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Abstract. When a computer program requires legitimate access to confidential
data, the question arises whether such a program may illegally reveal sensitive in-
formation. This paper proposes a policy model to specify what information flow
is permitted in a computational system. The security definition, which is based on
a general notion of information lattices, allows various representations of infor-
mation to be used in the enforcement of secure information flow in determinis-
tic or nondeterministic systems. A flexible semantics-based analysis technique is
presented, which uses the input-output relational model induced by an attacker’s
observational power, to compute the information released by the computational
system. An illustrative attacker model demonstrates the use of the technique to
develop a termination-sensitive analysis. The technique allows the development
of various information flow analyses, parametrised by the attacker’s observational
power, which can be used to enforce what declassification policies.

1 Introduction

The problem of secure information flow arises when a computer program must be
granted legitimate access to confidential data. When such a program, which might have
access to a network or that might otherwise be able to transmit confidential information
to unauthorised observers, is executed, we want assurances that only the information
that we wish to reveal is released. An information flow policy expresses our security
concern about the information release that we consider as safe. This leads to the ques-
tion of how to specify what information release is safe. The traditional approach to the
specification of information release, or rather, the lack of it, is through the noninterfer-
ence requirement [7]]. Noninterference prevents any flow of secret information to public
areas in a multi-level security system, where information must not flow from high to
low. Thus, noninterference is very restrictive and its usefulness in general practice has
been argued [13]]. In practice, for example, during encryption, authentication, or statis-
tical analysis, we often want to release some level of information. This requires a more
general policy model by which we can specify what is the safe level of information to
be released. This paper proposes a lattice model to capture this property.

In [16]], a taxonomy of declassification mechanisms is introduced based on what,
where, when and by whom information is released. This paper is concerned about the
what dimension of information flow, where we want to express the property that the
information released by a system does not exceed certain allowed limits. Based on
this observation, a definition of security is given, which captures the idea that a given
information flow is safe.
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1.1 Contributions

This paper contributes to the theory of secure information flow through a systematic
study of lattices of information as a tool for the enforcement of what declassifica-
tion policies. Although lattice-based approaches are often used in language-based secu-
rity [[14], these lattices are usually of security classes in a multi-level security system,
rather than lattices of information. We demonstrate that various representations of in-
formation such as partial equivalence relations, families of sets, information-theoretic
characterisation, and closure operators fit into the lattice model of information, unify-
ing the various definitions under the lattice model. This means that the same partial
order-based enforcement technique can be applied to all the representations.

Another contribution to the theory is an input-output relation model, presented as
a primitive for the semantic analysis of information flow. A systematic approach to
deriving the relational model from the operational semantics, which is parametric to
a chosen attacker’s observational power, is presented. The relational model accounts
well for information flow due to nontermination, and the specific termination-sensitive
analysis presented demonstrates the correct analysis of diverging programs by using the
relational model.

1.2 Plan of the Paper

In Section 2] the lattice model of information is motivated, and a security definition is
given which uses the lattice model to enforce what declassification policies. Section
introduces the relational model primitive as a tool for studying information flow in mod-
els of deterministic or nondeterministic systems. Section 4] uses the relational model
to develop a representation of information, based on PERSs, for the analysis of deter-
ministic system models. A language-based analysis technique is presented for While
programs with outputs to illustrate how to derive the relational model under a given
attacker model in a language-based setting. Similarly to Section[] Section[3applies the
relational model technique to develop a representation of information, based on fami-
lies of sets, which captures the information that the attacker may gain when the system
can be run repeatedly under fixed inputs. An extension of the While language with a
nondeterministic construct shows the use of this information representation for infor-
mation flow analysis in a nondeterministic language setting. We compare our approach
with related works in Section[l Section [7] concludes the paper.

2 Secure Information Flow

The concept of secure information flow suggests an understanding of the notions of
information and information flow. A fundamental property of information is the intu-
itive notion of information levels, where we say that one piece of information is greater
or more informative than another. This suggests an ordering of information, which we
shall exploit in our information model and security definition. For this reason we shall
model information as lattices, where the associated partial order captures the notion of
information levels.
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Definition 1 (Information and Information Flow). We define information as elements
of a complete lattice (I,c), where the associated partial order © models the relative
degree of informativeness of the elements of I, and the join operation U models the
combination of information.

Information flow with respect to the lattice I is defined as an extensive and mono-
tone self map on I. Define Flows = {f : T — I | f is extensive and monotone} to be the
set of all information flows on L.

The lattice join operation, which models information combination, is idempotent, com-
mutative, and associative. These properties agree with natural intuitions about informa-
tion, since idempotency says that the combination of a piece of information with itself
should yield the same information [[10]]. Similarly, the commutativity and associativity
properties respectively agree with the intuitions that the order and grouping of infor-
mation combination should not matter to the end result. Furthermore, for any s, s’ € Z,
the lattice property, s £ s’ iff s U s’ = §’, agrees with the idea that the combination of
a lesser information with a greater one yields the greater information - where s £ s’ is
interpreted to mean that the information s is less than or at most equal to s’.

The notion of information flow models how the knowledge of an attacker changes
due to information release. For any initial knowledge s € 7 that the attacker might
have, f(s) represents the final knowledge of the attacker due to the information flow
f € Flows that the attacker receives. The extensivity property of f (thatis, Vs e Z,s &
f(s)) intuitively means that an attacker’s knowledge may only increase by gaining
information, and the monotonicity (that is, Vs,s" € Z,s £ s = f(s) £ f(s'))
means that the greater the initial knowledge of the attacker before information release
the greater the knowledge afterwards.

Using this ordered structure of information, we can now define what it means for
a system to have secure information flow with respect to what information the system
releases and a given information flow policyﬂ.

Definition 2 (What Policies and Security). Given the lattice (I, E) of information and
the set Flows of information flows over this lattice. An information flow policy & with
respect to the lattice I is a subset of Flows which specifies the permitted information
Sflows. An information flow f € Flows is said to be permitted or allowed by a policy
P c Flows iff there exists a flow function [’ € &2 such that f € f'.

Let P be a program, modelling a system. Furthermore, let [P]* < Flows be the
information flow property of the system modelled by P, which describes the information
flows caused by this system. The system satisfies, and is said to be secure with respect
to a policy 2 < Flows iff for all f € [P]* there exists ' € & such that f c f'.

The order f = f’ between flow functions is the usual pointwise ordering of functions
induced by the partial order € on the lattice Z. This partial order regulates the level of
information that we allow a system to release. Intuitively, this definition says that the
program P (or the system it models) is secure (with respect to the policy &) only if
every flow f € [ P]? that is caused by the system is permitted by the policy (3f’ € &
such that f £ f). This extensional view of policy enforcement abstractly describes, in
terms of the information lattice order, what information flows are permitted in the system.

! We shall sometimes refer to an information flow policy simply as policy or security policy.
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Since Z is a complete lattice, it is easy to show that Flows also forms a complete
lattice under the pointwise function ordering. In particular, the noninterference policy,
which prevents any flow of information to the attacker may be modelled by the identity
map (idz) on the lattice Z. This means that a system that satisfies the noninterference
policy {idz } has the information flow property that regardless of the attacker’s previous
level of knowledge, the final knowledge remains unchanged and the attacker is unable
to benefit information by observing this noninterfering system. The baseline nature of
the noninterference policy model {id7} is established by the fact that idz is the least
element of the lattice Flows of information flows. However, it is clear that other less
restrictive policies than {id7} may be specified. Let us examine some example policy
patterns under the lattice model of information flow.

2.1 Information Flow Policy Patterns

We examine in this section, policy patterns, other than the noninterference pattern,
which allow deliberate, but controlled, release of information.

We may wish to have partial (but unconditional) release of information s’ € Z but not
more in a system. The required information flow property is captured by the policy & =
{fIVs €T, f(s) = s'us}, which allows the attacker to combine its knowledge s with the
declassified information s’, but the attacker may not learn more than this by observing
the system which is secure with respect to 2. An example of this scenario arises during
password authentication, where we wish to release (unconditionally) the information
about the equality or not of the stored password and the user-supplied password.

Another scheme is the conditional release pattern, where information (s’) is released
based on having some initial knowledge (s’). This is modelled by the policy { f } where
VseZ, f(s)=s"usifs”cs,and f(s) = s otherwise. Under this scheme, the attacker
gains some information on the condition that the attacker has at least a given initial
information s”. A scenario where such a policy is needed is during decryption in a
symmetric key system, where the plaintext may be learnt (the knowledge s) only when
the decryption key is known (the knowledge s”).

Another pattern, called disjunctive flow policy - after the disjunctive flow pattern
of [16),is {f, f'| f £ f', f' & f} € Flows. This policy permits at most one of f or f’ to
be released but not both at the same time. It is clear that the notion of disjunctive infor-
mation flow is only meaningful for incomparable information and information flows,
because whenever two information are comparable then the greater already contains
the lesser information. An information flow f”’ € Flows is permitted by the disjunctive
policy {f, f'| f¢ f',f ¢ f}, when f” is smaller than or equal to at most one of f and
f' - since f and f’ are incomparable. Also, a flow " 2 f u f’, which contains both f
and f’ is not permitted since there is no such f1 € {f, f'| f & f',f" ¢ f} for which
fe fi.

In Definition2] we defined the security property of a system, with respect to a policy,
in terms of the system’s information flow property. In the next section we shall show a
way to derive the information flow property of a system from a relation which describes
how the system transforms its inputs to publicly observable outputs.
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3 The Relational System Model

The question that we want to answer is whether a system that processes confidential data
is secure with respect to a given security policy. So, using a suitable representation of
information, we want to check whether the information released conforms to our policy
requirement. The particular choice of representation of information may depend on the
model of the system being analysed or the kind of information that we are interested in
modelling. In this paper we shall consider information flow analysis under deterministic
and nondeterministic system models using qualitative representations of information
and show that the representations fit into the lattice model of information. We note that it
is possible to consider quantitative representations of information, such as entropy and
other information-theoretic measures, under the lattice model of information because
the measures, which are numbers, are naturally ordered.

We shall model a computational system, by an input-output relation: S ¢ ¥ x V),
where the system accepts inputs taken from the set 3 and produces public outputs
(with respect to an attacker model) in the set ). The relation S models what the attacker
observes given the supplied input. Depending on the attacker model, the system model
may be deterministic, in which case S is a function. More generally, however, the model
S of the system is said to be nondeterministic (with respect to the attacker’s view) when
the attacker’s observation is not necessarily unique for a given input. In the sequel, we
shall sometimes refer to the system modelled by the relation S simply as “system S”.

Definition 3 (The Relational Model). The input-output relational model of a system
is defined as a relation S € 3 x V, over the set 33 of the system’s inputs and the set V
of observable outputs, where for all input o € 3 and possible output v € V, o S v holds
iff the system can produce the output v when supplied with the input o.

The inverse image of the relation S at v € V' is denoted by S~!(v) 2 {0 € | o S v}.
When the relational model f is a function, we write f : 3 -V and for any o € X, f(0)
stands for the unique output observed when the input o is supplied. We refer to f as the
Sfunctional model of the system.

4 Analysis for Deterministic System Models

We shall use Partial Equivalence Relations] (PERs) as a qualitative representation of
information for the deterministic system model. We start by motivating the use of PERs
for information representation in this setting. Since the deterministic system model
is a (total) function g: X — V), where for any input ¢ € 3 supplied to the system,
the attacker observes g(o) € V, the knowledge gained by the attacker can be de-
scribed by the ability to distinguish which inputs might have been supplied based on
the observed output. Thus, given the observed output v € V of the system, the attacker
knows that the input to the system has been taken from the set g~'(v) ¢ 3. However,
based on this observation the attacker cannot distinguish between the inputs o and o’

2 A partial equivalence relation is a symmetric and fransitive binary relation. If in addition the
relation is also reflexive, then it is an equivalence relation.
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if 0,0" € g7'(v). More generally, we can model all the input pairs that the attacker
cannot distinguish by the kernel k4 of g, which is the equivalence relation given by
Vo,0' € 3,0 kg0' < g(o) = g(o'). Thus, k4 describes the information (or more
directly, the ignorance) of the attacker based on the indistinguishability of input pairs
after observing the system’s outputs. An input pair is distinguishable by the attacker if
the pair is not related by the equivalence relation .

We can generalise this idea a bit further from equivalence relations to PERs to obtain
certain expressive powers. Similarly to equivalence relations, we say that a PER can-
not distinguish a pair if the pair is related by that PER, but any value that is not in the
domain of definition of the PER is considered as not possible and therefore distinguish-
able. For example, we can represent the knowledge of parity of an integer secret via
the equivalence relation Par defined as Vn,m € Z,n Parm iff n mod 2 = m mod 2,
which distinguishes a pair of integers with different parity. However, the PER Par+ over
integers, defined as Vn,m € Z,n (Par+) m iff n Par m and n,m > 0, represents the
knowledge of parity and sign - since it only relates natural numbers (negative integers
are not possible). The use of equivalence relations, and PERs in general, to describe the
security property of programs is not new [[11/15]. In this paper we are interested in the
lattice properties for the enforcement of secure information flow.

Definition 4. Let 3 be a set. Define PER(X) to be the set of all PERs over the set
and define the information order relation € on PERs such that for any R, R’ € PER(X),
R c R iff for all 0,6’ € X, 0 R’ o' implies o R o'. The associated information
combination, or join operation U, on PER(X) is defined as 0 (Ru R") ¢’ iff o R o’
and o R' o'. More generally, for any subset R ¢ PER(X) let the join of R be the PER
LR, defined for all o,0" €e X aso [URc' iff VReR, 0 Ro'.

We know from the definition of E that R = R’ means that R’ can distinguish whatever
R can, and thus R’ contains more information than R. For example, Par £ Par+ agrees
with the intuition of the relative information content of these two PERs. The ordering
of PERs by their information content forms a complete lattice of information.

Theorem 1. The partially ordered set (PER(X),c,U) is a complete lattice.

Definition 5 (Deterministic Information flow). Let Z = PER(X) be the lattice of in-
Sformation for a system S whose relational model is given by a function gg: 3 — V.
The information flow property of this system may be defined as [S]* = {f | VR €
PER(X), f(R) = RU kg }, where kg is the kernel of the function gg.

4.1 Language-Based Analysis

In this section, we shall demonstrate the application of the analysis approach presented
above in a language-based setting. We shall use the core deterministic imperative While
language of Fig. [Tl which has outputs, as our basis. The language is similar to the
language of [[8], and its operational semantics is fairly standard.

While expressions may be boolean-valued (with values taken from B 2 {tt,ff}),
or integer-valued (taken from Z). Program states, are maps from variables to values.
The evaluation of the expression e at the state o is summarised as o(e). Expression
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c:=skip|z:==e|writee|c;c|if (b) thencelsec|while (b)doc

Fig. 1. The While Language

evaluations are performed atomically and have no side-effect on state. Program ac-
tions, ranged over by a, can either be internal €, which is not observable ordinarily, or
output (via a write command), where the expression value can be observed. The opera-
tional semantics is presented via transition relations between expression configurations
((e,0) —> (o(e),0)) and command configurations ({c, o) — (¢/,c")). A special, ter-
minal command configuration (-, o) indicates the termination of a command in state o.
The operational semantics is shown in Fig.

(skip, o) = (-,o) (z=e,0) = (,olz~o(e)]) (writee,o) 7() {(-,0)

(Cl,()') o ('70’) (Clvg) o (cllval)

(c1302,0) = (c2,07)  (c1jc2,0) — (c};c2,07)

(b70) — (tt70) (61,0') — (Cll»o—’) (b70) — (ff,o') (6270) - (CIZ»O—’)

(if (b) thenc elseco,0) — (¢},0’) (if (b) thenc; elseca,0) — (c},0")

(b,o) = (ff,0) (b,o) = (tt,0) (c,0) = (',0")
(while (b) doc,o) —> (-,0) (while (b) do¢,0) — (¢/;while (b) doc,o’)

Fig. 2. Operational Semantics of While

4.2 The Attacker’s Observational Power

Let 3 be the set of all states of a program P. The trace of P, starting from the state
o € X, is denoted by t(p ,) = (P, 0) 2% (Py,01) =25 -, according to the operational
semantics. A trace of P at the state o is said to terminate if there is a natural num-
ber n such that t(p,) = (P,0) 20 23 (- 67), otherwise, the trace is said to be
nonterminating and P diverges at 0.

We introduce the notion of an attacker’s observational power (obs) as a map from
program traces to what the attacker observes. The relative powers of two attackers A
and A’, modelled respectively by the observational powers obs and obsas, may be
compared under the proposed model, where we say that the attacker A" is more powerful
than the attacker A if there exists a function f such that obss = f o obsa,. A more
powerful attacker will gain at least as much information as a less powerful attacker.
In this paper we shall consider an attacker model, whose observational power is the
function obs(-), which is able to observe only outputs generated by write statements
and is also able to observe the termination or not of a program. The latter assumption
about the attacker appears to be strong, and is usually not modelled in language-based
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security. However, given the source code of a program, an attacker may be able to
determine when a given program trace will not terminate without actually observing
it. Modelling the ability to “observe” nontermination is also important as it may be
possible to leak arbitrary amount of information via nontermination channels [2]].

Definition 6 (The Semantlc Attacker). Let 3 be the set of all states of a While pro-
gram P and let = be the reﬂexzve transmve closure of the transition relation =
Furthermore, let t(p s = (P, 0) =, (P 0"y 25 (Py,oy) =, (Plo}) 2 . bea
canonical representation of the trace of P at o € 3, where for all i, a; # €. Deﬁne the
semantic attacker’s observation of this trace as

obs(t(p.oy) = (a1,ag,-,1) if P divergesat o
e (a1,ag,-+, 1) otherwise.

The set of all possible observations that the attacker can make is given by V =
{obs(t(p,s)) | 0 € B}. The functional model induced by this attacker’s observational
power is thus given by gp : X —V, defined as gp(c) = obs(t(p,,)) which maps the
supplied input to the observed output of P under the attacker model.

The information gained by the semantic attacker from P is thus given by the equiv-
alence relation | Tp | over states, defined such that for any pair of states 0,0’ € 3,

o |Tp| o iff obs(t(p,s)) = 0bs(t(p,4+)) - the kernel of gp. The information flow prop-
erty of P, over the lattice T = PER(X) may therefore be defined as [P]* = {f | VR €
PER(X), f(R) = Ru[Tp]}.

The definition of obs(-) formalises the idea that the semantic attacker cannot observe
-, transitions. For nonterminating traces, the token 1 is introduced which, in addition
to the sequence of output tokens observed on the trace, signals the divergence of the
program. Similarly, the token | identifies a terminating trace. Although the operational
semantics definition does not have a direct notion of nontermination, obs(+) can account
for it since it is defined over the trace.

To illustrate the definition’s termination properties, let loop = while (tt) do skip,
and consider the programs P; =i f (h) then skip else loop and P =writeh;loop.
Both P; and P, insecurely reveal the boolean secret h. The analysis shows this because
|Tp, | = | Tp, | is the identity equivalence relation on h. As the analysis of P, demon-
strates, we can easily show that by appending a trailing loop to any program P that
always terminates, as in P’ = P;loop, the information released is the same because
|Tp| = | Tp:|. However, the analysis of P3 = loop;write h shows that Pj is safe be-
cause, as the semantics shows: (Ps, 0) —> - —> (P3,0) —> ---, the trailing write h
is never executed, and hence | Tp, | relates all states, revealing no information.

In the next section we shall demonstrate the use of what policies for the enforcement
of secure information flow in While programs.

4.3 Policies For Encryption

Encryption is an important security primitive which is used widely as a security foun-
dation in many systems. However, in order to protect the secrecy of sensitive data used
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during encryption, we require policies that permit encryption to be used safely. Nonin-
terference policies cannot be used for encryption since the resulting (public) cyphertext
in an encryption scheme will depend on the supplied plaintext and key which are con-
sidered secret. Thus, there remains the problem of the specification of policies that
allow safe use of encryption in programs. We demonstrate in this section how our ap-
proach can be used to specify and enforce policies that allow encryption to be used
safely.

We start by considering an encryption function £; : K x M — C, which accepts a
key chosen from the set K of keys and message or plaintext chosen from the set M,
and produces a cyphertext in the set C. Now suppose that £; is considered secure and
that its implementation, which we shall denote by the expression enc(k,m), is cor-
rect, so that under any state o(enc(k,m)) = E1(o(k),o(m)). Therefore, we allow
the attacker to observe the cyphertext enc(k,m) for any choice k € K of key and
plaintext m € M values. Hence, we can define an equivalence relation | £; | which cap-
tures this intentional information release, where | £ | relates every pair of states o and
o', where & (o(k),0(m)) = &1 (0’ (k),o'(m)). The resulting information flow policy
Pe, ={f| R e PER(X), f(R) = Ru|&:1 |} allows the attacker to observe the cipher-
text generated by a correct implementation of the encryption function. Firstly, since the
implementation enc is secure, it satisfies the policy P, .

Now consider a secure (and insecure) data backup scenario (adapted from [1]) as
shown in the program listings of Fig. 3l The LHS program P, securely releases the
encrypted data (ctxt) to a public output channel after encrypting the data (data) with
the key (k). However, the RHS implementation P, is insecure because the program-
mer releases the plaintext data instead of the ciphertext. The analysis detects that the
RHS program violates the policy because |Tp, | & |£1] as required by P¢, - unless
the encryption function by definition reveals the encrypted data, which violates initial
assumption that it is secure. Thus, the analysis detects this flaw. This would be useful,
for example, to a programmer who can avoid such programming error by checking his
or her implementation against the desired policy.

The reason why the noninterference policy cannot be used for encryption lies in the
fact that noninterference prohibits any sort of variation in the observed output from
being induced by a variation in the secret input to the encryption function. However,
one of the reasons why encryption is widely used as a security primitive is the fact that
the security lies in the ability to protect secret data even when the encryption function
is known. Thus, a good encryption function is already designed so that it is not easily
invertible into its constituent arguments, although a variation in its input would cause
a variation in its output for the function to be useful. The safe input-to-output varia-
tion caused by the definition of the encryption function is captured by the equivalence
relation | &1 | in the example above, which allows only the output variations due to the
definition of the encryption function to be observed by the attacker.

ctxt : = enc(k, data); ctxt : = enc(k, data);
write cixt; write data;

Fig. 3. Secure versus Insecure Data Backup
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Nondeterministic Encryption. In nondeterministic encryption, such as cipher-block
chaining encryption mode, an initialisation vector (iv) is used along with the key and
plaintext such that if a different 7v is used, a different ciphertext is generated under the
same key and plaintext pair. The term “nondeterministic” refers to the fact that the im-
plementation of such encryption algorithms generally have the property that encrypting
the same plaintext several times using the same key would yield different ciphertexts.
Let the function & : IV x K x M — C denote such an encryption scheme, where IV
is the set of initialisation vectors. We shall represent by the expression enc. (iv, k,m) a
correct implementation of £>. Similarly to the encryption policy above, we define | € |
as the equivalence relation which relates all states which evaluate enc. (iv, k,m) to the
same ciphertext, and the required declassification policy is similarly defined.

Now, a known problem with declassification schemes is that of occlusion [16], where
a legitimately declassified information masks the release of other secrets. Being a what
policy, our policy enforcement prevents such a flow by permitting only the informa-
tion release that is explicitly allowed by the policy. This problem is illustrated by the
program listing of Fig. d] (adapted from [[]]). Suppose that we have declassified the en-
cryption result, then revealing the content of /; and [5 through the write statements in
the program is permitted, however the value of the boolean secret i will be released ad-
ditionally by this program because the inequality of /; and [ will reveal the fact that the
then branch was executed. The analysis shows this. Let us call this program P, its analy-
sis | T'p | has the property that whenever it relates any two states o and o’ which disagree
on the observed ciphertexts, then they must both agree to a value o(h) = ¢'(h) = tt
of h - revealing h. Hence P violates the declassification policy (| Tp] % | €2]) because
| €2 ] requires, for example, that o[h ~ fF] must be indistinguishable from o, which
| Tp | distinguishes in this case.

Iy :=enc.(ivi, k,m);
if(h) then I3 :=enc.(iva, k,m); else Iz :=l1;
write [1; write [2;

Fig. 4. The Occlusion Problem

5 Analysis for Nondeterministic System Models

We now turn our attention to the security analyses of information flow under nonde-
terministic system models. We start by motivating the use of families of sets as a rep-
resentation of information in the nondeterministic setting, which generalises the PER
representation used earlier for the deterministic system model.

Consider a system, whose relational model is given by .S € 3 x }. We can describe
the information that the attacker gains on observing the output v € V of the system
by the inverse image of v under S. The inverse image S~'(v) of v represents the set
of all possible inputs that can produce the output v in the system modelled by S, and
thus describes the attacker’s uncertainty about the inputs given the observation of v. It
is thus easy to see that the family of sets {S™!(v) | v € V} models the uncertainties of
the attacker under the observation of individual outputs of the system modelled by S.
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In the special case that S models a deterministic system, in which case .S is a function,
it is clear that {S~!(v) | v € V} corresponds to the set of partitions of the kernel of
the function S, which uniquely identifies the equivalence relation over 3 used to de-
scribe the information released in the previous sections. In this sense, the family of sets
representation generalises the PER representation.

However, unlike the deterministic model presented earlier, where for any v,v" € V,
v # v implies S™'(v) n S71(v') = @, the inverse images are not necessarily dis-
joint under a nondeterministic model since the outputs resulting from any given in-
put may not necessarily be unique. This leads to an avenue of information release in
nondeterministic systems. The property that the nondeterministic system modelled by
S does not necessarily partition its domain introduces the possibility that an attacker
might gain further information by repeated execution of the system under a fixed in-
put. To illustrate this, suppose S € ¥ x V models a nondeterministic system, where
Y = {01,09,03} and V = {v1,v2} and where the graph of the relation S is given
by graph(S) = {(o1,v1), (02,v1), (02,v2), (03,v2) }. The model is nondeterministic
since the input o5 can produce outputs v; or vs. By observing an output v; the attacker
learns that the input must be one of ¢y and o, as suggested by S~ (v1) = {01, 02}.
Similarly, on observing the output v, the attacker learns that the input is in the set
S~ (vg) = {09, 03}. However, if under a fixed input the attacker observes outputs v;
and vy in different runs of the system, then the attacker confirms that the input to the
system must be o5 - derived by taking the intersection S~ (v1) N S™!(v2). This avenue
of information leakage is not available under the deterministic system model since for
a fixed input, the output of the system always remains the same. This leads us to a
definition of information based on families of sets.

Definition 7 (Lattice of Possibilistic Information). Let X¥'; = {X,; c X |j e J} bea

Sfamily of subsets of X indexed by a set J. Define the operation ((-)) on families of subsets

of Las (X)) 2 Uxcs{N XKk}, which closes the family under intersections. Define the

possibilistic information sef overX asFAM(X) 2 {{(Xy )Xy is a family of subsets of 3}
to be the information contained in families of sets over X. For any (X)), (X)) €

FAM(X) define the join operation as (X ;) u{( Xk )) = (X juk ) and define the partial

order E to be the subset ordering of families in FAM(X2).

The intuition behind the partial ordering ((X';)) £ {( X'k )) is that every information token
n {(X'7)) (which is derivable by taking the intersection of some elements of X';) is
also present in (( X'k )). This leads us to a description of information that can be derived
about the nondeterministic system modelled by S € xV as | S| £ ({S7'(v) |v e V})
which identifies the minimal sets of inputs that can produce a given output in the system.
Based on this, and choosing Z = FAM(X), we can define the possibilistic information
flow as
[SIE = {f|VF e AM(S), f(F) = FU[S]}.

The ordering of information content of elements of FAM(X) forms a complete lattice
of information.

Theorem 2. The family of sets (FAM(X),c,u) over X representing the set of possi-
bilistic information is a complete lattice.
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5.1 Language-Based Instantiation

We make a conservative extension to the While language, through the introduction of
a nondeterministic choice constructor || to obtain the language While-ND (While with
NonDeterminism) which exhibits nondeterministic behaviour. In While-ND, the pro-
gram ¢; || c2 makes an invisible but arbitrary choice in the execution either command ¢;
or command ce. Consequently, the operational semantics of While-ND extends that of
While as shown in Fig.

(61HCQ,U)—E><(31,O') (cll]@,a)i»(cz,a)

Fig. 5. Extending While with Possibilistic Nondeterminism

To deal with the fact that the trace of a While-ND program P is no more unique for a
given starting state, the observational power is extended to sets of traces so that obs™(-)
is the set of observations for a given starting state, obtained by applying obs(-) to all the
traces that can result from that state. This produces a relational model Sp of P, which
relates o to v iff there exists v € 0bs™ (¢(p ). The resulting possibilistic analysis is also
termination-sensitive.

Suppose the integer (secret) h is a parameter to the While-ND program given by
P = if (h=0)thenskip [ loop else skip. This program may either terminate
or loop indefinitely when the secret value & is chosen to be zero. Thus, it is easy to
see that the attacker may learn the value of h to be zero when the program fails to
terminate. The set of possible observation of P is given by Vp = {{}), (1)} where ({)
corresponds to the observation during the terminating traces and (1) corresponds to the
observation of the diverging trace. If we represent the set of program states as one-
tuples: {(n) | n € Z}, then the relational model of P is Sp € X x Vp, whose graph is
given by {((0),(1)),((n),{)) | n € Z}. Thus, we have the following inverse images:
SEH((1)) = {(0)}and S5'({1)) = =,and | Sp | = {{(0)}, =} reflecting the fact that the
attacker can learn when the secret value is zero. Now consider another program P4 =
if (h =0)then skip [ loop else loop. In this case, the observation of termination
reveals to the attacker that the value of the integer secret h is zero. The analysis is
similar to that of P, but now we have graph(Sp,) = {((0),{{)), ((n),(1))|n € Z} and
SEL((4)) = {(0)} and SF! ((1)) = . Thus, | Sp, | = {{(0)}, =}, and it is intuitive
P, releases the same information as P.

We can define a noninterference policy, which prevents any information from be-
ing gained about h in the examples above. This policy is given by Ps; = {f | VF €
FAM(X), f(F) = F'}, which is modelled by the identity map on the lattice FAM(X).
We see that both P and P4 above violate this policy. This is clear, for example, given
an initial knowledge {3} of the attacker representing lack of information, the attacker
learns {{(0)}, X} ¢ {3} through these programs.

Now consider the program Pg = if (h = 0) then skip [ loop else skip |
loop which may or may not terminate regardless of the chosen value of h. Intuitively,
this program should not reveal any information to the attacker as its behaviour is
independent of the choice of h. This is confirmed by the analysis because
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graph(Sp,) ={((n), (1)), ((n), (1)) [ € Z}. Thus, S5, ((1)) = Sp,, ({1)) = 3. This
means that | Sp,, | = {2}, showing the fact that the attacker learns nothing by observing
the execution of Pg. Thus, the program Pp satisfies the noninterference policy s
defined above.

Now suppose that P¢ is a While-ND program which always terminates. Similarly
to the analysis under deterministic programs, the information flow of P is preserved
in the program P’ £ Pg;loop. This is easy to see because there is set isomorphism
between the sets Vp, and Vp: of outputs of P and P’ respectively, which appends 1
to all {(a) € Vp, such that Vo € X, 0 Sp, (a) <= o Sp: (a,1) where Sp, € X x Vp,
and Sp: € X x Vp: are respectively the relational models of P and P’. Hence, we
have | Sp. | = | Spr|. Finally, let Pp be a While-ND program such that P’ = loop; Pp.
Like the deterministic analysis, this program reveals no information since for all o €
3., 0 Sp/(1) holds and hence | Sp: | = {X}.

5.2 Information-Theoretic Representation

We can perform information-theoretic analyses under the relational model S ¢ 3 x V
of a system by assigning probability distributions to the input space 3 to model the
attacker’s uncertainty about the choice of inputs, and by considering the probability
distribution of V induced by the execution of the system. Because of space restrictions,
specific information-theoretic analysis techniques are not shown in this paper. However,
we note that quantitative measures, such as Shannon’s entropy measure, which describe
the attacker’s uncertainty about the input distribution before and after observing pro-
gram outputs can be arranged on a lattice according to the order of the quantitative
amount of information that is released about the system inputs. This observation allows
us to use the lattice-based approach to enforce security under this setting, where the
amount of information that is permitted to be released about a given secret is captured
by the numerical order relation < on the quantitative information measure.

6 Related Work

This paper falls into the area of language-based security, which is an established and
active research area [14]. We have proposed a lattice-theoretic approach to the en-
forcement of what declassification policies [16l17]. Several approaches, such as in
[4U506L9UT 1115]], have been applied to study the what dimension of information release.
While these approaches study the properties of specific representation of information
used, we study the problem from a more general viewpoint of information as a lattice
structure which can be used to enforce what policies. The resulting lattice-based policy
model has been shown to be capable of handling controlled information release, such
as during encryption, and it does not suffer from the occlusion problem.

In [15], PERSs are used to describe the security properties of a program. Given a func-
tion f : A - B which is a Scott-style denotation of a program P (information flow due
to nontermination is handled by requiring that secret inputs do not affect the termination
behaviour), the security property of P is stated as a PER-transformer (f) : R4 — Rp,
where R4 € PER(A) and Rp € PER(B). The property (f) : R4 — Rp holds iff for all
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a,a’ € A,aRsa’ = f(a) Rp f(a’). Thus, (f]) : R4 — Rp may be interpreted as
a policy which P satisfies. If we assume that A = B = 3 = H x L represents the set
of all states of P, partitioned to the high-secret (H) and low-public (L) parts, then P is
said to be (noninterference) secure iff (f) : all @ id — all e id, where oy, is the projec-
tion of the state o to L and for all 0,0" € 3,0 all e id o' iff 7,1, = 0|, . The meaning
of (f]) : all e id — all e id is that the attacker which can only observe the public part of
state before P’s execution and on its termination cannot distinguish two runs which
agree on the initial L-input. This corresponds to an observational model under our ap-
proach, which for any initial input state o is given by obs_.(t(p»)) = (o4, f(0),1).
Consequently, the information released is characterised by the PER defined such that
o,0 €X, o lT(P7_>)J o' < obs_.(t(py)) = 0bs_.(t(p ). This definition computes
the least PER [T( p7_>)J, that is, the most refined policy for which P is secure under
the attacker model obs_, (-), because (f) : Reid — alleid == |Tip_,)| € Reid.
For any R e id that is strictly less than [T( pﬁ})J, P will produce outputs that can be
distinguished by obs_, (-) under some variation of the H-projection of inputs that are
related by R.

The abstract noninterference definition of [[6]] introduces attacker models as abstract
interpretations which can observe only properties of data in the concrete domain. The
concrete domain is partitioned into two sets H and L, which represent the domain of
secret and public values respectively, and state is modelled as tuples in 3 = H x L. The
attacker is modelled as a pair of abstractions (1, p), where 1, p € uco(P(L)) are upper
closure operators (extensive, monotone, and idempotent maps) on the powerset lattice
of public values ordered by subset inclusion. The closure operators n and p model what
the attacker can observe about the program’s public inputs and outputs respectively.
The concrete semantics of the program P is formalised using angelic denotational se-
mantics, which associates an input-output function, [ P] : ¥ — X, with P and ignores
nontermination. Furthermore, the observation of (public) values occur at the beginning
of program execution and on program termination. To slightly simplify the notations,
we shall denote the concrete semantics of P as a map [P] : H x L — L, throwing away
the H projection of state on termination, which is not used.

Our observational model is more general since we place no restriction on the nature
of the observational power function, as opposed to the requirement in [6] where they
must be closure operators. Furthermore, our observational model is not restricted to the
observation of values at the beginning and end of program execution. In particular, the
attacker (n, p) may be obtained under our model by defining an observational power

function on traces, where for any 0,5 € 3, and trace ¢p ») = (P, 0) LN (-,6)
we have 0bs( ) (t(p,s)) = (N({oyr}), p({G,2})). This definition says that the attacker
only observes the n-property of the L-projection of the initial state and the p-property of
the L-projection of the terminating state of P. Consequently, the information released
under this observational model is the PER lTp(n‘p)J over X defined such that for any
0,0' €%, 0|Tp,, ,, | 0 iff 0bsiy o) (t(p.o)) = 0bS(n o) ((p,o1))- It is thus clear that for

’ ’
ai an

any 0,0’ € 3, where (P, o) — - —> (-,5) and (P, 0") 4, o (-,6") we have
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o |Tp, ] 0" = n({owe}) =n({o}.}) Ap({6,L}) = p({5]})
= n({oy}) =n({o;,}) = e({6yL}) = p({5].})-

By this we immediately obtain the narrow abstract noninterference (NANTI) definition:
[n]Plp] < Vo0’ eZn({oyr}) =n({o].}) = po([P](0)) = p([P](c")).

Thus, lTp(n‘p)J is the least PER over states for which any pair of states that it relates
satisfies NANI in P.

The NANI definition causes what is referred to as “deceptive flows”, when n-
undistinguished public input values cause a variation which makes P to violate NANI.
In order to deal with this problem, abstractions of L values are passed as program pa-
rameters and another abstraction ¢ € uco(P(H)) is introduced on the input secret
values. This results in the abstract noninterference (ANI) property, [n]P($ ~ [p),
of [6]].

Let o € X be a state, and define the set 1% of L-projections of the terminating
states of P due to the execution of P from any starting state which agrees with ¢ on the
n-property of the L-projection and on the ¢-property of the H-projection to be

O TR 0 L R o

7 o ) = (o). 6oty = o).

In [6] the ANI property, [n]P($ ~ [p), is now defined to hold iff for all 0,0’ € 3,
n({oyc}) =n({o}.}) = o(E3®) = p(Z}7).

We can obtain this observational model under our framework by defining an observa-
tional power function on traces, such that for any o € 3, and terminating trace ¢(p ;) we
have 0bs(y,¢.0) (t(P.0)) = (n({oy2}), p(=2®)). This definition requires that no public
output can be distinguished by p for any initial state which is L-indistinguishable from
to o under n and H-indistinguishable from o under ¢. Thus, as usual, the information
released under our relational model is the PER [Tpm‘ 4),p)J over X defined such that for

any 0,0’ € 3, 0 lTp(n‘(p, J o' iff 0bs(y, ¢,0)(L(P,0)) = 0bS(n,,0)(t(pP,0v))- Hence, for

P}
all o, 0’ € 33, we have that

0| Ty 0] o = n{oi}) =n({o|}) A p(SP®) = p(=0?)
— n({oy}) =n({o].}) = p(ZD®) = p(=0:*).

By this we obtain ANI property [n]P(¢ ~ [p), where |‘Tp(ny W))J is the least PER
over 3, for which any pair of states that it relates satisfies ANI in P. We note that this
property, which prevents the attacker from gaining information ¢ about secret inputs
(see [12]), can also be arranged on a lattice of information, in particular, because ¢ €
uco(P(H)) forms a complete lattice.

In [3U8]], action-based operational semantics approaches are used in deterministic lan-
guage settings to check program security, similar to our labelled-transition semantics.
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However, the analyses are not termination-sensitive. Furthermore, these approaches as-
sume a fixed attacker model, whereas analysis is parametrised by a chosen attacker’s
observational power under our approach. With respect to the model of information,
the gradual release knowledge of [3] is modelled by sets X' ¢ 3, which represent the
knowledge (more precisely, the uncertainty) of the attacker at any point in time. These
sets shrink over time and the knowledge is monotone, which agrees with the extensiv-
ity and monotonicity properties our information flow function definition. However, the
PER over X representation generalises the subsets of 3 representation, since for any
X ¢ X, there is a PER R which encodes this set, where o Ry ¢’ holds iff 0,0 € 3.
Hence, every instantiation of knowledge in [3] can be encoded as PERs.

7 Conclusion

We have presented a policy model for secure information flow based on lattices of
information to enforce what declassification policies. We demonstrated that various
representations of information such as PERs, families of sets, information-theoretic
measures, and closure operators may be unified under the lattice model of informa-
tion, providing us with a uniform way to enforce policies based on the lattice order. A
termination-sensitive analysis method was also presented, which is parametric to a cho-
sen attacker model, and which derives a system’s information flow property from the
operational semantics. A static analysis technique and type system is currently being
developed as an application of the relational model approach. An area of future work is
to study the integration of the lattice-of-information model with other mechanisms such
as security classes in a multi-level security system for the enforcement of secure infor-
mation flow. Such an integration would allow us to express not only what properties in
policies, but also who properties.
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