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Kurt Mehlhorn - Born 1949



Preface

"Effiziente Algorithmen" was the title of the first book by Kurt Mehlhorn in
1977. It was meant as a text for graduate students and published in German by
Teubner-Verlag.

We decided to adopt this title 32 years later for this Festschrift in honor
of Kurt on the occasion of his 60th birthday. It contains contributions by his
former PhD students, many of whom are now university teachers themselves,
and colleagues with whom he cooperated closely within his career. It is our
pleasure that even Kurt’s former PhD advisor, Bob Constable from Cornell
University, kindly agreed to contribute. Many of the contributions were presented
at a colloquium held in Kurt’s honor on August 27 and 28, 2009 in Saarbrücken,
Germany.

This Festschrift shows clearly how the field of algorithmics has developed and
matured in the decades since Kurt wrote his book with the same title.

The classic approach based on discrete mathematics and computability and
complexity theory continues to be the foundation of the field with ever new
and important challenges as the first chapters of this Festschrift show. Kurt has
contributed significantly to classical algorithmics and gained worldwide reputa-
tion. Starting from research in computability theory in his PhD thesis he made
major contributions to complexity theory, graph algorithms, data structures,
and was one of the first to recognize the significance of computational geometry
contributing one of the early textbooks on the subject.

In spite of the success of classical algorithmics, by the 1990s more and more
researchers recognized that in order to have their results acknowledged in the
scientific community as a whole and applied commercially it was necessary that
they took care of the implementation of algorithms themselves. It turned out
that this aspect of algorithmics created challenging new theoretic problems, in
particular, concerning software engineering, a closer investigation of heuristic
methods, the numerical robustness of algorithms, and as a possible solution to
this problem, exact computation. Peter Sanders’ contribution to the Festschrift,
for example, describes this new field of algorithm engineering and Chee Yap’s
contribution is a convincing plea why numerical computing is of great importance
to the field of algorithmics.

Kurt Mehlhorn was one of the initiators of this new development of algorith-
mics and became one of its leaders and driving forces worldwide. In particular,
he and his group created the software library LEDA, a uniquely comprehensive
collection containing implementations of all the classical algorithms and being
used extensively in academia and industry. In addition, considerable research was
done by them on the theoretical aspects of implementing algorithms especially
concerning robustness and exactness of computation.



VIII Preface

Kurt has been a leader not only in scientific research but also in scientific
organizations, in particular during his years as a vice president of the Max Planck
society. The administrative work never prevented him from being a productive
researcher which he continues to be up to this day.

So let us honor this eminent scientist, whom to our privilege we have had as
a teacher and a friend.

Happy Birthday, Kurt!

August 2009 Susanne Albers
Helmut Alt

Stefan Näher
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Building Mathematics-Based Software Systems to
Advance Science and Create Knowledge

Robert L. Constable

Cornell University

Abstract. Kurt Mehlhorn’s foundational results in computational ge-
ometry provide not only a basis for practical geometry systems such as
Leda and CGAL, they also, in the spirit of Euclid, provide a sound ba-
sis for geometric truth. This article shows how Mehlhorn’s ideas from
computational geometry have influenced work on the logical basis for
constructive geometry. In particular there is a sketch of new decidability
results for constructive Euclidean geometry as formulated in computa-
tional type theory, CTT. Theorem proving systems for type theory are
important in establishing knowledge to the highest standards of certainty,
and in due course they will play a significant role in geometry systems.

1 Introduction

It is an honor to be associated with a scientist of the stature of Kurt Mehlhorn,
and I knew his potential before most other computer scientist because I super-
vised his excellent PhD thesis [1] finished at Cornell in 1974, a copy of which
still sits on my bookshelf. I’ve enjoyed several occasions to open this thesis since
1974 – once to aid my explanation on the telephone to a famous logician who in
the 1990’s had tried unsuccessfully to prove one of Kurt’s theorems and wanted
to know about the thesis proof.

In this short article I focus on a common career long interest which Kurt and I
share. We have both spent considerable effort on the design, implementation, and
deployment of software systems that automate important intellectual tasks used
in applications of computer science to mathematics and other sciences. Moreover,
our systems share the feature that they are based on computational mathematics
and required many new results in theoretical and experimental computer science
to build and extend them. They are in themselves contributions to the science
of computing. I will focus on the Leda [2] system and related work [3, 4, 5, 6, 7]
associated with Kurt and his colleagues and on the Nuprl [8, 9] system associated
with me and my research group.

The task of assembling a team to design, build, and deploy large software
systems requires management and marketing skills as well as technical expertise,
and it may be noteworthy that Kurt and I have both spent part of our careers in
high level science administration, perhaps because we learned from assembling
our research groups how to manage research and market ideas. We also learned
to advocate effectively for computer science, in part by recognizing that while

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 3–17, 2009.
© Springer-Verlag Berlin Heidelberg 2009



4 R.L. Constable

it is one of the youngest sciences, it has become essential to progress in all the
others. Computing became essential through its technologies and through the
new scientific results required to ensure that systems designed to aid scientific
thought led to reliable methods and certain knowledge.

At this point in the development of computer science, the field is much ad-
mired for its technologies and artifacts. I see this as a good time to stress that
while computer science has created stunning new technologies used in science,
engineering, government, business, and everyday life, it has also created deep
fundamental knowledge and even more significantly, entirely new ways of know-
ing. These aspects of computer science will be stressed in this article. I especially
enjoy the contributions computing has made to some of the oldest investigations
in science and mathematics, those concerned with geometry – its core truths and
their applications.

2 Mathematics-Based Software Systems

Background. Here is what I mean by a mathematics-based software system. First,
the objects manipulated by the system can be defined mathematically and go
beyond numbers to include functions, polynomials, equations, matrices, poly-
gons, Voronoi diagrams, types, sets, algebraic systems, proofs, and so forth –
even formalized theories. These objects have a clear mathematical meaning that
forms the basis of a precise semantics which the system must respect. For ex-
ample, there might be a data type of infinite precision computable real numbers
that should precisely relate to the conventional mathematical definition of real
numbers; the notion of a polynomial should relate to the algebraic one, and the
notion of a polygon should be recognizable, etc.

Second, the system provides algorithms for manipulating the data, and these
algorithms satisfy properties that can be precisely formulated as design specifi-
cations. The algorithms should be efficient and clear. For example, an algorithm
to find integer square roots should behave in the standard way, e.g. the root r
of n should be such that r2 ≤ n and also n < (r + 1)2.

Third, there is a notion of what it means for an algorithm to be correct
according to the standard semantics for its specification, and correctness can be
grounded in a firm notion of mathematical truth.

Fourth, the system should collect and organize its information in a way that
contributes to a library of scientific knowledge.

Fifth, the system should present information using notations that conform to
standard mathematical practice, e.g. can be presented in Tex or MathML, etc.
In general the understanding necessary to use such systems should be grounded
in mathematics education, and it should be possible to use them in teaching
mathematics at the college level.

There are other characteristics of these systems that are important but not
defining. For example, there will be a clear relevance to mathematical problems
that arise in science, applied mathematics, and engineering. There will be a
long history of the concepts that can be respected in the cultural aspects of
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the system. The system can support many levels of abstraction and translate
between them, say relating infinite precision reals to multiple precision reals or
relating planar regions of R2 to discrete graphs.

As these systems have been built, used, and studied we have seen that they
have become models of larger issues in computer science such as the problem of
providing a precise machine-useable semantics to concepts from science. They
have raised new questions in computing theory, such as how to define the com-
putational complexity of higher-order functions and operators and how to define
the notion of a mathematical type. In general these systems have made ideas
from computational mathematics very precise and practical.

Outline. Geometry is one of the oldest branches of mathematics, and its ax-
iomatic presentation in Euclid’s Elements [10] circa 300 BCE also marks a criti-
cal time in the development of logic, applying Aristotle’s ideas from the Organon
circa 350 BCE to mathematics. I will use computational geometry and logic to il-
lustrate the transformative power of computer science on the sciences and on the
very means for constructing objective knowledge. For both of these topics there
are mathematics-based systems that support computational work. Leda [2, 11] is
one of the most influential systems for computational geometry, and Nuprl [8, 9]
has been an influential system for computational logic. Using ideas from Leda,
in the last section (Section 6), I sketch a new result for constructive Euclidean
geometery, namely that equality and congruence of line segments is decidable,
as is equality of points.

3 Computational Geometry, Leda and CGAL

Computational Euclidean geometry is grounded in analytic geometry where
points are represented by tuples of real numbers; thus even the simplest ge-
ometric facts depend on real arithmetic, and this poses deep theoretical and
practical problems. Consider the following very simple example from the Leda
book. Suppose we have two lines l1 and l2 which pass through the origin and
have different positive slopes; then we know that they intersect in exactly one
point and that in the positive quadrant, one line remains above the other as we
see in Figure 1.

If we examine points on these lines at increments of 0.001 on the x-axis starting
at 0, we would expect to see that at 0 they intersect, but at all other points, those
on one line are above the other, say l1 points are above those on l2. However, as
the Leda account shows, if we test this belief using C++ floating point arithmetic,
we find something else entirely – the lines intersect multiple times and which
line is on top changes as well. This bizarre behavior results from the character of
floating point arithmetic. Floating point representation of lines leads to what is
called braided lines as in Figure 2. When we look in detail at the floating point
representation of a straight line, we see that it is a step function because there
are only finitely many floating point values. In the Leda book, Kurt and Stephan
Näher use this diagram in Figure 2 to explain the problem.
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Fig. 1.

Fig. 2.
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A considerable amount of theoretical work was devoted to providing defi-
nitions of real number sufficient to support a computational geometry that is
logically sound and yet efficient. Leda has a robust concept of infinite precision
real numbers [12] called bigfloats. These generalize floating point arithmetic, but
equality and order are not decidable relations on these numbers, and computa-
tions with them are slow. This is a problem with all attempts that I know about
to use infinite precision reals in serious computations. However, Leda can use
bigfloats as a tool to implement another notion of real number.

The Leda system also incorporated algebraic numbers defined by the type real.
These correspond to the numbers used in constructive analysis [13, 14, 15] and
in the work of Edwards [16] on algebra, i.e. those real numbers that are roots of
polynomials with rational coefficients. These numbers are formed using addition,
subtraction, multiplication, division, and k− th roots of rational numbers for all
natural numbers k. The rationals are formed with infinite precision integers.

It is possible to compute the sign of reals, but not the sign of bigfloats. Leda
uses a theorem that determines a bound on the number of bigfloat digits whose
mantissa can be calculated from the symbolic representation of the real. The
idea is that if r is an expression for a real, then we can find an expression sep(r)
called the separation bound such that val(r) �= 0 implies that the absolute value
of val(r) is greater than or equal to sep(r), and we can easily calculate sep(r).
This result is important for the logic of computational geometry.

4 Computational Logic and Nuprl

We have seen that there is a need for logically sound computable real numbers in
geometry systems like Leda and CGAL. The need also arises in computer algebra
systems in order to prove that various algebraic algorithms over the reals are
correct [17, 18]. This has led to developing formal logical theories of computable
real numbers. There is a long history of this subject in mathematics going back
to the 18th as part of the arithmetization of analysis.

For theorem provers such as Coq [19] and Nuprl which are based on con-
structive logic, it is important to formulate theorems about the reals that are
constructively valid. For the Cornell group this work is based on the book Con-
structive Analysis [13, 20] and other writings of Errett Bishop. Even simple
results such as the Intermediate Value Theorem (IVT) do not hold in their clas-
sical form. Figure 3 suggests a simple counterexample to IVT based on the idea
that if we could find the root of the simple piecewise linear function in the dia-
gram, then we could decide whether the real number a was positive or negative,
but this cannot be decided for constructive real numbers. Just below we provide
a constructively valid version of IVT [21] proved in Nuprl.

Some definitions and theorems in the Nuprl theory of reals. Mark Bickford has
recently defined constructive reals that include the rational numbers and integers
as subtypes, N � Z � Q � R. This is equivalent to Bishop’s definition which
was formalized exactly by Forester [21] and is repeated below by copying the
definition directly from the Nuprl library.
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Fig. 3.

Bishop Reals

R == {x : Seq((Q) | (∀i : N+ . |x(i)− x(j)| ≤ 1/i + 1/j)}.
Equality

(r = s) == ∀n : N+ . |r(n) − s(n)| ≤ 2/n

Definition as an extension of Rationals. A real number is either a rational or a
pair of functions r(n), δ(r;n) that gives the nth approximation to the real
and its “error bar”.

R ==
Q ∪ {r:N → Q × Infinitesimal|

let x,err = r in ∀i,j:N. (|(x i) - (x j)| ≤
(err(i) + err(j)))} + Void.

The + Void makes reals be marked with inl, so that we can later use things
marked inr for complex numbers. An infinitesimal is just a decreasing sequence
of rationals with limit zero.

Infinitesimal ==
{p:N → Q × (N+ → N)|
let f,g = p in

(∀i:N. (0 ≤ (f i))) &
(∀i,j:N. ((i ≤ j) ⇒ ((f j) ≤ (f i)))) &
(∀n:N+. f (g n) < (1/n))}.
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Bickford proved Cantor’s theorem in Nuprl with his definition.

Cantor’s theorem

∀z:N → R. ∀x,y:R. ((x < y) ⇒ (∃u:R. ((x < u) & (u < y) &
(∀n:N. u �= z n)))).rpositive(r) == ∃n:N. δ(r;n) < r(n).x<y
== rpositive(y - x).

x �= y == (x < y) ∨ (y < x).

Continuous functions

To state the Intermediate Value Theorem, we need the notion of a continuous
function on an interval [a, b].

∃w : R → R . ∀ε : R+. w(ε) > 0 & (∀x : [a, b]. ∀y : [a, b]. |x − y| ≤ w(ε) ⇒
|f(x)− f(y)| ≤ ε).

Theorem IVT

∀a : R . ∀b : R . a < b → (∀f : R → R . f cont on [a, b]⇒
f(b) > 0⇒ −(f(a)) > 0 ⇒ (∀ε : R+.∃c : [a, b].|f(c)| < ε)).

The formal proof provides a procedure which picks the midpoint c of [a, b] and
tests whether |f(c)| < ε. If so, the result is established, otherwise |f(c)| > 0 and
it follows that either f(c) > 0 or −f(c) > 0. Now we repeat the procedure on
the intervals [c, b] or [a, c]. The procedure terminates because the diameter of
the intervals goes to 0 and by continuity, the diameter of the range of f goes to
0 as well.

The proof is inductive with the following induction hypothesis.

Bisecting

bisects (a; b; f; ε; n) == (∃ c : [a, b] . |f(c)| < ε ) ∨
(∃ α : [a, b]. ∃ β : [a, b]. β − α = 1/2n ∗ b− a &

f(β ) > 0 & − (f(α )) > 0).

Complex Numbers. In Constructive Analysis [13, 20] Bishop and Bridges
develop a substantial amount of complex analysis over the complex numbers
as ordered pairs of reals. They give a constructive proof of the Fundamental
Theorem of Algebra (FTA) and the Riemann Mapping Theorem. The FTA has
been formalized in the provers Coq and HOL [22], and articles about the efforts
are forthcoming. We will discuss below the relationship of Bishop’s work to
geometry and to the type of algebraic numbers used in Leda.

5 Constructive Euclidean Geometry

Ever since Descartes introduced analytic geometry and translated geometric
questions into analysis, mathematicians have realized that there are other rigor-
ous ways to study geometry beyond Euclid’s. Nevertheless Euclidean geometry
has been the subject of sustained axiomatic and logical analysis right up to the
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present. New proofs in the style of Euclid are being published even now such as
the Steiner-Lehmus theorem that if two angle bisectors of a triangle are equal
in length, then the triangles must be isosceles [23]. Two of the most cited works
are Hilbert’s Foundations of Geometry [24],Tarski’s decision procedure for ge-
ometry based on the first-order theory of real closed fields [25], and von Plato’s
axiomatization in type theory [26]. I am also thinking along these lines using
computational type theory (CTT), and I sketch below some new ideas on de-
cidability that were influenced by Kurt’s work and which we will implement
via Nuprl in due course. I appreciate that constructive Euclidean geometry cap-
tures the spirit of Euclid’s work in a 21st century style, continuing the 2,300
year tradition of teaching and investigating this body of work. Interestingly the
logical approach connects well to Descartes deep study of the nature of certain
knowledge, and here I have connected the Leda and Nuprl work to the topic of
certain knowledge. I mean this account of geometry to be intuitive and strongly
tied to Euclid’s approach because that is such a widely known starting place for
geometry – and thus a vehicle to explain computational type theory.

5.1 Primitive Abstractions, Definitions, and Displays

We use these types Point, Ray, Line, Angle, Figure, and these primitive terms,
point{p : atom}, between(a; p; b), ray(a; b), origin(r), dest(r), line(r), on(p; l),
angle(a; b; c), right(p; l), left(p; l), ipoint(r; p; q), nonparallel(l1; l2), circle(p; r),
ctr(c), rad(c), leftcpt(c1; c2; r), rightcpt(c1; c2; r).

Point. Points are the basic data type; we will see later that we can reduce every
concept to points in some sense. The elements of the type Point include given
points which are canonical or irreducible elements of the type. We use the terms
point{a : atom} for these where a is just a name. There are other terms for
points that arise from axioms that tell under what conditions we have a point.
For example, if we know that two lines will intersect, they can be extended
to intersect in a constructed point. One of these “straightedge” constructions is
given by nonparallel(l1; l2) which is created (or found) by extending straight line
segments. Another constructed point is found by connecting given points p and
q forming a line known to intersect the ray r, the constructed point is denoted
by ipoint(r; p; q). Axiom 6, a continuity axiom, brings this term into the theory
as a constructed point in the type Point.

As with all types, Point comes with an equality relation, p = q in Point.
Given points are equal only if they have the same names. If a term reduces to a
point, as we see in the next definition, it is equal to that point.

Rays. Ray is a primitive type whose elements are directed straight line segments
called rays which have a direction from an origin point a to a destination point b.
We can imagine a ray as a one dimensional object consisting of points constructed
using a idealized straightedge. The canonical term denoting this construction is
ray(a; b), and that concrete term defines the logical object, quite distinct from
the imagined ideal object.
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We say that a is the origin of the ray ray(a; b) and b is the destination; we write
these for a ray r as origin(r) and dest(r). Two rays are equal, r1 = r2 in Ray, iff
they have the same origin and the destination. They are congruent if they have
the same length, see below. The term origin(ray(a; b)) reduces by a computation
rule of the logic to the term a which will be a point if ray(a; b) is known to be
in the type Ray, likewise dest(ray(a; b)) reduces to b.

We say that the origin and destination points are on the ray, on(origin(r); r),
on(dest(r); r), and also we have the betweenness relation for points between
the origin and destination that are on the ray, say p so that between(origin(r);
p; dest(r)).

In addition to equality on rays, we introduce another primitive equivalence
relation called congruence(Euclid’s terminology). We say that one ray is congru-
ent to another, r1 � r2, meaning that they have the same length; but we do
not treat length as a numerical quantity. If we did, it would be a positive real
number since the origin and destination of a ray are distinct points.

Segments. Intuitively segments are finite straight lines, what Euclid calls a line
and many authors call a segment. We define the type Segment from the type
Ray using a quotient operation.

Segment == Ray//x = y iff (origin(x) = origin(y) & dest(x) = dest(y) ∨
origin(x) = dest(y) & dest(x) = origin(y)).

The type used to define segments is the quotient type. In general if T is a type
and eq is an equivalence relation on T , then T//eq is the type whose elements are
from T but whose equality is given by eq instead of the equality of T . This is an
elegant way to define such notions as the integers modulo a number. In this case,
the quotient operation hides the direction of the ray. In classical mathematics
this quotient construction is accomplished using equivalence class, but that is
not a good definition for computation.

The identity function maps from Ray to Segment, and we say that Ray is
a subtype of Segment, written Ray � Segment. Given any construction with
rays, it can also be done by reversing all the rays, and the results map out to
segments as well. Lines have no direction, but we can orient them by generating
them by rays.

Line. A straight line is another primitive concept, an element of the atomic
type Line. Straight lines are unbounded objects consisting of points “that lie
continuously on a line.” We can imagine them as infinite in extent, but they
are created by extending a ray. Given a ray r, the line specified is given by the
primitive line(r). If we do not want to use the orientation of the line, we can
treat r as a segment. Associated with lines and points is the atomic relation
on(p; l) where p is a point and l is a line. By generating lines from rays, we
settle an issue about lines, that they have at least two points on them, namely
on(origin(r), line(r)) and on(dest(r), line(r)).

Figures. Intuitively a circle is the set of all points in a plane at an equal positive
distance, called the radius, from a point called the center. To say this we use
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congruence. Given a point p for the center, and a ray r for the radius, we will
have an axiom that allows us to construct a circle, imagine using a compass to
do it. The canonical circle is circle(p; r). There are operators to pick out the
center of a circle, ctr(circle(p; r)) reduces to p, and rad(circle(p; r)) reduces to
r. We will also know informally that:

circle(p; r) == {x : Point| ∃r′ : Ray. origin(r′) = p & dest(r′) = x & ray(p; x)
� r}.
We can define the interior of a circle as the center and those points which are
at a distance less than the radius. The points on the circle are the circle, and
the points outside are those whose distance from the center are greater than the
radius. We say that a circle belongs to the type of Figure.

There are the usual rectilineal figures in the type Figure, and we will define
one of them below, triangles.

Angles. An angle at p is formed by two non-collinear rays r1 and r2 emanating
from p. The destination points of the rays, dest(r1) and dest(r2) are used with p
to name the angle as in angle(dest(r1), p, dest(r2)) or angle(dest(r2), p, dest(r1)),
these are equal names for the same object in the type Angle.

If one of the rays r forming an angle at p is extended in the opposite direction
from p on the line formed by the ray, forming a new ray r′, then another angle
is created at p, and this is called the adjacent angle to the first one (also the
complement to the first).

Interior angles are defined in terms of two lines l1 and l2 (generated by rays
r1 and r2) respectively and a ray r intersecting both lines, say l1 at p1, and l2
at p2, say l1 above l2 in the direction of r. Consider the adjacent angles on the
right side of r at p1, say a′

1 and a1 and the adjacent angles on the right side
of r at p2, say a2 and a′

2. The angles between the lines l1 and l2 are called the
interior angles. Let a1 be the interior angle at p1 and a2 the interior angle at p2.
See Figure 4 below where we arranged that the interior angles are a1 and a2.

Extracts. In computational type theory [9] and related logics, e.g. [27, 19], axioms
and theorems come with terms that express their computational content. This is
a feature of the propositions-as-types semantics for type theory as systematized
by deBruijn [28] and Martin-Löf [29]. The axioms for Euclidean geometry come
with these extracts. Here is a simple example. If we claim that there is a point
on a given line l, we can write ∃p : Point. (p on l) and to witness this claim
there should be a term in the logic for the point p and a term witnessing that
(p on l). The witness for the point could be point{a : atom}, and if the witness
for its being on l is the term pf , then we would write the following to show that
a certain ordered pair is a witness to the claim:

∃p : Point. (p on l) extract pair(point{a : atom}; pf).

In much of what follows, the witness for relations such as (p on l) and equality
relations such as p = q will simply be the term axiom which tells us that the
witness is primitive and carries no computational information, i.e. is “axiomatic”.
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Fig. 4.

Many of the extracts in the axioms are functions, and they are given using
lambda notation, so for example, λ(x. x) is the notation for the identity function.
This notation is especially simple for the first axiom where the extract is simply
a function that takes two points p1 and p2 as inputs and then takes some proof
neq that the points are not equal, and returns a ray connecting the points and
two axiomatic equalities about how to obtain the origin and destination of the
ray.

5.2 Euclid-Like Axioms

Axiom 1. To draw a straight line segment from any point to any other point.

∀p1, p2 : Point. p1 �= p2 ⇒ ∃r : Ray. origin(r) = p1 & dest(r) = p2.
extract λ(p1, p2.λneq. pair(ray(p1; p2); pair(axiom; axiom))).

Axiom 2. To produce a finite line continuously in a straight line.

∀r : Ray. ∃l : Line. ∀p : Point. (p on r ⇒ p on l). extract
λ(r. pair(line(r)); λ(p. λ(hyp. axiom))).

The line l is oriented by the ray r whose origin and destination are two points
on l. We define the relations p right l and p left l with reference to the direction
of r.

We can prove Euclid’s axiom by using the segment given by the ray, namely

∀s : Seg. ∃l : Line. ∀p : Point. (p on s ⇒ p on l). extract
λ(s. pair(line(r)); λ(p. λ(hyp. axiom))).
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Axiom 3. To describe a circle with any center and distance.

∀p : Point. ∀r : Ray. ∃c : Figure. c = circle(p; r). extract
λ(p.λ(r. pair(circle(p; r); axiom)).

Axiom 4. That all right angles are equal to one another.

∀p : Point. ∀r1, r2 : {x : Ray|origin(x) = p}. (dest(r1) �= dest(r2) & not
(colinear(p, dest(r1), dest(r2))) ⇒ ∃a : Angle. ∀a′ : Angle. (right(a) & right(a′)
⇒ a = a′in Angle)).
extract
λ(p.λ(r1, r2.λ(andhyp. pair(angle(dest(r2), p, dest(r1)); λ(a′. λ(h.axiom)))))).

Axiom 5. If ray r intersects segments l1 and l2 such that the interior angles on
the same side of r are less than right angles, then l1 and l2 intersect on the side
where the angles are less than right.

∀r : Ray. ∀l1, l2 : Seg. (r intersects l1 at p1) & (r intersects l2 at p2) &
(interior angles a1, a2 are acute)⇒ ∃p : Point. intersect(l1; l2; p) & p right r.
extract λ(r. λ(l1, l2. λ(hyp. pair(nonparallel(l1; l2); axiom)))).

Axiom 6 Continuity. Euclid did not have this axiom nor anything equivalent
to any of the cases of the axiom. Only two cases are given and only informally
because these versions of continuity may not be the most general approach,
though they match the important work of W. Killing [30].

Let l be a line determined by a ray r and let p be a point on the left of l and q
a point on the right, then the segment connecting p and q intersects l in a point
which has the primitive name ipoint(r; p; q).

Let C1 and C2 be two circles such that a point of C2 is inside C1 and the
center is outside, and let r be a ray connecting the center of C1 to the center of
C2, then C1 and C2 intersect in exactly two points, one on the left of r and one
on the right of r. These points are called leftcpt(c1; c2; r) and rightcpt(c1; c2; r).

5.3 Theorems

The first proposition in Euclid’s Elements is the construction of an equilateral
triangle. The construction can be used to bisect a side of the triangle.

A triangle is a figure with three sides, a three sided rectilinear figure. We
say that a list of three rays a, b, c forms a triangle iff the dest(a) is origin(b),
the dest(b) is origin(c), and the dest(c) is origin(a). The triangle is equilateral
iff a � b � c. Euclid says “On a given finite straight line to construct an
equilateral triangle.”

Proposition 1 ∀r : Ray. ∃T : Figure. (EquilateralT riangle(T ) & ∀s : {x :
Ray|side(T, x)}. s � r).

Proof

Let a be origin(r) and b be dest(r), thus r = ray(a; b). Using Axiom 3 construct
circles circle(a; r), circle(b; r), call them A and B. Notice that a is inside A and
on circle B, thus the condition for invoking Axiom 6 on circles is satisfied.
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By continuity, Axiom 6, there are two points p and q at which the circles
meet, let p be leftcpt(circle(a; r); circle(b; r); r); now form the rays by Axiom 1
ray(b; p) and ray(p; a). These two rays along with ray(a; b) form a triangle T . If
we write r as ray(a; b) then T is [ray(a; b), ray(b; p), ray(p; a)] and the triangle
property is easily checked by inspecting the endpoints of the rays. Notice that
each of ray(b; p) and ray(p; a) is a radius of one of the circles,thus they are each
congruent to ray(a; b), thus T is equilateral. Qed

Notice that the extract of the theorem is a triangle. The first ray in the list is
r, the second ray, called ray(b; p) is constructed from dest(r) and leftcpt(circle
(a; r); circle(b; r); r). The term for the second ray is ray(dest(r); leftcpt(circle
(origin(r); r))); circle(dest(r); r); r) for the second ray. The third ray is similar.
We can see the structure of the construction from the terms.

We can find the midpoint of a ray by bisecting it, using a construction like
the one we just described.

∀r : Ray. ∃p : Point. between(origin(r); p; dest(r)) & ray(origin(r); p) �
ray(p; dest(r)). By repeating this construction we can create an unbounded se-
quence of points on any ray, segment, or line.

We can provide proofs like this for many propositions in Euclid’s books I
through IV. Using the ideas of Section 6, we can give constructive proofs for all
theorems of these books.

5.4 Reduction to Points and to Numbers

We have presented the concepts in a style similar to Euclid’s. A more modern
approach would be to build everything from the type Point in the manner of
Tarski [25]. We would define a ray to be an ordered pair of distinct points. We
could avoid segments altogether, and take a line to be a pair of points with a tag,
distinguishing it from a ray. A circle is a tagged pair of point and ray. Rectilineal
figures are lists of rays. Angles would be defined as two pairs of points thought
of as rays with a common origin.

Once we have settled on a single primitive type of points, it is easy to reduce
the theory further to numbers by defining a point to be a constructive real number
a la Bishop. In this analytical geometry, point, line and angle equality would not
be decidable. We could not decide whether a point was on a line or whether two
lines met at a point.

However, just as with Kurt’s work on Leda, we can consider the option to use
constructive algebraic numbers for points. In this case the whole theory changes
dramatically because it is known that equality on these numbers is decidable.
We discuss this point in the next section.

6 Logical Issues in Constructive Euclid-Like Geometry

Euclid was very careful in his choice of propositions and proofs. There is no
proposition saying “Given two line segments AB and BC, to decide whether
they are congruent.” Nor does he try to prove that one can decide whether a
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given angle is a right angle, nor does he try to compare angles. He does not try
to decide whether points are equal or whether a point is on a line or whether
given two circles with the same center one is inside another. If any one of these
questions could be decided, they all could be.

It appears as if he confines himself to statements that can be proved construc-
tively and that he is centrally concerned with construction. However, not all of his
proofs are constructive because he uses reductio absurdum to prove positive state-
ments, and he argues by cases when it is not possible to decide among the cases.

The definitions and axioms above are all interpreted in Computational Type
Theory (CTT) [9], the type theory implemented by Nuprl. So it is a fully con-
structive theory, thus not all of the theorems from the Elements books I to IV
can be proved in this theory, but many can be. It is a genuinely constructive
core of the Elements.

In reading Kurt’s work in Leda, I came to realize that we could extend this
theory by changing the definition of the elements of Points to name them with
the constructive algebraic numbers, point{a : real}, precisely the numbers of the
Leda type real. By doing this we have a theory Constructive Euclid.

Result. In Constructive Euclid, all plane geometry theorems of the Elements
can be constructively proved because equality of points, lines, angles, and circles
are all decidable. These relations are decidable because of the results of Bishop’s
development of the constructive complex numbers and the 1978 result of Julian,
Mines, and Richman [14] that equality of algebraic numbers is decidable.

This Constructive Euclid-like Geometry would lead to many new theorems
and to shorter proofs of existing theorems in the Elements, and all results would
be fully constructive. I am now examining this theory with an eye to formalizing
and implementing parts, just for the joy of it. Such a theory would follow the
spirit and axiomatization of Euclid but use at its base a constructive logic and a
richer set of constructions beyond straightedge and compass that would involve
effective measuring and comparing.
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Abstract. Although it is well known by a counting argument that rel-
ative to the full basis most Boolean functions need exponentially many
operations, for explicit Boolean functions only linear lower bounds with
small constant factors are known. For monotone networks (i.e., net-
works without negations) exponential lower bounds for explicit mono-
tone Boolean functions have been proved. We describe the state of the
art and give some arguments why techniques developed for the proof
of lower bounds for monotone networks cannot easily be extended to
Boolean networks with negations.
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1 Introduction

First, we will give some basic definitions. Bn,m := {f | f : {0, 1}n → {0, 1}m}
is the set of all n-ary Boolean functions with m outputs. Instead of Bn,1 we
write Bn. The ith variable, 1 ≤ i ≤ n, is denoted by xi : {0, 1}n → {0, 1}. Let
Vn := {xi | 1 ≤ i ≤ n} and V ′

n := Vn ∪ {¬xi | 1 ≤ i ≤ n}. Variables and
negated variables are called literals . A function m : {0, 1}n → {0, 1} which is
the product of some literals is called a monomial. The empty product is the
constant function 1. For f, g ∈ Bn we define: f ≤ g :⇔ f ∧ g = f , and then
we call f a subfunction of g. IM(f) = {t | t monomial, t ≤ f} is the set of
implicants of the function f . An implicant t ∈ IM(f) is a prime implicant of
f if ∀t′ ∈ IM(f) : [t ≤ t′ ≤ f ⇒ t = t′]. PIM(f) ⊆ IM(f) is the set of all
prime implicants of f . Let a := (a1, a2, . . . , an), b := (b1, b2, . . . , bn) ∈ {0, 1}n.
We write a ≤ b iff ai ≤ bi for 1 ≤ i ≤ n. A function f = (f1, f2, . . . , fm) ∈ Bn,m

is monotone iff for all a, b ∈ {0, 1}n, a ≤ b implies fi(a) ≤ fi(b), 1 ≤ i ≤ m. Let
Mn,m denote the set of monotone Boolean functions in Bn,m. We also write Mn

for Mn,1. B2 is the set of basic operations. Let Ω ⊆ B2. An Ω-network β is a
directed, acyclic graph such that each node has indegree ≤ 2. The nodes u with
indegree 0 are input nodes and are labelled with op(u) ∈ Vn. Each non-input u
is labelled by an op(u) ∈ Ω. A node with outdegree 0 is an output node. For a
node u in β let suc(u) := {v | u → v is an edge in β} and pred(u) := {v | v →
u is an edge in β} be the sets of direct successors and direct predecessors. With

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 18–29, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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each node u we associate a function resβ(u) : {0, 1}n → {0, 1} (n is the number
of input nodes of β):

resβ(u) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
op(u) if u is an input,
¬resβ(v) if op(u) = ¬, where

v is the direct predecessor of u,
resβ(v) op(u) resβ(w) otherwise, where

v, w are the direct predecessors of u.

For u ∈ β, resβ(u) is the function computed at node u in β. Let G ⊂ Bn. The
minimal number of gates in an Ω-network which computes G where negations
are not counted is the Ω-complexity CΩ(G) of G. Let Ω0 := {∧,∨,¬} and Ωm :=
{∧,∨}. An Ωm-network is also called a monotone network . Note that exactly
the monotone functions can be computed by a monotone Boolean network.

Although sixty years ago, Shannon [37] has proved by a counting argument
that at least a fraction (1 − 22nn−1 log log n) of the functions in Bn has B2-
complexity strictly larger than 2n/n, for explicit Boolean functions only linear
lower bounds with small constant factors for their B2-complexity or their Ω0-
complexity have been proved. In 1974, Schnorr [36] has given the first 2n-lower
bound for the B2-complexity of a function in Bn. Next, Paul [27] proved a 2.5n-
lower bound for the B2-complexity of an (n + log n)-ary Boolean function. Then
Stockmeyer [39] proved that the lower bound of Paul holds for a larger class of
functions. In 1982, Blum [8] has given a 3n-lower bound for the B2-complexity
of an (n + 3 log n + 1)-ary function. This lower bound is still the largest lower
bound for the B2-complexity of an explicit Boolean function. With respect to
the base Ω0 better linear lower bounds are known. In 1974, Schnorr has also
given the first 3n-lower bound for the Ω0-complexity of an n-ary Boolean func-
tion. In 1988, Zwick [50] has proved a 4n-lower bound for the Ω0-complexity
of a function in Bn. Iwama, Lachish, Morizumi and Raz [17] claim to have a
5n− o(n)-lower bound for the Ω0-complexity of an n-ary Boolean function. All
these linear lower bounds use the so-called “gate-elimination method”. The gate-
elimination method uses induction. By an assignment of some variables with
values from {0, 1}, a specific number of gates are eliminated in each step and
the resulting function is of the same type as the function before the assignment.
Over the years, the case analyses used in the proofs have become more and more
complicated and have culminated to a case study of large depth in [17]. Since
each operation in B2 can be realized within the base Ω0 using at most three
operations from {∧,∨} and some negations, a lower bound of the Ω0-complexity
larger than 6n would imply a lower bound for the B2-complexity larger than 3n.
Note that for functions in Bn,m, m > 1 no better lower bounds are known. I am
convinced that the gate-elimination method alone will not lead to the proof of a
nonlinear lower bound for the Ω0-complexity of any explicit Boolean function.

The inability to prove lower bounds for the Ω0-complexity of explicit Boolean
functions has led to the consideration of restriced models of Boolean networks
like monotone or bounded-depth Boolean networks. For both restricted models,
exponential lower bounds for the complexity of an explicit Boolean function are
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known. We will give an overview of the progress obtained with respect to mono-
tone Boolean networks in the next section. Section 3 will discuss the attempts to
extend techniques developed for monotone networks to Ω0-networks. Textbooks
on the complexity of Boolean functions are [47, 13, 35, 12].

2 Monotone Boolean Networks

By an estimation of the number of n-ary monotone Boolean functions and an
application of Shannons counting argument one can also prove that nearly all
monotone Boolean functions have exponential (monotone) network complexity.
In contrast to the non-monotone complexity of Boolean functions nonlinear lower
bounds for the monotone network complexity of explicit monotone Boolean func-
tions have been proved. All these lower bound proofs use the following property
of each monotone network β which computes a function f = (f1, f2, . . . , fm) ∈
Mn,m:

For all nodes u in β, the function resβ(u) which is computed at the node u

can be written as a polynomial; i.e., resβ(u) =
∨t

j=1 mj where each mj is a
monomial. Starting at the input nodes of the network, we can compute these
polynomials in the obvious way by applying the properties of the Boolean opera-
tions. We call this representation of resβ(u) the polynomial expansion of resβ(u).
Let ui, 1 ≤ i ≤ m be the output node of the network β which computes the
function fi. For the polynomial resβ(ui) =

∨ti

j=1 mj which is computed at ui,
the following hold:

1. For 1 ≤ j ≤ ti, the monomial mj is a an implicant of the function fi.
2. For all prime implicants p of fi there is a j ∈ {1, 2, . . . , ti} with mj = p.

If the first property is not fulfilled then there is an input (a1, a2, . . . , an) ∈ {0, 1}n

such that fi(a1, a2, . . . , an) = 0 but resβ(ui)(a1, a2, . . . , an) = 1. If the second
property is not fulfilled then there is an input (a1, a2, . . . , an) ∈ {0, 1}n such that
fi(a1, a2, . . . , an) = 1 but resβ(ui)(a1, a2, . . . , an) = 0.

Most functions considered for proving lower bounds are homogeneous. A
Boolean function f ∈Mn,m is called k-homogeneous if all prime implicants of f
are of length k. Examples for homogeneous functions are the Boolean matrix mul-
tiplication, the Boolean convolution and the clique function. The first nonlinear
lower bound for the monotone network complexity of an explicit Boolean function
has been proved by Neciporuk [25] in 1969 for a function inMn,n. He has consid-
ered 1-homogeneous functions in Mn,n, the so-called Boolean sums. Neciporuk
considers Boolean sums which have “nothing in common” such that nothing can
be gained by using conjunctions or overlap. “Nothing in common” means that
two distinct Boolean sums have at most one prime implicant in common. We
say then that the Boolean sum is (1, 1)-disjoint . A well known construction of
Kővári, Sós and Turán [20] leads to such a Boolean sum f = (f1, f2, . . . , fn) with
Ω(n1.5) prime implicants such that an Ω(n1.5) lower bound for the monotone
complexity of this Boolean sum has been proved. Some years later, Pippenger [28]
and Mehlhorn [24] have generalized the approach of Neciporuk to Boolean sums
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which have “little in common” such that only little can be gained by using con-
junctions or overlap. Mehlhorn has used an approach introduced by Wegener [44]
where some functions besides the variables are given for free. “Little in common”
means that three different Boolean sums have at most two prime implicants in
common. We say then that the Boolean sum is (2, 2)-disjoint . Using a construc-
tion of Brown [10] such a Boolean sum with Ω(n5/3) prime implicants has been
constructed such that an Ω(n5/3) lower bound for the monotone complexity of
this Boolean sum has been proved.

In 1974, Pratt [30] has shown that each monotone network computing the
product of two n× n Boolean matrices contains at least 1

2n3 ∧-gates. Mehlhorn
and Galil [23] and Paterson [26] have refined the method of Pratt and have
proved that the school-method for the Boolean matrix multiplication is the
unique optimal monotone network for Boolean matrix multiplication. Further-
more, the paper of Mehlhorn and Galil contains several general theorems about
local transformations in monotone networks. These local transformations are es-
sentially replacement rules, where in a monotone network β for the computation
of a function f , we can replace the function resβ(u) which is computed at a
gate u by the function which we obtain after the deletion of some monomials
from the polynomial expansion of resβ(u) which are not part of any prime im-
plicant of f . Let Y be the Boolean matrix product of the matrix X1 with the
transposed matrix X2. Then we have yij = 1 iff the ith row of X1 and the jth
row of X2 have a common one. In 1979, Wegener [44] has generalized this to the
“direct product” of m M × N -matrices X1, X2, . . . , Xm. For each choice of one
row of every matrix the corresponding output is one iff the chosen rows have a
common one. He proved a 2

mNMm lower bound using the elimination method
and the pigeon hole principle. Choosing appropriate values for m, M and N ,
this leads to an Ω(( n

log n )2) lower bound for a function in Mn,n. One year later,
Wegener [46] has improved that bound to 1

2NMm introducing a new method for
proving lower bounds for Boolean networks. This improves the bound above to
Ω( n2

log n ). He has defined a suitable value function to estimate the contribution
of each gate for the computation of the outputs. At each gate he distributes at
most the value 1 among the prime implicants. Then he has proved the necessity
to give to each prime implicant at least the value 1

2 . Hence, at least 1
2NMm

gates are needed.
All these sets of functions have some disjointness properties. The Boolean

sums are (1, 1)- or (2, 2)-disjoint. A monotone function f : X ∪ Y → {0, 1}m is
bilinear if each prime implicant of f consists of one variable from X and one
variable from Y . The Boolean matrix multiplication is a set of disjoint bilin-
ear forms. The generalization of the Boolean matrix product of Wegener is a
set of disjoint multilinear forms [46]. If we consider monotone functions which
do not have such disjointness properties, the situation becomes more difficult.
The so-called semi-disjoint bilinear forms are such Boolean functions. A bilin-
ear form f is semi-disjoint if each variable is contained in at most one prime
implicant of fi, 1 ≤ i ≤ m, and PIM(fi) ∩ PIM(fj) = ∅ for 1 ≤ i < j ≤ m.
The Boolean convolution is a semi-disjoint bilinear form. The first approaches
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for proving lower bounds for the monotone network complexity of semi-disjoint
bilinear forms use graph-theoretical properties of monotone networks realizing
such functions. Pippenger and Valiant [29] have studied shifting graphs and
have proved that each monotone network for some monotone functions like the
Boolean convolution or sorting has to be a shifting graph obtaining an Ω(n log n)
lower bound for the monotone network complexity of these functions. Indepen-
dently, Lamagna [21] has obtained a general Ω(n log n) lower bound for some
semi-disjoint bilinear forms by a combination of the graph-theoretical approach
with the gate-elimination method. The hope to prove nonlinear lower bounds
for the non-monotone complexity of Boolean functions using graph theoretical
arguments only has been destroyed by the construction of superconcentrators
of linear size [42]. In 1981, Blum [9] has introduced the technique of normal
form transformation in Boolean complexity for proving an Ω(n4/3) lower bound
for the number of ∧-gates in any monotone network computing the nth de-
gree convolution. Starting with any monotone network β0 computing the nth
degree convolution, the network is transformed into a normal form network β1
which computes a number of subfunctions of the convolution. The normal form
transformation enlarges the number of ∧-gates at most by a constant factor.
During the transformation, some ∧-gates of β0 are counted. If after the nor-
mal form transformation the amount of counted ∧-gates is not large enough, an
application of the gate-elimination method proves the desired lower bound. In
1982, using the gate-elimination method and some information flow arguments
Weiß [48] has proved an Ω(n3/2) lower bound for the number of ∨-gates in any
monotone network for the computation of the Boolean convolution. Using the
technique in [9] in connection with a little bit more sophisticated application
of the gate-elimination method one can also prove an Ω(n3/2) lower bound for
the number of ∧-gates in any monotone network for the Boolean convolution.
Although it is widely believed that the optimal monotone network for the com-
putation of the nth degree convolution contains n2 ∧-gates and n2 − n ∨-gates,
no lower bound better than Ω(n3/2) for the monotone network complexty has
been proved so far. I conjecture that a combination of the methods in [9], [48]
and [46] might lead to a proof of an Ω(( n

log n )2) lower bound.
Although since 1969 nonlinear lower bounds for the monotone network com-

plexity for explicit functions in Mn,m where m = θ(n) has been proved, the
best lower bound for the monotone network complexity of an explicit function
in Mn before 1985 was of size 4n [41]. All nonlinear lower bound proofs for
the monotone network complexity of functions in Mn,m strongly depend on the
fact that a set of functions has to be computed. With respect to single output
monotone Boolean functions, no technique for counting a nonlinear number of
gates has been developed before 1985. In 1985, Razborov [31, 32] and Andreev [4]
have succeeded to get the breakthrough. Razborov has developed the so-called
“method of approximation” and given an nΩ(log n) lower bound for the monotone
complexity of the clique function and a lower bound of the same size for the
perfect matching function. Nearly at the same time, Andreev used different but
similiar methods for proving an exponential lower bound for another monotone
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function in NP . Some months later, Alon and Boppana [1] have strengthened the
combinatorial arguments of Razborov and proved an exponential lower bound
for the clique function. We will sketch the approximation method as developed
by Razborov.

P ({0, 1}n) denotes the power set of {0, 1}n. Note that P ({0, 1}n) with the
operations ∪ and ∩ is a lattice. For a function f ∈ Mn let A(f) := {a ∈
{0, 1}n | f(a) = 1}. Note that A(0) = ∅ and A(1) = {0, 1}n. Furthermore, for
f, g ∈ Mn, A(f ∨ g) = A(f) ∪ A(g) and A(f ∧ g) = A(f) ∩ A(g). Given any
monotone Boolean network β for a function f ∈ Mn, we obtain a network β′

which computes A(f) if we replace each input xi, 1 ≤ i ≤ n by A(xi), each
∧-gate by an ∩-operation and each ∨-gate by an ∪-operation. Razborov’s idea
was to replace in β′ the operations ∩ and ∪ by two operations � and � which
have the property that M � N ⊆ M ∩ N and M ∪ N ⊆ M � N . After doing
this, the network does not compute A(f) but an approximation of A(f). Given
the two operations � and �, we define the legitimate model S to be the smallest
subset of P ({0, 1}n) such that

1. A(0), A(1), A(x1), A(x2), . . . , A(xn) ∈ S and
2. S is closed under the operations � and �.

For M, N ∈ S let

δ�(M, N) := (M �N) \ (M ∪N) and δ�(M, N) := (M ∩N) \ (M �N).

For f ∈ Mn and the legitimate model S, we define the distance ρ(f,S) from f
to S to be the minimal t such that there are M, M1, N1, M2, N2, . . . , Mt, Nt ∈ S
such that

A(f) ⊆ M ∪
t⋃

i=1

δ�(Mi, Ni) and M ⊆ A(f) ∪
t⋃

i=1

δ�(Mi, Ni).

The distance ρ(f,S) from f to S is a lower bound for the monotone network
complexity of f . To see this, we consider any monotone Boolean network β
computing f . Let g1, g2, . . . , gt be the gates in β numbered in a topological order.
Consider the network β′ which we obtain from β by replacing each ∨ by �, each
∧ by �, each 0 by A(0) and each 1 by A(1). The network β′ computes elements
of S. Let Mi, Ni, 1 ≤ i ≤ t, be the elements of S computed at the inputs of the
gate gi in β′, and let M be the element of S computed at the output gate of β′.
Then it is easy to prove by induction that

A(f) ⊆ M ∪
t⋃

i=1

δ�(Mi, Ni) and M ⊆ A(f) ∪
t⋃

i=1

δ�(Mi, Ni).

Hence, the size of β is a upper bound for the distance ρ(f,S) from f to S. Note
that distance measure ρ(f,S) is very strong. All elements of S are given for free
such that it is not required that the approximating sets M , Mi and Ni, 1 ≤ i ≤ t,
can be computed by a {�,�}-network β′. The proof sketched above also works
with respect to the following weaker distance measure:
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For f ∈Mn and the legitimate model S, we define the weak distance ρ′(f,S)
from f to S to be the minimal t such that there is a {�,�}-network β′ with
gates g1, g2, . . . , gt numbered in a topological order where Mi, Ni, 1 ≤ i ≤ t, are
the elements of S computed at the inputs of gate gi and M is the element of S
computed at the output gate gt such that

A(f) ⊆ M ∪
t⋃

i=1

δ�(Mi, Ni) and M ⊆ A(f) ∪
t⋃

i=1

δ�(Mi, Ni).

Note that ρ(f,S) is a lower bound of ρ′(f,S) but not vice versa. Obviously,
the weak distance ρ′(f,S) from f to S is also a lower bound for the monotone
complexity of f . The idea now is to choose appropriate operations � and � such
that ρ′(f,S) is large with respect to the considered monotone function f .

In the following years, generalizations of the approximation method [19, 49]
and seemingly other methods [15, 18, 2, 6, 16] have been developed. Particularly
the so-called “bottleneck counting method” introduced by Haken [15] in 1995
has become popular. Using the bottleneck counting method, simplified proofs of
known lower bounds [6, 2] and better lower bounds [16] have been obtained. In
1997, Simon and Tsai [38] have proved the equivalence of the bottleneck count-
ing method and the approximation method with respect to the weak distance
measure.

3 From Monotone to Non-monotone Complexity

As mentioned above, in [32] Razborov has proved an nΩ(log n) lower bound for
the monotone complexity of the perfect matching function. Since a maximum
matching of a graph can be computed in polynomial time, an Ω0-network of
polynomial size for the perfect matching function exists. Hence, the gap between
monotone and non-monotone network complexity is at least nΩ(log n). In 1986,
Tardos [40] has shown that this gap is indeed exponential. Hence, it is not always
possible to obtain large lower bound for the Ω0-complexity from a large lower
bound of the monotone complexity of a monotone Boolean function. But this
does not exclude the possibility that techniques developed for the proof of lower
bounds for the monotone complexity can also be useful for the proof of lower
bounds for the Ω0-complexity of Boolean functions.

Given any Ω0-network β, we can convert β to an equivalent Ω0-network β′

where all negations occur only at the input nodes. Moreover, the size of β is at
most doubled. For doing this, we start at the output nodes and apply deMorgan
rules for bringing the negations to the inputs. Since gates can be simultaneously
negated and not negated, some gates have to be doubled. The resulting network
is a so-called standard network where only variables are negated. The standard
complexity of a function f ∈ Bn,m is the size of a smallest standard network
which computes f . Note that the standard and the Ω0-complexity of a function
f differs at most by the factor two. Hence, for proving nonlinear lower bounds for
the Ω0-complexity of Boolean functions we can restrict us to the consideration
of standard networks.
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Do there exist explicit monotone Boolean functions where negations are al-
most powerless? Already in 1982, Berkowitz [7] has given an affirmative answer
to this question. The idea is to replace in a standard network for a function
f ∈ Mn,m each negated variable ¬xi by a function hi ∈ Mn without changing
the function computed by the network. Then hi is called a pseudo-complement
for xi with respect to f . Since ¬xi is not monotone, it is not clear that func-
tions in Mn,m with pseudo-complements exist. A function f ∈ Bn is a k-slice if
f(x) = 0 for all x ∈ {0, 1}n with less than k ones and f(x) = 1 for all inputs
x ∈ {0, 1}n with more than k ones. f = (f1, f2, . . . , fm) ∈ Bn,m is a k-slice if
fi, 1 ≤ i ≤ m, are k-slices. Obviously, slice functions are monotone. Only for
inputs with exactly k ones, a k-slice might be nontrivial. Berkowitz has proved
that pseudo-complements for xi with respect to a k-slice f can be obtained using
threshold functions. Threshold functions are monotone and all threshold func-
tions needed for the replacements of the negated variables in a standard network
for f can be realized by a monotone network of size O(n2 log n). Valiant [43] has
improved the obvious upper bound to O(n log2 n). The proof of a larger lower
bound than Ω(n log2 n) for a slice function in Mn,m would imply a nonlinear
lower bound for the B2-complexity of the same function. The trick with respect
to the pseudo-complement for xi for k-slices is that for inputs with exactly k
ones, the value of the pseudo-complement is equal to ¬ai where ai is the value
assigned to the variable xi. If the number of ones in the input is not equal to
k then the considered function is trivial. On the kth slice of {0, 1}n, everything
what we can do with ¬xi we can also do with the pseudo-complement for xi.
Hence, I believe that the consideration of slice functions does not help for prov-
ing a nonlinear lower bound for the Ω0-complexity of a Boolean function. It is
better to consider standard networks directly.

In a standard network we can replace the negated inputs ¬x1,¬x2, . . . ,¬xn

by a network with inputs x1, x2, . . . , xn and outputs ¬x1,¬x2, . . . ,¬xn. We call
such a network which negates n given variables an inverter In. Already 1958,
Markov [22] has shown that inverters In using �log(n+1)� negations exit and that
this number of negations is also necessary. He has not considered the complexity
of the constructed inverter. In 1974, Fischer has constructed an inverter In of
size O(n2 log2 n) and depth O(log2 n) using �log(n+1)� negations. This has been
improved to size O(n log n) and depth O(log n) by Beals, Nishino and Tanaka [5].
This suggests the consideration of negation-limited network complexity. Indeed,
for the clique function Amano and Maruoka [3] have proved a nonpolynomial
lower bound for Ω0-networks using only Ω(log log n) negations. Nevertheless, for
the same reasons why I believe that the consideration of slice functions does not
help, I prefer to consider standard networks directly.

Next we will extend the approximation method as done by Razborov in [33].
For doing this we restrict us to standard networks. Given the two operations �
and �, we define the legitimate model S to be the smallest subset of P ({0, 1}n)
such that

1. A(0), A(1), A(x1), A(x2), . . . , A(xn), A(¬x1), A(¬x2), . . . , A(¬xn) ∈ S and
2. S is closed under the operations � and �.
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For M, N ∈ S we do not need that M �N ⊆ M ∩N or M ∪N ⊆M �N . Hence,
we define more generally

δ+
� (M, N) := (M �N) \ (M ∪N) and δ−� (M, N) := (M ∪N) \ (M �N)

and

δ+
� (M, N) := (M �N) \ (M ∩N) and δ−� (M, N) := (M ∩N) \ (M �N).

For f ∈ Bn and the legitimate model S, we define the distance ρ(f,S) from f
to S to be the minimal t such that there are M ∈ S and triples 〈op1, M1, N1〉,
〈op2, M2, N2〉, . . . , 〈opt, Mt, Nt〉 with opi ∈ {�,�}, Mi, Ni ∈ S such that

A(f) ⊆ M ∪
t⋃

i=1

δ−opi
(Mi, Ni) and M ⊆ A(f) ∪

t⋃
i=1

δ+
opi

(Mi, Ni).

Exactly as in the monotone case we can prove that ρ(f,S) is a lower bound for
the standard complexity of f . Note that with respect to non-monotone approx-
imations, the distance measure ρ(f,S) is also very strong. All elements of S are
given for free such that it is not required that the approximating sets M , Mi and
Ni, 1 ≤ i ≤ t, can be computed by a {�,�}-standard network β′. Analogously
to the monotone case, we can define the following weaker distance measure:

For f ∈ Bn and the legitimate model S, we define the weak distance ρ′(f,S)
from f to S to be the minimal t such that there is a {�,�}-standard network β′

with gates g1, g2, . . . , gt numbered in a topological order where Mi, Ni, 1 ≤ i ≤ t,
are the elements of S computed at the inputs of gate gi, opi is the operation of
gate gi, and M is the element of S computed at the output gate gt such that

A(f) ⊆ M ∪
t⋃

i=1

δ−opi
(Mi, Ni) and M ⊆ A(f) ∪

t⋃
i=1

δ+
opi

(Mi, Ni).

Note that ρ(f,S) is a lower bound of ρ′(f,S) but not vice versa. Obviously, the
weak distance ρ′(f,S) from f to S is a lower bound for the standard complexity
of f . The idea now is to choose appropriate operations � and � such that ρ′(f,S)
is large with respect to the considered function f .

In 1989, Razborov [33] has shown that the largest lower bound which can be ob-
tained with the approximation method using the distance measure ρ for a Boolean
function in Bn is of size Ω(n2). The proof given in [33] uses the fact that all ele-
ments of the model S are given for free. Hence, the proof cannot be applied to
the approximation method which uses the weak distance measure ρ′. Therefore, it
might be possible to prove a superpolynomial lower bound for a Boolean function
using the approximation method with the weak distance measure.

In 1994, Razborov and Rudich [34] have introduced the notion of “natural
proof”. They have shown that natural proofs cannot be used for separating P
from NP unless hard pseudorandom number generators do not exist. It seems
to me that this famous result has discouraged a lot of researchers to work hardly
on proving lower bounds for the network complexity of Boolean functions. Next,
we will sketch the result of Razborov and Rudich.
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A combinatorial property is a subset {Cn ⊂ Bn | n ∈ N} of Boolean functions.
Cn is called natural if there is a stronger property C∗

n ⊆ Cn which satiesfies:

1. For all f ∈ Bn it can be decided in 2O(n) time if f ∈ C∗
n. (constructiveness)

2. |C∗
n| ≥ 2−O(n)|Bn|. (largeness)

The first propertymeans that the characteristic function of C∗
n can be computed

in polynomial time in the size of the truth table of the input function f ∈ Bn. The
second property says that a function randomly chosen from Bn is contained in C∗

n

with non-negligible probability. P/poly is the set of languages which are recogniz-
able by a family of Boolean networks of polynomial size. Note that P ⊆ P/poly. A
combinatorial property isuseful againstP/poly if the network complexity of any se-
quence f1, f2, . . . , fn, . . . where fn ∈ Cn is superpolynomial; i.e., for all k ∈ N there
is nk ∈ N such that the network complexity of fn is greater than nk for alln > nk. A
proof that a Boolean function does not have polynomial network complexity is nat-
ural against P/poly if the proof uses a natural combinatorial property Cn which is
useful againstP/poly. The fundamental result of Razborovand Rudich is the proof
that any large and constructive Cn which separates P from NP would imply that
2nε

-hard pseudorandom number generators do not exist. It is a widely believed
conjecture that such pseudorandom number generators exist. They show that al-
most all non-relativizing, non-monotone and superlinear lower bounds proved up
to that time are natural. They also mention that strong lower bound proofs for the
monotone network complexity are not natural. Recently, Chow [11] has defined
“almost-natural proofs” by weakening the largeness condition slightly and proved
that almost-natural and useful properties exist.

The result of Razborov and Rudich has no discouraging influence to me for
the following reasons: Bounding the depth of the network to be constant seems
to be a much harder restriction than allowing only monotone networks. Most
natural proofs are for constant-depth Boolean networks. All natural proofs are
with respect to Boolean functions of small complexity. For separating P and NP ,
the techniques developed for proving exponential lower bounds for the monotone
network complexity of the characteristic function of an NP -complete problem
seems to be more suitable than techniques developed for proving exponential
lower bounds for the constant-depth network complexity of a Boolean function of
small complexity. The result of Razborov [33] does not exclude the approximation
method with weak distance measure or the bottleneck counting method. These
methods are not natural.

Understanding the power of negations is one of the most challenging problems
in complexity theory. Even when someone would prove a superpolynomial lower
bound for the Ω0-complexity of a Boolean function in NP solving the famous P
versus NP -problem, much would remain open with respect to the understanding
of the power of negations. Can we multiply two integers in linear time or can we
prove an Ω(n log n) lower bound for the Ω0-complexity of the multiplication of
two n-bits numbers? What is the Ω0-complexity of the nth degree convolution or
of the Boolean matrix multiplication? Note that these are Boolean functions with
many outputs. For working on such problems, techniques developed for proving
small lower bounds for the monotone complexity remain to be of interest.
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Abstract. We consider boolean formulas in conjunctive normal form
(CNF). If all clauses are large, it needs many clauses to obtain an un-
satisfiable formula; moreover, these clauses have to interleave. We re-
view quantitative results for the amount of interleaving required, many
of which rely on the Lovász Local Lemma, a probabilistic lemma with
many applications in combinatorics.

In positive terms, we are interested in simple combinatorial condi-
tions which guarantee for a CNF formula to be satisfiable. The criteria
obtained are nontrivial in the sense that even though they are easy to
check, it is by far not obvious how to compute a satisfying assignment
efficiently in case the conditions are fulfilled; until recently, it was not
known how to do so. It is also remarkable that while deciding satisfiabil-
ity is trivial for formulas that satisfy the conditions, a slightest relaxation
of the conditions leads us into the territory of NP-completeness.

Several open problems remain, some of which we mention in the con-
cluding section.

1 Introduction

SAT, the problem of deciding whether a boolean formula in conjunctive normal
form (CNF) is satisfiable by a truth assignment, is the classical NP-complete
problem. Such a CNF formula is obtained as a conjunction of clauses, where a
clause is the disjunction of literals, with a literal either a boolean variable or
its negation; we require that variables in a clause do not repeat (neither with
the same nor complementary signs). A CNF formula is satisfiable if there is a
true-false assignment to the variables so that every clause has at least one literal
that evaluates to true. Consider e.g.

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ,

a 3-CNF formula with 5 clauses over the variables {x1, x2, x3, x4} (for k a
nonnegative integer, a k-CNF formula is a CNF formula where every clause
contains exactly k literals). This formula is satisfiable, e.g. by the assignment
(x1, x2, x3, x4) �→ (true, true, false, true). But, actually, it can be recognised as
satisfiable even without any close inspection, simply because 5, the number of
clauses, is less than 23. This is because a simple probabilistic argument for
instance demonstrates that
� Research is supported by SNF Grant 200021-118001/1.
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it needs at least 2k clauses to construct an unsatisfiable k-CNF formula.

For, suppose that some k-CNF formula has fewer than 2k clauses, then an as-
signment sampled uniformly at random violates each clause with probability 2−k

and, by linearity of expectation, the expected total number of violated clauses is
then smaller than 1, implying that some of the assignments have to satisfy the
whole formula. While this result may reveal some of the beauty of probabilistic
reasoning (cf. [1]), it is not very striking in its own. But let us discover that it
can be extended to yield something much more powerful.

The statement becomes miraculous as soon as we observe that the constraint
on the formula size need not only be satisfied globally but even locally. What
do we mean by global and local? Suppose you have a formula of arbitrary size.
Now pick any of its clauses, say C. We will say that the neighbourhood of C,
denoted by Γ (C), is the set of clauses that share variables with C. These are,
in a sense, those clauses that relate to C, since, if we have C violated by some
given assignment and change some values of variables within it to remedy that
problem, then the clauses in Γ (C) are exactly the ones we might harm. Now our
intuition suggests the following: if we can change values in a clause C without
causing too much damage in its surroundings and if this local property holds
everywhere, then most probably we can find a globally satisfying assignment
by just moving around violation issues until they disappear. And this intuition
proves to be absolutely correct. In order to construct an unsatisfiable k-CNF
formula, not only do we need at least 2k clauses in total, but those clauses need
to be, at least somewhere in the formula, concentrated densely around some
clause. For one can prove the following:

If every clause in a k-CNF formula, k ≥ 1, has a neighbourhood of size at most
2k/e− 1, then the whole formula admits a satisfying assignment.

This statement is known as the Lovász Local Lemma from 1975 ( [2], cf. [1]),
formulated in terms of satisfiability. Before we present two proofs in the next
section, let us discuss other variants of the theme

“In an unsatisfiable CNF formula clauses have to interleave –
the larger the clauses, the more interleaving is required.”

First, it is clear that clauses sharing variables of the same sign will not get us in
major trouble in a search for a satisfying assignment. To reflect this, we define
the conflict-neighbourhood of a clause C in a CNF formula as the set of clauses
which share variables with C, at least one with opposite sign. The so-called
lopsided Local Lemma shows that the above mentioned condition for neighbour-
hoods holds actually for conflict-neigbourhoods. As an aside we cannot resist
mentioning the fact that if each pair of clauses in a CNF formula either has no
conflict or a conflict along at least two variables, then this formula is satisfiable,
unless it contains the empty clause. For a reader familiar with resolution, the
mystery can be resolved instantaneously: Try resolution!

Second, it is easily seen that a clause with a large neighbourhood requires
some variable to occur often in a formula. To make this precise, we call the
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number of occurrences of a variable x (with either sign) in a CNF formula the
degree of x. Then we have:

If every variable in a k-CNF formula, k ≥ 1, has degree at most 2k/(ek),
then the formula is satisfiable.

Is 2k/(ek) tight? While we do not believe this to be true, one can show that
it cannot be increased by more than a constant factor. This holds also for the
previously mentioned bounds for the (conflict-)neighbourhood size, but while
this is certified by the simple example of a k-CNF formula that contains all
possible 2k clauses over a given set of k variables, the degree bound requires a
more elaborate construction and therefore this had been open for some time.

Third, what can be said if we constrain the quality of interleaving rather than
the quantity? For this we consider linear1 CNF formulas, i.e. CNF formulas
where any two clauses share at most one variable. Here is an example of a linear
2-CNF formula:

(y1 ∨ y2) ∧ (y1 ∨ x) ∧ (y2 ∨ x) ∧ (z1 ∨ x) ∧ (z2 ∨ x) ∧ (z1 ∨ z2) .

Since the first half of the formula forces x to be true in a satisfying assignment
and the second forces it to be false, the formula is not satisfiable; it is the smallest
unsatisfiable linear 2-CNF formula. Unsatisfiable linear k-CNF formulas can be
constructed for all k, although their size needs to grow faster than 2k, again a
fact whose proof falls back on the Local Lemma.

Any linear k-CNF formula with at most 4k/(4e2k3) clauses is satisfiable.

We will see that the bound in the condition is tight up to a polynomial factor. Via
a probabilistic argument 8k34k clauses can be shown to suffice for unsatisfiability;
the best explicit construction we know, however, delivers formulas of tower-like
size (2 to the 2 to the 2 . . . k times).

Algorithms, finally: Whenever the easily checkable conditions formulated
above are satisfied, then the algorithmic problem of deciding satisfiability be-
comes trivial. However, whenever the Local Lemma is invoked, it is by no means
obvious how to actually construct a satisfying assignment. This tantalising fact
was resolved only recently via a randomised local repair algorithm as indicated
above. We will present and analyse this method in the next section.

We return to deciding satisfiability. For k a positive integer, let us define
f(k) as the largest integer, so that every k-CNF formula with no variable of
degree exceeding f(k) is satisfiable; we know that f(k) = Θ(2k/k). Clearly,
satisfiability of k-CNF formulas with maximum variable degree at most f(k) is
trivially decidable in polynomial time. We might hope that slight violation of
the bound may still allow for an efficient decision procedure. However, one can
show that, provided k ≥ 3, even for k-CNF formulas with max-degree at most
f(k) + 1 the satisfiability problem becomes already NP-complete. This sudden
1 The term “linear” is borrowed from hypergraph theory, where this must have been

inspired by the behaviour of lines.
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jump behaviour in complexity at f(k) can be shown, although f(k) is not known
for k exceeding 4 (it is not even known whether the function f is computable).
A similar immediate transition from trivial to NP-complete can be observed for
the related problem for the conflict-neighbourhood size.

The remainder of this paper will treat the topic outlined above in more detail,
mostly with proofs. We will also supply references and more of the historical
background of the developments to today’s state of knowledge.

Notation. We will assume (and have assumed) some familiarity with basic no-
tions for boolean formulas in propositional logic and in discrete mathematics.
Still, for the remaining more technical treatment, we want to clarify some no-
tation and terminology. We like to regard clauses as sets of literals, formulas as
sets of clauses. Let us actually go through a succinct recapitulation of our set-up:
Given a set V of boolean variables, we set V := {x |x ∈ V } and call the elements
of V ∪ V literals over V with V the positive literals and V the negative literals.
A clause C over V is a set of literals over V with no pair x and x appearing
simultaneously. A CNF formula F over V is a set of clauses; if all clauses in F
have the same cardinality k, we call F a k-CNF formula. Although we regard
formulas and clauses as sets, we sometimes return to the logic notation, writing
F ∧ C (instead of F ∪ {C}) or even F ∧ ¬C or similar.

An assignment α over variable set V is a mapping α : V → {0, 1} that extends
to V via α(x) := 1 − α(x) for x ∈ V (1 for “true,” 0 for “false”). α satisfies a
clause if at least one of its literals evaluates to 1 under α. And α satisfies a CNF
formula if it satisfies all of its clauses. A CNF formula is satisfiable if a satisfying
assignment exists.

We denote the set of variables that occur in a clause C by vbl(C); for a
CNF formula F , vbl(F ) :=

⋃
C∈F vbl(C). For a clause C = {u1, u2, . . . , uk}, we

write C := {u1, u2, . . . , uk} (note C �= ¬C, unless k = 1). The neighbourhood
of a clause C in a CNF formula F is defined by Γ (C) = ΓF (C) := {D ∈
F | vbl(D)∩vbl(C) �= ∅}. Analogously, the conflict-neighbourhood of C is Γ ′(C) =
Γ ′

F (C) := {D ∈ F |C ∩D �= ∅}. The degree of a variable x in a CNF formula F
is set to deg(x) = degF (x) := |{C ∈ F |x ∈ vbl(C)}|.

We have already encountered f(k), which we defined to be the largest integer
d such that every k-CNF formula with maximum variable degree at most d is
satisfiable. Similarly, let l(k) be the largest integer d such that every k-CNF
formula F for which |ΓF (C)| ≤ d, for all C ∈ F , is satisfiable. Let lc(k) be
defined analogously, but with |Γ ′

F (C)| ≤ d, for all C ∈ F , instead.
A hypergraph H is a pair (V, E) with V a finite set and E ⊆ 2V ; it is k-

uniform if |e| = k for all e ∈ E. H is called 2-colourable (or has property B) if
there is a colouring of the vertices in V by red and blue so that no hyperedge in
E is monochromatic. Extremal problems for 2-colourable hypergraphs have been
considered since Erdős’ papers [3, 4] in 1963. They relate to satisfiability of CNF
formulas in that H = (V, E) is 2-colourable iff the CNF formula E ∪ {e | e ∈ E},
with V now considered as set of boolean variables, is satisfiable. And, therefore,
they will make their appearance during this presentation.
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2 Local Lemma in Terms of SAT – Proof and Algorithm

Theorem 1. Let k ∈ N and let F be a k-CNF formula. If |Γ (C)| ≤ 2k/e − 1
for all C ∈ F , then F is satisfiable.

The statement was first formulated in the famous paper [2] by Erdős and Lovász,
in terms of its application to the hypergraph 2-colouring problem. Its wide appli-
cability to combinatorial questions soon became apparent. Nowadays it is usually
formulated in general probabilistic terms in the following fashion.

Theorem 2 (Lovász Local Lemma, symmetric form)
Let A = {A1, A2, . . . , Am} be any collection of events in a probability space, each
one having probability at most p and such that each event is mutually independent
of all but at most d of the other events. If ep(d + 1) ≤ 1, then with positive
probability, none of the events in A occur.

The SAT formulation, Theorem 1, follows as an immediate corollary. Considering
the random experiment of sampling truth assignments to the CNF formula F at
random and defining Ai to be the event that clause number i becomes violated,
each event has probability 2−k and the desired bound follows. This way, it is a
natural extension of the simple probabilistic argument bounding from below the
total number of clauses in an unsatisfiable formula.

Theorem 1 is asymptotically tight. This is most simple to see as the CNF
formula consisting of all 2k clauses of size k over k variables is clearly unsatisfiable
and has neighbourhoods of size 2k − 1 at each clause. In Section 3, we indicate
how an unsatisfiable k-CNF formula having neighbourhoods of size 2k−1 each
can be constructed, tightening even further the constant gap between the known
lower and upper bounds. Note that in the general probability space setting as
in Theorem 2 the constant e is known to be tight [5].

In the sequel, we give two proofs for Theorem 1. The first “existential” proof
(from [2]) is beautifully short and astounding, but suffers from the mentioned
shortcoming that it is non-constructive and so does not reveal how a satisfying
assignment should be efficiently found. Whether this is in any way possible used
to be a long-standing open problem until in 1991, Beck achieved a breakthrough
by proving in [6] that a polynomial-time algorithm exists which finds a satisfying
assignment to every k-CNF formula in which each clause has a neighbourhood
of at most 2k/48 other clauses. His approach was deterministic and used the non-
constructive version of the Local Lemma as a key ingredient, basically proving
that even after truncating clauses to a 48th of their size (a step used to simplify
the formula and make it fall apart into small components), a solution remains
guaranteed that can then be looked for by exhaustive enumeration. Alon sim-
plified Beck’s algorithm and analysis by introducing randomness and presented
an algorithm that works up to neighbourhoods of 2k/8 in size [7]. Czumaj and
Scheideler later demonstrated that a variant of the method can be made to work
for the non-uniform case where clause sizes vary [8]. In 2008, Srinivasan im-
proved the bound of what was polynomial-time feasible to essentially 2k/4 by a
more accurate analysis [9]. Later that year, Moser published a polynomial-time
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algorithm that can cope with neighbourhood sizes up to O(2k/2) [10], and some-
what later an improved variant that allows for 2k−5 neighbours [11], which is
asymptotically optimal with a constant gap.

The second proof we present here, finally, is a fully constructive version pub-
lished by Moser and Tardos [12] which does not suffer from any gap to the
existential version anymore. While it is general enough so as to apply to many
applications of the Local Lemma, we will formulate it in terms of satisfiabili-
ty here. The proof formalises the intuitive idea mentioned in the introduction:
that the simplest possible method starting at a random point and then applying
some corrections, thereby moving around violated clauses in the formula, always
converges to a solution.

2.1 First Proof of Local Lemma – Existence

Let F be our k-CNF formula and let us require that each clause has a neighbour-
hood of at most d := 2k/e − 1 other clauses. Suppose we select an assignment
α of truth values to the variables uniformly at random. What is the probability
that α satisfies F? If we can prove that probability to be positive, then F has
to be satisfiable. Let us try to do so.

Let F ′ ⊂ F be any subformula that arises from F by removing at least one
clause. Let C ∈ F\F ′ be one of the clauses removed. α has a certain probability
Pr(F ′) of satisfying F ′. We are interested to compute the drop in probability
if we add back C as an additional constraint and we claim that this drop be
bounded by a factor of (1 − e2−k), that is Pr(F ′ ∧ C) ≥ (1 − e2−k)Pr(F ′) (or,
equivalently, Pr(F ′∧¬C) ≤ e2−kPr(F ′)). No matter what the factor exactly is,
as long as it is positive, this readily gives what we have claimed, since the empty
formula is satisfied with probability 1 and then successively adding back all of
F ’s clauses diminishes that probability by a positive factor each step, leaving a
positive probability in the very end.

So let us prove the auxiliary claim. We proceed inductively. Suppose the aux-
iliary claim has been proved for all subformulas F ′ up to a given size and now
we would like to establish it for larger subformulas. First of all, there is a trivial
special case. If the constraint C that we join back to F ′ is independent, that
is, does not have any variables in common with F ′, then the events that F ′ or
C are satisfied, respectively, are independent from one another and the proba-
bility decreases by a factor of exactly (1 − 2−k). We have to understand now
why lowering that factor to (1−e2−k) is sufficient to account for the (restricted)
amount of possible dependencies that we might encounter. So, given the more
problematic case that C shares some variables with F ′, let us get rid of those
dependencies by removing, additionally, all clauses from F ′ that neighbour C;
let F ′′ := F ′\Γ (C). Now F ′′ and C are independent. Clearly, in this case

Pr(F ′′ ∧ ¬C) = 2−kPr(F ′′).

Note that we have removed from F ′ at most d clauses (due to the global hy-
pothesis). By induction, we can add back all of these clauses one by one to F ′′

to get F ′ and thereby obtain



36 H. Gebauer et al.

Pr(F ′) ≥ (1− e2−k)dPr(F ′′) ≥ e−1Pr(F ′′).

On the other hand, since every assignment satisfying F ′ satisfies F ′′, we have

Pr(F ′ ∧ ¬C) ≤ Pr(F ′′ ∧ ¬C) = 2−kPr(F ′′).

The two results yield Pr(F ′ ∧ ¬C)/Pr(F ′) ≤ 2−k/e−1, as claimed. ��

2.2 Second Proof of Local Lemma – Algorithm

Recall our intuitive understanding of the problem setting. If we start with a
randomly chosen assignment, then a 2k-th of the clauses are, on average, vi-
olated. Now suppose that we continue in the most naive fashion: repeatedly
select any of the violated clauses and just select new uniformly random values
for each of the variables occurring in that clause until a satisfying assignment is
reached. Such a strategy of successive local corrections might fail if correcting a
violated clause causes lots of new clauses to be violated. But since the influence
of a clause correction is restricted to the neighbourhood of that clause, then if
such neighbourhoods are always sufficiently small, the strategy sounds intuitively
promising. We will demonstrate that under the hypothesis of the Local Lemma,
it converges to a satisfying assignment in an expected polynomial number of
steps. The existence of such an assignment then follows with the correctness of
the procedure.

Let us execute the algorithm and observe what it does, recording a log of what
corrections are being applied, that is a mapping L : N0 → F with the meaning
that in step t, the algorithm selects clause L(t) for correction. We hope for the
algorithm to terminate quickly, in particular after a finite number of steps, but
in order to be rigorous, we have, for the moment, to allow for an infinite log and
then prove that we will not ever encounter one. Moreover, let N : F → N0∪{∞}
be random variables that count the number of times a given clause occurs in the
log, that is for C ∈ F , we define N(C) := |{t ∈ N0|L(t) = C}|. Again, we a-priori
have to allow for such a counter to take infinity as a value, but we will show
that it never does. In fact, what we prove now is that for each clause C ∈ F ,
the expected value E[N(C)] is upper bounded by a constant. Note that this
implies everything we claim: Since in the expected case, each clause is corrected
at most a constant number of times, the total number of clauses corrected is, in
the expected case, bounded by O(|F |). So not only does the algorithm always
terminate after a finite number of steps (implying the existence of a solution),
it even returns after a polynomial number of operations.

Bounding the expected value E[N(C)] is strikingly simple once we introduce
a concept that goes back to Beck and Alon [6, 7]. The concept we are talking
about is the one of witness trees. A witness tree is an unordered, rooted tree T
along with a labelling σ : V (T ) → F of its vertices V (T ) by clauses from F .
Given a specific run of the algorithm and thus a log L, a witness tree can serve
as a justification for the necessity of any of the executed correction steps. What
do we mean? Let t be any time index such that L(t) is defined. Now let us build
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a witness tree in the following sense. Start with a root vertex r and label that
vertex σ(r) := L(t), that is by the clause corrected in step t. Now traverse the
log backwards and for each time step s = t − 1, t − 2, ..., 0, check if the clause
L(s) has any variables that it shares with any of the labels in the tree built so
far. If L(s) is independent from all clauses currently serving as labels, discard
it. If there are nodes in the tree that have variables in common with L(s), then
select any deepest of those nodes and create a new child node of it, labelling
that new child L(s). Once arriving at s = 0 we have built a witness tree T (t)
that justifies correction step t. In the following sense.

If we look at a witness tree T (t), thereby forgetting everything else we have
seen while the algorithm was running, we can reconstruct a significant portion of
the execution history. Traversing the tree T (t) in a bottom-up and level-by-level
fashion (as in a reverse breadth-first-search that starts at the root), we obtain a
sequence of clauses that is essentially a subsegment of the execution log. Each
node we encounter during such a traversal represents some correction step in
L with the label of the node being the clause corrected in that step. And the
way we defined the witness T (t) immediately assures us of two things: firstly,
the ordering in which the corrections have taken place is similar to the ordering
in which we traverse the nodes. It isn’t identical, but it preserves what we will
be interested in: Whenever two nodes v1 and v2 are labelled with clauses that
depend on each other, i.e. that have common variables, then v1 occurs before v2
in the traversal if and only if v1 represents a correction step occurring before v2.
Secondly, when we traverse some node v representing correction step t, then all
correction steps t′ < t that relate to step t in the sense that L(t) and L(t′) share
common variables do occur in the tree and have therefore been traversed before.

What these two properties imply is the following: If we traverse our tree in the
described way and we count the number of times some variable x has occurred
so far in labelling clauses, then that number corresponds to the number of times
x has been reassigned new values before the corresponding correction step. So
if we have seen variable x already 10 times before we traverse a node v labelled
σ(v) = C, then this means that at the time the correction v represents took
place, x had its 10th new random value and was then assigned its 11th one.
This in turn means that we can reconstruct, by just looking at the tree, all the
10 values x had been assigned before. This is because node v represents a time
step where clause C was selected for correction, that is a time step when C was
violated and thus the 10th value of x has to have been the one that dissatisfies
the corresponding literal we find in C. The same holds for all other variables in
the clause and for all other nodes we traverse.

Now suppose you are given a fixed witness tree T . What is the probability that
exactly this tree can occur as witness for some correction step? As we have seen
before, if we traverse T bottom-up we can reconstruct for each node the values
the k variables in the corresponding clause were assigned before the correction
step represented, that is we can reconstruct k of the random bits the algorithm
has used. If the tree has n vertices, we can reconstruct nk bits in total, just
looking at the tree. Since those bits are uniformly random, the probability that
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all of them sample such that T can be constructed (we will say that T is valid if
they evaluate as needed) is exactly 2−nk. On the other hand, let us count how
many witness trees there exist in total. Let us fix some clause C ∈ F and some
number n and let us count the number of witness trees of order n which have C
as the label of their root vertex. What restricts that number is the way in which
witness trees were defined, which requires that if u is a child node of v, then
the label σ(u) must be a neighbour of the clause σ(v). This allows us to embed
each witness tree rooted at label C into an infinite tree that just enumerates
neighbouring nodes: Consider an infinite tree with its root labelled C and such
that each node v labelled σ(v) has |Γ (σ(v))| children labelled Γ (σ(v)). Such a
tree is at most d-ary and each witness tree is clearly a subtree of it. A two-line
counting exercise shows that an infinite rooted (≤ d)-ary tree has at most (ed)n

subtrees of size n. Therefore there are at most (ed)n witness trees of order n that
have C as their root label. Since each of them may occur with a probability of
at most 2−nk, the expected number of witness trees of size n that can occur is
bounded by (ed2−k)n. Plugging in d and summing over all possible sizes n ≥ 1,
this becomes a geometric series that converges to a constant. Hence, there is at
most a constant expected number of valid witness trees rooted at C.

What does this mean? Clause C occurs N(C) times t1, t2, . . . , tN(C) in the exe-
cution log. For each of those times we can ask for a witness tree T (t1), T (t2), . . . ,
T (tN(C)) to justify that correction step. All of those trees have to be valid, and
they are distinct since T (ti+1) needs to have basically the same vertices as T (ti)
(though maybe arranged differently) and at least one more (to represent step
ti+1). So N(C) is at most as large as the number of valid witness trees rooted at
C. Since the latter number is bounded by a constant in expectation, the former
is so, too. And this concludes the argument. ��

2.3 A Stronger Variant – Conflicts

There is a slightly stronger version of the Lovász Local Lemma, referred to as
the lopsided Local Lemma ( [13, 1, 14]), which does not only distinguish between
dependent and independent events but also discriminates between positive and
negative correlations. In terms of satisfiability, this means that the bound on the
maximum neighbourhood size is replaced by a bound on conflict neighbourhoods.

Theorem 3. Let k ∈ N and let F be a k-CNF formula. If |Γ ′(C)| ≤ 2k/e − 1
for all C ∈ F , then F is satisfiable.

Both the purely existential and the constructive proof we detailed above can be
adapted so as to demonstrate this statement. For the latter, the same algorithm
will work and for the analysis it suffices to observe that witness trees built by
attaching only lopsided neighbours during backward traversal of the log equally
allow to reconstruct k bits of the randomness used per vertex, irrespective of the
fact that a smaller amount of information might be encoded by the tree.

The lopsided Local Lemma has successfully been used to establish better
bounds for the number of dependencies or the number of occurrences per variable
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that we can allow, still being guaranteed that all formulas within that class are
satisfiable. Berman, Karpinski and Scott, e.g., have demonstrated in [15], using
the lopsided Local Lemma, that every 6-, 7-, 8- or 9-CNF formula in which every
variable occurs at most 7, 13, 23 or 41 times, respectively, is satisfiable. Their
argument can be used to obtain bounds for other values of k as well and it can
be made constructive by the methods we presented in the previous section. Let
us now have a closer look at bounded occurrence instances of satisfiability.

3 Bounded Variable Degree

Let us call a k-CNF formula in which no variable occurs in more than d clauses
a (k, d)-CNF formula. Recall f(k) which we can now equivalently define as the
unique integer so that all (k, f(k))-CNF formulas are satisfiable and an unsatis-
fiable (k, f(k) + 1)-CNF formula exists. For k ≥ 1, a (k, 0)-CNF formula has to
be empty and thus satisfiable. The CNF formula of all 2k k-clauses over a given
set of k variables constitutes an unsatisfiable (k, 2k)-CNF formula, so f(k) exists
with 0 ≤ f(k) ≤ 2k.

The first to consider f(k) was Tovey [16] in 1984 (with Christos Papadimitriou
raising the question). He showed f(k) ≥ k (by an argument based on Hall’s
Theorem which we will provide later in Lemma 3); he suspected his bound
to be weak and actually conjectured that all (k, 2k−1 − 1)-CNF formulas are
satisfiable [16, Conjecture 2.5].

A clearer picture of f(k) has evolved since then. For, if every variable occurs
at most d times in a k-CNF formula, no clause can collect more than k(d − 1)
neighbours. Thus, with the Local Lemma (as in Theorem 1), the inequality
k(d − 1) ≤ 2k/e − 1 implies that every (k, d)-CNF formula is satisfiable. This
connection and the implied bound of f(k) ≥ �2k/(ek)� was first established by
Kratochvíl, Savický, and Tuza [17] – still the best lower bound known for k large.

They supplied also an upper bound of 2k−1−2k−4−1. Significant progress on
the upper end was made when Savický and Sgall [18] showed f(k) = O(k−0.262k).
This was further improved to f(k) = O((2k log k)/k) by Hoory and Szeider [19],
now only a log-factor shy of the lower bound. Recently, the gap has been closed
up to a constant factor by Gebauer [20] and f(k) = Θ(2k/k) is settled. (A brief
discussion of the situation for small k is postponed to the end of this section.)

Theorem 4. For k a large enough integer,⌊
2k

ek

⌋
≤ f(k) < 2k+1

k .

If k is a sufficiently large power of 2 we have f(k) < 2k/k.

SAT connects to many (sometimes seemingly unrelated) problems. The proof
of the upper bound in Theorem 4 is another example for this fact: The actual
construction was originally developed for refuting a conjecture of Beck on Com-
binatorial games [21]. In such a game Maker and Breaker take turns in choosing
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vertices from a given hypergraph. Maker wants to completely occupy a hyper-
edge and Breaker tries to prevent this. The problem is to find the minimum
d = d(k) such that there is a k-uniform hypergraph of maximum vertex degree
d where Maker has a winning strategy.

One possible strategy Maker can use is to partition all but at most one of the
vertices into pairs and whenever Breaker claims one vertex of a pair, Maker takes
the other one. If Maker uses such a pairing strategy, this game on hypergraphs
is in some sense equivalent to unsatisfiability. Indeed, given a hypergraph H
together with a pairing P we can interpret this as a CNF formula F where the
hyperedges of H are understood as clauses and the two vertices of a pair of P are
considered as complementary literals. It is easily seen that Maker wins the game
on H using the pairing strategy according to P if and only if F is unsatisfiable.

If there is a k-uniform hypergraph of maximum vertex degree d with a winning
pairing strategy for Maker, then there is an unsatisfiable (k, 2d)-CNF formula.

This clearly shows the relation between the two problems. For the proof a third
player enters the picture: binary trees. In this presentation we will proceed
directly from binary trees to CNF formulas.

3.1 Trees with All Leaves Deep, But Few Leaves Close Below Any
Node

We consider binary trees where every node has either two or no children. In such
a binary tree we say that a leaf v is -close to a node w if w is an ancestor of
v, at distance at most  from v. For k and d positive integers, we call a binary
tree T a (k, d)-tree if (i) every leaf has depth2 at least k − 1 and (ii) for every
node u of T there are at most d leaves (k−1)-close to u; (from (i) it follows that
every leaf is (k−1)-close to exactly k nodes). A moment of reflection shows that
every binary tree with all leaves at depth at least k − 1 is a (k, 2k−1)-tree. The
following lemma motivates a search for (k, d)-trees with d smaller than 2k−1.

Lemma 1. Let T be a (k, d)-tree, k and d positive integers. Then there is a
k-CNF formula F = F (T ) with the following properties.

(a) For m, the number of leaves of T , we have |F | = 2m. (b) Every literal
occurs in at most d clauses of F . (c) If vbl(C) ∩ vbl(D) �= ∅ for two distinct
clauses C and D in F , then these clauses are conflict-neighbours with a unique
variable that appears in C and D with opposite signs. (d) F is unsatisfiable. (e)
If, for every node u in T , there is at least one leaf that is (k−1)-close to u, then
|F | = |vbl(F )|+ 1 and F is minimal unsatisfiable.

(1) F is an unsatisfiable (k, 2d)-CNF formula; thus, f(k) ≤ 2d− 1.

(2) F is an unsatisfiable k-CNF formula with |Γ (C)| ≤ kd for all clauses C ∈ F ;
hence, l(k) ≤ kd− 1.

2 The root has depth 0, its children have depth 1, . . .
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Proof. We move to a binary tree T̂ by attaching the roots of two copies of T
as the two children of a new root r. This yields a (k, d)-tree (actually, with all
nodes of depth at least k). Obviously, it has 2m leaves and, as it goes with binary
trees, 4m − 1 nodes altogether. Two nodes are called siblings, if they share the
same parent. Leaving aside the root, the remaining 4m − 2 nodes of T̂ can be
partitioned into 2m− 1 sibling pairs.

For V some set of 2m − 1 boolean variables, we label the nodes of T̂ other
than the root by literals in V ∪ V so that every literal appears exactly once and
siblings get complementary literals. With every leaf v we associate a clause Cv

by walking along a path of length k − 1 from v towards the root and collecting
all labels encountered on this path (i.e. the labels of all nodes to which v is
(k − 1)-close). The set of clauses Cv, over all leaves v of T̂ , constitutes F .

The fact that every leaf of T̂ has depth at least k guarantees that paths of
length k − 1 starting at leaves will never reach the root. So there are indeed
always k literals to collect and F is a k-CNF formula. Also |F | = 2m is obvious
(therefore (a)). The defining property of (k, d)-trees guarantees that no label is
collected more than d times (hence (b)). F is unsatisfiable (as claimed in (d)),
for if an assignment α over V is given, it defines a path from the root to a leaf,
say v, by always proceeding to the unique child whose label is mapped to 0 by
α; Cv’s fate of being violated by α is determined.

Let us settle the claimed neighbour property in (c). Suppose that vbl(Cu) ∩
vbl(Cv) �= ∅ for leaves u and v, u �= v. If x ∈ Cu and x ∈ Cv, then the parent w
of the siblings labelled by x and x, respectively, is the lowest common ancestor
of u and v (i.e. the node of maximum depth that appears on both paths from
u and v, respectively, to the root); therefore x is unique. For the existence of
a complementary pair in Cu and Cv, consider the lowest common ancestor w
of u and v; w cannot be a leaf since u �= v. The literals occurring in the two
subtrees rooted at the children of w do not share any common variable other
than the complementary pair placed at the children of w. Hence, the literals
associated with these two children must appear in the clauses, one literal in Cu

the other complementary literal in Cv, since otherwise their variable sets are
disjoint. Assertion (c) is shown.

Next we prove (e). With the assumption given, all 2(2m− 1) literals appear
in some clause, so |vbl(F )| + 1 = 2m = |F |. It remains to show satisfiability of
Fv := F \{Cv} for all leaves v. For v a leaf of T̂ , consider the following procedure,
in the course of which, besides defining an assignment, we make nodes responsible
for clauses in Fv.

First, set the literals of all nodes on the path from v to root r (excluding r)
to 0 and initialise S as the set of all siblings of these nodes. Now, while S is
nonempty, (i) remove some u ∈ S from S, (ii) set its literal to 1, (iii) choose a
leaf vu (maybe u itself) that is (k− 1)-close to u, (iv) set all literals of nodes on
the path from vu to u (excluding u) to 0, (v) add all siblings of these nodes to
S, and, finally, (vi) make u responsible for Cvu .

In this proceeding we see an invariant maintained: The subtrees rooted at the
nodes in S are disjoint and they comprise exactly the nodes with their literals
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undefined. Thus the value of a literal is set at most once and, actually, at least
once, since the node of minimal depth with its literal undefined would have to
be in S (and therefore the procedure couldn’t possibly have stopped already).
Now it is easily seen that this procedure gives a valuation of the literals that is
indeed an assignment of V . Whenever a node u is responsible for a clause, then
this clause is satisfied due to u’s literal. Also, a clause cannot have two nodes
responsible for it, while every node with its literal set to 1 is responsible for some
clause. It becomes obvious that the responsibility map is a bijection between the
2m− 1 nodes with their literal set to 1 and the 2m− 1 clauses in Fv. Hence, Fv

is satisfied. And so are we.
Implication (1) follows from (b) and (d). (2) follows from (b-d): In particular,

if we define occ(u) := |{C ∈ F |u ∈ C}, then (c) allows us to write |Γ (C)| as∑
u∈C occ(u) – hence, at most kd – for every clause C ∈ F . ��

In a similar fashion, one can show that a (k, d)-tree yields a k-uniform hypergraph
of maximum vertex degree d where Maker has a winning pairing strategy. We
are left with the task of constructing (k, d)-trees with sufficiently small d.

Lemma 2. (i) A (k, �2k/k�)-tree exists for every sufficiently large k. (ii) If k is
a sufficiently large power of 2 then a (k, 2k−1/k)-tree exists.

Lemmas 1(1) and 2 imply the upper bounds in Theorem 4. Also Lemmas 1(2)
and 2(ii) give us an upper bound of l(k) < 2k−1 for large enough powers of 2.
So let us now summarise also our findings for l(k) and lc(k).

Theorem 5. We have ⌊
2k/e

⌋− 1 ≤ lc(k) ≤ l(k) < 2k−1

where the upper bound holds for k any sufficiently large power of 2 but can be
replaced by 2k − 1 for all positive integers k.

Moreover, the relation to l(k) tells us that we will not be able to find (k, d)-trees
with d < (l(k)+1)/k and, therefore, – along the lower bounds of l(k) in Section 2
– the range d < 2k/(ek)− 1 is inaccessible.

The proof of Lemma 2 is tedious and too long for this presentation. However,
a weaker statement, still settling the asymptotics of f(k), can be shown with
less effort.

Proof of existence of (k, 2k+1/k)-trees for k a power of 2. We have 2k+1/k ≥ 2k−1

for k ≤ 4, so we can assume that k ≥ 8 in our proof. Let T ′ be a full binary tree
of height k − 1 (i.e. a binary tree where all leaves have the same depth k − 1).
We subdivide its leaves into intervals of length k/2. For {v0, . . . , vk/2−1} such
an interval, we attach a full binary subtree of height i to vi. Let T denote the
resulting tree and let the leaf-range r(v) of a node v denote the number of leaves
(k − 1)-close to v.

It suffices to show that r(v) ≤ 2k+1

k for all nodes of T . We apply induction on
the depth i of v. For i = 0 the claim holds. Indeed, note that out of each of the



The Lovász Local Lemma and Satisfiability 43

2k−1

k/2 intervals, exactly one vertex (v0, respectively) is (k − 1)-close to the root

and, hence, the leaf-range of the root is 1
2

2k+1

k . Now suppose that v has depth
i ∈ {1, . . . , k/2 − 1}. Note that the set of descendants of v at depth k − 1 can
be subdivided into 2k−1−i

k/2 intervals, i.e. at least one interval for the values of k

we consider. Let v′ denote the parent of v. By construction the number of leaf
descendants which have distance at most k− 2 from v equals r(v′)/2. Moreover,
every interval {v0, . . . , vk/2−1} gives rise to 2i leaves on level k− 1 + i, implying
that the number of leaf descendants of v which have distance exactly k−1 from v

equals 2k−1−i

k/2 · 2i = 1
2

2k+1

k . So altogether r(v) ≤ r(v′)
2 + 1

2
2k+1

k ≤ 2k+1

k . It remains
to consider the case where v has depth at least k/2. By construction no leaf of
T has depth larger than k/2+ k− 2, implying that the leaf-range of v is at most
the leaf-range of its parent. ��

3.2 Small Values

Although the lower bounds on f(k), l(k) and lc(k) we can derive via the Local
Lemma grow exponentially, they are weak for small values of k. Here another
classic from combinatorics enters the picture: Hall’s marriage theorem.

Lemma 3. (1) f(k) ≥ k for k ≥ 1 [16] and (2) l(k) ≥ lc(k) ≥ k for k ≥ 2.

Proof. (1) For k ≥ 1, let F be a k-CNF formula over a variable set V with no
variable occurring in more than k clauses of F . Consider the incidence graph
between clauses and variables, i.e. the bipartite graph with vertex set F ∪ V ,
where {C, x} is an edge iff x ∈ vbl(C). In this graph, clause-vertices have degree
exactly k and by assumption variable-vertices have degree at most k. Therefore,
Hall’s condition for a matching covering all clause-vertices holds. An assignment
is now defined by letting every variable x that is matched to a clause C map
to the value so that it satisfies C. The matching property prevents conflicts in
doing so. No matter how we complete the assignment for unmatched variables,
it will satisfy all clauses.
(2) Let k ≥ 2. We will actually prove a bound of lc(k) ≥ �(f(k) + 1)/2�+ k− 2;
with the bound on f(k) from (1) this yields a lower bound of �(3k − 3)/2� ≥ k.

So we have to show that every unsatisfiable k-CNF formula F contains a clause
C with |Γ ′

F (C)| ≥ �(f(k)+1)/2�+k−1. First we pass to a minimal unsatisfiable
k-CNF formula G ⊆ F . G has a variable x with degG(x) ≥ f(k) + 1; w.l.o.g. we
assume that literal x occurs at least �(f(k) + 1)/2� times. Now choose a clause
C ∈ G with literal x. Γ ′

G(C) contains all clauses with x. In addition, according
to Lemma 4, for all variables z ∈ C \ {x} there has to be a clause Dz ∈ G
with the property that z is the unique variable that appears in C and Dz with
opposite signs. It follows that |Γ ′

G(C)| ≥ �(f(k) + 1)/2�+ k − 1. This concludes
the argument, since Γ ′

F (C) ⊇ Γ ′
G(C). ��

In fact, f(k) = k is known for k ≤ 4 ( [16] for 3 and [22] for 4). The best known
bounds for k = 5 are 5 ≤ f(5) ≤ 7, [23]. k = 6 is the first value for which the
bound in Lemma 3(1) is known not to be tight, [15]: 7 ≤ f(6) ≤ 11. See [23] for
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a further discussion of f(k) for small k with currently best bounds known (and
also Section 3.3 below). The bound for lc(k) suffices our needs in the proof of
Theorem 9 below, but perhaps even the lower bound of 3 for lc(3) is not tight;
we have not followed up this matter further.

We conclude with the missing lemma employed in the proof of Lemma 3(2) (in
the spirit of the properties of so-called blocked clauses introduced by Kullmann
[24, Definition 3.1]).

Lemma 4. Let F be a minimal unsatisfiable CNF formula. Consider x and
C ∈ F with x ∈ vbl(C). Then there is a clause D with the property that x is the
unique variable that appears in C and D with opposite signs.

Proof. Since F is minimal, F \{C} has a satisfying assignment α. By assumption
of unsatisfiability of F , α cannot satisfy C. Now switch the value of x in the
assignment, thereby satisfying C and thus violating some other clause D ∈ F .
Now, as easily seen, D serves the purpose. ��

3.3 A Special Class of Unsatisfiable CNF Formulas – MU(1)

MU(1) is defined as the set of all minimal unsatisfiable CNF formulas F with
|F | = |vbl(F )|+1. This definition may appear somewhat arbitrary, so why care?
First, when searching for extremal unsatisfiable CNF formulas with the prop-
erties we are interested in, we can confine ourselves to minimal unsatisfiable
CNF formulas. Second, as observed by A. Tarsi (cf. [25]), |F | − |vbl(F )|, called
deficiency, is positive for every minimal unsatisfiable CNF formula F ; hence,
CNF formulas in MU(1) are minimal w.r.t. to deficiency. Formulas in MU(1)
can be recognised efficiently [26, 27, 28] and they have been shown to be uni-
versal in the sense that every unsatisfiable CNF formula F has a G ∈ MU(1)
with a homomorphism from G to F [29]. We do not define homomorphisms for
CNF formulas here. They preserve unsatisfiability but alter other properties,
e.g. due to “clause collapses” they can decrease neighbourhood sizes and variable
degrees. Still, many extremal unsatisfiable CNF formulas can be drawn from
MU(1).

With this in mind and, returning to our problem, given that we do not even
know whether f(k) is computable, Hoory and Szeider [23] headed for the more
modest goal of investigating f1(k), the largest integer such that every (k, f1(k))-
CNF formula in MU(1) is satisfiable. They show that f1 is computable, in fact,
reasonably efficiently. With f(k) ≤ f1(k), this allows them to derive the best
known upper bounds for f(k) for small k: f(5) ≤ 7, f(6) ≤ 11, f(7) ≤ 17, f(8) ≤
29, f(9) ≤ 51.

While the previous bound of f(k) = O((2k log k)/k) in [19] was not established
through formulas in MU(1), the constructions in [20] reside in MU(1); indeed,
Lemma 1(e) provides this fact, since it is not too hard to see that if a (k, d)-
tree exists, then we can modify it so that the assumption of Lemma 1(e) holds.
Therefore, we can conclude that f(k) and f1(k) are within a constant factor of
each other. Whether f(k) = f1(k) for all k is an interesting open question.
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4 Linear Formulas

We call a CNF formula F linear if |vbl(C) ∩ vbl(D)| ≤ 1 for any two distinct
clauses C and D in F . For example, the formula {{x, y}, {ȳ, z}, {x̄, z̄}} is linear,
whereas the formula {{x, y, z}, {x̄, y, u}} is not. This class of formulas has been
introduced in [30]. It is a natural analogue of the notion of linear hypergraphs: A
hypergraph H = (V, E) is linear if |e∩f | ≤ 1 for any two distinct edges e, f ∈ E.
In this section we investigate the following questions: Are there unsatisfiable
linear k-CNF formulas, for each k? If yes, how large do they have to be? There
is the analogous question asking for k-uniform linear hypergraphs that are not
2-colourable (see last paragraph of introduction). Existence of those has been
shown by Abbott [31], and Erdős and Lovász [2] give lower bounds on their size
(in terms of number of vertices and hyperedges). Bounds for chromatic numbers
exceeding 2 can be found in [32]. Given a k-uniform non-2-colourable hypergraph
H with m hyperedges, we immediately obtain an unsatisfiable k-CNF formula
F (H) with 2m clauses (as described at the end of the introduction). However,
for k ≥ 2, even if H is linear, F (H) is certainly not. Therefore, it is not clear
(but true, as we will see) that bounds on the size of unsatisfiable linear k-CNF
formulas are similar to those of non-2-colourable linear k-uniform hypergraphs.

Let flin(k) be the largest integer so that every linear (k, flin(k))-CNF formula
is satisfiable. Note flin(k) ≥ f(k) ≥ �2k/(ek)�.
Theorem 6 ( [33]). Any unsatisfiable linear k-CNF formula has at least

1
k (1 + flin(k − 1))2 > 4k

4e2k3

clauses. There exists an unsatisfiable linear k-CNF formula with at most 8k34k

clauses.

Remark. 1
k (1 + flin(k − 1))2 ≤ 8k34k follows; thus flin(k − 1) ∈ O(k2 2k).

Proof. The proof of the lower bound is similar to the one for the size of
non-2-colourable linear k-uniform hypergraphs in [2]. The following lemma is
instrumental.

Lemma 5. Let F be a linear k-CNF formula. If there are at most flin(k − 1)
variables of degree exceeding flin(k − 1), then F is satisfiable.

First we show how the lemma implies the lower bound. Let X be the set of
variables x with degF (x) > flin(k− 1). If F is unsatisfiable, then by the lemma,
|X | > flin(k − 1). Therefore, the lower bound follows from

|F | = 1
k

∑
x∈vbl(F ) degF (x) ≥ 1

k (1 + flin(k − 1))|X | ≥ 1
k (1 + flin(k − 1))2

Proof (of the lemma). For a literal u, let degF (u) denote the degree of the
variable underlying u in F . First we construct a linear (k − 1)-CNF formula
F ′ as follows: For every clause C ∈ F , let uC be a literal of C that maximises
degF (uC) and write C′ := C \ {uC}; F ′ is obtained as F ′ := {C′ |C ∈ F}. We
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claim that degF ′(x) ≤ flin(k − 1) for all variables x; thus, F ′ is satisfiable and
therefore F is satisfiable.

Consider a variable x. Clearly, degF ′(x) ≤ degF (x) and so if degF (x) ≤
flin(k−1), we are done. Otherwise, let C′

1, . . . , C
′
t, t = degF ′(x), be the clauses in

F ′ containing x or x̄. There are clauses C1, . . . , Ct in F such that C′
i = Ci\{uCi},

1 ≤ i ≤ t. By choice of uCi , degF (uCi) ≥ degF (x) > flin(k−1). Since F is linear,
the uCi’s have to be distinct, thus by assumption, t ≤ flin(k − 1). ��
We now prove the upper bound. Take a linear k-uniform hypergraph H = (V, E)
with n vertices and m edges, to be determined later. By interpreting the vertices
of H as variables and the hyperedges as clauses, this is a (satisfiable) linear
k-CNF formula. We now replace each literal in each clause by its complement
with probability 1

2 , independently in each clause. Let F denote the resulting
(random) formula. Any fixed assignment α has a 1− 2−k chance of satisfying a
given clause of F , and thus

Pr[[]α satisfies F ] = (1− 2−k)m < e−m2−k

.

There are 2n distinct assignments, hence by the union bound

Pr[[]some α satisfies F ] < 2ne−m2−k

= eln(2)n−m2−k

.

If m/n ≥ ln(2)2k, the above expression is at most 1, and hence with positive
probability, no assignment satisfies F . In other words, at least one F obtained
in the above fashion is not satisfiable.

We construct a linear k-uniform hypergraph with few hyperedges, but with
a large hyperedge-vertex ratio. Let q ∈ {k, . . . , 2k} be a prime power. Choose
d ∈ N such that q2 ln(2)2k ≤ qd < q3 ln(2)2k and set n := qd. Consider the
d-dimensional vector space Fd

q over the field Fq. It has n elements, called points.
In a vector space, there is a line through any pair of points, and a line has q

elements. Hence there are exactly
(
n
2

)
/
(
q
2

) ≥ n2

q2 lines in Fd
q . By choice of d, we

have n ln(2)2k ≤ n2

q2 , hence we can choose m := n ln(2)2k distinct lines in Fd
q .

From each such line arbitrarily select k points and form a hyperedge. Let E
be the set of all m hyperedges formed this way. (The reader may easily check
that two distinct lines cannot yield the same hyperedge.) Thus, H = (Fd

q , E)
is a k-uniform hypergraph. It is a linear hypergraph, since any pair of distinct
lines intersect in at most one point. By construction, m

n = ln(2)2k, and m =
n ln(2)2k ≤ q3 ln(2)24k ≤ ln(2)28k34k, which proves the upper bound. ��
This proof is simpler than the probabilistic construction of a non-2-colourable
k-uniform linear hypergraph in [32]. This has a good reason: In our case, we
inject randomness by choosing the signs of literals, whereas in the hypergraph
case, there are no signs, and randomness comes only in the form of selecting
hyperedges from some large set. This cannot be done independently for every
hyperedge, since one has to guarantee linearity.

A question that might have formed in the reader’s mind is what happens
when one relaxes linearity to require that two clauses share at most one literal,
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i.e. |C∩D| ≤ 1, as opposed to the stricter requirement that |vbl(C)∩vbl(D)| ≤ 1.
The answer is that little changes. We can prove almost the same lower bound
as in Theorem 6, sacrificing only a constant factor. However, if we require that
any two distinct clauses C, D have at most one conflict, i.e. |C ∩D| ≤ 1, things
change dramatically, see Section 4.2 below.

What happens if we require that |vbl(C) ∩ vbl(D)| ≤ , for some  ≥ 2?
Here our bounds also change significantly, and the exponential function in upper
and lower bound will no longer be 4k, but 2

�+1
� k. If  is a constant (i.e. does

not grow with k), upper and lower bounds are still only a polynomial factor
apart. The proof goes along similar lines as for Theorem 6 and the details can
be found in [33]. The bounds comply nicely with those in [32] for 2-colourability
of hypergraphs in which two hyperedges can intersect in at most  vertices.

4.1 Why Are Small Explicit Constructions So Hard to Come Up
with?

It is often surprisingly easy to obtain rather tight bounds through a probabilis-
tic construction – and frustratingly difficult to come up with an explicit one. In
the case of linear formulas, explicit constructions have been given in [34, 35].
However, the size of the constructed formulas is terrifying: For an unsatisfiable

linear k-CNF formula, it takes 22. . .
2

clauses, where the size of the tower is k.
Actually, we can provide some evidence for why small explicit constructions may
be difficult. Loosely speaking, there are three ways to come up with unsatisfi-
able CNF formula: First, one can build formulas where unsatisfiability follows
immediately from construction, by local considerations. This is the case for the
“complete formula” mentioned in Section 2, and also for the formula constructed
in the proof of Theorem 4. Second, unsatisfiability can follow from a probabilis-
tic or counting argument, as in the proof of Theorem 6. Third, unsatisfiability
can follow from some more global combinatorial principle (e.g. the pigeon hole
principle or the fact that in a graph, the number of vertices having odd degree
must be even). This is typically the case for formulas with provably large resolu-
tion complexity (see Ben-Sasson and Wigderson [36] for several beautiful proofs
on resolution complexity). Normally, formulas obtained the first way have small
resolution complexity, even short treelike resolution proofs. Therefore, it seems
unlikely to obtain unsatisfiable linear k-CNF formulas of reasonable size going
the first way, for one can prove the following:

Theorem 7 ( [33]). Any resolution tree of any unsatisfiable linear k-CNF for-
mula has at least 22(k−1)/2−1 nodes.

Let us recall the class MU(1) from Section 3.3. The extremal examples for most
parameters considered so far are in MU(1): for f , l and lc via the tree derived
formulas from Section 3; also an unsatisfiable k-CNF formula with 2k clauses can
be found in MU(1) (see argument for Proposition 1 below). For linear CNF for-
mulas, the explicit constructions in [34, 35] can be adapted to result in formulas
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in MU(1), but they exhibit the tremendous size as mentioned. This is inherently
so for linear CNF formulas in MU(1).

Theorem 8 ( [33]). For every ε > 0 there exists some c ∈ N such that every

linear k-CNF formula in MU(1) has at least aa
. . .

a

clauses, where a = 2− ε and
the size of the tower is k − c.

4.2 1-Conflicts

Clauses C and D are called 1-conflict neighbours, if exactly one variable occurs
in C and D with opposite signs,3 i.e. |C ∩ D| = 1. We know already from the
introduction (see also Lemma 4) that 1-conflicts have to occur in unsatisfiable
CNF formulas (unless there is an empty clause); hence, they are crucial and
deserve special attention. In the presence of linear formulas, it seems natural to
consider CNF formulas where all conflicts are restricted to 1-conflicts, so let us
call a CNF formula conflict-linear if each pair of clauses either has no conflict
or has a 1-conflict. Here the typical questions we ask can be easily resolved.

Proposition 1. For every nonnegative integer k, there is an unsatisfiable
conflict-linear k-CNF formula with 2k clauses.

This is tight, since all k-CNF formulas with less than 2k clauses are satisfiable.

Proof. Follow the construction of an unsatisfiable k-CNF formula F (T ) as in
Lemma 1 starting from a full binary tree T of height k − 1 (with 2k−1 leaves).
This readily delivers a CNF formula as required. ��
We define lc1(k) as the largest integer so that all k-CNF formulas with all
1-conflict neighbourhoods of size at most lc1(k) are satisfiable. Note that if
we take all 2k k-clauses over a given set of k variables, then in the resulting
unsatisfiable k-CNF formula all 1-conflict neighbourhoods have size k. There-
fore, lc1(k) ≤ k − 1. This bound is already tight: Given an unsatisfiable k-CNF
formula F , consider a minimal unsatisfiable subset G of F . By Lemma 4, for
all clauses in G the number of 1-conflict neighbours in G has to be at least k
and 1-conflict neighbourhoods in F can only be larger. We have not only deter-
mined lc1(k) ≥ k−1 in this way; in fact, we have shown that every unsatisfiable
k-CNF formula has at least 2k clauses with 1-conflict neighbourhoods of size at
least k.

Proposition 2. lc1(k) = k − 1.

5 A Sudden Jump in Complexity

Satisfiability of (k, f(k))-CNF formulas is trivially decidable in polynomial time.
If the degree bound is relaxed, we agree that some inspection of instances is
required, but we would hope that the problem does not immediately develop the
3 Equivalently, C and D are 1-conflict neighbours iff their resolvent exists.
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full computational complexity of SAT. Tovey [16], however, proved that for 3-
CNF formulas with maximum variable degree f(3)+1 = 4 satisfiability is already
NP-complete. Kratochvíl, Savický, and Tuza [17] generalised this sudden jump
behaviour to general k: For every fixed k ≥ 3, satisfiability of (k, f(k) + 1)-CNF
formulas is NP-complete. It may be somewhat intriguing that one can prove
such a result, given that we do not even know the values of f(k) for k ≥ 5; but
we will see. Berman, Karpinski, and Scott [15] obtained similar results, showing
that for (k, f(k)+1)-CNF formulas it is even hard to approximate the maximum
number of clauses that can be simultaneously satisfied.

We will also approach the related problems for the size of neighbourhoods and
conflict-neigbourhoods. While we can show that the latter performs a similar
sudden jump, we have to leave a slack for the neighbourhood bound.

Theorem 9. Let k ≥ 3. Then,
(1) deciding satisfiability of k-CNF formulas with variable degrees at most f(k)+

1 is NP-complete (cf. [17]),
(2) deciding satisfiability of k-CNF formulas with clause neighbourhoods of size

at most4 max{k + 3, l(k) + 2} is NP-complete, and
(3) deciding satisfiability of k-CNF formulas with clause conflict-neighbourhoods

of size at most lc(k) + 1 is NP-complete.

Before engaging in the proof, we describe a general construction that takes a
k-CNF formula F and produces a CNF formula F̂ which is satisfiable iff F
is satisfiable, so that F̂ is very sparsely interleaved – at the expense of the
appearance of 2-clauses. We will later expand these 2-clauses to k-clauses in a
fashion tailored to which of the three claims we wish to prove.

We first introduce a useful gadget. Given a set of j ≥ 2 variables U =
{x0, x1, . . . , xj−1}, the 2-CNF formula

{{x0, x1}, {x1, x2}, . . . , {xj−2, xj−1}, {xj−1, x0}}

is called an equaliser of U ; the equaliser of a singleton set U is the empty formula.
As it is easily seen, such an equaliser is satisfied by an assignment to U iff all
variables in U are mapped to the same value.

Now let F be a k-CNF formula, k ≥ 3. For each variable x ∈ vbl(F ), we
replace every occurrence (as x or x) by a new variable inheriting the sign of x
in this occurrence. This yields a k-CNF formula F ′ with |F | clauses over a set
of k|F | variables. Moreover, for each variable x ∈ vbl(F ), we add an equaliser
for the set of variables that have replaced occurrences of x. This gives an extra
set F ′′ of at most5 k|F | 2-clauses. By the property of equalisers, F̂ := F ′ ∪ F ′′

is satisfiable iff F is satisfiable; F̂ can be readily obtained from F in polynomial
time. Interleaving is sparse in that

4 Note that 2k/e − 1 ≥ k + 1 for k ≥ 5. Therefore, max{k + 3, l(k) + 2} = l(k) + 2 in
that range and we actually suspect that this holds for all k ≥ 3.

5 F ′′ contains exactly k|F | clauses unless there are variables in F occurring only once.
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– every variable of vbl(F̂ ) occurs at most 3 times in F̂ ,
– each k-clause in F ′ does not share variables with any other clause in F ′ and

the number of its neighbouring 2-clauses in F ′′ is at most 2k – however, at
most k of the 2-clauses are in the conflict-neighbourhood –, and

– each 2-clause in F ′′ neighbours two k-clauses in F ′ and at most two 2-clauses
in F ′′ (all four clauses may be in the conflict-neigbourhood).

Proof of (1) (variable degrees). Let k ≥ 3 and fix some minimal (w.r.t. set
inclusion) unsatisfiable (k, f(k) + 1)-CNF formula G. Choose some clause C in
G and replace one of its literals by x for a new variable x. This new formula,
which we denote by G(x), has the property that (i) it is satisfiable (otherwise G
would not be minimal), (ii) every satisfying assignment has to set x to 0 (since
otherwise G would be satisfiable), (iii) all variables have degree at most f(k)+1,
and (iv) the newly introduced variable x has degree 1 in G(x).

A reduction from satisfiability of general k-CNF formulas follows. Given such
a k-CNF formula F we first generate F̂ as described above. Then we augment
each 2-clause in F̂ by k−2 positive literals of new variables so that it becomes a
k-clause. For each of the new variables x we add a copy of G(x) to our formula;
by renaming variables in G these copies are chosen so that their variable sets are
pairwise disjoint. The new formula is k-CNF, it is satisfiable iff F̂ is satisfiable.
Moreover, the maximum variable degree is max{3, f(k) + 1} which is f(k) + 1,
since we assumed k ≥ 3. This constitutes a polynomial reduction of satisfiability
of general k-CNF formulas to satisfiability of k-CNF formulas with maximum
variable degree f(k) + 1. Assertion (1) in Theorem 9 is established. ��

Proof of (2) (neighbourhoods). Again, let k ≥ 3. Fix some minimal unsatisfiable
k-CNF formula G where all neighbourhoods have size at most l(k)+1. We choose
some clause C and replace one of its literals by x for a new variable x, resulting
in a k-CNF formula G(x) that forces x to 0 in every satisfying assignment.

Starting from a 3-CNF formula F (yes, we mean 3-CNF, not k-CNF) we
proceed as before, first producing F̂ consisting of 3- and 2-clauses. Then we
augment all clauses in F̂ to k-clauses along with disjoint copies of G(x) for each
new variable x. What happened to the neighbourhood sizes? A 3-clause in F ′

had 6 neighbours in F̂ and gained k − 3 new neighbours, so there are at most
k + 3. A 2-clause, now extended to a k-clause, had 4 neighbours to begin with
and gets an extra neighbour for each of the k − 2 new literals – which makes
k + 2 neighbours. In a copy G(x) all clauses stay with a neighbourhood of size
at most l(k) + 1 except for the special clause C where we have planted the new
literal x. This clause may now have l(k) + 2 neighbours. Altogether a bound
of max{k + 3, l(k) + 2} for neighbourhoods holds and the polynomial reduction
from satisfiability of general 3-CNF formulas is completed. ��

Why did we miss a reduction to k-CNF formulas with neighbourhoods of size
at most l(k) + 1? We could have succeeded, if we had a minimal unsatisfiable
k-CNF formula G with neighbourhoods of size at most l(k) + 1 at our disposal,
where at least one clause has a neighbourhood of size at most l(k). Even if all
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neighbourhoods had size l(k) + 1, we would have been happy with one clause
C in G which links to some other clause D via a single variable (we could then
replace the literal of this variable in C, thereby leaving D as neighbour behind).
Fortunately, this idea actually helps when we deal with conflict-neighbourhoods
in the next proof.

We will also have to employ equalisers more carefully (wastefully, one might
say). Given a variable set U = {x0, x1, . . . , xj−1}, j ≥ 2, of concern, let W =
{z0, z1, . . . , zj−1} be a set of variables disjoint from U . The (U ∪W )-equaliser

{{x0, z0}, {z0, x1}, {x1, z1}, {z1, x2}, . . . , {zj−2, xj−1}, {xj−1, zj−1}, {zj−1, x0}}

is called a stretched equaliser of U – still serving the purpose of forcing all
variables in U to the same value. If we use such stretched equalisers in the
otherwise identical construction of F̂ , we benefit in that

– the 2-clauses in stretched equalisers have a conflict with two other 2-clauses
but to at most one of the k-clauses in F ′.

Proof of (3) (conflict-neighbourhoods). For k ≥ 3, fix some minimal unsatisfiable
k-CNF formula G where conflict-neighbourhoods have size at most lc(k)+1. As
before, we want to replace a literal in a clause by a new literal, but now we want
to be more careful about where we want to do this. Recall from Lemma 4 that
G must have a pair of clauses, C and D, say, which share a unique variable y
in a conflicting manner, i.e. y ∈ C and y ∈ D (there may be other variables in
vbl(C)∩ vbl(D), but they have to appear with the same sign on either side). So
here we do our little surgery: Choose a new variable x and replace y in C by x.
This gives the building block G(x) forcing x to be 0. Note that the clause C′

containing x (obtained from modifying C) has a conflict-neigbourhood of size at
most lc(k) since it lost the conflict-neighbour D.

A reduction from satisfiability of k-CNF formulas now follows in the manner
customary. Given F , a k-CNF formula, we move on to F̂ – now with stretched
equalisers – and then expand 2-clauses with the help of new variables that are
forced to 0 by disjoint copies of G(x). In the final product of this proceeding
k-clauses in F ′ have at most k conflict-neighbours, k-clauses obtained from aug-
menting 2-clauses have at most 3 + (k − 2) = k + 1 conflict-neighbours, and,
finally, clauses in copies of G(x) do not have conflict-neighbourhoods of size
exceeding lc(k) + 1 due to our careful construction of G(x). That is, the
maximum size of a conflict neighbourhood is max{k + 1, lc(k)+ 1} which equals
lc(k) + 1 due to the lower bound of lc(k) ≥ k in Lemma 3. ��

6 Open Problems

We know f(k), l(k), and lc(k) up to a constant, so one might hope to eventu-
ally determine them exactly. (The upper bounds in Theorems 4 and 5 can be
improved by a factor of 63

64 [20]). Progress on the lower bounds we would find
very interesting.



52 H. Gebauer et al.

Open Problem 1. Is it possible to improve any of the known lower bounds on
f(k), l(k), and lc(k) by a constant factor?

One possible approach would be to better understand how these functions de-
pend on each other. For example, the current lower bound on f(k) follows by a
very simple argument from a lower bound on l(k). Can this relation be improved?

Open Problem 2. Is there a constant c0 > 1 with f(k) ≥ c0l(k)/k for k large
enough?

So far, it seems hard to discriminate between l(k) and lc(k).

Open Problem 3. Is there a constant c1 > 1 such that l(k) ≥ c1lc(k) for k
large enough?

Note also that we have not even settled the computability of these functions.

Open Problem 4. Are the functions f(k), l(k) and lc(k) computable?

While further progress as expressed in the “wish list” above is desirable, one
should not forget about the broader picture. Our goal is to find interesting and
at the same time simple combinatorial conditions on a CNF formula that entail
satisfiability. The bounds on l(k) (and lc(k)) express such conditions as degree
bounds in the graph of dependencies (and graph of conflicts, resp.) of the clauses
of a CNF formula. The consideration of linear CNF formulas imposes a restriction
on the quality of dependencies – we have seen that this can make a significant
difference in how many clauses are needed for an unsatisfiable k-CNF formula.
A possible next step is to combine these two types of criteria.

We conclude with problems that arose in the course of the investigations.
Firstly, the CNF formulas providing the best known upper bound on f(k) for k
large are obtained via the construction of suitable binary trees. Let ftree(k) be
the largest integer d such that no (k, d)-tree exists. A detour to k-CNF formulas
and employment of the Local Lemma shows ftree(k) ≥ 2k/(ek) − 2. A more
“direct approach” may allow improvement of this bound.

Open Problem 5. Is there a constant c2 > 1 such that ftree(k) ≥ c2
2k

ek for
infinitely many k?

The known proof of small unsatisfiable linear k-CNF formulas is probabilistic.
Known explicit constructions give huge formulas – not an unfamiliar situation.

Open Problem 6. Give an explicit construction of an unsatisfiable linear k-
CNF formula of singly exponential size.
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Abstract. We base the theory of Kolmogorov complexity on programs
running on a special universal machine M , which computes infinite bi-
nary sequences x ∈ {0, 1}∞. The programs are infinite sequences p ∈
{0, 1}∗ · 1 · 0∞. As length |p| we define the length of the longest prefix of
p ending with 1. We measure the distance d(x, y) = 2−n of x, y ∈ {0, 1}∞
by the length n of the longest common prefix of x and y. ΔM (x, 2−n)
is the length of a minimal program p computing a sequence y with
d(x, y) ≤ 2−n. It holds ΔM (x, 2−n) ≤ ΔM (x, 2−(n+1)) ≤ n + 2 for all n.
We prove that the sets of sequences

KΔM :=
⋃

c∈N
{x ∈ X∞ : ΔM (x, 2−n) > n − c for all n}

K
o(n)
ΔM

:= {x ∈ X∞ : n + 1 − ΔM (x, 2−n) = o(n)}

have the measure 1 for memoryless sources with equal probabilities for 0
and 1. The sequences in K

o(n)
ΔM

are Bernoulli sequences. The sequences in
KΔM define collectives in the sense of von Mises up to a set of measure
0 and the sequences in K

o(n)
ΔM

have this property in a certain resricted fom.

Keywords: monotone Kolmogorov complexity, infinite computations,
collectives.

1 Introduction

Kolmogorov [1] based his concept to define binary random sequences on the
prefix approximation of the infinite sequences and the size of shortest programs
to compute the prefixes. An infinite sequence x ∈ X∞ is random in his sense if
for all prefixes x[n] of length n of x the difference |n−|pn|| of n and the length |pn|
of a shortest program pn to compute the prefix on a universal Turing machine is
bounded by a constant c ∈ N depending on x and the used universal machine.
Martin-Löf [2] proved that such sequences x do not exist, but that the concept
works, if one substitutes the ∀n by ∀∞n. This set of random sequences has the
measure 1. The reason for the discovered breakdowns of the prefix complexity is
a relation between the length of the prefix and the content of the prefix.

This relation in our sense has nothing to do with the character of a sequence to
be random but only with the interest on certain prefix lengths. So we change the

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 55–73, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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definition of Kolmogorov at another place as Martin-Löf did. We use the approx-
imations of the random sequences by infinite computable sequences. This is close
to the concept of Schnorr, who used only programs p, which compute infinite se-
quences M(p). But in this case too came in the connection with the length of the
prefix x[i] of the sequence x ∈ {0, 1}∞ by the condition M(p)(i) = x[i]. So if I
am interested in a shortest program p with M(p)(i) = x[i] the computer has as
additional information i, i.e., log(i) bits, the reason for the non-monotone growing
length of the shortest programs to describe prefixes of the length i.

In our definition we do not expect that the computer on an argument i prints
out x[i]. We are looking for approximations of x by sequences M(p) of a precision
d(x, M(p)) < ε and the size of shortest programs px,ε with this property. The
size of these programs fulfils the monotonicity relation |px,ε| ≤ |px,ε∗ | for ε > ε∗.
We prove that the set of our random sequences has measure 1.

Additionally, we give a weaker definition for randomness and prove that each
sequence in this set is a Bernoulli sequence. This concept allows us, only based
on our complexity concept, to classify the sequences with convergent limit prob-
abilities generated by information sources ({0, 1}, μ) with μ : {0, 1} → R a
probability distribution.

We additionally prove that a certain subset of these random sequences is
invariant under each blind selection of subsequences by computers, this means
that Das Starke Gesetz der grossen Zahlen for collectives of von Mises [8] holds.
The subset for which we are not able to prove this property has measure 0. This
we prove without any restriction for x ∈ KΔM but in the case of K

o(n)
ΔM

under a
restriction, which has to do with the density of the components of x we select.

We do not need assumptions such as prefix free codes for the programs as
introduced by Chaitin [5] to get the original idea of Kolmogorov really working.
Essential for the simplicity of the theory is the existence of a print command, the
assumption of infinite computations and a special procedure technique. This is
not constructive in the classical sense. But the existing theory is not constructive
either. So why not use infinite computations if it simplifies the theory.

We use a special universal Turing machine M and because of proof technical
reasons two different nets of three such machines, which mathematically are
based on the scalar products of the machines and not on the machines simulated
by the universal machines. So the state sets are independent from the programs
running on the machines.

The books of Calude [7], Li and Vitányi [9], and Chaitin [6] give excellent
overviews about the existing theory. This paper is based on ideas presented
in [10] especially on the chapter Δ∗ − Complexity. Our concept can easily be
extended to more general spaces.

2 Basic Definitions

2.1 The Universal Machine

Our machine is a special universal Turing-machine with three tapes: An input
tape, a computing tape and an output tape. Each tape uses the binary alphabet
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X := {0, 1} and it is infinitely long to the right side. In the initial state each
position on the computing tape and the output tape are equal to 0. X∗ is the free
monoid of finite words over the alphabet X and X∞ the set of infinite sequences
over X . We define w · v for w ∈ X∗ and v ∈ X∗ ∪X∞ by concatenation. The
inscription of the input tapes are elements of X∗ ·0∞. We define for x ∈ X∗ ·0∞
and x �= 0∞

|x| := max{i ∈ N : x(i) = 1}
and

|x| := 1 for x = 0∞.

We consider only infinite converging computations. An infinite computation is
converging iff the writing head visits each position of the output tape only once.
We substitute the halting states of the traditional machine by the cycle state
move to the right. This means that the terminating finite computations will be
transformed into converging infinite computations.

We use different machine models. The machine M has three tapes: An input
tape, which is the program tape. The machine has one computing tape and an
output tape. The input tape is a read-only tape. The output tape is a write-only
tape. Its writing head moves only to the right. It is special in the following sense:
It allows a printing command, which we will define later precisely.

Our second machine M̃ and the third machine M have three input tapes
T1, T2, T3, for three programs, which are read-only tapes two and three comput-
ing tapes, respectively, and one write-only output tape. The printing head of this
tape moves only to the right side. The main program is on tape T1. The tapes
T2 and T3 are for procedures, which will be called by the main program. The
program on tape T3 of machine M̃ is always a print instruction. The programs
on tape T2 may be print instructions or any other programs. The print instruc-
tion has the form 0p ∈ X∗ · 0∞. The programs of the type 1p ∈ X∗ · 0∞ will be
interpreted as usual by the universal machine. The main program of M̃ uses the
computing tape C1 and the program on tape T2 uses the computing tape C2.

The main program p1 never writes on the output tape. It only calls and
controls the activity of the programs p2 on T2 and p3 on T3. The programs p2
and p3 are never both active, but p1 may be active together with each of the
two other programs. If the activity of the programs p2 and p3 changes then the
writing on the output tape will continue on the position it has been stopped. The
machines M̃ and M may be understood as a net of three machines of type M .
One machine calls the others and controls them. But they have only one output
tape. They are motivated by proof technical reasons. Based on these machines we
get some lower bounds for the size of minimal programs of M . The constructions
of these machines are mathematically based on standard cartesian products of
the universal machines, not of the machines simulated on the universal machines.
This is essential for the additivity of the complexities of the running programs.

All convergent computations of a program p of the machine M or of programs
p := p1(p2, p3) of the machine M̃ generate infinite sequences x ∈ X∞ on the
output tape. We write in this case x := M(p) or x := M̃(p), respectively. For
the program p := 0 · w · 0∞, w ∈ X∗ on T3 we write print(w). It generates



58 G. Hotz

as output w · 0∞. We look at our programs as infinite sequences with a finite
number of 1’s. The length of the program is defined as the length of the longest
prefix ending with 1.

2.2 Infinite Sequences

We define 0 := 1 and 1 := 0 and for x ∈ X∞

x := (x(1), x(2), x(3), . . .).

We write xi ⊕ yi for the addition modulo 2 for xi, yi ∈ {0, 1} and for x, y ∈ X∞

we understand x⊕ y as the componentwise application of the operation.
We define for x ∈ X∞

‖x‖ :=
∞∑

i=1

x(i)
2i

and as distance of x, y ∈ X∞

d(x, y) :=
∞∑

i=1

x(i) ⊕ y(i)
2i

.

For w ∈ X∗ and x ∈ X∞ we write

w ≺ x for w = x[n] := x(1) · x(2) · · · · · x(n)

where n is the length of w. For x, y ∈ X∗ it holds

d(x, y) < 2−n =⇒ x[n] = y[n].

This means that x, y have a common prefix w of length n for d(x, y) < 2−n. If
x, y have w as common prefix, then it holds

d(x, y) ≤ 2−n.

We see that for w ∈ Xn and x ∈ X∞ we get

d(w1x, w0x) = d(w1x, w1x) = 2−n.

Using the prefix distance we get for the expression on the right hand side as
distance 2−[n+1].

3 Kolmogorov - Complexity of Binary Sequences

3.1 Definitions and Simple Consequences

Given a sequence x ∈ X∞ we ask for computable sequences y ∈ X∞ such that
d(x, y) < ε for a given 0 < ε < 1. We are interested in programs p of minimal
length |p|, with M(p) = y ∈ X∞, which are approximations of a given precision
of given x ∈ X∞. The program length of the program p := p1(p2, p3) with
program pi on tape Ti of M̃ or M we define as

|p| := |p1|+ |p2|+ |p3|.
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Definition 1. Let x ∈ X∞, ε > 0 and M , M̃ , M our universal machines. We
define

ΔM (x, ε) := min{|p| : d(x, M(p)) < ε},
Δ

M̃
(x, ε) := min{|p| : d(x, M̃ (p)) < ε},

ΔM (x, ε) := min{|p| : d(x, M(p)) < ε}
Because each sequence M(p), which is an approximation of precision ε2 < ε1 of
x is also an approximation of precision ε1, it follows

Lemma 1. For x ∈ X∞ and ε1 > ε2 > 0 it follows

ΔM (x, ε1) ≤ ΔM (x, ε2),

Δ
M̃

(x, ε1) ≤ Δ
M̃

(x, ε2) and ΔM (x, ε1) ≤ ΔM (x, ε2).

Remark: We may run on our machines M̃ and M main programs p1, which
do nothing else as one call of the program p2 or p3. These programs may be
programs for M which compute a best approximation for the given x and ε. If
c := |p1|, then we have

ΔM (x, ε) < Δ
M̃

(x, ε) + c, ΔM (x, ε) + c

holds for all x ∈ X∞ and ε > 0.
We see that our variant of the original definition of Kolmogorov for ε := 2−n

leads to a monotone dependence of ΔM (x, 2−n) from n.
Our print-operation guarantees a simple upper bound for the approximations,

if we restrict to ε = 2−n.

Lemma 2. Let be x ∈ X∞ and ε = 2−n then it holds

ΔM (x, ε) < n + 1 and Δ
M̃

(x, ε) < n + 1 + c

with c independent from x and n.

3.2 (ΔM , H)- Approximable Sequences

We define sets of sequences x ∈ X∞, which in a certain degree are approx-
imable by computable sequences. Let H be the set of monotone, unbounded,
and computable mappings h : N → N .

Definition 2. For h ∈ H we define the sequence x ∈ X∞ approximable of
degree h iff there exists n0 ∈ N such that for all n > n0

n + 1−Δ(x, 2−n) ≥ h(n)

holds. We define

ΛΔM (h, n0) := {x ∈ X∞ : ∀n>n0(n + 1−ΔM (x, 2−n) ≥ h(n))}
and

ΛΔM (H) :=
⋃

h∈H,n0∈N
ΛΔM (h, n0)

h : N → N . ΛΔM is the set of the (ΔM , H)-approximable sequences.
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We first give a lower and upper bound for the average lengths of a minimal
set of shortest programs p ∈ Xn, which compute sequences M(p) ∈ X∞ such
that every word of Xn appears as prefix. An upper bound we get by n + 1 the
maximal length of print-commands, which compute the outputs Xn · 0∞.

Counting the words w1 ∈ Xk for k = 1, 2, . . . , n we get

n−1∑
m=1

2m = 2n − 1.

We did not count the print-command print(0). So we have 2n programs of length
≤ n. By computing the average length of the 2n shortest programs we get a lower
bound for the average length

An :=
∑

w∈Xn

ΔM (w ·X∞, 2−n)
2n

of the minimal programs we are interested in. There are 2m of our programs of
length m + 1 available. So we get for the average length of the set of programs
with length ≤ n − 1 not considering the trivial print command the expression
Bn

2n , where Bn is defined as follows:

Bn :=
n−1∑
m=0

(m + 1) · 2m = n · 2n−1 + Bn−1.

We get as solution of this recursion

Bn = (n− 1) · 2n + 1

Taking in account the trivial print command we get as a lower bound for An

An ≥ (n− 1) · 2n + 2
2n

= n +
1

2n−1 − 1.

Using the existence of our print-commands we get n + 1 as upper bound. So we
proved the following lemma.

Lemma 3
n− 1 <

∑
w∈Xn

ΔM (w ·X∞, 2−n) · 2−n ≤ n + 1

This is the base for the proof of the following lemma.

Lemma 4. For the source (X, μ) with μ(1) = μ(0) = 2−1 and each unbounded
mapping h : N→N and each n0 ∈ N it holds

μ(ΛΔM (h, n0)) = 0
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Proof: We define

Λn
ΔM

(h) := {x ∈ X∞ : n + 1−ΔM (x, 2−n) ≥ h(n)}.

To decompose a following sum in two parts, we define

S1 := {w ∈ Xn : h(n) ≤ n + 1−ΔM (wX∞, 2−n)}

and
S2 := {w ∈ Xn : h(n) > n + 1−ΔM (wX∞, 2−n)}

It follows from lemma 3

n− 1 <
∑
S1

ΔM (wX∞, 2−n)
2n

+
∑
S2

ΔM (wX∞, 2−n)
2n

≤ n + 1

and
n− 1 < (n + 1− h(n)) ·

∑
S1

2−n + (n + 1) ·
∑
S2

2−n.

We use the abbreviation
μn := μ(Λn

ΔM
(h))

and get
n− 1 < (n + 1− h(n)) · μn + (n + 1) · (1− μn)

and
μn <

2
h(n)

h(n) is unbounded. Therefore there exists a sequence n0 < n1 < n2, . . . with
ni ∈ N such that h(ni) < h(ni+1) for all i ∈ N . It follows μni → 0. Obviously
we have

ΛΔM (h, n0) ⊂
∞⋂

i=0

Λni

ΔM
(h)

and therefore
μ(ΛΔM )(h, n0) = 0

So it follows

Theorem 1
μ(ΛΔM (H)) = 0.

We may substitute the set H of computable functions by a subset of H or we
may extend H by non computable monotone mappings or by constant functions.
The question is, which influence this has on a theory of random sequences. The
following three lemmas give a first answer on this question.

Lemma 5. To each countable set H̃ := {h1, h2, h3, . . .} of unbounded monotone
mappings there exists an unbounded monotone mapping f : N → N , which is
an asymptotic lower bound for all h ∈ H̃.
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Proof: We define f(n) := h1(1) for

n < n1 := min{k : h1(k) > h1(1) + 1, h2(k) > h1(1) + 1}

and
f(n1) := min{h1(n1), h2(n1)} − 1

Let ni and f be defined for n ≤ ni, then we define

ni+1 := min{k > ni : h1(k), h2(k), . . . hi+1(k) > f(ni) + 1},

f(n) := h(ni) for ni < n < ni+1

and
f(ni+1) := min{h1(ni+1), . . . hi+1(ni+1))} − 1

This defines f for all n ∈ N and it follows f(ni) < f(ni+1) and f(n) < hi(n)
for n ≥ ni. h is asymptotically a lower bound for each h ∈ H̃ and it is not in H̃ .
This ends the proof of the lemma.

Obviously it holds
ΛΔM (hi) ⊂ ΛΔM (f).

This result is true for each given counting of the set H̃ . We define

ΛΔM (H̃) :=
⋃

h∈H̃

ΛΔM (h)

and get

Lemma 6
ΛΔM (H̃) ⊂ ΛΔM (f)

The lemmas show that there is a gap between ΛΔM (H) and ΛΔM (H̃), if H̃
includes not computable monotone mappings, which are lower bounds for all
h ∈ H . We can close this gap by extending H by the constant functions as the
following lemma shows.

Lemma 7. To each monotone unbounded mapping f : N → N there exists an
upward approximation by computable monotone and bounded functions

af
n0

(n) := f(n) for n < n0 and af
n0

(n) := f(n0) for n ≥ n0

such that
ΛΔM (f) =

⋂
n0∈N

ΛΔM (af
n0

)

The proof the lemma is obvious.
The lemma shows that we may restrict to monotone and computational

mappings.
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3.3 Closure Properties of ΛΔM

We are interested in sets H ⊂ H such that ΛΔM (H) has properties which are
consistent with our intuition.

If ΛΔM (H) is the set of algorithmically well approximable sequences then it
should follow for y, z ∈ ΛΔM (H) that x ∈ ΛΔM (H) for the operations

x := y ∨ z, x := y ∧ z, x := y, x := y ⊕ z,

where ⊕ means the addition (mod2). In other words (ΛΔM (H),∨,∧, .̄) should
be a boolean algebra.

It seems reasonable to look for a even stronger closure property: For y ∈
ΛΔM (H) and each program p, which is able to use y as parameter in a reasonably
restricted way it should follow x := M(p; y) ∈ ΛΔM (H). This should hold not
only for one but for each finite set of parameters. For shortness we discuss only
the case of two parameters y, z ∈ ΛΔM (H).

We extend our machine by two parameter tapes y, z, which are only readable
and we allow for the reading heads only moves from left to right. We restrict
these moves by the following condition. Let rx(t) the position of the printing
head on the output tape of M at time t and ry(t), rz(t) the position of the
reading heads on y and z. We bound the possible moves of the reading heads on
y and z as described by the relation

ry(t), rz(t) ≤ rx(t),

which does not allow the reading heads on the parameter tapes to move faster
to the right as the writing head on the printing tape x.

If the extension of M by the parameter tapes y, z with program q under these
conditions computes the output x we write

x := M(q; y, z).

The idea is to approximate x by use of programs pn
y and pn

z , which compute
approximations of y and z, and the program q. We define

H := {h ∈ H : n + 1− h(n) = o(n)}.
x ∈ ΛM (H) is equivalent to the condition: There exists a computable function
g(n)=o(n) such that

ΔM (x, 2−n) < g(n) for all n ∈ N
For y, z ∈ ΛM (H) there exist hy, hz ∈ H such that for gy(n) := n + 1− hy(n)

and gz(n) := n + 1− hz(n) there exist programs pn
y , pn

z with

|pn
y | ≥ gy(n) = o(n), d(M(pn

y ), y) < 2−n,

and
|pn

z | ≥ gz(n) = o(n), d(M(pn
z ), z) < 2−n.
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We use the programs q, pn
y and pn

z as procedures for a program p, which
simulates the behavior of q to compute an approximation of x with the precision
2−n. This can be done in the following way: p calls the program pn

y , writes the
results of the program on its computing tape, counts its write commands and
stops it after n steps. Then it calls pz and proceeds as before in the case of py.
Having finished this process it calls q to use both arrays virtually extended by
0∞ instead of the tapes y, z to compute a sequence x̃. We write for the result of
this procedure

x̃ := M(p(q, pn
y , pn

z )).

It approximates x := M(q : y, z) with precision 2−n.
We are able to realize this procedure technique with a program pn with a

length o(n). It depends on n only that far as it has to count the mentioned n
steps. So it is sufficient to show

|q|+ |pn
y |+ |pn

z | = o(n).

|q| is constant and our assumption about y, z guarantees the existence of h ∈ H
such that g(n) := n + 1− h(n) is an upper bound for |pn

y | and |pn
z |. So it follows

that there exists h1 ∈ H such that |p(q, pn
y , pn

z )| < n+1−h1(n). This proves the
following
Theorem 2

ΛΔM (H) :=
{x ∈ X∞ : ∃h∈H∃n0∈N (n + 1−ΔM (x, 2−n) ≥ h(n) for all n > n0)}

is closed under the operation x := M(p; y, z) under the assumption of no preview
on y and z. The closure under the boolean operations y ∨ z, y ∧ z, y ⊕ z, ȳ are
special cases of the first statement. The Operation ⊕ means the addition mod 2.
It follows that (ΛΔM (H),∨,∧, .̄) is an infinite boolean algebra and (ΛΔM (H),⊕)
is an infinite abelian subgroup of the abelian group (X∞,⊕). We are inter-
ested in the quotient group X∞/ΛΔM (H) because the elements y, z ∈ X∞, y ≡
z(modΛΔM (H)) are related under the aspect of the efficient computational ap-
proximation. If we consider y to be random then we may consider z as random,
too.

Before we switch to the discussion of the random sequences we clarify the
size of the set ΛΔM (H) and that a restriction concerning the size of a preview is
necessary.

There exists a simple algorithm to map X∞ injectively to ΛΔM (H).
Let x ∈ X∞ be a given sequence then we define δ : X∞ → ΛΔM (H) as follows:

We first define for i ∈ N and xi ∈ {0, 1}
δ̄i(xi) := xi+1

i .

Inductively we define under the assumption that we have defined y[n]

y[n + 1] := y[n] · 1 · δ̄(n + 1, xn+1) for xn+1 = xn = 0,

y[n + 1] := y[n] · 0 · δ̄(n + 1, xn+1) for xn+1 = xn = 1,
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y[n + 1] := y[n] · 10 · δ̄(n + 1, xn+1) for xn = 0, xn+1 = 1,

y[n + 1] := y[n] · 01 · δ̄(n + 1, xn+1) for xn = 1, xn+1 = 0.

This defines δ uniquely. It is obvious, that δ is injective.
We give an example: For x[6] := 110100 we get

11 · 0 · 111 · 01 · 0000 · 10 · 11111 · 01 · 000000 · 1 · 0000000

This sequence of length 35 is uniquely defined by the original sequence of length
6 and a short program p, which is the same for all n. In general we have a
description of length n + |p| = o(n2) for a sequence of a length ≥ n2. It follows
δ(x) ∈ ΛΔM (H). The cardinality of X∞ and ΛΔM (H) are equal. The not total
inverse mapping δ−1 is computable, but it needs a preview on y of size r(n) =
O(n2).

Observation: We are able by application of a very simple partial algorithm on
ΛΔM (H) by compressing sequences to generate the whole set X∞.

3.4 Random Sequences

We define for c ∈ N motivated by Lemma 7 and following the idea of Kolmogorov

ΛΔM (c) := {x ∈ X∞ : ∃n0∈N (n + 1−ΔM (x, 2−n) ≥ c for n > n0)}.
It follows in the notation used in the proof of Lemma 4 and on base of the same
arguments

μ(ΛΔM )(c) <
2
c
.

We define
ΛΔM (N ) :=

⋂
c∈N

ΛΔM (c)

and get
μ(ΛΔM (N )) = 0.

It follows for KΔM (N ) := X∞ − ΛΔM (N )

μ(KΔM (N )) = 1.

KΔM (N ) is the set of all sequences x ∈ X∞, for which exists a constant c ∈ N
such that infinitely often n + 1−ΔM (x, 2−n) < c holds.

The question is if we should consider the sequences x ∈ KΔM (N ) as ran-
dom sequences. The following sections will give answers to this question. Our
first question is how do the sequences behave globally over N . This behavior is
described by the function

fx(n) := max{n + 1−ΔM (x, 2−i) : i ≤ n} for x ∈ KΔM (N ).

This function is not computable and we do not need to compute this function. An
assumption about the behavior of this function has as consequence the existence
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of certain programs. In this sense we will use the function. We study our problem
by applying our machines of type M̃ .

Let us assume that there exists cn0 ∈ N such that

n + 1−ΔM (n, 2−n) < cn0

infinitely often and that fx(n) is unbounded. Then there exists for each c ∈ N
a minimal nc ∈ N such that fx(nc) ≥ c. We define a program p̃k := p1(p2, p

k
3)

for M̃ as follows: Let be p2 := p, where M(p) approximates x such that

nc + 1−ΔM (x, 2−nc) = fx(nc)

holds. The program p̃k depends on nc, too, but we construct for each nc an
infinite sequence of programs p̃k. The dependence on k comes in by the print
program. We define the print programs by p3 := printx[nc : nc + k] for k =
2, 3, 4 . . .. Remember that the print programm generates the infinite sequence
x[nc : nc + k] · 0∞. But if we use nc as information for p1, then our proof will
not work. So we try to use fx(nc) as information for p1 to stop p2 and to call
pk
3 . The final definition will be given later.
The program p1 first calls p2 and counts the number nt of moves of the

printing head on the output tape depending on the number t of computing steps.
It counts additionally the moves of the reading head of tape T2 and computes
the maximum max(t) of its positions after time t. If max(t) − n(t) = fx(nc),
then p1 stops the program p2 and starts the program pk

3 := printx[max(t) + 1 :
max(t) + k].

It may be that max(t) < nc but this does not matter because for k0 :=
nc − max(t), M̃(p̃k0) approximates the sequence x with the same precision as
M(p) does. So instead of the program p2 := p we may choose the program
p2 := p[1 : max(t)] because the rest of the program p will not be used in p̃k. This
means that we may assume max(t) = |p2| and m(t) = nc.

p1 does not depend on k. So we have

|p1| = c̃ + log(fx(nc))
fx(nc) = nc + 1− |p2|

n = nc + k

where c̃ is independent from k and c. It follows

n + 1−Δ
M̃

(x, 2−(nc+k)) ≥ n + 1− |p̃k|
= n + 1− (|pk

1 |+ |p2|+ |pk
3 |)

= nc + k + 1− (c̃ + log(fx(nc)) + |p2|+ k + 1)
= nc + k + 1− c̃− log(fx(nc))− |p2| − k − 1
= nc + 1− |p2| − 1− c̃− log(fx(nc))
= fx(nc)− log(fx(nc))− (c̃ + 1)

For c →∞ it follows
n + 1−Δ

M̃
(x, 2−n) →∞.
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This contradicts our assumption: There exists a constant c0 such that n + 1 −
Δ

M̃
(x, 2−n) < c infinitely often and it holds

ΔM (x, 2−n) ≥ Δ
M̃

(x, 2−n)− c̄.

c̄ is a constant defined by the length of a main program p1 of M̃ that calls a best
approximation program p of M as p2 := p. This program p1 does not depend on
n. It follows

Theorem 3. For each x ∈ KΔM there exists a constant c such that

n + 1−ΔM (x, 2−n) < c.

for all n ∈ N .

3.5 Other Classes of Random Sequences

We will discuss here a weaker condition for randomness. The class is of inter-
est because we are able to prove that the sequences of this class are Bernoulli
sequences. And the class is invariant under some restricted blind selections of
subsequences by computers. These properties can be proved without any as-
sumption concerning the existence of the limit behavior of mean values related
to x.

We define

K
o(n)
ΔM

:= {x ∈ X∞ : n + 1−ΔM (x, 2−n) = o(n)}
We prove first some elementary relations between the two sets of random
sequences we are interested in.

Lemma 8
K

o(n)
ΔM

= K
0(n)
ΔM

⊕ ΛΔM (H)

Proof: From 0∞ ∈ ΛΔm(H) it follows

K
o(n)
ΔM

⊂ K
0(n)
ΔM

⊕ ΛΔM (H)

For the proof of the inclusion in the opposite direction we choose x = y ⊕ z

with x ∈ K
o(n)
ΔM

and z ∈ ΛΔM (H). It follows x ⊕ z = y. Using a variant of the
concept of the machine M̃ to compute the approximation of y on base of minimal
programs p2 and p3 to approximate x respective z with c := |p1| we get

n + 1−ΔM (y, 2−n) ≥ n + 1−ΔM (x, 2−n)−ΔM (z, 2−n)− c.

We divide the inequality by n and apply our assumptions about y and z. So it
follows for n →∞

n + 1−ΔM (x, 2−n) = o(n)

this means x ∈ K
o(n)
ΔM

as claimed by the lemma.
It follows

KΔM ⊂ K
o(n)
ΔM

= K
o(n)
ΔM

⊕ ΛΔM (H)

and
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Lemma 9
(KΔM (N )⊕ ΛΔM (H)) ⊂ K

o(n)
ΔM

It is open if the lemma remains true if we substitute ⊂ by =.

Bernoulli Sequences. In a first step we prove our results under some assump-
tions about the limit behavior about x ∈ Ko

ΔM
. To formulate these conditions

we define a characteristic function χ : A×A → {0, 1}

χ(v, w) = 1⇔ v = w.

and x[l : m] := xl · . . . · xm for l < m.

Theorem 4. Under the assumption of the existence of the following limits we
define

pw := lim
k→∞

∑k−1
i=0 χ(w, x[i · n + 1 : (i + 1) · n])

k
for w ∈ An.

We claim
x ∈ K

o(n)
ΔM

⇒ pw =
1
2n

for all n and all w ∈ A := Xn

Proof: Let be k, n ∈ N and A := Xn. We consider the prefixes x[n · k] ∈ Ak of
x and define for w ∈ A

nw :=
k−1∑
i=0

χ(w, x[i · n + 1 : (i + 1) · n])

and
pn,k(w) :=

nw

k

It follows ∑
w∈A

pn,k(w) = 1 and lim
k→∞

pn,k(w) = pw.

We use the well known construction of minimal prefix free codes based on the
Kraft inequality in the special case

c : A∗ → {0, 1}∗.

We define i : A → N uniquely by

− log pn,k(w) ≤ i(w) < − log pn,k(w) + 1.

This is equivalent to

pn,k(w) ≥ 2−i(w) >
1
2
· pn,k(w).
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It follows
1 =

∑
w∈A

pn,k(w) ≥
∑
w∈A

2−i(w) >
1
2
.

As we know from the coding theorem we can find a prefix free code c such that

− log pn,k(w) ≤ |c(w)| = i(w) < − log pn,k(w) + 1 for w ∈ A. (1)

Using the identy

c(x[n · k]) =
k−1∏
l=0

c(x[l · n + 1] : (l + 1) · n)

we get

|c(x[n · k])| =
k−1∑
l=0

|c(x[l · n + 1] : (l + 1) · n)| =
∑
w∈A

|c(w)| · nw.

We define the entropy

H(pn,k) := −
∑
w∈A

pn,k(w) · log pn,k(w)

an get by summing up (1)

H(pn,k) ≤ 1
k
· |c(x[n · k])| = 1

k
·
∑
w∈A

nw · |c(w)| (2)

< −
∑
w∈A

(
nw

k
log

nw

k
− nw

k
) = H(pn,k) + 1 (3)

We define pn := limk→∞ pn,k and get

lim
k→∞

H(pn,k) = H(pn).

From (2) it follows
|c(x[n · k])| ≤ k ·H(pn,k)

and
lim

k→∞

|c(x[n · k])|
k

≤ H(pn)

If H(pn) < n, then it follows n · k − |c(x[n · k])| �= o(n · k). c depends on k, but
it can be computed and the application c(w) is computable. So it follows that
n · k −ΔM (x, 2− n · k) �= o(n · k) and x is not in Ko

ΔM
.

This theorem can be generalized:

Theorem 5
x ∈ K

o(n)
ΔM

⇒ {x is a Bernoulli sequence}
This means that we do not need the assumption about the existence of the limit.
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Proof: If one of the limits we assumed to exist in the theorem above does not
exist, then there exist at least two limit points. To each such limit point exists a
subsequence n1 < n2 < n3 < ... ∈ N , for which a unique limit exists. Applying
the construction our proof is based on, we get a compression of x by a factor
0 < α ≤ 1. For at least one of the limit points we get a compression by a factor
α < 1. This contradicts the assumption x ∈ K

o(n)
ΔM

because the oscillations of
n + 1−ΔM (x, 2−n) are bounded by o(n). End of the proof.

This result can be generalized to

Theorem 6. Let be α, ε ∈ [0, 1], α = H(ε, 1− ε) the entropy and

K
[α]
ΔM

:= {x ∈ X∞ : α · n−ΔM (x, 2−n) = o(n)}.

For
x ∈ K

[α]
ΔM

and each sequence
x1 < x2 < x3 < . . . ∈ N

it holds

pw := lim
l→∞

∑k−1
i=0 χ(w, x[i · |w|+ 1 : (i + 1) · |w|])

kl
= εm1 · (1− ε)|w|−m1 ,

where m1, kl are defined by

m1 :=
|w|∑
i=1

χ(1, wi) and kl := � nl

|w| �

Proof: If there exist two different sequences n1 < n2 < n3 < . . . with two
different limit points α1, α2 then there exist oscillations of ΔM (x, 2−n) of the
size |α1 − α2|. This contradicts the restriction α · n − ΔM (x, 2−n) = o(n) for
these oscillations.

Invariance Properties of KΔM and K
o(n)
ΔM

. A subsequence of a random
sequence generated by an algorithm, which blindly selects the elements for the
subsequence should be again a random sequence [8]. This should be even the
case if the algorithm knows the prefix of the random sequence up to the position
before the position i it has to decide "select or not select" xi. We will prove here
this invariance property only for the special case under additional assumptions.
In the case of KΔM we prove this not for each sequence, but only for sequences of
the subset KΔM

⊂ KΔM . In the case of K
o(n)
ΔM

we restrict the selection procedures
by a density condition.

Let i : N → N and j : N → N be strictly monotone and computable
mappings with the following properties:

i(N ) ∪ j(N ) = N and i(N ) ∩ j(N ) = ∅,
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We define

i(x) := (xi(1), xi(2), xi(3), . . .) and j(x) := (xj(1), xj(2),xj(3),...
)

for x ∈ X∞ and

n1 := �{k ∈ N : i(k) ≤ n} and n2 := �{k ∈ N : j(k) ≤ n}.

If S is a finite set, then �S means the number of elements in S. It follows

n1 + n2 = n.

Theorem 7. Under the assumption x ∈ KΔM̄
, where KΔM̄

⊂ KΔM for a net
M̄ of three machines it holds

x ∈ KΔM ⇒ i(x), j(x) ∈ KΔM

and under the condition n1, n2 = Ω(n) it holds

x ∈ K
o(n)
ΔM

⇒ i(x), j(x) ∈ K
o(n)
ΔM

Proof: We get approximations of the precision 2−n by computing approxima-
tions of y := i(x) and z := j(x) of precision 2−n1 and 2−n2 , respectively. Let
py and pz be programs, which compute infinite sequences to approximate y and
z with precision 2−n1 and 2−n2 , respectively. p1 and p2 compute the mappings
i and j, respectively. We describe a program p that uses variants of the pro-
grams p1, p2, py, pz as procedures to compute an approximation x̃ of x with the
precision 2−n.

We substitute the programs py, pz by programs print(py), print(pz), which we
will define later. the program p we define as follows.

repeat infinitely often{ i := 1 ; j := 1; k := 1
if p1(i) = k then print(py); i := i + 1; k := k + 1

else print(pz) j := j + 1; k := k + 1}

We modify py as follows.
The call print(py) starts the program in its last state when it has been stopped.
The program state of py after the printing on the output tape will substituted

by a stop state.
The procedure print(pz) we define analogously.
We see that the sizes of the programs p, p1, p2 are independent from n. The

size of the programs py, pz has not been changed. So we get for the size |Pn|
of Pn := p(p1, py, p2, pz) relative to the universal machine M consisting of two
components of type M to compute py and pz and a component to compute
p, p1, p2 the relation

ΔM (x, 2−n) ≤ |P | = ΔM (y, 2−n1) + ΔM (z, 2−n2) + cp
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with cp := |p|+ |p1|+ |p2|. Using the relation n = n1 + n2 we get

n+1−ΔM (x, 2−n) ≥ (n1 +1−ΔM (y, 2−n1))+(n2 +1−ΔM (z, 2−n2))− (cp +1)

Under the assumption x ∈ KΔM it follows, that there exists a c ∈ N such that
n + 1−ΔM (x, 2−n) < c for all n. It follows

n1 + 1− (ΔM (y, 2n1) < c + cp + 1 and n2 −ΔM (z, 2−n2) < c + cp + 1

for all n1 and all n2. This means that y, z ∈ KΔM as claimed by the first part
of the theorem.

It remains to discuss the case x ∈ K
o(n)
ΔM

. In this case it follows

n1 −ΔM (y, 2−n1) = o(n) and n2 −ΔM (z, 2−n2) = o(n)

For the proof of the theorem we need o(n1) and o(n2), respectively, on the right
hand side of our equations. This follows for n1, n2 = Ω(n) as assumed in our
theorem.

Lemma 10
μ(KΔM −KΔM̄

) = 0

Proof: Analogously to the proof of μ(KΔM ) = 1, one proves μ(KΔM
) = 1.

It holds KΔM̄
⊂ KΔM because the machine M̄ can simulate M by using the

identical program px on one of the two submachines controlled by a program p
independent from px. So the lengths of the two programs on M and M differ
only by the constant |p|. It may be that an even shorter program configuration
on M̄ exists to compute an approximation of x of the same precision. But it
cannot happen that a sequence relative to M is random and is not relative to
M . The claim of the lemma follows.

4 Concluding Remarks

We have seen that the use of infinite computations and generalizations of the
prefix approximation simplifies the theory. In no step we did really use assump-
tions on computability of the mappings in h ∈ H or assumptions concerning the
complexity of runtime of programs p to define ΔM . Complexity aspects come
in only in connection with the application of procedure technics or in programs
to compute approximations on base of the coding theorem, which we applied in
the proof of our last theorems. But this complexities are all on a very low level.
Complexity hierarchies may play an important role in connection with the defi-
nition of ΔM as C. P. Schnorr has proved, [3, 4]. Hierarchies may be generated
too by networks of machines as we considered in a special case. But it is open if
KΔM �= KΔM

.
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Abstract. For many aspects of memory theoretical treatment already
exists, in particular for: simple cache construction, store buffers and store
buffer forwarding, cache coherence protocols, out of order access to mem-
ory, segmentation and paging, shared memory data structures (e.g. for
locks) as well as for memory models of multi-threaded programming lan-
guages. It turns out that we have to unite all of these theories into a
single theory if we wish to understand why parallel C compiled by an
optimizing compiler runs correctly on a contemporary multi core proces-
sor. This pervasive theory of memory is outlined here.

1 Introduction

One subproject of the Verisoft-XT project1 is to formally verify as big a portion
as possible of the Microsoft Hyper-V virtualization product that is shipped as
a component of Microsoft Windows Server 2008. This hypervisor is a multi-
threaded C program with involved parallel algorithms and external assembler
functions running in translated mode on contemporary multi core processors.
The verification tool VCC [1] used to verify such programs is developed in parallel
with the verification effort for the hypervisor and other programs. This paper
is motivated by the question how one would prove the soundness of VCC. The
rough road map is clear and was for instance followed with formal proofs in the
former Verisoft project2 [2]:

1. Define a semantics S for the subset C’ of C used in the project. In the former
Verisoft project big step and small step semantics for C’=C0 were used [3, 4, 5].

2. Show that the verification condition generator used is sound with respect to
semantics S [5, 6].

3. Show that the compiler used correctly translates programs from C’ to the in-
struction set architecture (ISA) of the processor used. In the Verisoft project
a non optimizing compiler from C0 to the ISA of the VAMP processor [7, 8]
was verified [3, 4].
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4. in case one has doubts that the ISA in the manuals is the ISA realized by the
hardware: show that the processor hardware correctly interprets the ISA [9].

In the context of the hypervisor effort we have to deviate from this road map
due to the following difficulties:

1. Complexity of the processor: the documentation of the x64 ISA of contempo-
rary multi core processors consists of thousands of pages [10, 11]. Of course
the building plans of the processors are not public. Even if we had access to
them they would be too complex to be completely verified using the present
state of the art tools.

2. Memory model of the processor: modern processors use a weak shared mem-
ory model [12, 13, 14, 15]. A ten page white paper [16] is supplied to clarify
this model beyond the thousands of pages of documentation.

3. Complexity of the compiler: in case of the hypervisor an optimizing Mi-
crosoft compiler (to whose source code we could gain access) translates multi-
threaded C programs to the x64 ISA. This compiler is also too complex for
present verification technology.

4. Compiler correctness: the theoretical treatment of compiler correctness for
target architectures with a weak memory model is still a field of ongoing
research [17, 18].

We proceed as follows: we first outline how to reverse engineer a memory sys-
tem for processors which is consistent with the documentation [10, 11, 16] and
with our ideas how to build processors [19, 20]. Section 3.2 gives simple suffi-
cient conditions for store buffers (between processors and memory) to become
invisible, namely in case of single processors and, trivially, in case of fenced mem-
ory transactions (a fenced transaction is only executed when the store buffer is
empty). In the spirit of [7] Section 3.3 sketches very briefly how to show hard-
ware correctness of a memory system consisting of a single cache and a main
memory. In Section 3.3 we outline a proof of the corresponding result for a cache
coherent shared memory. In order to obtain the result we later need, one has to
combine three arguments: i) a classical transaction based correctness proof for
cache coherence protocols, ii) its extension to compatible families of protocols as
introduced in [21] and used in modern processors, and iii) a construction of the
sequential order from the termination times of hardware transactions. In Section
3.4 we outline the arguments, why translated ‘linear memory’ is realized by multi
level address translation. In Section 3.5 we reverse engineer a multi core proces-
sor with Tomasulo scheduler, memory management units, store buffers as well
as coherency snooping as introduced in [22] and outline the correctness proof.

Assuming that we guessed the memory model correctly we then show in
Section 3.6 how to initialize a contemporary multi core processor such that the
hardware threads see the weak memory model derived previously in translated
linear memory.

Finally we turn to the theory of compilation for multi-threaded C programs
in weak memory models. Starting from a small step semantics for sequential
programs we derive as a starting point an unrestricted naive parallel C semantics,
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which unfortunately we don’t know how to compile into an efficient parallel
assembler program. In Section 4.2 we review the correctness theorem from [3]
for a non optimizing compiler for a sequential subset of C and then modify its
statement (without proof) for optimizing compilers for multi-threading code; for
a formal correctness proof of an optimizing compiler for a sequential subset of
C see [23]. In the short Section 4.3 we sketch how to compile volatile variables
such that in the compiled program they form a sequentially consistent portion
of the weak memory. Using test and set operations on volatile variables we can
implement locks which in turn permit to implement synchronized parallel C; this
last step is explained in Section 4.4.

2 Notation

We denote the concatenation of bit strings a ∈ {0, 1}n and b ∈ {0, 1}m by a ◦ b.
For bits x ∈ {0, 1} and positive natural numbers n ∈ N+ we define inductively
x1 = x and xn = xn−1 ◦ x. Thus, for instance 05 = 00000 and 12 = 11.

Overloading symbols like + , · , and < we will allow arithmetic on bit strings
a ∈ {0, 1}n. In these cases arithmetic is binary modulo 2n (with nonnegative
representatives).

We model memories m as mappings from addresses a to byte values m(a). For
natural numbers d we denote by md(a) the content of d consecutive memory cells
(from right to left) starting at address a, so md(a) = m(a + d− 1) ◦ · · · ◦m(a).
We select ranges of a bit string by x[hi:lo], e.g. x[11:0] to select the 12 least
significant bits of x.

3 Architecture Aspects

3.1 Sequential Memory

The state of a sequential memory with address range A and data range D is
modeled by a function

m : A→ D

where m(a) denotes the current content of memory cell with address a. We
consider here three kinds of atomic memory transactions: read, write as well
as test and set. We number transactions with indices i ∈ N0 and define the
predicates

– r(i): transaction i is a read,
– w(i): transaction i is a write, and
– ts(i): transaction i is test and set.

With each transaction i we associate an address ad(i) and (input or output)
data data(i). We define the memory content before transaction i by mi. The
semantics of read, write and test and set transactions can then be defined
by:
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– r(i) → data(i) = mi(ad(i)) ∧mi+1(a) = mi(a),

– w(i) → mi+1(a) =

{
data(i) if ad(i) = a,

mi(a) otherwise, and

– ts(i)→ data(i) =

{
1 if mi(ad(i)) = 0,

0 otherwise
∧
mi+1(a) =

{
1 if ad(i) = a ∧mi(ad(i)) = 0,

mi(a) otherwise.

The predicate

W (a, i) ≡ ∃j < i : ad(j) = a ∧ (w(j) ∨ (ts(j) ∧ data(j) = 1))

says that memory at address a has been written before transaction i. For such
a and i we define the last transaction before transaction i that wrote to address
a

last(a, i) = max{j < i : ad(j) = a ∧ (w(j) ∨ (ts(j) ∧ data(j) = 1))}.
Because mj+1(a) = mj(a) for j ∈ [last(a, i) + 1 : i− 1] one has

Lemma 1

mi(a) =

{
mlast(a,i)+1(a) if W (a, i),
m0(a) otherwise

and hence

r(i) → data(i) =

{
data(last(ad(i), i) if W (a, i)
m0(ad(i)).

Observe that any system obeying the last equation defines a memory system,
namely

mi(a) =

{
data(last(a, i)) if W (a, i),
m0(a) otherwise.

3.2 Store Buffers

A store buffer sb is a small queue between processor and memory m storing
pending write transactions (see Fig. 1). We provide store buffer entries sbe with
the following components:

– sbe.ad: the address of the write transaction,
– sbe.data: the data to be written, and
– the ghost component sbe.index: the index of the write transaction.3

3 Recall that ghost components are not implemented and serve only for mathematical
arguments.
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ad = 7, data = 6 sb.p

ad = 3, data = 2 sb.p− 1

...
...

ad = 3, data = 1 1

...

r(i), ad(i) = 1, data(i) = 0 i

r(i− 1), ad(i− 1) = 3, data(i− 1) = 2 i− 1

w(i− 2), ad(i− 2) = 7, data(i− 2) = 6 i− 2

...

0

0

0

1

3

2

5

3

8

4

1

5

0

6

0

7

0

8

. . .

. . .

Fig. 1. Store buffer

We model a configuration of a store buffer as a pair sb = (sb.p, sb.m) where
sb.p is the number of currently pending store requests and sb.m maps the set
[1 : sb.p] to the set of store buffer entries. Initially the store buffer is empty

sb0.p = 0.

If transaction i is a write request, its index, address and data are inserted at the
end of the queue. Thus for the new configuration sb′ we have

sb′.p = sb.p + 1
sb′.m(k) = sb.m(k)if k < sb′.p

sb′.m(sb′.p).ad = ad(i)
sb′.m(sb′.p).data = data(i)

sb′.m(sb′.p).index = i.

If a write request is sent to the memory, it is deleted from the front of the queue

sb′.p = sb.p− 1
sb′.m(k) = sb.m(k + 1) for 1 ≤ k ≤ sb′.p.

The store buffer stores requests in temporal order, i.e. we have

Invariant 1
k < k′ → sb.m(k).index < sb.m(k′).index.
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Predicate hit(a, sb) signals that a write request with address a is in the store
buffer:

hit(a, sb) ≡ ∃k ≤ sb.p : sb.m(k).ad = a.

The entire system consists of

– the processor, and
– the memory system consisting of memory and store buffer.

A memory system step deletes the first store buffer entry and sends it to the
memory. This maintains

Invariant 2. Let j = sb.m(1).index− 1. Then

mi(a) =

{
data(last(a, j)) : W (a, j)
m0(a).

A processor step sends a transaction to the memory system. Write transactions
are written into the store buffer. A test and set transaction causes the store buffer
to be flushed before being executed. Read transactions r(i) are answered using
store buffer forwarding: in case of a store buffer hit (hit(ad(i), sb) we determine
the last store buffer entry which has a write request leading to the hit

k = max{k′ : sb.m(k′).ad = ad(i)}

and return the data in store buffer entry sb.m(k′). Otherwise we return data
from memory

data(i) =

{
sb.m(k).data hit(ad(i), sb)
m(ad(i)).

The invariants imply that the memory system behaves like a single memory:

Lemma 2

r(i) → data(i) =

{
last(ad(i), i) if W (ad(i), i),
m0(ad(i)) otherwise.

Thus store buffers are invisible in systems with a single processor. If several
processors are connected with store buffers to a shared memory (Fig. 2) the store
buffers are visible. Consider the following two threads where shared variables x
and y are initially 0 and r1 and r2 are local variables stored in registers:

x = 1;
r1 = y;

Thread 1

y = 1;
r2 = x;

Thread 2
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ad = x, data = 1 sb1.p = 1 ad = y, data = 1 sb2.p = 1

...

r1(1), ad1(1) = y, data1(1) = 0 1

w1(0), ad1(0) = x, data1(0) = 1 0

...

r2(1), ad2(1) = x, data2(1) = 0 1

w2(0), ad2(0) = y, data2(0) = 1 0

. . .

. . .

0

x− 1

0

x

0

x + 1

. . .

. . .

0

y − 1

0

y

0

y + 1

. . .

. . .

Fig. 2. Multiple store buffers

Can it happen that both r1 and r2 contain 0 in the end? On a sequentially
consistent machine (for example a machine without store buffers), this cannot
happen, since either the assignment to x happens before the assignment to y
or vice versa and the program order is preserved within threads. However, if
we take store buffers into account the outcome is valid. Consider the situation
where both the assignment to x as well as to y are in the local store buffers, but
have not yet emerged to the memory. Hence the read of y in the first thread still
sees the value 0 and the read of x in the second thread also sees 0.

A brute force way to make store buffers invisible is to use fenced transactions.

Definition 1. If t is a transaction, we denote by ft the corresponding fenced
transaction. A fenced transaction from a processor is directly sent to the memory;
it is only executed when its store buffer is empty.

A trivial consequence is

Lemma 3. If for a time interval T and an address range A all transactions
during T with addresses in A are fenced, then the memory system behaves for
this time interval and address range like a shared memory.

3.3 Caches

Memories m are usually implemented by one or more levels of caches ca which
are backed up by a main memory mm. Caches are small and fast memories; they
can be implemented in many ways [24, 25, 26]. A uniform view on all kinds of
cache constructions is provided by abstract caches. Decompose addresses a ∈ A
into (cache) line address a.la and offset a.off :

a = a.la ◦ a.off



Pervasive Theory of Memory 81

and let LA be the set of line addresses. The configuration ca of an abstract cache
is then simply specified by a pair of mappings

– ca.valid : LA→ {0, 1}. A line la is present in the cache if ca.valid(la) = 1.
– ca.data : A → D. Formally this is just an ordinary memory configuration

with the full address range A, but values ca.data(a) are only considered
meaningful, if the corresponding cache line is valid, i.e. if ca.valid(a.la) = 1.

It is easy to see abstract caches are natural abstractions for the usual cache con-
structions; we show this for direct mapped caches. Consider the usual
decomposition of addresses a ∈ A ⊆ {0, 1}n

a = a.tag ◦ a.line ◦ a.off

where a.off ∈ {0, 1}o is the offset within a cache line, a.line ∈ {0, 1}l is the local
address of a cache line in the cache, a.tag ∈ {0, 1}t, and o + l + t = n. A direct
mapped cache c has three memories all addressed by local line addresses line:

– c.data(line) ∈ Do is the cache line stored in the local cache line line,
– c.valid(line) ∈ {0, 1} indicates if the data in line line is valid,
– c.tag(line) ∈ {0.1}t completes the local line address line to a full line address.

The corresponding abstract cache ca(c) can be defined by

ca(c).valid(tag ◦ line) = 1 ↔ c.valid(line) = 1 ∧ c.tag(line) = tag

ca(c).data(tag ◦ line ◦ off ) = c.data(line)[off ].

In a correctness proof for a cache system on the hardware level one has – among
others – to consider the following components of the hardware configuration h:

– the main memory h.mm, and
– in case of a direct mapped cache, the cache memories h.c.data, h.c.tag,

h.c.valid.

From the direct mapped cache h.c one abstracts the abstract cache ca(h.c). From
this one defines the (simulated) memory system m(h) simulated by the hardware
in configuration h as

m(h)(a) =

{
ca(h.c)(a) if ca(h.c).valid(a.line) = 1,

h.mm(a) otherwise.

A hardware correctness proof has also to consider the buses between the cache
and main memory as well as the logic controlling transfers of cache lines between
cache and main memory. Also hardware correctness proofs have to break read
and write transactions etc. down to the cycle level. For memory transaction i
one might have to consider start cycles s(i) (a request signal is activated) and
end cycles e(i) (a busy signal is taken away or is not activated in the first place).
A proof4 that this memory system is simulated has to establish (among other
things):
4 For a non pipelined cache.
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Lemma 4

1. A read transaction i starting in cycle s(i) returns in cycle e(i) the data
m(hs(i))(ad(i))

2. A write transaction i starting in cycle s(i) produces after cycle e(i) the sim-
ulated memory

m(he(i)+1)(a) =

{
data(i) if a = ad(i),
m(hs(i))(a)) otherwise.

The first formal correctness proofs for memory systems with caches that can be
synthesized to running hardware are reported in [27, 7].

Cache Coherent Shared Memory. The vanilla implementation of shared
memory for p processors P (1), . . . , P (p) is to connect each processor P (i) with
its own cache ca(i) and to back up the caches ca(i) with a main memory mm. The
entire memory system is supposed to simulate a single sequentially consistent
shared memory m [28]. In order to achieve this goal the caches observe each
others’ transactions via a special bus (this is called snooping) and run a cache
coherence protocol. Instead of a single valid bit the caches use a set St of several
states for each cache line in order to keep track what cache has what data and
how these data match the data in main memory. In abstract caches we therefore
replace function ca.valid by a state function

ca.s : LA→ St.

A very common set of states introduced in [21] is

St = {M, O, E, S, I}.
For s = ca.s(la) the intended meaning is

– s = M : the line is exclusive and modified. ‘Modified’ is not ‘clean’.
– s = O: the line is shared and modified (‘owned’).
– s = E: the line is exclusive and clean. ‘Clean’ means that the data in the

caches matches the data in main memory and ‘exclusive’ means that no other
cache holds this line la; we formalize this below.

– s = S: the line is shared and clean. ‘Shared’ is not ‘exclusive’.
– s = I: the line is invalid.

The caches have to maintain the following invariants about the cache states
of each line.

Invariant 3. Exclusive lines are only in one cache:

ca(i).s(la) ∈ {E, M} ∧ i �= j → ca(j).s(la) = I.

Invariant 4. Clean lines match data in main memory:

ca(i).s(la) ∈ {E, S} ∧ a.la = la→ ca(i).data(a) = mm(a).
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Invariant 5. Lines la owned by different caches match:

ca(i).s(la) = ca(j).s(la) = O ∧ a.la = la→ ca(i).data = ca(j).data.

The cache coherence protocol has to decide for each processor transaction
whether to announce it on the special bus (in this case we call the transaction
public) or not (we call the transaction private). Private processor transactions
are: line invalidations on clean or shared data (the local state is changed to I),
read hits (the local state stays the same), write hits on exclusive data (the new
state is M), test and set hit if the cached data is �= 0 (the local state stays the
same). There is also a private transaction between a cache and main memory,
namely if the cache flushes (writes to main memory and invalidates) a clean line.
All other transactions are public.

If one views the processors as a distributed system delivering the transactions
one by one5 to their caches then for each of the common protocols it is very easy
to show, that the invariants are maintained. Due to the (unrealistically simple)
distributed system one can number the transactions t(x) simply by the order in
which they are sent to the memory system. The simulated memory mx before
transaction t(x) is

mx(a) =

{
cax(i).data(a) if cax(i).s(a) �= I for some i,

mmx(a) otherwise.
(1)

Assuming that in the initial caches ca0 all lines la are invalid (ca0(i).s(la) = I)
the invariants imply among other things

Lemma 5

1. mx(a) is is well defined by Equation 1,
2.

mx(a) =

{
data(last(a, x)) if W (ad(x), x),
mm0(ad(x)) otherwise, and

3. if t(x) is a read transaction, then the memory system returns data mx(ad(x)).

Variants of this lemma have been extensively studied and model checked. Pro-
ducing at the hardware level a formal correctness proof for a cache coherent
shared memory is still considered a major open problem. Indeed we are not
aware of a paper and pencil proof for this problem. For such a proof one has to
give a complete implementation, e.g. in the style of [19] or [7].

If we denote transaction j of processor i by t(i, j) we have to consider the
start cycles s(i, j) and end cycles e(i, j) of these transactions. Typical durations
e(i, j)− s(i, j) + 1 might be 1 for read hits, 2 for exclusive write hits and many
more cycles for public transactions. For a straightforward implementation of the
transactions on a single shared data bus between caches and main memory and
a single special bus one will be able to show
5 Which is pointless; the very idea of shared memory is to parallelize transactions.
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Lemma 6. The following transactions do not overlap:

– public transactions,
– private transactions on the same processor,
– private and public transactions with the same address, and
– private writes and any transaction with the same address.

The hardware version of Equation 1 of the memory m(h) simulated by hardware
h is

m(h)(a) =

{
ca(i, h).data(a) if ca(i, h).s(a) �= I for some i,

h.mm otherwise.
(2)

With the help of Lemma 6 one shows that the invariants hold for each cycle,
and one gets

Lemma 7. m(h)(a) is well defined by Equation 2.

In the spirit of [7] one can define a total order O(i, j) ∈ N for the transactions
t(i, j) using their end cycles e(i, j): order transactions by their end cycles; order
transactions with the same end cycle arbitrarily. Denote by

M(t) = max{O(i, j) : e(i, j) ≤ t}

the largest index of a transaction that has completed until cycle t. Let z be the
sequential index of a transaction t(i, j) for some i and j, i.e. z = O(i, j) resp.
(i, j) = O−1(z).

We define predicate W ′(a, z) indicating that address a has been written by a
transaction with sequential index z′ = O(i, j) < z:6

W ′(a, z) ≡ ∃z′ < z : ad(O−1(z′)) = a ∧
(w(O−1(z′)) ∨ (ts(O−1(z′)) ∧ data(O−1(z′)) = 1)).

We define last(a, z) as the last sequential index z′ before z of a transaction
writing to ad(i, j):

last(a, z) = max{z′ < z : ad(O−1(z′)) = a ∧
(w(O−1(z′)) ∨ (ts(O−1(z′)) ∧ data(O−1(z′)) = 1))}.

Lemma 8. The hardware simulates a shared memory which is sequentially con-
sistent with respect to ordering O( , ): let z = M(t), then

1.

m(ht)(a) =

{
data(last(a, z)) if W ′(a, z),
h.mm0(a) otherwise,

6 We extend functions ad(j), data(j), w(j), r(j), ts(j) defined in 3.1 to multiprocessor
case as ad(i, j), data(i, j), w(i, j), r(i, j), ts(i, j) to take additional parameter i – the
index of a processor.
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2. a read transaction starting in cycle s(i, j) returns in cycle e(i, j) the data
m(hs(i,j))(ad(i, j)), and

3.
W ′(ad(i, j), O(i, j)) → last(a, O(i, j)) < M(s(i, j)).

There is one further highly interesting and important property about cache co-
herence protocols which to the best of our knowledge have not received much
theoretical treatment, namely compatibility within a family F of cache coher-
ence protocols. If the special bus between caches helping to control the cache
coherence protocol contains signals like the ones in the classical paper introduc-
ing the MOESI protocol [21], then one can specify with each memory access
(i, j) the cache coherence protocol mmode(i, j) ∈ F to be used for transaction i
on processor j, and one gets

Lemma 9. If a compatible family of cache coherence protocols is used in a mem-
ory system with caches and the memory mode used is specified separately for
each transaction, then the memory system still simulates a sequentially consis-
tent memory.

Consistent families of cache coherence protocols are implemented in the proces-
sors of modern PCs. The result of the lemma is stated quite explicitly in [21].
We have seen neither a paper and pencil proof nor a model checked version of
this important result.

3.4 Memory Management Units

Address Translation. We partition memory into pages; here we use the common
page size 4K = 212. We partition addresses a into page base addresses a.ba and
page offsets a.pof ∈ {0, 1}12, such that a = a.ba ◦ a.pof . We denote a page with
base address ba of memory m by pg(m, ba). It consists of the 4K consecutive
memory cells starting at address pa ◦ 012:

pg(m, ba) = m4K(ba ◦ 012).

Let V ⊆ A be a set of (virtual user) addresses to be translated by a memory
management unit (MMU) and let

V.ba = {a.ba : a ∈ V }
be the set of page addresses in V . An abstract translation of address range V is
specified by

– a translation function T : V.ba → A.ba specifying where to redirect memory
accesses to pages in A, and

– rights functions r : V.ba → {0, 1} specifying the access rights to pages. We
consider r = EXE (executable) and r = RW (readable and writable).

For a processor running in translated mode a memory management unit has to
redirect memory accesses to addresses a ∈ V to T (a.ba) ◦ a.pof in the following
situations
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– if a comes from the program counter and EXE(a.ba) = 1,
– if a is the effective address of a write access and RW (a.ba) = 1, and
– if a is the effective address of a read access.

For all other addresses a ∈ V and for all addresses a /∈ V a page fault has to be
generated.

Page Tables are pages that are used to specify abstract translations. They com-
monly consist of page table entries pte occupying 4 bytes resp. one word in a page
table. Within a page we can index the entries with page indices px ∈ {0, 1}10.
Thus we can define entry px of page table (with base address) ba as

pg(m, ba)[px] = pg(m, ba)4(px ◦ 02).

Intuitively multilevel address translation is done by traversing the graph G whose
nodes are the page tables and whose edges are specified by a certain component
pte.ba of the page table entries pte. But notice that the graph G is dynamic: it
can be edited by the processor while the MMU traverses it. Page table entries
pte usually have components like

– pte.ba the base address of the next page table or – at the last step of trans-
lation – a user page,

– the present bit pte.p indicating that the data of the entry is meaningful,
– rights bits pte.r, and
– possibly accessed and dirty bits pte.acc and pte.d; we will skip over them

here most of the time.

Walks. Multi Level Address Translation is achieved by walking resp. traversing
the page tables in K steps; common values are K = 3 or K = 4. The information
gathered during the traversal is summarized in walk. Walk w has the following
components:

– w.vba: the virtual base address to be translated,
– w.ba: the base address of the next page to be accessed,
– w.r for the rights r: the logical AND of bits pte.r in the entries traversed so

far, and
– w.level ∈ [K : 0]: the number of page tables that have yet to be traversed.

Walking starts with initial walks of level w.level = K. No rights have yet been
restricted, so w.r = 1 for all r. The base address w.ba of the page table where the
traversal starts is stored as the ba-component of a processor register dedicated for
this purpose; in x64 processors this register is called CR3 . Thus w.ba = CR3 .ba.
For the actual traversal we decompose base addresses ba of pages into K page
indices ba.px[i]:

ba = ba.px[K] ◦ ba.px[K − 1] ◦ . . . ◦ ba.px[1] = ba.px[K : 1].

The width of px[i] depends on the size of a page table entry, which can be 4 or
8 bytes. In case of a 4-byte page table entry, there are 4K/4 = 1024 entries per
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page table, and, therefore, the width of px[i] is 10 bits. Respectively, for 8-byte
page table entries the width px[i] is 9 bits.

Extension of a level x walk w to a walk wext(w) makes use of the level x page
index w.vba.px[x] of the address to be translated, the MMU accesses entry

pte = pg(m, w.ba)[w.vba.px[x]].

If it is not present (pte.p = 0) a page fault is generated. Otherwise, one sets

wext(w).ba = pte.ba

wext(w).r = w.r ∧ pte.r

wext(w).level = w.level − 1

The walk w is complete if level w.level = 0. The translated base address w.ba
of a complete walk is a translation for the walks virtual base address w.vba. An
iterated walk extension wextx(w) is obtained in the obvious way by wext0(w) =
w and wextx+1(w) = wext(wextx(w))

Translation Look Aside Buffers. Walking the page tables is slow as it requires
many memory accesses. Therefore one collects translations (w.vba, w.ba, w.r)
found during the walking in a cache called the translation look aside buffer resp.
the TLB. However, as processors do not keep this cache consistent with the
page tables, it is the users responsibility to evict translations from the TLB,
that should not be used any more. Translations (there can be several) for single
virtual base addresses are evicted by so called invlpg(vba) instructions. There
are also instructions for clearing the entire TLB.

Implementing an Abstract Translation. Suppose virtual address range V , trans-
lation function T , and rights functions r of an abstract translation are given. We
construct a tree G of page tables such that walking G produces the translations
prescribed by the abstract translation. Denote by

Px = {vba.px[K : x] : vba ∈ V.ba} for 2 ≤ x ≤ K + 1

the set of prefixes of the virtual base addresses formed by page indices from
K + 1 down to 2. Note that PK+1 = ε is an empty prefix. Let

P =
K+1⋃
x=2

Px

be the set of all prefixes. For each prefix p ∈ P we allocate in memory m a
separate page table with base address ptba(p), such that

∀q ∈ P : q �= p ⇒ ptba(q) �= ptba(p).

The entries of the page table corresponding to prefix vba.px[K : x] are defined
by induction on x from the leaves (x = 2) to the root (x = K + 1). Let pte be
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the page table entry with index vba.px[x− 1] in the page table corresponding to
prefix vba.px[K : x], i.e.

pte = pg(m, ptba(vba.px[K : x]))[vba.px[x − 1]].

For x = 2 set the present bits pte.p = 1 if vba ∈ V.ba, and for present entries set

pte.ba = T (vba)
pte.r = r(vba)

For x > 2 set pte.p = 1 if vpa.px[K : x− 1] ∈ Px−1, and for present entries set

pte.ba = ptba(vpa.px[K : x− 1])
pte.r = 1

and point with special purpose register CR3 to the root of the tree obtained in
this way

CR3 = ptba(ε).

By induction on x one now easily shows

Lemma 10. Let vba ∈ V.ba, let pr = vba.px[K : x + 1] and let w be a walk
with w.ba = vba, w.level = x, w.ba = ptba(pr) and w.r = 1. Then x-fold walk
extension of w gives the desired translation:

wextx(w).ba = T (vba)
wextx(w).r = r(vba).

A similar argument shows that initial walks with w.vba /∈ V.ba hit a not present
entry at level y where

y = max{x : vba.px[K : x] /∈ Px}.

3.5 Out of Order Execution

Tomasulo schedulers as shown in Fig. 3 are the standard mechanism for the
out of order execution of instructions in processors. Instructions are fetched in
program order in the instruction fetch (IF) stage. They wait in the issue stage
for a free reservation station (RS) of a functional unit capable of executing the
instruction, and for a free slot in the reorder buffer (ROB). From the issue stage
instructions proceed to a reservation station. At this point three things happen:

1. The instruction receives a tag; this is a local number for instructions issued
but not written back. There are as many tags as places in the reorder buffer.
The reorder buffer is usually implemented as a RAM implementing a queue
that eventually holds the results (including the interrupts produced or sam-
pled) of instructions; at issue time the instruction is inserted at the end of
the queue. The natural tag to be used for an instruction is its RAM address
in the ROB.
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functional units

ALU LS. . .

CDB

reorder buffer

writeback

reservation stations

issue

instruction decode

instruction fetch

Fig. 3. Tomasulo scheduler

2. Register operands are looked up in the register files. If a register does not
contain valid data (because an instruction writing the data is in flight),
a tag field associated with the register contains the tag t of the last such
instruction.

3. The results of such instructions with tag t are searched in the ROB and on
the common data bus (CDB). If not all operands are found, the instructions
producing the desired results are still in the reservation stations or the func-
tional units. The reservation station snoops on the common data bus for the
results of instructions with tags t occuring on the CDB. Once all operands
are gathered and the functional unit can accept a new operand, instructions
proceed to the functional unit, then later via the CDB to the ROB. They
are written back when they are at the head of the queue implemented by
the ROB. Thus, retirement of instruction is again in program order.

The classical correctness statement of out of order mechanisms then has the form

Lemma 11. The mechanism of a Tomasulo scheduler (as shown in Fig. 3) pre-
serves the sequential semantics of machine instructions that do not access mem-
ory; in these situations reservation stations and reorder buffer are invisible to
the programmer.

A (hopefully) reasonable paper and pencil proof can be found in [19]. There are
numerous formal proofs for this result at various levels of detail. At the most
detailed level the proof concerns synthesizable hardware [27, 20].
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Load Store Units. If functional units include load store units LS accessing a
memory system m (they should for all practical purposes!) a few extra precau-
tions have to be taken: as long as the functional units do not produce irreversible
results, an instruction that has not passed the head of the ROB and thus has
not reached the write back stage can be rolled back. This permits to implement
precise interrupts (i.e. interrupts with a sequential semantics). But write instruc-
tions in memory units (and read instructions to devices with read side effects)
cannot easily be rolled back once they have reached the load store unit. One
possible way to maintain precise interrupts is to send a write instruction (and a
load instruction to an I/O port) to the load store unit only if it is at the head
of the ROB.

One often inserts a store buffer between the load store unit and the memory
system (see Fig. 4). Because of Lemma 2 the resulting memory system behaves
like a single memory and one gets

Lemma 12. The memory unit shown in Fig. 4 preserves the sequential seman-
tics of machine instructions; thus reservation stations, reorder buffer and store
buffer are invisible to the programmer.

A formal proof for synthesizable hardware is reported in [27].

MMU LS. . .

CDB

reorder buffer

writeback

reservation stations

sb

m

Fig. 4. Memory units

Memory Management Units. Intuitively, the control of a processor with a
memory management unit has to split translated loads and stores into two
microoperations:

i) find the address translation either by quickly looking it up in the TLB or by
slowly walking the page tables, and

ii) perform the memory transaction using the translated address of step i) as
an operand.

Tomasulo schedulers permit to implement this in a natural way. MMU and load
store unit are separate functional units; if a translated memory transaction is
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fetched, two microinstructions are issued: one to the MMU computing the de-
sired translation and a second one to the LS unit performing the actual access.
For MMUs setting ‘accessed’ and ‘dirty’ bits accesses to the tables are potentially
writing. Therefore a conservative implementation would perform the accesses only
if the microinstruction computing the translation is at the head of the ROB (slow-
ing down the process of page table walking even further). Notice that it is very
natural, that a load instruction whose translation is already in the TLB overtakes
a previous access whose address needs to be translated by walking. As a result the
ROB entries of such load instructions contain kind of precomputed results; we deal
with the problems arising from this in the multi processor case shortly.

The data path used by the MMU deserves some attention. One can provide a
separate access path bypassing the store buffer from the MMU to the memory
system m. Also one can forward results from the MMU directly to the LS unit.
Note that due to the different access path into the memory system even in the
case of a single processor Lemma 2 does not apply any more. Thus we get

Lemma 13. The memory unit shown in Fig. 4 with MMU bypassing the store
buffer almost preserves the sequential semantics of translated machine instruc-
tions: reservation stations and reorder buffer are invisible to the programmer,
but the store buffer stays visible.

Thus, a page table walk might miss a sequentially earlier page table update
which is still in the store buffer.

Coherency Snoops. One would fear that in the multiprocessor case the program-
mer model becomes even more complicated, but in patents like [22] one finds
counter measures. One of them is coherency snooping: the ROB entries of pro-
cessor j holding (precomputed) results of load instructions (i, j) store also the
translated address a and participate in the snooping protocol of the caches. If
a write to address a is snooped on the cache of a different processor j′ (sequen-
tially earlier writes on processor j are handled by store buffer forwarding) the
load instruction is either

– rolled back and repeated; this allows other processors to prevent the termi-
nation of the load instruction by repeated writes to address a, or

– the result of the load instruction is replaced by the data written by processor
j′ to address a; this gives the memory model provided by modern processors.

Lemma 14. Suppose the memory unit shown in Fig. 4 is used with several
processors connected to a cache coherent shared memory m and uses coherency
snooping. Then locally sequential semantics is almost preserved; reservation
stations and reorder buffers are invisible. Store buffers are visible.

For the proof we use notation from section 3.3. Let t be the last cycle when a
read transaction (i, j) is in the ROB before it is retired, and let m(ht) be the
memory simulated by the memory system in cycle t as defined in Equation 2.
The memory depends only on the write operations which have completed until
cycle t; let z = M(t). Write operations by the LS unit and the MMU are issued
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on each processor only when they are at the head of the ROB, i.e. they are issued
in order. Thus memory m(ht) already corresponds to an in order execution on
each processor and we have as before

m(ht)(a) =

{
data(last(a, z)) if W (a, z),
h.mm0(a) otherwise.

Let t′ ≤ t be the last cycle before t when the data for read transaction (i, j)
was updated in the ROB, either by the execution of the load instruction or
subsequently by the coherency snooping. Then the ROB writes back result
m(ht′)(ad(i, j)) for transaction (i, j). Between cycles t′ and t coherency snooping
does not update the ROB for transaction (i, j), hence no write to address ad(i, j)
even started in this period and we have

m(ht′)(ad(i, j)) = m(ht)(ad(i, j))
= data(last(ad(i, j), z)).

3.6 Initializing an x64 Processor

Figure 5 gives a a very schematic view of the instruction set architecture of
contemporary PC processors as documented on about 3000 pages in [10] or only
about 1500 pages in [11]. The major blocks are the processor core, MMU with
TLB, memory system with main memory and caches, store buffers as well as
the I/O devices which are accessed like the main memory. Multi core processors
have several processor cores, MMUs and store buffers connected to one memory
system and the devices.

Boxes labeled acc stand for memory ‘access registers’ holding addresses, data,
etc. of memory transactions. The core contains numerous user registers R as
well as numerous system registers; for us system register CR3 which serves as
the origin of TLB walks is particularly important. The segmentation mechanism
is a legacy feature going back to the x86 architecture. It can be made invisible
by configuring the entire physical address space as a single segment with no
restriction of rights. The memory can be accessed in many memory modes. At
least one of them (UC – uncachable) completely bypasses the caches and thus
makes the caches visible to the programmer. The good news is that the memory
modes which do not bypass the caches are compatible. Thus, if no I/O devices
are accessed and only compatible memory modes are used, then by Lemmas 9
and 14 the user sees a sequentially consistent physical memory PM and store
buffers (see Fig. 6-a). If I/O devices are accessed in uncachable mode life is
simple too. But if devices are accessed in memory modes using the cache, than
the actual device access only takes place in case of cache misses. This even makes
the states of the cache lines visible.

After a reset signal x64 machines are in a very simple operation mode where
only a single processor is running and paging is switched off. Because paging is
switched off the MMU is not visible. Because only one processor is running by
Lemma 2 the store buffer is not visible. In this mode page tables as specified
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in section 3.4 can be written into the physical memory (Fig. 6-a). If we turn
on all processors, clear all TLBs and enable paging (i.e. we run the processors
in translated mode, then by Lemma 10 an abstract translation is realized. In
this mode the MMUs become invisible and the users see store buffers and a
sequentially consistent shared ‘linear’ memory LM (Fig. 6-b).

4 Programming Language

4.1 Naive Parallel C Semantics

We are considering parallel C programs whose threads run in an interleaved
fashion on multi core machines. The obvious approach to define the semantics of
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such programs is to start with the small step semantics of single threads and then
to interleave the steps of the threads. The configuration c of a single threaded
abstract C machine can be defined essentially using the following components:

– a program rest c.pr consisting of a sequence of C instructions yet to be
executed,

– a global memory c.gm,
– a heap memory c.hm, and
– a local memory stack c.lms consisting of c.rd (recursion depth) many mem-

ory frames.

For details of the particular semantics used in the Verisoft project7 see [3, 4].
Generalizing this to a configuration with multiple threads i is straight forward:

– use for each thread i a local program rest c.pr[i] and a local memory stack
c.lms[i],

– share the global memory c.gm and the heap c.hm, and
– now interleave the (small step semantics) steps of the threads defined in this

way.

There is no way to beat the elegance of this definition. Unfortunately we don’t
know how to implement it efficiently. For threads i let p(i) be the program of
thread i. Before running on a parallel machine C programs p(i) are first compiled
to a machine program code(p(i))); even with the simplest non optimizing com-
piler a single small step semantics step is usually translated to several machine
instructions. The hardware then interleaves the machine instructions instead
of the steps of the C semantics. Hence if one wants to define efficiently imple-
mentable parallel C semantics one has to worry about the process of compilation,
preferably by an optimizing compiler.

4.2 Compilation

The compiled programs code(p(i)) – running say in linear memory LM(h) of a
hardware configuration h – have to simulate the programs p(i) of the C threads.
For now we only sketch compiler correctness for a single thread. A simulation
relation consis(c, alloc, h) between C configurations c and hardware configura-
tions h is defined with the help of an allocation function alloc. This functions
maps elementary C variables x to ‘allocated (linear) base addresses’ alloc(c, x).
We define some typical properties of relation consis.

– For variables x let asize(x) be the number of bytes allocated by the compiler
for variable x; it depends only on the type of x. Let va(c, x) be the value
of variable x in configuration c. Then the asize(x) bytes in linear memory
LM(h) should coincide with the C value of the variable

LMasize(x)(alloc(c, x)) = va(c, x).

7 http://www.verisoft.de

http://www.verisoft.de
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– Suppose p is a pointer; thus its value is another variable va(c, p) = y. As-
sume we have 8 byte addresses. Then the 8 bytes in linear memory following
alloc(c, p) should be the allocated base address of y

LM8(alloc(c, p)) = alloc(c, y).

– For non optimizing compilers code is compiled statement by statement.
The first statement of the program rest is head(c.pr). It is translated to
code(head(c.pr)). Let start(code(head(c.pr))) be the address in linear mem-
ory where this piece of translated code is allocated. Then the program
counter h.pc should point there

h.pc = start(code(head(c.pr))).

Clearly, one needs to modify this condition for optimizing compilers.

For non optimizing compilers one obtains the following step by n-step simu-
lation theorem

Lemma 15. For every C computation c0, c1, . . . there exist i) a hardware com-
putation h0, h1, . . ., ii) a sequence of step numbers s0, s1, . . . and iii) a sequence
of allocation functions alloc0, alloc1, . . . such that

consis(cT , allocT , hs(T ))

holds for all T .

For a formal proof of this result see e.g. [4]. Optimizing compilers exploit the fact,
that we do not really care for simulations to hold for every C step. It suffices if
the relation holds for the ‘visible’ C steps T , for example when the program does
I/O. Let us call these steps I/O steps. Then a possible correctness statement for
an optimizing compiler would look like:

Lemma 16. For every C computation c0, c1, . . . there exist i) a hardware com-
putation h0, h1, . . ., ii) a sequence of step numbers s0, s1, . . . and iii) a sequence
of allocation functions alloc0, alloc1, . . . such that

consis(cT , allocT , hs(T ))

holds for all I/O steps T .

For a formal correctness proof for an optimizing compiler (with respect to a big
step semantics) see [23].

4.3 Volatile Variables

Compiler directives allow to declare shared variables x as volatile. Intuitively
speaking this warns the compiler that these variables are shared and thus accesses
to such variables should not be optimized to registers. In order to make compiler
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construction easy we syntactically restrict the use of volatile variables x. A thread
can only perform assignments of the form

y = x or x = y

where y is a thread local variable. We include any such assignment into the I/O
steps and we implement any such assignment by a fenced read resp. write. By
the trivial Lemma 3 then the store buffers in (Fig. 6-b) become invisible for
transactions involving volatile variables and we obtain

Lemma 17. The portion of memory allocated to volatile variables forms a
sequentially consistent portion of linear memory LM .

4.4 Synchronized Parallel C

Using test and set operations on volatile variables it is straightforward to im-
plement locks using textbook shared memory algorithms [29]. Using locks one
can exclusively reserve memory regions R of the shared C variables (e.g. certain
data structures) temporarily to threads i, for certain intervals I of C-steps. Dur-
ing such intervals I thread i can do computations on region R like in ordinary
sequential C computations: due to the locking no other thread accesses region
R during interval I, thus the store buffers are by Lemma 2 invisible. However,
at the end of interval I when the lock is released the compiler must guarantee
that the updates of region R performed by thread i become visible to the other
processors. If the compiler treats a lock release of thread i as an I/O step for the
thread, then this is guaranteed by Lemma 16.

Currently we work on extensions of these basic programming disciplines and
fencing policies for shared memory accesses to cover more programming idioms
by our theory framework.
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Abstract. The paradigm of quasirandomness led to dramatic progress
in different areas of mathematics, with the invention of quasi-Monte
Carlo methods in numerical integration probably being the best known
example. In the last two decades, discrete mathematics heavily used
quasirandom ideas, leading, e.g., to notions like quasirandom graphs.

We feel that it is now time to exploit quasirandomness in computer
science. As a first application, we propose and analyze a quasirandom
analogue of the classical randomized rumor spreading protocol to dissem-
inate information in networks.

1 Introduction

Randomized methods are well established both in mathematics and in computer
science. Here are a few examples.

(i) Monte Carlo integration: We can approximate the integral of a function
f : [0, 1]d → R by the estimate 1

n

∑
p∈P f(p), where P is (multi-)set of n point

chosen uniformly at random from [0, 1]d.
(ii) Discrete mathematics: To prove that for any k ∈ N, there are graphs

having girth g(G) > k and chromatic number χ(G) > k, Paul Erdős [Erd59] took
a random graph on n vertices with each two vertices connected with probability
n−1+ 1

2k . With high probability, there are at most n/2 cycles of length k and
shorter. Deleting an arbitrary vertex from each such cycle, we end up with a
graph G′ having girth g(G′) > k. It is also not difficult to compute that χ(G′) ≥
n

1
2k /(6 lnn). This shows that for n large enough, our construction yields a graph

having both girth and chromatic number greater than k.
(iii) Randomized algorithms: There are so many randomized algorithms by

now that it is hard to mention one without feeling guilty of neglecting another.
The sorting algorithm Quicksort might be the most prominent example. Ran-
domized primality tests only need time polylogarithmic in n to give a reasonable
answer to the question whether a number n is a prime number or not. Random
walks are the heart of many exploration algorithms. For example, they yield
a simple O(mn) time randomized algorithm for the s-t-connectivity problem
in undirected graphs, that uses only a logarithmic amount of space [AKL+79].
Random sampling is an integral part of modern directions like property testing
and sub-linear time algorithms.

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 99–111, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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For most of these examples, similar results avoiding the use of randomized
methods exist. Often, they were found much later, they are more complicated,
and inferior in further aspects. For example, it was only short ago that Rein-
gold [Rei05] showed how to solve the undirected s-t-connectivity problem by a
deterministic algorithm using logarithmic space. However, this algorithm is far
from being practical. It is both difficult to implement and much less efficient.

For some examples, though, randomness turned out not to be necessary, and
occasionally, the resulting deterministic approaches were much stronger. A very
useful paradigm here is that of quasirandomness. In the following section we
shall explain this concept and, using the historically early example of numerical
integration, show how it naturally led to the very powerful quasi-Monte Carlo
methods. For reasons of space, we will omit a discussion of quasirandomness in
discrete mathematics, but continue in Sections 3 to 5 with what are now the
first attempts to use quasirandomness in computer science. A number of open
problems are outlined in Section 6.

2 Quasirandomness and Quasi-Monte Carlo Integration

In this section, we introduce the concept of quasirandomness via its most suc-
cessful application, which is numerical integration. However, no knowledge in
numerics is required for reading this section.

Numerical integration asks for estimating the value of an integral. Say we are
given function f : [0, 1]d → R from the d-dimensional unit cube into the real
numbers. Often, the integral I(f) :=

∫
[0,1]d f(x)dx is hard to compute exactly.

Hence, we are looking for a method of approximating its value.
An approach both simple and natural is Monte Carlo integration. For n ∈ N

suitably large, we choose a multi-set P of n points uniformly from [0, 1]d. We
estimate the value of the integral I(f) by the average function value EP (f) :=
1
n

∑
p∈P f(p).

Naturally, we expect this value to be a reasonable approximation of I(f), with
the error |EP (f)− I(f)| being smaller the larger the number n of points is. We
feel that this is natural, because a sufficiently large random point set should see
small and large function values in a fair proportion.

In fact, what sounds natural can also be proven. The integration error can be
bounded by an expression of order O(n−1/2), hence it is nicely decreasing with
growing sizes of the sample point set P . Note that here and in the following we
treat the dimension d as a constant.

The paradigm of quasirandomness suggests that we do not stop at this point,
but find out which property causes the random point set to be a good sample
point set, and then try to find (not necessarily random) point sets that are
particularly good in this respect.

For random sample points, it is easy to guess that they profit from being
distributed evenly in the domain [0, 1]d. A closer analysis supports this guess
and makes it precise. As a measure of uniformity, let us define the discrepancy
of P to be

disc(P ) := sup
{| |P ∩R| − n vol(R)| ∣∣R ∈ R},
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where R := {[0, x[ | x ∈ [0, 1]d} denotes the set of half-open axis-parallel rectan-
gles in [0, 1]d with one corner being the origin and vol([0, x[) :=

∏d
i=1 xi denotes

the volume of such a rectangle. Hence the discrepancy is a worst-case measure
for how far the number of points of P contained in a rectangle R deviates from
its fair value n vol(R).

The Koksma-Hlawka inequality, valid for any point set P , bounds the inte-
gration error via

|EP (f)− I(f)| ≤ 1
n disc(P )V (f),

where V (f) denotes the variation of f in the sense of Hardy and Krause (cf.
e.g. [Mat99, p. 23]). We shall not define this variation here, since for a given
function f this is a constant. From the (innocent looking, but deep) result
that a random set of n points has an expected discrepancy of order O(

√
n),

cf. [HNNW01], we obtain the previously stated bound on the integration error
of Monte Carlo integration.

More importantly, we can read from the Koksma-Hlawka inequality that in-
deed random points are good because they are well distributed in the sense
that they have small discrepancy. Following the quasirandom trail to its end, we
should now try to find arbitrary point sets P having small discrepancy disc(P ).
Fortunately, such point sets exist. A number of explicit constructions are known
that yield n-point sets having a discrepancy of O(log(n)d−1) only. Consequently,
for these the Koksma-Hlawka inequality gives much better error guarantees.
Also, a huge amount of experimental work shows that these point sets not only
have a better error guarantee, but in fact are superior in many settings. Using
such low-discrepancy point sets in numerical integration is called quasi-Monte
Carlo integration.

3 Quasirandom Rumor Spreading

In this section, we demonstrate that quasirandom ideas can also be used in com-
puter science. Our example will be a simple randomized protocol to disseminate
information in networks. We shall first describe the random version and then
develop a quasirandom one.

3.1 Random Rumor Spreading

In computer networks, the following task needs to be solved. One node of the
network obtains some piece of information (“rumor”) and needs to communicate
it to all other nodes. This happens for example if we store copies of a database
at each node of a network. If at some node an update is injected in the database,
it has to be communicated to all other nodes. See [DGH+88, KDG03] for more
details on where such problems occur.

Typically, as in the database synchronization setting, we are in the situation
that updates may occur at arbitrary times at arbitrary nodes, and that we run
a protocol that continuously tries to synchronize the databases. While keeping
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this setting in mind, for the analysis of this problem we shall assume that a
single update occurs and we shall regard the process until it communicated this
update to all other nodes.

We model the network topology via a graph G = (V, E), that is, V represents
the set of nodes and those nodes that can directly communicate with each other
are connected via an edge e ∈ E. Unless G is a complete graph, we need inter-
mediate nodes to help disseminating the rumor. We also want to use the help
of such nodes to speed up the dissemination process. Our main aim is a fast
spreading of the rumor. A second aim is robustness. By this we mean that the
dissemination still works moderately well if some transmissions get lost, that is,
do not reach their target due to all kinds of errors.

A very simple protocol achieving these aims surprisingly well is the following.
The nodes act in a synchronized manner, that is, in rounds. In each round, each
node that already knows the rumor contacts a random neighbor. If the neighbor
does not yet know the rumor, it becomes informed in this round. This is known
as the randomized rumor spreading protocol.

Though not a very elaborate protocol, randomized rumor spreading is highly
efficient. Let G be a complete graph Kn, a d-dimensional hypercube Qn (n = 2d,
d ∈ N) or a random graph G(n, p) with p ≥ (1 + ε) ln(n)/n, that is, a random
graph G = (V, E) on a fixed set of n vertices such that for all u, v ∈ V , u �=
v, independently we have Pr[(]{u, v} ∈ E) = p. Then O(log n) rounds suffice
to inform all nodes with high probability [FG85, FPRU90]. Here and in the
following, “with high probability” shall mean with probability at least 1 − 1

n .
Later, Elsässer and Sauerwald [ES07] extended this result to Cayley graphs,
Sauerwald [Sau07] to expander graphs, and Berenbrink, Elsässer and Friedetzky
to [BEF08] random regular graphs.

Clearly, log2(n) rounds are necessary for any graph, simply because the num-
ber of informed nodes can at most double in each round. Hence all these results
show the right order of magnitude.

For the complete graph, more accurate estimates for the broadcast time exist.
Already the Frieze and Grimmet result [FG85] shows that ln(n) + log2(n) +
o(log(n)) rounds suffice to inform all nodes with probability 1 − o(1). Pittel
further reduces the error term to show that after ln(n) + log2(n) + ω(1) rounds,
all nodes are informed with probability 1− o(1).

3.2 The Quasirandom Model

The paradigm of quasirandomness advises us to look for characteristic properties
of the randomized rumor spreading process and then try to design a protocol
that is particularly good with respect to these properties. One property of the
randomized protocol that we might speculate to be the reason for its success
is its local fairness. An informed vertex contacts its neighbors in a relativly
balanced manner. If it became informed some time ago that is small compared
to the number of its neighbors, then it will have contacted only few neighbors
more than once. If it is informed for a long time, then it will have contacted
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each neighbor roughly equally often. Note that in the model where just a single
message has to be distributed, the latter property is not useful.

Believing that this local fairness might be the reason for the success of ran-
domized rumor spreading, we try to build a protocol that perfectionates local
fairness. One way of doing so is the following. We equip each vertex with a cyclic
permutation of its neighbors. This is the order in which it shall contact its neigh-
bors. This clearly achieves local fairness in the above sense as well as possible.
No neighbor is contacted a second time except after all neighbor were contacted
once. Also, the numbers of times the different neighbors were contacted deviate
by at most one.

Unfortunately, it is easy to see that we may design the cyclic permutations
in a way that the protocol needs very long. On the complete graph, if all cyclic
permutations have a particular vertex on the last position, then informing this
vertex takes n − 1 rounds. To overcome such difficulties, we add a small grain
of randomness to the protocol. We let each vertex choose its first addressee
uniformly at random from its neighbors. All subsequent transmissions from this
vertex are directed to its first addressee’s successors in the cyclic list (in this
order). This is what we shall call the quasirandom rumor spreading protocol.
Clearly, the quasirandom protocol still has perfect local fairness.

Before analysing the quasirandom protocol, let us discuss it from the imple-
mentation point of view. From the theory perspective, we immediately see that
it requires each vertex to store the permutation of its neighbors, which might
need up to Θ(n log n) bits. This was not necessary for the fully random model.
However, we may assume that in most networks each vertex already has some
list (array) of its neighbors, because the information of how to actually contact
a neighbor has to be stored somewhere. Hence here the use of the lists does not
increase the complexity. Rather, we might feel that the quasirandom protocol
needs less resources. In particular, it needs much fewer random bits. This is nice
if we feel that randomness is costly, and useful if we want to trace an actual run
of the protocol.

The core question that needs to be answered, naturally, is if the quasirandom
protocol works well even if we are not permitted to design the lists. Surprisingly,
the answer is positive.

No matter how the lists present at each vertex look like, again O(log n) rounds
suffice with high probability to inform all vertices of a complete graph Kn, a
hypercube Qn, an expander graph on n vertices or a random graph G(n, p) with
p ≥ (1+ε) ln(n)/n [DFS08, DFS09]. Naturally, the lower bound of log2(n) rounds
presented above for the fully random model also holds for the quasirandom one.
Hence again these bounds show the right order of magnitude.

For random graphs, we may even lower the edge probability p to p = (ln(n)+
ω(1))/n. Then with probability 1 − o(1), the random graph is such that with
high probability the quasirandom protocol independent of the starting point
needs only O(log n) rounds. This is a notable advantage over the fully random
model. Here, Feige et al. [FPRU90] showed that for p = (ln(n)+O(log log n))/n,
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the random graph with probability 1 − o(1) is such that Θ(log(n)2) rounds are
necessary to spread the rumor with high probability.

For the complete graph, we know even sharper bounds. In [ABD+09], we
showed that with probability 1 − o(1), the number of rounds needed to inform
all vertices is log2(n) + ln2(n) ± o(log(n)). This was improved by Fountoulakis
and Huber (private communication). They show that with probability 1− o(1),
the number Sn of rounds after which all vertices are informed, satisfies log2(n)+
ln(n)− 4 ln(ln(n)) ≤ Sn ≤ log2(n) + ln(n) + ω(1).

The bounds one can obtain for arbitrary graphs are also better for the quasi-
random model. For the fully random model, it is known that 12n ln(n) and
O(Δ(G)(diam(G) + log(n))) rounds suffice to inform all vertices of an n-vertex
graph G with high probability [FPRU90]. For the quasirandom model, it is easy
to prove that after 2n − 3 or Δ(G)diam(G) rounds, with probability one all
vertices are informed.

Besides the time needed to disseminate information to all nodes of a network,
the robustness of the protocol is an important aspect. The fully randomized
model, due to its high use of independent randomness is widely believed to be
very robust. The only rigorous result in this direction is due to Elsässer and
Sauerwald [ES06]. They showed that if each transmission independently with
probability 1− p fails to reach the target, then the time needed by the protocol
increases by a factor of O(1/p). In [DFS09], we show the same result for the
quasirandom model.

Since the latter result does not regard possible constant factor differences
between the two models, in current work with Anna Huber and Ariel Levavi
(unpublished manuscript) we analyze the robustness of rumor spreading on the
complete graph. We show that the quasirandom protocol informs all vertices of
the complete graph in 1

log2(1+p) log2(n)+ 1
p ln(n)+o(log n) rounds. For the random

model, we show a lower bound of the same magnitude. This demonstrates that
the quasirandom protocol is as least as robust as the fully random one. It also
shows that it is more robust than what one would expect at first, namely, that
a fraction of p of the messages reaching their destination results in a run-time
increase by a factor of 1

p .
All results presented so far show that the quasirandom model achieves similar

and rather superior results, while using a greatly reduced number of random
bits. This raises the question if a further reduction of the number of random
bits can be fruitful. This, however, is not true. In a model that can be seen as
a reasonable extension of the quasirandom model to log2(n) − b random bits
per vertex, the time needed to inform all vertices of the complete graph can for
unsuitable permutations go up to log2(n) + ln(n) + 2Θ(b) + o(log n) rounds. We
refer to [ABD+09] for a precise statement of the result and thus avoid a lengthy
discussion of how protocols with fewer random bits should look like.

4 Analyzing Quasirandomness

In this section, we shall give some insight in how to handle the reduced amount
of randomness in the analysis. Clearly, with fewer independent random bits used
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in the quasirandom protocol, we have to deal with a huge number of depen-
dencies. In particular, we cannot simply build on that we have a certain set of
vertices informed after a certain time and continue our proof on this fact, but we
have to regard the particular way how these vertices became informed. The fact
that certain vertices are informed at a certain time or not, does yield statistical
information on whether other vertices are informed and on where in the cyclic
process of informing their neighbors they currently stand.

A second reason to be afraid of dependencies is the following. To prove stat-
ments holding with high probability, ususally so-called large-deviation bounds
are employed. They assert that sums of independent random variables are
strongly concentrated around their mean. If in the fully random model on the
complete graph we have n/2 vertices informed and we expect them to inform
roughly cn := (1

2 (1 − e−1/2)n new ones in the next round, then these bounds
assert that we can be very sure to get almost that number. More precisely,
the probability that less than (1 − ε)cn vertices become informed, is less than
exp(−ε2cn/2). Taking these two difficulties into account, it seems surprising that
the above mentioned results could be proven.

In this section, we shall see that, in fact, coping with these dependencies needs
not to be so difficult as it looks at first. Trying rather to communicate methods
than deep results, we shall only regard a very simple problem, namely how to
analyse quasirandom rumor spreading on the complete graph, and only to the
extent of achieving the right order of magnitude. The main techniques used here,
however, can be found in most other proofs on quasirandom rumor spreading as
well. We shall therefore proof the following simple result.

Theorem 1. With high probability, O(log n) rounds suffice to inform all vertices
of the complete graph via the quasirandom rumor spreading model.

The proof shall be completely self-contained apart from the following simple
fact, which can be derived directly from Stirling’s formula (see, e.g., [Rob55]) or
more generally from Chernoff’s inequality (see, e.g., [AS00]).

Lemma 1. Let X1, . . . , Xn be independent random variables uniformly dis-
tributed in {0, 1}. Then the probability that less than a quarter of them are zero,
is less than exp(−n/8).

Proof (of Theorem 1). For each vertex, fix the cyclic permutations of its neigh-
bors used by the quasirandom model. For the ease of analysis, let us already
now fix for each vertex the uniformly chosen random neighbor at which it will
start informing its neighbors after it once itself becomes informed. Let u be any
vertex. Let C be a constant chosen sufficiently large. We shall show that after
Θ(C) log n rounds, with probability 1− n−Θ(C) all vertices are informed.

The proof relies on two key observations. The first is that we may ignore
vertices, that is, assume that certain vertices stop informing their neighbors at
a certain time. Clearly, this only makes the spreading of the information slower.
More rigorously, by induction on the time t at which a vertex becomes informed
in the original model, we easily see that no vertex becomes informed earlier in
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this weakened model. Consequently, the broadcast time of the weaker model
cannot be smaller than the one of the original model. Note though that the
order, in which vertices become informed, may change. This is why we fixed the
random starting point at the beginning of the process.

The second observation, similar in nature, is that we may also assume that
some vertices after becoming informed delay the start of their actions of in-
forming neighbors. Again, this results in certain messages sent later than in
the original model, and thus in vertices possibly becoming informed later, again
slowing down the broadcasting process. We call this delaying the action of these
vertices.

Clearly, we may use ignoring and delaying together and in arbitrary orders and
ways. Any time bound proven in any such weakened model also holds in the true
quasirandom model. We shall use both tools to form phases of the following kind.
Vertices that become informed during a phase delay their action till the following
phase. Then they (we shall call them newly informed) send out information,
but all previously informed vertices are ignored (and again, freshly informed
vertices are delayed). By this, we avoid most of the dependencies caused by the
quasirandom model. Since the newly informed vertices have not participated in
the broadcasting process so far, their random first addressees are stochastically
independent of all events that happened so far. Since we ignore previously active
vertices, a phase of length  results in the newly informed vertices revealing their
independent random starting points and contacting it and the  − 1 successors
in the permutation.

We shall denote by It the set of vertices that are informed after round t.
In consequence, I0 := {u} consists of the initially informed vertex. By Nt we
shall denote vertices that are informed after round t, but have not yet sent out
the rumor. Hence apart from N0 := {u}, these are the vertices that became
informed in the previous phase. We shall use this notation only for times t that
are the end of some phase. Note that the phases as well as It and Nt depend on
what ignoring and delaying assumptions we make. These will become clear in
the course of the proof.

The first phase shall consist of C ln n rounds. Clearly, within this phase the
initially informed vertex informes exactly t1 = C ln n other vertices. They form
Nt1 . No other vertices become informed due to our delaying assumption. Obvi-
ously, we have |Nt1 | = C ln n and |It1 | = C ln n + 1.

Let us now convince ourselves of the following fact.

Fact: If at some time t we have C ln n ≤ |Nt| < |It| ≤ n/144 and |Nt| ≥ 1
2 |It|,

then a single phase consisting of eight rounds with probability at least 1− n−C/8

results in |Nt+8| ≥ 2|Nt| and |Nt+8| ≥ 1
2 |It+8|.

For the proof of this fact, let k := |Nt|. Let v1, . . . , vk be an enumeration of
Nt. Note that each vertex in Nt contacts a set of exactly eight other vertices
(determined by the random first addressee and its cyclic permutation). They
become informed (and hence end up in Nt+8), if they are not in It. A vertex
may become contacted by several vertices in Nt. To avoid overcounting, let us



Introducing Quasirandomness to Computer Science 107

call a vertex vi ∈ Nt successful, if it contacts exactly eight vertices that (i) are
not in It and (ii) are not contacted by any of vertices v1, . . . , vi−1.

Note that the total number of vertices that may become contacted in this
phase together with the already informed vertices is at most |It|+ 8k < 9|It| ≤
n/16. Consequently, when analyzing whether vertex vi is successful, at most that
many vertices are already informed or were informed by vertices v1, . . . , vi−1.
These less than n/16 “bad” vertices determine altogether less than n/2 vertices
having the property that they or one of their seven successors on vi’s permutation
is bad. If the random starting first addressee of vi is one of the other at least
n/2 “nice” vertices, then vi is successful. For the ease of argument, let us fix in
some deterministic manner a set Ui of exactly (n− 1)/2 nice vertices and call vi

successful only if its random first addressee is one of them. With this cosmetic
operation, vi is successful with probability 1/2. Note that the events of the vi

being successful are independent, even though the set Ui are not.
By Lemma 1, with probability at least 1− exp(−k/8) ≥ 1− n−C/8, a quarter

of the vi are successful. This results in Nt+8 ≥ 1
4 |Nt| · 8 = 2|Nt| newly informed

vertices. Note that, trivially, |Nt+8| ≥ 1
2 |Nt+8|+|Nt| ≥ 1

2 (|Nt+8|+|It|) = 1
2 |It+8|.

This ends the proof of the fact.
From the state reached after the first phase, we may now repeatedly use

the fact until a some time t2 ≤ t1 + 8 log2(n) we have with probability
1 − log2(n)n−C/8 that |It2 | > n/144. This implies |Nt2 | ≥ n/288. These newly
informed vertices shall now inform all remaining vertices.

We regard a final phase of k = 288(C + 1) ln(n) rounds. The probability that
a fixed not yet informed vertex is contacted by a fixed vertex in Nt2 naturally is
k/(n−1). Hence the probability that none of the vertices in Nt2 contacts this vertex
is (1 − k/(n − 1))|Nt2 | ≤ exp(−k|Nt2 |/(n − 1)) ≤ exp(−k/288) = n−C−1. Here
we used the elementary estimate 1 + x ≤ exp(x) valid for all x ∈ R. Now a simple
union bound shows that with probability at least 1−n−C, all uninformed vertices
become contacted by vertices in Nt2 , and hence informed, in this last phase. ��

5 Experimental Results

The theoretical results we currently have indicate that the reduced amount of
randomness in the quasirandom model does not reduce the performance of the
broadcasting process. However, only in a few situations we were able to prove
an advantage of the quasirandom model.

Since we suspect some advantage stemming from the even fairer way of con-
tacting the neighbors, we implemented the protocol and ran a series of experi-
ments. The complete discussion of their outcomes can be found in a forthcoming
paper, preliminary results are described in [DFKS09]. Here, we shall only sketch
some findings.

The results depicted in Fig. 1 show that the quasirandom model needs less
time to inform all vertices. The advantage is small for the complete graph (which
is no surprise given our very precise theoretical results), but becomes more visi-
ble for sparser graphs and is really striking for sparse random graphs. Note that
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(a) Complete graph K216
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p = ln(n)/n, conditional on being
connected

Fig. 1. Empirical distributions of the broadcast times on four different graphs with
n = 216 nodes. Thanks to Marvin Künnemann for producing these figures.

the quasirandom model not only is faster, but also the run-times are more con-
centrated. This means that the risk that the protocol takes longer than expected,
is reduced here.

Concerning the robustness, we observed no significant difference between the
two protocols.

We finally tried to understand if the particular lists chosen for the quasi-
random protocol have an influence on the quality of the protocol. Again, for
the graphs regarded so far, we could not see any significant difference. However,
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we could provoke some influence by regarding an example that has a stronger
geometric flavor.

Let GN be a 2-dimensional torus graph with vertex set [N ] × [N ] and each
vertex having eight neighbors, namely in the four cardinal directions and the
diagonals. In other words, the vertex (x, y) has the eight neighbors (x+a, y+ b),
where (a, b) ∈ {−1, 0, 1}2 \ {(0, 0)} and addition is modulo N . Let us enumerate
the directions {−1, 0, 1}2 \ {(0, 0)} in some counterclockwise manner, e.g., d1 =
(1, 0), d2 = (1, 1), d3 = (0, 1), etc.

For N = 26 = 64, we experimentally determined the average times needed
to broadcast a news to all vertices. If each vertex v has the canonical list v +
d1, v + d2, ..., then we measures an average broadcast time of 84.57 rounds. This
is even worse than the average number of 84.09 rounds needed by the fully
random protocol. However, if we use a low-discrepancy order of the directions,
things become much better. If each vertex serves its neighbors according to
the order (1, 5, 3, 7, 2, 6, 4, 8) of the directions, then the broadcast time drops
to 77.10 rounds. A closer look (checking all possible orderings) in fact shows a
strong correlation between the discrepancy of the sequence and the broadcast
time.

6 Conclusion and Open Problems

In this paper, we gave a first application of quasirandomness in computer science.
Our results show two important facts. (i) Quasirandom methods can successfully
be used in computer science. For the rumor spreading example, we achieved
moderate gains in the run-time via a model that is algorithmically even simpler
than the fully random one. (ii) The second good news is that such quasirandom
approaches can be analysed in spite of the dependencies naturally present in
the random experiment. There is even the hope that general approaches like the
delaying and ignoring concept exist, that allow to revert to classical methods
from independent randomization.

From this work, a number of open questions arise.

– The results for random graphs, hypercubes and expander graph show that
O(log n) rounds suffice with high probability for both the fully random and
the quasirandom model. Our experimental investigation suggests that, in
particular for hypercubes and moderately sparse random graphs (p = (1 +
ε) ln(n)/n), the quasirandom model is faster by a constant factor. Supporting
this observation by a rigorous proof would be very desirable.

Unfortunately, already for the fully random model the leading constant
is only known for the complete graph. Hence to prove a constant factor
advantage of the quasirandom model, one needs to prove good bounds for
both models.

– An aspect not regarded in this paper is the number of messages that need to
be sent. For the fully random model on the complete graph, Karp, Schindel-
hauer, Shenker and Vöcking [KSSV00] show that a suitable modification of
the protocol can reduce the number of messages needed from Θ(n log n) to an
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optimal Θ(n log log n). Similar improvements for random graphs and regular
graphs have been obtained in [BEF08, Els06, ES08]. For the quasirandom
protocol, nothing in this direction is published.

– Clearly the most general question is for which other computer science prob-
lems quasirandom ideas improve the existing approaches.
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Abstract. We take a rather informal look at the development of tech-
niques for finding optimal and near optimal binary search trees.1 The
point of view is both that of the “early” development of the field and as
a set of wonderful examples for teaching algorithms.

1 Introduction

Kurt Mehlhorn’s first publications on algorithms, as opposed to complexity2

[3, 1], were on approximate solutions to the optimal3 binary search tree problem.
The problem is well known, given a set of values, the probability of a search for
each of these values and the probabilty of a search for some value in each of the
gaps between them, we are to find a binary search tree with the least possible
expected search cost. We let {ai : i = 1, n, ai < ai+1} denote the set of values.
p

def= {pi : i = 1, n} denotes the probabilities of requests for ai and P =
∑n

i=1 pi.
Similarly q

def= {qi : i = 0, n} gives the probability of a request for a value between
ai−1 and ai, with the implicit notation that a0 = −∞ and an+1 = ∞. Again,
Q =

∑n
i=0 qi). The solution is an easy dynamic programming exercise today,

though not necessarily easy when it was discovered. A major shortcoming of
the dynamic programming solution is its quadratic space requirement. This lead
to work by several researchers including Mehlhorn on space efficient methods
to find nearly optimal trees faster and with much less space. The problem also
1 One of the joys of writing this paper was going through much of the work on the topic

from the 1970’s. I first thought of Kurt Mehlhorn’s ICALP ’75 paper [1], so I twirled
around to get it from my bookshelf. I had the preceding one, from Saarbrücken, but
not the 1975 Proceedings. So then I went for the journal (SICOMP) version, which
was on the bookshelf, with a more than generous coating of dust which I blew off.
Surviving the dust storm, I got down to rereading that paper and others, mostly
recovered from the internet.

2 I am counting the paper with Zvi Galil on monotone circuits [2] as “complexity”.
3 Almost all authors on the topic, including this one, refer to “optimal” binary search

trees. Knuth [4, 5] uses the term “optimum” in a manner analogous to the distinction
in combinatorics between “minimum”, meaning a global minimum, and “minimal”,
meaning a local minimum. There “optimum” refers to a global best, whereas “opti-
mal” may suggest a solution that is best only in some local context.

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 115–120, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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has several “relaxations”. One can restrict attention to the case in which the
probability of a successful search is 0 (i.e. (pi = 0 : i = 1, n)). In another
dimension one can relax the concern on the order of key values. These two
constraints, combined, give the problem of finding a Huffman code [6].

2 Optimal Binary Search Trees

The notion of an optimal binary search tree seems to have arisen in a variety of
contexts. For example, Knuth [5] cites the 1959 paper of Gilbert and Moore [7] in
that respect. They were concerned primarily with the case pi = 0 and developed
a cubic algorithm. The “big step” came more than a decade later, by which time
dynamic programming was more “mainstream”. Knuth’s solution [4] was the
classic “3-loop” dynamic programming solution, like that for parsing arbitrary
context free languages [8, 9] three or four years earlier. The twist, in terms of
algorthmics was that Knuth’s method took O(n2) time, though still Θ(n2) space.
As a basic dynamic programming solution, the idea is to find the optimal tree
for every subrange of keys. This is done in increasing order by range size, so
the optimal tree for the range (i, j), from the gap before key i to the gap after
key j, has a root at some node k (i ≤ k ≤ j) and the optimal subsolutions for
ranges (i, k − 1) and (k + 1, j). Knuth’s key observation was that, if one adds a
key to the right of an interval, the root for that interval cannot move left (as we
have nonnegative weights). Proving this is more subtle than one might expect,
but given this fact one need only search for the root of interval (i, j) from the
root of interval (i, j− 1) to the root of (i− 1, j). A quick calculation of the total
runtime of the algorithm leads to a telescoping series and the conclusion that
the algorithm runs in quadratic time. No progess has been made on significantly
reducing the space requirement while still having a polynomial time algorithm
that does not rely on conditions on the pi and qi values. Indeed this is even true
if our goal is simply to determined whether a given tree is optimal. This remains
as the most interesting open problem on the topic of optimal search trees.

At essentially the same time Hu and Tucker [10] gave a technique for the
pi = 0 case. It was improved and simplified by Garsia and Wachs [11] yielding a
Θ(n log n) time algorithm using only linear space. Note that if the weights are
given in arbitrary order (or even left to right order) then under a “comparison
and addition” model, Θ(n log n) time is optimal.

3 Near Optimal Solutions and Analysis

A number of authors looked at approaches avoiding quadratic space. The work
in Wayne Walker’s Ph.D. thesis4 [12] used the heuristic of roughly equalizing the
weight on the left and right subtrees and then looking for a relatively large pi

4 Walker had an office just down the hall from me when we were graduate students at
the University of Toronto. Indeed it was Walker and Gotlieb’s work that introduced
me to the topic.
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value close by. A variety of tuning methods were tried and the approach worked
well on experimental data. Curiously, or perhaps not, the analytic work on the
cost of the optimal binary search tree was intertwined with that on approximate
solutions. Paul Bayer, in his Master’s thesis5 [13], proved that (assuming H >
2P/e) Copt > H − P lg(eH/2P ). Here Copt denotes the cost (expected number
of key values inspected) of the optimal tree and H is the entropy of the discrete
distribution: H

def=
∑n

i=1 pi lg(1/pi +
∑n

i=0 qi lg(1/qi).
Bayer also gave an upper bound which was refined by Mehlhorn [14] to H +

2−P . Note that the entropy is a function of the (multi) set of probabilities and
independent of their order. Brian Allen6 [15] showed that the bounds given are
essentially as tight as possible and can almost swing from the lower bound to the
upper bound by rearranging them. This holds even when H is almost as large
as possible i.e. lg(n)− o(lg(n).

Mehlhorn [3, 1, 14] formalized two top down approximation schemes, that
were simplifications of the Walker and Gotlieb approach. Under one the root is
chosen so that the left and right subtrees have total weight (probability of access)
as close as possible. His second heuristic was to choose the root to minimize the
maximum weight of either subtree. He and Bayer showed both produce trees in
the range proven for the optimal tree [14, 13], though either can differ from the
optimal by essentially lg H [15].

An O(n log n) time, linear space implementation of such an approximation
scheme is straightforward. One creates an auxiliary array containing the sum
of the probabilities up to each internal node. That is wi =

∑i−1
j=1 pj +

∑i−1
j=0 qj .

which itself can be computed in linear time as wi = wi−1 +pi−1 + qi−1. A binary
search then suffices to determine the root of the tree. The recursion gives us a
worst case behaviour of O(n log n) and indeed O(n) if the root “tends to be in
the middle of its range”. Fredman [16] suggested an ingeneous trick to guarantee
linear runtime. A single comparison with the value in the middle of the range
tells us whether the desired element is in the first or second half. One then
starts at the end of the half range where the prospective root is to be found and
repeatedly doubles the offset from that location until the prospective root has
been bracketed. A straightforward binary search between the last two locations
inspected completes the search in time O(log d) where d is the distance of the
prospective root from the nearest end of the interval. It is not hard to show the
entire process of constructing the tree is performed in linear time.

Over the past 30 years there have been several small improvements and care-
ful analyses of the approximability of the optimal binary search tree problem.
These have culminated with the work of De Prisco and De Santos [17, 18] and
that of Douïeb and Bose [19] which give very detailed bounds of the quality of
approximation. As suggested earlier, it is natural to ask whether one can confirm
that a tree is optimal in less time and space than required to find the tree.

5 Bayer didn’t ever publish his work in a refereed forum, neverthless his thesis was a
key reference for many of us working on related problems. I still have a copy.

6 Allen’s thesis focussed primarily on self organizing binary search trees, a forerunner
to splay trees. He was my first Ph.D. student.
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4 Trees with No Ordering on Keys

The oldest version of the optimal binary “search” tree problem is, of course,
that of finding a Huffman code [6]. Here we are to find the optimal binary code
for a set of symbols with no constraints on the ordering of the values, but a
“prefix free” constraint that no code can be a prefix of any other. In the terms
we have used, the latter condition means that P = 0. Given the elements and
probabilities sorted by probability, the tree (and so the codes) can be found in
linear time by a well known greedy algorithm giving a bottom up construction.

The method maintains a forest of optimal solutions for disjoint subsets of the
elements. Initially this forest is a set of n leaves, namely the given elements. The
process proceeds by replacing the two trees of lowest probability with a new tree
consisting of a new root and with children as the roots of the two trees being
replaced. This is a wonderful example of a special case of a priority queue that is
easily implemented in constant time per update. There are two kinds of trees: the
original leaves (which we will assume are given in sorted order by probability)
and the other trees (which are created in increasing order by probability value).
We, therefore, have two sorted lists and perform an update by removing the two
with lowest probability (from either list) and put a new tree at the end of the
“subtree” list. Like all other versions of the problem, certain inputs can force
us to discover the sorted order of the probabilities. Hence an Ω(n log n) lower
bound under a model permitting comparisons and additions if the values are
not presented as a sorted list. This suggests another interesting open question.
Suppose we are given a binary tree with probabilities assigned to the leaves, we
ask whether this is a tree for an optimal prefix free code. In other words, is this
the same tree as that formed by the Huffman algorithm, albeit with an arbitrary
permutation of the leaves on each level? Prove or disprove that this recognition
problem can be solved in linear time.

One can extend the Huffman code problem to have probabilities associated
with internal nodes as well as leaves. Again the “left to right” ordering is up to the
algorithm. Given p and q each in sorted order (by probability value) a “three list”
priority queue, analogous to the “two list” method for the usual Huffman code,
gives a solution in linear time. The two lightest “leaves” or “subtrees” become
children of the lightest remaining “internal node”. All three are removed from
their respective lists and the new tree goes at the end of the “subtree” list, giving
a linear time algorithm if the input is presented in sorted order.

5 Conclusion

We have revisited the development of techniques for optimal and near optimal
binary search trees, most notably the advances of the early to middle 1970’s. It
was an era when many of our algorithmic methods were taking form. Indeed we
have discussed several real gems of algorithm design that are wonderful classroom
examples:

– Basic dynamic programming and Knuth’s observation to make a “3 loop
deep” program to run in quadratic time
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– Clean and very accurate bounds on the performance of optimal search trees
– The appropriate choices of a “greedy metric” to produce amazingly good

approximation methods
– A method to guarantee linear runtime for divide and conquer algorithms

taking a binary search to perform the split
– A couple of special case priority queues taking constant time per operation

With this key work done 35 to 40 years ago, it is suprising that there are still a
few very interesting open problems.

Like Kurt Mehlhorn’s subsequent work on algorithms, the ideas are crisp; the
proofs are clean; the approximations are amazingly good; and the algorithms are
both practical and reasonable to implement.
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Abstract. We present a number of results for elementary operations
concerning the areas of data structures, computational geometry, graph
algorithms and string algorithms. Especially, we focus on elementary op-
erations like the dictionary operations, list manipulation, priority queues,
temporal precedence, finger search, nearest common ancestors, nega-
tive cycle, 3-sided queries, rectangle enclosure, dominance searching,
intersection queries, hidden line elimination and string manipulation.

1 Introduction

We consider a number of results derived in the last 25 years in the theory of
efficient algorithms. For each of them, we present the main ideas, the main
theorems, and we follow the path of their impact in the research community. We
intentionally avoid technical descriptions and strictly mathematical definitions
and we appoint them in a plausible manner. For each kind of the operations we
offer a separate section with the respective references.

The model of computation we consider is the Pointer Machine (PM-machine),
the Pure Pointer Machine (PPM-machine), and the Random-Access Machine
(RAM-machine). In a pointer machine, memory consists of a collection of
records. Each record consists of a fixed number of cells. The cells have as-
sociated types, such as pointer, integer, real, and access to memory is only
possible by ”pointers”. In other words, the memory is structured as directed
graph with bounded out-degree. The edges of this graph can be changed during
execution. Pointer machines correspond roughly to high-level programming lan-
guages without arrays. This PM-machine allows arithmetic capabilities on the
content of data fields. In case that no arithmetic capabilities are allowed, we
get the Pure Pointer Machine. The instruction set of the PPM-Machine consists
of two types of instructions-pointer manipulation and control management. In
contrast, the memory of a RAM consists of an array of cells. A cell is accessed
through its address and hence address arithmetic is available. We assume in all
the models that storage cells can hold arbitrary numbers and that the basic
arithmetic and pointer operations take constant time. This is called the uniform
cost assumption. All our machines are assumed to be deterministic.

Three types of complexity analysis are customary in the algorithms area:
worst-case analysis, average-case analysis and amortized analysis. In a worst-
case analysis worst-case bounds are derived for each single operation. This is
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the most frequent type of analysis. In an average-case analysis, we postulate a
probability distribution on the operations of the abstract data type and computes
the expected cost of the operations under this probability assumption. In an
amortized analysis, we study the worst-case cost of a sequence of operations.

The externalization of a known data structure is the transformation of this
data structure in such a way, that it can handle the same operations in an
efficient way in case that the file handled cannot be stored entirely in the main
memory. In this case, we have a main memory and a disk partitioned in blocks
of size B. In this model of computation, the efficiency of the data structure used
is measured by the number of I/O-operations. An I/O-operation (or simply I/O)
is the operation of reading (or writing) a block from (or into) disk.

2 Dictionary Operations

Data structuring is the study of concrete implementation of frequently occurring
abstract data types. An abstract data type is a set together with a collection of
operations on the elements of the set. In the data type dictionary, the set is the
powerset S of a universe U and the operations are insertions and deletions of
the elements and the test of membership (access).

Note that the operations insertion and deletion are destructive, the old ver-
sion of the set S is destroyed by the operations, and, in this case, the data
structure used is called ephemeral. The nonedestructive version of the prob-
lem motivated the development persistent data structures [3]. We distinguish
partial and full persistence. A data structure is partially persistent, if all ver-
sions can be accessed but only the newest version can be modified and fully
persistent if every version can be both accessed and modified.

A new data structure called Interpolation Search Tree (IST) is presented in [8],
which supports interpolation search and insertions and deletions. The amortized
insertion and deletion cost is O(log n). The expected search time in a random
file is O(log log n). This is not only true for the uniform distribution but for a
wide class of probability distributions. Informally, a distribution defined over an
interval I is smooth, if the probability density over any subinterval of I does not
exceed a specific bound, however small this subinterval is (i.e., the distribution
does not contain sharp peaks).

Given two functions f1 and f2, a density function μ = μ[a, b](x) is (f1, f2)-
smooth ([2], [8]), if there exists a constant β, such that for all c1, c2, c3, a ≤ c1 <
c2 < c3 ≤ b, and all integers n, it holds that we have that∫ c2

c2− c3−c1
f1(n)

μ[c1, c3](x)dx ≤ β · f2(n)
n

where μ[c1, c3](x) = 0 for x < c1 or x > c3, and μ[c1, c3](x) = μ(x)/p for
c1 ≤ x ≤ c3, where p =

∫ c3

c1
μ(x)dx.

Intuitively, function f1 partitions an arbitrary subinterval [c1, c3] ⊆ [a, b] into
f1 equal parts, each of length c3−c1

f1
= O( 1

f1
); that is, f1 measures how fine is the

partitioning of an arbitrary subinterval. Function f2 guarantees that no part,
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of the f1 possible, gets more probability mass than β·f2
n ; that is, f2 measures

the sparseness of any subinterval [c2 − c3−c1
f1

, c2] ⊆ [c1, c3]. The class of (f1, f2)-
smooth distributions (for appropriate choices of f1 and f2) is a superset of both
regular [11] and uniform classes of distributions, as well as of several non-uniform
classes ([2],[5]). Actually, any probability distribution is (f1, Θ(n))-smooth, for
a suitable choice of β.

Herewith it is worthwhile to note that the data structure used can reflect the
distribution function in some places in order to guide the searching properly and
to the fact that a random IST has subtrees of rootic size with high probability.

In [2], a technique is presented which extends the technique of [8] to a larger
class of distributions and better bounds on searches and updates.

In [6], the IS-Tree, a dynamic data structure based on interpolation search is
presented, which consumes worst case linear space and can be updated in O(1)
time worst case when the update position is given. Furthermore, the elements
can be searched in O(log log n) time expected with high probability, given that
they are drawn from a (nα, n1/2)-smooth distribution, for constant 1/2 < α < 1.
The worst case search time is O(log2 n).

The externalization [10] of this data structure, called ISB-tree, was introduced
in [4]. It supports search operations in O(logB log n) expected I/Os and update op-
erations in O(1) worst-case I/Os provided that the update position is given and B
is the block size. The expected search bound holds with high probability, if the ele-
mentsaredrawnbya (n/(log log n)1+ε, n1−δ)-smoothdistribution,where ε > 0and
δ = 1− 1

B are constants. The worst case search bound is O(logB n) block transfers.
AVL-trees were introduced by Adel’son-Velskii and Landis in 1962 [1]. A bi-

nary search tree is AVL if the height of the subtrees at each node differ by at
most one. In [7] we analyse the amortized behavior of AVL-trees under a se-
quence of insertions. We show that the total rebalancing cost for a sequence of n
arbitrary insertions is at most 2.618n. For random insertions, the bound is im-
proved to 2.26n. We show that the probability that t or more balance changes are
required decreases exponentially with t. Mixed insertions and deletions do not
have amortized constant complexity. In [9] is shown that the total rebalancing
cost for a sequence of only arbitrary deletions is 1.618n.
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3 List Manipulation

In [10], we give a representation for linked lists which allows to efficiently insert
and delete objects in the list and to quickly determine the order of two list
elements. The basic data structure, called an indexed BB[a]-tree ([9], [2]), allows
to do n insertions and deletions in O(n log n) steps and determine the order
in constant time, assuming that the locations of the elements worked at are
given. The improved algorithm does n insertions and deletions in O(n) steps
and determines the order in constant time. An application of this provides an
algorithm which determines the ancestor relationship of two given nodes in a
dynamic tree structure of bounded degree in time O(1) and performs n arbitrary
insertions and deletions at given positions in time O(n) using linear space.

The amortized analysis of our algorithm is substantiallly based on the weight−
property of BB[a]-trees, which is proved in [2]. The weight-property can be stated
as follows: A node of weight w (i.e. w descendants) participates in only O(n/w)
structural changes of the tree when a sequence of n insertions and deletions is pro-
cessed. This result improves the bounds given in [6], where only insertions were
allowed. In [7], two algorithms are given. The first algorithm matches the O(1)
amortized time per operations of [10] and is simpler. The second algorithm per-
mits all operations in O(1) worst-case time. In [1], simpler solutions are given that
match the bounds of [7].

The results of [10] are well used in the theory of persistent data structures
[3–5, 8].
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4 Priority Queues

A min-max priority queue is a priority queue that structures the elements with
respect to the maximum element as well the minimum element. In [2], we present
a simple and efficient implementation of a min-max priority queue, reflected min-
max priority queues. The main merits of our construction are threefold. First, the
space utilization of the reflected min-max heaps is much better than the naive
solution of putting two heaps back-to-back [3]. Second, the methods applied
in this structure can be easily used to transform ordinary priority queues into
min-max priority queues. Third, when considering only the setting of min-max
priority queues, we support merging in constant worst-case time which is a clear
improvement over the best worst-case bound achieved [1].
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5 Temporal Precedence

In this section we refer to the Temporal Precedence Problem on PPM-machine.
This problem asks for the design of a data structure, maintaining a set of stored
elements and supporting the following two operations: insert and precedes. The
Operation insert(a) introduces a new element a in the structure, while the op-
eration precedes(a, b) returns true iff element a was inserted before element b
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temporally. In [4], a solution is provided to the problem with worst-case time
complexity O(log log n) per operation and O(n log log n) space, where n is the
number of elements inserted. It was demonstrated that the precedes operation
has a lower bound of Ω(log log n) for the Pure Pointer Machine model of compu-
tation. In [1] two simple solutions are presented with linear space and worst-case
constant insertion time. In addition, two algorithms are described that can han-
dle the precedes(a, b) operation in O(log log d) time, where d is the temporal dis-
tance between the elements a and b. In [2], solutions are given, which match the
same time and space bounds in simpler manner. The Temporal Precedence Prob-
lem is related to a very concrete problem that arises in parallel implementation of
logic programming languages [3]. More specifically, in the And-Parallelism prob-
lem the problem of correct binding and assignment of variables can be reduced
to the insert and precedes operations of the Temporal Precedence problem.
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6 Finger Search

Finger search trees represent ordered lists into which pointers can be maintained,
called fingers, from which searches can start; the time for a search, insertion or
deletion is O(log d), where d is the number of items between the search starting
point and the accessed item. The O(log d) bound can either be achieved in the
amortized sence [3, 10] or in the worst case [9, 11, 14–16]. Finger search leads
to optimal algorithms for the basic operations union, intersection, difference,
which can support the development of efficient algorithms for sorting presorted
files ([8], [7]) and for locally adaptive data schemes [2].

In [4], a general solution is proposed for the persistence problem. The au-
thors develop simple, systematic efficient techniques for making different linked
data structures persistent. They show first that if an ephemeral structure has
nodes of bounded in-degree, then the structure can be made partially persis-
tent at an amortized space cost of O(1) per update step and a constant-factor
increase in the amortized cost of access and update operations. Second, they
present a method which can make a linked stucture of bounded in-degree fully
persistent at an amortized time and space cost of O(1) per update step and a
worst-case time of O(1) per access step. Finally, the authors present a partial
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persistent implementation of balanced search tree with worst-case time per op-
eration of O(log n) and an amortized space cost of O(1) per insertion or deletion.
Combining this result with a delayed updating technique of Tsakalidis [16], we
obtain a fully persistent form of balanced search trees with the same time and
space bounds as in the partially persistent case. The technique employed in [4]
is strongly related to fractional cascading. This relation can be used to support
a forget operation which permits to explicitly delete versions and thus improves
the space requirement [12].

The results of [15, 16] are well used in the theory of the persistent data
structures [4, 5, 13] and in multidimensional search [6].

In [1], a new finger search tree is developed with worst-case constant update
time in the PM-machine. This was a major problem in the field of Data Struc-
tures and was tantalizigly open for over 25 years [9], while many attempts by
researchers were made to solve it. The result is a consequence of the innovative
mechanism that guides the rebalancing operations, combined with incremental
multiple splitting and fusion techniques over nodes.
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7 Nearest Common Ancestors

Considering an arbitrary tree, the problem is to compute the nearest common
ancestor of two given nodes x and y, denoted by nca(x, y), which is defined as
the lowest common node of the two paths from node x and node y to the root
of the tree. In [1], a RAM-algorithm is presented running in O(n) preprocessing
time, O(n) space and answering a query in O(1) time. In [2], a PM-algorithm
is given which requires O(n log log n) preprocessing time, O(n log log n) space
and O(log log n) optimal query time. In [1], the optimality of this query time is
proved, and it is claimed that the algorithm of [2] can be modified to run on a
PM-machine in linear time and space. Another optimal PM-algorithm with O(n)
preprocessing time, O(n) space and O(log log n) query time is described in [3].

Considering the dynamic case of one arbitrary tree, where the tree can be
updated by insertions on the leaves or deletions of nodes, we get in [4] a PM-
algorithm which needs O(n) space, performs m arbitrary insertions on an initially
empty tree in time O(m), and allows to determine the nearest common ancestor
of nodes x and y in time O(log(min{depth(x), depth(y)}) + a(k, k)), where the
second term is amortized over the k queries and depth(x) is the distance from
the node x to the root, and a(k, k) is the inverse Ackerman function.
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8 Negative Cycle

The negative cycle problem is the problem of finding a negative length cycle in
a directed graph with positive and negative edge-costs or proving that there are
none. In [2] is shown that a negative cycle in a directed weighted graph with n
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nodes and e edges can be computed in O(n+e) time and O(n+e) space. Assuming
that the input of the algorithm is a weighted random digraph, it is proved in [1]
that its average time complexity for dense graphs lies between O(n log n) and
O(min{n2/log2n, e}), the exact value depending on the probability with which
an edge is present in the random graph, and for sparse random graph is Θ(n2).
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9 Three-Sided Queries

Let S be a set of n points in a two-dimensional space. A three-sided range
query takes as arguments three coordinates x1, x2, y1 and reports the set K of
all points (x, y) of S with x1 ≤ x ≤ x2 and y ≤ y1 . In [2] we consider 3-
sided range queries on n points for a universe of [N ]×', where N is the set of
integers {0, ..., N − 1}. We achieve O(log log n + k) time, usings O(N + n) space
and preprocessing time, where k denotes the size of the output. This was later
improved in [1] to O(k) time, but with expected linear preprocessing time. The
only dynamic sublogarithmic bounds on this problem can be found in [3], where
it is attained O

(
log n

log log n

)
worst case or O(log n) randomized update time and

O
(

log n
log log n + k

)
query time in linear space.
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10 Rectangle Enclosure

We consider two versions of the rectangle enclosure problem. Given a set S of
rectangles in the plane, in the first version we report all the rectangles, which
enclose a given query rectangle. In [1], a solution is given for the first version of
the problem generalized in d-space, which needs O(log2d−2 log log n + k) query
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time, where k is the size of the answer in the case that the data structure used
is static. In the dynamic case, the query time is O(log2d−1 n+k), and an update
operation costs O(log2d−1 n). In both cases, the space used is O(n log2d−2 n).
The query time in the static case is improved to O(log2d−2 n + k) in [3].

In the second version, we report all the pairs of the rectangles (R, R′), where
R, R′ ∈ S and R′ encloses R. In [6] a solution was given that needs O(n) space
and runs in O(n log2 n + k) time. It has been an open problem for more than
ten years how the O(n log2 n) term of the reporting time could be reduced.
In [4], an algorithm was given that solved this problem in O(n + k) space and
O(n log n log log n+k log log n) time. In [2] a subroutine of the previous algorithm
is modified using persistence and periodic rebuilding of list structures and the
space required is reduced to linear, while retaining the same time complexity. In
[5], a simple solution is presented with the same time and space bounds.
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11 Dominance Searching

In [1], several data structures are presented for the 3-dominance searching prob-
lem: store a set S of n points in �3 in a data structure, such that the points
in S dominating a query point can be reported efficiently. We say that a point
p = (p1, p2, p3) dominates a point q = (q1, q2, q3), if and only if pi ≥ qi for
all 1 ≤ i ≤ 3 and p �= q. All our data structures use linear space. The first
data structure works for the restricted case where the coordinates of the points
in S and of the query points are integers in the range [0, N − 1]. In this case,
we achieve a query time of O

(
(log log N)2 log log log N + k log log N

)
, where

k is the number of answers to the query. The second and third data struc-
ture both work for the unrestricted case, where the coordinates are arbitrary
reals. We achieve O (log n log log n + k) query time for pointer machines and
O (log n + k) query time for random access machines. These results are improved
in [2].
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12 Intersection Queries

Generalized intersection searching problems are a class of problems that con-
stitute an extension of their standard counterparts. In such problems, we are
given a set of collored objects and we want to report or count the distinct col-
ors of the oblects intersected by a query object. Many solutions have appeared
for both iso-oriented and non-oriented objects. In [1, 2], it is shown how to im-
prove the bounds of several generalized inresection searching problems as well as
how to obtain upper bounds for some problems like arbitrary line segment and
generalized triangle stabbing, which were not treated before.

In [3], efficient solutions are given for the following problems: the Static
d-dimensional rectangle enclosure problem, with O(n log2d−2 n) space and
O(log2d−2 n + k) query time, the generalized c-oriented polygonal intersection
searching, with O(n log2 n) space and O(log n + k) query time, the generalized
rectangular point enclosure problem, with O(n log n) space and O(log n + k)
and the two-dimensional dominance searching problem with respect to a set of
obstacle points, with O(n log n) space and O(log n + k) query time.
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13 Hidden Line Elimination

In a hidden line (or Surface) elimination problem we are given a set of ob-
jects in 3D space and a view-point and ask for the parts of the objects that
are visible from the viewpoint. In a hidden line problem, the reported parts
are line segments while in hidden surface problem, they are regions of surfaces.
In [3], an algorithm is presented with optimal O(n) space and worst case time
O(n log n + k log(n2/k)). In [4], a simple intersection sensitive algorithm is pre-
sented which solves the hidden line elimination problem in optimal O(n) space
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and time complexity of O((n + I) log n), where I is the number of the intersec-
tions of the edges on the projection plane. An extension of this algorithm can
solve the hidden surface removal problem in O((n + I) log n) time and O(n + k)
space, where k is the output size.

We consider the following problem as defined in [1]. Given a set of n isothetic
rectangles in 3D space determine the subset of rectangles, that are not completely
hidden. In [2], we present an optimal algorithm for this problem that runs in
O(n log n) time and O(n) space. Our results are an improvement over the one
in [1] by a logarithmic factor in storage and are achieved by using a different
approach. An analogous approach gives non-trivial solutions for other kinds of
objects, too.
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14 String Manipulation

In [3], we consider several new versions of approximate string matching with
gaps. The main characteristic of these new versions is the existence of gaps in
the matching of a given pattern in a text. Algorithms are devised for each ver-
sion, and their time and space complexities are stated. These specific versions
of approximate string matching have various applications in computerized mu-
sic analysis. In [5], we describe algorithms for computing typical regularities in
strings that contain don’t care symbols. We show also how our algorithms can be
used to compute other string regularities, specifically the covers of both ordinary
and circular strings.

Biological weighted sequences are used extensively in molecular biology as
profiles for protein families, in the representation of binding sites and often for
the representation of sequences produced by shotgun sequencing strategy. In
[4], we introduce the Weighted Suffix Tree, an efficient data structure for com-
puting string regularities in weighted sequences for molecular data. Repetitions,
pattern matching and regularities in biological weighted sequences are also con-
sidered in [2]. In [6], we present algorithms for the Motif Identification Problem
in Biological Weighted Sequences. The first algorithm extracts repeated motifs,
the second algorithm extracts common motifs and the third alorithm extracts
maximal pairs.
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A multirepeat in a string is a substring that appears a predefined number of
times. A multirepeat is maximal if it cannot be extended either to the right or to
the left and produce a multirepeat. In [1], we present algorithms for two different
versions of the problem of finding maximal multirepeats in a set of strings. In
the first version we consider the case of arbitrary gaps and in the second version
the case that the gap is bounded in a small range.
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Abstract. We consider the problem of maintaing a random binary search
tree under insertions and deletions under the conditions that (i) no extra
permanent storage space be used besides the tree itself, and (ii) that at
any point in time the tree be perfectly random, meaning that it is drawn
from the ideal binary search tree distribution. We present a simple solution
to this problem with an expected deletion time of O(log n) and expected
insertion time of O(log2 n) time.

Keywords: Binary Search Trees, Randomized Data Structures.

1 Introduction

Binary search trees are a basic data structure for storing dictionaries with keys
from an ordered universe. They have been known since the early days of comput-
ers, see [7, p. 446] for a short survey. Early on it was noticed that if a set S of n
keys is inserted in random order into an initially empty binary search tree using
the standard leaf-insertion procedure, then in expectation the resulting tree is
very well behaved in the sense that for every key the expected search time is log-
arithmic, and even the expected maximum search time of all keys is logarithmic.
However, in 1975 Knott [5] noted that this random insertion order assumption
was not maintained by the usual deletion algorithms and their variants. This led
to a flurry of theoretical and experimental studies in the following years (see for
instance [6, 8, 3]). Their results however were only partial or inconclusive.

The problem of “maintaining randomness” was only resolved when researches
abandoned the assumption of randomness of the input and instead adopted the
point of view that randomness be generated by the update algorithms them-
selves. This made probabilistic assumptions about input distributions unneces-
sary, an undeniable advantage, as such assumptions are hard to justify and their
validity difficult to check.

Aragon and Seidel [1, 13] were the first to propose such a randomized bi-
nary search tree maintenance scheme. Shortly after, Bent and Dricsoll [2] pro-
posed a somewhat different scheme which was later rediscovered by Martínez
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and Roura [9]. For further related work see [12] and [4] although the latter is
already subsumed by [1].

These proposed structures in their natural realizations maintain an ideally
distributed binary search tree, meaning that at any point in time the tree looks
as if it had been generated by inserting its keys in random order into an initially
empty tree. However, in order to achieve this while keeping updates fast, the
proposed structures have to store some additional “balance information” with
the nodes of the tree: in the case of [13] it is random number (essentially a
random virtual insertion time) and in the case of [2, 9] it is the subtree size.
Seidel and Aragon in [13] also show that you can forego storing this “random
virtual insertion time” and use a hash value of the key instead, which can be
always recomputed when needed. If these hash values are sufficiently random,
then logarithmic expected update times can still be achieved, however the trees
that arise will not be ideally distributed any more in the sense described above.

In this note we show that it is possible to maintain ideally distributed random
binary search trees without using any extra storage so that the expected deletion
time is O(log n) and the expected insertion time is O(log2 n). Our method is
conceptually very simple and should be easy to implement. It remains to be seen
whether its actual performance will be comparable to the hash based method
mentioned above when space really is at a premium.

This paper was written on the occasion of Kurt Mehlhorn’s 60th birthday. As
far as I know Kurt has never worked on this particular problem. But this paper
should have some references to his work. Fortunately Kurt has worked on many
problems. Here [11] is a piece of work close to the subject matter considered in
this paper.

Happy Birthday, Kurt!

2 Random Search Trees

There are at least three equivalent models of generating the ideal random binary
search tree distribution. Assume we are dealing with a set A of n distinct keys
a1 < a2 < · · · < an.

The random insertion model: Pick a permutation π of {1, . . . , n} uniformly
at random. Insert the keys in the order aπ(1), aπ(2), . . . , aπ(n) into an ini-
tially empty tree using the standard leaf insertion algorithm (see for instance
Section 3.3.1 of Mehlhorn’s book [10]).

The random root model: Pick one of the n keys uniformly at random, say
ar. Make it the root of the tree. Its left and right subtrees will be recursively
built random search trees for the sets {a1, . . . , ar−1} and {ar+1, . . . , an},
respectively. (Of course the empty set is represented by the empty tree.)

The priority model: Independently draw n numbers p1, . . . , pn from some
continuous distribution, say the uniform distribution on the real interval
[0, 1]. Produce the treap for the set of pairs {(a1, p1), . . . , (an, pn)}. This
“treap” stores a pair (ai, pi) at each node, and it is in symmetric order with



136 R. Seidel

respect to the keys ai and a max-heap with respect to the priorities pi. The
resulting tree is unique if the keys are distinct (true by assumption) and the
priorities are distinct (true with probability 1). See [13].

These three models are equivalent in the sense they produce the same dis-
tribution on n-node binary trees. This can be readily seen by noting that both
the priority model and the random insertion model can be viewed as particular
realizations of the random root model with particular mechanisms for choosing
a random root.

The priority model underlies the work of Aragon and Seidel [13], the random
root model is the basis for the work of Bent and Driscoll [2] and of Martínez
and Roura. The random insertion model underlies the work of Heyer [4], however
that work relies fundamentally on the random input assumption and cannot deal
with arbitrary update sequences. We will ignore it for the rest of this paper.

The random root model implies that the probability PT that a particular
tree arises is exactly Πv∈T (1/sT (v)), where sT (v) is the size of the subtree of T
rooted at v However, this probability will be of little concern in our discussions.

It is interesting to elucidate the sample spaces underlying the three models:
In the case of the random insertion model it is simply Πn the set of all n-
permutations with uniform probability. In the case of the random priority model
it is the real n-cube [0, 1]n with uniform distribution. In the case of the random
root model, the sample space is complicated. It is essentially the set of all n-node
binary trees itself, with the non-uniform probability distribution as indicated
above.

Thus the sample space for the random root model is very complicated in
comparison to the sample space for the random priority model. As a result of
this the random root model appears to be less well suited for simple derivations
of various quantities that arise in the analysis of algorithms on random binary
trees, such as expected depth of a node, expected size of a subtree, expected spine
length, or expected costs of updates assuming “expensive” rotations. Thus it is no
coincidence that [9] refers to previous works for the analysis of such quantities.
Unfortunately the given references seem to provide the claimed analyses only
partially, if at all.

3 Updating Random Search Trees

The relative merits of the random priority model versus the random root model
also show when dealing with updates of random search trees. Consider the ran-
dom priority model first. Let S = {(a1, p1), . . . , (an, pn)} be a set of n key and
random priority pairs, and let S′ be obtained from S by removing or adding
one such pair. The treap T for S and the treap T ′ for S′ are both well defined
and unique, and by definition are drawn from ideal random search tree distri-
butions. How T ′ is obtained from T is really irrelevant. Any algorithm can be
used, though preferably a fast one. However, the priorities pi definitely have to
be available in some form.
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The situation is quite different in the random root model. Let A = {a1, . . . , an}
be a set of n keys and let A′ be obtained from A by removing or adding one
key. The tree T ′ for A′ resulting from updating the tree T for A must satisfy
the random root model, assuming that T did so. This means that whether such
a distributionally correct transformation happens depends on the update algo-
rithm and its random choices. Most tree update algorithms will not do the job,
and a main part of [9] is the proof that their update algorithms actually do
perform distributionally correct transformations.

The update algorithms of [9] happen to be functionally the same as the fast up-
date algorithms given in [13]. It is an interesting philosophical question whether
this is just a coincidence or has to be the case.

In the following we give generic versions of the update algorithms, show how
they are realized in an efficient manner if random priorities are stored (the
random priority model), if subtree sizes are stored (the random root model),
and finally, as main result of the paper, if no additional values are stored at all.

procedure Generic-Delete ( a : key, T : tree )
if T=tnull then return
if a < T→key then Generic-Delete( a,T→lchild )
else if a > T→key then Generic-Delete( a,T→rchild )
else Root-Delete( T )

procedure Root-Delete( T : tree )
if Is-Leaf( T ) then T ← null
else if Lchild-Wins(T ) then Rotate-Right( T )

Root-Delete(T→rchild )
else Rotate-Left( T )

Root-Delete( T→lchild )

procedure Generic-Insert( x : item, T : tree )
if Is-Null(T ) then T← newnode( x )
else if newroot( x,T ) then Root-Insert( x,T )
else if x.key < T→key then Generic-Insert( x ,T→lchild )

else Generic-Insert( x ,T→rchild )
procedure Root-Insert( x : item, T : tree )

if Is-Null(T ) then T← newnode( x )
else if x.key < T→key then Root-Insert( x ,T→lchild )

Rotate-Right( T )
else Root-Insert( x ,T→rchild )

Rotate-Left( T )

These procedures assume call-by-reference semantics. Rotate-Right and
Rotate-Left are the usual tree rotation routines, see e.g. Section 3.5.1 of
Mehlhorn’s book [10].
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3.1 Deletion

The Generic-Delete routine detailed above first finds the the node storing
the key a. This node is the root of the subtree T . You now need to remove
the root of T and join the two subtrees into a single tree that is to replace T .
The procedure Root-Delete achieves just that by recursively rotating the root
down into leaf position and then clipping it off. The total cost, ignoring the cost
of Lchild-Wins(), is proportional to the length of one root-leaf path, which
in expectation is logarithmic. The only question remaining in this process is
whether to rotate the root left or right. In the generic procedure this is dictated
by the framed predicate Lchild-Wins(T ). This is the only place where the
various models cause differences in the implementation.

In the random priority model, as realized in [13], the respective random pri-
ority is stored with every node. Overall the tree needs to be a max-heap with
respect to these priorities. Thus if the root is removed from T the new root
must be the child with larger priority. Thus Lchild-Wins(T ) is realized by the
simple predicate

( T→lchild→priority ) > ( T→rchild→priority) .

Note that a positive outcome to this predicate means that the largest of all
the priorities in the left and right subtrees of T is in the left subtree. Since
the priorities are independent random variables this happens with probablity
/( + r), where  and r are the number of nodes in the left and right subtree of
T respectively. In the natural realization of the random root model, as in [2, 9]
the subtree size is stored with each node. Thus Lchild-Wins(T ) is realized by
a coinflip that comes up 1 with probability

( T →lchild→size )/( T→lchild→size + T→rchild→size ) .

How can you proceed if neither priority nor size are stored with each node
of the tree? The suprisingly straightforward answer, already noted in Section 6
of [13], is the following: use the random coinflip method of the random root
model and, when needed, simply compute the size of a subtree by traversing it
and counting its nodes. The cost for Lchild-Wins(T ), implemented this way,
is then proportional to the size of subtree T , which is about to be rotated. Thus
the cost can be assigned to the rotation, and fortunately Theorem 3.1 of [13]
assures that the expected deletion time is still logarithmic if the rotation cost is
proportional to the size of the rotated subtree.

3.2 Insertion

The Generic-Insert routine detailed above first checks whether the new item
to be inserted is to be made the new root of the tree. This is dictated by the out-
come of the framed test newroot( x, T ), which is the only place in the procedure
where the various models cause different implementations. If the outcome of the
test is negative, then the item is recursively inserted in the appropriate subtree.
If the outcome is positive, i.e. if the new item is to be made the new root, then
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the tree T needs to be split on the key of the new item and the resulting two trees
are made children of the new root. In our implementation this is achieved via
a simple recursive method involving rotations, that is tantamount to inserting
the new item in the appropriate leaf position and then rotating it up into root
position. The total cost, ignoring the cost of newroot(), will be proportional to
the length of one root-leaf path, which in expectation is logarithmic.

How can the test newroot( x, T ) be realized in the different models? In the
random priority model, as realized in [13], a random priority is stored with every
node of the tree, and the tree is a max-heap with respect to these priorities. The
new item x to be inserted is endowed with a new random priority x.p. The test
newroot( x, T ) is simply performed by

x.p > T→priority .

Notice that this test has a positive outcome with probability 1/(t + 1), where
t is the size of tree T , since a positive outcome means that x.p is larger than
all t priorities stored in T . Of course this is exactly the probability required
by the random root model. The natural implementation of that model, as re-
alized in [2, 9] stores with each node or the tree the size of its subtree. Thus
newroot( x, T ) is realized by a coinflip that comes up 1 with probability

1/(1+T→size) .

How can you proceed if neither priority nor size are stored with each node of
the tree? The approach taken in the case of deletions, namely determining size
when needed by enumerating the nodes of the tree, is not really feasible. The
insertion routine proceeds top-down. Already the first call to newroot( x, T )
would cause the entire tree to be traversed and hence incur linear time. The
important observation is that we are not interested in size itself, but we want to
flip a coin with bias 1/(1 + size). Here is a simple way of achieving just that.

The abstract problem we are facing is as follows: We are given a set M of
unknown size m that we can iterate over at constant cost per element. We want to
flip a coin that comes up 1 with probability 1/(1+m). Let D be some continuous
probability distribution. Draw a random number p from D. Now iterate over M
and for every element enumerated draw a new independent random number from
D. If this number is bigger than p then stop and return 0. If this does not happen
vor any element of M then return 1.

Note that this method returns 1 iff p happens to be the largest of the 1 + m
random numbers drawn independent from D. Of course this happens exactly
with probability 1/(1+m), as required. What is the expected time taken by this
method? Clearly this is proportional to the expectation of the random variable
K that counts how often a random number is drawn from D. For i > m + 1
we have Pr[K ≥ i] = 0. For 1 ≤ i ≤ m + 1 we have Pr[K ≥ i] = 1/i since the
procedure continues beyond the i-th draw form D iff p is the largest of the first
i numbers drawn. Thus we get

Ex[K] =
∑
i≥1

Pr[K ≥ i] =
∑

1≤i≤m+1

1/i = Hm+1 ≈ log m .
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So this implementation of newroot( x, T ) takes O(log m) expected time, where
m is the number of nodes in T . It needs no additionally stored information, but
just needs to be able to enumerate the nodes of the tree T at constant cost per
node, which is easy to do using any of the standard tree traversal algorithms.

How often is newroot( ) invoked during the insertion of x? This will be exactly
the depth of x in the resulting tree, which in expectation is at most 1+2 log(n+
1) = O(log n) (see e.g. Theorem 4.1 of [13]), where n is the size of the original
tree.

Since newroot( x, T ) is only invoked on subtrees of size at most n we im-
mediately get that the overall expected time necessary for all these invocations
is O(log2 n), and since the remaining expected time for the insertion operation
overall is logarithmic we get that the expected insertion time is O(log2 n).

4 Possible Improvements?

We have presented ideal distribution preserving update methods for random
search trees that require no extra space at all. For deletion the expected running
time is O(log n) whereas for insertion it is O(log2 n). This is a somewhat unusual
situation since normally, if one of the two update operations turns out to be more
costly, then it is the deletion. Are there possibilities of improving the insertion
operation or its analysis? We briefly give, admittedly handwavy, arguments why
three fairly obvious approaches for improvement will not work.

The first approach would be to simply improve the analysis. After all, using
n as an upper bound to the sizes of all subtrees to which newroot( ) is applied
seems quite generous. But it is quite clear that with high probability, say the first
(log n)/10 subtrees considered all have size at least, say n1/4. This implies that
the expected overall cost of all the newroot( ) invocations will be Ω(log2 n).
It is an interesting problem to determine the exact expected number of random
numbers drawn during our insertion routine. Presumably this will depend on the
key rank of the inserted item x in the resulting tree.

The second approach would be to alter the insertion procedure so that it does
not proceed top-down, but bottom-up, along the lines of the insertion procedure
for treaps that first inserts the new item in leaf position (ignoring priorities) and
then rotates the item back up until the heap conditions on the priorities are re-
established. It turns out that the expected number of rotations is less than 2 (see
Theorem 3.1 of [13]). But it seems that this method can only be made to work
correctly if explicit random priorities are available. Even if subtree sizes are avail-
able but they are only revealed going along a path towards the root, there is no
clear strategy where to stop the up-rotations, even if the length of the remaining
path to the root is known. This makes it unlikely that a strategy exists that has no
subtree sizes available at all. (This observation also exhibits a clear difference be-
tween random search trees implemented with priorities as in [13] and with subtree
sizes as in [2, 9]. The priority based implementation allows insertions at handles
(a pointer to the predecessor or successor of the key to be inserted) in constant
expected time, whereas the subtree-size based implementation needs logarithmic
expected time, since it must proceed top-down.
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The third approach, finally, suggest to reuse the work done by previous
newroot( ) invocations. Assume that T1, . . . , T� is a sequence of subtrees on
which newroot( ) invocations are performed. Note that for 1 < i ≤  tree Ti

is a subtree of Ti−1 and hence it is contained in all trees Tj with j < i. When
we enumerate the nodes of T1 we first enumerate the nodes of T�, then the re-
maining nodes of T�−1, then the remaining nodes of T�−2, and so on. Assume
that newroot( x, T1) stops after k nodes have been enumerated. These nodes
are also in T2, and therefore at the invocation of newroot( x, T2) you could take
advantage of this. The details are not particularly difficult, but we don’t need
to discuss them, because of the following observation: Assume T�, and hence all
Ti have size at least m. Then the expected maximum time taken by one of the
 invocations newroot( x, T2) will be Ω( · log m). From this an Ω(log2 n) lower
bound follows for any sort of reuse approach.

The Ω( · log m) bound can be proven as follows. Consider  independent ran-
dom variables K1, . . . , K�, all with the same distribution as the random variable
K discussed above. Consider the random variable X = max{K1, . . . , K�}. Since
Pr[Kj ≥ i] = 1/i, we get that the probability that each Kj , and hence their
maximum, is at least i is given by 1− (1− 1/i)�. Thus we get

Ex[X ] =
∑

1≤i≤m+1

Pr[X ≥ i] ≥
∑

�<i≤m

(
1−(1− 1

i
)�
) ≥ ∑

�<i≤m



2i
= (Hm−H�)/2 .

This uses the inequality (1− 1/i)� ≤ 1− /(2i), which holds for i ≥ .

5 A Riddle at the End

The random variable K discussed above was considered in the context of a finite
set M . It is interesting to see what happens if M is infinite.

Consider the following process: A random number p is drawn from some con-
tinuous probability distribution D. Following this you draw independently fur-
ther random numbers from the same distribution until you get one that is larger
than p. What is the expected number of random numbers that you draw?
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Abstract. A largely pictorial description is given of a variant of an
ingenious parallel sorting algorithm due to Richard Cole. The new de-
scription strives to achieve greater simplicity by exploiting symmetries
that were not explicit in the original exposition and that can be conveyed
nicely with pictures. Not paying attention to constant factors allows an
additional slight simplification of the algorithm.

1 Introduction

In 1988 Richard Cole published two sorting algorithms for the parallel random-
access machine or PRAM, a model of computation that comprises consecutively
numbered processors with lock-step access to a shared memory [2]. One algorithm
is for the concurrent-read exclusive-write or CREW variant of the PRAM, while
the other algorithm works on the more restrictive exclusive-read exclusive-write or
EREW PRAM. Neither PRAM variant allows writing to the same memory cell in
the same step by several processors. The CREW PRAM allows reading from the
same memory cell in the same step by several processors, while the EREW PRAM
does not.

Both algorithms sort n items using n processors, O(log n) time and O(n)
space, which is optimal, up to a constant factor, as concerns the running time, the
time-processor product, and the space. The existence of PRAM algorithms with
these characteristics was already implied earlier by the so-called AKS network
of Ajtai, Komlós and Szemerédi [1] and its descendants, but PRAM algorithms
derived in this manner are deemed impractical due to their complexity and their
large constant factors.

Both of Cole’s algorithms are based on the natural paradigm of merging in a
binary tree. If the merging at each level of the tree is completed before the merg-
ing at the level above it starts, the total sorting time will be Ω(log n log log n)
on the CREW PRAM and Ω((log n)2) on the EREW PRAM. In order to reduce
the time to O(log n), Cole developed clever schemes for pipelining the merges. In
general, the merging at a level of the tree starts before the merging at the level
below it has completed, in a sense using small samples of the full set of items as
a “scaffolding” that allows items arriving later to be put in place more speedily.

In the case of the algorithm for the CREW PRAM, working out the details
of the idea expressed in the previous paragraph leads to a complete algorithm
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in a relatively straightforward manner. On the EREW PRAM, however, where
simultaneous reading is not allowed, things become more involved. For reasons
elucidated by Cole, it is necessary to send scaffolding information not only up,
but also down the tree. The result is a rather intricate pattern of interacting data
streams that move any which way through the tree. Although Cole’s exposition
is admirable, there are many facts to be kept in mind simultaneously and many
somewhat tedious details to verify.

This work aims at a description of Cole’s sorting algorithm for the EREW
PRAM that is simpler and easier to verify. One starting point is the realization
that although the merge tree is clearly a rooted tree, in that the information
ascends from the leaves to the root, much is to be gained in simplicity from
ignoring this fact to the extent possible and considering the tree as a free (i.e.,
unrooted) tree. The nodes in the tree can be made to treat all of their incident
edges in a uniform way. In fact, it is natural to associate computational steps
not with nodes, but with edges, and to let all edges execute the same procedure
in each of a number of identical stages. This lends a pleasing symmetry to the
algorithm that is particularly useful when it is presented pictorially—a central
part of the algorithm can be viewed as a game about drawing arrows according
to certain simple rules, and one immediately notices facts whose verification at
the textual level requires a certain effort and is probably less reliable.

2 Preliminaries

Consider the task of sorting elements of a universe U according to a total order
< on U . The word item will be used to denote an element of U . Let −∞ and ∞
be symbolic quantities such that −∞ < x < ∞ for all items x.

For every integer k ≥ 1, if a set A consists of the items x1, . . . , xm and
x1 < · · · < xm, a k-interval of A is a set of the form {x ∈ U | xi ≤ x < xi+k},
where 0 ≤ i ≤ m + 1 − k, x0 = −∞, and xm+1 = ∞. When A and B are finite
sets of items, we will say that A is a 9-cover of B if no 1-interval of A contains
more than 9 elements of B and, more generally, that A is dense in B if, for every
integer k ≥ 1, no k-interval of A contains more than 3k + 6 elements of B.

The rank of an item x in a finite set A of items is the number |{y ∈ A : y ≤ x}|
of items in A smaller than or equal to x. For every integer c ≥ 1, let the c-sample
of a finite set A of items be the subset of those items in A whose rank in A is a
multiple of c. Define a regular sample to be either a 1-sample (i.e., a copy) or a
3-sample.

We shall need the following technical result, essentially due to Cole.

Lemma 1. Let A, B, A′ and B′ be finite sets of items such that A and B as
well as A′ and B′ are disjoint, A is dense in A′, and B is dense in B′. Then the
3-sample of A ∪ B is dense in the 3-sample of A′ ∪ B′.

Proof. Let S and S′ be the 3-samples of A ∪ B and of A′ ∪ B′, respectively.
Let I be a k-interval of S for some integer k ≥ 1 and take kA = |A ∩ I| and
kB = |B ∩ I|. Since S is the 3-sample of A ∪ B, kA + kB ≤ 3k. If kA and kB
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are the numbers of intervals of A and of B, respectively, intersected by I, then
kA ≤ kA + 1 and kB ≤ kB + 1. Because A and B are dense in A′ and B′,
respectively, |(A′∪B′)∩I| ≤ 3(kA +2)+3(kB +2) ≤ 3(kA +kB +6) ≤ 3(3k+6).
But then |S′ ∩ I| ≤ �3(3k + 6)/3	 = 3k + 6.

Without this being repeated on every occasion, the following lemmas assume
every set of items manipulated by an algorithm to be stored compactly in a
sorted array. Moreover, when it is stated that a task can be carried out in
constant time with a certain number of processors, every processor assigned to
the computation is supposed to know beforehand the rank of its own number
in the set of all numbers of processors assigned to the computation and the size
and starting address of every array that holds part of the input or is to receive
part of the output. The space needed in addition to that taken up by the input
and output is constant per processor.

When A and B are sets of items, the ranking of A in B is a function that
maps every item in A to its rank in B. With A represented in a sorted array
as described above, the ranking of A in B is represented in an array with the
same index set as that of A. We say that A is ranked in B if the ranking of A
in B is available. The cross-ranking of A and B consists of the ranking of A in
B and the ranking of B in A, and we will say that A and B are cross-ranked or
that A is cross-ranked with B if the cross-ranking of A and B is available. As
observed by Cole, a shorthand for denoting rankings is convenient, especially in
a pictorial representation. The ranking of A in B and the cross-ranking of A and
B will be denoted by A B and A B, respectively. When A is a 9-cover
of B, we may express this additional fact by writing the ranking of A in B as
A B.

The four lemmas below deal with simple ranking problems. They are illus-
trated in Fig. 1 and will be referred to using the short names indicated in paren-
theses. In Fig. 1, the meaning of the implication arrow ⇒ is that, given the
rankings to the left of the arrow, the rankings to its right can be computed in
constant time with as many processors as the total size of the sets on which
rankings are computed. Technically, when a ranking A B is to be produced
and either A or B is empty, we assume that no computation is required (so that
zero processors suffice).

Lemma 2 (subset rule). Let A, B and C be sets of items such that A and
B are disjoint and assume that the rankings of A in B and of A ∪ B in C are
available. Then the ranking of A in C can be computed in constant time with |A|
processors.

Proof. For each x ∈ A, add the ranks of x in A (trivially available) and in B
(available by assumption) to obtain the rank of x in A ∪ B. Then look up the
rank of x in C and store it in an output array.

Lemma 3 (union rule). Let A, B and C be pairwise disjoint sets of items,
every two of which are cross-ranked. Then the cross-ranking of A∪B and C can
be computed in constant time with |A| + |B| + |C| processors.
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⇒

(a) The subset rule.

(b) The union rule.

(c) The sample rule. S is a regular sample of B.

(d) The cross rule. Si is a 9-cover of Ai, for i = 1, 2.

Fig. 1. Simple rules for deriving rankings from other rankings
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Proof. For each x ∈ A, obtain the rank q of x in A ∪B as in the previous proof
and copy the rank of x in C to position q of an output array; proceed analogously
for each x ∈ B. This computes the ranking of A∪B in C. To obtain the rank in
A ∪ B of each x ∈ C, add the ranks of x in A and B.

Lemma 4 (sample rule). Let A and B be finite disjoint sets of items and let
S be a regular sample of B. If A is ranked in B, then A can be ranked in S in
constant time with |A| processors. If B is ranked in A, then S can be ranked in
A in constant time with |S| processors.

Proof. S is a c-sample of B for a c ∈ {1, 3} that can easily be determined—
except if B is empty—by testing whether |S| = |B|. If an item in A has rank q
in B, its rank in S is �q/c�. If an item in S has rank q in S, its rank in A is that
of the item in B whose rank in B is cq.

Lemma 5 (cross rule). Let S1, S2, A1 and A2 be sets of items such that S1
and S2 as well as A1 and A2 are disjoint, each of S1 and S2 is ranked in each of
A1 and A2, S1 and S2 are cross-ranked, and Si is a 9-cover of Ai, for i = 1, 2.
Then, in constant time and with |S1|+ |S2| processors, we can cross-rank A1 and
A2, form S1 ∪ S2 and A1 ∪ A2, and rank S1 ∪ S2 in A1 ∪ A2.

Proof. If we associate a processor with each item in S1 and S2, each such pro-
cessor can obtain the rank in S1∪S2 of its associated item x by adding the ranks
of x in S1 and S2. In constant time, we can therefore form S1 ∪S2 and associate
with each item x ∈ S1 ∪ S2 a processor that knows the ranks of x in S1 and
S2 as well as whether x came from S1 or S2. Suppose that x = max(S1 ∪ S2),
so that x has a successor x′ in S1 ∪ S2. By pretending to be associated with
the successor, if any, of x in its original set (S1 or S2), the processor associated
with x can easily discover whether x′ came from the same set as x. From this
it can deduce the ranks of x′ in S1 and S2 and then, for i = 1, 2, look up the
rank qi of x in Ai and the rank q′i of x′ in Ai. It proceeds to read the elements
in Ai of ranks qi, . . . , q

′
i − 1, for i = 1, 2, to merge the corresponding sequences,

each of which contains at most 10 items, and to place the resulting sequence in
an output array starting in the (q1 + q2)th position. This computes A1 ∪ A2,
except for the at most 18 smallest and the at most 20 largest items, which are
easily handled by the processors associated with the smallest and largest items
in S1∪S2, and the cross-ranking of A1 and A2 can be obtained as a by-product.
Finally, the rank in A1 ∪ A2 of each item in S1 ∪ S2 is found as the sum of its
ranks in A1 and A2.

3 High-Level Description

Suppose that the task at hand is to sort n ≥ 2 pairwise distinct items x1, . . . , xn.
Let T be an undirected free tree whose internal nodes are all of degree 3 and
with exactly n + 1 leaves r, v1, . . . , vn. Replace each undirected edge {u, v} in T
by the two directed edges (u, v) and (v, u) and let G = (V, E) be the resulting
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directed graph. With L = {r, v1, . . . , vn}, let E1 = {(u, v) ∈ E | u ∈ L} and
E3 = E \ E1 be the set of edges in E out of leaves and out of inner nodes,
respectively. For each e = (u, v) ∈ E, we denote by e

�

the reverse edge (v, u).
Moreover, for each edge e = (v, w) ∈ E, an immediate predecessor of e is an edge
in E of the form (u, v) with u = w. For each e ∈ E, let L(e) = {xi | e lies on a
simple path in G from vi to r}. We will call an edge e ∈ E upward if |L(e)| > 0,
and downward otherwise. The height of an upward edge e ∈ E is the length of
a longest simple path in G whose last edge is e. This terminology corresponds
to imagining r placed as a root at the top of T and defining the height of an
upward edge as one more than the usual height of its lower endpoint. In this
view, for each upward edge e = (u, v), L(e) = {xi | vi is a descendant of u}.

The algorithm to be described works in 2d stages, numbered 1, . . . , 2d, where
d is the diameter of T . Before and after every stage, the algorithm stores for each
e ∈ E three sets of items, A′(e), S(e) and S′(e), each of which is represented in a
sorted array. All of these sets are initially empty. At a high level of abstraction,
each of the 2d stages processes each edge e ∈ E by executing the following
steps:

1. If |A′(e)| = |L(e)| > 0, then set c := 1; otherwise set c := 3.
2. If e ∈ E1, then set A′(e) := L(e). If e ∈ E3, compute A′(e) := S′(e1)∪S′(e2),

where e1 and e2 are the two immediate predecessors of e.
3. Let S′(e) be the c-sample of A′(e).

In each stage, informally, each edge e ∈ E3 fetches samples from its immediate
predecessors, forms their union and provides its own sample of the union. If e
is upward and had collected all items in L(e) already in the previous stage, it
passes them all on; otherwise its sample is a 3-sample.

If the execution of A′(e) := S′(e1) ∪ S′(e2) is thought of as moving a copy of
each item in S′(e1) or S′(e2) across e, then the set of edges across which copies
of a particular item xi are moved span a subgraph of G without length-2 cycles,
and therefore an outtree. It follows that whenever the algorithm forms the union
of two sets of items, the two sets are disjoint.

Let us say that an edge e ∈ E is complete in a stage if the relation |A′(e)| =
|L(e)| > 0 holds at the beginning of that stage. By induction on h, one can
show that an upward edge of height h is complete in a stage t if and only if
t ≥ 2h. For the basis, an upward edge e of height 1 sets A′(e) := L(e) in
stage 1 and has A′(e) = L(e) forever after. Assume now that h ≥ 2 and that
the claim holds for all upward edges of height at most h − 1 and consider an
upward edge e of height h with immediate predecessors e1 and e2. The relations
S′(e1) = L(e1) and S′(e2) = L(e2) hold at the beginning of stage t if and only
if t ≥ 2(h − 1) + 1, by induction, and therefore e is complete in stage t if and
only if t ≥ 2h, as desired. Since the edge er entering r is of height at most d,
it follows that L(er) = {x1, . . . , xn} can be obtained in sorted form as A′(er)
at the end (or, in fact, at the beginning) of the last stage. Thus the algorithm
computes the desired result.

If an upward edge e ∈ E is complete for the first time in a stage t, the set
S′(e) is the 3-sample of L(e) in stage t − 1 and is L(e) itself in stage t and in
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every later stage. Let us therefore call an upward edge of height h active in a
stage t exactly if t ≤ 2h. A downward edge e is defined to be active exactly when
e

�

is. Let E∗ be the set of active edges. The following lemma is instrumental in
bounding the resource requirements of the algorithm.

Lemma 6. At the beginning and end of every stage,
∑

e∈E∗ |A′(e)| ≤ 10n.

Proof. Let us call the reciprocal of the number c computed as part of the pro-
cessing of an edge e ∈ E in a particular stage the sampling density of e in that
stage. Imagine each item not as a discrete entity, but as a commodity that can
be present in arbitrary amounts. Moreover, imagine that the c-sample computed
in step 3 of the algorithm does not contain selected items, but rather includes
1/c of the amount of each item present in A′(e). Since a c-sample of a set A
never includes more than |A|/c items, the total amount of items present in a set
manipulated by the algorithm according to this fictitious accounting is an upper
bound on the number of items present in the set in the actual execution.

Fix an item xi. A positive amount of xi can be present in A′(e) for an active
edge e only if G contains a simple path p that starts at vi and has e as its
last edge, and then the amount of xi in A′(e) at the end of a stage t is upper-
bounded by the product of the sampling densities in stage t of the edges on p
other than e. All edges preceding the first active edge e′ on p must be upward,
and therefore common to all relevant paths p. Moreover, all edges on p after
e′ have sampling density 1/3, and the same is true of e′ unless e′ is upward.
Therefore the amount of xi present in A′(e), summed over all active edges e, is
at most 1 + 3

∑∞
j=0(2/3)j = 10 (see Fig. 2). The lemma follows by summation

over all n items xi.

4 The Execution of a Stage

The detailed description of a single stage is where pictures will be most useful.
Nodes in T are drawn as polygons, two such polygons sharing a corner exactly
if the two corresponding nodes are adjacent. More specifically, nodes in T of de-
gree 3 and degree 1 are drawn as triangles and as thirds of triangles, respectively,
and Fig. 3(a) shows conventions that will be used throughout for drawing the
sets stored by the algorithm between stages. Note, in particular, that the sets
associated with an edge e = (u, v) are shown inside the polygon representing the
node v that e enters.

As mentioned in the introduction, an efficient execution of the algorithm
hinges on the availability of suitable “scaffolding”. Before and after every stage,
the algorithm stores the following scaffolding information:

A. For each e ∈ E3, the cross-ranking S(e1) S(e2) of S(e1) and S(e2), where
e1 and e2 are the two immediate predecessors of e.

B. For each e ∈ E, the ranking S(e) S′(e) of S(e) in S′(e).
C. For each e ∈ E, the cross-ranking S′(e

�

) A′(e) of S′(e

�

) and A′(e).
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1

1
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1
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1/3
1/9

1/9

1/3

1/9
1/9

1

1/3
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1/3
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1/9

1
1/3 1/9

1/91/3

1/9
1/9

Fig. 2. The tree of paths p from vi to edges e with positive amounts of xi in A′(e).
A thick edge has sampling density 1. If it is also black, it is inactive. Each edge e is
labeled with the maximum possible amount of xi present in A′(e).

e

S(e)

S′(e)
A′(e)

e

S′′(e)

S′(e)

A′′(e)

A′(e)

(a) (b)

Fig. 3. The pictorial representation of sets manipulated by the algorithm for each edge
e ∈ E. (a): Between stages. (b): During the processing of e. The sets S(e), S′(e) and
S′′(e) are indicated only in figures for which they are of relevance.
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v1

v2

v3

v4

v5

v6

v7 r

Fig. 4. An example tree T with the rankings available at the beginning of each stage

Fig. 4 shows an example tree T with the rankings A–C available at the be-
ginning of each stage. The following color coding of the rankings will be used
throughout: A: red; B: green; C: blue. We will consider the availability of these
rankings as invariants with the same names A–C. As anticipated in the short-
hand above, invariant B includes the fact that for each e ∈ E, S(e) is a 9-cover
of S′(e).

Two additional invariants that hold before and after every stage are formulated
below. The first of these is illustrated in Fig. 5, while the other invariant is
implicit already in the drawing conventions of Fig. 3.

D. For each e ∈ E3, A′(e) = S(e1) ∪ S(e2), where e1 and e2 are the immediate
predecessors of e.

E. For each e ∈ E, S′(e) is a regular sample of A′(e).

Before the first stage, invariants A–E are trivially satisfied, since all relevant
sets are empty.

At a more detailed level, the processing of each edge e ∈ E in each stage is
refined as follows:

1. If |A′(e)| = |L(e)| > 0, then set c := 1; otherwise set c := 3.
2. If e ∈ E1, then set A′′(e) := L(e) and rank A′(e) in A′′(e). Otherwise, with

e1 and e2 taken to be the two immediate predecessors of e, cross-rank S′(e1)
and S′(e2), set A′′(e) := S′(e1) ∪ S′(e2) and rank A′(e) in A′′(e).

3. Let S′′(e) be the c-sample of A′′(e).
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e

e1

e2

Fig. 5. Invariant D: The union of the two yellow sets in the same triangle is the third
yellow set

4. Rank S′(e) in S′′(e).
5. Cross-rank S′′(e

�

) and A′′(e).
6. Set A′(e) := A′′(e), S(e) := S′(e) and S′(e) := S′′(e).

Steps 1–6 above are easily seen to have the same net effect on A′(e) and
S′(e) as steps 1–3 of the high-level description. The sets A′′(e) and S′′(e) can be
thought of as “the new values” of A′(e) and S′(e), respectively, just as S(e) is
the value of S′(e) from the previous stage. Fig. 3(b) shows the conventions used
for drawing the sets associated with an edge e during the processing of e. One
may imagine new sets “sprouting” in the corners of triangles.

Invariants D and E hold at the end of every stage, as an immediate conse-
quence of the computation carried out in that stage. Therefore they always hold
outside of step 6. The following lemma proves that the “cover part” of invariant B
also holds outside of step 6.

Lemma 7. At the end of every stage, S(e) is dense in S′(e) for every e ∈ E.

Proof. By induction on the stage number t. The claim is trivial for e ∈ E1 and
for t = 1. For e ∈ E3 and t ≥ 2, consider the situation just before the execution
of step 6 in stage t. Invariants D and E show that with e1 and e2 taken to be
the two immediate predecessors of e, S′(e) is a regular sample of S(e1) ∪ S(e2),
whereas S′′(e) is a regular sample of S′(e1) ∪ S′(e2). More precisely, if e is not
complete in stage t, S′(e) and S′′(e) are the 3-samples of S(e1) ∪ S(e2) and of
S′(e1) ∪ S′(e2), respectively. By induction, S(ei) is dense in S′(ei), for i = 1, 2,
so Lemma 1 shows that S′(e) is indeed dense in S′′(e). And if e is complete in
stage t, S′(e) is a regular sample of L(e) = S′′(e) and therefore clearly dense in
S′′(e).

Steps 1, 3 and 6 are trivial. The execution of the other steps is described below.
An alternative, essentially stand-alone description is provided by Figs. 6–9 and
their captions.
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e1

e

�

1

e

e

�

e2

Fig. 6. The execution of steps 2 and 4 for an edge e ∈ E3. The solid arrows are available
at the start of the phase. Invariant D, applied to the pink sets, the rightmost solid red
arrows, the blue arrow and the subset rule allow the drawing of the downward-pointing
dashed black arrow. The other dashed black arrow follows by symmetry. The cross rule
now allows the drawing of the dashed red arrows and, by the sample rule and invariant
D, applied to the orange sets and to the yellow sets, the dashed green arrow.

2. The necessary computation is trivial if e ∈ E1, so consider the case e ∈ E3.
In the following two sentences, various invariants are applied to e

�

1 rather
than to e. By invariant C, A′(e

�

1) is ranked in S′(e1). But by invariant D,
A′(e

�

1) = S(e2) ∪ S(e

�

), and S(e2) and S(e

�

) are cross-ranked by invariant A,
so the subset rule allows us to rank S(e2) in S′(e1). By symmetry, we can
rank S(e1) in S′(e2). Moreover, by invariants A and B, we have the rankings
of S(ei) in S′(ei), for i = 1, 2, as well as the cross-ranking of S(e1) and S(e2).
The cross rule now implies that we can cross-rank S′(e1) and S′(e2), merge
the two sets to obtain A′′(e) = S′(e1)∪S′(e2), and rank A′(e) = S(e1)∪S(e2)
(invariant D) in A′′(e) (see Fig. 6).

4. By Invariant E, S′(e) is a regular sample of A′(e). Since S′′(e) is clearly a
regular sample of A′′(e) and A′(e) was ranked in A′′(e) in step 2, it suffices
to appeal to both parts of the sample rule.

5. Our first goal will be to cross-rank S′(e

�

) with A′′(e) and, by both parts of
the sample rule, with S′′(e). Assume first that e ∈ E1. There is nothing to
do in stage 1, since S′(e

�

) is empty. In every later stage, we have A′′(e) =
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e

�

e

e1

e2

Fig. 7. The first part of the execution of step 5 for an edge e ∈ E3. The red arrows
were computed in step 2 (Fig. 6). Invariant D, applied to the yellow sets, the red arrows
and the union rule allow the drawing of the leftmost pair of dashed orange arrows. The
other dashed orange arrows follow by symmetry.

A′(e), so the desired ranking is available, according to invariant C. Assume
now that e ∈ E3. As is easy to see by symmetry, step 2 cross-ranked every
two of S′(e

�

), S′(e1) and S′(e2), where e1 and e2 are the two immediate
predecessors of e. Therefore, by the union rule, we can cross-rank S′(e

�

) and
A′′(e) = S′(e1) ∪ S′(e2) (see Fig. 7).

By symmetry, we also have the rank of S′(e) in S′′(e

�

). From step 4, we
have the ranks of S′(e) in S′′(e) and, by symmetry, of S′(e

�

) in S′′(e

�

). By
invariant E, S′(e) is a regular sample of A′(e), so invariant C and both parts
of the sample rule show that we can cross-rank S′(e) and S′(e

�

). Now, by
the cross rule and invariant B, applied at the end of the stage, we can rank
S′′(e) in S′′(e

�

) (see Fig. 8).
Since S′′(e) is a regular sample of A′′(e), it is a 9-cover of A′′(e), and we

can trivially rank S′′(e) in A′′(e). At this point, we have ranked each of S′′(e)
and S′(e

�

) in each of S′′(e

�

) and A′′(e), and we have the cross-ranking of S′′(e)
and S′(e

�

). Therefore, by the cross rule, we can obtain the cross-ranking of
S′′(e

�

) and A′′(e) (see Fig. 9).
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e

�

e

Fig. 8. The execution of step 5 continued. The orange arrows derive with the sample rule
from those drawn in the previous figure. The black arrows follow in the same way from the
blue arrows, whose presence is guaranteed by invariant C. The green arrows were drawn
in step 4 (Fig. 6). The cross rule now allows the drawing of the magenta arrows.

e

�

e

Fig. 9. The third and final part of the execution of step 5. The magenta arrow was
drawn in the previous figure. The orange arrows derive with the sample rule from those
drawn in Fig. 7. The green arrow was copied from the previous figure, and the black
arrow is trivial. The cross rule now allows the drawing of the blue arrows.

The rankings required by invariants A, B and C for the next stage are com-
puted in steps 2, 4 and 5, respectively. Therefore invariants A–E hold at the
beginning and end of every stage.

5 Detailed Implementation

This section spells out the nitty-gritty remaining details of the algorithm. Recall
the following standard method of allocating consecutively numbered resource
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units such as processors or memory cells to jobs J1, . . . , Jm: If Ji needs ai resource
units, for i = 1, . . . , m, compute the prefix sums s0, . . . , sm, where si =

∑i
j=1 aj

for i = 0, . . . , m, and assign to Ji the resource units numbered b + si−1, . . . , b +
si − 1, for i = 1, . . . , m, where b is the number of the first available resource
unit. The prefix sums s0, . . . , sm can be computed in O(log m) time with O(m)
processors by means of a balanced binary tree with a1, . . . , am as its leaves: In
a bottom-up sweep over the tree, each node learns the sum of the leaves in the
maximal subtree below it, and in a subsequent top-down sweep, it learns the
sum of the leaves strictly to the left of that subtree.

For each e ∈ E, let us say that the sets A′(e), S(e), S′(e), A′′(e) and S′′(e)
are in the custody of e. For each e ∈ E, the total size of the sets in the custody of
e just before the execution of step 6 in a stage t in which e is active is bounded
by a constant times the size of A′(e) at the beginning or end of one of the stages
t − 1 and t. Indeed, A′′(e) is just A′(e) at the end of stage t, S′(e) and S′′(e)
are subsets of A′(e) and A′′(e), respectively (invariant E), and S(e) is empty or
equals S′(e) at the beginning of the previous stage. Therefore, by Lemma 6, the
total size of the sets in the custody of active edges, as well as of the rankings
computed for these sets, is O(n) at all times.

Sets in the custody of inactive upward edges never again change, and sets
in the custody of inactive downward edges cannot influence the output of the
algorithm. Therefore it is not necessary to associate processors with inactive
edges. It is not necessary to allocate space for sets in the custody of inactive
edges either, except when such sets are read during the processing of an active
edge. This can happen only in steps 2 and 5 of the processing of an active edge
e with immediate predecessors e1 and e2, where S′(e1) and S′(e2) are read. To
cope with this exception, when an edge e becomes inactive, the custody of S′(e)
is transferred to those active edges of which e is an immediate predecessor, each
of which stores a copy of S′(e) together with any rankings computed for S′(e).
The total space requirements remain O(n).

By associating a processor with each edge in E and carrying out a “dry run” of
the sorting algorithm in which sets of items are replaced by their sizes, merging
of (disjoint) sets is replaced by addition of their sizes, etc., it is possible, in O(d)
time, to compute for each e ∈ E and for t = 1, . . . , 2d the total space needed for
the sets in the custody of e in stage t. (To prevent this computation from needing
Θ(dn) space, it is preceded by an even more rudimentary computation that
records for each edge e only when a set in the custody of e becomes nonempty
for the first time and when e becomes inactive, so that space proportional to
the number of intervening stages can be allocated to e.) Now, for t = 1, . . . , 2d,
the allocation of space to edges in stage t can be planned by computing prefix
sums in the manner described in the beginning of the section. Since |E| = O(n),
the 2d independent prefix-sums computations can be carried out in a pipelined
fashion in O(d + log n) total time with O(n) processors.

If we allocate one processor per memory cell ever used by the algorithm and
intersperse these memory cells with information about the sizes and starting
addresses of relevant arrays, it is clear from Lemmas 2–5 that each stage can
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be executed in constant time. The available processors can also effectuate any
necessary custody transfers, as discussed above, and copy sets that are to survive
from one stage to the next between their old and new locations in memory. This
takes place between stages and needs constant time per stage.

So far, the algorithm uses O(n) processors, O(d+log n) time and O(n) space.
By letting each physical processor simulate a constant number of virtual pro-
cessors, we can reduce the processor count to exactly n, and a proper choice of
the tree T ensures that d = O(log n). This reproves Cole’s original result: The
algorithm sorts n items using n processors, O(log n) time and O(n) space.

6 Comparison with Cole’s Description

Cole’s sets UP(v), SUP(v) and OLDSUP(v) correspond to what is here called
A′(e), S′(e) and S(e), respectively, where e is the edge from v to its parent.
Similarly, DOWN(v), SDOWN(v) and OLDSDOWN(v) correspond to A′(e

�

),
S′(e

�

) and S(e

�

). Cole’s assumptions (a) and (c) correspond to our invariant A,
for e and for e

�

, (b) and (d) correspond to B, and (f) and (g) correspond to C,
while assumption (e) is not used here.

In Cole’s variant of the algorithm, a node uses the sampling densities 1/4, . . . ,
1/4, 1/2, 1 over the stages in which it is active. We may express this by saying
that the algorithm adheres to the sampling regime (4, 2) (with an implicit 1 at
the end). The algorithm in fact works correctly with any sampling regime of the
form (z0, . . . , zl), where z0, . . . , zl are integers with z1, . . . , zl > 1 and z0 > 2 (the
latter condition ensures that

∑∞
j=0(2/z0)j < ∞; cf. the proof of Lemma 6). Cole

proposes an even more general alternative, namely to use sampling densities 1/2
and 1/4 at alternate levels of the tree. Here the sampling regime (3) was chosen
as a simplest possibility.
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Self-matched Patterns, Golomb Rulers, and
Sequence Reconstruction

Franco P. Preparata
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RI 02912-1910, USA

Abstract. The reconstruction of an unknown target sequence from the
collection of its subsequences is a problem originating in computational
biology (sequencing by hybridization), but with combinatorial signifi-
cance in its own right. Retracing the history of the topic, this paper
explores the power of the subsequence pattern in extracting information
from the target, and proposes a new class of effective patterns, named
self-matched, characterized by their autocorrelation function.

1 Introduction

The motivation for the topic of this note originates in computational biology.
As a potential alternative to traditional methods for nucleic acids sequencing
based on gel electrophoresis, about two decades ago [1, 2, 4, 5, 6] a significantly
novel approach was proposed. Resorting to the emerging microarray technol-
ogy and exploiting Watson-Crick nucleotide complementarity (hybridization),
the objective was to obtain by a single laboratory experiment all substrings of a
specified length of a target sequence with no positional information (the so-called
sequence spectrum). Sequencing would then be reduced to the reconstruction of
the sequence from its substrings. Clearly, the sequencing-by-hybridization (SBH)
technology is a complex biochemical-combinatorial interaction, and these two
facets are strongly interdependent. The modeling of the combinatorial aspects
must closely reflect the biochemical constraints, and in turn the features of the
reconstruction algorithms may substantially affect the nature of the laboratory
experiments. In any case, the present goal is not to present anew a critical anal-
ysis of SBH, carried out elsewhere [8]; instead, our objective is to analyze the
process of extracting information for the reconstruction of a target sequence.
Although reconstruction pertains to sequences over an arbitrary finite alphabet,
due to the immediate origin of the problem and for concreteness of presentation,
with no loss of generality we shall make explicit reference to the 4-letter alpha-
bet of nucleic acids, although the analysis applies to sequences over any finite
alphabet.

A crucial component of the approach is the “probing pattern”, i.e., the for-
mat of the subsequences for which the probing of the target is carried out. In
the simplest form (the most natural, and, chronologically, the earliest one pro-
posed [4]), the probing pattern is a string of k symbols (contiguous or solid
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probes). The strong interdependence between two strings used consecutively in
the reconstruction (they overlap in k − 1 of their k symbols) casts suspicion
on their effectiveness in extracting information, and, in fact, a detailed formal
analysis confirms this expectation. Some alternatives to the contiguous probing
pattern were proposed, typically through the insertion of one or two gaps of
“don’t care” positions in the probing pattern [6] 1.

Despite the modest performance improvements, the adoption of “gaps” signaled
an important transition from the notion of “strings” to the notion of “subsequences”
conforming to an arbitrary pattern. Complying with standard terminology, such
subsequences will be frequently referred to as “probes”. In this context, a prob-
ing scheme was subsequently proposed [7] which was shown to come very close
to achieving the full potential of the approach from a combinatorial-algorithmic
viewpoint (this point will be addressed in the Concluding Remarks at the end of
this note). Such scheme exhibited a highly structured conformation: denoting with
a “1” a natural base, and with a “0” a universal base, the pattern was represented
by the binary sequence 1s(0s−11)r, for integers r and s.

As it turns out, those structured gapped patterns are closely related to more
general high-performing probing schemes, referred to here as self-matched
patterns, discussed in Section 3.

2 Sequence Reconstruction

Sequence reconstruction is an incremental process, adding one symbol at each
step, conventionally from left to right. Sequence reconstruction is easily described
when the probing pattern has the form 1k (a string of length k), since, in this
case, it can be pictured as the traversal of a directed graph (refer to Figure 1), of
which nodes correspond to sequence (k−1)-tuples and arcs to sequence k-tuples.

sequence:

CGT CGTA GTA TAT ATC TCG

GTC

GTAT TATC

TCGT

CGTC

CCG CCGT

CCGTATCGTC

ATCG

Fig. 1. Reconstruction graph for sequence CCGTATCGTC and probing pattern 1111

This graph is clearly Eulerian (only two vertices, the initial and final ones,
have odd degree) and sequence reconstruction corresponds to tracing an Eulerian
path on the graph. The reconstruction is unambiguous if and only if there is a
unique Eulerian path, and a necessary condition for the existence of distinct
Eulerian paths is the occurrence of repeated (k − 1)-tuples along the sequence.
1 The realization of a “don’t care” nucleotide is theoretically effected by so-called

universal bases [3], exhibiting nonspecific hybridization to the four natural bases.
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A general feature of sequence reconstruction is that performance is to be
measured by the length m of sequences that can be unambiguously reconstructed.
This estimate, therefore, is to be made with reference to an ensemble of random
sequences, which is normally taken as the set of sequences of a given length with
independent identically distributed symbols. The estimate, in turn, must be
qualified by its confidence level. Essentially, we always deal with reconstructions
with a prescribed confidence level.

When the probing pattern is a string, as in the above example, and there are
two or more probes in the spectrum differing only in their rightmost symbol, then
each of the paths issuing from a repeated (k − 1)-tuple corresponds to an actual
segment of the target. However, when we consider more general gapped patterns
of the form 1(0 ∨ 1)l−21 (of length l with k < l symbols equal to 1), the event of
multiple paths emerging from a node does not necessarily correspond to repeated
(l−1)-tuples, but only to identical subsequences of k−1 symbols and length l−1
occurring in the sequence; therefore, only one of these paths is guaranteed to be
continued (the “correct” path). The other (“spurious”) paths are continued to the
extent that the spectrum contains subsequences supporting their extension: such
subsequences are referred to as fooling probes (because they fool the reconstruction
process). The whole rationale of the gapped pattern approach is that the proba-
bility that a spurious path be mistaken as the correct one decays rapidly with the
length of its segment being extended beyond the branching.

Therefore, a branching with gapless probes reveals an actual segment of the
target sequence (there are no fooling probes in this case); a branching with
gapped probes is normally attributed to fooling probes, because k is significantly
smaller than l. Moreover, branching events are likely to occur, because, when
gapped probes are used, the target sequence is meant to be significantly longer
and, therefore, its spectrum is likely to contain fooling probes.

It follows that a key aspect of the approach is the design of probing patterns
achieving this two-fold objective:

1. Minimize the probability that a spurious path is deterministically extended.
2. Minimize the average length of the extended spurious paths, in order to

reduce the computational burden.

To gain insight into the relation between the probing pattern and the stated
objectives, it is appropriate to analyze the mechanism by which sequence recon-
struction fails.

The overall process can be pictured as the construction of a tree whose nodes
are sequence symbols and whose edges describe the successor relation. A subset
of these nodes have outdegree > 1 (branching nodes). The subtree rooted at a
branching node contains the correct path and (at least) one competing (spuri-
ous) path. Normally, the spurious path is expectedly of short length, because
the absence of an extending fooling probe in the spectrum causes its termina-
tion. Referring to two paths issuing from a branching node, there are situations
(failures) when the spurious path can be deterministically extended, and they
can be classified into two classes:
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1. Mode 1. The two paths issuing from the branching node are identical except
for their initial (branching) symbol, and therefore the two alternatives cannot
be distinguished. This failure is caused by k fooling probes which agree
with the correct path except in the branching position. These probes occur
scattered along the target sequence, with possible overlaps (the spectrum
provides no positional information). This failure mode is illustrated in the
following example:

Example 1. For probing pattern 100100111, suppose the algorithm detects
the following situation (symbols at the branching position are shown within
brackets):

. . .A C G A G T C C T [G] A G T G A T A T A T . . . correct path
[T] A G T G A T A T A T . . . spurious path

C * * G * * C T [T]
G * * T * * T [T] A

A * * C * * [T] A G
C * * [T] * * T G A

[T] * * T * * T A T

The last five rows illustrate the relevant fooling probes.
2. Mode 2. The two competing paths do not agree, except, partially, in their

respective prefixes. This situation is caused by a string of length l−1 (called
supporting segment), whose prefix of length J ≤ l − 1 coincides with a suf-
fix of the correct path up to the branching position. The branching of the
alternative path and possible disagreements of its prefix of length l − 1 − J
with the homologous prefix of the correct path beyond the branching are
supported by fooling probes. Once the spurious path has incorporated the
supporting segment, its deterministic extension is guaranteed.
This more complex failure mode is illustrated by the following example:

Example 2. For probing pattern 100100111, suppose the algorithm detects
the following situation (relevant disagreements within brackets):

. . .A C G A G T C C T [G] A G T [G] A T A T A T . . . correct path
[T] A G T [A] A T C T G G . . . spurious path

1 C * * G * * C T T
2 G * * T * * T T A
3 A * * C * * T A G
4 C * * T * * T A A
5 T * * T * * G T A

Here the pair [G][T] is the ambiguous branching, the top path represents the
correct extension. In italics is the length-8 supporting segment CTTAGTAA,
which establishes the spurious path shown at the bottom. This segment
occurs elsewhere in the sequence. The last five rows illustrate the relevant
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fooling probes. The branching disagreement [G-T] is compensated by probes
1-4, and disagreement [G-A] is compensated by probes 4 and 5.

The analysis of Mode 1 is relatively simple, since the occurrence of a Mode
1 event is due to k fooling probes scattered along the sequence. The analysis of
Mode 2 is significantly more complex, due to the interplay between two actual
subsequences of the target, and has been carried out in some detail elsewhere [8].
However, the two modes, although inherently different, appear to share the com-
mon feature that a substantial number of fooling probes are needed to support
the branching. Therefore, in what follows we shall consider Mode 1, where ex-
actly k fooling probes are needed to support the branching in the case of failure.

We observe incidentally that, although the notion of fooling probe is conceptu-
ally extraneous to the analysis of the original string-based probing approach, even
this method can be viewed within the same optics. In fact, in such case a branching
occurs when there are two identical (k−1)-tuples along the sequence: clearly one of
the two emerging paths is determined by probes occurring elsewhere (correspond-
ing to a “jump” in the reconstruction), i.e., these probes can be legitimately called
“fooling” probes. The problem is that these probes are not due to random events
(scattered occurrences along the sequence), but are guaranteed to exist since, due
to the chosen probing pattern 1k, they all occur at the same site.

Returning to the analysis of Mode 1, given l and k, how does the choice of the
probing pattern affect the probability of occurrence of a collection of k fooling
probes causing failure?

A useful tool is the notion of “alignment matrix” of a failure event. Such
event is determined by a collection of k fooling probes positionally aligned with
respect to the position of branching. The alignment matrix is a k×(2l−1) binary
table, whose rows and columns correspond respectively to probes and positions;
an entry is either 1 or “.” (a visual alternative for binary 0) depending upon
whether a position is sampled or not by a probe.

Example 3: For probing pattern 1001101001 we have the following alignment
matrix:

1 . . 1 1 . 1 . . 1 . . . . . . . . .
. . . 1 . . 1 1 . 1 . . 1 . . . . . .
. . . . . 1 . . 1 1 . 1 . . 1 . . . .
. . . . . . 1 . . 1 1 . 1 . . 1 . . .
. . . . . . . . . 1 . . 1 1 . 1 . . 1

Note that each row of the alignment matrix is a shift of the probing pattern, so
that the central column is [1, 1, . . . , 1]T .

In general, the k fooling probes may be completely disjoint or partially over-
lapping, i.e., they may occur at u ≤ k sites. Therefore, for any fixed value of u
(number of sites), the assignment of probes to sites is a surjection from a k-set
to a u-set and the number of such assignments is given by a Stirling number of
the second kind Sk,u.
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Given a specific assignment of h probes to u sites, site i produces a constraint
of νi sequence symbols, where νi is the weight of the bit-by-bit OR of the probes
assigned to i. To a first approximation, if m is the length of the sequence, the
assignment yields a term (

m

u

)
4−(ν1+...+νu),

i.e., a monomial of degree u in m, expressing the probability of failure occurring
at a specific step of the sequence reconstruction. Since there are m sequence
positions where the failure branching may occur, we shall obtain a monomial in
m of degree u + 1.

In principle, the analysis can be carried out for each of the
∑k

u=1 Sk,u probe-
to-site assignments (this number is known as Bell Number B(k)), and is, in
general, a very tedious task even for small values of l and k. The end-result is
a polynomial qπ(m) in the variable m of degree k + 1, which characterizes the
performance of pattern π in sequence reconstruction. This polynomial has the
general form

qπ(m) = 3m(c1m + . . . + ck−1m
k−1 + ckmk) (1)

where the factor 3m is due to the position where the failure branching occurs
(there are 3 choices for each sequence position). The coefficient ck is determined
completely by the single k-site assignment (when all sites are distinct), and
is obviously independent of the pattern for a given weight k, while all other
coefficients of qπ(m) depend upon the number of constrained symbols for dif-
ferent probe/site assignments, and are strongly pattern-dependent (through row
overlap).

To gain insight into the structure of qπ(m), we refer to the alignment matrix
of the probing pattern π. Introducing the formal variable z we can represent π
as the polynomial (with binary coefficients)

p(z) =
k∑

i=1

zji

with j1 = 0 and jk = l − 1. In this representation the i-th row of the alignment
matrix is the polynomial p(z)zl−1−ji . If we add the matrix entries column-by-
column, we obtain the polynomial

R(z) = p(z) + zl−1−jk−1p(z) + zl−1−jk−2p(z) + . . . + zl−1−j1p(z)

= p(z)
(

zl−1
(

1
zjk

+
1

zjk−1
+ . . . +

1
zj1

))
= p(z)

(
zl−1p

(
1
z

))
= p(z)p∗(z)

where p∗(z) is the polynomial obtained from p(z) by reversing the order of its
coefficients.

Polynomial R(z) =
∑2l−2

j=0 Rjz
j is normally called the autocorrelation function

of pattern p(z). Coefficient Rl−1 has value k and for the off-center terms the
following symmetry holds: Rj = R2l−2−j .
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3 On the Relation between the Autocorrelation Function
and the Probability of Reconstruction Failure

We shall show below that the autocorrelation function of a pattern is a major
indicator of the effectiveness of the pattern in extracting information from a
target sequence.

3.1 Golomb Rulers

We noted above that, with the exception of ck, the coefficients of polynomial
qπ(m) (formula (1)) are pattern-dependent (a probe/site assignment determines
specific row-disjunctions in the alignment matrix).

However, if the autocorrelation function is such Rj ≤ 1 for any off-center value
Rj (i.e. for j = l−1), then the only possible row overlaps occur in correspondence
with the central column in position l − 1, and the coefficients of qπ(m) attain
their minimum values for a given k. Patterns with this property are known in
the literature as Golomb rulers2. It is immediate that the length l of a Golomb
ruler of weight k is bounded below by

(
k
2

)
+1, because each off-center column in

the alignment matrix may contain at most a single 13. Since any two rows of the
alignment matrix of a Golomb ruler overlap only in the central column, all u-site
probe/site assignments yield identical, minimal contributions to the coefficient
cu. The value of this contribution is 4k−u/4k2

, because each assignment leaves
the smallest overall number k−u of unconstrained symbols. Recalling that there
are Sk,u such assignments, the smallest value c∗u of cu is therefore Sk,u4k−u/4k2

.
By q∗(m) we shall denote the polynomial qπ(m) for a Golomb pattern of weight
k, i.e.,

q∗(m) = 3m(c∗1m + . . . + c∗k−1m
k−1 + c∗kmk).

The polynomial q∗(m) can be used to define the gold standard against which
weight-k patterns can be compared. Specifically, for a conventional value ε of
probability of failure (here and hereafter we assume ε = 0.1), the equation

q∗(m∗
k) = ε

defines the length m∗
k of the sequences that can be reconstructed with confi-

dence 1 − ε. We now develop an estimate of the value m∗
k. It can be verified

that

c∗umu

c∗kmk
=

Sk,u4k−u

Sk,k
mu−k = Sk,u

(
4
m

)k−u

, (2)

2 Golomb rulers ave been extensively studied in connection with the design of radar
pulses.

3 However, this lower bound is met only for k ≤ 4.
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Using a convenient upper bound to Sk,u of the form4

Sk,u < u2(k−u)

we obtain

Sk,u

(
4

m∗

)k−u

<

(
u2

4k−3

)k−u

.

The latter result shows that only for u ≥ k−1 the contribution of lower-degree
terms should not be neglected, for usual values of k. In fact, it can be verified
that, for the usual values k = 8 and m > 6, 000, the two highest degree terms
account for a fraction of the value of q∗(m) larger than 0.9999. For this reason
we shall neglect in our analysis all other terms except the two of the highest
degree. Within this approximation, using formula (2),

q∗(m) ≈ 3m(c∗k−1m
k−1 + c∗kmk) = 3mk+1c∗k(1 +

c∗k−1

mc∗k
)

= 3mk+1 1
4k2

(
1 +

(
k

2

)
4k−(k−1)

m

)
because Sk,k−1 =

(
k
2

)
. If we assume for the moment that m∗

k > 4k−2, we have
that

(
k
2

) 4
m∗ << 1, and we may use the simpler approximation

m∗
k ≈

(
4ε

3

) 1
k+1

4k−1 ≈ 0.79 · 4k−1

(For example, for k = 8 and ε = 0.1 we obtain m∗
k = 13, 085. We also verify that

m∗
k = 0.79 · 4k−1 > 4k−2.)

3.2 Self-matched Patterns

However, the comparative evaluation of different patterns must be done for a
fixed choice of [l, k], since this pair is a measure of the cost of a probing scheme
4 Using the well-known recurrence

Su+s,u = Su−1+s,u−1 + uSu−1+s,u

we can obtain a (very conservative) upper-bound to Su+s,u of the form

Uu+s,u = u2s

Indeed, Uu,u = 1 (since s = 0), thus satisfying the boundary condition Su,u = 1.
Moreover, U1+s,1 = 1, thus satisfying the boundary condition S1+s,1 = 1. Finally,
Uu+s,u satisfies the above recurrence relation, because

Uu+1+s,u+1 = (u+1)2s > u2s+(u+1)2s−1 > u2s+u·(u+1)2(s−1) = Uu+s,u+uUu+s,u+1



166 F.P. Preparata

(note that, in general, l is expected to be substantially smaller than
(
k
2

)
+ 1, a

lower bound to the achievable length of a weight-k Golomb ruler).
If for a chosen pattern any off-center term Rj is larger than 1, this results in

an increase of the values of some coefficient cu for u < k and consequently qπ(m)
will achieve the target threshold ε for a value of m < m∗

k.
We shall now consider the patterns for which Rj ≤ 2 for j = l − 1, and

call these patterns self-matched5. Clearly, Rj = 1 means that in column j only
one of the aligned probes has a 1; analogously, Rj = 2 means that in column
j there are exactly two aligned probes with a 1 (pairwise overlapping). Since
Rj ≤ 2, no two aligned probes share more than one position beside the central
position l − 1. Conversely, each Rj = 2 is due to a specific pair of aligned
probes.

When considering the
(
k
2

)
mappings of k probes to k−1 sites, there is a single

site to which any 2 probes are assigned. Therefore, a pair of probes, correspond-
ing to a value 2 in the autocorrelation function, will affect the coefficient ck−1
exactly once. The modification is that 2 rather than just one symbols remain
unconstrained, resulting in a contribution of

42

4k2 − 4
4k2

to coefficient ck−1 with respect to its value for the case of Golomb rulers. As
a consequence (our approximation of) qπ(m) increases by 3mks212/4k2

and m
decreases by

s2 · 12
k + 1

units with respect to the value m∗
k. In addition, for a given length l, a compact

self-matched pattern is defined as one for which all off-center terms Rj ∈ {1, 2}.
Such compact pattern has the smallest value of s2 = (

(
k
2

)− l+1). For example, a
[20, 8] compact self-matched pattern has a decrease of about 24 units with respect
to the optimum m∗

8 ≈ 13, 085. This illustrates how close the performance of a
self-matched pattern is to that of an equal-weight Golomb ruler.

Although self-matched patterns can be readily discovered by computer search,
a synthesis technique is presented as an appendix.

4 Concluding Remarks

In Section 2 we have contrasted the adoptions of solid and gapped probes in
sequence reconstruction. We have outlined that reconstruction failure in the
case of solid probes occurs because of the non-uniqueness of Eulerian paths in
the graph determined by the sequence (k − 1)-tuples. We have then discussed
the mechanisms of reconstruction failure when adopting gapped probes, and it
may now appear surprising that the notion of Eulerian path does not seem to
5 This denotation relates to their suitability for being used as signals in matched-filter

radar detection (peaked autocorrelation function).
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play any role. In reality, only Failure Mode 1 is the new phenomenon due to
the appearance of fooling probes; the equally important Failure Mode 2 can be
likened to the branching occurring with solid probes.

Of course, the non-uniqueness of Eulerian paths is a legitimate cause of failure
also for gapped probes. An important feature, however, is that gapped-probe re-
construction operates as if the probe length is l > k (typically, l > 2k). The
emergence of non-unique Eulerian paths depends upon the sequence length,
so that reliably reconstructible sequences are of length O(2l). However, such
length is well beyond the range of gapped-probe methods. In fact, as the tar-
get sequence length grows, the spectrum becomes increasingly denser, and when
the probability of finding any probe equal 1/4, i.e., the a priori probability of
any symbol, sequence reconstruction becomes a runaway branching process, and
failure is due to computational reasons. This critical bound is approximately
1.15 · 4k−1, and note that 4k−1 � 2l. In addition, self-matched probes (and the
structured gapped probes) achieve with 90% confidence a reconstruction length
m ≈ 0.794k−1, which is very close to the computational upper bound.
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Appendix: A Synthesis Technique of Self-matched Patterns

A pattern is a monic polynomial p(z) of degree l− 1. For some integer s < l− 1
we may express p(z) in the following form:

p(z) = p0(z) + zsp1(z)
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where both p0(z) and p1(z) are monic polynomials, of respective degrees d0 < s
and d1 = l − s, with d0 + d1 ≤ l − 2. The autocorrelation Rp(z) of p(z) has the
expression:

Rp(z) = (p0(z) + zsp1(z)) zl−1

(
p0

(
1
z

)
+ z−sp1

(
1
z

))
= zl−1−d0p0(z)zd0p0

(
1
z

)
+ zl−1−d1p1(z)zd1p1

(
1
z

)
+zl−1−sp0(z)p1

(
1
z

)
+ zl−1+sp0

(
1
z

)
p1(z)

= zl−1−d0Rp0(z) + zl−1−d1Rp1(z) + zl−1−sp0(z)p1

(
1
z

)
+ zl−1+sp0

(
1
z

)
)p1(z).

If we define g01(z) = p0(z)p1(1/z)zd1 ( a monic polynomial of degree d0 + d1),
we have p1(z)p0(1/z)zd0 = zd0+d1g01(1/z) = g10(z) (also a monic polynomial of
degree d0 + d1, obtained by reversing the order of the coefficients of g01(z)) and
we can write:

Rp(z) = zl−1−d0Rp0(z) + zl−1−d1Rp1(z) + zl−1−s−d1g01(z) + zl−1+s−d0g10(z).

This equation is the key to our construction technique.
Since Rp(z), an autocorrelation function, has the property Rp,l−1−i = Rp,l−1+i,

it is sufficient to consider the coefficients of the terms of degree ≥ l − 1. (Note
that zl−1−s−d1g01(z) and zl−1+s−d0g10(z) do not interfere, since the rightmost
term of the former has degree l − 1 − s + d0i < l − 1 and the leftmost term of
the latter has degree l − 1 + s − d0 > l − 1, by the hypothesis that d0 < s.) In
other words, we factor from Rp(z) the power zl−1 and retain only the terms of
degree ≥ 0 (thereby dropping polynomial g01(z)). Such construction yields the
polynomial

R̂p(z) = R̂p0(z) + R̂p1(z) + zs−d0g10(z)

where we have denoted the truncated polynomials with a “hat” diacritic.
A first obvious necessary condition is that none of the above three terms

violate the condition of a self-matched pattern, i.e., none of their coefficients
pertaining to degrees ≥ 1 exceeds the value 2.

Sufficient conditions are that

1. The sum R̂p0 + R̂p1 , also verifies the stated condition on its coefficients (in
which case we say that the two patterns are compatible).

2. The parameter s has been chosen as the smallest value for which the poly-
nomial R̂p0 + R̂p1 + zs−d0g10(z) does not violate the coefficient condition.

Example 3: We express polynomials as strings of coefficients. Let p0 = 1101
and p1 = 100011 (so that d0 = 3 and d1 = 5). Next we obtain Rp0 = 1113111
(R̂p0 = 3111) and Rp1 = 11001310011 (R̂p1 = 310011), so that both p0 and
p1 are self-matched patterns (they are, actually, Golomb rulers, and, therefore,
automatically compatible), thereby obtaining R̂p0 + R̂p1 = 621111.
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Finally, g10 = 101111121 so that to avoid violation of the property g10 must
be shifted 2 positions to the right (yielding s − d0 = 2, or s = 5) to obtain for
R̂(z) the sequence

2 1 1 1
3 1 0 0 1 1

1 0 1 1 1 1 1 2 1

6 2 2 1 2 2 1 1 1 2 1

corresponding to the pattern p = 11010100011.
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Abstract. Energy has become a scarce and expensive resource. There
is a growing awareness in society that energy saving is a critical issue.
This paper surveys algorithmic solutions to reduce energy consumption
in computing environments. We focus on the system and device level.
More specifically, we study power-down mechanisms as well as dynamic
speed scaling techniques in modern microprocessors.
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1 Introduction

With increasing CPU clock speeds and higher levels of integration in processors,
memories and controllers, power consumption has become a major concern in
computer system design over the past years. Power dissipation is critical in bat-
tery operated mobile computing devices that have proliferated in recent years. In
these devices, obviously, the amount of available energy is severely limited. More-
over, power consumption is a major concern in desktop computers and servers.
Electricity costs impose a substantial strain on the budget of data and comput-
ing centers, where servers and, in particular, CPUs account for 50–60% of the
energy consumption. In fact, Google engineers, maintaining thousands of servers,
recently warned that if power consumption continues to grow, power costs can
easily overtake hardware costs by a large margin [11]. In addition to cost, energy
dissipation causes thermal problems. Most of the consumed energy is converted
into heat, resulting in wear and reduced reliability of hardware components.

For these reasons, there has recently been considerable research interest in
the design and analysis of energy-efficient algorithms that reduce the energy
consumption while minimizing compromise to service. This survey focuses on
energy saving mechanisms on the system and device level. In this context, there
are basically two techniques to save energy.
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(1) Power-down mechanisms : When a system is idle, it can be transitioned into
low-power standby or sleep states. This technique is well-known and widely
used to save energy. One has to find out when to shut down a system, taking
into account that a transition back to the active mode requires extra energy.

(2) Speed scaling: Microprocessors currently sold by chip makers such as AMD
and Intel are able to operate at variable speed. The higher the speed, the
higher the power consumption is. The goal is to save energy by utilizing
the full speed/frequency spectrum of a processor and applying low speeds
whenever possible.

The power management problems described above are online problems in that
a system is usually not aware of future events. A power-down mechanism, during
an idle period, usually has no information when the period ends. Is it worthwhile
to move to a lower-power state and benefit from the reduced energy consumption,
given that the system must finally be powered up again at a cost to the active
mode? A speed scaling algorithm typically does not know future jobs. Should
lower speed levels be used at the expense of delaying the service of tasks that
may arrive in the near future?

Despite the handicap of not knowing the future, an online strategy should
achieve a provably good performance. Here we resort to competitive analysis [29],
where an online algorithm ALG is compared to an optimal offline algorithm
OPT that knows the entire future and can compute an optimal solution. On-
line algorithm ALG is called c-competitive if, for every input, the total energy
consumption of ALG is at most c times that of OPT .

In this survey we first present the most important results known for power-
down mechanisms. Then we address dynamic speed scaling algorithms.

2 Power-Down Mechanisms

Power-down mechanisms are a common technique to save energy. We encounter
them on an every day basis. The display of our desktop turns off after some
period of inactivity. Our laptop transitions to a standby or hibernate mode if it
has been idle for a while. In these settings, there usually exist idleness thresholds
that specify the length of time after which a system is powered down. From an
algorithmic point of view, we would like to design strategies that determine such
thresholds and perform well relative to the optimum.

Formally, we are given a device that always resides in one of several states.
In addition to the active state, there can be several standby and sleep modes.
These states have individual power consumption rates. The energy incurred in
transitioning the system from a higher-power to a lower-power state is usually
negligible. However, a power-up operation consumes a significant amount of en-
ergy. Over time the device experiences an alternating sequence of active and idle
periods. During active periods, the system must reside in the active mode to
perform the required tasks. During idle periods, the system may be moved to
lower-power states. An algorithm has to decide when to perform the transitions
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and to which states to move. The goal is to minimize the total energy consump-
tion. As the energy consumption during the active periods is fixed, assuming
that prescribed tasks have to be performed, we concentrate on energy minimiza-
tion in the idle intervals. In fact, we focus on any idle period and optimize the
energy consumption in any such time window.

In the following we will first study systems that consist of two states only.
Then we will address systems with multiple states. We stress that we consider
the minimization of energy. We ignore the delay that arises when a system is
transitioned from a lower-power to a higher-power state.

2.1 Systems with Two States

Consider a two-state system that may reside in an active state or in a sleep
state. We assume without loss of generality that the power consumption rate in
the active state is 1, i.e. the system consumes one energy unit per time unit.
The power consumption rate in the sleep mode is 0. The results we present in
the following generalize to arbitrary consumption rates. Suppose that β, β > 0,
energy units are required to transition the system from the sleep state to the
active state. The energy of transitioning from the active to the sleep state is
assumed to be 0. If this is not the case, we can simply fold the corresponding
energy into the cost of β incurred in the next power-up operation. The system
experiences an idle period whose length T is initially unknown.

We first observe that an optimal offline algorithm OPT , knowing T in advance,
is simple to formulate. If the value of T , counted in time units, is smaller than
the value of β, OPT remains in the active state throughout the idle period. If
T is at least β, OPT transitions to the sleep state right at the beginning of the
idle period and powers up to the active state at the end of the period.

The following deterministic online algorithm mimics the behavior of OPT .
Algorithm ALG-D: In an idle period, remain in the active state first. After β
time units, if the period has not ended yet, transition to the sleep state.

Theorem 1. ALG-D is 2-competitive and this is the smallest competitiveness a
deterministic online algorithm can achieve.

Proof. We first analyze ALG-D and consider two cases. If the value of T is
smaller than the value of β, then ALG-D consumes T units of energy during
the idle interval and this is in fact equal to the consumption of OPT . If T is
at least β, then ALG-D first consumes β energy units to remain in the active
state. An additional power-up cost of β is incurred at the end of the idle interval.
Hence, ALG-D ’s total cost is 2β, while OPT incurs a cost of β for the power-up
operation at the end of the idle period.

We next verify that no deterministic online algorithm can achieve a compet-
itive ratio smaller than 2. If an algorithm transitions to the sleep state after
exactly t time units, then in idle period of length t it incurs a cost of t + β while
OPT pays min{t, β} only. �
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We remark that power management in two-state systems corresponds to the
famous ski-rental problem, a cornerstone problem in the theory of online algo-
rithms, see e.g. [16].

Interestingly, it is possible to beat the competitiveness of 2 using random-
ization. A randomized algorithm transitions to the sleep state according to a
probability density function p(t). The probability that the system powers down
during the first t0 time units of an idle period is

∫ t0
0 p(t)dt. Karlin et al. [20]

determined the best probability distribution.

Algorithm ALG-R: Transition to the sleep state according to the probability
density function

p(t) =
{ 1

(e−1)β et/β 0 ≤ t ≤ β

0 otherwise.

Theorem 2. [20] ALG-R achieves a competitive ratio of e
e−1 , and this is the

smallest competitive ratio a randomized strategy can achieve.

Here e ≈ 2.71 is the Eulerian number and hence e
e−1 ≈ 1.58, which is consider-

ably below the deterministic bound of 2.
From a practical point of view, it is also instructive to study stochastic settings

where the length of idle periods is governed by probability distributions. In
practice, short periods might occur more frequently. Probability distributions
can also model specific situations where either very short or very long idle periods
are more likely to occur, compared to periods of medium length. Of course, such
a probability distribution may not be known in advance but can be learned over
time.

Let Q = (q(T ))0≤T<∞ be a fixed probability distribution on the length T
of idle periods. For any t ≥ 0, the deterministic algorithm ALGt that always
powers down after exactly t time units incurs an expected cost of

E[ALGt(Q)] =
∫ t

0
Tq(T )dT + (t + β)

∫ ∞

t

q(T )dT (1)

on idle periods generated according to Q. Karlin et al. [20] proposed the following
strategy to handle probabilistic settings.

Algorithm ALG-P: Given a fixed Q, let A∗
Q be the deterministic algorithm

ALGt that minimizes (1).

Theorem 3. [20] For any Q, the expected energy consumption of ALG-P is at
most e

e−1 times the expected optimum consumption.

2.2 Systems with Multiple States

Many modern devices do not have only one but several low-power states. Speci-
fications of such systems are given, for instance, in the Advanced Configuration
and Power Management Interface (ACPI) that establishes industry-standard in-
terfaces enabling power management and thermal management of mobile, desktop
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Energy

State 3
State 2State 1

State 4

T

Fig. 1. Illustration of the optimum cost in a four-state system

and server platforms. A description of the ACPI power management architecture
built into Microsoft Windows operating systems can be found at [1].

Consider a system with � states s1, . . . , s�. Let ri be the power consumption
rate of si. We number the states such that r1 > . . . > r�. Hence s1 is the active
state and s� represents the state with lowest energy consumption. Let βi be the
energy required to transition the system from si to the active state s1. We as-
sume again that transitions from higher-power to lower-power states incur 0 cost
because the corresponding energy is usually negligible. The goal is to construct
a state transition schedule minimizing the total energy consumption in an idle
period.

Irani et al. [17] presented online and offline algorithms. They first observe that
the total energy incurred by an optimal offline algorithm OPT in an idle period
of length T is given by

OPT (T ) = min
1≤i≤�

{riT + βi}.

Hence, OPT chooses the state that allows for the smallest total cost consisting
of energy consumption in the period and final power-up cost. Interestingly, the
optimal cost has a simple graphical representation, see Figure 1. If we consider
all linear functions fi(t) = rit + βi, then the optimum energy consumption is
given by the lower envelope of the arrangement of lines.

We can use this lower envelope to guide an online algorithm which state to
use at any time. Let SOPT (t) denote the state used by OPT in an idle period
of total length t, i.e. SOPT (t) is the state arg min1≤i≤�{rit + βi}. The following
algorithm, proposed in [17], traverses the state sequence as suggested by the
optimum offline algorithm.

AlgorithmLower-Envelope: In an idle period, at any time t, use state SOPT (t).
Intuitively, over time, Lower-Envelope visits the states represented by the

lower envelope of the functions fi(t). If currently in state si−1, the strategy
transitions to the next state si at time ti, where ti is the solution to the equation
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ri−1t+βi−1 = rit+βi. Here we assume that states whose functions do not occur
on the lower envelope, at any time, are discarded. Note that the algorithm is a
generalization of ALG-D for two-state systems.

Theorem 4. [17] Lower-Envelope is 2-competitive.

The competitiveness of 2 is the smallest ratio achievable by a deterministic online
algorithm.

Irani et al. [17] also studied the setting where the length of idle periods is
generated by a probability distribution Q = (q(T ))0≤T<∞. They determined the
time ti when an online strategy should move from state si−1 to si, 2 ≤ i ≤ �.
Let ti be the time t that minimizes∫ t

0
ri−1Tq(T )dT +

∫ ∞

t

q(T )(ri−1t + (T − t)ri + βi − βi−1)dT.

Intuitively, the above expression is the expected cost of a deterministic algorithm
ALGt that powers down after t time units, assuming that only states si−1 and
si are available.

Algorithm ALG-P(�): Change states at the transition times t2, . . . , t� defined
above.

Note that ALG-P(�) is a generalization of ALG-P for two-state systems.

Theorem 5. [17] For any fixed probability distribution Q, the expected energy
consumption of ALG-P(�) is at most e

e−1 times the expected optimum consumption.

Furthermore, Irani et al. presented an approach how to learn an initially un-
known Q. They combined the approach with ALG-P(�) and performed experi-
mental tests for an IBM mobile hard drive with four power states. It shows that
the combined scheme achieves low energy consumption close to the optimum
and usually outperforms many single-value prediction algorithms.

Augustine et al. [4] investigate generalized multi-state systems in which the
state transition energies may take arbitrary values. Let βij ≥ 0 be the energy
required to transition from si to sj , 1 ≤ i, j ≤ �. Augustine et al. demonstrate
that Lower-Envelope can be generalized and achieves a competitiveness of 3 +
2
√

2 ≈ 5.8. This ratio holds for any state system. Better bounds are possible
for specific system. Augustine et al. devise a strategy that, for a given system
S, achieves a competitive ratio of c∗ + ε, for any ε > 0, where c∗ is the best
competitiveness possible for S. Finally, the authors consider stochastic settings
and develop optimal state transition times.

3 Dynamic Speed Scaling

Many modern microprocessor can run at variable speed. Examples are the Intel
SpeedStep and the AMD processor PowerNow. High speeds result in higher
performance but also high energy consumption. Lower speeds save energy but
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performance degrades. If the processor runs at speed s, then the required power
is sα, where α > 1 is a constant. In practical application α is usually in the
range between 2 and 3. The well-known cube-root rule states that the power
is proportional to s3. Obviously, energy consumption is power integrated over
time. The goal is to dynamically set the speed of a processor so as to minimize
energy consumption, while still providing a desired quality of service.

Dynamic speed scaling leads to many challenging scheduling problems. At
any time a scheduler has to decide not only which job to execute but also which
speed to use. Consequently, there has been considerable research interest in the
design and analysis of efficient scheduling algorithms. This section reviews the
most important results developed over the past years. We first address scheduling
problems with hard job deadlines. Then we consider the minimization of response
times and other objectives.

In general, two scenarios are of interest. In the offline setting all jobs to be
processed are known in advance. In the online setting jobs arrive over time and
an algorithm, at any time, has to make scheduling decisions without knowledge
of any future jobs. Recall that an online algorithm ALG is c-competitive if, for
every input, the objective function value (typically the energy consumption) of
ALG is within c times the value of an optimal solution.

3.1 Scheduling with Deadlines

In a seminal paper, initiating the algorithmic study of speed scaling, Yao, Demers
and Shenker [30] investigated a scheduling problem with strict job deadlines. At
this point this framework is by far the most extensively studied algorithmic speed
scaling problem.

Consider n jobs J1, . . . , Jn that have to be processed on a variable-speed
processor. Each job Ji is specified by a release time ri, a deadline di and a
processing volume wi. The release time and the deadline mark the time interval
in which the job must be executed. The processing volume is the amount of work
that must be done to complete the job. The processing time of a job depends
on the speed. If Ji is executed at constant speed s, it takes wi/s time units to
finish the job. Preemption of jobs is allowed, i.e. the processing of a job may
be suspended and resumed later. The goal is to construct a feasible schedule
minimizing the total energy consumption.

The framework by Yao et al. assumes that there is no upper bound on the
maximum processor speed. Hence there always exists a feasible schedule satisfy-
ing all job deadlines. Furthermore, it is assumed that a continuous spectrum of
speeds is available. We will discuss later how to relax these assumptions.

Fundamental Algorithms. Yao, Demers and Shenker [30] first study the of-
fline setting and develop an algorithm for computing optimal solutions, mini-
mizing total energy consumption. The strategy is known as YDS referring to
the initials of the authors. The algorithm proceeds in series of iterations. In each
iteration, a time interval of maximum density is identified and a corresponding
partial schedule is constructed. The density ΔI of a time interval I = [t, t′] is the
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total work to be completed in I divided by the length of I. More precisely, let
SI be the set of jobs Ji that must be processed in I, i.e. that satisfy [ri, di] ⊆ I.
Then

ΔI =
1
|I|

∑
Ji∈Si

wi.

Intuitively, ΔI is the minimum average speed necessary to complete all jobs that
must be scheduled in I.

Algorithm YDS repeatedly determines the interval I of maximum density. In
such an interval I the algorithm schedules the jobs of SI at speed ΔI using the
Earliest Deadline First (EDF) policy, i.e. among the available unfinished jobs
the one with the earliest deadline is executed. Then YDS removes the set SI as
well as the time interval I from the problem instance. More specifically, for any
unscheduled job Ji with di ∈ I, the new deadline time is set to di := t. For any
unscheduled Ji with ri ∈ I, the new release time is ri := t′. Time interval I is
discarded. We give a summary of the algorithm in pseudo-code.

Algorithm YDS: Initially J := {J1, . . . , Jn}. While J = ∅, execute the follow-
ing two steps. (1) Determine the interval I of maximum density. In I process the
jobs of SI at speed ΔI according to EDF . (2) Set J := J \ SI . Remove I from
the time horizon and update the release times and deadlines of unscheduled jobs
accordingly.

Theorem 6. [30] For any job instance, YDS computes an optimal schedule
minimizing the total energy consumption.

Obviously, when identifying intervals of maximum density, YDS only has to
consider intervals whose boundaries are equal to the release times and deadlines
of the jobs. A straightforward implementation of the algorithm has a running
time of O(n3). Li et al. [25] showed that the time can be reduced to O(n2 log n).
Further improvements are possible if the job execution intervals form a tree
structure [24].

Yao et al. [30] also devised two elegant online algorithms, called Average Rate
and Optimal Available. Whenever a new job Ji arrives at time ri, its deadline
di and processing volume wi are known. For any incoming job Ji, Average Rate
considers the density δi = wi/(di − ri), which is the minimum average speed
necessary to complete the job in time if no other jobs were present. At any
time t the speed s(t) is set to the accumulated density of jobs active at time t.
A job Ji is active at time t if t ∈ [ri, di]. Available jobs are scheduled according
to the EDF policy.

Algorithm Average Rate: At any time t use a speed of s(t) =
∑

Ji:t∈[ri,di] δi.
Available unfinished jobs are scheduled using EDF .

Yao et al. [30] analyzed Average Rate and proved an upper bound on the
competitiveness.

Theorem 7. [30] The competitive ratio of Average Rate is at most 2α−1αα, for
any α ≥ 2.
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Bansal et al. [5] showed that the analysis is essentially tight by providing a nearly
matching lower bound.

Theorem 8. [5] The competitive ratio of Average Rate is at least ((2−δ)α)α/2,
where δ is a function of α that approaches zero as α tends to infinity.

The second strategy Optimal Available is computationally more expensive than
Average Rate. It always computes an optimal schedule for the currently available
work load. This can be done using YDS .

Algorithm Optimal Available: Whenever a new job arrives, compute an op-
timal schedule for the currently available unfinished jobs.

Bansal, Kimbrel and Pruhs [8] gave a comprehensive analysis of the above
algorithm and proved the following result.

Theorem 9. [8] The competitive ratio of Optimal Available is exactly αα.

The above theorem implies that in terms of competitiveness, Optimal Available
is better than Average Rate. Bansal et al. [8] also presented a new online algo-
rithm, called BKP according to the initials of the authors, that approximates
the optimal speeds of YDS by considering interval densities. For times t, t1 and
t2 with t1 < t ≤ t2, let w(t, t1, t2) be the total processing volume of jobs that are
active at time t, have a release time of at least t1 and a deadline of at most t2.

Algorithm BKP: At any time t use a speed of

s(t) = max
t′>t

w(t, et − (e − 1)t′, t′)
t′ − t

.

Available unfinished jobs are processed using EDF .

Theorem 10. [8] Algorithm BKP achieves a competitive ratio of 2( α
α−1 )αeα.

For large values of α, the competitiveness of BKP is better than that of Optimal
Available.

All the above online algorithms attain constant competitive ratios that depend
on α but no other other problem parameter. The dependence on α is exponential.
For small values of α, which occur in practice, the competitive ratios are reason-
ably small. A result by Bansal et al. [8] implies that the exponential dependence
on α is inherent to the problem.

Theorem 11. [8] Any randomized online algorithm has a competitiveness of at
least Ω((4/3)α).

Refinements. Bounded speed: The problem setting considered so far assumes
a continuous, unbounded spectrum of speeds. However, in practice only a finite
set of discrete speed levels s1 < s2 < . . . < sd is available. The offline algorithm
YDS can be adapted easily to handle feasible job instances, i.e. inputs for which
feasible schedules exist using the restricted set of speeds. Note that feasibility
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can be checked easily by always using the maximum speed sd and scheduling
available jobs according to the EDF policy. Given a feasible job instance, the
modification of YDS is as follows. We first construct the schedule according to
YDS . For each identified interval I of maximum density we approximate the
desired speed ΔI by the two adjacent speed levels sk < ΔI < sk+1. Speed sk+1
is used first for some δ time units and sk is used for the last |I|−δ time units in I,
where δ is chosen such that the total work completed in I is equal to the original
amount of |I|ΔI . An algorithm with an improved running time of O(dn log n)
was presented by Li and Yao [26].

If the given job instance is not feasible, the situation is more delicate. In this
case it is impossible to complete all the jobs. The goal is to design algorithms that
achieve good throughput , which is the total processing volume of jobs finished by
their deadline, and at the same time optimize energy consumption. Papers [6, 13]
present algorithms that even work online. At any time the strategies maintain a
pool of jobs they intend to complete. Newly arriving jobs may be admitted to this
pool. If the pool contains too large a processing volume, jobs are expelled such
that the throughput is not diminished significantly. The algorithm by Bansal et
al. [6] is 4-competitive in terms of throughput and constant competitive with
respect to energy consumption.

Temperature minimization: High processor speeds lead to high temperatures
which impair a processor’s reliability and lifetime. Bansal et al. [8] consider the
minimization of the maximum temperature that arises during processing. They
assume that cooling follows Newton’s law, which states that the rate of cooling
of a body is proportional to the difference in temperature between the body
and the environment. Bansal et al. [8] show that algorithms YDS and BKP
have favorable properties. For any jobs sequence, the maximum temperature is
within a constant factor of the minimum possible maximum temperature, for
any cooling parameter a device may have.

Sleep states: Irani et al. [19] investigate an extended problem setting where a
variable-speed processor may be transitioned into a sleep state. In the sleep state,
the energy consumption is 0 while in the active state even at speed 0 some non-
negative amount of energy is consumed. Hence [19] combines speed scaling with
power-down mechanisms. In the standard setting without sleep state, algorithms
tend to use low speed levels subject to release time and deadline constraints. In
contrast, in the setting with sleep state it can be beneficial to speed up a job
so as to generate idle times in which the processor can be transitioned to the
sleep mode. Irani et al. [19] develop online and offline algorithms for this extended
setting. Baptiste et al. [10] and Demaine et al. [15] also study scheduling problems
where a processor may be set asleep, albeit in a setting without speed scaling.

3.2 Minimizing Response Time

A classical objective in scheduling is the minimization of response times. A user
releasing a task to a system would like to receive feedback, say the result of
a computation, as quickly as possible. User satisfaction often depends on how
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fast a device reacts. Unfortunately, response time minimization and energy min-
imization are contradicting objectives. To achieve fast response times a system
must usually use high processor speeds, which lead to high energy consumption.
On the other hand, to save energy low speeds should be used, which result in
high response times. Hence one has to find ways to integrate both objectives.

Consider n jobs J1, . . . , Jn that have to be scheduled on a variable-speed
processor. Each job Ji is specified by a release time ri and a processing volume
wi. When a job arrives, its processing volume is known. Preemption of jobs is
allowed. In the scheduling literature, response time is referred to as flow time.
The flow time fi of a job Ji is the length of the time interval between release
time and completion time of the job. We seek schedules minimizing the total
flow time

∑n
i=1 fi.

Limited energy: Pruhs et al. [27] assume that a fixed energy volume E is given
and the goal is to minimize the total flow time of the jobs. The authors con-
sider unit-size jobs, i.e. all jobs have the same processing volume, and study
the offline scenario where all the jobs are known in advance. Pruhs et al. [27]
show that optimal schedules can be computed in polynomial time. However, in
this framework with a limited energy volume it is hard to construct good online
algorithms. If future jobs are unknown, it is unclear how much energy to invest
for the currently available tasks.

Energy plus flow times: Albers and Fujiwara [2] proposed another approach to
integrate energy and flow time minimization. They consider a combined objective
function that simply adds the two costs. Let E denote the energy consumption
of a schedule. We wish to minimize g = E +

∑n
i=1 fi. Albers and Fujiwara

concentrate on unit-size jobs and show that optimal offline schedules can be
constructed in polynomial time using a dynamic programming approach. In fact
the algorithm can also be used to minimize the total flow time of jobs given a
fixed energy volume.

Most of [2] is concerned with the online setting where jobs arrive over time.
Albers and Fujiwara present a simple online strategy that processes jobs in
batches and achieves a constant competitive ratio. Batched processing allows
one to make scheduling decisions, which are computationally expensive, only
every once in a while. This is certainly an advantage in low-power computing
environments. Nonetheless, Albers and Fujiwara conjectured that the following
algorithm achieves a better performance with respect to the minimization of g:
At any time, if there are � active jobs, use speed α

√
�. A job is active if it has

been released but is still unfinished. This algorithm and variants thereof have
been the subject of extensive analyses [6, 7, 9, 23], not only for unit-size but also
for arbitrary size jobs. Moreover, unweighted and weighted flow times have been
considered.

The currently best result is due to Bansal et al. [7]. They modify the above
algorithm slightly by using a speed of α

√
� + 1 whenever � jobs are active. Inspired

by a paper of Lam et al. [23] they apply the Shortest Remaining Processing Time
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(SRPT) policy to the available jobs. More precisely, among the active jobs, the
one with the least remaining work is scheduled.

Algorithm Job Count: At any time if there are � ≥ 1 active jobs, use speed
α
√

� + 1. If no job is available, use speed 0. Always schedule the job with the least
remaining unfinished work.

Theorem 12. [7] Algorithm Job Count is 3-competitive for arbitrary size jobs.

Further work considering the weighted flow time in objective function g can be
found in [7, 9]. Moreover, [6, 23] propose algorithms for the setting that there is
an upper bound on the maximum processor speed.

All the above results assume that when a job arrives, its processing volume is
known. Papers [14, 23] investigate the harder case that this information is not
available.

3.3 Extensions and Other Objectives

Parallel processors: The results presented so far address single-processor architec-
tures. However, energy consumption is also a major concern in multi-processor en-
vironments. Currently, relatively few results are known. Albers et al. [3] investigate
deadline-based scheduling on m identical parallel processors. The goal is to mini-
mize the total energy on all the machines. The authors first settle the complexity
of the offline problem by showing that computing optimal schedules is NP-hard,
even for unit-size jobs. Hence, unless P = NP , optimal solutions can not be com-
puted efficiently. Albers et al. [3] then develop polynomial time offline algorithms
that achieve constant factor approximations, i.e. for any input the consumed en-
ergy is within a constant factor of the true optimum. They also devise online algo-
rithms attaining constant competitive ratios. Lam et al. [21] study deadline-based
scheduling on two speed-bounded processors. They present a strategy that is con-
stant competitive in terms of throughput maximization and energy minimization.

Bunde [12] investigates flow time minimization in multi-processor environ-
ments, given a fixed energy volume. He presents hardness results as well as ap-
proximation guarantees for unit-size jobs. Lam et al. [22] consider the objective
function of minimizing energy plus flow times. They design online algorithms
achieving constant competitive ratios.

Makespan minimization: Another basic objective function in scheduling is
makespan minimization, i.e. the minimization of the point in time when the
entire schedule ends. Bunde [12] assumes that jobs arrive over time and develops
algorithms for single and multi-processor environments. Pruhs et al. [28] con-
sider tasks having precedence constraints defined between them. They devise
algorithms for parallel processors given a fixed energy volume.

4 Conlusions

This article has surveyed algorithmic approaches to save energy. Another sur-
vey on algorithmic problems in power management was written by Irani and
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Pruhs [18]. The past months have witnessed considerable research activity and
it is conceivable that energy conservation from an algorithmic point of view
will continue to be an active area of investigation. Many open problems remain.
With respect to power-down mechanisms, for instance, it would be interesting
to design strategies that take into account the latency that arises when a sys-
tem is transitioned from a sleep state to the active state. As for speed scaling
techniques, we need a better understanding of strategies for multi-processor en-
vironments as multi-core architectures become more and more common not only
in servers but also in desktops and laptops.
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Minimizing Average Flow-Time

Naveen Garg

Indian Institute of Technology Delhi

Abstract. This article looks at the problem of scheduling jobs on multi-
ple machines both in the online and offline settings. It attempts to identify
the key ideas in recent work on this problem for different machine models.

1 Introduction

The task of scheduling jobs on multiple machines so as to optimize performance,
has long been studied in the Optimization and Computer Science communi-
ties for it provides a rich collection of interesting problems which have led to
the development of interesting algorithmic tools and techniques. One important
measure of the quality of a schedule, which is particularly relevant in the online
setting is the average flow time of the schedule. The flow time of a job is the
total time it remains in the system, which is the same as the difference in its
completion and release times. The average flow time of a schedule is just the
average of the flow times of the jobs. By minimizing the average flow time one
is minimizing the average time a job spends in the system. This can also be
viewed as minimizing the L1-norm of the flow times of the jobs. When fairness
is an issue, one could consider minimizing the Lp-norm, p ≥ 1 of the flow times.
An alternative would be to minimize the maximum stretch of a job where the
stretch of a job is the ratio of its flow time to its processing time. In this article
we will only be concerned with minimizing the average flow time.

In scheduling when we talk of multiple machines, we have multiple options.
If the machines are identical and a job can go on any machine then we have
the setting of Parallel Scheduling. Suppose the machines have differing speeds so
that a machine i with twice the speed as machine i′ can finish the same job in
half the time as required by i′. We refer to this setting as Related Scheduling.
The most general setting is that of Unrelated Scheduling where for each job j
and machine i we are given the time required by machine i to process job j, say
pij and these times could be completely arbitrary and unrelated to each other.
A setting which is intermediate in complexity between Unrelated Scheduling and
Related Scheduling is that of Parallel Scheduling with Subset Constraints; here a
job j can be processed only on a specified subset of machines, say Sj , and its
processing time is identical on all machines in Sj .

The problem of minimizing average flow time can be considered both in the
online and offline scenarios. In the offline case, we have complete knowledge of
the processing time and release time of every job. In the online scenario, the
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processing time of a job is known only on its release; this is also referred to as
the clairvoyant setting. A more challenging scenario in the online case is the
non-clairvoyant setting where we get to know the processing time of a job only
when it completes.

For some of the above problems we will be able to develop algorithms which
have the property of immediate dispatch. This implies that the scheduling algo-
rithm can decide which machine to schedule a job j on, the moment j is released.
Note that this decision — which machine to schedule a job on — is the crux of
the problem. This is because, once we know what jobs are to be scheduled on
a particular machine we can determine the optimum schedule for this machine
using the shortest remaining processing time (SRPT) rule. On the other hand,
for some other problems we will be able to develop competitive algorithms only
when we permit resource augmentation. This means that our algorithm has more
resources, in particular, it has machines with higher speeds, than the optimum
algorithm.

One key technique we employ in our algorithms is that of Linear Programming.
We use a time indexed formulation for the flow time problem and then suitably
round the fractional program obtained.

2 Previous Work

The special case of this problem when all machines are identical has received
considerable attention [1, 2, 14]. There has been recent progress on the problem
where machines can have different speeds [11, 10], or when a job can go only on
a subset of machines [12].

For the problem of minimizing total flow time in the offline setting, we know
matching lower and upper bounds on the approximation ratio for all machine
models [13] except for the setting of unrelated machines. Here while a lower
bound of Ω(log P ) is known there is no upper bound known for this problem.
For the subset setting in [12] we develop an algorithm that maps the problem
to computing an unsplittable flow in a suitably defined graph.

When each machine is provided a small additional speed (say ε) then we [6]
show that one can get a O(1 + 1/ε)2 competitive algorithm for minimizing
weighted flow time even on unrelated machines. This result relies on an interest-
ing potential function. For the non-clairvoyant setting it is known that without
speed augmentation we cannot get a bounded competitive ratio even for single
machines [15]. With speed augmentation, competitive algorithms are known only
for single and parallel machines.

A set of flow time problems where there is a large gap in our understanding
is the setting of weighted flow time. For single machines, the problem is NP-
hard and a 1 + ε approximation is achievable in quasi-polynomial time [7]. For
single machines, in the online setting, an O(min(log W, log2 P )) upper bound [5]
and an Ω(

√
min(log W, log log P )) lower bound [3] on the competitive ratio is

known. No results are known for minimizing weighted flow time on multiple
machines in the offline setting, besides the quasi-polynomial-result which also
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extends to a constant number of machines. In the online setting a lower bound
of Ω(min(W 1/2, P 1/2, (n/m)1/4)) is known [8] on the competitive ratio of any
online algorithm for minimizing weighted flow time on 2 or more machines.

3 An LP Formulation for Flow Time

We first develop the LP for the Parallel Scheduling problem. There are m machines
and n jobs. Job j has size pj and is released at time rj . For the purposes of this
formulation we will assume that pj and rj are integers.

Our formulation will allow migratory schedules (where a job can migrate from
one machine to another) as feasible solutions. In fact, it turns out to be conve-
nient to even allow such schedules which process the same job simultaneously
over multiple machines. For each job j, machine i and time t, we have a variable
xi,j,t which denotes the fraction of the interval [t, t + 1] on machine i for which
job j is processed.

minimize
∑

j

∑
i

∑
t xi,j,t ·

(
t−rj

pj
+ 1

2

)
subject to

for all machines i and time t
∑

j xi,j,t ≤ 1
for all jobs j

∑
i

∑
t xi,j,t = pj

for all jobs j, machines i, and time t < rj xi,j,t = 0
for all jobs j, machines i, time t xi,j,t ∈ [0, 1]

The first constraint refers to the fact that a machine can process at most one
job at any point of time. The second constraint says that job j gets completed in
the schedule while the third constraint captures the simple fact that we cannot
process a job before its release date. It should be clear that any feasible solution
gives rise to a schedule where jobs can migrate across machines and may even
get processed simultaneously on different machines. The only non-trivial part of
the LP is the objective function.

Given a feasible solution x to the LP let fj(x) =
∑

i

∑
t xi,j,t ·

(
t−rj

pj
+ 1

2

)
denote the contribution of job j to the objective. We call this quantity the
fractional flow time of j. Let Fj(S) denote the (integral) flow time of job j in a
schedule S. Let xS be a feasible solution to the LP corresponding to the schedule
S. To justify the choice of the objective function we would like to argue that for
any schedule S and all jobs j, fj(xS) ≤ Fj(S). Let j be scheduled from time
a + rj to time a + rj + pj on machine i in schedule S. Note that the fractional
flow time of this job equals

pj

2
+ a +

pj−1∑
i=0

i

pj
≤ a + pj .

Since a + pj is the flow time of this job the fractional flow time is only smaller
than the actual flow time. If schedule S was such that the job j was not done
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contiguously on one machine but split into smaller pieces and done across many
machines, even then we would have this property. Therefore the sum of the
fractional flow times is at most the total flow time and so the optimum solution
to the LP is a lower bound on OPT.

Why have we chosen to define fractional flow time of a job j as above and not,
for instance, as f ′

j(x) =
∑

i

∑
t xi,j,t· t−rj

pj
? Consider the following simple example

which establishes a large gap between the fractional flow time as defined here
and the (integral) flow time. Job j is released at time 0 and has a processing time
of m. Clearly the minimum flow time is m. However, a fractional solution could
schedule 1 unit of j simultaneously on the m machines so that the fractional
flow time of j is now 1. Note that with the original definition of fractional flow
time j would have a fractional flow time of m/2 + 1.

This alternate definition of fractional flow time would work if we could ensure
that in our LP solution no job is simultaneously processed on multiple machines.
This for instance could be achieved by adding the constraint

∑
i xi,j,t ≤ 1 for

every job j and time t, to the LP. However, it turns out to be more convenient
to work with the earlier definition of fractional flow time and that is the one we
follow here.

Note that ∑
j

fj(x) =
∑

j

f ′
j(x) +

∑
i,j,t

xi,j,t/2. (1)

For the case of Parallel Scheduling, the last term equals
∑

j pj/2 and hence min-
imizing

∑
j fj(x) is the same as minimizing

∑
j f ′

j(x). Let

rx(t) =
∑

j:rj≤t

∑
i

∑
t′≥t

xi,j,t′

pj

denote the total unfinished fraction of jobs at time t in the solution x. It is easy to
see that

∑
j f ′

j(x) equals
∑

t rx(t) and this gives us a handle on minimizing total
fractional flow time. If we had only one machine the optimum solution to the LP
would, at time t, schedule that unfinished job with the smallest processing time;
we call this the shortest job first (SJF) rule. The same idea applies for multiple
parallel machines. At each time t, we would schedule the smallest unfinished
job, simultaneously on all the machines. If the smallest job has only αm, α < 1,
units of processing left, then this job will occupy a fraction α of the time slot on
each of the m machines. The SJF rule is followed to determine what job(s) to
schedule in the remainder of the time slot.

What happens when the machines are not identical. To address this we will
first have to modify our LP formulation. Related Scheduling is a special case of
Unrelated Scheduling where the processing time of job j on machine i, pij = pj/si

where si is the speed of machine i. Hence, we will write a formulation only
for the Unrelated Scheduling problem. Note that the fraction of the processing
requirement of job j which is done on machine i equals

∑
t xi,j,t/pij . For each

job j we replace the second constraint by∑
i

∑
t

xi,j,t

pij
= 1 (2)



Minimizing Average Flow-Time 191

The fractional flow time of a job j is now defined as

fj(x) =
∑

i

∑
t

xi,j,t ·
(

t − rj

pij
+

1
2

)
and the objective function equals

∑
j fj(x). As before, let

f ′
j(x) =

∑
i

∑
t

xi,j,t · t − rj

pij

and so equation 1 continues to hold.
The quantity

∑
i,j,t xi,j,t equals the total processing time of the schedule and

unlike the Parallel Scheduling case, this is not a constant for Related Scheduling.
For the Related Scheduling problem Let mx(t) =

∑
i

∑
j xi,j,t be the number of

machines used in an optimum solution x in the time slot [t, t + 1]. This quantity
need not be an integer and if it were, say 7.2, then in this time period solution x
would use the fastest 7 machines fully and the next fastest machine to an extent
of 0.2.

Note that
∑

t mx(t) equals the total processing time of the schedule. If we
knew mx(t) for all times t, then minimizing total fractional flow time would be
the same as minimizing

∑
j f ′

j(x). As is the Parallel Scheduling problem, the latter
would be minimized if we schedule, in the time slot [t, t + 1], the unfinished job
with the shortest processing time, simultaneously, on the mx(t) fastest machines.
Thus knowledge of mx(t) for all times t is sufficient to determine the optimal
solution x. We will see later that this observation would lead to a 2-competitive
online algorithm for minimizing total fractional flow time on related machines.

For the case of Unrelated Scheduling, and even the special case of Paral-
lel Scheduling with Subset Constraints, there is no simple way of minimizing∑

j f ′
j(x). We will later show an example that will help us better understand

the difficulty in doing this minimization. When we have faster machines than
the optimum algorithm — the setting of resource augmentation — we shall be
able to do this minimization.

4 Rounding the LP Solution

Let x be the optimum solution to the LP for the Parallel Scheduling problem.
Note that ∑

j

f ′
j(x) =

∑
i,j,t

t · xi,j,t

pj
−
∑

j

rj .

We first assume that all jobs have processing times of the from 2i, i ≥ 0. If
pj = 2k we say job j is of class k. Let xi,t(k) be the total fraction of slot [t, t+1]
on machine i occupied by jobs of class k in solution x. Note that

∑
k xi,t(k) ≤ 1.

For ease of presentation we will subdivide this slot on machine i into smaller
slots, one for each class. The jobs of the original slot are also partitioned into
these smaller slots so that all jobs of the same class are in the same smaller slot
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which is also labeled with that class. The volume of a smaller slot is just the
total fraction of the jobs it contains.

We now use this subdivision of slots to construct another solution to the LP,
y, with the property that every job is scheduled on only one machine. Further,
in y a job of class k is scheduled only in slots of class k. This second property
ensures that the fractional flow time of y is at most that of x.

The total volume of class k slots is the same on each machine. This implies
that in solution y, for every class k, we should have the same number of jobs on
each machine. This naturally suggests an algorithm which distributes jobs of each
class in a round robin manner on the machines. The solution y is then obtained
by considering jobs in increasing order of their release times and scheduling each
job on the machine assigned to it, in the earliest available slots of that class.

The above procedure might leave some slots empty as there might be no job
of that class which could be scheduled there. However, the total volume of class
k slots which remain empty on a machine cannot exceed 2k. This implies that
on each machine we might not be able to schedule at most one class k job in
the class k slots available to us. Further, suppose we had 7 jobs of class k and 5
machines. Then the total volume of class k slots on each machine is 1.4 · 2k. On
2 of these 5 machines the round robin algorithm would schedule 2 jobs of class
k and so for one of these jobs enough slots would not be available. So in all, up
to 2 jobs of class k might remain unscheduled on each machine.

Let Ri,k be the set of unscheduled jobs of class k on machine i and let R =
∪i,kRi,k. We let y denote the solution only for the jobs not in R. It is clear that
the fractional flow time of y is no more than the fractional flow time of x. We
first bound the (integral) flow time of jobs not in R in terms of the fractional
flow time of the solution y. To do this we schedule the jobs not in R on the
same machine as they are scheduled in solution y, but using the SJF rule. Since
we know that SJF is optimal for fractional flow time, this solution, say z, has
fractional flow time at most that of y. The schedule z has the nice property that
a job can be interrupted only by another job of lower class. This property implies
that the total flow time of jobs of class k is at most the total fractional flow time
of these jobs plus the total processing time of the schedule z which is at most
T =

∑
j pj. Hence the total flow time of jobs in z is at most the fractional flow

time of z plus KT , where K is the number of classes.
We now schedule the jobs of Ri,k on machine i in the first available empty

slots in z after their release. Hence each job of Ri,k can have a flow time of at
most the total processing time of jobs scheduled on i. Thus the total flow time of
all jobs in R is at most 2KT . Putting everything together, we get that the total
flow time of all jobs is at most the fractional flow time of x plus 3KT which is
at most OPT + 3KT .

How do we get around the assumption that job sizes are of the kind 2i. Note
that rounding job sizes so that they are of this form can increase the flow time by
an unbounded amount. We get around this difficulty by rounding down the job
sizes, to the nearest power of 2, in the objective function, but leaving them, as
is, in the constraints. Here, we make the assumption that the smallest processing
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time is at least 1, and this is no loss of generality. Note that the optimum solution
to this new LP is at most twice the optimum solution to the original LP. Further
since the constraints remain the same, the set of feasible solutions is identical in
the two LPs. A job whose processing time is between 2k and 2k+1 is considered
to be of class k for applying the above rounding procedure.

Our analysis would now differ at a few places. First note that the objective
function now equals ∑

i,j,t

t · xi,j,t

�pj� −
∑

j

rj
pj

�pj	
and since the second term is a constant, minimizing the objective is the same as
minimizing the first term. Since in the solution y we schedule class k jobs only
in class k slots, the value of the first term for solution y is no more than the
value of this term for solution x. The volume of class k slots that remain empty
on a machine in the solution y might now be 2k+1 so that up to 2 jobs might
remain unscheduled. This together with the additional job of class k that might
not get scheduled on machine i due to insufficient volume of class k slots implies
that the size of Ri,k might be as large as 3. Hence the total flow time of the jobs
in R is at most 3KT and this implies that the total flow time is no more than
2OPT + 4KT . If the largest processing time is P then the number of classes, K,
is at most log P . Further since the optimum flow time is at least as large as T ,
we get a (2 + 4 logP )-approximation.

5 Rounding the LP Solution for Related Machines

We renumber the machines so that s1 ≥ s2 ≥ · · · ≥ sm. Let x be an optimum
solution to the linear program. We will assume that the job sizes are powers of
2. Once again, note that∑

j

f ′
j(x) =

∑
i,j,t

t · xi,j,t

pj
−
∑

j

rj .

As in the case of Parallel Scheduling we will use the solution x to subdivide slots
and assign them a class. However, now we define the volume of a slot on machine
i as the amount of processing that can be done in this slot. Thus the volume of
a slot [t, t + 1] on machine i is si.

How should we now assign jobs to machines? We would once again like to have
the property that for each class, k, and machine, i, we have at most a constant
number of class k jobs that or not scheduled in the class k slots on machine i.
However, one additional property we have to ensure is that the total processing
time of our schedule is not much more than the total processing time of the
solution x. One possible assignment is the following: for any class k and integer
i, 1 ≤ i ≤ m, if the total volume of class k jobs on machines i through m is α2k

then the number of jobs assigned to these machines is �α�. This assignment has
the property that for any k, the number of class k jobs assigned to a machine
is at most one more than the number of class k jobs that can fit into the class
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k slots on that machine. Further, for any i the total processing time of class k
jobs assigned to machines i through m in this assignment is less than the total
processing time contributed by the class k slots on machines i through m in
the solution x. Hence the processing time of this assignment is less than the
processing time of solution x.

Motivated by this assignment, we consider the following online assignment of
jobs to machines. Initially each slot is unmarked. At any time, when we encounter
a class k slot on machine i we schedule an unfinished class k job already assigned
to this machine in this slot. If there is no such job then we check to see if the
total volume of unmarked slots of class k on machines i though m exceeds 2k. If
so we assign a class k job to this machine and schedule it in this slot. Unmarked
class k slots of total volume 2k on machines i through m are now marked. While
marking slots we always consider machines in increasing order of their index.

This procedure would first schedule a class k job on machine 1, then on ma-
chine 2 and so on. When the job, scheduled on machine i finishes, we would have
2k unmarked slots on machine i and so will schedule another job on it. Thus,
once a class k job is scheduled on machine i, no class k slot on this machine
would go idle. This implies that the total volume of empty class k slots is at
most m2k. The last job scheduled on each machine might not find enough slots
of the same class to finish; in this case we use the empty slots to complete the
job. However, we might still not have finished scheduling all the jobs as we would
still have some unmarked slots. Using the same procedure as before, we schedule
a class k job on machine i if the total volume of unmarked jobs on machines i to
m exceeds 2k. This step would ensure that all jobs finish and that each machine
would have at most 2 jobs of class k which would not be completely scheduled
in the class k slots.

In the above description we seem to require knowledge of when the schedule
finishes on each machine. We get around this by using the empty slots in solution
x to schedule jobs in solution y. Note that there might be empty slots in the
middle of the schedule. We schedule the lowest class job that can be scheduled
in an empty slot using the above procedure and only if no job can be scheduled
do we leave the slot empty. As we did for Parallel Scheduling, we use the solution
y only for deciding what job to assign to each machine. Once this is known we
just follow the SJF rule to schedule the jobs on the machines; let this be solution
z. Once again we have that the total flow time of all jobs in solution z is no more
than the fractional flow time of x plus 2KT where T is now the processing time
of schedule z which is the same as the processing time of y. In constructing y
we moved jobs from slower machines in solution x to faster machines and hence
the processing time of y is less than that of x. The second term of the objective
function of the LP equals half the processing time and hence T ≤ 2OPT . This
implies that the flow time of z is at most (1 + 4 log P )OPT . We can get around
the assumption that job sizes are powers of 2, by applying the same rounding
trick that we used for the Parallel Scheduling problem.

Given an optimal solution x to the linear program we have shown how to round
it in an online manner to get a schedule z with flow time at most O(log P ) times
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the optimum. To get an online algorithm for the Related Scheduling problem we
also need to show how to compute x in an online manner. Recall that the key
stumbling block in computing x is to determine mx(t) which is the number of
machines in use at time t.

We now discuss a recent result on minimizing flow time and energy and show
how it solves our problem of computing an optimal x online. We are given a
machine which can run on any speed s ≤ S. When the machine runs on speed
s it finishes s units of processing in 1 unit of time. Let P : [0..S] → �+ be the
power function, where P (s) is the amount of power consumed when the machine
runs on speed s. Jobs arrive online and we need to determine at each instant
what speed to run the machine on so as to minimize the sum of the fractional flow
time and the energy consumed. For a job j the fractional flow time is equal to
f ′

j(x), where x is the schedule constructed. Hence, once we have determined the
speed schedule, we should follow SJF to minimize the total fractional flow time.
Bansal et al. [4] give a 2-competitive online algorithm for minimizing fractional
flow time and energy for any convex, continuous, power function.

We would like to view mx(t)/2 as the power consumed at time t. If mx(t) is, say
3.2, then we view this as a single machine running at speed s1 +s2 +s3 +(0.2)s4
and consuming 1.6 units of power. Hence by minimizing fractional flow time plus
energy we would have obtained an optimal solution to the linear program. The
2-competitive algorithm online algorithm of Bansal et al. thus gives an online
algorithm for computing a solution x′ to the LP which has value at most twice the
optimum. This together with the online algorithm for rounding an LP solution
yields an O(log P )-competitive algorithm for minimizing flow time on unrelated
machines.

6 Rounding the LP Solution for Parallel Scheduling with
Subset Constraints

Let Sj denote the subset of machines on which job j can be scheduled and let
pj , rj be the processing time and release time of j. Let x be an optimal solution
to the LP. Note that the second term in the objective function is now equal to∑

j pj/2 and hence minimizing the total fractional flow time for this problem is
the same as minimizing

∑
j f ′

j(x).
However, it is not possible to minimize

∑
j f ′

j(x) in an online manner. Consider
the following example on three machines. All jobs have processing time 1 and
are of two kinds; jobs of type a can be scheduled on machines 1 and 2 while jobs
of type b can go to machines 2 and 3. At each time, t, 0 ≤ t ≤ T − 1, 2 jobs of
each type are released. Note that at each time instant only 3 units of processing
can be done and so at time T we would have T jobs left. Suppose at least T/2
of these are of type a. Then from time T to T + L, L >> T , we release 2 jobs of
type a at each time. Since at every instant in the interval [T..(T + L)] we have
at least T/2 unfinished jobs the quantity

∑
j f ′

j(x) for this schedule is at least
TL/2. The optimum schedule for this instance would finish all type a jobs by
time T and schedule the remaining type b jobs from time T to 2T . Hence the
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flow time of this schedule is O(T 2 + L) which implies that the competitive ratio
of every online algorithm is Ω(T ).

We will therefore develop an offline algorithm to round the LP solution x. We
again assume that all processing times of powers of 2. We construct a directed
graph G = (V, E) with a source vertex s, a vertex v(j) for job j and one vertex
v(i, j, k) for machine i, job j and class k. We number jobs by increasing release
times with the first job numbered 0. Vertex v(i, j, k) has exactly one incoming
edge from vertex v(i, j− 1, k), for j ≥ 0 and from vertex s for j = 0. Vertex v(j)
has edges from all vertices v(i, j, k) where job j is of class k and i ∈ Sj . We will
now construct a flow with s as the source and vertices v(j), 0 ≤ j < n as the
sink. The flow on the edge from v(i, j, k) to v(j) equals

∑
t xi,j,t/2k and is the

fraction of job j done on machine i. Thus the total flow into each sink vertex is
1. The flow on the edges not incident to the sink is given by conservation. Note
that the flow on the edge (v(i, j−1, k), v(i, j, k)), say f , equals the total fraction,
processed on machine i, of the class k jobs released at or after rj . This implies
that the volume of class k slots after time rj on machine i is at least f2k.

We now use the single source unsplittable flow algorithm of Dinitz et al. [9]
to compute a flow f ′ such that the 1 unit of flow that goes from s to v(j) flows
along a single path. [9] show that this can be done so that for all edges, e ∈ E,
f ′(e) ≤ f(e) + 1. The unsplittable flow f ′ naturally determines an assignment
of jobs to machines; if the flow reaching v(j) does so along the edge v(i, j, k)
then job j is assigned to machine i. Once we have the assignment of jobs to
machines, we can compute a schedule y by considering jobs in order of their
release times and scheduling a job of class k in the earliest available class k slots
on the machine it is assigned to.

Would some jobs remain unscheduled because there are no slots available for
them? If, for each class, k we add 2k class k slots on each machine then no job will
remain unassigned. This is because for any machine i, the number of class k jobs
which have release time greater than or equal to rj and which are assigned to i
is at most f + 1 where f is the original flow on the edge (v(i, j − 1, k), v(i, j, k)).
Further, the volume of class k slots on machine i after time rj in the solution
x is at least as large as f2k. By adding 2k jobs of class k at the end on each
machine we ensure that for each j the volume of class k slots available after time
rj is at least as large as the total volume of jobs assigned to this machine which
have release time at least rj . This implies that all class k jobs can be scheduled
in the available slots. Equivalently, if we did not add the extra slots, at most one
job of each class will remain unscheduled on each machine.

The rest of the development is the same as for the case of Parallel Scheduling.
Our final schedule z would have a flow time bounded by OPT + 2KT where
T =

∑
j pj ≤ OPT . This gives a (1 + 2 logP )-approximation for minimizing flow

time for the Parallel Scheduling with Subset Constraints problem.

7 Minimizing Flow Time on Unrelated Machines

The rounding algorithmwediscussed for Parallel Schedulingwith Subset Constraints
also applies to Unrelated Scheduling when all processing times pij are powers of 2;
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the only additional thing that needs to be taken care of is that the processing time
does not increase much. When the processing times are not powers of 2 then by
treating each distinct processing time as a class, we can still apply the algorithm
but now the approximation ratio is O(number of distinct processing times). The
technique of rounding down processing times to powers of 2, in the objective func-
tion and leaving them as such in the constraints does not apply in the setting of
unrelated machines. This is because we now have∑

j

f ′
j(x) =

∑
i,j,t

t · xi,j,t

�pij� −
∑

j

rj

∑
i

∑
t xi,j,t

�pij�

and the second term is no more a constant. If the second term were a constant,
for instance when pij = α�pij	 then we could ignore the second term and obtain
a schedule, y, in which each job is scheduled on only one machine by rearranging
jobs of a class in slots of the same class. When we did this the contribution of the
first term in solution y is no more than its contribution in solution x. However,
now y might be such that∑

j

rj

∑
i

∑
t yi,j,t

�pij� <
∑

j

rj

∑
i

∑
t xi,j,t

�pij�

and so we will not be able to argue any more that the fractional flow time of y
is less than that of x. In fact we do not know of any approximation algorithm
for Unrelated Scheduling.

8 Online Algorithm for Unrelated Machines with Speed
Augmentation

When the online algorithm is given ε more speed than the offline algorithm,
we can obtain a O((1 + ε−1)2)-competitive algorithm. Note that in the example
showing that no online algorithm can be competitive on unrelated machines, we
had argued that any online algorithm would accumulate T/2 jobs by time T
which the algorithm cannot get rid off for a long time L >> T and this led to
a flow time of Ω(LT ). However, if the machines of the online algorithm had ε
more speed then in roughly T ε−1 time units it would be able to get rid off all
these extra jobs accumulated.

Our online algorithm is actually very natural. When a job arrives it is assigned
to the machine where it would lead to the smallest increase inflow time. To
determine the increase in flow time on machine i due to the arrival of a job, we
maintain the set of jobs that are assigned to i but not finished yet. Since these
jobs will be scheduled on i using the SJF rule, the increase in flow time due to
the addition of an arriving job j to this set can be easily computed.

The analysis of this algorithm relies on a potential function which shows that
the fractional flow time of our solution is less than 1 + ε−1 times the fractional
flow time of a non-migratory optimum, when we allow the online algorithm an
additional speed ε. Here the fractional flow time of a job, j, is as defined by
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the function f ′
j(x). If we give our machines an additional ε speed then (integral)

flow time is no more than 1 + ε−1 times this fractional flow time. Putting these
together we get an O(1+ε−1)2-competitive algorithm for scheduling on unrelated
machines which have ε more speed than the machines of the offline algorithm.
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Abstract. Computational molecular biology (bioinformatics) is a young
research field that is rich in NP-hard optimization problems. The prob-
lem instances encountered are often huge and comprise thousands of
variables. Since their introduction into the field of bioinformatics in
1997, integer linear programming (ILP) techniques have been success-
fully applied to many optimization problems. These approaches have
added much momentum to development and progress in related areas.
In particular, ILP-based approaches have become a standard optimiza-
tion technique in bioinformatics. In this review, we present applications
of ILP-based techniques developed by members and former members of
Kurt Mehlhorn’s group. These techniques were introduced to bioinfor-
matics in a series of papers and popularized by demonstration of their
effectiveness and potential.

1 Introduction

Computational molecular biology (or bioinformatics) is a young research field
that develops computational approaches for scientific problems arising in the
life sciences. At the outset, the methodological focus was on the development
of efficient algorithms, data structures, and optimization techniques that were
able to deal with the data arising in life science applications. Due to the devel-
opment of high-throughput methods for biomedical data analysis and the rise
of systems biology, statistical learning approaches have gained in importance
during the last decade. However, statistical analyses and simulations of phys-
iological and pathological processes have raised a large number of novel hard
optimization problems. Since the true nature of most of the biological processes
being investigated is still obscure, they have often been modeled in the simplest
possible way as linear processes. Since the majority of these optimization prob-
lems are discrete ones, it is not surprising that integer linear programming (ILP)
� Corresponding Author.
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based approaches have gained in importance and that ILP-based approaches like
branch-and-cut (B&C) algorithms and Lagrangian relaxations (LR), etc., have
become standard optimization techniques in bioinformatics only 10 years after
having been applied in the field for the first time.

The first papers in bioinformatics that are indirectly linked to ILP-based
techniques presented complexity results and reductions of original bioinformat-
ics problems to standard combinatorial optimization problems. For example,
Alizadeh, Karp, Weisser, and Zweig [1] proved in 1994 that a particular phys-
ical mapping problem could be reformulated as a traveling salesman problem.
The first ILP formulations for bioinformatics problems together with novel B&C
approaches were published in 1997. Reinert, Lenhof, Mutzel, Mehlhorn, and
Kececioglu [2] proposed a B&C algorithm for the Maximum Weight Trace prob-
lem, a particular version of the multiple alignment problem. Christof, Jünger,
Kececioglu, Mutzel, and Reinelt [3] published a B&C approach for the physi-
cal mapping problem. The first application of ILP-based approaches to RNA
sequence-structure alignment was suggested by Lenhof, Reinert, and Vingron [4]
in 1998. In 2000, the first B&C approach was applied to a problem in structural
bioinformatics, the so-called side chain optimization problem. This approach is
due to Althaus, Kohlbacher, Lenhof, and Müller [5]. In 2004, Klau, Rahmann,
Schliep, Vingron, and Reinert [6] applied the first ILP-based approach to the
problem of designing microarrays. The first application in the area of systems
biology and biological networks was published by Dittrich, Klau, Rosenwald,
Dandekar, and Müller [7] in 2008. The above listing of central publications un-
derlines the fact that Kurt Mehlhorn’s group has made substantial contributions
in this area, leading to the popularization of these techniques in bioinformatics.
Actually, the first publication traces back to an idea of Kurt Mehlhorn who,
in 1996, proposed applying ILP-based techniques to the challenging optimiza-
tion problems his bioinformatics subgroup dealt with. In the meantime, these
techniques have been exploited in almost all areas of computational molecular
biology and a large number of papers have been published applying ILP-based
approaches to bioinformatics problems. As a consequence of this development,
first reviews and annotated bibliographies with ILP-based approaches and math-
ematical programming as the main focus have been published. For example, in
2008, Guiseppe Lancia [8] presented a very informative review of mathematical
programming in computational molecular biology that also gives a comprehen-
sive overview of ILP-based approaches in this field.

In this paper, we will focus on approaches that have been suggested and
published by members and former members of Kurt Mehlhorn’s group. We will
summarize the contributions in a form similar to an annotated bibliography
without going into technical details and briefly sketch further research stimu-
lated by the original papers. The application areas range from sequence analysis
(Section 2), structural bioinformatics (Section 3), and probe design for microar-
ray experiments (Section 4) to computational systems biology (Section 5) and
vaccine design (Section 6). Finally, we will give a short summary and outlook in
Section 7.
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2 Sequence Analysis

2.1 Multiple Sequence Alignment

DNA encodes the blueprints of all living organisms and carry the instructions
for building proteins and non-coding RNA molecules. Like DNA, proteins and
RNA are linear polymers composed of basic building blocks (amino acids, nu-
cleotides). Hence, they can be represented by sequences of letters, where each
letter represents one building block. While DNA sequences contain the instruc-
tions for building proteins and RNA molecules, the amino acid sequences of
proteins define their 3D structures and, thereby, their functionality. Thus, it is
not surprising that the comparison of sequences plays a crucial role in the life
sciences and that the development of algorithms and methods for studying and
analyzing molecular sequences has been one of the major goals at the rising of
computational molecular biology. These so-called sequence alignment methods
aim at exhibiting the commonalities and differences of a given set of sequences
by calculating a kind of two-dimensional matrix where each row represents a
sequence and the columns exhibit their common patterns and also their differ-
ences. To array the letters in a suitable way, a single operation, the insertion of
so-called gaps, usually represented by the ‘-’ symbol is allowed. The insertion of
a gap at a certain position in a sequence shifts all letters of the corresponding
suffix of the sequence to the right, i.e., it increases the column numbers of the
suffix letters by the number of inserted ‘-’s. Table 1 depicts a multiple sequence
alignment and a typical three-dimensional structure (here, myoglobin) is shown
in Fig. 1.

To assess the quality of alignments, a large number of scoring functions has
been suggested that, in turn, lead to the definition of optimization problems of

Fig. 1. A 3D model showing the helical domains of myoglobin
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Table 1. Multiple sequence alignment of six globin sequences: Human hemoglobin
subunit alpha (UniProt accession: P69905), human hemoglobin subunit beta (P68871),
horse hemoglobin subunit alpha (P01958), horse hemoglobin subunit beta (P02062),
sperm whale myoglobin (P02185) and European yellow lupin leghemoglobin-2 (P02240)

HBA_HUMAN -MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLSH
HBB_HUMAN MVHLTPEEKSAVTALWGKV––NVDEVGGEALGRLLVVYPWTQRFFESFGDLST
HBA_HORSE -MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLSH
HBB_HORSE -VQLSGEEKAAVLALWDKV––NEEEVGGEALGRLLVVYPWTQRFFDSFGDLSN
MYG_PHYCA -MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT
LGB2_LUPLU MGALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE

HBA_HUMAN ––––-GSAQVKGHGKKVADALTNAVAHVDD––-M––PNALSALSDLHAHKLRVD
HBB_HUMAN PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN––-L––KGTFATLSELHCDKLHVD
HBA_HORSE ––––-GSAQVKAHGKKVGDALTLAVGHLDD––-L––PGALSNLSDLHAHKLRVD
HBB_HORSE PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN––-L––KGTFAALSELHCDKLHVD
MYG_PHYCA EAEMKASEDLKKHGVTVLTALGAILKKKGH––-H––EAELKPLAQSHATKHKIP
LGB2_LUPLU VPQ––NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSK-GVA

HBA_HUMAN PVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR––––––
HBB_HUMAN PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH––––––
HBA_HORSE PVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR–––––-
HBB_HORSE PENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH–––––-
MYG_PHYCA IKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
LGB2_LUPLU DAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA––-

the following form: Given a set of sequences and a scoring function, calculate an
alignment of the sequences that is optimal with respect to the scoring function.
Besides heuristics, dynamic programming approaches have been developed to
solve these problems. Unfortunately, the runtime and the storage requirements
of these dynamic programming approaches grow exponentially with the number
of sequences and the corresponding optimization problems are NP-hard. There-
fore, calculating the optimal multiple alignment of more than 10 sequences was,
and still is, a real challenge, but in many applications users would like to compare
dozens of sequences. A variant of the multiple sequence alignment (MSA) prob-
lem is the Maximum Weight Trace problem (MWT), which has been introduced
by John Kececioglu [9]. In 1997, Reinert et al. [2] proposed an ILP formulation
for the MWT problem and presented the first B&C approach. They derived sev-
eral classes of facet-defining inequalities and proved that for all but one class the
corresponding separation problem can be solved in polynomial time. Moreover,
first experimental results indicated that the B&C approach is able to solve prob-
lem instances that cannot be solved with state-of-the-art dynamic programming
approaches. Lenhof et al. [10] extended this B&C approach to a segment-based
multiple alignment algorithm.

In 2002, Althaus et al. [11] proposed a more general ILP formulation for
multiple alignment with arbitrary gap costs and presented a B&C approach
to solve the resulting ILPs. The new B&C approach was the first algorithm
that could deal with truly affine gap costs. The quality of the approach has
been evaluated using the BAliBase database. The evaluation showed that the
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approach produces high-quality alignments comparable or even superior to the
best programs developed so far.

In 2006, Althaus et al. [12] published a paper where they discuss the most
important facet-defining inequalities of the solution polyhedron of their ILP
approach. They proved that the three (exponentially large) classes of natural
valid inequalities considered in the B&C approach are both facet-defining for the
convex hull of integer solutions and separable in polynomial time. Experimen-
tal results for several benchmark instances again demonstrated that this B&C
approach outperforms other leading tools.

Given this ILP formulation, Althaus and Canzar [13, 14] propose a Lagrangian
relaxation approach by dualizing all inequalities involving more than two se-
quences into the objective function. The resulting Lagrangian subproblem is a
pairwise sequence alignment problem with some additional cost terms stemming
from the multipliers of the dualized constraints. It can be solved by an extension
of the known dynamic programming approach.

Fischetti et al. [15] studied the minimum routing cost tree (MRCT) prob-
lem. They studied IP models for this problem and compared several algorithms.
Furthermore, they applied the proposed techniques to the sum-of-pairs (SP)
multiple sequence alignment problem. Here, they considered and modified the
alignment technique proposed by Dan Gusfield [16]. The alignment algorithm is
an approximation technique that has a performance ratio of 2 − (2/n), i.e., it
guarantees that the calculated alignment has a score smaller than or equal to
2 − (2/n) times the optimal score.

The question of which scoring function is best for which alignment, or which
scoring function is suitable for a specific alignment problem or a given family
of sequences are key challenges in this area. To solve this problem, it is useful
to look at the so-called inverse multiple alignment problem, in which a set of
high-quality alignments manually curated by experts is given and the goal is
to identify the best scoring function that favors these alignments, or at least
similar ones. Kececioglu and Kim [17] formulated the inverse multiple alignment
problem as a linear program and proposed cutting plane techniques to solve the
corresponding LP.

2.2 Sequence-Structure Alignments (RNA)

RNA is another important biomolecule. Until very recently, the central dogma
of molecular biology was that DNA is transcribed into its working copy RNA,
and RNA in turn is translated into proteins, the actual functional units in the
cell. In the last few years, however, it became evident that RNA itself is able
to trigger or inhibit important functions in the cell [18], tremendously increas-
ing the interest in the study of RNA molecules. From an algorithmic point of
view, the sequence alignment algorithms for DNA still apply to RNA sequences,
the only difference being that the four-letter alphabet contains a U instead of
the T . It has been shown, however, that the sequence alone does not carry all
information necessary to compute reliable alignments. An RNA sequence folds
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Fig. 2. Two ways to depict an RNA sequence and corresponding secondary structure.
Left: the bracket notation in which pairing brackets indicate base pairs. Right: an
alternative way to represent the structure using a graph.

back onto itself and can form hydrogen bonds between pairs of G-C, A-U, and
G-U pairs. These bonds lead to the distinctive secondary structures of an RNA
sequence. Figures 2 and 3 show common representations of small toy examples
of RNA sequences together with their secondary structure. In the course of evo-
lution, RNA sequences mutate at a much higher rate than the structure that
they are forming, following the structure-function paradigm. RNA molecules
with different sequences but the same or similar secondary structure are likely
to belong to the same functional family, in which the secondary structure is
conserved by selective pressure. This means that the computation of reliable
alignments should take structural information into account. Figure 4 shows an
example of two possible alignments of two RNA sequences and structures, where
the first maximizes the structural similarity and the second maximizes the se-
quence similarity. Figure 4 also contains a so-called pseudoknot depicted by the
red line crossing the other lines in the secondary structure. Pseudoknots do occur
naturally in some classes of RNA families. Their presence or absence in the cor-
responding computational models plays an important role in the computational
complexity of the corresponding optimization problems. Allowing pseudoknots
makes the problems computationally hard [19]. Hence, most approaches assume
a pseudoknot-free, nested structure as their input. A nested structure can be
drawn as an outer-planar graph in its circular representation (see Fig. 3 on the
right side for an illustration): Nested structures allow a straightforward decom-
position of the entire structure into smaller substructures leading to polynomial
time algorithms based on the principle of dynamic programming. In addition, it
is well known that the multiple alignment problem is NP-hard [20] even with-
out considering secondary structure. Considering the above introductory discus-
sion, the aim is to solve the sequence-structure alignment problem: Given two or
more RNA sequences, we want to find an optimal multiple sequence-structure
alignment.

Lenhof et al. [4] gave a graph-based model that they used to define an integer
linear program, which they then solved using the branch-and-cut principle. They
align RNA sequences with known structure to those of unknown structure by
maximizing the sequence and structure score. Their approach allows handling
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Fig. 3. Graph-based representations of RNA structures. The left side shows the stan-
dard graph representation, whereas on the right side a circular graph representation is
given. Adding the dotted red edge yields a pseudoknot, i.e., crossing base pairs, in the
secondary structure.

pseudoknots and is able to tackle problem instances with a sequence length of ap-
proximately 1400 bases. However, for many problem instances of that size, their
algorithm already requires a prohibitively large amount of resources. Lancia et
al. developed a branch-and-cut algorithm [21] that is similar to [4] for the related
problem of aligning contact maps. In subsequent work [22], Lancia and Caprara
introduced Lagrangian relaxation to the field of computational biology: Their
formulation is based on previous work in the field of quadratic programming
problems like the Quadratic Knapsack Problem [23] or the Quadratic Assign-
ment Problem [24]. In [25] Bauer and Klau adapted the Lagrangian relaxation
formulation to the problem of aligning two RNA structures: Their implementa-
tion yields an algorithm that is an order of magnitude faster than the algorithm
from [4] for solving the same instances with respect to the same objective func-
tion. Along these lines, Bauer, Klau, and Reinert [26] described an initial integer
linear programming formulation for solving multiple RNA structures simulta-
neously. Althaus et al. (see Section 2.1) presented a formulation for aligning
multiple sequences with arbitrary gap costs which also contains extensive poly-
hedral studies about facet-defining inequalities. Finally, Bauer et al. presented
in [27] a graph-based model that unified the formulations given in [26] and the
work [12] on pure sequence alignment described in the previous section for the

GCGGAUAACCCCU
GGAUACCAUCG

-GCGGAUAACCCCU
GG-AUA-CCA-UCG

GCGGAUAACCC-CU
--GGAUA-CCAUCG

(a) (b) (c)

Fig. 4. a) Two RNA sequences with their corresponding secondary structure, b) the
alignment that maximizes sequence and structure score (in gray), and c) the alignment
maximizing sequence score alone (in light gray)
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simultaneous alignment of multiple RNA structures. They concentrated on a
sound mathematical description of the approach and provided a first formula-
tion for multiple structural RNA alignments including arbitrary gap costs in the
graph-based framework. In a companion paper [28], they focused on the heuristic
application by combining the efficiently computable pairwise alignment method
with a standard consistency-based multiple alignment method [29]. This results
in a state-of-the-art tool since the comparison with other methods proved once
more that the application of ILP-based optimization techniques can result in
very efficient tools.

3 Structural Bioinformatics

Structural bioinformatics, an area rich in optimization problems, is primarily
concerned with problems related to protein structure, for example, the prediction
of protein structures from their sequence, the prediction of interactions between
proteins (docking), or the design of new protein structures. These problems can
be formulated as optimization problems, however, the objective functions are of-
ten complex. Typically, they involve the optimization of an energy function based
on physical interactions in high-dimensional spaces spanned by the coordinates
of the protein atoms.

Proteins are linear polymers composed of 20 basic building blocks called amino
acids. These 20 amino acids share a common chemical structure (the backbone),
however, they differ in the so-called side chains, functional groups defining an
amino acids physical and functional properties. While proteins can be described
as a sequence of amino acids on the most coarse level, they have rich three-
dimensional structure, which is responsible for a protein’s function. Each pro-
tein folds into its characteristic three-dimensional or tertiary structure, which is
determined by the amino acid sequence. The prediction of the 3D structure from
the primary structure is a very difficult task. It has been one of the key problems
in bioinformatics for the last decades: Given the primary structure of a protein,
determine its three-dimensional structure. If structural information of a related
protein with known 3D structure is used, the problem is denoted as threading.
The structure prediction problem can be split into two subproblems. Hereby,
the prediction of the protein’s fold – the structure of the backbone without its
side-chains – is the first problem. Consequently, the optimization or positioning
of its side-chains given a rigid backbone conformation is the remaining second
subproblem called side-chain positioning (see Figure 5).

3.1 Side-Chain Positioning

A well-studied and frequently occurring subproblem is the optimal placement of
the side chains of the amino acids forming a protein. This task can be formulated
as a discrete optimization problem by using a rotamer library that represents
the conformational space of each side chain by a discrete set of conformations
(rotamers). The respective combinatorial optimization problem is denoted as
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Fig. 5. The synthesis of proteins entails the translation of mRNA into a linear sequence
of amino acids. These amino acid chains fold into a three-dimensional structure. Most
structure prediction approaches first try to determine the fold of the backbone. The
more detailed amino acid side-chain positions can then be predicted by an additional
step, the side-chain placement or positioning. If these two problems are solved cor-
rectly, the resulting 3D structure will be close to the experimentally observed protein
structure.

the global minimum energy conformation (GMEC) problem, because we have to
identify the set of rotamers that build the conformation with minimal energy. To
solve this problem, many different algorithms have been proposed, among them
different ILP approaches. The first ILP formulation and B&C approach is due
to Althaus et al. [5, 30]. They applied the side chain optimization problem to
protein-protein docking. A quite similar ILP formulation was derived by Eriksson
et al. [31].



208 E. Althaus et al.

Chazelle et al. [32] first suggested using semidefinite programming for the
GMEC problem. In 2005, they presented an ILP formulation and showed that
it allows them to tackle large problem instances [33]. Furthermore, they relaxed
the integrality constraint and proposed a polynomial-time linear programming
heuristic for the side chain positioning problem.

3.2 Folding and Threading

Integer programming approaches have also been successfully applied to the pro-
tein threading problem. For example, the RAPTOR program [34, 35, 36] relying
on an ILP formulation that was then relaxed to an LP problem and solved
via branch-and-bound was ranked the number one individual prediction server
at the fully-automated fold prediction contest, CAFASP3. A parallelization of
this approach has been published by Andonov et al. [37]. Finally, a Lagrangian
relaxation approach for threading has also been suggested [38].

3.3 Hydrogen-Deuterium Exchange via Mass Spectrometry

The information which residues of a protein belong to its surface and have access
to the solvent and which of its residues are hidden in the protein’s core can be

Fig. 6. A schematic view of the HDX experiment. The protein is diluted in a D2O
buffer. At different time points, it is then digested and analyzed with a mass spectrom-
eter. After a separation of the different digested fragments, we obtain their average
mass uptakes at the time points. All steps in the HDX experiment are automated and
performed by a CTC PAL robot: sample dilution, mixing, quench/digestion, timing
and HPLC injection.
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used, e.g., to evaluate predicted 3D models and to eliminate false positive predic-
tions. Solution-phase hydrogen/deuterium exchange (HDX) with high-resolution
mass analysis permits identification of the solvent access and contact surfaces in
a protein/protein complex. Measuring HDX via mass spectrometry exhibits the
deuterium uptake of the peptic fragments that are obtained by digestion (see
Figure 6 for an illustration of the experiment). The evaluation of this data is
done by first analyzing the individual fragments with state-of-the-art methods
which reveal cumulative exchange rates of the fragments. From these, it is pos-
sible to infer exchange rates of single amino acids or small parts of the protein.
These inferences are mainly done by manual inspection, which requires a large
amount of time and is vulnerable to errors [39].

To explain the experiment, we simplify the biochemistry. Given a protein
consisting of n amino-acids, where each amino-acid has its exchange rate ki.
Dilution of the protein in D2O will cause that a specific hydrogen of the amino
acid will exchange to a deuterium, resulting in an increase of the mass by one
neutron mass. The expectation that the hydrogen is exchanged at time t is
1 − ekit. Using mass-spectrometry, we are able to measure the average mass
uptake of peptic fragments (parts of the protein) at different time points. Given
exchange rates k1, . . . , kn, the expected uptake of a peptic fragment from amino-
acid i to j after time t is

∑j
l=i(1 − eklt). Our problem is to find exchange rates

k1, . . . , kn so that the expected and the measured mass uptakes are as similar as
possible. This is a non-linear curve-fitting problem.

Althaus et al. [40] provided the first automatic methods to solve this problem,
i.e., they proposed an algorithm to obtain exchange rates below the level of
digested fragments. They applied two different approaches to solve this problem.
In [40] they used known methods to analyze single digested fragments. Given
a fragment from i to j and the mass uptake of this fragment over time, these
methods return i−j+1 exchange rates, which are most likely the exchange rates

No. Amine Acid Sequence Rates
G L S D G E W Q Q V L N V W G K V E A D I A G H G A E V L s m f

1 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 15 8 5
2 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 7 2 1
3 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 5 2 1
4 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 12 1 4
5 ←−−−−−−−−−−−−−−−−−−−−−−−−−−→ 5 1 1
6 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 11 1 3
7 ←−−−−−−−−−−−−−−−−−−−−−−→ 4 1 1
8 ←−−−−−−−−−−−−−−−−→ 3 1 0
9 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 7 1 0

Fig. 7. We show the cumulative exchange rates of several overlapping fragments parti-
tioned into three classes (slow, medium, fast). We want to automatically draw conclu-
sions on the exchange rates of single amino acids, like that the second D has to have
medium exchange rate concluded from the fragments 3 and 5.
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within the fragment. This cumulative exchange rate information is computed for
all fragments. The calculated exchange rates are partitioned into three classes.
Then, we compute the assignment of exchange rates to amino acids such that
the number of errors is minimized (see Figure 7).

In [41] Althaus et al. extended this approach by computing exchange rates
directly from the deuterium uptake. Given a model for the exchange process (like
the (1 − ekt) from the simplified explanation of the experiment) and deuterium
uptake for the fragments over time, the problem of finding the exchange rates
for the amino acids can be formulated as a non-linear curve fitting problem. As
the number of parameters of this curve fitting problem is very high, standard
tools to estimate parameters are not applicable. By discretizing the exchange
rates to a set of candidates, Althaus et al. were able to formulate an integer
linear program whose solution provides the optimal solution to the curve fitting
problem with respect to the discretization and which is nevertheless solvable in
reasonable time.

4 Probe Design for Microarray Experiments

Microarray technology has become a widely used analytical technique in the
life sciences, providing a cost-efficient way to determine levels of specified RNA
or DNA molecules in a biological sample. Typically, one measures the amount
of gene expression in a cell by observing hybridization of mRNA to different
probes on a microarray, each probe targeting a specific gene. A distinct and
likewise important application, arising, for example, in medicine, environmental
sciences, industrial quality control, or biothreat reduction, is the identification of
biological agents in a sample. This wide range of applications leads to the same
methodological problem: To determine the presence or absence of targets—such
as viruses or bacteria—in a biological sample.

Given a collection of genetic sequences of targets, one faces the challenge of
finding short oligonucleotides, the probes, which allow the detection of targets
in a sample by hybridization experiments. The experiments are conducted using
either unique or non-unique probes, and the problem at hand is to compute
a minimal design, i.e., to select a minimal set of probes from a larger set of
probe candidates that enables us to infer the targets in the sample from the
hybridization results. When testing for more than one target in the sample, a
relevant problem in practice, the design of an optimal probe set becomes NP-
hard for the case of non-unique probes.

The example in Table 2 illustrates the problem: It consists of four targets
t1, . . . , t4 and nine candidate probes p1, . . . , p9. Hybridization between targets
and probes is characterized by an incidence matrix. Assume first that we know
that the sample contains at most one target. The goal is to select a minimal set of
probes that allows us to infer the presence of a single target. In this example, it is
sufficient to use probes p1, p2, and p3 for detecting the presence of a single target
(e.g., for target t2 probes p1 and p3 hybridize, while p2 does not). Minimizing
the number of probes is a reasonable objective function, since it is proportional
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Table 2. A small example of a target-probe incidence matrix

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1 1 1 1 0 1 1 0 0 0
t2 1 0 1 1 0 0 1 1 0
t3 0 1 1 1 0 1 1 0 1
t4 0 1 0 0 1 0 1 1 1

to the cost of the experiment. In the example, {p1, p2, p3} is an optimal choice.
The smaller choice {p4, p8}, however, does not allow distinguishing between the
empty target set and the set {t1}.

Now assume that target t2 and target t3 are simultaneously present in the sam-
ple, but none of the remaining targets are. In this case all three probes p1, p2,
and p3 hybridize. This case cannot be distinguished from the case where only t1 is
present. As a remedy, we could take all the probes p1, . . . , p9. This is, however, not
necessary. With p1, p4, p5, and p9, all target sets of cardinality ≤ 2 can be distin-
guished, with the exception of {t1, t3} vs. {t2, t4}. Adding probe p8 to the design
allows making this last distinction as well. It is clear that taking all probes results
in the best possible separation between all subsets. However, we can often achieve
the same quality with a substantially smaller number of probes.

In addition to the difficulty illustrated above, the problem is aggravated by the
presence of errors. Usually, the false positive error rate f1, i.e., the rate at which
the experiment reports a hybridization when there is none, and the false negative
rate f0, i.e., the rate at which the experiment fails to report a hybridization, are
up to 5%. As a remedy, it is customary to build some redundancy into the design;
e.g., demanding that two targets be separated by more than one probe and that
each target hybridize to more than one probe.

In [42], Klau, Rahmann, Schliep, Vingron, and Reinert have presented the
first approach for selecting a minimal probe set respecting the redundancy prop-
erties for the case of non-unique probes in the presence of a small number of
multiple targets in the sample. Their approach is based on an ILP formulation
and a branch-and-cut algorithm. Experimental results on real and artificial data
show that the exact ILP approach significantly reduces the number of probes
needed as compared to traditional greedy method, while preserving the decoding
capabilities of existing approaches. In [43], the authors have extended their work
and have presented an additional, more elegant ILP formulation.

5 Computational Systems Biology

In systems biology, biological processes are often modeled as networks. Hence,
the construction and analysis of large biological networks, such as protein-protein
interaction (PPI), metabolic, gene-regulatory, and signal transduction networks,
have become major research topics. The increasing quantity of available data
creates the need for automated analysis methods to better understand cellular
processes, network organization, evolutionary changes, and disease mechanisms.
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Well-established microarray technologies provide a wealth of information on gene
expression in various tissues and under diverse experimental conditions. Inte-
grating, e.g., protein-protein interaction and gene expression data generates a
meaningful biological context in terms of functional association for differentially
expressed genes.

5.1 Network-Based Disease Bioinformatics

Frequently, large scale medical expression profiling studies investigate many ex-
perimental conditions simultaneously, thereby generating multiple measures of
significance, typically expressed in the form of p-values. Especially in tumor
biology, expression profiling has become a widely-used technique for the clas-
sification of different tumors and tumor subtypes. Furthermore, in the clinical
context, various patient-associated data is available that—in conjunction with
expression data—provides valuable information on the influence of specific genes
on disease-specific pathophysiology. In particular, the analysis of survival data
allows establishing gene expression signatures to make predictions about the
prognosis and to assess the disease relevance of certain genes. The cellular func-
tion of an individual gene cannot be understood on the level of isolated compo-
nents alone, but needs to be studied in the context of its interplay with other
gene products. The combined analysis of expression profiles and protein-protein
interaction data thus allows the detection of previously unknown disregulated
modules in interaction networks not recognizable by the analysis of pathways
defined a priori.

To identify interaction modules in this setting it is necessary to devise firstly
an adequate scoring function on networks and secondly an algorithm to find
maximally-scoring subnetworks. This problem, as stated by Ideker et al. [44], has
been proven to be NP-hard. Traditionally, it has been approached via heuristics.
Some of these often computationally demanding algorithms tend to deliver large
high-scoring networks, which may be difficult to interpret.

Dittrich, Klau, Rosenwald, Dandekar, and Müller [7] have presented a novel,
ILP-based approach for this problem, which uses its relation to the well-studied
prize-collecting Steiner tree problem (PCST). Their method utilizes a modular
scoring function, based on signal-noise decomposition implemented as a mix-
ture model that permits the smooth integration of multivariate p-values derived
from various sources. Given the resulting protein scores, a branch-and-cut algo-
rithm, originally developed for PCST, delivers provably optimal and suboptimal
solutions to the maximal-scoring subgraph problem. The resulting subnetwork
size can be controlled by an adjustment parameter that is statistically inter-
pretable as false discovery rate. Figure 8 shows an optimal subnetwork that has
been computed based on microarray and survival data collected in a study in-
volving around 200 patients suffering from two different lymphoma subtypes.
The ILP-based algorithm was able to discover biologically meaningful disregu-
lated modules that included and extended modules that are well-known for the
pathogenesis of the two tumor subtypes. Moreover, a direct comparison with
a widely-used heuristic approach on simulated data clearly demonstrated the
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Fig. 8. Example of a potentially disregulated functional module showing differences
between the ABC and GCB lymphoma subtypes. This optimal subnetwork has been
detected using a score based on a gene-wise two-sided t-test for differential expression
and a univariate Cox regression hazard model. The derived subnetwork captures the
differentially expressed interaction modules associated with the increased malignancy
of the ABC subtype. Coloring is according to the fold change where red denotes an
overexpression in ABC and green in GCB. Diamond nodes represent negative scoring
genes additionally included in the optimal solution.

shortcomings of the heuristics. Surprisingly, the exact algorithm was also able to
compute the optimal solutions much faster than the heuristics needed to generate
their significantly worse solutions.

5.2 Comparative Network Analysis

Based on the assumption that evolutionary conservation implies functional sig-
nificance, comparative network analysis may help to elucidate protein pathways
and interactions. Moreover, it facilitates the generation, investigation, and val-
idation of hypotheses about the underlying networks, and transfer functional
annotations. In addition to component-based comparative approaches, network
alignments provide the means to study conserved network topology such as
common pathways and more complex network motifs. Yet, unlike in classical
sequence alignment, the comparison of networks becomes computationally chal-
lenging already in the pairwise case, as most meaningful assumptions instantly
lead to NP-hard problems.

Recently, many heuristic approaches have been proposed for aligning two or
multiple networks. In [45], Klau has introduced the maximum structural match-
ing formulation as a basis for an exact approach to global pairwise network



214 E. Althaus et al.

Fig. 9. Maximum common subnetworks with respect to the number of conserved in-
teractions between Rattus norvegicus and Mus musculus protein-protein interaction
networks

alignment. He reformulates the problem in terms of an ILP and proposes a La-
grangian relaxation approach based on this formulation. The approach is inspired
by the work on RNA sequence-structure alignment and contact map overlap
described in Section 2.2. Figure 9 shows an example of a provably maximum
common subnetwork between two protein-protein interaction networks from rat
and mouse.

6 Vaccine Design

The human immune system is one of the most complex biological systems. It has
evolved to protect the host from invading pathogens (viruses, bacteria, etc.) and
also to recognize aberrant cells (e.g., in the context of cancer). Vaccines are one
of the most successful therapeutic strategies known. They activate the immune
system to recognize and remove invading pathogens or cancer cells and thus pre-
vent infection or aid in cancer therapy. Over the last decade, tailor-made vaccines
based on individual peptides (short fragments of proteins) have attracted consid-
erable interest, in particular, because they also facilitate a personalized therapy.
These peptide-based or epitope-based vaccines trigger an immune response by
confronting the immune system with peptides derived from proteins originating
from the pathogen or from cancer-specific proteins. The peptides bind to ma-
jor histocompatibility complex (MHC) molecules and thus initiate an immune
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response. However, there are many allelic variants of MHC molecules, meaning
that different patients typically bind different repertoires of peptides. Due to eco-
nomic and regulatory issues, one cannot simply add all immunogenic peptides
to such a peptide mix. Hence, it is crucial to identify the optimal set of peptides
for a vaccine, given constraints such as MHC allele frequencies in the target
population, peptide mutation rates, and maximum number of selected peptides.
The selection of these peptides results in an interesting optimization problem.
Toussaint et al. [46, 47] were able to formulate the vaccine design problem as an
ILP. Most immunological requirements can be integrated in an elegant fashion
as constraints and the resulting problems can then be efficiently solved. The ILP
approach is the first method to solve this problem to optimality and it outper-
forms previous (heuristic) approaches with respect to overall immunogenicity.

7 Summary

The preceding discussion of ILP-based approaches highlights how Kurt
Mehlhorn’s group has made substantial contributions to bioinformatics research
through the introduction of ILP techniques to numerous different problem ar-
eas. The work initiated by his group was often seminal and the research issues
that were raised remained active topics for several years emphasizing their rele-
vance. Half of the papers cited in this review article are co-authored by former
members of Kurt Mehlhorn’s group, although the review covers many of bioin-
formatics’ core problems, especially in the area of sequence analysis, structural
bioinformatics, probe design for microarray experiments, computational systems
biology, and vaccine design. It stands to reason that ILP techniques are now es-
tablished in bioinformatics. Bioinformatics is still a young discipline and – as
Donald Knuth put it – “biology easily has 500 years of exciting problems to
work on” [48]. We believe that combinatorial optimization techniques will play
a key role in tackling some of these problems in the future.

Acknowledgements

The authors are grateful to Anne Dehof for providing Fig. 5.

References

1. Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes
using unique probes. In: Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1994), pp. 489–500 (1994)

2. Reinert, K., Lenhof, H., Mutzel, P., Mehlhorn, K., Kececioglu, J.: A branch-and-
cut algorithm for multiple sequence alignment. In: Proceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB 1997),
pp. 241–249 (1997)



216 E. Althaus et al.

3. Christof, T., Jünger, M., Kececioglu, J., Mutzel, P., Reinelt, G.: A branch-and-cut
approach to physical mapping with end-probes. In: Proceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB 1997),
pp. 84–92 (1997)

4. Lenhof, H.P., Reinert, K., Vingron, M.: A polyhedral approach to RNA sequence
structure alignment. In: Proceedings of the Second Annual International Confer-
ence on Computational Molecular Biology (RECOMB 1998), pp. 153–162 (1998)

5. Althaus, E., Kohlbacher, O., Lenhof, H., Müller, P.: A combinatorial approach to
protein docking with flexible side-chains. In: Proceedings of the Second Annual
International Conference on Computational Molecular Biology (RECOMB 2000),
pp. 15–24 (2000)

6. Klau, G., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust
non-unique probe selection using integer linear programming. Bioinformatics 20,
i186–i193 (2004)

7. Dittrich, M., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying
functional modules in protein-protein interaction networks: an integrated exact
approach. Bioinformatics 24(13), i223 (2008)

8. Lancia, G.: Mathematical programming in computational biology: an annotated
bibliography. Algorithms 1(2), 100–129 (2008)

9. Kececioglu, J.: The maximum weight trace problem in multiple sequence alignment.
In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS,
vol. 684, pp. 106–119. Springer, Heidelberg (1993)

10. Lenhof, H.P., Morgenstern, B., Reinert, K.: An exact solution for the segment-
to-segment multiple sequence alignment problem. Bioinformatics 15(3), 203–210
(1999)

11. Althaus, E., Caprara, A., Lenhof, H.P., Reinert, K.: Multiple sequence alignment
with arbitrary gap costs: Computing an optimal solution using polyhedral combina-
torics. In: Proceedings of the 1st European Conference on Computational Biology
(ECCB 2002), pp. 4–16 (2002)

12. Althaus, E., Caprara, A., Lenhof, H.P., Reinert, K.: A branch-and-cut algorithm
for multiple sequence alignment. Mathematical Programming 105, 387–425 (2006)

13. Althaus, E., Canzar, S.: A Lagrangian relaxation approach for the multiple se-
quence alignment problem. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA
2007. LNCS, vol. 4616, pp. 267–278. Springer, Heidelberg (2007)

14. Althaus, E., Canzar, S.: A Lagrangian relaxation approach for the multiple se-
quence alignment problem. J. Combinat. Opt. 16(2), 127–154 (2008)

15. Fischetti, M., Lancia, G., Serafini, P.: Exact algorithms for minimum routing cost
trees. Networks 39, 161–173 (2002)

16. Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed
error bounds. Bulletin of Mathematical Biology 55, 141–154 (1993)

17. Kececioglu, J., Kim, E.: Simple and fast inverse alignment. In: Apostolico, A.,
Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS
(LNBI), vol. 3909, pp. 441–455. Springer, Heidelberg (2006)

18. Mattick, J.S.: The functional genomics of noncoding RNA. Science 309(5740),
1527–1528 (2005)

19. Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein struc-
ture similarity. In: FOCS, pp. 512–522 (1999)

20. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput.
Biol. 1(4), 337–348 (1994)



Integer Linear Programming in Computational Biology 217

21. Lancia, G., Carr, R., Walenz, B., Istrail, S.: 101 optimal PDB structure alignments:
a branch-and-cut algorithm for the maximum contact map overlap problem. In:
Proc. of the Fifth Annual International Conference on Computational Biology, pp.
193–202. ACM Press, New York (2001)

22. Caprara, A., Lancia, G.: Structural Alignment of Large-Size Proteins via La-
grangian Relaxation. In: Proc. of RECOMB 2002, pp. 100–108. ACM Press, New
York (2002)

23. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack prob-
lem. Informs J. on Computing 11(2), 125–137 (1999)

24. Carraresi, P., Malucelli, F.: A reformulation scheme and new lower bounds for
the quadratic assignment problem. In: Quadratic Assignment and Related Topics.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp.
147–160. AMS Bookstore (1994)

25. Bauer, M., Klau, G.W.: Structural Alignment of Two RNA Sequences with La-
grangian Relaxation. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS,
vol. 3341, pp. 113–123. Springer, Heidelberg (2004)

26. Bauer, M., Klau, G.W., Reinert, K.: Multiple structural RNA alignment with La-
grangian relaxation. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI),
vol. 3692, pp. 303–314. Springer, Heidelberg (2005)

27. Bauer, M., Klau, G.W., Reinert, K.: An exact mathematical programming ap-
proach to multiple RNA sequence-structure alignment. Algorithmic Operations
Research (2008); Special Issue on Biology, Medicine, and Health Care

28. Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure align-
ment of RNA sequences using combinatorial optimization. BMC Bioinformat-
ics 8(1), 271 (2007)

29. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and
accurate multiple sequence alignment. Journal of Molecular Biology 302, 205–217
(2000)

30. Althaus, E., Kohlbacher, O., Lenhof, H.P., Müller, P.: A combinatorial approach
to protein docking with flexible side-chains. J. Comput. Biol. 9(4), 597–612 (2002)

31. Eriksson, O., Zhou, Y., Elofsson, A.: Side-chain positioning as an integer program-
ming problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149,
pp. 128–141. Springer, Heidelberg (2001)

32. Chazelle, B., Kingsford, C., Singh, M.: A semidefinite programming approach to
side chain positioning with new rounding strategies. Informs J. Comput. 16, 380–
392 (2004)

33. Kingsford, C., Chazelle, B., Singh, M.: Solving and analyzing side-chain position-
ing problems using linear and integer programming. Bioinformatics 21, 1028–1039
(2005)

34. Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear
programming. J. Bioinformatics Comput. Biol. 1(1), 95–117 (2003)

35. Xu, J., Li, M.: Assessment of RAPTOR’s linear programming approach in
CAFASP3. Proteins 53(suppl. 6), 579–584 (2003)

36. Xu, J., Li, M., Xu, Y.: Protein threading by linear programming: theoretical anal-
ysis and computational results. J. Combinat. Opt. 8(4), 403–418 (2004)

37. Andonov, R., Balev, S., Yanev, N.: Protein threading: From mathematical models
to parallel implementations. Informs J. Comput. 16(4), 393–405 (2004)

38. Veber, P., Yanev, N., Andonov, R., Poirriez, V.: Optimal protein threading by cost-
splitting. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692,
pp. 365–375. Springer, Heidelberg (2005)



218 E. Althaus et al.

39. Zhang, Z., Post, C.B., Smith, D.L.: Amide hydrogen exchange determined by mass
spectrometry: application to rabbit muscle aldolase. Biochemistry 35, 779–791
(1996)

40. Althaus, E., Canzar, S., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-
Baese, A., Zhang, H.: Computing H/D-exchange speeds of single residues from
data of peptic fragments. In: Proceedings of the 23rd Annual ACM Symposium on
Applied Computing, Fortaleza, Ceará, Brazil (2008)

41. Althaus, E., Canzar, S., Ehrler, C., Emmett, M.R., Karrenbauer, A., Mar-
shall, A.G., Meyer-Bäse, A., Tipton, J., Zhang, H.: Discrete fitting of hydrogen-
deuterium-exchange-data of overlapping fragments. In: The 2009 International
Conference on Bioinformatics & Computational Biology (in press, 2009) (accepted
for publication)

42. Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust
non-unique probe selection using integer linear programming. In: Proceedings of
the Twelfth International Conference on Intelligent Systems for Molecular Biology
(ISMB 2004), pp. 186–193 (2004)

43. Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Integer linear
programming approaches for non-unique probe selection. Discrete Applied Mathe-
matics 155, 840–856 (2007)

44. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1),
S233–S240 (2002)

45. Klau, G.W.: A new graph-based method for pairwise global network alignment.
BMC Bioinformatics 10(suppl. 1), S59 (2009)

46. Toussaint, N.C., Dönnes, P., Kohlbacher, O.: A mathematical framework for the
selection of an optimal set of peptides for epitope-based vaccines. PLoS Comput.
Biol. 4(12), e1000246 (2008)

47. Toussaint, N.C., Kohlbacher, O.: OptiTope – A web server for the selection of an
optimal set of peptides for epitope-based vaccines. Nucl. Acids Res. (in press, 2009)

48. Knuth, D.E.: Donald Knuth – Computer Literacy Bookshops Interview (1993),
http://tex.loria.fr/historique/interviews/knuth-clb1993.html

http://tex.loria.fr/historique/interviews/knuth-clb1993.html


Via Detours to I/O-Efficient Shortest Paths

Ulrich Meyer�

Institute for Computer Science,
Goethe University,

60325 Frankfurt/Main, Germany
umeyer@cs.uni-frankfurt.de
http://www.uli-meyer.de

Abstract. During the winter semester 1996/1997 Kurt Mehlhorn gave
a lecture series on algorithms for very large data sets. Towards the end
he covered graph traversal problems like finding shortest paths on sparse
graphs in external-memory. Kurt concluded the topic stating that there
may not be much hope to solve these basic problems I/O-efficiently. The
author, just about to finish his master’s studies those days, took this as
a challenge. The following paper reviews some detours, dead-ends, and
happy ends of the author’s still ongoing research on external-memory
graph traversal.

1 Introduction

Shortest path problems are among the most fundamental and also the most com-
monly encountered graph problems, both in themselves and as subproblems in
more complex settings [3]. Besides obvious applications like preparing travel time
and distance charts [28], shortest path computations are frequently needed in
telecommunications and transportation industries [53], where messages or vehicles
must be sent between two geographical locations as quickly or as cheaply as pos-
sible. Other examples are complex traffic flow simulations and planning tools [28],
which rely on solving a large number of individual shortest path problems.

One of the most commonly encountered subtypes is the Single-Source Shortest-
Path (SSSP) version: let G = (V, E) be a graph with |V | nodes and |E| edges, let s
be a distinguished vertex of the graph, and c be a function assigning a non-negative
real weight to each edge of G. The objective of the SSSP is to compute, for each
vertex v reachable from s, the weight dist(v) of a minimum-weight (“shortest”)
path from s to v; the weight of a path is the sum of the weights of its edges.

Breadth-First Search (BFS) [50] can be seen as the unweighted version of
SSSP; it decomposes a graph into levels where level i comprises all nodes that
can be reached from the source via i edges. The BFS numbers also impose an
order on the nodes within the levels. BFS has been widely used since the late
1950’s; for example, it is an ingredient of the classical separator algorithm for
planar graphs [33].
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We are mainly interested in the case where the input graphs for BFS and SSSP
are too big to fit in the main-memory of the computing device. The world-wide-
web for example can be looked upon as a massive graph where each webpage is
a node and the hyperlink from one page to another is an edge between the nodes
corresponding to those pages. As of April 2009, it is estimated that the indexed
web contains at least 20 billion webpages [18].

We consider the commonly accepted external-memory (EM) model of Aggar-
wal and Vitter [2]. It assumes a two level memory hierarchy with faster internal
memory having a capacity to store M vertices/edges. In an I/O operation, one
block of data, which can store B vertices/edges is transferred between disk and
internal memory. The measure of performance of an algorithm is the number
of I/Os it performs. The number of I/Os needed to read N contiguous items
from disk is scan(N) = Θ(N/B). The number of I/Os required to sort N items
is sort(N) = Θ((N/B) logM/B(N/B)). For all realistic values of N , B, and M ,
scan(N) < sort(N) � N . A large number of results have appeared in the area
of external-memory computing. Vitter provides the most recent and extensive
overview [56].

2 State of the Art in 1997 and Main Problems

When Kurt Mehlhorn coveredEM shortest path in his lecture series on algorithms
for very large data sets in the winter semester 1996/97 all known BFS and SSSP
approaches took Ω(|V |) I/Os for general graphs in the worst-case. Using simple
calculations Kurt impressively demonstrated that for typical main-memory sizes
(already in 1997) if |V | exceeds M by a small constant factor, the expected time to
perform the required I/Os would clearly break all practical limits. At that time, an
I/O operation on a high-end hard disk was accounted with about 10 milliseconds
and in spite of increased throughput these values have not decreased tremendously
ever since. However, there is a recent trend to replace hard disks by flash memory
devices, which can perform read-I/Os in just 0.1 milliseconds. On the other hand,
for huge inputs like the world-wide-web graph mentioned before, |V | = 2 · 1010

I/Os would still mean nearly one month of I/O waiting time.
Before explaining the main difficulties of external-memory graph traversal we

first shortly review internal-memory (IM) algorithms [16] for BFS and SSSP.
They typically visit the vertices of the input graph G in a one-by-one fashion;
appropriate candidate nodes for the next vertex to be visited are kept in some
data-structure Q (a FIFO-queue for BFS and a priority-queue for SSSP). After a
vertex v is extracted from Q, the adjacency list of v, i.e., the set of neighbors of v
in G, is examined in order to update Q: unvisited neighboring nodes are inserted
into Q; for SSSP the priorities of nodes already in Q may be updated. The short
description above already contains the main difficulties for I/O-efficient graph-
traversal algorithms:

(a) Unstructured indexed access to adjacency lists.
(b) Remembering visited nodes.
(c) (The lack of efficient) Decrease_Key operations in EM priority-queues.
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The impact of (a) depends on the sizes of the adjacency lists; if a list contains
k edges then it takes Θ(1 + k/B) I/Os to retrieve all its edges. This is efficient
if k = Ω(B), but wasteful if, e.g., k = O(1).

Problem (b) can be partially overcome by solving the graph problems in
phases [13]: a dictionary DI of maximum capacity |DI| < M is kept in inter-
nal memory; DI serves to remember visited nodes. Whenever the capacity of DI
is exhausted, the algorithms make a pass through the external graph representa-
tion: all edges pointing to visited nodes are discarded, and the remaining edges
are compacted into new adjacency lists. Then DI is emptied, and a new phase
starts by visiting the next element of Q. This phase-approach explored in [13] is
most efficient if the quotient |V |/|DI| is small; O(�|V |/|DI|	·scan(|V |+|E|)) I/Os
are needed in total to perform all graph compactions. Additionally, O(|V |+ |E|)
operations are performed on Q.

As for SSSP, problem (c) is less severe if (b) is resolved by the phase-approach:
instead of actually performing Decrease_Key operations, several priorities may
be kept for each node in the external priority-queue; after a node v is dequeued
for the first time (with the smallest key) any further appearance of v in Q will
be ignored. In order to make this work, superfluous elements still kept in the
EM data structure of Q are marked obsolete right before DI is emptied at the
end of a phase; the marking can be done by scanning Q. Thus, plugging in the
respective I/O-bounds yields O(|V | + �|V |/M	 · scan(|V | + |E|)) I/Os for BFS
and O(|V | + �|V |/M	 · scan(|V | + |E|) + sort(|E|)) I/Os for SSSP.

For undirected graphs, another possibility is to solve (b) and (c) by applying
extra bookkeeping and extra data structures like the I/O-efficient tournament
tree of Kumar and Schwabe [32]. In that case the graph traversal can be done in
one phase, even if n � M . The respective I/O-bounds are O(|V |+sort(|V |+|E|))
I/Os for BFS and O(|V |+ �|V |/M	 · scan(|V |+ |E|) + sort(|E|)) I/Os for SSSP.

Problems (b) and (c) usually disappear in the semi-external memory (SEM)
setting where it is assumed that M = c · |V | < |E| for some appropriately chosen
positive constant c: e.g., the SEM model may allow to keep a boolean array
for (b) in internal memory; similarly, a node priority queue with Decrease_Key
operation for (c) could reside completely in IM.

3 First Attempts: Nice Results – Just Not for EM

In our first attempts to improve the known EM graph traversal algorithms we
tried to apply some kind of parallel simulation. The parallel random access ma-
chine [31] (PRAM) is one of the most widely studied abstract models of a parallel
computer. A PRAM consists of p independent processors and a shared memory,
which these processors can synchronously access in unit time. The performance
of PRAM algorithms is usually described by the two parameters time (assuming
an unlimited number of available PUs) and work (the total number of operations
needed). A fast and efficient parallel algorithm minimizes both time and work;
ideally the work is asymptotic to the sequential complexity of the problem.

A PRAM simulation [13] translates one step of the parallel algorithm into
a constant number of global scanning and sorting operations. This scheme has
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been used successfully to yield efficient solutions for EM list-ranking – a problem
that previously suffered from a high I/O penalties due to unstructured accesses
to adjacency lists just like BFS and SSSP. However, the simulation requires a
fast and work-efficient parallel algorithm for the problem at hand. Unfortunately,
the parallel SSSP problem has so far resisted solutions that are fast and work-
efficient at the same time: no PRAM algorithm is known that terminates with
O(|V | · log |V |+ |E|) work (the sequential complexity of Dijkstra’s algorithm [20]
with Fibonacci heaps [23]) and sublinear running time for arbitrary graphs with
nonnegative edge weights.

Conservative Parallelization. Instead of becoming frustrated with worst-case
efficiency we decided to explore the average-case behavior of Dijkstra’s algorithm
first. In fact together with Kurt we found a number of criteria [17, 41] which can
be used to identify vertices in the priority queue whose tentative distances are
already final and which therefore can be removed from the priority queue earlier
than in Dijkstra’s algorithm – and in parallel. Unfortunately, it turned out that
even under favorable side-conditions (random graphs with random edge weights)
our best criteria still required Ω(|V |1/3) parallel phases: too many for standard
PRAM simulation, which would have resulted in an Ω(|V |1/3 · sort(|V | + |E|))
I/O approach, thus taking Ω(|V |) I/Os again for sufficiently large values of |V |.

Aggressive Parallelization. Motivated by our parallelization of Dijkstra’s
algorithm mentioned above we kept on searching for improved work-efficient
SSSP parallelizations, still hoping to find the link to external-memory. A major
step forward – as we thought then – was to shift from conservative to aggressive
node selection (yielding a label-correcting approach). Indeed the parallel running
time for SSSP on random graphs with random edge weights could be reduced
to O(log2 n) using just linear work on average. Also, for other interesting graph
classes (like graphs modeling the WWW, telephone calls or social networks)
the theoretical bounds could be improved [40]. A recent experimental study [34]
by Madduri and co-workers also demonstrated the practical relevance for one
of our parallel SSSP algorithms, the Δ-stepping [49]. Still – all the parallel
results we obtained [17, 39, 40, 45, 49] suffered from heavy dependence on the
graph diameter. Thus, once more, there was little hope to transform any of these
approaches toward I/O-efficient SSSP for general graphs.

Average-Case Efficient Sequential SSSP. A nice feature of our parallel al-
gorithms was that on certain graph classes they provably took only O(|V |+ |E|)
work (instead of O(|V | · log |V | + |E|)) in the context of random edge weights.
Thus, running them sequentially should beat Dijkstra’s algorithm for example.
Consequently we began the search for better average-case efficient sequential
SSSP approaches. Eventually [48] we presented both label-setting and label-
correcting algorithms that solve the SSSP problem on such arbitrary directed
graphs with random edge weights in time O(|V |+ |E|) on the average. For inde-
pendent random edge weights, the average-case time-bound can also be obtained
with high probability.
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Our new SSSP algorithms do not use exact priority queues, but simple hierar-
chical bucket structures with adaptive splitting instead: The label-setting version
aims to split the current bucket until a single vertex remains in it, whereas the
label-correcting algorithm adapts the width of the current bucket to the maxi-
mum degree of the vertices contained in it. We also came up with constructive
existence proofs for graph classes with random edge weights on which several
previous SSSP algorithms are forced to run in superlinear time on average.

Our initial results triggered further research by Goldberg [25] and Hagerup [29]
who gave alternative SSSP algorithms that achieve linear average-case time, too.
In particular, Goldberg also demonstrated the practical advantages of average-
case efficient SSSP computations [26, 27].

4 First Steps toward General EM Graph Traversal

While being busy with sequential and parallel SSSP algorithms we still tried a cou-
ple of other directions in order to improve EM graph traversal on general graphs.

For semi-external depth-first search (DFS) we proposed a heuristic [54] that
maintains a tentative DFS forest which is modified by I/O-efficiently scanning
non-tree edges to reduce the number of cross edges. It processes batches of
O(|V |) edges with internal DFS and then only replaces an edge in the tentative
forest if necessary. Further improvements are obtained by applying node and
edge reduction heuristics. For a large suite of data sets (including real world
data) our heuristic ran between 10 and 200 times faster than the best known
alternative. Our SEM DFS implementation played a crucial role in a network
analysis tool [21] for the Webgraph.

On the theoretical side we investigated external-memory DFS for undirected
planar graphs [10]. Based on the ideas behind a previous parallel algorithm [55]
we obtained the first o(|V |)-I/O solution; our approach required O(sort(|V |) ·
log |V |) I/Os. The result was later superseded by Maheshwari and Zeh [36] who
showed that planar DFS (and BFS & SSSP) can be solved using just O(sort(|V |))
I/Os.

Another theoretical contribution was a space-efficient internal-memory dictio-
nary data-structure [22], which is helpful in the context of the phase approach
discussed in Section 2. It offers a smooth transition between bit-vector and hash-
table representation and yields better constants than previous approaches.

5 I/O-Efficient Breadth-First Search

Only after the year 2000 we found appropriate means to speed-up EM BFS for
general undirected graphs. The main idea was to use a preprocessing phase to
restructure the adjacency lists of the graph representation. It should group the
vertices of the input graph into clusters of small diameter in G and store the ad-
jacency lists of the nodes in a cluster contiguously on the disk, such that many
related adjacency lists can be accessed by few I/Os during the actual BFS compu-
tation. The latter needs to be appropriately modified in order to exploit that the
adjacency lists loaded from a cluster are useful to create the next BFS levels.
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Overlapping Clusters. Our first attempt [38] worked with overlapping clus-
ters, one for each graph vertex covering its complete neighborhood up to some
maximum distance k. These neighborhoods could be constructed using O(k)
sorting and scanning phases. Within the subsequent BFS computation it was
then sufficient to only load the k-neighborhood of carefully selected BFS levels
using unstructured access to the respective clusters of all vertices in these lev-
els. For general graphs with (small) maximum node degree d a total I/O bound
of O( |V |

γ·logd B + sort(|V | · Bγ)) could be obtained by choosing k maximal with
k·dk ≤ Bγ for some arbitrary constant 0 < γ ≤ 1/2. Unfortunately, the approach
needed O(|V | · Bγ) space. Thus, both the applicability (due to space-blowup)
and the absolute I/O savings were still rather limited.

Disjoint Clusters. In our follow-up approach [37] (MM_BFS) – this time
together with Kurt – we developed two EM clustering schemes that produce
disjoint clusters of adjacency-lists.

The Euler tour clustering method first builds a spanning tree T for G. Then
it constructs an Euler tour around T . The tour is broken at the source node and
the elements of the resulting list are then stored in consecutive order using an
external memory list-ranking algorithm. Thereafter, the Euler tour is chopped
into chunks of μ = O(

√
B) nodes. Duplicates are removed in a way that each

node only remains in the first chunk it originally occurs. The adjacency lists are
then re-ordered based on the position of their corresponding nodes in the chopped
duplicate-free Euler tour: all adjacency lists for nodes in the same chunks form
a cluster and the distance in G between any two vertices whose adjacency-lists
belong to the same cluster is bounded by O(

√
B).

The randomized parallel cluster growing method first chooses |V |/μ random
source vertices. Then it iteratively constructs the local BFS levels around these
sources concurrently. In this process each non-source vertex is assigned to a
source within closest distance. Since the parallel BFS fronts may touch each
other but not overlap, the process ends once all vertices have been assigned to a
source, which happens after O(μ · log |V |) iterations with high probability (whp).

The new fringes of the local BFS searches in iteration i are computed by
sorting and scanning the fringes of iterations i−1 and i−2 similarly to the BFS
algorithm by Munagala and Ranade [51] with the difference that all required
adjacency lists, i.e. for all sources, are concurrently retrieved in a single scan of
the graph representation. Once all vertices have been assigned to sources, this
information is used to actually form the clusters of adjacency lists and store
them consecutively on disk.

The randomized parallel clustering growing approach is actually worse than
the Euler tour based approaches since the vertices within a cluster may have
larger maximum distances: d̄ = O(μ · log |V |) whp. versus d̄ = O(μ). Also, its
I/O complexity is linearly dependent on the choice of μ whereas the Euler tour
clustering always takes O(sort(|V |+|E|)+ST (|V |, |E|)) I/Os, where ST (|V |, |E|)
is the I/O-cost of computing a minimum spanning tree (e.g, sort(|V |+ |E|) I/Os
using a randomized approach [1]). However, the parallel cluster growing method
is conceptually easier.
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The BFS Phase. The actual BFS computation is carried out using an ap-
propriately modified version of the O(|V |+ sort(|V |+ |E|))-I/O BFS algorithm
by Munagala and Ranade [51]. The key difference is to load whole preprocessed
clusters into some external sorted list data structure (called hot pool) at the
expense of few I/Os, since the clusters are stored contiguously on disk and con-
tain vertices in neighboring BFS levels. This way, the neighboring nodes N(l)
of some BFS level l can be computed by scanning only the hot pool. Similar
to the parallel cluster growing, removing the nodes visited in levels l − 1 and
l from N(l) by concurrent scanning yields the nodes in the next BFS level.
However, the nodes in l and consequently their neighbors in N(l) may belong
to different clusters and unstructured I/Os are required to import them once
into the hot pool, from where they are evicted again as soon as they have been
used to create the respective BFS levels. Maintaining the hot pool itself requires
O(scan(|V | + |E|) · d̄) I/Os, whereas importing the clusters into it accounts for
O(|V |/μ + sort(|V | + |E|)) I/Os.

Putting everything together, for undirected graphs with |E| ≥ |V | and a
proper choice of μ, EM BFS with the Euler tour based clustering can be
computed using O(

√|V | · |E|/B + sort(|E|) + ST (|V |, |E|)) I/Os. Applying the
randomized spanning tree approach from [1], the I/O-bound for sparse graphs
becomes O(|V |/√B + sort(|V |)).
Implementations. In [6], we presented our implementation of MR_BFS and
the randomized variant of MM_BFS and gave a comparative study of the two al-
gorithms on various graph classes. We demonstrated that the usage of these algo-
rithms along with disk parallelism and pipelining can alleviate the I/O bottleneck
of BFS on many small diameter graph classes, thereby making the BFS viable for
these graphs. As a real world example, the BFS level decomposition of an exter-
nal web-crawl based graph of around 130 million nodes and 1.4 billion edges was
computed in less than 4 hours using a single disk and 2.3 hours using four disks.

However, both MR_BFS and the parallel cluster growing variant of MM_BFS
took days on large diameter graphs. In [7], we show that the Euler tour clustering
variant of MM_BFS coupled with a heuristic can be used for computing the BFS
level decomposition of even large diameter graphs in a few hours. MM_BFS
decomposes the graph into low diameter clusters and maintains an efficiently
accessible pool of adjacency lists required in the next few levels. For many large
diameter graphs, the pool fits into the internal memory most of the time. By
keeping the portion of the pool that fits into the internal memory as a multi-map
hash table and by using caching of adjacency lists with two level hierarchy of
clusters, we significantly improve the performance of the external BFS algorithm
while keeping the worst case I/O bounds of MM_BFS. The details involve careful
trade-offs between internal-computation and I/O.

Our graph implementations are based on the software library STXXL [19] that
is an implementation of the C++ standard template library STL for processing
huge data sets that can fit only on hard disks. It supports parallel disks, over-
lapping between disk I/O and computation and it is the first I/O-efficient algo-
rithm library that supports the pipelining technique which can save a considerable
amount of I/O.
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6 External-Memory Dynamic BFS

The objective of a dynamic graph algorithm is to efficiently process an online
sequence of update and query operations. In very recent work and based on our
previous results in Section 5 we gave the first non-trivial result on dynamic BFS
in external-memory [42]. We consider sequences of either Θ(|V |) edge insertions,
but no deletions (incremental version) or Θ(n) edge deletions, but no insertions
(decremental version). After each edge insertion/deletion the updated BFS level
decomposition has to be output. We prove an amortized bound of O(|V |/B2/3 +
sort(|V |)·log B) I/Os per update. In contrast, the currently best bound for static
BFS on sparse undirected graphs as seen before is Ω(|V |/B1/2 + sort(|V |)) I/Os.
In the following we review the high-level ideas to computing BFS on general
undirected sparse graphs in an incremental or decremental setting.

For the BFS phase, let us consider the insertion of the ith edge (u, v) in an in-
cremental setting and refer to the graph (and the shortest path distances from the
source in the graph) before and after the insertion of this edge as Gi−1(di−1) and
Gi(di). We first run an external memory connected component algorithm in or-
der to check if the insertion of (u, v) enlarges the connected component Cs of the
source node s. If so, we run the Munagala/Ranade BFS algorithm on the nodes in
the new component starting from node v (assuming w.l.o.g. that u ∈ Cs) and add
di(u) + 1 (di(u) = di−1(u) in this case) to all the distances obtained.

Otherwise, we run the BFS phase of MM_BFS, with the difference that
the adjacency list for v is added to the hot pool H when creating BFS level
max{0, di−1(v)−α} of Gi, for a certain advance α > 1. By keeping the adjacency
lists sorted according to node distances in Gi−1 this can be done I/O-efficiently
for all nodes v featuring di−1(v)−di(v) ≤ α. For nodes with di−1(v)−di(v) > α,
we import the whole clusters containing their adjacency lists into H using un-
structured I/Os. If it would require more than α · |V |/B random cluster accesses,
we increase α by a factor of two, compute a new clustering for Gi−1 with larger
chunk size μ = Θ(α) and start a new attempt by repeating the whole approach
with the increased parameters.

We would like to note that (the amortized analysis of) our EM dynamic
BFS approach requires a special kind of clustering that also insures a minimum
amount of Ω(α) vertices per cluster. In [42] this is realized by combining the
Euler tour based clustering with a randomized duplicate elimination. However, it
is also possible to use the time forward processing technique [13] on the spanning
tree itself in order to cut out subtrees of size Ω(α) and diameter O(α).

7 Single Source Shortest-Paths

A relatively simple extension of the BFS approach to SSSP with weights in [w, W ]
as already sketched in [37] increases the I/O bound by a factor of W/w; each edge
may be scanned

√
B ·W/w times. Obviously, W/w must be significantly smaller

than
√

B for this algorithm to be efficient. In [46] we show how to reduce the
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loss factor from W/w to
√

log(W/w), thus exponentially increasing the range of
efficiently usable edge weights. We exploit that the relaxation of edges of large
weights can be delayed because if such an edge is on a shortest path, it takes
some time before its other endpoint is settled. Therefore, we maintain long edges
in pools that are touched much less frequently than the pools for short edges.
This idea alone already works well on graphs with random edge weights, where
we can solve SSSP essentially as fast as BFS. For non-random edge weights
we even keep short edges in pools that are touched infrequently; we shift these
edges to pools that are touched more and more frequently the closer the time of
their relaxation draws. This requires a hierarchical clustering of the graph using
O(log(W/w)) levels.

Eventually in [47] we show how to compute single-source shortest paths in
undirected graphs with non-negative edge lengths in O(

√|V | · |E|/B log |V | +
MST (|V |, |E|)) I/Os, where MST (|V |, |E|) is the I/O-cost of computing a mini-
mum spanning tree (e.g, sort(|V |+ |E|) I/Os using a randomized approach [1]).
For sparse graphs, the new algorithm performs O((|V |/√B) log |V |) I/Os. This
result removes our previous algorithm’s [46] dependence on the edge lengths
in the graph. The new bound is obtained by a number of new ideas to im-
plement a recursive shortest-path algorithm that uses a specific partition into
“well-separated” subgraphs, allowing the computation of shortest paths in the
whole graph using nearly independent computations on these subgraphs.

Worst-case Analysis vs. Actual Behavior. Based on our previous theo-
retical results mentioned above and our experience in implementations of EM
BFS [6, 7] the task was to come up with a practical EM SSSP approach: In [44]
we report on initial experimental results for an algorithm on general undirected
sparse graphs where the ratio between the largest and the smallest edge weight
is reasonably bounded (for example integer weights in {1, . . . , 232}) and the re-
alistic assumption holds that main memory is big enough to keep one bit per
vertex (SEM setting). While our implementation only guarantees average-case
efficiency, i.e., assuming randomly chosen edge-weights, it turns out that its per-
formance on real-world instances with non-random edge weights is actually even
better than on the respective inputs with random weights. Furthermore, com-
pared to our EM BFS implementation (the unweighted version of SSSP), the
running time of our approach always stayed within a factor of five, for the most
difficult graph classes the difference was even less than a factor of two.

We are not aware of any previous I/O-efficient implementation for the classic
general SSSP in a (semi) external setting: in two recent projects [12, 52], Kumar-
Schwabe-like SSSP approaches on graphs of at most 6 million vertices have been
tested, forcing the authors to artificially restrict the main memory size, M , to
rather unrealistic 4 to 16 MBytes in order not to leave the semi-external setting or
produce huge running times for larger graphs: for random graphs of 220 vertices,
the best previous approach needed over six hours. In contrast, for a similar ratio
of input size vs. M , but on a 128 times larger and even sparser random graph,
our approach was less than seven times slower, a relative gain of nearly 20. On
a real-world 24 million node street graph, our implementation was over 40 times



228 U. Meyer

faster. Even larger gains of over 500 can be estimated for random line graphs
based on previous experimental results for Munagala/Ranade-BFS [51].

8 All-Pairs Problems and Diameter Approximation

Computing diameters of huge graphs is a key challenge in complex network anal-
ysis. In principle, the diameter D can be easily computed using |V | SSSP runs
(one for each graph vertex as a root) and keeping track of the largest distance
found in this process. However, the underlying All-Pairs Shortest-Paths (APSP)
problem can be solved even more efficiently: two independent publications [9, 15]
provide an optimal Θ(|V | · sort(|V |)) I/O bound for APSP on unweighted undi-
rected sparse graphs. Unfortunately, taking into account that current machines
easily feature several gigabytes of RAM, in the external-memory setting where
|V | > M � B, an algorithm spending Ω(|V |2/B) I/Os is practically useless.

Chowdhury and Ramachandran [15] also gave an algorithm for computing ap-
proximate all-pairs shortest-paths with additive error. However, their approach
only takes less I/O than exact EM APSP when |E| ≥ |V | · log |V |, which is
not the sparse graph case we are typically interested in. Of course, a constant
multiplicative factor approximation of the diameter can be obtained using EM
BFS. Still, this takes Ω(|V |/√B) I/Os in the worst-case [37]. Hence, the question
arose which I/O savings could be obtained if we are willing to accept even larger
worst-case approximation errors, for example a multiplicative error of O(B).

While EM graph algorithms are usually hard on general sparse graphs they
tend to be easy on trees. Therefore, it would be tempting to extract some kind
of spanning tree T from the connected input graph G using just O(sort(|V |))
I/Os [1] and then derive the diameter DG of G from DT , the diameter of T ,
spending another O(sort(|V |)) I/Os. In fact, a recent experimental paper for
internal-memory diameter estimation [35] proposes a heuristic along these lines.
Unfortunately, since T is not necessarily a BFS tree the ratio DT /DG may be
as high as Ω(|V |) in the worst case. Hence, drawing conclusions from DT is
potentially dangerous.

In recent work [43] we provide the first non-trivial results on approximate
diameter computation for sparse graphs in external-memory with I/O complexity
better than that of BFS. Our first approach works as follows: instead of trying to
guess DG directly from DT we only use T to contract G by Euler-Tour techniques
in some controlled way resulting in a graph G′ with |V |/B vertices and O(|V |)
edges. Then a subsequent BFS run on an arbitrary vertex of G′ only takes
O(sort(|V |)) I/Os. If it identifies L ≥ 1 BFS levels then L ≤ DG′ ≤ 2 · L
and by our controlled reduction we can conclude that L ≤ DG ≤ 2 · B · L.
If we choose to contract G to only |V |/k vertices with 1 < k ≤ B then the
approximation error is reduced to a multiplicative factor of O(k). However, the
respective I/O bound becomes O(|V |/√k · B + sort(|V |)) I/Os. For k � B the
first term usually dominates. For example, if only about O(|V |/B2/3) I/Os can
be tolerated, multiplicative errors of O(B1/3) may occur.

Using a different randomized contraction scheme with subsequent EM SSSP
computation (instead of BFS) we achieve another interesting trade-off:
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O(|V |/√k · B/ log k + k · sort(|V |)) I/Os and expected multiplicative errors of
only O(

√
k) instead of O(k). This time, if we strive for about O(|V |/B2/3) I/Os,

we expect multiplicative errors of O(B1/6 · √log B). With block sizes in EM
implementations steadily increasing over the last years (currently B � 106 for
fast hard disks), B1/6 ·√log2 B has already dropped below B1/3, thus making
the second approach not only theoretically interesting.

9 Other Memory Hierarchies Models

The cache-oblivious model introduced by Frigo et al. [24] also assumes a two
level memory hierarchy with an internal memory of size M and block transfers
of B elements in one I/O. Again, the performance measure is the number of I/Os
incurred by the algorithm. However, in contrast to the classical I/O model, the
cache-oblivious algorithm does not have any knowledge of the values of M and B.
Consequently, the guarantees on I/O-efficient algorithms in the cache-oblivious
model do not only hold on any machine with multi-level memory hierarchy but
also on all levels of the memory hierarchy at the same time.

Jeff Vitter’s recent overview [56] shows that for more and more I/O-efficient
algorithms, cache-oblivious counterparts have been developed. For example con-
cerning the EM BFS/SSSP algorithms for general graphs mentioned in the sec-
tions above, cache-oblivious versions of the MM_BFS algorithm are given in [11],
for the Kumar/Schwabe SSSP algorithm in [11, 14], and for the bounded-weights
SSSP algorithm in [8].

Recently we also started the investigation ofmodels, algorithms, and data struc-
tures for flash memory [5]. Originally used in small portable devices, this block
based solid-state storage technology is predicted to become a new standard level
in the PC memory hierarchy, partially even replacing hard disks. Unfortunately,
the read/write/erase performance of flash memory is quite different from that of
hard disks. Therefore, even cache-efficient implementations of most classic algo-
rithms may not exploit the benefits of flash. Flash-efficient BFS is discussed in [4],
experimental results for SEM SSSP using a flash device appear in [44].

10 Conclusions

In this paper we have sketched the recent development of I/O-efficient BFS/SSSP
algorithms for general input graphs. Despite all improvements for undirected
graphs, significant gaps remain compared to the respective O(sort(|V | + |E|))-
I/O results for special graph classes like planar graphs (see [56] for an overview).
The differences are even larger for directed graphs. For the future, one of the
most challenging questions will be to either identify appropriate lower bounds or
to try and narrow these gaps. A first result in the latter direction was provided by
Haverkort and Toma [30]. They characterized a rather wide class of near-planar
directed graphs and gave I/O-efficient algorithms for them.
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Abstract. This article is a survey on methods from computational geo-
metry for comparing shapes that we developed within our work group at
Freie Universität Berlin. In particular, we will present the ideas and com-
plexity considerations for the computation of two distance measures, the
Hausdorff distance and the Fréchet distance. Whereas the former is easier
to compute, the latter better captures the similarity of shapes as per-
ceived by human observers. We will consider shapes modelled by curves
in the plane as well as surfaces in three-dimensional space. Especially,
the Fréchet distance of surfaces seems computationally intractable and
is of yet not even known to be computable. At least the decision problem
is shown to be recursively enumerable.

Keywords: computational geometry, shapes, distance measures,
computability.

1 Introduction

The recognition and comparison of patterns and shapes are subject of the field
of computer vision and a very essential part of modern information technology.
Most algorithms for this purpose are based on the representation of images by
pixels as they are usually produced by cameras and scanners.

Alternatively, in applications where not color or grey values but only shape
and geometric configurations of the objects displayed matter, images can be
represented and processed much more efficiently by vector graphics. Here, data
are represented by their coordinates in two- or three-dimensional space and it
makes sense to develop methods in computational geometry for processing these
data.

Consequently, in this article we will consider shapes and patterns in two- or
three-dimensional space that consist of sets of points, line segments, or triangles,
see Figure 1. It is a survey about research done in our workgroup at Freie Univer-
sität Berlin. The methods presented in most cases cannot be applied to practical
problems directly, but need to be enhanced with some heuristics which we did
successfully for the recognition of similarities in trademarks [1]. The purpose
of this paper, however, is to show that the various geometric problems related
to shape matching and recognition lead to interesting questions and challenges
within the area of algorithms and complexity.

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 235–248, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Geometric patterns and shapes

A natural problem for shapes represented as described above is how much two
shapes A and B resemble each other. In order to model resemblance rigorously,
it is necessary to define a metric or distance measure δ(A, B) on the set of shapes
which, hopefully, comes close to the intuitive human notion of resemblance. In
this article, essentially, we will discuss two distance measures and the intriguing
algorithmic problems involved in their computation.

2 The Hausdorff Distance

Suppose that shapes are considered as compact subsets of R2 or R3 and let us
denote by ‖.‖ the Euclidean metric. The distance measure for shapes that comes
to mind immediately is to consider for any point on shape A the distance to the
closest point on shape B and to maximize over all these values:

δH(A, B) = max
a∈A

minb∈B‖a − b‖

This distance measure is called the directed Hausdorff distance and it measures,
how close A is to some part of B, see Figure 2. Obviously, if A and B are compact

A B

Fig. 2. The directed Hausdorff distance from A to B is attained at the dashed line.
(Figure from MPEG7 Core Experiment CE-Shape-1 dataset.)

it is zero exactly if A is a subset of B. In order to compare complete shapes this
distance measure is made symmetric and called the Hausdorff distance:

δH(A, B) = max(δH(A, B), δH(B, A)).

For an example, see Figure 3.
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Fig. 3. The Hausdorff distance is attained at the dashed line

Let us consider now the problem of computing the Hausdorff distance for
different kinds of shapes A, B. We will explain the ideas developed in [2].

If A and B are “point patterns”, i.e., finite sets of n and m points, respectively,
there is a straightforward algorithm to compute δH(A, B) in time O(nm).

There is no similar straightforward algorithm if A and B are two sets of
line segments, more precisely, the set of points lying on these line segments. In
fact, in this case the Hausdorff distance cannot only occur between endpoints of
segments, but also between points inside the segments, see Figure 3.

With methods from computational geometry we can find an efficient algorithm
for computing the Hausdorff distance for two sets A, B of disjoint line segments
which is also the most efficient one for the special case of finite sets of points. We
first observe: Suppose that we move in one direction on one of the line segments
of A, say, and consider the distance to the closest point in set B. Then, as
long as we are in the same Voronoi cell of a segment of B the distance is a
unimodal function, i.e., monotone decreasing and then monotone increasing. So
the maximum distance on this segment can only be attained at an endpoint or
at the boundary to another Voronoi cell of B as in Figure 3. We conclude:

Lemma 1. The Hausdorff distance between two sets A, B of disjoint line seg-
ments can only occur at points that are either endpoints of line segments or
intersection points of the Voronoi diagram of one of the sets with a segment of
the other.

This property reduces the set of possible points on the segments where the
Hausdorff distance can occur to finitely many candidates, in fact only O(nm).
For each of them we can determine the distance to the other figure and return
the maximum of these values as the Hausdorff distance.

A yet more efficient algorithm can be found by the following observation:
Suppose we traverse a (straight or parabolic) Voronoi edge e of a set of line
segments and consider the distance to one of the sites whose Voronoi cell is
bounded by e. A simple geometric argument shows that this distance again is
a unimodal function. Therefore, if we consider the value of this function at all
intersection points of e with segments from the other set, its maximum will be
attained at one of the two extreme intersection points, so only these have to be
considered for each Voronoi edge. Consequently, we have reduced the number of
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candidate points where the Hausdorff distance can occur to O(n + m), namely,
the endpoints of segments and two intersection points per Voronoi edge. In order
to achieve subquadratic runtime we have to make sure to only determine the
extreme intersection points. These considerations can be combined into a sweep
line algorithm to determine the directed Hausdorff distance between A and B.

Algorithm 1

1. Compute the Voronoi diagram of B and cut the Voronoi edges at all points
where they have vertical tangents. Let VB be the resulting set of parabolic
arcs.

2. Initialize the event point schedule of the sweep line algorithm with all end-
points of segments in A and arcs in VB .

3. Perform a line sweep from left to right across the segments in A and arcs
in VB . Whenever a point p is encountered, that is an endpoint of a segment
of A or an intersection point between a segment of A and an arc a of VB,
determine the distance of p to the corresponding site in B and update the
maximum distance found so far. If p is an intersection point delete arc a
from the scene.

4. Perform a line sweep from right to left in the same manner and return the
maximum of the distances found in both sweeps as the directed Hausdorff
distance δH(A, B).

The deletion in steps 3 and 4 makes sure that only the extreme intersection
points on each Voronoi edge are determined. Since only a linear number of event
points are traversed by the line sweep, the total runtime is O((n + m) log(n +
m)). The (undirected) Hausdorff distance between A and B of course can be
determined by running the algorithm a second time with the roles of A and B
exchanged.

We conclude:

Theorem 1. The Hausdorff distance of two planar shapes consisting of n and m
disjoint line segments can be computed byAlgorithm1 in timeO((n+m) log(n+m)).

Algorithm 1 is asymptotically optimal in the algebraic decision tree model of
computation, since even for one-dimensional sets of points A, B their Hausdorff
distance is 0 exactly if they are equal, and this set equality problem has a lower
bound of Ω(n log n).

3 The Fréchet Distance

If shapes are represented by curves the intuitive understanding is that two shapes
should be compared by traversing both curves and determining how close the
courses of the two curves stay together. The Hausdorff distance does not capture
this intuition in all cases, in fact, it gives “false positives” in the sense that it
considers curves as “close” whose courses are not similar at all, see Figure 4.

A distance measure between curves that takes into account their courses, i.e.,
continuous parameterizations α, β : [0, 1] → R2 is the Fréchet distance, given by
Maurice Fréchet in 1906 [3], which is defined as follows:
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Fig. 4. Example of extremely different shapes that have a small Hausdorff distance

Definition 1. Let two curves in the plane be defined by (and identified with)
their parameterizations α, β : [0, 1] → R2. Then the Fréchet distance between α
and β is defined by

δF (α, β) = infσ,τ max
t∈[0,1]

‖α(σ(t)) − β(τ(t))‖

where σ, τ : [0, 1] → [0, 1] range over all strictly monotone increasing continuous
functions

A popular illustration of the Fréchet distance is as follows: Suppose a man is
walking his dog, the man is walking an curve α, the dog on curve β. Both are
allowed to control their speed (by functions σ and τ) but not to walk backward
on their respective curves. The Fréchet distance then is the minimum length
leash that is possible.

Observe, that it suffices to specify one of the functions σ and τ in Definition 1,
so an equivalent definition is

δF (α, β) = infτ max
t∈[0,1]

‖α(t) − β(τ(t))‖

α

β

Fig. 5. Realizing the Fréchet distance: the green lines are between points where man
and dog are located at the same time
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α

β

ε

Fig. 6. The free space diagram for α, β of Figure 5 and distance ε

Therefore, if τ is given, we obtain a unique assignment α(t) �→ β(τ(t)) between
the points on both curves, see Figure 5.

The computation of the Fréchet distance looks difficult at first sight since we
minimize over a set of functions rather than a set of values. But for polygonal
curves, which are given by piecewise linear parameterizations of their edges, we
found efficient algorithms [4] whose ideas we will explain in this section.

Let as first consider the decision problem whether for two given curves α and
β, and a given ε ≥ 0, δF (α, β) ≤ ε. To solve this problem we consider the so-
called free space which is the subset of [0, 1]2 defined by {(s, t)|‖α(s)−β(t)‖ ≤ ε}.
The free space diagram is the subdivision of [0, 1]2 in the free space and the rest.
For the two curves of Figure 5, the free space diagram is shown in Figure 6.

Now the answer to the decision problem is positive, exactly if there is a contin-
uous path, monotone increasing in both coordinates, from the lower left corner

α

β

a) b)

Fig. 7. Determining the existence of a valid path. a) Parts of cell boundaries reachable
by a monotone path from the origin are green. b) Iteratively computing the green
portions.
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(“ the origin”) to the upper right corner of the diagram, let us call it a valid
path, see Figure 6. As was mentioned before, in Definition 1 the map σ could be
the identity and then the map τ would be given by the curve in the free space
diagram.

If the curves α and β are polygonal chains of n and m edges, respectively, the
free space diagram consists of nm cells as indicated in Figure 6. Each cell corre-
sponds to the free space diagram for a pair of edges where the free space is the
intersection of a rectangle with an ellipse, as easily can be verified. Consequently,
we can compute the complete free space diagram in time O(nm).

It remains to determine whether there is a valid path within the diagram. This
can be done by considering the cells of the free space diagram row by row from
left to right starting with the bottom row. At the upper and right boundaries of
each cell we can mark those intervals that can be reached by a monotone path
from the origin, if this information is available for the lower and left boundary
(see Figure 7 b)). We conclude that the decision problem for the Fréchet distance
can be solved for polygonal curves α and β of n and m edges, respectively, in
time O(nm).

To solve the problem of computing the Fréchet distance, we could do a kind
of binary search on an interval [0, a], where a is a value guaranteed to be at
least as large as the Fréchet distance (for example the diameter of the bounding
box containing both curves) involving the algorithm for the decision problem in
each search step. This way we obtain an algorithm of runtime O(knm) to get k
correct bits of the result.

Alternatively, we can identify a certain finite set of critical values which must
contain the real Fréchet distance and apply the technique of parametric search,
see [4]. Then, we obtain

Theorem 2. The Fréchet distance between two polygonal curves α and β of n
and m edges, respectively, can be computed in time O(nm log(nm)).

The Fréchet distance can be extended in a natural way to closed curves which
is of course also of significant interest for comparing shapes. In Definition 1
we just need to minimize additionally over all possible starting points of the
parameterizations. Our algorithm can be modified so that both, the decision
and the computation problem can be solved with an additional log(nm)- factor,
see [4].

It is an natural open problem whether the quadratic runtime for computing
the Fréchet distance or even solving the decision problem can be improved. Since
no subquadratic algorithm could be found, one might also conjecture that the
decision problem belongs to the class of so-called 3SUM-hard problems, see [5],
but we could find no evidence so far for that hypothesis either.

4 Computing the Distance between Surfaces

In practice, shapes are not restricted to two dimensions and (bounding) curves,
but of course surfaces in three dimensions are an important issue in this context.
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So the question arises, how the distance measures of the previous sections can
be transferred to this higherdimensional setting. Let us assume that we have
triangulated surfaces.

4.1 Hausdorff Distance

As far as the Hausdorff distance is concerned, there are no essential difficulties, as
we showed in detail in [6]. In fact, Lemma 1 can be extended to sets of triangles
in higher dimensions:

Lemma 2. The Hausdorff distance between two sets A, B of disjoint triangles
can only occur at points that are

- vertices of triangles, or
- points inside an edge of a triangle, with the same distance to two different

triangles of the other set, i.e., intersecting a facet of its Voronoi diagram, or
- points in the interior of a triangle with the same distance to three different

triangles of the other set, i.e., intersecting an edge of its Voronoi diagram.

Lemma 2 reduces the number of possible occurrences of the Hausdorff distance to
finitely many, in fact, since the complexity of the Voronoi diagrams is quadratic,
their number is O(n2m + m2n). So, it gives a straightforward polynomial time
algorithm to compute the Hausdorff distance between A and B. The runtime
can be further improved with randomized techniques.

The lemma can even be extended from sets of triangles in R3 to sets of k-
dimensional simplices in Rd for arbitrary k, d with k ≤ d, see [6].

4.2 Fréchet Distance

The situation is not at all that easy with the Fréchet distance. Even it is not
obvious to transfer the definition of the Fréchet distance to surfaces, which was
done in a second article by Fréchet, see [7]. In fact, assuming that surfaces are
given by continuous parameterizations α, β : [0, 1]2 → R3, Definition 1 can be
adopted nearly literally:

Definition 2. Let two surfaces in d-dimensional space, d ≥ 2 be defined by (and
identified with) their parameterizations α, β : [0, 1]2 → Rd. Then the Fréchet
distance between α and β is defined by

δF (α, β) = infσ,τ max
t∈[0,1]2

‖α(σ(t)) − β(τ(t))‖

where σ, τ : [0, 1]2 → [0, 1]2 range over all orientation preserving
homeomorphisms.

“Orientation preserving” homeomorphism means that if any Jordan curve C (e.g.,
the boundary of [0, 1]2) is traversed clockwise, the induced traversal of σ(C) (in
the example again the boundary) is clockwise, as well. Observe, that also the
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term “strictly monotone increasing continuous functions” in Definition 1 is in the
one-dimensional setting equivalent to “orientation preserving homeomorphisms”.

For computational considerations we assume that surfaces are triangulated
and given by parameterizations that are affine functions on each triangle. Com-
puting the Fréchet distance of (triangulated) surfaces turned out to be a very
challenging computational problem whose complexity is yet unsolved. The first
major result in this direction was obtained by Godau in his Ph.D. thesis [8] who
showed

Theorem 3. Computing the Fréchet distance of two given surfaces α, β is
NP-hard.

In fact, it was shown that even the decision problem whether for a given ε > 0
δF (α, β) < ε is NP-hard. This result is independent of the dimension of the
space containing the surfaces, in fact, it was shown for (two-dimensional) surfaces
in R2.

The idea of the proof is that input surfaces can be designed where, in order
to achieve a distance less than ε, homeomorphisms according to Definition 2 are
forced to twist the triangles of one surface in one of two possible directions. This
binary information can be propagated along chains of triangles. Therefore, it
is possible to model edges and nodes of any graph which is an instance of the
planar 3-satisfiability problem which is known to be NP-complete.

Observe that Theorem 3 does not claim that the decision problem is NP-
complete and indeed it is unknown whether it is in NP. Even more surprisingly,
it is of yet not known to be decidable at all, so the Fréchet distance is not known
to be computable.

As is well known, most problems in computational geometry can easily be
shown to be decidable, since they can be formulated in the first order theory of
the reals whose theorems are decidable [9]. Here, we have a different situation,
since in the definition of the Fréchet distance we not only minimize over real
numbers but also over all possible homeomorphisms, i.e., functions. So, with
this definition, the statement that δF (α, β) < ε can be expressed as a second
order but not as a first order formula.

In connection with the Ph.D. thesis of Maike Buchin [10, 11] we were able to
obtain more insight into the problem. Since the Fréchet distance δF (α, β) is a
function whose values are real numbers, it is necessary to define more precisely,
what it means that the Fréchet distance is computable. We follow the definitions
of the research community concerned with the computability and complexity
of real functions (see, e.g., [12]). Essentially, a real valued function ϕ is called
computable, if and only if there exists an algorithm (Turing machine) which with
an argument x of ϕ as input produces an infinite sequence of rational numbers
which converges to ϕ(x). Together with each approximate function value in the
sequence, it is required to output an error bound, and the error bounds form a
sequence which converges to zero.

As was said before, the Fréchet distance between triangulated surfaces is not
known to be computable. However, we could show that it is computable in a
weak sense according to the following definition:
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Definition 3. A function ϕ : N → R is called upper (lower) semi-computable
iff there is a Turing machine which on input x outputs an infinite, monotone
decreasing (increasing) sequence of rational numbers converging to ϕ(x).

The result we could obtain is:

Theorem 4. The Fréchet distance between two triangulated surfaces in space
Rd, d ≥ 2, is upper semi-computable.

Observe, that semi-computability is in some sense a weak property concerning
the computability of functions. In fact, any arbitrary prefix of the infinite output
sequence does not reveal much of the real function value, which still could be
far away from the last approximation value produced. However, the concept is
not unknown in classic computability theory. In fact, Theorem 4 immediately
implies the following corollary, where 〈α, β, a〉 denotes some standard encoding
of a triple consisting of two triangulated surfaces α and β, and some rational
a > 0.

Corollary 1. The set {〈α, β, a〉| δF (α, β) < a}, i.e., the decision problem for
the Fréchet distance is recursively enumerable.

In fact, consider the Turing machine producing a monotone decreasing sequence
converging to δF (α, β) which exists by Theorem 4. Stop this Turing machine
and accept as soon as it produces a value less than a. Thus, the algorithm will
eventually halt for all triples 〈α, β, a〉 in the language and it will run forever
for the ones not in the language. Curiously, the corollary cannot be derived any
more, if we replace the <-sign by a ≤-sign.

The complete proof of Theorem 4 is quite technical using results from
piecewise linear topology. Here, we will only explain the underlying ideas.

Since we assume that the two input surfaces α and β are triangulated and
given by a parameterization that is affine on the single triangles there must be
corresponding triangulations K0 and L0 of the parameter space [0, 1]2. By K1

and L1 we denote the refined triangulations obtained from K0 and L0 by barycen-
tric subdivision, i.e., dividing each triangle into nine smaller triangles by con-
necting the centers of the edges with the opposite vertex through a line segment.
Continuing this process we obtain sequences K0, K1, K2, .. and L0, L1, L2, ..
of more and more refined triangulations where the diameters of the triangles
converge to 0, see Figure 8.

Fig. 8. Barycentric subdivisions K0, K1, K2, K3



The Computational Geometry of Comparing Shapes 245

Observe that, as in the case of curves, we can assume that one of the homeo-
morphisms in Definition 2 is the identity, we will assume here that it is τ . The
main idea is now that any homeomorphism σ on [0, 1]2 realizing the Fréchet
distance (or coming arbitrarily close to it) can be approximated by a so called
mesh homeomorphism. By mesh homeomorphism we mean a homeomorphism
that maps any edge of some refinement Kn to a polygonal path consisting of
edges of some refinement Lm, see Figure 9. This property can be shown in two
steps: First, it is well known in topology that any homeomorphism σ, e.g., on
[0, 1]2, can be approximated arbitrarily closely by a piecewise linear (PL) home-
omorphism h′, i.e., one which is linear on each triangle in some triangulation of
[0, 1]2, see [13]. Secondly, we could show that any PL-homeomorphism can be
approximated arbitrarily closely by a mesh homeomorphism , see Figure 9.

Observe that there is only a countable number of possible mesh homeomor-
phisms. What we have to do now is to make sure that the infinitely running
algorithm generates and tests them all. Since the sizes of the triangles in the
subdivisions get smaller and smaller, it suffices to check the distances of the ver-
tices in a triangle of Kn to all vertices of the assigned region in Lm. Altogether,
we obtain the following algorithm:

Algorithm 2
Input
Triangulated surfaces α, β, including triangulations K, L of the parameter spaces,
in a finite description.

Output
A monotone decreasing sequence of rational numbers converging to δF (α, β)

set D = ∞;
forall (n, m) ∈ N × N do

generate the barycentric subdivisions Km of K and Ln of L;
let E = {e1, ..., ek} be the set of edges in Km;
forall k-tuples (π1, ..., πk) of simple polygonal chains in Ln do

assign to the edge ei the polygonal chain πi for i = 1, ..., k;
if this assignment results in an orientation preserving

homeomorphic image of Km then
set M = 0;
forall triangles Δ of Km do

let HΔ ⊂ |Ln| be the region in Ln assigned to Δ;
forall vertices v of Δ and vertices w of HΔ do

set M = max(M, ‖f(v) − g(w)‖);
end

end
set D = min(D, M);
output D;

end
end

end
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a) b) c) d)

Fig. 9. Approximating a homeomorphism σ by a mesh homeomorphism: a) K1 b)
σ(K1) c) approximation by a PL-homeomorphism d) approximation by a mesh home-
omorphism

The first forall-loop can be realized by some standard enumeration method
for pairs of integers. We assume, that in instead of the Euclidean distance a
rational approximation is computed, where the approximation error tends to
zero with growing m and n.

The number of k-tuples of polygonal chains of Ln in the second forall-loop is
finite. In fact, it is bounded by (l!)k where l is the number of edges in Ln, which
itself is exponential in n, whereas k is exponential in m. But efficiency is not the
issue here.

Finally, let me remark that a relaxed variant of the Fréchet distance, which we
called weak Fréchet distance does not cause all these computational difficulties.
The weak Fréchet distance is defined as in Definitions 1 and 2, where we assume
that σ and τ range, instead of over all homeomorphisms, over all surjective maps
on [0, 1] or [0, 1]2, respectively. For the man-dog illustration this means that man
and dog may run forward, but also backward, as well. It turns out [11], that the
weak Fréchet distance can be computed in polynomial time.

5 Concluding Remarks

Of course, the problem of comparing shapes A, B consists not only of determining
their distance with respect to some distance measure δ. It cannot be assumed
that they are already in a position minimizing δ(A, B), but that, say, B can
undergo some transformation in order to be matched with A as good as possible.
Natural sets of transformations are translations, rigid motions (=translation
and rotation), similarities (scaling and rigid motion), or more general, arbitrary
affine transformations. So, formally we can define the resemblance of two shapes
under distance measure δ and transformation set T as

rδ,T = min
t∈T

δ(A, t(B))

and the matching problem is to find a transformation t ∈ T where this minimum
is attained.

We also worked on the development of shape matching algorithms with re-
spect to the Hausdorff distance and the Fréchet distance. Again, it turned out
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that matching shapes under the Hausdorff distance is efficiently possible, in prin-
ciple [2]. We also found polynomial time algorithms with respect to the Fréchet
distance of curves [14] but the exponents in the runtimes are forbiddingly high.
Finally, we resorted to probabilistic methods for shape matching, which also can
be applied for practical tasks [15].

We are aware, that geometric proximity is only one aspect of the similarity of
shapes. Further criteria are, e.g., the slope and curvature of curves and surfaces,
which should be handled with methods from differential geometry. In this context,
the work of David Mumford appears to be particularly interesting, see, e.g., [16].

Beyond the geometric grasp are aspects that are related to semantic proximity
of shapes, i.e., connections that are established based on our experience. Con-
sider, e.g., a drawing of an elephant from the front and one from the side where
every child will recognize the similarity, but it is not possible to be captured by
shape matching.

Nevertheless, as our cooperation with a company that recognizes similarities
in trademarks shows, geometric aspects of comparing shapes can help to some
extent to solve the various extremely challenging problems of computer vision [1].
And it is my feeling, that the more theoretical challenges concerning complexity
and computability of even the most simple questions in this context are intriguing
enough to deserve a thorough investigation.

Let me conclude with the remark that this line of research that kept us busy
for many years and also was carried on by other groups in the computational
geometry community was initiated more than twenty years ago by an article
investigating algorithmic aspects of comparing point patterns [17]. We did that
work together with a researcher, whom I had the privilege to have as a Ph.D.
advisor thirty-three years ago and to whose birthday this Festschrift is dedicated,
Kurt Mehlhorn.
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Abstract. Designing and analysing efficient algorithms is important
in practical applications, but it is also fun and frequently instructive,
even for simple problems with no immediate applications. In this self-
contained paper we try to convey some of fun of algorithm design and
analysis. Hopefully, the reader will find the discussion instructive as
well.

We focus our attention on a single problem that we call the All Near-
est Larger Neighbors Problem. Part of the fun in designing algorithms
for this problem is the rich variety of algorithms that arise under slightly
different optimization criteria. We also illustrate several important ana-
lytic techniques, including amortization, and correctness arguments using
non-trivial loop invariants.

We hope, in this modest way, to reflect our deep admiration for
the many contributions of Kurt Mehlhorn to the theory, practice and
appreciation of algorithm design and analysis.

1 What Is the ANLN Problem?

Here is a general definition of our All Nearest Larger Neighbors (ANLN) Problem:
Given a set S of n objects, find, for each object x in S, an object y in S (if one
exists) that is (i) larger than x and (ii) at least as close to x as any other object z
that is larger than x. We implicitly assume that any two objects are comparable,
that is, one of them is larger than the other or they are equal. As we shall see,
the problem is simplified considerably if we can assume that all elements are
distinct.

Although the ANLN problem seems very natural and worthy of study even
without specific applications, it is easy to imagine scenarios in which it could
arise. For example, in emergency situations we often rely on protocols for sending
messages from all individuals to some specified leader (or the reverse). It is easy
to see the desirability of a tree-like protocol where (i) individual links are “short”
and (ii) nodes closer to the root (leader) have greater authority (measured,
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© Springer-Verlag Berlin Heidelberg 2009
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perhaps, by transmission power/capacity). To enact such a protocol, where
each node has an assigned authority, it suffices to associate with every node its
closest neighbor with higher authority.

2 The ANLN Problem for Linear Arrays

We begin with the simplest possible situation: the objects are n real numbers
presented in an array A[1..n]. For each element A[i], we want to determine an
element A[j] among those with keys larger than A[i] that is closest to A[i], that
is for which |j − i| is minimized, with ties broken in favor of the lower indexed
neighbor.

Of course, an element with the largest key has no such larger neighbor. For
this reason, as well as to simplify the presentation of some of our algorithms, we
will assume that the array A has been implicitly extended to A[−n..3n], with
A[−n] = A[3n] = ∞ and A[j] = −∞ for j ∈ [−n+1..0]∪ [n+1..3n−1]. It should
be clear that with this extension the nearest larger neighbors of all non-maximal
elements of A[1..n] are unaltered and the nearest larger neighbor of all maximal
elements of A[1..n] is A[−n].

[ANLN Problem for a Linear Array]

Input: An array A[1..n] of n real numbers.
Output: An array NLN [1..n] such that A[NLN [i]] is the nearest larger neigh-

bor of A[i]. If A[i] is a largest element in A[1..n] then NLN [i] = −n.

Figure 1 shows an example of an array A containing 10 numbers together with
its associated NLN array.

1 2 3 4 5 6 7 8 9 10
A 87 32 12 54 28 35 14 61 18 53

NLN -10 1 2 1 4 4 6 1 8 8

Fig. 1. An example of an array A containing 10 elements together with its associated
NLN array

2.1 A Simple Linear-Time Stack-Based Algorithm

The ANLN problem has a very straightforward linear-time solution by
computing NLN values to both the left (LNLN) and right (RNLN), using a
stack:
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Algorithm 1. (Double Stack-Scan): Compute both Left and Right NLN
values
Input: Array A[1..n] of keys.
Output: Associated array NLN [1..n].
begin1

initialize stack S as ∅2

for i = 1 to n do3

while S = ∅ and A[i] ≥ A[top(S)] do4

pop(S)5

if S = ∅ then LNLN [i] = −n else LNLN [i] = top(S)6

push A[i] onto S7

reinitialize stack S as ∅8

for i = n to 1 do9

while S = ∅ and A[i] ≥ A[top(S)] do10

pop(S)11

if S = ∅ then RNLN [i] = 3n else RNLN [i] = top(S)12

push A[i] onto S13

for i = 1 to n do14

if i − LNLN [i] ≤ RNLN [i]− i then NLN [i] = LNLN [i] else15

NLN [i] = RNLN [i]

end16

The analysis of Algorithm 1 is completely straightforward. While its linear
time complexity is clearly (asymptotically) optimal, it comes at the cost of us-
ing linear space, both for the stack S and the intermediate NLN results. In
recognition of the constraints of software embedded in highly functional devices
like digital cameras and scanners, there has been a considerable amount of at-
tention paid recently to the development of algorithms that use only a modest
amount of working space. Thus, we are motivated to ask to what extent this is
possible for the ANLN problem.

In practice, it is quite reasonable to allow working space of size that is logarith-
mic in the input size, since otherwise it is quite hard to incorporate recursion
in designing algorithms. In this paper we restrict our attention to even more
severely space-restricted algorithms. An algorithm is called a constant-working-
space algorithm if it satisfies the following conditions.

Input: Input data are provided using a read-only array.
Output: Output data must be written to a write-only array.
Recursion: If recursive calls are included in the algorithm, stack area for

recursive calls is considered as a part of the working space.
Working space: Arrays may be available in the algorithm, but their sizes must

be constant independent of input sizes. Each element (variable or array
element) may contain O(log n) bits where n is the input size.
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2.2 A Simple Linear-Time Stack-Based Algorithm

The most obvious way to compute NLN values with limited space is to do so one
at a time. Since we need to identify only the closer of the two (left and right)
nearest larger neighbors, it is natural to adopt a bidirectional search strategy
(extending the neighborhood outward one step at a time) until we find a larger
element.

It is easy to see that the following algorithm satisfies the constant working-
space conditions:

Algorithm 2. (Bidirectional Scan): Scan neighborhoods by increasing
distance.
Input: Array A[1..n] of keys.
Output: Associated array NLN [1..n].
begin1

for i = 1 to n do2

NLN [i] = −n3

for k = 1 to max{i − 1, n − i} do4

if i − k ≥ 0 and A[i − k] > A[i] then5

NLN [i] = i − k6

break7

if i + k ≤ n and A[i + k] > A[i] then8

NLN [i] = i + k9

break10

end11

Lemma 1. Algorithm 2 correctly computes the array NLN [1..n] in O(n2) time.
Furthermore, there is an example which requires Ω(n2) time.

Proof. The algorithm consists of double loops, and clearly runs in O(n2) time.
It is also easy to see that if n given numbers are all the same then Algorithm 1
takes Ω(n2) time. �
Somewhat surprisingly, Algorithm 2 is considerably more efficient, in the worst
case, if we restrict attention to input arrays with no duplicate keys:

Theorem 2. [Power of Bidirectional Search]
Assuming that the elements of A[1..n] are all distinct, Algorithm 2 computes the
array NLN [1..n] in Θ(n log n) time in the worst case.

Proof. By the assumption that every input number is distinct, there is a unique
largest element in A[1..n]. Let di = |i−NLN [i]| and define σ to be a permutation
for which

dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(n−1). (1)
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Let k ∈ {1..n} and consider the distribution of the k elements A[σ(1)], . . . ,
A[σ(k)] in the array (see Figure 2). The smallest distance between two such
elements, realized say by A[σ(i)] and A[σ(j)], must be no more than n/(k + 1).
By our element distinctness assumption the two elements A[σ(i)] and A[σ(j)]
cannot be equal; without loss of generality assume that A[σ(i)] < A[σ(j)]. Then
dσ(k) ≤ dσ(i) ≤ n/(k + 1).

σ(i) σ(j)

dmin

Fig. 2. Distribution of array elements with k largest distances (shaded elements) and
two such elements with the minimum gap

Since the running time of the algorithm is Θ(
∑n

k=1 dk), the upper bound on
the cost of Algorithm 2 follows from the fact that

n∑
k=1

dk =
n∑

k=1

dσ(k) ≤
n∑

k=1

n

k + 1
= O(n log n). (2)

It is also easy to show that there is an example for which Algorithm 2 takes
Ω(n log n) time. Let n = 2t+1−1. We construct a permutation of (1, 2, . . . , 2t+1−
1) by (i) assigning the keys (1, 2, . . . , 2t+1−1) to the nodes of a perfectly balanced
binary tree T (of height t) in max-heap order, and (ii) listing the keys by an
in-order traversal of T . It is easy to see that all 2t−h keys at height h < t have
NLN distances equal to 2h. Thus the cost of Algorithm 2 is Θ(t2t) = Θ(n log n)
in this case. �
It remains to see if we can improve upon the simple bidirectional search strategy
when the input array contains duplicate elements.

2.3 Improvements with Duplicate Keys

Two Distinct Numbers. Suppose that the input sequence contains elements
in {0, 1}.
Lemma 3. NLN -values for any {0, 1}-array A[1..n] can be found in O(n) time
using constant working space.

Proof. First, set NLN [i] = 0 for all i such that A[i] = 1 since all such elements
have no larger neighbor. It remains to show how to assign NLN [i] for all i such
that A[i] = 0.

Suppose that at least one such element exists (otherwise, nothing remains to
be done). Let A[i..j] be any maximal interval of 0 elements within A[1..n]. If



254 T. Asano, S. Bereg, and D. Kirkpatrick

i = 1 then, by maximality, A[j +1] = 1 and so NLN [x] = j +1, for all x ∈ [i, j].
Similarly, if j = n then NLN [x] = i − 1, for all x ∈ [i, j]. Alternatively, it must
be the case that both A[i − 1] = 1 and A[j + 1] = 1 and hence NLN [x] = i − 1,
for x ∈ [i, m], and NLN [x] = j + 1, for x ∈ [m + 1, j], where m = �(i +
j)/2	.

Since both identifying maximal sequences of 0’s and assigning NLN -values,
as specified, can be done with constant working space, the result follows. �

Remark. Suppose that the input sequence contains elements in {−1, 0, 1}. It
is straightforward to modify the algorithm above to compute NLN [x] for all x
such that A[x] = 0.

k Distinct Numbers. Suppose now that the input array A contains k distinct
numbers. Assume for simplicity that they are 1, 2, . . . , k. By definition NLN [x] =
0, for all x such that A[x] = k. For each v = 1, 2, . . . , k − 1, we use the above
algorithm using the following implicit transformation of A. Replace A[j] by -1
(respectively, 0 or 1) if it is < (respectively,= or >) v. By the result of the
previous subsection, the running time to compute the NLN -values associated
with the 0-elements (of the implicit array) is O(n) and the working space is O(1).
Thus, the total running time is O(kn).

General Algorithm–Not Necessarily Distinct Inputs. Suppose that the
input contains k distinct numbers, where k is any number from 1 to n. We design
an algorithm that achieves the running time of two above algorithms: the time
is O(n min{k, log n}).

Our algorithm is presented in pseudo code as Algorithm 3. We assume that
the input is given by an array A[1..n] of real numbers. Recall that, to make
NLN [i] defined for largest elements in A[1..n] and to avoid cluttering the pseudo
code with indexing checks, we have further assumed that the array A has been
extended so that A[−n] = A[3n] = ∞ and A[j] = −∞, for j ∈ [−n + 1..0]∪ [n +
1..3n].

The high level structure of Algorithm 3 is a repetition, for all elements a ∈
[1..n] of a process that we call ScanFrom(a). If, for some s > 0, the elements of
the subarrays A[a− 2s..a− s− 1] and A[a+1..a+ s] all have value at most A[a],
the elements of the subarray A[a − s + 1..a − 1] all have value less than A[a],
and the element A[a − s] has value equal to A[a], then we say that the index a
is passive; otherwise, it is active. ScanFrom(a) either aborts without reporting
any NLN -values (having discovered that index a is passive) or it reports the
NLN -value of a and all indices i > a for which A[i] = A[a], up to (but not
including) the first (smallest) such index that is active.

The algorithm is presented in a way that emphasizes the fact that the elements
a ∈ [1..n] can be treated in any order (or even in parallel).
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Algorithm 3. Finding nearest-larger-neighbours in an array A.
Input: Array A[1..n] of keys.
Output: Associated array NLN [1..n].
begin1

forall a ∈ {1, . . . , n} do2

/* ScanFrom(a) */
x ← A[a];3

s ← 1; e ← a;4

while A[a − s] < x and A[a + s] ≤ x do /* Invariant 1 */5

if A[a + s] = x then e ← a + s;6

s ← s + 1;7

/* (A[a − s] ≥ x or A[a + s] > x) and Invariant 1 */
if A[a + s] > x then8

r ← a + s ; /* A[r] > x */9

if A[a − s] > x then l ← a − s else l ← a − s − 1;10

/* A[l] ≤ x ⇒ r − a < a − l */
else /* A[a − s] ≥ x and Invariant 1 */11

p ← s;12

while A[a − p] ≤ x do /* Invariant 2 */13

if p = 2s then abort ScanFrom(a) /* Index a is14

passive */
p ← p + 1;15

/* A[a − p] > x, p ≤ 2s and Invariant 2 */
l ← a − p ; /* A[l] > x */16

t ← a + s;17

while t − e < e − l and A[t] ≤ x do /* Invariant 3 */18

if A[t] = x then e ← t ;19

t ← t + 1;20

/* A[t] ≤ x ⇒ t − e ≥ e − l */
r ← t;21

/* Invariant 4 */
if r − a ≥ a − l then NLN [a] ← l else NLN [a] ← r;22

j ← a; i ← a + 1;23

while i ≤ e do /* Invariant 5 */24

if A[i] = x then /* j − l > i − j */25

if r − i ≤ i − j then /* Index i is active */26

abort ScanFrom(a);27

else /* Index i is passive */28

if r − i ≥ i − l then NLN [i] ← l else NLN [i] ← r;29

j ← i;30

i ← i + 1;31

end32
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The following invariants describe the evolving knowledge about the structure
of the array A, and serve to support our proof of correctness.

Invariant 1
(i) A[k] < x, for a − s < k < a;
(ii) A[a] = x;
(iii) A[k] ≤ x, for a < k < e;
(iv) A[e] = x; and
(v) A[k] < x, for e < k < a + s.

Invariant 2
(i) A[k] ≤ x, for a − p < k < a;
(ii) A[a − s] ≥ x;
(iii) A[k] < x, for a − s < k < a;
(iv) A[a] = x;
(v) A[k] ≤ x, for a < k < e;
(vi) A[e] = x; and
(vii) A[k] < x, for e < k < a + s.

Invariant 3
(i) A[k] ≤ x, for l < k < a;
(ii) A[a] = x;
(iii) A[k] ≤ x, for a < k < e;
(iv) A[e] = x; and
(v) A[k] < x, for e < k < t.

Invariant 4
(i) A[k] ≤ x, for l < k < a;
(ii) A[a] = x;
(iii) A[k] ≤ x, for a < k < e;
(iv) A[e] = x;
(v) A[k] < x, for e < k < r;
(vi) A[l] ≤ x
⇒ (A[r] > x & r − a < a − l);
(vii) A[r] ≤ x
⇒ (A[l] > x & r − e ≥ e − l).

Invariant 5
(i) A[k] ≤ x, for l < k < j;
(ii) A[j] = x;
(iii) A[k] < x, for j < k < i;
(iv) A[k] ≤ x, for i ≤ k < e;
(v) A[e] = x; and
(vi) A[k] < x, for e < k < r.

Confirmation of these invariant properties (at the appropriate locations in the
algorithm) is a lengthy, but completely straightforward, exercise.

Lemma 4. All NLN -values assigned by Algorithm 3 are correct

Proof. NLN -values are assigned in lines 22 and 29. The correctness of these
assignments follows immediately from Invariant 4. �
We refer to the interval of array indices encountered during ScanFrom(a) as the
reach of ScanFrom(a). Index u in the reach of ScanFrom(a) satisfying A[u] =
A[a] is said to be a predecessor (respectively, successor) of index a if u < a
(respectively, u > a). Note that if a is passive then it must have a predecessor
and hence, by transitivity, a nearest active predecessor.

Lemma 5. For all a, 1 ≤ a ≤ n, NLN [a] is assigned exactly once. If a is active
then NLN [a] is assigned during ScanFrom(a). If a is passive then NLN [a] is
assigned during ScanFrom(u), where u is the nearest active predecessor of a.

Proof. It is straightforward to confirm that ScanFrom(a) aborts at line 14 if and
only if index a is passive. Hence, if index a is active then NLN [a] is reported
at line 22. Since ScanFrom(a) never reports NLN-values for indices i < a, or for
active indices i > a, the lemma clearly holds for active indices.
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Suppose now that index a is passive. Since ScanFrom(a) aborts at line 14, if
NLN [a] is reported it must occur during ScanFrom(u), for one or more active
indices u < a. But, by line 26, NLN [a] is not reported during ScanFrom(u) if
there exists an active index w between u and a. Thus, if NLN [a] is reported it
must occur during ScanFrom(u), where u is the nearest active predecessor of a.

Suppose that a is the smallest passive index such that NLN [a] is not assigned
during ScanFrom(u), where u is the nearest active predecessor of a. By the
minimality of a, we can assume that all passive predecessors of a following u
are assigned during ScanFrom(u). It follows, by lines 26-29, that a must not lie
within the reach of ScanFrom(u). Hence, by Invariant 3, the the gap separating
a from its closest predecessor v, must be at least the distance from v to the
left reach of ScanFrom(u). But this contradicts our assumption that index a is
passive. �
One can easily convert A into a implicit array of distinct numbers by replacing
A[i] by the pair (A[i], i) and using lexicographic order on the pairs. Let di be
the distance of A[i] to its nearest larger neighbor in this lexicographic order. Let
D =

∑n
i=1 di.

Lemma 6. Algorithm 3 runs in O(D) time and uses constant working space.

Proof. It is clear from inspection of the pseudo code that Algorithm 3 uses
constant working space and that the cost associated with ScanFrom(a) is propor-
tional to the size of the reach of ScanFrom(a). Thus, to show that
Algorithm 3 uses O(D) time it suffices, in light of Lemma 5, to show that the
reach of ScanFrom(a) is (i) O(da), if a is passive, and (ii) O(

∑
i∈R(a) di), where

R(a) denotes the set of all indices whose NLN -values are set in ScanFrom(a),
otherwise.

Case (i) is clear since, when ScanFrom(a) aborts, the reach of ScanFrom(a)
is [a− 2da..a + da]. For case (ii), we first note that if the nearest larger neighbor
of a has an index larger than a, or if a has no successor within the reach of
ScanFrom(a), then the reach of ScanFrom(a) is at most [a−2da..a+2da]. So we
can assume that l (the left reach of ScanFrom(a)) is the nearest larger neighbor
of a and that a has one or more successors within the reach of ScanFrom(a). Let
w denote the rightmost such successor.

By lines 18-20, the size of the reach of ScanFrom(a) is at most twice the gap
from l to w. Since the gap from l to a is at most 2da, and the gap from any
inactive successor u of a to its immediate predecessor is exactly du, the result
follows directly from Lemma 5 if all of the successors of a are inactive (and
hence belong to R(a)) . On the other hand, if a has an active successor, and v
denotes the nearest such successor, then the gap between v and its immediate
predecessor u must be less than the gap from l to u (otherwise v would not
be in the reach of ScanFrom(a)). Furthermore, since v is active, it also follows
that the gap between v and the right reach of ScanFrom(a) is no more than the
gap between v and u. But, as we have already already argued, the gap between
l and u is O(

∑
i∈R(a) di). It follows that the full reach of ScanFrom(a) is also

O(
∑

i∈R(a) di). �
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Lemma 7. If array A[1..n] contains k distinct elements then D = O(n min
(k, log n)). Furthermore, in the worst case, D = Θ(n min(k, log n)).

Proof. The result when k > log n follows immediately from the proof of Theorem
2. So suppose that k ≤ log n. To show that D = O(nk) consider any number x
in A[1..n]. Let i1, i2, . . . , ir be the indices of x, i.e. x = A[i1] = A[i2] = . . . A[ir].
By definition, dip ≤ ip+1− ip, for 1 ≤ p < r, and hence di1 +di2 + . . . dir = O(n).
It follows that D = O(nk).

It remains to show that there exists a sequence of n numbers from the set
{0, 1, . . . , k−1} such that D = Ω(nk). Suppose, for simplicity, that n = 2t+1−1.
We construct a sequence by (i) assigning the key k− s to all 2s−1 nodes on level
s, for 1 ≤ s < k, of a perfectly balanced binary tree T (of height t) in max-heap
order, (ii) assigning key 0 to nodes on all other levels and (iii) listing the keys by
an in-order traversal of T . It is easy to see that all 2k−x−1 keys of value x have
NLN distances equal to 2t−k+x, for 1 ≤ x < k−1. Thus the cost of Algorithm 3
is Θ(2tk) = Θ(nk) in this case. �

3 NLN Problem in Higher Dimensions

It is natural to consider the NLN problem in higher dimensions as well. In two
dimensions, suppose we have an array A of size m×m. For each element A[i, j]
we want to find a larger element A[p, q] that is nearest to A[i, j]. We consider the
situation where distance between two such array elements is measured using the
L1 metric (|p− i|+ |q − j|) or the L2 (Euclidean) metric (

√
(p − i)2 + (q − j)2).

A natural idea (that generalizes the one-dimensional bidirectional search) for
solving the nearest larger neighbors problem is to examine neighbors in the
increasing order of their distances. We call this algorithm the Distance Heuristic.

For L1 distance the Distance Heuristic has a straightforward constant-space
implementation that exploits the fact that the L1 k-neighborhood of an element
A[i, j] (the set of elements A[p, q] whose L1 distance from A[i, j] is exactly k)
forms a rhombus within A centered at A[i, j] and has a simple constant-space
enumeration.

If the nearest larger neighbor of A[i, j] has L1 distance di,j , then the time re-
quired to determine NLN [i, j] is O(d2

i,j). Let dk denotes the k-th largest among
the m2 NLN -distances and consider the distribution of the k elements of A
whose NLN -distances are at least dk. Since dk is the smallest L1 distance be-
tween two such elements, it must satisfy the inequality k(dk/2)2 ≤ m2. Thus
we have d2

k ≤ 4m2/k. It follows, by the same analysis used in the proof of
Theorem 2, that the Distance Heuristic runs in O(m2 log m) time if all elements
are distinct.

The problem of implementing the Distance Heuristic using L2 distances is
slightly more involved. The main difficulty is that there seems to be no efficient
way of generating neighbors in increasing order of their L2 distances from a fixed
element A[i, j], using only constant working space. Fortunately, we do not really
need to generate neighbors in strictly increasing order.
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The idea is the following. We first find the L1 NLN -distance di,j associated
with A[i, j], as above. We then find the element, among all elements larger than
A[i, j] with L1 distance between di,j and

√
2di,j , that minimizes the L2-distance

from A[i, j]. (See the pseudocode for Algorithm 4 for more detail.)

Algorithm 4. L2-Distance Heuristic.
Input: Array A[1..m, 1..m] of keys
Output: Associated array NLN [1..m, 1..m]
begin1

for each element A[i, j] in A do2

// First Phase: find an L1 nearest larger neighbor //3

k = 0; D = ∞4

repeat5

for each element A[p, q] in the L1 k-neighborhood of A[i, j] do6

if A[p, q] > A[i, j] then7

D = (p − i)2 + (q − j)28

NLN [i, j] = (p, q)9

until k = m or D < ∞10

if D = ∞ then NLN [i, j] = (−m,−m) else11

t = k12

repeat13

for each element A[p, q] in the L1 t-neighborhood of A[i, j]14

do
if A[p, q] > A[i, j] and (p − i)2 + (q − j)2 < D then15

D = (p − i)2 + (q − j)216

NLN [i, j] = (p, q)17

until t >
√

2k18

end19

Theorem 8. The L2-Distance Heuristic solves the Nearest Larger Neighbors
Problem in O(m2 log m) time for any m×m array A, under the assumption that
all elements are distinct. Furthermore, there is an example of such an array for
which Θ(m2 log m) time is required.

Proof. The correctness of the algorithm using the L1 distance is obvious since
we generate neighbors in the increasing order of the L1 distances. For the L2
distance we also generate neighbors using the L1 distances. We exploit the fact
that L1 distance overestimates L2 distance by a factor between 1 and

√
2. See

Figure 3.
The following example shows that the bound is tight, in the worst case. Sup-

pose that m = 2k + 1. We construct a m × m array A with keys from 1 to
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m2 = 22k + 2k+1 + 1 such that Distance Heuristic takes Ω(m2 log m) time to
solve NLN problem for A. Our construction is recursive and assumes that the
keys in the first and last row and column are the larger than any key in the
interior of a given subarray. We initialize this invariant by assigning the 4m− 4
largest keys arbitrarily to the first and last rows and columns of A. To continue
we first assign the next largest key to the central position A[2k−1 + 1, 2k−1 + 1]
and then the next 4m−5 largest elements arbitrarily to the unassigned positions
in the middle row and column of A. In effect this partitions A into four subar-
rays of size 2k−1 × 2k−1 (with overlapping boundaries) that satisfy the invariant
assumption. Thus, we are free to continue the assignment of keys recursively in
each of these submatrices.

The specified assignment has the property that that each of the 4t central
elements assigned at the t-th level of recursion has a nearest larger neighbor at
distance 2k−1−t, for 0 ≤ t < k. Thus, summing over these central elements only
we see that the Distance Heuristic takes time at least

∑k−1
t=0 4t(2k−1−t)2 which

is Θ(k2k) or Θ(m2 log m). �

(i, j)

(p, q)

d1((i, j), (p, q))

√
2D1

Fig. 3. The region to check whether a closer larger neighbor exists

4 Extensions

It is not hard to see how to extend the Distance Heuristic (for both L1 and L2)
to work on d-dimensional arrays of total size md in time O(md log m), assuming
all keys are distinct. However, when d > 1 it remains an open problem how to
achieve this same bound if the distinctness assumption is dropped.

For the one-dimensional ANLN problem, the reader may find it an interesting
exercise to implement Algorithm 3 as a distributed (message passing) algorithm
on a ring of processors.
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Abstract. This paper presents a framework for multi-core implemen-
tations of divide and conquer algorithms and shows its efficiency and
ease of use by applying it to some fundamental problems in compu-
tational geometry. The framework supports automatic parallelization of
any D&C algorithm. It is only required that the algorithm is implemented
by a C++ class implementing a so-called job-interface. We also report
on experimental results and discuss some aspects of the automatic par-
allelization of randomized incremental algorithms. Some results of this
paper have been presented in the 20th Annual Canadian Conference on
Computational Geometry ( [13]).

1 Introduction

Performance gain in computing is no longer achieved by increasing cpu clock
rates but by multiple cpu cores working on shared memory and a common cache.
In order to benefit from this development software has to exploit parallelism
by multi-threaded programming. In this paper we present a framework for the
parallelization of divide and conquer (D&C) algorithms and show its efficiency
and ease of use by applying it to a fundamental geometric problem: computing
the convex hull of a point set in two dimensions.

In general our framework supports parallelization of divide and conquer algo-
rithms taking as input a linear container of objects (e.g. an array of points). We
use the STL iterator interface ( [1]), i.e., the input is defined by two iterators
left and right pointing to the leftmost and rightmost element of the container.
The framework is generic. It can be applied to any D&C-algorithm algorithm
that is implemented by a C++ class template implementing the interface defined
in Section 2.1.

The paper is structured as follows. In Section 2 we discuss some aspects of
the parallelization of D&C-algorithms. Section 2.1 defines the job-interface which
has to be used for the algorithms, such that the solvers presented in Section 2.3
can be applied. In Section 3 we discuss a similar approach for the parallelization
of incremental algorithms. Section 4 presents experimental results, in particular
the speedup achieved for different numbers of cpu cores and different problem
instances. Finally, Section 5 gives some conclusions and reports on current and
ongoing work.
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2 Divide and Conquer

Divide and conquer algorithms solve problems by dividing them into subprob-
lems, solving each subproblem recursively and merging the corresponding results
to a complete solution. All subproblems have exactly the same structure as the
original problem and can be solved independently from each other, and so can
easily be distributed over a number of parallel processes or threads. This is
probably the most straightforward parallelization strategy. However, in general
it cannot be guaranteed that always enough subproblems exist, which leads to
non-optimal speedups. This is in particular true for the first divide step and
the final merging step but is also a problem in cases where the recursion tree
is unbalanced such that the number of open sub-problems is smaller than the
number of available threads.

Therefore, it is important that the divide and merge steps are solved in parallel
when free threads are available, i.e. whenever the current number of sub-problems
is smaller than the number of available threads. Our framework basically imple-
ments a management system that assigns jobs to threads in such a way that all
cpu cores are busy.

2.1 The Job Interface

In the proposed framework a job represents a (sub-)problem to be solved by a
D&C-algorithm. The first (or root) job represents the entire problem instance.
Jobs for smaller sub-problems are created in the divide steps. As soon as the
size of a job is smaller than a given constant it is called a leaf job which is solved
directly without further recursion. As soon as all children of a job have been
solved the merge step of the D&C-algorithm is applied and computes the result
of the entire problem by combining the results of its children.

In this way jobs represent sub-problems as well as the corresponding solutions.
Note that the result of a job is either contained in the corresponding interval of
the input container or has to be represented in a separate data structure, e.g. a
separate list of objects. Quicksort is an example for the first case and Quickhull
(as presented in Section 2.2) for the second case.

The algorithm is implemented by member functions of the job class which
must have the following interface.

class job
{ job(iterator left, iterator right);
bool is_leaf();
void handle_leaf();
list<job> divide();
void merge(list<job>& L);

};

In the constructor a job is normaly created by storing two iterators (e.g. point-
ers into an array) that define the first and last element of the problem. If the
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is_leaf predicate returns true recursion stops and the problem is solved directly
by calling the handle_leaf operation. The divide operation breaks a job into
smaller jobs and returns them in a list, and the merge operation combines the
solutions of sub-jobs (given as a list of jobs) to a complete solution. There are
no further requirements to a job class.

2.2 Examples

We present job definitions for some well known divide and conquer algorithms.
We use Quicksort as an introductory example and then discuss two convex hull
algorithms, Gift Wrapping and Quickhull.

Quicksort. Quicksort takes as input an array given by the random access itera-
tors left and right. Functions merge and handle_leaf are trivial. The divide
operation calls a function partition(l,r) that performs the partition step with
a randomly selected pivot element. It returns the position of the pivot element
as an iterator m. Finally, it creates two jobs for the two sub-problems.

template<class iterator> class qs_job {
iterator left, right;

public:

qs_job(iterator l, iterator r): left(l),right(r){}
int size() { return right - left + 1; }
bool is_leaf() { return size() <= 1; }
void handle_leaf() {}
void merge(list<qh_job>& children){}

list<qh_job> divide()
{ iterator m = partition(left,right);
list<qh_job> L;
L.push_back(qs_job(left,m));
L.push_back(qs_job(m + 1,right));
return L;

}
};

Gift Wrapping. The well-known Gift Wrapping algorithm constructs the con-
vex hull by folding a halfplane around the set of input points such that all
points always lie on the same side of the halfplane. In the recursive version of the
algorithm two disjoint convex hulls are combined by computing tangents to both
hulls. The divide and conquer algorithm is designed as follows:

Partition the input points at some pivot position according to the lexico-
graphical ordering of the cartesian coordinates in two sets L and R, such that
the convex hulls of L and R are disjoint. Then compute the convex hull L and R
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and the extreme points min and max of both hulls recursively. Finally compute
the upper and lower tangents starting with line segment (max(L), min(R)).

We assume that the input is unsorted and use the Quicksort partitioning
step for creating the two sub-problems. This gives an expected running time of
O(n log n). Note that we sort the input and compute the convex hull at the same
time by exploiting the fact that Quicksort has a trivial merge and Gift Wrapping
a trivial divide operation.

The corresponding gw_job class is derived from qs_job. It inherits the input
iterators and the operations size and divide. The convex hull is stored in a
doubly-linked list result. The class contains in addition iterators min and max
pointing to the extreme points of the hull. Function handle_leaf() treats the
trivial case of input size one.

The merge operation is illustrated in Figure 1. The auxiliary function
compute_tangents() does the main work by computing the two tangents as
described above.

template<class iterator> class gw_job : qs_job
{
list<point> result;
list_iterator min, max;

public:

qs_job(iterator l, iterator r): qs_job(l,r){}
void handle_leaf()
{ if (size() == 1) {
result.push_back(*left);
max = min = result.begin();}

}
void merge(list<qh_job>& children)
{ qh_job jleft = children.front();
qh_job jright = children.back();
result = compute_tangents(jleft.result,

jleft.max,jright.min,jright.result);
min = jleft.min;
max = jright.max;

}
};

Quickhull. We show how to define a job class qh_job implementing the well-
known Quickhull algorithm ( [3]) for computing the convex hull of a point set.
For simplicity we consider a version of the algorithm that only computes the
upper hull of the given point set and we assume that the input is given by a
pair of iterators left and right into an array of points such that left contains
the minimal and right the maximal point in the lexicographical xy-ordering.
The result of a qh_job instance is the sequence of points of the upper hull lying
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jleft.result jright.result

jleft.min jleft.max jright.min jright.max

result

min max

Fig. 1. The merge operation of Gift Wrapping

between left and right. In this scenario any job of size two (only the leftmost
and rightmost point) represents a leaf problem and has the empty list as result.
Consequently, the handle_leaf operation is trivial (keeping an empty result list).

The divide operation is using two auxiliary functions: farthest_point(l,r)
computes a point between l and r with maximal distance to the line segment
(l, r) and partition_triangle implements the partition step of Quickhull as
shown in Figure 2 and returns the generated sub-problems as a list of jobs. We
tried different variants of this partition function. In particular, one using only
one thread and one using all available threads. The latter version is similar to
the parallel partition strategy proposed in [10] for a multi-core implementation
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Fig. 2. The partition step of Quickhull

of Quicksort. In the experiments in Section 4) we will see that this can have a
dramatic effect on the speedup achieved.

Finally, the merge operation takes a list of (two) jobs as input, concatenates
their result lists, and inserts the right-most point of the first problem in between.
The complete implementation is given by the following piece of C++ code.

template<class iterator> class qh_job {
iterator left;
iterator right;
list<point> result;

public:

qh_job(iterator l, iterator r): left(l),right(r) {}
int size() { return right - left + 1; }
bool is_leaf() { return size() == 2; }
void handle_leaf() {}

list<qh_job> divide()
{ iterator pivot = farthest_point(left,right);
iterator lh,rh;
partition_triangle(pivot,left,right,lh,rh);
list<qh_job> L;
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L.push_back(qh_job(left,lh));
L.push_back(qh_job(rh,right));
return L;
}

void merge(list<qh_job>& children)
{ qh_job j1 = children.front();
qh_job j2 = children.back();
result.conc(j1.result);
result.push_back(*j1.right);
result.conc(j2.result);
}
};

2.3 Solvers

Our framework provides different solvers which can be used to compute the
result of a job. As a very basic and introductory example we give the code for a
generic serial recursive solver. It can be implemented by a simple C++ function
template.
template <class job>
void solve_recursive(job& j)
{ if (j.is_leaf()) j.handle_leaf();
else { list<job> Jobs = j.divide();

job x;
forall(x,Jobs) solve_recursive(x);
j.merge(Jobs);

}
};

Note that solve_recursive is a generic dc-solver. It accepts any job type job
that implements the dc_job interface. We can now use it easily to implement a
serial Quickhull function taking an array of points as input.
list<point> QH_SERIAL(array<point>& A)
{ int n = A.size();
qh_job<point*> j(A[0],A[n-1]);
solve_recursive(j);
list<point> hull = j.result;
hull.push_front(A[0]);
hull.push_back(A[n-1]);
return hull;
};

It is an easy exercise to write a non-recursive version of this serial solver:
simply push all jobs created by divide operations on a stack and use an inner
loop processing all jobs on the stack.
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Parallel Solvers. Parallel solvers are much more complex. They maintain open
jobs, build the recursion tree while the algorithm proceeds and check for the
mergeability of sub-jobs. They also have to administrate all threads working in
parallel. In our framework all threads use a common job queue which has to be
synchronized using a mutex variable.

There are different solver versions according to different requirements. The
simplest solver handles problems with a trivial merge step in which case it is
not necessary to store the recursion tree explicitely. In our framework solvers
distinguish two types of threads. Primary threads work in parallel in different
parts of the recursion tree, and secondary threads parallelize basic operations
like partitioning and merging. A solver always tries to employ as much primary
threads as possible.

There are more parameters that can be changed by corresponding methods
of the class. For instance, a limit d for the minimal problem size for any thread.
If the size of job gets smaller than d it will not be divided into new jobs but
solved by the same thread using a serial algorithm. Using this limit the overhead
of starting a huge number of threads on very small problem instances can be
avoided. We implement parallel solvers by C++ class templates. In the example
one sees the interface of a solver class. The constructor takes as argument the
number of threads to be used for solving the problem. The computation starts
with calling the run function with a list of root jobs.

template <class Job>
class dc_parallel_solver {
public:
dc_parallel_solver(int thread_num);
void set_limit(int d);
void run(list<Job*> j)

};

We now can use the parallel solver template to implement a parallel version
of the Quickhull function.

list<point> QH_PARALLEL(array<point>& A, int thr_n)
{ int n = A.size();
dc_parallel_solver<job<point*> > solver(thr_n);
job<point*> j(A[0],A[n-1]);
solver.run(j);
list<point> hull = j.result;
hull.push_front(A[0]);
hull.push_back(A[n-1]);
return hull;

};

3 Randomized Incremental Construction

Beside the divide and conquer paradigm randomized incremental construction
is one of the most important and efficient strategies in computational geometry.
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In this section we discuss some aspects of a framework for the automatic paral-
lelization of incremental algorithms. The goal is similar as for divide and conquer
algorithms. Provided the algorithm is implemented according to a given simple
interface it can automatically be parallelized on multi-core platforms. This is
work in progress. The final results will be published in [14].

In general an incremental construction algorithm works on a dynamic data
structure D representing the solution of the problem for a subset of the input
objects such that new objects can be added efficiently.

In the beginning D is either empty or intialized to a simple initial structure
e.g. the convex hull of three points of the input set. Adding a new object x
consists of two steps. First the locate step finds the position of x in the data
structure and then the update step insert x at this position.

In our approach to automatic parallelization the data structure D has to be
implemented as a C++ class D and the locate and insert steps must be member
functions of this class with a given predefined interface. Furthermore it is as-
sumed that the data structure supports a position concept similar to the STL
iterator or LEDA item concept. We call the corresponding type elem_pointer.
Then the interface of D can be defined by the following piece of code.

template<class T>
class data_structure {
typedef .... elem_pointer;
bool locate(T x, elem_pointer& v);
bool update(T x, elem_pointer v);

The locate operation returns the position in a reference parameter of type.
The update operation takes this position as its second argument. Both opera-
tions have return result of type bool indication whether the operation succeeded
or not. Since several threads (running on different cpu cores) will be running si-
multaneously on the data structure the locate and update methods have to
be implemented in a thread save way. This can be achieved by using standard
synchronization techniques such as mutex variables.

In the case of incremental algorithms a solver initializes the data structure,
creates and joins threads, and distributes the input data over all threads. See [14]
for details of this approach.

4 Experiments

All experiments were executed on a Linux PC with an Intel quad-core processor
running at a speed of 2.6 GHz. As implementation platform we used a thread-
safe version of LEDA [7]. In particular, we used the exact geometric primitives
of the rational geometry kernel and some of the basic container types such as
arrays and lists. All programs were compiled with gcc 4.1.

In the Quicksort experiments, we sort arrays of integers of various size. The
implementation make use of a parallel partition function.
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In Figure 3 we see the speedup growing near optimal values when the size of
the input gets large. To achieve a benefit from parallization we need sufficient
problem sizes.
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Table 1. Running times in seconds of three sorting algorithms on a set of 108 integers
with different numbers of threads

1 2 3 4
QS 10.31 5.32 3.74 2.96
MCSTL-MS 10.47 5.45 3.94 3.07
MCSTL-QS 10.47 5.92 4.02 3.19

Figure 4 compares our Quicksort implementation with two implementations
from the MCSTL library ( [9]). The MCSTL implementation with the better
speedup is based on Mergesort the other on Quicksort. All implementations have
a very good speedup progress. However the best speedup need not to correspond
with the best absolute running time. Table 1 shows the running times of an input
of 108 integers and different thread numbers. Our implementation is marginal
faster.

For the convex hull experiments we used three different problem generators:
random points lying in a square, random points near a circle, and points lying
exactly on a circle. Figure 5 shows that our framework achieves a good speedup
behavior for points on or near a circle, which is the difficult case for Quickhull
because only a few or none of the points can be eliminated in the partitioning
step. Note that the 1.0 baseline indicates the performance of a serial version
of the algorithm (using only one thread). It turned out that n/100 was a good
choice for the limit mentioned in Section 2.3.

For random points in a square Quickhull eliminates almost all of the input
points in the root job of the algorithm (with high probability), i.e. almost the
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entire work is done here. In this case the achieved speedup is not optimal. How-
ever, Figure 6 shows that without parallelization of the partitioning step we have
no speedup at all. We have some ideas to improve the parallel partitioning and
hope to improve the results for this kind of problem instances.
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We also want to mention here that we ran experiments with different D&C
algorithms for convex hulls. In particular, a recursive version of the Gift Wrap-
ping method where the merge step does most of the work by constructing two
tangents. Figure 7 shows the speedup behavior of this algorithm for the same
set of input instances.

5 Conclusions

We have presented an approach for the automatic parallelization of divide and
conquer algorithms and discussed some aspects and ideas for randomized in-
cremental algorithms. The proposed frameworks are generic (by using C++
templates) and can be used very easily. The experiments show that a consid-
erable speedup can be achieved by using two or four threads on a quad core ma-
chine. We have some ideas to improve the parallel partitioning of the Quickhull
algorithm and hope to be able to improve the efficiency in cases where most
of the work is done in the root job. In particular, our framework shows a very
good performance also on basic D&C algorithms such as Quicksort. We work
on the parallelization of more incremental algorithms for geometric problems
and higher dimensional problems, preliminary implementations of incremental
construction algorithms for Delaunay triangulations and Voronoi diagrams al-
ready exist. Here, one of the major problems is the need of advanced thread-safe
dynamic data structures such as graphs or polyhedra.
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The Weak Gap Property in Metric Spaces of
Bounded Doubling Dimension�

Michiel Smid

School of Computer Science, Carleton University, Ottawa, Canada

Abstract. We introduce the weak gap property for directed graphs
whose vertex set S is a metric space of size n. We prove that, if the dou-
bling dimension of S is a constant, any directed graph satisfying the weak
gap property has O(n) edges and total weight O(log n) · wt(MST (S)),
where wt(MST (S)) denotes the weight of a minimum spanning tree of
S. We show that 2-optimal TSP tours and greedy spanners satisfy the
weak gap property.

1 Introduction

Consider a directed graph G = (S, E), where S is a set of n points in Rd, and
each edge (p, q) in E has a weight (or length) which is equal to the Euclidean
distance |pq| between the points p and q. We consider the problem of estimating
the weight wt(E) of the edge set E, which is defined to be the sum of the weights
of the edges in E. Clearly, in order to obtain a non-trivial estimate, we need to
make some assumptions about the edge set E.

Using geometric properties of Rd, Chandra et al. [5] showed that the directed
edge set of the greedy spanner algorithm (to be introduced later) can be parti-
tioned into O(1) subsets, such that each subset satisfies the gap property: For
any two distinct edges (p, q) and (r, s) that are in the same subset, the distance
|pr| is at least proportional to the weight of the shorter of (p, q) and (r, s). They
proved that the gap property implies that the weight of the subset is O(log n)
times the weight wt(MST (S)) of a minimum spanning tree of the point set S.
As a result, the weight of the greedy spanner is O(log n) ·wt(MST (S)). (A much
more complicated analysis shows that, in fact, the weight of the greedy spanner
is O(wt(MST (S))).)

Later, Chandra et al. [6] showed that any tour T that is computed by the
2-opt heuristic (to be introduced later) for the traveling salesperson problem
can be analyzed by the same approach: By again using geometric properties
of Rd, the directed edge set of T can be partitioned into O(1) subsets, each
of which satisfies the gap property. Thus, by the result in [5], the weight of T
is O(log n) · wt(MST (S)). Since wt(MST (S)) is less than the minimum weight
wt(TSP (S)) of any tour of S, it follows that wt(T ) = O(log n) · wt(TSP(S)).
Chandra et al. also showed that, for the case when d ≥ 2, there exists a 2-opt
tour having weight Ω(log n/ log log n) · wt(TSP(S)).
� This work was supported by NSERC.
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Both results mentioned above use the fact that the input points are in
Euclidean space Rd, for some constant d ≥ 1. This leads to the natural question
whether these results hold in an arbitrary metric space. Recall that a set S,
together with a distance function |pq| for any two points p and q in S, is called
a metric space, if for all p, q, and r in S,

1. |pp| = 0,
2. |pq| > 0 if p = q,
3. |pq| = |qp|, and
4. |pq| ≤ |pr| + |rq|.

The fourth property is called the triangle inequality.
The proof of Chandra et al. [5] of the fact that any directed edge set satisfying

the gap property has weight O(log n) · wt(MST (S)) holds in any metric space.
Narasimhan and Smid [13, Section 6.2] showed that this upper bound is tight,
even in the one-dimensional Euclidean metric. On the other hand, in the metric
space in which |pq| = 1 for all distinct points p and q, the weight of the greedy
spanner is Θ(n)·wt(MST (S)). Chandra et al. [6] proved that, in any metric space,
any tour that is computed by the 2-opt heuristic has weight O(

√
n)·wt(TSP(S));

they also showed that this upper bound is tight. Thus, the weights of the outputs
of the greedy spanner algorithm and the 2-opt heuristic behave very differently
in Euclidean space Rd than they do in a general metric space.

The analyses in [5, 6] for the Euclidean metric use the notion of angles. In
particular, they use the fact that any set of vectors in Rd, in which any two
elements make an angle of at least θ, contains O(1/θd−1) elements. This is basi-
cally a packing argument : The number of “large” objects that can be packed in
another slightly “larger” object is bounded from above by a constant (which de-
pends on the dimension d). In Euclidean space, the validity of such an argument
follows from the fact that a “large” object has a “large” volume. In a general
metric space, however, a packing argument cannot be applied.

In this paper, we consider the weights of the greedy spanner and 2-opt tours in
metric spaces in which a packing argument is valid. Such metric spaces are called
metric spaces of bounded doubling dimension. We will prove that, in such spaces,
the weights of the greedy spanner and 2-opt tours are O(log n) ·wt(MST (S)). We
obtain these results by generalizing the gap property to the so-called weak gap
property. We then show that any edge set satisfying the weak gap property has
weight O(log n) ·wt(MST (S)). Since both the greedy spanner and 2-opt tours sat-
isfy the weak gap property, we obtain the same upper bounds on their weights.

Thus, the contributions of this paper are twofold: First, by introducing the
weak gap property, we obtain alternative proofs of known results for the
Euclidean metric. Second, our analysis shows that these results in fact hold
for any metric space whose doubling dimension is a constant.

2 The Doubling Dimension of Metric Spaces
Let S be a finite metric space. For any two points p and q in S, we denote their
distance by |pq|. If p is a point in S and R > 0 is a real number, then the ball
with center p and radius R is defined to be the set {q ∈ S : |pq| ≤ R}.
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We now define the notion of doubling dimension, which is due to Assouad [2];
see also Heinonen [11]:

Definition 1. Let S be a finite metric space and let λ be the smallest integer
such that the following is true: For each real number R > 0, every ball in S of
radius R can be covered by at most λ balls of radius R/2. The doubling dimension
of the metric space S is defined to be log λ.

It is not difficult to show that the doubling dimension of any finite set of points
in the Euclidean metric space Rd is Θ(d).

2.1 Non-Euclidean Spaces of Doubling Dimension 1

In this section, we give an example of a family of metric spaces having doubling
dimension 1. As we will see, this family contains metric spaces whose properties
are very different from Euclidean space Rd for any constant d.

Let S = {p1, p2, . . . , pn} and let 0 < ε < 1 be a real number. For each i and j
with 1 ≤ i ≤ j ≤ n, we define

|pipj| = |pjpi| =
{

0 if i = j,
4j or 4j + ε if i < j.

This family of metric spaces occurs in Har-Peled and Mendel [10] (they use
powers of 2 instead of powers of 4). For any three pairwise distinct indices i, j,
and k with i < j, we have

|pipj | ≤ 4j + ε ≤ 4max(i,k) + 4max(k,j) ≤ |pipk| + |pkpj |,
implying that this distance function satisfies the triangle inequality. It follows
that S is a metric space.

Lemma 1. The doubling dimension of the metric space S is equal to one.

Proof. Let R > 0 be a real number and let B be a ball with radius R. We have
to show that B can be covered by at most two balls of radius R/2.

First assume that R < 4ε. Then R < 4. Since the minimum distance between
any two distinct points of S is at least 16, the ball B contains only its center.
Therefore, B can be covered by one ball of radius R/2.

Now assume that R ≥ 4ε. Let j be the largest index such that pj ∈ B. If
j = 1, then B contains only one point, so that this ball can be covered by one
ball of radius R/2. Assume that j ≥ 2. We define B1 to be the ball with center
pj and radius R/2, and define B2 to be the ball with center pj−1 and radius
R/2. We claim that B ⊆ B1 ∪ B2.

We may assume that B contains more than one point, because otherwise,
B = B1. Let pk be the center of B. Observe that k ≤ j. First assume that k < j.
Since pj ∈ B, we have |pkpj | ≤ R. On the other hand, we have |pkpj | ≥ 4j .
Thus, 4j ≤ R. If k = j, then let � be any index less than k for which p� ∈ B. In
this case, we have |pkp�| ≤ R and |pkp�| ≥ 4k = 4j . Thus, also in this case, we
have 4j ≤ R.
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We are now ready to complete the proof of the claim that B ⊆ B1 ∪ B2. Let
pi be any point in B. If i ∈ {j − 1, j}, then obviously pi ∈ B1 ∪B2. If i ≤ j − 2,
then

|pj−1pi| ≤ 4j−1 + ε ≤ R/4 + ε ≤ R/2

and, therefore, pi ∈ B2. ��
As Har-Peled and Mendel [10] show, this family of metric spaces can be used to
show that the time complexity for solving the all-nearest-neighbors problem is
Θ(n2). Indeed, consider a metric space in the family such that, for each j with
2 ≤ j ≤ n, there is exactly one index ij with ij < j such that |pij pj | = 4j ,
whereas for all indices i′ with i′ < j and i′ = ij, we have |pi′pj | = 4j + ε. Then,
the (unique) nearest neighbor of pj is the point pij . Thus, any algorithm that
solves the all-nearest-neighbors problem must find all indices ij . By an adversial
argument, it is easy to show that this takes Ω(n2) time in the worst case.

Recall that the all-nearest-neighbors problem in Euclidean space Rd, for a
constant dimension d, can be solved in O(n log n) time; see Vaidya [16]. Thus,
even though the metric space defined above has doubling dimension one, its
behavior with respect to the all-nearest-neighbors problem is very different from
the Euclidean metric in Rd.

Now consider the case when

|pipj | = |pjpi| =

⎧⎨⎩
0 if i = j,
4j if i = 1 and j > 1,
4j + ε otherwise.

For each j with 2 ≤ j ≤ n, p1 is the nearest neighbor in S of the point pj .
Therefore, the all-nearest-neighbors graph of S is the star-graph consisting of all
edges {p1, pj}, 2 ≤ j ≤ n. In fact, the minimum spanning tree is also equal to this
star-graph. Thus, in this metric space, both the all-nearest-neighbors graph and
the minimum spanning tree have maximum degree n − 1. It is well known that
in Euclidean space Rd, the maximum degree of both these graphs is bounded by
a constant that depends only on d.

Since the minimum spanning tree contains the all-nearest-neighbors graph, the
time complexity for computing the minimum spanning tree in a metric space of
constant doubling dimension is Θ(n2). On the other hand, in Euclidean space
Rd, the minimum spanning tree can be computed in O(n log n) time if d = 2 (see
Preparata and Shamos [14, Section 6.1]) and o(n2) time if d > 2 (see Yao [17]).

2.2 The Packing Lemma

We now show that a packing argument can be applied in any metric space of
constant doubling dimension. The following lemma states that a ball of radius R
cannot contain many points whose pairwise distances are at least proportional
to R.

Lemma 2 (Packing Lemma). Let S be a finite metric space with doubling
dimension d, let R > 0 and α > 0 be real numbers, let B be a ball in S of radius
R, and let X be a subset of S, such that



The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension 279

1. X ⊆ B and
2. the distance between any two distinct points of X is at least αR.

Then, the number of points in the set X is at most

2d·max(0,2+�log(1/α)).

Proof. If α > 2, then the lemma holds because X contains at most one point.
Assume that 0 < α ≤ 2. Let m = 2 + �log(1/α)�. Then m ≥ 1 and m >
1+log(1/α), implying that R/2m−1 < αR. By repeatedly applying the definition
of doubling dimension, the ball B can be covered by 2md balls Bi (1 ≤ i ≤ 2md)
of radius R/2m. Any two points in the same ball Bi have distance at most
2R/2m < αR. Therefore, each ball Bi can contain only one point of X . Thus, X
contains at most 2md points. ��

3 The Weak Gap Property

We mentioned the gap property in Section 1. Here, we give a formal definition
of this property, as well as a weaker version of it. The weak gap property will be
the main focus of the rest of this paper.

Definition 2. Let S be a finite metric space and let E be a set of directed edges
whose endpoints are in S.

1. For a real constant w > 0, we say that E satisfies the w-gap property, if for
any two distinct edges (p, q) and (r, s) in E,

|pr| ≥ w · min(|pq|, |rs|).
2. For a real constant w > 0, we say that E satisfies the weak w-gap property,

if for any two distinct edges (p, q) and (r, s) in E,

|pr| ≥ w · min(|pq|, |rs|)
or

|qs| ≥ w · min(|pq|, |rs|).
Chandra et al. [5] proved that, in any metric space S and for any constant w > 0,
any set of directed edges satisfying the w-gap property has weight O(log n) ·
wt(TSP (S)), where n is the number of points in S. The example in Narasimhan
and Smid [13, Section 6.2] shows that this upper bound is tight, even in one-
dimensional Euclidean space.

In general, there is no non-trivial upper bound on the weight of an edge
set satisfying the weak gap property. Indeed, consider the metric space S on n
points in which |pq| = 1 for all p = q, and take for E the edge set of the complete
graph, by giving each edge an arbitrary direction. Then E satisfies the weak 1-
gap property, wt(E) = Θ(n) · wt(TSP(S)), and E contains Θ(n2) edges. The
main result of this paper is a proof of the claims that, if the doubling dimension
of the metric space is a constant, (i) the upper bound of O(log n) · wt(TSP(S))
does hold, and (ii) E contains O(n) edges.
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Theorem 1 (Gap Theorem). Let S be a metric space with n points, let the
doubling dimension of S be a constant, let w > 0 be a real constant, and let E
be a set of directed edges whose endpoints are in S. If E satisfies the weak w-gap
property, then

1. the total weight wt(E) of all edges in E satisfies

wt(E) = O(log n) · wt(TSP(S)),

2. E contains O(n) edges.

Recall that wt(TSP (S)) and wt(MST (S)) differ by a factor of at most 2. There-
fore, the Gap Theorem is still valid if we replace TSP(S) by MST (S).

Before we turn to the proof of the Gap Theorem, we consider two algorithms
whose outputs satisfy the weak gap property.

3.1 The 2-Opt Heuristic for the Traveling Salesperson Problem

Let S be an arbitrary finite metric space. The 2-opt heuristic is a well-known
approach for heuristically solving the traveling salesperson problem; it was in-
troduced by Lin [12]. The algorithm starts with an arbitrary initial tour along
the points of S. Then it repeatedly tries to improve the current tour by making
small local changes.

Let T be the current (directed) tour, and assume that T contains two distinct
edges (p, q) and (r, s) such that

|pr| + |qs| < |pq| + |rs|.

Then the algorithm replaces (p, q) and (r, s) by the edges (p, r) and (q, s), and
reverses the direction of the edges on the path from q to r. These replacements
result in a shorter (directed) tour. The algorithm continues making these re-
placements until the current tour T has the property that

|pq| + |rs| ≤ |pr| + |qs| (1)

for any two distinct edges (p, q) and (r, s) of T . A tour having this property is
called a 2-optimal tour.

If S is an arbitrary metric space, then the weight of any 2-optimal tour is
O(

√
n) · wt(TSP(S)); see Chandra et al. [6]. These authors also showed that

this upper bound is tight. On the other hand, Chandra et al. [6] used the gap
property to show that, in the Euclidean metric Rd, any 2-optimal tour has weight
O(log n) · wt(TSP(S)).

We will use the Gap Theorem to prove that, if the doubling dimension of the
metric space is constant, any 2-optimal tour has weight O(log n) · wt(TSP (S)).

Lemma 3. Let T be a (directed) 2-optimal tour of the points in S. Then the
edge set of T satisfies the weak 1-gap property.
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Proof. Let (p, q) and (r, s) be two distinct edges of T . We may assume without
loss of generality that |pq| ≤ |rs|. Thus, we have to show that |pr| ≥ |pq| or
|qs| ≥ |pq|. If |pr| ≥ |pq|, then we are done. Assume that |pr| < |pq|. By (1), we
have |pq|+|rs| ≤ |pr|+|qs|. Combining this with our assumption that |pr| < |pq|,
we obtain

|pq| + |rs| ≤ |pr| + |qs| ≤ |pq| + |qs|,
which implies that |qs| ≥ |rs| ≥ |pq|. ��
Lemma 3 and the Gap Theorem imply the following result.

Theorem 2. Let S be a metric space with n points and constant doubling di-
mension. The 2-opt heuristic computes a tour along the points of S, whose weight
is O(log n) · wt(TSP(S)).

3.2 The Greedy Spanner Algorithm

Given a metric space S consisting of n points and a real constant t > 1, an
undirected graph G = (S, E) is called a t-spanner for S, if the following is true:
For any two points p and q in S, there exists a path in G between p and q whose
weight is at most t|pq|. Any such path is called a t-spanner path between p and q.

Althöfer et al. [1] introduced the following simple greedy algorithm for com-
puting such a spanner (according to them, this algorithm was discovered
independently by Bern in 1989):

Algorithm. GreedySpanner(S, t):
sort the

(
n
2

)
pairs of distinct points in non-decreasing order of their

distances and store them in a list L;
E = ∅;
G = (S, E);
for each {p, q} ∈ L (∗ in sorted order ∗)
do δ = weight of a shortest path in G between p and q;

if δ > t|pq|
then E = E ∪ {{p, q}};

G = (S, E)
endif

endfor;
output the graph G

It is obvious that this algorithm computes a t-spanner for S. If t < 2 and
the metric space S has the property that |pq| = 1 for all distinct points p
and q, then the greedy spanner contains

(
n
2

)
edges and its total edge weight is

Θ(n)·wt(MST (S)). On the other hand, Soares [15] proved that, in the Euclidean
metric Rd, the greedy spanner has bounded degree and, thus, contains only O(n)
edges. Again in Rd, Chandra et al. [5] used the gap property to show that the
weight of the greedy spanner is O(log n) ·wt(MST (S)). In fact, the latter bound
was improved to O(wt(MST (S))) by Das et al. [7, 8]. (Chapter 14 in [13] contains
a complete proof of this claim.)
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It is not difficult to show that the greedy spanner contains the all-nearest-
neighbors graph. Therefore, by the results in Section 2.1, the maximum degree
of the greedy spanner can be as large as n−1, even when the doubling dimension
is equal to one.

We will use the Gap Theorem to prove that, if the doubling dimension of the
metric space is constant, the greedy spanner has weight O(log n) · wt(MST (S))
and contains O(n) edges.

Consider the t-spanner G that is computed by the greedy algorithm. Let G∗

be the directed graph obtained by giving each edge of G an arbitrary direction.
Thus, each edge {p, q} of G appears in G∗ either as (p, q) or as (q, p).

Lemma 4. Let w be a real number with 0 < w < 1−1/t and let w′ = min(w, 1−
w−1/t). Then the set of directed edges of G∗ satisfies the weak w′-gap property.

Proof. Let (p, q) and (r, s) be two distinct edges of G∗. We may assume without
loss of generality that algorithm GreedySpanner(S, t) considers the pair {p, q}
before {r, s}. Thus, we have |pq| ≤ |rs|. The lemma will follow from the claim
that |pr| ≥ w|pq| or |qs| ≥ (1 − w − 1/t)|rs|.

Assume that |pr| < w|pq| and |qs| < (1 − w − 1/t)|rs|. Then both |pr| and
|qs| are less than |rs|. Consider the iteration in which the algorithm adds the
edge {r, s} to the graph G. Assuming that p = r and q = s, the algorithm has
already considered the pairs {p, r}, {p, q}, and {q, s}. Thus, at the start of this
iteration, the graph G contains (i) a t-spanner path between p and r, (ii) the
edge {p, q}, and (iii) a t-spanner path between q and s. Obviously, (i) also holds
if p = r and (iii) also holds if q = s. Since

t|pr| + |pq| + t|qs| ≤ tw|pq| + |pq| + t(1 − w − 1/t)|rs|
≤ (tw + 1 + t(1 − w − 1/t))|rs|
= t|rs|,

the graph G contains a t-spanner path between r and s and, therefore, the
algorithm does not add the edge {r, s} to G. This is a contradiction. ��
If we choose w = 1

2 (1 − 1/t) in Lemma 4, then the Gap Theorem implies the
following result.

Theorem 3. Let S be a metric space with n points and constant doubling dimen-
sion, and let t > 1 be a real constant. Algorithm GreedySpanner(S, t) computes
a t-spanner for S having O(n) edges and total edge weight O(log n)·wt(MST (S)).

4 Proof of the Gap Theorem

In this section, we present a proof of the Gap Theorem. This proof will consist
of the following four steps:

1. We start by showing that, in any metric space, if a directed edge set E with
vertex set S satisfies the gap property and all edges in E have approximately
the same weight, then the total weight of E is O(wt(TSP(S))).



The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension 283

2. We then show that, again in any metric space, the total weight of any
set E of edges with vertex set S, such that all edges in E are “short”, is
O(wt(TSP(S))).

3. Next, we show that, in any metric space of constant doubling dimension, and
for any directed edge set E with vertex set S, such that E satisfies the weak
gap property and all edges in E are “long”, the following holds: First, the
edge set E can be partitioned into O(log n) subsets, such that within each
subset, edges have approximately the same weight. Then, we show how to
further partition each subset into O(1) subsets, each one satisfying the gap
property. The analysis in the first step then shows that the total weight of
E is O(log n) · wt(TSP(S)).

4. In the final step, we use the well-separated pair decomposition to show that,
in any metric space of constant doubling dimension, any directed edge set
satisfying the weak gap property contains O(n) edges.

4.1 Edges of Similar Weights Satisfying the Gap Property

We start by considering directed edges having approximately the same weights
and that satisfy the gap property (as opposed to the weak gap property). The
proof of the following lemma is a simple modification of a proof technique intro-
duced in Chandra et al. [5].

Lemma 5. Let S be a metric space, let w > 0 be a real constant, and let E
be a set of directed edges whose endpoints are in S and that satisfy the w-gap
property. Assume that 1/2 ≤ |pq|/|rs| ≤ 2 for any two edges (p, q) and (r, s) in
E. Then, the total weight wt(E) of all edges in E satisfies

wt(E) ≤ 2
w

· wt(TSP (S)).

Proof. For any (directed) edge (p, q) of E, we call p the source of this edge. First
observe that, by the definition of the w-gap property, each point of S can be the
source of only one edge in E. Consider the traveling salesperson tour of S. By
walking along this tour (starting at some arbitrary point), we visit the sources
of the edges in E in some order. We number the edges of E as e0, e1, . . . , em−1,
as given by this order. For each i with 0 ≤ i < m, we write the edge ei as
ei = (pi, qi) and define Ti to be the portion of the tour that starts at pi and ends
at pi+1 (where indices are read modulo m). By the triangle inequality, we have

|pipi+1| ≤ wt(Ti),

whereas, by the w-gap property and our assumption that edges in E differ in
weight by a factor of at most two,

|pipi+1| ≥ w · min(|piqi|, |pi+1qi+1|) ≥ (w/2)|piqi|.
Thus, we have

|piqi| ≤ (2/w) · wt(Ti),
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which implies that

wt(E) =
m−1∑
i=0

|piqi| ≤ (2/w)
m−1∑
i=0

wt(Ti) = (2/w)·wt(TSP(S)). ��

4.2 The Weight of Short Edges

Lemma 6. Let S be a metric space with n points, let E be a set of directed edges
whose endpoints are in S, let D be the weight of a longest edge in E, and let
E′ be the subset of E consisting of all edges having weight at most D/n2. Then
wt(E′) ≤ wt(TSP(S)).

Proof. The lemma follows from the observations that E′ contains at most
(
n
2

) ≤
n2 edges and wt(TSP (S)) ≥ D. ��

4.3 Long Edges Satisfying the Weak Gap Property

Let S be a metric space with n points and constant doubling dimension d, let
w > 0 be a real constant, and let E be a set of directed edges whose endpoints
are in S and that satisfy the weak w-gap property.

Let D be the weight of a longest edge in E, let E′ be the subset of E consisting
of all edges having weight at most D/n2, and let E′′ = E\E′. Thus, E′′ consists of
all edges in E having weight more than D/n2. For each j with 0 ≤ j ≤ �2 logn�,
we define

Ej = {e ∈ E′′ : D/2j+1 < wt(e) ≤ D/2j}.
Thus, the edge sets Ej form a partition of E′′.

We fix an index j with 0 ≤ j ≤ �2 log n� and analyze the total weight of all
edges in Ej . Even though edges in Ej differ in weight by a factor of at most
two, Lemma 5 cannot be applied to Ej , because we only know that Ej satisfies
the weak gap property. Our approach will be to further partition the set Ej into
O(1) subsets, each of which satisfies the w-gap property. Then, Lemma 5 can be
applied to each of these subsets.

Let L = D/2j+1, so that

Ej = {e ∈ E′′ : L < wt(e) ≤ 2L}.

We define an undirected graph H with vertex set Ej , in which any two distinct
vertices (p, q) and (r, s) are connected by an edge if and only if

|pr| < w · min(|pq|, |rs|).

Lemma 7. The maximum degree of the graph H is O(1).

Proof. Consider any vertex (p, q) of H . We have to prove an upper bound on
the number of elements (r, s) in Ej for which (p, q) = (r, s) and |pr| < w ·
min(|pq|, |rs|).
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Let B be the ball with center p and radius 2wL. For any edge (r, s) in Ej

with |pr| < w · min(|pq|, |rs|), we have |pr| ≤ 2wL and, thus, r ∈ B.
By applying the definition of doubling dimension twice, the ball B can be

covered by 22d balls Bi (1 ≤ i ≤ 22d) of radius wL/2. For each i with 1 ≤ i ≤ 22d,
we define

Ei
j = {(r, s) ∈ Ej : (r, s) = (p, q), |pr| < w · min(|pq|, |rs|), r ∈ Bi}.

Then

{(r, s) ∈ Ej : (p, q) = (r, s), |pr| < w · min(|pq|, |rs|)} =
22d⋃
i=1

Ei
j . (2)

Since the degree of (p, q) in H is equal to the size of the set on the left-hand side
in (2), we need an upper bound on

∑22d

i=1 |Ei
j |.

Consider a fixed value of i with 1 ≤ i ≤ 22d. If (r, s) is an edge in Ei
j , then

|ps| ≤ |pr| + |rs| ≤ w · min(|pq|, |rs|) + |rs| ≤ 2wL + 2L = 2(1 + w)L.

If (r, s) and (r′, s′) are two distinct edges in Ei
j , then r and r′ are both in Bi

and thus
|rr′| ≤ wL < w · min(|rs|, |r′s′|).

Therefore, by the weak w-gap property, we have

|ss′| ≥ w · min(|rs|, |r′s′|) ≥ wL.

In particular, s = s′. Thus, if we define X to be the set of the sinks s of all
edges (r, s) in Ei

j , then (i) X contains the same number of elements as Ei
j , (ii)

all points of X are contained in the ball with center p and radius 2(1 + w)L,
and (iii) the distance between any two distinct points of X is at least wL. By
applying Lemma 2 with α = w/(2(1 + w)), it follows that

|Ei
j | ≤ 2d·max(0,2+log(1/α)) = 2d·max(0,3+log(1+1/w)).

Thus, we have shown that the degree of the vertex (p, q) in H is at most

22d∑
i=1

|Ei
j | ≤ 2d(2+max(0,3+log(1+1/w))).

Since d and w are constants, the proof is complete. ��
Let m be the maximum degree of any vertex in H . We color the vertices of H
(i.e., the elements of Ej) using m+1 colors, such that any two adjacent vertices
have distinct colors. For each k with 0 ≤ k ≤ m, let

Ejk = {e ∈ Ej : e has color k}.
The subsets Ejk, 0 ≤ k ≤ m, partition the set Ej .
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Lemma 8. For each k with 0 ≤ k ≤ m, the set Ejk satisfies the w-gap property.

Proof. Let (p, q) and (r, s) be two distinct edges in Ejk. Since these two edges
have the same color, they are not connected by an edge in H . Then, the definition
of H implies that |pr| ≥ w · min(|pq|, |rs|). ��
We are now able to complete the proof of the first claim in the Gap Theorem:
We started by partitioning the edge set E into E′ and E′′. Lemma 6 gives an
upper bound on wt(E′). Then, we partitioned E′′ into O(log n) subsets Ej , and
further partitioned each Ej into m+1 = O(1) subsets Ejk. By Lemmas 5 and 8,
the total weight of all edges in each subset Ejk is O(wt(TSP (S))).

4.4 The Number of Edges

In this section, we prove the second claim in the Gap Theorem. Our proof will
use the well-separated pair decomposition of Callahan and Kosaraju [4].

Let S be a metric space with n points. For any two non-empty subsets A and
B of S, we define their distance |AB| as

|AB| = min{|pq| : p ∈ A, q ∈ B}
and the diameter diam(A) of A as

diam(A) = max{|pq| : p ∈ A, q ∈ A}.
For a real number c > 1, called the separation ratio, we say that A and B are
well-separated, if

|AB| ≥ c · max(diam(A), diam(B)).

Thus, if c is large, then (i) all distances between points in A and points in B are
approximately equal and (ii) distances within A (or B) are much smaller than
distances between points in A and points in B.

Definition 3. A well-separated pair decomposition for S is a sequence

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
of pairs of non-empty subsets of S, for some integer m, such that

1. for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated, and
2. for any two distinct points p and q of S, there is exactly one index i such

that
(a) p ∈ Ai and q ∈ Bi, or
(b) p ∈ Bi and q ∈ Ai.

The integer m is called the size of the well-separated pair decomposition.

Callahan and Kosaraju [4] showed that, in the Euclidean metric Rd, a well-
separated pair decomposition of size m = O(n) exists, and can in fact be com-
puted in O(n log n) time. Har-Peled and Mendel [10] generalized this result to
metric spaces of constant doubling dimension:



The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension 287

Theorem 4. Let S be a metric space with n points and constant doubling di-
mension, and let c > 1 be a real constant. There exists a randomized algorithm
that constructs, in O(n log n) expected time, a well-separated pair decomposition
for S, consisting of O(n) pairs.

The following lemma completes the proof of the Gap Theorem:

Lemma 9. Let S be a metric space with n points and constant doubling dimen-
sion, let w > 0 be a real constant, and let E be a set of directed edges whose
endpoints are in S and that satisfy the weak w-gap property. Then, E contains
O(n) edges.

Proof. Choose the separation ratio c to be larger than 1/w. Consider a well-
separated pair decomposition {Ai, Bi}, 1 ≤ i ≤ m, where m = O(n).

We will prove below that for each i with 1 ≤ i ≤ m, the set E contains (i)
at most one edge (p, q) with p ∈ Ai and q ∈ Bi, and (ii) at most one edge (p, q)
with p ∈ Bi and q ∈ Ai. Therefore, E contains at most 2m = O(n) edges.

Assume that (i) is not true. Then, E contains two distinct edges (p, q) and
(r, s) with p, r ∈ Ai and q, s ∈ Bi. We may assume without loss of generality
that |pq| ≤ |rs|. Since Ai and Bi are well-separated, we have

|pr| ≤ diam(Ai) ≤ 1
c
· |AiBi| ≤ 1

c
· |pq| < w|pq|

and, by a symmetric argument,

|qs| < w|pq|.

This contradicts the fact that (p, q) and (r, s) satisfy the weak w-gap property.
��

5 Final Remarks

5.1 Open Problems

We have introduced the weak gap property as an alternative to the gap property
of Chandra et al. [5]. We have shown that, in any metric space whose doubling
dimension is constant, any set of edges satisfying the weak gap property has
O(n) elements and total weight O(log n) ·wt(TSP(S)) or, equivalently, O(log n) ·
wt(MST (S)). The example in Narasimhan and Smid [13, Section 6.2] shows that
this upper bound is tight, even in the one-dimensional Euclidean metric.

We have shown that both 2-optimal tours and greedy spanners satisfy the
weak gap property. Thus, in case the doubling dimension is constant, their total
weight is within a factor of O(log n) of the minimum possible weight. These
results lead to the following open problems:

Problem 1. Chandra et al. [6] showed that, in the Euclidean plane R2, there
exists a 2-optimal tour whose length is Ω(log n/ log log n) · wt(TSP (S)).
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– Is it true that, in the Euclidean metric in Rd, the weight of any 2-optimal
tour is O(log n/ log log n) · wt(TSP(S))?

– Does there exist a metric space S of constant doubling dimension, such that
S contains a 2-optimal tour whose length is Ω(log n) · wt(TSP(S))?

Problem 2. Das et al. [7, 8] showed that, in the Euclidean metric in Rd, the
weight of the greedy spanner is O(wt(MST (S))); see Chapter 14 in [13] for a
complete proof.

– Is it true that, in any metric space whose doubling dimension is constant,
the weight of the greedy spanner is O(wt(MST (S)))?

It follows from the proofs of Lemmas 3 and 4 that the (directed) edges of any
2-optimal tour and the greedy spanner satisfy the following slightly stronger
property: For any two distinct edges (p, q) and (r, s),

|pr| ≥ w · min(|pq|, |rs|)
or

|qs| ≥ w · max(|pq|, |rs|).
It is not clear, however, whether this is of any help to solve Problems 1 and 2.

Problem 3. As we have seen in this paper, edge sets in metric spaces of bounded
doubling dimension can be analyzed using a packing argument.

– Find other classes of metric spaces, in which non-trivial upper bounds on
the weight of 2-optimal tours, greedy spanners, or other interesting graphs,
can be obtained.

5.2 Further Reading

A detailed analysis of tours produced by the 2-opt heuristic, both for general
metric spaces and Euclidean spaces, can be found in Chandra et al. [6].

Althöfer et al. [1] contains an analysis of the greedy spanner for general met-
ric spaces. Recently, Bose et al. [3] have shown that, in case the doubling di-
mension is constant, the greedy spanner can be computed in O(n2 log n) time.
Observe that, since the greedy spanner contains the all-nearest-neighbors graph,
the results in Section 2.1 imply that the greedy spanner cannot be computed in
subquadratic time. We remark, however, that, in the Euclidean metric in Rd,
an approximation of the greedy spanner can be computed in O(n log n) time;
see Gudmundsson et al. [9]. A detailed description of their algorithm, as well as
many other algorithms for constructing spanners, can be found in Narasimhan
and Smid [13].

Acknowledgements. The author thanks Hubert Chan, Anupam Gupta, and Giri
Narasimhan for helpful discussions during the workshop Geometric Networks and
Metric Space Embeddings, which was held in Dagstuhl (Germany) in November
2006.
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On Map Labeling with Leaders

Michael Kaufmann
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Universität Tübingen, 72116 Tübingen, Germany

Abstract. We present an overview over recent work on map labeling
with emphasis on labeling with leaders. The labels are assumed to be
placed on the boundary of the map while they are connected to the
corresponding graphical features by polygonal lines, the so-called leaders.
On various models and methods we demonstrate an impressive example
for an application where a whole range of algorithmic techniques have
successfully been applied.1

1 Traditional Map Labeling

The visualization of the information on a map, i.e. the appropriate association
of text labels with graphical features is one of the main challenges and a key
task in the process of producing high-quality maps.

Considering the importance and complexity of ancient and not so ancient
hand-drawn maps [21] one could even talk about the art of map labeling. The
cartographers have developed certain rules and techniques to place labels effec-
tively [13, 28]. One of them is that the labels should be pairwise disjoint and
close to the graphical object they belong to.

There is a little story how the topic has been introduced to the field of al-
gorithmics [19]. Around the year 1990 Rudi Krämer, a former student of Kurt
Mehlhorn, now working for the city of Munich, asked his professor for help when
facing the problem of labeling a map with a set of landmarks for ground water
level of the city. Kurt Mehlhorn shared that problem with his students, including
the author, and also with his collegues, including the computational geometry
group in Berlin, headed by Emo Welzl and Helmut Alt. The result of this col-
laboration was a mathematical model for the problem and a series of algorithms
published in several papers arised that laid the foundations for a new field in
algorithmics. The driving forces behind this development were the works by M.
Formann, F. Wagner [11], and later on by A. Wolff [26] as well as M. van Krev-
eld and T. Strijk [20] from Utrecht. Unfortunately, the majority of map labeling
problems are shown to be NP-complete [2, 25]. Due to this fact, graph drawers
and computational geometers have suggested labeling approximations [2, 11, 25]
and heuristics [27] as well as methods from optimization [23, 10], which often try
to maximize either the label size or the number of features with labels. A nice
and short overview on map labeling with emphasize on graph drawing has been
1 Large pieces of this review and pictures have been taken from [3, 4, 6, 7, 15].

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 290–304, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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presented by G. Neyer [18]. A more detailed bibliography on map labeling mainly
from the computer science aspects can be found in [24]. In general, map labeling
has found its place in the research landscape not only of cartography, but also
geographic information systems and more general computational geometry. The
ACM Computational Geometry Task Force [9] has identified label placement as
an important area of research.

Recently, a new exciting variant has been considered that is regularly used
in practice but that has not considered systematically by algorithmics people:
boundary labeling. The motivating example for this project was a map of the
school infrastructure of Greece where very large labels have been used and clearly
the traditional labeling models were not sufficient. The large labels have no space
close to their corresponding point sites and therefore they are placed somewhere
on the outside of the map. The point sites are connected to their corresponding
labels by polygonal lines, which are called leaders later on. In a first paper,
Bekos, Kaufmann, Symvonis and Wolff introduced the formal models and basic
algorithms [3], and later on extended in various directions.

In the following, we will review the results related to boundary labeling and will
only sketch the used techniques such that an algorithmicist could fill in the details.
The aim of the description is to demonstrate the variety of algorithmic techniques
and the power of formal models that really help to achieve useful practical results.

Fig. 1. The blue map: the motivation example



292 M. Kaufmann

2 Boundary Labeling - Models and Methods

In this section, we introduce the basic models and algorithms for boundary
labeling. Abstracting from the so-called blue map of Greece, and neglecting the
details like an underlying graph, and many textual labels that are placed in the
traditional way close to the corresponding point sites we concentrate on the new
feature, namely the labels connected by the leaders. We formulate the following
very simple model:

We assume that a set P = p1, ..., pn of point sites inside an axis-parallel
rectangle R. Each site pi is associated with an axis-parallel rectangular label
li. The labels have to be placed and connected to their corresponding sites by
polygonal leaders ci, such that (a) no two labels intersect, (b) no two leaders
intersect, and (c) the labels lie outside R but touch R. Concerning the location
of the labels and the type of leaders, different variants are considered.

For a given axis-parallel rectangle R of width W and height H , and a set P
of n point sites pi = (xi, yi), for 1 ≤ i ≤ n in R, each associated with an axis-
parallel rectangular open label li of width wi and height hi, we aim to find a legal
or an optimal leader-label placement. Our formal criteria for a legal leader-label
placement are the following:

1. Labels have to be disjoint.
2. Labels have to lie outside R but touch the boundary of R.
3. Leader ci connects site pi with label li for 1 ≤ i ≤ n.
4. Intersections of leaders with other leaders, sites or labels are not allowed.
5. The ports where leaders touch labels may be prescribed (the center of a label

edge, say) or may be arbitrary (sliding ports).

In this section we present algorithms that compute legal leader-label place-
ments (for brevity, simply referred to as boundary labelings) for various types of
leaders defined below, but we also optimize the boundary placements according
to the following two objective functions: Short leaders (minimum total length)
and simple leader layout (minimum number of bends). These criteria have been
adopted from the area of graph drawing as established abstract objectives to
approach clearness and readability in drawings.

A rectilinear leader consists of a sequence of axis-parallel segments that con-
nects a site with its label. These segments are either parallel (p) or orthogonal
(o) to the side of the bounding rectangle R to which the label is attached. This
notation yields a classification scheme for rectilinear leaders: let a type be an
alternating string over the alphabet {p, o}. Then a leader of type t = t1, . . . , tk
consists of an x− and y-monotone connected sequence (e1, . . . , ek) of segments
from site to label, where each segment ei has the direction that the letter ti
prescribes. At first we focus on leaders of the types opo and po, see Figure 2. In
general, type-opo leaders, or shortly opo-leaders, are routed with one or three
segments such that the first segment connects the site to the boundary of the
rectangle where the corresponding label is placed. We further insist that the par-
allel p-segment is immediately outside the bounding rectangle R and is routed
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R
Track Routing Area

R

Fig. 2. Illustrating opo- and po-leaders

in the so-called track routing area. We consider the special case of type-o lead-
ers to be of type opo and of type po as well. Generalizations of this concepts
are straightline (type-s) leaders that consist of one single segment which is not
restricted to be axis-parallel, and leaders that have o- and p-segments but also
diagonal segments (type-d) (see subsection 3.3).

Additionally, we assume that the sites are in general position such that recti-
linear leaders may not overlap with their first segments.

2.1 Opo-Leaders

We start with the assumption that the labels are placed on one, say the right side
of the rectangle (Fig. 3) and that they have uniform and maximal size. Observe
that the vertical order of the leaders is the same as the vertical order of the
points. When we are just interested in a legal boundary labeling, we can sort the
point sites and the labels as well by y-coordinates, assign sites to corresponding
label positions and route the opo-leaders.

Theorem 1. Given a rectangle R of sufficient size, a side s of R, a set P of n
point sites in R in general position and a rectangular label for each site, there is
an O(n log n)-time algorithm that attaches labels to s and connects them to the
corresponding sites with non-intersecting opo-leaders.

In a second step, we assume sliding ports and aim to minimize the number
of bends on the leaders. This means that we maximize the number of leaders
without bends. Labels with uniform and maximal size do have a fixed position,
so we do not have freedom for optimization. With labels li of different height hi,
we are allowed to vary the vertical spacing between the labels. With a dynamic
programming approach that incrementally adds the leaders from bottom to top
minimizing the number of used bends we can prove

Theorem 2. Given a rectangle R of sufficient size, a side s of R, a set P of
n sites in R in general position and a rectangular label for each site, there is
an O(n2)-time algorithm that attaches the labels to s and connects them to the
corresponding sites with non-intersecting opo-leaders such that the total number
of leader bends is minimized.

In the next extension, we optimize the total leader length. This is obvious if
the labels are only on one side, as the algorithms above already give optimal
labelings for this case. Therefore, we assume labels on the left and the right
sides, but at first we consider the case of uniform labels. Here we apply a similar
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Fig. 3. A simple example for opo-leaders connecting labels to one side

dynamic programming algorithm as above. Sweeping from bottom to top, we
compute at each site i values T (i, k) that give the optimal leader length for the
case that k of the i lowest leaders have been routed to the left boundary. This
gives

Theorem 3. Given a rectangle R with n/2 uniform labels of maximum height on
each of its left and right sides, and a set P of n sites in R in general position,
there is an O(n2)-time algorithm that attaches each site to a label with non-
intersecting opo-leaders such that the total leader length is minimized.

Fig. 4. Minimal leader lengths for labels on two opposite sides of the rectangle

This dynamic program can be refined such that varying heights are allowed:

Theorem 4. Given a rectangle R of height H, a set P of n sites in R in general
position where site pi is associated with label li of height hi, there is an O(nH2)-
time algorithm that places the labels to the sides of the rectangle and attaches
the corresponding sites with non-intersecting type-opo leaders such that the total
leader length is minimum.
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More general, we allow labels on all four sides of the rectangle boundary. To
find a legal solution for opo-leaders, we have to assign the point sites to the side
where their label is placed. Hence, we have to partition the point set according
to the number of labels on each side into four sets, such that the leaders from
different partitions do not intersect. This can be ensured by a partition of the
rectangle such that each polygon is convex. By two rotational sweeps around
appropriate corners of the rectangle [17], this partition can be constructed.

Theorem 5. Given a rectangle R of sufficient size, a set P of n sites in R
in general position, square uniform labels, one per site, and numbers n1, . . . , n4
that express how many labels are to be attached to which side of R, there is an
O(n log n)-time algorithm that attaches the labels to R and connects them to the
corresponding sites with non-intersecting opo-leaders.

More interesting is the optimization version of the four-sided problem. We for-
mulate this problem as a bipartite matching problem. On one side, we have the n
point sites, on the other side the label positions. For each point and each possible
label position, we create an edge having the weight corresponding to the unique
length of the potential opo-leader. Solving this weighted matching problem [22]
gives an length-minimum assignment of the labels to the points. We still have
to argue that although this assignment might have crossings in some rare cases,
these crossings can be avoided without increasing the total leader length.

Theorem 6. Consider four-side opo-labeling of n sites with uniform labels and
sliding ports. A crossing-free solution of minimum total length can be computed
in O(n2 log3 n) time.

2.2 Po-Leaders

When turning to po-leaders, first observe that the leaders have at most one bend.
Secondly unlike in the opo-case, there are non-unique crossing-free routings of
leaders. The main idea to handle po-leaders is to take the opo-solutions and
transform them to po-solutions. Note that each nontrivial opo-leader can be
transformed into a po-leader by flipping the first two segments. Unfortunately,
this might create crossings. But crossings can be resolved by exchanging the
corresponding labels between the two crossing leaders. Iterating O(n2) resolution
steps leads to a crossing-free po-solution.

Theorem 7. Given a rectangle R, a side s of R, a set P of n sites in R in gen-
eral position and a rectangular uniform label for each site, there is an O(n2)-time
algorithm that attaches the labels to s and connects them to the corresponding
sites with non-intersecting po-leaders.

Applying the same technique as above - transforming opo-leaders into po-leaders
and resolve crossings - we can achieve length-minimal po-solutions, even for the
case that labels are placed on two opposite sides of the rectangles. In the latter
case, we again use dynamic programming.
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Fig. 5. Minimal leader lengths for three sides: The original straight-line map and the
automatically drawn opo-type leaders

Fig. 6. Example for po-model

Theorem 8. Given a rectangle R, a side s of R, a set P ∈ R of n sites in general
position and a rectangular uniform label, there is an O(n2)-time algorithm that
produces a legal po-labeling of minimum total leader length.

Theorem 9. Given a rectangle R with n/2 uniform labels of maximum height
on each of its left and right sides, and a set P ∈ R of n sites in general position,
there is an O(n2)-time algorithm that attaches each site to a label with non-
intersecting po-leaders such that the total leader length is minimized.

2.3 Type-s Leaders

In this subsection, we consider straight-line leaders (type-s) that do not neces-
sarily consist of axisparallel segments. We follow the models as presented for the
opo-case.

Theorem 10. A legal one-side type-s leader-label placement for fixed labels with
fixed ports can be computed in O(n log n) time.
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Fig. 7. Example for min-total-length po-leaders to labels on two sides. For comparison,
we added the corresponding example for opo-leaders.

Proof idea: Observe that the lowest type-s leader connects the point and labels
on the convex hull including points and labels. Using a semi-dynamic convex-hull
data structure which only supports deletion of points [12] leads to the theorem
above.

If we have labels on all four sides, we again have to partition the point set into
four convex polygons related to one side each, such that each polygon section
can be routed separately. This can be done by basic geometric means, namely a
combination of appropriate linear and rotational sweeps.

Theorem 11. A legal four-side type-s leader-label placement for fixed uniformly
distributed labels with fixed ports can be computed in O(n log n) time.

For optimization of the total leader length we can formulate the problem as
an Euclidean min-cost bipartite matching problem between points and labels.
The solution is crossing-free and can be obtained in time O(n2+ε) for arbitrary
ε > 0 [1]. This clearly holds not just for labels on one side but also for the case
of four-sides-labels.

Theorem 12. A legal one-side type-s leader-label placement of minimum total
leader length for fixed labels with sliding ports can be computed in time O(n2+ε)
time for any ε > 0.

Theorem 13. A legal four-side type-s leader-label placement of minimum total
leader length for fixed labels with sliding ports can be computed in time O(n2+ ε)
time for any ε > 0.

3 Extending the Standard Models

3.1 Multi-stack Labeling

In this subsection, we review a variant of boundary labeling problems where
we assume that there is not enough space for all labels. Therefore we seek to
obtain labelings with labels arranged on more than one stacks placed at the
same side of the rectangle R. We refer to problems of this type as multi-stack
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boundary labeling problems. We aim for maximizing the uniform label size for
boundary labeling with two and three stacks of labels. The key component of
our algorithms is a dynamic programming technique that combines the merging
of lists and the bounding of the search space of the solution. The technique could
be refined such that the necessary bends in the opo-routing are always close to
the corresponding stack of labels.

Theorem 14. Given a rectangle R of integer height H and a set P of n points in
R in general positions, there exists an O(n4logH) time algorithm that produces
a legal multi-stack labeling with two stacks of labels on the same side of R and
with opo-leaders such that the uniform integer height of the labels is maximum.

Fig. 8. An example for two-stack-opo boundary labeling

Theorem 15. Given a rectangle R of integer height H and a set P of n points in
R in general positions, there exists an O(n4 log H) time algorithm that produces
a legal multi-stack labeling with three stacks of labels on the same side of R and
with opo-leaders such that the uniform integer height of the labels is maximum
and the leaders connected to labels at the i-th stack are restricted to bend in the
i-th track routing area.

On the negative side, we could prove NP-completeness for the case of variable
label heights, even if each label can only be connected to two candidate points.

Fig. 9. An example for two-stack-opo with leaders bending at the i-th track routing
area
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Theorem 16. Given a rectangle R of height H, a set P of n line segments
(sites) in R that are parallel to the y-axis and a label of height hi for each site
si ∈ P , it is NP-hard to place all labels at two stacks on one side of R with
non-intersecting opo-leaders.

Theorem 17. Given a rectangle R of height H, a set P of n sites in R, each as-
sociated with two candidate points, and a label of height hi for each site si ∈ P , it
is NP-hard to place all labels at two stacks on one side of R with nonintersecting
opo-leaders.

3.2 Labeling Polygons with Leaders

In this subsection, we consider the model where the graphical features are not
point sites but area features, e.g. a region of a map. Here we apply again our
technique to formulate the assignment problem as a mincost-bipartite matching
problem between region and label candidate. The problem here is to determine
the related edge weights which correspond to the minimum Manhattan distances
between the polygonal region and the labels. We assume that the regions are
generalized canonical polygons (gc-polygons) whose edges are vertical, horizontal
or diagonal. We allow that the leader may attach to the polygon on any position
of the boundary. Using basic computational geometry methods we can compute
those distances efficiently.

Fig. 10. A motivating example for boundary labeling for polygons. Observe the visual
improvement when area features are used instead of points.

Theorem 18. Consider the case where the labels are placed in fixed positions
on all four sides of rectangle R, m is the number of labels, n is the number of
gc-polygons, k0 = O(k+m) and k is the maximum number of corners that a site
of type gc-polygon. The minimum distance under the Manhattan metric between
any label and any polygon can be computed in time O(n(k0 + m) log k0).

After applying the min-cost bipartite matching algorithm, eventually crossings
have to be resolved in a similar way as described for the opo-leaders in section 2.
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3.3 Boundary Labeling with Diagonal Leaders

In 2007, Benkert, Haverkort, Kroll and Nöllenburg introduced a new type of lead-
ers which seems to overcome most of the aesthetical drawbacks of opo-, po and
straightline leaders, they also allowed diagonal segments. In their publication [8],
they presented a dynamic programming approach for length-minimization but
they restricted to one side only, and more seriously, they restricted to do-leaders,
where only the first segment of the leader might be diagonal. Unfortunately, this
restriction is not very natural but leaves many problems unfeasible (e.g., if many
points are relatively close to the center of the boundary.

Fig. 11. The motivating example for diagonal leaders

In [7], we generalized this approach allowing different pairs of type leaders (i.e.
do and pd, od and pd) to be combined to produce boundary labelings. Thus,
we were able to overcome the problem that there might be no feasible solution
when labels are placed on different sides and only one type of leaders is allowed.
We gave an algorithm for solving the total leader length minimization problem
(i.e., the problem of finding a crossing free boundary labeling, such that the total
leader length is minimized) assuming labels of uniform size.

The formal definition for the new type of leaders is the following:

– Type-od leaders: The first line segment of a leader of type od is orthogonal
(o) to the side of R containing the label it leads to. Its second line segment
is diagonal (d) to that side.

– Type-pd leaders: The first line segment of a leader of type pd is parallel (p)
to the side of R containing the label it leads to. Its second line segment is
diagonal (d) to that side.

– Type-do leaders: The first line segment of a leader of type do is diagonal (d)
to the side of R containing the label it leads to. Its second line segment is
orthogonal (o) to that side.

We could prove the following theorem restricting to two types of leaders.
Note that after application of the appropriate bipartite matching technique [16]
a crossing resolution phase is necessary even for the case of one-side-leaders.
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R R R

Fig. 12. Three different kind of leaders with diagonals: od, pd, do

Theorem 19. Given a set P of n sites and a set L of n labels of uniform size
placed at fixed positions on one side of the enclosing rectangle R, we can compute
in O(n3) total time a legal boundary labeling of minimum total leader length with
type do and pd leaders.

Allowing labels on more sides, we could apply again the bipartite matching
technique but the crossing resolution phase is much more involved.

Theorem 20. Given a set P of n sites and a set L of n labels of uniform size,
placed at fixed positions, on two opposite or even all four sides of the enclosing
rectangle R, we can compute in O(n3) total time a legal boundary labeling of
minimum total leader length with either type do and pd leaders or with od and
pd leaders.

For the case, that we only aim for a legal but not length-minimal solution, we
could improve the time bound by partitioning the rectangle in four appropriate
regions and then using a greedy routing of the leaders followed by a crossing
resolution phase.

Theorem 21. Given a set P of n sites and a set L of n labels of uniform size
placed at fixed positions on all four sides of the enclosing rectangle R, we can
compute in O(n2) total time a legal boundary labeling with type od and pd leaders.

Finally, we could prove NP-completeness for the case of arbitrary label heights
by a reduction of an appropriate scheduling problem called total discrepancy
problem.

Theorem 22. Given a set P of n sites, a label li of height hi for each site si and
an integer k, it is NP-complete to decide whether there exists a legal boundary
labeling of total leader length no more than k assuming type do and pd leaders.

3.4 Many-to-One Labeling

A very interesting alternative generalization of the basic model has been consid-
ered in [15]. Namely, in certain applications, more than one site may be required
to be connected to a common label. In this case, the presence of crossings among
leaders often becomes inevitable. Minimizing the total number of crossings in
boundary labeling becomes a critical design issue as crossing is often regarded
as the main source of confusion in visualization. Lin, Kao, and Yen introduce
the model for multi-site-to-one-label boundary labeling, or many-to-one labeling,
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Fig. 13. An example for many-to-one boundary labeling

and concentrated on the crossing minimization problem. They give nice reduc-
tions to the well-known two-layer-crossing minimization problem of bipartite
graphs which is NP-complete and show NP-completeness-results for the crossing
minimization problem for various one-side and two-side labeling schemes.

Theorem 23. Given an integer k, a set P of N sites and a set L of n labels,
and a many-to-one function mapping the points from P to the labels in L, it is
NP-complete to decide if there is a set of opo/po-leaders with at most k crossings
for the case that the labels are placed on one side of the rectangle, and for the
case that the labels are placed on two opposite sides.

Even more interesting, the authors present some approximation methods inspired
by other approximation algorithms for crossing minimization from the graph
drawing literature. For example, they use an approximation for max-bisection
to achieve an approach for the two-sided problem for labels of maximal size.

Theorem 24. Given a set P of N sites and a set L of n labels, and a many-
to-one function mapping the points in P to the labels in L that are placed on
two opposite sides of the rectangle. For the case of opo-leaders the crossing min-
imization problem can be solved within a factor of C from the optimum.

Note that the constant C is a somewhat complicated expression depending on
the weights of the potential leaders.

4 Discussion and Open Problems

We have demonstrated a nice example of how algorithmics can effectively work.
Starting from a challenging problem (’the blue map’) we derived a very simple
model that abstracts from many practical parameters and applied various al-
gorithmic techniques to solve the problem. Gradually, we generalized the basic
models allowing more flexibility in the model constraints and found out which of
the methods is robust enough to carry over. Clearly, the aim to provide effective
algorithms for the labeling problem in full generality is not reached yet, therefore
we formulate the following open problems as possible extensions:
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1. Reformulate Vaidya’s geometric matching algorithm such that it can be ap-
plied to the od/do - metric.

2. Develop algorithms for a mixed model, where internal labels and boundary
labels are allowed.

3. Allow the placement of leader-connected labels not only at the boundary but
anywhere in the map where there is empty space.

4. Develop approximations for the NP-complete problems for boundary label-
ing.

5. Evaluate which is the most appropriate model for boundary labeling (opo,
po, do, mixed, ...).
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Abstract. This survey concentrates on selected theoretical and com-
putational aspects of the crossing number of graphs. Starting with its
introduction by Turán, we will discuss known results for complete and
complete bipartite graphs. Then we will focus on some historical con-
fusion on the crossing number that has been brought up by Pach and
Tóth as well as Székely. A connection to computational geometry is made
in the section on the geometric version, namely the rectilinear crossing
number. We will also mention some applications of the crossing num-
ber to geometrical problems. This review ends with recent results on
approximation and exact computations.

1 Introduction

The crossing number cr(G) of a graph is the smallest number of edge crossings
achievable when laying out G in the 2-dimensional plane. The problem originated
from Turán in 1944 when he worked in a labor camp [31]:

“There were some kilns where the bricks were made and some open storage
yards where the bricks were stored. All the kilns were connected by rail with all
the storage yards. The bricks were carried on small wheeled trucks to the storage
yards. All we had to do was to put the bricks on the trucks at the kilns, push
the trucks to the storage yards, and unload them there . . . the trouble was only
at the crossings. The trucks generally jumped the rails there, and the bricks fell
out of them; in short, this caused a lot of trouble and loss of time . . . the idea
occured to me that this loss of time could have been minimized if the number
of crossings of the rails had been minimized.”

In 1952, Turán mentioned this problem to Zarankiewicz, who presented a
solution for the crossing number of complete bipartite graphs in 1954 [34]. Un-
fortunately, Ringel found a gap in the published proof that has not been closed
yet.

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 305–317, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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1.1 The Crossing Number for Complete Bipartite Graphs

However, the formula presented by Zarankiewicz is conjectured to be correct.
His construction provides drawings with exactly

Z(m, n) :=
⌊

m

2

⌋⌊
m − 1

2

⌋⌊
n

2

⌋⌊
n − 1

2

⌋
crossings. Figure 1 shows the construction for K6,6.

Fig. 1. Zarankiewicz’s construction for K6,6

The conjecture is known to be true for Km,n with min(m, n) ≤ 6 and for
m, n ≤ 7. The smallest unsolved cases are K7,11 and K9,9 with conjectured
values 225 and 256, respectively. New bounding techniques using semi-definite
programming [12] have shown that

0.8594Z(m, n) ≤ cr(Km,n) ≤ Z(m, n).

1.2 The Crossing Number for Complete Graphs

The crossing number for the complete graph Kn is not known either. It is gen-
erally believed to be given by the formula provided by Guy [18]:

Z(n) :=
1
4
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n − 1
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n − 3
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⌋
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For odd n the formula can be written as Z(n) = 1
64 (n − 1)2(n − 3)2. Also Guy

presented a general drawing scheme for Kn that produces drawings with exactly
Z(n) crossings. Guy’s construction for K8 is shown in Figure 2.
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Fig. 2. Guy’s construction for K8

Combinatorial arguments show the following fact: If Guy’s conjecture is true
for K2k−1, then it is also true for K2k. This is the reason why the proofs con-
centrate on Kn for odd n. Guy [18] was able to prove his conjecture for Kn

with n ≤ 10. For 35 years, this result could not be improved. Recently, Pan and
Richter [24] showed that cr(K11) = 100 thus getting cr(K12) = 150 for free. The
smallest unsolved case is K13 with conjectured crossing number 225.

For many graph classes the situation is similar: cr(G) is known for small
instances only, while for general n not much is known (e.g., hypercube graphs,
toroidal graphs, or generalized Peterson graphs). For a bibliography on the cross-
ing number, see [33].

2 Confusion on the Crossing Number

In their interesting article [23] “What crossing number is it anyway?” Pach and
Toth stated that “. . . some authors might have thought of . . . ” different crossing
numbers. They pointed out that the definitions for the crossing number provided
in the literature were not always the same. In order to investigate this further,
we will use the formal definitions of Szégely [30].

A drawing D of a graph G into the plane is an injection from the vertex set
V (G) into the plane, and a mapping Φ of the edge set E(G) into the set of simple
planar curves, such that the curve corresponding to the edge has end points Φ(u)
and Φ(v), and contains no other vertices. The number of crossings cr(D) in D is
the number of intersection points of all unordered pairs of interiors of edges. The
crossing number cr(G) of a graph G is the minimum cr(D) over all drawings D
of G. A drawing D is optimal if it realizes cr(D) = cr(G).

A drawing D is called normal if it satisfies

i any two of the curves have finitely many points in common
ii no two curves have a point in common in a tangential way
iii no three curves cross each other in the same point
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A drawing is nice, if it is normal, and satisfies

iv no two adjacent edges cross
v any two edges cross at most once

It can be observed that an optimal drawing must satisfy i, ii, iv, and v, and
can be transformed to satisfy iii. Therefore, we can restrict ourselves to consider
normal or even nice drawings when interested in cr(G).

Pach and Tóth [23] introduced two variants of crossing numbers: The pairwise
crossing number cr-pair(G) is the minimum number of edge pairs that cross each
other at least once, over all normal drawings of G. The odd crossing number
cr-odd(G) is equal to the minimum number of edge pairs that cross each other
an odd number of times, over all normal drawings of G.

In [32], Tutte introduces yet another version that Szégely calls the independent
odd crossing number cr-iodd(G). It is equal to the minimum number of non-
adjacent edge pairs that cross each other odd times, over all normal drawings of
G. The reason why Tutte introduced this crossing number was his “. . . view that
crossings of adjacent edges are trivial, and easily get rid of.” But so far nobody
has shown that this can be done in this setting.

The following relation between these variants is obvious:

cr-iodd(G) ≤ cr-odd(G) ≤ cr-pair (G) ≤ cr(G)

Pach and Tóth mention that “. . . perhaps the most exciting open problem in
the area . . . ” is the question: “Are they all equal?”

One of the reasons why researchers thought that these numbers might be equal
is an old theorem by Hanani [19], rediscovered by Tutte [32]. It states that every
graph that can be drawn such that every pair of non-adjacent edges intersects
an even number of times, is planar. Pach and Tóth [23] have generalized this
result by showing that one can redraw even edges without crossings even in the
presence of odd edges. Pelsmajer, Schaefer, and Štefankovič [25] have shown that
this redrawing can be performed without adding pairs of edges that intersect an
odd number of times; in particular, the odd crossing number does not increase by
the redrawing. It is known that cr(G) ≤ 2(cr-odd(G))2 [23] and that for graphs
with cr-odd(G) ≤ 3 indeed cr-odd(G) = cr(G) [25].

Some authors have stated the conjecture that cr-odd(G) = cr(G). A surprising
result by Pelsmajer, Schaefer, and Štefankovič [26] showed that equality of both
crossing number variants does not hold. The authors have presented a quite
simple infinite family of graphs with cr-odd(G) < cr-pair (G) = cr(G).

Figure 3 shows an example of such a graph G. The four distinguished edges
a, b, c and d have weights wa = 1, wb = wc = 3, and wd = 4. We assume that
the weights of the edges e along the two main cycles are heavy so that they are
not crossed in an optimal drawing (e.g., we = 15). We can think of replacing an
edge with weight w by w parallel edges. It is also possible to get rid of parallel
edges by subdividing these edges. The left drawing shows an optimal drawing for
cr(G) and cr-pair (G). The crossing number and the pairwise crossing number
is cr(G) = cr-pair (G) = 15. In the right drawing, the edges a and c cross
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Fig. 3. A graph with cr-odd(G) < cr(G). The left drawing shows an optimal drawing
for cr(G) and cr-pair(g) with value 15. The right drawing shows an optimal drawing
for cr-odd (G) with value 13.

each other exactly twice providing the amount of 0 to cr-odd(G) thus giving
cr-odd(G) = 13 < cr(G).

However, the question if cr(G) = cr-pair (G) is still open. The bound of
cr(G) = O(cr-pair (G)2/ log(cr-pair (G))) has been provided by Valtr (mentioned
in [22]).

Now that we know that the four crossing numbers are not equal, a ques-
tion already stated by Szégely is catching our interest [30]: “How is it possible
that decades in research of crossing numbers passed by and no major confusion
resulted from these foundational problems?” — Perhaps the graph theory com-
munity was just lucky that the bounds they provided in all these years apply for
all kinds of crossing numbers.

3 The Rectilinear Crossing Number

The geometric version of the crossing number is called the rectilinear crossing
number, denoted by cr-lin , and requires a drawing in the plane with straight line
segments. It is well known that a planar graph always has a planar drawing with
straight line segments. Therefore, one may think that cr-lin(G) and cr(G) are
equal or close together. However, already Guy [17] has shown that cr(K8) = 18
while cr-lin(K8) = 19. Later, Bienstock and Dean [5] have shown that the two
numbers are equal (cr-lin(G) = cr(G)) for graphs with small crossing number
cr(G) ≤ 3. On the other hand, the authors have also shown that there are graphs
with crossing number 4 and arbitrarily large rectilinear crossing number. How-
ever, for graphs with bounded degree, the crossing number and the rectilinear
crossing number are bounded as functions of one another [4]. In detail, if a graph
has maximum degree d and crossing number k, its rectilinear crossing number
is at most O(dk2).

It is conjectured that the construction by Zarankiewicz for the crossing num-
ber of complete bipartite graphs provides the correct numbers for cr-lin(Km,n).
Due to the nature of the construction, a proof for cr(Km,n) = Z(m, n) would
directly lead to cr-lin(Km,n) = Z(m, n).



310 P. Mutzel

Until 2001, the rectilinear crossing number for the class of complete graphs Kn

was known only for n ≤ 9. Then, two groups of researchers independently showed
that cr-lin(K10) = 62. Aichholzer, Aurenhammer and Krasser [1] exhaustively
enumerated all combinatorial inequivalent point sets (so-called order types) of
size 10. Similar methods have been successful for showing cr-lin(K11) = 102
and cr-lin(K12) = 153. The authors initiated the Rectilinear Crossing Number
Project [27] in which users provide their own computing power to the project.
The main goal of the current project is to use sophisticated mathematical meth-
ods (abstract extension of order types) to determine the rectilinear crossing
number for small values of n, and to compute all existing combinatorial non-
isomorphic minimal drawings. Currently, the rectilinear crossing number is
known for all Kn with n ≤ 21 (cr-lin(K21) = 2055). In contrast to cr(Kn) there
is no conjecture following some formula for arbitrarily large n for cr-lin(Kn).
However, the gaps between the lower and upper bounds for n up to 100 are
quite small, e.g., 1.459.912 ≤ cr-lin(K100) ≤ 1.463.970.

4 Applications of the Crossing Number

Székely has used bounds for the crossing number cr(G) for providing a simple
proof of the Szemerédi-Trotter theorem, that is an important result in combi-
natorial geometry. It asks for the maximum number of incidences of n points
and m curves in the plane such that each pair of curves intersects at maximal
O(1) points, and there are no more than O(1) curves passing through each pair
of points. The answer in this case is O(m + n + (mn)2/3). The idea of Szégely’s
proof was to build a graph in which the vertex set is associated with the point set
and the edges with the curve segments. Using bounds for the crossing number
for complete graphs essentially provided the solution.

Szemerédi-Trotter like theorems can be used for proving hard Erdős problems
in combinatorics, in number theory, in analysis or geometric measure theory.
E.g., Elekes [14] used it to show that any n distinct real numbers have Ω(n1.25)
distinct sums or products. And a famous problem of Erdős in geometry asks for
the maximum number of unit distances that are possible among n points in the
plane. Application of the Szemerédi-Trotter theorem provides O(n4/3), and this
is the best known estimate so far [29].

Dey [13] used the bounds known for the rectilinear crossing number for proving
upper bounds on geometric k-sets. This led to considerable improvement on this
bound after its early solution about 27 years ago.

The rectilinear crossing number of a complete graph is essentially the same as
the minimum number of convex quadrilaterals determined by a set of n points
in general position. It is known that the number of quadrilaterals is proportional
to the fourth power of n, but the precise constant is unknown [28].

An important application of crossing numbers is in graph drawing and VLSI-
design. This is why the author started research in this area in 1995. Figure 4
shows a graph with 120 objects and 161 edges that originated at an insurance
company. The original drawing had 122 crossings, while the crossing minimal
drawing has only 6 crossings.
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Fig. 4. A drawing of the insurance graph with 6 crossings

5 Approximation

Garey and Johnson have shown NP-completeness of the decision variant of the
crossing number problem [21]. Pach and Tóth have shown the same for the
crossing number variants cr-odd and cr-pair . Bienstock has shown that also the
computation of cr-lin(G) is NP-hard [3].

No polynomial time algorithm is known for approximating cr(G) for general
graphs within some non-trivial factor. Bhatt and Leighton [2] suggested the
first algorithm which approximates |V |+ cr(G) for a bounded degree graph G =
(V, E) with a factor of O(log4 |V |). This approximation factor has been improved
by Even, Guha and Schieber [15] in 2002 to O(log3 |V |). For sparse graphs,
when cr(G) = o(|V |), this approximation does not guarantee good results. Until
recently, polynomial time algorithm approximating cr(G) was known, not even
for special graph classes.

Recently, the first approximation results have been achieved that do depend
on the maximum degree and cr(G) only. The approximation results concern the
graph classes of almost planar graphs and apex graphs. A graph G = (V, E) is
called almost planar if G is non-planar, but there does exist an edge e ∈ E so
that G − {e} is planar. Given a planar embedding Π of the remaining graph
G−{e}, the edge e can be re-inserted with the minimal number of crossings via
a shortest path in the extended geometric dual graph of Π . Gutwenger, Mutzel,
and Weiskircher [16] have presented a linear time algorithm (based on the data
structure of SPQR-trees) which is able to find the optimal embedding Π0 of
G − {e}, so that inserting e into Π0 leads to a crossing minimum drawing over
the set of all possible planar embeddings Π . The natural question arises, if this
approach does approximate the crossing number cr(G) by some small factor.
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Fig. 5. Inserting edge e back into the planar graph G − {e} yields m crossings if
deg(v) ≥ 2m. Note that the shaded blocks are dense triconnected subgraphs. The
crossing minimal drawing of G with 2 crossings can be found when flipping the two
blocks adacent to v.

Figure 5 shows an example for which the edge e will be inserted into the pla-
nar graph G − {e} with m crossings. However, the minimum crossing number of
G is 2. This can be achieved by flipping the two lower components adjacent to v.
Hliněný and Salazar [20] observed that the approximation factor in this case de-
pends on the degree of vertex v. If the degree is bounded, then this example does
not hurt the approximation anymore. Hliněný and Salazar have shown that the
above algorithm provides crossing numbers of at most Δ(G − {e})cr(G), where
Δ(G) denotes the maximum degree of G. This number has later been improved to
(Δ(G − {e})/2)cr(G) by Cabello and Mohar [7]. This provides the first constant
approximation algorithm for almost planar graphs with bounded degree graphs.

Very recently, these results could be generalized to apex-graphs. A graph
G = (V, E) is called an apex graph if G is non-planar, but there does exist
a vertex v ∈ V so that G − {v} is planar. Chimani, Gutwenger, Mutzel, and
Wolf [9] have shown that v and all its incident edges can be re-inserted into
an optimal embedding Π0 of G − {v} (which the algorithm will identify) with
the minimum number of crossings in polynomial time. Chimani, Hliněný, and
Mutzel [10] have shown that this algorithm will find solutions which are at most
a factor of deg(v)Δ(G − {v})/2 away from the optimum solution cr(G).

Both approximation results are (almost) tight: for almost planar graphs, there
is an example showing that the approximation factor can be reached, while for
apex graphs the example is still a factor of 2 away.

Some open questions arise:
– Is there a polynomial time algorithm for computing the crossing number

cr(G) for almost planar graphs? Cabello and Mohar [7] have shown that the
weighted version is NP-hard.

– Can the above results be generalized, e.g., for graphs that are planar after
deleting a fixed number of edges?
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6 Exact Computation

Very few publications exist for computing the crossing number of general graphs
exactly. Grohe has shown in 2001 that the crossing number problem is fixed-
parameter tractable. However, the used concepts are based on the theoretical
results of Robertson and Seymour. Recently, Kawarabayashi and Reed 2007 have
improved the quadratic running time to a linear time algorithm for fixed k.
Both approaches reduce the graph to one with bounded tree-width and the same
crossing number and then test if the graph has crossing number at most k. There
is common agreement that this approach is purely theoretical. Related to this,
the following open problem is among the most important ones in the area: Can
cr(G) be computed in polynomial time for graphs with bounded tree-width?

Until 2005, no practically efficient algorithm for computing the crossing num-
ber was known. Today, there exist two approaches for computing the exact cross-
ing number for general graphs. The approaches are based on two integer linear
programming (ILP) formulations of the crossing number problem that can be
solved by branch-and-cut algorithms.

The ILP formulation by Buchheim et al. [6] is called the subdivision cross-
ing minimization approach (SOCM) and optimizes over the set of all simple
drawings. A drawing is called simple if every edge is only crossed at most once.
In order to provide an optimal solution for cr(G), we need to subdivide all
edges in G into a path of length |E|. The variables xe,f are associated with all
non-adjacent edge pairs (e, f) ∈ E2. The constraints come essentially from Ku-
ratowski’s theorem stating that a graph G is planar if and only if it does not
contain a subdivision of K3,3 or K5. Besides the Kuratowski-constraints and the
0/1-constraints, the ILP also contains constraints that guarantee to get simple
drawings of the subdivided graph.

The second approach by Bomze, Chimani and Mutzel [11] is called the
ordering-based ILP model (OOCM). This is not restricted to simple drawings. In-
stead, additional linear ordering variables yefg are introduced for each edge e ∈ E
that may be crossed more than once. The variables yefg for edges e, f, g ∈ E pro-
vide the information in which order an edge e is crossed by f and g. In this ILP
we need Kuratowski constraints on the x variables, linear ordering constraints
on the y variables, 0/1-constraints for all variables, and additional linking con-
straints between the x and y variables.

We solve both ILP models with branch-and-cut algorithms. In order to get
these algorithms to work in practice, we needed to come up with new prepro-
cessing techniques as well as new combinatorial column generation methods. Our
computational experiments on a benchmark set of about 11,000 graphs show that
we can compute the exact crossing numbers for general sparse graphs with up
to 100 vertices and crossing number up to 37 within 30 minutes.

Figure 6 shows the percentage of instances that have been solved within 30
minutes of computation time for about 11.000 graphs of the Rome library. The
x-asis shows the number of vertices |V |. The number of edges of the Rome graphs
is below 1.5|V | on average. The crossing number of almost all graphs with up to
60 vertices could be solved to provable optimality within 30 minutes CPU-time.
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Fig. 6. The average percentage of instances solved within 30 minutes of computation
time of the ILP models SOCM and OOCM
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Fig. 7. The dark line shows the average number of start variables in our branch-and-
cut approach (left axis). The right axis shows the percentage of additional variables
generated by the two approaches.
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The graphs with 100 vertices are much harder to solve. But still, more than 50%
of the instances with 100 vertices could be solved to optimality.

It seems that the second formulation based on linear ordering dominates our
first ILP model. For most instances, we need far more variables in our SOCM
model than in the OOCM model. The dark line in Figure 7 shows the average
number of start variables (left axis) in our branch-and-cut approach. For graphs
with 100 vertices the average number was about 1800 variables. During the
run of the algorithm, column generation adds in additional variables. These
numbers are much higher for the SOCM approach. While SOCM added about
50% new variables with respect to the start variables, OOCM only had to add
18% additional variables for the 100-vertex graphs.

We find it surprising that in the OOCM model only very few y-variables are
needed in order to find the optimum solution. Detailed experiments and results
can be found in [8, 11].

7 Solved Open Problems

We close our survey with selected experimental results for special graph classes.
While we could verify the crossing number of the complete graph on 11 (and
12) vertices (with an alternative optimum solution), one more vertex is still a
challenge.

On the other hand, we are able to compute the crossing number of generalized
Petersen graphs Pn,4 up to n = 44 which was unknown before. Based on our
computed results, we came up with a conjecture of the crossing number of this
graph class.

Moreover, we are confident that we are about to be able to compute the
crossing number of the smallest toroidal grid graph T8,8 whose crossing number
is still unknown (and conjectured to be 48).

Fig. 8. Knuth’s musical graph
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In Exercise 133 of The Art of Computer Programming, Volume 4, Draft of
Section 7, Donald E. Knuth uses the “musical graph” on page 73 of Graphs by
R. J. Wilson and J. J. Watkins (1990) (see Fig. 8).

It represents simple modulations between key signatures. While all kinds of
properties of this graph are easily analyzed, the question “Can it be drawn with
fewer than 12 crossings?” remained open. After 9.71 seconds of computation
time, our program proved that the crossing number is indeed 12 and produced
an alternative embedding that is not as nice as the original, though.

Acknowledgments. I am grateful to Michael Jünger who pointed out the open
problem of Knuth’s forthcoming book. Many thanks to Markus Chimani who
was co-author of most cited papers on the crossing number, and who did all
computations with his code.
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Abstract. This paper defines algorithm engineering as a general method-
ology for algorithmic research. The main process in this methodology is
a cycle consisting of algorithm design, analysis, implementation and ex-
perimental evaluation that resembles Popper’s scientific method. Impor-
tant additional issues are realistic models, algorithm libraries, benchmarks
with real-world problem instances, and a strong coupling to applications.
Algorithm theory with its process of subsequent modelling, design, and
analysis is not a competing approach to algorithmics but an important
ingredient of algorithm engineering.

1 Introduction

Algorithms and data structures are at the heart of every computer application
and thus of decisive importance for permanently growing areas of engineering,
economy, science, and daily life. The subject of Algorithmics is the systematic
development of efficient algorithms and therefore has pivotal influence on the
effective development of reliable and resource-conserving technology. We only
mention a few spectacular examples.

Fast search in the huge data space of the internet (e.g. using Google) has
changed the way we handle knowledge. This was made possible with full-text
search algorithms that are harvesting matching information out of petabytes of
data within fractions of a second and by ranking algorithms that process graphs
with billions of nodes in order to filter relevant information out of heaps of result
data. Less visible yet similarly important are algorithms for the efficient distri-
bution and caching of frequently accessed data under massive load fluctuations
or even distributed denial of service attacks.

One of the most far-reaching results of the last years was the ability to read the
human genome. Algorithmics was decisive for the early success of this project
[1]. Rather than just processing the data coming our of the lab, algorithmic
considerations shaped the implementation of the applied shotgun sequencing
process.

The list of areas where sophisticated algorithms play a key role could be arbi-
trarily continued: computer graphics, image processing, geographic information
systems, cryptography, planning in production, logistics and transportation,. . .
� Partially supported by DFG grant SA 933/4-1.
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How is algorithmic innovation transferred to applications? Traditionally, al-
gorithmics used the methodology of algorithm theory which stems from math-
ematics: algorithms are designed using simple models of problem and machine.
Main results are provable performance guarantees for all possible inputs. This
approach often leads to elegant, timeless solutions that can be adapted to many
applications. The hard performance guarantees lead to reliably high efficiency
even for types of inputs that were unknown at implementation time. From the
point of view of algorithm theory, taking up and implementing an algorithmic
idea is part of application development. Unfortunately, it can be universally ob-
served that this mode of transferring results is a slow process. With growing
requirements for innovative algorithms, this causes growing gaps between theory
and practice: Realistic hardware with its parallelism, memory hierarchies etc. is
diverging from traditional machine models. Applications grow more and more
complex. At the same time, algorithm theory develops more and more elaborate
algorithms that may contain important ideas but are usually not directly im-
plementable. Furthermore, real-world inputs are often far away from the worst
case scenarios of the theoretical analysis. In extreme cases, promising algorithmic
approaches are neglected because a mathematical analysis would be difficult.

Since the early 1990s it therefore became more and more apparent that al-
gorithmics cannot restrict itself to theory. So, what else should algorithmicists
do? Experiments play a pivotal here. Algorithm engineering (AE) is therefore
sometimes equated with experimental algorithmics. However, in this paper we
argue that this view is too limited. First of all, to do experiments, you also have
to implement algorithms. This is often equally interesting and revealing as the
experiments themselves, needs its own set of techniques, and is an important in-
terface to software engineering. Furthermore, it makes little sense to view design
and analysis on the one hand and implementation and experimentation on the
other hand as separate activities. Rather, a feedback loop of design, analysis, im-
plementation, and experimentation that leads to new design ideas materializes
as the central process of algorithmics.

This cycle is quite similar to the cycle of theory building and experimental
validation in Popper’s scientific method [2]. We can learn several things from
this comparison. First, this cycle is driven by falsifiable hypotheses validated by
experiments – an experiment cannot prove a hypothesis but it can support it.
However, such support is only meaningful if there are conceivable outcomes of ex-
periments that prove the hypothesis wrong. Hypotheses can come from creative
ideas or result from inductive reasoning stemming from previous experiments.
Thus we see a fundamental difference to the deductive reasoning predominant
in algorithm theory. Experiments have to be reproducible, i.e., other researchers
have to be able to repeat an experiment to the extent that they draw the same
conclusions or uncover mistakes in the previous experimental setup.

There are further aspects of AE as a methodology for algorithmics, outside
the main cycle. Design, analysis and evaluation of algorithms are based on some
model of the problem and the underlying machine. Since gaps between theory
and practice often relate to these models, they are an important aspect of AE.
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Fig. 1. Algorithm engineering as a cycle of design, analysis, implementation, and
experimental evaluation driven by falsifiable hypotheses. The numbers refer to sections.

Since we aim at practicality, applications are an important aspect. However we
choose to view applications as being outside the methodology of AE since it
would otherwise become too open ended and because often one algorithm can
be used for quite diverse applications. Also, every new application will have its
own requirements and techniques some of which may be abstracted away for al-
gorithmic treatment. Still, in order to reduce gaps between theory and practice,
as many interactions as poissible between the application and the activities of
AE should be taken into account: Applications are the basis for realistic mod-
els, they influence the kind of analysis we do, they put constraints on useful
implementations, and they supply realistic inputs and other design parameters
for experiments. On the other hand, the results of analysis and experiments in-
fluence the way an algorithm is used (fast enough for real time or interactive
use?,. . . ) and implementations may be the basis for software used in applica-
tions. Indeed, we may view application engineering as a separate process living
in both AE and a concrete application domain where methods from both areas
are used to adapt an algorithm to a particular application. Applications engineer-
ing bridges remaining unavoidable gaps between experimental implementations
and production quality code. Note that there are important differences between
these two kinds of code: fast development, efficiency, and instrumentation for
experiments are very important for AE, while thorough testing, maintainability,
simplicity, and tuning for particular classes of inputs are more important for the
applications. Furthermore, the algorithm engineers may not even know all the
applications for which their algorithms will be used. Hence, algorithm libraries
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of highly tested codes with clear simple user interfaces are an important link
between AE and applications.

Figure 1 summarizes the resulting schema for AE as a methodology for algo-
rithmics. The following sections will describe the activities in more detail. We
give examples of challenges and results that are a more or less random sam-
ple biased to results we know well. Throughout this paper, we will demonstrate
the methodology using the external minimum spanning tree (MST) algorithm
from [3] as an example. This example was chosen because it is at the same time
simple and illustrates the methodology in most of its aspects.

2 A Brief “History” of Algorithm Engineering

The methodology described here is not intended as a revolution but as a descrip-
tion of observed practices in algorithmic research being compiled into a consis-
tent methodology. Basically, all the activities in algorithm development described
here have probably been used as long as there are computers. However, in the
1970s and 1980s algorithm theory had become a subdiscipline of computer sci-
ence that was almost exclusively devoted to “paper and pencil” work. Except for a
few papers around D. Johnson, the other activities were mostly visible in applica-
tion papers, in operations research, or J. Bentley’s programming pearls column in
Communications of the ACM. In the late 1980s, people within algorithm theory
began to notice increasing gaps between theory and practice leading to important
activities such as the Library of Efficient Data Types and Algorithms (LEDA,
since 1988) by K. Mehlhorn and S. Näher and the DIMACS implementation
challenges (http://dimacs.rutgers.edu/Challenges/). It was not before the
end of the 1990s that several workshops series on experimental algorithmics and
algorithm engineering were started.1 There was a Dagstuhl workshop in 2000 [4],
and several overview papers on the subject were published [5, 6, 7, 8, 9].

The term “algorithm engineering” already appears 1986 in the Foreword of [10]
and 1989 in the title of [11]. No discussion of the term is given. At the same
time T. Beth started an initiative to move the CS department of the University
of Karlsruhe more into the direction of an engineering discipline. For exam-
ple, a new compulsory graduate-level course on algorithms was called “Algorith-
mentechnik” which can be translated as “algorithm engineering”. Note that the
term “engineering” like in “mechanical engineering” means the application ori-
ented use of science whereas our current interpretation of algorithm engineering
has applications not as its sole objective but equally strives for general scientific
insight as in the natural sciences. However, in daily work the difference will not
matter much.

P. Italiano organized the “Workshop on Algorithm Engineering” in 1997 and
also uses “algorithm engineering” as the title for the algorithms column of EATCS

1 The Workshop on Algorithm Engineering (WAE) is not the engineering track of
ESA. The Alex workshop first held in Italy in 1998 is now the ALENEX workshop
held in conjuction with SODA. WEA, now SEA was first organized in 2002.

http://dimacs.rutgers.edu/Challenges/
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in 2003 [12] with the following short abstract: “Algorithm Engineering is con-
cerned with the design, analysis, implementation, tuning, debugging and
experimental evaluation of computer programs for solving algorithmic problems.
It provides methodologies and tools for developing and engineering efficient al-
gorithmic codes and aims at integrating and reinforcing traditional theoretical
approaches for the design and analysis of algorithms and data structures.” Inde-
pendently but with the same basic meaning, the term was used in the influential
policy paper [5]. The present paper basically follows the same line of argumen-
tation attempting to work out the methodology in more detail and providing a
number of hopefully interesting examples.

3 Models

A big difficulty for defining models for problems and machines is that (appar-
ently) only complex models are adequate images of reality whereas only simple
models lead to simple, widely usable, portable, and analyzable algorithms. There-
fore, AE must simultaneously and carefully abstract from application problems
and refine theoretical models.

A successful example for a machine model is the external memory model
(or I/O model) [13, 14, 15] which is a careful refinement of the von Neumann
model [16]. Instead of a uniform memory, there are two levels of memory. A fast
memory of limited size M and and a slow memory that is accessed in blocks
of size B. While only counting I/O steps in this model can become a highly
theoretical game, we get an abstraction useful for AE if we additionally take
internal work into account and if we are careful to use the right values for the
parameters M and B2. Algorithms good in the I/O model are often good in
practice although the model oversimplifies aspects like rotational delays, seek
time, disk data density depending on the track use, cache replacement strategies
[17], flexible block sizes, etc. Sometimes it would even be counterproductive to
be too clever. For example, a program carefully tuned to minimize rotational
delays and seek time might experience severe performance degradation as soon
as another application accesses the disk.

An practical modelling issue that will be important for our MST example
is the maximal reasonable size for the external memory. In the last decades,
the cost ratio between disk memory and RAM has remained at around 200.
This ratio is not likely to increase dramatically as long as RAM and hard disk
capacities improve at a similar pace. Hence, in a balanced system with similar
investments for both levels of memory, the ratio between input size and internal
memory size is not huge. In particular, the logarithm of this ratio is bounded by
a fairly small constant.
2 A common pitfall when applying the I/O model to disks is to look for a natural

physical block size. This can lead to values (e.g. the size of 512 byte for a decoding
unit) that are four orders of magnitude from the value that should be chosen – a
value where data transfer takes about as long as the average latency for a small
block.
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The I/O model has been successfully generalized by adding parameters for the
number of disks D, number of processors P , or by looking at the cache-oblivious
case [18] where the parameters M and B are not known to the program.

An example for application modelling is the simulation of traffic flows. While
microscopic simulations that take the actual behavior of every car into account
are currently limited to fairly small subnetworks, it may soon become possible
to simulate an entire country by only looking at the paths taken by each car.

4 Design

As in algorithm theory, we are interested in efficient algorithms. However, in
AE, it is equally important to look for simplicity, implementability, and possi-
bilities for code reuse. Furthermore, efficiency means not just asymptotic worst
case efficiency, but we also have to look at the constant factors involved and
at the performance for real-world inputs. In particular, some theoretically ef-
ficient algorithms have similar best case and worse case behavior whereas the
algorithms used in practice perform much better on all but contrived exam-
ples. An interesting example are maximum flow algorithms where the asymp-
totically best algorithm [19] is much worse than theoretically inferior algorithms
[20, 21].

We now present a similar, yet simpler example. Consider an undirected con-
nected graph G with n nodes and m edges. Edges have nonnegative weights. An
MST of G is a subset of edges with minimum total weight that forms a span-
ning tree of G. The MST problem can be solved in O(sort(m)) expected I/O
steps [22] where sort(N) = O(N/B logM/B N/B) denotes the number of I/O
steps required for external sorting [13]. There is also a deterministic algorithm
that requires O(sort(m) �log log(nB/m)	) I/Os [23].

However, before [3] there was no actual implementation of an external MST
algorithm (or for any other nontrivial external graph problem). The reason was
that previous algorithms were complicated to implement and have large constant
factors that have never been exposed in the analysis. We therefore designed a
new algorithm.

The base case of our algorithm is a simple semiexternal variant of Kruskal’s
algorithm [22] (A semiexternal graph algorithm is allowed O(n) words of fast
memory): The edges are sorted (externally) by weight and scanned in sorted or-
der. An edge is accepted into the MST if it connects two components of the forest
defined by the previously found MST edges. This decision is supported by an
internal memory union-find data structure. Even this simple algorithm is a good
example for algorithm reuse since it can call highly tuned external sorting codes
such as the routine in the external implementation of the STL, STXXL [24]. The
pipelining facility of the STXXL saves up to 2/5 of the I/Os by directly feed-
ing the sorted output into the final scan. For semiexternal algorithms, constant
factors are particularly important for the space consumption in fast memory.
Therefore, we developed a variant of the union-find data structure with path
compression and union-by-rank [25] that needs only �log(n + 1 + log n)	 ≈ log n
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bits for each node. The trick is that root nodes of the data structure need rank
information while only non-root nodes need parent information. Since ranks are
at most log n, the values n..n + log n can be reserved for rank information.

If n > M , all known external MST algorithms rely on a method for reduc-
ing the number of nodes. Our algorithmically most interesting contribution is
Sibeyn’s algorithm for node reduction based on the technique of time forward
processing. The most abstract form of Sibeyn’s algorithm is very simple. In each
iteration, we remove a random node u from the graph. We find the lightest edge
{u, v} incident to u. By the well known cut-property that underlies most MST
algorithms, {u, v} must be an MST edge. So, we output {u, v}, remove it from
E, and contract it, i.e., all other edges {u, w} incident to u are replaced by edges
{v, w}. If we store the original identity of each edge, we can reconstruct the MST
from the edges that are output.

We transform the algorithm into a sweeping algorithm by renumbering the
nodes using a random permutation π and then removing the nodes in the order
n..M . When this is finished, the remaining problem can be solved using the
semiexternal algorithm.

There is a very simple external realization of Sibeyn’s algorithm based on
priority queues of edges. Edges are stored in the form ((u, v), c, eold) where (u, v)
is the edge in the current graph, c is the edge weight, and eold identifies the edge
in the original graph. The queue normalizes edges (u, v) in such a way that u ≥ v.
We define a priority order ((u, v), c, eold) < ((u′, v′), c′, e′old) iff u > u′ or u = u′

and c < c′. With these conventions in place, the algorithm can be described using
the simple pseudocode in Figure 2. This algorithm is not only conceptually simple
but also easy to implement because it can again reuse software by relying on the
external priority queue in STXXL [24]. Note that while a sophisticated external
priority queue needs thousands of lines of code, the actual implementation of
Figure 2 is not much longer than the pseudo code.

ExternalPriorityQueue: Q
foreach (e = (u, v), c) ∈ E do Q.insert(((π(u), π(v)), c, e)) –– rename
currentNode := −1 –– node currently being removed
i := n –– number of remaining nodes
while i > n′ do

((u, v), c, eold) := Q.deleteMin()
if u �=currentNode then –– lightest edge out of a new node

currentNode := u –– node u is removed
i--
relinkTo := v
output eold –– MST edge

elsif v �= relinkTo then Q.insert((v, relinkTo), c, eold) –– relink non-self-loops

Fig. 2. An external implementation of Sibeyn’s algorithm using a priority queue
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5 Analysis

Even simple and proven practical algorithms are often difficult to analyze and
this is one of the main reasons for gaps between theory and practice. Thus,
the analysis of such algorithms is an important aspect of AE. For example,
randomized algorithms are often simpler and faster than their best deterministic
competitors but even simple randomized algorithms are often difficult to analyze.

Many complex optimization problems are attacked using meta heuristics like
(randomized) local search or evolutionary algorithms. Algorithms of this type
are simple and easily adaptable to the problem at hand. However, only very few
such algorithms have been successfully analyzed (e.g. [26]) although performance
guarantees would be of great theoretical and practical value.

An important open problem is partitioning of graphs into approximately equal
sized blocks such that few edges are cut. This problem has many applications,
e.g., in scientific computing. Currently available algorithms with performance
guarantees are too slow for practical use. Practical methods first contract the
graph while preserving its basic structure until only few nodes are left, com-
pute an initial solution on this coarse representation, and then improve by local
search. These algorithms, e.g., [27] are very fast and yield good solutions in many
situations yet no performance guarantees are known.

An even more famous example for local search is the simplex algorithm for
linear programming. Simple variants of the simplex algorithm need exponential
time for specially constructed inputs. However, in practice, a linear number
of iterations suffices. So far, only subexponential expected runtime bounds are
known – for inpracticable variants. However, Spielmann and Teng were able to
show that even small random perturbations of the coefficients of a linear program
suffice to make the expected run time of the simplex algorithm polynomial [28].
This concept of smoothed analysis is a generalization of average case analysis and
an interesting tool of AE also outside the simplex algorithm. Beier and Vöcking
were able to show polynomial smoothed complexity for an important family
of NP-hard problems [29]. For example, this result explains why the knapsack
problem can be efficiently solved in practice and has also helped to improve the
best knapsack solvers. There are interesting interrelations between smoothed
complexity, approximation algorithms, and pseudopolynomial algorithms that is
also an interesting approach to practical solutions of NP-hard problems.

Our randomized MST edge reduction algorithm is actually quite easy to
analyze.

Theorem 1. The expected number of edges inspected by the abstract algorithm
until the number of nodes is reduced to n′ is bounded by 2m ln n

n′ .

Proof. In the iteration when i nodes are left (note that i = n in the first it-
eration), the expected degree of a random node is at most 2m/i. Hence, the
expected number of edges, Xi, inspected in iteration i is at most 2m/i. By the
linearity of expectation, the total expected number of edges processed is
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where Hn = lnn+0.577 · · ·+O(1/n) is the n-th harmonic number.

Plugging in the complexity of the priority queue used [30] we obtain an I/O com-
plexity of O(sort(m) �log(n/M)	). This is actually asymptotically worse than the
previous theoretical algorithms by a factor up to log(n/M). However, recall from
Section 4 that log(n/M) is a constant in balanced machines. A close analysis
of the constant factors involved [3] in the theoretical algorithms reveals that all
things considered, Sibeyn’s algorithm needs a factor at least four less I/Os in
realistic situations. Hence, our MST example exemplifies that closer looks at
constant factors are an important aspect of algorithm analysis in AE and that
constant factors can beat asymptotic behavior.

Sibeyn’s algorithm is also a good example for the importance of looking at
non-worst case instances. It turns out that for planar graphs the factor log(n/M)
is not needed since planar graphs remain planar under edge contraction and thus
we always have constant average degree if we a careful enough to collapse parallel
edges.

An MST algorithm can also be used to find connected components [31]. Since
edges have no weights now, we are free to choose any edge. Choosing the edge
leading to the node with smallest index actually looks like a good idea since
this measure delays reconsidering the relinked edges. It looks like this should
reduce the “suboptimality” of the algorithm to log log(n/M). However, a full
analysis remains an open problem3. This is an example for a simple randomized
algorithm that is difficult to analyze because there are subtle dependencies to
be taken into account.

6 Implementation

Implementation only appears to be the most clearly prescribed and boring activ-
ity in the cycle of AE. One reason is that there are huge semantic gaps between
abstractly formulated algorithms, imperative programming languages, and real
hardware. A typical example for this semantic gap is the implementation of an
O(nm logn) matching algorithm in [32]. Its abstract description requires a so-
phisticated data structure whose efficient implementation only succeeded in [32].

An extreme example for the semantic gap are geometric algorithms which are
often designed assuming exact arithmetics with real numbers and without con-
sidering degenerate cases. The robustness of geometric algorithms has therefore
become an important branch of AE [33, 34, 35].

Even the implementation of relatively simple basic algorithms can be chal-
lenging. You often have to compare several candidates based on small constant
3 In [31] there is no proof of the stated bounds.



330 P. Sanders

factors in their execution time. Since even small implementation details can make
a big difference, the only reliable way is to highly tune all competitors and run
them on several architectures. It can even be advisable to compare the generated
machine code (e.g. [30, 36], [37]).

Often only implementations give convincing evidence of the correctness and re-
sult quality of an algorithm. For example, an algorithm for planar embedding [38]
was the standard reference for 20 years although this paper only contains a vague
description how an algorithm for planarity testing can be generalized. Several at-
tempts at a more detailed description contained errors (e.g. [39]). This was only
noticed during the first correct implementation [40]. Similarly, for a long time
nobody suceeded in implementing the famous algorithm for computing three-
connected components from [41]. Only an implementation in 2000 [42] uncovered
and corrected an error. For the related problem of computing a maximal planar
subgraph there was a series of publications in prominent conferences uncovering
errors in the previous paper and introducing new ones – until it turned out that
the proposed underlying data structure is inadequate for the problem [43].

An important consequence for planning AE projects is that important imple-
mentations cannot usually be done as bachelor or master theses but require the
very best students or long term attendance by full time researchers or scientific
programmers.

Our MST code was implemented as a Bachelor thesis [44], however by one
of the best programmers I have seen and reusing tens of thousands of lines of
code from the STXXL that were the basis for a PhD thesis [45]. A particular
challenge was the exploitation of parallel disks since it turned out that the code
was compute bound. We obtained a considerable speedup by implementing a
special purpose bucket priority queue that exploits the properties the problem:
We only sort by the node ID of the larger endpoint. The minimum weight incident
edge is found by extracting all incident edges. This is no actual overhead since
those edges will later be relinked anyway.

7 Experiments

Meaningful experiments are the key to closing the cycle of the AE process.
For example, experiments on crossing minimization in [46] showed that previous
theoretical results were too optimistic so that new algorithms became interesting.

Experiments can also have a direct influence on the analysis. For example, re-
constructing a curve from a set of measured points is a fundamental variant of an
important family of image processing problems. In [47] an apparently expensive
method based on the travelling salesman problem is investigated. Experiments
indicated that “reasonable” inputs lead to easy instances of the travelling sales-
man problem. This observation was later formalized and proven. A quite different
example of the same effect is the astonishing observation that arbitrary access
patterns to data blocks on disk arrays can be almost perfectly balanced when
two redundant copies of each block are placed on random disks [48].

Compared to the natural sciences, AE is in the privileged situation that it
can perform many experiments with relatively little effort. However, the other



Algorithm Engineering – An Attempt at a Definition 331

side of the coin is highly nontrivial planning, evaluation, archiving, postprocess-
ing, and interpretation of results. The starting point should always be falsifiable
hypotheses on the behavior of the investigated algorithms which stem from the
design, analysis, implementation, or from previous experiments. The result is a
confirmation, falsification, or refinement of the hypothesis. The results comple-
ment the analytic performance guarantees, lead to a better understanding of the
algorithms, and provide ideas for improved algorithms, more accurate analysis,
or more efficient implementation.

Successful experimentation involves a lot of software engineering. Modular
implementations allow flexible experiments. Clever use of tools simplifies the
evaluation. Careful documentation and version management help with repro-
ducibility – a central requirement of scientific experiments, that is challenging
due to the frequent new versions of software and hardware.

Experiments with external memory algorithms are challenging because they
require huge inputs and execution times measuring in hours. In particular, when
you compare against a bad algorithm, running times can easily reach months.
Perhaps this is the reason why [3] was the first actual implementations of an ex-
ternal graph algorithm. Many previous implementations of external algorithms
relied on artificially restricted main memory sizes to achieve small running times.
We believed that this is inacceptable for results intended to convince practition-
ers to use external algorithms. Our solution was to use carefully configured yet
relatively cheap machines that can be dedicated to the experiments for weeks,
high performance implementations, and careful planning of experiments.

Our starting point for designing experiments was the study by Moret and
Shapiro [49]. We have adopted the instance families for random graphs with
random edge weights and random geometric graphs where random points in
the unit square are connected to their d closest neighbors. In order to obtain a
simple family of planar graphs, we have added grid graphs with random edge
weights where the nodes are arranged in a grid and are connected to their (up to)
four direct neighbors. We have not considered the remaining instance families
in [49] because they define rather dense graphs that would be easy to handle
semiexternally or they are specifically designed to fool particular algorithms or
heuristics. We have chosen the parameters of the graphs so that m is between
2n and 8n. Considerably denser graphs would be either solvable semiexternally
or too big for our machine.

The experiments have been performed on a low cost PC-server (around 3 000
Euro in July 2002) with two 2 GHz Intel Xeon processors, 1 GByte RAM and
4 × 80 GByte disks (IBM 120GXP) that are connected to the machine in a
bottleneck-free way (see [50] for more details on the hardware). This machine
runs Linux 2.4.20 using the XFS file system. Swapping was disabled. All pro-
grams were compiled with g++ version 3.2 and optimization level -O6. The total
computer time spent on the experiments was about 25 days producing a total
I/O volume of several dozen Terabytes.

Figure 3 summarizes the results using bucket priority queues. The internal
implementations were provided by Irit Katriel [51]. The curves only show the
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(bottom)
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internal results for random graphs — at least Kruskal’s algorithm shows very
similar behavior for the other graph classes. Our implementation can handle up
to 20 million edges. Kruskal’s algorithm is best for very sparse graphs (m ≤ 4n)
whereas the Jarník-Prim algorithm (with a fast implementation of pairing heaps)
is fastest for denser graphs but requires more memory. For n ≤ 160 000 000, we
can run the semiexternal algorithm and get execution times within a factor of
two of the internal algorithm. The curves are almost flat and very similar for
all three graph families. This is not astonishing since Kruskal’s algorithm is not
very dependent on the structure of the graph. Beyond 160 000 000 nodes, the full
external algorithm is needed. This immediately costs us another factor of two in
execution time: We have additional costs for random renaming, node reduction,
and increasing the size of an edge from 12 bytes to 20 bytes (for renamed nodes).
For random graphs, the execution time keeps growing with n/M as predicted by
the upper bound from Theorem 1.

The behavior for grid graphs is much better than predicted by Theorem 1
because planar graphs remain sparse under edge contraction. It is interesting that
similar effects can be observed for geometric graphs. This is an indication that it
is worth removing parallel edges for many nonplanar graphs. Interestingly, the
time per edge decreases with m for grid graphs and geometric graphs. The reason
is that the time for the semiexternal base case does not increase proportionally
to the number of input edges. For example, 5.6 · 108 edges of a grid graph with
640 · 106 nodes survive the node reduction, vs. 6.3 · 108 edges of a grid graph
with twice the number of edges.

Another observation is that for m = 2560 · 106 and random or geometric
graphs we get the worst time per edge for m ≈ 4n. For m ≈ 8n, we do not need
to run the node reduction very long. For m ≈ 2n we process less edges than
predicted by Theorem 1 even for random graphs simply because one MST edge
is removed for each node.

8 Algorithm Libraries

Algorithm libraries are made by assembling implementations of a number of algo-
rithms using the methods of software engineering. The result should be efficient,
easy to use, well documented, and portable. Algorithm libraries accelerate the
transfer of know-how into applications. Within algorithmics, libraries simplify
comparisons of algorithms and the construction of software that builds on them.
The software engineering involved is particularly challenging, since the applica-
tions to be supported are unknown at library implementation time and because
the separation of interface and (often highly complicated) implementation is
very important. Compared to applications-specific reimplementation, using a li-
brary should save development time without leading to inferior performance.
Compared to simple, easy to implement algorithms, libraries should improve
performance. In particular for basic data structures with their fine-grained cou-
pling between applications and library this can be very difficult. To summarize,
the triangle between generality, efficiency, and ease of use leads to challenging
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tradeoffs because often optimizing one of these aspects will deteriorate the oth-
ers. It is also worth mentioning that correctness of algorithm libraries is even
more important than for other software because it is extremely difficult for a
user to debug library code that has not been written by his team. Sometimes it
is not even sufficient for a library to be correct as long as the user does not trust
it sufficiently to first look for bugs outside the library. This is one reason why
result checking, certifying algorithms, or even formal verification are an impor-
tant aspect of algorithm libraries. All these difficulties imply that implementing
algorithms for use in a library is several times more difficult / expensive / time
consuming / frustrating /· · · than implementations for experimental evaluation.
On the other hand, a good library implementation might be used orders of mag-
nitude more frequently. Thus, in AE there is a natural mechanism leading to
many exploratory implementations and a few selected library codes that build
on previous experimental experience.

Let us now look at a few successful examples of algorithm libraries. The Li-
brary of Efficient Data Types and Algorithms LEDA [21] has played an impor-
tant part in the development of AE. LEDA has an easy to use object-oriented
C++ interfaces. Besides basic algorithms and data structures, LEDA offers a
variety of graph algorithms and geometric algorithms.

Programming languages come with a run-time library that usually offers a few
algorithmic ingredients like sorting and various collection data structures (lists,
queues, sets, . . . ). For example, the C++ standard template library (STL) has
a very flexible interface based on templates. Since so many things are resolved
at compile time, programs that use the STL are often equally efficient as hand-
written C-style code even with the very fine-grained interfaces of collection classes.
This is one of the reasons why our group is looking at implementations of the
STL for advanced models of computation like external computing (STXXL [24])
or multicore parallelism (MCSTL, GNU C++ standard library [52]). We should
also mention disadvantages of template based libraries: The more flexible their
offered functionality, the more cumbersome it is to use (the upcoming new C++
standard might slightly improve the situation). Perhaps the worst aspect is coping
with extra long error messages and debugging code with thousands of tiny inlined
functions. Writing the library can be frustrating for an algorithmicist since the
code tends to consist mostly of trivial but lengthy declarations while the algorithm
itself is shredded into many isolated fragments.

The Boost C++ libraries (www.boost.org) are an interesting concept since
they offer a forum for library designers that ensures certain quality standards
and offers the possibility of a library to become part of the C++ standard.

The Computational Geometry Algorithms Library (CGAL) www.cgal.org
that is a joined effort of several AE groups is perhaps one of the most sophis-
ticated examples of C++ template programming. In particular, it offers many
robust implementations of geometric algorithms that are also efficient. This is
achieved for example by using floating point interval arithmetics most of the
time and switching to exact arithmetics only when a (near)-degenerate situation
is detected. The mechanisms of template programming make it possible to hide

www.boost.org
www.cgal.org
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much of these complicated mechanisms behind special number types that can
be used in a similar way as floating point numbers.

As already mentioned, our external MST algorithm successfully uses the
STXXL thus importing much of its code from a library. This is particularly true
for the priority queue based implementation that has acceptable performance
when using a single disk.

9 Instances

Collections of realistic problem instances for benchmarking have proven crucial
for improving algorithms. There are interesting collections for a number of NP-
hard problems like the travelling salesman problem 4, the Steiner tree problem,
satisfiability, set covering, or graph partitioning. In particular for the first three
problems the benchmarks have helped enable astonishing breakthroughs. Us-
ing deep mathematical insights into the structure of the problems one can now
compute optimal solutions even for large, realistic instances of the travelling
salesman problem [53] and of the Steiner tree problem [54]. It is a bit odd that
similar benchmarks for problems that are polynomially solvable are sometimes
more difficult to obtain. For route planning in road networks, realistic inputs
have become available in 2005 [55] enabling a revolution with speedups of up to
six orders of magnitude over Dijkstra’s algorithm and a perspective for many ap-
plications [56]. In string algorithms and data compression, real-world data is also
no problem. But for many typical graph problems like flows, random inputs are
still common practice. We suspect that this often leads to unrealistic results in
experimental studies. Naively generated random instances are likely to be either
much easier or more difficult than realistic inputs. With more care and compe-
tition, such as for the DIMACS implementation challenges, generators emerge
that drive naive algorithms into bad performance. While this process can lead to
robust solutions, it may overemphasize difficult inputs. Another area with lack
of realistic input collections are data structures. Apart from some specialized
scenarios like IP address lookup, few inputs are available for hash tables, search
trees, or priority queues.

Our MST example lives on the dark side of the world of problem instance
collections. This is a (moderate) risk for evaluating Sibeyn’s algorithm since it
is not clear how the density of the graph behaves in practice and whether nodes
with very high degree might emerge during the computation. But even simple
internal algorithms have such input dependencies: Kruksal’s algorithm is much
faster if we can use bucket sorting and the Jarník–Prim algorithm suffers when
a lot of decrease-key operations are needed. Some literature/web search revealed
that there is no lack of actual applications of the MST problem. Interestingly,
clustering by removing MST edges seems to be more important than the classical
network design motivation. However, it was difficult to find applications where
a) huge inputs look important, b) the inputs are sparse (otherwise semiexternal
algorithms are fine), and, c) generating the input is faster than finding the MST.
4 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Later, our code turned out to be a useful tool for implementing external breadth-
first-search and shortest path computations [57].

10 Applications

We could discuss many important applications where algorithms play a major
role and a lot of interesting work remains to be done. Since this would go beyond
the scope of this paper, we only want to mention a few: Bioinformatics (e.g. se-
quencing, folding, docking, phylogenetic trees, DNA chip evaluations, reaction
networks); information retrieval (indexing, ranking); algorithmic game theory;
traffic information, simulation and planning for cars, busses, trains, and air traf-
fic; geographic information systems; communication networks; machine learning;
real time scheduling.

An example for application engineering is recently started work on MSTs
for image segmentation where satellite images define huge grid graphs. Here,
aggressive exploitation of the special structure of the problems leads away from
Sibeyn’s algorithm. We exploit the simple 2D structure of the inputs and their
small integer edge weights and also use parallelism. Furthermore, processing the
edges in sorted order allows identifying the segments in a single pass. All this
led a to a highly specialized parallel variant of Kruskal’s algorithm.

The effort for implementing algorithms for a particular application usually
lies somewhere between the effort for experimental evaluation and for algorithm
libraries depending on the context.

An important goal for AE should be to help shaping the applications (as in
the example for genome sequencing mentioned in the introduction) rather than
act as an ancillary science for other disciplines like physics, biology, mechanical
engineering,. . .

11 Conclusions

We hope to have demonstrated that AE is a “round” methodology for the devel-
opment of efficient algorithms which simplifies their practical use. We want to
stress, however, that it is not our intention to abolish algorithm theory. The say-
ing that there is nothing as practical as good theory remains true for algorithmics
because an algorithm with proven performance guarantees has a degree of gener-
ality, reliability, and predictability that cannot be obtained with any number of
experiments. However, this does not contradict the proposed methodology since
it views algorithm theory as a subset of AE, making it even more rich by asking
additional interesting kinds of questions (e.g. simplicity of algorithms, care for
constant factors, smoothed analysis,. . . ). We also have no intention of criticizing
some highly interesting research in algorithm theory that is less motivated from
applications than by fundamental questions of theoretical computer science such
as computability or complexity theory. However, we do want to criticize those
papers that begin with a vague claim of relevance to some fashionable applica-
tion area before diving deep into theoretical constructions that look completely
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irrelevant for the claimed application. Often this is not intentionally misleading
but more like a game of “Chinese whispers” where a research area starts as a
sensible abstraction of an application area but then develops a life of itself, mu-
tating into a mathematical game with its own rules. Even this can be interesting
but researchers should constantly ask themselves why they are working on an
area, whether there are perhaps other areas where they can have larger impact
on the world, and how false claims for practicality can damage the reputation
of algorithmics in practical computer science.
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Abstract. We give a sketchy and informal overview of the use of
floating-point arithmetic in the implementation of geometric algorithms.
First we point out the pitfalls of a too naive use of floating-point arith-
metic and then talk about less naive ways which do not compromise
the sensibility of the outcome. Accidentally, Kurt Mehlhorn and his
collaborators had a finger in the pie all the time.

1 Introduction

Geometric algorithms are usually designed and proven to be correct in a compu-
tational model that assumes exact computation over the real numbers. Since no
computer provides exact arithmetic on real numbers in hardware, programmers
must find some substitution when implementing these algorithms. Quite com-
monly, they resort to fast finite precision arithmetic due to its support by hard-
and software as well as its convenient use. For some problems and restricted sets
of input data, this approach works well, but in many implementations the effects
of squeezing the infinite set of real numbers into the finite set of floating-point
numbers can cause catastrophic errors in practice.

There are several ways geometric algorithms may misbehave when exact arith-
metic is replaced by floating-point arithmetic. In the best case, they produce
quite usable results in spite of some incorrect decisions, but most algorithms do
not; they either produce completely inconsistent results, crash or loop.

To give you an idea how easily a simple predicate can be decided incorrectly
when replacing exact arithmetic by finite precision computation, look at the
example in Figure 1:

Consider a line f given by the equation y = f(x) = 1.4 · x/2.7. What we are
interested in, is the position of the point P (0.76/0.40) with respect to f , i.e.
does P lie above or below the line f . This test occurs in almost any geomet-
ric algorithm and is called the sidedness or orientation predicate. Using exact
arithmetic, it is not hard to see that P actually lies above f as

f(Px) = f(0, 76) = 1.4 · 0.76/2.7 < 0.40 = Py

Now assume we are restricted to a floating-point system with base 10, mantissa
length 2, and rounding to nearest, i.e. after an arithmetic operation the result

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 341–354, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Point P is clearly above line f

is always rounded to two significant digits. Let’s do the calculation with this
restricted precision. !," denote the floating-point counterparts of multiplication
and division.

f(Px) = f(0.76) = 1.4 ! 0.76 " 2.7 = 1.1 " 2.7 = 0.41 > 0.40 = Py

And hence we conclude that P is below f which is clearly wrong !
Conditionals like this are the most critical parts in a program because they

determine the flow of control. If in every test the same decision is made as if
all computations would have been done over the reals, the algorithm is always
in a state equivalent to its theoretical counterpart. But still, if some predicates
are decided incorrectly, why is this such a big problem ? It might only produce
a slightly perturbed output. The problem is, that conditionals are usually not
independent. So if due to roundoff errors a conditional is decided incorrectly,
this might contradict some other conditionals already decided or going to be
decided in the future. Algorithms are usually not designed to cope with such
inconsistencies, so they crash, loop or produce garbage output. See [1] for some
instructive examples1.

The rest of this paper provides a brief and rather informal overview of what
use floating-point arithmetic nevertheless is for the implementation of geometric
algorithms. Most of the mentioned results were obtained by Kurt himself or
members of his research group.

2 Ideally – Robust Floating-Point Algorithms

When reality does not match the computational model under which algorithms
are developed, it seems natural to adapt the model to reflect what happens in
practice. People have tried to develop algorithms that right from the beginning
take into account the possible inaccuracies induced by floating-point arithmetic.
Unfortunately, designing such robust algorithms, is a quite challenging task.

1 See also “finger in the pie”.
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We know of only few such attempts, for example in a series of papers Milenkovic
and Fortune [2, 3] consider several (rather basic) geometric problems in the context
of floating-point arithmetic. Each of these problems – for example in [3] the com-
putation of a line arrangement – requires individual consideration and no generic
methodology for deriving robust algorithms is known.

Another example in this category is the work by Sugihara et al. in [4]. Here the
authors describe a robust algorithm to compute the Voronoi diagram of point
sets in R2. The algorithm maintains certain combinatorial invariants throughout
the algorithm and uses geometric predicates only to steer the computation in
certain directions. So even if the outcome of all predicates was purely random, it
would still compute something. With increasing accuracy of the predicate deci-
sions, the outcome converges towards the correct result. But again, the reasoning
and derivation of this algorithm is very specific to the problem of computing the
Voronoi diagram and seems difficult to generalize to a generic method for deriv-
ing robust algorithms.

3 Realistically – Speeding Up Exact Arithmetic

Since changing the model of computation and designing robust algorithms seems
very challenging, people have looked for other approaches, of which the most
successful one is the exact computation paradigm ( [5]); it advocates to guarantee
correctness of the implementation by ensuring that every single predicate is
evaluated correctly.

As we have seen in the introductory example, the evaluation of a geometric
predicate amounts to the computation of the sign of an arithmetic expression.
So the naive way to compute the sign of an expression is to compute the value
of the expression exactly and to read off the sign from the value.

There are several exact arithmetic schemes designed specifically for compu-
tational geometry; most of them are methods for exactly evaluating the sign of
a determinant using IEEE double precision floating-point arithmetic, and hence
can be used to perform e.g. the orientation and incircle tests or even the insphere
test. Difficulties arise, if the tests to be performed involve previously computed
geometric objects which require extended precision to be exactly represented.

A more general approach, which is not specific to determinants or even pred-
icates, are multiprecision packages like GMP, CORE or LEDA [6, 7, 8]. They
allow arbitrary precision arithmetic on integers, fixed-point numbers or floating-
point numbers. Of course, exact arithmetic with these packages has its cost,
which is considerably higher than floating-point arithmetic. Depending on the
input bit-length the arbitrary precision primitives are at least about 10-100 times
slower than their floating-point counterparts.

3.1 Floating-Point Filtering

Floating-point filters [9, 10] partly provide remedy for the problem of excessive
running times with exact arithmetic packages. A floating-point filter computes an
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approximate value of an expression (using floating-point arithmetic) and a bound
for the maximal deviation from the true value. If the error bound is smaller than
the absolute value of the approximation, approximation and exact value have
the same sign and hence the sign of the approximation may be returned. In this
way the true sign can be obtained quickly. The advocates of floating-point filters
claim that filters at the predicate level realize the exact computation paradigm
at little cost; the running time is claimed to be no more than twice the running
time of a pure floating-point implementation.

Of course, this statement is only true if the floating-point filter always succeeds
in deciding the predicate, and the floating-point filter mechanism can be applied
for the whole computation.

In the following we will give a brief account about the derivation of er-
ror bounds for floating-point computations and how to instrument those in a
floating-point filter.

3.2 Deriving Error Bounds for Floating-Point Computations

Let us have a closer look at floating-point arithmetic. If the floating-point arith-
metic on a machine complies to the IEEE standard, one can guarantee an error
bound for the error occurring in one single operation: Let x = x1opx2 be the
exact outcome of an arithmetic operation on two floating-point numbers x1, x2,
x̃ = x1fopx2 the result under floating-point arithmetic. Then the IEEE stan-
dard guarantess that |x̃ − x| ≤ 2−(p+1) where p is the mantissa length of the
floating-point representation (p = 52 for the C/C++ type double).

But as we evaluate complex expressions involving more than one operator,
errors are propagated in some way from the “earlier stages” of computation
to the final result. Assuming we have evaluated a complex expression e with
floating-point arithmetic to ẽ, what we then want is an upper bound err for the
error of this value, i.e. something like:

|e − ẽ| ≤ err

We briefly present several techniques that can be used to compute this error
bound. For a more detailed description of these techniques and their proofs
see [11, 12, 13].

Fully-Dynamic Error Analysis. Fully-dynamic error analysis means that the
error bound is computed completely at run-time, and hence can make use of the
actual values of the expressions. We present two schemes for fully-dynamic error
analysis:

Relative Error Bounds. In [11], relative error bounds are derived for floating-
point computations, i.e. for every expression e and its floating-point evaluation
ẽ, an εe is calculated such that the following is true at all times:

|ẽ − e| ≤ εe · |ẽ|
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The following shows a list of the formulas for inductively computing the εe-
values always assuming that the for the operands x, y the invariant is fulfilled:

εx±y = 2−p−1 + | x̃ẽ | · εx + | ỹẽ | · εy

εx·y = (εx + εy + εx · εy) · (1 + 2−p−1) + 2−p−1

εx/y = 2−p−1 + εx+εy

1−εy
· (1 + 2−p−1)

ε√x = ε + εx · (1 + 2−p−1)

For more detailed information and the proofs see [11]. Note though that

– The relative errors must be computed dynamically at runtime, since com-
puting the relative error of an addition requires the actual values of the
floating-point approximations.

– The overhead compared to simple floating-point evaluation is quite high. For
example, the addition x + y requires – apart from the computation x + y
itself – 2 additions, 2 multiplications, 2 divisions and 2 absolute values for
computing the new relative error.

These error bounds are used as built-in floating-point filter of the LEDA type real
to filter out easy tests which do not require the arbitrary precision calculation.

Interval arithmetic. Burnikel, Brönnimann, and Pion in [12] presented another
fully-dynamic scheme for computing error bounds, which was previously known
in the numerical analysis community but not used in the context of compu-
tational geometry before. Their approach is based on the possibility to switch
rounding modes if the floating-point arithmetic on a machine complies with the
IEEE standard. A value x is represented by an interval [x̃] = [x̃l, x̃u]. Assuming
x and y are represented by intervals [x̃] and [x̃], the following rules are used to
compute the interval resulting from an arithmetic operation:

[x̃] + [ỹ] = [x̃l + ỹl, x̃u + ỹu]

[x̃] − [ỹ] = [x̃l − ỹu, x̃u − ỹl]

[x̃] · [ỹ] = [min{x̃lỹl, x̃lỹu, x̃uỹl, x̃uỹu}, max{x̃lỹl, x̃lỹu, x̃uỹl, x̃uỹu}]

[x̃]/[ỹ] =
{

[x̃] · [1/ỹu, 1/ỹl]] , 0 /∈ [ỹ]
R , otherwise

[x̃]1/2 =
{

[x̃l
1/2, x̃u

1/2] , 0 /∈ [ỹ]
R , otherwise

If one of the intervals is infinite, we set the resulting interval to R = [−∞,∞].
Since the computed intervals [x̃] in general have bounds xl, xu which are not
exactly representable by a floating-point number, we always round downwards
(resp. upwards) to obtain an interval [x̃l, x̃u] that encloses the ’real’ interval
and is exactly representable by floating-point upper and lower bounds. This
rounding can be cheaply implemented by switching the rounding mode of the
IEEE floating-point unit. Unfortunately, not all currently used platforms adhere
to the IEEE floating-point standard.
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Again we note, though, that the overhead compared to pure floating-point
arithmetic is rather high. In case of the multiplication, 4 times more operations
have to be performed, not even counting the comparisons to determine the max-
imum and minimum for lower and upper bounds. Furthermore, switching the
rounding-modes on most architectures is a very costly operations. Still, at the
cost of this higher overhead, interval arithmetic gives the best possible error
bounds.

Semi-Static Error Analysis. As we have seen, fully-dynamic error analysis
has the drawback of implying a rather large overhead during runtime.

This suggests dividing the computation of the error bounds in a static part
and a dynamic part. The static part can be precomputed before runtime without
any knowledge of the actual values of the expressions, whereas the dynamic part
is computed during runtime, but with hopefully much less operations than the
error calculations we have seen in the last paragraph. We will review the semi-
static scheme which we have presented in [14]. For sake of simplicity we neglect
the problems of underflow and refer the reader to [13] or [15] for a complete
discussion.

For every expression e we not only compute the floating-point approximation
ẽ but also an upper bound ẽsup for |ẽ|, called the supremum of ẽ, and an integer
inde – the index of e–, such that the following bound for the absolute error of
the floating-point approximation is true at all times:

|ẽ − e| ≤ ẽsup · inde · 2−p (1)

An input value x exactly representable by a double has the floating-point
approximation x̃ = x, the supremum x̃sup = |x̃| and the index 0. An input
value not exactly representable by a double has the floating-point approximation
x̃ = round(x), the supremum x̃sup = |x̃| = |round(x)| and the index 1.

The index inde may be computed statically whereas ẽ and ẽsup must be com-
puted at runtime using the inductively given rules in table 1. +,−, ·, /, .

1
2 denote

exact addition, subtraction, multiplication, division, and square root, whereas
⊕,$,!, /,

√ denote their floating-point counterparts.
We see that the computation of the supremum is quite similar to the com-

putation of the floating-point approximation itself and therefore the implied
overhead is reasonably small. In case of +,−, ·, only twice as many operations

Table 1. Rules for computing approximations, suprema and indices

expr. e approx. ẽ supremum ẽsup index inde

x + y x̃ ⊕ ỹ x̃sup ⊕ ỹsup 1 + MAX(indx, indy)
x − y x̃ $ ỹ x̃sup ⊕ ỹsup 1 + MAX(indx, indy)
x · y x̃ ! ỹ x̃sup ! ỹsup 1 + indx + indy

x/y x̃ " ỹ
(|x̃|�|ỹ|)⊕(x̃sup�ỹsup)

(|ỹ|�ỹsup)�(indy+1)·2−p 1 + MAX(indx, indy + 1)

x
1
2

√
x̃

{
(x̃sup " x̃) !√

x̃ if x̃ > 0√
x̃sup ! 2

p
2 if x̃ = 0

1 + indx
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are needed, three times as many in case of √. The division has a considerably
higher overhead but its use often can be avoided in practice.

Fully Static Error Analysis. If the input data consists of integer values of a
bound bit-length and +,−, · are the only operators used, an upper bound for ẽsup

can be determined statically such that no overhead for the computation of the
supremum occurs at runtime . (This is even possible for non-integer input values
where the bit-length of �|e|	 is bounded.) An upper bound for the bit-length of
the supremum can be inductively computed using the following formulas:

bitlen± = 1 + MAX(bitlenop1 + bitlenop2)

bitlen· = bitlenop1 + bitlenop2

So there is no overhead at runtime for computing the error bound inde ·
2bitlenesup · 2−p.

3.3 Filtering of Geometric Predicates

As we have seen with these schemes for computing error bounds of floating-point
calculations, there is always a tradeoff between tightness of the error bound and
the run-time overhead implied by the computation of the error bound. This
suggests the following evaluation strategy for the sign evaluation of an arithmetic
expression e:

1. evaluate e using double arithmetic to ẽ
2. check the sign of ẽ with the fully-static determined error bound (if available);

only if this fails, continue
3. compute the semi-static error bound and check the sign of ẽ with that; only

if this fails, continue
4. compute the fully-dynamic error bound and check the sign of ẽ with that;

only if this fails continue
5. evaluate e using exact arithmetic to obtain the sign of e

In this way, easy instances are always decided in early stages of this cascaded
evaluation and the implied overhead is reasonably small. The generation of such
cascaded evaluation schemes can even be automated by tools like EXPCOMP
[13, 14] which we have developed.

The overhead observed in practical applications when comparing such an ex-
act but filtered implementation with a (not necessarily reliable) floating-point
implementation very often is around a factor of 2 (only measuring the time
to evaluate the predicates and not taking into account the time spent on the
combinatorial part of the algorithm). It gets worse, though, if

– the input data exhibits a lot of (near-)degeneracy, i.e. many of the critical
expressions end up with a value of zero or close to zero, which makes it much
harder for the filter stages to decide the predicate, of course.



348 S. Funke

– the predicates do not only operate on input data but on geometric objects
constructed during the course of the algorithm; remember that if all filter
stages fail, the last stage of the predicate evaluation falls back to exact arith-
metic assuming that the input data is available in an exact representation.
So in these cases the filtering only takes place in the predicate evaluation
but not in the constructions.

3.4 Structural Filtering

In the remainder of this section we want to discuss filtering strategies in general.We
view the execution of an algorithm as a sequence of steps. A step may be anything
from the execution of a single instruction over the execution of a large subprogram
to the execution of the entire program. If every step of an algorithm produces the
correct result, the entire computation will produce the correct result.

The execution of a step consists of the evaluation of conditionals (predicates)
and the execution of the straight-line code between the conditionals. The simplest
way to ensure the correct execution of a step is to guarantee that all conditionals
in the step are evaluated correctly.

An alternative way to ensure the correct execution of a step is to allow errors
in the evaluation of the conditionals, to check at the end of the step whether the
step performed correctly, and, if not, to repair the errors made. Of course, this
approach is only viable if the “unsafe” execution of a step is faster than its “safe”
execution, if the correctness check is simple, if errors occur rarely, and if the repair
is simple. Observe that there are four “ifs” in the preceding sentence. We will show
that there are many situations where the answer to all four ifs is yes.

We start by refining our view of the execution of an algorithm. We view al-
gorithms as manipulating an underlying data structure and distinguish between
search and update steps. Update steps are pieces of code that may change the
underlying data structure and search steps are pieces of code that do not change
the underlying data structure but are otherwise arbitrary. Structural filtering
applies to search steps. It does not modify update steps. Thus the underlying
data structure stays correct. We give three examples to illustrate the concepts.

i Any algorithm falls under the paradigm if we call the value of all program
variables the underlying data structure, the evaluation of each predicate2 in a
conditional a search step (the step “searches” for the value of the expression),
and call the straight-line pieces of code between conditionals update steps.

ii Consider a dictionary implementation based on a balanced tree. The tree
constitutes the data structure manipulated by the algorithm. An insert op-
eration consists of a search step, which determines the position in the tree
at which the new key is to be added, followed by an update step, which adds
the key to the tree.

2 We assume that predicates in conditionals have no side-effects, a minor restriction.
In geometric programs the predicates in conditionals are typically the evaluation of
the sign of an arithmetic expression.
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iii Consider an incremental algorithm for constructing Delaunay diagrams. The
data structure is the current Delaunay triangulation and a search structure
for locating points in the triangulation. An insertion of a new point consists
of a search step, which locates the triangle of the current triangulation con-
taining the new point, and an update step which inserts the point, performs
flips to construct the new Delaunay triangulation, and modifies the search
structure.

We postulated that a search step does not change the underlying data struc-
ture. A search step computes information (= the value of a predicate, a position
in a tree, a triangle in a triangulation) which the subsequent update step uses
to perform changes on the data structure. A search step evaluates some number
of predicates. We assume that a predicate can be evaluated in two ways; the
expensive way guarantees the correct value and the cheap way will usually give
the correct result, but may err. In this general discussion we make no assumption
about when a cheap comparison errs. In the context of geometric programs a
cheap evaluation of a predicate is the evaluation with floating-point arithmetic,
and an expensive evaluation is the evaluation with exact arithmetic (maybe with
a floating-point filter).

The safe way to perform a step is to use only expensive predicate evaluations.
Assume now that we use cheap predicate evaluations instead. The following
observation is trivial but powerful. If a search step amounts to a walk in an
acyclic graph where predicate evaluations are used to determine the edges to be
followed, then a search step will always terminate. In our three examples above
the search is a walk in an acyclic graph3.

The search step, if executed with cheap predicates, may not end in the right
sink of the acyclic graph. We postulate that it is easy to check whether the
correct sink is reached. In our first example, the check amounts to the error-
bound computation in the floating point evaluation of the underlying arithmetic
expression, in our second example, the check amounts to the (exact) comparison
with the two neighboring elements, and in the third example, the check amounts
to orientation tests with three sides of a triangle.

If the search step ends in the correct sink of the search graph, we are done
at this point. If the check reveals an error, we still have to find the correct
sink. There is a generic way of reaching the correct sink. Repeat the search
with expensive predicate evaluations. Observe that this is possible because we
postulated that a search step does not change the underlying data structure.
In our first example, the generic strategy amounts to an evaluation with exact
arithmetic. In the two other examples, there are better ways to correct the error.
In the second example, we may walk along the leaves of the tree and in the third
example, we may use a walk through the triangulation.

Let us summarize. Structural filtering applies to search steps. If the search step
amounts to the walk in an acyclic graph then it can be performed with cheap
comparisons without the danger of looping. An error in the search step can
3 In the first example the graph is a tree with three nodes. In the root the boolean

expression is evaluated and the two children correspond to true and false.
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always be corrected by redoing the search with expensive comparisons. Better
strategies may exist and we gave two examples. The verification of the search
step is problem dependent. With the generic solution to error correction, only
the verification requires additional programming.

What can we hope to gain by structural filtering? The cost of an update step
is unchanged. The cost of a search step is its cost when executed with cheap
comparisons, plus the cost of the check, plus the cost of the repair. Structural
filtering is particularly useful if the search steps dominate the running time of
the algorithm. This is the case for our second and third example and, more
generally, for many incremental constructions in geometry. In an insertion into
a tree, the search step has cost O(log n) and the update step has cost O(1).
The same holds true for randomized incremental algorithms for convex hulls,
Delaunay triangulations, Voronoi diagrams, and many other problems.

There is a second phenomenon which is exploited by structural filtering. Pred-
icate evaluations may be redundant. There may be several paths to the correct
sink and hence errors in predicates may be corrected by later predicates. In [16]
we apply the idea of structural filtering to several problems, ranging from simple
sorting problems to the randomized incremental construction of Delaunay tri-
angulations. With relatively simple modifications we could obtain considerable
gains in terms of the running time.

We will next compare structural filtering with filtering on the predicate level
and filtering on the algorithm level.

Filtering on Predicate Level. Filtering at the predicate level was discussed in
detail earlier in this section. Let us consider the extreme cases. If the floating-point
computation always computes the correct sign, the cheap evaluation never errs and
saves the computation of the error bound. The computation of the error bound has
typically about the same cost as the computation of the sign and hence a cheap
comparison has about half the cost of an expensive comparison. Thus we may ex-
pect that structural filtering can make significant savings; we should not expect to
see a factor of two since the search step has to do some work outside the predicate
evaluations and since structural filtering has to verify the result of the search.

If the floating-point computation never computes the correct sign, predicate
filtering always has to resort to exact arithmetic. Since the cost of exact arith-
metic is significantly larger than the cost of floating-point arithmetic (around
10-100 times the cost; see [17], for example), stage three will dominate the cost
of an expensive predicate evaluation and a cheap comparison is much cheaper
than an expensive comparison. Thus, even with the generic repair technique, the
cost of structural filtering is not much larger than the cost of predicate filter-
ing; observe that the cost of the search step with cheap predicates will be much
smaller than the cost of the search with expensive predicates.

The advantage of predicate filtering is its genericity. Once "filtered" ver-
sions of the predicates are available, all algorithms using them benefit. There
is no change required in an algorithm to switch from unfiltered predicates to fil-
tered predicates. Moreover, the techniques for writing filtered predicates are well
developed and even software supported [14].
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The disadvantage of predicate filtering is the fact that the error-bound compu-
tation is always made. Structural filtering avoids it at the cost of the verification
of the search step.

Filtering on Algorithm Level. While the filters on predicate level work on
the level of the most basic (low-level) operations of an algorithm, filters on
algorithm level work on the highest level possible. Here the idea is: compute
with floating-point arithmetic, check the result, and repair, if necessary, to get
the exact result.

There are two problems with filtering at the algorithm level. First, as we have
heard before, the design of robust algorithms using only floating-point arith-
metic is a difficult task even if robustness only means that the program should
always run to completion. Second, the repair step is non-trivial if the floating-
point algorithm does not come with a strong guarantee of what it computes.
The purpose of restricting filtering to the search steps is precisely to guaran-
tee that errors in predicate evaluations do not corrupt the data structure. Only
the paper [18] discusses filtering at the algorithm level and the repair step. The
main disadvantage of filtering at the algorithm level is that there are no widely
applicable techniques for obtaining robust floating-point implementations.

Of course, filtering at the algorithm level approach also has its advantages. If
no cheap evaluation errs, the result will be correct, and the only additional cost
is the cost of checking.

4 Strangely – Not Computing What You Want, But at
Least Exactly

Of course, when asking practicioners about how they cope with rounding er-
rors of floating-point arithmetic they will tell you quite a few different strate-
gies. One very interesting strategy is the following: before executing the (unsafe
floating-point) implementation of an algorithm A on some input x, we perturb
x randomly by some amount δ to obtain x̃ on which we actually execute A.

For some reason it turns out that running A on x̃ is much more reliable
than running A on the original input x. So in particular when the input x on
which A is run has been obtained by some measurement process, it seems highly
attractive to perturb x to x̃ since the validity of the outcome of running A is
not compromised by a sufficiently small perturbation.

Starting with a paper by Halperin et al [19] people have started to look at this
strategy from a more theoretical point of view, trying to understand why it is
so successful in practice and turning this into a theoretically sound framework.

4.1 Controlled Perturbation

As we have seen before, geometric algorithms branch on geometric predicates. A
basic predicate for two-dimensional geometry is orientation. Given three points
decide whether they lie on a common line or form a left turn or form a right
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turn. The orientation predicate for d+1 points (p0, . . . , pd) in Rd is given by the
sign of a (d + 1) × (d + 1) determinant:

orient(p0, . . . , pd) := sign

∣∣∣∣∣∣∣
p01 . . . p0d 1
... · · · ...

...
pd1 . . . pdd 1

∣∣∣∣∣∣∣ . (2)

The determinant evaluates to zero if and only if the d+1 points lie in a common
hyperplane. In many algorithms this is considered a degeneracy.

Again, when evaluating an arithmetic formula E using floating-point arith-
metic, round-off errors occur which might result in the wrong sign being re-
ported. In order to guard against round-off errors, we postulate the availability
of a predicate GE with the following guard property: If GE evaluates to true when
evaluated with floating point arithmetic, the evaluation of E with floating point
arithmetic yields the correct sign. In an idealistic algorithm A we now guard ev-
ery sign test by first testing whether the corresponding guard evaluates to true.
If not, we abort. We call the resulting algorithm a guarded algorithm and use
Ag to denote it. On an input x, Ag will either follow the same execution path
as A or abort after an initial segment of it. In the former case, we will say that
Ag succeeds on x. When Ag succeeds on x, the combinatorial part of the output
will be correct and the numerical part will be a floating point approximation
of the exact result. In all applications in this paper, the numerical part of the
output will be identical to the input. Also the running time of Ag on x will be at
most the running time of A on input x; this assumes that the cost of evaluating
a guard is bounded by the cost of evaluating the corresponding expression and
ignores constant factors.

The controlled perturbation version of idealistic algorithm A is as follows: Let
δ be a positive real. On input x, we first choose a δ-perturbation x̃ of x and then
run the guarded algorithm Ag on x̃. If it succeeds, fine. If not, repeat. What is a
δ-perturbation? If the input is a set of points, the following definition is natural.
A δ-perturbation of a point is a random point in the δ-ball (or δ-cube) centered
at the point and for a set of points a δ-perturbation is simply a δ-perturbation
of each point in the set. For more complex objects, alternative definitions come
to mind, e.g., for a a circle one may want to perturb the center or the center and
the radius.

The goal is now to show experimentally and/or theoretically that Ag has a
good chance of working on a δ-perturbation of each input and a small value of
δ. More generally, one wants to derive a relation between the precision p of the
floating point system (= length of the mantissa), a characteristic of the input
set, e.g., the number of points in the set and an upper bound on the maximal
coordinate of any point in the input, and δ. Halperin et al. have done so for
arrangements of polyhedral surfaces, arrangements of spheres, and arrangements
of circles.

We want to stress that a guarded algorithm can be used without any analysis.
Suppose we want to use it with a certain δ. We execute it with a certain precision
p. If it does not succeed, we double p and repeat.
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Guard predicates must be safe and should be effective, i.e., if a guard does
not fire, the approximate sign computation must be correct, and guards should
not fire too often unnecessarily. It is usually difficult to analyze the floating
point evaluation of GE directly. For the purpose of the analysis, we therefore
postulate the existence of a bound predicate BE with the property: If BE holds,
GE evaluates to true when evaluated with floating point arithmetic. When E
is evaluated by a straight-line program, it is easy to come up with suitable
predicates GE and BE using the error bounds described already in Section 3.2.

In [20], the controlled perturbation scheme was examined for the randomized
incremental construction of Delaunay triangulations, [21] generalizes the scheme
to algorithms that can be viewed as decision trees.

5 What Else Is to Expect?

While the computation with simple geometric objects like points and lines is
believed to be understood well enough that efficient implementations of most
algorithms are feasible, computation with more complex objects like curves and
surfaces is still a big challenge. Due to the involved arithmetic expressions be-
ing of much higher degree the error bounds that are obtained for floating-point
calculations are often too pessimistic to be useful – be it for the filtering or a
perturbation approach. There have been attempts, to analyze and design algo-
rithms with the explicit goal of using only low-degree predicates. This might
be a fruitful strategy to bring floating-point arithmetic again into play. Also,
there has been considerable progress on the hardware front; current graphics
cards use processors (GPUs) whose floating-point performance exceeds that of
normal general purpose CPUs by orders of magnitudes. It might be interesting
to instrument those to allow for exact evaluation of geometric predicates with
littel runtime overhead.
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Car or Public Transport—Two Worlds

Hannah Bast

Max-Planck-Institute for Informatics, Saarbrücken, Germany

Abstract. There are two kinds of people: those who travel by car, and
those who use public transport.1 The topic of this article is to show
that the algorithmic problem of computing the fastest way to get from
A to B is also surprisingly different on road networks than on public
transportation networks.

On road networks, even very large ones like that of the whole of West-
ern Europe, the shortest path from a given source to a given target can be
computed in just a few microseconds. Lots of interesting speed-up tech-
niques have been developed to this end, and we will give an overview
over the most important ones.

Public transportation networks can be modeled as graphs just like
road networks, and most algorithms designed for road networks can be
applied for public transportation networks as well. They just happen to
perform not nearly as well, and to date we do not know how to route
similarly fast on large public transportation networks as we can on large
road networks.

The reasons for this are interesting and non-obvious, and it took us a
long time to fully comprehend them. Once understood, they are relatively
easy to explain, however, and that is what we want to do in this article.
Oh, and by the way, happy birthday, Kurt!

1 Introduction

The last five years have seen an exciting surge of research on routing algorithms
for large transportation networks. Most of this work has been done on road
networks, but some of it was also considering public transportation networks.

Both road networks and public transportation networks can be very naturally
modeled as directed graphs. For a road network, each node corresponds to a
junction, where two or more road segments meet, and the arcs of the graph
correspond to road segments. The cost of an arc is simply the time it takes to
travel across the respective road segment. A shortest path in this graph then
corresponds to the fastest way to get from a point A to a point B.

Public transportation networks are modeled in a similar way, except that
besides the spatial information we also have to deal with time schedules. In the
simplest and most natural model, each node corresponds to a departure or arrival
1 Admittedly, there are a few people using both modes of transportation from time to

time, but not that many.
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event at a particular station. For example, a node might stand for the event of
ICE 500 arriving at Mannheim Hauptbahnhof at 21:24.2 Arcs between nodes
then either correspond to waiting from one event to the next at a particular
station, or to taking a particular train (or bus or . . . ) from one station at a
particular time to another station. The cost of an arc is the respective waiting
or travel time, so that a shortest path in this graph corresponds to the fastest
way to get from a particular station A at a particular time tA to a particular
station B at a particular time tB.

We will come back to these two models in Section 2, giving slightly more detail
and commenting on possible refinements there.

1.1 Dijkstra’s Algorithm

The method of choice for computing the shortest path from a give source node
to a given target node in a given graph is Dijkstra’s algorithm, which dates back
to the 1950s [1]. In a nutshell, Dijkstra’s algorithm works as follows. Each node
is assigned a tentative cost, which is initially 0 for the source node and ∞ for all
other nodes in the graph. The algorithm then starts from the source node, and
visits all outgoing arcs from there. For each such outgoing arc, it checks whether
via this arc it can reach the node at the other side (the so-called tail) of the
arc at a lower cost than assigned to that node so far. If yes (which is true, in
particular, if we reach the node for the first time), its tentative cost is updated to
the new, lower cost. This procedure is called relaxing an arc. Once all outgoing
arcs of a node have been relaxed, that node is called settled. In the next round,
we pick the node with the smallest tentative cost, which has not been settled so
far, and relax its outgoing arcs. We iterate this until the target node is settled.

It is a simple, but non-trivial, elegant three-line proof to show that if the arc
costs are non-negative, then once a node is settled, the tentative cost assigned to
it at that time is actually the cost of the shortest path from the source to that
node. Therefore each node is settled at most once. It is also important to observe
that before Dijkstra’s algorithm settles the target node, it will have settled (and
thus computed the shortest path cost for) all nodes which can be reached from
the source at smaller cost. If we color all nodes settled by Dijkstra’s algorithm
before it reaches the target on a drawing of the road network in the plane, we
therefore see a disk-like area around the source node; see Figure 1.

What is the complexity of Dijkstra’s algorithm? Each settling of a node re-
quires to find, among the unsettled nodes at that point, that node with the small-
est tentative distance. This operation is supported by a data structure called a
priority queue, and it can be implemented to work in time O(log n), where n is
the number of items in the queue. Relaxing an arc potentially requires to up-
date the tentative cost of a node, and we know that if it is updated it is actually
decreased. This operation is therefore called decrease-key, and can be supported
in amortized constant time, that is, a sequence of m such operations takes O(m)

2 An event the author had the pleasure to witness personally many times over the
course of the last year.
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Fig. 1. The search space of Dijkstra’s algorithm on a road network, for a given source
and target. Left: the original algorithm. Right: its bidirectional version.

time. The complexity of Dijkstra’s algorithm is thus O(n · log n + m), where
n is the number of nodes settled before the target node, and m is the sum of
the out-degrees of these nodes. In any case, n is bounded by the total number
of nodes in the graph, and m by the total number of arcs, and if source and
target are far apart, these bounds are actually tight within a small constant
factor.

Interestingly, even 50 years after its invention, it is still not known whether
Dijkstra’s algorithm is theoretically optimal, or whether an algorithm exists that
solves the shortest path problem in linear time O(n + m). For our application,
this question is academic, however, since even in the best case, each node and
each arc would have to be visited at least once, and that alone is very expensive
when the network is very large.

For example, consider the road network of the whole of Western Europe. This
can be modeled by a graph with about 20 million nodes and about 50 million
arcs. It is hard to make the operations involved in settling a node faster than
100 nanoseconds on a standard PC (that is about the time it takes to read a
single cache line, or the time for a single cache miss). But even for such a highly
tuned implementation of Dijkstra’s algorithm, settling all nodes would take on
the order of seconds.

In public transportation networks we have yet more nodes. The local public
transportation network of Berlin-Brandenburg alone has around 4 million de-
parture and arrival events. Extrapolating this to the whole of Europe (we don’t
have the actual data yet, so we can only guess) would give a graph with hundreds
of millions of nodes.

2 Models Again

In our introduction above, we already gave a brief description of how to model
both road networks and public transportation networks as directed graphs. We
here recall these descriptions, and talk about a few more relevant details and
possible refinements.
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2.1 Road Networks

There isn’t much to add to the description for road networks; it really is that
simple. We have an arc for each road segment3, a node for each junction of two
or more segments, the cost of the arc is the time it takes to travel along that
arc, and the goal is to compute the shortest path from a given source node to a
given target node.

A number of recent works have addressed a time-dependent variant of this
problem, where an arc cost is not just a scalar value, but a piece-wise linear
function that maps each possible arrival time at the head of the arc to a travel
cost [2] [3]. A simple variant of Dijkstra’s algorithm can solve this problem as
well. As we will see in the next section, public transportation networks can also
be modeled by time-dependent graphs.

2.2 Public Transportation Networks

Let us recall the simple model from the introduction. We have a node for each
departure and arrival event, nodes are grouped by stations, and arcs are either
waiting arcs (between two nodes of the same station) or transit arcs (between
two nodes from different stations).

This modeling leaves out the important issue of transfer safety buffers and
costs : a change of vehicle takes time, and we want to penalize paths with many
changes of vehicle—two issues that do not arise in road networks. A simple and
natural way to model this, is by having two nodes for each arrival or departure
event, which represent the state of being on board a vehicle and at the station,
respectively, at the respective station and time.

In its simplest form, a query is given by a source station, an earliest departure
time at that station, and a target station. More realistically, however, source and
target are not stations, but geographic locations, from which we first have to walk
to nearby stations. This is important especially in municipal areas, where it is
not at all clear which station is the best to walk to first, and it really is (and
hence should be made) part of the routing problem to identify the best such
station. We then effectively have sets of source and target stations.

Note that this is not an issue in road networks, because these are typically
so dense that without significant loss of quality in the results, we can simply
snap to the nearest road segment or junction when source and target are given
as geographic locations.

The model we described so far is known as the time-expanded model. As an
alternative, we can also represent public transportation networks in the time-
dependent model described in the previous subsection. Simply have one node
per station, and the arc cost of getting from the station at the head of the arc
at time x to the tail of the arc is d− x + t, where d ≥ x is the next departure of
3 A long, curvy piece of road is typically approximated by a sequence of straight-line

segments. However, this is done for the purpose of realistic rendering of the network,
and is irrelevant for solving the shortest path problem. In fact, the first thing an
efficient algorithm would do is contract such sequences to one arc again.
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a vehicle to the tail station, and t its travel time. This indeed yields piece-wise
linear arc costs.

Asymptotically, the two models do not differ, since a time-aware Dijkstra com-
putation on the time-dependent graph essentially performs the same sequence
of operations as an ordinary Dijkstra computation on the time-expanded graph.
In practice, a carefully tuned implementation of the time-dependent model can
give improvements of a factor of 10 and more over the time-expanded model, but
this difference vanishes as soon as realistic features like transfer costs are taken
into account. For details on the comparison between the two models, see [4].

2.3 Multi-criteria Cost and Traffic Days

A non-trivial model extension that makes sense for road networks, but is almost
mandatory for public transportation networks is to consider multi-criteria cost
functions. For example, users are typically interested in both travel time and the
number of transfers but often not both of them can be minimized at the same
time: there may be a connection that takes two hours and does not require any
transfers, and there may be a connection which takes only one and a half hours
but requires two transfers. Some users will prefer the faster one, and some will
prefer the no-transfer one, and so we should (compute and) present both.

Another practical issue that significantly complicates routing on public trans-
portation networks are traffic days : certain connections operate only on certain
days and not on others.

With respect to their algorithmic solution, both issues are closely related in
that they mean that each node in the graph is no longer labeled by only a single
cost but by a whole set of incomparable costs instead. But again, Dijkstra’s
algorithm can be easily extended to also deal with this situation. The items
in the queue are now individual cost labels (of which a single node can have
several), and when settling a cost label, we relax each arc of the node to which
the label belongs as before except that we now have to consider the new cost
together with all the costs of the tail node of the arc, and discard those costs
which are no longer optimal.

Obviously, the complexity of relaxing an arc now depends on the number of
incomparable costs at the tail of the arc, and, in principle, this number could
grow very large. However, we and others have found that with a cost function
modeling traveling time and transfer costs, and considering traffic days over
periods of a few weeks, the average number of incomparable costs per node is
a small constant, and the running time of Dijkstra’s algorithm adapted to deal
with multiple costs per node lies about a factor of 10 over that of an ordinary
Dijkstra computation [5].

2.4 Computing Costs Versus Computing Actual Paths

In the next section we will often tacitly assume that all we want to compute is
the cost of a shortest path. It indeed typically holds that once we can compute
costs fast, we can also compute paths reasonably fast. A very simple, generic way
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goes as follows. Start at the source node. For each adjacent node v, compute the
cost of a shortest path from v to the target, and add the cost of the arc from the
source to v. The adjacent node with the smallest such sum lies on the (or rather:
a) shortest path. Pick that node, and do the same thing from there. Iterate.

This generic way requires d·l cost computations, where d is the average degree
of the nodes on the shortest path, and l is the length of the path. For any of the
algorithms mentioned in the following, there are approach-specific ways to do
much better this, but we will not get into the details in this paper. The bottom
line to remember is that once we can compute costs fast, we can also compute
the paths itself fast.

3 Tricks of the Trade . . . and Why and When They Work

With the models all set, the rest of the paper is now essentially a list of the
most relevant and effective “tricks of the trade” that have been developed for the
speeding up of shortest path queries on transportation networks, in particular
from the last decade. Most of these tricks have been invented and applied for road
networks first, and were only later transferred to public transportation networks
(with, as we will see, limited success so far).

The structure of each of the following subsections is as follows: give a short
description of the “trick”, explain why it works well for road networks, and then
say what the problems are when applying it to public transportation networks.
Wherever possible, we will roughly quantify the performance gain in terms of
asymptotic complexity and / or actual running times, and refer to the respective
papers for the detailed experiments.

As a side effect, this section will also be giving an overview of all the fasci-
nating recent work on routing in transportation networks. This overview is by
no means complete, however, since we focus on those tricks which turned out to
be most successful, and in each case mention only the one or two most represen-
tative works using that trick. For a more complete survey of recent techniques
on routing in road networks, see, for example, [6]. For an account of routing
algorithms for public transportation networks, see, for example, [7].

3.1 Bidirectional Search

A very simple idea to improve over the plain Dijkstra algorithm is to simulta-
neously search from the source and target node at the same time, until ”the two
search frontiers meet”. More precisely, we maintain two priority queues, one for
the search from the source, as for the ordinary Dijkstra, and one for the back-
ward search from the target, which is just a forward search in the reversed graph,
that is, the graph where each arc (u, v) is replaced by (v, u). In each round, we
settle the node with the smallest overall tentative cost, that is, from the source
or to the target; for this, a simple comparison of the minima of the two priority
queues suffices. Once we settle a node in one queue that is already settled in
the other queue, we get the first tentative cost of a shortest path. To guarantee
optimality, we have to continue until the sum of the tentative costs of the current
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minima of the queues is above the current tentative shortest path cost (which
then is indeed the cost of the shortest path).

Speaking in terms of Figure 1, bidirectional Dijkstra reduces the search from
a single disk with radius r, to two discs with radius r/2. That is, the search
space (and hence the query processing time), halves. This by itself is not a big
improvement, but as we will see in the following subsections, bidirectional search
turns out to be a key ingredient in other, more sophisticated speed-up techniques.

In public transportation networks bidirectional search is more complicated,
since we know the target station, but not the particular node at that station at
which we are going to arrive. In fact, finding that node is a significant part of
the problem we want to solve in the first place. What we can so, however, is to
search backwards from the set of all nodes at that station. The backward search
would then compute, for each node that it settles, the cost of the path to the
earliest node of the station which it can reach. Combined with other techniques
this becomes yet more complicated, but by itself is not one of the main obstacles.

Summary: Bidirectional search by itself is not very effective, but is an important
ingredient in more sophisticated techniques. In public transportation networks,
we need to search backwards from a whole set of potential target nodes, which
makes things more complicated.

3.2 Hierarchy

Most navigation devices in public use nowadays implement a variant of the
following simple routing heuristic. Roads have different levels of importance: for
example, in the road map of Manhattan in Figure 2 (left), we see white (small)
roads, yellow (national) roads, and orange roads (motorways). A simple heuristic
is then to do a bidirectional search, that takes into account all the roads in close
proximity to the source and target, but once a certain distance from the source
or target is reached, considers only yellow and orange roads, and at a certain
even larger distance from the source or target considers only the orange roads.
For an appropriate definition of “close proximity” and “certain distance” most
shortest paths indeed have that property, like the path in the Figure 2.

This heuristic very significantly reduces the number of nodes that have to be
settled and arcs that have to be relaxed, however, at the price of a certain loss
of exactness. In the seminal works of [8] and [9] this heuristic has been turned
into an exact algorithm, by actually computing a level of importance for each arc
(which intuitively correspond to the road colors in Figure 2, but algorithmically
have nothing to do with them). On road networks both precomputation and
query times are very fast. With the latest version of their algorithm, the impor-
tance levels can be computed in about 15 minutes for the complete road network
of Western Europe, with subsequent query times on the order of 1 millisecond.
The method was, quite appropriately, named highway hierarchies.

On public transportation networks, even if we leave the complications of bidi-
rectional search described in Section 3.1 aside, experimental studies ( [10] and
also our own) have shown that the speed-ups obtained are much less dramatic
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Fig. 2. Left: a shortest path in the road network of Manhattan. Right: a section of the
tram + bus network of Zurich.

than for road networks. On large municipal areas, query processing times can
even be worse than for a well-tuned implementation of Dijkstra’s algorithm.

The main reason for this disappointing performance is actually easy to under-
stand. Look at the tram + bus network of Zurich in Figure 2 (right), and think
of a few random queries and their solutions. You will find that there is hardly
any hierarchy. Intuitively, all the trams and buses are equally important, and
exactly which tram or bus is chosen for a given query depends more on how well
the schedules of the various lines match, than on some connection being more
important than others. Once we travel long-distance between cities, a first level
of hierarchy does appear (intuitively, the long-distance trains as opposed to the
local trams and buses), but not on the intra-city level.

While this may be fine for a relatively small area like that of Zurich (about
one thousand stations), this is a major performance problem for large municipal
areas like, for example, New York (several tens of thousands of stations, with
tens of millions of arrival / departure events). A Dijkstra computation even on
this local network takes on the order of seconds, and hierarchical methods are
of no use to speed things up there.

Worse than that, also the precomputation time suffers on such networks. In
order to identify the first level of hierarchy, a method like highway hierarchy
does a local search from each node, until all paths have reached the next level
of the hierarchy. But for all nodes within a municipal area, this local search will
have to cover the whole municipal area, which can encompass millions of nodes.
In contrast, we know that for road networks local searches of only a few hundred
nodes are enough to discover the next level of the hierarchy [9].

Summary: The efficiency of hierarchical approaches in terms of both precompu-
tation and query time is proportional to the extent of the local searches necessary
to find the next level of hierarchy. For road networks, a few hundred nodes per
local search are typically enough. For public transportation networks, frequently
whole municipal areas with millions of nodes need to be explored.
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3.3 Shortcuts / Contraction

Recall the footnote in Section 2, where we talked about modeling a long, curvy
piece of road as a sequence of short straight-line road segments. As mentioned
there, this is done for the purpose of nice rendering. For the purpose of the
shortest-path computation, we may as well replace that sequence by a single arc
again, thus significantly reducing the number of nodes and arcs in the graph.
This replacement is an instance of so-called contraction, and the new arc is called
a shortcut. Some methods also insert shortcuts without actually removing arcs,
but instead have a mechanism to consider only selected arcs at query time [11].

For a method like highway hierarchies, contraction is of good use not only on
the original graph, but also on the iteratively computed subnetworks. Just think
of the subnetwork of all motorways. Most junctions there are of the kind that
we either enter or leave the motorway to or from a less important road. With all
non-motorways removed from the graph, we will have only very few nodes with
degree larger than 2, namely the actual motorway junctions.

In fact, contraction can be taken one step further by also contracting nodes
of a degree larger than 2. To contract a node x, we simply look at all pairs u, v,
where u is adjacent to an incoming arc and v is adjacent to an outgoing arc,
and check whether there is a shortest path containing u, x, v. If yes, we insert
the shortcut (u, v). This pays off, provided that we do not insert (many) more
shortcuts than we remove arcs by removing x; see [9] for details.

Note that contraction and shortcuts are not so much a stand-alone method,
but have instead acted as a catalyzer for a variety of multi-level methods, in
particular: [9] [11] [12].

As far as public transportation networks are concerned, consider again the
tram and bus network of Zurich from Figure 2. Most stations are “junctions”,
where more than one line meets, and if one takes the possibility of walking
between stations into account (see Section 2.2), the average number of lines to
which one can transfer at a given station increases further. This is especially
true in cities with many different transportation agencies and therefore many
stations in the vicinity of each other. But contraction and / or the introduction
of shortcuts is only effective for nodes of low degree.

We have already found in Section 3.2, that the difficult searches are the local
ones, where local can mean a whole municipal area. Unfortunately, it is exactly
in these area, on the lowest level of the network, that the node degree is too high
for contraction to be effective.
Summary: Contraction / Shortcuts don’t help us speeding up local searches on
the lowest level of the hierarchy, due to the high node degree there.

3.4 Goal Direction

The simplest form of goal direction is to augment Dijkstra’s algorithm by a
heuristic that for each node in the graph estimates the cost to the given target.
Nodes are then retrieved from the priority queue by the sum of their tentative
cost and the value of the heuristic function. This variant of Dijkstra’s algorithm
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is known under the name A∗ (A-star) algorithm, and was first described in
1968 [13].

The performance gain of A∗ depends on the quality of the heuristic. It is a
three-line proof (very similar to the correctness proof for Dijkstra’s algorithm)
that A∗ is correct, whenever the heuristic function underestimates the actual
cost of the respective node to the target. If the heuristic cost is always zero, we
are back to Dijkstra’s algorithm. If the heuristic function magically knows the
exact cost to the target, A∗ will be perfect in that it settles only the nodes on
the (or rather: a) shortest path.

One simple, non-magical heuristic is to underestimate the cost to the target
by the geographic straight-line distance to the target divided by the maximum
speed of a vehicle anywhere in the network. This heuristic always underestimates
the true cost, sometimes by not much (when the shortest path to the target
is geographically relatively straight and uses mainly motorways), sometimes a
lot (when the shortest path to the target is long-winding and uses mainly slow
roads). Overall, this heuristic gives a notable but not very dramatic improvement
in query processing time by a factor of about 2 to 3, for both road and pub-
lic transportation networks. A more powerful heuristic, based on precomputed
distances to so-called landmarks, has been presented in [14].

The most powerful form of goal direction is provided by so-called arc flags
[15] [16]. Here the graph is partitioned into k regions, and for each arc k bits
are precomputed, where the ith bit is 1 if and only if that arc is on a shortest
path to a node within region i. At query time we can then simply ignore all arcs
outside the region containing the target where the bit for that region is set to 0.
In an extreme case, where each node forms a region on its own, the arc flags for
the target node would then show us the shortest path without any detour.

These arc flags / bits can be computed by running Dijkstra’s algorithm sep-
arately from each node, in the reversed graph. This, however, is equivalent to
a quadratic-cost all-pairs shortest path computation. It is easy to see, that it is
enough to consider only nodes on the boundary of each region. In a perfect grid
graph with n nodes, partitioned into k parts (by

√
k − 1 horizontal and

√
k − 1

vertical cuts), the number of boundary nodes would be on the order of
√

n · k,
which still gives an order n3/2 cost for the precomputation, even for small k. In
real graphs, the cost tends more towards n2.

A conceptually simple trick to reduce the precomputation cost to almost linear
is to work with a multi-level partitioning of the graph. In the precomputation,
the backwards Dijkstra computation from a boundary node of a cell in the
partitioning can then stop, as soon as all nodes in the containing cell from the
next level are settled.

It is here that we meet another fundamental difference between road networks
and public transportation networks. Namely, for road networks we can indeed
settle all nodes in a geographically bounded region with cost roughly propor-
tional to the number of nodes in that region; see, for example, [6].

In public transportation networks, however, we have a fundamental and very
annoying problem, which we will explain by an example. Consider a node in
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Zurich and assume that we want to settle all nodes in Zurich and the surrounding
villages. Even though the geographic extent of that region is relatively small,
there will be several nodes in that region which can be reached only at a very
high cost. The reason is simply bad connectivity: we might be just too late for
the last bus of the day and have to wait overnight for the first bus of the next
day, thus getting an optimal connection taking 15 hours. But in 15 hours, we
can get to the airport, take a plane to New York and explore half of the city
there . . . and Dijkstra’s algorithm will just do that.

As extreme as it may sound, this phenomenon is actually the rule and not the
exception. We consider it a major open problem to come up with an algorithm
for local searches in public transportation networks with cost proportional to
the number of nodes to be settled.

Summary: Goal direction is potentially very effective but has very high precom-
putation costs. For public transportation networks, this cost is quadratic due to
the lack of efficient algorithms for local searches on such networks.4

3.5 Distance Tables

An extreme precomputation would be to compute a table with distances between
all pairs of nodes in the given graph. Query times would then be instantaneous
(recall the bottom line of Section 2.4 that once we can compute the cost fast,
we can also compute the actual paths fast), but the precomputation complexity
would be quadratic in both time and space.

Distance tables for a subset of the nodes have been used as a “turbo” in
various approaches in the past. We here briefly describe transit node routing,
which works solely with distance tables and is the fastest method for routing in
road networks (with at the same time reasonable preprocessing) to date [17] [18].

The transit nodes are a subset of nodes with the following “magical” properties:
(1) the set is small, on the order of

√
n, where n is the total number of nodes

in the network; (2) all shortest paths that cover a certain minimal geographic
distance D have at least one transit node on them; (3) the number of transit
nodes hit first on shortest paths that start from a fixed node is small; we call
these few transit nodes the access nodes of a node.

Given such a set of transit nodes, we precompute for each node, the distances
to all of its access nodes, and the distance between each pair of transit nodes. For
a given query, let x and y be the number of access nodes of the source and target,
respectively. To answer the query, we then need to look up a mere x+y +x ·y of
the precomputed distances and try out all x ·y combinations of access node near
the source and access node near the target. On road networks the astonishingly
low number of 5 access nodes, on average, can be achieved, leading to extremely
fast query times on the order of a few microseconds. The precomputation can
be done in a number of ways, one of which is similar to the precomputation for
highway hierarchies and with a comparable complexity [18].

4 The precomputation from [2], although extremely well-tuned, is quadratic, too.
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It is important to understand that due to property (2) above, this only works
when the source and target are geographically at least a distance of D apart.
(Obviously the short shortest paths cannot all be hit by a small set of common
transit nodes, too.) But when D is small, this is not a problem, since for queries
below this threshold any conventional method is good enough; see [18] for details.

Experiments show that also in public transportation networks we can find a
good set of transit nodes with properties (1) - (3) above. The number of access
nodes per node is by a factor of 5 - 10 higher than in road networks, but still
small enough to yield query times on the order of milliseconds.

The problem are (a) the local searches required to precompute, for each node,
the distances to its access nodes, and (b) the local searches required at query
time when source and target are less than the distance D apart. Both of these
can, and often will, involve computing shortest paths of very large cost, and we
have no efficient solution for that case for exactly the reasons described at the
end of Section 3.4 (the “it can take 15 hours to the nearby village” problem).
Summary: A good set of transit nodes can be found for both road and public trans-
portation networks. However, in public transportation networks, we do not have
efficient algorithms for the local searches required to precompute the distances to
the access nodes or at query time when source and target are close together.

4 Conclusions

We gave an overview of the main techniques to speed up shortest path compu-
tation on transportation networks compared to Dijkstra’s algorithm. We specif-
ically looked at: bidirectional search, hierarchies of subnetworks, goal direction,
contraction and shortcuts, and distance tables. We found that all of these ap-
proaches work well (and some extremely well) for road networks, but none of
them gave convincing results for public transportation networks so far. We iden-
tified two key open problems which so far have obviated fast routing on very
large public transportation networks:
Open Problem 1: (Speed-up despite lack of hierarchy) How to achieve, with rea-
sonable precomputation cost, a significant speed-up over Dijkstra’s algorithm in
large municipal areas with hardly any hierarchy, for example, in large bus-only
networks?
Open Problem 2: (Efficient local searches) How to compute shortest paths to all
nodes in a local (for example, geographic) neighborhood efficiently, in the face of
(albeit few) shortest paths within that neighborhood of large cost?
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Abstract. Super-resolution is the art of creating nice high-resolution
raster images from given low-resolution raster images. Since “nice” is not
a well-defined term in mathematics and computer science, we propose
a linear model of the world that allows us, under certain conditions,
to achieve perfect super-resolution for arbitrarily high resolution. For
example, we may now create a larger-than-life picture of Kurt.

1 Reminiscences

I had the great pleasure to spend 15 years in the group of Kurt Mehlhorn. As a
sophomore at the Universität des Saarlandes in Saarbrücken, I joined his group
in 1983 as a programming slave in the Hill project [16]; several years later, some
mysterious system crashes could be traced back to my first (and last) implemen-
tation of a red-black tree. After a year in Beijing I returned in 1989 just in time
to witness the foundation of the Max-Planck-Institut für Informatik, or short,
the MPI, where I continued my academic career as a PhD student. I remem-
ber these years as a time when we students could pursue our own independent
research endeavors with little interference from our supervisor.1 Enjoying the
academic freedom and superb working conditions at the MPI, I stayed in Saar-
brücken until my habilitation in 1999, and then moved to Canada to see a bit
more from the world.

Kurt is a researcher with a very braod range of interests, and I consider myself
lucky that I had the opportunity to spend so many years of my early career under
his guidance. After a short period of work in abstract complexity theory [19] he
saw the light and shifted his research focus to more practical problems in the de-
sign and analysis of efficient algorithms. Eventually, his efforts to make algorithm
� This work was partially supported by a grant from the National Natural Science

Foundation of China (No. 60573025), the National High Technology Research and
Development Program of China (863 Program) (No. 2007AA01Z176), and the Shang-
hai Leading Academic Discipline Project (project number B114).

1 We did meet him regularly at lunch time, though, and sometimes on the tennis court.
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research more practicable and usable culminated his development of the LEDA
library for C++ [20]. Besides being an incredibly efficient administrator, Kurt’s
great strengths have always been his ability to properly model a problem and
his emphasis on rigorous proofs (preferably elegant ones). In this note, dedicated
to his 60th birthday, I follow this path and propose a new mathematical model
for super-resolution that makes it for the first time (as far as I know) possible
to prove under which conditions perfect super-resolution can be achieved.

2 Introduction

Super-resolution is the art (or magic) of generating a high-resolution raster im-
age from a given low-resolution raster image2. Changing the resolution becomes
necessary whenever we change the size of an image, for example when we want
to display an image on different devices (e.g., computer screen, TV screen, mo-
bile phone, printer, etc.). For example, we may want to enhance the quality of
a photograph taken by a low-resolution mobile phone, or we may want to en-
hance the resolution to improve the success rate in automatic image recognition
applications (e.g., automatic person identification in a camera surveillance sys-
tem), or we may want to upgrade DVD movies to HDTV. Super-resolution is
not restricted to the enhancement of still images, it is also used for video en-
hancement [26], in acoustics (speech recognition) [4], etc. Unfortunately, super-
resolution is an ill-posed optimization problem because there can be infinitely
many images yielding the same given low-resolution image using a fixed technol-
ogy, not to mention the problem of trying to do super-resolution in situations
where the imaging technology is unknown. Still, because of its importance in
daily life, many algorithms have been proposed for super-resolution in general
and for special applications.

Background. The idea of super-resolution, or upscaling, was first proposed by
Tsai and Huang [31], although the term itself only appeared much later [13].
Initially, the goal was to compute a high resolution image from several slightly
different frames of a moving object (e.g., see [10]), for example from a video se-
quence [14, 28]. Later, single image super-resolution was proposed, which is more
demanding since fewer information is available. For surveys on super-resolution
techniques see, for example, [34, 35].

The simplest super-resolutionalgorithm,pixel replication (PR), just replaces each
pixel by a square of equally colored pixels, which usually results in a poor image.

Most super-resolution algorithms are based on spatial interpolation [1, 5, 15,
17, 21]. The simplest form is linear interpolation (LI) which colors new inter-
mediate pixels by the distance-weighted average of the values of the four closest
original pixels. More sophisticated variants are bilinear and bicubic interpola-
tion, and methods based on wavelet transforms [23]. LI is simple and works
reasonably well if the objects are not too finely structured. Bilinear and cubic
2 In this paper, we only consider grayscale images, although it is clear that the results

generalize to color images.
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interpolation are often used in video players to display on HDTV screens, but
edges tend to become fuzzy, which requires employing sharpening filters after the
interpolation. One of the best general purpose upscaling algorithms, producing
the sharpest images and used in many software systems (e.g., see [30]), seems
to be the Lanczos3 algorithm [32]. Unser gave a nice survey on sampling and
interpolation [33].

Interpolation is a reconstruction-based algorithm. According to Baker and
Kanade [3], reconstruction-based algorithms are based on the assumption that
there exists some model of the world, i.e., the structure of images and the picture
taking device, that can be exploited to guide the upscaling process. For the pic-
ture taking device, the usual assumption is that we have a simple digital camera
whose pixels are assigned values according to the average light intensity over the
pixel. We call this value the pixel color. Since a raster image is then simply the
result of a downsampling process, super-resolution becomes the problem of find-
ing the most suitable original high-resolution image that might have produced
the given low-resolution image [24].

Simple math shows that reconstruction-based algorithms cannot be very suc-
cessful in general. Baker and Kanade [3] observed that the space of original
images mapped to the same target image is growing very fast with increasing
magnification factor, which means that even for magnification factors as small
as 4 the performance of reconstruction-based super-resolution algorithms can be
far from satisfactory. This was later verified by Lin and Shum [18] who proved
that the practical limit for the magnification factor is 1.6.

To break this natural barrier, Baker and Kanade [3] suggested to study
recognition-based algorithms. By adding a learning step, they transformed the
reconstruction problem into a recognition problem which has much higher chance
of success for super-resolution. Later, many super-resolution schemes were based
on the idea of first learning the “best” pixel enlargement on a certain set of “typ-
ical” examples [3, 6, 7, 11]. Recently, Sun et al. [29] proposed a super-resolution
scheme based on the gradient field of an image.

Another way to improve the performance of reconstruction-based algorithms
is to add stronger assumptions to the world model. Sajjad et al. [27] suggested
to color pixels based on local geometric shapes, which works well for images of
objects whose boundaries match the proposed shapes. Akins et al. [2] suggested
to color pixels dependent on their classification in a small neighborhood of pixels,
where the classification parameters are learned in a training phase.

Our contribution. We propose a new reconstruction-based algorithm. The algo-
rithm itself is probably not really new, some people might call it a vectorization
technique. What is new is that it is based on a clean and simple world model that
allows us to formulate super-resolution as a well-defined optimization problem
that can be solved to perfection if certain conditions on the structure of the im-
age and the resolution are satisfied. In traditional super-resolution research the
quality of a new algorithm can only be determined visually in comparison with
various old algorithms, or sometimes by means of some mathematically provable
error reduction properties.
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We have implemented a rough protoype of our new algorithm so that we can
show a few upscaled images. Since our goal was to propose a theoretically sound
framework for super-resolution and not to show visual superiority to exisiting
algorithms, we have not implemented the best known super-resolution algorithms
to compare our images against. Instead, we have implemented two of the trivial
algorithms, PR and LI, to demonstrate that our method achieves some non-trivial
image enhancement.

Structure of the paper. We define our new model in Section 3. In Section 4,
we explain how to achieve good super-resolution in this model. We end with
conclusions in Section 5 and a rather large picture of Kurt (Fig. 5).

3 A Linear World

We all know the world is not flat (with a notable exception [12]), but what if
it was linear? A typical image consists of non-intersecting plane shapes whose
grayscale values are either constant or changing gradually and smoothly. Shape
boundaries are characterized by a sharp change in the grayscale value. In reality,
object boundaries may be curved or even fractal, but any curve can be locally
approximated by a polygonal chain. Since an image is not more than a local
approximation of reality, we may as well assume that boundaries are locally
piecewise linear. Similarly, we may assume that the changes of light intensity on
a surface can be locally described by a linear gradient. This means, there is a
direction f such that any line with slope f has constant light intensity, and the
intensity changes linearly if we move the line perpendicular to itself. See Fig. 1(a)
for an example of an object with linear boundaries (the pattern, in its true white
and blue colors, is easily recognized anywhere south of the Weisswurst equator).
Figs. 1(b)–1(d) show the same image with magnification factor 32 as produced
by our new algorithm, Exact, and the two trivial algorithms PR and LI. Note
that the Exact picture looks much sharper than the other two upscaled images,
even sharper than the original picture.

The linearity assumption has some interesting consequences. The following two
lemmas (which are probably folklore) justify that LI is a good super-resolution
algorithm, except at object boundaries which tend to become fuzzy. The following
lemma can be proved purely geometrically, without using integrals (the pixel color
is the integral of the light intensity function over the pixel).

Lemma 1. On a surface whose light intensity changes according to a linear
gradient, the color of a pixel is exactly the value of the light intensity in the
center of the pixel.

Proof. Let c be the center of the pixel, and let v be the pixel color (see Fig. 2).
Let f be the light gradient, and let g be the line of slope f through c, which
by definition has constant light intensity, which we denote by w. By definition,
v is the average light intensity over the pixel (more formally, we would have to
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(a) original, size 120x70 (b) Exact, 32x, size 3840x2304

(c) PR, 32x, size 3840x2304 (d) LI, 32x, size 3840x2304

Fig. 1. A white-blue pattern, of restricted geographic importance; magnification 32x

g

gradient

c

Fig. 2. If the light intensity is given by a linear gradient, the pixel color is exactly the
light intensity at its center c

compute an integral). By the linearity of the gradient, two lines of slope f with
c in the middle between the two lines contribute the same value w to v as the
line g (though with a different weight as g, which would be the length of the
cross-section between the line and the pixel). Thus, v = w. ��
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Corollary 1. On a surface whose light intensity changes according to a linear
gradient, LI colors new intermediate pixels with the correct value. That is, LI
achieves perfect super-resolution on such a surface. ��

4 Exact Super-Resolution

To achieve perfect super-resolution, all we have to do is to detect the linear
object boundaries and the linear gradients for the surfaces between boundaries.
There are many edge-detection algorithms for raster images [8, 22, 25], but in
our situation it is actually quite easy to detect them locally. Assume a linear
boundary line between regions of constant colors cl and cr, respectively, crosses
a pixel vertically, see Fig. 3. Then the pixel color can be computed as

cb =
a + b

2
· cl + (1 − a + b

2
) · cr .

Similarly, the combined color value of the two pixels in the row above can be
computed as

ct =
b + c

2
· cl + (1 − b + c

2
) · cr .

Note that ct is not just the color of the single pixel above our pixel. Since we
also know that

b =
a + c

2
,

we can compute a and b from the observed pixel colors cb and ct as

a =
3cb − ct − 2cr

2(cl − cr)

and

b =
cb + ct − 2cr

2(cl − cr)
.

Note that this is only one of several cases, where the pixel is crossed vertically.
Other cases are that the boundary line crosses three pixels on the top row, or
that the boundary line crosses the pixel horizontally (where we need to rotate
the two vertical cases by 90 degrees). It is actually possible to compute a and b
directly just from the colors of our pixel and the pixel above (or a right neigh-
bor for horizontal boundary lines). However, the equations for b and c become
complicated, involving two nested square roots in the worst situation.

This leads to a simple algorithm for super-resolution, which we call Exact. For
a given raster image, we first determine the constant pixels which are those pixels
having a neighbor of the same color. Then we find all pixels that correspond to
one of the four cases of boundary lines as explained above and compute the
equations of the lines crossing the pixels (in a final step we also adjust the lines
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c

cr

ct

a

bcl

cb

Fig. 3. Two regions of constant color meet in a pixel (thick boundary)

slightly at pixel boundaries so that they form polygonal chains). For these pixels,
it is then easy to correctly color the smaller pixels that replace the pixel in the
upscaled image. All remaining pixels are labeled as gradient pixels where we use
LI to color the smaller upscaled pixels.

Note that our boundary line detection requires that the pixels on both sides of
the boundary line can be classified as constant pixels. This is not always possible,
for example when several boundary lines are very close together. This happens
in particular around pixels where several boundary lines meet. In the current
implementation, these areas are not properly handled, see for example Fig. 1(b),
where the points where two polygons meet in a vertex are a bit fuzzy in the
enlarged image. However we do not consider this a great disadvantage of our
method. If boundaries lie very close together, then it probably means that our
camera did not record the pixel colors correctly anyway, and we cannot expect
our (or any other) super-resolution algorithm to correct such errors. This applies
in particular to cases where several boundaries cross a single pixel (without
meeting there). In general, if two boundaries are very close together, it seems
not wrong to treat them as a gradient (which is what happens in our current
implementation).

In all other cases, our algorithm can guarantee a perfect reconstruction of the
original image. In that sense, our algorithm behaves similar as, for example, the
algorithms that try to reconstruct a smooth curve from a sample of points on the
curve [9]. These algorithms only succeed if the points satisfy a certain density
condition.

Theorem 1. Our new algorithm Exact can perfectly reconstruct all parts of a
downsampled image (in the linear world) where any two object boundaries are
separated by at least two pixels of the same color. ��
We have implemented a prototype of Exact in C++. It is so simple that we did not
even need LEDA [20]; the most complicated data structure is a two-dimensional
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(a) original, size 324x216 (b) Exact, 32x, size 10368x6912

(c) original, detail, size 40x27 (d) Exact, 32x, detail, size
1296x864

(e) PR, 32x, detail, size
1296x864

(f) LI, 32x, detail, size 1296x864

Fig. 4. Olympic rings, magnification 32x. Since we cannot show the enlarged images
in full size, we show a small detail in Figs. (c)–(f).



376 R. Fleischer

(a) original, size 298x414

(b) Exact, 16x, size 4768x6624

Fig. 5. Kurt growing up, magnification 16x. The original picture is taken from
http://www.mpi-inf.mpg.de/˜mehlhorn/fotos/Kurt1980.jpg.
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array. The prototype still has some minor bugs, as can be observed in some
minor artefacts in the computed high-resolution images (for example, Fig. 4(d)).

5 Conclusions

Note that Sun et al. [29] also proposed to use gradients to detect boundaries.
However, their algorithm requires some parameters that must be guessed (or em-
pirically determined), while our algorithm does not require any parameters. Also,
our goal is to achieve provably good super-resolution (versus super-resolution
that produces visually “nice” images).

Of course, at this point a question arises naturally: Is the world linear? And
what, if it is not? Fig. 4 shows a famous image of interleaved circles that our
algorithm could enlarge properly with magnification 32x. Thus, our simplified
linear world model seems to be good enough to allow for high-quality super-
resolution of non-linear images. It should also be possible to extend the theory
of our local boundary detection to boundaries of higher degree, i.e., instead of
computing linear boundaries we could compute quadratic or cubic boundary
lines. Alternatively, we could try to smoothen the polygonal chains that we
compute, pixel by pixel, by some spline function.

We are currently working on a better implementation of Exact. We hope the
new implementation will have an improved boundary detection that allows us
to strengthen Thm. 1. For example, it should be possible to correctly identify
those pixels where two boundaries meet by interpolating the shape of polygonal
chains into areas where several of them are too close together to be properly
recognized locally.

Another problem is robustness. Obviously, our algorithm is quite sensitive to
noise in the image data. One solution might be to introduce a threshold ε such
that two pixels are considered to have the same color if their pixel colors differ by
at most ε. Though the upscaling of the Olympic rings (Fig. 4) looks very nice,
boundary detection is much less useful for upscaling of photographs, mainly
because photographs do not satisfy our assumptions on the world model: there
are usually no clear-cut gradients and boundaries in a photo, even on surfaces
of constant color pixel colors may actually vary slightly. For example, in Kurt’s
photo (Fig. 5), only 7% of all pixels are classified as boundary line pixels, versus
70% gradient pixels which are upscaled using LI. In comparison, the Olympic
rings have 3% boundary line pixels and 2% gradient pixels (which are actually
wrong classifications due to minor imperfections in the original picture and,
maybe, some minor bugs in my program code).
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In Praise of Numerical Computation

Chee K. Yap�

Dedicated to Kurt Mehlhorn on His 60th Birthday

Abstract. Theoretical Computer Science has developed an almost ex-
clusively discrete/algebraic persona. We have effectively shut ourselves
off from half of the world of computing: a host of problems in Compu-
tational Science & Engineering (CS&E) are defined on the continuum,
and, for them, the discrete viewpoint is inadequate. The computational
techniques in such problems are well-known to numerical analysis and
applied mathematics, but are rarely discussed in theoretical algorithms:
iteration, subdivision and approximation. By various case studies, I will
indicate how our discrete/algebraic view of computing has many short-
comings in CS&E. We want embrace the continuous/analytic view, but
in a new synthesis with the discrete/algebraic view. I will suggest a path-
way, by way of an exact numerical model of computation, that allows us
to incorporate iteration and approximation into our algorithms’ design.
Some recent results give a peek into how this view of algorithmic de-
velopment might look like, and its distinctive form suggests the name
“numerical computational geometry” for such activities.

You might object that it would be reasonable enough for me to try to
expound the differential calculus, or the theory of numbers, to you,

because the view that I might find something of interest to say to you
about such subjects is not prima facie absurd; but that geometry is, after

all, the business of geometers, and that I know, and you know, and I
know that you know, that I am not one; and that it is useless for me to

try to tell you what geometry is,
because I simply do not know.

— G.H.Hardy, in “What is Geometry?”

1925 Presidential Address to the Mathematical Association

1 Introduction

This article celebrates the scientific work of Professor Kurt Mehlhorn, a special
friend and colleague. Few computer scientists can match the impact that Kurt
has had in computer science. Even to summarize the scope of his work would be
� The work is supported in part by NSF Grants CCF-043086 and CCF-0728977.
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a daunting task. Since this essay is about numerics, I may let the numbers speak
for themselves: his current webpage lists 207 papers, 9 books and 6 software
systems. I propose to only highlight one aspect of Kurt’s experimental work, as
it is a special tribute to say that any theoretician had significant experimental
contributions. Over twenty years ago, Kurt began a quest to put the corpus of
data structures and algorithms produced by the theoretical Computer Science
community into code. That was the birth of the software library known as LEDA
[31, 32]. Indeed, around this time, computational geometry witnessed a spurt of
experimental geometric software development. But major software development
requires sustained effort over a long period of time which, as theoreticians, we
may not have the constitution for. Yet today LEDA is the basis of a successful
commercial company. Like most large software, LEDA is the work of many hands:
Kurt’s collaborators include Stefan Näher with whom he wrote the LEDA book
[30], Stefan Schirra, Christian Uhrig, Christoph Burnikel and others.

¶1. What LEDA has Achieved. LEDA has implemented the best practical data struc-
tures and discrete algorithms that have been developed in the last 40 years. But
the unique part of LEDA lies in its collection of geometric algorithms. Since the late
1980’s, computational geometers have become acutely aware of numerical nonro-
bustness issues in geometric computation. Of all the areas of algorithms, we are
especially afflicted. Some have declared the problem intractable, even for prob-
lems as simple as the robust intersection of two line segments. In retrospect, what
is remarkable about Kurt’s foresight was his insistence, from the very first, that
LEDA must be fully reliable and practical, even for geometric algorithms. Twenty
years ago, that was a big wish for a geometric library. A few “robust geometric al-
gorithms” were beginning to appear in the literature, but nothing with which to
stock an entire library. Each problem required special treatment, and many ap-
proaches were contending to solve nonrobustness issues (see my survey in [54]).

I will classify these approaches into two camps: those wishing to make fast
machine arithmetic reliable and those wishing to compute exactly in order to
achieve reliable software. Kurt’s approach falls under the latter “exact” camp.
Many researchers in our community did not think the exact camp could be
practical or could compete with machine floating point computation. To place
yourself in context, by the late 1980’s, machine floating point had become the
dominant mode of numerical computation (and has remained so today). Float-
ing point arithmetic has become standardized, enjoys full industry support, and
has moved from software into standard hardware in the form of co-processors.
This view is summed up by Steve Fortune’s foreword in an Algorithmica special
issue on implementation issues [22]: “Floating point arithmetic has numerous en-
gineering advantages: it is well-supported ... the Challenge is to demonstrate that
a reliable implementation can result from the use of floating point arithmetic.”

What about exact computation? It was (and still is) regarded as the domain of
specialists and specialized applications. Yu [59] wrote a thesis under Chris Hoff-
mann that concluded that exact computation will not be practical for Boolean
operations on polyhedral objects in the foreseeable future. But LEDA did find a
general and systematic solution to nonrobust geometry — not by implementing
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specialized “robust algorithms” for each problem — but by introducing a general
number type called Leda Real that has the remarkable property that compar-
isons are error-free. According to the principles of exact geometric compu-
tation, this implied that the geometry would be exact and hence free from
nonrobustness issues. Now, if a computation involves only rational operations,
then this property might not appear impressive (just use a BigRational number
package, although you would still run into the efficiency bottleneck described
by Yu). But Leda Real included square-roots and later, arbitrary real alge-
braic numbers. Despite this, it remains practical for all the common geometric
problems. Today, such algorithms are reasonably competitive with nonrobust
machine-precision algorithms. Any programmer can implement a fully robust
geometric algorithm (provided the primitives are algebraic) using software such
as LEDA. Superficially, it appears that the exact camp has won in a healthy con-
test of ideas. But lurking behind this triumph, we see some ideas of the other
camp are also firmly embedded.

¶2. Exact Numerical Computation. How does Leda Real do this? There are five
key ingredients, the first two well-known and next three novel:

(1) You must use arbitrary precision — but use BigFloats (for efficiency, do
not use BigRationals).

(2) Track errors automatically — use interval arithmetic. Interval arithmetic
tells us when a comparison between approximate values is valid.

(3) All numbers must have an exact representation — use expressions. This
representation supports the the ability to approximate each number to any
desired absolute precision. Such approximations must be available on
demand.

(4) You must solve the zero problem, described later. In practice, we use some
constructive zero bounds which tell us when a numerical approximation
is small enough that we may declare the exact value to be zero. The BFMSS
bound [11] from the LEDA group is one of the best zero bounds in this area.

(5) You should exploit adaptivity of numerical computations. A highly effective
technique here is numerical filters which can decide most comparisons
quickly. Thus, through filters, the “engineering advantages of floating point
arithmetic” of Fortune is restored. Work from LEDA is in the vanguard of
trying to extend such techniques, from cascading filters to filtering of general
algorithms [12, 23].

These ideas also appear in my earlier work on the Real/Expr [57], the precursor
to Core Library. Another major library founded on similar principles of exact nu-
merical computation is the CGAL library [21]. The computing principle that urges
us to such a distinctive mode of computation is exact geometric computation. But
in this paper, I want to look at the broader implications; for this purpose, I call this
mode of computation exact numerical computation (ENC). Note that “numer-
ical” often has the connotation of inexactness, but no such inference is1 intended
1 There is an important and related issue of inexact data, which I do not address in this

essay.
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here. Of course, we will use numerical approximations, but they are used to derive
exact conclusions with the help of zero bounds. Actually, exactness in ENC cannot
be taken for granted: very little is known about the zero problem in transcenden-
tal cases [42]. In such cases, as applied mathematicians know very well, we need
carefully circumscribed conditions (smoothness, Morseness, non-singularity, Lip-
schitz, etc) that allow exact solution. Another way to restore exactness is to mod-
ify correctness in the sense of backwards error analysis. All these are within the
parameters of ENC.

Exact computation is traditionally the domain of symbolic computation and
computer algebra. Nevertheless, ENC has no parallel in the computer algebra
literature (e.g., [10] or [17, Chap. 4]). Algebraic computation in computer algebra
is greatly influenced by the great subject of algebraic number theory, focusing on
algebraic and arithmetical properties of number fields Q(α) (e.g., [37]). But such
approaches do not have the flexibility and adaptivity necessary to be deployed
in practical geometric computations. My favorite illustration is the following: to
compute a number of the form α =

∑100
i=1

√
ni (for positive integers ni), standard

computer algebra methods require the computation of a defining polynomial of
α which generally has degree 2100, a daunting task. Yet, in a geometric applica-
tion like computing Euclidean shortest paths, we may have to handle thousands
of such α’s. Using our ENC approach, most of these computations can be dis-
patched quite routinely since we only need to construct an expression for each
α. The comparison of such α’s could be time consuming, but in practice we are
saved by ENC’s adaptive complexity.

To sum up, I believe that LEDA represents an important achievement in com-
puting history: through the work of LEDA and related work in the computational
geometry community, we now understand the fundamental barriers to robust
geometric computation and have identified key elements for solving this prob-
lem in a systematic way. The existence of commercial libraries such as LEDA
and CGAL prove that robust geometric computation is a practical reality today.
Kurt’s broad insights and leadership in this area have played a major role in
this achievement. To read some of Kurt’s thoughts on this area, I recommend2

his article [29]. The societal benefits of robust geometric computation are po-
tentially immense: nonrobust numerical computation has negative impact on
programmer/researcher productivity (many of us experience this), represents a
huge economic cost [41], stands in the way of full automation in industry, and
often plays a role in dramatic disasters.

¶3. An Apology. The above quote from Hardy [25] expresses my own ambivalence
about writing on numerical computation, for I know that you know that I do
not do much numerical computing. What little I know is the combination of
numerical computation with algebraic computation. It is this synthesis that I
will talk about. My praise of numerical computation represents a slow personal
conversion that has grown over time. When I told a colleague what I will write
about, the reaction was — but surely computation is discrete? I hope to show
that there is a deeper issue at stake.
2 It was written for another similar occasion, the festschrift of Thomas Ottmann.
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2 Return to the Continuum

What I have discovered over the years, as an unintended consequence of the pur-
suit of robust geometric computation, is that numerical computation has many
virtues that theoretical algorithms fail to recognize. We have been enamored
with discrete computation (which is good in itself) but to the exclusion of the
continuous. We feel that if a problem or algorithm is numerical, it is the domain
of numerical analysts and applied mathematicians. It is true that we should not
be amateurs in what others can do better. But the study of ENC has convinced
me that some of these numerical concerns should be our concern.

¶4. Problems in Computational Science & Engineering Let me briefly clarify
what I mean by the “continuum”. In some literature, it refers to the real num-
bers R. But we may expand its reference to any locally compact topological
space such as Rn or C. By continuum problems3 we mean the problems of
computing functions whose domains and/or ranges are continua. Unfortunately,
the theory of continuum computing, often pronounced as “real computation”, is
in its relative infancy because its foundations are still very much in dispute [56].
We have no consensus similar to Church’s thesis in discrete computation. This is
an exciting opportunity for the computability and complexity theorist, but this
is not my focus in this essay.

First, I point out what we are missing out on by our totally discrete view of
computing. I am especially interested in problems arising in a constellation of
subdisciplines, collectively known as Computational Science & Engineer-
ing (CS&E). For any discipline X of science, mathematics, or engineering, it is
possible to identify a subdiscipline called “Computational X”. Thus we have com-
putational biology, computational physics, computer algebra, etc. In the earth,
atmospheric and ocean sciences, the computational aspect is so central that it
is redundant to attach the “computational” prefix. There has been an explosive
growth in computational activities in CS&E. Keen observers of the scientific en-
terprise have identified the CS&E phenomenon as representing a third pathway
to scientific discovery. Alongside the two traditional pathways based on theory
(deduction) and experimentation (induction), we now have computation (simu-
lation). In many disciplines X , computer simulation is increasingly seen as an
alternative to physical experimentation. Computational labs vie with traditional
wet labs to provide insights for X .

Where is the Computer Science in computational X? Taking a highly Com-
puter Science-centric view, imagine computational X as a collection of compu-
tational problems, and so CS&E is the union of these collections. Let us also
regard Computer Science as a collection of computational techniques. Then the
relationship between Computer Science and CS&E can be pictured as a matrix
where each problem is represented by a column, and each technique represented
by a row. Each matrix entry has a numerical score between 0 and 1, indicat-
ing the relevance of a technique to a problem. Of course, this is only a cartoon
3 Sometimes called “continuous problems”, but this terminology is confusing, especially

for geometric computation which is inherently discontinuous.
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Table 1. The CS&E Matrix
Atmospheric Comput. Material Comput. · · · Electrical

Sciences Biology Science Physics Engineering

Huge Datasets 1.0 0.8 0.2 0.6 · · · 0.1
Optimization 0.2 0.2 0.5 0.2 · · · 0.3
Symbolic Computation 0.1 0.0 0.2 0.7 · · · 0.5
String Algorithms 0.0 0.8 0.0 0.2 · · · 0.0
Parallel Algorithms 0.5 0.2 0.2 0.4 · · · 0.1
.
.
.

.

.

.
. . .

view to make a point. In Table 1, I have further simplified the column space by
identifying each computational X with only one column.

Practitioners of Computational X tend to identify themselves with a par-
ticular column (as “column scientists”), while computer scientists might view
themselves doing row science. The glue that makes CS&E coherent is Computer
Science. When we develop algorithms in a particular row, we are often oblivious
to the applications. But by aligning our row activities to particular columns we
may gain new insights for the science of computing, and we would share in the
advancement of X . This would be the “best practice”.

But the record of involvement of Computer Science in the Computational X ’s
shows an uneven record. In areas such as computational biology, there is a great
synergy, while in many others, the Computer Science component is4 basically
non-existent. This dichotomy is highly correlated with the division between dis-
crete and continuous computation. Computational biology can be reduced to
discrete algorithms (strings and trees), and it is easy for computer scientists
to make contributions at this level of abstraction. But Computer Science in-
volvement falls off rapidly as the need for numerical computation increases. My
general thesis is that there is a large role for theoretical algorithms in such com-
putation, and this ought to be most clearly understood by those of us who work
in the field of computational geometry.

¶5. Two Worlds of Computing. When I suggest that Computer Science should
engage in the continuum problems of CS&E, it invites a clash of two world views
on computing. One view is motivated by computing ideal mathematical objects
and the other, by physical modeling. Most of us live exclusively in one of these
worlds and are oblivious to the other. General claims about computing from one
perspective can be quite wrong in the other. We cannot afford to fall into this
trap, as we intend to work at their interface.

In the mathematical world view, the continuous makes perfect sense and
its use in mathematical modeling has been highly successful. Exact computation
is also meaningful here, whether it is computing arbitrarily accurate values of

4 Just because Computational X uses computers does not mean that there is Com-
puter Science development in it, any more than there is carpentry in Computer
Science although computer scientists use tables and wooden cabinets. David Bindel
reminds me that numerical analysis is present in these fields, and so it is clear that in
this essay, I use “Computer Science” in a narrow sense without including numerical
analysis.
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π or in automated proof of geometric theorems. The ideas of exact geometric
computation sit comfortably in this world. The algorithmic problems studied in
theoretical computer science are also exact ones.

The physical world view disdains exact computing, however. It is argued
that the physical world is discrete and nondeterministic. In other words, the
continuous and deterministic world is a myth. When such arguments are used
to dismiss the reality of the other world of computing, they miss the point
of myths, whether in folklore or in science. We know that a “point mass” in
Physics is a fiction, but try abolishing it from Physics text books. The point
(no pun intended) is that continuous models satisfy Occam’s Razor in their
description of many physical phenomena. Thus, the term “continuum mechanics”
is no oxymoron even when applied to the study of particle systems like fluids
and gases.

Besides discreteness, the physical world view advances a related argument
about finiteness. It is noted that physical constants have limited accuracy and
that current 64-bit machine precision seems more than adequate for physical
modeling, from the subatomic to astrophysical scales. There is a simple counter
to this thought: a well-known phenomenon in ENC is that in order to compute a
value up to (say) 1-bit accuracy, the intermediate computed values might require
arbitrarily many bits of accuracy. In fact, it is remarkably easy to run out into
very high precision.

Many applied fields are ostensibly uninterested in exactness. It may be hard
to see why such fields might have any interest in exact computation, so let me
provide some examples. In computer graphics, it is arguably unnecessary to com-
pute beyond the accuracy of screen resolution (this is analogous to the limited
accuracy of physical constants). Over the years, on quizzing experts in this field,
I have been repeatedly surprised by acknowledged5 nonrobustness issues. Or
consider protein folding, an inherently approximate process. Nevertheless, the
folded protein may have several distinct minimal energy states: how could we
ensure that our numerical simulation has sufficient accuracy to be6 qualitatively
correct? Or consider the fact that approximate computation may be best mod-
eled by an idealized mathematical model. Then, the best policy might be to
compute exactly, or to try to emulate exact computation. As another interesting
example, floating point computer arithmetic must ultimately rely on exact com-
putation to solve the exact rounding problem [58]. Therefore I believe that, like
the myths of point masses and continuum mechanics, exact computation has a
role to play even in the approximate computations of CS&E.

¶6. Is Geometry Continuous or Discrete? Many continuum problems are geo-
metric in nature. So it is useful to understand the general character of geometric
computation. Computational geometers have much insight to offer in this regard,
as they have had to grapple with this question as they confronted nonrobustness
in geometric computation.

5 You are unlikely to see these issues discussed in print.
6 i.e., closer to the correct minimal energy state than to any others.



In Praise of Numerical Computation 387

Geometry comes in two main forms: analytic geometry and synthetic geom-
etry. The former uses equations and coordinates to define geometry while the
latter (e.g., Euclidean geometry) proceeds from axioms. Interestingly, Hardy [25]
regards analytic geometry as mundane and considers synthetic geometry as the
“higher geometry”. But computationally, we see that analytic geometry is by
far the more important (cf. [7]). In automatic geometric theorem proving, for
instance, the synthetic approach has had limited success, while the analytic ap-
proach, especially influenced by Wu Wen-Tsun’s insights, has flowered today.
Henceforth, I focus exclusively on analytic geometry.

Analytic geometry is the interplay of the continuous and discrete. The con-
tinuum enters in two ways. To make this concrete, allow me to introduce a
little framework. In the first place, geometric objects are parametric objects.
Geometric prototypes are points and lines in the plane. A point p is given by
Point(x, y) and a line 
 is given as Line(a, b, c) : aX + bY + c = 0 where
x, y, a, b, c ∈ R are numerical parameters. These parameters might be constrained
(e.g., a2 + b2 > 0). The parameter space of geometric objects of each type is
therefore a continuum. The space of points may be identified with the Euclidean
plane R2, and the space of lines is a subset of the projective space P2(R).

In general, we can treat more complex geometric objects, such as a convex
polytope in Rn, as a cell complex in the sense of algebraic topology. The (com-
binatorial) type of a geometric object can be represented by a directed graph
G with parametric variables X1, . . . , Xm associated with its vertices and edges,
together a constraint predicate C(X1, . . . , Xm). We will write G(X1, . . . , Xm)
for this type, with C(X1, . . . , Xm) implicit. An assignment of values ai ∈ R to
each Xi is valid if the predicate C(a1, . . . , am) holds. E.g., C(a, b, c) might say
that a2 + b2 > 0. A valid assignment (a1, . . . , am) to G(X1, . . . , Xm) is called
an instance, and we write “G(a1, . . . , am)” for the instance. All geometric ob-
jects with which we compute can be put in this form (see [54]). For each type
G(X1, . . . , Xm), we obtain a parametric space comprising all of its instances.

Suppose we have a surface S, viewed as a parametric object S = Surface(x)
with parameters x ∈ Rm. These parameters can be approximated by some x̃. If
‖x− x̃‖ ≤ ε, we call Surface(x̃) a parametric ε-approximation of S. But we
will see a (for us) more important kind of approximation.

The continuum enters geometry in a second way. Geometric objects such as
points, hypersurfaces, cell complexes, etc, must live in a common ambient space
in order to interact. Each geometric object G = G(a1, . . . , am) is associated with
a subset λ(G(a1, . . . , am)) of its ambient space, say Rn (for some n). Call λ(G)
the locus of G; in practice, we often identify G with its locus. For instance, if
G is a curve, its locus is a 1-dimensional subset of Rn.

Two geometric objects S and T , not necessarily of the same type, living in a
common ambient space, are said to be ε-close if the Hausdorff distance between
their loci is ≤ ε. Thus, we can approximate continua, such as surfaces S, by
discrete finite objects such as triangulations T , and we call T an explicit ε-
approximation of S. The explicitization problem is to compute an explicit
ε-approximation T from (the parameters of) S. For instance, a real function f :
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Rn → R can be explicitly approximated by a triangulation T that approximates
its graph gr(f) := {(x, f(x)) : x ∈ Rn}. Such approximations are central to our
concerns.

Interaction among geometric objects is captured by geometric predicates
which define relationships via loci. Thus, we have the OnLine(p, 
) predicate
which holds if p lies on 
, or the LeftTurn(p, p′, p′′) predicate which holds if
we make a left turn at p′ as we move from p to p′ and then to p′′. Let R be a
set of geometric predicates, and let O1, . . . , Om be m sets of geometric objects,
each set Oi having a fixed type. For instance, let m = 2, O1 be a set of points,
and O2 a set of lines. The sum total of the geometric relationships defined by R
on (O1, . . . , Om) constitute the “geometry” of (O1, . . . , Om) induced by R. The
field of computational geometry is concerned with computing, representing, and
querying such geometries.

Geometric objects can also be constructed from other data: besides construct-
ing the objects directly from their numerical parameters (e.g., p ← Point(x, y)
or 
 ← Line(a, b, c)), we may construct them from other geometric objects (e.g.,
p ← Intersect(
, 
′) or 
 ← Line(p, p′)). Such predicates and constructors be-
come the primitives for geometric computation as we shall see in the next section.

3 Abstract Computational Models

Computational Geometry is primarily concerned with discrete and combinatorial
algorithms. These algorithms are largely non-numerical. This last characteriza-
tion must strike the casual observer as an anomaly. Since geometric data arises
from the continuum, surely numerical computations must be central to geomet-
ric computation? By nature, computation is discrete: each computational step
(sequential or parallel) is a discrete event that transforms the computational
data in a well-defined (not necessarily deterministic) way. Despite this discrete
nature, we can develop computational models for continuum problems and geo-
metric applications. This paradox also appears in mathematical logic: we build
theories of the continuum using a logical language that is countable.

Computation and mathematical logic have much more in common. In dis-
cussing computational models, especially for continuum computation, we can
take another page from logic. The language of any first order theory is com-
prised of two parts: (A) a “logical part” that has the standard logical symbols
such as Boolean operators, equality, quantifiers and a countable set of variables;
(B) an “extra-logical part” that7 has predicate and operator symbols which are
unique to the particular theory (e.g., [46]). Standard rules of logical deduction
are supplemented by special axioms for the extra-logical parts of the theory.

We apply a similar approach to computation: each computational model can
be divided into a logical part, called the base model, and an extra-logical part.
Because of the extra-logical part, such models are called abstract (computa-
tional) models. The base model may be any standard computational model;
Turing machines and random access machines (RAM) [1] are commonly used.
7 Also called the “non-logical” part.
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Typically, the base models are at least equivalent to Turing machines. The choice
of a base model determines the kind of data structures and type of control struc-
tures of our algorithms. With Turing machines as the base model, we are making
the choice to have strings as our basic data structure. The extra-logical powers
typically come from oracles (perhaps countably many). To compute with real
numbers, these oracles can represent real functions. Through these oracles, we
can access countably many real constants (like π, e) via special string encodings
that the oracle understands. Ko [27] uses such oracle Turing machines extensively
in his work. Alternatively, in using RAMs as the base model, we are choosing
the ability to have random access to storage locations containing integers. To
compute with extra-logical objects such as real numbers, we allow the storage
locations to store reals, and provide corresponding real predicates and operators.

¶7. Abstract Pointer Machines. Thus we may speak of “abstract Turing machines”
or “abstract RAMs”. But I am especially partial to abstract pointer machines
that use Schönhage’s pointer machines8 [43] as the base model. Pointer machines
directly encode and manipulate structures called tagged graphs, i.e., directed
graphs whose edges (called pointers) have labels (called tags) taken from a finite
set Δ of symbols. Its operations are instantly recognizable by computer scientists.
In brief, its two main operations are

Assignment : w ← v

Test : if (w ≡ v) goto L

where w, v ∈ Δ∗ and L is a natural number (a label of an instruction). A pointer
machine, in bare form, is a finite sequence of such instructions. If G is a tagged
graph with a designated node called the origin, then a string w ∈ Δ∗ yields a
path that begins at the origin and ends at a node denoted [w]G. The last pointer
(edge) in the path w has a special role: execution of the assignment instruction
“w ← v” will modify G by re-directing the last pointer of w to point at [v]G.
The test instruction “ if (w ≡ v) goto L” is also easily understood: the indicated
goto is executed if [w]G = [v]G.

Such machines are naturally extended to operate on algebraic entities such
as real numbers, which are stored in the nodes of the graphs (see [56]). Ab-
stract pointer machines are natural for geometric computation which calls for
the juxtaposition of combinatorial structures with real numbers. Imagine trying
to encode geometric structures into strings in an abstract Turing machine — a
most unnatural thought.

In fact, the analogy to logic can be carried even further: just as modern
logic does not require logical languages to be associated with any particular
model, we can also view our computational models to be pure syntax, with
certain syntactic rules. It is up to the application to provide models and “abstract
interpretations”. But this would take us beyond our immediate interest. So in
the following, I assume that each abstract computational model comes with a
standard interpretation.
8 Also known as storage modification machines.
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¶8. Classification of Abstract Models. Once we have an abstract computational
model, we can discuss computability and complexity. The simplest complexity
model is to charge a unit cost for each operation. I will categorize important
abstract computational models from the literature into three classes:

– Analytic Models. In the field of computable analysis, models based on
Type-2 Theory of Effectivity (TTE) [53] or oracle TM’s [27] have been stud-
ied. I will shortly discuss numerical models that fall under this classification.

– Algebraic Models. The real RAM [1] is an example. The BSS model of
Blum-Shub-Smale [5] can be seen as a real RAM with limited random access.
Alternatively, it is a Turing machine whose tape cells can store arbitrary real
numbers. The extra-logical powers here are the ring operations (+,−,×, 0, 1)
and real comparison (<, =). More generally, we call an abstract model “alge-
braic” if the extra-logical objects belong to algebraic structures like rings or
fields, and the extra-logical functions or predicates take only these objects
as arguments. Note that the extra-logical operation exp(x) or sin(x) count
as “algebraic” in our sense. The Information-Based Complexity approach of
Traub and Woźniakowski [50] focus on algorithms in such algebraic models.

– Geometric Models. It is tedious to design geometric algorithms directly
in the algebraic or analytic models. So most geometric models use the real
RAM as the base model, introduce higher level objects such as points or
surfaces, and assume geometrically meaningful predicates and constructors
such as those discussed earlier. For example, below we discuss a geometric
constructor that shoots a ray to obtain a sample point on a surface.

Abstract models are important and useful, regardless of whether they are
realistic or not. I stress this point because some have criticized algebraic mod-
els (e.g., BSS model) on account of unrealism. But it would be untenable to
develop most of the algorithms of computational geometry in an analytic or al-
gebraic model. The unique place9 of the Turing model is never challenged by
any of these abstract models. The abstract models serve other useful purposes,
including providing a modular description of algorithms at various levels of ab-
straction [56]. Thus, the algebraic model, not the standard Turing machines, is
most appropriate for describing Strassen’s matrix multiplication algorithm.

4 Case Studies in Abstract Models

Computational models greatly influence the kinds of algorithms we design. They
can hide or accentuate different computational issues. Of course, we know this.
Nevertheless, we might gain some insights into potential pitfalls by looking at
four case studies.
9 Although the standard base models are equivalent by Church’s thesis, the Turing

model captures complexity-theoretic concepts such as space, time, nondeterminism,
etc. much better than most. The pointer model is close to the Turing model in this
respect.
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¶9. CASE 1: Meshing or, Watch your Implementation Gap. Most physical sim-
ulations require some kind of mesh. For our purposes, we may identify a mesh
as a triangulation. I will consider a basic problem in meshing: generating topo-
logically correct ε-close meshes for implicit surfaces (see the survey [6]). In case
the surface is algebraic, a well-known algebraic approach to this problem uses
some form of cylindrical algebraic decomposition. As these algebraic techniques
are expensive and non-adaptive, I will focus on two adaptive approaches based
on sampling and subdivision. They differ in their choice of abstract models. Let
S be a non-singular surface given by f(x, y, z) = 0.

In the sampling approach, we construct a mesh T from a finite set P
of sample points on S. Typically, T = T (P, S) is a subset of the Delaunay
triangles of P . We incrementally add sample points to P until the required ε-
closeness criterion is achieved. Such algorithms are based on a geometric model
that supports the classical primitive of “ray shooting”. The primitive returns
the first point p (if any) on S intersected by a given ray. We then add p to
the set P . If S is an algebraic surface, the sample points would have algebraic
number coordinates. Although it is possible to implement such a ray shooting
model exactly (it reduces to computing the first positive root of a polynomial),
this is expensive and nontrivial to implement. Should we implement exact ray
shooting in order to approximate a surface? Probably not. Yet there is no known
analysis of sampling algorithms based on approximate sample points. This leaves
an implementation gap in what is otherwise a beautiful exact approach. The
next section will expand on this example.

We turn to the subdivision approach. Typically, we wish to construct a
mesh for the part of the surface lying within some given box B0. We construct a
quadtree rooted at B0 by repeated subdivision until each leaf box satisfies some
criterion. The well-known marching cube algorithm falls under this approach.
Subdivision methods are easy to implement and widely used in practice. I want
to highlight an algorithm of Plantinga and Vegter (PV) [36] which represents
the first complete purely numerical algorithm for the meshing of non-singular
surfaces in R3. This is no mean achievement, considering that there were been
several prior attempts (e.g., [49, 47, 40]) that fall short in one way or another.
Unlike the sampling approach, this numerical algorithm suffers no implementa-
tion gap: it is easy to implement using just a bigFloat number package.

¶10. CASE 2: Transcendental Comparisons or, Can we really do this? The pre-
vious case study points out the hidden cost of implementing abstract real RAM
operations. In our second case, we see an extreme example of this phenomenon.
In 2003, while I was visiting the laboratory of Professor Doeksoo Kim in Hanyang
University, Korea, he demonstrated his geometric software for computing short-
est paths between any two points while avoiding a collection of n discs. In the
real RAM model, it is an exercise to reduce this problem to Dijkstra’s algorithm
on a suitable graph. Of course, an effective implementation needs additional
techniques such as the ability to cull away most of the irrelevant discs for any
particular query, but that is another story. The implementation uses machine
precision arithmetic and I casually suggested that to produce guaranteed results,
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Fig. 1. Shortest path from p to q

they might look into tools like LEDA or Core Library. But upon reflection, I was
greatly surprised to discover that I did not know how to solve it. That is because
the shortest disc-avoiding path γ between two points consists of an alternating
sequence of straightline segments (σi) and circular arcs (αj):

γ = (σ0, α1, σ1, α2, . . . , αm, σm).

This is illustrated by Figure 1 which shows two disc obstacles A, B, and two
possible shortest paths from p to q. Note that q is close to −p, so it is not
obvious which is shorter. The length of σi is algebraic but the length of αj is
non-algebraic. So the length of γ is an algebraic number plus a transcendental
value. Dijkstra’s algorithm requires the comparison of two such lengths, and
there were no known decision methods here. Eventually, we were able to show
the decidability of such comparisons [15] by appealing to Lindemann’s theorem
in transcendental number theory. Obtaining complexity bounds requires more
work, depending on Baker’s theory of linear form in logarithms. Although our
story ended well, the initial fear that we might have unwittingly invoked an
uncomputable form of the real RAM is a lesson not easily forgotten. For our
next case, we turn to a problem where the computability remains open.

¶11. CASE 3: Discrete Morse Theory or, How to take the first step. A pow-
erful research methodology in algorithms is to develop discrete analogues of
continuous theories. In recent years, discrete forms of differential geometry, min-
imal surfaces, Ricci flows, etc. have been developed. Edelsbrunner, Harer, and
Zomorodian [20] developed a discrete Morse theory for triangulated surfaces.
Given a triangulated surface with a Morse function, we can compute its discrete
Morse complex (which is a quadrangulation) in a purely combinatorial way. They
further used discrete Morse theory to compute a simplification hierarchy that
has many useful applications.
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In some applications, we do not begin with a triangulation, but with a smooth
surface S with associated height function. Suppose that we wish to compute
its Morse complex. One approach is to first compute a triangulation T of S,
then compute a discrete Morse complex using the algorithm of Edelsbrunner et
al. Let us write T � S if the discrete Morse complex of T is combinatorially
equivalent to the usual Morse complex of S. Unfortunately, we do not know how
to compute a T such that T � S. Another way to see this difficulty is to ask the
simpler problem: given a non-degenerate saddle point, how do we connect it to
its two maximas? The issue is to compute the integral lines correctly. No current
(numerical) methods can guarantee this. Assuming S is algebraic, we see that
the critical points are algebraic and can be located exactly. But the integral lines
are probably nonalgebraic, and we have no a priori bounds on how close they
can get to other critical points.

In general, the problem is to compute a discrete analogue T of a continuum
S such that “T � S”, meaning that the topological invariants of T are equal
to the corresponding invariants of S. Once we have T , the computability of
its topological invariants is usually not in question. Computer scientists have
gravitated naturally to this discrete computation, but I suggest that we also
look at the more fundamental question of computing the transformation S �→ T
which is largely open.

This first step, the transition from continuous-to-discrete, amounts to solving
an explicitization problem in the sense of ¶6. Surface meshing and computing
the Morse complex are two examples. Such examples are easily multiplied: com-
puting discrete representations of vector fields, the numerical solution of partial
differential equations, etc. An interesting problem investigated by Nishida and
Sugihara is the Voronoi diagram of points in a flow field [34].

¶12. CASE 4: Numerical Halting Problem or, How to be Adaptive. Behind each
explicitization problem, you will find the zero problem, which I will now explain.
For any set E of real expressions, we define a corresponding zero problem,
Zero(E): given e ∈ E, is the value of e equal to 0? Here, each e ∈ E is an
expression defined over some set Ω of partial functions on R, and e either denotes
a unique value val(e) ∈ R, or val(e) is undefined. Except in the case of algebraic
expressions, the decidability of these zero problems is generally open.

Consider the “sum of square-roots” problem. This is the zero problem for the
set E0 comprising the expressions e =

∑m
i=1 ai

√
bi where ai ∈ Z and bi ∈ N. Its

complexity is a famous problem in computational geometry (see Blömer [2, 3]).
In this case study, I will illustrate the influence of abstract models in addressing
the zero problem. If your abstract model is the real RAM with the ability to
extract square roots, then Zero(E0) is trivial: explicitly evaluate the expression
e =

∑m
i=1 ai

√
bi in 3m− 1 steps and perform the needed comparison to 0 in one

more step. But the real RAM is unrealistic when discussing square-roots. So I
turn to two other approaches, an algebraic one and an numerical one.

(1) Suppose you use the standard RAM that allows ring operations on arbi-
trary integers. To solve Zero(E0), you can use a well-known algebraic method
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known as “repeated squaring”: in each stage of this process, if you arrange
so that one side has exactly those terms involving a given square root, then
you can eliminate this square root by squaring both sides of the two-sided
equation. Unless you are extremely lucky, you will need to perform m such
stages. After the first log2 m stages, we expect to see terms which are prod-
ucts of any subset of the original square roots (there are 2m such terms). So
the complexity is at least single exponential in m.

(2) Suppose you use some numerical model (the next section will provide one
such) that supports approximations of square roots to any desired precision.
For simplicity, assume that approximations are given by enclosing intervals.
We can compute a potentially infinite sequence Ii = [ui, vi] (i = 0, 1, 2, . . .) of
improving approximations to val(e), where vi −ui ≤ 2−i. If ui > 0 or vi < 0
for any i, we can stop and conclude that val(e) = 0. Thus, if |val(e)| = 0,
this will stop within 1 − log2 min {1, |val(e)|} steps. What if val(e) = 0? In
general, we have no method of stopping. But for e ∈ E0, we can compute
an a priori zero bound β(e) ≥ 0 with the property that if val(e) = 0 then
|val(e)| > β(e). In this case, if you have not concluded that val(e) = 0
after − log2 min {1, β(e)} steps, you can declare val(e) = 0. Known bounds
for β(e) imply that after at most an exponential number of steps, we can
declare that val(e) = 0. It is not known if this is necessary.

This numerical approach gives rise to the numerical halting problem,
the problem deciding when to stop computing a potentially infinite sequence
Ii (i = 0, 1, 2, . . .) of approximations. Like the classic halting problem for Tur-
ing machines, this decision problem is asymmetrical: one case is easy, and the
other is hard. If val(e) = 0, it is trivial to halt. If val(e) = 0, then it is highly
non-trivial to halt.

Which method should we prefer? The algebraic method is non-adaptive (all-
or-nothing) because, informally, with a measure-zero exception, it requires the
worst case complexity bound. The numerical method is adaptive because, again
with a measure-zero exception, its complexity depends on |val(e)|. Some years
ago, I noted two other advantages of the numerical method:

(a) Typically, the zero problem is only a subproblem of the more general sign
problem: given e ∈ E, we want to know the sign of val(e), assuming val(e)
is defined. The algebraic method of repeated squaring requires nontrivial
modifications in order to decide sign (there are numerous cases to consider)
but signs come for free with the numerical method.

(b) Suppose you need to perform n log n comparisons of the form ei : ej where
1 ≤ i < j ≤ n. This problem arises in Fortune’s sweepline algorithm. This
reduces to the sign problem for the expression ei − ej . Using the algebraic
approach, one must do repeated squaring for each comparison. Using the
numerical approach, we have a better option. Assume we have a bound B
such that B ≤ β(ei − ej) for all i < j. Then you just approximate each ex-
pression ei by some numerical value ẽi with error less than B/2. It turns out
that B is not too large so that the difficulty of this approximation is com-
parable to performing a repeated squaring comparison. Now the comparison



In Praise of Numerical Computation 395

ei : ej is easily decided by comparing the approximations ẽi : ẽj (declare
val(ei) = val(ej) if |ẽi − ẽj| < B). So the algebraic approach requires n log n
difficult computations, but the numerical method only requires n difficult
computations (to approximate each ẽi).

5 The Exact Numerical Model

Numbers are the fountainhead of analytic geometry. But we are trained to design
algorithms exclusively in abstract models that are devoid of numbers. This is the
source of the implementation gaps we saw in our case studies. The goal in this
section is to develop a numerical computational model that avoids such pitfalls
while remaining useful for geometric algorithms.

Smale has observed that numerical analysis has no abstract computational
models to investigate the fundamental properties of numerical computation. The
BSS model has been offered as a candidate for this purpose [4] (see [5, Chap. 1]).
For error analysis, numerical analysts use the standard arithmetic model (see
below) which falls short of a full-scale computational model. Perhaps numerical
analysts see no need for a general model because most of their problems do not
involve geometry or complex combinatorial structures. In the following exercise,
I hope you will see some merit in taking up Smale’s challenge.

¶13. Duality in Numbers. Numbers in R are dual citizens: they belong to an
algebraic structure (a field), as well as to an analytic structure (a metric space).
As in the particle-wave duality of light, numbers seem to vacillate between its
particle-like (algebraic/discrete) and wave-like (analytic/continuous) natures. In
many computation, we treat them exclusively as citizens of one or the other
kingdom. But in order to address the central problems of continuous computa-
tion, we need a representation of numbers which expresses the dual nature of
numbers.

Consider a concrete example: the number α =
√

15 −√
224 can be repre-

sented directly by the indicated radical expression. This is exact, but for the
purposes of locating its proximity on the number line (e.g., is α in the range
[0.01, 0.02]?), this representation alone is unsatisfactory. An approximation such
as α = 0.0223 would be useful for proximity queries. But no single approxi-
mation is universally adequate. If necessary, we should be able to improve the
approximation to α = 0.02230498, and so on. Thus, the analytic nature of α is
captured by the potential to give arbitrarily good approximations for the locus
of α. This is only a potential because we cannot reach its limit in finite time. In
the analytic approach to real computation, this is the central concept [53, 27].
For us, this potential exists because we maintain an exact representation of α.
Thus, we need a dual representation of α, comprising the exact expression
plus a dynamic approximation process. Computationally, this is very interesting
because iteration at run-time becomes necessary.

Of course, we have seen dual representations earlier in Leda Real. This rep-
resentation can be generalized to geometric objects. For instance, to represent
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an algebraic curve C in R3 exactly, we store a pair of polynomials (f, g) in case
the curve is defined by f = g = 0. To approximate the locus of C, we use any
suitable explicitization. A simple solution is a polygonal line P that is ε-close to
C (for any desired ε).

¶14. Some Virtues of Numerics. Let us next focus on numerics. I shall speak of
“numerics” when I want to view numbers only as analytical objects, and ignor-
ing their algebraic nature. In numerical analysis, they are fixed-precision floating
point numbers, but for exact computation, we must transpose them to BigFloats.
BigFloats (or dyadic numbers) form the set F := {m2n : m, n ∈ Z} = Z

[ 1
2

]
.

Practitioners instinctively know the virtues of numerics but it is easy for theo-
reticians to miss them. Implicit in our discussion of virtues is a comparison with
numerical computing that is based on other number systems with more algebraic
properties, for example Q or algebraic numbers. I do not claim to say anything
new, but it is useful to collect these thoughts in one place. What is perhaps new
is the audience, since I am talking numerics in the context of exact computation.

– Numerics is useful in exact computation. More precisely, approximations can
often lead to the correct decisions, and when combined with zero bounds,
such approximations will eventually lead to the right decisions. This is the
sine qua non for exact computation.

– Numerics is relatively easy to implement. There is only one number type, the
“real” numbers (which in computing is translated into floating point num-
bers). If you compute with algebraic numbers, the traditional approaches
require data structures for manipulating polynomials and algorithms for
manipulating polynomials. Most implementers avoid this if they could.

Even the use of rational numbers Q for their analytical properties will
introduce irrelevant algebraic properties that are expensive to maintain. Tre-
fethen gave a striking example of this from Newton iteration [51]. There is
a canonical reduced representation for elements of F and Q: the numerator
and denominator must be relatively prime. While performing a sequence of
ring operations on a number, it is necessary to reduce its representation pe-
riodically in order to avoid exponential growth. This is computationally easy
for F, but not for Q.

– Numerics are efficient. We know this for machine numerics, but even
BigFloats are efficient. Essentially, BigFloats are as efficient as BigIntegers,
and we regard the complexity of BigInteger arithmetic as the base line for
exact computation.

– Numerics are easy to understand. This is an important consideration for
implementations. For the most part, the analytical properties we need are the
metric properties and total ordering of real numbers. In contrast, algebraic
properties of numbers can be highly nontrivial (try simplifying nested radical
expressions).

– Numerical computation has adaptive complexity. We saw this in CASE 4.
There are applications in which the only possibility of obtaining any solution
at all relies on adaptivity.
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– Numerical approaches have wider applicability. Many problems of CS&E
have no closed form solutions. In such situations, numerical solutions remain
viable. But even when closed form solutions exist, the numerical solution
might be preferred.

– In CS&E, the numerics may be an essential part of the solution. Such is the
case with explicitization problems (¶6). An answer of the form “α ≈ 0.022”
might be acceptable, but the form “α =

√
15 −√

224” is unacceptable (even
though it is exact). This is a blind spot if you exclusively think in algebraic
computational models.

¶15. Standard Numerical Model. Having established a place for numerics in exact
computation, I will now discuss how we can incorporate it into our computa-
tional model. The numerical analysts are experts in this domain, so we first look
at their treatment of numerics. The standard arithmetic model [26, p. 44]
of numerical analysis is the following: if ◦ ∈ {+,−,×,÷} is any arithmetic op-
eration and x, y are floating point numbers, then the corresponding machine
operation ◦̃ satisfies the following property:

x◦̃y = (x ◦ y)(1 ± u)

where10 u is the unit round-off error, provided x ◦ y = 0. In the usual under-
standing, u is fixed. If we allow u to vary, we essentially obtain the multiprecision
arithmetic model of Brent [9, p. 242-3].

More generally, I assume that for each operation ◦̃, an arbitrary non-zero
relative error u can be explicitly given as an argument. Notice that the numer-
ical analysts’ model is only about arithmetic. It is agnostic about the nature
of the base model. But to convert it into an abstract computational model, I
choose pointer machines as the base model. We thereby obtain the standard
numerical model. This can be classified as an analytic model.

¶16. Computational Ring. The standard numerical model is wonderful for devel-
oping the algorithms of numerical analysis, and especially for performing
backwards error analysis. But this model is problematic for exact numerical com-
putation (ENC) — it lacks the critical ability to decide zero. You can never be sure
that any computed quantity is exactly zero. Zero as an algebraic object has been
abolished. We have noted [56] that computing in the continuum puts a big “stress”
on our computational models because we are trying to simulate an uncountable set
R using only a countable domain (N or finite strings). The algebraicmodels [5] cope
by making the zero problem trivial. The analytic models [53, 27] cope by making
the zero problem undecidable. The standard numerical model represents a third
solution, by making the zero problem meaningless.

To restore the place of zero, we must view BigFloats as an algebraic structure.
In fact, it is useful to generalize BigFloats by an axiomatic treatment: let D ⊆ R

10 In our error notation, any appearance of “±” should be replaced by the sequence
“+θ” for some variable θ satisfying −1 ≤ θ ≤ 1. E.g., 1 ± u translates to 1 + θu.
Note that θ is an implicit variable.
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be a countable set that is a ring extension of Z, and which is closed under
division by 2. Further, there is a representation11 for D, viz., an onto partial
function ρ : {0, 1}∗ 'D relative to which there are algorithms to perform the
ring operations, division by 2, and exact comparisons in D (see [56]). Call D a
computational ring. We note that D is dense in R, and we have mandated a
minimal amount of algebraic properties in D. Computational rings provide our
answer to the standard arithmetic model.

The smallest computational ring is the set of BigFloats F. In practice, an
important computational ring is Z[12 , 1

5 ] (see [35]). But Q or real algebraic num-
bers are also examples. We now construct an abstract pointer model in which
elements of D are directly represented and the operations on D are available.
The fundamental objects manipulated by our pointer machines are numeri-
cal graphs, i.e., tagged graphs in which each node stores an element of D.
This constitutes our basic numerical model. Numerical graphs can directly
represent n × n matrices Dn×n, or polynomials with coefficients in D, etc.
Under our classification scheme ¶8, this is both an analytic and an algebraic
model.

Trefethen observed [52, Appendix] that numerical analysis has an undeserved
reputation of being “the study of rounding errors”, when its true subject matter
is “the study of algorithms for continuous mathematics”. I think this reputation is
partly a function of the standard numerical model. What I found interesting [56]
is that numerical analysts inevitably design algorithms in some exact algebraic
model (check any numerical analysis text book). But they go on to address the
implementation gap (¶9) between the exact model and the standard numerical
model. This is the error analysis.

¶17. Exact Numerical Machines. We could design algorithms directly in the
basic numerical model, but that would be programming in assembly language.
So we explore some extensions of the basic numerical model. My goal is to
introduce the capabilities needed to implement the algorithm of Plantinga-Vegter
naturally. These capabilities will not affect computability, though they might
affect complexity.

Functions will be the key abstraction for our model. Here, we see a ma-
jor difference between algebraic and analytic thinking. In algebraic thinking,
functions are seen as holistic objects within an algebraic structure, e.g., poly-
nomials as elements of a ring. But in analytic thinking, functions are more ver-
satile: they are objects which we can evaluate (query) at run-time, compute
approximations of, compose with other functions, numerically differentiate, etc.
In analytic complexity theory, functions viewed in this way are modeled by
oracles [27].

11 Here, {0, 1}∗ is the set of binary strings. As ρ is a partial function, ρ(w) may be
undefined for some w ∈ {0, 1}∗. If ρ(w) is defined, then w is a “name” for the
element ρ(w) ∈ D. Since ρ is onto, each element in D has at least one name. Our
algorithms on D must directly operates names. See Weihrauch [53] for the theory of
representations.
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In the following definitions, let f : Rn → R be a real function.

– We say f is sign computable if the function sign(f) : Dn → {−1, 0, 1}
where sign(f)(x) = sign(f(x)) is computable by a basic numerical machine.

– Consider the approximations of functions. Any function of the form f̃ : Dn×
N → D where f̃(x, p) = f(x) ± 2−p is called an absolute approximation
of f . We say f is absolutely approximable if there is a basic numerical
machine that computes such an f̃ .

– We need interval functions: let I(D) denote the set of intervals with endpoints
in D. For n ≥ 1, let In(D) denote the n-fold Cartesian product of I(D). Each
B ∈ In(D) is called an n-box.

– We say f : In(D) → I(D) is a box function for f if it is an inclusion
function (i.e., f(B) ⊆ f(B)) and whenever {Bi : i ∈ N} is a strictly mono-
tone sequence of n-boxes with Bi properly containing Bi+1, and ∩iBi is
a point p, then ∩i f(Bi) = f(p). We say that f is box computable if
there is a basic numerical machine that computes such an f . It is easy
to see that box computable functions are (1) continuous and (2) absolutely
approximable.

– We say f belongs to the class Ck (k ≥ 0) if each partial derivative of f up to
order k exists and is box computable. Thus C0 are just the box computable
functions. Following [13], we say f is in the class PV if f ∈ C1 and f is
sign computable.

The above notions of computability are all relative to the basic numerical
model. This avoids issues of computability (cf. CASES 2 and 3). There are
deeper issues which we do not take up, such as the dependence of these notions
on D. Our goal is to incorporate such functions as sign(f), f , and f̃ as first
class programming objects in our model. Recall that the basic numerical model
operates on numerical graphs. A function whose input and output are numerical
graphs is called a semi-numerical function.

Our exact numerical model (ENM) extends the basic numerical model by
having extra-logical objects that are semi-numerical functions, and whose tagged
graphs have nodes that can store either a semi-numerical function or an element
of D. We have a built-in predicate to test nodes for the type of its stored value
(the type is either D or a semi-numerical function). Suppose u, v, w ∈ Δ∗ and G
is a tagged graph (¶7). If a semi-numerical function F is stored in node [u]G and
its argument is accessed through node [v]G, then we can invoke an evaluation of
F on this argument by executing the following instruction:

w ← EV ALUATE(u, v)

See [56] for similar details. If we like, we could provide functors to construct
semi-numerical functions from scratch, functors to compose two semi-numerical
functions, etc. But for our simple needs here, we may assume the semi-numerical
functions are simply available (passed as arguments to our numerical machines,
like oracles).
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¶18. From Smooth Surfaces to Singular Ones The preceding development was
a build-up to state the following result:

Theorem 1 (Plantinga-Vegter) There is an ENM algorithm which, given
ε > 0, a box function and sign function for some function f : R3 → R, and
B0 ∈ I3(D), will compute an isotopic ε-close mesh for the surface S : f = 0
provided S is non-singular and S ⊆ B0.

The statement of this theorem does not reveal the beauty and naturalness of
the PV algorithm; to see this, refer to their original paper [36]. It suffices to say
that their method uses standard subdivision of the box B0 and cleverly exploits
isotopy. This result can be extended in several ways: First, the surface S need
not be confined within the box B0, but we must slightly relax the correctness
statement on the boundary of B0. Box B0 can be replaced by more complicated
regions which need not be connected or simply-connected. The function f is
allowed to have singularities outside B0. See [13, 28] for these extensions in
the plane. Extensions of the PV algorithm to higher than 3 dimensions are
currently unknown, but recently Galehouse [24] introduced a new approach that
is applicable in every dimension. All these extensions stayed within the ENM
framework.

What if the surface S is singular? We can use the PV algorithm as a subroutine
to locate and determine the singularities. This was done for the planar case
in [13]. Let me sketch the basic idea: say S : f = 0 is a curve with only isolated
singularities (if f(X, Y ) is a square free polynomial, this will be the case). Now
apply the PV algorithm to F = f2 + f2

x + f2
y − δ where δ > 0. For sufficiently

small δ, the curve Sδ : F = 0 will be a nonsingular curve, i.e., a collection of
ovals or infinite curves. Moreover, if the oval is sufficiently small, we know that
it isolates a singularity. Once we have isolated singularities in sufficiently small
boxes, we can run the PV algorithm on the original curve S but on a region that
excludes these small boxes. We can determine the degree of each singularity (i.e.,
how many open arcs of S have endpoints in the singularity) by considering an
annulus around its small box. All these can be carried out in the algebraic case,
because we have computable zero bounds.

¶19. Simple Real Root Isolation, or How to avoid zero. The PV algorithm makes
the fairly strong assumption that f is sign computable. For instance, we do not
know whether this property holds for the class of hypergeometric functions (with
rational parameters). But such hypergeometric functions can be shown to be box
computable (cf. [19]). So it is desirable remove the sign computability condition
all together.

I will now show this for the 1-D case (it will be the only technical result of
this paper). In 1-D, meshing amounts to real root isolation and root refinement
for a function f : R → R. It is not hard to devise such a root isolation algorithm,
which we call EVAL (see [14], but the original algorithm is from Mitchell [33]).
EVAL depends on two interval predicates which we call C0 and C1:
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C0(I) : 0 /∈ f(I),
C1(I) : 0 /∈ f ′(I).

Clearly, these predicates are computable if f ∈ PV . Given a BigFloat interval
I0 in which f has only simple roots, EVAL will return a set of isolating in-
tervals for each of the roots of f in I0. We use a queue Q for processing the
intervals:

EVAL(I0):
Q ← {I0}
While Q is non-empty

Remove I from Q
If C0(I) holds, discard I
Else if C1(I) holds,

(*) If f has different non-zero signs at end points of I, output I
(*) Else, discard I

Else
(**) If f(m) = 0, output [m, m] where m is the midpoint of I
(**) Split I into I ′, I ′′ at m, and put both intervals into Q

Termination and correctness are easy to see. We now modify EVAL so that f
does not have to be sign computable. There is a small price to pay, as there will
be some indeterminacy at the boundary of the input interval.

Lemma 2 There is an ENM algorithm which, given ε > 0, a box function f for
f : R → R, and [a, b] ∈ I(D), will isolate all the real roots of f in some interval
J where

[a, b] ⊆ J ≤ [a − ε, b + ε]

provided f has only simple roots in [a, b]. Moreover, there is at most one out-
put isolating interval that overlaps [a − ε, a] and at most one that overlaps
[b, b + ε].

Proof. Observe that from the box function f , we can easily construct an absolute
approximation function f̃ for f . Thus, for each x ∈ D and p ∈ N, we have
f̃(x, p) = f(x) ± 2−p. If |f̃(x, p)| > 2−p, then we know the sign of f at x.

We modify the EVAL algorithm by omitting two lines marked (**) as we can
no longer compute the sign of f(m). We also replace the two lines marked (*)
by the following subroutine: assume I = [a, b] is the input to our subroutine.
So C1(I) holds, and I has at most one root of f . The following subroutine
will either decide that I has no root or some J ⊆ [a − ε, b + ε] is an isolating
interval:
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1. We dovetail the absolute approximations of f(a) and f(b)
with increasing precision until we see a non-zero sign of f(a)
or of f(b).

� This must halt because C1(I) holds.
2. Wlog, say we see the sign of f(a), and it is negative.

If f ′(I) < 0, then there are no roots in I. So assume f ′(I) > 0.
3. For i = 0, 1, 2, . . ., we check the predicate C1(Ji) where

Ji = [b, b + ε2−i].
Halt at the first k ≥ 0 where C1(Jk) holds.

� This must halt because f ′(b) > 0.
4. This means f ′(b) > 0 and f ′(b + ε2−k) > 0.

As before, do dovetailing to determine the sign of either f(b)
or f(b + ε2−k).

5. If we know the sign of f(b), then I contains a root iff f(a)f(b) < 0.
The other case of knowing the sign of f(b + ε2−k) is similar.

One final detail: the isolating intervals which this modified algorithm outputs
might be overlapping. To clean up the intervals so that there is no ambiguity,
observe that C1(I) holds at each output interval I. Therefore, if two outputs I
and J overlap, we see that I ∪ J has a unique root which is found in I ∩ J . So
we may replace I, J by I ∩ J . Q.E.D.

We should be able to extend the PV algorithm in 2- and 3-D by a similar
relaxation of the conditions on f . So what have we learned from this? It is (not
surprisingly) that you can avoid the zero problem if there are no singularities.
So you could have developed this algorithm in the standard numerical model.
But should you have singularities (multiple roots in the 1-D case) this option is
not available.

¶20. Towards Numerical Computational Geometry. Our exact numerical model
satisfies the need for higher level abstractions in designing algorithms. Such algo-
rithms will have adaptive complexity because of the use of numerics. Iterations
is completely natural. As we saw in the PV Algorithm, domain subdivision will
be useful in such algorithms. Another feature is that, unlike standard numer-
ical algorithms, we can actively control the precision of individual operations.
This can lead to a speedup [45, 44]. Another direction is in producing numerical
algorithms that are “complete”, i.e., do not have exceptional inputs for which
the algorithm fails. E.g., see [55, 13, 16]. Currently, most geometric algorithms
based on numerical primitives are “incomplete” because they are based on the
standard numerical model.

Such algorithms represent a marked departure from the typical algorithms
seen in computational geometry, and suggests the name “numerical computa-
tional geometry” for such activities. In fact, other researchers in interval com-
putation are also producing similar kinds of algorithms. See particularly the
work of Ratschek and Rokne [38, 39]. I think both lines of work may eventually
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converge, but the main gap between their view and ours is located in the dif-
ference between using the standard numerical model and our exact numerical
model (cf. [40] and [28])

¶21. What about Complexity Theory? The most serious challenge for numerical
computational geometry is the development of a complexity analysis of adap-
tive and iterative algorithms. Of course, the lack of analysis does not hamper
the usefulness of such algorithms, but it discourages theoreticians from looking
at this class of algorithms. Previous work on adaptive complexity analysis has
stemmed from analysis of simplex algorithms in the 1980’s [8]. All such analyses
have depended on probabilistic assumptions. The acclaimed smoothed analysis
of Spielman and Teng [48] tries to minimize such objections by “localizing” the
probabilistic assumptions to each input instance.

Recently, we introduced the concept of continuous amortization [14]. This
yields an analysis of adaptive complexity without probabilistic assumptions. The
key idea is to bound the subdivision tree size in terms of an integral. If the
input domain is a box B, the number of subdivisions can be bounded by an
integral of the form I =

∫
x∈B φ(x)dx. Amortization is a well-known computa-

tional paradigm and analysis technique in discrete algorithms [18]. We can view
the integral approach as a “continuous” form of amortization. We applied this
analysis to the EVAL algorithm ¶19, proving that the tree size is polynomial in
the worst case depth. This is a mark of adaptivity since in the worst case, tree
size is exponential in depth. We believe similar analyses are applicable to other
subdivision algorithms.

6 Conclusion

This essay began with the accomplishments of Kurt in experimental compu-
tational geometry, and the significance of LEDA in the history of computing. I
extracted from this work a unique mode of computation (exact numerical com-
putation), and extrapolated it to general computing, and to computational ge-
ometry in particular. My motivation is to equip ourselves to address the host
of interesting continuum problems in CS&E. But none of us plan to turn into
applied mathematicians or numerical analysts to address these problems. Our
strength is in exact/discrete thinking. We celebrate this, and rightly so. You
probably agree with me that our discrete/exact views can bring something new
to the problems of CS&E. But to do this, we need an analytic model of compu-
tation in which the exact views are captured. The clue lies in the zero problem,
but more generally the “explicitization problems” of continuous-to-discrete com-
putation. I described an exact numerical model that has many of the desired
properties. This article (it turned out) spent much time discussing computa-
tional models because, as our case studies show, the wrong model can lead us
astray. As a computer scientist, I have found extreme satisfaction in designing
geometric algorithms in the exact numerical model. Some of these algorithms
also seem quite practical. Perhaps you will find the same satisfaction.
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Abstract. Zero separation bounds provide a lower bound on the ab-
solute value of an arithmetic expression, unless the value is zero. Such
separation bounds are used for verified identification of zero in sign com-
putations with real algebraic numbers, especially with number types that
record the computation history of a numerical value using expression
dags. We summarize results on separation bounds and their use for adap-
tive sign computation with real algebraic numbers based on expression
dags.

Keywords: zero separation bound, exact geometric computation para-
digm, real algebraic number computation.

1 Introduction

Recognizing the signs and consequently taking the right decisions is crucial for
success–particularly with regard to geometric algorithms and the exact geometric
computation paradigm.

Naïvely implemented, theoretically correct geometric algorithms more or less
frequently crash, loop, or compute garbage [12] due to rounding errors caused
by inherently inexact floating-point arithmetic, which is still the standard sub-
stitution for exact real arithmetic in scientific computing. Implementations of ge-
ometric algorithms tend to crash if rounding errors lead to inconsistencies that
their theoretical counterpart cannot handle, because they contradict real geome-
try, e.g., detection (according to floating-point arithmetic) of several intersection
points of distinct straight lines. The basic idea of the exact geometric computation
paradigm [31, 30] is to ensure that the control flow in the implementation is ex-
actly as it would be in the underlying geometric algorithm executed with exact real
arithmetic. Note that we do not require exact numerical values here. It suffices to
ensure that all decisions in the branching steps of an algorithm are correctly taken
by the implementation. The branching steps in geometric algorithms boil down to
the comparison of numerical values and without loss of generality we may assume
that one of the numerical values we compare is zero. Thus, once we know the cor-
rect sign of the other value, we know how to continue correctly. Thus, the exact
computation of the sign of the numerical value of an arithmetic expression is cru-
cial for the implementation of geometric algorithms in accordance with the exact
geometric computation paradigm. Of course, numerical values far away from zero
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© Springer-Verlag Berlin Heidelberg 2009
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do not cause much trouble for sign computation. There is much ado required only
if the numerical values are about zero.

2 Arithmetic Filters

For most geometric algorithms exact sign computations for real algebraic num-
bers suffice for putting the exact geometric computation paradigm into action,
provided the numerical input data are all rational. Since integers and floating-
point values are rational numbers, the assumption usually holds.

If all computations are even rational, a straightforward but inefficient approach
is to use a rational arithmetic based on arbitrary precision integer arithmetic. This
is inefficient, because we always compute exact values no matter whether such ul-
timate accuracy is required or not. Since the beginning of the nineties, more ef-
ficient alternatives have been developed, especially so-called floating-point filters
and related adaptive evaluation strategies [8, 11, 14, 28]. A floating-point filter
evaluates an expression with fast floating-point arithmetic first and tries to ver-
ify the sign computation by an accompanying error analysis. If the verification
fails, we switch to another method to compute the sign. Thereby, we filter those
computations that are potentially delivering an incorrect sign. In case of failure,
we can try a better error analysis, a floating-point computation with higher pre-
cision using a software floating-point number type that allows one to choose the
mantissa length if needed, or we make use of techniques to extend the precision of
floating-point computations [28], and so on. We can even cascade such approaches,
at best, reusing previously computed values, resulting in adaptive sign computa-
tions, where the effort we make is directly related to how close the actual value is
to zero. Fig. 1 illustrates a cascaded filter.

Even such cascaded filters have a small problem. Zero can be detected only
if the computed floating-point approximation is zero and the error analysis or
some other technique proves that the error involved is indeed zero, too. This is
not impossible, but extremely rare. This is where zero separation bounds come
into play.

verified signs

Filter
not verified

Filter

Floating−Point

input data

Fig. 1. Cascaded arithmetic filters
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3 Zero Separation Bounds

Given an arithmetic expression E over a set of allowed operations, for example
the basic arithmetical operations +, −, ·, /, and √ , a constructive zero sep-
aration bound comprises an algorithm to derive a lower bound sep(E) on the
absolute value of E. Such separation bounds are used for verified identification
of zero in sign computations, in particular with number types supporting exact
geometric computations with real algebraic numbers: Let ξ denote the value of
E. Then, sep(E) is a separation bound if

ξ = 0 ⇒ sep(E) ≤ |ξ|.
Now let ξ̃ be an approximation to ξ and Δerror an upper bound on the error
|ξ − ξ̃|. If

|ξ̃| + Δerror < sep(E)

we may conclude that ξ = 0, because otherwise the inequality above would rise
a contradiction.

Note that, according to our definition, ξ itself does not necessarily provide sep-
aration bound, since the definition also asks for an algorithm to compute sep(E)
and it might be impossible to compute ξ exactly.1 However, even if an exact rep-
resentation for ξ exists and is effectively computable, it might be too expensive
to compute it. A separation bound must be easily and efficiently computable to
be useful, such that, together with efficiently computed approximation and error
bound, it provides a more efficient non-zero test, if the value is non-zero.

Let us look at a simple example. For an arithmetic expression E with integral
operands, where E involves the operations +, −, ·, and k

√ only, the so-called
BFMS bound computes a quantity U(E) which gives us an upper bound on the
absolute value of ξ and its conjugates. We get U(E) by replacing every − in E
by a + and replacing every integer by its absolute value, see also Tab. 1. Then
we have (

U(E)deg(ξ)−1
)−1

≤ |ξ| ≤ U(E)

where ξ denotes the value of E and deg(α) denotes the algebraic degree of a
real algebraic number α. Since we do not know the exact degree, we compute a
straightforward upper bound on it, namely the product of all the radices of the
radicals arising in the expression. The actual separation bound should be easily
computable. Therefore, instead of U(E) we compute an upper bound u(E) on
log U(E), see Tab. 1.

Let us use this separation bound to verify one of Ramanujan’s equations on
nested radicals.

3 ·
√

3
√

5 − 3
√

4 = 3
√

20 − 3
√

25 + 3
√

2 (1)

This is tantamount to confirming that the sign of

3 ·
√

3
√

5 − 3
√

4 − 3
√

20 + 3
√

25 − 3
√

2

1 Of course, once you know, that there is no exact representation, you also know ξ �= 0.
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Table 1. Inductive computation of U(E) and u(E)

U(E) u(E)

integer N = 0 |N | �log |N |	
0 0 0

E1 ± E2 U(E1) + U(E2) max(u(E1), u(E2)) + 1
E1 · E2 U(E1) · U(E2) u(E1) + u(E2)

k
√

E1
k
√

U(E1) �u(E1)/k	

is zero. The straightforward bound on the degree is 2 · 35 = 1458. Next,

u( 3
√

5 − 3
√

4) = 2

and hence

u(3 ·
√

3
√

5 − 3
√

4) = 3.

Furthermore,
u(( 3

√
20 − 3

√
25) + 3

√
2) = 4.

Finally, we get u(E) = 5, and thus = 2−7285 is a separation bound. Therefore,
it suffices to compute an approximation ξ̃ and an error bound Δerror, such that

|ξ̃| + Δerror < 2−7285

in order to verify (1).

4 Some Background on Algebraic Numbers

An element ξ ∈ K ⊇ F is called algebraic over F , if there is a polynomial
P (X) ∈ F [X ] such that P (ξ) = 0. A complex number ξ ∈ C is called algebraic if
it is algebraic over Q, i.e., if there is a Q(X) ∈ Q[X ] such that Q(ξ) = 0. Such a
polynomial exists if and only if there is a P (X) ∈ Z[X ] such that P (ξ) = 0. The
minimal polynomial of ξ is the unique, irreducible polynomial of smallest degree
with this property. Note that this definition of minimal polynomial slightly devi-
ates from other definitions where the monic polynomial of smallest degree with
rational coefficients is called minimal polynomial. We prefer a polynomial with
integer coefficients. The algebraic degree of an algebraic number is the degree
of its minimal polynomial. An algebraic number ξ is an algebraic integer if its
minimal polynomial is monic. Elements of Z are often called rational integers to
better distinguish them from algebraic integers. Just as every rational number
is an algebraic number, every rational integer is an algebraic integer as well.

Algebraic numbers form a subfield of C, the real algebraic numbers a subfield
of R. Moreover, (real) algebraic integers form a ring. Furthermore, algebraic
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numbers and algebraic integers are closed under radical operations. We shall
use the well-known fundamental theorem of symmetric functions to prove these
facts. For the division operation, note already that if α = 0 is a root of A(X),
then α−1 is a root of XmA( 1

X ).
A polynomial is symmetric on variables Y1, . . . , Yn if it is unchanged by any

permutation of these variables. The elementary symmetric functions on variables
Y1, . . . , Yn are the polynomials

σ1(Y1, . . . , Yn) =
∑

1≤i≤n

Yi

σ2(Y1, . . . , Yn) =
∑

1≤i<j≤n

YiYj

σ3(Y1, . . . , Yn) =
∑

1≤i<j<k≤n

YiYjYk

...

σn(Y1, . . . , Yn) =
∏

1≤i≤n

Yi

The fundamental theorem of symmetric functions states that every polynomial
symmetric on some variables can be written as a polynomial in the elementary
symmetric functions on these variables.

Every monic polynomial Xm + am−1X
m−1 + · · · + a0 =

∏m
i=1(X − αi) is

symmetric in its roots αi and hence a polynomial in the elementary symmetric
functions on the αi. Actually, we have

aj = σm−j(α1, . . . , αm) (2)

Let A(x) =
∏m

i=1(X − αi) and B(x) =
∏n

j=1(X − βj) be monic polynomials.
The polynomials

m∏
i=1

n∏
j=1

(X − (αi + βj)

m∏
i=1

n∏
j=1

(X − (αi − βj)

m∏
i=1

n∏
j=1

(X − (αiβj))

are all symmetric in both the αi and the βj and hence can be expressed as poly-
nomials in the elementary symmetric functions of these two sets of conjugates.
So if the coefficients of A(X) and B(X) are integers, it follows using (2) that
the resulting polynomials have integer coordinates as well, which shows that
algebraic integers are closed under the operations +, −, and · .
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Let αn−1, αn−2, . . . , α0 be algebraic integers and let α
(ij)
j , 1 ≤ ij ≤ deg(αj),

be the conjugates of αj for 0 ≤ j ≤ n − 1. Consider

Q(X) =
∏
i0

∏
i1

· · ·
∏
in−1

(
Xn + α

(in−1)
n−1 Xn−1 + · · · + α

(i0)
0

)
Q(X) is symmetric in the α

(ij)
j for all j. By applying the fundamental theorem

on symmetric functions several times we see that Q(X) can be expressed as a
polynomial in the elementary symmetric functions of the conjugate sets. Hence
the coefficients of Q(X) are integers, since all the αi are algebraic integers and
hence by (2) all the elementary symmetric functions in each conjugate set deliver
integral values. Hence we have

Lemma 1. Let � be the root of a monic polynomial

P (X) = Xn + αn−1X
n−1 + αn−2X

n−2 + · · · + α0

where the coefficients αn−1, αn−2, . . . , α0 are algebraic integers. Then � is an
algebraic integer.

In particular, this shows that algebraic integers are closed under radical opera-
tions as well.

If α is a root of P (x) = amXm + · · ·a0 then amα is a root of

am−1
m P ( X

am
)

and hence we have

Lemma 2. Every algebraic number is the quotient of an algebraic integer and
a (rational) integer.

More precisely, it is the quotient of an algebraic integer and the leading coefficient
of its minimal polynomial.

Next consider a root of a polynomial

P (x) = γmXm + γm−1X
m−1 + · · · + γ0

where the coefficients γm, γm−1, . . . , γ0 are algebraic numbers. Every coefficient
γi is a quotient νi

di
of an algebraic integer νi and a rational integer di. Now let

Δ =
∏

di and Δj = Δ/dj. We multiply by Δ to get rid of the denominators of
all coefficients and get a polynomial with algebraic integer coefficients ΔP (X)
and leading coefficient νmΔm. As above, we construct a corresponding monic
polynomial

Q(X) = (νmΔm)m−1ΔP ( X
νmΔm

)

where P (ξ) = 0 implies Q(ξνmΔm) = 0. By construction Q(X) is monic and
its coefficients are algebraic integers. Thus, by Lemma 1, its roots are algebraic
integers and if ξ is a root of P (X) then ξνmΔm is an algebraic integer. Summa-
rizing, the roots of a polynomial with algebraic coefficients are algebraic again,
or, in terms of field theory, if ξ is algebraic over an extension field Q(γ0, . . . , γm),
then ξ is algebraic (over Q).
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5 Known Constructive Zero Separation Bounds

In this section we briefly review known constructive separation bounds for sub-
sets of the real algebraic numbers. Let ξ be the value of an algebraic expression E.
If the minimal polynomial P ∈ Z[X ] for ξ would be known, one could use min-
imum root bounds for P to get a zero separation bound. The last statement
is somewhat absurd because knowing the minimal polynomial requires to know
whether ξ is zero. Nevertheless, this is a road taken by most separation bounds.
Given an arithmetic expression E, most separation bounds derive bounds on
some quantities that the minimal polynomial of ξ would fulfill, if ξ were non-
zero. For example, the algebraic degree of ξ is (almost) always one of these
quantities. The computed bounds on the quantities are then used to derive a
minimum root bound for the roots of the minimal polynomial of ξ, if ξ were
non-zero. Further quantities of (minimal) polynomials involved in separation
bound computation are length, height, and Mahler measure. Length and height
are L1- and L∞-norm of the coefficient vector of the polynomial, i.e., the sum of
the absolute values of the coefficients and the maximum of the absolute values of
the coefficients, respectively. For a polynomial P (X) = an(X −α1) · · · (X −αn),
the Mahler measure is

|an|
n∏

i=1

max(1, |αi|).

If ξ is an algebraic integer, an upper bound μ on the maximum absolute value
of the conjugates of ξ, together with a bound d on the algebraic degree of ξ,
gives us a zero separation bound:

ξ = 0 ⇒ |ξ| ≥ (μd−1)−1

Mignotte [18] discusses the identification of algebraic numbers, i.e., numeri-
cally verifying equality of real algebraic numbers given by different expressions.
While, strictly speaking, he does not provide constructive zero separation bounds
yet, his work is nevertheless a milestone regarding the development of such
bounds. Below we list the constructive zero separation bounds we are currently
aware of. We do not provide the technical details of these bounds, but refer the
interested reader to the cited sources instead.

– Degree-height bound; as suggested by the name, bounds on degree and height
of the minimal polynomial are derived from the given arithmetic expres-
sion [31].

– Degree-length bound; here, bounds on degree and length of the minimal
polynomial are derived. This bound was initially used by Yap and Dubé [31]
for adaptive sign computation with number types based on expression dags.

– Degree-measure bound as described in [3] and based on Mignotte’s work [18,
19]; here, bounds on degree and Mahler measure of the minimal polynomial
are derived.

– Canny’s polynomial system bound [6] can be used to derive a separation
bound automatically as described in [3].
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– BFMS bound; Burnikel et al. [3] compute an upper bound on the magni-
tude of the conjugates for division-free expressions involving radicals. In the
presence of division operations, the expression is virtually transformed to a
quotient of two division-free expressions.

– Sekigawa’s improved degree-measure bound [27]; here a refinement of the
standard inequality on the Mahler measure for the sum of two algebraic
numbers is used.

– Scheinerman’s eigenvalue bound [22]; this bound for a subset of the algebraic
integers is based on eigenvalues of integer matrices.

– Conjugate bound by Li and Yap [13]; Li and Yap compute both an upper
bound and a lower bound on the absolute values of the conjugates as well as a
bound on the leading coefficient of the minimal polynomial, where the latter
involves the Mahler measure. Li and Yap allow for real algebraic operands
that are defined as a certain root of a given polynomial with integer coeffi-
cients. Since most other bounds regard conjugates, too, we prefer to call this
bound the LY bound, analogously to the BFMS bound.

– Improved degree-measure bound as described in [13]; here, the improvement
addresses computation of the degree bound. It replaces the recursive rules
presented in [3] by the method used in the BFMS bound.

– Improved BFMS bound described in [17]; this is basically the BFMS bound,
besides that the range of permitted expressions is extended to allow for alge-
braic integers as operands, provided that an upper bound on the conjugates
of the operands is available.

– Improved BFMS bound described in [16]; this is just a precursor of the
BFMSS bound described next, without the improvement by Yap’s symmetry
rule for radicals [29].

– BFMSS bound; for division-free expressions, this bound is identical to the
BFMS bound. Burnikel et al. [4] (a) modify the BFMS bound for expressions
involving devisions, such that a much better degree bound can be achieved,
and (b) extend the permitted operations to include the so-called diamond
operator: For a polynomial p ∈ R[X ] with real algebraic coefficients, )(p, j)
computes the j-th largest real root of p, if p has that many real roots, and
is undefined otherwise. This is similar to √ -operations which are undefined
for negative arguments. This way we can get all real algebraic numbers.

– BFMSS[k] bound; Pion and Yap [21] describe how to improve separation
bounds if all rational operands are binary or decimal floating-point values.
For such rational quotients, the denominators are powers of 2 and 10, re-
spectively. The new method can improve known bounds drastically. Actually,
Pion and Yap describe a more general method which applies to any number
base k, and apply it to the BFMSS bound.

– Degree-measure[k] bound; similarly, Pion and Yap [21] apply their method
for k-ary rational input numbers to the improved degree-measure bound.

– Schmitt’s variant of the BFMSS[k] bound with improved rules for the dia-
mond operator [25].

As mentioned above, the set of allowed operations and the supported subset of
real algebraic numbers differs for the various bounds. In the presence of division
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operations, BFMS, BFMSS, and LY bound virtually rewrite ξ as a quotient
ν
� of two algebraic integers ν and �. LY maintains estimates for the value ξ
transformed to the quotient of an algebraic integer νLY and a rational integer.
ξ and νLY have the same algebraic degree. BFMS maintains estimates for a
quotient of two algebraic integers νBFMS and δBFMS, whose algebraic degree
bound is quadratic in the degree bound of ξ. BFMSS improves on this. Here
we have a quotient of two algebraic integers νBFMSS and δBFMSS such that the
degree bound for each of them is the same as the degree bound for ξ.

A separation bound sep dominates another bound sep′ for a class of expres-
sions E if sep(E) ≥ sep′(E) for all E ∈ E . The degree-measure bound dominates
the degree-length bound. For division-free radical expressions (i.e., without dia-
mond operator) Burnikel et al. show that BFMS dominates the degree-measure
bound as well as a bound based on Canny’s polynomial system bound [3]. Li and
Yap [13] show that BFMS dominates Scheinerman’s eigenvalue bound for such
expressions as well. For division-free radical expressions BFMSS and LY bound
are identical to BFMS. For expressions involving divisions, BFMSS, LY, and the
improved degree-measure bound are incomparable [13].

6 Adaptive Sign Computation with Expression Dags

Constructive zero separation bounds are used in adaptive sign computation. In
order to allow for re-evaluation with higher precisions, number types for ex-
act decision computation with real algebraic numbers record the computation
history in an expression dag, i.e., a directed acyclic graph. Internal nodes in
such a dag correspond to subexpressions. An internal node is labeled with an
operation and points to the subexpressions that represent the operands of the
expression. Note that for non-commutative operations, the order of pointers to
subexpressions matters.

The external nodes in such a dag represent operands from a base set, usually
the integers. Whenever an operation op on operands o1, . . . , ok is executed, a
new node is created and labeled by op. Pointers from the new node to the nodes
representing the operands are created. Note that the same variable may show up
more than once among the operands. Thus, several of the created pointers might
point to the same node. Fig. 2 shows the dag built for the following piece of C++
code, where root(RealAlgebraic r, int k) computes the k-th root of r.

3 * sqrt(root(RealAlgebraic(5),3) - root(RealAlgebraic(4),3))

The actual work is done in the comparison operations. These are reduced to
sign computations. There, a zero separation bound sep is calculated and, using
the expression dag, iteratively more and more accurate approximations and error
bounds are computed until the current approximation ξ̃ for the exact value ξ
and the current error bound Δerror either fulfill

|ξ̃| < Δerror or |ξ̃| + Δerror < sep.
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3√ 3√

−

√

·

3

5 4

Fig. 2. An expression dag for the left hand side of (1)

The number types CORE::Expr [10] and leda::real [2, 5, 15] implement exact
decisions via adaptive sign computation with expression dags in C++. The ad-
vantage of these number types is its ease of use. A user can use them like any
built-in number type without knowing anything about zero separation bounds
and required precision at all.

7 Some Ruminations and Observations

We conclude with some remarks regarding zero separation bounds and their use
in number types with adaptive sign computations based on expression dags.

Combined Bounds. Since some of the bounds are incomparable, a good strat-
egy is to compute all of them and take the best one. Besides this, as mentioned
above, the LY bound computes lower bounds ν(E) on the absolute value of the
conjugates of the non-zero values of subexpressions E. Here, any available zero
separation bound for E could be used instead of ν(E). Note that this is different
from simply computing two bounds and finally taking the better one. Here, the
competition takes places for every subexpression.

Degree Bound Reduction by Restructuring. All the separation bound al-
gorithms used for adaptive sign computation with expression dags in CORE::Expr
and leda::real compute a crude bound on the degree, namely the product of
all the radices of the radical expressions and the degrees of the polynomials in
the diamond operations arising in the expression dag. So

√
a · √b would have

degree four for integers a and b, while the actual degree is two. So restructuring
this to

√
a · b, or more generally, restructuring a dag where we have a product of

two radical operations with same radix into a dag with a single radical operation
on top is preferable, cf. Fig. 3.

Search for Common Subexpressions. Because of the crude degree bound
computation, the separation bound for mathematically equivalent expressions
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√ √

√

·

·

Fig. 3. Rearranging an expression dag to decrease the degree bound

given by code fragments can differ a lot. Observe, for example, that the degree
bound computed for

RealAlgebraic ra = sqrt( RealAlgebraic(2));
ra += sqrt( RealAlgebraic(2));
ra -= sqrt( RealAlgebraic(2));
ra -= sqrt( RealAlgebraic(2));

is 16, while the bound computed for

RealAlgebraic rt2 = sqrt( RealAlgebraic(2));
RealAlgebraic ra = rt2 + rt2 - rt2 -rt2;

is only 2, since the subexpression for
√

2 is reused in the latter code fragment
and hence the corresponding radix is considered only once. Since number types
CORE::Expr and leda::real are designed for ease of use, the observation above
suggests to search for common subexpressions automatically. Such a search for
common subexpressions has been implemented for leda::real [23, 24]. With
this strategy enabled, leda::real compute degree bound 2 in both cases. The
strategy also leads to a significant improvement for the shortest path example
used by Burnikel et al. in [2]. However, since there is a lack of real-world examples
where the strategy pays off, common subexpression search is switched off in
the default version of leda::real nowadays. Note that we do not search for
equivalent expressions, but for identical subexpressions only.

Zero Separation Bounds versus Root Separation Bounds. Whenever we
compare α and β, we use estimates for A(X) and B(X) with A(α) = 0 and
B(β) = 0 to get estimates for C(X) with C(α − β) = 0. Then, we use these
estimates to derive a bound on the gap between zero and the absolute values of
the real roots of C(X). As an alternative, we could also consider A(X)·B(X) and
use a bound on the minimum separation of the distinct roots of this polynomial.

Let’s have a closer look. For simplicity, assume we use the degree-measure
bound and compare α and β with degree bounds dα and dβ and measure bounds
Mα and Mβ , respectively. The standard approach bounds the measure of α − β
by

2dαdβM
dβ
α Mdα

β

and the inverse of this quantity is a zero separation bound. In the alternative
approach, we consider a polynomial having both roots α and β. For a polynomial
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P (X) of degree d with integer coefficients, the minimum separation between
distinct roots of P is at least

d−(d+2)/2 · M(P )1−d (3)

where M(P ) denotes the Mahler measure of P , cf. [19]. In order to apply the
root separation bound above, we need a bound on the degree of A(X) · B(X)
and a bound on its measure. The degree is bounded by dα +dβ and the measure
by MαMβ. Applying (3), the inverse of

(dα + dβ)(dα+dβ+2)/2M
dα+dβ−1
α M

dα+dβ−1
β

is a root separation bound and hence a zero separation bound for α − β. The
alternative bound is better only if

dαdβ − (dα/2 + dβ/2 + 1) log(dα + dβ) − (dα − 1) logMα − (dβ − 1) log Mβ > 0.

This holds for dα = dβ = 1. In general, the alternative is better only if the
(estimates for the) measures are very small.

Arithmetic versus Geometry. Exact decision number types with adaptive
sign computation with expression dags are an easy-to-use general purpose tool.
In many applications in geometric computing, however, fine-tuned solutions that
exploit special restrictions, are more efficient. Moreover, recording computation
history in terms of geometric operations instead of arithmetical operations often
provides better performance [7, 9].

To Be or Not to Be Zero. If we are not interested in the sign of ξ, but only
want to know whether ξ is zero or not, there are efficient probabilistic alterna-
tives [1, 20, 26, 29] to the use of zero separation bounds. The best alternative,
however, is to avoid zero testing at all. Sometimes, geometric considerations al-
low us to get around expensive zero testing. For example, assume that we want
to compute the intersection points of two circles whose center points have ratio-
nal coordinates. Using elimination, we can compute x- and y-coordinates of the
intersection points, both of the form α±√

β. In order to find the correct combi-
nations among the four possible pairs, one is tempted to plug pairs of coordinates

Fig. 4. Geometry helps to avoid zero testing
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into the circle equations and to check whether this yields zero. However, this is
not necessary. Comparing the rational coordinates, which are usually distinct,
suffices to identify all valid combinations, cf. Fig. 4. Note that zero testing for a
probably non-zero rational value is much more efficient than zero testing for a
real algebraic number which is zero with probability 1

2 .
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Abstract. We consider a class of arithmetic equations over the complete
lattice of integers (extended with −∞ and ∞) and provide a polynomial
time algorithm for computing least solutions. For systems of equations
with addition and least upper bounds, this algorithm is a smooth gener-
alization of the Bellman-Ford algorithm for computing the single source
shortest path in presence of positive and negative edge weights. The
method then is extended to deal with more general forms of operations
as well as minima with constants. For the latter, a controlled widen-
ing is applied at loops where unbounded increase occurs. We apply this
algorithm to construct a cubic time algorithm for the class of interval
equations using least upper bounds, addition, intersection with constant
intervals as well as multiplication.

1 Introduction

Interval analysis tries to derive tight bounds for the run-time values of variables
[1]. This basic information may be used for important optimizations such as safe
removals of array bound checks or for proofs of absence of overflows [2]. Since the
very beginning of abstract interpretation, interval analysis has been considered
as an algorithmic challenge. The reason is that the lattice of intervals may have
infinite ascending chains. Hence, ordinary fixpoint iteration will not result in
terminating analysis algorithms. The only general technique applicable here is
the widening and narrowing approach of Cousot and Cousot [3]. If precision is
vital, also more expressive domains are considered [4, 5]. While often returning
amazingly good results, widening and narrowing typically does not compute the
least solution of a system of equations but only a safe over-approximation.

In [6], however, Su and Wagner identify a class of interval equations for which
the respective least solutions can be computed precisely and in polynomial time.
As operations on intervals, they consider least upper bound, addition, scaling
with positive and negative constants and intersection with constant intervals.
The exposition of their algorithms, though, is not very explicit. Due to the
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importance of the problem, we present an alternative and, hopefully more trans-
parent approach. In particular, our methods also show how to deal with arbitrary
multiplications of intervals. Our algorithm demonstrates how well-known ideas
need only to be slightly extended to provide a both simple and efficient solution.

We start by investigating equations over integers only (extended with −∞
and ∞ as least and greatest elements of the lattice) using maximum, addition,
scaling with positive constants and minimum with constants as operations. In
absence of minima, computing the least solution of such a system of equations
can be considered as a generalization of the single-source shortest path problem
from graphs to grammars in presence of positive and negative edge weights. A
corresponding generalization for positive weights has been considered by Knuth
[7]. Negative edge weights, though, complicate the problem considerably. While
Knuth’s algorithm can be considered as a generalization of Dijkstra’s algorithm,
we propose a generalization of the Bellman-Ford algorithm.

More generally, we observe that the Bellman-Ford algorithm works for all sys-
tems of equations which use operators satisfying a particular semantic property
which we call BF-property. Beyond addition and multiplication with positive
constants, positive as well as negative multiplication satisfies this property. Pos-
itive multiplication returns the product only if both arguments are positive,
while negative multiplication returns the negated product if both arguments are
negative. In order to obtain a polynomial algorithm also in presence of minima
with constants, we instrument the basic Bellman-Ford algorithm to identify loops
along which values might increase unboundedly. Once we have short-circuited
the possibly costly iteration of such a loop we restart the Bellman-Ford algorithm
until no further increments are found.

In the next step, we consider systems of equations over intervals using least
upper bound, addition, negation, multiplication with positive constants as well
as intersections with constant intervals and arbitrary multiplication of intervals.
We show that computing the least solution of such systems can be reduced
to computing the least solution of corresponding systems of integer equations.
This reduction is inspired by the methods from [8] for interval equations with
unrestricted intersections and the ideas of Leroux and Sutre [9], who first proved
that interval equations with intersections with constant intervals as well as full
multiplication can be solved in cubic time.

The rest of the paper is organized as follows. In Section 2, we introduce basic
notions and consider methods for general systems of equations over Z. Then we
consider two classes of systems of equations over Z where least solutions can
be computed in polynomial time. In Section 3, we consider systems of integer
equations without minimum. In Section 4, we extend these methods to systems of
equations where right-hand sides are Bellman-Ford functions. These systems can
be solved in quadratic time (if arithmetic operations are executed in constant
time). In Section 5, we then present our cubic time procedure for computing
least solutions of systems of integer equations which additionally use minima
with constants. In Section 6, we apply these techniques to construct a cubic
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algorithm for the class of interval equations considered by Su and Wagner [6] —
even if additionally arbitrary multiplication of interval expressions is allowed.

2 Notation and Basic Concepts

Assume we are given a finite set of variables X. We are interested in solving
systems of constraints over the complete lattice Z = Z ∪ {−∞,∞} equipped
with the natural ordering:

−∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . . < ∞
On Z, we consider the operations addition, multiplication with nonnegative con-
stants, minimum “∧” and maximum “∨”. All operators are commutative where
minimum, addition, and multiplication also preserve −∞. Moreover for every
x > −∞,

x + ∞ = ∞ 0 · ∞ = 0
x · ∞ = ∞ whenever x > 0 x · ∞ = −∞ whenever x < 0

For a finite set X of variables, we consider systems of equations

x = e , x ∈ X

where the right-hand sides e are expressions built from constants and variables
from X by means of maximum, addition, multiplication with positive constants
and minimum with constants. Thus right-hand sides e are of the form

e :: = a | y | e1 ∨ e2 | e1 + e2 | b · e | e1 ∧ a

for variables y ∈ X and a, b ∈ Z where a > −∞ and b > 0. Note that we
excluded general multiplication since multiplication with negative numbers is no
longer monotonic. Similar systems of equations have been investigated in [10]
where polynomial algorithms for computing least upper bounds are presented
— but only when computing least solutions over nonnegative integers.

A function μ : X → Z is called a variable assignment. Every expression e
defines a function �e� : (X → Z) → Z that maps variable assignments to values,
i.e.:

[[a]]μ = a [[x]]μ = μ(x)
[[e1 ∨ e2]]μ = [[e1]]μ ∨ [[e2]]μ [[e1 + e2]]μ = [[e1]]μ + [[e2]]μ
[[b · e]]μ = b · [[e]]μ [[e ∧ a]]μ = [[e]]μ ∧ a

for a ∈ Z, x ∈ X, b > 0 and expressions e, e1, e2. For a system E of equations,
we also denote the function [[e]] by fx, if x = e is the equation in E for x. A
variable assignment μ is called a solution of E iff it satisfies all equations in E ,
i.e. μ(x) = fxμ for all x ∈ X. Likewise, μ is a pre-solution iff μ(x) ≤ fxμ for
all x ∈ X. Since the mappings fx are monotonic, every E has a unique least
solution. In the following, we denote by |E| the sum of expression sizes of right-
hand sides of the equations in E . The following fact states bounds on the sizes
of occurring values of variables:
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Proposition 1. Assume that E is a system of integer equations with least solu-
tion μ∗. Then we have:

1. If μ∗(x) ∈ Z for a variable x, then:

−(B ∨ 2)|E| · A ≤ μ∗(x) ≤ (B ∨ 2)|E| · A

where A and B bound the absolute values of constants a ∈ Z and constant
multipliers b ∈ N, respectively, which occur in E.

2. If E does not contain multiplication or addition of variables, the bounds under
1 can be improved to:

Σ− ≤ μ∗(x) ≤ Σ+

where Σ− and Σ+ are the sums of occurrences of negative and positive num-
bers, respectively, in E. ��

In order to prove these bounds, we observe that they hold for systems of con-
straints without minimum operators. Then we find that for every E , we can
construct a system of equations E ′ without minimum operators by appropriately
replacing every minimum expression by one of its arguments in such a way that
E ′ has the same least solution as E .

Due to Proposition 1, the least solutions of systems of equations over Z are
computable by performing ordinary fixpoint iteration over the finite lattice

Za,b = {−∞ < a < . . . < b < ∞}

for suitable bounds a < b. This results in practical algorithms if a reasonably
small difference b − a can be revealed. In the following, we consider algorithms
whose runtime does not depend on the particular sizes of occurring numbers –
given that operations and tests on integers take time O(1).

3 Integer Equations without Minimum

We first consider systems of integer equations without minimum. Let us call
these systems disjunctive. Note that we obtain the equational formulation of the
single-source longest path problem for positive and negative edge weights if we
restrict systems of disjunctive equations further by excluding multiplication and
addition of variables in right-hand sides. By replacing all weights a with −a, the
latter problem is a reformulation of the single-source shortest path problem (see,
e.g., [11]).

In [7], Knuth considers a generalization of the single-source shortest path prob-
lem with nonnegative edge weights to grammars. In a similar sense, computing
least solutions of systems of disjunctive constraints can be considered as a gen-
eralization of the single-source shortest path problem with positive and negative
edge weights. For the latter problem, only quadratic algorithms are known [11].
Here, we observe that quadratic time is also enough for systems of disjunctive
constraints:
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Theorem 1. The least solution of a disjunctive system E of equations with n
variables can be computed in time O(n · |E|).
Proof. As a generalization of the Bellman-Ford algorithm [11] we propose alg. 1
for computing the least solution of the system E . The algorithm consists of two

Algorithm 1
forall (x ∈ X) μ(x) = −∞;
for (i = 0; i < n; i++)

forall ((x = e) ∈ E)
μ(x) = μ(x) ∨ [[e]]μ;

for (i = 0; i < n; i++)
forall ((x = e) ∈ E)

if (μ(x) ≥ [[e]]μ) μ(x) = ∞;
return μ;

nested loops l1, l2 where the first one corresponds to n rounds of round robin
fixpoint iteration, and the second one differs from the first in widening the value
of a variable to ∞ whenever a further increase is observed. Let μ∗ denote the
least solution of E . For a formal proof, let us define F : (X → Z) → (X → Z)
by

F (μ)(x) = [[e]]μ if (x = e) ∈ E
for μ : X → Z. Additionally we define the variable assignments μi for i ∈ N0 by

μ0(x) = −∞ for x ∈ X
μi = F i(μ0) for i ∈ N.

Thus
∨

i∈N0
μi = μ∗ and in particular μi ≤ μ∗ for all i ∈ N. In order to prepare

us for the proof, we introduce the following notion. Variable x μ-depends on x′

iff
F (μ ⊕ {x′ �→ μ(x′) + δ})(x) ≥ F (μ)(x) + δ

for all δ ≥ 0. Here, ⊕ denotes the update operator for variable assignments. We
claim:

Claim 1: Let k ≥ 1. Assume that μk+1(x) > μk(x). There exists a y s.t. x
μk-depends on y with μk(y) > μk−1(y). ��
The key observation is stated in the following Claim.

Claim 2: μn(x) = μ∗(x) whenever μ∗(x) < ∞.

Proof. Assume μ∗(x) > μn(x). Thus there exists an index k ≥ n s.t. μk+1(x) >
μk(x). Claim 1 implies that there exist variables

xk+1,xk, . . . ,x1

where xk+1 = x and xi+1 μi-depends on xi for i = 1, . . . , k. Since there are
at least n + 1 elements in the sequence xk+1, . . . ,x1, the pigeon-hole principle
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implies that there must be a variable x′ which occurs twice. W.l.o.g., let j1 < j2
s.t. x′ = xj1 = xj2 . Furthermore by assumption μj2(x′) > μj1(x′).

By a straight forward induction it follows that

F j2−j1(μj1 ⊕ {x′ �→ μj1(x
′) + δ})(x′) ≥ μj2(x

′) + δ (1)

Let δ := μj2(x′) − μj1(x′) > 0. Then

μ∗(x′) ≥ F i(j2−j1)(μj2 )(x′)
≥ F i(j2−j1)(μj1 ⊕ {x′ �→ μj1(x′) + δ})(x′) (monotonicity)
≥ F (i−1)(j2−j1)(μj1 ⊕ {x′ �→ μj2 (x

′) + δ})(x′) (1)
= F (i−1)(j2−j1)(μj1 ⊕ {x′ �→ μj1 (x′) + 2δ})(x′) (def. δ)
≥ · · · ≥ μj2(x′) + iδ

for every i ∈ N. Since x depends on x′, we conclude that μ∗(x) = ∞. This proves
claim 2. ��
Let μ̂i denote the value of the program variable μ after execution of the i-th
nested loop. By construction μn ≤ μ̂1 ≤ μ∗. Whenever a further increase in the
second nested loop can be observed, we know that μ ≤ μ∗ and by claim 2, that
after the modification μ ≤ μ∗ still holds. Thus, μ̂2 ≤ μ∗.

To show that μ̂2 = μ∗ recall that there are n variables. Therefore, at most n
variables can be set to ∞ — implying that the least fixpoint is reached after at
most n rounds. ��

4 Extension with Positive and Negative Multiplications

Algorithm 1 can be generalized also to systems of equations which utilize a wider
range of operators. We observe:

Proposition 2. For any monotonic function f : (X → Z) → Z, the two fol-
lowing conditions are equivalent:

(i) for any μ : (X → Z) and any Y ⊆ X, if f(μ ⊕ {y �→ −∞ | y ∈ Y}) < f(μ)
then there is y ∈ Y such that f(μ⊕{y �→ μ(y)+ i}) ≥ f(μ)+ i for all i ≥ 0.

(ii) for any μ : (X → Z) and any x ∈ X, if f(μ ⊕ {x �→ −∞}) < f(μ) then
f(μ ⊕ {x �→ μ(x) + i}) ≥ f(μ) + i for all i ≥ 0.

Proof. (i) ⇒ (ii) is trivial. For any μ : (X → Z) and any subset Y ⊆ X, we
will write μY for μY = μ ⊕ {y �→ −∞ | y ∈ Y}. Assume that (ii) holds,
and let us prove by induction on |Y| that (i) holds. The case of Y = ∅ is
trivial and the basis |Y| = 1 follows from (ii). To prove the induction step, let
Y ⊆ X with |Y| > 1 and assume that f(μY) < f(μ). Pick some y ∈ Y and
let Z = Y \ {y}. If f(μZ) < f(μ) then we derive from the induction hypothesis
that there is z ∈ Z ⊆ Y such that f(μ ⊕ {z �→ μ(z) + i}) ≥ f(μ) + i for all
i ≥ 0. Otherwise, f(μZ ⊕{y �→ −∞}) = f(μY) < f(μ) = f(μZ), and we deduce
from (ii) that f(μZ ⊕ {y �→ μ(y) + i}) ≥ f(μZ) + i for all i ≥ 0. We come to
f(μ ⊕ {y �→ μ(y) + i}) ≥ f(μ) + i for all i ≥ 0 since μ ≥ μZ and f(μ) = f(μZ).
We have thus shown that (i) holds for all Y ⊆ X. ��
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We call a function f : (X → Z) → Z Bellman-Ford function (short: BF-
function) when it is monotonic and it satisfies any (or equivalently all) of the
above conditions.

We remark that the class of Bellman-Ford functions is incomparable to the
class of bounded-increasing functions as considered in [9]. Bounded-increasing
functions are monotonic functions f : (X → Z) → Z such that f(µ1) < f(µ2)
for all µ1, µ2 : X → Z with µ1 < µ2, f(λx.−∞) < f(µ1) and f(µ2) < f(λx.∞).
However, for any bounded-increasing function f : (X → Z) → Z, if (1) f is
continuous (i.e. f(

∨
k µk) =

∨
k f(µk) for every ascending chain µ0 ≤ µ1 ≤ · · · )

and (2) f(λx.−∞) = −∞ and f(λx.∞) = ∞, then f is a Bellman-Ford function.
Let us call a k-ary operator � a BF-operator, if the function f�(µ) =

�(µ(x1), . . . , µ(xk)) (for distinct variables xi) is a BF-function.
Clearly, addition itself is a BF-operator as well as the least upper bound

operation and the multiplication with constants. For simulating multiplication
of intervals, we further rely on the following two approximative versions of
multiplication:

x ·+ y =
{

x · y if x, y > 0
−∞ otherwise x ·− y =

⎧⎨⎩
−∞ if x = −∞ ∨ y = −∞
−(x · y) if x, y < 0
∞ otherwise

We call these positive and negative multiplication, respectively. Note that, in
contrast to full multiplication over the integers, both versions of multiplication
are monotonic. Additionally, they satisfy the conditions for BF-functions and
therefore are BF-operators. By induction on the structure of expressions, we
find:

Lemma 1. Assume e is an expression built up from variables and constants by
means of application of BF-operators. Then the evaluation function [[e]] for e is
a BF-function.

Let us call an equation x = e BF-equation, if [[e]] is a BF-function. Our key obser-
vation is that the Bellman-Ford algorithm can be applied not only to disjunctive
systems of equations but even to systems of BF-equations. In order to adapt
the proof of theorem 1, we in particular adapt the proof of claim 1. We use the
same notations from that proof. Let k ≥ 1 and assume that µk+1(x) > µk(x).
Then (x = e) ∈ E for some expression e. The monotonic function fx = �e� is
a Bellman-Ford function where µk+1(x) = fx(µk) and µk(x) = fx(µk−1), and
recall that µk ≥ µk−1.

Let Y = {y ∈ X | µk(y) > µk−1(y)}. Since fx(µk ⊕ {y → −∞ | y ∈ Y}) ≤
fx(µk−1) < fx(µk), we get from Proposition 2 that there is some y ∈ Y such
that f(µk ⊕ {y → µk(y) + i}) ≥ f(µk) + i for all i ≥ 0. Hence, x µk-depends on
y, and moreover, µk(y) > µk−1(y) as y ∈ Y. This completes the proof of this
claim.

Altogether, we obtain:

Theorem 2. The least solution of a system E of BF-equations with n variables
can be computed in time O(n · |E|).
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It is important here to recall that we consider a uniform cost measure where
each operator can be evaluated in time O(1). If besides addition, also positive
and negative multiplication is allowed, then the sizes of occurring numbers may
not only be single exponential, but even double in the occurring numbers. More
precisely, assume that μ∗ is the least solution of E x is a variable of E with
μ∗(x) ∈ Z. Then

(A ∨ 2)|E|
n ≤ μ∗(x) ≤ (A ∨ 2)|E|

n

where A is an upper bound to the absolute values of constants c ∈ Z occurring
in E , and n is the number of variables.

5 Integer Equations with Minimum

In this section, we extend the results in the previous section by additionally
allowing minima with constants. For convenience, let us assume that all right-
hand sides r in the system E of equations either are of the following simple
forms:

r ::= a | y | �(y1, . . . ,yk) | y ∧ a

for constants a ∈ Z, variables y and BF-operators �. Note that now the size |E|
of E is proportional to the number of variables of E . Our main result for systems
of such equations is:

Theorem 3. The least solution of a system E of integer equations using BF-
operators and minima with constants can be computed in time O(|E|3).
Proof. Let μ∗ denote the least solution of E . We introduce the following notions.
We call a sequence P = (y1, . . . ,yk+1) ∈ X∗ a path if for every i = 1, . . . , k,
variable yi+1 occurs in the right-hand side of the equation for yi in E . Thus, given
a variable assignment μ, the path p represents the transformation [[p]]μ : Z �→ Z
defined by

[[p]]μ(z) = [[e1]](μ ⊕ {y2 �→ [[e2]](. . . [[ek]](μ ⊕ {yk+1 �→ z}) . . .)})
where yi = ei is the equation for yi in E .

The path p is called a cycle iff yk+1 = y1. The cycle p is called simple if the
variables y1, . . . ,yk are pairwise distinct.

In order to enhance alg. 1 for systems with minima, assume that an increase
of the value of the variable x can be observed within the first iteration of the
second nested loop. Then there exists a simple cycle c = (y1, . . . ,yk,y1) that
can be repeated until either all variables yi receive values ∞ or the value of the
argument e′ in some minimum expression y∧a occurring along the cycle exceeds
a. In order to deal with this, we provide the following modified version of the
Bellman-Ford algorithm:

i We initialize the variable assignment μ s.t. every variable is mapped to
−∞ and execute the first phase of alg. 1 which consists of n Round-Robin
iterations.
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ii Then we perform the second phase. If no increment in the second phase can
be detected, we have reached the least solution and return μ as result.

iii Whenever an increment in the second phase under a current variable assign-
ment μ is detected, we try to extract a simple cycle c = (y1, . . . ,yk,y1) s.t.
f ′

c,μ(v) > v for some v < μ(y1). If this is possible, then we do an accelerated
fixpoint computation on the cycle c to determine new values for the variables
y1, . . . ,yk. We then update the variables with the new values and restart the
procedure with step 2.

This gives us alg. 2. Extra effort is necessary in order to extract cycles in
the second phase which can be repeated. For that, the algorithm records in
the variable time, the number of equations evaluated so far. Moreover for every
variable x, it records in modified(x) the last time when the variable x has received
a new value, and in evaluated(x) the last time when the equation for x has
been evaluated. Also, it records for every variable x in pred(x) a variable n
the right-hand side of x which may have caused the increase and can give rise
to an increase in the future. If no such occurrence exists, then pred(x) is set
to ⊥. This is implemented by the function pred(x). Let μ denote the current
variable assignment, and assume that the right-hand side of x is r. Furthermore,
let Y denote the set of variables y occurring in r which have been modified

Algorithm 2
forall (x ∈ X) μ(x) = −∞;

do {
done = true ; time = 0;
forall (x ∈ X) {modified(x) = 0; pred(x) = ⊥; evaluated(x) = 0;
}
for (i = 0; i < n; i++)

forall ((x = e) ∈ E) {
time++;
if ([[e]]μ > μ(x)) {

pred(x) = pred(x); μ(x) = [[e]]μ;modified(x) = time;
}
evaluated(x) = time;

}
forall ((x = e) ∈ E)

if ([[e]]μ > μ(x)) {
μ(x) = [[e]]μ;
if (μ(x) < ∞){

widen(x); done = false ;break;
} ;

}
} until (done);
return μ;
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after the last evaluation of x, i.e., modified(y) ≥ evaluated(x). Since the value
of x has increased, Y is non empty and, in particular, r cannot be equal to
a constant. If r = y, then pred(x) = y. If r = y ∧ c, then pred(x) = ⊥
if μ(y) ≥ c and pred(x) = y otherwise. Finally, assume r = �(y1, . . . ,yk)
and let vj = μ(yj) for all j. Furthermore, let v′j = vj if yj ∈ Y, i.e., has not
been changed since the last evaluation of x, and v′j = −∞ otherwise. Then
�(v′1, . . . , v

′
k) < �(v1, . . . , vk). Since � is a BF-operator, we thus can retrieve an

index j such that �(v1, . . . , vj−1, vj + d, vj+1, . . . , vk) ≥ �(v1, . . . , vk) + d for all
d ≥ 0. Accordingly, we set pred(x) = yj . The following observation shows that
pred can be computed in time O(1) if the maximal arity of the BF-operators is
considered as a constant.

Lemma 2. Consider a BF-function f : (X → Z) → Z and a variable assign-
ment μ : X → Z and a variable x ∈ X. We have f(μ⊕{x �→ μ(x)+1}) ≥ f(μ)+1
iff f(μ ⊕ {x �→ μ(x) + i}) ≥ f(μ) + i for all i ≥ 0.

Example 1. Let μ := {x �→ −10,y �→ 0} and consider the equation z = x ∨ y.
Then for Y = {x,y}, the function call pred(z) returns the variable y.

Now we consider the second phase of alg. 2. Whenever a finite increase of the
value of a variable x is detected, widen(x) is called (see alg. 3).

Algorithm 3. widen(x)
c = (y1, . . . ,yk,y1) = extract_cycle(x);

μ(y1) = μ(y1) ∨ eval_cycle(c);
for (i = k; i ≥ 2; i−−)

μ(yi) = μ(yi) ∨ fyi(μ);

Within the procedure widen(), the function extract_cycle() is used to extract
a cycle which has caused the increase and possibly causes further increases in
the future. It works as follows. The call extract_cycle(x) for a variable x looks
up the value of pred(x). If pred(x) = ⊥ a variable x1 in the right-hand side
for x is returned. Then the procedure records (x1) and proceeds with the value
stored in pred(x1) and so on. Thus, it successively visits a path according to the
information stored in pred until it either reaches ⊥ or visits a variable for the
second time. In the latter case we obtain a simple cycle (y1, . . . ,yk,y1). With
a cyclic permutation modified(y1) is assumed maximal. In the former case, the
empty sequence will be returned.

The procedure eval_cycle() does the accelerated fixpoint computation
on a given cycle. The function eval_cycle() takes a simple cycle c =
(y1, . . . ,yk,y1). Let f := [[c]]μ and assume that f(v) > v for some v ≤ μ(y1).
Then eval_cycle() computes

∨
i∈N

f i(v). As monotonic functions over a linear
order are distributive over ∧, note that f(z) can be written as

f(z) = f ′(z) ∧ b′
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for some unary BF-function f ′ and b′ ∈ Z. Since f(v) > v, b′ ≥ f ′(v) > v.
Therefore, ∨

i∈N

f i(v) = b′ = f(∞)

We conclude that
∨

i∈N
f i(v) can be computed in time linear to the size of the

simple cycle c. Furthermore,
∨

i∈N
f i(v) ≤ μ∗(y1) by construction. Thus, we

have shown the following claim:

Claim 1: Assume that c is a simple cycle which starts with the variable y1.
Assume that μ ≤ μ∗ and v ≤ μ(y1) are s.t. f(v) := [[c]]μ(v) > v. Then v′ :=∨

i∈N
f i(v) ≤ μ∗(y1) and v′ can be computed in time linear to the size of c. ��

For a formal proof of correctness of the algorithm, let μi denote the variable
assignment μ before the i-th extraction of a simple cycle and ci the value of c
after the i-th extraction of a simple cycle. Thereby ci can be ⊥. Let furthermore
μ′

i denote the value of μ after the i-th call of the procedure widen().
First, we show that the widening is correct, i.e., μ′

i ≤ μ∗ for all i. For that,
we only need to consider the case in which the i-th extraction leads to a simple
cycle ci and not to ⊥. Thanks to Claim 1, we only need to show that the asser-
tions of Claim 1 are fulfilled for every call of the procedure widen() in which
extract_cycle extracts a simple cycle. Thus we must show:

Claim 2: Assume that ci = ⊥ is a simple cycle which starts with the variable
y1. Then ([[ci]]μi)(v) > v for some value v < μi(y1).

Proof. Assume that ci = (y1, . . . ,yk,y1) where yj = ej is the equation for yj .
Observe that the algorithm always records an occurrence of a variable which
possibly has caused the increase. Therefore, by monotonicity, [[ej ]]μi is at least
the current value μi(yj) of the left-hand side yj . This means for the cycle ci

that

μi(y1) ≤ [[e1[μi(y2)/y2]]]μi ∧ . . . ∧ μi(yk−1) ≤ [[ek−1[μi(yk)/yk]]]μi

as well as

μi(yk) ≤ [[ek[v/y1]]]μi

where v is the value of the variable y1 at the last point in time where the eval-
uation of the equation yk = ek lead to an increase. As modified(y1) is maximal,
we get v < μi(y1). Since by construction, ([[ci]]μi)(v) ≥ μi(y1) > v, the assertion
follows. ��

Assume again that ci = (y1, . . . ,yk,y1) is a simple cycle and assume as induc-
tion hypothesis, that the variable assignment μ′

i−1 after the (i − 1)-th widening
is less than or equal to the least solution μ∗ of the system E . Since the variable
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assignment μi before the extraction of the cycle ci is computed by fixpoint itera-
tion, it follows that μi ≤ μ∗. Let v′ denote the values returned from the i-th call
of eval_cycle(). By Claim 1, v′ ≤ μ∗(y). Since the rest of procedure widen()
consists in ordinary fixpoint iteration, we obtain μ′ ≤ μ∗.

Thus by construction, alg. 2 returns μ∗ — whenever it terminates. In order to
prove termination, let M(E) denote the set of minimum expressions occurring
in E . We show the following claims which imply that a progress occurs at each
increase of a variable’s value in the second phase, i.e., either one further variable
receives the value ∞ or another minimum can (conceptually) be replaced by its
constant argument.

Claim 3: Assume that ci = ⊥. Then
– either there exists a variable x such that μ′

i−1(x) < ∞ and μi(x) = ∞;
– or there exists a subexpression y ∧ a from M(E) s.t. μ′

i−1(y) < a and
μi(y) ≥ a.

Proof. ci = ⊥ implies that the procedure pred() returned ⊥ for one of the
equations x = e in the same iteration of the main loop. This is because all
values of pred() reachable within n steps by extract_cycle() have been modified
during this iteration. Longer paths would imply finding a simple cycle. However,
the procedure pred() only returns ⊥ if some minimum a is reached which had
not been reached before. ��

From Claim 3 and the fact that the sequence (μ′
i) is increasing we conclude that

for every i,

{x ∈ X | μ′
i(x) = ∞} � {x ∈ X | μ′

i−1(x) = ∞}
or

{x ∧ a ∈ M(E) | [[x]]μ′
i ≥ a} � {x ∧ a ∈ M(E) | [[x]]μ′

i−1 ≥ a}.

Accordingly, the algorithm can perform at most O(|E|) iterations of the outer
while-loop. Since every iteration of the outer loop of the algorithm can be exe-
cuted in time O(n · |E|), the assertion follows. ��

Example 2. Consider the following system of equations:

x = y ∧ 5 y = z ∧ 3 z = −17 ∨ z + 2

The first three rounds of Round-Robin iteration give us:

0 1 2
x −∞ −∞ −15
y −∞ −15 −13
z −15 −13 −11
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Since the value of x still increases during the next round of evaluation, we
call the function widen() with the variable x. Within widen() the function
extract_cycle is called which returns the simple cycle (z, z). — giving us the
new value ∞ for z. Restarting the Round-Robin iteration for all variables, reveals
the least solution:

μ∗(x) = 3 μ∗(y) = 3 μ∗(z) = ∞

6 Intervals

In this section, we consider systems of equations over the complete lattice of
integer intervals. Let

I = {∅} ∪ {[z1, z2] ∈ Z2 | z1 ≤ z2, z1 < ∞,−∞ < z2}
denote the complete lattice of intervals partially ordered by the subset relation
(here denoted by “,”). The empty interval ∅ is also denoted by [∞,−∞]. It is
the least element of the lattice while [−∞,∞] is the greatest element, and the
least upper bound “�” is defined by:

[a1, a2] � [b1, b2] = [a1 ∧ b1, a2 ∨ b2]

Here, we consider systems of equations over I similar to the ones we have consid-
ered over Z with the restriction that at least one argument of every intersection
is constant. Instead of multiplication with positive constants only, we now also
support negation as well as full multiplication of interval expressions. For a fixed
set X of variables, we consider expressions e of the form

e ::= a | y | c · e | −e | e1 � e2 | e1 + e2 | e � a | e1 · e2

where a ∈ I, c > 0 is a positive integer constant, and y is a variable from X.
As for expressions over Z, we rely on an evaluation function [[e]] for interval

expressions e built up from variables and constants by means of applications
of operators. The function [[e]] then maps variable assignments μ : X → I to
interval values. Note that (in contrast to the integer case) full multiplication of
intervals still is monotonic. Therefore, every system of interval equations has a
unique least solution.

Our goal is to reduce solving of systems of equations over intervals, to solving
of systems equations over integers. For that, we define the functions (·)+, (·)− :
I → Z which extract from an interval the upper and negated lower bound,
respectively. These functions are defined by:

∅+ = ∅− = −∞ [a, b]+ = b [a, b]− = −a

where [a, b] ∈ I. Thus x+ denotes the upper bound and x− denotes the negated
lower bound of x ∈ I. In the following, we indicate how operations on intervals
can be realized by means of integer operations on interval bounds.



Polynomial Precise Interval Analysis Revisited 435

Assume x, y ∈ I are intervals and c > 0. Then we have:
(c · x)− = c · x−

(c · x)+ = c · x+

(−x)− = x
+

(−x)+ = x−

(x � y)− = x− ∨ y−

(x � y)+ = x+ ∨ y+

(x + y)− = x− + y−

(x + y)+ = x+ + y+

(x � y)− = (x+ + y−); (x− + y+); (x− ∧ y−)
(x � y)+ = (x+ + y−); (x− + y+); (x+ ∧ y+)
(x · y)− = −(x−·y−) ∨ −(x+·y+) ∨ x−·y+ ∨ x+·y−

= ((x+ ∨ y+); (x−·−y−) ∨ (x− ∨ y−); (x+·−y+)) ∧ 0 ∨ x−·+y+ ∨ x+·+y−

(x · y)+ = x−·y− ∨ x+·y+ ∨ −(x−·y+) ∨−(x+·y−)
= x−·+y− ∨ x+·+y+ ∨ ((x+ ∨ y−); (x−·−y+) ∨ (x− ∨ y+); (x+·−y−)) ∧ 0

Here, the operator x; y returns −∞ if x < 0 and y otherwise. This operator can be
expressed by means of positive multiplication together with a minimum with 0:

x ; y = (((x + 1) ·+ 1) ∧ 0) + y

Additionally, we observe that w.r.t. the interval bounds, interval multiplication
can be expressed through positive and negative multiplications together with
minima with 0.

Every system E of interval equations gives rise to a system E± of integer
equations over Z for the upper and negated lower bounds for the interval values
of the variables from E . For every variable x of the interval system E , we introduce
the two integer variables x−,x+. The variable x+ is meant to receive the upper
interval bound of x whereas the variable x− is meant to receive the negated
lower interval bound of x.

Every equation x = e of E then gives rise to the equations x− = [e]− and
x+ = [e]+ of E± for the new integer variables corresponding to the left-hand side
x where the new right-hand sides [e]− and [e]+ are obtained by the following
transformations:

[[a1, a2]]− = −a1 [[a1, a2]]+ = a2
[x]− = x− [x]+ = x+

[c · e]− = c · [e]− [c · e]+ = c · [e]+
[−e]− = [e]+ [−e]+ = [e]−

[e1 	 e2]− = [e1]− ∨ [e2]− [e1 	 e2]+ = [e1]+ ∨ [e2]+

[e1 + e2]− = [e1]− + [e2]− [e1 + e2]+ = [e1]+ + [e2]+

[e � a]− = ([e]+ + a−); ([e]− + a+); ([e]− ∧ a−)
[e � a]+ = ([e]+ + a−); ([e]− + a+); ([e]+ ∧ a+)

[e1 · e2]− = (([e1]+ ∨ [e2]+); ([e1]−·−[e2]−) ∨ ([e1]− ∨ [e2]−); ([e1]+·−[e2]+)) ∧ 0
∨ [e1]−·+[e2]+ ∨ [e1]+·+[e2]−

[e1 · e2]+ = [e1]−·+[e2]− ∨ [e1]+·+[e2]+ ∨
(([e1]+ ∨ [e2]−); ([e1]−·−[e2]+) ∨ ([e1]− ∨ [e2]+); ([e1]+·−[e2]−)) ∧ 0
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We have:

Proposition 3. Assume that E is a system of equations over the complete lattice
of intervals, and E± is the corresponding system for the negated lower and upper
interval bounds of values for the variables of E. Let μ and μ± denote the least
solutions of E and E±, respectively. Then for every variable x of E, (μ(x))− =
μ±(x−) and (μ(x))+ = μ±(x+). ��
Proposition 3 follows by standard fixpoint induction. By Proposition 3, comput-
ing least solutions of systems of interval equations reduces to computing least
solutions of systems of equations over Z using the BF operators maximum,
addition, multiplication with positive constants, positive and negative multipli-
cations together with minima with constants. Thus, theorem 3 is applicable, and
we obtain:

Theorem 4. The least solution of a system E of interval equations can be com-
puted in time O(|E|3).
Note that before application of theorem 3, we must instroduce auxiliary vari-
ables for simplifying complex interval expressions in right-hand sides of E . Fur-
thermore, the transformations [.]− and [.]+ may produce composite expressions
which we again decompose by means of auxiliary variables. The number of these
fresh variables, however, is linear in the number of occurring multiplications and
thus altogether bounded by O(|E|).

7 Conclusion

We presented a cubic time algorithm for solving systems of integer equations
where minimum is restricted to always have at least one constant argument.
The methods relied on a subtle generalization of the Bellman-Ford algorithm
for computing shortest paths in presence of positive and negative edge weights.
We also observed that this algorithm is still applicable when right-hand sides of
equations not only contain maxima, addition and multiplication with constants,
but additionally use positive and negative multiplications.

In the second step, we showed how solving systems of interval equations with
addition, full multiplication and intersection with constant intervals can be re-
duced to solving systems of integer equations. In particular, the restricted vari-
ants of multiplication allowed us to simulate full interval multiplication as well as
to construct tests whether or not the intersection of an interval with a constant
interval is empty. The one hand, our methods thus clarifies the upper complexity
bound for solving systems of interval equations with intersection with constant
intervals as presented by Su and Wagner [6]; on the other hand the approach
generalizes the system of equations considered in [6] by additionally allowing full
multiplication of intervals.

Our algorithms were designed to be uniform, i.e., have run-times independent
of occurring numbers — given that arithmetic operations are counted as O(1).
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This is a reasonable assumption when multiplication is allowed with constants
only. It is also reasonable in presence of full multiplication for intervals — given
that numbers are from a fixed finite range only.

In [8], the ideas presented here have been extended to work also for systems of
interval equations with full multiplication as well as with arbitrary intersections.
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