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Hybrid Algorithm of Harmony Search, Particle 
Swarm and Ant Colony for Structural Design 
Optimization 

A. Kaveh1 and S. Talatahari2 

Abstract. This chapter considers the implementation of the heuristic particle 
swarm ant colony optimization (HPSACO) methodology to find an optimum de-
sign of different types of structures. HPSACO is an efficient hybridized approach 
based on the harmony search scheme, particle swarm optimizer, and ant colony 
optimization. HPSACO utilizes a particle swarm optimization with a passive con-
gregation algorithm as a global search, and the idea of ant colony approach 
worked as a local search. The harmony search-based mechanism is used to handle 
the variable constraints. In the discrete HPSACO, agents are allowed to select dis-
crete values from the permissible list of cross sections. The efficiency of the 
HPSACO algorithm is investigated to find an optimum design of truss structures 
with continuous or discrete search domains and for frame structures with a dis-
crete search domain. The results indicate that the HPSACO is a quite effective al-
gorithm to find the optimum solution of structural optimization problems with 
continuous or discrete variables. 

1   Introduction 

Structural design optimization is a critical and challenging activity that has re-
ceived considerable attention in the last two decades [1]. A high number of design 
variables, largeness of the search space and controlling a great number of design 
constraints are major preventive factors in performing optimum design in a rea-
sonable time. Despite these facts, designers and owners have always desired to 
have optimal structures [2]. Therefore, different methods of structural optimiza-
tion have been introduced which can be categorized in two general groups: classi-
cal methods and heuristic approaches. 

Classical optimization methods are often based on mathematical programming. 
Many of these methods require substantial gradient information, and final results 
depend on the initially selected points. The number of computational operations 
increases as the design variables of a structure becomes greater and the solution 
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does not necessarily correspond to the global optimum or even the neighborhood 
of it, in some cases. 

The computational drawbacks of classical numerical methods have forced re-
searchers to rely on heuristic algorithms such as genetic algorithms (GAs), particle 
swarm optimizer (PSO), ant colony optimization (ACO) and harmony search 
(HS). These methods have attracted a great deal of attention, because of their high 
potential for modeling engineering problems in environments which have been re-
sistant to a solution by classic techniques. They do not require gradient informa-
tion and possess better global search abilities than the conventional optimization 
algorithms. Although these are approximate methods (i.e. their solutions are good, 
but not provably optimal), they do not require the derivatives of the objective 
function and constraints [3]. Having in common the processes of natural  
evolution, these algorithms share many similarities: each maintains a population 
of solutions which are evolved through random alterations and selection. The dif-
ferences between these procedures lie in the representation technique utilized to 
encode the candidates, the type of alterations used to create new solutions, and the 
mechanism employed for selecting new patterns. 

The genetic algorithm is one of the heuristic algorithms initially suggested by 
Holland, and developed and extended by some of his students, Goldberg and De 
Jong. These algorithms simulate a natural genetics mechanism for synthetic sys-
tems based on operators that are duplicates of natural ones. In the last decade, GA 
has been used in the optimum structural design. One of the first applications was 
the weight minimization of a 10-bar truss by Goldberg and Samtani [4]. Also, 
many researchers have used genetic search in the design of various structures in 
which the search space was non-convex or discrete, Hajela [5], Rajeev and Krish-
namoorthy [6,7], Koumousis and Georgious [8], Hajela and Lee [9], Wu and 
Chow [10], Soh and Yang [11], Camp et al. [12], Shrestha and Ghaboussi [13], 
Pezeshek et al. [14] Erbatur et al. [15], Coello and Christiansen [16],  Greiner et 
al. [17], Kameshki and Saka [18-20], Saka [21, 22], and Kaveh and colleagues 
[23-28], among many others. 

Application of swarm intelligence for optimization was first suggested by Eber-
hart and Kennedy [29] under the name of particle swarm optimization (PSO). The 
strength of PSO is underpinned by the fact that decentralized biological creatures 
can often accomplish complex goals by cooperation. A standard PSO algorithm is 
initialized with a population (swarm) of random potential solutions (particles). 
Each particle iteratively moves across the search space and is attracted to the posi-
tion of the best fitness historically achieved by the particle itself (local best) and 
by the best among the neighbors of the particle (global best) [30]. Compared to 
other evolutionary algorithms based on heuristics, the advantages of PSO consist 
of easy implementation and a smaller number of parameters to be adjusted. There-
fore, it has been widely employed for structural optimization problems [31-35]. 
However, it is known that the PSO algorithm had difficulties in controlling  
the balance between exploration (global investigation of the search place) and  
exploitation (the fine search around a local optimum) [36]. 

Ant colony optimization (ACO) was first proposed by Dorigo [37, 38] as a 
multi-agent approach to solve difficult combinatorial optimization problems and it 
has been applied to various engineering problems in recent years [39-44]. ACO 
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was inspired by the observation of real ant colonies. Ants are social insects whose 
behavior is directed more to the survival of the colony as a whole than to that of a 
single individual component of the colony. An important behavior of ant colonies 
is their foraging behavior, and in particular, how the ants can find shortest paths 
between food sources and their nest. While walking from food sources to the nest 
and vice versa, ants deposit on the ground a substance called pheromone. Ants can 
smell pheromone and when choosing their way, they tend to choose, in probabil-
ity, paths marked by strong pheromone concentrations. When more paths are 
available from the nest to a food source, a colony of ants will be able to exploit the 
pheromone trails left by the individual ants to discover the shortest path from the 
nest to the food source and back. One basic idea of the ACO approach is to  
employ the counterpart of the pheromone trail used by real ants as an indirect 
communication and as a form of memory of previously found solutions. 

The harmony search method, as discussed in the previous chapters, is another 
robust heuristic optimization technique that imitates the musical performance 
process which takes place when a musician searches for a better state of harmony. 
Jazz improvisation seeks to find musically pleasing harmony similar to the opti-
mum design process which seeks to find the optimum solution. The pitch of each 
musical instrument determines the aesthetic quality, just as the objective function 
value is determined by the set of values assigned to each decision variable. This 
approach is suggested by Geem et al. in 2001 [45] and first applied to a design of 
water distribution network. Since then, the algorithm has attracted many research-
ers due to its simplicity and effectiveness [1, 46-51]. 

Although there are several papers utilizing heuristic methods in the structural 
optimization field, using an individual heuristic method has often had some draw-
backs because usually each method is suitable for solving only a specific group of 
problems. Preference for a special method will differ depending on the kind of the 
problem being studied. One technique to overcome these problems is hybridizing 
various methods to reach a robust approach. 

In this chapter, the implementation of an efficient hybrid algorithm based on 
harmony search, particle swarm and ant colony strategies, namely heuristic parti-
cle swarm ant colony optimization (HPSACO), is developed to find an optimum 
design of truss structures with continuous or discrete domains and to find frame 
structures with a discrete search domain. 

2   Review of PSO, ACO and HS Algorithms 

Since HPSACO methodology is based on PSO, ACO and HS, in order to make the 
chapter self-explanatory, the characteristics of these algorithms are briefly  
explained in this section. 

2.1   Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic optimization method capable of 
handling non differentiable, nonlinear, and multi module objective functions. The 
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PSO method is motivated from the social behavior of bird flocking and fish 
schooling [29]. PSO has a population of individuals that move through search 
space and each individual has a velocity that acts as an operator to obtain a new 
set of individuals. Individuals, called particles, adjust their movements depending 
on both their own experience and the population’s experience. Effectively, each 
particle continuously focuses and refocuses on the effort of its search according  
to both the local and global best. This behavior mimics the cultural adaptation  
of a biological agent in a swarm: it evaluates its own position based on certain  
fitness criteria, compares it to others, and imitates the best position in the entire 
swarm [30]. 

Through the updating process, each particle moves by adding a change velocity 
1+k

iV  to the current position k
iX as follows 
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The velocity is a combination of three contributing factors: 

1. Previous velocity, k
iV , considering former attempts; 

2. Movement in the direction of the local best, k
iP , using the autobiographical 

memory; 

3. Movement in the direction of the global best, k
gP , based on the publicized 

knowledge.  

The mathematical relationship can be expressed as 
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where ω  is an inertia weight to control the influence of the previous velocity; 1r  

and 2r  are two random numbers uniformly distributed in the range of (0, 1); 1c  

and 2c are two acceleration constants. k
iP  is the best position of the i th particle 

up to iteration k  and k
gP  is the best position among all particles in the swarm up 

to iteration k . k
iP  and k

gP are given by the following equations 
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where )(Xf is the objective function, M  is the total number of particles. 
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Fig. 1 The flow chart for the PSOPC algorithm 

The pseudo-code of the PSO algorithm can be summarized as follows: 

Step 1: Initialization. Initialize an array of particles with random positions and 
their associated velocities. 

Step 2: Function evaluation. Evaluate the fitness function of each particle. 
Step 3: Local best updating. Compare the current value of the fitness function 

with the particles’ previous best value and update k
iP  according to Eq. (3). 

Step 4: Global best updating. Determine the current global minimum fitness 

value among the current positions and update k
gP  according to Eq. (4). 

Step 5: Solution construction. Change the velocities according to Eq. (2) and 
move each particle to the new position according to Eq. (1). 

Step 6: Terminating criterion controlling. Repeat Steps 2–5 until a terminating 
criterion is satisfied. The terminating criteria are usually one of the following: 

• Maximum number of iterations: the optimization process is terminated after a 
fixed number of iterations, for example, 1000 iterations. 

• Number of iterations without improvement: the optimization process is termi-
nated after some fixed number of iterations without any improvement. 
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• Minimum objective function error: the error between the values of the objective 
function and the best fitness is less than a pre-fixed anticipated threshold. 

Adding the passive congregation model to the PSO may increase its performance. 
He et al. [52] proposed a hybrid PSO with passive congregation (PSOPC). In this 
method, the velocity is defined as 
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where iR  is a particle selected randomly from the swarm; 3c  is the passive  

congregation coefficient; 3r  is a uniform random sequence in the range (0, 1). 

Several benchmark functions have been tested in Ref. [52]. The results show 
that the PSOPC has a better convergence rate and a higher accuracy than the PSO. 
Figure 1 shows the flow chart for the PSOPC algorithm. 

2.2   Ant Colony Optimization 

In 1992, Dorigo developed a paradigm known as ant colony optimization (ACO), 
a cooperative search technique that mimics the foraging behavior of real live ant 
colonies [37]. The ant algorithms mimic the techniques employed by real ants to 
rapidly establish the shortest route from food source to their nest and vice versa. 
Ants start searching the area surrounding their nest in a random manner. Etholo-
gists observed that ants can construct the shortest path from their colony to the 
feed source and back using pheromone trails [53, 54], as shown in Figure 2(a). 
When ants encounter an obstacle (Figure 2(b)), at first, there is an equal probabil-
ity for all ants to move right or left, but after a while (Figure 2(c)), the number of 
ants choosing the shorter path increases because of the increase in the amount of 
the pheromone on that path. With the increase in the number of ants and phero-
mone on the shorter path, all of the ants will choose and move along the shorter 
path, Figure 2(d). 

 

Fig. 2 Ants find the shortest path around an obstacle 
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In fact, real ants use their pheromone trails as a medium for communication of 
information among them. When an isolated ant comes across some food source in 
its random sojourn, it deposits a quantity of pheromone on that location. Other 
randomly moving ants in the neighborhood can detect this marked pheromone 
trail. Further, they follow this trail with a very high degree of probability and si-
multaneously enhance the trail by depositing their own pheromone. More and 
more ants follow the pheromone rich trail and the probability of the trail being fol-
lowed by other ants is further enhanced by the increased trail deposition. This is 
an autocatalytic (positive feedback) process which favors the path along which 
more ants previously traversed. The ant algorithms are based on the indirect com-
munication capabilities of the ants. In ACO algorithms, virtual ants are deputed to 
generate rules by using heuristic information or visibility and the principle of indi-
rect pheromone communication capabilities for iterative improvement of rules. 

ACO was initially used to solve the traveling salesman problem (TSP). The aim 
of TSP is finding the shortest Hamiltonian graph, G=(N,E), where N denotes the 
set of nodes, and E is the set of edges. The general procedure of the ACO  
algorithm manages the scheduling of four steps [3]: 

Step 1: Initialization. The initialization of the ACO includes two parts: the first 
consists mainly of the initialization of the pheromone trail. Second, a number of 
ants are arbitrarily placed on the nodes chosen randomly. Then each of the distrib-
uted ants will perform a tour on the graph by constructing a path according to the 
node transition rule described below. 

Step 2: Solution construction. Each ant constructs a complete solution to the 
problem according to a probabilistic state transition rule. The state transition rule 
depends mainly on the state of the pheromone and visibility of ants. Visibility is 
an additional element used to make this method more efficient. For the path be-
tween i to j, it is represented as ijη and in TSP, it has a reverse relation with the 

distance between i to j. The node transition rule is probabilistic. For the kth ant on 
node i, the selection of the next node j to follow is according to the node transition 
probability 
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where )(tijτ  is the intensity of pheromone laid on edge ),( ji ; k
iN  is the list of 

neighboring nodes from node i  available to ant k  at time t. Parameters α  and 
β  represent constants which control the relative contribution between the inten-

sity of pheromone laid on edge ),( ji reflecting the previous experiences of the 

ants about this edge, and the value of visibility determined by a Greedy heuristic 
for the original problem.  

Step 3: Pheromone updating rule. When every ant has constructed a solution, 
the intensity of pheromone trails on each edge is updated by the pheromone  
updating rule. The pheromone updating rule is applied in two phases. First, an 
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evaporation phase where a fraction of the pheromone evaporates, and then a rein-
forcement phase when the elitist ant which has the best solution among others,  
deposits an amount of pheromone 

 +Δ⋅+⋅−=+ ijijij tnt τρτρτ )()1()(  (7) 

where ρ ( 10 << ρ ) represents the persistence of pheromone trails (( ρ−1 ) is the 

evaporation rate); n is the number of variables or movements an ant must take to 

complete a tour and +Δ ijτ  is the amount of pheromone increase for the elitist ant 

and equals 
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where +L is the length of the solution found by the elitist ant. 
Step 4: Terminating criterion controlling. Steps 2 and 3 are iterated until a 

terminating criterion. 
The flow chart of the ACO procedure is illustrated in Figure 3. 

 

Fig. 3 The flow chart for the ACO algorithm 

2.3   Harmony Search Algorithm 

Harmony search (HS) algorithm is based on musical performance processes that 
occur when a musician searches for a better state of harmony, such as during jazz 
improvisation [45]. The engineers seek for a global solution as determined by an 
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objective function, just like the musicians seek to find musically pleasing harmony 
as determined by an aesthetic. The HS algorithm was presented in previous chap-
ters, and we briefly explain the steps in the algorithm here. Figure 4 shows the HS 
optimization procedure including the following steps [1]: 

Step 1: Initialization. HS algorithm includes a number of optimization opera-
tors, such as the harmony memory (HM), the harmony memory size (HMS), the 
harmony memory considering rate (HMCR), and the pitch adjusting rate (PAR). 
In the HS algorithm, the HM stores the feasible vectors, which are all in the feasi-
ble space. The harmony memory size determines the number of vectors to be 
stored. 
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Step 2: Solution construction. A new harmony vector is generated from the 
HM, based on memory considerations, pitch adjustments, and randomization. The 
HMCR varying between 0 and 1 sets the rate of choosing a value in the new  
vector from the historic values stored in the HM, and (1−HMCR) sets the rate of 
randomly choosing one value from the possible range of values. 

 

Fig. 4 The flow chart for the HS algorithm 
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where k
ix is the ith design variable in the iteration k, and w.p. is abbreviation for 

“with probability”. The pitch adjusting process is performed only after a value is 
chosen from the HM. The value (1−PAR) sets the rate of doing nothing. A PAR 
of 0.1 indicates that the algorithm will choose a neighboring value with 10% 
×HMCR probability. 

Step 3: Harmony memory updating. In Step 3, if a new harmony vector is bet-
ter than the worst harmony in the HM, judged in terms of the objective function 
value, the new harmony is included in the HM and the existing worst harmony is 
excluded from the HM.  

Step 4: Terminating criterion controlling. Repeat Steps 2 and 3 until the termi-
nating criterion is satisfied. The computations are terminated when the terminating 
criterion is satisfied. Otherwise, Steps 2 and 3 are repeated. 

3   Statement of the Optimization Design Problem 

Selection of the objective function in optimal design problems is highly signifi-
cant. Usually finding a mathematical formula for the objective function is not an 
easy task, especially when the optimization problem is very detailed. In most 
cases, the objective function shows one important feature of a design, but it can 
also contain a combination of different features [2]. Objective functions that can 
be used to measure the quality of design may include minimum construction cost, 
minimum life cycle cost, minimum weight, and maximum stiffness, as well as 
other objectives [1]. However, for structural optimization problems, minimization 
of the weight is often used as the objective function. Structural design is often lim-
ited by problem-specified constraints (e.g., feasible strength, displacements,  
 

 

Fig. 5 Search space division 
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eigen-frequencies) and design variable constraints (e.g., type and size of the avail-
able structural members and cross-sections). The optimum design of structures  
involves a set of design variables that has the minimum weight located in the fea-
sible space which does not violate either problem-specified constraints or design 
variable constraints, as illustrated in Figure 5. 

3.1   Optimum Design of Truss Structures 

Optimum design of truss structures involves arriving at optimum values for  
member cross-sectional areas xi that minimize the structural weight W.  
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where X is the vector containing the design variables; ng is the number of design 
variables or the number of groups; )(XW is the cost function which is taken as the 

weight of the structure; nm is the number of members making up the structure; iγ  

is the material density of member i; iL  is the length of member i; Di is an allow-

able set of values for the design variable xi which can be considered as a continu-
ous set or a discrete one. In the continuous problems, the design variables can vary 
continuously in the optimization 

 { } ],[| max,min, iiiii xxxxD ∈=  (12) 

where min,ix and max,ix  are minimum and maximum allowable values for the de-

sign variable i, respectively. If the design variables represent a selection from a set 
of parts, the problem is considered as discrete 

 { })(,2,1, ,...,, iriiii dddD =  (13) 

where )(ir is the number of available discrete values for the ith design variable. 
This minimum design also has to satisfy the problem-specified constraints that 

limit structural responses, as follows 
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where iσ  and iδ  are the stress and nodal deflection, respectively; m is the number 

of nodes; and min and max mean the lower and upper boundaries, respectively. 
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3.2   Optimum Design of Steel Frames  

Similar to truss structures, the aim of the optimum design of steel frames is to find 
a design with minimum weight as described in Equation (11) which must satisfy 
the following constraints: 

Stress constraints 

  ,...,2,1      maximin nmi =≤≤ σσσ  (15) 

Maximum lateral displacement 

 R
H

T ≤Δ
 (16) 

Inter-story displacement constraints 
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where Di is considered a set of 267 W-sections from the AISC database [55] for 
the design variable xi; TΔ  is the maximum lateral displacement; H is the height of 

the frame structure; R is the maximum drift index; jΔ is the inter-story drift; jh  is 

the story height of the jth floor; ns  is the total number of stories; and RI is the in-
ter-story drift index permitted by the code of the practice. 

For the code of practice AISC [55], the allowed inter-story drift index is given 
as 1/300, and the LRFD interaction formula constraints (AISC, Equation H1-1a,b) 
are expressed as 
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where uP  is the required strength (tension or compression); nP  is the nominal ax-

ial strength (tension or compression); cφ  is the resistance factor ( 9.0=cφ  for 

tension, 85.0=cφ  for compression); uxM  and uyM  are the required flexural 

strengths in the x and y directions, respectively; nxM and nyM  are the nominal 

flexural strengths in the x and y directions (for two-dimensional structures, 
0=nyM ); and bφ  is the flexural resistance reduction factor ( 90.0=bφ ). 
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4   A Heuristic Particle Swarm Ant Colony Optimization 

The heuristic particle swarm ant colony optimization (HPSACO), a hybridized 
approach based on HS, PSO and ACO, is described in this section. HPSACO util-
izes a particle swarm optimization with passive congregation (PSOPC) algorithm 
as a global search, and the ant colony approach worked as a local search. In the 
HPSACO algorithm, fly-back mechanism and the harmony search are used to 
handle the constraints. Fly-back mechanism handles the problem-specific con-
straints, and the HS deals with the variable constraints. HPSACO utilizes an  
efficient terminating criterion considering exactitude of the solutions. This termi-
nating criterion is defined in a way that after decreasing the movements of parti-
cles, the search process stops. In the discrete method of HPSACO, agents are not 
allowed to select any value except discrete cross sections from the permissible list. 

4.1   Combining PSO with ACO 

Compared to other evolutionary algorithms based on heuristics, the advantages of 
PSO include an easy implementation and its smaller number of parameters to be 
adjusted. However, it is known that the original PSO had difficulties in controlling 
the balance between exploration (global investigation of the search place) and ex-
ploitation (the fine search around a local optimum) [36]. In order to improve upon 
this character of PSO, one method is to hybridize PSO with other approaches such 
as ACO. The resulted method, called particle swarm ant colony optimization 
(PSACO), was initially introduced by Shelokar et al. [56] for solving the continu-
ous unconstrained problems and recently utilized for the design of structures by 
authors [57, 58]. We have applied PSOPC instead of the PSO to improve the per-
formance of the new method. The relation of the standard deviation in ACO stage 
is different with Ref. [56] and the inertia weight is changed in PSOPC stage. 

The implementation of PSACO algorithm consists of two stages [57]. In the 
first stage, it applies PSOPC, while ACO is implemented in the second stage. 
ACO works as a local search, wherein, ants apply pheromone-guided mechanism 
to refine the positions found by particles in the PSOPC stage. In the PSACO, a 
simple pheromone-guided mechanism of the ACO is proposed to be applied for 
the local search. The proposed ACO algorithm handles M ants equal to the number 
of particles in PSOPC. 

In ACO stage, each ant generates a solution around k
gP  which can be  

expressed as 

 ),( σk
g

k
i N PZ =  (20) 

In the above equation, ),( σk
gPN  denotes a random number normally distributed 

with mean value k
gP  and variance σ , where 

 ησ ×−= )( minmax xx  (21) 



172 A. Kaveh and S. Talatahari
 

η  is used to control the step size. The normal distribution with mean k
gP  can be 

considered as a continuous pheromone which has the maximum value in k
gP  and 

which decreases going away from it. In ACO algorithms, the probability of select-
ing a path with more pheromone is greater than other paths. Similarly, in the nor-

mal distribution, the probability of selecting a solution in the neighborhood of k
gP  

is greater than the others. This principle is used in the PSACO algorithm as a help-
ing factor to guide the exploration and to increase the controlling in exploitation. 

In the present method, the objective function value )( k
if Z  is computed and 

the current position of ant i, k
iZ , is replaced by the current position of particle i in 

the swarm, k
iX , if )()( k

i
k
i ff ZX >  and the current ant is in the feasible space. 

4.2   HS Added to PSACO as a Variable Constraint Handling 
Approach 

The heuristic particle swarm ant colony optimization algorithm (HPSACO) is re-
sulted from combining PSACO and HS [59]. The framework of the HPSACO al-
gorithm is illustrated in Figure 6. A hybrid particle swarm optimizer and harmony 
search scheme (HPSO) was proposed by Li et al. [32] for truss design. A particle 
in the search space may violate either the problem-specific constraints or the limits 
of the variables as illustrated in Figure 5. If a particle flies out of the variable 
boundaries, the solution cannot be used even if the problem-specific constraints 
are satisfied. Using the harmony search-based handling approach, this problem is 
dealt with. In this mechanism, any component of the solution vector (particle)  

violating the variable boundaries can be generated randomly from k
iP  as 
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 (22) 

where jix ,  is the jth component of the particle i   The HMCR varying between 0 

and 1 sets the rate of choosing a value in the new vector from the historic values 

stored in the k
iP , and (1−HMCR) sets the rate of randomly choosing one value 

from the possible list of values. The pitch adjusting process is performed only af-

ter a value is chosen from k
iP . The value (1−PAR) sets the rate of doing nothing. 

A PAR (Pitch Adjusting Rate) of 0.1 indicates that the algorithm will choose a 
neighboring value with 10% ×HMCR probability. Therefore, the harmony search 
concept is used to check whether the particles violate the variables’ boundaries. 
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Fig. 6 The flow chart for the HPSACO 
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4.3   Problem-Specified Constraint Handling Approach 

As described in the previous section, there are some problem-specified constraints 
in structural optimization problems that should be carefully handled. So far, a 
number of approaches have been proposed by incorporating constraint-handling 
techniques to solve constrained optimization problems. The most common ap-
proach adopted to deal with constrained search spaces is the use of penalty func-
tions. When using a penalty function, the amount of constraint violation is used to 
punish or penalize an infeasible solution so that feasible solutions are favored by 
the selection process. Despite the popularity of penalty functions, they have sev-
eral drawbacks. The main one is that they require a careful fine tuning of the pen-
alty factors that accurately estimates the degree of penalization to be applied in 
order to approach efficiently the feasible region [60]. 

Several approaches have been proposed to avoid this dependency on the values 
of the penalty factors, like special encodings, whose aim is to generate only feasi-
ble solutions, and the use of special operators to preserve their feasibility during 
all the evolutionary process [61, 62]. An alternative approach is the use of repair 
algorithms whose goal is to change an infeasible solution into a feasible one [63]. 
The separation of constraints and objectives is another approach to deal with con-
strained search spaces, where the idea is to avoid the combination of the value of 
the objective function and the constraints of a problem to assign fitness, like when 
using a penalty function [60, 64]. 

Fly-back mechanism is one of the methods for separating constraints and objective 
functions, introduced by He et al. [64]. Compared to other constraint-handling tech-
niques, this method is relatively simple and easy to implement. For most of the struc-
tural optimization problems, the global minimum locates on or close to the boundary 
of a feasible design space. According to the fly-back mechanism, the particles are ini-
tialized in the feasible region. When the particles fly in the feasible space to search 
the solution, if any one of them flies into the infeasible region, it will be forced to fly 
back to the previous position to guarantee a feasible solution. The particle which flies 
back to the previous position may be closer to the boundary at the next iteration. This 
makes the particles fly to the global minimum with a great probability. Although 
some experimental results have shown that it can find a better solution with a fewer 
number of iterations than the other techniques [64], the fly-back mechanism has the 
difficulty of finding the first valid solutions for the swarm. However, if the first selec-
tions are limited to a neighborhood of the maximum value of permitted cross sec-
tional areas, it can be expected, after a few iterations, the feasible swarm will be  
obtained. This neighborhood can be defined as [59] 

 ⎥⎦

⎤
⎢⎣

⎡ −
− max

minmax
max ,

4
x

xx
x  (23) 

4.4   Terminating Criterion 

The maximum number of the iterations is the most usual terminating criterion in 
PSO literature. If it is selected as a big number, the number of analyses and as a 
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Table 1 The pseudo-code for the HPSACO 
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result, the time of optimization will increase; vice versa, if it is selected small, the 
probability of finding a desirable solution will decrease. Thus, the necessity for an 
exact definition of the terminating criterion is vital. The following terminating  
criterion is considered to fulfill this goal. 

This terminating criterion is defined by using a pre-fixed value denoted by A*. 
For the discrete problems, A* is equal to the minimum value of the difference be-
tween cross-sectional areas of two successive discrete sections, and for continuous 
problems, A* is considered as the required exactitude of the solutions with a re-
verse relation. According to this criterion, as A* increases, exactitude of the solu-
tions decreases and the searching process must be stopped earlier, and if the 
amount of A* decreases, then the searching process must be continued until an ex-
act result is attained. Therefore, if in an iteration of search process, the absolute 
value of the component i in all of the particles' velocity vectors is less than A*/2, 
continuation of the search process cannot change the amount of variable i; then the 
variable i reaches an optimum value and can be deleted from the virtual list of de-
sign variables. As a result, the terminating criterion is defined as continuing the 
search process until all variables are deleted. In the other words, when the varia-
tion of a variable is less than A*/2, this criterion omits it from the virtual list  
of variables. When this list is emptied, the search process stops. With these  
alterations, the number of iterations decreases. 

The pseudo-code for the HPSACO algorithm using this terminating criterion is 
listed in Table 1. 

4.5   A Discrete HPSACO 

In the discrete HPSACO, a new position of each agent is defined as the following: 

For particles 

 )( 11 ++ += k
i

k
i

k
i Fix VXX  (24) 

For ants 

 ( )),( σk
g

k
i NFix PZ =  (25) 

where Fix(X) is a function which rounds each element of X to the nearest permis-
sible discrete value. Using this position updating formula, the agents will be per-
mitted to select discrete values. Although this change is simple and efficient, it 
may reduce the exploration in the algorithm. Therefore, in order to increase the 
exploration, the velocity of particles is redefined [58] as 
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where 4c  is the exploration coefficient; 4r  is a uniformly distributed random 

number in the range of (0, 1); and kRd is a vector generated randomly from the 
search domain. 
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4.6   Parameter Setting 

For the proposed algorithm, a population of 50 individuals is used for both parti-
cles and ants (M=50); the value of constants 1c and 2c are set 0.8 and the passive 

congregation coefficient 3c is taken as 0.6. The value of inertia weight ( )(kω ) 

decreases linearly from 0.9 to 0.4 as follows 

 4.00015.09.0)( ≥×−= kkω  (27) 

where k = the iteration number. In this way, the balance of )(kω  with fast rate of 

convergence in the HPSACO method is maintained.  
The amount of step size (η ) in ACO stage is recommended as 0.01 [57]. If η  

is too small, the velocity of particles will decrease rapidly and the search process 
will stop in early iterations; thus the obtained results stay far away from an opti-
mum; on the contrary, if it is selected too big, the HPSACO algorithm will per-
form similar to the PSOPC algorithm and the effect of the ACO stage will  
be eliminated, and a desirable solution cannot be obtained in smaller number of  
iterations. 

The parameters of the HS part (HMCR and PAR) similar to the effect of η , 

can be investigated. With small values for HMCR (large values for PAR), the ef-
fect of the HS part will be deleted. We have selected these values close to the 
amounts employed in the original HS algorithm [1]. If HMCR is selected from the 
range of [0.8, 0.98] and PAR is taken from [0.05,0.25], we expect a good per-
formance for the HPSACO. In this study, HMCR is set to 0.95 and PAR is taken 
as 0.10. 

5   Discussion on the Efficiency of the HPSACO 

In order to verify the effectiveness of the HPSACO algorithm, a benchmark prob-
lem (10-bar truss) chosen from the literature is employed. In the next section, four 
design examples consisting of a 120-bar dome shaped truss with continuous de-
sign variables, a 582-bar space truss tower with 32 discrete design variables and a 
3-bay 15-story steel frame structure are used to evaluate the numerical perform-
ance of the HPSACO algorithm in optimum design of different types of structures. 

5.1   Benchmark Problem 

The 10-bar truss design has become a common problem in the field of structural 
design for testing and verifying the efficiency of many different optimization 
methods. Figure 7 shows the geometry and support conditions for this 2-
dimensional, cantilevered truss with the corresponding loading condition. The ma-
terial density is 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is 10,000 
ksi (68,950 MPa). The members are subjected to the stress limits of ±25 ksi 
(172.375 MPa) and all nodes in both vertical and horizontal directions are  
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subjected to the displacement limits of ±2.0 in (5.08 cm). There are 10 design 
variables in this example and a set of pseudo variables ranging from 0.1 to 35.0 in2 

(from 0.6452 cm2 to 225.806 cm2). A* is considered as 0.001 for this example.  
The PSO and PSOPC algorithms achieve the best solutions after 3,000 itera-

tions (150,000 analyses) [32] and the HS algorithm reaches a solution after 20,000 
analyses [1]. However, the HPSACO algorithm finds the best solution after about 
426 iterations (10,650 analyses). The best weight of HPSACO is 5056.56 lb while 
the best results of PSO and PSOPC are 5061.00 lb, 5529.50 lb, respectively. The 
results of this method are compared with other methods in Table 2. 

 

Fig. 7 A 10-bar planar truss 

Table 2 Optimal design comparison for the 10-bar planner truss 

Optimal cross-sectional areas (in.2)  

HPSACO PSACO 
[57] 

HPSO 
[32] 

PSOPC 
[32] PSO [32]HS     [1]GA       

[12] 

Element

group

30.307 30.068 30.704 30.569 33.469 30.15  28.92 A11

0.100 0.100 0.100 0.100 0.110 0.102 0.10 A22

23.434 23.207 23.167 22.974 23.177 22.71 24.07 A33

15.505 15.168 15.183 15.148 15.475 15.27 13.96 A44

0.100 0.100 0.100 0.100 3.649 0.102 0.10 A55

0.5241 0.536 0.551 0.547 0.116 0.544 0.56 A66

7.4365 7.462 7.460 7.493 8.328 7.541 7.69 A77

21.079 21.228 20.978 21.159 23.340 21.56 21.95 A88

21.229 21.630 21.508 21.556 23.014 21.45 22.09 A99

0.100 0.100 0.100 0.100 0.190 0.100 0.10 A1010

         

5056.56 5057.36 5060.92 5061.00 5529.50 5057.88 5076.31 Weight (lb) 



Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony  179
 

5.2   Discussion 

The main reasons for the improvements obtained by the HPSACO method can be 
summarized as the following [59]: 

1.  Increasing the exploitation: In structural optimization, usually there are some 
local optimums in the neighborhood of a desirable solution. Thus, the probabil-
ity of finding a desirable optimum increases with additional searches around 
the local optimums. HPSACO does extra search (exploitation) around the local 
optimums, and therefore obtains the desirable solution with higher probability 
in a smaller number of iterations. 

The difference between the best and the worst results of the 10-bar truss for 
PSOPC in 50 tests is 365.2lb (7.21%), the average weight is 5173.45lb, and the 
standard deviation is 81.17lb (see Table 3). With adding the ACO principles to the 
PSOPC (PSACO [57]), these values are reduced to 3.2lb (0.06%), 5058.23lb, and 
1.46lb, respectively. In addition, although PSO is a weak approach, applying ACO 
principles in PSO results in a improvement of its performance. The average 
weight of PSO+ACO in 50 runs is 5079.19lb, and the standard deviation is 4.76lb, 
which are better than PSOPC. Therefore, increasing the exploitation by applied 
pheromone-guided mechanism for updating the positions of the particles, not only 
improves the results, but also reduces the standard deviation drastically. 

2. Guiding the exploration: Heuristic methods utilize two factors: the random 
search factor and the information collected from the search space during the 
optimization process. In early iterations, the random search factor has more 
power than the collective information factor, but the increase in the number of 
iterations gradually abates the power of the random search factor and increases 
the power of the collective information factor. In HPSACO, ACO stage  
plays an auxiliary role in rapidly increasing the collective information factor; 
consequently, the convergence rate increases faster. 
Although minimizing the maximum value of the velocity can make fewer parti-
cles violate the variable boundaries, it may also prevent the particles from cross-
ing the problem-specific constraints and can cause the reduction in exploration. 
The harmony search-based handling approach deals with this problem.  

PSOPC requires 3000 iterations to reach a solution for 10-bar truss. However, the 
number of required iterations to reach a solution for PSOPC+ACO (PSACO) in 50 
runs on average is 635.2 iterations. Also, PSO+ACO on average needs 567  
iterations to reach the optimum solution, while PSO cannot reach an appropriate 
solution until the maximum number of iterations is achieved (3000 iterations).  

In order to investigate the advantages of the HS-based handling approach, the 
comparison of the performance of PSOPC with HPSO (PSOPC+HS), or PSO+ 
ACO with PSO+ACO+HS, or PSOPC+ACO (PSACO) with PSOPC+ACO+HS 
(HPSACO) can be helpful. Table 3 summarizes the performances of all the above 
mentioned PSO-based approaches for the 10-bar truss on 50 runs for each algo-
rithm. Although the results and standard deviations of HPSACO and PSACO do 
not differ much, the convergence rate of HPSACO is higher than that of PSACO. 
In average, HPSACO needs 420.3 iterations to reach a solution, while for PSACO 
this average number is 635.2. 
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3.  Efficient terminating criterion: In optimization problems, the terminating crite-
rion is a part of the search process which can be used to eliminate additional 
unnecessary iterations. To fulfill this goal, an efficient terminating criterion is 
defined as continuing the search process until the variation of a variable is less 
than a pre-defined value. 

Figure 8 shows the average and a typical maximum absolute value of velocity for 
the first design variable in 50 tests for the 10-bar truss without considering the 

proposed terminating criterion. As shown in the figure, generally |)max(| 1
k

iV  is a 

decreasing function with a slight disorder. When it gets less than A*, there is a 
probability (even slight) that the values of velocities in the next iterations become 
more than A*. Instead, if the upper bound of the maximum absolute value of ve-
locities is selected as A*/2, there is a small probability that particle velocities in the 
next iterations become more than A* and as a result, continuing the search process 
cannot help to improve the results. 

Table 3 Investigation on the performance of various PSO-based algorithms for the 10-bar 
truss in 50 runs 

Algorithm Minimum 
iterations 

Maximum 
iterations 

Average 
iterations 

Best 
weight 

(lb) 

Worst 
weight 

(lb) 

Average 
weight 

(lb) 

Standard 
deviation 

(lb)  

PSOPC 3000 3000 3000 5061.00 5406.26 5173.45 81.17 

PSOPC+HS 3000 3000 3000 5060.92 5103.63 5078.69 13.05 

PSO+ACO 373 567 439.6 5065.23 5092.71 5079.19 4.76 

PSO+ACO+HS  226 414 296.3 5065.61 5078.26 5070.86 2.87 

PSOPC+ACO 619 655 635.2 5057.36 5060.61 5058.23 1.46 

PSOPC+ACO+HS

(HPSACO) 

405 436 420.3 5056.56  5061.12 5057.66 1.42 
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Fig. 8 The history of |)max(| 1
k

iV  in 50 tests for the 10-bar truss 
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6   Design Examples 

6.1   A Truss Structure with Continuous Design Variables 

Figure 9 shows the topology and group numbers of 120-bar dome shaped truss. 
The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material density is 
0.288 lb/in.3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi (400 
MPa). The dome is considered to be subjected to vertical loading at all the unsup-
ported joints. These loads are taken as −13.49 kips (−60 kN) at node 1, −6.744 
kips (−30 kN) at nodes 2 through 14 and −2.248 kips (−10 kN) at the rest of the 
nodes. The minimum cross-sectional area of all members is 0.775 in.2 (2 cm2). The 
allowable tensile and compressive stresses are used according to the AISC ASD 
[55] code, as follows 
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where −
iσ  is calculated according to the slenderness ratio: 
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where E is the modulus of elasticity; Fy is the yield stress of steel; Cc is the slen-
derness ratio ( iλ ) dividing the elastic and inelastic buckling regions 

( yC FEC 22π= ); iλ  is the slenderness ratio ( iii rkL=λ ); k is the effective 

length factor; iL  is the member length; and ir  is the radius of gyration which can 

be expressed in terms of cross-sectional areas, i.e., b
ii aAr = [29]. Here, a and b are 

the constants depending on the types of sections adopted for the members. Here, 
pipe sections (a = 0.4993 and b = 0.6777) were used for the bars. 

In this example, four cases of constraints are considered: with stress con-
straints and no displacement constraints (Case 1), with stress constraints and 
displacement limitations of ±0.1969 in (±5 mm) imposed on all nodes in x- and 
y-directions (Case 2), no stress constraints but displacement limitations of 
±0.1969 in. (±5 mm) imposed on all nodes in z-directions (Case 3), and all con-
straints explained above (Case 4). For Case 1 and Case 2, the maximum cross-
sectional area it is 5.0 in.2 (32.26 cm2) and for Case 3 and Case 4 is 20.0 in.2 
(129.03 cm2). 
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Fig. 9 A 120-bar dome shaped truss 

The best solution vectors and the corresponding weights for all cases are pro-
vided in Table 4. Figure 10 shows the convergence for different cases. In all cases, 
HPSACO needs nearly 10,000 analyses (400 iterations) to reach a solution which 
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is less than 125,000 (2,500 iterations) and 35,000 analyses for PSOPC and HS  
[1], respectively. Figures 11-14 compare the allowable and existing stress and  
displacement constraint values of the HPSACO results for four cases. In Case 1, 
the stress constraints of some elements in the 4th and 7th groups are active as 
shown in Figure 11(a). According to Figures 12(a), 13(a) and 14(a), the maxi-
mum values of displacements in the x, y and z directions are 0.3817in., 0.4144in. 
and 0.988in., respectively. In Case 2, the stress constraints in the 2nd, 4th and 7th 
groups and the displacement of node 26 in y direction are active. The maximum 
value for displacement in the x direction is 0.1817in. (Figure 11(b)).. The dis-
placement constraints in the x and y directions do not affect the results of Case 3 
and Case 4. The active constraints for Case 3 are the displacements of the 1st to 
13th nodes in the z direction (Figure 14(c)). In Case 4, the stresses in the elements 
of the 7th group and the displacements of the 1st to 13th nodes in z directions affect 
the results. 

Table 4 Optimal design comparison for the 120-bar dome truss (four cases) 

Optimal cross-sectional areas (in.2) 

Case 1    Case 2   
Element 

group 
PSO PSOPC HPSACO  PSO PSOPC HPSACO  

1  3.147 3.235 3.311 15.978 3.083 3.779 

2 6.376  3.370 3.438 9.599 3.639 3.377 

3 5.957 4.116 4.147 7.467 4.095 4.125 

4 4.806 2.784 2.831 2.790 2.765 2.734 

5 0.775 0.777 0.775 4.324 1.776 1.609 

6 13.798 3.343 3.474 3.294 3.779 3.533 

7 2.452 2.454 2.551 2.479 2.438 2.539 

       

Weight (lb) 32432.9 19618.7 19491.3 41052.7 20681.7 20078.0 

 Case 3    Case 4   

 PSO  PSOPC HPSACO  PSO PSOPC HPSACO  
1 1.773 2.098 2.034 12.802 3.040 3.095 

2 17.635 16.444 15.151 11.765 13.149 14.405 

3 7.406 5.613 5.901 5.654 5.646 5.020 

4 2.153 2.312 2.254 6.333 3.143 3.352 

5 15.232 8.793 9.369 6.963 8.759 8.631 

6 19.544 3.629 3.744 6.492 3.758 3.432 

7 0.800 1.954 2.104 4.988 2.502 2.499 

       

Weight (lb) 46893.5 31776.2 31670.0 51986.2 33481.2 33248.9 



184 A. Kaveh and S. Talatahari
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

(a
)

0
40

1
10

00
15

00
20

00
25

00
30

00
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

45
00

0
50

00
0

55
00

0
60

00
0

65
00

0
70

00
0

75
00

0

Ite
ra

tio
n

Weight (lb)

PS
O

PS
O

PC
H

PS
A

C
O

(b
)

0
40

3
10

00
15

00
20

00
25

00
30

00
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

45
00

0
50

00
0

55
00

0
60

00
0

65
00

0
70

00
0

75
00

0

Ite
ra

tio
n

Weight (lb)

PS
O

PS
O

PC
H

PS
A

C
O

(c
)

0
41

5
10

00
15

00
20

00
25

00
30

00
30

00
0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

75
00

0

80
00

0

Ite
ra

tio
n

Weight (lb)

PS
O

PS
O

PC
H

PS
A

C

(d
)

0
39

0
10

00
15

00
20

00
25

00
30

00
30

00
0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

75
00

0

80
00

0

Ite
ra

tio
n

Weight (lb)

PS
O

PS
O

PC
H

PS
A

C
O

F
ig

. 1
0 

C
om

pa
ri

so
n 

of
 th

e 
co

nv
er

ge
nc

e 
ra

te
s 

of
 th

e 
th

re
e 

al
go

ri
th

m
s 

fo
r 

th
e 

12
0-

ba
r 

tr
us

s 
(a

) 
C

as
e 

1 
(b

) 
C

as
e 

2 
(c

) 
C

as
e 

3 
(d

) 
C

as
e 

4 



Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony  185
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a
)

0
20

40
60

80
10

0
12

0
-2

0

-1
0010203040

El
em

en
t n

um
be

r

Stress

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

(b
)

0
20

40
60

80
10

0
12

0
-2

0

-1
0010203040

El
em

en
t n

um
be

r

Stress

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e 

(c
)

0
20

40
60

80
10

0
12

0
-3

0

-2
0

-1
0010203040

El
em

en
t n

um
be

r

Stress

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

(d
)

0
20

40
60

80
10

0
12

0
-3

0

-2
0

-1
0010203040

El
em

en
t n

um
be

r

Stress

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

F
ig

. 1
1 

C
om

pa
ri

so
n 

of
 th

e 
al

lo
w

ab
le

 a
nd

 e
xi

st
in

g 
st

re
ss

es
 in

 th
e 

el
em

en
ts

 o
f 

th
e 

12
0-

ba
r 

tr
us

s 
(a

) 
C

as
e 

1 
(b

) 
C

as
e 

2 
(c

) 
C

as
e 

3 
(d

) 
C

as
e 

4 



186 A. Kaveh and S. Talatahari
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

(a
)

0
5

10
15

20
25

30
35

37
-0

.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in x direction

Th
e 

ex
is

tin
g 

va
lu

e

(b
)

0
5

10
15

20
25

30
35

37
-0

.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in x direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

(c
)

0
5

10
15

20
25

30
35

37
-0

.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in x direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

(d
)

0
5

10
15

20
25

30
35

37
-0

.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in x direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

F
ig

. 
12

 C
om

pa
ri

so
n 

of
 t

he
 a

ll
ow

ab
le

 a
nd

 e
xi

st
in

g 
no

da
l 

di
sp

la
ce

m
en

ts
 i

n 
th

e 
x 

di
re

ct
io

n 
of

 t
he

 1
20

-b
ar

 t
ru

ss
 (

a)
 C

as
e 

1 
(b

) 
C

as
e 

2 
(c

) 
C

as
e 

3 
 

(d
) 

C
as

e 
4 



Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony  187
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a
)

0
5

10
15

20
25

30
35

37
-0

.5

-0
.4

-0
.3

-0
.2

-0
.10 
  

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in y direction

Th
e 

ex
is

tin
g 

va
lu

e 

(b
)

0
5

10
15

20
25

30
35

37
-0

.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in y direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

(c
)

0
5

10
15

20
25

30
35

37
-0

.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in y direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

(d
)

0
5

10
15

20
25

30
35

37
-0

.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

N
od

e 
nu

m
be

r

Displacement in y direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

F
ig

. 
13

 C
om

pa
ri

so
n 

of
 t

he
 a

ll
ow

ab
le

 a
nd

 e
xi

st
in

g 
no

da
l 

di
sp

la
ce

m
en

ts
 i

n 
th

e 
y 

di
re

ct
io

n 
of

 t
he

 1
20

-b
ar

 t
ru

ss
 (

a)
 C

as
e 

1 
(b

) 
C

as
e 

2 
(c

) 
C

as
e 

3 
 

(d
) 

C
as

e 
4 



188 A. Kaveh and S. Talatahari
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a
)

0
5

10
15

20
25

30
35

37
-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

N
od

e 
nu

m
be

r

Displacement in z direction

Th
e 

ex
is

tin
g 

va
lu

e

(b
)

0
5

10
15

20
25

30
35

37
-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

N
od

e 
nu

m
be

r

Displacement in z direction

Th
e 

ex
is

tin
g 

va
lu

e

(c
)

0
5

10
15

20
25

30
35

37
-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

N
od

e 
nu

m
be

r

Displacement in z direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

(d
)

0
5

10
15

20
25

30
35

37
-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

N
od

e 
nu

m
be

r

Displacement in z direction

Th
e 

al
lo

w
ab

le
 v

al
ue

Th
e 

ex
is

tin
g 

va
lu

e

F
ig

. 
14

 C
om

pa
ri

so
n 

of
 t

he
 a

ll
ow

ab
le

 a
nd

 e
xi

st
in

g 
no

da
l 

di
sp

la
ce

m
en

ts
 i

n 
th

e 
z 

di
re

ct
io

n 
of

 t
he

 1
20

-b
ar

 t
ru

ss
 (

a)
 C

as
e 

1 
(b

) 
C

as
e 

2 
(c

) 
C

as
e 

3 
 

(d
) 

C
as

e 
4 



Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony  189
 

6.2   A Truss Structure with Discrete Design Variables 

A 582-bar tower truss shown in Figure 15 with an 80 m height is chosen from 
[65] as an example of truss structure with discrete design variables. The symme-
try of the tower around x- and y-axes is considered to group the 582 members 
into 32 independent size variables. A single load case is considered consisting of 
lateral loads of 5.0 kN (1.12 kips) applied in both x- and y-directions and a verti-
cal load of −30 kN (−6.74 kips) applied in the z-direction at all nodes of the 
tower. A discrete set of 137 economical standard steel sections selected from the 
W-shape profile list based on area and radii of gyration properties is used to size 
the variables [65]. The lower and upper bounds on size variables are taken as 
6.16 in.2 (39.74 cm2) and 215.0 in.2 (1387.09 cm2), respectively. The stress limi-
tations of the members are imposed according to the provisions of ASD-AISC, as 
in the previous example. The other constraint is the limitation of node displace-
ments (no more than 8.0 cm or 3.15 in. in any direction). In addition, the maxi-
mum slenderness ratio is limited to 300 and 200 for tension and compression 
members, respectively. 

 
 

Fig. 15 A 582-bar tower truss (a) 3D view (b) Top view (c) Side view 
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Table 5 Optimal design comparison for the 582-bar truss tower   

Optimal W-shaped sections 

HPSACO   PSO [65] 

Element 

group 

Area, cm2 (in.2) Ready section  
Area, cm2 

(in.2) 
Ready section  

45.68 (7.08) W8×24 39.74 (6.16) W8×21 1 

136.13 (21.1) W12×72 149.68 (23.2) W12×79 2 

53.16 (8.24) W8×28 45.68 (7.08) W8×24 3 

109.68 (17) W12×58 113.55 (17.08) W10×60 4 

45.68 (7.08) W8×24 45.68 (7.08) W8×24 5 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 6 

92.90 (14.4) W10×49 90.97 (14.1) W8×48 7 

45.68 (7.08) W8×24 45.68 (7.08) W8×24 8 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 9 

75.48 (11.7) W12×40 85.81 (13.3) W10×45 10 

56.71 (8.79) W12×30 45.68 (7.08) W8×24 11 

136.129 (21.1) W12×72 129.03 (20) W10×68 12 

143.87 (23.3) W18×76 140.65 (21.8) W14×74 13 

92.90 (14.4) W10×49 90.97 (14.1) W8×48 14 

154.84 (24) W14×82 143.87 (22.3) W18×76 15 

58.84 (9.12) W8×31 55.90 (9.13) W8×31 16 

115.48 (17.9) W14×61 39.74 (6.16) W8×21 17 

45.68 (7.08) W8×24 127.10 (19.7) W16×67 18 

39.74 (6.16) W8×21 45.68 (7.08) W8×24 19 

75.48 (11.7) W12×40 39.74 (6.16) W8×21 20 

45.68 (7.08) W8×24 75.48 (11.7) W8×40 21 

41.87 (6.49) W14×22 45.68 (7.08) W8×24 22 

58.84 (9.12) W8×31 39.74 (6.16) W8×21 23 

53.16 (8.24) W8×28 41.87 (6.49) W10×22 24 

39.74 (6.16) W8×21 45.68 (7.08) W8×24 25 

39.74 (6.16) W8×21 39.74 (6.16) W8×21 26 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 27 

53.16 (8.24) W8×28 45.68 (7.08) W8×24 28 

68.39 (10.6) W16×36 39.74 (6.16) W8×21 29 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 30 

39.74 (6.16) W8×21 45.68 (7.08) W8×24 31 

45.68 (7.08) W8×24 45.68 (7.08) W8×24 32 

22.0607 m3 22.3958 m3 Volume  

(1346227.65 in3) (1366674.89 in3)   
 



Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony  191
 

PSO has obtained the lightest design when compared to some other meta-
heuristic algorithms such as evolution strategies, simulated annealing, tabu search, 
ant colony optimization, harmony search and genetic algorithms reported by 
Hasançebi et al. [65]. Table 5 gives the best solution vectors of the PSO and 
HPSACO algorithms [66]. The optimum result of the HPSACO approach is 22.06 
m3 while it is 22.39 m3 for the PSO algorithm. HPSACO needs nearly 8,500 
analyses to reach a solution which is significantly less than 50,000 analyses  
for PSO.  

Figure 16 compares the allowable and existing stress ratio and displacement 
value in the x direction of the HPSACO result. The maximum values of displace-
ments in the x, y and z directions are 3.1498 in., 2.9881 in. and 0.9258 in., respec-
tively. The maximum stress ratio is 93.06% as show in the figure. 
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Fig. 16 Comparison of the allowable and the existing constraints for the 582-bar truss using 
the HPSACO (a) displacement in the x direction (b) stress ratio 
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6.3   A Steel Frame Structure 

Figure 17 shows the configuration and applied loads of 3-bay 15-story frame 
structure. The displacement and AISC combined strength constraints are the per-
formance constraint of the frame. The sway of the top story is limited to 9.25 in. 
(23.5 cm). The material has a modulus of elasticity E=29,000 ksi (200,000 MPa) 
and a yield stress of fy=36 ksi (248.2 MPa). The effective length factors of the 
members are calculated as 0≥xK  for a sway-permitted frame and the out-of-plane 
effective length factor is specified as Ky=1.0. Each column is considered as  
unbraced along its length, and the unbraced length for each beam member is  
specified as one-fifth of the span length. 

 
 

Fig. 17 Topology of the 3-bay 15-story frame 
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The optimum design of the frame is obtained after 6,800 analyses by using 
HPSACO, having the minimum weight of 426.36 kN (95.85 kips). The optimum 
designs for PSOPC and PSO had the weight of 452.34 kN (101.69 kips) and 
496.68 kN (111.66 kips), respectively. Table 6 summarizes the optimal designs for 
these algorithms. 

The global sway at the top story is 11.57 cm (4.56 in.), which is less than the 
maximum sway. Figure 18 shows the inter-story drift for each story and the stress 
ratio of elements for the design of the HPSACO algorithm.  
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Fig. 18 Comparison of the allowable and the existing constraints for the 3-bay 15-story 
frame using the HPSACO (a) inter-story drift (b) stress ratio 
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Table 6 Optimal design comparison for the 3-bay 15-story frame  

Optimal W-shaped sections   Element 

HPSACO  PSOPC  PSO  group

W21×111 W26×129 W33×118 1

W18×158 W24×131 W33×263 2

W10×88 W24×103 W24×76 3

W30×116 W33×141 W36×256 4

W21×83  W24×104 W21×73 5

W24×103 W10×88 W18×86 6

W21×55 W14×74 W18×65 7

W26×114 W26×94 W21×68 8

W10×33 W21×57 W18×60 9

W18×46  W18×71 W18×65 10

W21×44 W21×44 W21×44 11

    
426.36 (95.85)452.34 (101.69)  496.68 (111.66)  Weight kN (kips)

11.57   11.36 10.42 The global sway (cm)

99.72% 99.57%  99.54%  Max. stress ratio

7   Summary and Conclusions 

Structural design optimization is a critical and challenging activity that has re-
ceived considerable attention in the last decades. Despite the existing factors that 
prevent performing optimum design, designers and owners have always desired to 
have optimal structures. To fulfill this aim, several classical methods and heuristic 
approaches have been developed. The drawbacks of the classical optimization 
methods consist of complex derivatives, sensitivity to initial values, and the large 
amount of their enumeration memory required. Thus the advantages of heuristic 
algorithms have caused a considerable increase in applying heuristic methods such 
as genetic algorithms (GAs), particle swarm optimizer (PSO), ant colony optimi-
zation (ACO) and harmony search (HS). Heuristic methods are quite suitable and 
powerful for obtaining the solution of optimization problems. These methods have 
attracted a great deal of attention because of their high potential for modeling en-
gineering problems in environments which have been resistant to solutions by 
classic techniques. 

There are several papers utilizing heuristic methods in the field of structural opti-
mization, but using an individual heuristic method has often had some drawbacks be-
cause usually each method is suitable for solving only a specific group of problems 
and preference for a special method will differ depending on the kind of the problem 
being studied. One technique overcome to these problems is to hybridize various 
methods to reach a single robust approach. In this chapter, a new hybridized approach 
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based on HS, PSO and ACO is presented which is called the heuristic particle swarm 
ant colony optimization (HPSACO). 

HPSACO utilizes a particle swarm optimization with a passive congregation 
(PSOPC) algorithm as a global search, and the idea of an ant colony approach 
worked as a local search which updates the positions of the particles by applied 
pheromone-guided mechanism. This principle is used in the HPSACO as a helping 
factor to guide the exploration and to increase the control of exploitation. In the 
HPSACO algorithm, fly-back mechanism and the harmony search are used to 
handle the constraints. Fly-back mechanism handles the problem-specific con-
straints, and the HS deals with the variable constraints. A particle in the search 
space may violate either the problem-specific constraints or the limits of the vari-
ables. Since the fly-back mechanism is used to handle the problem-specific con-
straints, the particle will be forced to fly back to its previous position regardless 
whether it violates the problem-specific constraints. If it flies out of the variable 
boundaries, the solution cannot be used even if the problem-specific constraints 
are satisfied. Although minimizing the maximum value of the velocity can make 
fewer particles violate the variable boundaries, it may also prevent the particles 
from crossing the problem-specific constraints and can cause the reduction in ex-
ploration. Using a harmony search based handling approach, this problem is dealt 
with. According to this approach, any component of the solution vector violating 
the variable boundaries can be regenerated from harmony memory. 

In optimization problems, and particularly in structural optimization, the num-
ber of iterations is highly important. The terminating criterion is a part of the 
search process which can be used to eliminate additional unnecessary iterations. 
HPSACO utilizes an efficient terminating criterion considering exactitude of the 
solutions. This terminating criterion is defined in a way that after decreasing the 
movements of particles, the search process stops. When the variation of a variable 
is less than a determined exactitude, this criterion deletes it from the virtual list of 
variables. When this list becomes empty, the search process stops. Using this  
terminating criterion, the number of required iterations decreases. 

Some changes are made in order to reach a discrete version of HPSACO. In the 
discrete method, agents are allowed to select discrete values from the permissible 
list of cross sections, and if any one of agents selects another value for a design 
variable, the discrete HPSACO changes the amount of it with the value of the 
nearest discrete cross section. Although this change is simple and efficient, its  
effect may be to reduce exploration of the algorithm. Therefore, the formula of 
particles' velocity is improved by adding an exploration term. 

In order to find an optimum design for different types of structures, the imple-
mentation of the HPSACO methodology is investigated. We start with truss struc-
tures considering a continuous domain as the search space. The second problem 
contains a large-scale truss structure with a discrete search space. Then, the effi-
ciency of the HPSACO algorithm is investigated to find optimum design of frame 
structures. The results confirm that the HPSACO algorithm is quite effective  
in finding the optimum design of structures and can be successfully applied to 
structural optimization problems with continuous or discrete variables. 
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