevant deontic information to each
state (we take α& to be equal to a1& . . .&an).4

As an example, let us consider the contract [a]O(b) ∧ [b]F (b). The automaton is
constructed by applying fc to the state s0 where l(s0) = [a]O(b) ∧ [b]F (b). Every
possible transition is created (in this case, transitions labelled with a, b and a&b) from
this state to a new state labelled with the result of applying function f to the original
formula and the label of the transition as parameters. Thus, the state that is reached
with the transition labelled with action a is f([a]O(b) ∧ [b]F (b), a) = O(b). If there
is another state with the same label, the transition will connect to the existing state and
the new one will be discarded (this ensures termination). If there is no such a state,
fc is then recursively called on this new state. Eventually we either reach a satisfying
state, a violating state, or a state already labeled with the formula. The corresponding
automaton is shown in Fig. 5.5

Since our objective is to find conflicts analysing the constructed automaton, we need
to define what a conflict is at the automaton level. The definition is straightforward and
it is very similar to the definition given for CL traces.

4 We have omitted the case for ⊕ in the deontic labelling function description. In practice, two
different automata are created for each one of the choices, and the analysis proceeds as usual.
Also note that there is no explicit labelling function for F (α + α′) and P (α + α′) since these
cases are reduced to conjunction.

5 Note that what is written in each state is the sub-formula remaining to be satisfied. Formally
speaking, each state will be “marked” with the deontic information as defined by the function
fd. So, O(a) is a syntactic expression in CL, while Oa is the corresponding “marking” at the
state saying there is an obligation of doing a.

Automatic Conflict Detection on Contracts 209

[a]O(b) ∧ [b]F (b)

O(b) ∧ F (b) F (b) O(b)

V Sat

a&b
ab

a
b

a

a&b a&b

a&b

b a b

Fig. 5. Automaton for [a]O(b) ∧ [b]F (b)

Definition 2. Given a state s of an automaton A(C), let D,D′ ⊆ fd(s). We say that D
is in conflict with D′ if and only if there exists at least one element e of D such that:

e = Oa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Pa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Fa ∧ (Pa ∈ D′ ∨Oa ∈ D′).

An automaton A(C) is said to be conflict-free if for every state s ∈ S, then for any
D,D′ ⊆ fd(s), D and D′ are not in conflict.

The automaton shown in Fig. 5 is not conflict-free since there exists a state which is not
conflict-free. Consider that s is the double-lined state labelled with O(b) ∧ F (b) then
fd(s) = {{Ob}, {Fb}}. Using definition 2, let e = Ob. For this state to be conflict-free,
any subset D ∈ fs(s) should not contain Fb, which is not the case.

Conflict detection algorithm. The main algorithm takes a contract written in CL and
decides whether or not the given contract may reach a state of conflict. Once the au-
tomaton was generated from the contract as explained above, the conflict detection al-
gorithm simply consists of a standard forward or backward reachability analysis based
on a fix-point computation, looking for states containing conflicts.

For example, performing reachability analysis on the simple contract whose automa-
ton is shown in Fig. 5 would identify that the conflict state labelled O(b) ∧ F (b) is
reachable from the initial state upon receiving action a&b, since the state contains the
deontic information {{Ob}, {Fb}}.

Correctness of the algorithm. We now prove the correctness and completeness of
the algorithm, which includes proving the following auxiliary results: (1) The traces
accepted by the automaton coincide with those “accepted” by the contract in CL (ac-
cording to the trace semantics); (2) A contract C in CL is conflict-free iff the generated
automaton A(C) is conflict-free.

210 S. Fenech, G.J. Pace, and G. Schneider

We first prove that the automaton will accept all and only those traces which satisfy
the contract.

Lemma 1. Given a CL contract C, the automaton A(C) accepts all and only those
traces σ that satisfy the contract: σ, σd 	 C if and only if Accept(A(C), σ).

The proof is based on a long and tedious induction on the structure of the formula,
proving that fc (and the auxiliary functions f and fd) are complete and correct.

Note that our algorithm checks that no state contains a conflict rather than checking
all possible satisfying runs. In order to prove that this is correct we need to prove that
we generate only and all the reachable states.

Proposition 1. The function fc generates all and only reachable states.

Based on the above proposition and the definition of conflict at the trace and the au-
tomaton level, we can prove that the automata construction function preserves conflict-
freedom, and that no spurious conflicts are generated.

Lemma 2. A contract C written in CL is conflict-free if and only if the automaton
A(C) is conflict-free.

Based on the above results, and the correctness and completeness proofs of standard
forward reachability analysis, we can finally prove our main result. Termination is triv-
ially guaranteed since the generated automaton is finite and the reachability analysis is
based on a standard fix-point computation.

Theorem 1. The CL conflict detection algorithm is correct and complete.

5 Case Study

In this section, the use of conflict analysis will be illustrated through a small case study,
starting from a draft contract written in English, translated in CL and analysed using
the techniques developed in this paper.

Consider a contract between an airline company and a company taking care of the
ground crew (mainly the check-in process), where the normative specification is given
as the following contract:

1. The ground crew is obliged to open the check-in desk and request the passenger manifest
two hours before the flight leaves.

2. The airline is obliged to reply to the passenger manifest request made by the ground crew
when opening the desk with the passenger manifest.

3. After the check-in desk is opened the check-in crew is obliged to initiate the check-in process
with any customer present by checking that the passport details match what is written on
the ticket and that the luggage is within the weight limits. Then they are obliged to issue the
boarding pass.

4. If the luggage weighs more than the limit, the crew is obliged to collect payment for the extra
weight and issue the boarding pass.

5. The ground crew is prohibited from issuing any boarding cards without inspecting that the
details are correct beforehand.

Automatic Conflict Detection on Contracts 211

6. The ground crew is prohibited from issuing any boarding cards before opening the check-in
desk.

7. The ground crew is obliged to close the check-in desk 20 minutes before the flight is due to
leave and not before.

8. After closing check-in, the crew must send the luggage information to the airline.
9. Once the check-in desk is closed, the ground crew is prohibited from issuing any boarding

pass or from reopening the check-in desk.
10. If any of the above obligations and prohibitions are violated a fine is to be paid.

The contract can be represented in CL as shown below. Note that the last clause
is introduced as a reparation for breaking the previous clauses.6 Also, all the natural
language clauses include an implicit universal quantification — statements of the form
‘After the check-in desk is open. . . ’ should be interpreted as ‘At any time, after the
check-in desk is open. . . ’. Hence, [1∗] precedes such clauses.

Note that the last clause corresponds to the penalty (reparation) of all the obligations
and prohibitions appearing in the contract, and thus they are represented as CTDs and
CTPs with the secondary obligation O(fine).

1. [1∗][2hBefore]O
O(fine)

(openCheckIn & requestInfo)
2. [1∗][openCheckIn&requestInfo]O

O(fine)
(replyInfo)

3. [1∗][openCheckIn][1∗](O(correctDetails & luggageInLimit) ∧
[correctDetails & luggageInLimit]O

O(fine)
(boardingCard))

4. [1∗][openCheckIn][1∗][correctDetails & luggageOverLimit]
O

O(fine)
(collectPayment&boardingCard)

5. [1∗][correctDetails]F
O(fine)

(boardingCard)

6. [openCheckIn
∗
]F

O(fine)
(boardingCard)

7. ([1∗][20mBefore]O
O(fine)

(closeCheckIn)) ∧ ([20mBefore
∗
]F

O(fine)
(closeCheckIn))

8. [1∗][closeCheckIn]O
O(fine)

(sendLuggageInfo)
9. [1∗][closeCheckIn][1∗](F

O(fine)
(openCheckIn) ∧ F

O(fine)
(boardingCard))

Running the contract through the conflict discovery algorithm, we discover a number
of problems. The first conflict we encounter is being obliged and forbidden to issue a
boarding pass.

The tool will identify a state in conflict labelled with the obligation to perform action
boardingCard and the prohibition of performing action boardingCard together with a
trace leading to this state. Looking at clause 3, once the crew opens the check-in desk,
they are always obliged to issue a boarding pass if the client has the correct details.
However, according to clause 9 it is prohibited to issue of boarding pass once the check-
in desk is closed. These two clauses are in conflict once the check-in desk is closed and
a client arrives to the desk with the correct details. To fix this problem we require to
change clause 3 so that after the check-in desk is opened, the ground crew is obliged to
issue the boarding pass as long as the desk has not been closed. This issue can also be
found in clause 4 and the solution is similar.

The trace returned identifies the situation in which the check-in desk is closed at the
same time the client provides his correct details:

6 Note that the payment is supposed to be immediate.

212 S. Fenech, G.J. Pace, and G. Schneider

〈openCheckIn, closeCheckIn & correctDetails, O(boardingCard) & F (boardingCard)〉.
In reality, a check-in desk cannot close and accept the passport details at the same

time, and thus these two are mutually exclusive actions. Adding these two actions as
mutually exclusive will solve this conflict.

To ensure that 2hBefore and 20mBefore occur in the correct order, we make use of
path constraints. Similar constraints are used for openCheckIn and closeCheckIn. Thus,
clauses number 3 and 4 have to be modified as follows:

3′. [1∗][openCheckIn][closeCheckIn
∗
][correctDetails & luggageInLimit]O

O(fine)
(boardingCard)

4′. [1∗][openCheckIn][closeCheckIn
∗
][correctDetails & luggageOverLimit]

O
O(fine)

(collectPayment&boardingCard)

This could be represented in textual form as:

3′. After the check-in desk is opened the check-in crew is obliged to initiate the check-in process
with any customer present until the check-in desk is closed7. This is done by checking that
passport details match the ticket and that luggage is within the weight limits. Then the crew
is obliged to issue the boarding pass.

4′. If the luggage weighs more than the limit, the crew is obliged to collect payment for the extra
weight and issue the boarding pass.

Note that 4′ is stated in the same way as in the original contract since what have
changed are the common conditions stated in 3′. From this small case study, it should
be evident that the resolution of conflicts in a contract require human intervention, to
ensure that the amendments to the contract correspond the what one had in mind in the
first place. Although one could define automated ways of changing, removing or adding
clauses to resolve conflicts, the sheer number of possibilities one has (making certain
actions mutually exclusive, removing parts of a contract, delaying the triggering of a
contract, etc) and the fact that most of the options would not make sense in the real-
world interpretation of the contract makes automated conflict resolution impractical.

6 Related Work

The use of model checking techniques for logics other than temporal logic is quite
new, and it focuses mainly in multi-agent systems (see for instance [12]). There is not
much work on the verification of logics containing the deontic notions of obligation,
permission and prohibition, and including CTDs and CTPs. An extended temporal logic
with conditional obligations and permissions is presented in [4] for checking whether an
organisation conforms to a body of regulation. In the context of SOA, model checkers
have recently been used to verify compliance of web-service composition [7], where the
specifications are given in the so-called temporal deontic interpreted systems. However,
we are not aware of any work that automatically detects conflicts in deontic contracts
as presented here.

7 Recall that we made closeCheckIn and correctDetails mutually exclusive, and cannot thus
happen at the same instance of time. This ensures the submission of the correct details before
the desk is closed.

Automatic Conflict Detection on Contracts 213

The trace semantics used in our paper extends the one introduced for monitoring pur-
poses in [6]. The automaton they generate is different and cannot be used for conflict
analysis since it does not consider permissions, and does not keep deontic information
in the states, determining only if a trace has been satisfied, violated or neither. More-
over, we can create a monitor directly from the automaton generated thus enabling both
monitoring and conflict analysis.

In [9], a labelled transition system is generated in an ad hoc manner from a CL con-
tract in order to be model checked using nuSMV, against properties expressed in LTL.
The process is subject to error since many of the steps are manual, and the encoding of
the deontic information into nuSMV is complicated. Our method is completely auto-
matic, and though it is specific for conflict analysis it could be extended for other uses
as we explain in the next section.

7 Conclusions

We have presented a finite trace semantics for CL augmented with deontic information,
and showed its use for automatic contract analysis for conflict discovery. Remarkably,
we do not use CL branching semantics [11] for conflict detection, which has the advan-
tage of allowing a simpler automaton and algorithm for conflict detection. The automata
we create can also be used as a basis for other kinds of analysis, including the possibil-
ity of performing queries, the detection of unreachable clauses, and the identification of
superfluous clauses. In particular, the detection of unreachable clauses can be very use-
ful in identifying parts of a contract which may be useless. This would generate more
lightweight monitors, for runtime verification.

Based on the constructions presented, we have implemented a model checker for
detecting conflicts in CL (the tool CLAN [1]). In other ongoing work using the seman-
tics presented in this paper, we are using the automata created from CL contracts for
runtime verification using LARVA [3]. This enables the writing of contracts about Java
programs and automatically obtaining monitors ensuring conformance at runtime.

We believe that contract analysis is essential in dynamic contract composition. Even
in the case of a single contract, conflict analysis can be a useful aid, as shown in the
case study we present. Moreover, when dynamically generated contracts are to be used,
the analysis becomes even more valuable. The main advantage of using a deontic ap-
proach is that the obligations, permissions and prohibitions are explicitly identified, and
differentiated from conditionals. This enables an analysis focusing only on conflicts at
the deontic level.

Please refer to [5] for more details and full proofs.

References

1. CLAN. CL ANalyser – A tool for Contract Analysis,
www.cs.um.edu.mt/˜svrg/Tools/CLTool/

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge
(1999)

3. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring of real-
time and contextual properties. In: FMICS. LNCS. Springer, Heidelberg (2008) (to appear)

www.cs.um.edu.mt/~svrg/Tools/CLTool/

214 S. Fenech, G.J. Pace, and G. Schneider

4. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and exceptions to
laws in regulatory conformance checking. In: van der Meyden, R., van der Torre, L. (eds.)
DEON 2008. LNCS, vol. 5076, pp. 110–124. Springer, Heidelberg (2008)

5. Fenech, S.: Conflict analysis of deontic contracts. Master’s thesis, Dept. of Computer Sci-
ence, Univ. of Malta (2008)

6. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic contracts. In:
Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS,
vol. 5311, pp. 397–407. Springer, Heidelberg (2008)

7. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying compliance in agent-based web ser-
vice compositions. In: AAMAS, pp. 265–272 (2008)

8. McNamara, P.: Deontic logic. In: Handbook of the History of Logic, vol. 7, pp. 197–289.
North-Holland Publishing, Amsterdam (2006)

9. Pace, G., Prisacariu, C., Schneider, G.: Model Checking Contracts –a case study. In:
Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762,
pp. 82–97. Springer, Heidelberg (2007)

10. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts. In: Bonsangue,
M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189. Springer,
Heidelberg (2007)

11. Prisacariu, C., Schneider, G.: CL: A Logic for Reasoning about Legal Contracts – Semantics.
Technical Report 371, Univ. Oslo (2008)

12. Wozna, B., Lomuscio, A., Penczek, W.: Bounded model checking for knowledge and real
time. In: AAMAS, pp. 165–172. ACM Press, New York (2005)

13. Wright, G.H.V.: Deontic logic. Mind (60), 1–15 (1951)

A Sound Observational Semantics for Modal
Transition Systems

Dario Fischbein1, Victor Braberman2, and Sebastian Uchitel1,2

1 Imperial College London, 180 Queen’s Gate, London, SW7 2RH, UK
2 University of Buenos Aires, C1428EGA, Argentina

d.fischbein@doc.ic.ac.uk, {suchitel,vbraber}@dc.uba.ar

Abstract. Modal Transition Systems (MTS) are an extension of
Labelled Transition Systems (LTS) that distinguish between required,
proscribed and unknown behaviour and come equipped with a notion
of refinement that supports incremental modelling where unknown be-
haviour is iteratively elaborated into required or proscribed behaviour.
The original formulation of MTS introduces two alternative semantics
for MTS, strong and weak, which require MTS models to have the same
communicating alphabet, the latter allowing the use of a distinguished
unobservable action. In this paper we show that the requirement of fix-
ing the alphabet for MTS semantics and the treatment of observable
actions are limiting if MTS are to support incremental elaboration of
partial behaviour models. We present a novel semantics, branching al-
phabet semantics, for MTS inspired by branching LTS equivalence, we
show that some unintuitive refinements allowed by weak semantics are
avoided, and prove a number of theorems that relate branching refine-
ment with alphabet refinement and consistency. These theorems, which
do not hold for other semantics, support the argument for considering
branching implementation of MTS as the basis for a sound semantics to
support behaviour model elaboration.

1 Introduction

Labelled Transition Systems [13] (LTS) have been used successfully to reason
about system behaviour. Modal Transition Systems [16] (MTS) are an extension
of LTS that distinguish between required, proscribed and unknown behaviour.
MTS have been studied for some time as a means for formally describing partial
knowledge of the intended behaviour of software systems.

An MTS can be naturally interpreted as the set of implementations, in the
form of LTS, that conform to the MTS. Hence, with a view to support elaboration
of partial behaviour models operations over MTS and the implementations they
describe have been studied. These include refinement [1,11,19] (does an MTS
describe a subset of the implementations of another MTS?), consistency [19,7]
(is the intersection of implementations described by two MTS non-empty?) and
merge [15,7,19] (which are the implementations that conform to two MTS?).

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 215–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

216 D. Fischbein, V. Braberman, and S. Uchitel

The original formulation of MTS by Larsen [16] defined two semantics by
presenting two refinement relations between MTS. The first, strong refinement,
requires MTS to have the same alphabet, i.e. the same set of transition labels, the
second, weak refinement, allows the use of a distinguished unobservable action
as in, for instance, process algebraic approaches to behaviour modelling.

Although strong semantics for MTS has a number of convenient qualities
[7,16], the requirement of a fixed set of action labels and the inability to distin-
guish observable from non-observable actions results in a serious limitation for
using MTS as the basis for behaviour model elaboration: Incremental elaboration
typically involves gradually extending the scope of a description (i.e. augmenting
the alphabet of MTS) and also merging models with different scopes.

Weak semantics for MTS supports the distinction between observable and
non-observable actions, hence when combined with hiding operations, MTS un-
der weak semantics supports a variety of elaboration tasks including merge [19,3].
However, as we show in this paper, this semantics allows some counter-intuitive
LTS implementations and lacks some expected theoretical properties. In partic-
ular, it does not behave as expected with respect to alphabet hiding.

In this paper we discuss the limitations of existing semantics for MTS and
propose a novel semantics, inspired by the notion of branching equivalence
and branching simulation [21,9] for LTS, that addresses these limitations. More
specifically, we present branching semantics for MTS and define notions of
branching implementation and branching alphabet implementation. We show
that unintuitive implementations allowed by weak semantics are avoided by
branching semantics and prove a number of theorems that relate branching
refinement with alphabet extension that do not hold for weak semantics. In
addition,we study the notion of consistency, a key notion in the context of par-
tial behaviour model elaboration, and show results for branching semantics that
do not hold for weak semantics, thus, further supporting the argument for con-
sidering branching implementation of MTS as the basis for a sound semantics
to support behaviour model elaboration.

2 Background

In this section, we recall definitions and fix notation for Labelled Transition
Systems, related equivalences, and Modal Transition Systems.

Labelled transition systems (LTSs) [13] are widely used for modelling and
analysing the behaviour of software systems. An LTS is a state transition system
where transitions are labelled with actions. The set of actions of an LTS is called
its communicating alphabet and constitutes the interactions that the modelled
system can have with its environment. In addition, LTSs can have transitions
labelled with τ , representing actions that are not observable by the environment.
Figure 2 shows an example of an LTS.

Definition 1. (Labelled Transition Systems) Let States be a universal set of
states, Actτ = Act ∪ {τ} where Act is the universal set of observable action
labels and τ an unobservable action label. A labelled transition system (LTS) is

A Sound Observational Semantics for Modal Transition Systems 217

a tuple P = (S,L,Δ, s0), where S ⊆ States is a finite set of states, L ⊆ Actτ a
set of labels, Δ⊆(S×L×S) a transition relation between states, and s0 ∈ S the
initial state. We use αP = L\{τ} to denote the communicating alphabet of P .

Given an LTS P = (S,L,Δ, s0) we say P transitions on � to P ′, denoted P
�−→

P ′, if P ′ = (S,L,Δ, s′0) and (s0, �, s
′
0) ∈ Δ. Similarly, we write P

�̂−→ P ′ to
denote that either P

�−→ P ′ or � = τ and P = P ′ are true. We use P
�=⇒ P ′ to

denote P (τ−→)∗ �−→ (τ−→)∗P ′, and P
�̂=⇒ P ′ to denote P (τ−→)∗ �̂−→ (τ−→)∗P ′.

A number of equivalence relations have been proposed that provide a criteria
for deciding if syntactically different LTS models describe the same behaviour.

Definition 2. (Strong Bisimulation Equivalence) Let ℘ be the universe of all
LTS, and P,Q ∈ ℘. P and Q are strong equivalent, written P ∼ Q, if αP = αQ
and (P,Q) is contained in some bisimulation relation R ⊆ ℘× ℘ for which the
following holds for all � ∈ Actτ :

1. (P �−→ P ′) =⇒ (∃Q′ ·Q �−→ Q′ ∧ (P ′, Q′) ∈ R)
2. (Q �−→ Q′) =⇒ (∃P ′ · P �−→ P ′ ∧ (P ′, Q′) ∈ R)

This equivalence does not distinguish τ as special or unobservable actions. A
property of this equivalence is that it preserves the branching structure of pro-
cesses [9]. In contrast Weak Bisimulation equivalence compares the observable
behaviour of models and ignores internal computations (τ -transitions). Some au-
thors call this equivalence observational equivalence, but we use this expression
to refer to any equivalence that considers τ -transitions as unobservable actions.

Definition 3. (Weak Bisimulation Equivalence) Let ℘ be the universe of all
LTS, and P,Q ∈ ℘. P and Q are weak bisimulation equivalent, written P ≈w Q,
if αP = αQ and (P,Q) is contained in some weak bisimulation relation R ⊆ ℘×℘
for which the following holds for all � ∈ Actτ :

1. (P �−→ P ′) =⇒ (∃Q′ ·Q �̂=⇒ Q′ ∧ (P ′, Q′) ∈ R)

2. (Q �−→ Q′) =⇒ (∃P ′ · P �̂=⇒ P ′ ∧ (P ′, Q′) ∈ R)

Finally, branching equivalence is the coarsest observational equivalence that pre-
serves the branching structure of processes [9], it is coarser than strong equiva-
lence yet finer than weak bisimulation equivalence.

Definition 4. (Branching Bisimulation Equivalence)
Let ℘ be the universe of all LTS, and P,Q ∈ ℘. P and Q are branching

bisimulation equivalent, written P ≈b Q, if αP = αQ and (P,Q) is contained
in some observational bisimulation relation R ⊆ ℘ × ℘ for which the following
holds for all � ∈ Actτ :

1. (P �−→ P ′) =⇒ (∃Q′, Q′′ ·Q τ̂=⇒ Q′ �̂−→ Q′′ ∧ (P,Q′) ∈ R ∧ (P ′, Q′′) ∈ R)

2. (Q �−→ Q′) =⇒ (∃P ′, P ′′ · P τ̂=⇒ P ′ �̂−→ P ′′ ∧ (P ′, Q) ∈ R ∧ (P ′′, Q′) ∈ R)

218 D. Fischbein, V. Braberman, and S. Uchitel

MTSs [16] extend LTSs by defining two sets of transitions. The first, similarly
to LTS, describe the actions provided by the system in different states. The
second set of transitions describes actions that may be provided by the system.
If there is no transition from that a state on a particular action in either set of
transitions, then the system will never provide the action on that state.

Definition 5. (Modal Transition Systems) A modal transition system (MTS)
M is a structure (S,L,Δr, Δp, s0), where Δr ⊆ Δp, (S,L,Δr, s0) is an LTS
representing required transitions of the system and (S,L,Δp, s0) is an LTS rep-
resenting possible (but not necessarily required) transitions of the system.

Given an MTS M = (S,L,Δr, Δp, s0) we say M transitions on � through a
required (resp. possible) transition to M ′, denoted M

�−→r M ′ (resp. M
�−→p

M ′), if M ′ = (S,L,Δr, Δp, s′0) and (s0, �, s
′
0) ∈ Δr (resp. (s0, �, s

′
0) ∈ Δp).

We refer to transitions in Δp \Δr as maybe transitions. Maybe transitions are
denoted with a question mark following the label. Note that LTS are a special
case of MTS where there are no maybe transitions.

3 Motivation

In this section we analyse the adequacy of existing MTS semantics for incremen-
tal modelling of system behaviour using a simple motivating example.

3.1 Motivating Example

Consider a behaviour model of the control software for an electronic device at
an early stage of the modelling process. The device offers different functions
grouped into several menus. The general behaviour of the system is basically
as follows: the user selects a desired menu and the system offers the functions
associated with the menu. If the user does not choose any function after an
elapsed time, the system beeps and returns to the initial state. The MTS that
models the controller’s behaviour is shown in Figure 1. Note that the model
abstracts away using τ transitions how the functionality selected by a user works.
From the initial state there are n transitions labelled menu1 to menun each one
representing the selection of a menu by the user. These transitions are either
required or maybe, the former corresponding to the menu items that must be in
the final product and the latter corresponding to those whose inclusion is still
in doubt. States labelled Mi model that the user has selected the menu i and
that a functions func1 to funcxi are available. The user can select one of these
functions and the system will do the associated task and and then return to the
initial state, or an internal timeout occurs, making the system leave the Mi state
and return to the initial state with a beep. This timeout is an internal event and
therefore not visible to the user, so it has been modelled with a τ transition.

The explanation given above for Figure 1, although intuitive, is informal. We
now discuss its precise meaning by recalling existing semantics for MTS.

A Sound Observational Semantics for Modal Transition Systems 219

A:

0 B

M111

1x1

Mnn1

nxn

beep

men
u1

τ

func1

τ

funcx1

τ

menu
n?

τ

func1

τ

funcxn

τ

Fig. 1. MTS for Controller

B: 0 B

M111

1x1

beep

men
u1

τ

func1

τ

funcx1

τ

Fig. 2. A strong refinement of Figure 1
where only menu1 is available

3.2 Strong Semantics

Strong refinement [16] of MTS captures the notion of elaboration of a partial
description into a more comprehensive one, in which some knowledge over the
maybe behaviour has been gained. It can be seen as being a “more defined than”
relation between two partial models. Intuitively, refinement in MTS is about con-
verting maybe transitions into required transitions or removing them altogether:
an MTS N refines M if N preserves all of the required and all of the proscribed
behaviours of M . Alternatively, an MTS N refines M if N can simulate the
required behaviour of M , and M can simulate the possible behaviour of N .

Definition 6 (Strong Refinement). [16] Let δ be the universe of all MTS. N
is a refinement of M , written M , N , if αM = αN and (M,N) is contained in
some refinement relation R ⊆ δ×δ for which the following holds for all � ∈ Actτ :

1. (M �−→r M ′) =⇒ (∃N ′ ·N �−→r N ′ ∧ (M ′, N ′) ∈ R)
2. (N �−→p N ′) =⇒ (∃M ′ ·M �−→p M ′ ∧ (M ′, N ′) ∈ R)

Note that strong refinement for MTS does not distinguish τ as an unobservable
action and is equivalent to strong bisimulation when restricted to LTS models.

Consider the MTS shown in Figure 1. If modellers decide to exclude menun

then the model that would represent that decision is the one shown in Fig-
ure 2. According to strong semantics this latter model is a valid possible evo-
lution of the initial one since the MTS A is refined by the MTS B (A , B),
incorporating as new knowledge that the menun has been removed from the
functionalities of the system. The refinement relation between these models is
R = {(0, 0), (B,B), (M1,M1), (11, 11), . . . , (1x1 , 1x1)}.

Note the MTS B in Figure 2 has no maybe transitions, thus it can be consid-
ered an LTS. We say that it is an implementation of the model in Figure 1.

220 D. Fischbein, V. Braberman, and S. Uchitel

Definition 7 ((Strong) Implementation). We say that an LTS I = (SI , LI ,
ΔI , i0) is a (strong) implementation of an MTS M = (SM , LM , Δr

M , Δp
M ,m0),

written M , I, if M , MI with MI = (SI , LI , ΔI , ΔI , i0). We also define the
set of implementations of M as I[M] = {I LTS |M , I}.
In fact, we shall consider the strong semantics of an MTS as its set of strong
implementations and interpret strong refinement as the partial order determined
by the subset relation over sets of strong implementations. Note that Larsen’s
strong refinement relation is transitive [16] and therefore it is straightforward to
proof that M , M ′ implies I[M] ⊇ I[M ′], which means that the , relation is
of great use to reason efficiently about elaborating partial models. Although it
was thought that I[M] ⊇ I[M ′]⇔M ,M ′ [10] this is not the case [6].

C: 0 B

M111

1x1

2x1

beep

men
u1

τ

func1

τ

funcx1
readList

showList

Fig. 3. A model where the behaviour of
functionality associated to funcx1 has
been detailed

I:

0 B

M111

1x1

beep

men
u1

τ

func1

τ

funcx1

τ

menun

Fig. 4. A valid implementation of the ini-
tial model according to weak refinement

Strong semantics does not adequately support iterative model elaboration
because in practice such an activity often requires progressively extending the
alphabet of the system to describe behaviour aspects that previously had not
been taken into account. For instance, we may want to produce a model for
the electronic device’s controller which describes in more detail how a particular
function works (see Figure 3, states 1x1 and 2x1), and then check if this model
conforms to the initial, more abstract model of the controller. Such check cannot
be done with strong semantics as the models have different alphabets. A standard
workaround for checking if Figure 3 conforms to Figure 1 is to hide actions
readList and showList (i.e. replace them with τ) to obtain models with the
same alphabet and then comparing them. Strong refinement is not appropriate in
this case as it does not consider τ transitions as unobservable. Indeed, the model
obtained by hiding readList and showList in Figure 3 is not a strong refinement
of Figure 1. However, these models can be compared using an observational
semantics. We discuss this below.

3.3 Weak Semantics

Weak MTS refinement also defined by Larsen [11] allows comparing the observ-
able behaviour of models while ignoring the possible differences that they may

A Sound Observational Semantics for Modal Transition Systems 221

have in terms of internal computation. In other words, this notion of refinement
considers τ -labelled transitions differently from other transitions.

Definition 8 (Weak Refinement). [11] N is a weak refinement of M , written
M ,w N , if αM = αN and (M,N) is contained in some refinement relation
R ⊆ δ × δ for which the following holds for all � ∈ Actτ :

1. (M �−→r M ′) =⇒ (∃N ′ ·N �̂=⇒r N ′ ∧ (M ′, N ′) ∈ R)

2. (N �−→p N ′) =⇒ (∃M ′ ·M �̂=⇒p M ′ ∧ (M ′, N ′) ∈ R)

It is worth noting that weak refinement results in weak LTS bisimulation when
restricted to MTS with no maybe transitions, and that strong MTS refinement
implies weak refinement. Finally, as with strong refinement, a notion of imple-
mentation can be defined between MTSs and LTSs, the weak semantics of MTS
can be defined in terms of sets of weak implementations, and it can be shown
that ,w implies inclusion of weak implementations.

Returning to our running example, recall model C described in Figure 3.
If we hide actions readList and showList and then use weak refinement to
compare it with the initial model A, we can conclude that C is a refinement of A
based upon the weak refinement relation R = {(0, 0), (B,B), (M1,M1), (11, 11),
. . . , (1x1, 1x1) , (0, 2x1)}. Thus, as expected, under weak semantics the more
detailed model C is an adequate elaboration of the initial model A.

One of the problems of weak MTS semantics is that it allows implementations
that can be considered unintuitive: Consider the MTS I in Figure 4 which is an
implementation of the original controller MTS A based on the weak implemen-
tation relation R = {(0, 0), (B,B), (M1,M1), (11, 11), . . . , (1x1 , 1x1)}.

Note that in A (Figure 1) the availability of menun is yet to be defined, but
if the system were to have this menu included we would expect all the function-
alities associated with this menu to be reachable by the user. However in the
implementation proposed above the user never has the possibility of selecting
functionalities func1 . . . funcxn after selecting menun. This breaks the intu-
ition behind the notion of implementation. The implementation shown above is
not satisfactory since it does not reflect the expected behaviour: if a menu is
included, all its associated functionality will be available to users. This example
shows that weak semantics does not seem to be adequate to support evolving
software modelling since it accepts as valid refinements counter intuitive imple-
mentations. In subsequent sections we shall also show that weak semantics lacks
some properties that relate refinement with action hiding, these properties are
linked to some degree with the existence of such unintuitive implementations
that weak semantics allows.

In summary, we have seen that although an observational semantics is required
to support incremental elaboration of partial behaviour models, the observa-
tional semantics based on weak refinement not adequately fit with the intended
meaning of MTS. In the next sections we show a semantics that not only resolves
the case discussed above but that also provides a number of theoretical results
that support the argument for a novel observational semantics for MTS.

222 D. Fischbein, V. Braberman, and S. Uchitel

4 Branching Semantics

In the previous section we analysed the shortcomings of strong and weak se-
mantics as a foundation for characterising conformance and supporting model
elaboration. Succinctly, strong semantics does not distinguish unobservable ac-
tions and hence does not support comparing models whose behaviour has been
described to varying levels of detail. The latter allows implementations of partial
models that contradict the intuition modellers may have of conformance. We now
define a novel semantics for MTS that draws from desirable characteristics of
both weak and strong semantics, in other words it is an observational semantics
that captures the intuition that modellers might have of refinement. This novel
semantics is based on LTS branching bisimulation.

� �

(a)

� �̂

τ̂

(b)

� �̂

τ̂

τ̂

(c)

Fig. 5. Depiction of how a transition is
simulated in bisimulation: (a) strong; (b)
branching; (c) weak

M

I

M ′

I ′

branching

α extension

branching

α extension

branching

impl

branching

impl

branching α impl

Fig. 6. Informally, alphabet extension
and branching implementations commute

Unlike strong bisimulation, branching bisimulation allows one LTS to simulate
the occurrence of an � transition in the other LTS by taking a number of τ tran-
sitions beforehand. Unlike weak bisimulation, branching bisimulation requires
the intermediate states reached through τ transitions to fall within the equiva-
lence relation. Figure 5 shows a graphical representation of how an � transition
is simulated in each of these three bisimulations. A branching implementation
relation for MTS can be derived from LTS branching bisimulation in a similar
manner as weak and strong implementation can be derived from weak and strong
bisimulation.

Definition 9 (Branching Implementation Relation). A branching imple-
mentation relation is a binary relation R from MTS to LTS such that whether
(M, I) ∈ R and � ∈ Actτ the following holds:

1. (M �−→r M ′) =⇒ (∃ I0, . . . , In, I
′) · (I0 = I ∧ Ii

τ−→ Ii+1 ∀ 0 ≤ i < n ∧
In

�̂−→ I ′ ∧ (M ′, I ′) ∈ R ∧ (M, Ii) ∈ R ∀ 0 ≤ i ≤ n)
2. (I �−→ I ′) =⇒ (∃M0, . . . ,Mn,M

′) · (M0 = M∧Mi
τ−→p Mi+1 ∀ 0 ≤ i < n ∧

Mn
�̂−→p M ′ ∧ (M ′, I ′) ∈ R ∧ (Mi, I) ∈ R ∀ 0 ≤ i ≤ n)

Definition 10 (Branching Implementation). Let M be an MTS and I be
an LTS, we say that I is a branching implementation of M , M ,b I, if there

A Sound Observational Semantics for Modal Transition Systems 223

exists a branching implementation relation R such as (M, I) ∈ R. We also define
the set of implementations of M as Ib[M] = {I LTS |M ,b I}.
As expected if this relation is restricted to LTS it coincides with branching
equivalence. It can also be easily proved that if M ,b I and I ≈b I ′ then
M ,b I ′, and so this novel implementation relation is a sound extension of
branching equivalence. It is worth mentioning that this new implementation
relation does not accept as a valid implementation of model A depicted on
Figure 1 the counter intuitive implementation shown on Figure 4.

Recalling that an MTS semantics is completely defined by stating which are
valid implementations for a model, we define branching semantics based on the
novel implementation relation instead of a refinement relation. An associated
notion of refinement comes naturally as N is a refinement of M if all the imple-
mentations of N are implementations of M , as stated on definition 11.

Definition 11 (Branching Refinement). Let M and N be MTSs, we say
that N is a refinement of M , written M ,b N , iff Ib[M] ⊇ Ib[N].

Unlike refinement notions given by a simulation relation between MTSs this
refinement notion is by definition complete. A co-inductive relation between MTS
that implies branching implementation relation, mimicking Larsen’s strong and
weak refinement can easily be defined too. In the following section we will see
how it is possible to demonstrate properties of this complete notion of refinement
and to compare it against weak and strong refinement.

Definition 12 (Hiding). Let M = (S,L,Δr, Δp, s0) be an MTS and X ⊆ Act.
M with actions X hidden, denoted M\X, is an MTS (S,L\X,Δr′

, Δp′
, s0),

where Δr′
= {(s, �, s′) | � �∈X ∧ (s, �, s′)∈Δr} ∪ {(s, τ, s′) | �∈X ∧ (s, �, s′)∈Δr}

and analogously for Δp′
. We use M@X to denote M\(Act\X).

Branching refinement, similarly to weak refinement, does not allow for the com-
parison of models with different alphabets. However, we can do so by using the
hiding operator, i.e. hiding the new labels of the extended alphabet. For exam-
ple, given a model M and a model N , the latter with an alphabet that extends
the alphabet of M , i.e. αM ⊆ αN , in order to assess whether N is a refinement
of M we compute M , N@αM .

This operation gives a new refinement, therefore defining a new semantics for
MTSs for which is possible to extend the alphabet of the models. In previous
work [19,2] a similar extension has been applied to weak semantics, although
this has been done implicitly without distinguishing between weak semantics
and the extended alphabet semantics. However, since the set of implementations
defined by branching implementation and the set obtained by applying this new
refinement operator are different, they refer to two different semantics and we
will make that distinction clear by formally defining this new semantics.

Definition 13 (Branching Alphabet Refinement). An MTS N is a branch-
ing alphabet refinement of an MTS M , written M ,ab N , if αM ⊆ αN and
M ,b N@αM .

224 D. Fischbein, V. Braberman, and S. Uchitel

Note that this new semantics is an extension of branching semantics, as they be-
have in the same way when comparing models with identical alphabets. Similarly,
we can define Weak Alphabet Refinement as an extension of weak refinement.

We now show that a sound relationship between branching implementation
semantics and alphabet extension exists, but previously we define formally equiv-
alence and alphabet extension for MTS.

Definition 14 (Equivalence). Given a refinement for MTS, ,, we say that
M and N are equivalent, written M ≈ N , iff M , N and N , M . We shall
sometimes subindex ≈ to explicit the underlying refinement relation, e.g. ≈b for
branching refinement ,b.

Definition 15 (Alphabet Extension). Given an observational refinement for
MTS, ,, we say that M ′ is an alphabet extension of M iff M ′@αM ≈w M .

Theorem 1 (Branching semantics is sound w.r.t Alphabet Extension).
Let M be an MTS and I be an LTS such that I is a branching implementation of
M , i.e. M ,b I. Given M ′ an MTS such that is a branching alphabet extension
of M then there exists I ′ a branching alphabet extension of I such that M ′ ,b I ′.

Intuitively, if a model M is extended into a model M ′ then all implementations of
M can be extended to be an implementation of M ′. Figure 6 provides an intuition
of Theorem 1. We say, informally, that the diagram commutes, meaning that it
is possible to obtain the same result by taking an implementation of M and then
extending the alphabet of that implementation; or by extending the alphabet of
M and then taking an implementation of that model.

From an engineering perspective this result implies that whatever implemen-
tation we have in mind for a given partial model, refining the alphabet of the
partial model will not rule out that implementation: extending the original im-
plementation to make it an implementation of the new model is possible.

It is important to note that it is not possible to formulate a similar soundness
result as the one above under weak semantics:

Remark 1 (Weak semantics is not sound w.r.t Alphabet Extension). Let M and
M ′ be MTSs such that M ′ is a weak alphabet extension of M . It is not the case
that for all LTS I such that M ,w I then there exists I ′ such that M ′ ,w I ′

and I ′ is weak alphabet extension of I.

Proof. Consider the example described in the previous section. Assume we ex-
tend model A given in Figure 4 to produce A′ by extending its alphabet with
the label timeout, and replacing τ transitions from Mi to state B with a timeout
transition. It would be reasonable to expect that model I could be extended
with timeout into a I ′ to obtain an implementation of A′. However, this is not
possible. If we analyse this in further detail, we can see that we would need I ′ to
be able to perform a timeout after menun and before reaching state B. Hence,
I ′ would have a new state in between menun and timeout. This leads to one of
two options, either the new state does not simulate the require behaviour of Mn

because it does not have transitions func1...funcxn, and therefore I ′ could not

A Sound Observational Semantics for Modal Transition Systems 225

be an implementation of A′; or it does have those transitions and refines state
Mn, but in this case I ′@αI would not be equivalent to I since I does not have
any of the functionalities available after menun and therefore I ′ could not be an
alphabet extension of I.

Summarising, in this section we have defined a new observational semantics for
MTS that preserves the branching structure and resolves the unintuitive example
provided in the motivation section. Furthermore, we have formally defined an
extension of this semantics that supports not only the elaboration of model
behaviour but also the extension of their alphabets, laying the foundations for
a sound elaboration process where the level of the detail of the models can be
increased over time. We have also shown that extending the alphabet of a partial
behaviour model is a sound operation with respect branching semantics, while
it is not for weak semantics.

5 Consistency

In this section we discuss the notion of consistency which is central to MTS se-
mantics. We provide a complete characterization of consistency under branching
semantics (result unavailable for weak semantics) and show that, unlike in weak
semantics, consistency is preserved by hiding non-shared actions.

In order to support elaboration of partial behaviour models, a number of
operations over MTS have been studied. Most notably, Larsen defined two co-
inductive relations [16,11] which allow checking efficiently if there is a subset
relation between the implementations of two MTS. This allows elaborating an
MTS and checking if the new MTS effectively only “adds information”, i.e. re-
duces acceptable implementations, to the first MTS. Another useful operation
is that of merge [7,19], which attempts to produce an MTS that characterises
the common implementations of two given MTS. This operation which is a form
of conjunction [15] supports composing partial descriptions provided by differ-
ent modellers possibly with different scopes or viewpoints of the same system.
Finally, checking if two partial descriptions are consisent, in other words that
there is at least one implementation that conforms to both descriptions is a pre-
condition for merging and a usefull operation in its own right for understanding
the relation between different partial descriptions.

In this section, we analyse the notion of consistency under branching semantics
and also compare with weak semantics. The study of a co-inductive refinement
relation, which can be easily formulated, and merge under branching semantics is
left out of this paper due to space restrictions and the fact that within consistency
lie some key results that distinguish branching from weak semantics. We start
with a formal definition of consistency.

Definition 16 (Consistency). Two MTSs M and N are consistent if there
exists an MTS P such that P is a common refinement of M and N .

The problem of characterising consistency has been solved for strong semantics
in [7] where a sufficient and necessary condition for determining if there exist

226 D. Fischbein, V. Braberman, and S. Uchitel

a common strong refinement for two models is presented. We now define a new
relation, branching alphabet consistency relation, and show that it characterises
branching alphabet consistency.

Definition 17 (Branching Alphabet Consistency Relation). A branching
alphabet consistency relation is a binary relation C ⊆ δ × δ, such that the
following conditions hold for all (M,N) ∈ C:

1. (M �−→r M ′) =⇒ (∃N0, . . . , Nn, N ′) · ((Ni
v−→p Ni+1 ∧ v �∈ αM) ∀ 0 ≤ i < n ∧

N0 = N ∧ Nn
�̂−→p N ′ ∧ (M, Ni) ∈ C ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ C

2. (N �−→r N ′) =⇒ (∃M0, . . . , Mn, M ′) · ((Mi
v−→p Mi+1 ∧ v �∈ αN) ∀ 0 ≤ i < n ∧

M0 = M ∧ Mn
�̂−→p M ′ ∧ (Mi, N) ∈ C ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ C

Intuitively, this relation requires that one model provides as possible behaviour
at least all the required behaviour of the other, and vice versa.

The branching consistency relation defined above characterises branching al-
phabet consistency in the sense that there is a branching alphabet consistency
relation between two MTS if and only if there exists an LTS that is a branching
alphabet implementation of the two MTS.

Theorem 2 (Characterisation of Branching Alphabet Consistency).
MTSs M and N are branching alphabet consistent if and only if there exists
a branching alphabet consistency relation CMN such that (M,N) is in CMN .

Note that the Branching Alphabet Consistency Relation is equivalent to branch-
ing bisimulation when restricted to LTSs with the same alphabet This result is
as expected, since an LTS is an MTS that characterises only one implementa-
tion, itself. Hence, it can only be consistent with any LTS that is equivalent to
it; equivalence which in this case is that of LTS branching bisimulation.

Similar results do not exist for weak semantics. In [2] a first attempt to charac-
terise weak consistency was published, however the definition has some problems.
An improvement of the weak consistency relation in [2] is:

Definition 18. (Weak Alphabet Consistency Relation) A weak alphabet con-
sistency relation is a binary relation C ⊆ ℘×℘, such that the following conditions
hold for all (M,N) ∈ C:

1. (M �−→r M ′) =⇒ (∃N ′) · (N v�̂w=⇒p N ′ ∧ v, w ∈ (αN \ αM)∗ ∧ (M ′, N ′) ∈ C))

2. (N �−→r N ′) =⇒ (∃M ′) · (M v�̂w=⇒p M ′ ∧ v, w ∈ (αM \ αN)∗ ∧ (M ′, N ′) ∈ C))

Theorem 3 (Characterisation of Weak Consistency). Two MTSs M and
N , such that αM = αN , are weak consistent if and only if there exists a weak
alphabet consistency relation CMN such that (M,N) is contained in CMN .

The weak alphabet consistency relation restricted to models with the same
alphabet characterises weak consistency, this can be easily proved using the
Theorem 1 presented in [7]. However, it does not characterise weak alphabet
consistency. Figure 7 shows a counter example, models M and N with alphabets

A Sound Observational Semantics for Modal Transition Systems 227

M :
(αM = {a, x, y})

0 1 2

34

a? a?

y?x

N :
(αN = {x, y})

0 1
y

Fig. 7. Counter example for weak alphabet consistency characterisation

αM = {a, x, y} and αM = {x, y} are not consistent but CMN = {(0, 0), (3, 1)} is
a valid relation. Definition 18 can be made more restrictive giving it a branching
feel in line with [2] obtaining a relation that is a sufficient but not a necessary
condition for weak alphabet consistency. This relation is out of the scope of this
paper and for space limitation is not included.

In the same way Theorem 1 relates refinement with alphabet extension, it is
interesting and relevant to analyse the relation between consistency and alpha-
bet extension. Here we also find that the expected results hold for branching
semantics but do not for weak semantics.

The following theorem establishes that models are branching alphabet con-
sistent if and only if they are branching consistent over their common alphabet.

Theorem 4. Let M and N be MTSs, and A = αM ∩ αN be the common
alphabet of M and N . M@A and N@A are branching consistent iff M and N
are branching alphabet consistent.

From an engineering point of view this theorem expresses the fact that in order
to assess whether two models are consistent it is sufficient to evaluate whether
they are consistent in their common alphabet. On the other hand, it tells us
that given two consistent models with the same alphabet it is possible to elabo-
rate those models independently, extending their alphabets over different labels,
knowing that the models will always remain consistent. This is a useful feature,
especially when comparing two models taken from different viewpoints of the
system, and for which there is a requirement to increase the level of detail with
regards to different aspects. Interestingly, the natural candidate for weak alpha-
bet consistency relation does not satisfy the left-to-right implication of the above
theorem. In other words that if two models are weak consistent, extending them
over new labels does not guarantee that they will remain consistent.

A related result, that in a way is more general than Theorem 4 is shown below.
Note that the converse Theorem 5 is not generally true, but in the particular
case of Theorem 4 the converse is also true and it can be trivially proved.

Theorem 5. Let M ′ and N ′ be MTSs, and A = αM ′ ∩ αN ′ be the common
alphabet of M ′ and N ′. If there exist M and N MTSs such as M ′@A ,ab M ,
N ′@A ,ab N and M and N are branching alphabet consistent then M ′ and N ′

are branching alphabet consistent.

In summary, have provided a complete characterization for consistency under
branching semantics and shown that it has the expected properties when con-
sidered in the context of alphabet extension. These results do not exist for weak
refinement of MTS.

228 D. Fischbein, V. Braberman, and S. Uchitel

6 Related Work

Various authors have contributed to the study of MTS and other partial be-
haviour modelling formalisms. Our definition of Modal Transition Systems differs
from the original [16] in that MTS can have different communication alphabets.
Expliciting the communication alphabet allows scoping models and capturing
the fact that components control and monitor a subset of all events [12].

Related work regarding MTS refinement and simulation has been discussed
extensively throughout the paper. Our notions of branching refinement and
branching implementation are heavily inspired on that of branching bisimula-
tion, although as shown, the extension of branching bisimulation from LTS to
MTS cannot be done straightforwardly. Numerous other refinement notions ex-
ist, both for LTS (such as trace, failures [18], and testing [4] refinement) and
for other state-based modelling formalisms such as kripke structures. We have
also compared extensively the notion of refinement we propose with respect to
strong [16] and weak refinement [16] over MTS. Regarding consistency, as men-
tioned previously, a characterization of consistency under strong semantics has
been developed previously [7], while up to now no characterization of consistency
for weak nor weak alphabet semantics had been provided (the definition in [2]
fails to do so completely). In [8] we sketch the idea of a branching semantics
however the theoretical results presented in this paper are novel.

Numerous extensions and variants of MTS exist such as Mixed Transition
Systems [5] and disjunctive modal transition systems [14]. The semantics we
propose could be studied for these formalisms too. We believe that existing
weak and strong refinement notions in these settings will suffer from the same
shortcomings as in MTSs. A slightly different approach to modelling unknown
behaviour is taken in [20,17]. In [20] Partial Labelled Transition Systems, each
state is associated with a set of actions that are explicitly proscribed from hap-
pening. Extended Transition Systems [17] also associate a set of actions with
each state, but in this case it models the actions for which the state has been
fully described. The relation between these models and MTS, and in particular,
our notion of refinement has yet to be studied.

In [1] a study of the complexity of different decision problems for MTS and
Mixed transition systems is presented. In particular it is shown that thorough
refinement for strong and weak semantics is PSPACE-hard, considering that
branching alphabet refinement is between these two is expected to have the
same complexity but further study is necessary.

7 Conclusions and Future Work

In this paper we have analysed the limitations of existing semantics for MTS and
presented a new observational semantics, called branching semantics, based on
the notion of branching equivalence. Furthermore, we have shown how this new
semantics does not allow for the counter-intuitive implementations permitted

A Sound Observational Semantics for Modal Transition Systems 229

by weak semantics. Moreover, in order to allow for the elaboration of models’
alphabets, we have distinguished branching semantics from branching alphabet
semantics. Lastly, we have shown how branching alphabet semantics presents a
series of desirable properties that are not valid for weak semantics, making it a
more adequate option for model elaboration.

In future work we aim to study the problem of merging under alphabet branch-
ing semantics.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Complexity of
decision problems for mixed and modal specifications. In: Amadio, R.M. (ed.)
FOSSACS 2008. LNCS, vol. 4962, pp. 112–126. Springer, Heidelberg (2008)

2. Brunet, G.: A Characterization of Merging Partial Behavioural Models. Master’s
thesis, Univ. of Toronto (January 2006)

3. Brunet, G., Chechik, M., Uchitel, S.: Properties of behavioural model merging. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 98–114.
Springer, Heidelberg (2006)

4. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
Formal Asp. Comput. 5(1), 1–20 (1993)

5. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, The Netherlands (July 1996)

6. Fischbein, D., Uchitel, S.: Behavioural model elaboration using mts. In:
“Copenhagen” Meeting on Modal Transition Systems (2007)

7. Fischbein, D., Uchitel, S.: On correct and complete strong merging of partial be-
haviour models. In: SIGSOFT 2008/FSE-16, pp. 297–307. ACM Press, New York
(2008)

8. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: ROSATEA (2006)

9. van Glabbeek, R.: What is branching time semantics and why to use it? In:
Nielsen, M. (ed.) The Concurrency Column, pp. 190–198 (1994); Bulletin of the
EATCS 53

10. Huth, M.: Refinement is complete for implementations. Formal Asp. Com-
put. 17(2), 113–137 (2005)

11. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In:
Logic at Botik, pp. 163–180 (1989)

12. Jackson, M.: Software requirements & specifications: a lexicon of practice, princi-
ples and prejudices. ACM Press/Addison-Wesley Publishing Co. (1995)

13. Keller, R.M.: Formal verification of parallel programs. Commun. ACM (1976)
14. Larsen, K., Xinxin, L.: Equation Solving Using Modal Transition Systems. In: 5th

Annual IEEE Symposium on Logic in Computer Science, pp. 108–117 (1990)
15. Larsen, K.G., Steffen, B., Weise, C.: A constraint oriented proof methodology

based on modal transition systems. In: Brinksma, E., Steffen, B., Cleaveland, W.R.,
Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019. Springer,
Heidelberg (1995)

16. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS (1988)

230 D. Fischbein, V. Braberman, and S. Uchitel

17. Milner, R.: A modal characterisation of observable machine-behaviour. In:
Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer,
Heidelberg (1981)

18. Schneider, S., Schneider, S.A.: Concurrent and Real Time Systems: The CSP Ap-
proach. John Wiley & Sons, Inc., New York (1999)

19. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Taylor, R.N.,
Dwyer, M.B. (eds.) SIGSOFT FSE, pp. 43–52. ACM Press, New York (2004)

20. Uchitel, S., Kramer, J., Magee, J.: Behaviour Model Elaboration using Partial
Labelled Transition Systems. In: ESEC/FSE 2003, pp. 19–27 (2003)

21. van Gabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. J. ACM 43(3), 555–600 (1996)

Regular Expressions with Numerical Constraints
and Automata with Counters

Dag Hovland

Department of Informatics, University of Bergen, Norway
dag.hovland@uib.no

Abstract. Regular expressions with numerical constraints are an exten-
sion of regular expressions, allowing to bound numerically the number
of times that a subexpression should be matched. Expressions in this
extension describe the same languages as the usual regular expressions,
but are exponentially more succinct.

We define a class of finite automata with counters and a deterministic
subclass of these. Deterministic finite automata with counters can rec-
ognize words in linear time. Furthermore, we describe a subclass of the
regular expressions with numerical constraints, a polynomial-time test
for this subclass, and a polynomial-time construction of deterministic
finite automata with counters from expressions in the subclass.

1 Introduction

Regular expressions with numerical constraints add the possibility to express
that a subexpression must be matched a number of times specified by a lower
and a upper limit. The Single UNIX Specification [1] requires this as a standard
part of regular expressions. In the GNU version of the UNIX program grep [2]
and in the programming language Perl they are included as standard and in
XML Schemas [3] the 1-unambiguous subclass is allowed. In GNU grep you can,
for example, write ([0-9]{1,3}\.){3}[0-9]{1,3} to match any IPv4 address
in dotted-decimal notation.

Common uses of regular expressions with numerical constraints are matching
and searching. With matching we mean the problem of deciding whether a given
word is in the language defined by the regular expression. Searching means to
decide whether one or more of the sub-strings of a given text match the regular
expression. Kilpeläinen and Tuhkanen [4] showed that for the regular expressions
with numerical constraints, matching can be done with a dynamic programming
algorithm in quadratic space and time, relative to the size of the word being
matched. Using this algorithm, one can also search in polynomial time.

However, many programs that search using regular expressions with numer-
ical constraints use algorithms with super-polynomial behaviour in the size of
the regular expression. These programs typically have as input one short regu-
lar expression and many, long, texts to be searched. It is therefore common to
construct a deterministic finite automaton (DFA) for matching or searching, as
a DFA can be used to search in time linear in the length of the text, although

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 231–245, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

232 D. Hovland

a quadratic algorithm is usually preferred, as it is faster in most practical cases.
The known algorithms for constructing a DFA from a given regular expression
with numerical constraints use super-polynomial space.

As an example, consider an experiment lasting 100 hours, where we need to
record the moments at which some (unspecified) events take place. We will use
one string to describe each 100-hour experiment. For each hour when there is
an event, the hour is given, followed by “h”, followed by a string describing the
events occurring that hour. This string is formatted in the following way: for
each minute when there is an event, the minute is given, followed by “m”, fol-
lowed by the second and “s” for each second at which there was an event during
that minute. If there were, e.g., a total of three events during one experiment,
at 3:12:22, 3:12:43 and 20:45:01, then the string describing the experiment is
3h12m22s43s20h45m1s. For testing the strings we decide to use the regular ex-
pression ((0 + · · · + 9)1..2h((1 + · · · + 5)0..1(0 + · · · + 9)m((1 + · · · + 5)0..1(0 +
· · · + 9)s)1..60)1..60)0..100 by executing the command in Fig. 1 (See next section
for syntax and semantics of the regular expressions). However, this command
turns out to use over 2 gigabytes of memory1, independent of the length of the
text.

grep -E "([0-9]{1,2}h([1-5]?[0-9]m([1-5]?[0-9]s){1,60}){1,60}){0,100}"

Fig. 1. Example execution of grep

An algorithm for the matching problem will be called a fast-matcher, if there
is a constant c such that the algorithm runs in time O(|r|c · |w|) (where r is the
regular expression and w is the word to be matched). There exists a fast-matcher
for the usual regular expressions without numerical constraints. The algorithm
constructs a non-deterministic finite automaton (NFA) recognizing the regular
expression, and runs the NFA on the word by maintaining the set of reachable
states. The latter set is limited by the size of the NFA, and the number of steps
is exactly the length of the word. Construction of an NFA recognizing a regular
expression is possible in polynomial time. Brüggemann-Klein [5] describes a dif-
ferent fast-matcher for a subset of the regular expressions, called 1-unambiguous
regular expressions. Their algorithm constructs in polynomial time a determin-
istic finite automaton from a 1-unambiguous regular expression. However, no
polynomial-time construction is known for 1-unambiguous regular expressions
with numerical constraints.

In this article we describe finite automata with counters, and a fast-matcher
for a subset of the regular expressions with numerical constraints, called counter-
1-unambiguous regular expressions. The algorithm works by constructing deter-
ministic finite automata with counters from these expressions. The construction
can also be used to test in polynomial time whether a regular expression with

1 Measurements done with procps version 3.2.7 running GNU grep version 2.5.3 com-
piled with GNU cc version 4.1.2 on a machine with four 2,0 GHz 32-bit CPU running
CentOS-5.2 with Linux 2.6.18 and GNU C library version 2.5.

Regular Expressions with Numerical Constraints 233

numerical constraints is counter-1-unambiguous. The algorithm has been imple-
mented2 in C in a manner inspired by grep. The command in Fig. 1 executed
with our implementation on the same machine uses less memory by three orders
of magnitude.

The next section describes the regular expressions with numerical constraints,
the languages they denote, and the 1-unambiguous regular expressions. Section 3
describes the finite automata with counters and shows an example of such an
automaton. Section 4 shows how to construct a finite automaton with coun-
ters from a regular expression, and defines the counter-1-unambiguous regular
expressions. The article ends with a section on related work and a conclusion.

2 Regular Expressions with Numerical Constraints

Fix an alphabet Σ and let N = {1, 2, . . .} be the positive integers and N/1 =
{2, 3, 4, ...} ∪ {∞}.
Definition 1. [6,7] Given an alphabet Σ, RΣ is the set of (non-empty) regular
expressions with numerical constraints over Σ, defined in the following manner:

RΣ ::= RΣ +RΣ |RΣ · RΣ |RN..N/1
Σ |Σ | ε

We disallow expressions of the form rn..m where n > m. We will use the abbre-
viations rn for rn..n, r0..u for ε + r1..u, rn.. for rn..∞, r+ for r1.., and r∗ for r0...
Intuitively, rn.. means that subexpression r must be matched n or more times,
while rn..m means that r must be matched at least n and at most m times. In
this paper, “regular expression” will mean regular expressions with numerical
constraints.

The set of symbols from the alphabet occurring in a regular expression r,
is denoted sym(r). We lift concatenation of words to sets of words, such that
if L1, L2 ⊆ Σ∗, then L1 · L2 = {w1 · w2 |w1 ∈ L1 ∧ w2 ∈ L2}. Moreover,
ε denotes the empty word of zero length, such that for all w ∈ Σ∗, ε · w =
w·ε = w. Further, we allow non-negative integers as exponents meaning repeated
concatenation, such that for any L ⊆ Σ∗, we have Ln = Ln−1 · L for n > 0 and
L0 = {ε}. For convenience, we recall in Definition 2 the language denoted by a
regular expression, and extend it to numerical constraints. Since we will compare
arbitrary members of N and N/1 below, we define that i <∞ for all i ∈ N.

Definition 2 (Language). The language L(r) denoted by a regular expression
r ∈ RΣ, is defined in the following inductive way:

L(r1 + r2) = L(r1) ∪ L(r2)
L(r1 · r2) = L(r1) · L(r2)
L(rn..m) =

⋃
n≤i≤m L(r)i

for a ∈ Σ ∪ {ε}, L(a) = {a}
Some examples of regular expressions and their languages are: L((a + b)0..2) =
{ε, a, b, aa, ab, ba, bb} and L((a2b)2) = {aabaab}.
2 Available from http://www.ii.uib.no/~dagh/fac

http://www.ii.uib.no/~dagh/fac

234 D. Hovland

2.1 Term Trees and Positions

Given a regular expression r, we follow Terese [8] and define the term tree of
r as the tree where the root is labelled with the main operator (choice, con-
catenation or numerical constraint) and the subtrees are the term trees of the
subexpression(s) combined by the operator. If a ∈ Σ ∪ {ε} the term tree is a
single root-node with a as label.

We use 〈n1, . . . , nk〉, a possibly empty sequence of natural numbers, to denote
a position in a term tree. We let p, q, including subscripted variants, be variables
for such possibly empty sequences of natural numbers. The position of the root is
〈〉. If r = r1 ·r2 or r = r1+r2, and n1 ∈ {1, 2}, the position 〈n1, . . . , nk〉 in r is the
position 〈n2, . . . , nk〉 in the subtree of child n1, that is, in the term tree of rn1 . If
r = r1

l..u, the position 〈1, n2, . . . , nk〉 in r is the position 〈n2, . . . , nk〉 in r1, and
〈2〉 and 〈3〉 are the positions of the nodes containing the lower and upper limits l
and u, respectively. For two positions p = 〈m1, . . . ,mk〉 and q = 〈n1, . . . , nl〉, the
notation p�q will be used for the concatenated position 〈m1, . . . ,mk, n1, . . . , nl〉.
For a position p in r we will denote the subexpression rooted at this position by
r|p. Note that r|〈〉 = r. Let pos(r) be the set of positions in r.

Note that for r ∈ RΣ , p ∈ pos(r), and q ∈ pos(r|p), we have r|p�q = r|p|q.
This can be shown by induction on r|p (see, e.g., Terese [8]).

The concept of marked expressions will be important in this article. It has
been used by Kilpeläinen & Tuhkanen [7] and by Brüggemann-Klein & Wood [9],
but the definition given here is somewhat different.

Definition 3 (Marked Expressions). If r ∈ RΣ is a regular expression,
μ(r) ∈ Rpos(r) is the marked expression, that is, the expression where every
instance of any symbol from Σ is substituted with its position in the expression.

It follows that if p ∈ sym(μ(r)), then r|p ∈ sym(r). Note that, e.g., μ(b) = μ(a) =
〈〉, which shows that marking is not injective.

Example 1. As an example, consider Σ = {a, b, c} and r = (a2 + bc)3..5. Then
μ(r) = (〈1, 1, 1〉2 + 〈1, 2, 1〉 · 〈1, 2, 2〉)3..5. The term trees of r and μ(r) are shown
in Fig. 2.

..

3 5+

.. ·

a 2 2 b c

���
����

���
���

���
�� ���

��

..

3 5+

.. ·

〈1, 1, 1〉 2 2 〈1, 2, 1〉 〈1, 2, 2〉

���
���

���
���

�� ��
���

��

Fig. 2. Term trees for (a2 + bc)3..5 and μ((a2 + bc)3..5)

Regular Expressions with Numerical Constraints 235

2.2 1-Unambiguous Regular Expressions

Definition 4. [5,9] A regular expression r is 1-unambiguous if for any two
upv, uqw ∈ L(μ(r)), where p, q ∈ sym(μ(r)) and u, v, w ∈ sym(μ(r))∗ such that
r|p = r|q, we have p = q.

Examples of 1-unambiguous regular expressions are (a1..2)1..2 and b∗a(b∗a)∗,
while (ε + a)a and (a + b)∗a are not 1-unambiguous. The languages denoted by
1-unambiguous regular expressions without numerical constraints will be called
1-unambiguous regular languages. Brüggemann-Klein & Wood [9] showed that
there exist regular languages that are not 1-unambiguous regular languages, e.g.
L((a + b)∗(ac + bd)). However, it is easy to modify a searching algorithm to
search backwards, and the reverse of (a+b)∗(ac+bd), namely (ca+db)(a+b)∗ is
1-unambiguous. There are of course also expressions like (a+b)∗(ac+bd)(c+d)∗,
which denotes a 1-ambiguous language, read both backwards and forwards.

3 Finite Automata with Counters

3.1 Counter States and Update Instructions

We define counter states, which will be used to keep track of the number of times
subexpressions with numerical constraints have been matched. Let C be the set of
positions of subexpressions we need to keep track of. Let the mapping γ : C
→ N
denote a counter state. Let γ1 be the counter state that maps all members
of the domain to 1. We define an update instruction ψ as a partial mapping
from C to {inc, res} (inc for increment, res for reset). Update instructions ψ
define mappings fψ between counter states in the following way: If ψ(p) = inc,
then fψ(γ)(p) = γ(p) + 1, if ψ(p) = res then fψ(γ)(p) = 1, and otherwise
fψ(γ)(p) = γ(p). Furthermore, we define the counter-conditions min and max,
which map each member of C to lower and upper limits, respectively, such that
min(p) ≤ max(p) for all p ∈ C.
Definition 5 (Satisfaction of Update Instructions). We define a satis-
faction relation between update instructions, counter states and the two counter-
conditions. Given min : C
→ N, max : C
→ N/1, γ : C
→ N and ψ : C
→ {inc, res},
then (γ,min,max) |= ψ holds if and only if the following holds for all p in the do-
main of ψ: whenever ψ(p) = inc, then γ(p) < max(p), and whenever ψ(p) = res,
then γ(p) ≥ min(p).

The intuition of Definition 5 is that the value of a counter state can only be
increased if the value is smaller than the maximum allowed value, while a value
can only be reset if it is at least as large as the minimum value.

Example 2. Assume C = {p1, p2}, min(p1) = max(p1) = 2, min(p2) = 1, max(p2)
= ∞ and γ = {p1
→ 2, p2
→ 1}, and let ψ1 = {p1
→ inc}, ψ2 = {p1
→
res, p2
→ inc} and ψ3 = {p1
→ res, p2
→ res}. Then fψ1(γ) = {p1
→ 3, p2
→ 1},
fψ2(γ) = {p1
→ 1, p2
→ 2} and fψ3(γ) = {p1
→ 1, p2
→ 1}. Furthermore,
(γ,min,max) |= ψ2 and (γ,min,max) |= ψ3 hold, while it does not hold that
(γ,min,max) |= ψ1.

236 D. Hovland

3.2 Overlapping Update Instructions

Given mappings max and min, two update instructions are called overlapping, if
there is a counter state that satisfies both of the update instructions.

Definition 6 (Overlapping Update Instructions). Given mappings max
and min, update instructions ψ1 and ψ2 are overlapping, if and only if there
is a counter state γ, such that both (γ,min,max) |= ψ1 and (γ,min,max) |= ψ2
hold.

Whether two update instructions are overlapping can be decided in linear time,
relative to the size of C, by the algorithm presented in the following proposition.

Proposition 1. Given mappings max and min, two update instructions are
overlapping if and only if: for every p that is mapped to different values by the
two update instructions, it must hold that min(p) < max(p).

Proof. The proof is by treating the two parts of “if and only if” separately. First
assume that for every p which is mapped to different values by the two update
instructions, it holds that min(p) < max(p). We must show that the update in-
structions are overlapping. A counter state γ satisfying both update instructions
can be constructed as follows: For each member p of C, if p is mapped to res
by at least one of the update instructions, then let γ(p) = min(p), otherwise let
γ(p) = 1. For the second part, that is, the “only if”-part of the proposition, as-
sume the update instructions are overlapping. Thus there is at least one counter
state γ which satisfies both update instructions ψ1 and ψ2. Now, for every p
such that ψ1(p) = inc and ψ2(p) = res, we get that min(p) ≤ γ(p) < max(p) from
Definition 5, such that min(p) < max(p). The opposite case where ψ1(p) = res
and ψ2(p) = inc follows by symmetry. ��
Recall Example 2. ψ1 and ψ2 are not overlapping, while ψ3 is overlapping with
ψ2. The counter state satisfying both ψ2 and ψ3 constructed as in the argument
above is γ. ψ1 and ψ3 are not overlapping.

3.3 Finite Automata with Counters

Definition 7 (Finite Automata with Counters). A Finite Automaton with
Counters (FAC) is a tuple (Σ,Q, C,A, Φ,min,max, qI ,F). The members of the
tuple are summarized in Table 1 and described below:

– Σ is a finite, non-empty set (the alphabet).
– Q and C are finite sets of states and counters, respectively.
– qI ∈ Q is the initial state.
– A : Q
→ Σ maps each non-initial state to the letter which is matched when

entering the state.
– Φ maps each state to a set of pairs. The latter pairs consist of a state and

an update instruction.

Φ : Q
→ ℘(Q× (C
→ {res, inc})) .

Regular Expressions with Numerical Constraints 237

Table 1. The members of the tuple describing an FAC

Symbol Short description Formally
Σ Alphabet Finite set
Q States Finite set
C Counters Finite set
A Matching letter Q �→ Σ
Φ Transitions Q �→ ℘(Q × (C �→ {res, inc}))
min Counter minimum C �→ N
max Counter maximum C �→ N/1

qI Initial state qI ∈ Q
F Final configurations Q �→ ℘(C) ∪ {⊥}

– min : C
→ N and max : C
→ N/1 are the counter-conditions.
– F : Q
→ ℘(C) ∪ {⊥} describes the final configurations (See Definition 8).

The symbol ⊥ is used to indicate that a configuration is not final.

Running or executing an FAC is defined in terms of transitions between config-
urations. The configurations of an FAC are pairs, where the first element is a
member of Q, and the second element is a counter state.

Definition 8 (Configuration of an FAC). A configuration of an FAC is a
pair (q, γ), where q ∈ Q is the current state and γ : C
→ N is the counter state.
A configuration (q, γ) is final, if F(q) �= ⊥, and for all c ∈ F(q), (γ,min,max) |=
{c
→ res}. Thus, F(q) specifies which counters should be “resettable”.

Intuitively, the first member of each of the pairs mapped to by Φ, is the state
that can be entered, and the second member describes the changes to the current
counter state of the automaton in this step. Thus, Φ and A together describe
the possible transitions of the automaton. This is formalized as the transition
function δ.

Definition 9 (Transition Function of an FAC). For an FAC (Σ,Q, C, A,
Φ, min, max, qI ,F), the transition function δ is defined for any configuration
(q, γ) and letter l by

δ((q, γ), l) = {(p, fψ(γ)) | A(p) = l ∧ (p, ψ) ∈ Φ(q) ∧ (γ,min,max) |= ψ}.

Definition 10 (Deterministic FAC). An FAC (Σ,Q, C,A, Φ,min,max, qI ,F)
is deterministic if and only if |δ((q, γ), l)| ≤ 1 for all q ∈ Q, l ∈ Σ and γ : C
→ N.

Deciding whether an FAC is deterministic can be done in polynomial time as
follows: For each state p, for each two different (p1, ψ1), (p2, ψ2) both in Φ(p),
assure that either A(p1) �= A(p2) or, otherwise, that ψ1 and ψ2 are not overlap-
ping. That this test is sound and complete follows by the definition of δ and the
properties of overlapping update instructions.

238 D. Hovland

3.4 Word Recognition

Given a word as input, an FAC can either accept or reject this. A deterministic
FAC recognizes a word by treating letters in the word one by one. It starts in the
initial configuration (qI , γ1). An FAC in configuration (q, γ), with letter l ∈ Σ
next in the word, will reject the word if δ((q, γ), l) is empty. Otherwise it enters
the unique configuration (q′, γ′) ∈ δ((q, γ), l). If the whole word has been read,
a deterministic FAC accepts the word if and only if it is in a final configuration.
The subset of Σ∗ consisting of words being accepted by an FAC A is denoted
L(A).

Example 3. Let Σ = {a, b, c}, Q = {qI , 〈1, 1, 1〉, 〈1, 2, 1〉, 〈1, 2, 2〉} and
C = {〈〉, 〈1, 1〉}. Figure 3 illustrates a deterministic FAC (Σ,Q, C,A, Φ,min,
max, qI ,F) which recognizes L((a2 + bc)3..5). The sequence of configurations
of this FAC while recognizing aabcaa is :

(qI , γ1)
(〈1, 1, 1〉, {〈〉
→ 1, 〈1, 1〉
→ 1})
(〈1, 1, 1〉, {〈〉
→ 1, 〈1, 1〉
→ 2})
(〈1, 2, 1〉, {〈〉
→ 2, 〈1, 1〉
→ 1})
(〈1, 2, 2〉, {〈〉
→ 2, 〈1, 1〉
→ 1})
(〈1, 1, 1〉, {〈〉
→ 3, 〈1, 1〉
→ 1})
(〈1, 1, 1〉, {〈〉
→ 3, 〈1, 1〉
→ 2})

The last configuration is final, since min(〈〉) ≤ 3 and min(〈1, 1〉) ≤ 2.

Fig. 3. Illustration of FAC recognizing L((a2 + bc)3..5). Every state is depicted as a
rectangle separated in two by a line. The name of the state is in the upper part of
the rectangle, and the values of F and A are in the lower part. Every member of φ is
shown as an arrow, annotated with the corresponding update instruction. C, min and
max are shown on the right hand side.

Regular Expressions with Numerical Constraints 239

Proposition 2 (Linear-Time Recognition). For any textual representation
of FACs, and for any deterministic FAC A = (Σ, Q, C, A, Φ, min, max, qI , F),
if σ(A) is the size of the textual representation of A, then for any word w ∈ Σ∗,
the FAC A can in time O(|w|σ(A)2) decide whether w is rejected or accepted.

Proof. The FAC makes no more than |w| steps in the recognition, and at each
step, there can be no more than max{|Φ(q)| | q ∈ Q} outgoing edges, and for
each of these we might have to check the counter state γ against no more than
|C| constraints. Testing whether the last configuration is accepting, takes time
O(|C| ·max{|F(q)| | q ∈ Q}). Thus we get the result, as |C|, max{|F(q)| | q ∈ Q}
and max{|Φ(q)| | q ∈ Q} are all O(σ(A)).

3.5 Searching with FACs

We formalize the problems called matching and searching as the binary predi-
cates m, s ⊆ RΣ × Σ∗, defined as follows: m(r, w) ⇔ w ∈ L(r) and s(r, w) ⇔
∃u, v, v′ : (w = u · v · v′ ∧ v ∈ L(r)). A deterministic FAC recognizing L(r) can
decide m(r, w) in time linear in |w|. If the alphabet (Σ) is fixed, we can solve
s(r, w) in time linear in the length of w by solving m(Σ∗ · r ·Σ∗), where Σ here
denotes the disjunction of all the letters. In practical cases, though, the size of
Σ can be prohibitively large. Another option is therefore to decide s(r, w) by
using O(|w|2) executions of an algorithm for m. A deterministic FAC can also
decide in linear time the prefix problem. The latter is also formalized as a binary
predicate, namely p ⊆ RΣ ×Σ∗, where p(r, w) ⇔ ∃u, v : (w = u · v∧u ∈ L(r)).
O(|w|) executions of an algorithm for p is sufficient to decide s. Thus, determin-
istic FACs can be used to search in time quadratic in the length of the text. The
last approach is similar to that used in GNU grep.

4 Constructing Finite Automata with Counters

Following Brüggemann-Klein & Wood [9] and Glushkov [10], we define three
mappings, first, last, and follow. They will be used below in an alternative defini-
tion of the language denoted by a regular expression, and will be central in the
construction of FACs from regular expressions. first takes a regular expression
as parameter and returns the set of positions that could be matching the first
letter in a word in the language of the regular expression. Similarly, the map-
ping last takes a regular expression as parameter and returns the set of positions
that could be matching the last letter in a word in the language of the regular
expression.

follow takes a regular expression and a position in the expression as parame-
ters, and returns a set of pairs (p, ψ). Assume the position given as argument to
follow is used to match a letter in a word in the language of the regular expres-
sion. If follow returns a set containing (p, ψ), then p is a position in the regular
expression which could match the next letter in the word, and ψ is the update
instructions, describing what changes must be done to the counters in the step
to p from the position given as the second argument.

240 D. Hovland

Before we can define first, last and follow, we need some auxiliary definitions.

Definition 11 (Concatenating Positions with Update Instructions and
Sets of Positions)

– For p ∈ N∗ and S ⊆ N∗, let p� S = {p� q | q ∈ S}
– For p ∈ N∗ and ψ : (N∗
→ {res, inc}), let p�ψ = {p�q
→ ψ(q) | q ∈ dom(ψ)}.
– For S ⊆ N∗ × (N∗
→ {inc, res}) let p� S = {(p� q, p� ψ) | (q, ψ) ∈ S}.

Definition 12 (Subposition). We use the notation p ≤ q for p a prefix or
subposition of q, that is, p ≤ q ⇔ ∃p1 : q = p� p1.

Definition 13. Let r ∈ RΣ and q ∈ pos(r).

1. Let C(r) ⊆ pos(r) be the positions of all subexpressions of r that are of the
form rn..m

1 , and that are not of the form r+
1 . Expressed formally,

C(r) = {q ∈ pos(r) | ∃n ∈ N,m ∈ N/1, r1 ∈ RΣ : r|q = rn..m
1 �= r+

1 }.

2. Let C(r, q) ⊆ C(r) be the set of positions in C(r) above q, that is, C(r, q) =
{p ∈ C(r) | p ≤ q}.

In the sequel we need to express the set of regular expressions whose language
contains the empty word. The set of nullable expressions, NΣ , is therefore defined
as follows:

Definition 14 (Nullable Expressions). Given an alphabet Σ, the set of nul-
lable expressions, NΣ, is defined in the following inductive manner

NΣ ::= NΣ ·NΣ |NΣ +RΣ |RΣ + NΣ |NN..N/1

Σ | ε

We can prove that NΣ = {r ∈ RΣ | ε ∈ L(r)} by induction on r.
We will define inductively first : RΣ
→ ℘(N∗) (Table 2), last : RΣ
→ ℘(N∗)

(Table 2) and follow : (RΣ × N∗)
→ ℘(N∗ × (N∗
→ {res, inc})) (Table 3).
first and last map from an expression r to a subset of sym(μ(r)), such that
first(r) = {p ∈ sym(μ(r)) | ∃w ∈ sym(μ(r))∗ : pw ∈ L(μ(r))} and last(r) = {p ∈
sym(μ(r)) | ∃w ∈ sym(μ(r))∗ : wp ∈ L(μ(r))}. follow maps an expression r and a
position q ∈ pos(r) to a set of pairs of the form (p, ψ), where p ∈ sym(μ(r)) and
ψ : C(r)
→ {inc, res}.

Recall the example expression r = (a2 + bc)3..5 from Example 1. We get
first(r) = {〈1, 1, 1〉, 〈1, 2, 1〉}, last(r) = {〈1, 1, 1〉, 〈1, 2, 2〉}, and follow is shown in
Table 4.

4.1 Basic Properties

The following lemma basically summarizes that first, last and follow have the
intended properties.

Lemma 1. For all regular expressions r ∈ RΣ and all positions q ∈ sym(μ(r)):

Regular Expressions with Numerical Constraints 241

Table 2. first : RΣ �→ ℘(N∗) and last : RΣ �→ ℘(N∗)

first(ε) = last(ε) = ∅, r ∈ Σ ⇒ first(r) = last(r) = {〈〉}
r = r1 + r2 ⇒
first(r) = (〈1〉
 first(r1)) ∪ (〈2〉
 first(r2))
∧ last(r) = (〈1〉
 last(r1)) ∪ (〈2〉
 last(r2))
r = r1 · r2 ∧ r1 ∈ NΣ ⇒ first(r) = (〈1〉
 first(r1)) ∪ (〈2〉
 first(r2))
r = r1 · r2 ∧ r2 ∈ NΣ ⇒ last(r) = (〈1〉
 last(r1)) ∪ (〈2〉
 last(r2))
r = r1 · r2 ∧ r1 �∈ NΣ ⇒ first(r) = 〈1〉
 first(r1)
r = r1 · r2 ∧ r2 �∈ NΣ ⇒ last(r) = 〈2〉
 last(r2)
r = rn..m

1 ⇒ first(r) = 〈1〉
 first(r1) ∧ last(r) = 〈1〉
 last(r1)

Table 3. follow : (RΣ × N∗) �→ ℘(N∗ × (N∗ �→ {res, inc}))

r ∈ Σ ⇒ follow(r, 〈〉) = ∅
r = r1 + r2 ⇒ (

follow(r, 〈1〉
 q) = 〈1〉
 follow(r1, q)
)

∧ (follow(r, 〈2〉
 q) = 〈2〉
 follow(r2, q)
)

r = r1 · r2 ⇒ follow(r, 〈2〉
 q) = 〈2〉
 follow(r2, q)
r = r1 · r2 ∧ q ∈ last(r1) ⇒
follow(r, 〈1〉
 q) = 〈1〉
 follow(r1, q)∪
{(q1, {〈1〉
 p1 �→ res | p1 ∈ C(r1, q)}) | q1 ∈ 〈2〉
 first(r2)}
r = r1 · r2 ∧ q �∈ last(r1) ⇒ follow(r, 〈1〉
 q) = 〈1〉
 follow(r1, q)
r = r+

1 ∧ q ∈ last(r1) ⇒ follow(r, 〈1〉
 q) =
〈1〉
 follow(r1, q) ∪ { (q1, {〈1〉
 p1 �→ res | p1 ∈ C(r1, q)}

)
q1 ∈ 〈1〉
 first(r1)

}
r = rn..m

1 ∧ q ∈ last(r1) ∧ (n, m) �= (1,∞) ⇒
follow(r, 〈1〉
 q) = 〈1〉
 follow(r1, q)∪{ (

q1, {〈〉 �→ inc} ∪ {〈1〉
 p1 �→ res | p1 ∈ C(r1, q)}
)

q1 ∈ 〈1〉
 first(r1)
}

r = rn..m
1 ∧ q �∈ last(r1) ⇒ follow(r, 〈1〉
 q) = 〈1〉
 follow(r1, q)

Table 4. The mapping follow for r = (a2 + bc)3..5

follow(r, 〈1, 1, 1〉) =

⎧⎨⎩
(〈1, 1, 1〉, {〈1, 1〉 �→ inc}),
(〈1, 1, 1〉, {〈1, 1〉 �→ res, 〈〉 �→ inc}),
(〈1, 2, 1〉, {〈1, 1〉 �→ res, 〈〉 �→ inc})

⎫⎬⎭
follow(r, 〈1, 2, 1〉) = {(〈1, 2, 2〉, {})}
follow(r, 〈1, 2, 2〉) = {(〈1, 1, 1〉, {〈〉 �→ inc}), (〈1, 2, 1〉, {〈〉 �→ inc})}

1. first(r) = {p ∈ sym(μ(r)) | ∃w ∈ sym(μ(r))∗ : pw ∈ L(μ(r))}
2. last(r) = {p ∈ sym(μ(r)) | ∃w ∈ sym(μ(r))∗ : wp ∈ L(μ(r))}
3. follow(r, q) is well-defined.
4. ∀(p, ψ) ∈ follow(r, q) : ∃u, v ∈ sym(μ(r))∗ : uqpv ∈ L(μ(r))
5. ∀(p, ψ) ∈ follow(r, q) : ∀q′ ∈ C(r) :

q′ �∈ dom(ψ)⇒ (q′ �∈ C(r, q) ∨ (∃u, v ∈ sym(μ(r)|q′)∗ : uqpv ∈ L(μ(r)|q′)))
∧ ψ(q′) = inc⇒ (q ∈ q′ � last(r|q′) ∧ p ∈ q′ � first(r|q′))
∧ ψ(q′) = res⇔ (q ∈ q′ � last(r|q′) ∧ q′ �∈ C(r, p))

242 D. Hovland

All items can be proved by induction on r, using the preceding items. The proofs
are omitted for space considerations.

Theorem 1 (Polynomial Runtime). For all regular expressions r ∈ RΣ and
all positions q ∈ sym(μ(r)):

1. Computing first(r) and last(r) takes time O(|r|).
2. Computing follow(r, q) for all q, takes time O(|r|3).

Proof. 1. For part 1 note first that |first(r)| = O(|r|) and |last(r)| = O(|r|)
follows from parts 1 and 2 of Lemma 1. We will assume that union of sets
can be done in linear time, and that prefixing a number to a position (as in
〈1〉 � p) can be done in constant time. We can then show that the run-time
is O(|r|) by induction on r.

2. For part 2, start with computing first and last for all subexpressions of r. This
takes time O(|r|3). Computing follow(r, q) will then mean a linear number
of calls to follow, each of which takes maximally O(|r|2) time in addition to
the recursive call to follow. ��

4.2 Counter-1-Unambiguity

We can now define the right unambiguity we need for constructing determinis-
tic automata. Counter-1-unambiguous regular expressions are introduced in this
section. Section 4.3 describes how a deterministic FAC can be constructed in
polynomial time from such expressions. However, the construction of FACs can
be applied to regular expressions in a larger class, namely, the regular expressions
in constraint normal form. The construction of an FAC from an expression in
this class can also be done in polynomial time, but the FAC might not be deter-
ministic. An expression is in constraint normal form if, for every subexpression
of the form rn..m, r is not nullable.

Definition 15. A regular expression r is in constraint normal form if and only
if there is no subexpression of r of the form rn..m

1 where r1 ∈ NΣ.

For example, (a∗a)2..3 is in constraint normal form, while (a∗)2..3 is not.
Given a regular expression r, let mappings min : C(r)
→ N and max : C(r)
→

N/1 be such that min(q) = r|q�〈2〉 and max(q) = r|q�〈3〉, and define a binary re-
lation 0 between the pairs sym(μ(r))×(C
→ {inc, res}), where (q2, ψ2) 0 (q1, ψ1)
if and only if r|q2 = r|q1 and ψ1 and ψ2 are overlapping update instructions (as
according to Definition 6).

Definition 16 (Counter-1-Unambiguity). A regular expression r in con-
straint normal form is counter-1-unambiguous, if ∀p, q ∈ first(r) : r|p =
r|q ⇒ p = q and ∀q ∈ sym(μ(r)) : ∀(q2, ψ2), (q1, ψ1) ∈ follow(r, q) : (q2, ψ2) 0
(q1, ψ1) ⇒ (q2, ψ2) = (q1, ψ1).

The regular expressions used as examples in Sect. 1 are counter-1-unambiguous.
Examples of expressions that are not counter-1-unambiguous are (a1..2)1..2,

Regular Expressions with Numerical Constraints 243

(a∗a)2..3 and (a1..2 + b)1..2, while (a+ b)1..4 is counter-1-unambiguous. For some
of the expressions that are not counter-1-unambiguous, we can multiply the
numerical constraints to possibly get counter-1-unambiguous expressions. In
general, for regular expressions of the form (rl1..u1)l2..u2 , if l2 ≥ l1−1

u1−l1
, then

L(rl1·l2..u1·u2) = L((rl1..u1)l2..u2). For example, L((a1..2)1..2) = L(a1..4).

4.3 Constructing FACs

Fig. 4. Some properties
of the construction of
FACs

Given a regular expression r and the mappings first, last
and follow as defined above, we construct the FAC(r),
an FAC (Σ,Q,C(r),A, Φ,min,max, qI ,F), where Q =
sym(μ(r)) ∪ {qI} and where min and max are as above.
∀q ∈ sym(μ(r)), let A(q) = r|q and Φ(q) = follow(r, q).
Let Φ(qI) = {(q,∅) | q ∈ first(r)}.

The initial configuration is final if and only if r is
nullable. For the other configurations, two conditions
must be met: the position the current state represents
must be in last(r), and the numerical constraints con-
taining this position must be satisfied. Thus, the map-
ping F is defined as follows. Let first F ′ = {p
→
C(r, p) | p ∈ last(r)} ∪ {q
→ ⊥ | q ∈ sym(μ(r))− last(r)}.
If r ∈ NΣ , then let F = F ′ ∪ {qI
→ ∅}, and otherwise
let F = F ′ ∪ {qI
→ ⊥}.

Figure 4 illustrates some properties of this algorithm.
The result of applying this algorithm to r = (a2+bc)3..5

from Example 1 is the FAC in Example 3.

4.4 Equivalence of L(r) and L′(r)

We will now define L′(r), which is the language recognized by the FAC con-
structed from r as described above.

Definition 17 (L′(r)). For r ∈ RΣ, L′(r) is the subset of Σ∗, such that ε ∈
L′(r) iff r ∈ NΣ and for all w ∈ L′(r) where n = |w| > 0, there exist p1, . . . , pn ∈
sym(μ(r)), and if n > 1 there are also ψ2, . . . , ψn ∈ (C(r)
→ {inc, res}), such that
all of the following five items hold:

1. r|p1 · · · r|pn = w.
2. p1 ∈ first(r).
3. pn ∈ last(r).
4. If n > 1, then ∀i ∈ {1, . . . , n− 1} : (pi+1, ψi+1) ∈ follow(r, pi).
5. ∀i ∈ {1, . . . , n} : (fψi(· · · fψ1(γ1) · · ·),min,max) |= ψi+1, where ψ1 = ∅,

ψn+1 = {p
→ res | p ∈ C(r, pn)}.
Theorem 2. If r ∈ RΣ is in constraint normal form, then L(r) = L′(r).

244 D. Hovland

The proof is by induction on r and uses the definitions of L′(r) and L(r) and
the facts in Lemma 1. The proof is omitted for space considerations.

5 Related Work and Conclusion

5.1 Related Work

The inspiration for Finite Automata with Counters comes, of course, from fi-
nite automata as defined, e.g., by Hopcroft & Ullman [11], by Kleene [12] or by
Glushkov [10]. Kilpeläinen & Tuhkanen [4,7,13], and Gelade et al. [6] also inves-
tigated properties of the regular expressions with counters, and give algorithms
for membership, and definitions of automata classes for regular expressions with
numerical constraints. Tuhkanen & Kilpeläinen’s counter automata seem to han-
dle a larger class of expressions than FACs, but they are not defined formally,
only by examples. The technical report referred to in the paper was never fin-
ished (personal communication). Tuhkanen & Kilpeläinen’s counter automata
also differ from FACs in the way iterations are kept track of, with extra states,
called “levels”.

Colazzo, Ghelli & Sartiani describe in [14] an algorithm for linear-time mem-
bership in a subclass of regular expressions called collision-free. The collision-free
regular expressions have at most one occurrence of each symbol from Σ, and the
counters (and the Kleene star) can only be applied directly to letters or disjunc-
tions of letters. The latter class is smaller than, and included in, the class of
counter-1-unambiguous regular expressions. The main focus of Colazzo, Ghelli
& Sartiani is on the extension of regular expressions used in XML Schemas. This
extension includes interleaving, which is not covered by the algorithm presented
here.

A class of tree automata with counting are described by Zilio & Lugiez [15].
Our approach also has similarities to the tagged automata found in Laurikari [16].
The results by Brüggemann-Klein & Wood in [5,9,17] concerning 1-unambiguous
regular expressions, are in some ways what the current article attempts to extend
to the regular expressions with counters.

5.2 Conclusion

We have defined Finite Automata with Counters (FAC), and a translation from
the regular expressions with numerical constraints to these automata. We de-
fined constraint normal form, a subset of the regular expressions with numerical
constraints, for which the translation to FACs can be done in polynomial time.
Further we defined counter-1-unambiguous regular expressions, a subset of the
regular expressions of constraint normal form, and for which the FAC resulting
from the translation is deterministic. The deterministic FAC can recognize the
language of the given regular expression in time linear in the size of word to
be tested. Testing whether an FAC is deterministic can be done in polynomial
time.

Regular Expressions with Numerical Constraints 245

References

1. The Open Group: The Open Group Base Specifications Issue 6, IEEE Std 1003.1.
2 edn. (1997)

2. GNU: GNU grep manual
3. Fallside, D.C.: XML Schema part 0: Primer, W3C recommendation. Technical

report, World Wide Web Consortium (W3C) (2001)
4. Kilpeläinen, P., Tuhkanen, R.: Regular expressions with numerical occurrence in-

dicators - preliminary results. In: Kilpeläinen, P., Päivinen, N. (eds.) SPLST,
pp. 163–173. University of Kuopio, Department of Computer Science (2003)

5. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

6. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML: Nu-
merical constraints and interleaving. In: Schwentick, T., Suciu, D. (eds.) ICDT
2007. LNCS, vol. 4353, pp. 269–283. Springer, Heidelberg (2006)

7. Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with nu-
meric occurrence indicators. Information and Computation 205(6), 890–916 (2007)

8. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge
University Press, Cambridge (2003)

9. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 140(2), 229–253 (1998)

10. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16(5), 1–53 (1961)

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

12. Kleene, S.C.: Representation of events in nerve sets and finite automata. Automata
Studies, 3–41 (1956)

13. Kilpeläinen, P., Tuhkanen, R.: Towards efficient implementation of XML schema
content models. In: Munson, E.V., Vion-Dury, J.Y. (eds.) ACM Symposium on
Document Engineering, pp. 239–241. ACM, New York (2004)

14. Ghelli, G., Colazzo, D., Sartiani, C.: Linear time membership in a class of regular
expressions with interleaving and counting. In: Shanahan, J.G., Amer-Yahia, S.,
Manolescu, I., Zhang, Y., Evans, D.A., Kolcz, A., Choi, K.S., Chowdhury, A. (eds.)
CIKM, pp. 389–398. ACM, New York (2008)

15. Dal-Zilio, S., Lugiez, D.: Xml schema, tree logic and sheaves automata. In:
Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 246–263. Springer,
Heidelberg (2003)

16. Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic au-
tomata and application to regular expressions. In: SPIRE, pp. 181–187 (2000)

17. Brüggemann-Klein, A.: Regular expressions into finite automata. In: Simon, I. (ed.)
LATIN 1992. LNCS, vol. 583, pp. 87–98. Springer, Heidelberg (1992)

On the Relative Expressive Power of Contextual
Grammars with Maximal and Depth-First

Derivations

Lakshmanan Kuppusamy1,� and Kamala Krithivasan2

1 ALPAGE, INRIA-Rocquencourt
Le Chesnay - 78153, France

klakshma@vit.ac.in
2 Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai - 600 036, India

kamala@iitm.ac.in

Abstract. In the recent years, several new classes of contextual gram-
mars have been introduced to give an appropriate model description to
natural languages. With this aim, some new families of contextual lan-
guages have been introduced based on maximal and depth-first condi-
tions and analyzed in the framework of so-called mildly context sensitive
languages. However, the relationship among these families of languages
have not yet been analyzed in detail. In this paper, we investigate the re-
lationship between the families of languages whose grammars are based
on maximal and depth-first conditions. We prove an interesting result
that all these families of languages are incomparable to each other, but
they are not disjoint.

Keywords: internal contextual grammars, maximal, depth-first,
incomparable.

1 Introduction

Contextual grammars produce languages starting from a finite set of axioms and
adjoining contexts, iteratively, according to the selector present in the current
sentential form. As introduced in [15], if the contexts are adjoined at the ends of
the strings, the grammar is called external. Internal contextual grammars were
introduced by Păun and Nguyen in 1980 [20], where the contexts are adjoined
to the selector strings which appear as substrings of the derived string. The
main motivation for introducing contextual grammars was to obtain languages
that are more appropriate from natural languages point of view. In fact, the
class of languages should (i) contain basic non-context-free languages, (ii) be
parsable in polynomial time (iii) contain semilinear languages only, and these
three properties together define the so-called mildly context sensitive (MCS)
formalisms and languages, as introduced by A.K. Joshi in 1985 [5].
� Currently on leave from parent Institution VIT University, Vellore - 632 014, India.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 246–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Relative Expressive Power of Contextual Grammars 247

When contextual grammars are analyzed from the perspective of MCS for-
malisms, the basic classes, external and internal contextual languages fail to
contain some desirable non-context-free languages. Further, they contain non-
semilinear languages too [4],[6]. Also, at present only exponential time algorithms
are known for the membership problem of internal contextual grammars [2] and
whether it can be solved in polynomial time algorithm remains open [8]. There-
fore, some attempts have been made in the last decade or so to introduce variants
of contextual grammars by restricting the selector chosen in the derivation, to ob-
tain certain specific classes of contextual languages which satisfy the above said
MCS properties. The first such main variant was depth-first contextual grammars
[18] where the main catch is to track the previously adjoined contexts in the selec-
tor. Though this idea might be useful while parsing (especially for backtracking),
these grammars fail to generate one of the basic non-context-free languages, like
multiple agreement: {anbncn | n ≥ 1}. So, other new classes of grammars have
been introduced, for instance, maximal contextual grammars [17]. Though they
generate the basic non-context-free languages, they also generate non-semilinear
languages [16]. Besides, in [2], it was proved that these maximal and internal
contextual grammars can be transformed into equivalent dynamic range concate-
nation grammars, an extended formalism of range concatenation grammars [1]).
However, parsing dynamic range concatenation grammar allows exponential time
complexity and thus this strategy is not useful.

Further, in [11], a variant namely maximal depth-first grammars have been
introduced, by combining the maximal and depth-first conditions. Like maxi-
mal grammars, the family of languages generated by these grammars contain
non-context-free languages, but their membership and semilinear problems have
been left open. Later in [12], two variants, namely end-marked maximal depth-
first and inner end-marked maximal depth-first grammars have been introduced
with the aim to solve the membership problem and semilinearity issue for max-
imal depth-first derivation. In [7], Ilie considered a new variant called maximal
local. Ilie showed that the languages generated by maximal local grammars with
regular selectors contain basic non-context-free languages and the membership
problem for these languages is solvable in polynomial time. But the question of
semilinearity was left open for these languages and in [11], a restricted variant
of maximal local contextual grammars, called absorbing right context grammar
has been introduced in order to solve the semilinear problem of maximal local.

Many of these variants were obtained by refining the previous variants (i.e.,
imposing further restrictions in the existing variants) with the hope that they
could clear the failed properties of MCS and at the same time the properties
which are shown to satisfy are also preserved. Out of all these variants discussed
above, the classes of languages generated by maximal local, absorbing right con-
text, inner end-marked depth-first grammars with regular selectors were shown
to satisfy the properties of MCS languages [9],[11],[12]. Since all the above vari-
ants have been introduced with a single aim to satisfy the properties of MCS
languages (and thus to give a model description for natural languages from the
domain of contextual grammars), the relative expressive power of these variants

248 L. Kuppusamy and K. Krithivasan

have not been discussed so far. Our motivation in this paper is to analyze the
expressive power of these grammars.

When several classes of grammars originate from one grammar, it would be
interesting to analyze their power of generating languages and to form the hi-
erarchical structures with the results we obtain. When such hierarchical order
is not possible between the families of languages, they become incomparable. In
this paper, we analyze the generative power of the above mentioned variants of
the internal contextual grammars with regular selectors. We prove that all these
families of the above said variants are incomparable to one another. Also, we
prove that they are not disjoint as there are common languages that are shared
by these families of languages.

As a word of caution we would like to mention that so far no unanimous
definition of MCS has been agreed to. For example, the semilinear property is
considered to be too strong and is replaced by a weaker property, constant growth
property. Also non-compliance of these mentioned properties does not rule out
a formalism being useful, for example, “back-end” general formalisms like range
concatenation grammars [1] or abstract categorial grammars [19]. Also, several
other variants of contextual grammars have been introduced and analyzed from
the perspective of formal languages. However, we do not discuss them here as
it is out of scope of this paper and we refer to the monograph [21] for more
variants.

2 Preliminaries

We assume the readers are familiar with the basic formal language theory no-
tions. We refer to [22] for more details on formal language theory. We now present
the definition of a few classes of contextual grammars considered in this paper.

An internal contextual grammar is G = (V,A, (S1, C1), . . . , (Sm, Cm)),m ≥ 1,
where V is an alphabet, A ⊆ V ∗ is a finite set called axioms, Sj ⊆ V ∗, 1 ≤ j ≤ m,
are the sets of selectors or choice, and Cj ⊆ V ∗×V ∗, Cj finite, 1 ≤ j ≤ m, are the
sets of contexts associated with the selector Sj . The usual derivation in the inter-
nal mode is defined as x =⇒in y iff x = x1x2x3, y = x1ux2vx3, for x1, x2, x3 ∈
V ∗, x2 ∈ Sj , (u, v) ∈ Cj , 1 ≤ j ≤ m.

Given an internal contextual grammar G as above, the maximal and depth-
first derivations are given as below. In maximal mode (denoted by max), at
each derivation, the chosen selector x2 ∈ Si, for the next derivation should be
of maximal length than the other possible selectors x′

2 ∈ Si (for the formal
representation of maximal condition, refer the below condition (iii) alone). In
depth-first mode (denoted by df), for every derivation, the selector for the next
derivation must contain one of the contexts u or v which was adjoined in the
previous derivation (for the formal representation of depth-first condition, refer
below condition (ii) alone). Next, we define maximal depth-first grammar, ob-
tained by combining maximality and depth-first conditions. More formally, given
a contextual grammar G as above, a maximal depth-first derivation (denoted by
mdf) in G is a derivation w1 =⇒mdf w2 =⇒mdf . . . =⇒mdf wn, n ≥ 1, where

On the Relative Expressive Power of Contextual Grammars 249

(i) w1 ∈ A, w1 =⇒in w2 (i.e., in the usual internal mode),
(ii) For each i = 2, 3, . . . , n− 1, if wi−1 = z1z2z3, wi = z1uz2vz3 ((u, v) is the

context adjoined to wi−1 in order to get wi), then wi = x1x2x3, wi+1 =
x1sx2tx3, such that x2 ∈ Sj , (s, t) ∈ Cj , for some j, 1 ≤ j ≤ m, and
x2 contains one of the contexts u or v as a substring (thus, satisfying the
depth-first condition). Note that here the chosen next selector contains not
any s or t occurred in the string, but the same s or t adjoined in the previous
derivation step.

(iii) For each i = 2, 3, . . . , n − 1, if wi =⇒df wi+1, then there will be no other
derivation in G with wi =⇒df w′

i+1 such that wi = x′
1x

′
2x

′
3, x′

2 ∈ Sj and
|x′

2| > |x2| where x2 ∈ Sj (note that the selector x2 is of maximal length
with respect to Sj only, and not with respect to all selectors).

Given a contextual grammar G, we next define the local mode in the follow-
ing way. For z ∈ A, z =⇒in x such that z = z1z2z3, x = z1uz2vz3, z2 ∈
Sk, (u, v) ∈ Ck, for z1, z2, z3 ∈ V ∗, 1 ≤ k ≤ m, then x =⇒loc y is called local
with respect to z =⇒ x, iff we have u = u′u′′, v = v′v′′, u′, u′′, v′, v′′ ∈ V ∗, y =
z1u

′su′′z2v
′tv′′z3, for u′′z2v

′ ∈ Sj , (s, t) ∈ Cj , 1 ≤ j ≤ m. That is, at each
derivation, the contexts are introduced adjacent to the contexts (or to the side
of the previous selector itself, when u′′ = λ = v′) which were introduced in the
previous derivation. Note that, at every derivation, the selector may expand on
its left side or right side or both sides, but expands not more than the contexts
introduced in the previous derivation step. Therefore, once a selector is chosen,
that selector should be a subword for the selectors used in the further derivations
(this point is often used in the proofs). When the maximality condition is in-
cluded with this local variant, the grammar is said to be maximal local (denoted
by mloc).

Now, we define a variant obtained by imposing further restriction to the above
mloc grammar and we call it as absorbing right contextual grammar (denoted by
arc) [11]. In this variant, the selector (say yi+1) for the next derivation (step) is
obtained by adjoining the first half v′i of the current right context to the current
selector yi where vi = v′iv

′′
i , |v′i| = (|vi|

2), |v′′| = ' |vi|
2 1. That is, yi+1 = yiv

′
i, yi ∈

Sj , yi ∈ V ∗, v′i ∈ V +.
An end-marked maximal depth-first (denoted by emdf) contextual gram-

mar [12] is a construct G = (V,A, {(S1, C1), . . . , (Sm, Cm)}),m ≥ 1, where
V,A, S1, . . . Sm, are as mentioned in the definition of internal contextual gram-
mar and Cj ⊆ (V +

{L,R} × V ∗) ∪ (V ∗ × V +
{L,R}), Cj finite, 1 ≤ j ≤ m, are the

set of contexts. The elements of Cj ’s are of the form (uL, v), (uR, v), (u, vL), and
(u, vR). The suffix L and R represents end marker (left and right) for the selector
of the next derivation. uL (or vL) indicates the selector for the next derivation
should start with u (or v), thus u (or v) is the left end of the next selector.
Similarly, uR (or vR) indicates the selector for the next derivation should end
with the context u (or v). Given such a grammar G, an emdf derivation in G is
a derivation w1 =⇒emdf w2 =⇒emdf . . . =⇒emdf wn, n ≥ 1, where

– w1 ∈ A, w1 =⇒ w2 in the usual way,

250 L. Kuppusamy and K. Krithivasan

– For each i = 2, 3, . . . , n − 1, if wi−1 = z1z2z3, wi = z1uz2vz3, such that
z2 ∈ Sk, 1 ≤ k ≤ m, then wi = x1x2x3, wi+1 = x1sx2tx3, such that
x2 ∈ Sj , 1 ≤ j ≤ m, and x2 will be one of the following four cases:
(i) x2 = uz′2, u �= λ, if (uL, v) ∈ Ck, with z′2 ∈ V ∗ is of maximal (i.e., there

exists no z′′2 ∈ V ∗, such that uz′′2 ∈ Sj , with |z′′2 | > |z′2|).
(ii) x2 = z′1u, u �= λ, if (uR, v) ∈ Ck, with z′1 ∈ V ∗ is of maximal (i.e., there

exists no z′′1 ∈ V ∗, such that z′′1u ∈ Sj , with |z′′1 | > |z′1|).
(iii) x2 = z′2v, v �= λ, if (u, vR) ∈ Ck, with z′2 ∈ V ∗ is of maximal (i.e., there

exists no z′′2 ∈ V ∗, such that z′′2v ∈ Sj , with |z′′2 | > |z′2|).
(iv) x2 = vz′3, v �= λ, if (u, vL) ∈ Ck, with z′3 ∈ V ∗ is of maximal (i.e., there

exists no z′′3 ∈ V ∗, such that vz′′3 ∈ Sj , with |z′′2 | > |z′2|).
Now, we introduce the next variant. Given a emdf grammar G, we can de-

fine the inner end-marked maximal depth-first grammar (denoted by iemdf) by
imposing the following changes in the grammar and in derivation.

– Cj ⊆ (V +
L × V ∗) ∪ (V ∗ × V +

R).
– As the elements of Cj ’s are of the form (uL, v) and (u, vR), the cases (ii) and

(iv) discussed above are void and only the cases (i) and (iii) are valid.
– The selector for the next derivation should lie inside the contexts u and

v which were adjoined in the previous derivation. More precisely, the next
chosen selector cannot have both the adjoined contexts u and v, but it may
contain the proper prefixes of v (if u is end-marked, i.e., uL) or proper
suffixes of u (if v is end-marked, i.e., vR). Obviously the end-marked context
is included in the next chosen selector in order to satisfy the depth-first and
end-marked conditions. More formally, if u and v are the contexts adjoined
to the selector, say z2, then the next selector, say x2, will be a strict subword
of uz2v and x2 should either begin with u or end with v.

From the above definitions, we can see that the definition of each of the gram-
mars is interlinked with the other and all the grammars share the maximality
condition in common (except arc) and many grammars share the depth-first con-
dition also (some grammars share this condition partially, like mloc and arc).

The language generated by a grammar G in the mode β, β ∈
{max,mdf,mloc, arc, emdf, iemdf} is given by Lβ(G) = {w ∈ V ∗ | x =⇒∗

β

w, x ∈ A}, where =⇒∗
β is the reflexive transitive closure of the relation =⇒β .

If all the sets of selectors S1, . . . , Sm are in a family F of languages, then we
say that the grammar G is with F choice. As usual, the family of languages
for G working in β ∈ {max,mdf,mloc, arc, emdf, iemdf} mode with F choice
is given as ICCmax(F), ICCmdf (F), ICCmloc(F), ICCarc(F), ICCemdf (F), and
ICCiemdf (F), respectively. In this paper, we consider F ∈ {FIN,REG}.

The following assumption is made throughout this paper. We do not consider
the empty contexts (λ, λ) here, but one-sided contexts of the form (λ, v), (u, λ)
are considered (but the λ context cannot be an end-marker). Also, the underlined
symbols denote the newly inserted contexts and the word in between the two
down arrows indicates the selector used for the next derivation. We call maximal
length as maximal in many places for the sake of brevity. Also, we refer the
selector for the next derivation as simply next selector in many occurrences.

On the Relative Expressive Power of Contextual Grammars 251

3 Results

In this section, we discuss the generative power of the internal contextual gram-
mars when we put different types of restrictions on the derivations such as
max,mloc, arc,mdf, emdf, iemdf . Here, the generative power of a class of gram-
mars deals with the limitation of the grammars in generating the languages
(like what languages can or cannot be produced by these grammars). We aim to
show that there are some languages which can be generated when putting one
type of restriction on the derivation but they cannot be generated when some
other types of restriction is imposed on the derivation. Also we aim to show that
there are lanaguges which can be generated by all types of restricted derivations
mentioned in the previous section.

Lemma 1. ICCα(FIN) ⊂ ICCα(REG), α ∈ {max,mdf,mloc, arc, emdf,
iemdf}.
Proof. The relation ICCα(FIN) ⊆ ICCα(REG) is obvious. The strict inclusion
follows from the following result. Consider the crossed dependency language
L1 = {anbmcndm | n,m ≥ 1}. This language cannot be generated by any of the
above α grammars with finite choice since in order to increase the occurrences
of a, c equally and b, d equally, the grammar needs regular selectors of the form
ak1b+ck2 and bk3c+dk4 , k1, k2, k3, k4 ≥ 0, respectively. However, in previous pa-
pers ([7],[9],[11],[12],[17]), all these grammars were shown to generate L1 with
regular selectors. ��
Lemma 2. L2 = {a, b}+ ∈ ICCα(REG), α ∈ {max,mdf,mloc, arc, emdf,
iemdf}.
Proof. The language L2 = {a, b}+ can be generated by Gα =
({a, b}, {a, b}, ({a, b}, {(aL, λ), (bL, λ)})) for α ∈ {max,mdf, emdf, iemdf} (for
max,mdf modes, there is no suffix L in the contexts). Any string w = w1 . . . wn ∈
L2 can be produced by starting from wn, adding the context on the left, itera-
tively. For β = {mloc, arc}modes, Gβ = ({a, b}, {a, b}, ({a, b}+, {(λ, a), (λ, b)})).
It is easy to see that L(Gβ) = L2. ��
The above result shows that the language {a, b}+ is included in all families of
languages ICCα(REG), α ∈ {max,mdf,mloc, arc, emdf, iemdf}.
Lemma 3. ICCα(REG) − ICCmax(REG) �= ∅, α ∈ {mdf,mloc, arc, emdf,
iemdf}.
Proof. The language L3 = {an | n ≥ 1} ∪ {anbncn | n ≥ 1} can be generated by
the grammars

Gmdf = ({a, b, c}, {a, aa, abc}, (aa, (a, λ)), (b+c+, (ab, c))).
Gmloc = ({a, b, c}, {a, aa, abc}, (aa, (a, λ)), (b+c, (ab, c))).
Garc = ({a, b, c}, {a, aa, abc}, (aa+, (λ, a)), (b+, (a, bc))).

G{emdf,iemdf} = ({a, b, c}, {a, aa, abc}, (aa, (aL, λ)), (b+c+, (ab, cR))).

In order to get a better understanding on how the strings are generated using these
grammars, we provide some details about the selectors used in the derivations.

252 L. Kuppusamy and K. Krithivasan

To generate the strings of the form an, aa (or aa+ for arc mode) is chosen
as selector for all derivations and a is adjoined to the side of the selector. For
strings of the other part of the language (anbncn), the selector b+c+ covers the
adjoined right context c in mdf mode. In mloc mode, we have u′

2 = a, u′′
2 = b

and v′2 = λ, v′′2 = c, at every derivation. In arc mode, every time the selector
b+ absorbs half of the right context b in bc. In emdf mode, whenever (aL, λ) is
introduced, the next selector starts with a (a is the left end of the selector aa)
and whenever (ab, cR) is introduced, the next selector ends with the adjoined
right context c (c is the right end of the selector b+c+). In iemdf mode, the
condition (uL, v) or (u, vR) is satisfied and the selector is inside the previously
introduced contexts. In all modes, the selectors are chosen of maximal length.

However, the language L3 is not in ICCmax(REG). Assume that the language
L3 ∈ ICCmax(REG) for a maximal grammar Gmax. In order to generate the
strings an, n ≥ 1, we need a selector ak, k ≥ 0, with the context (ai1 , ai2), i1+i2 ≥
1. Now, consider a string apbpcp for a large p ≥ k. As the context (ai1 , ai2) can
be applied to apbpcp by choosing a subword ak in ap, we can produce strings of
the form ap+i1+i2bpcp /∈ L3. A contradiction. ��
The following result is the counterpart for the above lemma.

Lemma 4. ICCmax(REG)− ICCβ(REG) �= ∅, β ∈ {mdf,mloc, arc, emdf,
iemdf}.
Proof. Consider the language L4 = {ancbnamcbm | n,m ≥ 0}. It is in
ICCmax(FIN), because this language can be generated by the grammar Gmax =
({a, b, c}, cc, (c, (a, b))). By Lemma 1, L4 ∈ ICCmax(REG).

However, L4 /∈ ICCβ(REG) for the above β. Assume that L4 ∈ ICCβ(REG)
for any grammar Gβ = ({a, b, c}, A, (S1, C1), . . . , (Sr, Cr)). First, we give the
proof for the case β = mdf . As axiom is also present in the language, the axiom
A must have a word of the form aicbiajcbj, i, j ≥ 0, and a context of the form
(ak, bk), k ≥ 1, is adjoined to such a word, then either the number of occurrences
of a and b around the first c, or the number of occurrences of a and b around the
second c is increased. Assume that the occurrences of a and b around the first c
is increased equally (the case of a and b increased equally around the second c is
symmetric). Therefore, we have aicbiajcbj =⇒ ai1akai2cbi3bkbi4ajcbj for i1+i2 =
i3 + i4 = i. The derivation must continue using a selector which covers at least
one of the contexts ak or bk. Continuing the derivation in this fashion, at some
point of time, we have to increase the number of occurrences of a and b around
the second c. In such a case, we have to use a context of the form (ap, bp), p ≥ 1,
and the selector should contain the subword bk which was introduced in the
previous derivation. As ap is a left context, it cannot be added to the right
side of bk and so ap should be adjoined to the left of bk (but not necessarily
immediate left). Then, we will have unequal number of a and b around the
second c, which results in a word not in L4. Other possibilities of derivations
also lead to generation of strings not in the language. Therefore, L(Gmdf) = L4 is
impossible. For β = emdf mode, as the definition is based on depth-first concept,
the above argument about the context and selector are applicable. Continuing in

On the Relative Expressive Power of Contextual Grammars 253

that line, we have the context (ak, bk) is end-marked. Therefore, we have either
ak

L,R or bk
L,R. Obviously, ak

R and bk
L are failed to increase the occurrences of a and

b around the second c. If ak
L is the case, the occurrences of a around the second c

cannot be increased and if bk
R is the case, the occurrences of b around the second

c cannot be increased, thus unequal occurrences a and b is generated. It is not
hard to come-up with a similar argument to prove that the language cannot
be generated by iemdf grammars. Now, let us take β = mloc. By definition of
the grammar, every time the contexts are introduced adjacent to the previously
introduced contexts or to the previously used selector, pumping equal number
of a and b is possible only on one part of the language. Otherwise, we can derive
a word which is not in the language using a similar technique as above.

Finally, let us consider the case for β = arc. From the language, it is obvious
that no selector can have both c as a subword. Otherwise, b and a cannot be
increased in between the two c. Since the selector accumulates only on its right
side in this mode, if we use a selector contains the second c as a subword in
the axiom, then we cannot pump equal occurrences of a and b around the first
c. On the other hand, if we choose a selector which contains the first c as a
subword, then a∗cb+ will be a selector for further derivations. However, from
this selector, we can increase the occurrences of a only in the second part, thus
unequal number of a and b around the second c is generated. A contradiction.

��
From Lemma 2, 3 and 4, we have the following theorem.

Theorem 1. ICCmax(REG) is incomparable with the families ICCα(REG),
for α ∈ {mdf,mloc, arc, emdf, iemdf}, but not disjoint.

Lemma 5. ICCα(REG)− ICCmdf (REG) �= ∅, α ∈ {mloc, arc, emdf, iemdf}.

Proof. Consider the language L5 = {ancbn | n ≥ 1}∪{an | n ≥ 1}. This language
is in the family ICCα(REG) for the above α. Because this language can be gen-
erated by the grammar Garc = ({a, b, c}, {acb, a, aa}, (aa+, (λ, a)), (cb+, (a, b))),
in arc mode. For maximal local mode, the grammar Gmloc =
({a, b, c}, {acb, a, aa}, (aa, (λ, a)), (acb, (a, b))) generates L5. Note that, the
selector aa cannot be used in the subword a+cb+ since once a selector is chosen
in this mode, it will always be a subword to the further subwords. For emdf and
iemdf , the grammar G5 = ({a, b, c}, {acb, a, aa}, (aa+, (λ, aR)), (acb+, (a, bR)))
generates L5.

However, L5 /∈ ICCmdf (REG). On contrary, let us assume that L5 ∈
ICCmdf (REG) for a mdf grammar Gmdf . In order to generate the strings of
the first part, we need a context of the form (am, bm),m ≥ 1. In order to obtain
words of the form an for a large n, we need a context (ai, aj), i+j ≥ 1, associated
with the selector ak, k ≥ 1. Assume a word am+rcbm+r in the language where
m+ r ≥ k. Also, assume that this word is derived from arcbr, r ≥ 1 by adjoining
the context (am, bm). The selector for the next derivation should contain one
of the contexts am or bm. Now we can use the selector ak and obtain a word
ai+j+m+rcbm+r /∈ L5. A contradiction. ��

254 L. Kuppusamy and K. Krithivasan

Lemma 6. ICCα(REG)− ICCβ(REG) �= ∅, α ∈ {mloc,mdf, emdf},
β ∈ {arc, iemdf}.
Proof. Consider the marked mirror image language L6 = {wcwr | w ∈ {a, b}∗}.
This language can be generated by the grammars

Gmloc = ({a, b, c}, c, (c, {(a, a), (b, b)})).
Gmdf = ({a, b, c}, c, ({w′cw′′ | w′, w′′ ∈ {a, b}∗}, {(a, a), (b, b)})).
Gemdf = ({a, b, c}, c, ({w′cw′′ | w′, w′′ ∈ {a, b}∗}, {(aL, a), (bL, b)})).

However, this language does not belong to ICCarc(REG), ICCiemdf (REG). Be-
cause, for any type of grammar, generating the strings of the form wcwr is
possible only when the context of the form (ai, ai), i ≥ 1 or (bj , bj), j ≥ 1, is
adjoined to the selector c in each derivation, or when the above contexts are
adjoined to the selector w′cw′′, w′, w′′ ∈ {a, b}∗ and the selector w′cw′′ is of
maximal length. So, starting from c, either the selector c should absorb both
right and left context or should not absorb any context. In arc grammars, as the
selector absorbs the right context only, we cannot generate the language L6 or
otherwise, we can generate words which are not in L6. In iemdf mode, though
the selector can absorb right and left contexts, it is not permitted to absorb both
contexts at a time since the chosen selector for the next derivation should be
inside the adjoined contexts. Therefore, choosing a selector w′cw′′ of maximal
length is not possible. ��
From Lemma 2, 5 and 6, we have the following theorem.

Theorem 2. ICCmdf (REG) is incomparable with ICCiemdf (REG), but not
disjoint.

Lemma 7. ICCα(REG)− ICCβ(REG) �= ∅, α ∈ {arc, iemdf}, β ∈ {mloc,
mdf, emdf}.
Proof. Consider the non-marked duplication language L7 = {ww | w ∈ {a, b}∗}.
This language can be generated by the grammars

Garc = ({a, b}, λ, ({w′ | w′ ∈ {a, b}∗}, {(a, a), (b, b)})),
Giemdf = ({a, b}, λ, ({w′ | w′ ∈ {a, b}∗}, {(a, aR), (b, bR)})).

In arc mode, starting with the initial selector λ, it accumulates the right context
a or b every time. In iemdf mode, every time, the selector for the next derivation
is chosen inside the adjoined contexts (but right context is included for meeting
the depth-first condition) and of maximal length. A sample derivation in α mode
α ∈ {arc, iemdf} is given as

λ =⇒α w1
↓w1

↓ =⇒α w1w2
↓w1w2

↓ =⇒α w1w2w3
↓w1w2w3

↓ =⇒∗
α ww.

However L7 does not belong to ICCβ(REG) for the above β. In order to
generate the strings of the form ww, at each derivation, from the derived string

On the Relative Expressive Power of Contextual Grammars 255

w′′ ∈ L7, the context (x, x), x ∈ {a, b}+ is adjoined at the beginning of w′′(left
context x) and at the center of w′′(right context x) or at the center of w′′(left
context x) and at the end of w′′(right context x). This implies, the chosen selector
should expand only at one side from the center. Assume that w′ ∈ L7 is derived
from w′′ in such a way. Then, w′ = zxzx or w′ = xzxz, for z ∈ {a, b}∗, x ∈
{a, b}+ is the context adjoined and w′′ = zz. For β = mloc mode, at each
derivation, the contexts are adjoined to the side of previously adjoined contexts
and the selector (which is over {a, b}) is chosen of maximal length, from w′ we
can derive zyxzxy /∈ L7 or yxzxyz /∈ L7, where y is the context adjoined (which
should be near the last adjoined context x). Next, we assume β = emdf . In emdf
mode, we have the contexts are end-marked, thus (x{L,R}, x) or (x, x{L,R}) is
the case. If (xR, x) is the case, we have w′ = zxRzx or xRzxz and from w′ we
obtain, w′ =⇒ yRzxyzx or w′ =⇒ yRxyzxz /∈ L7 for the adjoined context y.
Though yRzxyzx ∈ L7, in the next derivation while adjoining another context
(y′R, y′), we would have y′Ryy′zxyzx /∈ L7. If (xL, x) is the case, we have w′ =
zxLzx or w′ = xLzxz and from w′, we obtain w′ =⇒ zyLxzxy /∈ L7 or w′ =⇒
yLxyzxz /∈ L7, where is the adjoined context. For the other case (x, x{L,R}), a
similar proof can be given. Note that it is look like L7 can be generated in emdf
mode (from w′ = zxRzx), if the contexts of the form (xR, x) and (y, yL) are
applied alternatively, however, since their corresponding selectors are same, the
contexts need not be applied alternatively and one context can be applied two
times to arrive to a contradiction. For β = mdf mode, assume that w′ = zxzx or
xzxz ∈ L7 is derived from w′′ = zz. Since w′ ∈ {a, b}∗, and the selector is over
{a, b} with maximal length, from w′ we can derive yzxzxy /∈ L7 or yxzxzy /∈ L7.

��
The above result is the converse relation for the Lemma 6. Therefore from the
above two lemmas and Lemma 2, we have the following theorem.

Theorem 3. The families ICCarc(REG) and ICCiemdf (REG) are incompara-
ble with the families ICCβ(REG), β ∈ {mloc,mdf, emdf}, but not disjoint.

Lemma 8. ICCarc(REG)− ICCiemdf (REG) �= ∅.
Proof. Consider the language L8 = {bnamcbnambn | n,m ≥ 0}. This language
can be generated by Garc = ({a, b, c}, c, (cb∗, {(b, bb), (a, a)}), (cb∗a∗, (a, a))). Ini-
tially, starting with the axiom c, the arc grammar generates strings of the form
bncb2n, n ≥ 1, using the context (b, bb). As half of the right context is absorbed
every time to the selector, the next selector (for the word bncb2n) will be cbn

and now the context (a, a) is applied several times to generate the language L8.
A sample derivation in arc mode is given by

c =⇒arc b↓cb↓b =⇒arc bb↓cbb↓bb =⇒arc bbb↓cbbb↓bbb =⇒∗
arc bn−1b↓cbn−1b↓bbn−1

=⇒arc bna↓cbna↓bn =⇒arc bnaa↓cbnaa↓bn =⇒∗
arc bnamcbnambn.

However, this language does not belong to ICCiemdf (REG). On contrary, let
us assume an iemdf grammar generates L8. Notice that the occurrences of b are
pumped equally at three places in the language. In general, no internal contextual

256 L. Kuppusamy and K. Krithivasan

grammar can pump more than two occurrences since at every derivation, we ad-
join only two contexts. Therefore, the necessary occurrences of b must be pumped
before a is pumped, using a context of the form (bi, b2i), i ≥ 1, with the associated
selector is of the form b∗cb∗. Since the contexts are end-marked, we have either
bi
L or bb2i

R . If bb2i
R is the case, then the occurrences of a cannot be inserted in be-

tween bs. When bi
L is the case, we can only generate bncbnbn and the occurrences

of a cannot be inserted at the correct place on the left of c (a sample derivation is
c =⇒iemdf

↓bLcb↓b =⇒iemdf
↓bLbcbb↓bb =⇒iemdf

↓bLbbcbbb↓bbb =⇒∗ bncbnbn).
Note that, in iemdf mode, the selector should not cover both the adjoined
contexts. ��
Lemma 9. ICCα(REG)− ICCarc(REG) �= ∅, α ∈ {iemdf,mdf}.
Proof. Consider the language L9 = {anbncbn | n ≥ 1}. This language can
be generated by the grammar Gα = ({a, b, c}, abcb, (b+cb+, (ab, bR))), α ∈
{mdf, iemdf} (for mdf grammar, there is no subscript R in the context).

However, L9 /∈ ICCarc(REG). On contrary, let us assume that L9 ∈
ICCarc(REG) for an arc grammar Garc. As c is a marker in the language, it is
easy to see that any context which uses to generate the language will be of the form
(aibi, bi), i ≥ 1, and the associated selector will be of the form bj1cbj2 , j1, j2 ≥ 1.
In this mode, the selector never absorbs the left context. So, there is no change
in the left end of the selector in every derivation. In order to generate the strings
of the language, at each derivation, the selector should absorb the substring bi

from the left adjoined context aibi. Otherwise, the symbols a and b do not occur
in order. This results misplaced occurrences of a and b in the generated string. A
contradiction. ��
From the above two lemmas and Lemma 2, we have the following result.

Theorem 4. ICCarc(REG) is incomparable with ICCiemdf (REG), but not
disjoint.
Lemma 10. ICCmdf (REG)− ICCmloc(REG) �= ∅.
Proof. Consider the language L10 = {ancbn+mdam | n,m ≥ 1}. This can be
generated by Gmdf = ({a, b, c, d}, acbbda, (cb+, (a, b)), (b+d, (b, a))). However this
language is not in ICCmloc(REG). Assume that L10 ∈ ICCmloc(REG) for a
mloc grammar. To generate the language, the grammar will have the contexts of
the form (ai, bi) and (bj , aj), i, j ≥ 1, and their associated selectors will be of
the form ak1cbk2 , bk3dak4 , respectively for k1, k2, k3, k4 ≥ 0. Consider the word
an′

cbn′
bda ∈ L10 for a large n′ (thus the word is not in the axiom). To reach

this word from the axiom, we might have used the context (ai, bi) (may be sev-
eral times) and the selector ak1cbk2 . As we work in mloc mode, any further se-
lector must have this selector as a subword. However, from this word, we cannot
reach a word an′

cbn′+m′
dam′ ∈ L10 for a large m′. To reach this word, the selector

bk3dak4 must be used, but it does not have the previously used selector ak1cbk2 as a
substring. A similar argument can be given to the word an′

cbn′+m′
dam′

, if we drive
from acbm′

dam′
, for a large m′. ��

From Lemma 2, 5 and 10, we have the following result.

On the Relative Expressive Power of Contextual Grammars 257

Theorem 5. ICCmdf (REG) is incomparable with ICCmloc(REG), but not dis-
joint.

Lemma 11. ICCmdf (REG)− ICCemdf (REG) �= ∅.
Proof. Consider the language L11 = {ancbmcbmcan | n,m ≥ 1}. This can
be generated by Gmdf = ({a, b, c}, acbcbca, (b+cb+, (b, b)), (a∗cb+cb+ca∗, (a, a))).
However this language is not in ICCemdf (REG). On contrary, let L11 ∈
ICCemdf (REG) for a emdf grammar Assume that first we pump the occurrences
of b and then the occurrences of a. As b is equally pumped around the second c,
there will be a context of the form (bi, bi), i ≥ 1. As at least one of the context is
end-marked, we have either bi

L or bi
R. Let the left context be end-marked. Then,

if bi
L is the case, then the next selector should begin with bi and therefore the left

context used in the next derivation should be adjoined to the left of bi
L. Hence,

we cannot pump the occurrences of a on the left of first c, using a context of the
form (aj , aj), j ≥ 1. Similarly, if bi

R is the case, then the next selector should end
with bi and therefore the right context used in the next derivation should be ad-
joined to the right of bi. Hence, we cannot pump the occurrences of a on the right
of third c, using a context of the form (ap, ap), p ≥ 1. Otherwise, we can produce a
word which is not in the language. We can give a similar proof if the right context
bi is end-marked. If we assume that first we pump the occurrences of a and then
b, then there should be a context of the form (ak, ak), k ≥ 1, in order to pump
the occurrences of a equally at the ends. As one of the contexts is end-marked, we
have either ak

L or ak
R. We assume that the left context ak is end-marked (i.e., ak

L

or ak
R). Then, it is easy to see that we cannot pump the occurrences of b equally

around the second c. If the right context ak is end-marked, we can give a similar
reasoning for not pumping the occurrences b equally. ��
From Lemma 2, 5 and 11, we have the following result.

Theorem 6. ICCmdf (REG) is incomparable with ICCemdf (REG), but not
disjoint.

Lemma 12. ICCemdf (REG) − ICCβ(REG) �= ∅, β ∈ {max,mloc,mdf, arc,
iemdf}.
Proof. Consider the language L12 = {a2mcam+n−1ca2n | n,m ≥ 1}. This can
be generated by the grammar Gemdf = ({a, c}, {aacacaa}, (aa+ca+, {(aaL, a),
(aa, aL)}), (acaa+, (a, aaR))). Intuitively, the first selector aa+caa+ is used to in-
crease the necessary occurrences of m and 2m of a around the first c and the sec-
ond selector acaa+ is used to increase the necessary occurrences of n and 2n of a
around the second c. Whenever, the first selector aa+ca+ and the context (aaL, a)
is applied, we can continue further derivations with the same selector aa+ca+ it-
self. If the context (aa, aL) is applied, in the next derivation the second selector
acaa+ must be chosen. Once this selector is chosen, the same selector acaa+ can
only be used in the further derivations and choosing the first selector is not pos-
sible thereafter. However, this does not affect generating the language L12 as the
first selector can be used for the required 2m and m occurrences of as and then

258 L. Kuppusamy and K. Krithivasan

the second selector can be used to generate the required number of n and 2n oc-
currences of as. Note that, due to the maximal condition of the selector, whenever
the context (aaL, a) or (aa, aL) is applied, the right context a is always adjoined
just before the second c and this feature helps to switch over to use the second
selector. It is easy to see that L(Gemdf) = L12.

However, the language L12 is not in ICCβ(REG) for the above β. As-
sume that the language L12 ∈ ICCβ(REG) for any grammar Gβ =
({a, b, c}, A, (S1, C1), . . . , (Sr, Cr)). In order to pump the as around the first c we
need a context of the form (a2i, ai), i ≥ 1, and the associated selector will be of the
form ak1cak2 , k1, k2 ≥ 0. Similarly, in order to pump the as around the second c we
need a context of the form (aj , a2j), j ≥ 1, and the associated selector will be of the
form ak3cak4 , k3, k4 ≥ 0. Let β = max,mdf. Assume that a2m′

cam′
an′

ca2n′ ∈ L12
is obtained by adjoining the context (a2i, ai) and the selector is used around the
second c (i.e., ak1cak2); the other case of adjoining the context (aj , a2j) is similar.
Since the right context ai can be covered by the as in between the two cs (i.e.,
by the selector ak3cak4) and the chosen selector can be locally maximal, we can
adjoin the context (aj , a2j) and derive a word a2m′

ajcam′
a2jan′

ca2n′
/∈ L12. For

β = mloc, arc mode, we can generate only one part of the language as we have
seen that these variants do not pump symbols across the two markers. The case
β = iemdf mode is similar to arc,mloc,mldf , because the next selector should be
inside the adjoined contexts, thus the selector cannot go across the two markers.

��
From Lemma 2, 6 and 12, we have the following result.

Theorem 7. ICCemdf (REG) is incomparable with ICCiemdf (REG), but not
disjoint.

Lemma 13. ICCmloc(REG)− ICCemdf (REG) �= ∅.
Proof. Consider the language L13 = {an | n ≥ 1}∪{bn | n ≥ 1}∪{ancbn | n ≥ 1}.
This can be generated by the mloc grammar Gmloc = ({a, b, c}, {a, aa, b, bb, acb},
(aa, (λ, a)), (bb, (λ, b)), (acb, (a, b))). However, this language cannot be generated
by an emdf grammar. Assume that L13 ∈ ICCemdf (REG) for any grammar
Gemdf = ({a, b, c}, A, (S1, C1), . . . , (Sr, Cr)). In order to generate the strings an

and bn, we need contexts of the form (ai1
E , ai2

E), i1+i2 ≥ 1, and (bj1
E , bj2

E), j1+j2 ≥
1, with their associated selectors of the form ai, i ≥ 1, and bj, j ≥ 1. Also, in order
to generate the strings ancbn, we need a context of the form (ak

E , bk
E), k ≥ 1, with

the associated selector of the form ak1cbk2 , k1, k2 ≥ 1. The suffix E denotes the
(right or the left) end-marker. Consider a word an′

cbn′ ∈ L12 for a large n′. Then,
to reach this word, we should have used the context (ak

E , bk
E). In emdf mode, at

each derivation, the selector should cover and start/end with one of the adjoined
contexts. Therefore, the next selector should start or end with the context ak

(the other case for the context bk is similar). Such a context can be covered by a
selector am′

, thus we can apply the context (ai1 , ai2) to an′
cbn′

, resulting a word
an′+i1+i2cbn′

/∈ L13. A contradiction. ��
From the above two lemmas and Lemma 2, we have the following theorem.

On the Relative Expressive Power of Contextual Grammars 259

Theorem 8. ICCmloc(REG) is incomparable with ICCemdf (REG), but not
disjoint.

4 Conclusion

In this paper, we have considered the generative power of various classes of in-
ternal contextual grammars where the restrictions are considered in the deriva-
tions, namely, max,mloc,mdf, arc, emdf, iemdf . We conjecture that Lemma 2
can be strengthened as the class of regular languages is in the family of languages
ICCα(REG) for the variants discussed in this paper.

In the Chomsky hierarchy of languages, when the restrictions are increased in
the form of production rules (from unrestricted to context sensitive (i.e. context
dependent), from context dependent to context-free, from context-free to regu-
lar), the generative power of the class of grammars is decreased. On the other
hand, in regulated rewriting, when the rules are context-free (for instance, ma-
trix grammars, programmed grammars, periodically time varying grammars and
grammars with regular control), putting restrictions in the manner of applying the
rules, the generative power of the grammars is increased (but for type-3 rules of
regulated rewriting, the generative power is unaltered) [3],[22]. Therefore, it will
be a nice result in the field of formal languages to show that there are families
of languages whose grammars are obtained by imposing more restrictions on the
manner of applying the rules, but the generative power of the grammars is neither
increased nor decreased; they are incomparable. In this paper, we have identified
the families of languages in the domain of contextual grammars which possess this
interesting property. Also, we showed that there are languages which are common
to all these families of languages. Hence these families are not disjoint.

Thus, we have found that there is a class of languages obtained by putting re-
strictions in the derivation of the same basic class of grammars (internal contex-
tual grammars) whose behaviour is different from the existing class of grammars
in formal languages theory. How these restrictions play a role in natural language
processing is an interesting problem which could be explored in future. A study
of descriptional complexity measures of the internal contextual grammars under
these restrictions can also be explored. We refer to [10], [13], [14] for recent works
where descriptional complexity measures of internal contextual grammars and
ambiguity of contextual languages were considered.

Acknowledgments. The authors thank the three anonymous referees for their
insightful remarks and comments which helped to improve the presentation of the
paper. The first author’s work was partially carried out during the tenure of an
ERCIM “Alain Bensoussan” Fellowship Programme. Also, he mentions his spe-
cial thanks to Dr. Eric Villemonte de la Clergerie, INRIA, for his support and
encouragement.

References

1. Boullier, P.: Range concatenation grammars. In: Proceedings of Sixth International
Workshop on Parsing Technologies (IWPT 2000), pp. 53–64 (2000)

260 L. Kuppusamy and K. Krithivasan

2. Boullier, P.: From contextual grammars to range concatenation grammars. Elec-
tronic Notes in Theoretical Computer Science 53, 41–52 (2001)

3. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS
monographs on TCS. Springer, Heidelberg (1989)

4. Ehrenfeucht, A., Ilie, L., Păun, G., Rozenberg, G., Salomaa, A.: On the generative
capacity of certain classes of contextual grammars. In: Mathematical Ling. and Re-
lated Topics, pp. 105–118. The Publ. House of the Romanian Academy, Bucharest
(1995)

5. Joshi, A.K.: How much context-sensitivity is required to provide structural descrip-
tions: Tree adjoining grammars. In: David, D., Lauri, K., Arnold, Z. (eds.) Natural
Language Processing: Psycholinguistic, Computational, and Theoretical Perspec-
tives, pp. 206–250. Cambridge University Press, New York (1985)

6. Ilie, L.: A non-seminlinear language generated by an internal contextual grammar
with finite selection. Ann. Univ. Bucharest Math. Inform. Series 45, 63–70 (1996)

7. Ilie, L.: On computational complexity of contextual languages. Theo. Comp. Sci-
ence 183(1), 33–44 (1997)

8. Ilie, L.: Some recent results in contextual grammars. Bull. EATCS 62, 172–194
(1997)

9. Lakshmanan, K.: New Classes of Contextual Grammars for Mildly Context Sensi-
tive Formalisms. In: Terikhovsky, O.N., Burton, W.N. (eds.) New Topics in Theo-
retical Computer Science, pp. 1–25. Nova Publishers, USA (2008)

10. Lakshmanan, K., Anand, M., Krithivasan, K.: On the trade-off between ambiguity
and measures in internal contextual grammars. In: Proceedings of 10th International
Workshop on Descriptional Complexity of Formal Systems, pp. 216–223 (2008)

11. Lakshmanan, K., Krishna, S.N., Rama, R., Martin-Vide, C.: Internal contextual
grammars for mildly context sensitive languages. Research on Language and Com-
putation 5(2), 181–197 (2007)

12. Lakshmanan, K.: End-marked maximal depth-first contextual grammars. In: Ibarra,
O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 339–350. Springer, Heidelberg
(2006)

13. Lakshmanan, K.: A note on Ambiguity of Internal Contextual Grammars. Theo.
Comp. Science 369, 436–441 (2006)

14. Lakshmanan, K.: Incompatible measures of internal contextual grammars. In: Pro-
ceedings of DCFS 2005, pp. 253–260 (2005)

15. Marcus, S.: Contextual grammars. Rev. Roum. Pures. Appl. 14, 1525–1534 (1969)
16. Marcus, S., Martin-Vide, C., Păun, Gh.: Contextual grammars as generative models

of natural languages. Computational Linguistics 24(2), 245–274 (1998)
17. Marcus, S., Martin-Vide, C., Păun, Gh.: On internal contextual grammars with

maximal use of selectors. In: Proc. 8th Conf. Automata & Formal Lang., vol. 54,
pp. 933–947. Salgotarjan. Publ. Math., Debrecen (1999)

18. Martin-Vide, C., Miquel-Verges, J., Păun, Gh.: Contextual grammars with depth-
first derivation. In: Tenth Twente Workshop on Language Tech.; Algebraic Methods
in Language Processing, Twente, pp. 225–233 (1995)

19. de Groote, P.: Towards abstract categorial grammars. In: ACL 2009. ACL Press
(2001), http://www.aclweb.org/anthology/P01-1-33

20. Păun, Gh., Nguyen, X.M.: On the inner contextual grammars. Rev. Roum. Pures.
Appl. 25, 641–651 (1980)

21. Păun, Gh.: Marcus Contextual Grammars. Kluwer Academic Publishers, Dordrecht
(1997)

22. Salomaa, A.: Formal Languages. Academic Press, London (1973)

http://www.aclweb.org/anthology/P01-1-33

Integration Testing from Structured First-Order
Specifications via Deduction Modulo

Delphine Longuet1 and Marc Aiguier2

1 Laboratoire Spécification et Vérification, ENS Cachan,
61 avenue du Président Wilson, F-94235 Cachan Cedex
delphine.longuet@lsv.ens-cachan.fr

2 Laboratory of Mathematics Applied to Systems (MAS), École Centrale Paris,
Grande voie des vignes, F-92295 Châtenay-Malabry

marc.aiguier@ecp.fr

Abstract. Testing from first-order specifications has mainly been studied for flat
specifications, that are specifications of a single software module. However, the
specifications of large software systems are generally built out of small specifi-
cations of individual modules, by enriching their union. The aim of integration
testing is to test the composition of modules assuming that they have previously
been verified, i.e. assuming their correctness. One of the main method for the
selection of test cases from first-order specifications, called axiom unfolding, is
based on a proof search for the different instances of the property to be tested,
thus allowing the coverage of this property. The idea here is to use deduction
modulo as a proof system for structured first-order specifications in the context
of integration testing, so as to take advantage of the knowledge of the correctness
of the individual modules.

Testing is a very common practice in the software validation process. The principle of
testing is to execute the software system on a subset of its possible inputs in order to
detect failures. A failure is detected if the system behaves in a non-conformant way
with respect to its specification.

The testing process is usually decomposed into three phases: the selection of a rel-
evant subset of the set of all the possible inputs of the system, called a test set; the
submission of this test set to the system; the decision of the success or the failure of the
test set submission, called the oracle problem. We focus here on the selection phase,
which is the crucial point for the relevance and the efficiency of the testing process.
In the approach called black-box testing, tests are selected from a (formal or informal)
specification of the system, without any knowledge about the implementation.

Our work follows the framework defined by Gaudel, Bernot and Marre [1], for testing
from specifications expressed in a logical formalism. One approach to selection consists
first in dividing an exhaustive test set into subsets, and then in choosing one test case in
each of these subsets, thus building a finite test set which covers the initial exhaustive
test set. One of the most studied selection method for testing from equational (and
then first-order) specifications is known as axiom unfolding [1–4]. Its principle is to
divide the initial exhaustive test set according to criteria derived from the axioms of the

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 261–276, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

262 D. Longuet and M. Aiguier

specification, using the well-known and efficient proof techniques associated to first-
order logic.

Contribution. Test case selection from first-order specifications have mainly been stud-
ied for flat specifications (and then flat programs), that are specifications of a single
software module. However, for the description of large systems, it is convenient to
compose specifications in a modular way [5]. The specification of a large system is
generally built from small specifications of individual modules, that are composed by
making their union and enriching it with new features in order to get new (larger) spec-
ifications, that are themselves composed and so on. The aim of integration testing is
to test the composition of modules, assuming that these modules have previously been
tested and then are correct. The assumption here is that the system under test is struc-
tured according to the structuration of its specification.

Here, we propose to use the knowledge of the correctness of individual modules to
make the test selection method based on axiom unfolding more efficient. Since the mod-
ules are correct (i.e. they have already been sufficiently tested or completely proved), it is
reasonable to assume to have an executable and complete specification of these modules,
either from which their implementations has been build or which would have been gen-
erated from their implementations. Our selection method being defined for first-order
specifications, it is important for this executable specification to be written in first-order
logic. Of course, in the case where the specification has to be generated from the im-
plementation, the generation may be more or less easy according to the programming
language used (imperative or functional), but this is the price to pay to make the selection
method efficient by taking advantage of the specification structure. However, we can ob-
serve that the obtained specification is most often composed of (conditional) equations
that can be oriented from left to right into confluent and terminating (conditional) rewrite
rules, and of predicate definition formulas of the form p(t1, . . . , tn)⇔ ϕ, where ϕ is a
quantifier-free formula, that can be oriented into confluent and terminating rewrite rules
on propositions (see Section 2). We will then suppose to have, for each individual mod-
ule, a confluent and terminating rewrite system that completely specifies its behaviour.
To preserve the black-box aspect of the approach (the tester has no knowledge about the
implementation of the system and its modules), we suppose that these executable and
complete specifications of modules have been written beforehand by the programmer.

In order to make our selection method more efficient, we propose to use the de-
duction modulo proposed by Dowek, Hardin and Kirchner [6] as a proof system for
structured specifications. Deduction modulo is a formalism introduced to separate com-
putations from deductions in proofs by reasoning modulo a congruence on propositions,
which is defined by a rewrite relation over first-order terms and propositions. The idea
behind deduction modulo is to hide the computational part of the proof in the congru-
ence, in order to focus on its deductive part. In the context of integration testing, the
same idea can be used to focus the proof on the new features coming from the composi-
tion of modules, relying on the correct behaviour of these modules which is embedded
in the congruence. It leads to shorter proofs which take advantage of the structuration
of specifications, thus making the selection procedure more efficient.

Related Work. Testing from structured first-order specifications has already been stud-
ied in the framework of institutions. Machado’s works deal with the oracle problem [7],

Integration Testing from Structured First-Order Specifications 263

that is, whether a finite and executable procedure can be defined for interpreting the
results of tests. When dealing with structured specifications, problems arise in partic-
ular with the union of specifications. Since the same sort and operations may be in-
troduced and specified in different modules, the union will be consistent only if the
different specifications of the same operations are. Doche and Wiels define an exten-
sion of the notion of institution to take test cases into account [8]. They incrementally
generate tests from structured specifications, generating tests from small specifications
and composing them according to a push-out of specifications.

Both of these works aim at building a general test set for the whole structured spec-
ification, composing individual test sets obtained for each of its part. The structuration
of the specification helps to incrementally build the test set but not to actually test the
program in an incremental way. We are here interested in incrementally testing from a
structured specification, basing the construction of a test set on the success of the pre-
vious ones. Moreover, from the selection point of view, none of the mentioned works
propose any particular strategy, but the substitution of axiom variables for some arbi-
trarily chosen data.

Organisation of the Paper. We first recall standard definitions about structuration of
specifications (Section 1) and deduction modulo (Section 2). Section 3 introduces the
general framework for testing from logical specifications and gives the result of the
existence of an exhaustive test set for quantifier-free first-order specifications. We also
prove the existence of an exhaustive test set for structured first-order specifications,
relying on the correctness of the smaller modules. We restrict to quantifier-free formulas
since we showed in [9] that existential formulas are not testable. Testing a formula of
the form ∃xϕ(x) actually comes down to exhibiting a witness value a such that ϕ(a)
is interpreted as true by the system. Of course, there is no general way to exhibit such
a relevant value, but notice that surprisingly, exhibiting such a value would amount to
simply prove the system with respect to the initial property. In Section 4, the selection
method by means of selection criteria is presented. We develop in Section 5 our test
selection method from structured first-order specifications, by unfolding axioms using
deduction modulo. We give the algorithm of the procedure and prove the soundness and
completeness of the method, i.e. the preservation of exhaustiveness through unfolding.

1 Structured First-Order Specifications

A multi-sorted first-order signature Σ = (S, F, P, V) is composed of a set of sorts S,
a set of operations F , a set of predicates P and a set of variables V over these sorts.
TΣ(V) and TΣ are both S-indexed sets of terms with variables in V and ground terms,
respectively, freely generated from variables and operations in Σ and preserving arity
of operations. A substitution is any mapping σ : V → TΣ(V) that preserves sorts.
Substitutions are naturally extended to terms with variables. Formulas (or propositions)
are built as usual in first-order logic from atomic formulas p(t1, . . . , tn), where p is a
predicate and t1, . . . , tn are first-order terms, and Boolean connectives. Here, we only
consider quantifier-free formulas. As usual, variables of quantifier-free formulas are
implicitly universally quantified. A formula over Σ is said ground if it does not contain
variables. Let us denote For(Σ) the set of all formulas over the signature Σ.

264 D. Longuet and M. Aiguier

A model of a signature Σ is a first-order structure giving an interpretation to sorts,
operations and predicates of Σ. Mod(Σ) is the set of models of Σ. The satisfaction
of a quantifier-free formula ϕ by a given modelM of Σ is inductively defined on the
structure of ϕ as usual and denoted by M |= ϕ. Given a set of formulas Ψ over Σ
and two modelsM andM′ of Σ, we say thatM is Ψ -equivalent toM′, denoted by
M≡Ψ M′, if and only if for every formula ϕ in Ψ ,M |= ϕ if and only ifM′ |= ϕ.

Given a specification Sp = (Σ,Ax), a model M of Σ is a model of Sp if M
satisfies all the formulas in Ax . Mod(Sp) is the subset of Mod(Σ) whose elements
are the models of Sp. A formula ϕ over Σ is a semantic consequence of Sp, denoted
by Sp |= ϕ, if and only if every modelM of Sp satisfies ϕ. Sp• is the set of all the
semantic consequences of Sp.

The semantics of a specification Sp = (Σ,Ax) is given by its signature Sig(Sp) =
Σ and its class of models �Sp� = Mod(Sp). The specification building operators al-
low to write basic (flat) specifications, to make the union of two specifications and to
enrich specifications with additional sorts, operation and/or predicate and axioms [5].
In general, small specifications are written, for instance specifying basic operations and
predicates for a given sort (Booleans, naturals, lists. . .), then they are composed by the
union operator, and finally enriched by new sorts, operations, predicates and axioms
involving several of the initial specifications (empty list, list length, list of the divisors
of a natural. . .). The union and enrichment operators are defined as follows.

Basic Sp = (Σ,Ax)

Sig(Sp) = Σ
�Sp� = Mod(Sp)

Union Sp = Sp1 union Sp2

Sig(Sp) = Sig(Sp1) ∪ Sig(Sp2)
�Sp� = �Sp1� ∩ �Sp2�

Enrich1 Sp = enrich Sp1
by sorts S2, ops F2, preds P2, axioms Ax2

Sig(Sp) = Sig(Sp1) ∪ (S2, F2, P2)
�Sp� = {M ∈ Mod(Sig(Sp)) | M|Sig(Sp1)

∈ �Sp1� ∧ M |= Ax2}

2 Deduction Modulo

A term rewrite rule l→ r is a pair of terms l, r such that all free variables of r appear in
l. A term rewrite system is a set of term rewrite rules. A proposition rewrite rule A→ P
is a pair composed of an atomic proposition A and a proposition P , such that all free
variables of P appear in A. A rewrite system R is a pair consisting of a term rewrite
system and a proposition rewrite system. We denote by P →R Q the fact that P can be
rewritten to Q in the rewrite system R in one step.R may be omitted if it is clear from

the context.
+−→R (resp.

∗−→R) is the transitive (resp. reflexive transitive) closure of this
rewrite relation. We denote by ≡R the congruence generated byR.

In the context of integration testing, we consider a system built from modules com-
posed by union and enrichment and we assume the correctness of these modules. As
we already explained in the introduction, since each module is correct, we suppose to
have the most concrete specification of each individual module. When expressed in

1 M|Σ stands for the reduct of M over the signature Σ.

Integration Testing from Structured First-Order Specifications 265

first-order logic, this concrete specification (most often) leads to a terminating and con-
fluent rewrite system. We will assume that the behaviour of the module is modelled
by this terminating and confluent rewrite system, where the behaviour of functions and
predicates is defined by rewrite rules over first-order terms and quantifier-free formulas
respectively. For instance, if we take the simple example of the greatest common divisor
(gcd) whose possible implementation written in Caml is:

let rec gcd(x,y) = if y > x then gcd(y,x)
else if x mod y = 0 then y

else gcd(y,x mod y);;

we obtain the following specification:

y > x⇒ gcd(x, y) = gcd(y, x)
¬(y > x) ∧ x mod y = 0⇒ gcd(x, y) = y
¬(y > x) ∧ ¬(x mod y = 0)⇒ gcd(x, y) = gcd(y, x mod y)
x > y ⇔ (¬(x = 0) ∧ y = 0) ∨ (pred(x) > pred(y))

This specification can obviously be transformed into a set of confluent and terminating
(conditional) rewrite rules on terms and propositions. On the contrary, the specification
from which this implementation of gcd has been tested would rather be:

x mod gcd(x, y) = 0 x mod z = 0 ∧ y mod z = 0⇒ gcd(x, y) ≥ z
y mod gcd(x, y) = 0

A congruence relation ≡ over formulas is naturally induced by these rewrite rules. For
instance, we have the following equivalences:

¬(gcd(2x + 1, 2) = gcd(2x, 2)
) ≡ (¬ gcd(2, 2x + 1 mod 2) = 2

) ≡ ¬(1 = 2
)

Using deduction modulo to guide the selection of test cases thus allows to internalise in
the congruence the knowledge of the individual modules correctness, in order to focus
the testing procedure on the new features of the system coming from the composition
of modules.

In order to deal with structured specifications, we must ensure that termination and
confluence of the rewrite systems underlying the individual modules are preserved
through the union of these modules. It has been proved that these properties of (simple)
termination and confluence are preserved for finite rewrite systems that are compos-
able [10] (the rewrite rules in different systems defining the same operation are the
same). This property of composability is reasonable in a testing framework, since it is
natural to suppose that an operation or a predicate appearing in different modules comes
from the same underlying module (used by these modules) and then is implemented in
the same way in every module. From now on, we will assume that the rewrite systems
underlying the modules are composable pairwise, so their union is also terminating and
confluent.

The sequent calculus modulo extends the usual sequent calculus by allowing to work
modulo the rewrite system R. When the congruence ≡R is the identity, this sequent
calculus collapses to the usual one. The sequent calculus modulo is as powerful as
the usual sequent calculus: it is shown in [6] that a formula is provable in the sequent

266 D. Longuet and M. Aiguier

calculus modulo if and only if it is provable in the usual sequent calculus using an
appropriate set of axioms which are called compatible.

Here, the sequent calculus modulo is dedicated to the inference of quantifier-free for-
mulas, so the rules for the introduction of quantifiers are omitted. Moreover, the rules
associated to Boolean connectives are reversible. Since we assume that the rewrite sys-
tem R is terminating and confluent, the rules for Booleans connectives can be used to
transform any sequent � ϕ, where ϕ is a quantifier-free formula, into a set of sequents
Γi � Δi where every formula in Γi and Δi is atomic. Such sequents will be called nor-
malised sequents. This transformation is obtained from basic transformations defined as
rewriting rules between elementary proof trees. We showed in [11] that for the sequent
calculus associated to quantifier-free formulas, every proof tree can be transformed into
a proof tree of same conclusion and such that Cut and Subs rules never occur under
rule instances associated to Boolean connectives. This result states that every sequent
is equivalent to a set of normalised sequents, which allows to deal with normalised se-
quents only. Therefore, in the following, we will suppose that the specification axioms
are given under the form of normalised sequents. We present the sequent calculus mod-
ulo for normalised sequents, which is defined by the following rules where Γ �R Δ is
a sequent such that Γ and Δ are two multisets of first-order formulas.

Γ,PRΔ,Q
Taut if P ≡R Q RP

Axiom if ∃ax ∈ Ax such that P ≡R ax

ΓRΔ

Γ ′RΔ′ Subs if Γ ′ ≡R σ(Γ) and Δ′ ≡R σ(Δ)
Γ,PRΔ Γ ′RQ,Δ′

Γ,Γ ′RΔ,Δ′ Cut if P ≡R Q

where for a multiset Γ , σ(Γ) is the multiset {σ(ϕ) | ϕ ∈ Γ}.
It is possible to show that, when normalised sequents are transformed into formulas

in clausal form, the cut and substitution rules can be combined to obtain the classical
resolution rule (see [12] for more details). Actually, as we will see afterwards, this is
the rule of resolution which is implemented in our unfolding algorithm. However, we
use the sequent calculus since it makes the correctness proof of this algorithm easier
(see Theorem 3). It is well-known that resolution is complete for quantifier-free formu-
las. Then it follows from the results of [6] that the resolution modulo as defined above is
also complete. Since the resolution modulo is equivalent to the sequent calculus modulo
restricted to normalised sequents, this calculus is complete. From now on, we will then
speak about theorems and semantic consequences without making any difference.

Example 1. We give here a specification of rationals, built as an enrichment of a spec-
ification of naturals NAT. Rationals are defined as pairs of naturals and the comparison
predicate strictly less than is defined as usual from the same predicate over naturals.

spec RAT =
enrich NAT by
type Rat ::= / (Nat ,Nat)
pred3: Rat × Rat
vars x, y, u, v: Nat
• x/s(y)3 u/s(v)⇔ x× s(v) < u× s(y)

end
This axiom gives the two following normalised sequents:

Integration Testing from Structured First-Order Specifications 267

(1) x/s(y)3 u/s(v) � x× s(v) < u× s(y)
(2) x× s(v) < u× s(y) � x/s(y)3 u/s(v)

The module implementing NAT can be defined by the following rewrite system:

x + 0→ x x× 0→ 0 x < 0→ ⊥
x + s(y)→ s(x + y) x× s(y)→ x + x× y 0 < s(x)→ "

s(x) < s(y)→ x < y

3 Testing from Logical Specifications

From now on, we assume that the specification of the system to be tested is given as
a (structured) first-order specification Sp = (Σ,Ax). Following previous works [1, 2,
13], we make the two following assumptions. First, the behaviour of the system under
test can be described as a first-order structure, sharing the same signature as its specifi-
cation. The system under test is thus considered to be a Σ-model. Secondly, test cases
can be expressed as quantifier-free first-order formulas over the signature Σ. Some
observability constraints must be imposed so that the system is able to evaluate the for-
mulas chosen to be test cases as true or false. Such formulas are called observable. Test
cases being quantifier-free first-order formulas, they must not contain non-instantiated
variables to be evaluated by the system. Therefore here, observable formulas are all
ground formulas. We will denote by Obs the set of observable formulas.

The success of the submission of test cases to the system is defined in terms of
formula satisfaction. Since the system is considered to be a formal model S ∈ Mod(Σ)
and a test case is a ground formula ϕ ∈ For(Σ), ϕ is said to be successful for S if and
only if S |= ϕ. A test set T being a set of test cases, that is T ⊆ For(Σ), T will be said
successful for S if and only if every test case in T is successful: S |= T if and only if
for all ϕ ∈ T , S |= ϕ.

Following an observational approach [14], a system will be considered as a correct
implementation of its specification if, as a model, it cannot be distinguished from a
model of the specification. Since the system can only be observed through the observ-
able formulas it satisfies, it is required to be equivalent to a model of the specification
up to this notion of observability.

Definition 1 (Correctness).S is correct forSp viaObs, denoted byCorrectObs(S,Sp),
if and only if there exists a modelM in Mod(Sp) such thatM validates exactly the
same observable formulas as S:M≡Obs S.

The correctness of the system could then be proved if we were able to submit to the sys-
tem the test set composed of all the observable formulas satisfied by the specification.
Such a set is then said to be exhaustive.

Definition 2 (Exhaustiveness). Let K ⊆ Mod(Σ) be a class of models. A test set T is
exhaustive for K with respect to Sp and Obs if and only if for all S ∈ K, S |= T ⇔
CorrectObs(S,Sp).

The existence of an exhaustive test set ensures that for any incorrect system, there exists
a test case making this system fail. To put it in a dual way, it ensures that it is relevant to

268 D. Longuet and M. Aiguier

test this system with respect to its specification since its correctness can be asymptoti-
cally approached by submitting a potentially infinite test set. As a correctness reference,
the exhaustive test set is then appropriate to start the selection of a finite test set of rea-
sonable size. Note that, as we proved in [9], depending on the nature of the specification,
on the observability restrictions and on the class of systems K, an exhaustive test set
does not necessarily exist.

Theorem 1 ([11]). Let Sp = (Σ,Ax) be a quantifier-free first-order specification and
Obs be the set of ground first-order formulas. Then Sp• ∩ Obs is exhaustive for
Mod(Σ).

In the context of integration testing, we consider a system built from the composition of
individual modules which have already been proved to be correct. The specification Sp
of this system is structured by the union and the enrichment of its modules specifica-
tions. Since these modules are correct, what remains to be tested are the new behaviours
coming from their composition. These new behaviours are properties involving several
modules in the case of a union or involving new sorts, operations or predicates in the
case of an enrichment. They are properties that do not involve a module alone, i.e.
formulas over the new signature that are not formulas of a module’s signature alone:
formulas in For (Σ) \ (For(Σ1) ∪ For(Σ2)) if Σ is the union of Σ1 and Σ2; formulas
in For(Σ)\For (Σ1) if Σ is the enrichment of Σ1. Let us denote NewFor these sets of
new formulas. Then, the new properties of the system coming from the composition are
the formulas of NewFor which are semantic consequences of the whole specification
Sp. Let us denote NewPr the set NewFor ∩ Sp•. We have the following important
result.

Theorem 2. Let Sp = enrich Sp1 by S2, F2, P2,Ax2 (resp. Sp = Sp1 union Sp2).
Let K = Mod(Sig(Sp)). For every S ∈ K, if CorrectObs(S|Σ1

,Sp1) (resp. and
CorrectObs(S|Σ2

,Sp2)), then NewPr ∩Obs is exhaustive for S.1

The proof may be found in the long version of this paper [15]. The key argument is that
the behaviour of the modules is completely known, so their specifications are complete
and S|Σi

is fully characterised by the set of ground consequences of its specification
Spi (it satisfies exactly all formulas of Sp•

i ∩ Obs and not any other). Therefore there
are no new properties about the modules in NewPr , since the observability is the same.

4 Selection Criteria

When it exists, the exhaustive test set is the starting point for the selection of a practical
test set. In practice, experts apply selection criteria on a reference test set in order to
extract a test set of reasonable size to submit to the system. The aim is to divide the
initial set according to a given criterion, in order to obtain subsets corresponding to par-
ticular behaviours representing this criterion. This selection method is called partition
testing.

1 S|Σ stands for the reduct of S over the signature Σ.

Integration Testing from Structured First-Order Specifications 269

Definition 3 (Selection criterion). Let Exh be an exhaustive test set. A selection crite-
rion C is a mapping2 P(Exh)→ P(P(Exh)).

For C(T) a set of test sets Ti, we denote by |C(T)| the set
⋃

i Ti.

Different selection criteria may be applied one after the other to get a finer and finer
partition of the initial test set. When the subdivision of the initial test set is fine enough
according to the tester, the construction of a finite test set covering this partition remains
to be done. This is the generation phase. Here, an important assumption is needed,
which is called the uniformity hypothesis. It states that in each of the obtained subsets,
test cases all are equivalent to make the system fail [1]. In other words, every test case
in a subset is representative of the whole subset, with respect to the selection criterion
that has been applied. It is then sufficient to choose one test case in each subset to cover
the whole initial test set. The construction of a test set relevant to a selection criterion
must benefit from the division obtained by the application of this criterion. Test cases
must be chosen so as not to loose any of the cases captured by the criterion.

Definition 4 (Satisfaction of a selection criterion). Let T ⊆ Exh be a test set and C
be a selection criterion. A test set T ′ satisfies the criterion C applied to T if and only if:

T ′ ⊆ |C(T)| ∧ ∀Ti ∈ C(T), Ti �= ∅ ⇒ T ′ ∩ Ti �= ∅
A test set satisfying a selection criterion contains at least one test case of each subset Ti

of the initial test set, when Ti is not empty. A selection criterion may then be considered
as a coverage criterion, according to the way it divides the initial test set. It can be used
to cover a particular aspect of the specification. In this paper, the definition of selection
criteria will be based on the coverage of the specification axioms.

The relevance of a selection criterion is determined by the link between the initial
test set and the family of test sets obtained by the application of this criterion.

Definition 5 (Properties). Let C be a selection criterion and T be a test set. C is sound
for T if and only if |C(T)| ⊆ T . C is complete for T if and only if |C(T)| ⊇ T .

These properties are essential for the definition of an appropriate selection criterion.
The soundness of a criterion ensures that test cases are really selected among the initial
test set, the application of the criterion does not add any new test case. Additional test
cases may actually make a correct system fail. Reciprocally, if the selection criterion
is complete, no test case of the initial test set is lost. If some test cases are missing,
an incorrect system may pass the test set, while it should have failed on the missing
test cases. A sound and complete selection criterion then has the property to preserve
exactly all the test cases of the test set it divides, and then to preserve the exhaustiveness
of the initial test set.

5 Axiom Unfolding for Structured Specifications

We present here our method for defining relevant selection criteria in order to guide the
final choice of the test cases. The method we follow is called axiom unfolding [1–4]

2 For a given set X, P(X) denotes the set of all subsets of X.

270 D. Longuet and M. Aiguier

and is adapted here to structured specifications in the context of integration testing. It
basically consists of a case analysis of a property to test with respect to the specification
axioms. The application of the selection criterion defined by this case analysis allows to
refine the initial test set associated to the property by characterising test subsets which
respect given constraints on the input data.

5.1 Test Sets for Quantifier-Free First-Order Formulas

Since the exhaustive test set is the set

NewPr ∩Obs = {ρ(ϕ) | ϕ ∈ NewFor , ρ : V → TΣ , ρ(ϕ) ∈ Sp•}
one way to divide it is to divide the test set {ρ(ϕ) | ρ : V → TΣ, ρ(ϕ) ∈ Sp•}
associated to each formula ϕ in NewFor , i.e. the set of all the ground instances of ϕ
that are semantic consequences of Sp. The selection criteria we are going to define
allow to divide a test set associated to a formula, we will explain at the end of this
section how to actually cover the whole exhaustive test set NewPr ∩Obs.

Definition 6 (Test set for a formula). Let ϕ ∈ NewFor be a formula, called test
purpose. The test set for ϕ, denoted by Tϕ, is the following set:

Tϕ = {ρ(ϕ) | ρ : V → TΣ , ρ(ϕ) ∈ Sp•}
Note that the formula taken as a test purpose may be any formula, not necessarily a
semantic consequence of the specification. However, only ground substitutions ρ such
that ρ(ϕ) is a semantic consequence of Sp will be built at the generation step.

As we will see in the next subsection, the division of a test set associated to a for-
mula will result in a set of test subsets, representing sets of particular instances of the
initial formula. These instances, called constrained test purposes, are characterised by
a substitution of the variables and a set of constraints.

Definition 7 (Constrained test set). Let ϕ ∈ NewFor be a formula. Let C ⊆ For (Σ)
be a set of formulas called constraints and σ : V → TΣ(V) be a substitution. A test set
for ϕ constrained by C and σ, denoted by T(C,σ),ϕ, is the following set:

T(C,σ),ϕ = {ρ(σ(ϕ)) | ρ : V → TΣ , ρ(σ(ϕ)) ∈ Sp•, ∀ψ ∈ C, ρ(ψ) ∈ Sp•}
The pair ((C, σ), ϕ) is called a constrained test purpose.

5.2 Unfolding Procedure

The aim of the procedure is to compute a selection criterion dividing the test set asso-
ciated to an initial test purpose, using the specification axioms. Each step of the pro-
cedure returns a partition of the initial test set, where each subset is characterised by
a constrained test purpose. These subsets can themselves be divided again and so on,
until the tester is satisfied with the obtained partition.

The initial test purpose ϕ can be seen as the constrained test purpose (({ϕ}, Id), ϕ),
or even ((C0, Id), ϕ) where C0 is the set of normalised sequents obtained from ϕ. Let

Integration Testing from Structured First-Order Specifications 271

Ψ0 be the set containing the initial constraints of test purpose ϕ, the pair (C0, Id). Con-
strained test sets for formulas are naturally extended to sets of pairs Ψ as follows:
TΨ,ϕ =

⋃
(C,σ)∈Ψ T(C,σ),ϕ. The initial test set Tϕ then is the set TΨ0,ϕ.

The aim of the procedure is to divide this set according to the different cases in
which formula ϕ holds. These cases correspond to the different instances of ϕ that can
be proved as theorems. In the context of integration testing, the idea is to use the sequent
calculus modulo presented in Section 2 to search for proofs of instances of ϕ relying
on the correctness of the smaller modules of the implementation. So basically, the pro-
cedure searches for those proof trees that allow to deduce (instances of) the initial test
purpose from the specification axioms moduloR, whereR is the rewrite system defined
from the correct modules. However, the aim is not to build the complete proofs of these
instances of ϕ, but only to make a partition of TΨ0,ϕ increasingly fine. A first step in the
construction of the proof tree of each instance will give us pending lemmas, constraints
remaining to prove that, together with the right substitution, characterise this instance
of ϕ. We will thus be able to replace Ψ0 with a set of constraints Ψ1 characterising each
instance of ϕ that can be proved from the axioms. The set Ψ1 can itself be replaced by
a bigger set Ψ2 obtained from a second step in the construction of the previous proof
trees, and so on. The procedure can be stopped at any moment, as soon as the tester is
satisfied with the obtained partition.

Note that the procedure only intends to divide the test set associated to a given for-
mula, by returning a set of constraints which characterise each set of the partition. The
generation phase, not handled in this paper, consists in choosing one test case in each set
of the partition, assuming the uniformity hypothesis, by solving the constraints associ-
ated to each set (which might be an issue in itself, due to the nature of these constraints).

To find a proof of an instance of ϕ, the procedure tries to unify ϕ with an axiom
modulo R. Only new axioms coming from an enrichment of a previous specification
are considered here, since the behaviour of this previous specification is embedded in
the congruence induced by R. We denote this set of axioms NewAx to avoid ambigu-
ity. More precisely, it tries to unify a subset of the test purpose’s subformulas with a
subset of an axiom’s subformulas, moduloR. Hence, if the test purpose is a normalised
sequent of the form

P1, . . . , Pp, . . . , Pm � Q1, . . . , Qq, . . . , Qn

the procedure tries to unify a subset of {P1, . . . , Pm, Q1, . . . , Qn} with a subset of the
formulas of an axiom. Then it looks for a specification axiom of the form

A1, . . . , Ap, Ap+1, . . . , Ak � B1, . . . , Bq, Bq+1, . . . , Bl

such that it is possible to unify Ai and Pi modulo R for all i, 1 ≤ i ≤ p, and to unify
Bi and Qi moduloR for all i, 1 ≤ i ≤ q.

If the unification modulo with an axiom in NewAx is possible, then the correspond-
ing instance of the test purpose is provable from this axiom. Since Ai and Pi (1 ≤ i ≤ p)
on one hand and Bi and Qi (1 ≤ i ≤ q) on the other hand are unifiable modulo R,
there exists a substitution σ such that σ(Ai) ≡R σ(Pi) for all i, 1 ≤ i ≤ p, and

272 D. Longuet and M. Aiguier

such that σ(Bi) ≡R σ(Qi) for all i, 1 ≤ i ≤ q. Let us take the following notations:
Λ = {A1, . . . , Ap}, Ω = {B1, . . . , Bq}, Γ = {P1, . . . , Pp}, Γ ′ = {Pp+1, . . . , Pm},
Δ = {Q1, . . . , Qq}, Δ′ = {Qq+1, . . . , Qn}. We then get a proof tree of the following
form:

...
σ(Γ ′),Slσ(Δ′)

...
S1

Subs
Λ,C1,...,CkΩ,D1,...,Dl

Ax

σ(Γ),σ(C1),...,σ(Ck)σ(Δ),σ(D1),...,σ(Dl)

...
R1

σ(Γ),σ(C2),...,σ(Ck)σ(Δ),σ(D1),...,σ(Dl)
Cut

...
Cut

σ(Γ),σ(Ck)σ(Δ),σ(D1),...,σ(Dl)
Cut

...
Rk

σ(Γ)σ(Δ),σ(D1),...,σ(Dl)
Cut

...
Cut

σ(Γ)σ(Δ),σ(Dl)
Cut

σ(Γ),σ(Γ ′)σ(Δ),σ(Δ′)
Cut

where Ri ≡R σ(Ci) for all i, 1 ≤ i ≤ k and where Si ≡R σ(Di) for all i, 1 ≤ i ≤ l.
The substitution σ together with the set of lemmas

c = { � R1, . . . , � Rk, S1 � , . . . , σ(Γ ′), Sl � σ(Δ′)}
characterise the instance of the test purpose ϕ derived from this proof tree, which cor-
responds to the constrained test purpose ((c, σ), ϕ).

Note that a priori, the lemmas Ri and Si can be any formulas equivalent up to the
congruence≡R. To avoid this non-determinism, we choose Ri and Si in normal form:
for all i, 1 ≤ i ≤ k, Ri is the normal form of σ(Ci) and for all i, 1 ≤ i ≤ l, Si is the
normal form of σ(Di).

The Algorithm. The unfolding procedure is formally described by the following algo-
rithm. What it unfolds is a constraint ψ from a set of constraints C associated to some
substitution σ in a pair of constraints (C, σ). The first set of constraints C0 only contains
the set of normalised sequents obtained from the initial test purpose, so the procedure
starts with unfolding one of these sequents. It builds a set Unf (ψ) corresponding to the
unfolding of ψ and containing all the pairs of constraints and substitution obtained by
unfolding. Then it will unfold the obtained constraints, which will be considered them-
selves as test purposes, and so on. Given a constraint ψ = γ1, . . . , γm � δ1, . . . , δn, the
algorithm can be synthesised in the following way.

(Reduce) The first verification to make is whether some instances of the constraint are
tautologies. If it is possible to unify some γi with some δj modulo R thanks to a
substitution σ, then σ(ψ) always holds and is useless. The formula σ(ψ) is then
removed from the set of constraints associated to the corresponding instance of the
test purpose.

(Unfold) As explained before, if a part of the constraint can be unified with a part of an
axiom in NewAx moduloR, then we know that the constraint can be proved from
this axiom with a certain number of applications of the Cut rule where each � Ri

(1 ≤ i ≤ k) and each Si � (1 ≤ i ≤ l) is a lemma remaining to prove. One of

Integration Testing from Structured First-Order Specifications 273

those lemmas must bring the formulas of ψ not occurring in the axiom, so Sl is in
the context σ′(Pp+1), . . . , σ′(Pm) � Sl, σ

′(Qq+1), . . . , σ′(Qn).

Then the procedure replaces the initial constraint ψ with the sets of constraints in
Unf (ψ). Each unification with an axiom leads to a pair (c, σ′), so the initial constraint
ψ is replaced with as many sets of formulas as there are axioms with which it can be
unified. The definition of Unf (ψ) being based on unification, this set is computable if
the specification has finitely many axioms.

Given a formula ψ, the unfolding procedure defines the selection criterion Cψ which
maps T(C,σ),ϕ to the family of test sets T(σ′(C�{ψ})∪c,σ′◦σ),ϕ for each (c, σ′) in Unf (ψ)
if ψ belongs to C, and to itself otherwise. To ensure the relevance of this selection
criterion, it must be shown that its application does not add new test cases to T(C,σ),ϕ
(soundness) or remove test cases from it (completeness). These results are proved in the
next subsection.

Coverage of the Exhaustive Test Set. Here, our unfolding procedure has been defined
in order to cover behaviours of one test purpose, represented by the formula ϕ. When
we are interested in covering more widely the exhaustive set NewPr• ∩Obs , a strategy
consists in ordering quantifier-free first-order formulas with respect to their length:

Φ0 =

⎧⎨⎩ � p(x1, . . . , xn),
� f(x1, . . . , xn) = y

p : s1 × . . .× sn ∈ P,
f : s1 × . . .× sn → s ∈ F,
∀i, 1 ≤ i ≤ n, xi ∈ Vsi , y ∈ Vs

⎫⎬⎭

Φn+1 =

⎧⎪⎪⎨⎪⎪⎩
p(x1, . . . , xn), Γ � Δ,

f(x1, . . . , xn) = y, Γ � Δ,
Γ � Δ, p(x1, . . . , xn),

Γ � Δ, f(x1, . . . , xn) = y

Γ � Δ ∈ Φn,
p : s1 × . . .× sn ∈ P,
f : s1 × . . .× sn → s ∈ F,
∀i, 1 ≤ i ≤ n, xi ∈ Vsi , y ∈ Vs

⎫⎪⎪⎬⎪⎪⎭
Then, to manage the (often infinite) size of NewPr•∩Obs , we start by choosing k ∈ N,
and then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure to each formula
belonging to Φi. Of course, this requires that signatures are finite so that each set Φi is
finite too.

Example 2. We choose as a test purpose the formula x < y ⇒ z/y 3 z/x. The
associated constrained test purpose for this formula is:

(({ x < y � z/y 3 z/x }, Id), x < y ⇒ z/y3 z/x)

We denote by Ψ0 the set containing this first pair of constraints. After a loop of the
algorithm, we obtain a set Ψ1 of constrained test purposes. To give a better intuition, we
give the associated test subsets. The first set is obtained thanks to a unification of the
test purpose with the left-hand side of axiom (2), and the second with the right-hand
side of the same axiom.

{ x× s(v) < u× s(y)⇒ z/(u× s(y))3 z/(x× s(v))
| x/s(y)3 u/s(v)⇒ z/(u× s(y))3 z/(x× s(v)) }

{ s(x) < s(y)⇒ z/s(y)3 z/s(x) | x < y ⇒ z × s(x) < z × s(y) }

274 D. Longuet and M. Aiguier

Algorithm 1. Axiom unfolding

Inputs : structured quantifier-free first-order specification Sp = (Σ,Ax),
rewrite systemR, test purpose ϕ ∈ NewFor

Output : set of constraints Ψ

Ψ ← {(C0, Id)} where C0 is the set of normalised sequents obtained from ϕ
loop

Take (C, σ) from Ψ and remove it
Take ψ = P1, . . . , Pm � Q1, . . . , Qn from C s.t. ψ ∈ NewFor and remove it
Unf (ψ)← ∅

(Reduce)
if there exists σ′ ∈ TΣ(V)V mgu, 1 ≤ i ≤ m and 1 ≤ j ≤ n
such that σ′(Pi) ≡R σ′(Qj) then

Add (∅, σ′) to Unf (ψ)

else
for all axioms ax ∈ NewAx do

(Unfold)
if ax is of the form A1, . . . , Ap, C1, . . . , Ck � B1, . . . , Bq, D1, . . . , Dl

with 1 ≤ p ≤ m, 1 ≤ q ≤ n, and
there exists σ′ ∈ TΣ(V)V mgu such that
for all 1 ≤ i ≤ p, σ′(Ai) ≡R σ′(Pi) and
for all 1 ≤ i ≤ q, σ′(Bi) ≡R σ′(Qi) then

c← { � Ri}1≤i≤k ∪ {Si � }1≤i≤l−1
∪ {σ′(Pp+1), . . . , σ′(Pm), Sl � σ′(Qq+1), . . . , σ′(Qn)}

such that Ri = σ(Ci)↓ and Si = σ(Di)↓
Add (c, σ′) to Unf (ψ)

Add
⋃

(c,σ′)∈Unf (ψ)

{(σ′(C) ∪ c, σ′ ◦ σ)} to Ψ

The premises of the constraint in the second subset is actually the normal form of the
corresponding formula obtained after unification, which was s(x) < s(y). Deduction
modulo allows here to have a more concise proof, and then a more efficient selection
procedure, thanks to the simplification allowed by the congruence.

5.3 Properties of the Selection Criterion

Here, we prove the two properties that make the unfolding procedure relevant for the
selection of appropriate test cases, i.e. that the selection criterion defined by the proce-
dure is sound and complete for the initial test set we defined. The entire proof may be
found in [15].

Theorem 3 (Soundness and completeness). Let ϕ be a quantifier-free first-order for-
mula, C a set of constraints and σ : V → TΣ(V) a substitution. Let ψ ∈ C. The

Integration Testing from Structured First-Order Specifications 275

selection criterion for ψ is sound and complete for the test set for ϕ constrained by C
and σ: |Cψ(T(C,σ),ϕ)| = T(C,σ),ϕ.

To prove the soundness of the procedure comes down to proving that the instance σ′(ϕ)
of the initial formula ϕ can be derived from the set of constraints c and the axiom with
which it has been unified. Thus we prove that the test set obtained by the application of
the procedure does not contain new test cases, since it is only composed of instances of
the initial test purpose.

To prove the completeness, we prove that all the possible instances of the test purpose
can be proved with a proof tree of the form we showed earlier, and that the procedure
generates all possible constraints for proving this instance. We thus prove that no test
case is lost. Actually, we can observe that our unfolding procedure defines a proof
search strategy that enables to limit the search space to the class of proof trees having
the following structure: no instance of cut occurs over instances of substitution; there is
no instance of cut whose premises both are instances of cut. We then have to prove that
the derivability defined by our unfolding strategy coincides with the full derivability. To
achieve this purpose, we define basic transformations to rewrite proof trees into ones
having the above structure, and show that the induced global proof tree transformation
is weakly normalising.

6 Conclusion

In this paper, we investigated the problem of test case selection from structured specifi-
cations in the context of integration testing. The problem was to use the structuration of
the specification as well as the unit testing result on the smaller modules of the system
to select test cases allowing to test the new features of the system only, relying on the
correctness of the modules. We used deduction modulo to guide the test case selection
because it allows to easily integrate the knowledge of the correctness of the smaller
modules in the rewrite system used as a congruence.

The definition of test selection criteria is the first step towards the construction of
a practical test set to submit to the system. The next step is the generation of a test
set satisfying these criteria. In our framework, the generation consists in applying the
uniformity hypothesis to the constrained test sets obtained by unfolding an initial test
purpose. It actually comes down to solve the constraints associated to each constrained
test purpose, in order to build one test case corresponding to this purpose. Therefore,
we plan to study the definition of an efficient algorithm of test case generation for
(structured) quantifier-free first-order specifications.

References

1. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifications: a the-
ory and a tool. Software Engineering Journal 6(6), 387–405 (1991)

2. Bernot, G.: Testing against formal specifications: a theoretical view. In: Abramsky, S. (ed.)
TAPSOFT 1991, CCPSD 1991, and ADC-Talks 1991. LNCS, vol. 494, pp. 99–119. Springer,
Heidelberg (1991)

276 D. Longuet and M. Aiguier

3. Marre, B.: LOFT: a tool for assisting selection of test data sets from algebraic specifica-
tions. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995,
and TAPSOFT 1995. LNCS, vol. 915, pp. 799–800. Springer, Heidelberg (1995)

4. Aiguier, M., Arnould, A., Boin, C., Le Gall, P., Marre, B.: Testing from algebraic specifica-
tions: test data set selection by unfolding axioms. In: Grieskamp, W., Weise, C. (eds.) FATES
2005. LNCS, vol. 3997, pp. 203–217. Springer, Heidelberg (2006)

5. Wirsing, M.: Algebraic specification. In: Handbook of Theoretical Computer Science. For-
mal Models and Semantics, vol. B, ch. 13, pp. 675–788. Elsevier, Amsterdam (1990)

6. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Rea-
soning 31(1), 33–72 (2003)

7. Machado, P.: Testing from structured algebraic specifications. In: Rus, T. (ed.) AMAST
2000. LNCS, vol. 1816, pp. 529–544. Springer, Heidelberg (2000)

8. Doche, M., Wiels, V.: Extended institutions for testing. In: Rus, T. (ed.) AMAST 2000.
LNCS, vol. 1816, pp. 514–528. Springer, Heidelberg (2000)

9. Aiguier, M., Arnould, A., Le Gall, P., Longuet, D.: Exhaustive test sets for algebraic specifi-
cation correctness. Technical report, IBISC, Université d’Évry (2008)

10. Ohlebush, E.: Modular properties of composable term rewriting systems. Journal of Sym-
bolic Computation 20, 1–41 (1995)

11. Aiguier, M., Arnould, A., Le Gall, P., Longuet, D.: Test selection criteria from quantifier-
free first-order specifications. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767,
pp. 144–159. Springer, Heidelberg (2007)

12. Longuet, D., Aiguier, M., Le Gall, P.: Proof-guided test selection from first-order specifica-
tions with equality. Journal of Automated Reasoning (to appear, 2009)

13. Le Gall, P., Arnould, A.: Formal specification and test: correctness and oracle. In: Haveraaen,
M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS,
vol. 1130, pp. 342–358. Springer, Heidelberg (1996)

14. Orejas, F., Navarro, M., Sánchez, A.: Implementation and behavioural equivalence: a survey.
In: Bidoit, M., Choppy, C. (eds.) Abstract Data Types 1991 and COMPASS 1991. LNCS,
vol. 655, pp. 144–163. Springer, Heidelberg (1993)

15. Longuet, D., Aiguier, M.: Integration testing from structured first-order specifications via
deduction modulo. Technical report, LSV, ENS Cachan (2009)

A Minimized Assumption Generation Method
for Component-Based Software Verification

Pham Ngoc Hung, Toshiaki Aoki, and Takuya Katayama

School of Information Science
Japan Advanced Institute of Science and Technology

{hungpn,toshiaki,katayama}@jaist.ac.jp

Abstract. An assume-guarantee verification method has been recog-
nized as a promising approach to verify component-based software with
model checking. The method is not only fitted to component-based soft-
ware but also has a potential to solve the state space explosion problem in
model checking. This method allows us to decompose a verification target
into components so that we can model check each of them separately. In
this method, assumptions which are environments of the components are
generated. The number of states of the assumptions should be minimized
because the computational cost of model checking is influenced by that
number. Thus, we propose a method for generating minimal assumptions
for the assume-guarantee verification of component-based software. The
key idea of this method is finding the minimal assumptions in the search
spaces of the candidate assumptions. These assumptions are seen as the
environments needed for the components to satisfy a property and for the
rest of the system to be satisfied. The minimal assumptions generated by
the proposed method can be used to recheck the whole system at much
lower computational cost. We have implemented a tool for generating
the minimal assumptions. Experimental results are also presented and
discussed.

Keywords: model checking, assume-guarantee reasoning, modular ver-
ification, learning algorithm, minimal assumption.

1 Introduction

Component-based development is one of the most important technical initiatives
in software engineering as it is considered to be an open, effective and efficient
approach to reduce development cost and time while increasing software quality.
Component-based software (CBS) technology also supports rapid development
of complex evolving software applications by enhancing reuse and adaptability.
CBS can be evolved by evolving one or more software components.

To realize such an ideal CBS paradigm, one of the key issues is to ensure
that those separately specified and implemented components do not conflict
with each other when composed - the component consistency issue. The cur-
rent well-known technologies such as CORBA (OMG), COM/DCOM or .NET
(Microsoft), Java and JavaBeans (Sun), etc. only support component plugging.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 277–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

278 P.N. Hung, T. Aoki, and T. Katayama

However, components often fail to co-operate, i.e., the plug-and-play mechanism
fails. Currently, the popular solution to deal with this issue is the verification of
CBS via model checking [5]. Model checking is a practical approach for improv-
ing software reliability. It provides exhaustive state space coverage for systems
being checked and is particularly effective in detecting difficult coordination er-
rors which frequently result from component composition. Nonetheless, a major
problem of model checking is the state space explosion. In order to deal with this
problem, a powerful method called assume-guarantee verification was proposed
in [6,10,14,15] by decomposing a verification target about a component-based
system into parts about the individual components. The key idea of this method
is to generate assumptions as environments needed for components to satisfy a
property. These assumptions are then discharged by the rest of the system. For
example, consider a simple case where a CBS is made up of two components
M1 and M2. The method proposed in [6] verifies whether this system satisfies a
property p without composing M1 with M2. For this goal, an assumption A(p)
is generated by applying a learning algorithm called L* [1,17] such that A(p) is
strong enough for M1 to satisfy p but weak enough to be discharged by M2 (i.e.,
〈A(p)〉 M1 〈p〉 and 〈true〉 M2 〈A(p)〉 which are called compositional rules, both
hold). From these rules, this system satisfies p. In order to check these composi-
tional rules, the number of states of the assumption A(p) should be minimized
because the computational cost of model checking of these rules is influenced by
that number. This means that the cost of verification of CBS is reduced with
a smaller assumption. Moreover, when a component is evolved after adapting
some refinements in the context of the software evolution, the whole evolved
CBS of many existing components and the evolved component is required to be
rechecked [8,9]. In this case, we also can reduce the cost of rechecking the evolved
CBS by reusing the smaller assumption. These observations imply that the size
of the generated assumptions is of primary importance. However, the method
proposed in [6,7] focuses only on generating the assumptions which satisfies the
compositional rules. The number of states of the generated assumptions is not
mentioned in this work. Thus, the assumptions generated by the method are not
minimal. A more detailed discussion of this issue can be found in Section 4.

This paper proposes a method for generating the minimal assumptions for
assume-guarantee verification of component-based software to deal with the
above issue. The key idea of this method is finding the minimal assumption
that satisfies the compositional rules thus is considered as a search problem in
a search space of the candidate assumptions. These assumptions are seen as the
environments needed for components to satisfy a property and for the rest of the
CBS to be satisfied. With regard to the effectiveness, the proposed method can
generate the minimal assumptions which have the minimal sizes and a smaller
number of transitions than the assumptions generated by the method proposed
in [6]. These minimal assumptions generated by the proposed method can be
used to recheck the whole CBS by checking the compositional rules at much
lower computational costs.

A Minimized Assumption Generation Method for CBS Verification 279

The paper is organized as follows. We first review some background in Sec-
tion 2. Section 3 describes the current method for assumption generation by using
the L* learning algorithm. Section 4 is about a minimized L*-based assumption
generation method to find the minimal assumptions for component-based soft-
ware verification. Section 5 shows an implementation, experimental results, and
discussion. Section 6 presents related works. Finally, we conclude the paper in
Section 7.

2 Background

This section presents some basic concepts which are used in our work as follows.

LTSs. This paper uses Labeled Transition Systems (LTSs) to model behaviors of
communicating components. Let Act be the universal set of observable actions
and let τ denote a local action unobservable to a component’s environment. We
use π to denote a special error state. An LTS M is a quadruple 〈Q,αM, δ, q0〉
where: Q is a non-empty set of states, αM⊆Act is a finite set of observable ac-
tions called the alphabet of M , δ⊆Q×αM ∪{τ}×Q is a transition relation, and
q0 ∈ Q is the initial state. The size of an LTS M = 〈Q,αM, δ, q0〉 is the num-
ber of states of M , denoted |M |. We use

∏
to denote the LTS 〈{π},Act, φ, π〉.

An LTS M = 〈Q,αM, δ, q0〉 is non-deterministic if it contains τ -transition or if
∃(q, a, q′), (q, a, q′′) ∈ δ such that q′ �= q′′. Otherwise, M is deterministic.

Traces. A trace t of an LTS M is a sequence of observable actions that M can
perform starting at its initial state. For Σ⊆Act, we use t↑Σ to denote the trace
obtained by removing from t all occurrences of actions a �∈Σ. The set of all traces
of M is called the language of M , denoted L(M). Let σ = a1a2...an be a finite
trace of an LTS M . We use [σ] to denote the LTS Mσ = 〈Q,αM, δ, q0〉 with Q
= 〈q0, q1, ..., qn〉, and δ = {(qi−1, ai, qi)}, where 1 ≤ i ≤ n.

Parallel Composition. The parallel composition operator ‖ is a commutative
and associative operator that combines behaviors of two components by syn-
chronizing the actions common to their alphabets and interleaving the remain-
ing actions. For example, when composing two components, Input and Output
illustrated in Fig. 2, actions send and ack will each be synchronized and the
others are interleaved. Details of this concept are in [6,7].

Safety LTS, Safety Property and Satisfiability. We call a deterministic LTS
that contains no π states a safety LTS. A safety property is specified as a safety
LTS p, whose language L(p) defines the set of acceptable behaviors over αp.
An LTS M satisfies p, denoted as M |=p, if and only if ∀σ∈L(M): (σ↑αp)∈L(p).
When checking whether the LTS M satisfies a property p, an error LTS, denoted
perr, is created which traps possible violations with the π state. Details of error
LTS can be found in [6,7].

280 P.N. Hung, T. Aoki, and T. Katayama

Deterministic Finite State Automata (DFAs). We use the L* learning
algorithm [1,17] to update the inaccurate model of the evolved component. The
L* learning algorithm produces DFAs, which our work then uses as LTSs. A
DFA M is a five tuple 〈Q,αM, δ, q0, F 〉 where: Q, αM , δ, q0 are defined as for
deterministic LTSs, and F ⊆ Q is a set of accepting states.

For a DFA M and a string σ, we use δ(q, σ) to denote the state that M will
be in after reading σ starting at state q. A string σ is said to be accepted by a
DFA M = 〈Q,αM, δ, q0, F 〉 if δ(q0, σ) ∈ F . The language of a DFA M is defined
as L(M) = {σ | δ(q0, σ) ∈ F}.

A DFA M is prefix-closed if L(M) is prefix-closed. The DFAs returned by the
L* learning algorithm in the proposed method are unique, complete, minimal,
and prefix-closed [17]. These DFAs therefore contain a single non-accepting state.
To get a safety LTS A from a DFA M , we remove the non-accepting state denoted
nas and all its ingoing transitions. Formally, for a DFA M=〈Q ∪ {nas}, αM, δ,
q0, F 〉, the safety LTS is chosen to be A = 〈Q,αM, δ ∩ (Q× αM× Q), q0〉.

Assume-Guarantee Reasoning. In the assume-guarantee paradigm, a for-
mula is a triple 〈A(p)〉 M 〈p〉, where M is a component, p is a property, and
A(p) is an assumption about M ’s environment. The formula is true if whenever
M is part of a system satisfying A(p), then the system must also guarantee p. In
our work, to check an assume-guarantee formula 〈A(p)〉 M 〈p〉, where both A(p)
and p are safety LTSs, we use a tool called LTSA [11] to compute A(p)‖M‖perr

and check if the error state π is reachable in the composition. If it is, then the
formula is violated, otherwise it is satisfied.

Given two component models M1, M2 and a property p, assume-guarantee
reasoning finds an assumption A(p) by applying the L* learning algorithm such
that A(p) is strong enough for M1 to satisfy p but weak enough to be discharged
by M2 (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉 M2 〈A(p)〉 both hold). From these com-
positional rules, this system satisfies p. Formally, assume-guarantee reasoning
finds an assumption A(p) such that L(A(p)‖M1)↑αp ⊆ L(p) and L(M2)↑αA(p)
⊆ L(A(p)). The iterative fashion for generating A(p) is illustrated in Fig. 1.
Details of this fashion can be found in [6].

An assumption with which the compositional rules is guaranteed to work is
the weakest assumption AW defined in [7], which restricts the environment of
M1 no more and no less than necessary for p to be satisfied. Assumption AW

describes exactly those traces over the alphabet Σ = (αM1 ∪αp)∩αM2 so that
the error state π is not reachable in the compositional system M1‖perr. Weakest
assumption AW means that for any environment component E, M1‖E|=p iff
E|=AW .

Minimal Assumption. Given two component models M1, M2 and a property
p, A(p) is an assumption if and only if A(p) satisfies the compositional rules.
An assumption A(p) represented by a LTS is minimal if and only if the number
of states of A(p) is less than or equal to the number of states of any other
assumptions.

A Minimized Assumption Generation Method for CBS Verification 281

3 Assume-Guarantee Verification

3.1 The L* Learning Algorithm

The L* learning algorithms was developed by Angluin [1] and later was improved
by Rivest and Schapire [17]. L* learns an unknown regular language and produces
a DFA that accepts it. The main idea of the L* learning algorithms is based on
the “Myhill-Nerode Theorem” [12] in the theory of formal languages. It said
that for every regular set U⊆ Σ∗, there exists a unique minimal deterministic
automata whose states are isomorphic to the set of equivalence classes of the
following relation: w ≈w′ iff ∀u ∈ Σ∗: wu ∈ U ⇐⇒ w′u ∈ U. Therefore, the
main idea of L* is to learn the equivalence classes, i.e., two prefix are not in
the same class if and only if there is a distinguishing suffix u.

Let U be an unknown regular language over some alphabet Σ. L* will produce
a DFA M such that M is a minimal deterministic automata corresponding to
U and L(M) = U . In order to learn U , L* needs to interact with a Minimally
Adequate Teacher, called Teacher. The Teacher must be able to correctly answer
two types of questions from L*. The first type is a membership query, consisting
of a string σ ∈ Σ∗; the answer is true if σ ∈ U , and false otherwise. The second
type of these questions is a conjecture, i.e., a candidate DFA M whose language
the algorithm believes to be identical to U . The answer is true if L(M) = U .
Otherwise the Teacher returns a counterexample, which is a string σ in the
symmetric difference of L(M) and U .

At a higher level, L* maintains a table T that records whether string s in Σ∗

belong to U . It does this by making membership queries to the Teacher to update
the table. At various stages L* decides to make a conjecture. It uses the table
T to build a candidate DFA Mi and asks the Teacher whether the conjecture is
correct. If the Teacher replies true, the algorithm terminates. Otherwise, L* uses
the counterexample returned by the Teacher to maintain the table with string s
that witness differences between L(Mi) and U .

3.2 L*-Based Assumption Generation Method

The assume-guarantee paradigm is a powerful “divide-and-conquer” mechanism
for decomposing a verification process of a CBS into subtasks about the indi-
vidual components. Consider a simple case where a system is made up of two
components including a framework M1 and an extension M2. The goal is to
verify whether this system satisfies a property p without composing M1 with
M2. For this purpose, an assumption A(p) is generated [6] by applying the L*
learning algorithm such that A(p) is strong enough for M1 to satisfy p but weak
enough to be discharged by M2 (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉 M2 〈A(p)〉 both
hold). From these compositional rules, this system satisfies p.

In order to obtain appropriate assumptions, this method applies the compo-
sitional rules in an iterative fashion illustrated in Fig. 1. At each iteration i, a
candidate assumption Ai is produced based on some knowledge about the sys-
tem and the results of the previous iteration. The two steps of the compositional

282 P.N. Hung, T. Aoki, and T. Katayama

rules are then applied. Step 1 checks whether M1 satisfies p in an environment
that guarantees Ai by computing formula 〈Ai〉 M1 〈p〉. If the result is false,
it means that this candidate assumption is too weak. The candidate assump-
tion Ai therefore must be strengthened with the help of the counterexample cex
produced by this step. Otherwise, the result is true, it means that Ai is strong
enough for the property to be satisfied. The step 2 is then applied to check that
if component M2 satisfies Ai by computing formula 〈true〉 M2 〈Ai〉. If this step
returns true, the property p holds in the compositional system M1‖M2 and the
algorithm terminates. Otherwise, this step returns false; further analysis is re-
quired to identify whether p is indeed violated in M1‖M2 or the candidate Ai is
too strong to be satisfied by M2. Such analysis is based on the counterexample
cex returned by this step. The L* algorithm must check that the counterexample
cex belong to the unknown language U = L(AW). If it does not, the property p
does not hold in the system M1‖M2. Otherwise, Ai is too strong. The candidate
assumption Ai must be weakened (i.e., behaviors must be added with the help of
cex) in iteration i + 1. A new candidate assumption may of course be too weak,
and therefore the entire process must be repeated.

Fig. 1. A framework for L*-based assumption generation

4 Minimized Assumption Generation Method

The assume-generation verification proposed in [6] is a powerful method for
checking component-based software by decomposing a verification target about
a component-based software into parts about the individual components. In this
method, assumptions which are seen as environments of the components are gen-
erated. The number of states of the assumptions should be minimized because
this number influences on the computational cost of model checking. However,

A Minimized Assumption Generation Method for CBS Verification 283

the assumptions generated by this method are not minimal. Fig. 2 is a counterex-
ample to prove this fact. In this counterexample, given two component models
M1 (Input), M2 (Output), and a required property p, the method proposed in [6]
generates the assumption A(p). However, there is a smaller assumption with a
smaller size and a smaller number of transitions. The reason why this method
does not generate a minimal assumption is presented as follows. The L* used in
this method learns the language of the weakest assumption AW over the alpha-
bet Σ = (αM1 ∪ αp) ∩ αM2 and produces a DFA that accepts it. In order to
learn this language, L* builds an observation table (S,E, T) where S and E are
a set of prefixes and suffixes respectively, both over Σ∗. T is a function which
maps (S ∪ S.Σ).E to {true, false}, where the operator “.” is defined as follows.
Given two sets of event sequences P and Q, P .Q = {pq | p ∈ P, q ∈ Q}, where
pq presents the concatenation of the event sequences p and q. The technique for
answering membership queries used in this method means that for any string
s ∈ (S ∪ S.Σ).E, T (s) = true if s ∈ L(AW), and false otherwise. In the coun-
terexample showed in Fig. 2, if s ∈ L(AW) but s �∈ L(A(p)), then T (s) is set to
true (in this case, T (s) should be false). For this reason, the assumption A(p)
generated by this method contains some strings/traces which do not belong to
the language of the assumption being learned.

Fig. 2. A counterexample and the reason to show that the assumptions generated in [6]
are not minimal

This section proposes a method for generating minimal assumptions for
assume-guarantee verification of component-based software. We also define a
new technique for answering membership queries to deal with the above issue.
The minimal assumption is generated by combining the L* learning algorithm
and the breadth-first search strategy. We ensure that the assumptions generated
by this method are minimal (Theorem 2).

284 P.N. Hung, T. Aoki, and T. Katayama

4.1 Minimal Assumption Generation

An Improved Technique for Answering Membership Queries. As men-
tioned above, in order to learn the language of the assumption, the L* learning
algorithm used in [6] builds an observation table (S,E, T) where T is a func-
tion which maps (S ∪ S.Σ).E to {true, false}. For any string s ∈ (S ∪ S.Σ).E,
T (s) = true if s ∈ L(AW), and false otherwise. In the case where s ∈ L(AW), we
cannot ensure that whether s belongs to the language being learned or not (i.e.,
whether s ∈ L(A(p))?). If s �∈ L(A(p)) then T (s) should be false. However, the
work in [6] set T (s) to true in this case. For this reason, the generated assump-
tions are not minimal in this work. In order to solve this issue, we use a new value
called “?” to represent the value of T (s) in such cases. We define an improved
technique for answering membership queries as follows. To generate a minimal
assumption, the L* learning algorithm used in our work builds an observation
table (S,E, T), where S and E are a set of prefixes and suffixes respectively, both
over Σ∗. T is a function which maps (S ∪ S.Σ).E to {true, false, “?”}, where
“?” can be seen as “don’t know” value. The “don’t know” value means that for
each string s ∈ (S ∪ S.Σ).E, even if s ∈ L(AW), we do not know whether s
belongs to the language of the assumption being learned or not. The technique
for answering membership queries used in our method means that for any string
s ∈ (S ∪ S.Σ).E, if s is the empty string then T (s) = true, else T (s) = false if
s �∈ L(AW), and “?” otherwise.

Finding an assumption where it has a minimal size that satisfies the com-
positional rules thus is considered as a search problem in a search space of
observation tables. We use the breadth-first search strategy because this strat-
egy ensures that the generated assumption is minimal (Theorem 2). The fol-
lowing is more detailed presentation of the proposed procedure for generating
the minimal assumption shown in Fig. 3. In this procedure, we use a queue
which contains the generated observation tables. These observation tables are
used for generating the candidate assumptions. Initially, the procedure sets the
queue q to the empty queue (line 1). We then put the initial observation table
OT0 = (S0,E0,T0) into the queue q as the root of the search space of observation
tables, where S0 = E0 = {λ} (λ represents the empty string) (line 2). Subse-
quently, the procedure gets a table OTi from the top of the queue q (line 3). If
OTi contains the “don’t know” value “?” (line 4), we obtain all instances of OTi

by replacing all “?” entries in OTi with both true and false (line 5). For ex-
ample, the initial observation table of the illustrative system presented in Fig. 2
and one of its instance obtained by replacing all “?” entries with true value are
showed in Fig. 4. The obtained instances then are put into the queue q (line 6).
Otherwise, the table OTi does not contain the “?” value. In this case, if OTi is
not closed (line 7), an updated table OT is obtained by calling the procedure
make closed(OTi) (line 8). OT then is put into q (line 9). In the case where the
table OTi is closed, a candidate assumption Ai is generated from OTi (line 10).
If Ai is an actual assumption then the procedure returns Ai as the minimal
assumption and terminates (line 11), otherwise a counterexample cex is given.
The counterexample cex is analyzed to find a suffix e of cex that witnesses a

A Minimized Assumption Generation Method for CBS Verification 285

Fig. 3. The procedure for finding the minimal assumption

difference between L(Ai) and the language of the assumption being learned. e
then is added to Ei of the table OTi (line 12). After that, an updated table OT
is obtained by calling the procedure Update(OTi) (line 13). OT then is put into
q (line 14). The procedure iterates the entire process by looping from line 3 to
line 14 until the queue q is empty or a minimal assumption is generated.

Characteristics of the Search Space.The search space of observation tables
used in the proposed method exactly contains the generated observation tables
which are used to generate the candidate assumptions. This search space is seen
as a search tree where its root is the initial observation table OT0. We can con-
veniently define the size of an observation table OT = (S,E,T) as |S|, denoted
|OT |. We use Aij to denote the j th candidate assumption generated from the j th
observation table (denoted OTij) at the depth i of the search tree. From the way
to build the search tree presented in Fig. 3 we have a theorem as follows.

Theorem 1. Let Aij and Akl be two candidate assumptions generated at the
depth i and k respectively. |Aij | < |Akl| implies that i < k.

Proof. The observation tables at the depth i+1 are generated from the obser-
vation tables at the depth i exactly in one of the following cases:

286 P.N. Hung, T. Aoki, and T. Katayama

Fig. 4. The initial observation table and one of its instances

– There is at least a table OTij of the tables at the depth i which contains the
“?” value. In this case, the instances of this table are the tables at the depth
i+1. These tables have the same size with the table OTij .

– There is at least a table OTij of the tables at the depth i which is not closed.
An updated table OT(i+1)k at the depth i+1 is obtained from this table by
adding a new element to Sij . This mean that |OTij | < |OT(i+1)k|.

– Finally, there is at least a table OTij of the tables at the depth i which is
not an actual assumption. In this case, an updated table OT(i+1)k at the
depth i+1 is obtained from this table by adding a suffix e of the given
counterexample cex to Eij . This mean that |OTij | = |OT(i+1)k|.

These observations imply that if the size of the candidate generated from a
table at the depth i less than the size of the candidate generated from a table
at the depth k, then i < k. ��

4.2 Termination and Correctness

The termination and correctness of the proposed procedure for the minimized
assumption generation showed in Fig. 3 are proved by the following theorem.

Theorem 2. Given two component models M1 and M2, and a property p, the
proposed procedure for the minimized assumption generation presented in Fig. 3
terminates and returns true and an assumption Am(p) with a minimal size such
that it is strong enough for M1 to satisfy p but weak enough to be discharged by
M2, if the compositional system M1‖M2 satisfies p, and false otherwise.

Proof. At any iteration, the proposed method returns true or false (i.e., the
compositional system M1‖M2 violates p) and terminates or continues by pro-
viding a counterexample or continues to update the current observation table
(if this table contains “?” or it is not closed). Because the proposed method is
based on the L* learning algorithm, by the correctness of L* [1,17], we ensure
that if the L* learning algorithm keeps receiving counterexamples, in the worst
case, the algorithm will eventually produce the weakest assumption AW and ter-
minates, by the definition of AW [7]. This means that the search space exactly
contains the observation table OTW which is used to generate AW . In the worst
case, the proposed method reaches to OTW and terminates.

A Minimized Assumption Generation Method for CBS Verification 287

With regard to correctness, the proposed method uses two steps of the com-
positional rules (i.e., 〈Ai〉 M1 〈p〉 and 〈true〉 M2 〈Ai〉) to answer the question
of whether the candidate assumption Ai produced by the method is an actual
assumption or not. It only returns true and a minimal assumption Am(p) = Ai

when both steps return true, and therefore its correctness is guaranteed by the
compositional rules. The proposed method returns a real error when it detects a
trace σ of M2 which violates the property p when simulated on M1. In this case,
it implies that M1‖M ′

2 violates p. The remaining problem is to prove that the
assumption Am(p) generated by the proposed method is minimal. Suppose that
there exists an assumption A such that |A| < |Am(p)|. By using Theorem 1 for
this fact, we can imply that the depth of the table used to generate A less than
the depth of the table used to generate Am(p). This means that the table used
to generate A has been visited by our procedure. In this case, the procedure has
generated A as a candidate assumption and A was not an actual assumption.
These facts imply that such assumption A does not exist. ��

5 Experiment and Discussion

This section presents our implemented tools for L*-based assumption generation
and experimental results by applying these tools for some illustrative systems.
We also discuss the advantages and disadvantages of the proposed method.

5.1 Experiment

In order to evaluate the effectiveness of the proposed method, we have imple-
mented the assumption generation method proposed in [6] and the proposed
minimized assumption generation method in the Objective Caml (OCaml) func-
tional progamming language [13]. We tested our method by using several illus-
trative systems and compared the method with that proposed in [6]. The size,
the number of transitions, and the generating time of the generated assumptions
are evaluated in this experiment. We also evaluate the rechecking time for each
system by reusing the generated assumptions for checking the compositional
rules. Table 1 shows experimental results for this purpose. In the results, the
system size is the product of the sizes of the software components and the size
of the required property for each CBS. Our obtained experimental results imply
that the generated minimal assumptions have smaller sizes and number of tran-
sitions than the generated ones by the method proposed in [6]. These minimal
assumptions are effective for rechecking the systems with a lower cost. However,
our method has a higher cost for generating the assumption.

We also use the tool for verifying concurrent systems called LTSA [11] to
check correctness of the minimal assumption Am(p) which is generated by our
proposed method. For this purpose, we check that whether Am(p) satisfies the
compositional rules (i.e., 〈Am(p)〉 M1 〈p〉 and 〈true〉 M2 〈Am(p)〉 both hold) by
checking the compositional systems Am(p)‖M1‖perr and M2‖Am(p)err in the
LTSA tool. For each compositional system, the LTSA tool returns the same
result as our verification result for each system.

288 P.N. Hung, T. Aoki, and T. Katayama

Table 1. Experimental results

The implemented tool and the illustrative systems which are used in our
experimental results is available at the site [16].

5.2 Discussion

With regard to the importance of the minimal assumptions, obtaining smaller
assumptions is interesting for several advantages as follows:

– Modular verification of CBS is done by model checking the parallel com-
positional rules which has the assumption as one of its components. The
computational cost of this checking is influenced by the size of the assump-
tion. This means that the cost of verification of CBS is reduced with a smaller
assumption which has a smaller size and smaller number of transitions.

– When a component is evolved after adapting some refinements in the context
of the software evolution, the whole evolved CBS of many existing compo-
nents and the evolved component is required to be rechecked [8]. In this case,
we can reduce the cost of rechecking the evolved CBS by reusing the smaller
assumption.

– Finally, a smaller assumption means less complex behavior so this assump-
tion is easier for a human to understand. This is interesting for checking the
large-scale systems.

The experimental results show that the difference between the generating time
in our method and the current method is not so much because the systems used
in our experiment are small. In fact, the method proposed in [6] always generates
the assumptions at a lower generating time. If we are not interesting in the above
advantages, the method proposed in [6] is better than our method for generat-
ing assumptions. Otherwise, the generated assumptions are used for rechecking
the CBS or are reused for regenerating the new assumptions for rechecking the
evolved CBS [8]. In this case, the minimal assumptions generated by our method
are useful. However, the breadth-first-search which is used in our work, may be
not practical because it consumed too much memory. For larger systems, the
computational cost for generating the minimal assumption is very expensive.

A Minimized Assumption Generation Method for CBS Verification 289

An idea to solve this issue is using the iterative-deepening depth first search.
The search strategy combines the space efficiency of the depth-first search with
the optimality of breadth-first search. It proceeds by running a depth-limited
depth-first search repeatedly, each time increasing the depth limit by one. The
assumptions generated by using this search strategy are smaller than the as-
sumption generated in [6] but they may be not minimal. Another problem in the
proposed method is that the queue has to hold an exponentially growing of the
number of the observation tables. This makes our method unpractical for large-
scale systems. In order to reduce the search space of the observation tables, we
improve the technique for answering membership queries to reduce the number
of instances of each table which contains the “?” entries. At any step i of the
learning process, if the current candidate assumption Ai is too strong for M2 to
be satisfied, then L(Ai) is exactly a subset of the language of the assumption
being learned. For every s ∈ (S ∪ S.Σ).E, if s ∈ L(AW) and s ∈ L(Ai), instead
of setting T (s) to “?”, we should set T (s) to true. We can reduce several number
of the “?” entries by reusing such candidate assumptions.

6 Related Work

There are many works that have been recently proposed in assume-guarantee
verification of component-based systems, by several authors. Focusing only on
the most recent and closest ones we can refer to [2,6,7], to [4], and [3,8,9].

D. Giannakopoulou et al. proposes an algorithm for automatically generating
the weakest possible assumption for a component to satisfy a required property
[7]. Although the motivation of this work is different, the ability to generate the
weakest assumption can be used for assume-guarantee verification of component-
based software. Based on this work, the work proposed in [6] presents a frame-
work to generate a stronger assumption incrementally and may terminate before
the weakest assumption is computed. The key idea of the framework is to gen-
erate assumptions as environment for components to satisfy the property. The
assumptions are then discharged by the rest of the CBS. However, this frame-
work focuses only on generating the assumptions. The number of states of the
generated assumptions is not mentioned in this work. Thus, the assumptions
generated by this work are not minimal. This work has been extended in [2]
for modular verification of component-based systems at the source code level.
Our work improves these works to generate the minimal assumptions in order
to reduce the computational cost for rechecking the CBS.

An approach about optimized L*-based assume-guarantee reasoning was pro-
posed by Chaki et al. [4]. The work suggests three optimizations to the L*-based
automated assume-guarantee reasoning algorithm for the compositional verifi-
cation of concurrent systems. The purposes of this work is to reduce the number
of the membership queries and the number of the candidate assumptions which
are used for generating the assumption, and to minimize the alphabet used by
the assumption. However, the core of this approach is the framework proposed
in [6]. Thus, the assumptions generated by this work are not minimal. Our work

290 P.N. Hung, T. Aoki, and T. Katayama

and this work share the motivation for optimizing the framework presented in [6]
but we focus on generating the minimal assumptions.

Finally, several works for assume-guarantee verification of evolving software
were suggested in [3,8]. The work in [3] focuses on component substitutability di-
rectly from the verification point of view. The purpose of this work is to provide
an effective verification procedure that decides whether a component can be re-
placed with a new one without violation. The work improves the L* algorithm
to an improved version called the dynamic L* algorithm by reusing the previous
assumptions. However, this work assumes the availability and correctness of mod-
els that describe the behaviors of the software components. The works proposed
in [8] were suggested to deal with this issue by providing a method for updat-
ing the inaccurate models of the evolved component. These updated models then
are used to verify the evolved CBS by applying the improved L* algorithm. Even
these works improve the L* algorithm to optimize it, the core of these works is
the framework proposed in [6]. As a result, the assumptions generated by these
works are not minimal. On the contrary, we focus on generating the minimal as-
sumptions. The minimal assumptions generated by our work may be useful for
these works to recheck the evolved at much lower computational costs.

7 Conclusion

We have presented a method for generating minimal assumptions for assume-
guarantee verification of component-based software. The key idea of this method
is finding the minimal assumptions in the search space of the candidate assump-
tions. These assumptions are strong enough for the components to satisfy a
property and weak enough to be satisfied by the rest of the component-based
software. In this method, we have improved the technique for answering member-
ship queries of the Teacher which helps the L* to correctly answer the member-
ship query questions by using the “don’t know” value. By using this technique,
the proposed method ensures that every trace which belongs to the language of
the generated assumption exactly belongs to the language being learned. The
search space of observation tables used in the proposed method exactly con-
tains the generated observation tables which are used to generate the candidate
assumptions. This search space is seen as a search tree where its root is the
initial observation table. Finding an assumption with a minimal size such that
it satisfies the compositional rules thus is considered a search problem in this
search tree. We apply the breadth-first search strategy because this strategy
ensures that the generated assumptions are minimal (see Theorem 2). The min-
imal assumptions generated by the proposed method can be used to recheck the
whole component-based software at a lower computational cost. We also have
implemented a tool for the assumption generation method proposed in [6] and
our minimized assumption generation method. This implementation is used to
verify some illustrative component-based software to show the effectiveness of
the proposed method.

We are investigating to generalize the proposed method for the larger CBS,
i.e., CBS containing more than two components. We are also improving our

A Minimized Assumption Generation Method for CBS Verification 291

method and applying some CBS with their sizes are larger than the sizes of the
CBS which are used in our experiment, to show the practical usefulness of our
proposed method.

References

1. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

2. Blundell, C., Giannakopoulou, D., Pasareanu, C.: Assume-Guarantee Testing. In:
4th Microsoft Research – Specification and Verification of Component-Based Sys-
tems Workshop (SAVCBS), pp. 7–14 (2005)

3. Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Verification of Evolving Software.
In: 3rd Microsoft Research – Specification and Verification of Component-Based
Systems Workshop (SAVCBS), pp. 55–61 (2004)

4. Chaki, S., Strichman, O.: Three Optimizations for Assume-Guarantee Reasoning
with L*. Formal Methods in System Design 32(3), 267–284 (2008)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

6. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

7. Giannakopoulou, D., Pasareanu, C., Barringer, H.: Assumption Generation for
Software Component Verification. In: 17th IEEE International Conference on Au-
tomated Software Engineering (ASE), pp. 3–12 (2002)

8. Hung, P.N., Katayama, T.: Modular Conformance Testing and Assume-Guarantee
Verification for Evolving Component-Based Software. In: 15th Asia-Pacific Softw.
Eng. Conf. (APSEC), pp. 479–486. IEEE Computer Society Press, Los Alamitos
(2008)

9. Hung, P.N., Thang, N.T., Katayama, T.: An Assume-Guarantee Method for Mod-
ular Verification of Evolving Component-Based Software. In: 6th WADS in con-
junction with the 37th Annual IEEE/IFIP Intenational Conference on Dependable
Systems and Networks (DSN), pp. 160–165 (2007)

10. Jones, C.B.: Tentative Steps Toward a Development Method for Interfer-
ing Programs. ACM Transactions on Programming Languages and Systems
(TOPLAS) 5(4), 596–619 (1983)

11. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. John Wiley
& Sons, Chichester (1999)

12. Nerode, A.: Linear automaton transformations. American Mathematical Society 9,
541–544 (1958)

13. French National Institute for Research in Computer Science and Control (INRIA),
Objective caml (2004), http://caml.inria.fr/ocaml/index.en.html

14. Pnueli, A.: In Transition from Global to Modular Temporal Reasoning about
Programs. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. Nato
Asi Series F: Computer And Systems Sciences, vol. 13, pp. 123–144. Springer,
Heidelberg (1985)

15. Stark, E.W.: A Proof Technique for Rely/Guarantee Properties. In: The 5th Conf.
on Found. of Soft. Tech. and Theoretical Computer Science, pp. 369–391 (1985)

16. A Minimized Assumption Generation Tool for Modular Verification of Component-
Based Software (2009), http://www.jaist.ac.jp/~s0620204/MAGTool/

17. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Information and Computation 103(2), 299–347 (1993)

http://caml.inria.fr/ocaml/index.en.html
http://www.jaist.ac.jp/~s0620204/MAGTool/

A Formal Approach to Heuristically Test
Restorable Systems�

Pablo Rabanal, Ismael Rodríguez, and Fernando Rubio

Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid, 28040 Madrid, Spain
prabanal@fdi.ucm.es, {isrodrig,fernando}@sip.ucm.es

Abstract. In order to test a Finite State Machine (FSM), first we typi-
cally have to identify some short interaction sequences allowing to reach
those states or transitions considered as critical. If these sequences are
applied to an implementation under test (IUT), then equivalent states
or transitions would be reached and observed in the implementation –
provided that the implementation were actually defined as the specifica-
tion. In this paper we study how to obtain such sequences in a scenario
where previous configurations can be restored at any time. In general,
this feature enables sequences to reach the required parts of the machine
in less time, because some repetitions can be avoided. However, finding
optimal sequences is NP-hard when configurations can be restored. We
use an evolutionary method, River Formation Dynamics, to heuristically
solve this problem.

1 Introduction

The field of formal testing methods [1,4,5,11] has considered several graph theory
techniques to find short test sequences allowing to reach, at least once, all/some
states or transitions in an FSM specification. In this paper we formally general-
ize testing methods allowing to reach some/all FSM states or transitions to the
case where the tester can restore any previous configuration of the system. Let
us assume that the IUT is a software system and the tester can save the com-
plete current configuration of the system at any time. Then, at any subsequent
time, the tester could restore such configuration and execute the system from
that configuration on. In particular, after restoring the configuration she could
follow a different path to the one she followed the previous time. Notice that,
if configurations can be saved/restored, then the tester can use this feature to
avoid repeating some execution sequences. Thus, some time assigned to testing
activities could be saved. Let us also note that saving/restoring the complete
configuration of a system could be time-expensive. These costs are similar to
the costs of executing process suspending and process restoring operations in any
operating system, which in turn are due to copying the program state from/to

� Work supported by projects TIN2006-15578-C02-01, CCG08-UCM/TIC-4124, and
the UCM-BSCH programme (GR58/08 - group number 910606).

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 292–306, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Formal Approach to Heuristically Test Restorable Systems 293

RAM to/from hard disk, respectively. Thus, a testing technique using these fea-
tures should take these costs into account.

The idea of considering specific methods to test these systems was informally
introduced in [10]. In this paper, the proposed problem is formally presented and
studied, and an heuristic method based on a series of formal properties is devel-
oped. Given a FSM specification (including the costs of the transitions), the cost
of saving/restoring a configuration, and a set of critical system configurations
that are required to be observed, we provide an heuristic method to find a plan
to sequentially interact with the system (possibly including saving/restoring op-
erations) that allows to reach all critical configurations in a low overall time. We
prove that obtaining the optimal interaction sequence is an NP-hard problem.

An interaction plan where saving/restoring operations are allowed is, in fact,
a plan where each save/restore point represents a bifurcation: Initially, we will
take a path, and then we will return to a previous point and follow another
path. Thus, our goal will be finding a tree where the sum of the costs of all
the transitions of the tree (including the sum of the costs of saving/restoring
operations) is minimal. We will prove that considering interaction trees, instead
of interaction sequences, does not restrict the possibility to find good paths. In
particular, we will show that, for all path σ, there exists an equivalent path that
can be represented by a tree, which implies that all steps of σ can be sorted in
such a way that each load refers only to states appearing in the same branch of
some tree. Consequently, interaction plans constructed by our method will not
be represented by a sequential path, but by a tree covering all critical points.

The rest of the paper is structured as follows. Next, we formally describe the
problem to be solved. In Section 3 we introduce our general heuristic method,
while in Section 4 we show how to apply it to our particular problem. Afterwards,
in Section 5 we report the results obtained in some experiments. Finally, in
Section 6 we present our conclusions.

2 Problem Definition

In this section we formally introduce the problem to be solved as well as some
related notions. Next we introduce some preliminary notation:

– Given a pair x = (a, b), we assume fst(x) = a and snd(x) = b.
– Given a list l = [x1, . . . , xn], we represent by l[i] the i-th element of l, i.e. l[i]=

xi. Besides, length(l) returns the number of elements of l, i.e. length(l) = n.

We introduce the formalism used to define specifications, called Weighted Fi-
nite State Machine (WFSM). This is an FSM where the cost of restoring a previous
configuration, as well as the cost of taking each transition, are explicitly denoted.

Definition 1. A Weighted Finite State Machine (from now on WFSM) is a tuple
(S, sin, I, O,C,Δ) where

– S is a finite set of states and sin ∈ S is the initial state.

294 P. Rabanal, I. Rodríguez, and F. Rubio

– I and O are the finite sets of input and output actions, respectively.
– C ∈ IN is the cost of restoring a previously traversed state.
– Δ ⊆ S × S × I × O × IN is the set of transitions. A transition δ ∈ Δ is a

tuple (s1, s2, i, o, c) where s1 is the origin state, s2 is the destination state,
i is the input that triggers the transition, o is the output produced by the
transition, and c is a positive natural value that represents the cost of the

transition. We write s1
i/o/c−−−−−→ s2 as a shorthand of (s1, s2, i, o, c) ∈ Δ.

A WFSM is deterministic if for all s ∈ S and i ∈ I we have

‖ {s i/o/c−−−−−→ s′ | ∃ o, c, s′ : s
i/o/c−−−−−→ s′ ∈ Δ} ‖ ≤ 1 ��

We will assume that specifications are defined by deterministic WFSMs. From
now on, in all definitions we will assume that a WFSM W = (S, s0, I, O,C,Δ) is
implicitly given.

Executions of WFSMs will be denoted by load sequences. Each step in a load
sequence consists in either taking some WFSM transition or restoring a previously
traversed configuration. The latter action will be denoted by a symbol ψ(sk) in
the sequence meaning that, at the current step of the sequence, we move from
the current state to a previously traversed state sk by loading it (instead of by
traversing actual transitions of the WFSM). The goal of our method will be finding
the cheapest load sequence belonging to the set of all load sequences that cover
some given states and/or transitions. Constraining the notion of load sequence in
such a way that some useless sequences are discarded from scratch will allow us
to reduce the searching space. In particular, a condition will be imposed to ban
some sequences that are equivalent, in terms of cost, to other available sequences
that do fulfill the condition. Load sequences (regardless of whether they fulfill
the additional condition or not) and load sequences that actually fulfill it will be
called load sequences and α-load sequences, respectively. Later we will show that
constraining our search to sequences fulfilling the additional condition does not
limit the possibility to find cheap sequences.

Definition 2. A load sequence is a sequence σ = s1
δ1−−→ s2. . .sn−1

δn−1−−−−→ sn

where, for each 1 ≤ k ≤ n − 1, δk is either ik/ok/ck (if sk
ik/ok/ck−−−−−−−→ sk+1 ∈ Δ)

or ψ(sj) (if sj ∈ {s1, ..., sk} and sk+1 = sj). In addition, σ is also an α-load
sequence if for all s, s′ ∈ S such that the first appearance of s in σ is before the
first appearance of s′ (i.e. such that we have s = si and s′ = sj for some i < j
such that sk �= s for all k < i and sl �= s′ for all l < j) there do not exist δp and
δq with p < q such that δp = ψ(s) and δq = ψ(s′).

The set of all load sequences of a WFSM W is denoted by Sequences(W). The
set of all α-load sequences of W is denoted by α-Sequences(W).

Given σ = s1
δ1−−→ . . .

δn−2−−−−→ sn−1
δn−1−−−−→ sn ∈ Sequences(W), we consider

σ− = s1
δ1−−→ . . .

δn−2−−−−→ sn−1.
Let σ1, . . . , σn ∈ Sequences(W) be such that for all 1 ≤ i ≤ n we have σi =

si,1
δi,1−−−−→ . . .

δi,ki−1−−−−−→ si,ki and for all 1 ≤ i ≤ n − 1 we have

A Formal Approach to Heuristically Test Restorable Systems 295

si,ki = si+1,1. The concatenation of σ1, . . . , σn, denoted by σ1 ·. . .·σn, is defined as

s1,1
δ1,1−−−−→ . . .

δ1,k1−1−−−−−−−→ s1,k1

δ2,1−−−−→ s2,2
δ2,2−−−−→ . . .

δ2,k2−1−−−−−−−→ s2,k2 . . .
δn,kn−1−−−−−−−→ sn,kn .

��
Clearly, α-Sequences(W) ⊆ Sequences(W). For instance, let us consider

σ1 = s1
i1/o1/c1−−−−−−−→ s2

i2/o2/c2−−−−−−−→ s3
ψ(s1)−−−−−→ s1

i3/o3/c3−−−−−−−→ s4
ψ(s2)−−−−−→ s2

i4/o4/c4−−−−−−−→ s5.
We have σ1 ∈ Sequences(W) for some WFSM W , but σ1 �∈ α-Sequences(W) (see
states s1 and s2 and the positions of ψ(s1) and ψ(s2) in σ1). Let us consider

σ2 =s1
i5/o5/c5−−−−−−−→ s6

i7/o7/c7−−−−−−−→ s7
i8/o8/c8−−−−−−−→ s8

ψ(s7)−−−−−→ s7
i9/o9/c9−−−−−−−→ s10

ψ(s6)−−−−−→ s6.
We have σ2 ∈ α-Sequences(W) (provided that these transitions also exist
in W).

The cost of a load sequence is given by the addition of transition costs and
load costs. Note that a state (or transition) can appear several times in a given
load sequence. There are two possible reasons for this: Either a previous state
is loaded, or an already traversed state/transition is reached again by traversing
some transitions. The latter possibility is useful if we want to come back to some
state and we realize that doing it manually (i.e. by taking transitions) is cheaper
than making a load.

Definition 3. Let σ = s1
δ1−−→ . . .

δn−1−−−−→ sn ∈ Sequences(W). If 1 ≤ k ≤ n− 1
then the cost of δk, denoted by CostTran(δk), is defined as

CostTran(δk) =
{

ck if δk = ik/ok/ck

C if δk = ψ(sj)
The cost of σ, denoted by CostSeq(σ), is defined as

∑n−1
k=1 CostTran(δk). ��

Given the load sequence σ1 considered before, we have CostSeq(σ1) = c1 + c2 +
C + c3 + C + c4. Next we define the target problem of this paper.

Definition 4. Given a WFSM W = (S, s0, I, O,C,Δ), some sets S′ ⊆ S and
Δ′ ⊆ Δ, and a natural number K ∈ IN, the Minimum Load Sequence problem,
denoted by MLS, is stated as follows: Is there a load sequence σ ∈ Sequences(W)
such that CostSeq(σ) ≤ K and, for all s ∈ S′ and δ ∈ Δ′, s and δ appear
in σ? ��
To the best of our knowledge, MLS has not been defined or studied before in the
literature. Thus, before describing our method to solve it, we prove that it is an
NP-complete problem. The proofs of all results presented in this paper can be
found in [9].

Theorem 1. MLS ∈ NP-complete. ��
Next we show that, by constraining our search for good testing sequences to
α-load sequences (instead of considering all load sequences) we do not lose the
possibility to find sequences whose cost is under some given upper bound.

Proposition 1. For all σ ∈ Sequences(W) there exists σ′ ∈ α-Sequences(W)
such that CostSeq(σ) = CostSeq(σ′). ��

296 P. Rabanal, I. Rodríguez, and F. Rubio

Let us revisit σ1. Since σ1∈Sequences(W), we have σ3∈α-Sequences(W) for

σ3 = s1
i1/o1/c1−−−−−−−→ s2

i2/o2/c2−−−−−−−→ s3
ψ(s2)−−−−−→ s2

i4/o4/c4−−−−−−−→ s5
ψ(s1)−−−−−→ s1

i3/o3/c3−−−−−−−→ s4.
The property CostSeq(σ1) = CostSeq(σ3) trivially holds because we traverse
the same transitions and we make the same number of loads.

The condition imposed to load sequences to be considered as α-load sequences
implies that, in particular, α-load sequences can be equivalently represented as
trees. A load tree is a tree-like version of an α-load sequence, where loads are
represented by bifurcations in the tree. In particular, a bifurcation represents
that, after we complete one of the choices appearing at the bifurcation (i.e. after
we complete the subtree representing this choice), we will restore the bifurcation
state and we will go on through another choice (another subtree). As in the case
of sequences, states and transitions can appear several times in the tree. Since
loads are represented only by bifurcations, a repeated appearance of a state
represents that this state is reached again by taking some transitions, rather
than by loading.

Definition 5. A load tree is a term t belonging to the language induced by the
term Lt in the following E-BNF:

Lt ::= empty|(St, Ch)
Ch ::= [(Tr, Lt), ..., (Tr, Lt)]
St ::= s1| . . . |sn where S = {s1, . . . , sn}
Tr := (i, o, n) where (i, o, n) ∈ I ×O × IN

such that, if t follows the form t = (st, [(tr1, child1), . . . , (trn, childn)]), then for
all 1 ≤ k ≤ n the conditions childk �= empty and st

trk−−−−→ fst(childk) ∈ Δ must
hold.

The set of all load trees for a WFSM W is denoted by Trees(W). ��
Next we formally define the cost of a load tree t = (root, children). In the next
definition, the term C · (n − 1) represents the cost spent in restoring the state
root in t: Assuming t has n children, n − 1 loads are necessary to come back
from the last state visited by each child to root. In the next recursive definition,
the anchor case is reached when the list of children is empty i.e. when we have
t = (root, []) (note that, in this case, no recursive calls are made).

Definition 6. The cost of a tree t = (root, children), denoted by CostTree(t),
is defined as

CostTree(t) =
n∑

k=1

(
CostTran(fst(children[k]))+
CostTree(snd(children[k]))

)
+ C · (n− 1)

where n = length(children). ��
We define a boolean predicate σ� t returning true if the sequence σ corresponds
to the tree t, that is, if σ could be a sequential realization of the plan described
by t. Intuitively, the sequence must be one of the possible preorder traversals of

A Formal Approach to Heuristically Test Restorable Systems 297

the tree. More technically, in order to compare the sequence σ and the tree t, we
transform σ into a tree and next we compare the resulting tree with t. In order
to create a tree from a sequence σ, we set the first state s1 of the sequence as
the root of the tree. Then, we split the rest of the sequence into subsequences,
dividing them at the places where we load s1. Next we recursively construct the
tree of each of these subsequences, and returned trees are taken as children of t. In
functions createTree and createSeq given in the next definition, anchor cases
are again reached when the target tree has no children. In addition note that,
in function createSeq, the term σ− denotes that the last step of the sequence
is removed. This step is the last load to root, so this load in unnecessary.

Definition 7. Let t1 = (root1, children1) and t2 = (root2, children2) with
t1, t2 ∈ Trees(W). Let n1 = length(children1) and n2 = length(children2).
We say that t1 and t2 are equivalent, denoted by t1 ≡T t2, if

(1) root1 = root2,
(2) n1 = n2,
(3) There exists a bijection f : [1..n1] −→ [1..n2] such that, for all 1 ≤ i ≤ n1,

we have fst(children1[i]) = fst(children2[f(i)]) (i.e. transitions leading to
each children coincide) and snd(children1[i]) ≡T snd(children2[f(i)]) (i.e.
subtrees are equivalent).

Let σ = σ1 · . . . · σn ∈ α-Sequences(W) be such that for all 1 ≤ i ≤ n we

have σi = s1
δ1,i−−−−→ . . .

δki,i−−−−→ s1, where δki,i = ψ(s1) and for all 1 ≤ j < ki we
have δj,i �= ψ(s1). The tree of σ, denoted by createTree(σ), is defined as

createTree(σ) = (s1, [(δ1,1, createTree(σ1)), ..., (δ1,n, createTree(σn))])

Let σ ∈ α-Sequences(W) and t ∈ Trees(W). We say that σ corresponds to
t, denoted by σ � t, if createTree(σ) ≡T t.

Given a tree t = (root, children), the set of α-load sequences of t, denoted by
createSeq(t), is defined as {root} if children = []; otherwise

createSeq(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ−

∣∣∣∣∣∣∣∣∣∣∣

σ = σf(1) · . . . · σf(n) ∧ n = length(children) ∧
f : [1..n] −→ [1..n] is a bijective function ∧
∀ 1 ≤ i ≤ n :(

σi = root
fst(children[i])−−−−−−−−−−−−−−→ σ′

i

ψ(root)−−−−−−−→ root ∧
σ′

i ∈ createSeq(snd(children[i]))

)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
��

Proposition 2. We have the following properties:

(a) createSeq(t) = {σ|σ � t}
(b) for all σ, σ′∈createSeq(t) we have CostSeq(σ)=CostSeq(σ′)=CostTree(t).

��

298 P. Rabanal, I. Rodríguez, and F. Rubio

The previous result guarantees that, if we want to find the cheapest α-load se-
quence for a given WFSM, then we can concentrate on searching for the equivalent
cheapest load tree. Given such cheapest tree t, the α-load sequence to be used
can be any sequence σ such that σ ∈ createSeq(t). Recall that Proposition 1
showed that, if we want to search for a good load sequence, we can concentrate
on considering α-load sequences. We conclude by transitivity that, if we want
to search for a good load sequence, we can focus on searching a good load tree.
This idea will be exploited later in Section 4, where we will apply an evolutionary
computation approach [2] to find trees rather than sequences.

3 Brief Introduction to River Formation Dynamics

In this section we briefly introduce the basic structure of River Formation Dy-
namics (RFD) (for further details, see [6,7,8]). Given a working graph, we asso-
ciate altitude values to nodes. Drops erode the ground (they reduce the altitude
of nodes) or deposit the sediment (increase it) as they move. The probability of
the drop to take a given edge instead of others is proportional to the gradient of
the down slope in the edge, which in turn depends on the difference of altitudes
between both nodes and the distance (i.e. the cost of the edge). At the beginning,
a flat environment is provided, that is, all nodes have the same altitude. The
exception is the destination node, which is a hole (the sea). Drops are unleashed
(i.e. it rains) at the origin node/s, and they spread around the flat environment
until some of them fall in the destination node. This erodes adjacent nodes, which
creates new down slopes, and in this way the erosion process is propagated. New
drops are inserted in the origin node/s to transform paths and reinforce the
erosion of promising paths. After some steps, good paths from the origin/s to
the destination are found. These paths are given in the form of sequences of
decreasing edges from the origin to the destination. Several improvements are
applied to this basic general scheme (see [6,8]).

Compared to a related well-known evolutionary computation method, Ant
Colony Optimization ACO [3], RFD provides some advantages that were briefly
outlined in the introduction. On the one hand, local cycles are not created and
reinforced because they would imply an ever decreasing cycle, which is contra-
dictory. Though ants usually take into account their past path to avoid repeating
nodes, they cannot avoid to be led by pheromone trails through some edges in
such a way that a node must be repeated in the next step1. However, altitudes
cannot lead drops to these situations. Moreover, since drops do not have to worry
about following cycles, in general drops do not need to be endowed with memory
of previous movements, which releases some computational memory and reduces
some execution time. On the other hand, when a shorter path is found in RFD,
the subsequent reinforcement of the path is fast: Since the same origin and desti-
nation are concerned in both the old and the new path, the difference of altitude
is the same but the distance is different. Hence, the edges of the shorter path
1 Usually, this implies either to repeat a node or to kill the ant. In both cases, the last

movements of the ant were useless.

A Formal Approach to Heuristically Test Restorable Systems 299

necessarily have higher down slopes and are immediately preferred (in average)
by subsequent drops. Finally, the erosion process provides a method to avoid in-
efficient solutions because sediments tend to be cumulated in blind alleys (in our
case, in valleys). These nodes are filled until eventually their altitude matches
adjacent nodes, i.e., the valley disappears. This differs from typical methods to
reduce pheromone trails in ACO: Usually, the trails of all edges are periodically
reduced at the same rate. On the contrary, RFD intrinsically provides a focused
punishment of bad paths where, in particular, those nodes blocking alternative
paths are modified.

When there are several departing points (i.e. it rains at several points), RFD
does not tend in general to provide the shortest path (i.e. river) from each point
to the sea. Instead, as it happens in nature, it tends to provide a tradeoff between
quickly gathering individual paths into a small number of main flows (which
minimizes the total size of the formed tree of tributaries) and actually forming
short paths from each point to the sea. For instance, meanders are caused by
the former goal: We deviate from the shortest path just to collect drops from
a different area, thus reducing the number of flows. On the other hand, new
tributaries are caused by the latter one: By not joining the main flows, we can
form tailored short paths.2 These characteristics make RFD a good heuristic
method to solve problems consisting in forming a kind of covering tree [7], which
motivates using RFD to solve MLS.

4 Applying RFD to Solve MLS

In this section we show how the general RFD scheme, described in the previous
section, is adapted to solve MLS. First, let us note that our goal will be con-
structing load trees where the root is the initial state of the given WFSM. In terms
of RFD, we will make this node be the final goal of all drops, i.e. the sea. In
order to make drops go in this direction, each transition of the WFSM will be
represented in the working graph of RFD by an edge leading to the opposite
direction. Thus, final trees constructed by RFD will have to be inverted in order
to constitute valid MLS solutions. Besides, since solutions consist in paths cover-
ing some configurations, a modification must be introduced to avoid drops skip
some required steps. Let us suppose that we have to cover nodes A, B, and C
and the optimal path is A −→ B −→ C. If this path were formed by RFD then
the altitudes xA, xB , xC of these nodes would be such that xA > xB > xC . Let
us suppose there also exists an edge A −→ C. Then, drops will tend to prefer
going directly from A to C, which is not optimal because then B is not covered.
To avoid this problem, a node will be inserted at each edge. In particular, go-
ing from A to C will actually imply going from A to a new node ac and next
going from ac to C. Since this choice provides an uncomplete covering, drops
following this path will not be successful and the erosion in this path will be
low. Thus, the altitude of ac will remain high and hence taking A −→ B −→ C

2 We can make RFD tend towards either of these choices by changing a single param-
eter (see [7]).

300 P. Rabanal, I. Rodríguez, and F. Rubio

(in fact, A −→ ab −→ B −→ bc −→ C) will be preferable for drops. These additional
nodes will be called barrier nodes. In terms of MLS, barrier nodes will represent
WFSM transitions, while standard nodes will represent WFSM states. During the
execution of RFD, new drops will be introduced in nodes representing critical
states and transitions (i.e. it rains in these nodes). After executing RFD for some
time, a solution tree will be constructed by taking, for each critical node, the
path leading to the sea through the highest available decreasing gradient. This
policy guarantees that the subgraph depicted by these paths is a tree indeed; if
it were not a tree then, for some node N , two outgoing edges would be included
in the subgraph. This is not possible because only the edge having the highest
gradient is taken.

Let us note that load trees may include repeated states. In particular, a re-
peated state denotes that we return to a previously traversed state by taking
transitions instead of by loading (a load is simply represented by a bifurcation).
Thus, solutions constructed by RFD must be able to include repetitions as well.
If repetitions are represented by actually making drops pass more than once
through the same node in the working graph (and, perhaps, leaving it through
a different edge each time), then formed solutions will not be stable: In the long
term, only one of the edges leaving each node would be reinforced by drops, and
thus only this edge would prevail. This argument applies to similar methods,
such as ACO: In the long term, only one choice would be reinforced by ants.
In RFD, there is an additional reason for needing an alternative way to denote
repetitions: The formation of gradients implicitly makes RFD avoid following a
path from a node to itself. Thus, the general RFD scheme must be adapted. In
particular, the working graph of RFD will be modified. One possibility consists
in introducing several instances of each state in the graph, so that each instance
can have its own altitude. In this case, paths formed by RFD could go from
an instance of a node to another instance of the same node, and these paths
would explicitly denote not only state repetitions, but also when states must be
repeated. Let us note that nodes may be repeated more than twice in a load
tree, so this solution would force us to strongly increase the number of nodes of
the working graph. Instead, an alternative solution will be applied. Let us note
that the purpose of repeating some nodes through transitions (i.e. not by using
loads) is reaching some state or transition that has not been traversed before.
In particular, we will never load right after traversing some repeated states and
transitions: Directly loading, instead of traversing some repeated states and tran-
sitions and next loading, would have the same effect in terms of covering target
entities, but at a lower cost (recall that the load cost C does not depend on the
current state or the state to be loaded). Thus, our target tree does not need to
repeat states or transitions; it just needs to be able to reach the destinations we
could reach if states or transitions could be repeated.

In order to allow this, additional edges connecting each state with the rest
of states through the shortest available path will be added to the graph. Let us
suppose that we wish to go from A to an (unvisited) critical node B, and the
cheapest way to do it is traversing some (repeated and/or non critical) nodes and

A Formal Approach to Heuristically Test Restorable Systems 301

transitions N1 −→ . . . −→ Nm and next taking a transition from node Nm to B.
Rather than doing this, we will take a single direct transition from A to B whose
cost will be the addition of costs of transitions A −→ N1 −→ . . . −→ Nm −→ B.
Technically, no state or transition will be repeated in the working graph of RFD
by taking this direct edge. Let us note that, if some states or transitions in the
sequence N1 −→ . . . −→ Nm were critical and unvisited, then we could take either
this direct edge (and count traversed critical configurations) or some standard
transitions to traverse the required configurations (combined with other direct
edges to skip repeated parts). Let us note that there is no reason to take a
direct edge more than once: Since the goal of repeating nodes is reaching a new
configuration, we can take the direct edge leading to that new configuration
(which, obviously, has not been taken yet).

The previous idea must be refined to deal with some particular situations. In
fact, a direct edge will not connect an origin state A with a destination state B.
Instead, a different direct edge will be added to connect A with each (standard)
edge leading to B. Thus, in our previous example, some direct edge will connect
A with a node representing the transition connecting Nm and B (rather than
directly connecting A with B). As we said before, edges are represented by
barrier nodes. Thus, the direct edge will connect the origin edge with the barrier
node representing such transition. The reason for this is the following: Let us
suppose that the edge connecting Nm with B is unvisited and critical, but Nm

was visited before. This implies that the edge we used to leave Nm before was not
the one leading to B. How can we reach and take the transition from Nm to B?
On the one hand, since Nm has already been visited, taking the direct transition
connecting A with Nm would imply following a loop, which is implicitly avoided
by RFD. On the other hand, taking a direct transition from A to B would allow
to implicitly cover the transition from Nm and B only if this transition were
included in the shortest path from A to B. In order to cover the transition
from Nm to B without actually repeating Nm in our graph, we will use a direct
edge from A to the edge between Nm and B. Let us note that having only this
alternative notion of direct edge (that is, not having direct edges leading to
states) does not disable our first example in the previous paragraph: If the goal
is not covering the edge between Nm and B but covering B itself, then we can
take the direct edge leading to the transition connecting Nm and B, and next
move to B (the edge between Nm and B is necessarily unvisited; otherwise, B
would have already been visited before).

In order to compute the cost of these additional edges, before launching RFD
we will execute the Floyd algorithm for the graph representing our WFSM. Given
a graph, the Floyd algorithm finds the shortest paths connecting each pair of
nodes. After obtaining these shortest paths, for each pair of nodes A an B we
will do as follows. Let us suppose that the (standard) transitions reaching B

are N1
i1/o1/c1−−−−−−−→ B, . . ., Nm

im/om/cm−−−−−−−−−→ B. Let us suppose that, according
to Floyd algorithm, the shortest path from A to Ni has c′i cost. Then, for all
1 ≤ j ≤ m, the direct edge from A to the barrier node representing the transition

Nj
ij/oj/cj−−−−−−−→ B is given a cost c′j + cj/2. In addition, the transition connecting

302 P. Rabanal, I. Rodríguez, and F. Rubio

this barrier node with B will be given cost cj/2. Thus, the total cost of moving
from A to B through Nj will be c′j + cj, as expected.

Next we formally present the proposed graph transformation, and we prove
the correctness of the approach.

Definition 8. Let W = (S, sin, I, O,C,Δ) be a WFSM. The shortcut machine of
W , denoted by shortcut(W), is a WFSM W ′ = (S′, sin, I

′, O′, C,Δ′) where

– S′ = S ∪Δ, I ′ = I ∪ {−}, and O′ = O ∪ {−}
– Δ′ = {(s, δ, i, o, c/2) | δ = (s, s′, i, o, c) ∈ Δ}∪

{(δ, s′,−,−, c/2) | δ = (s, s′, i, o, c) ∈ Δ}∪{
(s, δ,−,−, c + c1/2)

∣∣∣∣s ∈ S, δ = (s′, s′′, i, o, c1) ∈ Δ,
the shortest path from s to s′ has cost c

}
Let W = (S, sin, I, O,C,Δ), S′ ⊆ S, and Δ′ ⊆ Δ. Let W ′ = shortcut(W) and
t′ ∈ Trees(W ′). We say that t′ covers S′ (respectively, t′ covers Δ′) if for all
q ∈ S′ (resp. q ∈ Δ′) either q appears in t′ or t′ has a transition δ representing
a shortest path α of W such that q is traversed by α. The maximal sets S′ ⊆ S
and Δ′ ⊆ Δ such that t′ covers S′ and Δ′ are denoted by stCover(t′) and
trCover(t′), respectively. ��

Next we show that, given a machine W , searching for good trees where states
and transitions are allowed to be repeated is equivalent to searching, in the
machine shortcut(W), good trees where no state or transition is repeated. In
particular, for all tree in W we can find an equivalent tree in shortcut(W) that
is free of repetitions and whose cost is equal or lower, that is, no relevant tree
is lost by considering repetition-free trees in shortcut(W). Besides, for all tree
in shortcut(S) that is free of repetitions we can find an equivalent tree in W
with the same cost, that is, all trees in shortcut(W) are possible in W . Thus,
shortcut(W) provides an appropriate working graph for applying RFD to solve
our target problem. In the next result, let us note that numbers of occurrences
refer to states and transitions of the shortcut machine. Thus, these numbers do
not count the number of times we implicitly traverse states and transitions of
the original machine by means of shortest paths represented by added direct
transitions.

Proposition 3. Let W = (S, sin, I, O,C,Δ) and W ′ = shortcut(W), where
W ′ = (S′, s′in, I

′, O′, C′, Δ′).

(a) If t ∈ Trees(W) then there exists t′ ∈ Trees(W ′) such that CostTree(t) ≥
CostTree(t′), stCover(t) = stCover(t′), trCover(t) = trCover(t′), and for
all s′ ∈ S′ (respectively, for all δ′ ∈ Δ′) the number of occurrences of s′

(resp. δ′) in t′ is less than or equal to 1.
(b) If t′ ∈ Trees(W ′) and for all s′ ∈ S′ (respectively, for all δ′ ∈ Δ′) the

number of occurrences of s′ (resp. δ′) in t′ is less than or equal to 1 then there
exists t ∈ Trees(W) such that CostTree(t) = CostTree(t′), stCover(t) =
stCover(t′), trCover(t) = trCover(t′). ��

A Formal Approach to Heuristically Test Restorable Systems 303

Let us note that, in order to (implicitly) allow repetitions, adding new transitions
directly connecting pairs of points through the shortest path is, in general, a
better choice than adding several instances of each state in the graph. Let us
note that if we want to reach X by traversing some repeated states then there
is no reason for not taking the shortest path to X . Making an evolutionary
computation method, such as RFD, find these shortest paths in a graph with
several instances of each node is inefficient because the Floyd algorithm optimally
solves this problem in polynomial time. In fact, adding direct transitions is a
good choice unless repeating nodes is rarely preferable to loading, which happens
only if the load cost C is very low. In this case, running the Floyd algorithm
before executing RFD could be almost a waste of time because direct transitions
would be rarely taken. Alternatively, we can bound the execution of the Floyd
algorithm in such a way that we do not consider any direct edge whose cost is
already known to be higher than C (in this case loading is better, so all direct
transitions costing more than C can be ignored).

The second main modification of the general RFD scheme concerns load costs.
The general RFD scheme does not include any negative incentive to form bifur-
cation points, i.e. points where two or more flows join together. However, a
negative incentive should be included because these points will represent loads
in our solutions, which imply some additional cost. Negative incentives should
be proportional to the load cost, in such a way that loads are preferred only
if repeating nodes is more expensive than loading. We consider the following
incentive approach. Let us suppose that a drop can take an edge connecting its
current node to a node N where some drop has already moved this turn. Note
that moving to N would imply that the hypothetical solution formed by both
drops would include a load at N . We will bias the perception of drops in such
a way that, when the drop makes the (probabilistic) decision of where to move
next, it will perceive as if the edge leading to N were C units longer than it
actually is, where C is the load cost. Since the chances to take a path depend
on the gradient, which in turn depends on the edge cost, this will reduce the
probability to go to N . In fact, the drop will choose to go to N only if it is
a good choice despite of the additional cost. Moreover, the erosion introduced
after the drop moves to N , which in turn also depends on the edge gradient, will
be calculated as if the edge cost were C units longer.

5 Experimental Results

In this section we apply our method to empirically find good load trees for
some WFSMs. Our experiments have two goals: (a) showing that being able to
load previously traversed states may allow to reduce the time needed to cover
some states and transitions; and (b) showing that solutions provided by our
heuristic method are good enough though not being optimal. Regarding (a),
we compare the time required to cover some critical configurations in the cases
where load operations are allowed and not allowed. This comparison is made for

304 P. Rabanal, I. Rodríguez, and F. Rubio

three load cost assumptions: (i) the load cost is similar to the cost of taking a
few edges (so loading is usually preferable); (ii) the load cost is a bit less than
the cost of the shortest path between two distant nodes (so loading is seldom
preferable); and (iii) an intermediate point. In the alternative case where we
cannot restore configurations, we assume that a reliable reset button is available,
which is a typical assumption in testing methods. Thus, we actually assume we
can only restore the initial state of the WFSM. An adapted version of RFD is also
used to find solutions in this alternative case. Regarding (b), we compare the
performance and optimality of results given by our method with those given by
an optimal branch and bound (B&B) strategy.

All experiments were performed in an Intel T2400 processor with 1.83 Ghz.
RFD was executed fifty times for each of the graphs during five minutes, while
the B&B method was executed (only once) during one hour (note that B&B is
deterministic, so running it more times is pointless). For each method, Table 1
summarizes the best solution found (best), the arithmetic mean (average), the
variance, and the best solution found for the alternative case where we cannot
load any state different to the initial state (reset).

In Table 1, symbol ’–’ denotes a non-applicable case. The input of both al-
gorithms are randomly generated graphs with 50, 100 and 200 nodes where the
cost of edges is between 0 and 100. In the case that the graphs are sparse (
),
each node is connected with 2-5 nodes. However, when the graphs are dense (x),
each node is connected with the 80% of the nodes. We present the results when
the load cost is relatively cheap (20), when the load cost is medium (100) and
when the load cost is high (1000) with respect to the cost of an edge of the WFSM.
Furthermore, the cost associated to a reset of the system is set to 100, that is,
the average cost of traversing two edges in the WFSM.

As we can see in Table 1, being able to load previously traversed states reduces
the time needed to cover all the critical points in sparse graphs (see columns Best
and Reset). Let us notice that in the case of dense graphs it is relatively easy
to find paths covering all the critical points without requiring any load or reset.
Thus, columns Best and Reset are nearly equal. However, in the case of sparse
graphs (in fact, the most typical case of FSM specification) the advantages are
obvious: In nearly all the cases the column Best outperforms the column Reset.
As it can be expected, in the cases where the load cost is not very high, the
difference is even bigger. Thus, cheaper testing plans can be obtained when load
operations are available.

Regarding the quality of the solutions found by RFD, we must analyze the
differences between RFD and B&B rows. Let us recall that RFD was executed
during only five minutes while the B&B strategy was running during one hour.
Anyway, the results obtained by RFD are always better than those of B&B.
In fact, though B&B can eventually find the optimal solution, the performance
of RFD and B&B for similar execution times is incomparable: Even if we ex-
ecute B&B for much longer times than RFD, solutions found by RFD clearly
outperform those given by B&B.

A Formal Approach to Heuristically Test Restorable Systems 305

Table 1. Summary of results

Method Graph size Sparse Load cost Best Average Variance Reset
RFD 50
 20 1724 2611 411299 6494
B&B 50
 20 2036 - - 13257
RFD 50
 100 2380 3499 121251 6248
B&B 50
 100 2895 - - 7142
RFD 50
 1000 4062 4401 45120 3482
B&B 50
 1000 7306 - - 8918
RFD 100
 20 3678 4118 51470 17569
B&B 100
 20 12670 - - 14982
RFD 100
 100 4054 4669 276078 8775
B&B 100
 100 12830 - - 14982
RFD 100
 1000 5429 5793 45082 5429
B&B 100
 1000 14630 - - 14982
RFD 200
 20 5573 6756 530882 25266
B&B 200
 20 32819 - - 69656
RFD 200
 100 7653 8260 73943 12670
B&B 200
 100 33219 - - 69656
RFD 200
 1000 18198 19524 1168366 18198
B&B 200
 1000 37719 - - 69656
RFD 50 x 20 265 288 164 296
B&B 50 x 20 566 - - 566
RFD 50 x 100 244 270 141 244
B&B 50 x 100 580 - - 580
RFD 50 x 1000 242 273 107 242
B&B 50 x 1000 580 - - 580
RFD 100 x 20 246 278 616 246
B&B 100 x 20 607 - - 607
RFD 100 x 100 245 284 1090 245
B&B 100 x 100 607 - - 607
RFD 100 x 1000 242 262 86 242
B&B 100 x 1000 607 - - 607
RFD 200 x 20 300 336 293 300
B&B 200 x 20 367 - - 367
RFD 200 x 100 297 347 583 297
B&B 200 x 100 367 - - 367
RFD 200 x 1000 277 336 685 277
B&B 200 x 1000 367 - - 367

6 Conclusions

Finding optimal testing plans to reach some states or transitions of an FSM
at least once is an NP-hard problem if we consider that previously traversed

306 P. Rabanal, I. Rodríguez, and F. Rubio

configurations can be saved/restored at some cost. We have presented a heuris-
tic evolutionary method that obtains reasonable solutions and spends acceptable
times. As it can be expected, saving/restoring configurations is a good option
when the cost of such operations is low compared to the cost of the rest of transi-
tions. Our experimental results show that, in fact, loading is a good choice even in
scenarios where the cost of loading is not particularly low. Moreover, the results
of our approach based on River Formation Dynamics show that this approach
provides a good tradeoff between finding good results and not spending much
computational time. In fact, these results confirm that RFD fits particularly well
for problems consisting in forming a kind of covering tree.

As future work we wish to generalize our method to the case where extended
finite state machines are considered. In particular, RFD adaptations considered
in [8] show that RFD can deal with variables without necessarily unfolding FSM
states into all combinations of (variable value, state). Thus, the capability of our
method to actually deal with EFSMs should be studied.

References

1. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

2. de Jong, K.: Evolutionary computation: a unified approach. In: Genetic and Evo-
lutionary Computation Conference, GECCO 2008, pp. 2245–2258. ACM Press,
New York (2008)

3. Dorigo, M.: Ant Colony Optimization. MIT Press, Cambridge (2004)
4. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines:

A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)
5. Petrenko, A.: Fault model-driven test derivation from finite state models: Anno-

tated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP
2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

6. Rabanal, P., Rodríguez, I., Rubio, F.: Using river formation dynamics to design
heuristic algorithms. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G.,
Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 163–177. Springer, Heidelberg
(2007)

7. Rabanal, P., Rodríguez, I., Rubio, F.: Finding minimum spanning/distances trees
by using river formation dynamics. In: Dorigo, M., Birattari, M., Blum, C.,
Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217,
pp. 60–71. Springer, Heidelberg (2008)

8. Rabanal, P., Rodríguez, I., Rubio, F.: Applying river formation dynamics to solve
NP-complete problems. In: Nature-Inspired Algorithms for Optimisation. Studies
in Computational Intelligence, vol. 193, pp. 333–368. Springer, Heidelberg (2009)

9. Rabanal, P., Rodríguez, I., Rubio, F.: A formal approach to heuristically test
restorable systems (Extended version) (2009),
http://kimba.mat.ucm.es/prabanal/

10. Rabanal, P., Rodríguez, I., Rubio, F.: Testing restorable systems by using RFD.
In: IWANN 2009. LNCS, vol. 5517. Springer, Heidelberg (2009)

11. Rodríguez, I., Merayo, M.G., Núñez, M.: HOTL: Hypotheses and observations
testing logic. Journal of Logic and Algebraic Programming 74(2), 57–93 (2008)

http://kimba.mat.ucm.es/prabanal/

Constrained Reachability of Process Rewrite
Systems

Tayssir Touili

Liafa, CNRA and Univ. Paris Diderot, France
Tayssir.Touili@liafa.jussieu.fr

Abstract. We consider the problem of analyzing multi-threaded pro-
grams with recursive calls, dynamic creation of parallel procedures, and
communication. We model such programs by Process Rewrite Systems
(PRS) which are sets of term rewriting rules. Terms in this framework
represent program control structures. The semantics of PRS systems is
defined modulo structural equivalences on terms expressing properties of
the operators appearing in the terms (idle process, sequential composi-
tion, and asynchronous parallel composition).

We consider the problem of reachability analysis of PRSs under con-
straints on the execution actions. This problem is undecidable even for
regular constraints. [LS98] showed that it becomes decidable for decom-
posable constraints for the PRS subclass PA if structural equivalences are
not taken into account. In this work, we go further and show that for de-
composable constraints, we can compute tree automata representations
of the constrained reachability sets for the whole class of PRS modulo
different structural equivalences. Our results can be used to solve pro-
gram (data flow) analysis and verification problems that can be reduced
to the constrained reachability analysis problem.

1 Introduction

Software model checking is an important and hard task. This is due to the
complex features present in software such as data structures ranging over infinite
domains, complex control structures due to mutual recursion, dynamic creation
of parallel processes, etc. Thus, software model checking is a challenging problem.

Many program analysis and verification problems can be reduced to for-
ward/backward reachability analysis, i.e., computing the set of all successors
(post∗ image) or all predecessors (pre∗ image) of a given set of configurations.
We consider in this paper the reachability analysis problem of multi-threaded
programs, i.e., programs with recursive calls, dynamic creation of parallel pro-
cesses, and communication. Our work is carried out in the framework of term
rewriting systems. We model programs as sets of term rewriting rules, and we de-
velop tree-automata techniques allowing to compute reachability sets for various
classes of such models.

More precisely, we model a program by a Process Rewrite System (PRS for
short) [May98]. Such a system is a finite set of rules of the form t→ t′ where t and

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 307–321, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

308 T. Touili

t′ are terms built up from the idle process (“0”), a finite set of process variables
(X), sequential composition (“·”), and asynchronous parallel composition (“||”).

To model a program in this framework, process variables are used to represent
control points in the program, rules of the form X → X1 ·X2 represent sequential
recursive calls, whereas rules of the form X → X1||X2 model dynamic creation of
parallel processes. Moreover, communication between sequential processes and
synchronization between parallel processes can be modeled using rules of the
forms X1 ·X2 → X and X1||X2 → X . Hence, a term represents here the control
structure of a program representing all processes running in parallel, the hierar-
chy between them, and their corresponding control stacks. Since the number of
process variables is finite, the framework we consider allows the manipulation of
data ranging over a finite domain. On the other hand, this framework allows to
reason about programs with unbounded control structures.

Syntactical restrictions on PRS rules define a hierarchy of models: Pushdown
systems and Petri nets correspond respectively to systems where only sequen-
tial or parallel composition is used. An interesting subclass of PRS is the so-
called class of PAD systems where parallel composition may appear only in the
right-hand-sides of the rules. This class subsumes both pushdown systems and
the class of PA processes where all left-hand-sides of rules are process variables.
These various classes of models correspond to different classes of programs: Push-
down systems model sequential recursive programs, PA systems correspond to
programs with recursive sequential and parallel procedures but without commu-
nication, PAD extends the modeling power of PA by allowing communication
between sequential recursive procedures (a procedure may deliver a result to its
caller), and PRS allows also communication and synchronization between paral-
lel procedures (the execution of a procedure may depend on the results delivered
by several parallel procedures).

The standard semantics of PRSs (see [May98]) considers terms modulo a
structural equivalence ∼ which expresses the fact that 0 is a neutral element of
“·” and “||”, that “·” is associative, and that “||” is associative and commutative.
In [BT03], we showed that it can be desirable and useful to reason about terms
modulo stronger structural equivalences, and that it may be sufficient to com-
pute representatives of the reachability sets modulo the considered equivalences.
Therefore, following [BT03], we consider the reachability problem of PRSs mod-
ulo the following equivalences: (1) term equality (=), (2) the relation ∼0 which
takes into account the neutrality of 0 w.r.t. “·” and “||”, (3) the relation ∼s

which, in addition, considers the associativity of “·”, and (4) the equivalence ∼.
To tackle the reachability problem for PRSs modulo these various structural
equivalences, we represent infinite sets of process terms using tree automata
since they present nice closure properties needed for program verification.

In [BT03], we showed that regular representatives of the reachability sets can
be computed for the whole class of PRS for the equivalences =,∼0, and ∼s;
and that if the system is a PAD, then representatives of the reachability sets
modulo ∼ can be computed. In this work, we go one step further and consider
reachability under constraints. The problem is, given a (infinite) set of sequences

Constrained Reachability of Process Rewrite Systems 309

of actions D, compute representatives of the set of terms reachable by the system
after applying sequences of actions in D. Indeed, in program verification, it is
interesting to determine the behavior of the program if it performs sequences of
actions in a given form. Moreover, it was shown in [EK99] that data flow analysis
necessitates reachability under constraints.

Unfortunately, even for the PRS subclass PA, and the trivial equivalence “=”,
this problem is undecidable if we consider regular constraints [LS98]. It becomes
decidable for PA modulo “=” if we consider decomposable constraints [LS98] (a
language is decomposable if it belongs to a finite set E of languages such that
each member of E has a sequential and a parallel decomposition over E). In this
work, we go further and extend this result to the whole class of PRS, and to
all the equivalences. We show that modulo “=,∼0”, and “∼s”, we can compute
regular representatives of the constrained reachability set for the whole class of
PRS if the contraints are decomposable. For the equivalence “∼”, it is possible
to compute representatives for the PRS subclass PAD.

We show that these results are important in program verification because all
the constraints on the executed actions needed for data flow analysis and men-
tionned in [EK99] are decomposable. Furthermore, decomposable languages can
describe interesting patterns under which it can be relevant to see the behavior
of the program.

Related work. In [May98], Mayr considers the reachability problem between
terms, i.e., given two terms t and t′, determine whether t′ is reachable from t. The
problem we consider here is more general since we are interested in computing the
set of all reachable configurations, or a representative of it modulo a structural
equivalence, which allows to solve the term reachability problem. In [BT05], we
propose a generic algorithm that computes all the reachable configurations (not
only representatives) of some classes of PRS. There, we use a different class of
tree automata. Reachability under constraints was not considered in [BT05].

In [BET03, BET05, Tou05, PST07], it was shown that reachability under
constraints is useful to deal with synchronisation between parallel processes.
These works as well as [RSJM05] do not compute the reachable configurations
under a given execution constraint; they compute abstractions of the execution
paths that lead from a set of configurations to another one. Our results can be
used in these frameworks to compute the reachable configurations under a given
exact (not abtract as in these works) constraint on the execution paths.

There are several other works about the reachability of multithreaded pro-
grams using different models (e.g. [BMOT05, ABT08]). Reachability under con-
straints was not considered in these works.

2 Terms and Tree Automata

An alphabet Σ is ranked if it is endowed with a mapping rank : Σ → N. For
k ≥ 0, Σk is the set of elements of rank k. Let X be a fixed denumerable set of
variables {x1, x2, . . .}. The set TΣ[X] of terms over Σ and X is the smallest set

310 T. Touili

that satisfies: (1) Σ0 ∪ X ⊆ TΣ[X]; and (2) if k ≥ 1, f ∈ Σk and t1, . . . , tk ∈
TΣ[X], then f(t1, . . . , tk) is in TΣ [X].

TΣ stands for TΣ[∅]. Terms in TΣ are called ground terms. A term in TΣ [X] is
linear if each variable occurs at most once. A context C is a linear term of TΣ[X].
Let t1, . . . , tn be terms of TΣ , then C[t1, . . . , tn] denotes the term obtained by
replacing in the context C the occurrence of the variable xi by the term ti, for
each 1 ≤ i ≤ n. To single out some occurrences of n subterms t1, . . . , tn into a
given term t, we write t = C[t1, . . . , tn] for some context C.

To represent regular sets of terms, we use tree automata.

Definition 1. A finite tree automaton is a tuple A = (Q,Σ, F, δ) where Q
is a finite set of states, Σ is a ranked alphabet, F ⊆ Q is a set of final states,
and δ is a set of rules of the form (1) f(q1, . . . , qn) → q, or (2) a → q, or (3)
q → q′, where a ∈ Σ0, n ≥ 0, f ∈ Σn, and q1, . . . , qn, q, q

′ ∈ Q.

Let t be a ground term. A run of A on t is defined in a bottom-up manner
as follows: first, the automaton annotates the leaves according to the rules (2),
then it continues the annotation of the term t according to the rules (1) and
(3): if the subterms t1, . . . , tn are annotated by states q1, . . . , qn, and if the rule
f(q1, . . . , qn)→ q is in δ then the term f(t1, . . . , tn) is annotated by q. A term t
is accepted by a state q ∈ Q if A reaches the root of t in q. Formally, the move
relation →δ of A is defined as follows: let t and t′ be two terms of TΣ∪Q, then
t →δ t′ iff there exist a context C ∈ TΣ∪Q[X], and (1) a rule f(q1, . . . , qn) → q
in δ such that t = C[f(q1, . . . , qn)] and t′ = C[q], or (2) a rule a → q in δ such
that t = C[a] and t′ = C[q], or (3) a rule q → q′ in δ such that t = C[q] and
t′ = C[q′]. ∗→δ is the reflexive-transitive closure of→δ. The language accepted by
a state q ∈ Q is Lq = {t ∈ TΣ | t ∗→δ q}. The language accepted (or recognized)
by the automaton A is L(A) =

⋃{Lq | q ∈ F}. A tree language is regular if it is
accepted by a finite tree automaton.

Proposition 1. [CDG+97] The class of regular tree languages is closed under
union, intersection, and complementation. Moreover, it can be decided in linear
time whether the language accepted by a finite tree automaton is empty.

3 Process Rewrite Systems

3.1 Syntax

Let Act = {ε, a, b, c, . . .} be a set of actions, where ε is a “silent” action. Let
V ar = {X,Y, . . .} be a set of process variables, and Tp be the set of process
terms t defined by the following syntax:

t ::= 0 | X | t · t | t||t
Intuitively, 0 is the null process and “.” (resp. “||”) denotes sequential com-
position (resp. asynchronous parallel composition). The set Tp can be seen as
TΣ0∪Σ2 where Σ0 = {0}∪V ar and Σ2 = {., ||}. Thus, we can use tree automata
to represent sets of process terms. We shall also use the usual infix notations to
represent terms.

Constrained Reachability of Process Rewrite Systems 311

Definition 2 ([May98]). A Process Rewrite System (PRS for short) is a finite
set of rules of the form t1

a→ t2, where t1, t2 ∈ Tp, t1 �= 0, and a ∈ Act. A PAD
is a PRS where all the rules have as left hand sides sequential compositions of
process variables like X ·Y ·Z. A PA is a PAD where all the rules have the form
X

a→ t.

Let R be a PRS, we denote by R−1 the PRS obtained by swapping the left hand
sides and the right hand sides of the rules of R. We define Sub(R) as the set of
subterms of the left hand sides and the right hand sides of the rules of R.

3.2 Semantics

A PRS R induces a transition relation a→R over Tp defined by the following
inference rules:

t1
a→ t2 ∈ R

t1
a→R t2

;
t1

a→R t′1
t1||t2 a→R t′1||t2

;
t1

a→R t′1
t1 · t2 a→R t′1 · t2

;
t2

a→R t′2
t1||t2 a→R t1||t′2

;
t1 ∼0 0 , t2

a→R t′2
t1 · t2 a→R t1 · t′2

where ∼0 is an equivalence between process terms that identifies the terminated
processes. It expresses the neutrality of the null process “0” w.r.t. “||”, and “.”:

A1: t · 0 ∼0 0 · t ∼0 t||0 ∼0 0||t ∼0 t

We consider the structural equivalence ∼ generated by the axioms A1 and the
following axioms:

A2: (t · t′) · t′′ ∼ t · (t′ · t′′) : associativity of “.”,
A3: t||t′ ∼ t′||t : commutativity of “||”,
A4: (t||t′)||t′′ ∼ t||(t′||t′′) : associativity of ‘||”.

We denote by∼s the equivalence induced by the axioms A1 and A2, and by∼||
the equivalence induced by the axioms A1, A3, and A4.

Observe that the last inference rule expresses that for a term (t1 · t2); t2 can
make moves only when t1 ∼0 0; i.e., only when t1 has terminated its execution.
Let ≡ be an equivalence from the set {=,∼0,∼s,∼||,∼}, where = stands for
the identity between terms. We denote by [t]≡ the equivalence class modulo
≡ of the process term t, i.e., [t]≡ = {t′ ∈ Tp | t ≡ t′}. A language L is said
to be compatible with the equivalence ≡ if [L]≡ = L. We say that L′ is a ≡-
representative of L if [L′]≡ = L. Each equivalence ≡ induces a transition relation
a⇒≡,R defined as follows:

∀t, t′ ∈ Tp, t
a⇒≡,R t′ iff ∃u, u′ ∈ Tp such that t ≡ u, u

a→R u′, and u′ ≡ t′

The relation a⇒≡,R is extended to sequences of actions in the usual way. Let
Post∗R,≡(t) = {t′ ∈ Tp | ∃w ∈ Act∗, t w⇒≡,R t′}, and Pre∗R,≡(t) = {t′ ∈ Tp |
∃w ∈ Act∗, t′ w⇒≡,R t}. Let D ⊆ Act∗. We denote by Post∗R,≡[D](t) the set
{t′ ∈ Tp | ∃w ∈ D such that t

w⇒R,≡ t′}. Pre∗R,≡[D](t) is defined in the same
manner. All these definitions are extended to languages in the standard way.

312 T. Touili

In this paper, we suppose w.l.o.g. that the PRSs we are working with are in
normal form, i.e., are such that Sub(R) contains only elements of the form 0,
X , X‖Y , or X · Y . It can be shown that any PRS can be simulated by a PRS
in this form by introducing some auxiliary variables [May98]. For example, the
rule X

a→ Y ||(Z||W) can be replaced by X
ε→ Y ||X ′ and X ′ a→ Z||W .

3.3 Modeling of Multi-threaded Programs by PRSs

PRS subsumes several well-known classes of (infinite-state) models relevant
in program modeling such as Prefix rewrite systems, BPA processes, Multiset
rewrite systems, BPP, PA, and PAD processes [May98]. PRSs allow to model
parallel programs with recursion as follows: We abstract each point of the pro-
gram to a process variable. Thus, a process term t describes the control structure
of the program. The process t1 · t2 behaves like the process t1 until it terminates
and then behaves like t2. The parallel execution of processes t1 and t2 is denoted
by t1||t2. The set Act contains the actions the different processes may perform.
A rule t1

a→ t2 indicates that the process t1 can perform the action “a” and
afterwards behave like t2. A rule t1||t2 a→ t refers to a pair of threads (t1 and t2)
that synchronize and become process t. The creation of two processes t1 and t2
running in parallel is modeled by a rule t

a→ t1||t2. A procedure call is represented
by a rule of the form t

a→ t1 · t2, where the process t calls the procedure t1 and
becomes process t2. It becomes active again when t1 terminates (this is due to
the last inference rule of Subsection 3.2). Suppose the behavior of t2 depends on
the result of the computation t1, this is represented by a finite number of rules
ti1 · t2 a→ ti, 1 ≤ i ≤ k, for some constant k; meaning that t1 is evaluated before
passing control to t2, if t1 becomes ti1, then the caller becomes ti and resumes
its computation.

Let us consider a simple example of a multi-threaded program and show its
corresponding PRS system. The JAVA code below corresponds to a typical con-
current server that launches a new thread to deal with each new client request.
The number of launched threads is unbounded.

public void server() {
Socket socket;
while(true) {

try{
socket=serverSocket.accept();

} catch (Exception e){
System.err(e);
continue;

}
Thread t=new thread(runnableService(socket));
t.start();

}
}

Constrained Reachability of Process Rewrite Systems 313

An instance of the procedure server() is represented by the process variable
X , the instruction try is represented by the variable Y , and an instance of
t.start() is represented by the variable Z. The variables T and F correspond to
the booleans true and false meaning that the try instruction (represented by Y)
succeeds or fails, respectively. The program is described by the following PRS
rules (notice that this system is in fact a PAD):

– X → Y ·X (the procedure starts by executing Y),
– Y → T (Y returns true),
– Y → F (Y returns false),
– T ·X → X ||Z (if Y returns true, then a new thread is launched),
– F → 0 (otherwise, the request is ignored after failure).

4 Reachability under Constraints of PRS

In [EK99, BT03], it was shown that several problems of data flow analysis (such
as the verification of safety properties) can be reduced to computing represen-
tatives of the sets Post∗≡[D](L) and Pre∗≡[D](L), where L is a tree language
representing a regular (infinite) set of process terms, ≡ is an equivalence in
{=,∼0,∼s,∼}, and D is a (infinite) set of constraints in Act∗. In [BT03], we
developed tree automata techniques to compute representatives of Post∗≡(L)
and Pre∗≡(L) modulo the various structural equivalences mentionned above.
In this work, we go further and tackle the problem of computing representa-
tives of Post∗≡[D](L) and Pre∗≡[D](L) for a (infinite) set of sequences of actions
D ⊆ Act∗. Unfortunately, this problem is undecidable even if we consider reg-
ular constraints (i.e., if D is a regular word language over Act∗) and without
structural equivalences (i.e., if ≡ is =). This holds even for the subclass PA of
PRS [LS98] (PA is the class where the left hand sides of the rules are process
constants) . Lugiez and Schnoebelen [LS98] showed that this problem becomes
decidable for PA if D is a decomposable language (a language is decomposable
if it belongs to a finite set E of languages such that each member of E has a
sequential and a parallel decomposition over E. We give the formal definition of
decomposable languages in the next section.).

In this paper, we go further and show that we can compute ≡-representatives
of the sets Post∗≡[D](L) and Pre∗≡[D](L) for ≡∈ {=,∼0,∼s,∼} for the whole
class of PRS if D is decomposable. Our results are important for program ver-
ification [EK99, BT03]. Indeed, all the constraint languages that are used in
[EK99] for data flow analysis are decomposable (see the next section for a non
exhaustive list of decomposable languages).

4.1 Decomposable Languages

We give in this section the definition of decomposable languages. Recall that
for two given words x and y, the shuffle x X y is the set {x1y1 · · ·xnyn | x =
x1 · · ·xn, y = y1 · · · yn}.

314 T. Touili

Definition 3 (Decomposable languages [LS98])

– {(D1, D
′
1), . . . , (Dm, D′

m)} is a (finite) seq-decomposition of D iff for every
w,w′ ∈ Act∗ we have:

w.w′ ∈ D iff (w ∈ Di, w
′ ∈ D′

i for some 1 ≤ i ≤ m).

– {(D1, D
′
1), . . . , (Dm, D′

m)} is a (finite) paral-decomposition of D iff for every
w,w′ ∈ Act∗ we have:

D ∩ (w X w′) �= ∅ iff (w ∈ Di, w
′ ∈ D′

i for some 1 ≤ i ≤ m).

– A family D = {D1, . . . , Dn} of languages over Act is a finite decomposition
system iff every D ∈ D has a seq-decomposition and a paral-decomposition
only using Di’s from D.

– D is decomposable if it belongs to a finite decomposition system.

In the remaining, we will write (D1, D2) ∈‖ D (resp. (D1, D2) ∈. D) if (D1, D2)
appears in the paral-decomposition of D (resp. the seq-decomposition of D).

The following properties of decomposable languages were shown in [Sch99,
GP03]: Any decomposable language is regular, the reverse does not hold. Decom-
posable languages form a class of regular languages closed under finite union,
concatenation, and shuffle. Every commutative regular language is decompos-
able. Every language that is a finite union of products of commutative languages
is decomposable. This includes the finite and cofinite1 languages, and the lan-
guages of level 3/2 of Straubing’s concatenation hierarchy of star-free sets (this
corresponds to the class APC of [BMT01, BMT07]).

For example, let Act = {ε, a, b}; it was shown in [GP03] that the fol-
lowing languages are decomposable, and their decomposition was provided:
(aab)∗ ∪ Act∗b(aa)∗abAct∗, Act∗b(aa)∗, (aa)∗abAct∗, Act∗b(aa)∗a, (aa)∗bAct∗,
Act∗aAct∗bAct∗, Act∗bAct∗bAct∗, Act∗baAct∗abAct∗Act∗bAct∗aAct∗, etc.

Thus, decomposable languages is an important class in program analysis.
Indeed, it is interesting for program verification to know whether it is possible
to reach some set of terms L′ (representing, e.g., the bad configurations) from
a set L (representing, e.g., the initial configurations) after repeating a given
pattern of sequences of actions, such as e.g., (aab)∗∪Act∗b(aa)∗abAct∗. Moreover,
constrained reachability was shown to be useful for dataflow analysis in [EK99].
There, the constraints used are decomposable because they all belong to the
class APC [BMT01, BMT07].

5 Constrained Reachability without Structural
Equivalences

Through the rest of the paper, we fix a set of actions Act, a set of variables
V ar, and a PRS R over V ar. We prove in this section that for any regular
tree language L, Post∗R,=[D](L) and Pre∗R,=[D](L) are effectively regular if D
is decomposable:
1 A language is cofinite if it is the complement of a finite language.

Constrained Reachability of Process Rewrite Systems 315

Theorem 1. Let L be a regular tree language and D a decomposable language.
Then, finite automata that recognize Post∗R,=[D](L) and Pre∗R,=[D](L) can be
effectively computed in polynomial time.

In the rest of this section, we give the construction underlying this theorem. Let
Subr(R) be the set of all the subterms of the right hand sides of the rules of R.
Let QR = {qt | t ∈ Subr(R)}, and let δR be the following transition rules:

– X → qX , for every X ∈ Subr(R),
– ||(qX , qY)→ qX||Y , if X ||Y ∈ Subr(R),
– ·(qX , qY)→ qX·Y , if X · Y ∈ Subr(R).

Then, it is clear that for every t ∈ Subr(R), Lqt = {t}.
Now, we are ready to give our construction. Let L be a regular language,

and let A = (Q,Σ, F, δ) be a finite tree automaton that recognizes L. Let D
be a finite decomposition system. For every D0 ∈ D, we define the automaton
A∗

R[D0] = (QD, Σ, FD, δD) as follows:

– QD = {q, (qnil, D), (qT , D) | q ∈ Q ∪ QR, D ∈ D}. We denote by q̃ any
element in {qT , qnil}.

– FD = {(qnil, D0), (qT , D0) | q ∈ F},
– δD is the smallest set of rules containing δ ∪ δR and such that for every

q1, q2, q ∈ Q ∪QR:
1. q → (qT , D) ∈ δD for every q ∈ Q ∪QR, D ∈ D such that ε ∈ D,
2. if 0 ∗→δ q, then 0→ (qnil, D) ∈ δD, for every D ∈ D such that ε ∈ D,
3. if t1

a→ t2 ∈ R, and there is a state q ∈ Q∪QR such that t1
∗→δD (qT , D),

then for every D1, D2, D
′, D′′ ∈ D such that a ∈ D′, (D′, D1) ∈. D′′,

and (D,D′′) ∈. D2:
(a) (qT

t2 , D1)→ (qT , D2) ∈ δD,
(b) (qnil

t2 , D1)→ (qnil, D2) ∈ δD,
4. if ·(q1, q2) → q ∈ δ ∪ δR, then for every D1, D2, D ∈ D such that

(D1, D2) ∈. D:
(a) ·((qnil

1 , D1), (q̃2, D2)
)→ (qT , D) ∈ δD,

(b) ·((qnil
1 , D1), (qnil

2 , D2)
)→ (qnil, D) ∈ δD,

(c) ·((qT
1 , D), q2

)→ (qT , D) ∈ δD,
5. if ||(q1, q2) → q ∈ δ ∪ δR, then for every D1, D2, D ∈ D such that

(D1, D2) ∈|| D:
(a) ||((qnil

1 , D1), (qnil
2 , D2)

)→ (qnil, D) ∈ δD,
(b) ||((q̃1, D1), (q̃2, D2)

)→ (qT , D) ∈ δD,
6. if q → q′ ∈ δ ∪ δR, then (qT , D) → (q′T , D) ∈ δD, and (qnil, D) →

(q′nil, D) ∈ δD for every D ∈ D.

Note that the inference rules (3) construct a finite sequence of increasing sets
of transitions δ1

D ⊂ δ2
D ⊂ . . . ⊂ δn

D, where δi+1
D contains at most two transitions

more that δi
D. This procedure terminates because there is a finite number of

states in Q ∪QR and a finite number of terms in Subr(R).

316 T. Touili

The computed automaton satisfies the following:

Theorem 2. A∗
R[D0] recognizes Post∗R,=[D0](L).

To show that Post∗R,=[D0](L) is accepted by A∗
R[D0], it suffices to prove these

two lemmas:

Lemma 1. For every v ∈ Tp and every q ∈ Q ∪QR, we have:

– v
∗→δD (qT , D)⇒ v ∈ Post∗R,=[D](Lq),

– v
∗→δD (qnil, D)⇒ v ∼0 0 and v ∈ Post∗R,=[D](Lq).

Lemma 2. For every q ∈ Q ∪QR, u ∈ Tp and D ∈ D,(∃w ∈ D | u ∈ Post∗R,=[w](Lq)
)⇒ (

u
∗→δD (qT , D)

)
.

These lemmas express that for every q ∈ Q ∪ QR and every D ∈ D, L(qT ,D) =
Post∗R,=[D](Lq) and L(qnil,D) = Post∗R,=[D](Lq) ∩ {u ∈ Tp | u ∼0 0}. In par-
ticular this means that for every t ∈ Subr(R), L(qT

t ,D) = Post∗R,=[D](t) and
L(qnil

t ,D) = Post∗R,=[D](t) ∩ {u ∈ Tp | u ∼0 0}. The construction is based on the
fact that:

– If u1 ∈ Post∗R,=[D1](t1) and u2 ∈ Post∗R,=[D2](t2), then u1‖u2 ∈
Post∗R,=[D](t1‖t2) for some D such that (D1, D2) appears in the paral-
decomposition of D (rules (5)). Similarly, if u2 = t2 or u1 ∼0 0, then
u1.u2 ∈ Post∗R,=[D](t1 · t2) for some D such that (D1, D2) appears in the
seq-decomposition of D (rules (4)).

– Let u, t1, t2 ∈ Tp, and D′′ ∈ D be such that t1
a→ t2 ∈ R and u ∈

Post∗R,=[D′′](t2), then u ∈ Post∗R,=[D](t1) for some D,D′ ∈ D such that
a ∈ D′ and (D′, D′′) appears in the seq-decomposition of D (rules (3)).

More precisely, the rules (3) mean that if t1 ∈ Post∗R,=[D](Lq) and t1
a→ t2 ∈

R, then Post∗[D1](t2) ⊆ Post∗R,=[D2](Lq), where D1, D2 are such that there
exist D′, D′′ such that a ∈ D′, (D′, D1) ∈. D′′, and (D,D′′) ∈. D2. The rules (5)
mean that if ||(q1, q2)→δ q, u1 ∈ Post∗R,=[D1](Lq1), and u2 ∈ Post∗R,=[D2](Lq2),
then u1‖u2 ∈ Post∗R,=[D](Lq) for some D such that (D1, D2) ∈‖ D. Rules (4)
deal with transitions of the form ·(q1, q2) →δ q. The states q and (qnil, D) play
an important role for these rules. Indeed, the rules (4) ensure that the right child
of a “.” node cannot be rewritten if the left child is not null, i.e., if the left child
is not labeled by a state (qnil, D).

A construction similar to the one above can be given for Pre∗R,=[D0](L). It is
based on the fact that Pre∗R,=[D0](L) = Post∗R−1,=[D0](L).

5.1 Reachability Modulo ∼0

Modulo∼0, every term t is equivalent to the terms t·0, 0·t, t||0, 0||t, 0·(t·0),(0·0)·t,
(0||0)·t, . . . etc. The previous construction can be adapted to perform reachability
analysis modulo ∼0. This can be done by (1) considering a special state qnull that

Constrained Reachability of Process Rewrite Systems 317

recognizes all the null terms (all the terms which are equivalent to 0), (2) adding
new rules that allow to have null terms recognized by qnull everywhere in the
trees (for example, add rules of the form ||(q, qnull)→ q, for every q ∈ QD), and
(3) adding rules to simplify the rules of the computed automaton (for example
||(q1, q2)→ q, or ·(q1, q2)→ q) in this way: if 0 is recognized by q1, and the term
u by q2, then u should also be recognized by q (i.e., we add the rule q2 → q).
These rules are added during the saturation process. We get then the following
result:

Theorem 3. Let L be a regular tree language and D a decomposable language.
Then, finite automata that recognize Post∗R,∼0

[D](L) and Pre∗R,∼0
[D](L) can be

effectively computed in polynomial time.

6 Reachability Modulo ∼s

Computing post∗- and pre∗-images modulo ∼s does not preserve regularity
[GD89]. We show in this section that for any regular language L and any de-
composable language D, we can effectively compute finite tree automata that
recognize ∼s-representatives of Post∗R,∼s

[D](L) and Pre∗R,∼s
[D](L).

The difference of this case with the previous ones comes from the fact that
the rules of the form X ·Y → t can be applied non-locally, i.e., it can for example
be applied to the terms X · (Y · (Z · T)

)
and X · ((Y ·Z) · T) since they are ∼s-

equivalent to (X · Y) · (Z · T). In fact, this rule can be applied to the subterms
that have the form of the tree represented in the left side of Figure 1. Thus,
if we want to produce a ∼s-representative of the immediate successors of such
a term by this rule, we can compute the term represented in the right side of
Figure 1: we replace the occurrence of Y by t, and remove the X . We recall in
the following the definition of a relation ζR introduced in [BT03] that performs
this transformation, in addition to the other usual rules of R applied modulo ∼0
(since the terms in Figure 1 considers simplified terms that do not consider 0’s).

First, let us recall the notion of seq-context: Let x ∈ X , a seq-context is a
single-variable context C[x] such that: (1) x is the leftmost leaf of C, and (2) all
the ancestors of the variable x are labeled by “.”.

ζR is the smallest transition relation over Tp that contains ⇒∼0,R and such
that for every rule X ·Y → t in R, and every seq-context C, (X ·C[Y], C[t]) ∈ ζR.
This transformation is depicted in Figure 1. Given a regular tree language L and
a set of constraints D, ζ∗R[D](L) is defined as previously.

For any set of constraints D, ζ∗R[D](L) is a ∼s-representative of
Post∗R,∼s

[D](L):

Proposition 2. For every tree language L and set of constraints D,
Post∗R,∼s

[D](L) = [ζ∗R[D](L)]∼s and Pre∗R,∼s
[D](L) = [ζ∗R−1 [D](L)]∼s .

We prove in this section the following:

Theorem 4. Let L be a regular language and D be a decomposable language,
then ζ∗R[D](L) is effectively regular, and can be computed in polynomial time.

318 T. Touili

ζR

t

CX

C

Y

Fig. 1. Application of the rule X · Y → t modulo ∼s

Let L be a regular tree language. We suppose w.l.o.g. that L is compatible
with ∼0 (if this is not the case, we can make it compatible as explained in
Section 5.1). Let A = (Q,Σ, F, δ) be a tree automaton that recognizes L. Let D
be a decomposable system, and let D0 ∈ D. We define the automatonA∗

ζR
[D0] =

(Q̃D, Σ, F̃D, δ̃D) as follows:

– Q̃D = {q, (qT , D) | q ∈ Q ∪ QR, D ∈ D} ∪ {((q,X), D
) | q ∈ Q ∪ QR, X ∈

V ar,D ∈ D},
– F̃D = {(qT , D0) | q ∈ F},
– δ̃D is the smallest set of rules containing δ ∪ δR and such that for every

q1, q2, q ∈ Q ∪QR, for every X,Y,X ′ ∈ V ar such that X · Y a→ t ∈ R:
(α1) q → (qT , D) ∈ δ̃D for every q ∈ Q ∪QR and D ∈ D s.t. ε ∈ D,
(α2) if Y

∗→δ̃D
q, then for every D1, D2, D

′ such that a ∈ D′, (D′, D1) ∈. D2:

(qT
t , D1)→

(
(q,X), D2

) ∈ δ̃D,

(α3) if t1
b→ t2 ∈ R, then for every D1, D2, D

′, D′′ such that b ∈ D′,
(D′, D1) ∈. D′′, and (D,D′′) ∈. D2, if there is a state q ∈ Q ∪ QR

such that:
(a) t1

∗→δ̃D
(qT , D), then: (qT

t2 , D1)→ (qT , D2) ∈ δ̃D, or
(b) t1

∗→δ̃D

(
(q,X), D

)
, then: (qT

t2 , D1)→
(
(q,X), D2

) ∈ δ̃D,
(α4) if ·(q1, q2)→ q ∈ δ ∪ δR, then for every D1, D2, D such that (D1, D2) ∈.

D:
(a) ·((qT

1 , D), q2)→ (qT , D) ∈ δ̃D,
(b) ·

((
(q1, X), D

)
, q2

)
→ (

(q,X), D
) ∈ δ̃D,

(c) if 0 ∗→δ̃D

(
(q1, X), D1

)
then (qT

2 , D2)→
(
(q,X), D

) ∈ δ̃D,
(d) if 0 ∗→δ̃D

(qT
1 , D1) then (qT

2 , D2)→ (qT , D) ∈ δ̃D,
(e) if X

∗→δ̃D
(qT

1 , D1) then
(
(q2, X), D2

)→ (qT , D) ∈ δ̃D,
(f) if X

∗→δ̃D

(
(q1, X

′), D1
)

then
(
(q2, X), D2

)→ (
(q,X ′), D

) ∈ δ̃D,
(α5) if ||(q1, q2)→ q ∈ δ∪ δR, then for every D1, D2, D such that (D1, D2) ∈||

D:
(a) ||((qT

1 , D1), (qT
2 , D2)

)→ (qT , D) ∈ δ̃D,
(b) if 0 ∗→δ̃D

(qT
1 , D1) then (qT

2 , D2)→ (qT , D) ∈ δ̃D,
(c) if 0 ∗→δ̃D

(qT
2 , D2) then (qT

1 , D1)→ (qT , D) ∈ δ̃D,

Constrained Reachability of Process Rewrite Systems 319

(α6) if q → q′ ∈ δ ∪ δR, then for every D ∈ D, (qT , D) → (q′T , D) ∈ δ̃D, and(
(q,X), D

)→ (
(q′, X), D

) ∈ δ̃D,

Note that the inference rules (α2), (α3), (α4), and (α5) construct a finite
sequence of increasing sets of transitions δ̃1

D ⊂ δ̃2
D ⊂ . . . ⊂ δ̃n

D. It is finite because
there is a finite number of states and of possible transitions.

Then, we can show that:

Lemma 3. For every v ∈ Tp, q ∈ Q ∪QR, and D ∈ D, we have:

– v
∗→δ̃D

(qT , D)⇒ v ∈ ζ∗R[D](Lq),
– v

∗→δ̃D

(
(q,X), D

) ⇒ there exists a seq-context C, a rule X · Y a→ t s.t.
C[Y] ∈ Lq and v ∈ ζ∗R[D′′](C[t]), for some D′′ such that there exists D′, a ∈
D′, (D′, D′′) ∈. D.

Lemma 4. For every q ∈ Q ∪QR, u ∈ Tp, and D ∈ D,

–
(∃w ∈ D | u ∈ ζ∗R[w](Lq)

)⇒ (
u

∗→δD (qT , D)
)
,

– (∃w ∈ D, a seq-context C, a rule X · Y a→ t, C[Y] ∈ Lq, w = aw′, u ∈
ζ∗R[w′](C[t])) then u

∗→δD

(
(q,X), D

)
.

Thus, we get:

Theorem 5. A∗
ζR

[D0] recognizes ζ∗R[D0](L).

Let us give the intuition behind the construction. The automaton needs to rec-
ognize the term t1 that has the form described in the right side of Figure 1 as a
successor of the term t2 of the left side of the figure. To do so, when annotating
the subterm t1, the automaton singles out an occurrence of “t” (or more precisely
of a successor of “t”), and guesses that it comes from the application of a rule of
the form X ·Y → t. This guess has to be validated afterwards when reaching the
root of the seq-context C. More precisely, the idea is the same as previously when
we do not consider structural equivalences: (qT , D) recognizes the successors of
Lq by ζR after applying sequences of actions in D. The rules (α1) − (α6) that
do not involve states of the form

(
(q,X), D

)
have the same meaning than the

rules (1) − (6) of the previous construction. New states
(
(q,X), D

)
are needed

to perform the guesses. A term u is labelled with
(
(q,X), D

)
if there exist a seq-

context C and a rule X ·Y a−→ t in R such that C[Y] ∈ Lq, and this PRS rule has
been applied to ·(X,C[Y]) to obtain C[t] first, and then u after several rewritings
(u ∈ ζ∗R[D′](C[t]) such that ∃D0 ∈ D s.t. a ∈ D0 and (D0, D

′) ∈. D). This means
that if there is a transition rule of the automaton of the form ·(q′, q)→ q′′ such
that X

∗→δ̃D
(q′T , D1) (i.e. X ∈ ζ∗R[D1](Lq′)), then we can validate the guess

and infer that u ∈ ζ∗R[D2](Lq′′) such that (D1, D) ∈. D2. This is expressed by
rules (α4e). Moreover, if X

∗→δ̃

(
(q′, X ′), D1

)
, meaning that X can be obtained

from Lq′ with a sequence in D1 if there is an X ′ which has been consumed from
the left neighbourhood, then we can validate the guess X , and keep the guess
X ′, i.e., we can annotate u with

(
(q′, X ′), D2

)
. This is expressed by rules (α4f).

320 T. Touili

The guesses are done by rules (α2). Rules (α4b) ensure that the context C where
the guess is made is a seq-context.

The rules (α3) mean that if t1
a−→ t2 is a rule of R, and if t1 is a successor of

Lq, then so are all the successors of t2. These rules keep track of the guesses.
Observe that we do not need states of the form (qnil, D). This is due to the fact
that rules (α4c), (α4d), (α5b), and (α5c) take into account the neutrality of 0.
For example, rules (α4d) express that if ·(q1, q2) → q is a rule of δ, and 0 is a
successor of q1, then ·(0, u), where u is a successor of q2 is a successor of q. Since
·(0, u) ∼0 u, this means that u is a successor of q. Thus, the automaton needs
only to consider u as a successor of state q, it does not need to recognize ·(0, u).
Note that we could not do this in the construction of Theorem 2, because there,
equivalences were not considered, so u and ·(0, u) need to be considered as two
separate terms.

7 Constrained Reachability Modulo ∼
As in the case of ∼s, computing post∗- and pre∗-images modulo ∼ does not
preserve regularity. Our purpose is to compute ∼-representatives of the reach-
ability sets Post∗R,∼[D](L) and Pre∗R,∼[D](L) for every regular language L and
decomposable language D. We show that if R is a PAD, i.e., if the rules of R
have only sequential compositions in their left hand sides, then, for any regular
language L and decomposable language D, one can effectively construct a finite
tree automaton that recognizes a ∼-representative of Post∗R,∼[D](L). This is due
to the previous construction and to the following proposition:

Proposition 3. Let R be a PAD system, L a regular tree language, and D a set
of action constraints. Then Post∗R,∼[D](L) = [ζ∗R[D](L)]∼, and if L is compatible
with ∼|| then Pre∗R,∼[D](L) = [ζ∗R−1 [D](L)]∼.

In [BT03], we showed how to compute a counter tree automaton (0-CTA) with
a decidable emptiness problem to recognize a ∼-representative of Pre∗R,∼[D](L)
if D is decomposable and R is a PAD (i.e., even if L is not compatible
with ∼||). This construction can be extended and combined with the construc-
tion underlying Theorems 5 and 4 to provide a ∼-representative of Pre∗R,∼[D](L)
if R is a PAD and D is decomposable. We do not give the details here because
of lack of space.

References

[ABT08] Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic
networks of pushdown systems. In: van Breugel, F., Chechik, M. (eds.)
CONCUR 2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008)

[BET03] Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static
analysis of concurrent programs with procedures. In: POPL, pp. 62–73
(2003)

Constrained Reachability of Process Rewrite Systems 321

[BET05] Bouajjani, A., Esparza, J., Touili, T.: Reachability analysis of synchronized
pa systems. Electr. Notes Theor. Comput. Sci. 138(3), 153–178 (2005)

[BMOT05] Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of
dynamic networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

[BMT01] Bouajjani, A., Muscholl, A., Touili, T.: Permutation Rewriting and Algo-
rithmic Verification. In: LICS. IEEE, Los Alamitos (2001)

[BMT07] Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algo-
rithmic verification. Inf. Comput. 205(2), 199–224 (2007)

[BT03] Bouajjani, A., Touili, T.: Reachability analysis of process rewrite sys-
tems. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS,
vol. 2914, pp. 74–87. Springer, Heidelberg (2003)

[BT05] Bouajjani, A., Touili, T.: On computing reachability sets of process rewrite
systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 484–499.
Springer, Heidelberg (2005)

[CDG+97] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (1997),
http://www.grappa.univ-lille3.fr/tata

[EK99] Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural
data-flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578,
pp. 14–30. Springer, Heidelberg (1999)

[GD89] Gilleron, R., Deruyver, A.: The reachability problem for ground TRS and
some extensions. In: TAPSOFT, pp. 227–243 (1989)

[GP03] Gómez, A.C., Pin, J.-E.: On a conjecture of schnoebelen. In: Ésik, Z.,
Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 35–54. Springer,
Heidelberg (2003)

[LS98] Lugiez, D., Schnoebelen, P.: The regular viewpoint on PA-processes. In:
Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 50–66. Springer, Heidelberg (1998)

[May98] Mayr, R.: Decidability and Complexity of Model Checking Problems for
Infinite-State Systems. Phd. thesis, Munich University (1998)

[PST07] Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of multithreaded
dynamic and recursive programs. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 254–257. Springer, Heidelberg (2007)

[RSJM05] Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems
and their application to interprocedural dataflow analysis. Sci. Comput.
Program. 58(1-2), 206–263 (2005)

[Sch99] Schnoebelen, P.: Decomposable regular languages and the shuffle operator.
EATCS Bull 67, 283–289 (1999)

[Tou05] Touili, T.: Dealing with communication for dynamic multithreaded recur-
sive programs. In: VISSAS, pp. 213–227 (2005)

http://www.grappa.univ-lille3.fr/tata

Input-Output Model Programs

Margus Veanes and Nikolaj Bjørner

Microsoft Research, Redmond, WA, USA
{margus,nbjorner}@microsoft.com

Abstract. Model programs are used as high-level behavioral specifica-
tions typically representing abstract state machines. For modeling reac-
tive systems, one uses input-output model programs, where the action
vocabulary is divided between two conceptual players: the input player
and the output player. The players share the action vocabulary and make
moves that are labeled by actions according to their respective model pro-
grams. Conformance between the two model programs means that the
output (input) player only makes output (input) moves that are allowed
by the input (output) players model program. In a bounded game, the
total number of moves is fixed. Here model programs use a background
theory T containing linear arithmetic, sets, and tuples. We formulate
the bounded game conformance checking problem, or BGC, as a theo-
rem proving problem modulo T and analyze its complexity.

1 Introduction

Model programs are typically used to describe protocol-like behavior of software
systems, with the underlying update semantics based on abstract state machines
or ASMs [17]. At Microsoft, model programs are used for model-based testing
of public application-level network protocols in the Windows organization, as
an integral part of the protocol quality assurance process [16]. In such models,
the action vocabulary is often divided into controllable and observable actions,
reflecting the testers point of view, i.e., what actions are controllable by the
tester versus what actions are observable by the tester. The central problem
is to determine if an implementation conforms to a given specification. In the
presence of controllable and observable actions, the problem can be described
as a game conformance checking problem, where the tester executes controllable
actions and the implementation responds with observable actions. Traditionally,
model-based conformance testing is a black-box testing technique where the
actual implementation code is assumed to be unknown to the tester.

In this paper we look at the game conformance checking problem from the
symbolic (or static) analysis point of view. The implementation is not a “black
box” but a “gray box”. In other words, the implementation is also assumed to
be given as a model program through some abstraction function.

The general game conformance checking problem is very hard but can be
approximated in various ways. A natural approximation is to bound the number
of steps or moves that the players make. This corresponds directly to the fact

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 322–335, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Input-Output Model Programs 323

Model program Spec Model program Impl

enum Mode

Undef = 0

Sent = 1

Canceled = 2

var M as Map of Integer to Mode

= {->}

[i,Action]
Req(m as Integer)

require m notin M
M(m) := Sent

[i,Action]
Cancel(m as Integer)

require true

if M(m) = Sent

M(m) := Canceled

[o,Action]
Res(m as Integer, b as Boolean)

require m in M and

(b or M(m) = Canceled)

remove m from M

var R as Set of Integer = {}

[i,Action]
Req(m as Integer)

require true

add m to R

[i,Action]
Cancel(m as Integer)

require true

skip

[o,Action]
Res(m as Integer, b as Boolean)

require (m in R) and b
remove m from R

Fig. 1. Here Req and Cancel are i-actions and Res is an o-action. The model program
Spec specifies a request cancellation protocol. A request, identified by a message id m,
can be Canceled at any time. A response must be associated to some pending request,
where if b is false then the request must have been Canceled. The model program Impl
describes a particular implementation that never cancels any requests, and responds
to all requests in some arbitrary order.

that actual tests have a finite length. The problem we introduce and analyze
in this paper is the Bounded Game Conformance problem of model programs,
or BGC for short. We translate the problem into a theorem proving problem
modulo a background theory that is most commonly needed in model programs,
and analyze the complexity of the problem. For a class of model programs that
are common in practice the problem is shown to be decidable. We also discuss a
concrete analysis approach for BGC using a satisfiability modulo theories (SMT)
based theorem prover Z3. The game conformance relation is based on alternating
simulation [2]. We show that, under input enabledness, the ioco [23] conformance
relation reduces to alternating simulation. It follows that symbolic bounded ioco
checking can be reduced to BGC.

What differentiates model programs from traditional sequential programs is
that model programs typically assume a rich background universe and often op-
erate on a more abstract level, for example, they use set comprehensions and

324 M. Veanes and N. Bjørner

parallel updates to compute a collection of elements in a single atomic step,
rather than one element at a time, in a loop. A model program whose action
vocabulary is divided into two disjoint parts (corresponding to two players), is
called an input-output model program. Although input-output model programs
have been used as executable specifications in the context of model-based test-
ing [27], we provide here a fully symbolic definition using a formal background
theory, as in [7], where model programs need not be executable.

Figure 1 shows two input-output model programs written in AsmL [3,18].
The Spec model program in Figure 1 is an abstracted version of the cancella-
tion feature in the SMB2 protocol [22] that is a successor of the Windows file
sharing client-server protocol SMB. The SMB protocol is used for file sharing by
Windows machines and machines running third party implementations, such as
Samba.

In Section 2 we define model programs formally. In Section 3 we introduce the
problem of bounded game conformance checking or BGC and show its reduction
to a theorem proving problem modulo T . Section 4 discusses the complexity of
BGC. Section 5 discusses implementation of BGC using Z3 [13]. Section 6 is
about related work.

2 Model Programs

We consider a background T that includes linear arithmetic, Booleans, tuples,
and sets. All values in T have a given sort. Well-formed expressions of T are
shown in Figure 2. Each sort corresponds to a disjoint part of the universe. We
do not add explicit sort annotations to symbols or expressions but always assume
that all expression are well-sorted. A value is basic if it is either a Boolean, an
integer, or a tuple of basic values.

The expression Ite(ϕ, t1, t2) equals t1 if ϕ is true, and it equals t2, otherwise.
For each sort, there is a specific Default value in the background. In particular,
for Booleans the value is false, for set sorts the value is ∅, for integers the value is
0 and for tuples the value is the tuple of defaults of the respective tuple elements.

The function TheElementOf maps every singleton set to the element in
that set and maps every other set to Default. Note that extensionality of sets:
∀v w (∀y(y ∈ v ↔ y ∈ w) → v = w), allows us to use set comprehensions
as terms: the comprehension term {t(x̄) |x̄ ϕ(x̄)} represents the set such that
∀y(y ∈ {t(x̄) |x̄ ϕ(x̄)} ↔ ∃x̄(t(x̄) = y ∧ ϕ(x̄))).

Actions. There is a specific action sort A, values of this sort are called actions
and have the form f(v0, . . . , varity(f)−1). DefaultA has arity 0. Two actions are
equal if and only if they have the same action symbol and their corresponding
arguments are equal. An action f(v̄) is called an f -action. Every action symbol
f with arity n > 0, is associated with a unique parameter variable fi for all i,
0 ≤ i < n.1

1 In AsmL one can of course use any formal parameter name, such as m in Figure 1,
following standard conventions for method signatures.

Input-Output Model Programs 325

T σ ::= xσ | Defaultσ | Ite(T B, T σ, T σ) | TheElementOf (T S(σ)) |
πi(T σ0×···×σi−1×σ×···×σk)

T σ0×σ1×···×σk ::= 〈T σ0 , T σ1 , . . . , T σk〉

T Z ::= k | T Z + T Z | k ∗ T Z

T B ::= true | false | ¬T B | T B ∧ T B | T B ∨ T B | T B ⇒ T B | ∀x T B | ∃x T B |
T σ = T σ | T S(σ) ⊆ T S(σ) | T σ ∈ T S(σ) | T Z ≤ T Z

T S(σ) ::= {T σ |x̄ T B} | ∅S(σ) | T S(σ) ∪ T S(σ) | T S(σ) ∩ T S(σ) | T S(σ) \ T S(σ)

T A ::= f (σ0,...,σn−1)(T σ0 , . . . , T σn−1)

Fig. 2. Well-formed expressions in T . Sorts are shown explicitly here. An expression
of sort σ is written T σ. The sorts Z and B are for integers and Booleans, respectively,
k stands for any integer constant, xσ is a variable of sort σ. The sorts Z and B are
basic, so is the tuple sort σ0 × · · · × σk, provided that each σi is basic. The set sort
S(σ) is not basic and requires σ to be basic. All quantified variables are required to
have basic sorts. The sort A is called the action sort, f (σ0,...,σn−1) stands for an action
symbol with fixed arity n and argument sorts σ0, . . . , σn−1, where each argument sort
is a set sort or a basic sort. The sort A is not basic. The only atomic relation that can
be used for T A is equality. DefaultA is a nullary action symbol. Boolean expressions
are also called formulas in the context of T . In the paper, sort annotations are mostly
omitted but are always assumed.

An assignment is a pair x := t where x is a variable and t is a term (both hav-
ing the same sort). An update rule is a finite set of assignments where the assigned
variables are distinct. In the following definition, internal non-determinism of
model programs (through choice variables [7]) is excluded, the initial state con-
dition is omitted, and all state variables must be updated by each action. The
last two restrictions are without loss of generality, and allow us to provide a
simplified view of the definitions.

Definition 1 (Input-Output Model Program). Input-output model pro-
gram is a tuple P = (Σ,Γ i, Γ o, R), where

– Σ is a finite set of variables called state variables ;
– Γ i is a finite set of i-action symbols ;
– Γ o is a finite set of o-action symbols, Γ i ∩ Γ o = ∅;
– R is a collection {Rf}f∈Γ i∪Γo of action rules Rf = (γ, U), where
• γ is a formula called the guard of f ;
• U is an update rule {x := tx}x∈Σ, called the update rule of f .

All free variables in Rf must be in Σ ∪ {fi}i<arity(f).

We often say action to also mean an action rule or an action symbol, if the
intent is clear from the context. In the following, we say model program for
input-output model program. The following special class of model programs is
important when considering analysis.

326 M. Veanes and N. Bjørner

Definition 2 (Basic Model Programs). A model program is basic if all pa-
rameter variables in it are basic.

Standard ASM update rules can be translated into update rules of model pro-
grams. A detailed translation from standard ASMs to model programs is given
in [7]. In the general case, model programs also use maps, e.g., M is a map in
Spec in Figure 1, that are used to represent dynamic functions of ASMs. In T ,
maps are represented by their graphs as sets of pairs, see [7].

States. A state is a mapping of variables to values. Given a state S and an
expression E, where S maps all the free variables in E to values, ES is the
evaluation of E in S. Given a state S and a formula ϕ, S |= ϕ means that ϕ is
true in S. A formula ϕ is valid (in T) if ϕ is true in all states. Since T is assumed
to be the background theory we usually omit it, and assume that each state also
has an implicit part that satisfies T . In the following let P = (Σ,Γ i, Γ o, R) be
a fixed model program.

Definition 3. An action a = f(v0, . . . , vn−1) is enabled in a state S if S′ =
S ∪ {fi
→ vi}i<n satisfies the guard of f . If a is enabled in S then a causes a
transition from S to the state S1 = {x
→ tS

′
x }x∈Σ, denoted by S

a−→ S1.

An input-output labeled transition system or LTS for short is a tuple
(S, S0, Li, Lo, T), where S is a set of states, S0 ∈ S is an initial state, L = Li∪Lo

is a set of labels, where Li ∩ Lo = ∅, and T ⊆ S× L× S is a transition relation.

Definition 4. [[P]] is the LTS (S, S0, Li, Lo, T); S0 = {x
→ Default}x∈Σ; Li

(Lo) is the set of all actions over Γ i (Γ o); T and S are the least sets such that,
S0 ∈ S, and if S ∈ S and S

a−→ S1 then S1 ∈ S and (S, a, S1) ∈ T .

Given an action sequence α = (a0, . . . , ak−1) and transitions Si
ai−→ Si+1 for

0 ≤ i < k, of an LTS, we write S0
α−→ Sk. If S0 is the initial state then α is

called a trace of the LTS. The set of all traces of [[P]] is denoted by Traces(P).

3 Bounded Game Conformance

The basic notion of conformance between two (input-output) model programs
is based on the notion of alternating simulation between two LTSs. Definition 5
below is consistent with [11], and is based on [2]. The definition makes the as-
sumption that the LTSs are deterministic, i.e., for any two transitions S

a−→ S′

and S
a−→ S′′, S′ = S′′. Thus, LTSs are viewed here as interface automata [12]

and the transition relation becomes a transition function. Note that [[P]] is de-
terministic for a model program P .2 Let Mi = (Si, S

0
i , L

i, Lo, Ti), for i = 1, 2,
be deterministic LTSs. The intuition behind the following definition is that M1
can only make outputs that M2 can make, and M2 can only make inputs that
M1 can make.
2 This is not the case when choice variables are allowed in model programs.

Input-Output Model Programs 327

Definition 5 (,). M1 , M2 iff there exists an alternating simulation ρ from
M1 to M2 such that (S0

1 , S
0
2) ∈ ρ, where an alternating simulation from M1 to

M2 is a relation ρ ⊆ S1 × S2 such that, for all (S1, S2) ∈ ρ:

– For all a ∈ Lo, if S1
a−→ S′

1 then S2
a−→ S′

2 and (S′
1, S

′
2) ∈ ρ.

– For all a ∈ Li, if S2
a−→ S′

2 then S1
a−→ S′

1 and (S′
1, S

′
2) ∈ ρ.

Example 1. Consider the following two model programs, where s0 := ∅ is the
initial and only state, and in and out are nullary action symbols.

Spectrivial = (∅, {in}, {out}, {(false, ∅)in , (true, ∅)out})
Impl trivial = (∅, {in}, {out}, {(true, ∅)in , (false , ∅)out})

[[Spectrivial]] = ({s0}, s0, {in}, {out}, {(s0, out , s0)})
[[Impl trivial]] = ({s0}, s0, {in}, {out}, {(s0, in, s0)})

Clearly [[Impl trivial]] , [[Spectrivial]] and [[Spectrivial]] �, [[Impl trivial]]. �

The following characterization of , in terms of traces, follows from Definition 5
and is used below.

Lemma 1. N �, M iff there exists a trace α that is a trace of both N and M ,
and there is an o-label (i-label) a such that (α, a) is a trace of N (M) but not a
trace of M (N).

For symbolic analysis, we are primarily interested in the approximations ,n of
, where the depth n ≥ 0 is bounded.

Definition 6 (,n). M1 ,n M2
def= M1 ,(S0

1 ,S0
2)

n M2 where M1 ,(S1,S2)
n M2 iff,

either n = 0, or the following holds:

– For all a ∈ Lo, if S1
a−→ S′

1 then S2
a−→ S′

2 and M1 ,(S′
1,S′

2)
n−1 M2.

– For all a ∈ Li, if S2
a−→ S′

2 then S1
a−→ S′

1 and M1 ,(S′
1,S′

2)
n−1 M2.

It follows easily from the definitions that M1 ,M2 iff M1 ,n M2 for all n ≥ 0.
Let P and Q be fixed model programs with the same action vocabularies.

Definition 7. Q n-refines P , Q ,n P , iff [[Q]] ,n [[P]].

Intuitively, when P is a specification model program and Q is an implementation
model program and Q ,n P , then Q behaves as expected by P within n steps.
Such bounded refinement (or a generalization of it with object-bindings) is used
as the underlying notion of conformance in testing of reactive systems in [27], in
particular, it is checked in the context of online testing [28]. The bound is due
to the fact that tests are finite.

Example 2. Let Impl and Spec be as in Figure 1. One can show that Impl ,n

Spec for all n and thus Impl , Spec. It is also the case that Spec ,1 Impl but
Spec �,2 Impl ; for example the trace (Req(1),Req(1)) is a trace of Impl but not
a trace of Spec. �

328 M. Veanes and N. Bjørner

Definition 8 (BGC). Bounded Game Conformance problem or BGC is the
problem of deciding if Q ,k P .

In order to reduce BGC into a theorem proving problem, we construct a special
formula from given P , Q and n, as defined in Definition 9. Given an expression
E and a step number i > 0, we write E[i] below for a copy of E where each
(unbound) variable x in E has been uniquely renamed to a variable x[i]. We
assume also that E[0] is E. The intuition for the notation Pi and Po below is
that Pi is the “owner” of i-actions (Pi is the specification), and Po is the “owner”
of o-actions (Po is the implementation).

Definition 9 (BGC Formula). Let Pi and Po be model programs
(x�, Γ

i, Γ o, (γf,�, Uf,�)f∈Γ i∪Γo), for � = Pi, Po. Assume that xPi
∩ xPo = ∅.3

Let î = o and ô = i. The BGC formula for Pi, Po, and n is:

BGC (Po, Pi, n) def= (xPo = Default ∧ xPi
= Default)⇒ Ref (0, n)

Ref (n, n) def= true

(i < n) Ref (i, n) def=
∧

p∈{i,o}

∧
f∈Γp

(act [i] = f(f [i])⇒ ψ1(i, n,p, f))

ψ1(i, n,p, f) def= γf,Pp [i]⇒ (γf,Pp̂
[i] ∧ ψ2(i, n,p, f))

ψ2(i, n,p, f) def= (
∧

x:=t∈Uf,Pp∪Uf,Pp̂

x[i + 1] = t[i])⇒ Ref (i + 1, n)

where f [i] = f0[i] . . . farity(f)−1[i] are the parameter variables of action f for step
i.4 For each step number i, there is an additional variable act [i] of sort A that
records the selected action for step i.

Note that all parameter variables have distinct names in each step. The only
connection between the steps happens via the state variables. Note also that
the resulting formula is a universal formula, assuming that the guards and the
update rules do not involve quantifiers (e.g. in comprehensions), i.e., in prenex
form, all the quantifiers for the parameter variables are universal. This implies
that the negation of the BGC formula is well suited for non-BGC checking
of basic model programs (where the state variables can be eliminated) using
satisfiability modulo T . The sole purpose of the action variables is to enable
easy extraction of the action sequence as a witness of the refinement violation.

The following theorem allows us to prove n-refinement by proving that the
BGC formula is valid in T .

Theorem 1. BGC (Po, Pi, n) is valid in T iff Po ,n Pi.

Proof (Sketch). The case n = 0 is trivial. Assume n > 0. Both directions are
proved separately. For the direction (=⇒) we assume that Po �,n Pi and get a
3 Or just rename the state variables.
4 Note that the parameter variables of f are shared between Pi and Po.

Input-Output Model Programs 329

shortest run of length l ≤ n where the last action is either a i-action that is
enabled in Pi but not in Po (or an o-action that is enabled in Po but not in Pi).
From this run we can construct a state that satisfies ¬BGC (Po, Pi, n), using
the property that if ¬BGC (Po, Pi, l) is satisfiable then ¬BGC (Po, Pi, l

′) is also
satisfiable, for l′ > l (because if γf,Pp̂

[l] is false then so is γf,Pp̂
[l] ∧ ψ2). The

proof of (⇐=) is similar. �

Relation to BMPC. There is an alternative way how ,n can be analyzed: by
reducing �,n to the BMPC problem [7]. BMPC is the problem: given a model
program P , a reachability condition ϕ and step bound k, does there exist a trace
α of length at most k such that S0

[[P]]
α−→ S and S |= ϕ.

For this reduction we use product of model programs. Let Pi, for i = 1, 2, be
the model program (Σi, Γ

i, Γ o, {(γf,i, Uf,i)}f∈Γ), where Σ1 and Σ2 are disjoint
and Γ = Γ i ∪ Γ o.

P1 ⊗ P2
def= (Σ1 ∪Σ2, Γ

i, Γ o, {(γf,1 ∧ γf,2, Uf,1 ∪ Uf,2)f∈Γ })
The following property holds for the product construction.

Lemma 2. Traces(P1 ⊗ P2) = Traces(P1) ∩ Traces(P2).

Define the game conformance invariant as the following formula:

Inv�(P1, P2)
def= ∀(

∧
f∈Γo

(γf,1 ⇒ γf,2)) ∧ (
∧

f∈Γ i

(γf,2 ⇒ γf,1))

Theorem 2. P1 �,n P2 iff ¬Inv�(P1, P2) is reachable in P1⊗P2 within n steps.

Proof. (=⇒) Assume P1 �,n P2. By Lemma 1 there is a trace α of length m
of some m < n such that α ∈ Traces(P1) and α ∈ Traces(P2) and there is
either an output action a such that (α, a) is in Traces(P1) but not in Traces(P2)
or an input action a such that (α, a) is in Traces(P2) but not in Traces(P1).
It follows that Inv�(P1, P2) must be false in the state reached by α. Moreover
α ∈ Traces(P1 ⊗ P2), by Lemma 2. Proof of (⇐=) is similar to (=⇒), by using
Lemma 2 and Lemma 1. �

Relation to ioco. A common notion of conformance that is used for testing
reactive systems is ioco [23] that stands for input-output conformance. There
are also several variations of ioco, discussed in [23], that are used for testing
various extensions of reactive systems. Here we only look at basic ioco and
consider traces that exclude quiescence δ.

The rationale behind excluding δ as a special action is that, in a model pro-
gram, δ can be defined as a nullary o-action with an empty update rule5 and
a guard that is the negation of the existential closure of the conjunction of the
guards of all the other o-actions. Thus, δ is enabled in a state S iff no other
o-action is enabled in S and S

δ−→ S. Let P δ denote a model program where δ
is defined in this way.
5 An empty update rule is equivalent to the trivial update rule {x := x}x∈Σ.

330 M. Veanes and N. Bjørner

Example 3. Consider the model program Impl in Figure 1, where Res is the
only o-action. In Implδ, δ has the guard ¬∃mb (m ∈ R ∧ b), that is equivalent
to R = ∅. Similarly, in Specδ, δ has the guard M = ∅.
An LTS M is input-enabled if in all states in M that are reachable from the
initial state, all i-labels are enabled.6 For example, Impl in Figure 1 is input-
enabled. The following definition of ioco is consistent with the definition in [23]
(provided that δ is defined as above).

Definition 10 (ioco). Let M and N be LTSs over the same i-labels and o-
labels. Assume N is input-enabled. N ioco M iff, for all traces α of M , if there
is an o-label a such that (α, a) is a trace of N then (α, a) is a trace of M .

The relationship between ioco and , has been somewhat unclear in the test-
ing community (see for example the discussion in [28]). In our context, , is a
generalization of ioco. The particular advantage of using , instead of ioco is
that , is compositional. The definition of , can also be generalized to non-
deterministic LTSs, in such a way that the theorem holds when P and Q include
choice variables.

Theorem 3. If [[Q]] is input-enabled then [[Q]] ioco [[P]]⇐⇒ Q , P .

Proof. By Lemma 1 and the assumption that [[Q]] is input-enabled. The assump-
tion is needed for the direction =⇒. �

For the bounded version of ioco we restrict the length of the traces by a given
bound n so that all traces in Definition 10 have a length that is at most n; denoted
here by iocon. We get the following corollary of Theorem 1 and Theorem 3.

Corollary 1. If [[Q]] is i-enabled then, BGC (Q,P, n) is valid in T iff
[[Q]] iocon [[P]].

4 Complexity of BGC

The general BGC problem over arbitrary model programs is highly undecidable.
This follows from the well-known result that the validity problem of formulas
in Presburger arithmetic with unary relations is Π1

1 -complete [1,19]. Using this
result, it is enough to consider model programs that have one action with a
single set-valued parameter and a linear arithmetic formula as the guard. To
show inclusion in Π1

1 , one can use the same argument that is used in [7] to show
that the BMPC problem is in Σ1

1 .

Corollary 2. BGC is Π1
1 -complete.

Even when all sets in the background are required to be finite the validity prob-
lem in T over finite sets is still co-re-complete [7].

6 Such LTSs are called input-output transition systems in [23].

Input-Output Model Programs 331

Corollary 3. BGC over finite sets is co-re-complete.

Even though the general BGC problem is undecidable, we are primarily con-
cerned about practical applications. In most model programs, such as the ones
in Figure 1, that are used to specify protocols (see also [21,30]), the actions typ-
ically only use basic parameters, i.e., parameters whose sort is not a set sort.
In other words, our main target for analysis are basic model programs (recall
Definition 2).

Theorem 4. BGC of basic model programs is decidable. Moreover, the upper
bound of the computational complexity is 222cn

and the lower bound is 22cn

,
where c is a constant and n is the size of the input (P,Q, k).

Proof (Sketch). Consider the formula ψ = BGC (Q,P, k). First, the formula ψ
is translated into logic without sets but with unary relations, by replacing set
variables with unary relations and by eliminating set comprehensions and set
operations in the usual way, e.g., t ∈ S, where S is a set variable, becomes
the atom RS(t), where RS is a unary relation symbol. Let the resulting for-
mula be ϕ. Next, introduce auxiliary predicates that define all the subformulas
of ϕ, by applying the Tseitin transformation [24] to ϕ. Subsequently, eliminate
those auxiliary predicates (as a form of de-Skolemization), by introducing addi-
tional quantifiers. (A similar elimination technique that can be used here follows
from [15, p 129], see also [25]). The overall reduction implies that the compu-
tational complexity of BGC of basic model programs, regarding both the lower
and the upper bound, is the same as that of Presburger arithmetic [15]. �

A näıve implementation of definition 9 could repeat the recursive calls to an ex-
ponential number of times. However, note that the results are all shared common
sub-expressions.

From a practical perspective, the actual computational complexity of BGC
over basic model programs problem depends on the quantifier alternation depth.
In many problems the final formula is universal, because quantifiers are not used
inside guards or update rules.

5 Implementation

We created a prototype for testing the Bounded Game Conformance formulas
generated from definition 97. The prototype uses the F# programmatic interface
to the state-of-the art SMT solver Z3 [13] to represent Input-Output Model
Programs as a collection of transition pairs. Each pair consists of a specification
and an implementation transition and is tagged as either i or o to indicate
which direction to check the alternating simulation. The data-types used in the
model program are mapped directly to native Z3 theories. For example, the Mode
enumeration type is mapped into a special case of algebraic data-types where
enumerations are encoded as nullary constructors.
7 See http://research.microsoft.com/en-us/people/nbjorner/ictac09.zip

http://research.microsoft.com/en-us/people/nbjorner/ictac09.zip

332 M. Veanes and N. Bjørner

Fig. 3. Timing BGC (Po, Pi, n), n = 1..19

The finite map M is repre-
sented as an array, and the the-
ory of extensional arrays is used
to handle the operations on M .
Similarly, the set R is repre-
sented as an array that maps
integers to Booleans. The op-
erations, element-wise addition
and removal required by Req
and Res) are simply array up-
dates. Z3 supports richer set op-
erations as an extension to the
theory of arrays, but this exam-
ple does not make use of these.
The prototype uses the fact that
terms in Z3 are internally repre-
sented as shared directed acyclic graphs. In particular, the repeated occurrences
of Ref (i + 1, n) represent the same formula. The formula is built only once, and
reused in the different occurrences. The size of the resulting path formula is
therefore proportional to the number of unfoldings n and to the size of the input
model program.

Fig. 4. Timing Inv�(P1, P2), n = 1..47

On the other hand, the size
of the input does not depend on
the size of the state space. The
potentially unbounded size of
the state space is also not a fac-
tor when checking for bounded
game conformance, but our
techniques are sensitive to the
number of paths in the unfold-
ings. Figure 3 shows the number
of seconds it took Z3 to check
for conformance for up to 19
unfoldings for our example in
Figure 1. We observe that the
time overhead grows exponen-
tially with the number of unfoldings n (so linear in the number of paths that
are checked). Not shown is the space overhead, which was very modest: space
consumption during solving grew linearly with n, from 12 MB to around 20 MB.
Figure 4 shows the similar timings required for checking the equivalent property
Inv�(P1, P2) for the BMPC formulation. The overhead of checking the invariant
in this formulation is still exponential, but the growth is much slower and it is
therefore possible to explore up to 47 unfoldings, with each check taking less
than 20 minutes.

Input-Output Model Programs 333

A more interesting use of bounded conformance checking is to detect bugs in
the models used for either the specifications or implementations. We can plant a
bug in our example from Figure 1 by changing the Impl transition Res to forget
removing m from R. The bogus transition is therefore:

[o,Action]
Res(m as Integer, b as Boolean)

require (m in R) and b
skip

It takes Z3 well below a second to create a counter-example of length 3.
Since the BGC (Po, Pi, n) formula contains equalities that track which actions
are taken together with their parameters, it is easy to use Z3’s model-producing
facilities to extract the counter-example:

actions0 -> (req 1)
actions1 -> (res 1 true)
actions2 -> (res 1 true)

The counter-example says that the client request (Req) action is applied with
input 1, followed by two server responses (Res) using the same parameter 1. The
Spec model program is not enabled in response to this second action.

6 Related Work

BGC is related to the bounded model program checking problem or
BMPC [7,26,29], that is a bounded path exploration problem of a given model
program. BMPC is a generalization of bounded model checking to model pro-
grams. The technique of bounded model checking by using SAT solving was in-
troduced in [4] and the extension to SMT was introduced in [14]. BMPC reduces
to satisfiability modulo T . BMPC can be reduced in polynomial time to BGC,
providing the computational complexity bounds for BMPC, using Theorem 4,
that are left open in [7]. Unlike BGC, the BCC [25] problem introduces k-depth
quantifier alternation in the resulting formula, where k is the step bound. This
is also the case for a generalization of BGC for non-deterministic model pro-
grams, in which case the reduction to BMPC, shown in Section 3, does not
work. The resulting formula for a BMPC problem does not have quantifier al-
ternation, even for non-deterministic model programs, since choice variables and
parameter variables are treated equally.

Symbolic analysis of refinement relations through theorem proving are used in
hardware [10,9]. Various refinement problems between specifications are also the
topic of many analysis tools, where sets and maps are used as foundational data
structures, such as ASMs, RAISE, Z, TLA+, B, see [5], where the techniques
introduced here could be applied. In some cases, like in RAISE, the underlying
logic is three-valued. In many of the formalisms, frame conditions need to be
specified explicitly, and are not implicit as in the case of model programs or
ASMs. In Alloy [20], the analysis is reduced to SAT, by finitizing the data types.
In our case we bound the search depth rather than the size of the data types.

334 M. Veanes and N. Bjørner

For implementation, we use the state of the art SMT solver Z3 [13], discussed
in Section 5. Implementation of the reduction of BGC of basic input-output
model programs to linear arithmetic, based on Theorem 4, is future work. In
that context the reduction to Z3 can take advantage of built-in support for Ite
terms, sets, algebraic data-types, and tuples. The background theory T can also
be extended to include reals, that are natively supported in Z3. Our experi-
ment indicated that Z3 could be used for modest bounded exploration. More
interestingly, it posed an intriguing challenge for solvers like Z3 to better handle
diamond structured formulas. One technique for handling diamond style for-
mulas is explored in [6]. It uses a combination of abstract interpretation and
constraint propagation to speed up the underlying constraint solving engine.

We see conformance from a game point of view, that view is inspired by [11].
The game view can also be used to formulate other problems related to input-
output model programs, such as finding winning strategies to reach certain goal
states. In the context of testing, a overview of using games is given in [31].
Game based testing approaches with finite model programs are also discussed
in [8] using reachability games.

References

1. Alur, R., Henzinger, T.A.: A really temporal logic. In: Proc. 30th Symp. on Foun-
dations of Computer Science, pp. 164–169 (1989)

2. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating refinement re-
lations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

3. AsmL, http://research.microsoft.com/fse/AsmL/
4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

5. Bjørner, D., Henson, M. (eds.): Logics of Specification Languages. Springer,
Heidelberg (2008)

6. Bjørner, N., Dutertre, B., de Moura, L.: Accelerating Lemma Learning using Joins
- DPPL(Join). In: Proceedings of short papers at LPAR 2008 (2008)

7. Bjørner, N., Gurevich, Y., Schulte, W., Veanes, M.: Symbolic bounded model check-
ing of abstract state machines. Technical Report MSR-TR-2009-14, Microsoft Re-
search (February 2009) (submitted to IJSI)

8. Blass, A., Gurevich, Y., Nachmanson, L., Veanes, M.: Play to test. Technical Report
MSR-TR-2005-04, Microsoft Research (January 2005) Short version appears. In:
Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 32–46. Springer,
Heidelberg (2006)

9. Bryant, R.E., German, S.M., Velev, M.N.: Exploiting positive equality in a logic of
equality with uninterpreted functions. In: Halbwachs, N., Peled, D.A. (eds.) CAV
1999. LNCS, vol. 1633, pp. 470–482. Springer, Heidelberg (1999)

10. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994)

11. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

http://research.microsoft.com/fse/AsmL/

Input-Output Model Programs 335

12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE, pp. 109–120.
ACM Press, New York (2001)

13. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model
checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS, vol. 2392,
pp. 438–455. Springer, Heidelberg (2002)

15. Fisher, M.J., Rabin, M.O.: Super-exponential complexity of presburger arithmetic.
In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical
Algebraic Decomposition, pp. 122–135. Springer, Heidelberg (1998); Reprint from
SIAM-AMS Proceedings, vol. VII, pp. 27–41 (1974)

16. Grieskamp, W., MacDonald, D., Kicillof, N., Nandan, A., Stobie, K., Wurden,
F.: Model-based quality assurance of Windows protocol documentation. In: First
International Conference on Software Testing, Verification and Validation, ICST,
Lillehammer, Norway (April 2008)

17. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Specification and Valida-
tion Methods, pp. 9–36. Oxford University Press, Oxford (1995)

18. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theor. Com-
put. Sci. 343(3), 370–412 (2005)

19. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 complete. Journal

of Symbolic Logic 56, 637–642 (1991)
20. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
21. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing

and Analysis with C#. Cambridge University Press, Cambridge (2008)
22. SMB2 (2008), http://msdn2.microsoft.com/en-us/library/cc246482.aspx
23. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,

R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

24. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic, Part II, 115–125 (1968)

25. Veanes, M., Bjørner, N.: Symbolic bounded conformance checking of model pro-
grams. Technical Report MSR-TR-2009-28, Microsoft Research (March 2009)

26. Veanes, M., Bjørner, N., Raschke, A.: An SMT approach to bounded reachabil-
ity analysis of model programs. In: Suzuki, K., Higashino, T., Yasumoto, K.,
El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 53–68. Springer,
Heidelberg (2008)

27. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer.
In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949,
pp. 39–76. Springer, Heidelberg (2008)

28. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model
programs. In: ESEC/FSE-13, pp. 273–282. ACM Press, New York (2005)

29. Veanes, M., Saabas, A.: On bounded reachability of programs with set comprehen-
sions. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330,
pp. 305–317. Springer, Heidelberg (2008)

30. Veanes, M., Saabas, A., Bjørner, N.: Bounded reachability of model programs.
Technical Report MSR-TR-2008-81, Microsoft Research (May 2008)

31. Yannakakis, M.: Testing, optimization, and games. In: Proceedings of the Nine-
teenth Annual IEEE Symposium on Logic In Computer Science, LICS 2004,
pp. 78–88. IEEE, Los Alamitos (2004)

http://msdn2.microsoft.com/en-us/library/cc246482.aspx

IMITATOR: A Tool for Synthesizing Constraints
on Timing Bounds of Timed Automata�

Étienne André

LSV – ENS de Cachan & CNRS, France

Abstract. We present here Imitator, a tool for synthesizing constraints
on timing bounds (seen as parameters) in the framework of timed au-
tomata. Unlike classical synthesis methods, we take advantage of a given
reference valuation of the parameters for which the system is known to
behave properly. Our aim is to generate a constraint such that, under
any valuation satisfying this constraint, the system is guaranteed to be-
have, in terms of alternating sequences of locations and actions, as under
the reference valuation. This is useful for safely relaxing some values of
the reference valuation, and optimizing timing bounds of the system. We
have successfully applied our tool to various examples of asynchronous
circuits and protocols.

1 Context

Timed automata [1] are finite control automata equipped with clocks, which are
real-valued variables which increase uniformly. This model is useful for reasoning
about real-time systems, because one can specify quantitatively the interval of
time during which the transitions can occur, using timing bounds. However,
the behavior of a system is very sensitive to the values of these bounds, and
it is rather difficult to find their correct values. It is therefore interesting to
reason parametrically, by considering that these bounds are unknown constants,
or parameters, and try to synthesize a constraint (i.e., a conjunction of linear
inequalities) on these parameters which will guarantee a correct behavior of the
system. Such automata are called parametric timed automata (PTA) [2,11].

The synthesis of constraints for PTA has been mainly done by supposing given
a set of “bad states” (see, e.g., [8,9]). The goal is to find a set of parameters for
which the considered timed automaton does not reach any of these bad states.
We call such a method a bad-state oriented method. By contrast, we present in
this paper a tool based on a good-state oriented method.

2 Principle of Imitator

The tool Imitator (Inverse Method for Inferring Time AbstracT behaviOR)
implements the algorithm InverseMethod , described in [4]. We assume given a
� This work is partially supported by the Agence Nationale de la Recherche, grant

ANR-06-ARFU-005, and by Institut Farman (ENS Cachan).

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 336–342, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

IMITATOR: A Tool for Synthesizing Constraints 337

system modeled by a PTA A. Whereas bad-state oriented methods consider a set
of bad states, Imitator considers an initial tuple π0 of values for the parame-
ters, under which the system is known to behave properly. When the parameters
are instantiated with π0, the system is denoted by A[π0]. Under certain condi-
tions, the algorithm InverseMethod generalizes this good behavior by computing
a constraint K0 which guarantees that, under any parameter valuation π satis-
fying K0, the system behaves in the same manner : the behaviors of the timed
automata A[π] and A[π0] are (time-abstract) equivalent, i.e., the traces of ex-
ecution viewed as alternating sequences of locations (or “control states”) and
actions are identical. This is written A[π] ≡TA A[π0]. More formally, the algo-
rithm InverseMethod solves the following inverse problem [4] for acyclic systems
(i.e., with only finite traces) by computing a constraint K0 such that :

1. π0 |= K0,
2. A[π] ≡TA A[π0], for any π |= K0.

A practical application is to optimize (either decrease or increase) the value of
some element of π0, as long as it still satisfies K0. This is of particular interest in
the framework of digital circuits, in order to safely minimize some stabilization
timings (typically “setup” or “hold”).

The tool Imitator is available on its Web page1.

3 General Structure

As depicted below, Imitator takes as inputs a PTA described in HyTech

syntax, and a reference valuation π0. The aim of the program is to output a
constraint K0 on the parameters solving the inverse problem.

Imitator

PTA A
(HyTech file)

Reference
valuation π0

Constraint K0 on
the parameters

The algorithm InverseMethod on which Imitator relies can be summarized
as follows. Starting with K := True, we iteratively compute a growing set of
reachable symbolic states. A symbolic state of the system is a couple (q, C),
where q is a location of the PTA, and C a constraint on the parameters2.
When a π0-incompatible state (q, C) is encountered (i.e., when π0 �|= C), K is
refined as follows : a π0-incompatible inequality J (i.e., such that π0 �|= J) is

1 http://www.lsv.ens-cachan.fr/~andre/IMITATOR
2 Strictly speaking, C is a constraint on the clock variables and the parameters, but

the clock variables are omitted here for the sake of simplicity. See [4] for more details.

http://www.lsv.ens-cachan.fr/~andre/IMITATOR

338 É. André

selected within C, and ¬J is added to K. The procedure is then started again
with this new K, and so on, until the whole set of reachable states (Post∗) is
computed.

A simplified version of algorithm InverseMethod is given below, where the
clock variables have been disregarded for the sake of simplicity. We denote
by Post i

A(K)(S) the set of symbolic states reachable from S in exactly i steps
of A(K), and ∃X : C denotes the elimination of clock variables in
constraint C.

ALGORITHM InverseMethod(A, π0)
Inputs A : PTA of initial state s0

π0 : Reference valuation of the parameters
Output K0 : Constraint on the parameters
Variables i : Current iteration

K : Current constraint on the parameters
S : Current set of symbolic states (S =

⋃i
j=0 Post j

A(K)({s0}))
i := 0 ; K := True ; S := {s0}
DO

DO UNTIL there are no π0-incompatible states in S
Select a π0-incompatible state (q, C) of S (i.e., s.t. π0 �|= C)
Select a π0-incompatible J in C (i.e., s.t. π0 �|= J)
K := K ∧ ¬J ; S :=

⋃i
j=0 Post j

A(K)({(s0)})
OD
IF PostA(K)(S) = ∅ THEN RETURN K0 :=

⋂
(q,C)∈S(∃X : C)

FI

i := i + 1 ; S := S ∪ PostA(K)(S)
OD

This algorithm terminates and solves the inverse problem for acyclic systems.
The acyclic class is interesting for hardware verification, e.g., when analyzing
synchronous circuits over a fixed number (typically, 1 or 2) of clock cycles.

Imitator is a program written in Python, that drives HyTech [10] for
the computation of the Post operation. The Python program contains about
1500 lines of code, and it took about 4 man-months of work.

Remark. In order to handle cyclic examples, one modifies the algorithm by
replacing, in the IF condition, PostA(K)(S) = ∅ by PostA(K)(S) ⊆ S. In that
case, we ensure termination more often (see [4]). However, we do not guarantee
any longer the identity of traces, but only the identity of reachable locations.
This is interesting when A[π0] is known to avoid a given bad location because,
in this case, A[π] is also guaranteed to avoid this bad location, for any π |= K0.

IMITATOR: A Tool for Synthesizing Constraints 339

Fig. 1. Flip-flop circuit

4 An Illustrating Example

We consider an asynchronous “D flip-flop” circuit described in [7] and depicted
on Fig. 1. It is composed of 4 gates (G1, G2, G3 and G4) interconnected in a
cyclic way, and an environment involving two input signals D and CK . The
global output signal is Q. Each gate Gi has a delay in the parametric interval
[δ−i , δ+

i], with δ−i ≤ δ+
i . There are 4 other parameters (viz., THI , TLO , Tsetup,

and Thold) used to model the environment. Each gate is modeled by a PTA,
as well as the environment. We consider an inertial model for gates, where any
change of the input may lead to a change of the output (after some delay). The
PTA A modeling the system results from the composition3 of those 5 PTAs.
The output signal of a gate Gi is named gi (note that Q = g4). The rising (resp.
falling) edge of signal D is denoted by D↑ (resp. D↓) and similarly for signals
CK , Q, g1, . . . , g4. We consider the following instantiation π0 of the parameters :

THI = 24 TLO = 15 Tsetup = 10 Thold = 17 δ−1 = 7 δ+
1 = 7

δ−2 = 5 δ+
2 = 6 δ−3 = 8 δ+

3 = 10 δ−4 = 3 δ+
4 = 7

We consider an environment starting from D = CK = Q = 0 and g1 =
g2 = g3 = 1, with the following ordered sequence of actions for inputs D and
CK : D↑, CK ↑, D↓, CK ↓, as depicted on Fig. 1 right. Therefore, we have the
implicit constraint Tsetup ≤ TLO ∧ Thold ≤ THI . For this environment and the
instantiation π0, the set of traces (alternating sequences of locations and actions)
of the system is depicted below under the form of an oriented graph, where qi,
1 ≤ i ≤ 9, are locations of A.

q1 q2 q3 q4 q5

q6

q7

q8 q9
D↑ g↓1 CK ↑ g↓3

Q↑

D↓

D↓

Q↑

CK ↓

3 The standard parallel composition of several PTAs is a PTA.

340 É. André

Applying Imitator to A and π0, we get the following constraint K0
4 :

Tsetup < TLO ∧ δ+
3 + δ+

4 < THI ∧ δ+
1 < Tsetup ∧ δ−1 > 0

∧ Thold ≤ δ+
3 + δ+

4 ∧ δ−3 + δ−4 ≤ Thold ∧ δ+
3 < Thold

For any valuation π satisfying K0 and for the same environment, the set of
traces of the system A[π] coincides with the one depicted above, i.e., A[π] ≡TA

A[π0]. For a comparison of K0 with the constraint found in [7], see [5].

5 Experiments

We applied the tool Imitator to various case studies from the literature, includ-
ing a flip-flop circuit (described in Sect. 4), two protocols (root contention and
CSMA/CD), as well as two real case studies : a portion of the memory circuit
SPSMALL designed by ST-Microelectronics, and a distributed control system
(SIMOP). All those experiments are detailed in [5]. The HyTech source code
of all the examples is available on Imitator webpage.

Example # of loc. per # of # of # of |Post∗| |K0| CPU
PTAs PTA clocks param. iter. time

Flip-flop [7] 5 [4, 16] 5 12 8 11 7 2 s
RCP [13] 5 [6, 11] 6 5 18 154 2 70 s

CSMA/CD [12,14] 3 [6, 7] 4 3 21 294 3 108 s
SPSMALL [6] 10 [3, 8] 10 22 31 31 23 78mn

SIMOP [3] 5 [6, 16] 9 16 51 848 7 419mn

The above table gives from left to right the name of the example, the number
of PTAs composing the system A, the lower and upper bounds on the number of
locations per PTA, the numbers of clocks and parameters of A, of iterations of
the algorithm, of reached symbolic states, of inequalities in K0 (after reduction),
and the computation time on an Intel Quad Core 3GHz with 3.2Gb.

All these examples are acyclic5, and thus guarantee the equality of traces,
except SIMOP. In this latter case, we are only interested in avoiding a given bad
location, and the equality of reachable locations is sufficient.

In the flip-flop and RCP examples, we took as π0 an instance satisfying a
constraint issued from a classical synthesis method of the literature. In this case,
the constraint generated by our method may be the same as the constraint from
the literature, but not necessarily : for example, in the case of the flip-flop circuit,
K0 is uncomparable with the original constraint of [7] (see [5] for details).
4 It can be surprising that neither δ−2 nor δ+

2 appear in K0. This constraint K0 actually
prevents G2 from any change, as g1 and CK are never both set to 1 ; therefore, g2

always remains set to 1, and the delay of G2 does not have any influence on the
system for the considered environment.

5 We considered an acyclic model for CSMA/CD and RCP by bounding the maximal
number of collisions of messages.

IMITATOR: A Tool for Synthesizing Constraints 341

In the CSMA/CD, SIMOP, VALMEM examples, the instantiation π0 corre-
sponds to typical data associated to the case study. In this case, the constraint K0
allows us to optimize some values of the typical data π0. This is useful, for ex-
ample in order to safely relax some requirements on the environment of asyn-
chronous circuits (see, e.g., [6]). In the SPSMALL case study, this allows us to
safely optimize some nominal setup timing by 8% (see [5]).

Running HyTech in a brute manner (fully parametric forward analysis)
quickly leads to a saturation of the memory for most examples. One reason
for which Imitator behaves well in practice is that the procedure drastically
reduces the number of reachable states by quickly restraining K0.

6 Final Remarks

Given a reference valuation π0, Imitator solves the inverse problem for systems
modeled by PTA with acyclic traces : it returns a constraint K0 on the parame-
ters guaranteeing that the sets of traces of A[π0] and A[π] are identical, for any
valuation π such that π |= K0.

K0 prevents all the bad behaviors (e.g. deadlocks), since it imitates the ref-
erence behavior of π0, while constraints generated by classical methods may not
prevent bad behaviors other than those specified by the bad states.

Imitator can be used in an incremental way as a complementary tool to en-
large constraints given by classical methods. For example, in the flip-flop case (see
Sect. 4), the constraint, say Z, found in [7] is uncomparable with our constraint
K0. We can run Imitator once more with a reference valuation π1 ∈ Z \ K0.
This gives a new constraint K1, s.t. K0 ∪K1 is strictly larger than Z (see [5]).

Acknowledgments. I thank anonymous referees for their helpful comments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC

1993, pp. 592–601. ACM Press, New York (1993)
3. Amari, S., André, É., Chatain, T., De Smet, O., Denis, B., Encrenaz, E.,

Fribourg, L., Ruel, S.: Timed analysis of distributed control systems combining
simulation and parametric model checking. Research report, LSV, ENS Cachan,
France (2009)

4. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
(IJFCS) (to appear)

5. André, É., Encrenaz, E., Fribourg, L.: Synthesizing parametric constraints on var-
ious case studies using Imitator. Research report, Laboratoire Spécification et
Vérification, ENS Cachan, France (June 2009)

6. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Verification of the
generic architecture of a memory circuit using parametric timed automata. In:
Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 113–127.
Springer, Heidelberg (2006)

342 É. André

7. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

9. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parame-
ter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)

10. Henzinger, T.A., Ho, P., Wong-Toi, H.: A user guide to HyTech. In: Brinksma,
E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 41–71. Springer, Heidelberg (1995)

11. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 189–203. Springer, Heidelberg (2001)

12. Nicollin, X., Sifakis, J., Yovine, S.: Compiling real-time specifications into extended
automata. IEEE Trans. on Software Engineering 18, 794–804 (1992)

13. Simons, D., Stoelinga, M.: Mechanical verification of the IEEE 1394a Root Con-
tention Protocol using Uppaal2k. International Journal on Software Tools for
Technology Transfer 3(4), 469–485 (2001)

14. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. IEEE Trans. Softw. Eng. 31(1), 38–51 (2005)

GSPeeDI – A Verification Tool for Generalized
Polygonal Hybrid Systems

Hallstein Asheim Hansen1 and Gerardo Schneider2

1 Buskerud University College, Kongsberg, Norway
Hallstein.Asheim.Hansen@hibu.no

2 Dept. of Informatics, University of Oslo, Oslo, Norway
gerardo@ifi.uio.no

Abstract. The GSPeeDI tool implements a decision procedure for the
reachability analysis of GSPDIs, planar hybrid systems whose dynamics
is given by differential inclusions, and that are not restricted by the
goodness assumption from previous work on the so-called SPDIs.

Unlike SPeeDI (a tool for reachability analysis of SPDIs) the under-
lying analysis of GSPeeDI is based on a breadth-first search algorithm,
and it can handle more general systems.

1 Introduction

Hybrid systems combine dynamic and discrete behavior, and mathematical mod-
els can be defined for systems arising from real scenarios (e.g., a chemical plant)
as well as for artificial constructions (e.g. by hybridizing a complex differential
equation into connected piece-wise smaller equations). These systems are gener-
ally hard to analyze: most important verification problems are undecidable for
non-trivial classes of hybrid systems. In this paper we deal with a class of planar
hybrid systems whose dynamics is given by differential inclusions: generalized
polygonal hybrid systems (GSPDIs). The reachability problem for GSPDI has
been shown to be decidable [7].

A GSPDI is a pair H = 〈P, F〉, where

e

a
P

X0

Xf

b

Fig. 1. GSPDI

P is a finite partition of the plane (each
P ∈ P being a convex polygon), called the
regions of the GSPDI, and F is a func-
tion associating a pair of vectors to each
polygon: F(P) = (aP ,bP). In a GSPDI
every point on the plane has its dynam-
ics defined according to which polygon it
belongs to: if x ∈ P , then ẋ ∈ ∠bP

aP
. The

angle ∠b
a denotes a differential inclusion,

meaning that the tangent vector at any
point of a given trajectory must be a lin-
ear combination of vectors a and b.

A complicating factor in the reachability analysis of GSPDIs is the presence
of regions where the trajectory is allowed to enter and leave the region through

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 343–348, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

344 H.A. Hansen and G. Schneider

the same edge, to slide along, or bounce off a given edge. For instance, in the
example shown in Fig. 1 the dynamics of region P allows the trajectory to slide
and bounce off the edge e. A region where no trajectory can enter and leave
through the same edge is said to be good, and a GSPDI where all the regions are
good is called an SPDI (we say that that SPDI satisfies the goodness assumption).

The tool GSPeeDI is the only tool we know of that implements a decision
procedure to solve the reachability problem for this particular class of hybrid
systems.

2 GSPeeDI

The tool GSPeeDI1 is a collection of utilities to manipulate and reason mechan-
ically about GSPDIs. It is implemented in 3000 lines of Python code.

The tool takes as input a GSPDI, together with a source and a target inter-
val, on given edges. The tool operates on a graph whose nodes are the edges of
the polygons (and not the polygons themselves) which are connected with di-
rected arcs labelled with edge-to-edge one-dimensional successor functions over
edge intervals. An edge interval represents an interval on a given edge. In order
to check for reachability, we use a standard breadth-first search (BFS) model
checking approach. We start from a set A containing an initial edge interval.
Then we iteratively apply the possible transitions from the current set, adding
the resulting edge intervals to A. The search ends if an edge interval from A
contains the sought-after edge interval, or it ends when, if the sought-after edge
interval cannot be reached, the fix-point is reached.

There are three kinds of possible transitions that one may take:

– Edge-to-edge transitions. The result of following the dynamics of a region,
and represented as one step transition on the graph.

– ’Cycle’ transitions. We only need to analyze simple cycles, which are then
converted into meta-transitions in the graph. Using acceleration of such sim-
ple cycles we are able to compute all the edge intervals reachable by taking
the cycle any number of times, without iterating the cycle in most cases.

– Sink transitions. We know how to identify those simple cycles that cannot
be exited. These transitions will only be applied at the end since no other
continuation is possible.

Using acceleration techniques for analyzing cycles instead of iterating them,
we can sucessfully analyze large systems, even though the algorithm has a worst
case complexity which is doubly exponential.

On the left of Fig. 2 we illustrate a typical input file containing a GSPDI
composed of 8 regions. From this file we can generate the edge-to-edge transi-
tions, and then create a picture of the GSPDI as shown in the upper right part
of the figure. The lower right hand part shows a typical use scenario, where the
imprecision is caused by a built-in floating point conversion routine in Python.
1 http://heim.ifi.uio.no/hallstah/gspeedi/

http://heim.ifi.uio.no/hallstah/gspeedi/

GSPeeDI – A Verification Tool for Generalized Polygonal Hybrid Systems 345

Input file

Points
P 1 1.5 1.5
P 2 2 2
P 3 1 2
P 4 1 1
P 5 2 1
P 6 3 2
P 7 2 3
P 8 1 3
P 9 0 2
P 10 0 1
P 11 1 0
P 12 2 0
P 13 3 1

Regions

R 1 1 9 1 2 6 13 5
R 2 2 2 2 7 6
R 3 3 3 1 3 8 7 2
R 4 4 4 3 9 8
R 5 5a 5b 1 4 10 9 3
R 6 6 6 4 11 10
R 7 7 7 1 5 12 11 4
R 8 8 8 5 13 12

Vectors

V 1 0 1
V 2 -1 1
V 3 -1 0
V 4 -1 -1
V 5b 0.2 -1
V 5a 0.1 -1
V 6 1 -1
V 7 1 0
V 8 1 1
V 9 -1.1 -1.1

Generated figure

Session log

./search.py data/swimmer-g.graph ’2->3~2-7’ 0.5 ’2->3~2-7’ 0.2
Searching from:

N2->3~2-7 at [[0.5, 0.5]]
to

N2->3~2-7 at [[0.20000000000000001, 0.20000000000000001]]
True

In this example the search refers to a node in the
graph, N2->3 2-7, which represents the edge 2-7.
Since any edge may be traversed in both direc-
tions, we uniquely identify that we traverse the
edge going from region 2 to region 3.

Fig. 2. Example

While the example contains only 8 regions, it has 84 simple edge cycles (in-
cluding permutations). We may use various optimization techniques to reduce
the search space, but even so, the number of possible paths reachable from a
single edge may number in the thousands when we combine the cycles with
edge-to-edge transitions.

3 Comparing and Contrasting with SPeeDI

A comparison with HyTech [3] is not meaningful since HyTech semi-decides more
general hybrid systems than GSPeeDI, but it runs out of memory very quickly for
very simple GSPDIs for which GSPeeDI gives an almost immediate answer due
to acceleration. The obvious tool to compare GSPeeDI with is the tool SPeeDI
[1], since GSPeeDI generalizes SPeeDI.

346 H.A. Hansen and G. Schneider

Our tool contains two major enhancements over SPeeDI, which justified a
completely new implementation of reachability analysis for GSPDIs: We can
analyze systems that are not restricted by the goodness assumption, and we do
so using breadth-first (instead of depth-first) search.

Being able to analyze systems where the goodness asumption does not hold
increases the number of analyzable systems. The practical implications for the
design of the tool are considerable, and include a more complex vector/function
library, and looser restrictions on what constitutes a feasible path of traversed
edges and cycles. This in turn leads to a larger search space, so if all the regions
are good, then SPeeDI performs much better, but SPeeDI cannot handle systems
with non-good regions.

Another difference is that SPeeDI’s algorithm is based on depth-first gen-
eration of feasible paths. While the depth-first algorithm may not necessarily
generate the shortest possible counter example, it does have the advantage of
generating the counter example as part of the algorithm itself.

4 Complexity

There are two main factors contributing to the run-time complexity of the tool.
One is the computation of all the simple cycles in the directed GPSDI graph.
The other is the execution of the breadth-first search algorithm. The latter has
been shown to have a doubly exponential time complexity in the worst case.
However, in practice we can apply a set of heuristics which reduce this complexity
considerably, as explained below.

Computing all simple cycles may be

Fig. 3. Larger GSPDI example

infeasible for large graphs: The number
of simple cycles in a complete, directed
graph with n nodes is exactly

n−1∑
i=1

(
n

n− i + 1

)
(n− i)! .

For computing all simple cycles we
have implemented the algorithm due to
Tarjan [8], which has a time bound of
O((n + e)(c + 1)), where e is the num-
ber of edges and c the number of cycles
in the graph. Clearly, the number of cy-
cles is the factor determining the point
at which a problem becomes infeasible.

Informal testing have shown that running an unmodified algorithm on exam-
ples with hundreds of nodes quickly becomes infeasible, both due to the execution
time of the algorithm, and the number of (unpermutated) cycles.

Because of this the tool includes several domain specific optimizations to the
algorithm. In particular we only investigate prefixes to cycles where:

GSPeeDI – A Verification Tool for Generalized Polygonal Hybrid Systems 347

– There actually are trajectories that make a complete cycle.
– The cycles will not be redundant. Cycles where the trajectories bounce off

edges are not required to be analyzed.
– The generation of a cycle will not help analysis. This happens if a node

represents an interval that may be reached in its entirety by any trajectory.

We will demonstrate the optimizations’ effectiveness on a bigger example (par-
tially shown in Fig. 3). The GSPDI contains 334 nodes (in the reachability
graph). A run of the unmodified algorithm finds that the total number of cycles
(without permutations) is 181398.

If we apply only the first optimization, we reduce that number to 1041 cycles.
Adding the second optimization reduces the number to 112 cycles, and applying
all three leaves us with 85 cycles. The optimizations cut off 811, 229, and 183
prefixes respectively.

So, for this particular example, we find that more than 99% of the possible
cycles are redundant. Computing the number of permutations gives us a total
of 1100 cycles subsequently used as meta-transitions in the breadth-first search.

The execution time of the program which generates the cycles is less than a
minute on a low-end, modern CPU. On the same system a reachability search
returning false (thus having computed the entire reach-set for a particular start-
interval) finishes execution in slightly over ten seconds.

5 Discussion

We have presented a prototype tool for solving the reachability problem for
generalized polygonal hybrid systems. The tool implements a BFS algorithm (as
presented in [4]), following the theoretical results published in [7]. The algorithm
is based on the analysis of a finite number of possible qualitative behaviors, in-
cluding only simple loops which may be accelerated in most cases. Since the
number of such behaviors may be extremely big, the tool uses several power-
ful heuristics that exploit the topological properties of planar trajectories for
considerably reducing the set of actually explored paths on the reach-graph.

The main applications of GSPDIs is to over-approximate non-linear differen-
tial equations on the plane. Then we can apply GSPeeDI to perform reachability
analysis. There is ongoing and future work in the area of automatically2 par-
titioning the plane and generating GSPDIs based on such equations, based on
whether properties such as Lipschitz continuity applies and can be exploited.
This will allow for analysis of larger, real-world problems. The application of
GSPeeDI to over-approximate planar differential equations could be combined
with simulation techniques in order to further refine parts of the hybridized
equation to make more precise analysis. This, together with the use of the phase
portrait (see below) will produce less ’do not know’ answers and increase the
number of ’yes’ and ’no’ answers.

2 A simple, ad-hoc application for automatic partitioning is distributed with the tool.

348 H.A. Hansen and G. Schneider

One line of future work is incorporating support for enhancements, optimiza-
tions and utilities currently available for SPeeDI, that have been already explored
theoretically for SPDIs. This include the computation of the phase portrait of
a system [2], which may allow both optimizations [6] and compositional paral-
lelization [5] of the reachability analysis algorithm. Note that the implementation
of such features will not add to the complexity of the tool as all the information
needed to compute the phase portrait (invariance, viability and controllability
kernels, and semi-separatrices) is already computed when analyzing simple cycles
(see [5, 6] for more details).

We conjecture that the cycle generation and breadth-first search may mutually
benefit from running in parallell and working with a shared state. There may,
for example, be no need to generate cycles for sufficiently explored parts of the
graph.

Acknowledgments. We would like to thank Gordon Pace for useful suggestions
on how to improve the efficiency of the tool.

References

[1] Asarin, E., Pace, G., Schneider, G., Yovine, S.: SPeeDI: a verification tool for
polygonal hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 354–358. Springer, Heidelberg (2002)

[2] Asarin, E., Schneider, G., Yovine, S.: Towards computing phase portraits of polyg-
onal differential inclusions. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, p. 49. Springer, Heidelberg (2002)

[3] Henzinger, T., Ho, P.-H., Wong-toi, H.: Hytech: A model checker for hybrid systems.
Software Tools for Technology Transfer 1(1) (1997)

[4] Pace, G., Schneider, G.: Model checking polygonal differential inclusions using in-
variance kernels. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 110–121. Springer, Heidelberg (2004)

[5] Pace, G., Schneider, G.: A compositional algorithm for parallel model checking
of polygonal hybrid systems. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)
ICTAC 2006. LNCS, vol. 4281, pp. 168–182. Springer, Heidelberg (2006)

[6] Pace, G., Schneider, G.: Static analysis for state-space reduction of polygonal hy-
brid systems. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202,
pp. 306–321. Springer, Heidelberg (2006)

[7] Pace, G.J., Schneider, G.: Relaxing goodness is still good. In: Fitzgerald, J.S.,
Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 274–289.
Springer, Heidelberg (2008)

[8] Tarjan, R.E.: Enumeration of the elementary circuits of a directed graph. Technical
report, Ithaca, NY, USA (1972)

Hierarchical Graph Rewriting as a Unifying Tool
for Analyzing and Understanding

Nondeterministic Systems

Kazunori Ueda, Takayuki Ayano, Taisuke Hori, Hiroki Iwasawa,
and Seiji Ogawa

Dept. of Computer Science and Engineering, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract. We have designed and implemented LMNtal (pronounced
“elemental”), a language based on hierarchical graph rewriting that al-
lows us to encode diverse computational models involving concurrency,
mobility and multiset rewriting. Towards its novel applications, the sys-
tem has recently evolved into a model checker that employs LMNtal
as the modeling language and PLTL as the specification language. The
strengths of our LMNtal model checker are its powerful data structure,
highly nondeterministic computation it can express, and virtually no
discrepancy between programming and modeling languages. Models ex-
pressed in Promela, MSR, and Coloured Petri Nets can be easily en-
coded into LMNtal. The visualizer of the LMNtal IDE turned out to be
extremely useful in understanding models by state space browsing. The
LMNtal IDE has been used to run and visualize diverse examples taken
from the fields of model checking, concurrency and AI search.

1 Introduction

LMNtal [4] is a language model based on (a class of) hierarchical graph rewrit-
ing that uses point-to-point links to represent connectivity and membranes to
represent hierarchy. LMNtal was designed to be a substrate language of var-
ious computational models, especially those addressing concurrency, mobility
and multiset rewriting. As a graph/multiset rewriting language, it has close
connections with Interaction Nets, Bigraphs, Chemical Abstract Machine and
Constraint Handling Rules. Its outstanding feature is the ability to address the
two fundamental structuring concepts, connectivity and hierarchy, which makes
it promising as a modeling language as well as a programming language. The ex-
pressive power of the language was demonstrated through the encoding of various
computational models including the ambient calculus [5] and the lambda calcu-
lus [6]. Although membranes were introduced to represent first-class multisets
and to delimit the scope of rewrite rules, they turned out to play fundamental
roles in the creation of and the operations on fresh local names as well [6].

Since its conception, the LMNtal project has focused on growing the unique
computational model into a full-fledged programming language, and delivered

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 349–355, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

350 K. Ueda et al.

a compiler-based implementation with a number of practical features [3]. The
present paper reports our next-generation implementation that newly features
state-space search and LTL model checking. Evolving LMNtal into model check-
ing is motivated by the following observations:

– LMNtal allows straightforward translation from many modeling languages
for computer-aided verification including state transition systems, multiset
rewriting and process calculi.

– Models in those formalisms generally have a high degree of nondeterminism
and demand a tool for understanding their properties and behavior.

– The computational model of LMNtal is turning out to be a suitable tool for
describing a broad range of search problems.

An outstanding feature of our LMNtal model checker is that, unlike other
modeling languages that are not offered as programming languages due to limited
data types, any LMNtal program can readily be model-checked with virtually
no restrictions. Of course, it is the responsibility of programmers to ensure the
finiteness of models for the termination of model checking. Maude is another
exception that allows model checking with inductive data types, but LMNtal
goes one step forward by featuring hierarchical, cyclic graphs and comes with
an IDE, an important tool described below.

Another key feature is that the IDE we have developed supports the under-
standing of models—both with and without errors—through the visualization of
state spaces and execution paths, while most other model checkers are construc-
tive only in bug catching. Rather than aiming for exploring huge state space, the
LMNtal model checker and its IDE aim to explore two new directions of future
programming languages and systems: (i) to provide a unified environment of
execution and validation, and (ii) to offer fine-grained concurrency with a sup-
port for understanding its behavior. Since the performance of model checking
critically depends on appropriate modeling, the LMNtal IDE can be used as a
workbench for designing and analyzing models and hence is complementary to
more specialized, high-performance model checkers.

2 LMNtal

We quickly overview LMNtal. LMNtal employs hierarchical graphs as its basic
data structure, which consist of (i) atoms, (ii) links for 1-to-1 connection, and
(iii) membranes that can enclose atoms and other membranes and can be crossed
by links. Processes are graphs co-located with graph rewrite rules.

The syntax of LMNtal is given in Fig. 1, where two syntactic categories, links
(denoted by X) and names (denoted by p), are presupposed. The name = is
reserved for atomic processes for interconnecting two links.

A process P must observe the following link condition: Each link in P (ex-
cluding those links occurring in rules) may occur at most twice.

Intuitively, 0 is an inert process; p(X1, . . . , Xm) (m ≥ 0) is an atom with m
links; P, P is parallel composition called a molecule; {P}, a cell, is a process

Hierarchical Graph Rewriting 351

(Process) P ::= 0 | p(X1, . . . , Xm) | P, P | {P} | T :- T

(Process template) T ::= 0 | p(X1, . . . , Xm) | T, T | {T} | T :- T | @p | $p

Fig. 1. Syntax of LMNtal (simplified)

v($v), h($h), u($u), d($d) :-

$u=:=$h+$v, $d=:=$h-$v, $v1=$v+1 | queen($v,$h), v($v1).

v(1). h(1), h(2), h(3), h(4), h(5).

u(2), u(3), u(4), u(5), u(6), u(7), u(8), u(9), u(10).

d(-4), d(-3), d(-2), d(-1), d(0), d(1), d(2), d(3), d(4).

Fig. 2. 5-queens

grouped by the membrane { }; and T :- T is a rewrite rule for processes.
Rewrite rules must observe several syntactic conditions (details omitted; see [4])
to ensure that reduction preserves the link condition. A rule context, @p, is to
match a (possibly empty) multiset of rules within a cell, while a process context,
$p, is to match processes other than rules within a cell.

An abbreviation called a term notation allows an atom b without its final
argument to occur as the kth argument of a, to mean that the kth argument
of a and the final argument of b are interconnected. For instance, f(g(x)) is
the same as f(A),g(B,A),x(B). A list with the elements Ai’s can be written
as X = [A1, . . . , An], where X is the link to the list. Some atoms such as + are
written as unary or binary operators. Parallel composition can be written both
in comma-separated and period-terminated forms.

Numbers are unary atoms such as 8(X), where X is connected to the atom
referring to it. Our extended syntax allows conditional rewrite rules such as

p(X), $n[X] :- int($n), $n>0 | p(Y), $n[Y], p(Z), $n[Z]

meaning that a graph consisting of a unary p and a positive integer will be dupli-
cated, and LMNtal allows it to be abbreviated to p($n):- $n>0 | p($n),p($n).

Computation proceeds by rewriting processes using rules co-located in the
same place of the nested membrane structure.

2.1 Two Quick Examples

LMNtal allows extremely concise encoding of typical examples in AI search.
The first, one-rule program (Fig. 2) finds a solution to the n-queens problem.

Each queen “consumes” one horizontal, one vertical and two diagonal (up and
down) rows given as initial resources. The program makes sense only with the
newly implemented state-space search capability. Vertical rows are generated
one at a time to reduce the search space. We can run the program either in the

352 K. Ueda et al.

P1=p([$h1|$t1]), P2=p([$h2|$t2]) :- $h1<$h2 |

P1=p($t1), P2=p([$h1,$h2|$t2]).

poles(p([1,2,3,4,999]), p([999]), p([999])).

Fig. 3. Tower of Hanoi

Fig. 4. Transition diagram visualized with StateViewer; the tower of Hanoi (left) and
Church numeral exponentiation (right)

nondeterministic execution mode or in the model checking mode. In the latter
case, states containing v(n + 1) are specified as accept states.

The next one-rule program (Fig. 3) explores the cyclic state space of the
tower of Hanoi. The transition diagram automatically generated by StateViewer
(Fig. 4, left) exhibits the recursive nature of the problem. The use of a multiset in
the LHS of the rule absorbs structural symmetry and contributes to the brevity
of the program.

3 Implementation

The LMNtal model checker (50,000 lines of code) builds upon a full-fledged
implementation of LMNtal written in Java, which established the compilation
technique of hierarchical graph rewriting and the intermediate instruction set.

The LMNtal model checker employs exactly the same compiler, which is a
strength of our approach, but provides a new runtime in C with better perfor-
mance and backtrack search. Properties to be checked are either given directly
as Büchi automata, or are written in LTL and compiled into equivalent Büchi
automata using LTL2BA. The meaning of propositional symbols in the claims
are defined using the LMNtal syntax without the RHS. For instance, the prop-
erty definition f = p($x):-$x>0 | defines the symbol f as “containing an atom
p whose first argument is connected to a positive integer.”

The model checker runtime receives (i) the intermediate code of the pro-
gram, (ii) the intermediate code of the property definitions, and (iii) the Büchi

Hierarchical Graph Rewriting 353

Fig. 5. LTL specification pane (left) and StateViewer (right)

automaton, and performs explicit-state LTL model checking. As a byproduct, the
runtime also provides a nondeterministic execution mode that performs state-
space search without property claims.

The challenge in implementing those new features was the checking algorithm
of (hierarchical) graph isomorphism. Our algorithm first checks the hash values
of hierarchical graphs and only when it collides, comparison based on exhaustive
DFS is performed. The algorithm has enabled model checking with graphs, which
benefits from the inherent symmetry reduction mechanism.

Integrated development environments are very important in verification be-
cause they greatly simplify the cumbersome procedure and the programs we
verify are what we don’t understand yet. Our publicly available LMNtalEditor1

automates many of the steps necessary for verification. The panes of LMNtalEd-
itor include the program editor, the system output pane, LTL specifier (Fig. 5,
left), StateViewer (for nondeterministic execution), LTL StateViewer (for model
checking), and the progress meter, the latter five of which are switchable.

StateViewer (Fig. 5, right) and LTL StateViewer render state transition di-
agrams and provide various functionalities for navigating and exploring them,
including state search based on graph pattern matching. Coloring of states based
on the number of transitions turned out to be very useful for finding special (e.g.,
final) states. Figure 4 (right) shows an automatically rendered state transition
diagram (940 states) of the exponentiation of Church numerals (22) under our
fine-grained encoding of the pure λ-calculus [6], which clearly indicates that there
are two final states (representing the same λ-term with different graph repre-
sentations) at different depths. Observations of this kind are a clue to finding
interesting properties that are worth attempting to prove.

4 More Examples and Conclusion

LMNtal is simple but expressive enough to allow the translation of models ex-
pressed in other modeling languages.

1 http://www.ueda.info.waseda.ac.jp/lmntal/

http://www.ueda.info.waseda.ac.jp/lmntal/

354 K. Ueda et al.

a0 :- n1(A0), a1(A1), {+A0,+A1}.

b0, n1(A0), {+A0,$a} :- n2(A1,B1), b1(A2,B2), {+A1,+A2,$a}, {+B1,+B2}.

n2(A0,B0), a1(A1), {+A0,+A1,$a}, {+B0,$b} :-

n3(B1), a2(A2,B2), {+A2,$a}, {+B1,+B2,$b}.

n3(B0), b1(A0,B1), {+A0,$a}, {+B0,+B1,$b} :-

b2(A1,B2), {+A1,$a}, {+B2,$b}.

Fig. 6. Simplified Needham-Schroeder protocol [1]

{ ch_m(empty), ch_w(empty), m, w.

m :- m(s1).

m(s1), ch_w(empty) :- m(s2), ch_w(ini).

m(s2), ch_m(ack) :- m(s3), ch_m(empty).

m(s3), timeout :- m(s4).

m(s4), ch_w(empty) :- m(se), ch_w(shutup).

m(s4), ch_w(empty) :- m(s7), ch_w(dreq).

m(s7), ch_m(data) :- m(s8), ch_m(empty).

m(s8), ch_w(empty) :- m(s8), ch_w(data).

m(s8), ch_w(empty) :- m(se), ch_w(shutup).

m(se), ch_m(shutup) :- m(sf), ch_m(empty).

m(sf), ch_w(empty) :- m(sg), ch_w(quiet).

m(sg), ch_m(dead) :- mEnd.

% ... (similar for the partner process ’w’) ...

}

{$p,@p}/ :- \+($p=(mEnd,wEnd,$q)) | {timeout,$p,@p}.

Fig. 7. Data transfer protocol (cf. the Promela version ([2], p.27))

MSR [1] is a multiset rewriting language with existential quantification (on
the RHS) used for representing nonces. Figure 6 shows the simplified Needham-
Schroeder protocol between the initiator a and the responder b though the chan-
nel n. In LMNtal, nonce creation is represented as the creation of a membrane,
and references to nonces are represented as incident links to the membrane. The
use of membranes to represent fresh local names and operations on them has
played a crucial role in encoding diverse computational models.

Concurrent processes with shared variables and channels can also be trans-
lated into LMNtal. Figure 7 shows an example translated from a Promela model
using channel communication, and Fig. 5 (right) shows the result of visualiza-
tion. A channel with capacity n is represented as an n-ary atom whose empty
slots are indicated by the atom empty.

Hierarchical Graph Rewriting 355

To conclude, LMNtalEditor has provided a simple click-view-explore interface
which significantly lowered the entry barrier to the world of verification and
search. The tool is planned to feature abstraction and partial-order reduction to
make the tool more powerful and scalable.

References

1. Cervesato, I., et al.: A Meta-notation for Protocol Analysis. In: Proc. CSFW 1999,
pp. 55–69. IEEE Computer Society, Los Alamitos (1999)

2. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Reading (2004)
3. Murayama, K., et al.: Implementation of the Hierarchical Graph Rewriting Language

LMNtal. Computer Software 25(2), 47–77 (2008)
4. Ueda, K., Kato, N.: LMNtal: A Language Model with Links and Membranes. In:

Mauri, G., Păun, G., Jesús Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.)
WMC 2004. LNCS, vol. 3365, pp. 110–125. Springer, Heidelberg (2005)

5. Ueda, K.: Encoding Distributed Process Calculi into LMNtal. Electronic Notes in
Theoretical Computer Science 209, 187–200 (2008)

6. Ueda, K.: Encoding the Pure Lambda Calculus into Hierarchical Graph Rewriting.
In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 392–408. Springer, Heidelberg
(2008)

Author Index

Aiguier, Marc 261
André, Étienne 336
Aoki, Toshiaki 277
Ayano, Takayuki 349

Bartoletti, Massimo 80
Bauer, Andreas 96
Beneš, Nikola 112
Bergstra, J.A. 127
Bjørner, Nikolaj 322
Boudol, Gérard 140
Braberman, Victor 215

Degano, Pierpaolo 80
Di Giusto, Cinzia 155
Diekert, Volker 170
Ding, Zuohua 1

Ésik, Zoltan 185

Fenech, Stephen 200
Ferrari, Gian Luigi 80
Fischbein, Dario 215

Goré, Rajeev 96

Hansen, Hallstein Asheim 343
Hori, Taisuke 349
Hovland, Dag 231

Iván, Szabolcs 185
Iwasawa, Hiroki 349

Katayama, Takuya 277
Kopecki, Steffen 170
Křet́ınský, Jan 112

Krithivasan, Kamala 246
Kuppusamy, Lakshmanan 246

Lamport, Leslie 36
Larsen, Kim G. 112
Longuet, Delphine 261

McIver, Annabelle K. 61
Middelburg, C.A. 127
Mitrana, Victor 170

Ngoc Hung, Pham 277

Ogawa, Seiji 349

Pace, Gordon J. 200
Pérez, Jorge A. 155

Rabanal, Pablo 292
Rajamani, Sriram K. 79
Rodŕıguez, Ismael 292
Rubio, Fernando 292

Schneider, Gerardo 200, 343
Srba, Jǐŕı 112

Tiu, Alwen 96
Touili, Tayssir 307

Uchitel, Sebastian 215
Ueda, Kazunori 349

Veanes, Margus 322

Zavattaro, Gianluigi 155
Zunino, Roberto 80

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Static Analysis of Concurrent Programs Using Ordinary Differential Equations
	Introduction
	Petri Net Representation of Concurrent Programs
	From Discrete Petri Net to Continuous Petri Net
	Building a Differential Equation Model
	The Existence and Uniqueness of the Solutions for the Equation Model
	Computing Program States
	Detecting Deadlock with Equations
	Boundedness Checking
	Numerical Solution
	Case Study (I): The Gas-Station Problem
	Case Study (II): Dining Philosophers
	Case Study (III): Traffic Network
	Discussion and Conclusion
	References

	The PlusCal Algorithm Language
	Introduction
	Some Examples
	Euclid’s Algorithm
	The Quicksort Partition Operation
	The Fast Mutual Exclusion Algorithm
	The Alternating Bit Protocol

	The Complete Language
	The TLA$^{+}$ Translation
	An Example
	Translation as Semantics
	Liveness

	Labeling Constraints
	Conclusion
	References
	Appendix: The C-Syntax Grammar

	The Secret Art of Computer Programming
	Introduction
	Semantics for Programming with Secrets
	The Shadow H of h Records h’s Inferred Values
	The Shadow Semantics of Atomic Programs
	Security-Aware Program Refinement

	Programming with Hidden State
	Agents,ViewsandProofs
	The General Encryption Lemma
	The Symmetric Encryption Lemma

	Secure Messaging in an Untrusted Medium
	Secure Remote Computations
	The Exclusive-or Algebra of Subsets
	Secure Use of a Remote Super-Computer
	Explicit Message-Passing

	Private Information Retrieval
	Solving the PIR Problem with Algebra
	Collusion and Visibility Declarations
	Efficient Perfect Information Retrieval

	Conclusions and Future Work
	References

	Verification, Testing and Statistics
	References

	Full Research Papers
	ν-Types for Effects and Freshness Analysis
	Introduction
	A Calculus for Resource Access and Creation
	Effects and Subeffecting
	ν-Types and Type and Effect System
	Conclusions
	References

	A First-Order Policy Language for History-Based Transaction Monitoring
	Introduction
	The Policy Language: Definitions and Notation
	Some Example Policies
	Model Checking $PTLTL^{FO}$
	Extending $PTLTL^{FO}$ with a Counting Quantifier
	Partial Observability
	Extended Guarded Quantifiers
	Conclusions and Related Work
	References

	Checking Thorough Refinement on Modal Transition Systems Is EXPTIME-Complete
	Introduction
	Basic Definitions
	Thorough Refinement Is EXPTIME-Hard
	Alternating Linear Bounded Automata
	Encoding of Configurations and Computation Trees
	The Reduction—Part 1
	The Reduction—Part 2
	Summary

	Thorough Refinement Is in EXPTIME
	References

	Transmission Protocols for Instruction Streams
	Introduction
	Thread Algebra
	ProcessAlgebra
	Process Extraction
	A Simple Protocol
	A More Complex Protocol
	Conclusions
	References

	A Deadlock-Free Semantics for Shared Memory Concurrency
	Introduction
	Source and Target Languages
	Translation
	Prudent Operational Semantics
	Safety
	Conclusion
	References

	On the Expressiveness of Forwarding in Higher-Order Communication
	Introduction
	The Calculus
	Convergence Is Undecidable
	Termination Is Decidable
	Concluding Remarks
	References

	On the Hairpin Completion of Regular Languages
	Introduction
	Notation
	Main Result
	An NFA for L and R
	First Linear Context-Free Grammar
	Candidates

	References

	Context-Free Languages of Countable Words
	Introduction
	Linear Orders and Words
	B¨uchi Context-Free Languages
	Normal Forms
	Closure Properties
	Some Decidable Properties
	AComparison
	An Undecidable Property
	M\"{u}ller Context-Free Languages
	Conclusion and Further Research Topics
	References

	Automatic Conflict Detection on Contracts
	Introduction
	The Contract Language {\mathcal CL}
	Deontic Trace Semantics
	Conflict Analysis
	Case Study
	Related Work
	Conclusions
	References

	A Sound Observational Semantics for Modal Transition Systems
	Introduction
	Background
	Motivation
	Motivating Example
	Strong Semantics
	Weak Semantics

	Branching Semantics
	Consistency
	Related Work
	Conclusions and Future Work
	References

	Regular Expressions with Numerical Constraints and Automata with Counters
	Introduction
	Regular Expressions with Numerical Constraints
	Term Trees and Positions
	1-Unambiguous Regular Expressions

	Finite Automata with Counters
	Counter States and Update Instructions
	Overlapping Update Instructions
	Finite Automata with Counters
	Word Recognition
	Searching with FACs

	Constructing Finite Automata with Counters
	Basic Properties
	Counter-1-Unambiguity
	Constructing FACs
	Equivalence of $L(r)$ and $L'(r)$

	Related Work and Conclusion
	Related Work
	Conclusion

	References

	On the Relative Expressive Power of Contextual Grammars with Maximal and Depth-First Derivations
	Introduction
	Preliminaries
	Results
	Conclusion
	References

	Integration Testing from Structured First-Order Specifications via Deduction Modulo
	Structured First-Order Specifications
	Deduction Modulo
	Testing from Logical Specifications
	Selection Criteria
	Axiom Unfolding for Structured Specifications
	Test Sets for Quantifier-Free First-Order Formulas
	Unfolding Procedure
	Properties of the Selection Criterion

	Conclusion
	References

	A Minimized Assumption Generation Method for Component-Based Software Verification
	Introduction
	Background
	Assume-Guarantee Verification
	The L* Learning Algorithm
	L*-Based Assumption Generation Method

	Minimized Assumption Generation Method
	Minimal Assumption Generation
	Termination and Correctness

	Experiment and Discussion
	Experiment
	Discussion

	Related Work
	Conclusion
	References

	A Formal Approach to Heuristically Test Restorable Systems
	Introduction
	Problem Definition
	Brief Introduction to River Formation Dynamics
	Applying RFD to Solve {\tt MLS}
	Experimental Results
	Conclusions
	References

	Constrained Reachability of Process Rewrite Systems
	Introduction
	Terms and Tree Automata
	Process Rewrite Systems
	Syntax
	Semantics
	Modeling of Multi-threaded Programs by PRSs

	Reachability under Constraints of PRS
	Decomposable Languages

	Constrained Reachability without Structural Equivalences
	Reachability Modulo \sim_{0}

	Reachability Modulo \sim_{s}
	Constrained Reachability Modulo \sim
	References

	Input-Output Model Programs
	Introduction
	Model Programs
	Bounded Game Conformance
	Complexity of BGC
	Implementation
	Related Work
	References

	Tool Papers
	IMITATOR: A Tool for Synthesizing Constraints on Timing Bounds of Timed Automata
	Context
	Principle of {\sc Imitator}
	General Structure
	An Illustrating Example
	Experiments
	Final Remarks
	References

	GSPeeDI – A Verification Tool for Generalized Polygonal Hybrid Systems
	Introduction
	GSPeeDI
	Comparing and Contrasting with SPeeDI
	Complexity
	Discussion
	References

	Hierarchical Graph Rewriting as a Unifying Tool for Analyzing and Understanding Nondeterministic Systems
	Introduction
	LMNtal
	Two Quick Examples

	Implementation
	More Examples and Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

