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Abstract. Security API analysis typically only considers a subset of an
API’s functions, with results bounded by the number of function calls.
Furthermore, attacks involving partial leakage of sensitive information
are usually not covered.

Type-based static analysis has the potential to alleviate these short-
comings. To that end, we present a type system for secure information
flow based upon the one of Volpano, Smith and Irvine [1], extended with
types for cryptographic keys and ciphertext similar to those in Sumii and
Pierce [2]. In contrast to some other type systems, the encryption and
decryption of keys does not require special treatment.

We show that a well-typed sequence of commands is non-interferent,
based upon a definition of indistinguishability where, in certain circum-
stances, the adversary can distinguish between ciphertexts that corre-
spond to encrypted public data.

1 Introduction

It is common for computer systems which store, process and manipulate sensitive
data to use a dedicated security hardware device (e.g., IBM 4758 [3] and nCipher
nShield [4]). The set of functions provided by a security device is termed its
security API, as they are intended to enforce a security policy as well as provide
an interface to the device. A security policy describes the restrictions on the
access to, use of, and propagation of data in the system. These restrictions,
therefore, must follow as a direct consequence of the API functions which are
available to users of the security device.

The analysis of security APIs has traditionally been carried out by enumer-
ating the set of data items which the adversary (a malicious user) can obtain
through repeated interactions with the API. While this approach has had rea-
sonable success (e.g., [5,6,7,8,9]), results are typically bounded by the number
of API calls, do not consider data integrity, and only detect flaws which involve
the release of sensitive data items in their entirety.
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In contrast, static analysis has the potential to provide unbounded results,
identify flaws which allow for sensitive data to be leaked via covert control-flow
channels, and also deal with data integrity. The type system presented in this
paper is the foundation of one such approach, although it does not yet deal with
integrity.

Our work builds upon the information-flow analysis capabilities of Volpano,
Smith and Irvine’s type system [1] by including cryptographic types similar
to those from Sumii and Pierce’s system for analysing security protocols [2]. Al-
though there are many similarities between security APIs and security protocols,
analysis methods for the latter are typically designed to deal with fixed-length
specified interactions, and therefore generally do not scale well when applied to
arbitrary sequences of interactions.

2 Background

Hardware Security Modules (HSMs) comprise some memory and a processor
inside a tamper-proof enclosure which prevents the memory contents from being
physically read — any breach causes the memory to be erased within a few
micro-seconds. Additional storage is provided by the host system to which the
HSM is attached. This leads to a natural partition of memory locations: those
inside the HSM are high security, and those on the host system are low security.

Memory locations on the host system are deemed low security, since the attack
model for security API analysis assumes that the adversary has full control of
the host system. In addition, the adversary is assumed to be capable of calling
certain functions provided by the HSM’s security API (because, for example,
they have hijacked a user’s session, or they are a legitimate user themselves).

Figure 1 shows the interactions between the adversary, HSM API, and mem-
ory locations in the standard attack scenario. HSM functions may access any
memory locations, while the adversary can only access the low security loca-
tions. A similar setup applies in the case of software APIs, where the adversary
is a malicious client program and the high memory locations correspond to those
which are hidden by the API.
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Fig. 1. The interactions between the adversary, the HSM API, and the memory loca-
tions
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n ∈ N Names
a ∈ A Locations
l ∈ L Security levels (where ⊥,� ∈ L)

e ::= n | !a | senc(e, e) | sdec(e, e) | junk(e) Expressions
c ::= a := e | c ; c | ε Commands
u ::= n | senc(u, u) Non-junk values
v ::= u | junk(u) Values

E ::= l data | l key | enc(E) Security types for expressions
A ::= E loc Security type for locations
C ::= cmd Security type for commands
T ::= E | A | C All security types

φ ::= φ , a �→ v | ε Store

∆ ::= ∆ , n : l | ∆ , a : l | ε Security levels environment
Γ ::= Γ, n : l data | Γ, n : l key | Γ, a :A | ε Security types environment

Fig. 2. Fundamental syntax definitions

The adversary’s goal is to execute a series of API function calls such that
sensitive data is unintentionally written to the low security memory, or that
sensitive data can be inferred from the API’s low security output. The aim of
security API analysis is to detect such insecure data flows, or to guarantee that
no such flows exist.

3 Type System

Figure 2 presents the fundamental syntax definitions upon which our type sys-
tem is built. The set N comprises names representing regular data items and
cryptographic keys; A is the set of abstract memory locations, and L is the set of
security levels which may be associated to names and locations.1 Although our
type system allows for any number of security levels (where l∈L → ⊥ ≤ l ≤ �),
in this paper we only consider ⊥ and � (i.e., low and high) in order to simplify
the presentation and discussion.

An expression can be a name, the contents of a memory location, the result of
a (symmetric) encryption or decryption, or ‘junk’ which denotes an incorrectly
decrypted term. Junk terms contain the expression which would have resulted
had the correct decryption key(s) been used, so we can ensure that a junk ex-
pression is treated in the same way as the intended non-junk term. A command
is zero or more instances of the assignment operation. A value is a name, a fully
evaluated ciphertext, or a junk value.

1 Security levels are for analysis purposes only — they do not exist in practice (and
even if they did, the adversary would not gain anything from knowing a term’s
security level).
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The security types for regular data items and cryptographic keys, l data and
l key respectively, associate a security level with their terms. The level associated
with regular data denotes the confidentiality level of that data item, whereas the
one associated with a cryptographic key denotes the maximum security level of
expressions which that key may encrypt. The different semantics are necessary
because we allow the security level of expressions to be arbitrarily increased and
therefore cannot determine what a key may encrypt based solely on its security
level. For example, a low security key can be considered a high security key and
thus could be used to encrypt other high security expressions. This approach
also allows a high security key to encrypt and decrypt low security expressions
without forcing the result of the decryption to be high security.

To recover the precise type of encrypted data when it is subsequently de-
crypted, we use a type operator; enc(E) is the type of an encrypted expression
of type E. This means that no type information is lost as a result of the encryp-
tion/decryption process and also allows us to handle nested encryptions. The
security type for locations denotes the most general type of expression which
may be stored in that location. We do not associate a security level with the
command type, although we will do so in future work.

The store, φ, maps locations to values; the security levels environment, ∆,
contains the security levels of names and locations (used dynamically), and the
security types environment, Γ, contains the security types of names and locations
(used statically). We assume there is no overlap between the identifiers used for
names and for locations.

3.1 Operational Semantics

Figure 3 presents the operational semantics for command sequences which we
consider. We wish to enforce the restriction that only ciphertext is decrypted,
therefore any term which evaluates to the decryption of non-encrypted data will
get ‘stuck.’ That is, the term cannot be fully evaluated under the operational
semantics.

Other terms which will get stuck include the encryption of data with a key
whose security level is too low, the assignment of a value to a location whose
security level is too low, and the dereferencing of something other than a location.
The first two of these correspond to cases where continued evaluation would
result in a security breach:

∆ = {a :⊥, vk :⊥, vm :�} a := senc(vk, vm) (1)
a := vm (2)

Getting stuck in case (1) guarantees that, if the adversary is able to decrypt
some given piece of ciphertext, the result will not be sensitive, while getting stuck
in case (2) guarantees that sensitive data cannot be written directly to a low
security memory location. This latter property is known as ‘no-write down,’ and
is enforced by the rule E-Assign2. The ‘no read-up’ property follows from the
assumption that an observer is only able to read the contents of locations whose
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Expressions
e→∆φ e′

ek →∆φ ek
′

senc(ek, em) →∆φ senc(ek
′, em)

E-SEnc1

e →∆φ e′

senc(v, e) →∆φ senc(v, e′)
E-SEnc2

senc(u, junk(u′)) →∆φ junk(senc(u,u′))
E-SEnc3

senc(junk(u), v) →∆φ junk(senc(u, v))
E-SEnc4

ek →∆φ ek
′

sdec(ek, em) →∆φ sdec(ek
′, em)

E-SDec1

e →∆φ e′

sdec(v, e) →∆φ sdec(v, e′)
E-SDec2

u′
k �= uk ∆ � u′

k,uk : lk ∆ � um : lm lm ≤ lk
sdec(u′

k, senc(uk, um)) →∆φ junk(um)
E-SDec4

sdec(u, junk(u′)) →∆φ junk(sdec(u,u′))
E-SDec5

sdec(junk(u), v) →∆φ junk(sdec(u, v))
E-SDec6

Commands
〈φ, c〉 →∆ 〈φ′, c′〉

〈φ, c1〉 →∆ 〈φ′, c′1〉
〈φ, c1; c2〉 →∆ 〈φ′, c′1; c2〉 E-Cmds1

〈φ, ε ; c〉 →∆ 〈φ, c〉 E-Cmds2

e →∆φ e′

〈φ, a := e〉 →∆ 〈φ, a := e′〉 E-Assign1

∆ � a : la ∆ � v : lv lv ≤ la
〈φ, a := v〉 →∆ 〈φ[a �→ v], ε〉 E-Assign2

∆ � uk : lk ∆ � um : lm lm ≤ lk
sdec(uk, senc(uk, um)) →∆φ um

E-SDec3

!a →∆φ φ(a)
E-Deref

e→∆φ e′

junk(e) →∆φ junk(e′)
E-Junk1

junk(junk(u)) →∆φ junk(u)
E-Junk2

Security Levels of Values

n : l ∈ ∆

∆ � n : l

a : l ∈ ∆

∆ � a : l

∆ � uk : lk ∆ � um : lm lm ≤ lk
∆ � senc(uk, um) :⊥

∆ � u : l

∆ � junk(u) : l

Fig. 3. The operational semantics for command sequences

associated security level is low enough. This is a legitimate assumption, since the
sensitive locations will be those which are inside the tamper-proof HSM whose
security API is being analysed, or in the case of software APIs, those locations
which are hidden from client programs.

The junk term is returned when a piece of ciphertext is decrypted with a
different key from the one which was used to create it (E-SDec4), or when the
key or message in an encryption or decryption operation is junk (E-SEnc3, E-

SEnc4, E-SDec5 and E-SDec6). In all cases, the expression within the junk
term is that which would have been returned had the correct decryption key(s)
been used.

Encryption requires that the security level of the key is at least as high as that
of the message. However, this restriction is not enforced when the ciphertext is
actually created, but rather when it is subsequently decrypted or assigned to a
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Commands

Γ � c1 : cmd Γ � c2 : cmd

Γ � c1 ; c2 : cmd
T-Cmds

Γ � a : E loc Γ � e : E

Γ � a := e : cmd
T-Assign

Γ � ε : cmd
T-Empty

Expressions

n : E ∈ Γ

Γ � n : E
T-Name

Γ � e : E

Γ � junk(e) : E
T-Junk

a : E loc ∈ Γ

Γ � a : E loc
T-Loc

Γ � a : E loc

Γ � !a : E
T-Deref

Γ � ek : l key Γ � em : E lvl(E) = l

Γ � senc(ek, em) : enc(E)
T-SEnc

Γ � ek : l key Γ � em : enc(E) lvl(E) = l

Γ � sdec(ek, em) : E
T-SDec

Subtyping

Γ � t : T′ T′ <: T

Γ � t : T
T-Sub

T <: T

T <: T′′ T′′ <: T′

T <: T′

l ≤ l′

l data <: l′ data

E <: E′

enc(E) <: enc(E′)

l key <: � data enc(E) <: ⊥ data

Security Levels of Types

lvl(cmd) = ⊥ lvl(l data) = l

lvl(l key) = � lvl(enc(E)) = ⊥
lvl(E loc) = lvl(E)

Fig. 4. The typing rules of our system

location (i.e., when the security level of the ciphertext has to be determined).
The security level of ciphertext is ⊥ since encryption is used primarily as a means
of securely declassifying sensitive data. If the result of an encryption should itself
be sensitive, then this can be achieved simply by assigning the ciphertext to a
location which stores sensitive data and returning a reference to that location.

3.2 Typing Rules

Figure 4 presents the rules of our type system. As noted previously, a location’s
type denotes the most general type of values which can be stored in that location.
By design, the more general a type is, the greater its security level (i.e., E <:
E′ → lvl(E) ≤ lvl(E′)). Therefore, the typing rule for assignment (T-Assign)
guarantees the ‘no write-down’ property since the security level associated with
the location will be no lower than the one associated with the expression.

Junk terms can have any expression type (T-Junk), since they are generated
only as the result of a decryption with the wrong key, and we wish to consider a
junk term as being equivalent to the intended result, had the correct decryption
key been used. This is to prevent insecure information flows which may otherwise
result from the use of an incorrect decryption key.

The contents of a location are given the type of the most general expression
that can be stored in that location (T-Deref). Thus, any security result is
independent of the values which are actually stored in each memory location.

For encryption, the key used must be able to encrypt messages which are at
least as secure as the actual message (T-SEnc). For decryption, the message
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must be ciphertext and the security level associated with the key must be no
lower than the security level associated with the result (T-SDec).

Currently, we restrict keys to having the highest security level, and commands
to having the lowest security level, since our focus is on security APIs with secret
keys and public functions. Relaxing these restrictions will form part of our future
work.

To prove the theorems presented in this paper, we require a couple of stan-
dard type-theoretic lemmas. The proofs are quite straightforward and have been
omitted.

Lemma 1. Generation Lemma (Inversion of the Typing Relation)

1. If Γ � n :T then T :> E and n : E ∈ Γ.
2. If Γ � a :T then T ≡ E loc and a : E loc ∈ Γ.
3. If Γ � !a :T then T :> E and Γ � a : E loc.
4. If Γ � senc(e1, e2) : T then T :> enc(E), Γ � e1 : l key, Γ � e2 : E and lvl(E)

= l.
5. If Γ � sdec(e1, e2) : T then T :> E, Γ � e1 : l key, Γ � e2 : enc(E) and lvl(E)

= l.
6. If Γ � junk(e) :T then Γ � e :T.
7. If Γ � a := e : T then T ≡ cmd, Γ � a : E loc, and Γ � e : E.
8. If Γ � ε :T then T ≡ cmd.
9. If Γ � c1 ; c2 : T then T ≡ cmd, Γ � c1 : cmd, and Γ � c2 : cmd.

Proof. Follows from induction on the typing derivations.

Lemma 2. Canonical Forms Lemma

1. If Γ � v : enc(E) then v ≡ senc(uk, um) or junk(senc(uk,um)).
2. If Γ � v : l key then v ≡ n or junk(n).
3. If Γ � v : l data then v ≡ n, senc(uk, um), junk(n) or junk(senc(uk, um)).

Proof. Follows from inspection of the typing rules and fundamental definitions.

4 Progress and Preservation

The standard way to establish type safety for a type system with respect to
an operational semantics is to show that the progress and preservation proper-
ties hold. Preservation establishes that the type of a term is not changed by
the evaluation rules, while progress demonstrates that well-typed terms will not
get ‘stuck.’ Stuck terms represent certain error conditions that may arise during
evaluation. In our system, for example, a term becomes stuck whenever further
evaluation would result in a security leak. Such leaks are prevented in the oper-
ational semantics by checks carried out on the security levels in a number of the
evaluation rules.
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For the progress and preservation properties to hold, the initial store φ must
be well-typed, and the security levels environment ∆ must be level-consistent
with respect to the typing context Γ. Informally, φ is well-typed if every value
in φ has the type predicted by Γ, while ∆ is level-consistent with respect to Γ if
every name and location in ∆ has the same security level as given to it by Γ.

Definition 1. A store φ is well-typed with respect to a typing context Γ, writ-
ten Γ � φ, if dom(φ) = dom( Γ | loc) and, ∀a ∈ dom(φ), ∃E. Γ � φ(a) :E ∧
Γ � a : E loc.

Definition 2. A security levels environment ∆ is level-consistent with respect
to a typing context Γ, written Γ � ∆ , if dom(∆) = dom(Γ ), and

• ∀n ∈ dom(Γ | nam), n :E ∈ Γ → n : lvl(E) ∈ ∆
• ∀a ∈ dom(Γ | loc), a :E loc ∈ Γ → a : lvl(E) ∈ ∆

Here, S | nam and S | loc denote the subsets of S containing only those elements
which are names and locations respectively.

Corollary 1. If Γ � ∆, Γ � v :E and ∆ � v : l, then l ≤ lvl(E).

Proof. By definition, v ≡ n, junk(n), senc(uk, um) or junk(senc(uk, um)). If v ≡
n or junk(n) then, by Lemma 1, n : E′ ∈ Γ, where E′ <: E. By Γ � ∆, n : lvl(E′)
∈ ∆ therefore ∆ � v : lvl(E′) and l = lvl(E′). It then follows from E′ <: E that
lvl(E′) ≤ lvl(E), so the result holds. If v ≡ senc(uk, um) or junk(senc(uk, um))
then l = ⊥, so the result holds. ��
Theorem 1. Progress

i) If Γ � t :E, then either t is a value, or else for any security levels environ-
ment ∆ and store φ such that Γ � ∆ and Γ � φ, there exists some t′ such
that t →∆φ t′.

ii) If Γ � t : C, then either t is the empty command ε or else, for any security
types environment ∆ and store φ such that Γ � ∆ and Γ � φ, there exists
some t′ and φ′ such that 〈φ , t〉→∆ 〈φ′, t′〉.

Proof. By induction on Γ � t : E and Γ � t : C:(selected cases only)

• Case T-Deref: t : E ≡ !a : E a : E loc

The rule E-Deref applies (it follows from Γ � φ that a ∈ φ).

• Case T-SEnc: t : E ≡ senc(ek, em) : enc(E′) ek : l key em : E′ lvl(E′)
= l

By the induction hypothesis, either ek is a value, or else for any ∆ and φ such
that Γ � ∆ and Γ � φ, there exists some e′k such that ek →∆φ e′k . Similarly
for em. If ek is not a value then E-SEnc1 applies; if em is not a value (but
ek is) then E-SEnc2 applies; if ek is a junk value then E-SEnc4 applies;
if em is a junk value (and ek is a non-junk value) then E-SEnc3 applies; if
both ek and em are non-junk values then t is a value.
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• Case T-SDec: t : E ≡ sdec(ek, em) : E ek : l key em : enc(E) lvl(E) = l

By the induction hypothesis, either ek is a value, or else for any ∆ and φ such
that Γ � ∆ and Γ � φ, there exists some e′k such that ek →∆φ e′k . Similarly
for em. If ek is not a value then E-SDec1 applies, and if em is not a value
(but ek is) then E-SDec2 applies. If ek is a value then, by Lemma 2, it
must be of the form n or junk(n). The former case is covered by the rules
E-SDec3, E-SDec4 and E-SDec5 as described below; in the latter case,
E-SDec6 applies. If em is a value then, by Lemma 2, it must be of the
form senc(uk, um) or junk(senc(uk, um)). In the first case, it follows from
Lemma 1 that Γ � uk : l′ key, Γ � um : E′ and lvl(E′) = l′, where enc(E) :>
enc(E′) (therefore E :> E′). If ek = uk then E-SDec3 applies and if ek �= uk

then E-SDec4 applies. In the second case, where em ≡ junk(senc(uk, um)),
the rule E-SDec5 applies. For rules E-SDec3 and E-SDec4, the inequality
lm ≤ lk will be satisfied because it follows from Lemma 1 that ek : l key ∈ Γ,
and from Γ � ∆ that ek :� ∈ ∆, thus lk = �.

• Case T-Assign: t : C ≡ a := e : cmd a :E loc e : E
By the induction hypothesis for Part (i), either e is a value, or else for any
∆ and φ such that Γ � ∆ and Γ � φ, there exists some e′ such that e→∆φ e′

. If e is a value, then E-Assign2 applies, otherwise E-Assign1 applies. In
the former case, the inequality will hold because, by Lemma 1, a : E loc ∈ Γ,
by Γ � ∆, a : lvl(E) ∈ ∆ therefore la = lvl(E), and by Cor. 1, lv ≤ lvl(E).

• Case T-Cmds: t : C ≡ c1 ; c2 : cmd c1 : cmd c2 : cmd

By the induction hypothesis, either c1 is the empty command ε or else, for
any ∆ and φ such that Γ � ∆ and Γ � φ, there exists some c′1 and φ′ such
that 〈φ, c1〉→∆ 〈φ′, c′1〉. If c1 ≡ ε then the rule E-Cmds2 applies, otherwise
the rule E-Cmds1 applies. ��

Theorem 2. Preservation

i) If Γ � t : E, Γ � ∆, φ and there exists some t′ such that t →∆φ t′, then
Γ � t′:E.

ii) If Γ � t :C, Γ � ∆, φ and there exists some t′ and φ′ such that 〈φ , t〉→∆ 〈φ′, t′〉,
then Γ � φ′ and Γ � t′: C.

Proof. By induction on Γ � t : E and Γ � t : C:(selected cases only)

• Case T-Deref: t : E ≡ !a : E a : E loc

E-Deref is the only evaluation rule which may apply, therefore t′ ≡ φ(a).
By Γ � φ, ∃E′ such that Γ � a : E′ loc and Γ � φ(a) : E′. It therefore follows
that E′ ≡ E and so the result holds.

• Case T-SEnc: t : E ≡ senc(ek, em) : enc(E) ek : l key em : E lvl(E) = l

There are four evaluation rules which correspond to the transition t →∆φ t′:
E-SEnc1 through E-SEnc4. Subcase E-SEnc2 has a similar proof to sub-
case E-SEnc1, and subcase E-SEnc4 has a similar proof to subcase E-

SEnc3.
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• Subcase E-SEnc1: ek →∆φ e′k t′ ≡ senc(e′k, em)
The T-SEnc rule has a subderivation whose conclusion is ek : l key and
the induction hypothesis gives us e′k : l key. Therefore, in conjunction with
em : E and lvl(E) = l, we can apply the rule T-SEnc to conclude that
senc(e′k, em) : enc(E).

• Subcase E-SEnc3: ek ≡ uk em ≡ junk(um) t′ ≡
junk(senc(uk, um))
The T-SEnc rule has a subderivation whose conclusion is junk(um) : E,
and by Lemma 1 we get um : E. Therefore, in conjunction with uk : l key
and lvl(E) = l, we can apply T-SEnc and T-Junk to conclude that
junk(senc(uk, um)) : enc(E).

• Case T-SDec: t : E ≡ sdec(ek, em) : E ek : l key em : enc(E) lvl(E) = l

There are six evaluation rules which correspond to the transition t →∆φ t′:
E-SDec1 through E-SDec6. Subcases E-SDec1 and E-SDec2 have similar
proofs to subcase E-SEnc1 above; subcases E-SDec5 and E-SDec6 have
a similar proof to subcase E-SEnc3 above.

• Subcase E-SDec3: ek ≡ n em ≡ senc(n, t′)
TheT-SDec rule has a subderivationwhose conclusion is senc(n,t′) : enc(E).
It follows from Lemma 1 that Γ � t′ : E′ and enc(E′) <: enc(E). Thus E′<: E,
and we can apply the T-Sub rule to conclude that Γ � t′ : E.

• Subcase E-SDec4: em ≡ senc(uk, um) ek �= uk t′ = junk(um)
The T-SDec rule has a subderivation whose conclusion is
senc(uk, um) : enc(E). It follows from Lemma 1 that Γ � um :E′and enc(E′)
<: enc(E). Thus E′ <: E, and we can apply T-Sub and T-Junk to con-
clude that Γ � junk(um) : E.

• Case T-Assign: t : C ≡ a := e : cmd a :E loc e : E
Two evaluation rules may correspond to the transition 〈φ, t〉→∆ 〈φ′, t′〉: E-

Assign1 and E-Assign2. The proof for the latter is trivial.

• Subcase E-Assign1: 〈φ, e〉→∆ 〈φ, e′〉 t′ = a := e′

The T-Assign rule has a subderivation whose conclusion is e : E. Ap-
plying the induction hypothesis to this subderivation gives us Γ � e′ : E.
In conjunction with the other subderivation Γ � a : E loc, we can apply
T-Assign to conclude that Γ � a := e′ : cmd. Γ � φ′ follows immediately
from the fact that φ = φ′.

• Case T-Cmds: t : C ≡ c1 ; c2 : cmd c1 : cmd c2 : cmd

Two evaluation rules may correspond to the transition 〈φ, t〉→∆ 〈φ′, t′〉: E-

Cmds1 and E-Cmds2. The proof for the latter is trivial.

• Subcase E-Cmds1: 〈φ, c1〉→∆ 〈φ′, c′1〉 t′ = c′1 ; c2

The T-Cmds rule has a subderivation whose conclusion is c1 : cmd and
the induction hypothesis gives us Γ � φ′ and Γ � c′1 : cmd. Using the
latter of these, in conjunction with the other subderivation Γ � c2 : cmd,
we can apply the rule T-Cmds to conclude that Γ � c′1 ; c2 : cmd. ��
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The following lemma states that the type of an expression is preserved under
evaluation with respect to a well-typed store, independent of the actual val-
ues contained in the locations of that store, and is required to prove our non-
interference result.

Lemma 3. If (Γ, a :E loc) � e : E ′, Γ � v :E, (Γ, a :E loc) � ∆, φ and e →∆φ′∗ v′,
where φ′ ≡ φ[a �→ v], then Γ � v′:E ′.

Proof. By induction on (Γ, a :E loc) � e : E′:(selected cases only)

• Case T-Deref: e : E′ ≡ !a′ : E′ a′ :E′ loc

!a′ →∆φ′ φ′(a′). By Lemma 1, a′ : E′ loc ∈ Γ. If a = a′ then v′ = v and E′ ≡ E,
thus the result holds. If a �= a′ then v′ = φ(a′) and the result follows from
(Γ, a : E loc) � φ.

• Case T-SEnc: e : E′ ≡ senc(ek, em) : enc(E′′) ek : l key em : E′′

lvl(E′′) = l

senc(ek, em) →∆φ′∗ senc(vk, vm) →∆φ′∗ v′, where ek →∆φ′∗ vk and em →∆φ′∗ vm.
By the induction hypothesis, Γ � vk : l key and Γ � vm : E′′. If vk and vm are
both non-junk values, then v′ ≡ senc(vk, vm) and the the result follows from
T-SEnc. Otherwise, vk ≡ junk(uk) and/or vm ≡ junk(um), therefore v′ ≡
junk(senc(uk, um)) and the result follows from T-Junk and T-SEnc.

• Case T-SDec: e : E′ ≡ sdec(ek, em) :E′ ek : l key em : enc(E′)
sdec(ek, em) →∆φ′∗ sdec(vk, vm) →∆φ′∗ v′ where ek →∆φ′∗ vk and em →∆φ′∗ vm.
By the induction hypothesis, Γ � vk : l key and Γ � vm : enc(E′), and by
Lemma 2, vk is of the form n or junk(n), and vm is of the form senc(uk, um)
or junk(senc(uk, um)). In both cases for vm, it follows from Lemma 1 that
Γ � um : E′′, where E′′ <: E′. By inspection of the evaluation rules, v′ will
be of the form um or junk(um). In the first case, we can apply T-Sub to
Γ � um : E′′ and E′′<: E′ to conclude that Γ � um : E′; in the second case, the
result follows from T-Sub and T-Junk. ��

5 Indistinguishability

Our type system is intended for analysing systems with ciphers that are repeti-
tion concealing and which-key concealing — also known as type-1 ciphers ([10],
Sec. 4.2). Repetition concealing means that it is not possible to say whether two
messages encrypted under the same key are equal. Which-key concealing means
that it is not possible to say whether two keys used to encrypt the same message
are equal. Both of these properties are possessed by standard block ciphers, such
as DES and AES, when used in CBC or CTR mode ([10], Sec. 4.4). However,
these definitions assume that the adversary is unable to correctly decrypt the
ciphertexts. This is not strictly the case with security APIs: the API functions
can be used to decrypt ciphertexts whose contents are public, whilst keeping the
actual values of the keys secret. As a result, we have to capture the ability of the
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adversary to distinguish between ciphertexts which contain public data, under
certain circumstances.

We use the notation Γ � v1 ∼l v2 : E to denote that the values v1 and v2 both
have type E and are indistinguishable at the security level l, and the notation
Γ � φ∼l φ

′ to denote that the stores φ and φ′ are indistinguishable at the security
level l. In both cases, l denotes the maximum security level associated with the
locations that an observer can read directly.

Definition 3. We define the indistinguishability of two values, v1 and v2, with
respect to a typing environment Γ and observation level l, denoted
Γ � v1 ∼l v2 : E, as the least symmetric relation closed under the following rules,
where Γ � v1,v2 : E:

• Γ � n1 ∼l n2 : l′ data iff ( l ≥ l′) → (n1 = n2)
• Γ � n1 ∼l n2 : l′ key iff ( l ≥ l′) → (n1 = n2)
• Γ � senc(uk,um)∼l senc(u′

k, u
′
m) : enc(E) iff (Γ � um ∼l u

′
m : E) ∧

(Γ � junk(um)∼l u
′
m : E ∨ Γ � uk ∼l u

′
k: lvl(E) key)

• Γ � junk(u)∼l junk(u′) :E
• Γ � junk(n)∼l n

′ : l′ data iff ( l < l′)
• Γ � junk(n)∼l n

′ : l′ key iff ( l < l′)
• Γ � junk(senc(uk,um))∼l senc(u′

k, u
′
m) : enc(E) iff Γ � junk(um)∼l u

′
m :E

If a value has a type which permits it to be observed by the adversary, we
must assume that this will eventually occur. It then follows that unencrypted
data items which can be observed must be equal for them to be considered
indistinguishable. Keys will be distinguishable if the output from their use is
distinguishable. That is, by encrypting a known value with each key, decrypting
each ciphertext with both keys, then comparing the final results to the original
input: if any of the outputs are distinguishable from the input, then the two keys
cannot be the same, and are thus distinguishable.

Ciphertexts are indistinguishable if their messages are indistinguishable, and
the keys must also be indistinguishable if the observer could otherwise determine
when one of the ciphertexts has been incorrectly decrypted. That is, if the keys
have a type which allows them to encrypt observable data, then we must assume
that the adversary is able to correctly decrypt each ciphertext, and can thus
determine whether or not the required keys are the same whenever he can predict
the correct output. It follows from the definition that keys which operate on non-
observable data are indistinguishable.

Two junk values are indistinguishable, since they are both essentially just
random bit-strings. For this reason also, junk names are distinguishable from
observable non-junk names. Junk ciphertext is indistinguishable from non-junk
ciphertext if the results of decrypting each one cannot be distinguished.

Definition 4. We define the indistinguishability of two stores, φ1 and φ2, with
respect to a typing environment Γ and observation level l, denoted Γ � φ1 ∼l φ2,
as the least relation closed under the following rules:
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• Γ � ε∼l ε

• Γ � (φ, a �→ v)∼l (φ′, a �→ v′) iff Γ � φ∼l φ
′, Γ � v, v′ : E and Γ � v ∼l v

′ : E

This definition states that two stores are indistinguishable if their domains are
equal, and the values stored in equivalent locations are indistinguishable.

6 Non-interference

Informally, non-interference states that changes to non-observable inputs should
have no effect on observable outputs. For expressions, this means that given
two indistinguishable stores (which differ in the contents of at least one non-
observable location), the final values obtained by fully evaluating the same ex-
pression with respect to those stores should be indistinguishable. For command
sequences, this means that given two indistinguishable stores (which again differ
in the contents of at least one non-observable location), the stores which result
from fully evaluating the same command sequence with respect to those stores
should also be indistinguishable.

Theorem 3. Non-Interference

i) If (Γ, a : E loc) � e :E ′, Γ � v1, v2 :E and Γ � ∆,φ1,φ2, such that
Γ � v1 ∼l v2 : E and Γ � φ1 ∼l φ2, then it follows from e →∆φ′

1

∗ v′1 and
e →∆φ′

2

∗ v′2 that Γ � v′1 ∼l v′2 : E ′, where φ′
i ≡ φi[a �→vi].

ii) If (Γ, a : E loc) � c : C, Γ � v1, v2 :E and Γ � ∆,φ1,φ2, such that
Γ � v1 ∼l v2 : E and Γ � φ1 ∼l φ2, then it follows from 〈c, φ′

1〉 →∆
∗ 〈ε, φ′′

1〉
and 〈c, φ′

2〉 →∆
∗ 〈ε,φ′′

2 〉 that Γ � φ′′
1 ∼l φ

′′
2 , where φ′

i ≡ φi[a �→vi].

Proof. By induction on (Γ, a : E loc) � e : E′ and (Γ, a : E loc) � c : C:(selected cases
only)

• Case T-Deref: e : E′ ≡ !a′ : E′ a′ :E′ loc

!a′ →∆φ′
i
φ′

i(a
′). If a′ = a, then v′i = vi and E′ ≡ E, thus the result follows

from Γ � v1 ∼l v2 : E. If a′ �= a, the result follows from Γ � φ1 ∼l φ2.

• Case T-SEnc: e : E′ ≡ senc(ek, em) : enc(E′′) ek : l′ key em : E′′

lvl(E′′) = l′

senc(ek, em) →∆φ′
1

∗ senc(vk, vm) →∆φ′
1

∗ v′1 where ek →∆φ′
1

∗ vk and em →∆φ′
1

∗ vm.
senc(ek, em) →∆φ′

2
∗ senc(v′k, v′m) →∆φ′

2
∗ v′2 where ek →∆φ′

2
∗ v′k and em →∆φ′

2
∗ v′m.

It follows from Lemma 3 that Γ � vk, v′k : l′ key and Γ � vm, v′m : E′′, by
Lemma 2, vk ≡ n or junk(n), and v′k ≡ n′ or junk(n′), and by definition,
vm ≡ um or junk(um), and v′m ≡ u′

m or junk(u′
m). If vk ≡ n and vm ≡ um

then v′1 ≡ senc(n, um) [A]; if vk ≡ junk(n) and vm ≡ um then, by E-SEnc4,
v′1 ≡ junk(senc(n, um)) [B]; if vk ≡ n and vm ≡ junk(um) then, by E-SEnc3,
v′1 ≡ junk(senc(n, um)) [C], and if vk ≡ junk(n) and vm ≡ junk(um) then, by
E-SEnc4, E-Junk1, E-SEnc3 and E-Junk2, v′1 ≡ junk(senc(n, um)) [D].
The equivalent outcomes for v′2 are denoted by [E] through [H]. There are
16 cases for Γ � v′1 ∼l v

′
2 : E′ which we need to consider (resulting from the

cross product of [A,B,C,D] and [E,F,G,H]):
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• Subcase [A]×[E]: Γ � senc(n, um)∼l senc(n′, u′
m) : enc(E′′)

By the induction hypothesis, Γ � n∼l n
′ : l′ key and Γ � um ∼l u

′
m : E′′,

and since lvl(E′′) = l′, the result follows immediately from Def. 3.
• Subcase [A]×[F]: Γ � senc(n, um)∼l junk(senc(n′, u′

m)) : enc(E′′)
By the induction hypothesis, Γ � n∼l junk(n′) : l′ key thus, by Def. 3, l < l′.
Γ � senc(n,um)∼l junk(senc(n′, u′

m)) : enc(E′′) iff Γ � um ∼l junk(u′
m) : E′′

and this holds when l < lvl(E′′). The result then follows from lvl(E′′) = l′

and l < l′.
• Subcases [A]×[G,H]: Γ � senc(n, um)∼l junk(senc(u′

k, u′
m)) : enc(E′′)

By the induction hypothesis, Γ � um ∼l junk(u′
m) : E′′, thus the result fol-

lows immediately from Def. 3.
• Subcases[B,C,D]×[F,G,H]:Γ � junk(senc(n, um))∼l junk(senc(n′, u′

m)) : enc(E′′)
The result follows immediately from Def. 3.

Subcase [B]×[E] is similar to subcase [A]×[F] and subcases [C,D]×[E] are
similar to subcases [A]×[G,H].

• Case T-SDec: e : E′ ≡ sdec(ek, em) : E′ ek : l′ key em : enc(E′)
lvl(E′) = l′

sdec(ek, em) →∆φ′
1

∗ sdec(vk, vm) →∆φ′
1

∗ v′1, where ek →∆φ′
1

∗ vk and em →∆φ′
1

∗ vm.
sdec(ek, em) →∆φ′

2
∗ sdec(v′k, v′m) →∆φ′

2
∗ v′2, where ek →∆φ′

2
∗ v′k and em →∆φ′

2
∗ v′m.

It follows from Lemma 3 that Γ � vk, v′k : l′ key and Γ � vm, v′m : enc(E′), and
by Lemma 2, vk ≡ n or junk(n), v′k ≡ n′ or junk(n′), vm ≡ senc(ua, ub) or
junk(senc(ua, ub)), and v′m ≡ senc(u′

a, u
′
b) or junk(senc(u′

a, u′
b)). If vk ≡ n

and vm ≡ senc(n, ub) then, by E-SDec3, v′1 = ub [A]; if vk ≡ n and vm ≡
senc(ua, ub) where ua �= n then, by E-SDec4, v′1 = junk(ub) [B]; if vk ≡
junk(n) and vm ≡ senc(ua, ub) then, by E-SDec5, v′1 = junk(ub) [C]; if vk ≡
n and vm ≡ junk(senc(ua, ub)) then, by E-SDec6, v′1 = junk(ub) [D], and
if vk ≡ junk(n) and vm ≡ junk(senc(ua, ub)) then, by E-SDec6, E-Junk1,
E-SDec5 and E-Junk2, v′1 = junk(ub) [E]. The equivalent outcomes for v′2
are denoted by [F] through [J]. There are 25 subcases for Γ � v′1 ∼l v

′
2 : E′

which we need to consider (resulting from the cross product of [A,B,C,D,E]
and [F,G,H,I,J]):

• Subcase [A]×[F]: Γ � ub ∼l u
′
b : E′

By the induction hypothesis, Γ � senc(n,ub)∼l senc(n′, u′
b) : enc(E′), there-

fore it follows from Def. 3 that Γ � ub ∼l u
′
b : E′.

• Subcase [A]×[G]: Γ � ub ∼l junk(u′
b) : E′

Bythe inductionhypothesis,wehaveΓ � senc(n, ub)∼lsenc(u′
a, u′

b) : enc(E′)
and Γ � n∼l n

′: l′ key. By Def. 3, it follows from the second of these that
l < l′ or n = n′. From the first one, it follows that Γ � ub ∼l u

′
b : E′ as well

as either Γ � n∼l u
′
a : lvl(E′) key or Γ � ub ∼l junk(u′

b) : E′. In the latter
case, the result is immediate. In the former case, it follows from Def. 3
that l < lvl(E′) or n = u′

a. However, since lvl(E′) = l′, it must be the case
that l < lvl(E′), otherwise we would have n = n′ = u′

a which is prevented



Towards a Type System for Security APIs 187

by the requirement for [G] which states that n′ �= u′
a. The result then

follows from Def. 3.
• Subcases [A]×[H,J]: Γ � ub ∼l junk(u′

b) : E′

By the induction hypothesis, Γ � n∼l junk(n′) : l′ key, therefore it follows
from Def. 3 that l < l′. Since l′ = lvl(E′), the result follows from Def. 3.

• Subcase [A]×[I]: Γ � ub ∼l junk(u′
b) : E′

By the induction hypothesis, Γ � senc(n,ub)∼l junk(senc(v′a, u′
b)) : enc(E′)

and so it follows from Def. 3 that Γ � ub ∼l junk(u′
b) : E′.

• Subcases [B,C,D,E]×[G,H,I,J]: Γ � junk(ub)∼l junk(u′
b) : E′

The result follows immediately from Def. 3.
Subcase [B]×[F] is similar to subcase [A]×[G]; subcases [C,E]×[F] are similar
to subcases [A]×[H,J], and subcase [D]×[F] is similar to subcase [A]×[I].

• Case T-Assign: c : C ≡ a′ := e : cmd a′ : E loc e : E
〈a′ := e,φ′

1〉 →∆
∗ 〈ε, φ′

1[a
′ �→ v]〉 where e→∆φ′

1
∗ v, and 〈a′ := e,φ′

2〉 →∆
∗

〈ε, φ′
2[a

′ �→ v′]〉 where e→∆φ′
2

∗ v′. By the induction hypothesis for part (i),
Γ � v∼l v

′ : E and thus, in conjunction with Γ � φ′
1 ∼l φ

′
2 and Γ � v1 ∼l v2 : Γ,

the result follows from Def. 4.

• Case T-Cmds: c : C ≡ c1 ; c2 : cmd c1 : cmd c2 : cmd

〈c1 ; c2, φ′
1〉 →∆

∗ 〈ε ; c2, φ′′′
1 〉 →∆ 〈c2,φ′′′

1 〉 →∆
∗ 〈ε, φ′′

1 〉 where 〈c1, φ′
1〉 →∆

∗ 〈ε,φ′′′
1 〉

and 〈c1 ; c2, φ′
2〉 →∆

∗ 〈ε ; c2, φ′′′
2 〉 →∆ 〈c2, φ′′′

2 〉 →∆
∗ 〈ε, φ′′

2 〉 where 〈c1, φ′
2〉 →∆

∗

〈ε, φ′′′
2 〉. The result then follows by two applications of the induction hypoth-

esis. ��
Theorem 3 guarantees that well-typed expressions and command sequences are
non-interferent. As an example, consider the following presentation of an API
function for encrypting low security data stored in msg loc with a key that is
itself encrypted (by a master key, km) and stored in a low security location,
ekey loc:2

km :� key, ekey loc : enc(⊥ key) loc,Γ =
{
key loc :⊥ key loc, msg loc :⊥ data loc, res loc : enc(⊥ data) loc

}

key loc := sdec(km, !ekey loc) ; res loc := senc(!key loc, !msg loc) : cmd

The non-interference theorem tells us that the above well-typed command se-
quence will not leak any information about the values of km and !key loc into
the low security locations.

7 Example: Wrap/Decrypt Attack

The wrap/decrypt attack ([11], Sec. 2.3) is one of the most basic attacks which a
key management API can be susceptible to. In short, a sensitive key is altered in
2 Recall that we treat all keys as high security values, and the security level associated

with a key’s type denotes the level of data that it may encrypt.
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[⇒ l = �] [⇒ E′ ≡ � key]

k1 :� key ∈ Γ k2 :� key ∈ Γ
[ Holds ]

[⇒ E ≡ enc(� key)]
Γ � k1 : l key Γ � k2 :E′ lvl(E′) = l

[ Holds ]

x : enc(� key) loc ∈ Γ Γ � senc(k1, k2) : enc(E′) enc(E′) <: E

Γ � x :E loc Γ � senc(k1, k2) :E

Γ � x := senc(k1, k2) : cmd

Fig. 5. Successful typing derivation for the wrap command

[⇒ E′ ≡ � key]
[⇒ l = �]

x : enc(� key) loc ∈ Γ

k1 :� key ∈ Γ Γ � x : enc(� key) loc
[ Holds ]

[⇒ E ≡ ⊥ data]
Γ � k1 : l key Γ � !x : enc(E′) lvl(E′) = l

⎡
⎣ Does

Not

Hold

⎤
⎦

y :⊥ data loc ∈ Γ Γ � sdec(k1, !x) :E′ E′ <: E

Γ � y :E loc Γ � sdec(k1, !x) :E

Γ � y := sdec(k1, !x) : cmd

Fig. 6. Failed typing derivation for the decrypt command

such a way as to be able to wrap (encrypt) other sensitive keys and also decrypt
public data. This typically involves altering the key’s ‘type’ so that it is accepted
by each of the two required API functions. Alternatively, two copies of the key
can be obtained such that each copy has one of the two necessary types. Both
of these requirements can be quite straightforward to achieve (e.g., as discussed
in [7]). The outcome is that a sensitive key can be discovered by first wrapping
it, then decrypting the result:

x := senc(k1, k2) . . .‘wrap’ k2 with k1

y := sdec(k1, !x ) . . . recover k2

Our type system can be applied to these commands as follows:

k1 :� key, k2 :� key, x := senc(k1, k2) : cmdΓ =
{
x : enc(� key) loc, y :⊥ data loc

}
y := sdec(k1, !x ) : cmd

Figure 5 shows the typing derivation for the wrap command, and Fig. 6 shows
the typing derivation for the decrypt command (unnecessary instances of the
T-Sub rule have been omitted in both cases).

The first command type-checks, since lvl(E′) = l and enc(E′) <: E both hold,
but the second command does not, since E′ <: E does not hold. The flaw
is that a sensitive piece of data is written to a public location — the failed
subtype condition indicates that the security level of the data is greater than
that of the location. Note that using the definition x : enc(⊥ data) loc instead of
x : enc(� key) loc in the above example makes the second command type-check,
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[⇒ l′′ = �] [⇒ E ≡ l key]

key :� key ∈ Γ wkey : enc(l key) ∈ Γ
[ Holds ]

[⇒ E′ ≡ l′ key]
Γ � key : l′′ key Γ � wkey : enc(E) lvl(E) = l′′

⎡
⎣ May

Not

Hold

⎤
⎦

res : l′ key loc ∈ Γ Γ � sdec(key ,wkey) : E E <: E′

Γ � res : E′ loc Γ � sdec(key ,wkey) : E′

Γ � res := sdec(key ,wkey) : cmd

Fig. 7. The unwrap command is only secure when l key <:l′ key (i.e., when l = l′)

but it prevents the first command from type-checking, since enc(E′) <: E no
longer holds.

The wrap/decrypt attack is one of a number of attacks which initially require
the type of a key to be altered, therefore our type system should be able to
identify when an API command may allow this to occur. One such command is
‘unwrap,’ which takes an existing key and ciphertext corresponding to a second
key encrypted under the first one, and then decrypts the ciphertext before storing
the result. Figure 7 shows that our type system is indeed able to identify that
the following instantiation of that command is insecure:

key :� key,Γ =
{
wkey : enc(l key), res : l′ key loc

}
res := sdec(key, wkey) : cmd

Since the security level associated with the type of a key restricts what that
key can be used to encrypt and decrypt, and the instantiation of the ‘unwrap’
command given above allows this level to be changed (i.e., when l �= l′), then it
is clearly insecure. This particular flaw can be prevented in practice by including
usage information for the key within the ciphertext, thereby making it possible
to carry out a check which is equivalent to ensuring that l and l′ are equal.
However, it is then necessary to ensure that no API command allows this usage
information to be modified unintentionally.

8 Related Work

Vaughan and Zdancewic [12] give a security typed language in which valid pro-
grams are guaranteed to be non-interfering; a result which is achieved via a
combination of static and dynamic checks. However, they require that encrypted
messages adhere to a strict format which prevents their system from being used
to analyse many existing security APIs.

Laud [13] presents a weakened variant of non-interference termed ‘computa-
tional independence,’ using static analysis to track dependencies between
variables. Security is guaranteed when the public outputs are computationally
independent from all of the sensitive inputs. Encryption is probabilistic and
assumed to be secure with respect to a polynomially-bounded adversary. Key
cycles are permitted, as the rules will identify the resulting cyclic dependencies.
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Focardi and Centenaro [14] give a type system for enforcing non-interference
in multi-threaded distributed programs which share common memory locations.
They use confounders (unique values associated with each new ciphertext) as
an abstraction of probabilistic encryption, and give a definition of equivalence
for low security values based on the notion of patterns [10]. If the confounder is
uniquely determined by the message and key, then their definition of indistin-
guishability for ciphertexts is equivalent to the one given in this paper. Their
definition for memories is stronger than our one since we do not distinguish be-
tween copies of the same ciphertext and different ciphertexts created from the
same key and message (doing so is only necessary when considering condition-
als). However, because they deal with distributed systems where restrictions on
key usage cannot be enforced, they do not associate a secondary security level
with cryptographic keys which means that if a high security key is used to en-
crypt some low security data, the result of the subsequent decryption is forced
to be high.

Bengtson et al. [15] have developed an extended typechecker for F# code that
is annotated with refinement types. A refinement type includes a logical formula
which places restrictions upon the associated term. They consider an active
adversary and use a generalised version of the symbolic cryptography model.
The focus of their research is on authentication and authorisation properties for
security protocols, but the flexibility afforded by refinement types means that the
technique may be applicable to related domains such as security API analysis.
However, due to the different target domain, the underlying type system that
Bengtson et al. employ is quite different from the one which we give in this
paper.

9 Conclusions and Future Work

Using typing rules for analysing the security properties of cryptographic systems
is not new (e.g., [16]), but it is common for restrictions to be placed upon the
use of encryption and decryption, as well as on any keys involved. Consequently,
certain security APIs cannot be analysed using some of these existing systems.
For example, the IBM 4758 [3] has one internal master key that is used to encrypt
all other keys which are then stored on the attached host, therefore rule sets in
which the result of a decryption cannot be used as a key (e.g., [17]) are unable
to analyse the security API for that device.

In this paper, we have presented the foundations of a type system that is de-
signed to deal with common features of security APIs such as encrypted keys and
nested encryptions. We gave a definition of indistinguishability which captures
the potential for an adversary to determine that the keys used in two cipher-
texts are different, even though their actual values remain unknown. We then
proved that well-typed command sequences are non-interferent with respect to
this definition. We also proved the type-safety of our system meaning that the
type information can be ignored at run-time.

The next stage of our research is to extend our type system to include addi-
tional features present in Volpano, Smith and Irvine’s original type system [1]
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and Volpano and Smith’s extension [18] — specifically procedures, primitive op-
erations and conditional statements. This will allow us to analyse more accurate
representations of functions in widely used security APIs such as PKCS#11 [20].
Adding conditionals will require a modified definition of the indistinguishability
of stores, similar to the one given by Focardi and Centenaro [14]. It should be
noted that such a change will not affect our results for the indistinguishability
of expressions.

Further ahead, we plan to extend our type system to deal with data integrity,
since this is equally as important as data confidentiality for key management
APIs, as well as permitting explicit declassification thus allowing our system to
analyse an additional class of security APIs.
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