


Zong Woo Geem (Ed.)

Harmony Search Algorithms for Structural Design Optimization



Studies in Computational Intelligence,Volume 239

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 218. Maria do Carmo Nicoletti and Lakhmi C. Jain (Eds.)
Computational Intelligence Techniques for Bioprocess
Modelling, Supervision and Control, 2009
ISBN 978-3-642-01887-9

Vol. 219. Maja Hadzic, Elizabeth Chang,
Pornpit Wongthongtham, and Tharam Dillon
Ontology-Based Multi-Agent Systems, 2009
ISBN 978-3-642-01903-6

Vol. 220. Bettina Berendt, Dunja Mladenic,
Marco de de Gemmis, Giovanni Semeraro,
Myra Spiliopoulou, Gerd Stumme,Vojtech Svatek, and
Filip Zelezny (Eds.)
Knowledge Discovery Enhanced with Semantic and Social
Information, 2009
ISBN 978-3-642-01890-9

Vol. 221. Tassilo Pellegrini, Sören Auer, Klaus Tochtermann,
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Preface

Various structures, such as buildings, bridges, and paved roads play an important 
role in our lives. However, these construction projects require large expenditures. 
Designing infrastructure cost-efficiently while satisfying all necessary design 
constraints is one of the most important and difficult tasks for a structural engineer. 
Traditionally, mathematical gradient-based optimization techniques have been 
applied to these designs. However, these gradient-based methods are not suitable 
for discrete design variables such as factory-made cross sectional area of structural 
members. 

Recently, researchers have turned their interest to phenomenon-mimicking 
optimization techniques because these techniques have proved able to efficiently 
handle discrete design variables. One of these techniques is harmony search, an 
algorithm developed from musical improvisation that has been applied to various 
structural design problems and has demonstrated cost-savings. This book gathers all 
the latest developments relating to the application of the harmony search algorithm 
in the structural design field in order for readers to efficiently understand the full 
spectrum of the algorithm’s potential and to easily apply the algorithm to their own 
structural problems. 

This book contains six chapters with the following subjects: standard harmony 
search algorithm and its applications by Lee; standard harmony search algorithm 
for steel frame design by Degertekin; adaptive harmony search algorithm and its 
applications by Saka and Hasançebi; harmony particle swarm algorithm and its 
applications by Li and Liu; hybrid algorithm of harmony search, particle swarm & 
ant colony for structural design by Kaveh and Talatahari; and parameter calibration 
of viscoelastic and damage functions by Mun and Geem. 

As an editor of this book, I would like to express profound thanks to reviewers 
and proofreaders including Mike Dreis, John Galuardi, Teresa Giral, Sanghun Kim, 
and Ronald Wiles. Also, I would like to share the joy of the publication with my 
family (Joseph, Catarina, Victoria, Sophia, Michelle…). 

Zong Woo Geem 
Editor 
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Standard Harmony Search Algorithm for 
Structural Design Optimization 

Kang Seok Lee1 

Abstract. Most engineering optimization algorithms are based on numerical linear 
and nonlinear programming methods that require substantial gradient information 
and usually seek to improve the solution in the neighborhood of a starting point.  
These algorithms, however, reveal a limited approach to complicated real-world 
optimization problems. If there is more than one local optimum in the problem, the 
result may depend on the selection of an initial point, and the obtained optimal so-
lution may not necessarily be the global optimum. The computational drawbacks of 
numerical methods have forced researchers to rely on meta-heuristic algorithms 
based on simulations to solve optimization problems. This chapter describes a basic 
harmony search (HS) meta-heuristic algorithm-based approach for optimizing the 
size and configuration of structural systems with both discrete and continuous de-
sign variables. This basic HS algorithm is conceptualized using the musical process 
of searching for a perfect state of harmony. It uses a stochastic random search in-
stead of a gradient search so that derivative information is unnecessary. Various 
truss examples, including large-scale trusses under multiple loading conditions, are 
introduced to demonstrate the effectiveness and robustness of the basic harmony 
search algorithm-based methods, as compared to existing structural optimization 
techniques. The results indicate that the HS technique is a powerful search and  
optimization method for solving structural engineering problems compared to  
conventional mathematical methods or genetic algorithm-based approaches. 

1   Introduction 

During the last four decade, many mathematical programming methods, such as 
linear, nonlinear, and dynamic programming, have been developed and frequently 
used to solve optimization problems. These optimization methods provide a useful 
strategy to obtain global optima in simple and ideal models. However, many opti-
mization problems, including those in structural engineering, are very complex in 
nature and quite difficult to solve using these methods. In linear programming,  
errors are inevitable when a linear relationship is used to model nonlinear real 
problems. In dynamic programming, an increase in the number of variables expo-
nentially increases the number of required evaluations of the recursive functions. 
In nonlinear programming, the solution algorithm may not find the optimum if the 
functions used in computations are not differentiable; also, the selection of the ini-
tial starting values is important to ensure that the algorithm will converge to the 
global optimum and not a local optimum. 
                                                           
1 School of Architecture, Chonnam National University, Gwangju, South Korea  

Email: kslnist@chonnam.ac.kr 
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Since the 1970s, many heuristic optimization algorithms that combine rules and 
randomness imitating natural phenomena have been devised to solve difficult opti-
mization problems. These algorithms include simulated annealing, tabu search, and 
evolutionary algorithms. In 1983, Kirkpatrick et al. [1] proposed the innovative 
idea of a simulated annealing algorithm, which is based on an analogy to the physi-
cal annealing process. They modeled their approach after the stochastic thermal 
equilibrium process proposed by Metropolis et al. [2] to solve a classic combinato-
rial optimization problem (the traveling salesperson problem); good results were 
obtained. Tabu search is an iterative procedure for solving discrete combinatorial 
optimization problems that was originally suggested by Glover [3]. The basic idea 
of this algorithm is to explore the search space of all feasible solutions using a se-
quence of moves. A move from one solution to another results in the best available 
solution. However, to escape from local optima and to prevent cycling, some 
moves are classified as forbidden or tabu. Tabu moves are based on the history of 
the move sequence. Evolutionary algorithms, which are based on a principle of 
evolution (survival of the fittest) and imitate some natural phenomena (genetic in-
heritance), are basically composed of four heuristic algorithms: genetic algorithms, 
evolution strategies, evolutionary programming, and genetic programming. 

Genetic algorithms are search algorithms based on natural selection and the 
mechanisms of population genetics. The theory was proposed by Holland [4] and 
further developed by Goldberg [5] and others. Simple genetic algorithms are com-
prised of three operators; reproduction, crossover, and mutation. The main charac-
teristic of genetic algorithms is the simultaneous evaluation of many solutions, 
which differs from mathematical optimization or other heuristic methods such as 
simulated annealing or tabu searches. These and other similar methods evaluate 
only one solution at each iteration. This feature is an advantage, enabling a wide 
search and potentially avoiding convergence to a non-global optimum. Evolution 
strategies were developed to solve parameter optimization problems [6], in which 
a deterministic ranking is used to select a basic set of solutions for a new trial [7]. 
Evolutionary programming, which was originally developed by Fogel et al. [8], 
described the evolution of finite state machines to solve prediction tasks. The state 
transition tables in these machines are modified by uniform random mutations on 
the corresponding alphabet. The algorithms utilize selection and mutation as the 
main operators, and the selection process is a stochastic tournament. Genetic pro-
gramming, which is an extension of genetic algorithms, was developed relatively 
recently by Koza [9]. He suggested that the desired program should itself evolve 
during the evolution process. 

The simulation-based heuristic methods described above have powerful search-
ing abilities that can occasionally overcome several deficiencies of the mathemati-
cal methods. There are numerous applications of these heuristic optimization  
methods to various engineering optimization problems. Especially in the last dec-
ade, genetic algorithms have been used to solve various structural optimization 
problems and good results have been obtained.  These include researches by Adeli 
and Cheng  [10], Hajela [11], Jenkins [12-15], Grierson and Pak [16], Oshaki [17], 
Rajan [18], Yang and Soh [19], Galante [20], Rajeev and Krishnamoorthy [21, 
22], Koumousis and Georgious [23], Hajela and Lee [24], Adeli and Kumar [25], 
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Wu and Chow [26, 27], Soh and Yang [28], Camp et al. [29], Shrestha and 
Ghaboussi  [30], Erbatur et al. [31], and Sarma and Adeli [32].  Compared to other 
optimization methods, genetic algorithms have the advantage of imposing fewer 
mathematical requirements for solving the problems and being very effective at 
performing global searches. However, the characteristics that make genetic algo-
rithms robust also make them computationally intensive, requiring high computing 
costs; hence they are slower than other methods (Hajela [11], Haftka et al. [33], 
Jenkins [15],  and Soh and Yang [28]). From the point of view of structural de-
signers, long computing times are not acceptable. However, there are still some 
possibilities of devising new heuristic algorithms based on analogies with natural 
or artificial phenomena. 

Geem et al. [34] developed a basic harmony search (BHS) heuristic optimiza-
tion algorithm that was based on an analogy with the process of music improvisa-
tion. The harmony in music is analogous to the optimization solution vector and 
the musician's improvisations are analogous to local and global search schemes in 
optimization techniques. Although the BHS algorithm is a comparatively simple 
method, it has been successfully applied to various optimization problems includ-
ing the traveling salesperson problem, the layout of pipe networks, pipe capacity 
design in water supply networks, hydrologic model parameter calibrations, and 
optimal school bus routings. 

This chapter describes a BHS algorithm-based approach for optimizing the size 
and configuration of structural systems with both discrete and continuous design 
variables.  Various truss examples, including large-scale trusses under multiple 
loading conditions, are also presented to demonstrate the effectiveness and robust-
ness of the BHS algorithm-based methods, as compared to existing structural  
optimization techniques. Although the proposed approach is applied to truss struc-
tures, it is a general optimization procedure that can be easily used for other types 
of structures, such as frame structures, plates, and shells.  

2   Statement of the Optimization Design Problem 

Design objectives that can be used to measure design quality include minimum 
construction cost, minimum life cycle cost, minimum weight, and maximum stiff-
ness, as well as many others. Typically, the design is limited by constraints such 
as the choice of material, feasible strength, displacements, eigen-frequencies, load 
cases, support conditions, and technical constraints (e.g., type and size of available 
structural members and cross sections, etc). Hence, one must decide which pa-
rameters can be modified during the optimization process; these parameters then 
become the optimization variables. Usually, structural optimization problems in-
volve searching for the minimum of the structural weight. This minimum weight 
design is subjected to various constraints with respect to performance measures, 
such as stresses and displacements, and also restricted by practical minimum 
cross-sectional areas or dimensions of the structural members or components. If 
the design variables can be varied continuously in the optimization, the problem is 
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termed “continuous”; while if the design variables represent a selection from a set 
of parts, the problem is considered “discrete”. 

On the other hand, isotropic structures can be usually described by three differ-
ent types of design variables: (1) sizing variables, (2) geometric variables, and (3) 
topological variables. Sizing optimization is concerned with determining the cross 
section size. Configuration optimization searches for a set of geometric and sizing 
variables using a given topology. A selection from various structural types can be 
made in topology optimization. In general, size and geometric variables are  
frequently used to solve structural optimization design problems.  

This chapter considers a BHS algorithm-based approach for optimizing the size 
and configuration of structural systems with both discrete and continuous design 
variables. 

2.1   Continuous Size and Configuration Optimization 

The continuous size optimization of structural systems involves arriving at opti-
mum values for member continuous cross-sectional areas A that minimize an ob-
jective function f(x), i.e., the structural weight W. The continuous configuration 
optimization involves simultaneously arriving at optimum values for the nodal 
coordinates R and member cross-sectional areas A that minimize an objective 
function. For a given topology, the configuration optimization problem is generally 
considered to be more difficult, but it is also a more important task than pure size 
optimization because of the potential for much larger savings. Both minimum de-
signs must satisfy q inequality constraint functions that limit the design variable 
sizes and the structural responses. Thus, the problems can be stated mathematically, 
as minimizing the structural weight:  

Minimize f(x) = W(A) or W(R, A) = ii

n

i

AL∑
=1

γ    (1) 

subjected to Gj
l ≤  Gj(A) or Gj(R, A) ≤  Gj

u, j = 1,2,…,q            (2) 

where f(x) is an objective function, x is the continuous set of each design variable, 
Li = the member length and γ = the material density. 

For the continuous size optimization method presented in this chapter, the up-
per and lower bounds on the constraint function Gj(A) or Gj(R, A) in Eq. (2)  
include the following: (a) nodal coordinates (Rj

l ≤  Ri ≤  Rj
u, i = 1,…, m); (b) 

member continues cross sections (Aj
l ≤  Ai ≤  Aj

u, i = 1,…, n); (c) member stresses 

,( u
ii

l
i σσσ ≤≤ ),...,1 ni = ; (d) nodal displacements ,( u

ii
l
i δδδ ≤≤ ),...,1 mi = ; 

and (e) member buckling stress ,0( ≤≤ i
cr
i σσ ni ,...,1= ). Here, iσ and iδ are 

the member stresses and nodal displacements, respectively, calculated from the 

structural analysis; l
iR , u

iR , l
iσ , u

iσ , l
iδ , u

iδ , and cr
iσ are the constraint limita-

tions prescribed for optimization design purposes. The nodal coordinate  
constraints are required only for the continuous configuration optimization. 



Standard Harmony Search Algorithm for Structural Design Optimization 5 
 

2.2   Discrete Size and Discrete-Continuous Configuration 
Optimization 

The discrete size optimization of structural systems involves arriving at optimum 
values for discrete member cross-sectional areas A that minimize an objective 
function f(x), i.e., the structural weight W. Discrete-continuous configuration op-
timization involves simultaneously arriving at optimum values for continuous 
nodal coordinates R and discrete cross sections A that minimize the structural 
weight. Both minimum designs must satisfy q inequality constraint functions that 
limit the design variable sizes and the structural responses. The design problem is 
also expressed as Eqs. (1) and (2). 

However, x is the discrete set of each design variable, A = (A1, A2,…, An)
T is the 

sizing variable vector that consists of the cross-sectional areas chosen from a list 
of available discrete values, and R = (R1, R 2,…, R m)T is the continuous nodal co-
ordinate variable vector.  Also, W(A) and W(R, A) are the objective functions (i.e., 
the structural weight) for the discrete size or the discrete-continuous configuration 
optimizations, respectively, γ  is the material density of each member, and Ai and 

Li  are the cross-sectional area and length of the ith member. Gj(A) or Gj(R, A), 
shown in Eq. (2), are the inequality constraints for the discrete size or the discrete-
continuous configuration optimizations, and Gj

l and Gj
u are the lower and the up-

per bounds on the constraints. 
For the discrete and the discrete-continues configuration optimization methods 

presented in this chapter, the lower and upper bounds on the constraint function 

Eq. (2) include the following: (a) nodal coordinates ,( u
ii

l
i RRR ≤≤ ),...,1 mi = ; 

(b) member cross sections ),(( kAi ),...,1 ni = ; (c) member stresses 

,( u
ii

l
i σσσ ≤≤ ),...,1 ni = ; (d) nodal displacements ,( u

ii
l
i δδδ ≤≤ ),...,1 mi = ; 

and (e) member buckling stresses ,0( ≤≤ i
cr
i σσ ni ,...,1= ). Here, iσ and iδ are 

the member stresses and nodal displacements, respectively, calculated from the 

structural analysis; l
iR , u

iR , l
iσ , u

iσ , l
iδ , u

iδ , and cr
iσ are the constraint limita-

tions prescribed for optimization design purposes; and )(kAi  are the available 

discrete cross-sectional areas, i.e., )(),...,2(),1( kAAA iii  
))(...)2()1(( kAAA iii <<< .  The nodal coordinate constraints are required only 

for the discrete-continuous configuration optimization. 

3   Basic Harmony Search Algorithm-Based Structural 
Optimization and Design Procedures 

The penalty approach has frequently been employed to determine the fitness 
measure for the constrained optimization problems, described by Eqs. (1) and (2), 
because the optimum solution typically occurs at the boundary between the feasi-
ble and infeasible regions (Rajeev and Krishnamoorthy [21]; Wu and Chow [27]; 
Camp et al. [29]; Pezeshk et al. [35]; and Erbatur et al. [31]).  However, to  
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demonstrate the pure performance of the BHS algorithm-based methods proposed 
in this chapter, a rejecting strategy for the fitness measure was adopted, i.e., the 
optimum solution was approached only from the feasible region. 

Figure 1 showed the design procedure that was used to apply the BHS algo-
rithm to the continuous size optimization, the continuous configuration optimiza-
tions, the discrete size optimization, and the discrete-continuous configuration  
optimization problems. The procedure can be divided into four steps, as follows.  

3.1   Step 1: Initialization 

The optimization problem is first specified as W(A) or W(R, A) in Eq. (1). For 
continuous size optimization problems, i.e., W(A), the possible value bounds of 
the continuous design variables (Ai) , i.e., Aj

l ≤  Ai ≤  Aj
u are then initialized. For 

continuous configuration optimization problems, i.e., W(R, A), the number of con-
tinuous geometric variables (Ri) and the possible value bounds of the continuous 

variables, i.e., u
ii

l
i RRR ≤≤ are initialized.  

On the other hand, for discrete size optimization problems, i.e., W(A), the num-
ber of discrete design variables (Ai) and the set of available discrete values (D), 
i.e., D ∈{Ai(1), Ai(2),…, Ai(k)} (Ai(1) < Ai(2) < … < Ai(k)) are then initialized. For 
discrete-continuous configuration optimization problems, i.e., W(R, A), the num-
ber of continuous geometric variables (Ri) and the possible value bounds of the 

continuous variables, i.e., u
ii

l
i RRR ≤≤ are initialized, as well as the discrete  

design variables.  
The BHS algorithm parameters that are required to solve the optimization  

problem are also specified in this step. These include the harmony memory size 
(number of solution vectors in the harmony search, HMS), harmony memory con-
sidering rate (HMCR), pitch adjusting rate (PAR), and termination criterion 
(maximum number of searches). The HMCR and the PAR are parameters that are 
used to improve the solution vector.  Both are defined in Step 2. Subsequently, the 
“harmony memory” (HM) matrix, shown in Eq. (3), is randomly generated from 
the available continuous and discrete value set and/or the possible nodal coordi-
nate bounds for the optimization problems. These sets are equal to the size of the 
HM (i.e., HMS). Here, an initial HM is generated based on the FEM structural 
analysis results, subject to the constraint functions (Eq. [2]), and sorted by the ob-
jective function values (Eq. [1]). 

 

)(

)(

)(
2

1

21

22
2

2
1

11
2

1
1

HMSHMS
p

HMSHMS

p

p

f

f

f

xxx

xxx

xxx

x

x

x

HM
M

L

MLMM

L

L

⇒
⇒
⇒
⇒

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=    (3) 

 
In Eq. (3), x1, x2,…, xHMS and f(x1), f(x2),…, f(xHMS) show each solution vector for 
design variables ( A or R and A) and the corresponding objective function value 
(the structural weight), respectively. 
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Generation of initial harmony memory (HM)
Sorted by objective function f(x) = W(A) or 

W(R,A) 

Start

Initialization of optimization problemand HS algorithm parameters
f(x)=W(A) for size optimization or f(x)=W(R,A) for configuration optimization

Algorithm parameters: HMS, HMCR, PAR, maximum number of searches

FEM structural analysis

Stop

Step-1

Yes

No

Continuous and Discrete sizing variables: Ai

number of Ai, available value set for  Ai 

[i.e., Ai
l < Ai < Ai

u] for continuous sizes
[i.e., Ai(1),  Ai(2),..., Ai(k)] for discrete sizes

Continuous geometry variables: Ri

number of Ri, possible value bound for   Ri

[i.e., Ri
l < Ri < Ri

u]

Generation of a new harmony (x' = Ai or x' = Ri + Ai)
   from HM or entire possible range based on memory considerations, pitch adjustment, and 

randomization

A new harmony improvisation 
for discrete size variables (Ai): see Fig. 2

for continuous size variables ( Ai): see Fig. 3

A new harmony improvisation
for continuous variables ( Ri): see Fig. 3

Constraints
satisfied?

Step-2

Step-3

Calculation of 
f(x)=W(A) or W(R,A)

New harmony
 better than a generated 

harmony in  HM
Updating of HM

Maximum
number of searches 

satisfied?

Sorted by objective function
f(x) = W(A) or W(R,A) 

Yes

No

Yes

No

Step-4

Note : These are not required for the continuous and discrete size optimizations.  

Fig. 1 BHS algorithm-based Structural Optimization Design Procedure 

3.2   Step 2: Generation of a New Harmony 

In the HS algorithm, a new harmony vector, ),...,,( 21 pxxx ′′′=′x , is improvised 

from either the initially generated HM or the entire possible range of values. The 
new harmony improvisation proceeds based on memory considerations, pitch ad-
justments, and randomization. 

In the memory consideration process, the value of the first design variable ( 1x′ ) 

for the new vector is chosen from any value in the specified HM range 

{ HMSxxx 1
2
1

1
1 ,,, L }. Values of the other decision variables ( ix′ ) are chosen in the 
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same manner.  Here, the possibility that a new value will be chosen is indicated by 
the HMCR parameter, which varies between 0 and 1 as follows: 
 

⎩
⎨
⎧

∈′
∈′

←′
)-(1

.},,,{ 21

HMCRw.p.x

HMCRw.pxxxx
x

ii

HMS
iiii

i
X

K
 (4) 

 
where Xi is the set of the possible range of values for each design variable (A or R 
and A). The HMCR sets the rate of choosing a value from the historic values 
stored in the HM, and (1-HMCR) sets the rate of randomly choosing a value from 
the entire possible range of values (randomization process). For example, a 
HMCR of 0.90 indicates that the HS algorithm will choose the design variable 
value from historically stored values in the HM with a 90% probability, and from 
the entire possible range of values with a 10% probability. A HMCR value of 1.0 
is not recommended, because there is no chance that the solution will be improved 
by values not stored in the HM. Every component of the new harmony vector, 

),...,,( 21 pxxx ′′′=′x , is examined to determine whether it should be pitch-adjusted 

using pitch adjustment process. This procedure uses the PAR parameter that sets 
the rate of adjusting the pitch chosen from the HM as follows: 
 

Pitch adjusting decision for ←′ix
⎩
⎨
⎧

− )1( PARw.p.No

PARw.p.Yes
  (5) 

 
The pitch adjusting process is performed only after a value has been chosen from 
the HM.  The value (1-PAR) sets the rate of doing nothing. A PAR of 0.3 indi-
cates that the algorithm will choose a neighboring value with 30% × HMCR prob-
ability. If the pitch adjustment decision for ix′  is Yes, and ix′  is assumed to be 

)(lxi , i.e., the l-th element in Xi, the pitch-adjusted value of )(lxi  is 

 
←′ix xi(l + c) for discrete design variables  

←′ix α+′ix  for continuous design variables                          (6) 
 

where c is the neighboring index, c∈{-1, 1}; α is the value of )1,1(−× ubw ; bw 

is an arbitrary distance bandwidth for the continuous variable; and )1,1(−u  is a 

uniform distribution between -1 and 1. Detailed flowcharts for the new harmony 
discrete and continuous search strategies based on the BHS heuristic algorithm are 
given in Figs. 2 and 3, respectively. Note that the HMCR and PAR parameters in-
troduced in the harmony search help the algorithm find globally and locally  
improved solutions. 

3.3   Step 3: Fitness Measure and HM Update 

The new harmony improvised in Step 2 is analyzed using a FEM structural analy-
sis method, and its fitness is determined using a rejection strategy based on the 
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Number of Ai= n

i > n Stop: to Step 3

ran < HMCR
 D1=int(ran*nPVS)+1
 NDHV(i) = PVS(D1)

 D2=int(ran*HMS)+1
 D3=HM(D2,i) 
 NDHV(i)=D3

ran < PAR

ran < 0.5

D2 < HMS

Ai: Discrete size variables (i=1,2,...,n)
HMCR: Harmony memory considering rate
PAR: Pitch adjustment rate
HMS: Harmony memory size
HM(*,*): Harmony momery 
ran: Random numbers in the range 0.0 ~ 1.0
PVS(*): Possible value set for Ai  
nPVS: Number of  possible value sets for Ai

NDHV(*): A new discrete harmony vector 
                 improvised in Step 2
E1: Memory considerations
E2: Pitch adjustments
E3: Randomization

D2 = D2-1
NDHV(i) = HM(D2,i)

D2 = D2+1
NDHV(i) = HM(D2,i)

Yes

No

No

Yes

Yes
No

Yes

Yes

No Yes

No

No

E3 Process

E1 Process

E2 Process E2 Process

Start: from Step 1

D2 > 1

 

Fig. 2 A New Harmony Improvisation Flowchart For Discrete Variables (Step 2) 

Number of Ri=m

i > m Stop: to Step 3

ran < HMCR
 D3=int(ran*[Stepnum+1])

 D4=PVBlower(i)+D2*D3

 NCHV(i)=D4

 D3=int(ran*HMS)+1
 D4=HM(D3, i) 
 NCHV(i)=D4

ran < PAR

PVBupper > D5

Ri: Continuous nodal coordinates variables 
      (i=1,2,...,m)
Stepnum: Designated total number of 
               continuous variables
HMCR: Harmony memory considering rate
PAR: Pitch adjustment rate
HMS: Harmony memory size
HM(*,*): Harmony momery matrix
ran: Random numbers in the range 0.0 ~ 1.0
PVB(*): Possible value bound for Ri

NCHV(*): A new continuous harmony vector 
               improvised in Step 2
bw: An arbitrary distance bandwidth

NCHV(i)=D5

Yes

No

No

Yes

Yes

No

Yes

Yes

No

Yes

No
No

E3 Process: 
Randomization

E1 Process: Memory consideration

E2 Process: Pitch adjustments

Start: from Step 1

 D1=PVBupper(i)-PVBlower(i)
 D2=D1/Stepnum

PVBlower(i)< D5

D5=NCHV(i)-ran*bw

D5=NCHV(i)+ran*bw

NCHV(i)=D5

ran < 0.5

E2 Process: Pitch adjustments  

Fig. 3 A New Harmony Improvisation Flowchart For Continuous Variables (Step 2) 
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constraint function. If the new harmony vector is better than the worst harmony 
vector in the HM, judged in terms of the objective function value, the new har-
mony is included in the HM and the existing worst harmony is excluded from the 
HM. The HM is then sorted by the objective function value. 

3.4   Step 4: Repeat Steps 2 and 3  

The computations determine when the termination criterion is satisfied. If not, 
Steps 2 and 3 are repeated. 

4   Truss Examples 

The previously described computational procedures were implemented in a 
FORTRAN computer program that was applied to (1) the continuous size optimi-
zation, (2) the continuous configuration optimization, (3) the discrete size optimi-
zation, and (4) the discrete-continuous configuration optimization problems for 
trusses. The FEM displacement method was used to analyze the truss structures.  
Standard test truss examples were considered to demonstrate the optimization effi-
ciency of the BHS algorithm approach, as compared to current methods. 

4.1   Continuous Size Optimization Examples 

These examples include a 10-bar planar truss subjected to a single load condition, 
a 17-bar planar truss subjected to a single load condition, an 18-bar planar truss 
subjected to a single load condition, a 22-bar space truss subjected to three load 
conditions, a 25-bar space truss subjected to two load conditions, a 72-bar space 
truss subjected to two load conditions, a 200-bar planar truss subjected to three 
load conditions, and a 120-bar dome space truss subjected to a single load condi-
tion. These truss structures were analyzed using the FEM displacement method. 
For all examples presented in this study, the HS algorithm parameters were set as 
follows: harmony memory size (HMS) = 20, harmony memory consideration rate 
(HMCR) = 0.8, pitch adjusting rate (PAR) = 0.3, and maximum number of 
searches = 50,000. 

(1) Ten-bar Planar Truss 
The cantilever truss, shown in Figure 4, was previously analyzed using various 
mathematical methods by Schmit and Farshi [36], Schmit and Miura [37], Ven-
kayya [38], Gellatly and Berke [39], Dobbs and Nelson [40], Rizzi [41], Khan and 
Willmert [42], John et al. [43], Sunar and Belegundu [44], Stander et al. [45], Xu 
and Grandhi [46], and Lamberti and Pappalettere[47,48]. The material density was 
0.1 lb/in.3 and the modulus of elasticity was 10,000 ksi. The members were sub-
jected to stress limitations of 25±  ksi, and displacement limitations of 0.2±  in. 
were imposed on all nodes in both directions (x and y). No design-variable linking 
was used; thus there are ten independent design variables. In this example, two 
cases were considered: Case 1, in which the single loading condition of P1 = 100 
kips and P2 = 0 was considered; and Case 2, in which the single loading condition 
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of P1 = 150 kips and P2 = 50 kips was considered. The minimum cross-sectional 
area of the members was 0.1 in.2. 

The HS algorithm-based method was applied to each case. It found 20 different 
solution vectors (i.e., the values of the ten design-independent variables) after 
50,000 searches for both cases. Tables 1 and 2 give the best solution vector for 
Cases 1 and 2, respectively, and also provide a comparison between the optimal 
design results reported in the literature and the present work. For Case 1, the best 
HS solution vector was (30.15, 0.102, 22.71, 15.27, 0.102, 0.544, 7.541, 21.56, 
21.45, 0.100) and the corresponding objective function value (minimum weight of 
the structure) was 5,057.88 lb. For Case 2, the best HS solution vector was (23.25, 
0.102, 25.73, 14.51, 0.100, 1.977, 12.21, 12.61, 20.36, 0.100) and the correspond-
ing objective function value was 4,668.81 lb. The best solutions for Cases 1 and 2 
were obtained after approximately 20,000 and 15,000 searches, respectively. 
These searches took three and two minutes on a Pentium 600 MHz computer. The 
HS algorithm results for each case were better optimized than those by previous 
mathematical studies reported in the literature. 

 

360 in. 360 in.

360 in.

Y

X

(1)

(2)

(3)

(4)

(5)

(6)

1 2

3 4

5 6

7 8 9 10

P1 P1

P2 P2

 

Fig. 4 Ten-bar planar truss 

(2) Seventeen-bar Planar Truss 
The 17-bar planar truss, shown in Figure 5, has been studied by Khot and Berke 
[49] and Adeli and Kumar [25]. The material density was 0.268 lb/in.3 and the 
modulus of elasticity was 30,000 ksi. The members were subjected to stress limi-
tations of 50±  ksi, and displacement limitations of 0.2±  in. were imposed on all 
nodes in both directions (x and y). The single vertical downward load of 100 kips 
at node 9 was considered. No design-variable linking was used; thus there are sev-
enteen independent design variables. The minimum cross-sectional area of the 
members was 0.1 in.2. The HS algorithm was applied to the 17-bar planar truss 
with seventeen independent design variables. 
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The optimal results were compared to the earlier solutions reported by Khot 
and Berke [49] and Adeli and Kumar [25] in Table 3. Khot and Berke solved the 
problem using the optimality criterion method, and obtained a minimum weight of 
2,581.89 lb. However, Adeli and Kumar solved the problem using a variant of ge-
netic algorithms, obtaining a minimum weight of 2,594.42 lb. The HS heuristic  
algorithm-based technique found an optimum weight of 2,580.81 lb after ap-
proximately 20,000 searches that took less than three minutes. The optimal design 
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Fig. 5 Seventeen-bar planar truss 

Table 3 Optimal design comparison for the 17-bar planar truss 

Optimal cross-sectional areas (in.2) 
Variables 

Khot and Berke [49] Adeli and Kumar [25] This work 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

A1 
A2 
A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

A11 

A12 

A13 

A14 

A15 

A16 

A17 

15.930 
0.100 

12.070 
0.100 
8.067 
5.562 

11.933 
0.100 
7.945 
0.100 
4.055 
0.100 
5.657 
4.000 
5.558 
0.100 
5.579 

16.029 
0.107 

12.183 
0.110 
8.417 
5.715 

11.331 
0.105 
7.301 
0.115 
4.046 
0.101 
5.611 
4.046 
5.152 
0.107 
5.286 

15.821 
0.108 

11.996 
0.100 
8.150 
5.507 

11.829 
0.100 
7.934 
0.100 
4.093 
0.100 
5.660 
4.061 
5.656 
0.100 
5.582 

Weight lb) 2581.89 2594.42 2580.81 
Note: 1 in.2 = 6.452 cm2, 1 lb = 4.45 N. 
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obtained using the HS algorithm was slightly better than both of the previous  
design results. 
 
(3) Eighteen-bar Planar Truss 
The 18-bar cantilever planar truss, shown in Figure 6, was analyzed by Imai and 
Schmit [50] to obtain the optimal size variables. The material density was 0.1 lb/in.3 
and the modulus of elasticity was 10,000 ksi. The members were subjected to stress 
limitations of 20±  ksi. Also, an Euler bucking compressive stress limitation was 
imposed for truss member i, according to 

                                                     
2
i

i
ib

L

KEA−
=σ                                                  (7) 

where K = a constant determined from the cross-sectional geometry; E = the 
modulus of elasticity; and Li = the member length. In this study, the buckling con-
stant was taken to be K = 4. The single loading condition was a set of vertical 
loads with P = 20 kips acting on the upper nodal points of the truss, as illustrated 
in Figure 6. The cross-sectional areas of the members were linked into four 
groups, as follows: (1) A1=A4=A8=A12=A16, (2) A2=A6=A10=A14=A18, (3) 
A3=A7=A11=A15, and (4) A5=A9=A13=A17. The minimum cross sectional area was 
0.1 in.2. The HS algorithm-based method was applied to the 18-bar truss with four 
independent design variables. 

The optimal results are compared to the earlier solutions reported by Imai and 
Schmit [50] in Table 4. Imai and Schmit solved the problem using the multiplier 
method, and obtained a minimum weight of 6,430.0 lb. The HS algorithm-based 
method found an optimum weight of 6,421.88 lb after approximately 2,000 
searches that took less than one minute. The optimal design obtained using the HS 
algorithm was slightly better than the previous design obtained by Imai and 
Schmit. 
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Fig. 6 Eighteen-bar planar truss. 
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Table 4 Optimal design comparison for the 18-bar planar truss 

Optimal cross-sectional areas (in.2) 
Variables Imai and Schmit [50] This work 

1 
2 
3 
4 

A1=A4=A8=A12=A16 

A2=A6=A10=A14=A18 

A3=A7=A11=A15 

A5=A9=A13=A17 

9.998 
21.65 
12.50 
7.072 

9.980 
21.63 
12.49 
7.057 

Weight (lb) 6430.0 6421.88 
Note: 1 in.2 = 6.452 cm2, 1 lb = 4.45 N. 

(4) Twenty-two-bar Space Truss 
In the structure shown in Figure 7, each node is connected to every other node by 
a member, except for members between the fixed support nodes 5, 6, 7, and 8. The 
structure was previously studied by Khan and Willmert [42] and Sheu and Schmit 
[51] to determine the global optimum of trusses with vanishing members. In the 
example considered in this study, however, only the case with all groups of mem-
bers (non-vanishing) was considered. The modulus of elasticity and the material 
density of all members were 10,000 ksi and 0.1 lb/in.3, respectively. The twenty-
two members were linked into seven groups, as follows: (1) A1 ~ A4, (2) A5 ~ A6, 
(3) A7 ~ A8, (4) A9 ~ A10, (5) A11 ~ A14, (6) A15 ~ A18, and (7) A19 ~ A22. The truss 
members were subjected to the stress limitations shown in Table 5. Also, dis-
placement constraints of 0.2± in. were imposed on all nodes in all directions. 
Three loading conditions described in Table 6 were considered, and a minimum 
member cross sectional area of 0.1 in.2 was enforced. 

Table 7 lists the optimal values of the seven size variables obtained by the HS 
algorithm-based method, and compares them with earlier results reported by Khan 
and Willmert [42] and Sheu and Schmit [51]. The HS algorithm-based method  
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Fig. 7 Twenty-two-bar space truss. 
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achieves a design with a best solution vector of (2.588, 1.083, 0.363, 0.422, 2.827, 
2.055, 2.044) and a minimum weight of 1,022.23 lb after approximately 10,000 
searches. The optimal design obtained using the HS algorithm was slightly better 
than the results obtained by Sheu and Schmit [51], and had a minimum weight that 
was 1.2 % less than that obtained by Khan and Willmert [42]. 

Table 5 Member stress limitations for the 22-bar space truss 

Variables Compressive stress limitations (ksi) Tensile stress limitations (ksi) 
1 
2 
3 
4 
5 
6 
7 

A1 ~ A4 

A5 ~ A6 

A7 ~ A8 

A9 ~ A10 

A11 ~ A14 

A15 ~ A18 

A19 ~ A22 

24.0 
30.0 
28.0 
26.0 
22.0 
20.0 
18.0 

36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 

Table 6 Loading conditions for the 22-bar space truss 

Condition 1 Condition 2 Condition 3  
Node PX PY PZ PX PY PZ PX PY PZ 

1 
2 
3 
4 

-20.0 
-20.0 
-20.0 
-20.0 

0.0 
0.0 
0.0 
0.0 

-5.0 
-5.0 

-30.0 
-30.0 

-20.0 
-20.0 
-20.0 
-20.0 

-5.0 
-50.0 
-5.0 

-50.0 

0.0 
0.0 
0.0 
0.0 

-20.0 
-20.0 
-20.0 
-20.0 

0.0 
0.0 
0.0 
0.0 

35.0 
0.0 
0.0 

-35.0 
Note: loads are in kips 

Table 7 Optimal design comparison for the 22-bar space truss 

Optimal cross-sectional areas (in.2) 
Variables Sheu and Schmit [51] Khan and Willmert [42] This work 

1 
2 
3 
4 
5 
6 
7 

A1 ~ A4 

A5 ~ A6 

A7 ~ A8 

A9 ~ A10 

A11 ~ A14 

A15 ~ A18 

A19 ~ A22 

2.629 
1.162 
0.343 
0.423 
2.782 
2.173 
1.952 

2.563 
1.553 
0.281 
0.512 
2.626 
2.131 
2.213 

2.588 
1.083 
0.363 
0.422 
2.827 
2.055 
2.044 

Weight (lb) 1024.80 1034.74 1022.23 
Note: 1 in.2 = 6.452 cm2, 1 lb = 4.45 N. 

(5) Twenty-five-bar Space Truss 
The 25-bar transmission tower space truss, shown in Figure 8, has been size opti-
mized by many researchers. These include Schmit and Farshi [36], Schmit and 
Miura [37], Venkayya [38], Gellatly and Berke [39], Rizzi [41], Khan and Will-
mert [42], Templeman and Winterbottom [52], Chao et al. [53],  Adeli and Kamal 
[54], John et al. [43], Saka [55], Fadel and Clitalay [56], Stander et al. [45], Xu 
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and Grandhi [46], and Lamberti and Pappalettere [47,48]. In these studies, the ma-
terial density was 0.1 lb/in.3 and modulus of elasticity was 10,000 ksi. This space 
truss was subjected to the two loading conditions shown in Table 8. The structure 
was required to be doubly symmetric about the x- and y-axes; this condition 
grouped the truss members as follows: (1) A1, (2) A2 ~ A5, (3) A6 ~ A9, (4) A10 ~ 
A11, (5) A12 ~ A13, (6) A14 ~ A17, (7) A18 ~ A21, and (8) A22 ~A25. 

The truss members were subjected to the compressive and tensile stress limita-
tions shown in Table 9. In addition, maximum displacement limitations of 35.0±  
in. were imposed on every node in every direction. The minimum cross-sectional 
area of all members was 0.01 in.2.  The best HS algorithm solution vector for the 
eight design variables, obtained after approximately 15,000 searches, was (0.047, 
2.022, 2.95, 0.01, 0.014, 0.688, 1.657, 2.663). The corresponding optimum weight 
was 544.38 lb. Table 10 gives a comparison between the optimal solutions re-
ported in the literature and the present work. The HS algorithm produced a slightly 
better solution than any of the earlier mathematical studies.  
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Fig. 8 Twenty-five-bar space truss. 

Table 8 Loading conditions for the 25-bar space truss 

Condition 1 Condition 2  
Node PX PY PZ PX PY PZ 

1 
2 
3 
6 

0.0 
0.0 
0.0 
0.0 

20.0 
-20.0 
0.0 
0.0 

-5.0 
-5.0 
0.0 
0.0 

1.0 
0.0 
0.5 
0.5 

10.0 
10.0 
0.0 
0.0 

-5.0 
-5.0 
0.0 
0.0 

Note: loads are in kips 
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Table 9 Member stress limitations for the 25-bar space truss 

Variables 
Compressive 

stress limitations (ksi) 
Tensile 

stress limitations (ksi) 
1 
2 
3 
4 
5 
6 
7 
8 

A1 

A2 ~ A5 

A6 ~ A9 

A10 ~ A11 

A12 ~ A13 

A14 ~ A17 

A18 ~ A21 

A22 ~ A25 

35.092 
11.590 
17.305 
35.092 
35.092 
6.759 
6.959 

11.082 

40.0 
40.0 
40.0 
40.0 
40.0 
40.0 
40.0 
40.0 

(6)  Seventy-two-bar Space Truss 
The 72-bar space truss, shown in Figure 9, has also been size optimized by many 
researchers, including Schmit and Farshi [36], Schmit and Miura [37], Venkayya 
[38], Gellatly and Berke [39], Khan and Willmert [42], Chao et al. [53], Adeli 
and Kamal [54], Berke and Khot [57], Xicheng and Guixu [58], Erbatur et al. 
[31], Adeli and Park [59], and Sarma and Adeli [32]. In these studies, the mate-
rial density and modulus of elasticity were 0.1 lb/in.3 and 10,000 ksi, respec-
tively. This space truss was subjected to the following two loading conditions: 
Condition 1, in which PX = 5.0 kips, PY = 5.0 kips, and PZ = -5.0 kips on node 17; 
and Condition 2, in which PX = 0.0 kips, PY = 0.0 kips, and PZ = -5.0 kips on 
nodes 17, 18, 19, and 20. The structure was required to be doubly symmetric 
about the x- and y-axes. This condition divided the truss members into the fol-
lowing sixteen groups: (1) A1 ~ A4, (2) A5 ~ A12, (3) A13 ~ A16, (4) A17 ~ A18, (5) 
A19 ~ A22, (6) A23 ~ A30, (7) A31 ~ A34, (8) A35 ~ A36, (9) A37 ~ A40, (10) A41 ~ 
A48, (11) A49 ~ A52, (12) A53 ~ A54, (13) A55 ~ A58, (14) A59 ~ A66, (15) A67 ~ A70, 
and (16) A71 ~ A72. 

The members were subjected to stress limitations of 25±  ksi, and the maxi-
mum displacement of uppermost nodes was not allowed to exceed 25.0±  in. in 
the x and y directions. In this example, two cases were considered: Case1, in 
which the minimum cross-sectional area of all members was 0.1 in.2; and Case2, 
in which the minimum cross-sectional area of 0.01 in.2 was considered. 

Tables 11 and 12 show the HS algorithm’s optimal results for Cases1 and 2 
with the sixteen size variables, and compares these results with those previously 
reported in the literature. For Case1, the method proposed in this study achieved a 
design with the best solution vector of (1.790, 0.521, 0.100, 0.100, 1.229, 0.522, 
0.100, 0.100, 0.517, 0.504, 0.100, 0.101, 0.156, 0.547, 0.442, 0.590) and a corre-
sponding minimum weight of 379.27 lb after approximately 20,000 searches, 
which took ten minutes on a Pentium 600 MHz computer. For Case2, the best HS 
solution vector was (1.963, 0.481, 0.010, 0.011, 1.233, 0.506, 0.011, 0.012, 0.538, 
0.533, 0.010, 0.167, 0.161, 0.542, 0.478, 0.551) and a corresponding minimum 
weight was 364.33 lb, which were also obtained after approximately 20,000 
searches. The optimal design results for both cases obtained using the HS  
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Fig. 9 Seventy-two-bar space truss. 

approach were slightly better than all of the previous results using mathematical 
and genetic algorithms. 

On the other hand, Figure 10 showed a comparison of convergence capability 
for Case 2 between the HS result and those obtained by Sarma and Adeli [32] us-
ing the simple and fuzzy genetic algorithm-based methods. A fuzzy genetic algo-
rithm obtained a minimum weight of 364.40 lb after 1,758 structural analyses (B 
in Figure 10), while the HS algorithm obtained the same weight after 14,669 ana-
lyses (point b in Figure 10). The fuzzy controlled genetic algorithm method 
showed a better convergence capability than the present approach proposed on the 
basis of the pure HS algorithm.  The proposed HS approach outperforms a simple 
genetic algorithm-based method in terms of both the convergence capability and 
the optimal solution, as shown in Figure 10. The simple genetic algorithm ob-
tained a minimum weight of 372.40 lb after 2,776 analyses (A in Figure 10), but 
the HS approach required 1,076 structural analyses for the same weight (point a in 
Figure 10). 
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Table 11 Optimal design comparison for the 72-bar space truss (Case1) 

 Optimal cross-sectional areas (in.2) 
Schmit and Miura 

[37] 
Khan and Willmert 

[42] 

Variables 

Schmit 
and 

Farshi 
[36] 

NEW- 
SUMT 

CON- 
MIN 

Venkayya 
[38] 

Gellatly 
and 

Berke 
[39] 

 η=0.1 η=0.15 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A1 ~ A4 

A5 ~ A12 

A13 ~ A16 

A17 ~ A18 

A19 ~ A22 

A23 ~ A30 

A31 ~ A34 

A35 ~ A36 

A37 ~ A40 

A41 ~ A48 

A49 ~ A52 

A53 ~ A54 

A55 ~ A58 

A59 ~ A66 

A67 ~ A70 

A71 ~ A72 

2.078 
0.503 
0.100 
0.100 
1.107 
0.579 
0.100 
0.100 
0.264 
0.548 
0.100 
0.151 
0.158 
0.594 
0.341 
0.608 

1.885 
0.513 
0.100 
0.100 
1.267 
0.512 
0.100 
0.100 
0.523 
0.517 
0.100 
0.100 
0.157 
0.546 
0.411 
0.570 

1.885 
0.512 
0.100 
0.100 
1.268 
0.511 
0.100 
0.100 
0.523 

0.5161 
0.100 
0.113 
0.156 
0.548 
0.411 
0.561 

1.818 
0.524 
0.100 
0.100 
1.246 
0.524 
0.100 
0.100 
0.611 
0.532 
0.100 
0.100 
0.161 
0.557 
0.377 
0.506 

1.464 
0.521 
0.100 
0.100 
1.024 
0.542 
0.10 
0.10 
0.552 
0.608 
0.100 
0.100 
0.149 
0.773 
0.453 
0.342 

1.793 
0.522 
0.100 
0.100 
1.208 
0.521 
0.100 
0.100 
0.623 
0.523 
0.100 
0.196 
0.149 
0.570 
0.443 
0.519 

1.859 
0.526 
0.100 
0.100 
1.253 
0.524 
0.100 
0.100 
0.581 
0.527 
0.100 
0.158 
0.152 
0.561 
0.438 
0.532 

Weight (lb) 388.63 379.64 379.79 381.2 395.97 381.72 387.67 
Note: 1 in.2 = 6.452 cm2, 1 lb = 4.45 N. 

Table 11 (continued) 

Optimal cross-sectional areas (in.2) 

Erbatur et al. 
[31] 

Variables 

Chao 
et al. 
[53] 

Adeli 
and 

Kamal 
[54] 

Berke 
and 

Khot 
[57] 

Xicheng 
and 

Guixu 
[58] 

GAOS1 GAOS2 
This work 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A1 ~ A4 

A5 ~ A12 

A13 ~ A16 

A17 ~ A18 

A19 ~ A22 

A23 ~ A30 

A31 ~ A34 

A35 ~ A36 

A37 ~ A40 

A41 ~ A48 

A49 ~ A52 

A53 ~ A54 

A55 ~ A58 

A59 ~ A66 

A67 ~ A70 

A71 ~ A72 

1.832 
0.512 
0.100 
0.100 
1.252 
0.524 
0.100 
0.100 
0.513 
0.529 
0.100 
0.100 
0.157 
0.549 
0.406 
0.555 

2.026 
0.533 
0.100 
0.100 
1.157 
0.569 
0.100 
0.100 
0.514 
0.479 
0.100 
0.100 
0.158 
0.550 
0.345 
0.498 

1.893 
0.517 
0.100 
0.100 
1.279 
0.515 
0.100 
0.100 
0.508 
0.520 
0.100 
0.100 
0.157 
0.539 
0.416 
0.551 

1.905 
0.518 
0.100 
0.100 
1.286 
0.516 
0.100 
0.100 
0.509 
0.522 
0.100 
0.100 
0.157 
0.537 
0.411 
0.571 

1.755 
0.505 
0.105 
0.155 
1.155 
0.585 
0.100 
0.100 
0.460 
0.530 
0.120 
0.165 
0.155 
0.535 
0.480 
0.520 

1.910 
0.525 
0.122 
0.103 
1.310 
0.498 
0.110 
0.103 
0.535 
0.535 
0.103 
0.111 
0.161 
0.544 
0.379 
0.521 

1.790 
0.521 
0.100 
0.100 
1.229 
0.522 
0.100 
0.100 
0.517 
0.504 
0.100 
0.101 
0.156 
0.547 
0.442 
0.590 

Weight (lb) 379.62 379.31 379.67 380.84 385.76 383.12 379.27 
Note: 1 in.2 = 6.452 cm2, 1 lb = 4.45 N. 
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Fig. 10 Convergence history of the minimum weight for 72-bar space truss (Case2). 

(7) Two-hundred-bar Planar Truss 
The 200-bar plane truss, shown in Figure 11, has been size optimized using ma-
thematical methods by Stander et al. [45] and Lamberti and Pappalettere [47, 48]. 
All members are made of steel: the material density and modulus of elasticity 
were 0.283 lb/in.3 and 30,000 ksi, respectively. This truss was subjected to con-
straints only on stress limitations of 10±  ksi. There were three loading condi-
tions: (1) 1.0 kip acting in the positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 
48, 57, 62, and 71; (2) 10 kips acting in the negative y-direction at nodes 1, 2, 3, 4, 
5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24,…, 71, 72, 73, 74, and 75; and (3) 
conditions 1 and 2 acting together. 

The 200 members of this truss were linked into twenty-nine groups, as shown in 
Table 13. The minimum cross-sectional area of all members was 0.1 in.2  The HS 
algorithm-based method was applied to the 200-bar truss with twenty-nine inde-
pendent design variables. 

 It found 20 different solution vectors after 50,000 searches. The best result is 
compared to the earlier solutions reported by Stander et al. [45] and Lamberti and 
Pappalettere [47, 48] in Table 13. The HS algorithm-based method found an opti-
mum weight of 25,447.1 lb after approximately 48,000 searches. The optimal de-
sign obtained using the HS algorithm showed an excellent agreement with the 
previous mathematical designs reported in the literature. 

(8) One-hundred-twenty-bar Dome Truss 
The design of 120-bar dome truss, shown in Figure 12, was considered as a last 
example to demonstrate the practical capability of the HS heuristic algorithm-
based method. This dome truss was first analyzed by Soh and Yang [28] to obtain 
the optimal sizing and configuration variables (i.e., the structural configuration  
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Table 12 Optimal design comparison for the 72-bar space truss (Case2) 

Optimal cross-sectional areas (in.2) 
Sarma and Adeli [32] 

Variables 
Adeli and Park 

[59] Simple GA Fuzzy GA This work 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A1 ~ A4 

A5 ~ A12 

A13 ~ A16 

A17 ~ A18 

A19 ~ A22 

A23 ~ A30 

A31 ~ A34 

A35 ~ A36 

A37 ~ A40 

A41 ~ A48 

A49 ~ A52 

A53 ~ A54 

A55 ~ A58 

A59 ~ A66 

A67 ~ A70 

A71 ~ A72 

2.755 
0.510 
0.010 
0.010 
1.370 
0.507 
0.010 
0.010 
0.481 
0.508 
0.010 
0.643 
0.215 
0.518 
0.419 
0.504 

2.141 
0.510 
0.054 
0.010 
1.489 
0.551 
0.057 
0.013 
0.565 
0.527 
0.010 
0.066 
0.174 
0.425 
0.437 
0.641 

1.732 
0.522 
0.010 
0.013 
1.345 
0.551 
0.010 
0.013 
0.492 
0.545 
0.066 
0.013 
0.178 
0.524 
0.396 
0.595 

1.963 
0.481 
0.010 
0.011 
1.233 
0.506 
0.011 
0.012 
0.538 
0.533 
0.010 
0.167 
0.161 
0.542 
0.478 
0.551 

Weight (lb) 376.50 372.40 364.40 
364.33 

[364.40]*1 
[372.40]*2 

Number of structural 
analyses 

- 2776 1758 
19878 

[14669]*1 

[1076]*2 

Note: 1 in.2 = 6.452 cm2, 1 lb = 4.45 N. 
*1 HS obtained a weight of 364.40 lb after 14669 analyses (the result of Fuzzy GA) 
*2 HS obtained a weight of 372.40 lb after 1076 analyses (the result of Simple GA) 

optimization). In the example considered in this study, however, only sizing vari-
ables to minimize the structural weight were considered. In addition, the allowable 
tensile and compressive stresses were used according to the AISC ASD (1989) 
[60] code, as follows: 
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1(1) (2) (3) (4) (5)

(6) (8) (10) (12) (14)

(15) (16) (17) (18) (19)

(7) (9) (11) (13)

(21)

(29) (30) (31) (32) (33)

(34) (36) (38) (40) (42)

(43) (44) (45) (46) (47)

(48) (50) (52) (54) (56)

(57) (58) (59) (60) (61)

(62) (64) (66) (68) (70)

(71) (72) (73) (74) (75)

(20) (22) (24) (26) (28)(23) (25) (27)

(35) (37) (39) (41)

(49) (51) (53) (55)

(63) (65) (67) (69)

(77)(76)

Note: For the sake of clarity, not all members
           are numbered in this figure.
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Fig. 11 Two-hundred-bar planar truss. 

where E = the modulus of elasticity; Fy = the yield stress of steel;  Cc = the slen-
derness ratio ( iλ ) dividing the elastic and inelastic buckling regions 

( yc FEC /2 2π= ); iλ = the slenderness ratio ( iii rkL /=λ ); k = the effective 

length factor; Li = the member length; and ri = the radius of gyration. 
The modulus of elasticity (E) was 30,450 ksi and the material density was 

0.288 lb/in.3. The yield stress of steel (Fy) was taken as 58.0 ksi. The radius of gy-

ration (ri) can be expressed in terms of cross-sectional areas, i.e., b
ii aAr = [55]. 

Here, a and b are the constants depending on the types of sections adopted for the 
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members such as pipes, angles, and tees. In this example, pipe sections (a = 
0.4993 and b = 0.6777) were adopted for bars. All members of the dome were 
linked into seven groups, as shown in Figure 12. 

The dome was considered to be subjected to vertical loading at all the unsup-
ported joints. These were taken as -13.49 kips at node 1, -6.744 kips at nodes 2 
through 13, and -2.248 kips at the rest of the nodes. The minimum cross-sectional 
area of all members was 0.775 in.2 . In this example, two cases of displacement 
constraints were considered: no displacement constraints (Case1) and displacement 
limitations of 1969.0±  in. imposed on all nodes in x- and y-directions.  

Table 14 gives the best solution vectors and the corresponding weights for Cas-
es 1 and 2, respectively. Both design procedures obtained each optimum solution 
after approximately 35,000 searches. 
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Fig. 12 One-hundred-twenty-bar dome truss. 
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Table 14 Optimal design for the 120-bar dome truss 

Optimal cross-sectional areas (in.2) Variables 
(groups) Case1 Case2 

1 
2 
3 
4 
5 
6 
7 

3.295 
2.396 
3.874 
2.571 
1.150 
3.331 
2.784 

3.296 
2.789 
3.872 
2.570 
1.149 
3.331 
2.781 

Weight (lb) 19707.77 19893.34 
Note: 1 in.2 = 6.452 cm2, 1 lb = 4.45 N. 

4.2   Continuous Configuration Optimization Examples 

Three classical truss examples were presented to demonstrate the search efficiency 
of the continuous configuration optimization approach using BHS algorithm. Val-
ues for the BHS algorithm parameters (i.e., HMS, HMCR, and PAR) used in all 
examples were arbitrarily selected, based on those recommended by Geem [34], as 
previously stated. On the other hand, the following strategy recommended by 
Geem [34] was adopted for generating the initial HM (solution vectors) for all ex-
amples (i.e., initialization step): (1) first, 200 different feasible solution vectors 
were randomly generated from all possible variable bounds based on the FEM 
structural analysis method subject to the constraint functions; (2) better solution 
vectors judged in terms of objective function values among the generated 200 fea-
sible solutions were then selected as many as the size of the HM (i.e., HMS) for 
the initial HM of each example. 

(1) Ten-bar Plane Truss 
The 10-bar cantilever plane truss structure shown in Figure 4 is one of the most 
popular classical optimization design problems. Due to its simple configuration, 
the 10-bar truss has been used as a benchmark to verify the efficiency of various 
optimization methods. The material density of this truss was 7.875 g/cm3 (0.283 
lb/in.3) and the modulus of elasticity was 206.7 GPa (30000 ksi). Displacement 
limits of 5.08 cm (2.0 in.) were imposed on node 2 in both directions, and the lim-
iting tensile and compressive stresses in each member were 175.25 MPa (25 ksi). 
The HS algorithm parameters were as follows: the HMS was 10, the HMCR was 
0.95, the PAR was 0.3, and the maximum number of searches was 50000. 

No cross-sectional area variable linking was used, and the upper nodes, 1 and 3, 
were allowed to move in the vertical direction (Y). Thus, there were twelve inde-
pendents design variables that include ten sizing variables and two coordinate 
variables. The bounds on the member cross-sectional areas were 0.452 - 64.52 cm2 
(0.07 - 10 in2). The bounds on the node coordinates were 508 - 1270 cm 
(200 - 500 in) for both Y1 and Y3. In this example, two cases were investigated: 
Case 1, in which only the stress constraints were considered; and Case 2, in which 
both the stress and displacement constraints were considered. The single load  
condition, i.e., P1 and P2 = 444.5 kN (100 kips), was considered in each case. 
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The HS algorithm was applied to each case and the optimal results were com-
pared to earlier solutions reported by Yang and Soh [19], as shown in Table 15. 
Yang and Soh solved the problem using a pure GA-based approach, obtaining a 
weight of 19887.5 N (4471.1 lb) after 2840 structural analyses for Case 1 and 
22707.0 N (5105.0 lb) after 2080 analyses for Case 2, respectively. For Case 1, the 
HS algorithm found a minimum weight of 19747.8 N (4439.7 lb) after 2655 
searches (FEM structural analyses), which was better optimized than the value ob-
tained by Yang and Soh. Note that the number of structural analyses used in the 
present approach is also less than the method used by Yang and Soh. For Case 2, 
the HS algorithm found a minimum weight of 22291.6 N (5011.6 lb) after 5861 
searches, as shown in Table 15, which was also better optimized than the value 
obtained by Yang and Soh. Figure 13 showed a comparison of convergence capa-
bility for Case 2 between the HS result and that obtained by Yang and Soh. It is 
noteworthy to mention from Figure 13 that Yang and Soh obtained a minimum 
weight of 22707.0 N (5105.0 lb) after 2080 structural analyses using the pure GA 
approach, while the proposed HS approach obtained a weight of 22300.9 N 
(5013.7 lb) (point a in Figure 13) at the same number of analyses. 

Table 15 Optimal Result for 10-Bar Plane Truss 

Case 1 Case 2 Design variables 
Ai (cm2) and 

Ri (cm) 
Yang & 
Soh[19] 

This 
Work 

Yang & 
Soh[19] 

This 
work 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

51.48 
0.710 
53.87 
27.23 
1.161 
0.645 
37.10 
32.32 
37.05 
0.774 

51.34 
0.961 
54.32 
27.28 
0.458 
0.839 
37.03 
31.23 
36.99 
1.071 

59.35 
0.581 
54.45 
30.26 
0.484 
1.161 
37.10 
40.97 
49.23 
1.290 

62.40 
0.548 
56.16 
38.23 
0.490 
0.452 
36.14 
33.34 
48.31 
0.574 

X1 
Y1 
X3 
Y3 

1828.8a 
609.6 
914.4a 
851.7 

1828.8a 
508.26 
914.4a 
837.85 

1828.8a 
763.3 
914.4a 
846.6 

1828.8a 
511.13 
914.4a 
771.67 

Weight (N) 19887.5 19747.8 22707.0 22291.6 
[22300.9]b 

Number of  
structural analyses 2840 2655 2080  5861 

[2080]b 
aCoordinate is stationary.   bHS obtained a weight of 22300.9 N after 2080 analyses.  

(2) Eighteen-bar Plane Truss 
Figure 6 showed the initial configuration of an 18-bar cantilever plane steel truss, 
which was previously solved by Imai and Schmit [50], Felix [61], Yang [62], Soh 
and Yang [28], Rajeev and Krishnamoorthy [22], and Yang and Soh [63]. The 
cross-sectional areas of the members have been categorized into four groups, as 
follows: (1) A1=A4=A8=A12=A16, (2) A2=A6=A10=A14=A18, (3) A3=A7=A11=A15, 
and (4) A5=A9=A13=A17. The single loading condition was a set of vertical loads, 
P = 88.96 kN (20 kips), acting on the upper nodal points of the truss, as illustrated 
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Fig. 13 Convergence History of the Minimum Weight for 10-Bar Plane Truss (Case 2) 

in Figure 6. The lower nodes, 3, 5, 7, and 9, were allowed to move in any direction 
in the X-Y plane. Thus, there were a total of twelve independent design variables 
that include four sizing and eight coordinate variables. The purpose of the optimi-
zation is to design a configuration for the truss to produce a minimum design 
weight that meets both the allowable stress and the buckling constrains. The Euler 
buckling compressive stress limit for truss member i was used for the buckling 
constrains. It was computed as  
 

2/ iiib LKEA−=σ                                                (10) 

 
where K = a constant determined from the cross-sectional geometry, E = modulus 
of elasticity of the material, and Li = the member length. In this study, the buck-
ling constant was taken to be K = 4. The other design data were as follows: mod-
ulus of elasticity was 68.9 GPa (10000 ksi), material density was 2.768 g/cm3 (0.1 
lb/in.3), and the allowable tensile and compressive stresses were 137.9 MPa (20 
ksi). The bounds on the member cross-sectional areas were 22.58-116.13 cm2 
(3.5-18.0 in.2). The HS algorithm parameters were HMS = 20, HMCR = 0.90, 
PAR = 0.4, and the maximum number of searches = 50000.  Table 16 presents the 
best solution vector from the HS and also the results obtained using other mathe-
matical methods (Imai and Schmit [50] and Felix [61]) and GA-based approaches 
(Yang [62], Soh and Yang [28], Rajeev and Krishnamoorthy [22], and Yang and 
Soh [63]). The HS algorithm found a minimum weight of 20085.4 N (4515.6 lb) 
after 24805 searches, which was better optimized than the other six results re-
ported in the literature.  Figure 14 showed a comparison of convergence capability 
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between the results obtained by the GA-based approaches studied by Yang [62], 
Soh and Yang [28], and Yang and Soh [63] and the HS results. A fuzzy controlled 
GA proposed by Soh and Yang [28] obtained a minimum weight of 20157.9 N 
(4531.9 lb) after 1440 FEM structural analyses, while the HS algorithm obtained 
the same weight after 3426 analyses (point b in Figure 14). Yang and Soh [63] ob-
tained a minimum weight of 20105 N (4520 lb) after 1200 analyses using a GA 
with tournament selection, while the HS approach required 9506 analyses for the 
same weight (point a in Figure 14).  Both hybrid GA-based approaches show a 
better convergence capability than the present approach that was proposed on the 
basis of the pure HS algorithm with the rejecting strategy for the fitness measure. 
However, it should be noted that the proposed HS approach outperforms a pure 
GA method studied by Yang [62] in terms of both convergence capability and  
optimal solution. 

The pure GA obtained a minimum weight of 20250.9 N (4552.8 lb) after 3000 
analyses, but the HS approach required 2071 analyses for the same weight (point c 
in Figure 14). 

(3) Twenty five-bar space truss 
Figure 8 showed a 25-bar transmission tower space truss with an initial geometry 
that has been frequently studied in configuration optimizations using mathematical 
approaches (Vanderplaats and Moses [64];  Felix [61]; Hansen and Vanderplaats 
[65]) and GA-based approaches (Yang [62]; Soh and Yang [28]; Yang and Soh 
[63]). The tower was subjected to two loading conditions shown in Table 8. The 
material density of this truss was 2.768 g/cm3 (0.1 lb/in.3) and modulus of elastic-
ity was 68.9 GPa (10000 ksi).  All members were constrained to 275.6 MPa (40 
ksi) in both tension and compression. In addition, all member stresses were  
constrained to the Euler buckling stress, as given by Eq. (7), with the buckling 
constant K = 39.274 corresponding to tubular members with a nominal diameter-
to-thickness ratio of 100. 

The HS algorithm parameters were as follows: HMS = 20, HMCR = 0.8,  
PAR = 0.4, and the maximum number of searches = 50000. The geometric vari-
ables were selected as coordinates X4, Y4, Z4, X8, and Y8 with symmetry required 
in the X-Z and Y-Z planes. The cross sectional-areas of the members were linked 
into the eight groups shown in Figure. 8. Thus, there were a total of thirteen design 
variables that included eight sizing variables and five independent coordinate vari-
ables for two loading conditions. The lower and upper bounds on the member 
cross-sectional areas were 0.065 - 6.45 cm2 (0.01 - 1.0 in2). 

The HS algorithm-based approach was applied to the space truss. Table 17 pre-
sents the optimal results  along with those reported by Vanderplaats and Moses 
[64], Felix [61], and Hansen and Vanderplaats [64] using mathematical methods 
and Yang [62], Soh and Yang [28], and Yang and Soh [63] using GA-based ap-
proaches. After 39068 searches (FEM structural analyses), the best solution vector 
for the thirteen design variables and corresponding objective function value 
(weight of the structure) were obtained from the HS, as shown in the table. The 
HS found a minimum weight of 566.2 N (127.3 lb), which is better than the values 
obtained in all of the previous investigations. 
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Fig. 14 Convergence History of the Minimum Weight for 18-Bar Plane Truss 
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Fig. 15 Convergence History of the Minimum Weight for 25-Bar Space Truss 

Figure 15 showed a comparison of convergence capability between the HS re-
sults and those obtained by the GA-based approaches. A fuzzy controlled GA 
(Soh and Yang [28]) obtained a minimum weight of 590.9 N (132.8 lb) after 1520 
structural analyses, while 2434 analyses for the HS was required to obtain the 
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same weight (point b in Figure 15). A GA with tournament selection (Yang and 
Soh [63]) obtained a minimum weight of 584 N (131.3 lb) after 1200 analyses, 
while the HS obtained the same weight after 2902 analyses (point a in Figure 15).  
On the other hand, a pure GA method (Yang [62]) optimized a minimum weight 
of 610.3 N (137.2 lb) after 1880 analyses, but 1038 analyses for the HS approach 
was required to reach the same weight (point c in Figure 15). Hybrid GA-based 
methods proposed by Soh and Yang [28] and Yang and Soh [63] show a better 
convergence capability than the HS approach, but the convergence capability of 
the HS outperforms the pure GA (Yang [62]), as shown in the Figure 15. These 
results are similar to those shown in Figure 14 (18-bar plane truss). 

Table 17 Optimal Result for 25-Bar Space Truss 

Design vari-
ables 

Ai (cm2) & 
Ri (cm) 

Vander-
plaats & 
Moses 

[64] 

Felix 
[61] 

Hansen 
& Van-

derplaats
[64] 

Yang 
[62] 

Soh & 
Yang 
[28] 

Yang & 
Soh 
[63] 

This 
work 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

0.21 
3.65 
5.23 
0.18 
0.30 
0.63 
4.83 
3.55 

0.08 
2.67 
5.43 
0.21 
0.65 
0.78 
4.77 
3.57 

0.07 
3.14 
5.39 
0.16 
0.79 
0.54 
4.50 
3.54 

- 

0.58 
2.84 
5.81 
0.32 
0.71 
1.36 
4.52 
3.61 

- 

0.14 
2.35 
5.62 
0.25 
0.62 
0.79 
5.34 
3.70 

X4 

Y4 

Z4 

X8 

Y8 

32.8 
122.4 
247.4 
94.2 
239.0 

54.6 
122.7 
254.8 
56.1 
244.7 

60.2 
125.2 
248.2 
69.9 
244.9 

57.5 
106.7 
251.1 
39.6 
209.2 

55.8 
110.7 
246.0 
35.9 
206.1 

57.1 
124.2 
255.5 
64.0 
249.3 

51.4  
95.9  

262.9 
45.4  

198.8 

Weight (N) 593.8 571.6 570.7 610.3 590.9 584.0 

566.2 
[584.0]a 
[590.9]b 
[610.3]c 

Number of 
structural ana-

lyses 
171 - 7 1880 1520 1200 

39068 
[2902]a 
[2434]b 
[1038]c 

aHS obtained a weight of 584.0 N after 2902 analyses (the result of Yang and Soh [63]). 
bHS obtained a weight of 590.9 N after 2434 analyses (the result of Soh and Yang [28]). 
cHS obtained a weight of 610.3 N after 1038 analyses (the result of Yang [62]). 

4.3   Discrete Size Optimization Examples 

The previously described computational procedures were implemented in a 
FORTRAN computer program that was applied to discrete sizing configuration 
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optimization problems for trusses. The FEM displacement method was used to 
analyze the truss structures. 

Standard test truss examples were considered to demonstrate the discrete search 
efficiency of the HS algorithm approach, as compared to current methods. The 
cases shown in Table 18, each with a different set of HS algorithm parameters (i.e., 
HMS, HMCR, and PAR), were tested with all of the examples presented in this 
study. These parameter values were arbitrarily selected, based on the empirical 
findings by Geem [34], which determined that the HS algorithm performed well 
with 10 ≤ HMS ≤ 50, 0.7 ≤ HMCR ≤ 0.95, and 0.2 ≤ PAR ≤ 0.5. The maximum 
number of searches was set to 30,000. 

Table 18 HS Algorithm Parameters Used for All Examples 

Cases HMS HMCR PAR 
Case-1 
Case-2 
Case-3 
Case-4 
Case-5 

20 
40 
30 
30 
30 

0.9 
0.9 
0.9 
0.8 
0.9 

0.45 
0.45 
0.4 
0.3 
0.3 

(1)Twenty Five-bar Transmission Tower Space Truss 
The 25-bar transmission tower space truss, shown in Figure 8, has been optimized 
using discrete size algorithms by many researchers, including Rajeev and Krish-
namoorthy [21]), Wu and Chow [26, 27], Adeli and Park [66], Erbatur et al. [31], 
and Park and Sung [67]. In these studies, the material density was 0.1 lb/in.3 and 
modulus of elasticity was 10,000 ksi. This space truss was subjected to the follow-
ing loading condition: PX = 1.0 kips and PY = PZ = -10.0 kips acting on node 1, PX 

= 0.0 kips and PY = PZ = -10.0 kips acting on node 2, PX = 0.5 kips and PY = PZ = 
0.0 kips acting on node 3, and PX = 0.6 kips and PY = PZ = 0.0 kips acting on node 
6.  The structure was required to be doubly symmetric about the X- and Y-axes; 
this condition grouped the truss members as follows: (1) A1, (2) A2 ~ A5, (3) A6 ~ 
A9, (4) A10 ~ A11, (5) A12 ~ A13, (6) A14 ~ A17, (7) A18 ~ A21, and (8) A22 ~ A25. All 
members were constrained to 40 ksi in both tension and compression. In addition, 
maximum displacement limitations of ± 0.35 in. were imposed at each node in 
every direction. Discrete values for the cross-sectional areas were taken from the 
set D ∈{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 
1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4} (in.2), which has 
thirty discrete values.  

The HS algorithm-based discrete size optimization approach was applied to the 
space truss. Table 19 lists the HS result obtained with each set of parameters given 
in Table 16. The results reported by Rajeev and Krishnamoorthy [21], Wu and 
Chow [26, 27], and Erbatur et al. [31], obtained with GA-based methods, by Adeli 
and Park [66], obtained with the neural dynamics model, and by Park and Sung 
[67], obtained with the simulated annealing algorithm-based method, are also in-
cluded in the table. After 13,523 to 18,734 searches (FEM structural analyses), the 
best solution vector and the corresponding objective function value (the structural 
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Fig. 16 Convergence History of Minimum Weight for 25-Bar Space Truss 

weight) were obtained for all five HS cases (see Table 18). All of the HS results 
were better than the values obtained in the previous investigations. 

Figure 16 showed a comparison of the convergence capability of each HS case 
and the GA-based approaches. While the pure GA proposed by Rajeev and Krish-
namoorthy [21] obtained a minimum weight of 546.01 lb after 600 structural 
analyses, the HS cases obtained minimum weights of 504.28 to 521.04 lb after the 
same number of analyses. The steady-state GA proposed by Wu and Chow [27] 
obtained a minimum weight of 486.29 lb after 40,000 analyses, while all HS cases 
except Case 1 obtained the same weight after 2,160 to 6,850 analyses. These re-
sults suggest that the HS-based method is a powerful search and discrete size op-
timization technique, when compared to pure and steady-state GA-based methods, 
in terms of both the obtained optimal value and the convergence capability. 

(2) 72-bar Space Truss 
The 72-bar space truss, shown in Figure 9, is one of the most popular classical op-
timization design problems, and has been used as a benchmark to verify the effi-
ciency of various optimization methods. The majority of these studies have as-
sumed that the cross-sectional areas (size variables) were continuous. However, 
Wu and Chow [27] optimized this space structure with discrete cross-sectional ar-
eas using the steady-state GA-based method. In this example, the material density 
and modulus of elasticity were 0.1 lb/in.3 and 10,000 ksi, respectively. The space 
truss was subjected to the following two loading conditions: Condition 1, in which 
PX = 5.0 kips, PY = 5.0 kips, and PZ = -5.0 kips on node 17; and Condition 2, in 
which PX = 0.0 kips, PY = 0.0 kips, and PZ = -5.0 kips on nodes 17, 18, 19, and 20. 
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Table 20 Available Discrete Cross-Sections 

No. Areas No. Areas No. Areas No. Areas 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0.111 
0.141 
0.196 
0.250 
0.307 
0.391 
0.442 
0.563 
0.602 
0.766 
0.785 
0.994 
1.000 
1.228 
1.266 
1.457 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

1.563 
1.620 
1.800 
1.990 
2.130 
2.380 
2.620 
2.630 
2.880 
2.930 
3.090 
3.130 
3.380 
3.470 
3.550 
3.630 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

3.840 
3.870 
3.880 
4.180 
4.220 
4.490 
4.590 
4.800 
4.970 
5.120 
5.740 
7.220 
7.970 
8.530 
9.300 

10.850 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

11.500 
13.500 
13.900 
14.200 
15.500 
16.000 
16.900 
18.800 
19.900 
22.000 
22.900 
24.500 
26.500 
28.000 
30.000 
33.500 

Note: cross-sectional areas are in in.2. 
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Fig. 17 Convergence History of Minimum Weight for 72-Bar Space Truss 

The structure was required to be doubly symmetric about the X- and Y-axes. This 
condition divided the truss members into the following sixteen groups: (1) A1 ~ A4, 
(2) A5 ~ A12, (3) A13 ~ A16, (4) A17 ~ A18, (5) A19 ~ A22, (6) A23 ~ A30, (7) A31 ~ A34, 
(8) A35 ~ A36, (9) A37 ~ A40, (10) A41 ~ A48, (11) A49 ~ A52, (12) A53 ~ A54, (13) A55 ~ 
A58, (14) A59 ~ A66, (15) A67 ~ A70, and (16) A71 ~ A72. The members were subjected 
to stress limitations of 25±  ksi, and the maximum displacement of the uppermost 
nodes was not allowed to exceed 25.0± in. for each node, in all directions. In this 
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example, the available discrete values for the cross-sectional areas were chosen 
from the sixty-four discrete values listed in Table 20. 

Table 21 gives each HS optimal result for the 72-bar space truss, along with 
several continuous optimal results and the results reported by Wu and Chow [27] 
using the GA-based discrete optimization method. The best minimum weight of 
390.30 lb was obtained using the Case 3 parameters after 21,901 searches (FEM 
structural analyses). The results for each HS case shown in the table were  
better than the previous discrete design results reported by Wu and Chow [27]. 
Figure 17 showed a comparison of the convergence capability of each HS case 
and the steady-state GA-based method (Wu and Chow). Wu and Chow obtained a 
minimum weight of 427.2 lb after 60,000 structural analyses using a four-point 
crossover operator, while the proposed HS approach obtained the same weight af-
ter 3,711 to 7,462 analyses. The HS approach therefore outperformed the steady-
state GA-based method, in terms of both the obtained optimal value and the  
convergence capability. 

4.4   Discrete-Continuous Configuration Optimization Examples 

Standard test truss examples were considered to demonstrate the discrete-
continuous search efficiency of the BHS algorithm approach, as compared to  
current methods. The cases shown in Table 18, each with a different set of HS al-
gorithm parameters (i.e., HMS, HMCR, and PAR), were tested with all of the ex-
amples in this section. These parameter values were arbitrarily selected, based on 
the empirical findings by Geem [34], which determined that the HS algorithm per-
formed well with 10 ≤ HMS ≤ 50, 0.7 ≤ HMCR ≤ 0.95, and 0.2 ≤ PAR ≤ 0.5. The 
maximum number of searches was set to 30,000 for the first example and 80,000 
for the second example. 

(1) Twenty Five-bar Space Truss 
The 25-bar transmission tower space truss shown in Figure 8, which was previ-
ously studied by Wu and Chow [26] using the GA-based method, was also  
analyzed to optimize both the sizes of the discrete members and the continuous 
geometric variables. The design details, such as the material properties, constraints, 
loading condition, truss member groups, and set of available discrete cross sections, 
were the same as those used in section 4.3(1). For the configuration optimization, 
the geometric variables of the structure were selected as coordinates X4, Y4, Z4, X8, 
and Y8, with symmetry required in X-Z and Y-Z planes. Hence, there were thirteen 
independent design variables, including the eight sizing variables given in section 
4.3(1) and five geometric variables. The side constraints for the geometric vari-
ables, i.e., the lower and upper bounds on the nodal coordinates, were 20 ≤ X4 ≤ 60, 
40 ≤ Y4 ≤ 80, 90 ≤ Z4 ≤ 130, 40 ≤ X8 ≤ 80, and 100 ≤ Y8 ≤ 140 (in.). 

The HS-based discrete-continuous configuration optimization method was applied 
to the 25-bar space truss using each set of parameters shown in Table 18.  The algo-
rithm found the best solution vector (i.e., the values of the eight sizing variables and 
five geometric variables) with each set of parameters within 30,000 searches.  
Table 22 gives the best solution and the corresponding minimum structural weight for 
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each case, and also provides a comparison between the optimal design result reported 
by Wu and Chow [26] and the present work.  The best minimum weight of 123.77 lb 
was obtained using the Case 5 parameters after 8,902 searches (structural analyses), 
and this minimum weight converged remarkably after only 2,000 searches.  The re-
sults from each HS case were better than the previous design result reported by Wu 
and Chow, and the HS best result using the Case 5 parameters produced a weight  
saving of 10%, as compared to the GA-based method proposed by Wu and Chow.  

The configuration optimization achieved an amazing optimal weight saving of 
70%, as compared to the pure HS size optimization, which obtained a best  
minimum weight of only 484.85 lb, as shown in Table 19. 

Table 22 Optimal Results of 25-Bar Space Truss 

HS results Design variables 
Ai (in.2) & Ri (in.) Case-1 Case-2 Case-3 Case-4 Case-5 

Wu & Chow 
[26] 

1 
2 
3 
4 
5 
6 
7 
8 

A1 

A2 ~ A5 

A6 ~ A9 

A10 ~ A11 

A12 ~ A13 

A14 ~ A17 

A18 ~ A21 

A22 ~ A25 

0.1 
0.2 
0.9 
0.1 
0.1 
0.1 
0.1 
1.2 

0.1 
0.1 
1.0 
0.1 
0.1 
0.1 
0.4 
0.7 

0.1 
0.2 
0.9 
0.1 
0.1 
0.2 
0.2 
0.8 

0.2 
0.2 
1.0 
0.1 
0.2 
0.1 
0.1 
1.0 

0.2 
0.1 
0.9 
0.1 
0.1 
0.1 
0.2 
1.0 

0.1 
0.2 
1.1 
0.2 
0.3 
0.1 
0.2 
0.9 

1 
2 
3 
4 
5 

X4 

Y4 

Z4 

X8 

Y8 

31.64 
66.30 

102.22 
40.00 

125.74 

28.54 
55.18 

127.80 
43.02 

136.66 

29.51 
56.76 
130.0 
41.74 
133.62 

27.94 
55.21 

123.70 
43.63 

130.83 

31.88 
53.57 

126.35 
40.43 

130.64 

41.07 
53.47 

124.60 
50.80 

131.48 

Weight (lb) 

129.34 
[138.10]a 

[130.40]b 

[129.53]c 

[129.36]d 

123.81 
[152.10]a 

[140.63]b 

[134.29]c 

[124.92]d 

126.07 
[154.05]a 

[141.65]b 

[131.71]c 

[131.03]d

126.74 
[168.09]a 

[146.68]b 

[133.87]c 

[128.16]d 

123.77 
[137.79]a 

[124.28]b 

[123.86]c 

[123.80]d 

136.20 

Number of 
structural analyses 

29,290 9,646 23,100 19,833 8,902 - 
a The structural weights obtained after 1,000 analyses. 
b The structural weights obtained after 2,000 analyses. 
c The structural weights obtained after 3,000 analyses. 
d The structural weights obtained after 8,000 analyses. 

(2) Forty Seven-bar Planar Power Line Tower 
The 47-bar planar power line tower design, shown in Figure 18, was the last ex-
ample used to demonstrate the practical capability of the HS algorithm-based 
structural optimization method. This tower was previously analyzed by Felix [61] 
and Hansen and Vanderplaats [65] to obtain optimal continuous size and geomet-
ric variables (i.e., a continuous configuration optimization). In this problem, the 
structure had forty-seven members and twenty-two nodes, and was symmetric 
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about the Y-axis. All members were made of steel, and the material density and 
modulus of elasticity were 0.3 lb/in.3 and 30,000 ksi, respectively. 

This tower was designed for three separate load conditions: (1) 6.0 kips acting 
in the positive X-direction and 14.0 kips acting in the negative Y-direction at nodes 
17 and 22, (2) 6.0 kips acting in the positive X-direction and 14.0 kips acting in 
the negative Y-direction at node 17, and (3) 6.0 kips acting in the positive X-
direction and 14.0 kips acting in the negative Y-direction at node 22. The first 
condition represented the load imposed by two power lines attached to the tower 
at an angle. The second and third conditions represented cases that occur when 
one of the two lines snaps. 

The structure was subjected to both stress and buckling constraints. The stress 
constraints were 15.0 ksi in compression and 20.0 ksi in tension. The Euler buck-
ling compressive stress limit for each member i was used for the buckling con-
straints. This was computed as  

 

)47,...,1(
2

=−= i
L

KEA

i

icr
iσ                                    (11) 

 
where K is a constant determined from the cross-sectional geometry, E is the 
modulus of elasticity of the material, and Li is the member length. In this study, 
the buckling constant was K = 3.96. 

The cross-sectional areas of the members were categorized into twenty-seven 
groups, as follows: (1) A1 = A3, (2) A2 = A4, (3) A5 = A6, (4) A7, (5) A8 = A9, (6) A10, 
(7) A11 = A12, (8) A13 = A14, (9) A15 = A16, (10) A17 = A18, (11) A19 = A20, (12) A21 = 
A22, (13) A23 = A24, (14) A25 = A26, (15) A27, (16) A28, (17) A29 = A30, (18) A31 = A32, 
(19) A33, (20) A34 = A35, (21) A36 = A37, (22) A38, (23) A39 = A40, (24) A41 = A42, (25) 
A43 , (26) A44 = A45, and (27) A46 = A47. The independent geometric variables were 
X2, X4, Y4, X6, Y6, X8, Y8, X10, Y10, X12, Y12, X14, Y14, X20, Y20, X21, and Y21. The geo-
metric variables were linked to maintain symmetry about the Y-axis. Nodes 1 and 2 
were required to remain at Y = 0.0, and the coordinates of nodes 15, 16, 17, and 22 
were not changed. There were forty-four independent design variables, including 
twenty-seven sizing variables and seventeen coordinate variables.  

In this example, the cross-sectional areas were chosen from the sixty-four dis-
crete values listed in Table 20, and a pure discrete sizing variable problem (with 
fixed geometry) was also optimized for comparison. Table 23 gives the optimal 
results obtained using each set of HS parameters for the discrete-continuous con-
figuration optimization, along with the optimal results for the continuous configu-
ration problem. The best pure discrete size result, which was obtained using the 
Case 3 parameters, is also listed in the table. After 73,257 to 76,937 searches 
(structural analyses), the best discrete-continuous solution vector and the corre-
sponding objective function value were obtained for each HS case. The best 
minimum weight of 2,020.78 lb was obtained using the Case 1 parameters after 
73,771 searches, and this minimum weight converged remarkably after 40,000 
searches. The discrete-continuous configuration optimization produced a consid-
erable weight saving of 16%, as compared to the pure discrete size optimization, 
which obtained a minimum weight of 2,396.8 lb. 
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Table 23 Optimal Results of 47-Bar Planar Power Line 

HS results Variables 
Ai (in.2) & Ri 

(in.) 
Pure Size 
Case-3* Case-1 Case-2 Case-3 Case-4 Case-5 

Felix** 
[61] 

Han. 
& Van.** 

[65] 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

A1 = A3 

A2 = A4 

A5 = A6 

A7 

A8 = A9 

A10 

A11 = A12 

A13 = A14 

A15 = A16 

A17 = A18 

A19 = A20 

A21 = A22 

A23 = A24 

A25 = A26 

A27 

A28 

A29 = A30 

A31 = A32 

A33 

A34 = A35 

A36 = A37 

A38 

A39 = A40 

A41 = A42 

A43 

A44 = A45 

A46 = A47

3.840 
3.380 
0.766 
0.141 
0.785 
1.990 
2.130 
1.228 
1.563 
2.130 
0.111 
0.111 
1.800 
1.800 
1.457 
0.442 
3.630 
1.457 
0.391 
3.090 
1.457 
0.196 
3.840 
1.563 
0.196 
4.590 
1.457 

2.620 
2.630 
1.228 
0.196 
1.000 
1.620 
1.800 
0.785 
1.000 
1.563 
0.391 
0.766 
1.228 
1.228 
1.228 
0.196 
2.930 
0.994 
0.111 
3.470 
1.000 
0.111 
3.380 
1.228 
0.111 
3.380 
0.994 

3.550 
3.090 
0.766 
0.141 
1.000 
1.228 
1.990 
1.000 
1.228 
1.800 
0.602 
0.994 
1.457 
1.457 
1.228 
0.250 
2.880 
1.228 
0.111 
2.880 
1.000 
0.111 
3.130 
1.266 
0.111 
3.470 
1.563 

3.130 
3.090 
1.000 
0.111 
0.994 
1.228 
2.130 
0.785 
1.228 
1.990 
0.785 
0.994 
1.457 
1.457 
1.000 
0.111 
2.880 
0.994 
0.141 
3.130 
1.228 
0.307 
3.380 
1.000 
0.111 
3.630 
1.266 

3.090 
2.880 
0.994 
0.141 
1.228 
1.620 
2.380 
0.602 
1.228 
1.620 
0.563 
1.457 
1.228 
1.228 
1.457 
0.141 
3.130 
0.994 
0.111 
3.380 
1.000 
0.111 
3.470 
1.228 
0.250 
3.470 
0.994 

2.930 
2.630 
1.228 
0.141 
0.994 
1.800 
2.380 
0.602 
0.994 
1.620 
0.602 
1.228 
1.228 
1.228 
1.457 
0.196 
3.130 
0.766 
0.111 
3.550 
1.000 
0.111 
3.380 
1.000 
0.111 
3.470 
1.266 

2.73 
2.47 
0.73 
0.21 
0.94 
1.08 
1.69 
0.69 
1.06 
1.41 
0.26 
0.81 
1.06 
1.05 
0.82 
0.30 
2.77 
0.66 
0.21 
2.90 
0.27 
1.41 
3.43 
0.99 
0.17 
3.65 
1.01 

2.42 
2.35 
0.82 
0.10 
0.86 
1.15 
1.77 
0.67 
0.86 
1.24 
0.33 
1.22 
0.93 
0.86 
0.69 
0.15 
2.46 
0.90 
0.10 
2.74 
0.92 
0.10 
2.94 
1.13 
0.10 
3.12 
1.10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

-X1=X2 
-X3= X4 
Y3=Y4 
-X5=X6 
Y5=Y6 
-X7=X8 
Y7=Y8 

-X9=X10 
Y9=Y10 

-X11=X12

Y11=Y12 
-X13=X14

Y13=Y14 
-X18=X21

Y18=Y21 
-X19=X20

Y19=Y20 

60.0* 
60.0* 

120.0* 
60.0* 

240.0* 
60.0* 

360.0* 
30.0* 

420.0* 
30.0* 

480.0* 
30.0* 

540.0* 
90.0* 

600.0* 
30.0* 

600.0* 

98.9 
80.9 
114.8 
62.8 
236.9 
51.3 
315.9 
47.9 
387.4 
50.3 
477.3 
41.4 
521.4 
92.5 
615.3 
14.3 
596.5 

89.4 
83.1 

111.7 
74.4 

234.9 
59.5 

339.3 
40.7 

429.6 
35.2 

455.3 
34.4 

505.7 
83.9 

609.2 
18.4 

586.4 

85.9 
80.9 
115.4 
61.6 
233.9 
55.4 
319.4 
46.9 
409.9 
35.3 
471.8 
36.6 
504.9 
84.8 
606.8 
17.1 
582.0 

97.7 
80.9 
114.1 
60.1 
225.2 
49.2 
323.1 
44.4 
392.1 
38.1 
477.3 
40.1 
519.2 
91.3 
620.9 
6.9 

580.7 

91.6 
80.9 
122.9 
61.6 
238.4 
47.6 
327.9 
41.1 
394.1 
42.7 
476.6 
42.4 
504.7 
84.7 
615.5 
3.2 

569.6 

90.0 
90.0 

123.4 
83.4 

244.5 
70.5 

355.1 
60.0 

425.0 
58.2 

478.0 
59.6 

519.5 
96.9 

633.7 
15.0 

607.6 

107.1 
91.2 

122.8 
74.2 

241.4 
65.5 

324.6 
57.1 

400.4 
49.3 

472.3 
47.4 

507.5 
83.3 

636.0 
3.9 
586.5 

Weight 
(lb) 

2,396.8 
[2,471.1]a 

[2,434.3]b 

[2,407.7]c 

2,020.78 
[2,428.6]a 

[2,198.1]b 

[2,066.7]c 

2,116.14 
[2,608.2]a

[2,339.8]b

[2,195.2]c

2,091.21 
[2,580.5]a 

[2,361.1]b 

[2,189.5]c

2,096.35 
[2,735.43]a

[2,421.92]b

[2,225.39]c

2,056.77 
[2,468.82]a

[2,269.06]b

[2,165.42]c

1,904.0 1,850.4 

Number of 
analyses 45,557 73,771 76,937 74,721 76,828 73,257 - - 

* Coordinate is stationary. ** The results of continuous configuration optimizations. 
 a  Structural weights obtained after 10,000 analyses. 
 b 

 Structural weights obtained after 20,000 analyses. 
c  Structural weights obtained after 40,000 analyses. 
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Fig. 18 47-Bar Planar Power Line Tower 

5   Conclusion Remarks 

The HS meta-heuristic algorithm was conceptualized using the musical process of 
searching for a perfect state of harmony. Compared to gradient-based mathemati-
cal optimization algorithms, the HS algorithm imposes fewer mathematical re-
quirements to solve optimization problems and does not require initial starting 
values for the decision variables. 

The HS algorithm uses a stochastic random search [69, 70] based on the har-
mony memory considering rate (HMCR) and pitch adjusting rate (PAR), which ef-
fectively guide a global search, and calculus-based derivative information is  



46 K.S. Lee
 

unnecessary. Furthermore, the HS algorithm generates a new vector after consid-
ering all of the existing vectors based on the HMCR and the PAR, rather than con-
sidering only two (parents) as in genetic algorithms. These features increase the 
flexibility of the HS algorithm and produce better solutions. This chapter pre-
sented the original HS algorithm-based approach for optimizing the size and  
configuration of structural systems with both discrete and continuous design  
variables. 

Various truss examples, including large-scale trusses under multiple loading 
conditions, are also presented to demonstrate the effectiveness and robustness of 
the BHS algorithm-based methods, as compared to existing structural optimization 
techniques. The numerical examples revealed that the proposed BHS algorithm-
based search strategy was capable of solving size and configuration optimization 
problems with both discrete and continuous design variables Optimal weights of 
structures obtained using the proposed BHS algorithm approach may yield better 
solutions than those obtained using conventional mathematical algorithm-based 
approaches or genetic algorithm-based approaches. The convergence capability 
results revealed that the proposed BHS approach outperformed the simple genetic 
algorithm-based method, while the fuzzy controlled genetic algorithm methods 
were better than the HS approach. Note that the HS approach was proposed on the 
basis of the pure HS algorithm, and is a powerful search and optimization method 
for solving the discrete and continuous sizing and configuration variables of the 
structures compared to the simple genetic algorithm-based method in term of both 
the obtained optimal solution and the convergence capability. Although the pro-
posed approach is applied to truss structures, it is a general optimization procedure 
that can be easily used for other types of structures, such as frame structures, 
plates, and shells. 
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Optimum Design of Steel Frames via Harmony 
Search Algorithm 

S.O. Degertekin1 

Abstract. A harmony search algorithm is presented for optimum design of planar 
and space steel frames in this chapter. Harmony search (HS) is a meta-heuristic 
search method. It bases on the analogy between natural musical performance 
process and searching the solutions to optimization problems. The design algo-
rithm aims to obtain minimum weight frames by selecting a standard set of steel 
sections. Strength constraints of AISC Load and Resistance Factor Design 
(LRFD) specification, displacement constraints and also size constraint for col-
umns were imposed on frames. The effectiveness and robustness of harmony 
search algorithm, in comparison with genetic algorithm, simulated annealing and 
colony optimization based methods, were verified using three planar and two 
space steel frames. The comparisons showed that the harmony search algorithm 
yielded lighter designs for the presented examples. 

1   Introduction 

Computer-aided optimization has been used to obtain more economical designs 
since 1970s. Numerous algorithms have been developed for accomplishing the op-
timization problems in the last four decades. The early works on the topic mostly 
use mathematical programming techniques or optimality criteria with continuous 
design variables. These methods utilize gradient of functions to search the design 
space, but they are prone to converge locally optimum solutions. Furthermore, 
they are largely suitable for optimization problems with continuous design vari-
ables and they are not good enough for problems with discrete design variables. 
However, the availability of standard steel sections and their limitations for con-
struction and manufacturing reasons necessitate that design variables selections be 
made from standard steel section lists recommended by design codes. 

A number of articles were reported for the optimum design of structural systems 
[1-5]. A few articles deal with the optimum design of structures subjected to actual 
design constraints of code specifications [6-9]. Calculus-based and optimality  
criteria methods with continuous design variables were used in all these articles. 

Today’s competitive world has forced the engineers to realize more economical 
designs and designers to search/develop more effective optimization techniques. 
As a result, heuristic search methods emerged in the first half of 1990s. Many  
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heuristic search algorithms have been applied to various optimum design problems 
since then. Genetic algorithms (GAs), simulated annealing (SA) and ant colony 
optimization (ACO) that appeared as optimization tools are quite effective in  
obtaining the optimum solution of discrete optimization problems. One of the  
applications of heuristic search methods is optimum design of steel frames.   

Broadly speaking, all heuristic search algorithms are inspired from natural phe-
nomenon. The name of each heuristic method is indicative of its underlying princi-
ple. GAs are based on evolution theory of Darwin’s. They were proposed by  
Holland [10]. The main principle of GAs is the survival of robust ones and the 
elimination of the others in a population. GAs are able to deal with discrete opti-
mum design problems and do not need derivatives of functions, unlike classical op-
timization. However, the procedure for the genetic algorithm is time consuming 
and the optimum solutions may not be global ones, but they are feasible both 
mathematically and practically. GAs have been employed to solve many structural 
optimization problems since 1990s. They were used for the optimum design of pla-
nar/space trusses and frames [11-20]. GAs were also used to obtain optimum de-
sign of semi-rigid steel frames under the actual constraints of design codes [21-25].  

SA is an accepted local search optimization method. Local search is an emerg-
ing paradigm for combinatorial search which has recently been shown to be very 
effective for a large number of combinatorial problems. It is based on the idea of 
navigating the search space by iteratively stepping from one solution to one of its 
neighbours, which are obtained by applying a simple local change to it. The SA 
algorithm is inspired by the analogy between the annealing of solids and searching 
the solutions to optimization problems. Annealing is a thermal process applied to 
solids by heating up them to a maximum temperature value at which all molecules 
of the solid crystal randomly arrange themselves in the liquid phase. The tempera-
ture of the molten crystal falls slowly later on. The crystalline structure becomes 
very tidy if the maximum temperature is quite high and the cooling is performed 
slowly enough. In this case, all molecules arrange themselves in the lowest energy 
(ground state). An analogy between the annealing and the optimization can be es-
tablished in the following way: the energy of the solid denotes the objective (cost) 
function while the different states (configurations) during the cooling represent the 
different solutions (designs) throughout the optimization process. SA was devel-
oped by Metropolis et al. [26] and proposed by Kirkpatrick et al. [27] for optimi-
zation problems. Detailed explanation and different applications about SA can be 
found in the book by van Laarhoven and Aarts [28]. SA was also applied to the 
optimum design of steel frames under the actual design constraints and loads of 
code specifications [29-34]. 

ACO is an application of ant behaviour to the computational algorithms and is 
able to solve discrete optimum structural problems. It also has additional artificial 
characteristics such as memory, visibility and discrete time. ACO was originally 
put forward by Dorigo et al. [35] for optimization problems. The applications of 
ACO to the structural optimization were about the optimal design of planar/space 
trusses and frames [36-38].  

A new meta-heuristic search algorithm called harmony search has been devel-
oped recently. Harmony search (HS) bases on the analogy between the perform-
ance process of natural music and searching for solutions to optimization  
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problems. HS was developed by Geem et al. [39] for solving combinatorial opti-
mization problems. HS can be easily programmed and adopted for engineering 
problems. Although HS is a relatively new heuristic algorithm, it has been applied 
to a diverse range of engineering problems. These are: river flood model [40], a 
conceptual rainfall-runoff model considering seasonal variation [41], vehicle rout-
ing [42], optimal design of water distribution networks [43], optimal scheduling of 
multiple dam system [44], ecological optimization [45], bandwidth-delay-
constrained least-cost multicast routing [46] and minimization for slope stability 
analysis [47]. As regards the using of HS in the optimization of structural systems, 
the following articles can be considered:  Lee and Geem [48] used HS algorithm 
for planar/space truss optimization with continuous design variables, Lee et al. 
[49] optimized the truss structures with discrete design variables, Lee and Geem 
[50] applied the HS algorithm for continuous engineering optimization, Saka 
[51,52] presented the HS algorithm for optimum geometry design of geodesic 
domes and steel frames. Degertekin [53,54] reported optimized designs for pla-
nar/space steel frame structures under the actual design constraints and loads of 
code specifications using HS algorithm.  

The main differences between HS and GA are summarized as: (i) HS generates 
a new design considering all existing designs, while GA generates a new design 
from a couple of chosen parents by exchanging the artificial genes; (ii) HS takes 
into account each design variable independently. On the other hand, GA considers 
design variables depending upon building block theory [55]. (iii) HS does not 
code the parameters, whereas GA codes the parameters. That is, HS uses real 
value scheme, while GA uses binary scheme (0 and 1). The main differences be-
tween HS and SA are also summarized as: (i) HS obtains a new design consider-
ing all existing designs as mentioned above, while SA generates a new design 
considering few neighbour designs of current design. (ii) HS preserves better de-
signs in its memory whereas SA does not have memory facility. HS has following 
advantages in comparison with ACO: (i) ACO develops new designs considering 
the collective information obtained from the pheromone trails of ants, while HS 
develops the new designs considering the former designs stored in its memory, 
similar to ACO, but it also takes into account all the design variable databases 
with a predetermined probability. This facility provides a chance to improve the 
design by the values not stored in HS memory. (ii) Local search process is applied 
to each other design with a predetermined probability in the HS, whereas ACO 
uses local search for only some elite designs. (iii) HS updates its memory after 
each design is generated. Therefore, the next design is obtained using updated 
harmony memory. On the other hand, ant colony is updated after as many designs 
as the number of ants in the colony are performed. These differences provide a 
more effective and powerful approach for HS than GA, SA and ACO.  

In this chapter, the HS algorithm is applied to optimum design of planar/space 
steel frames under the actual design constraints of code specifications AISC-
LRFD [56]. The design algorithm aims to obtain minimum weight frames by se-
lecting a standard set of steel sections such as American Institute of Steel Con-
struction (AISC) wide-flange (W) shapes. Strength constraints of AISC Load and 
Resistance Factor Design (LRFD) specification, displacement constraints and  
also size constraint for columns were imposed on frames. The versatility and  
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robustness of HS algorithm, when compared to GA, SA and ACO based algo-
rithms, were verified using 15-member, 30-member, 168-member planar frames 
and 8-member, 84-member space frames taken from current literature. 

The formulations of the optimum design problem are presented in section 2. 
The basis of the HS algorithm, which addresses steel frames, is clarified in  
Section 3. Optimum design using HS algorithm is explained in section 4.  Section 
5 proposes the HS algorithm for optimum design of steel frames. Several exam-
ples of planar and space steel frames are given in section 6. Finally, section 7 
draws some concluding remarks on this research. 

2   The Formulations of the Optimum Design Problem  

Formulation of an optimum design problem involves transcribing a verbal 
description of the problem into a well-defined mathematical statement [57]. A set 
of variables to describe the design, called design variables, are given in the 
formulation. All designs have to satisfy a given set of constraints which include 
limitations on material sizes and response of the system. If a design satisfies all 
constraints, it is accepted as a feasible design. A criterion is needed to decide 
whether or not one design is better than another. This criterion is called the 
objective function.   

General flowchart diagram for optimum design could be sketched as shown in 
Figure 1 [57].  

 

Fig. 1 General flowchart diagram for optimum design 
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The minimum weight could be considered as the objective function, the stan-
dard steel sections are treated as design variables and the constraints are taken 
from the design codes. Therefore; the discrete optimum design problem of steel 
frames can be stated as follows 

Minimize ∑∑
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subjected to the strength constraints of AISC-LRFD [56] and displacement con-
straints. In Eqn. (1), mk is the total numbers of members in group k, ρi and Li  are 
density and length of member i, Ak is cross-sectional area of member group k, and 
ng is total numbers of groups in the frame.   

The unconstrained objective function φ(x) is then written for AISC-LRFD [56] 
code as 
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where C=constraint violation function, κ =penalty constant, ε=penalty function 
exponent. The constraint violation function 
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where d
iC and I

iC = constraint violations for displacement and the interaction for-

mulas of the LRFD specification; Nj= number of joints in the top storey. Ns and 
Nc= number of storeys and number of beam columns, respectively.  Ncl = the total 
number of columns in the frame except the ones at the bottom floor. The penalty 
may be expressed as 
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The displacement constraints are 
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where td : maximum displacement in the top storey, u
td : allowable top storey 

displacement, id : interstorey displacement in storey i, u
id : allowable interstorey 

displacement (storey height/300). 
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The size constraint employed for constructional reasons is given as follows 

0.1−=
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dλ  (7) 

where dun and dbn are depths of steel sections selected for upper and lower floor 
columns.  

The strength constraints taken from AISC-LRFD [56] are expressed in the  
following equations. 

For members subject to bending moment and axial force 
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where Pu = required axial strength (compression or tension), Pn = nominal axial 
strength (compression or tension), Mux = required flexural strengths about the ma-
jor axis, Muy = required flexural strengths about the minor axis, Mnx = nominal 
flexural strength about the major axis, Mny = nominal flexural strength about the 
minor axis (for two-dimensional frames, Muy = 0), φ = cφ  = resistance factor for 

compression (equal to 0.85), φ = tφ  = resistance factor for tension (equal to 0.90), 

bφ  =flexural resistance factor (equal to 0.90).  

The AISC-LRFD [56] design strength of columns is nc Pφ , where crgn FAP =  

with Fcr given by 
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where Ag = cross-sectional area of member, Fcr= critical compressive stress, λc= 
column slenderness parameter, Fy= yield stress of steel, K=effective-length factor, 
L= member length, r=  governing radius of gyration, E= modulus of elasticity. The 
effective length factor K, for unbraced frames is calculated from the following  
approximate equation taken from Dumonteil [58]. 
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where subscripts A and B denote the two ends of the column under consideration. 
The restraint factor G is stated as 
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where Ic is the moment of inertia and Lc is the unsupported length of a column sec-
tion; Ig is the moment of inertia and Lg is unsupported length of a girder. 
Σ indicates a summation for all members rigidly connected to that joint (A or B) 
and lying in the plane of buckling of the column under consideration. 

The specification provides for three methods of analysis by which the required 
flexural capacity Mu may be evaluated [59]: (i) Mu may be determined from a plas-
tic analysis, (ii) Mu may be determined from a geometrically nonlinear analysis  
using the factored loads, (iii) Mu may be determined applying the moment magni-
fication factors to consider the second order effects which is also a choice in lieu 
of the geometrically nonlinear analysis according to the AISC-LRFD [56]. 

Design strength of beams is nbMφ . As long as λ≤λp, the Mn is equal to Mp and 

the shape is compact. The plastic moment Mp is calculated from the equation 

 yp ZFM =  (14) 

where Z= the plastic section modulus, λp= slenderness parameter to attain Mp. De-
tails of the formulations are given in the AISC LRFD [56]. Broad information can 
be also found in the books by Gaylord et al. [59] and Galambos et al. [60]. 

3   Harmony Search 

Harmony is defined as an attractive sound made by two or more notes being 
played at the same time. Do, Re, Mi, Fa, Sol, La, and Si are called notes which 
represent a single sound. The HS algorithm imitates musical improvisation proc-
ess where the musicians try to find a better harmony. All musicians always desire 
to attain the best harmony, which could be accomplished by numerous practices. 
The pitches of the instruments are changed after the each practice.  

Figure 2 illustrates the analogy between music improvisation and steel design. 
As explained by Lee and Geem [50], harmony memory (HM) is the most impor-
tant part of HS. Jazz improvisation is the best example for clarifying the harmony 
memory. Many jazz trios consist of a guitarist, double bassist and pianist. Each 
musician in the trio has different pitches: guitarist [Fa, Mi, La, Sol, Do]; double 
bassist [Mi, Do, La, Si, Re]; pianist [Si, Re, Mi, La, Do]. Let guitarist randomly 
play Sol out of its pitches [Fa, Mi, La, Sol, Do], double bassist Si out of [Mi, Do, 
La, Si, Re] and pianist Re [Si, Re, Mi, La, Do]. Therefore, the new harmony [Sol, 
Si, Re] becomes another harmony (musically G-chord). If the new harmony is  
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Fig. 2 Analogy between harmony memory and steel frame design process 

better than existing worst harmony in the HM, new harmony is included in the 
HM and the existing worst harmony is excluded from the HM. The process is  
repeated until the best harmony is obtained. 

We consider a steel frame design process, which consists of three different  
design variables. The first design variable is the columns of the first storey, the 
second design variable is the columns of the second storey and the third design 
variable is the all beams. The design variables are selected from a standard set of 
steel sections such as American Institute of Steel Construction (AISC) wide-flange 
(W) shapes. Let us assume W14×90, W14×68 and W27×80 are selected from the 
section list as the first, second and third design variables.  Thus, a new steel design 
is created [W14×90, W14×68, W27×80]. If the new design is better than existing 
worst design which is the one with the highest objective function value, the new 
design is included and worst design is excluded from the steel design process. This 
procedure is repeated until terminating criterion is satisfied.  

An analogy between the music improvisation process and the optimum design 
of steel frames can be established in the following way: The harmony denotes the 
design vector while the different harmonies during the improvisation represent the 
different design vectors throughout the optimum design process. Each musical in-
strument denotes the design variables (steel sections) of objective function. The 
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pitches of the instruments represent the design variable’s values (steel section no.). 
A better harmony represents local optimum and the best harmony is the global  
optimum. 

4   Optimum Design Using Harmony Search Algorithm 

The optimum design algorithm using HS could be illustrated as shown in Figure 3. 

 

Fig. 3 Basic flowchart diagram for HS algorithm 

4.1   Initialize the Harmony Search Parameters 

The HS algorithm parameters are chosen in this step. These parameters are; har-
mony memory size (HMS), harmony memory consideration rate (HMCR), pitch 
adjusting rate (PAR) and stopping criteria (number of improvisation). They are se-
lected depending on the problem type. 

4.2   Initialize Harmony Memory 

The harmony memory (HM) matrix is filled with randomly generated designs as 
the size of the harmony memory (HMS).  
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Each row represents a steel design in the HM. x1, x2,…..,xHMS-1, xHMS and φ(x1), 
φ(x2),…, φ(xHMS-1), φ(xHMS) are designs and the corresponding unconstrained ob-
jective function value, respectively. The steel designs in the HM are sorted by the 
unconstrained objective function values which are calculated by using Eqn. (2) 
(i.e. φ(x1)< φ(x2)<……< φ(xHMS)). The aim of using HM is to preserve better de-
signs in the search process.  

4.3   Improvise a New Harmony 

A new harmony [xnh] [ ]nh
ng

nhnh xxx ,....., 21=  is improvised from either the HM or en-

tire section list. Three rules are applied for the generation of the new harmony. 
These are HM consideration, pitch adjustment and random generation.  

In the HM consideration, the value of first design variable nhx1  for the new har-

mony is chosen from any value in the HM (i.e. [ ]HMSHMS xxxx 1
1

1
2
1

1
1 ,,.....,, − ) or en-

tire section list [XSL] . [XSL] represents the section list. The other design variables 

of new harmony [ ]nh
ng

nh
ng

nh xxx ,,....., 12 −  are chosen by the same rationale. HMCR is 

applied as follows 
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At first, a random number (rn) uniformly distributed over the interval [0,1] is gen-
erated. If this random number is equal or less than the HMCR value, i-th design 
variable of new design [xnh] selected from the current values stored in the i-th col-
umn of HM. If rn is higher than HMCR, i-th design variable of new design [xnh] is 
selected from the entire section list [XSL]. For example, an HMCR of 0.90 shows 
that the algorithm will choose the i-th design variable (i.e. steel section) from the 
current stored steel sections in the i-th column of the HM with a 90% probability 
or from the entire section list with a 10% probability. A value of 1.0 for HMCR is 
not appropriate because of 0% possibility that the new design may be improved by 
values not stored in the HM [50].  

Any design variable of the new harmony, [xnh ] [ ]nh
ng

nhnh xxx ,....., 21= , obtained by 

the memory consideration is examined to determine whether it is pitch-adjusted or 
not. Pitch adjustment is made by pitch adjustment ratio (PAR) which investigates 
better design in the neighbouring of the current design. PAR is applied as follows 

Pitch adjusting decision for nh
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A random number (rna) uniformly distributed over the interval [0,1] is generated 

for nh
ix . If this random number is less than the PAR, nh

ix  is replaced with its 

neighbour steel section in the section list. If this random number is not less than 
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PAR, nh
ix  remains the same. The selection of neighbour section is determined by 

neighbouring index. A PAR of 0.4 indicates that the algorithm chooses a 

neighbour section with a 40%×HMCR probability. For example, if nh
ix  is 

W21×62, neighbouring index is -1 or 1 and the section list is [W21×73, W21×68, 
W21×62, W21×57, W21×50], the algorithm will choose a neighbour section 
(W21×68 or W21×57) with a 40%×HMCR probability, or remain the same sec-
tion (W21×62) with a  (100%-40%)×HMCR probability. HMCR and PAR pa-
rameters are introduced to allow the solution to escape from local optima and to 
improve the global optimum prediction of the HS algorithm [50]. 

4.4   Update the Harmony Memory 

If the new harmony [xnh ] [ ]nh
ng

nhnh xxx ,....., 21=  is better than the worst design in the 

HM (i.e. the last row of the HM), the new design is included in the HM and the 
existing worst harmony is excluded from the HM. In this process, it should be 
noted that HM matrix is sorted again by unconstrained objective function and the 
same design is not permitted in the HM more than once.  

4.5   Termination Criteria 

4.3 and 4.4 steps are repeated until the termination criterion is satisfied. In the pre-
sent work, two termination criteria were used for HS. The first one stops the algo-
rithm when a predetermined total number of searches (number of frame analyses) 
are performed. The second criterion stops the process before reaching the maxi-
mum search number, if more economical design (lighter frame) is not found dur-
ing a definite number of searches in HS.  

5   Optimum Design of Steel Frames Using Harmony Search 
Algorithm 

The optimum design algorithm for steel frames using HS comprises the following 
steps. 

Step1: Determine the harmony search parameters; HMS, HMCR, PAR and  
terminating criterion. 

Step2: Generate a new design randomly for the steel frame. Analyze the frame 
for the new design and obtain its response. Calculate the value of the ob-
jective function φ(x) using Eqn. (2). If it satisfies the constraints, record it 
as the optimum design (φ(x)opt.). Repeat this step as many as 2×harmony 
memory (HM) matrix sizes. If any design in this process is a feasible one 
and better than the previous optimum (i.e. lower than φ(x)opt) ,assign it as 
current optimum design. Sort the steel designs according to their φ(x) 
values until harmony memory matrix is filled completely. The other de-
signs out-of-HM are eliminated. The best design with the lowest φ(x) one 
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is denoted by φ(xbest) and placed in the first row of HM matrix and the 
worst design is denoted by φ(xworst) and placed in the last row of HM ma-
trix. The aim of generating 2×HM designs is to provide more appropriate 
initial designs for HM. 

Step3: Select the first design variable of new design from either the first column 
of HM randomly or from steel section database according to HMCR 
value. If the design variable is selected from HM, decide whether to ap-
ply or not pitch-adjustment according to PAR parameter. Repeat this step 
until all design variables selected only once, and thus, obtain the new de-
sign vector for the steel frame. Analyze the frame for the new design vec-
tor and obtain its response. Calculate the value of the objective function 
φ(xnew) using  Eqn. (2). 

Step4: If φ(xnew)<φ(xworst), include new design in the HM and exclude the exist-
ing worst design from the HM. If the new design is also a feasible one 
and better than the previous optimum φ(x)opt, assign it current optimum 
design. Sort the steel designs again in the HM according to their φ(x)  
values. 

Step5: Repeat 3-4 steps until the predetermined total number of searches (num-
ber of frame analyses) are performed or current optimum design remains 
the same during a definite number of searches. If one of these criteria is 
satisfied, terminate the algorithm and define the current optimum as the 
final optimum design. 

6   Benchmark Examples 

In this section, HS is utilized to the optimum design of five different steel frames, 
which are taken from current literature. The optimum designs of these frames 
were previously performed using GA, SA and ACO based algorithms [16,34,37]. 
They were designed again using HS algorithm and the design results were com-
pared with the ones of the aforementioned algorithms. The presented examples in 
this section consist of author’s previous studies [53,54]. 

6.1   Two-Bay, Three-Storey Planar Frame 

The two-bay, three-storey frame under a single-load case shown in Figure 4 is the 
first benchmark example. This frame was optimized by Pezeshk et al. [16] using 
GA and it was also designed by Camp et al. [37] using ACO. Young’s modulus of 
E=29,000 ksi and a yield stress of fy=36 ksi were used.  

Displacement constraints were not imposed for the design. The beam members 
were selected from a list with 267 W sections and W10 sections were used for  
column members. The member effective length factors Kx is calculated from  
the approximate equation proposed by Dumonteil [58]. For each column, the  
out-of-plane effective length factor (Ky) was considered as 1.0. The out-of-plane 
effective length factor for each beam member was specified to be 0.167. The pen-
alty function exponent and penalty constant are taken as ε=2 and =κ 1.0 [37]. The 
size constraint given in Eqn. (7) was not imposed on the planar frame examples. 
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Fig. 4 Two-bay, three-storey frame  

The HS algorithm, which was programmed in Fortran, is executed with the fol-
lowing tuning parameters: The harmony memory size (HMS) was selected de-
pending on the design example. When HMS was selected greater than 100, HS did 
not improve the optimal solutions. For HMS<50, HS resulted in premature con-
vergence. HMS is also sensitive to the number of design variables. When the 
number of design variables is increased, the search space enlarges. Therefore, lar-
ger HMS has to be used. HMS was selected as 50 in this example. Another tuning 
parameter affecting the results is the harmony memory consideration rate 
(HMCR), which was selected as 0.8. The higher values of HMCR tended to reach 
local optima, while the lower values of HMCR caused the non-optimal solutions. 
HS is also influenced by the value of pitch adjusting rate (PAR) which was taken 
as 0.4. Using higher values for PAR caused non-optimal designs, while lower val-
ues for it resulted in local optima. The neighboring index used in the pitch-
adjustment selected as ±3. Lower values of ±3 caused the local optima, whereas 
higher values of ±3 diverged from the optimal designs. The maximum number of 
searches is another important parameter in the HS algorithm. Computational ex-
perience gained after different optimum designs shows that if the optimum design 
remains the same during the execution of 20% of the maximum search number, 
additional improvement is not made in the HS process. Therefore, the first and 
second termination criteria were selected as 5000 and 1000 in this example,  
respectively.  

For HS algorithm, 30 different optimum frames were obtained generated from 
randomly selected 30 different initial designs. The lightest one of 30 optimum de-
signs was assigned as the best optimum design and reported in Table 1. Typical 
design history for the best optimum design and average frame weight of 30  
designs for two-bay, three-storey frame was also shown in Figure 5.  
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Table 1 Design results for two-bay, three-storey frame 

Element group       GA 

     [16] 

   ACO 

    [37] 

HS 

Beam W 24×62 W 24×62   W 21×62 

Column W 10×60 W 10×60   W 10×54 

Weight (lb) 18,792 18,792   18,292 

Number of analyses 1800 3000   1853 
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Fig. 5 Typical convergence history of two-bay three-storey frame 

HS algorithm yielded 2.7% lighter frame than the ones obtained by GA and 
ACO. HS developed the best optimum design at the 853-th analysis and it did not 
change during 1000 frame analyses afterwards, and thus, HS terminated the search 
process after 1853 frame analyses. It was less than the 3000 frame analyses  
required by ACO, but it was more than the 1800 analyses required by GA.  

The average weight of 30 different designs was calculated as 18,784 lb, with a 
standard deviation of 411 lb. HS developed the optimum designs with an average of 
962-th frame analyses for 30 runs. The optimum designs were obtained within 900 
and 880 frame analyses for GA and ACO, respectively. In this case, HS achieved 
lighter frame than the others with approximately the same analysis number. 

It was an interesting result which was obtained from HS algorithm that interac-
tion ratio of seven member is within 90% of maximum interaction ratio at opti-
mum. This indicates that strength constraints were dominant at the optimum  
design. The maximum interaction ratio both column and beam group was  
calculated as 1.0 (i.e. boundary value). 
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6.2   One-Bay, Ten-Storey Planar Frame 

The one-bay ten-storey planar frame is the second benchmark example. Figure 6 
shows the frame configuration, the numbering of member groups and dimensions.  

 

Fig. 6 One-Bay Ten-Storey Frame 

This frame was optimized by Pezeshk et al. [16] using GA and then it was also 
optimized by Camp et al. [37] using ACO. The AISC-LRFD specification [56] 
was used and a displacement constraint was imposed as: interstorey drift<storey 
height/300. Young’s modulus of E=29,000 ksi and a yield stress of fy=36 ksi 
were used. Beam element groups were chosen from 267 W-sections and five col-
umn groups were selected from only W14 and W12 sections. The effective length 
factors of members were calculated as Kx ≥ 1 using the approximate equation pro-
posed by Dumonteil [58], whereas the out-of-plane length factor Ky was assigned 
as 1. For each beam member, the out-of-plane effective length factor was  
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specified to be Ky=0.2 i.e., floor stringers at 1/5 points of the span. HMS was se-
lected as 60 in this example. The other tuning parameters were the same as the 
first example. 

30 different designs started with 30 different initial designs were performed and 
the lightest one of those was reported in Table 2. Typical design history for the 
best optimum design and average frame weight of 30 designs for one-bay,  
ten-storey frame was depicted in Figure 7.  

Table 2 Design results for one-bay, ten-storey frame 

Group no.      GA  

     [16] 

    ACO 

[37] 

     HS 

1 W 14×233 W 14×233 W 14×211 
2 W 14×176 W 14×176 W 14×176 

3 W 14×159 W 14×145 W 14×145 
4 W 14×99 W 14×99 W 14×90 
5 W 12×79 W 12×65 W 14×61 

6 W 33×118 W 30×108 W 33×118 
7 W 30×90 W 30×90  W 30×99 
8 W 27×84 W 27 × 84 W 24×76 

9 W 24×55 W 21×44 W 18×46 
Weight (lb) 65,136 62,610 61,864 
Number of analyses 3000 8300 3690 

HS produced 5.0% lighter frame than GA. It also obtained 1.2% lighter frame 
than ACO. For 30 runs of HS, the average weight was calculated as 62,923 lb, 
with a standard deviation of 1.74 lb. HS developed the best optimum design at the 
2690-th analysis and it did not change during 1000 frame analyses afterwards. 
Hence, the best optimum design required 3690 frame analyses. It was less than the 
8300 analyses required by ACO, whereas it was more than the 3000 analyses  
required by GA. 

HS developed the designs with an average of 2600-th frame analysis for 30 
runs as shown in Figure 7. GA found the optimal designs within 40 generations 
with 2400 frame analyses while ACO required 6100 frame analyses. In this case, 
the average analysis number required by the HS is less than the one of ACO. It is 
slightly more than the one of GA. 

Moreover; the interstorey drift constraint was within 90% of the upper limit 
between storeys 1 to 8 as shown in Figure 8. The interstorey drift was calculated 
as 0.48 in (i.e. boundary value) in the second, fourth and seventh storeys. This  
indicates that interstorey drift constraint was dominant at the optimum.  
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Fig. 7 Typical convergence history of one-bay ten-storey frame 
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Fig. 8 Interstorey drift for one-bay ten-storey frame  

6.3   Design of Three-Bay Twenty Four-Storey Planar Frame 

The third example is the three-bay twenty-four storey steel frame shown in  
Figure 9.  

This frame was designed by Camp et al [37] using ACO algorithm in accor-
dance with AISC-LRFD [56]. The loads are W=5,761.85 lb, w1=300 lb/ft, w2=436 
lb/ft, w3=474 lb/ft and w4=408 lb/ft. The frame was designed using AISC-LRFD 
[56] specification under the interstorey drift displacement constraint (interstorey 
drift<storey height/300). Young’s modulus of E=29,732 ksi and a yield stress of 
fy=33.4 ksi were used. 

 



68 S.O. Degertekin
 

 

Fig. 9 Three-bay twenty four-storey frame 

The effective length factors of the members are calculated as Kx ≥ 1.0 from the 
approximate equation proposed by Dumonteil [58]. The out-of-plane effective 
length factor was Ky=1.0. All members were unbraced along their lengths. Each of 
the four beam element groups were chosen from all of the 267 W-sections, 
whereas the 16 column member groups were selected from only W14 sections. 
HMS was selected as 100 in this example. The first and second termination crite-
ria were set 20000 and 4000.   

For HS algorithm, 100 different designs started with different initial designs 
were executed and the lightest one of them was reported in Table 3. The average 
optimal weight for the 100 runs was 222,62 lb, a standard deviation of 5.8 lb.  
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Fig. 10 Design history of three-bay twenty-four storey frame 

Table 3 Design results for three-bay, twenty four-storey frame 

Group no.      ACO 

 [37] 

 HS 

1   W 30×90   W 30×90 
2   W 8×18   W 10×22 

3   W 24×55   W 18×40 
4   W 8×21   W 12×16 
5   W 14×145   W 14×176 

6   W 14×132   W 14×176 
7   W 14×132    W 14×132 
8   W 14×132   W 14×109 

9   W 14×68   W 14×82 
10   W 14×53   W 14×74 
11   W 14×43   W 14×34 

12   W 14×43   W 14×22 
13   W 14×145   W 14×145 
14   W 14×145   W 14×132 

15   W 14×120   W 14×109 
16   W 14×90   W 14×82 
17   W 14×90   W 14×61 

18   W 14×61   W 14×48 
19   W 14×30   W 14×30 
20   W 14×26   W 14×22 

Weight (lb)   220,465   214,860 
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Design history of number of searches for the best and average optimum design of 
steel frame with HS was shown in Figure 10.  

HS yielded 2.54% lighter frame than the one obtained using ACO. HS pro-
duced the best optimum at the 9924-th analysis and this design did not change dur-
ing 4000 frame analyses afterwards, and thus, HS terminated the search process 
after 13924 frame analyses. According to the average of the results of 100 runs, 
HS required 14651 frame analyses, which was less than the 15500 frame analyses 
required by ACO.  

The maximum interaction ratio for column groups was obtained in the 19th 
group. It was calculated as 0.89. The maximum interaction ratio for beam groups 1 
and 3 was 0.78 and the maximum interaction ratio for beam groups 2 and 4 was 
0.91. The interstorey drift constraint was within 90% of the upper limit between 
storeys 2 to 18 as shown in Figure 11 at the best optimum. The interstorey drift was 
also calculated as 0.48 in (i.e. boundary value) in the 11 storeys of the frame. This 
indicates that interstorey drift constraint was dominant in the optimum design.  
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Fig. 11 Interstorey drift for three-bay twenty-four storey frame 

6.4   Design of Single-Storey, 8-Member Space Frame 

The single-storey, 8 member space frame shown in Figure 12 is the fourth benchmark  
example.  

It was optimized by Degertekin [34] using SA and GA in accordance with the 
AISC-LRFD [56] and AISC-ASD [61] specifications. AISC-LRFD [56] yielded 
lighter frames than AISC-ASD [61]. This frame was optimized again using HS al-
gorithm. The material properties were assigned as: a modulus of elasticity 
E=29000 ksi, a shear modulus of G=12000 ksi was used in the space frame struc-
tures. The yield stress and unit weight of material are 36 ksi and 0.2836 lb/in3, re-
spectively. Four different types of loads are employed: dead load (D), live load 
(L), roof live load (Lr), and wind loads (W). The following load combinations were 
used per AISC-LRFD specification: I: (1.4D), II: (1.2D + 1.6L + 0.5Lr), III: (1.2D 
+ 1.6Lr + 0.5L), and IV: (1.2D + 1.3W + 0.5L + 0.5Lr). 
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Fig. 12 Single-storey, 8-member space frame 

The values of 0.464 psi for dead load (D), 0.348 psi for live load (L) and roof 
live load (Lr) were taken in the space frame structure. Wind loading was calcu-
lated from Uniform Building Code [62] using the equation wsqe IqCCp = , where p 

is design wind pressure; Ce is combined height, exposure and gust factor coeffi-
cient; Cq is pressure coefficient; qs is wind stagnation pressure; and Iw is wind im-
portance factor. Exposure D was assumed and the values for Ce were selected  
depending on the frame height and exposure type. The Cq values were assigned as 
0.8 and 0.5 for inward and outward faces. The value of qs was selected as 0.114 
psi assuming a basic wind speed of 80 mph and the wind importance factor was 
assumed to be one. The horizontal loads due to wind act in the x-direction at each 
unrestrained node. The maximum drift of the top storey was restricted to H/400, 
where H is the total height of structure; the interstorey drift was also limited to 
hc/300, where hc is the height of the considered storey [63]. These limits were in-
creased by 30% to include the effect of the coefficient 1.3 in the LRFD wind load 
combination.  

Two section lists, comprised 64 W sections, were used for HS algorithm. The 
first one is beam section list taken from AISC-ASD [61]-Part 2, “Beam and Girder 
Design”- Allowable stress design selection table for shapes used as beams. The 
boldface type sections (lighter ones) were selected starting from W36×720 to 
W12×19. The second one is column section list taken from the same code, Part 3, 
“Column Design”- Column W shapes tables. They were selected from W14×283 
to W6×15. The effective length factor K, for unbraced frames were calculated 
from the approximate equation proposed by Dumonteil [58]. Geometrically 
nonlinear analysis algorithm performed in HS is the same as SA algorithm [34]. 
Broad information about the geometrically nonlinear analysis algorithm can be 
found in the book by Levy and Spillers [64].  

The members of the frame were divided into three groups organized as follows: 
1-st group: the beams in x-direction, 2-nd group: the beams in y-direction, 3-rd 
group: the all columns. The horizontal loads due to wind act in the x-direction at 
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each unrestrained node. The maximum top storey drift and interstorey drift were 
restricted to 0.51 in. 1×HMS was generated in this example. The penalty function 
exponent ( ε ) and penalty constant ( κ ) given in Eqn. (2) were selected as 1.0. 
The other parameters used in HS were the same as the ones of the first example. 

10 different optimum frames were obtained and the design results of the light-
est one were summarized in Table 4. The design history for the single-storey  
8-member space frame was given in Figure 13.  

Table 4 Design results of single-storey, 8-member space frame 

Group no.      SA 

    [34] 

     HS 

1 W 12×30 W 12×26 

2 W 12×30 W 12×26 

3 W 8×24 W 8×28 

Weight (lb) 3809 3693 

Top storey drift (in) 0.49 0.50 

Max. interstorey drift (in) 0.49 0.50 

Number of analyses 6120 4412 
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Fig. 13 Design history of the single-storey 8-member space frame 

HS yielded 3.1% lighter frame than SA. HS produced the best optimum design 
after 4412 searches (i.e. 4412 frame analyses). This indicates that HS found the 
optimum design after 3412 searches and it did not change during 1000 searches 
afterwards. Both displacement and stress constraints are active in the best opti-
mum design. The average weight of 10 runs was calculated as 3829.37 lb, with a 
standard deviation of 149.91 lb. HS converged at the optimum designs with an  
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average of 4528 frame analyses for 10 runs while the optimum designs were ob-
tained within 6120 frame analyses in SA. Therefore; HS obtained lighter frames 
than SA with less analyses’ numbers. 

6.5   Design of 4-Storey, 84-Member Space Frame 

The last benchmark example is the 4-storey space frame with a square plan and 
side view shown in Figure 14. The structure consists of 84 members divided into 
10 groups. It was designed by Degertekin [34] using SA. This frame designed 
again using HS in accordance with the AISC-LRFD [56]. 

The groups were organized as follows: 1-st group: outer beams of  4-th storey, 
2-nd group: outer beams of 3-rd, 2-nd and 1-st storeys, 3-rd group: inner beams of 
4-th storey, 4-th group: inner beams of 3-rd, 2-nd and 1-st storeys,  5-th group: 
 

 

Fig. 14 Four-storey 84-member space frame (a) plan, (b) side view 
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corner columns of 4-th storey, 6-th group: corner columns of 3-rd, 2-nd and 1-st 
storeys, 7-th group: outer columns of 4-th storey, 8-th group: outer columns of 3-
rd, 2-nd and 1-st storeys, 9-th group: inner columns of 4-th storey, 10-th group: 
inner columns of  3-rd, 2-nd and 1-st storeys. The wind loads act in the x-direction 
at each node on the sides AB and CD. For the maximum and interstorey drift con-
straints, the values of 1.79 in and 0.6 in were imposed on the frame. The first and 
second termination criteria were set 20000 and 4000. The other parameters were 
the same as the previous example. 

For HS algorithms, 10 different designs were executed and design results of the 
lightest one of those were listed in Table 5. Design history for the 4-storey, 84-
member space frame was shown in Figure 15.  

Table 5 Design results of 4-storey 84-member space frame  

Group no.      SA 

    [34] 

    HS 

1 W 18×35 W 16×31 

2 W 18×35 W 16×31 

3 W 18×35 W 16×31 

4 W 18×35 W 16×40 

5 W 8×31 W 8×31 

6 W 12×40 W 10×39 

7 W 10×39 W 8×40 

8 W 12×45 W 10×39 

9 W 8×28 W 8×28 

10 W 12×58 W 10×77 

Weight (lb) 50937 49019 

Top storey drift (in) 1.74 1.69 

Max. interstorey drift (in) 0.60 0.54 

Number of analyses 20400 14276 

HS obtained 3.8% lighter frame than SA. Stress constraints were active while 
displacement constraints were not critical at the best optimum. The best optimum 
was achieved at the 10276-th analysis and this design did not change during 4000 
frame analyses afterwards. Thus, HS terminated the optimization process after 
14276 frame analyses. The average optimal weight for the 10 runs was 51069 lb, 
with a standard deviation of 1420 lb. According to the average of the results of 10 
runs, HS required 15532 frame analyses which was less than the 20400 frame 
analyses required by SA. 
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Fig. 15 Design history of the 4-storey 84-member space frame 

7   Conclusions 

A harmony search algorithm was applied to the optimum design of steel frames. 
The benchmark examples presented in this study revealed that HS is able to obtain 
lighter frames when compared to GA, SA and ACO. The reason for this is that HS 
provides a more effective and powerful approach than GA, SA and ACO as ex-
plained in Section 1. HS yielded 1.2%-5.0% lighter frames than the ones obtained 
from GA, ACO and SA based design. In addition to obtaining lighter frames, HS 
required less or approximately the same computational effort than GA, SA and 
ACO. The average weights of the frames in the examples were close to the opti-
mum weights for HS. Standard deviations of the frames weights were also quite 
small in comparison with the frame weights. These prove that HS is able to find 
the global optima and it could be accepted as a powerful optimization technique 
for steel frame design using discrete and real design variables.  
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Adaptive Harmony Search Algorithm for 
Design Code Optimization of Steel Structures  

M.P. Saka1 and O. Hasançebi212 

Abstract. In this chapter an improved version of harmony search algorithm called an 
adaptive harmony search algorithm is presented. The harmony memory considering 
rate and pitch adjusting rate are conceived as the two main parameters of the tech-
nique for generating new solution vectors. In the standard implementation of the 
technique, appropriate constant values are assigned to these parameters following a 
sensitivity analysis for each problem considered. The success of the optimization 
process is directly related to a chosen parameter value set. The adaptive harmony 
search algorithm proposed here incorporates a novel approach for adjusting these pa-
rameters automatically during the search for the most efficient optimization process. 
The efficiency of the proposed algorithm is numerically investigated using number of 
steel frameworks that are designed for minimum weight according to the provisions 
of various international steel design code specifications. The solutions obtained are 
compared with those of the standard algorithm as well as those of the other meta-
heuristic search techniques. It is shown that the proposed algorithm improves per-
formance of the technique and it renders unnecessary the initial selection of the  
harmony search parameters. 

1   Introduction 

Design optimization of steel structures is important for structural engineers in to-
day’s world due to the fact that while the human population is increasing exponen-
tially, the world resources are diminishing rapidly. More shelters are required to 
be built for living and more buildings are necessary to be constructed for produc-
tion. Hence it is of the most importance that structures be designed and con-
structed by using minimum amount of material available. Optimum structural  
design algorithms provide a useful tool to steel designers to achieve this goal. 
These algorithms can be used to design a steel structure such that the design con-
straints specified by steel design codes are satisfied under the applied loads and 
the weight or the cost of the steel frame under consideration is the minimum. 
Formulation of the design optimization of steel structures produces a program-
ming problem where the design variables are discrete in nature. The reason for this 
is that the steel sections to be adopted for frame members in practice are available 

                                                           
1 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey 

Email: mpsaka@metu.edu.tr 
2 Department of Civil Engineering, Middle East Technical University, Ankara, Turkey 

Email: oguzhan@metu.edu.tr 



80 M.P. Saka and O. Hasançebi
 

from a discrete list. Designer has the option of assigning any one of these avail-
able steel sections from the list to any one of member groups in the frame either 
arbitrarily or using his or her previous experience. Once an assignment is carried 
out for all the member groups in the frame, designer has a candidate solution in 
her or his hand for the design problem.  It then becomes necessary to analyze the 
frame with these selected steel profiles to find out whether the response of the 
frame under the external loading is within the limitations set by design codes. If 
the result of analysis reveals that these limitations are satisfied then the designer 
has a feasible solution to the frame design problem. It is quite natural that the de-
signer wonders whether there are other solutions would require less steel. As a  
result of this curiosity the search continues until the designer locates a feasible de-
sign which is better then the previously obtained designs in terms of the material 
required for its construction. It is apparent that this procedure is quite time con-
suming because quite large number of combinations is possible for the member 
groups of a frame depending upon the total number of practically available steel 
sections. For example for a frame where the members are collected in nine groups 
and that the total number of available steel profile sections is 120, there are 
5.16×1018 possible combinations each of which can be a possible candidate for the 
frame under consideration and required to be tried. Some of these combinations 
may be eliminated by making use of designer’s practical experience but still 
checking the remaining possibilities needs enormous computation time and effort 
to locate the optimum combination of steel sections. It is apparent that practicing 
structural designer will have neither time nor resources to carry out this search 
which covers all the possibilities. He or she will take the decision about steel sec-
tions to be used for member groups after few trials. Hence one of the feasible s 
olutions will be used for the design but not the optimum one. 

Obtaining the solution of combinatorial optimization problems described above 
is not an easy task. Until recently the numbers of solution techniques available in 
the literature that can be used to determine the optimum solution of discrete  
programming problems were limited and their efficiency in large size design prob-
lems was challenging [1,2]. The emergence of meta-heuristic optimization  
techniques has opened a new era in obtaining the solution of such programming 
problems [3-7]. These techniques make use of ideas taken from the nature such as 
survival of the fittest, immune system or cooling of molten metals through anneal-
ing to develop a numerical optimization algorithm. These methods are non-
traditional stochastic search and optimization methods and they are very suitable 
and effective in finding the solution of combinatorial optimization problems. They 
do not require the gradient information of the objective function and constraints 
and they use probabilistic transition rules not deterministic rules. They are shown 
to be quite effective in finding the optimum solution of optimization problems 
where the design variables are discrete. Among those available in the literature are 
simulated annealing, evolution strategies, particle swarm optimizer, tabu search 
method, genetic algorithm and ant colony optimization. As can be understood 
from their names each technique simulates one particular phenomenon that exists 
in the nature. There are large numbers of structural optimization procedures  
available in the literature each is based one of these techniques. 
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Harmony search algorithm is a new addition to this category of numerical op-
timization procedures and it simulates a jazz musician’s improvisation [8-10]. It 
resembles an analogy between the attempt to find the harmony in music and the 
effort to find the optimum solution of an optimization problem. As the aim of a 
musician is to attain a piece of music with perfect harmony, the task of an opti-
mizer is to come up with the optimum solution that satisfies all the constraints in 
the problem and minimizes the objective function. Naturally certain rules and pa-
rameters are used to transfer this innovative thinking into a numerical optimization 
technique. For example when a musician is improvising there are three possibili-
ties. A tune can be played from musician’s memory or above mentioned tune can 
be pitch adjusted or a tune can be played totally randomly. Harmony search 
method is based on these options. It may randomly select a steel section within 
previously identified and collected group of feasible sections, it may or may not 
apply pitch adjustment to this section depending on some random rule, or a steel 
section may randomly be selected from the entire steel sections list. The collected 
group of feasible solutions is stored in harmony memory matrix. Harmony search 
method is applied to various structural design optimization problems and found to 
be quite effective in obtaining their solution. 

In this chapter code based design optimization of steel frames is first presented. 
The mathematical modeling of the discrete optimum design problem of steel  
frames formulated according to the provisions of Allowable Stress Design code of 
American Institute of Steel Construction (ASD-AISC) [11], Load and Resistance 
Factor Design (LRFD-AISC) [12] and British Steel design Code (BS 5950) [13] 
are described. This is followed by the presentation of the adaptive harmony search 
method which is an improved version of harmony search algorithm. In this tech-
nique two main parameters of the standard harmony search technique that is the 
harmony memory considering rate and pitch adjusting rate are adjusted automati-
cally during the search procedure. In the standard implementation of the technique 
appropriate constant values are assigned to these parameters following a sensitiv-
ity analysis for each problem considered. The success of the optimization process 
is directly related to a chosen parameter value set. The adaptive harmony search 
algorithm presented in this chapter adjusts these parameters automatically during 
the search for the most efficient optimization process. The efficiency of the adap-
tive harmony search technique is numerically investigated by considering three 
design optimization problems of steel frames. The first one is three dimensional 
209-member industrial steel frame. The second one is the three dimensional 568-
member moment resisting steel frame. The third one is the 1890-member three 
dimensional braced steel frame. All these frames are designed for minimum 
weight according to provisions of Allowable Stress Design Code of American In-
stitute of Steel Construction (ASD-AISC). The solutions obtained are compared 
with those of the standard harmony search algorithm as well as of the other meta-
heuristic search techniques. It is apparent that the design examples are selected 
among the real size steel frames that can be found in practice. In the following 
section the optimum design of the 115-member braced plane frame is carried out 
according to various international design code specifications namely, ASD-AISC, 
LRFD-AISC and BS 5950 using adaptive harmony search technique. The results 
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obtained are compared to demonstrate the relationship between the design code 
used and the optimum solution obtained.  

2   Code Based Design Optimization of Steel Frames 

The formulation of the design optimization problem of a steel frame according to 
a steel design code yields itself to a discrete programming problem, if steel pro-
files for its members are to be selected from available steel sections list. The 
mathematical model of the design optimization problems depending on three in-
ternational steel design codes considered in the formulation is described in the  
following. 

2.1   Discrete Optimum Design of Steel Frames to ADS-AISC 

Consider a steel structure consisting of nm members that are collected in ng design 
groups (variables). If the provisions of ASD-AISC [11] code are to be used in the 
formulation of the design optimization problem and the design groups are selected 
from given steel sections profile list, the following discrete programming problem 
is obtained.  

Find a vector of integer values I  (Eqn. 1) representing the sequence numbers 
of steel sections assigned to ng member groups 

[ ]ng

T III ,...,, 21=I                                              (1) 

to minimize the weight (W) of the frame  
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where im
 
is the unit weight of the steel section adopted for member group i, re-

spectively, nt is the total number of members in group i, and jL  is the length of 

the member j which belongs to group i.  
The members subjected to a combination of axial compression and flexural 

stress must be sized to meet the following stress constraints: 

00.1

11

;15.0 ≤−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−
+>

by

ey

a

bymy

bx

ex

a

bxmx

a

a

a

a

F
F

f

fC

F
F

f

fC

F

f

F

f
if                (3) 

 00.1
60.0

≤−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

by

by

bx

bx

y

a

F

f

F

f

F

f
                                     (4) 

                



Adaptive Harmony Search Algorithm  83
 

00.1;15.0 ≤−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++≤

by

by

bx

bx

a

a

a

a

F

f

F

f

F

f

F

f
if                         (5) 

If the flexural member is under tension, then the following formula is used  
instead: 
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In Eqns. (3-6), yF  is the material yield stress, and )/( APfa =  represents the 

computed axial stress, where A is the cross-sectional area of the member. The 
computed flexural stresses due to bending of the member about its major (x) and 
minor (y) principal axes are denoted by bxf  and byf , respectively. exF′  and eyF′  de-

note the Euler stresses about principal axes of the member that are divided by a 
factory of safety of 23/12. aF  stands for the allowable axial stress under axial 

compression force alone, and is calculated depending on elastic or inelastic buck-
ing failure mode of the member using Formulas 1.5-1 and 1.5-2 given in ASD-
AISC [11]. For an axially loaded bracing member whose slenderness ratio exceeds 
120, aF  is increased by a factor of )200/6.1( rL−  considering relative unimpor-

tance of the member, where L and r are the length and radii of gyration of the 
member, respectively. The allowable bending compressive stresses about major 
and minor axes are designated by bxF  and byF , which are computed using the 

Formulas 1.5-6a or 1.5-6b and 1.5-7 given in ASD-AISC [11]. mxC  and myC  are 

the reduction factors, introduced to counterbalance overestimation of the effect of 
secondary moments by the amplification factors )/1( ea Ff ′− . For unbraced frame 

members, they are taken as 0.85. For braced frame members without transverse 
loading between their ends, they are calculated from )/(4.06.0 21 MMCm −= , 

where 21 / MM  is the ratio of smaller end moment to the larger end moment. Fi-

nally, for braced frame members having transverse loading between their ends, 
they are determined from the formula )/(1 eam FfC ′+= ψ  based on a rational ap-

proximate analysis outlined in ASD-AISC [11] Commentary-H1, where ψ  is a 

parameter that considers maximum deflection and maximum moment in the  
member.  

For computation of allowable compression and Euler stresses, the effective 
length factors K are required. For beam and bracing members, K is taken equal to 
unity. For column members, alignment charts are furnished in ASD-AISC [11] 
for calculation of K values for both braced and unbraced cases. In this study, 
however, the following approximate effective length formulas are used based  
on Dumonteil [14], which are accurate within about -1.0 and +2.0 % of exact  
results [15]: 
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For unbraced members: 
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For braced members: 
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where AG  and BG  refer to stiffness ratio or relative stiffness of a column at its two 

ends.  
It is also required that computed shear stresses )( vf in members are smaller 

than allowable shear stresses vF( ), as formulated in Eqn. (9).  

yvvv FCFf 40.0=≤                                              (9) 

In Eqn. (9), vC  is referred to as web shear coefficient. It is taken equal to 0.1=vC  

for rolled I-shaped members with yw FEth /24.2/ ≤ , where h is the clear distance 

between flanges, E is the elasticity modulus and wt  is the thickness of web. For all 

other symmetric shapes, vC  is calculated from Formulas G2-3, G2-4 and G2-5 in 

ANSI/AISC 360-05 [16]. 
Apart from stress constraints, slenderness limitations are also imposed on all 

members such that maximum slenderness ratio ( rKL /=λ ) is limited to 300 for 
members under tension, and to 200 for members under compression loads. The dis-
placement constraints are imposed such that the maximum lateral displacements are 
restricted to be less than H/400, and upper limit of story drift is set to be h/400, 
where H is the total height of the frame building and h is the height of a story. 

Finally, we consider geometric constraints between beams and columns fram-
ing into each other at a common joint for practicality of an optimum solution gen-
erated. For the two beams B1 and B2 and the column shown in Figure 1, one can 
write the following geometric constraints: 
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where fbb , fbb′  and fcb  are the flange width of the beam B1, the beam B2 and the 

column, respectively, cd  is the depth of the column, and ft  is the flange width of 

the column. Equation (10) simply ensures that the flange width of the beam B1 
remains smaller than that of the column. On the other hand, Eqn. (11) enables that 
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Fig. 1 Beam-column geometric constraints. 

 

flange width of the beam B2 remains smaller than clear distance between the 
flanges of the column )2( fc td −  .    

2.2   Discrete Optimum Design of Steel Frames to LRFD-AISC 

In the case where the optimum design problem of a steel frame is formulated ac-
cording to the provisions of LRFD-AISC [12] the following discrete programming 
problem is obtained.  

Find a vector of integer values I  (Eqn. 12) representing the sequence numbers 
of steel sections assigned to ng member groups 

[ ]ng

T III ,...,, 21=I                                           (12) 

to minimize the weight (W) of the frame  
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where im
 
is the unit weight of the steel section adopted for member group i, re-

spectively, nt is the total number of members in group i, and jL  is the length of 

the member j which belongs to group i.  The following constraints are required to 
be imposed according to LRFD-AISC provisions. 
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where Eqn. (14) represents the inter-story drift of the multi-story frame. jδ  and 

1−jδ are lateral deflections of two adjacent story levels and jh is the story height. ns 

is the total number of storys in the frame. Equation (15) defines the displacement 
restrictions that may be required to include other than drift constraints such as de-
flections in beams. nd is the total number of restricted displacements in the frame. 

juδ  is the allowable lateral displacement. The allowable lateral displacements are 

restricted to be less than H/400, and upper limit of story drift is set to be h/400, 
where H is the total height of the frame building and h is the height of a story. 

Eqns. (16) and (17) represent strength constraints for doubly and singly sym-
metric steel members subjected to axial force and bending. If the axial force in 
member k is tensile force, the terms in these equations are given as: ukP  is the re-

quired axial tensile strength, nkP  is the nominal tensile strength, φ  becomes tφ  in 

the case of tension and called strength reduction factor which is given as 0.90 for 
yielding in the gross section and 0.75 for fracture in the net section, bφ  is the 

strength reduction factor for flexure given as 0.90, uxkM  and uykM  are the required 

flexural strength, nxkM  and nykM  are the nominal flexural strength about major 

and minor axis of member k respectively. It should be pointed out that required 
flexural bending moment should include second-order effects. LRFD suggests an 
approximate procedure for computation of such effects which is explained in C1 
of LRFD. In the case the axial force in member k is compressive force, the terms 
in Eqns. (16) and (17) are defined as:  ukP  is the required compressive strength, 

nkP  is the nominal compressive strength, and φ  becomes cφ  which is the resis-

tance factor for compression given as 0.85. The remaining notations in Eqns. (16) 
and (17) are the same as the definition given above.  
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The nominal tensile strength of member k for yielding in the gross section is 
computed as gkynk AFP =  where yF  is the specified yield stress and gkA  is the gross 

area of member k. The nominal compressive strength of member k is computed 

as crgknk FAP = where ( ) y
c

cr FF
2

658.0 λ=  for 5.1≤cλ  and ( ) yccr FF 2/877.0 λ=  for 

5.1>cλ  and E
F

r

lK
y

c π
λ = . In these expressions E is the modulus of elasticity, 

K and l are the effective length factor and the laterally unbraced length of member 
k respectively. 

Equation (18) represents the strength requirements for beams in load and resis-
tance factor design according to LRFD-F2. uxtM  and nxtM  are the required and the 

nominal moment about major axis in beam b respectively. bφ  is the resistance fac-

tor for flexure given as 0.90. nxtM  is equal to pM , plastic moment strength of 

beam b which is computed as yZF where Z  is the plastic modulus and yF  is the 

specified minimum yield stress for laterally supported beams with compact sec-
tions. The computation of nxbM  for non-compact and partially compact sections is 

given in Appendix F of LRFD.  
Equation (19) is included in the design problem to ensure that the flange width 

of the beam section at each beam-column connection of story s should be less than 
or equal to the flange width of column section. Equation (20) enables that flange 
width of the beam B2 remains smaller than clear distance between the flanges of 
the column )2( fc td − . The notations in Eqns. (19) and (20) are shown in Figure 1. 

2.3   Discrete Optimum Design of Steel Frames to BS5950 

In case BS5950 [13] is used in formulation of the optimum design problem of a 
steel frame, the following discrete programming problem is obtained. 

Find a vector of integer values I  (Eqn. 21) representing the sequence numbers 
of steel sections assigned to ng member groups 
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to minimize the weight (W) of the frame  

  ∑∑
==

=
nt

j
j

ng

i
i LmW

11

                                    (22)  

where im
 
is the unit weight of the steel section adopted for member group i, re-

spectively, nt is the total number of members in group i, and jL  is the length of 

the member j which belongs to group i. The following constraints are required to 
be imposed according to BS5950 provisions. 
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( )fcjb tdb 2−≤                         at all joints                 (29) 

Equation (23) represents the inter-story drift of the multi-story frame. jδ  and 

1−jδ are lateral deflections of two adjacent story levels and jh is the story height. ns 

is the total number of storys in the frame. Equation (24) defines the displacement 
restrictions that may be required to include other than drift constraints such as de-
flections in beams. nd is the total number of restricted displacements in the frame. 

juδ  is the allowable lateral displacement. BS 5950 limits the horizontal deflection 

of columns due to unfactored imposed load and wind loads to height of col-
umn/300 in each story of a building with more than one story. iuδ  is the upper 

bound on the deflection of beams which is given as span/360 if they carry plaster 
or other brittle finish. 

Equation (25) defines the local capacity check for beam-columns. kF , xkM and 

ykM  are the applied axial load and moments about the major and minor axis at the 

critical region of member k  respectively. gkA  is the gross cross sectional area, and 

yp  is the design strength of the steel. 
kcxM and cykM  are the moment capacities 

about major and minor axis of member k. nc  is the total number of beam-columns 
in the frame. 

Equation (26) represents the simplified approach for the overall buckling check 
for beam-columns. km  is the equivalent uniform moment factor of member k 

given in table 18 of BS 5950. bkM  is the buckling resistance moment capacity for 

member k  about its major axis computed from clause 4.3.7 of the code. ykZ is the 

elastic section modulus about the minor axis of member k. ckP  is the compression 

strength obtained from the solution of quadratic Perry-Robertson formula given in 
appendix C.1 of BS 5950. It is apparent that computation of the compressive 
strength of a compression member requires its effective length. This can be  
automated by using Jackson and Moreland monograph for frame buckling [17]. 
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The relationship for the effective length of a column in a swaying frame is  
given as: 
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where k  is the effective length factor and γ1 and γ2 are the relative stiffness ratio 
for the compression member which are given as: 
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The subscripts c and b refer to the compressed and restraining members respec-
tively and the subscripts 1 and 2 refer to two ends of the compression member un-
der investigation. The solution of the nonlinear equation (30) for k results in the 
effective length factor for the member under consideration. The Eqn. (30) has the 
following form for non-swaying frames. 
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The notations in the remaining inequalities (28) and (29) are the same as those de-
fined in inequalities (19) and (20).  

3   Adaptive Harmony Search Algorithm 

Harmony search method is a recent meta-heuristic technique that is shown to be ef-
fective and robust in obtaining the optimum solution of discrete programming prob-
lems. Its use in structural optimization and computational mechanics is still new. 
Among the few numbers of studies Lee and Geem [9] applied the method to deter-
mine the optimum design of plane and space trusses with continuous design vari-
ables. The method is used in the optimum design of steel frames with discrete  
variables by Değertekin [18] and Saka [19] where the design problem is formulated 
according to LRFD-AISC and BS5950 respectively. Later the same technique is 
employed in the optimum design of grillage systems [20, 21]. It is shown by Saka 
[22, 23] that harmony search algorithm can also be used in shape optimization 
problems. In this study harmony search method has successfully determined the op-
timum height of a geodesic dome in addition to pipe section designations for its 
members. It is demonstrated within these studies that harmony search method was a 
rapid and effective method for optimum design of structural systems where the 
number of design variables was relatively small. However, a comprehensive per-
formance evaluation of harmony search method carried out at Hasançebi et al. [24, 
25] in real size large scale structural optimization problems has shown that this 
conclusion were only true for small size problems. In this study the technique is 
compared with other meta-heuristic algorithms and found out that in large scale de-
sign optimization problems the technique has demonstrated slow convergence rate 
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and heavier optimum designs. Hence it became necessary to suggest some im-
provements in the standard harmony search method so that the above mentioned 
discrepancy can be eliminated and the method demonstrates similar performance 
with other meta-heuristic techniques in the case of large scale design problems. 
With this amendment an improved technique called adaptive harmony search 
method is formulated and proposed in Hasançebi et al. [26]. 

In standard harmony search method there are two parameters known as har-
mony memory considering rate ( hmcr ) and pitch adjusting rate ( par ) that play 
an important role in obtaining the optimum solution. These parameters are as-
signed to constant values that are arbitrarily chosen within their recommended 
ranges by Geem [27-29] based on the observed efficiency of the technique in dif-
ferent problem fields. It is observed through the application of the standard har-
mony search method that the selection of these values is problem dependent. 
While a certain set of values yields a good performance of the technique in one 
type of design problem, the same set may not present the same performance in an-
other type of design problem. Hence it is not possible to come up with a set of 
values that can be used in every optimum design problem. In each problem a sen-
sitivity analysis is required to be carried out to determine what set of values results 
a good performance. Adaptive harmony search method eliminates the necessity of 
finding the best set of parameter values. It adjusts the values of these parameters 
automatically during the optimization process. Before initiating the design proc-
ess, a set of steel sections selected from an available profile list are collected in a 
design pool. Each steel section is assigned a sequence number that varies between 
1 to total number of sections ( secN ) in the list. It is important to note that during 

optimization process selection of sections for design variables is carried out using 
these numbers. The basic components of the adaptive harmony search algorithm 
can now be outlined as follows. 

3.1   Initialization of a Parameter Set 

Harmony search method uses four parameters values of which are required to be 
selected by the user. This parameter set consists of a harmony memory size )(hms , 
a harmony memory considering rate ( hmcr ), a pitch adjusting rate ( par ) and a 

maximum search number ( maxN ). Out of these four parameters, hmcr  and par  

are made dynamic parameters in adaptive harmony search method that vary from 
one solution vector to another. They are set to initial values of )0(hmcr  and )0(par  

for all the solution vectors in the initial harmony memory matrix. In the standard 
harmony search algorithm these parameters are treated as static quantities, and 
they are assigned to suitable values chosen within their recommended ranges of 

[ ]95.0,70.0∈hmcr  and [ ]50.0,20.0∈par  [27-29]. 

3.2   Initialization of Harmony Memory Matrix 

A harmony memory matrix H  given in Eqn. (33) is randomly generated. The 
harmony memory matrix simply represents a design population for the solution of 
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a problem under consideration, and incorporates a predefined number of solution 
vectors referred to as harmony memory size ( hms ). Each solution vector (har-

mony vector, iI ) consists of ng  design variables, and is represented in a separate 

row of the matrix; consequently the size of H  is )( nghms × . 
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3.3   Evaluation of Harmony Memory Matrix 

The structural analysis of each solution is then performed with the set of steel sec-
tions selected for design variables, and responses of each candidate solution are 
obtained under the applied loads. The objective function values of the feasible so-
lutions that satisfy all problem constraints are directly calculated from Eqn. (2). 
However, infeasible solutions that violate some of the problem constraints are pe-
nalized using external penalty function approach, and their objective function  
values are calculated according to Eqn. (34). 

                            ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+= ∑

i
igW αφ 1                                     (34) 

In Eqn. (34), φ  is the constrained objective function value, ig  is the i-th problem 

constraint and α  is the penalty coefficient used to tune the intensity of penaliza-
tion as a whole. This parameter is set to an appropriate static value of 1=α  in the 
numerical examples. Finally, the solutions evaluated are sorted in the matrix in the 
descending order of objective function values, that is, )( 1Iφ ≤ )( 2Iφ ≤ …≤ )( hmsIφ . 

3.4   Generating a New Harmony Vector 

In harmony search algorithm the generation of a new solution (harmony) vector is 
controlled by two parameters ( hmcr  and par ) of the technique. The harmony 

memory considering rate ( hmcr ) refers to a probability value that biases the algo-
rithm to select a value for a design variable either from harmony memory or from 
the entire set of discrete values used for the variable. That is to say, this parameter 
decides in what extent previously visited favorable solutions should be considered 
in comparison to exploration of new design regions while generating new solu-
tions. At times when the variable is selected from harmony memory, it is checked 
whether this value should be substituted with its very lower or upper neighboring 
one in the discrete set. Here the goal is to encourage a more explorative search by 
allowing transitions to designs in the vicinity of the current solutions. This phe-
nomenon is known as pitch-adjustment in HS, and is controlled by pitch adjusting 
rate parameter ( par ). In the standard algorithm both of these parameters are set to 
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suitable constant values for all harmony vectors generated regardless of whether 
an exploitative or explorative search is indeed required at a time during the search 
process. On the contrary, in the adaptive algorithm a new set of values is sampled 
for hmcr  and par  parameters each time prior to improvisation (generation) of a 

new harmony vector, which in fact forms the basis for the algorithm to gain adap-
tation to varying features of the design space. Accordingly, to generate a new 
harmony vector in the algorithm proposed, a two-step procedure is followed con-
sisting of (i) sampling of control parameters, and (ii) improvisation of the design 
vector. 

3.4.1   Sampling of Control Parameters 

For each harmony vector to be generated during the search process, first a new set 
of values are sampled for hmcr  and par  control parameters by applying a logis-

tic normal distribution based variation to the average values of these parameters 
within the harmony memory matrix, as formulated in Eqns. (35 and 36). 
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In Eqns. (35) and (36), khmcr)(  and kpar)(  represent the sampled values of the 

control parameters for a new harmony vector. The notation )1,0(N  designates a 
normally distributed random number having expectation 0 and standard deviation 
1. The symbols )( ′hmcr  and )( ′par  denote the average values of control parame-

ters within the harmony memory matrix, obtained by averaging the corresponding 
values of all the solution vectors within the H  matrix, that is,  
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Finally, the factor γ  in Eqns. (35) and (36) refers to the learning rate of control 

parameters, which is recommended to be selected within a range of [0.25, 0.50]. In 
the numerical examples this parameter is set to 0.35. 

In the proposed implementation, for each new vector a probabilistic sampling 
of control parameters is motivated around average values of these parameters 

)( ′hmcr  and )( ′par  observed in the H  matrix. Considering the fact that the har-

mony memory matrix at an instant incorporates the best hms  solutions sampled 
thus far during the search, the idea here is to encourage forthcoming vectors to be 
sampled with values that the search process has taken the most advantage in the 
past. The use of a logistic normal distribution provides an ideal platform in this 
sense because not only it guarantees the sampled values of control parameters to 
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lie within their possible range of variation, i.e., [0, 1], but also it permits occur-
rence of small variations around )( ′hmcr  and )( ′par  more frequently than large 

ones. Accordingly, sampled values of control parameters mostly fall within close 
vicinity of the average values, yet remote values are occasionally promoted to 
check alternating demands of the search process. 

3.4.2   Improvisation of the Design Vector 

Upon sampling of a new set of values for control parameters, the new harmony 

vector [ ]k

ng

kkk III ,..,, 21=I  is improvised in such a way that each design variable is 

selected at random from either harmony memory matrix or the entire discrete set. 
Which one of these two sets is used for a variable is determined probabilistically 
in conjunction with harmony memory considering rate khmcr)(  parameter of the 
solution. To implement the process a uniform random number ir  is generated be-

tween 0 and 1 for each variable k

iI . If ir  is smaller than or equal to khmcr)( , the 

variable is chosen from harmony memory in which case it is assigned any value 
from the i-th column of the H  matrix, representing the value set of the variable in 
hms  solutions of the matrix (Eqn. 38). Otherwise (if k

i hmcrr )(> ), an arbitrary 

value is assigned to the variable from the entire design set. 
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If a design variable attains its value from harmony memory, it is checked whether 
this value should be pitch-adjusted or not. In pitch adjustment the value of a de-
sign variable ( k

iI ′ ) is altered to its very upper or lower neighboring value obtained 

by adding ± 1 to its current value. This process is also operated probabilistically in 
conjunction with pitch adjusting rate kpar)(  parameter of the solution, Eqn. (37). 

If not activated by kpar)( , the value of the variable does not change. Pitch ad-
justment prevents stagnation and improves the harmony memory for diversity with 
a greater change of reaching the global optimum. 
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3.5   Update of the Harmony Memory and Adaptivity 

After generating the new harmony vector, its objective function value is calculated 
as per Eqn. (34). If this value is better (lower) than that of the worst solution in the 
harmony memory matrix, it is included in the matrix while the worst one is dis-
carded out of the matrix. It follows that the solutions in the harmony memory ma-
trix represent the best )(hms  design points located thus far during the search. The 
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harmony memory matrix is then sorted in ascending order of objective function 
value. Whenever a new solution is added into the harmony memory matrix, the 

)( ′hmcr  and )( ′par  parameters are recalculated using Eqn. (37). This way the 
harmony memory matrix is updated with the most recent information required for 
an efficient search and the forthcoming solution vectors are guided to make their 
own selection of control parameters mostly around these updated values. It should 
be underlined that there are no single values of control parameters that lead to the 
most efficient search of the algorithm throughout the process unless the design 
domain is completely uniform. On the contrary, the optimum values of control pa-
rameters have a tendency to change over time depending on various regions of the 
design space in which the search is carried out. The update of the control parame-
ters within the harmony memory matrix enables the algorithm to catch up with the 
varying needs of the search process as well. Hence the most advantageous values 
of control parameters are adapted in the course of time automatically (i.e., by the 
algorithm itself), which plays the major role in the success of adaptive harmony 
search method discussed in this chapter.   

3.6   Termination 

The steps 3.4 and 3.5 are iterated in the same manner for each solution sampled in 
the process, and the algorithm terminates when a predefined number of solutions 

( maxN ) is sampled. 

4   Performance Evaluation of Adaptive Harmony Search 
Method 

Performance of the adaptive harmony search algorithm presented is evaluated in 
the optimum design of three real size steel frames. These are 209-member indus-
trial factory building, 568-member unbraced space steel frame and 1860-member 
braced space steel frame, respectively. The topology and geometry of each frame 
and the loadings considered in their designs are described in the relevant sections 
below. The design constraints in these three problems are arranged according to 
ASD-AISC design code specifications and the following material properties of the 
steel are used: modulus of elasticity (E) = 203893.6 MPa (29000 ksi) and yield 
stress ( yF ) = 253.1 MPa (36 ksi). Each frame is designed using both standard and 

adaptive harmony search algorithms and the performance of the techniques is 
compared. 

4.1   209-Member Industrial Factory Building  

The first design example is an industrial factory building with 100 joints and 209 
members. Shown in Figure 2 are the plan, side and 3D views of this structure. The 
main system of the structure consists of five identical frameworks lying 6.1 m (20 
ft) apart from each other in x-z plane. Each framework  consists of two side frames 
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and a gable roof truss in between them as depicted in Figure 2 (b). The lateral  
stability against wind loads in x-z plane is provided with columns fixed at the base 
along with the rigid connections of the side frames. Hence, all the beams and col-
umns in the side frames are designed as moment-resisting axial-flexural members.  

 

a) 3D view 

6.1 m
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6.1 m
(20 ft)

24.4 m (80 ft)
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3.05 m
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 (5.0 ft)

x

z

 

b) Front view 

Fig. 2 209-member industrial factory building. 
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c) Side view 
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d) First floor plan view 
 

Fig. 2 (continued) 
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e) Member grouping 

Fig. 2 (continued) 

The gable roof truss, on the other hand, is designed to transmit only axial forces 
through pin-jointed connections, and hence the web and chord members in the ga-
ble roof are all designed as axial members. For longitudinal stability (along y-axis) 
of the structure, bracing is provided in the end bays in the walls and the roof. By 
employing the symmetry of the structure and fabrication requirements of structural 
members, the total of 209 members are collected in 14 member groups (independ-
ent size variables). The member grouping details are presented in Table 1 and  
Figure 2 (e).  

Three different types of loads are considered for the design of the industrial 
building; namely dead, crane and wind loads. A design dead load of 1.2 kN/m2 is 
assumed to be acting on both floors of the side frames, resulting in uniformly dis-
tributed loads of 14.63 kN/m (1004.55 lb/ft) and 7.32 kN/m (502.27 lb/ft) on the 
interior and exterior beams of the side frames. The dead weights of the gable roofs 
are neglected due to relatively light weight of these components. The crane load is 
modeled as two pairs of moving live loads acting on both sides of the crane run-
way beams as shown in Figure 2 (d). Each pair consists of a concentrated load of 
280 kN (62.9 kip) and a couple moment of 75 kN.m (5532 kip.ft). In the study the 
crane load is represented in two distinct load cases referred to as CL1 and CL2 by 
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choosing two different positions for the crane on its runway. In CL1, the crane is 
positioned at points A and A′  as shown in Figure 2 (d) to create maximum effect 
on the second framework. In CL2, however, it is positioned in the middle of the 
runway beam between the second and third frameworks (shown as B and B′  in 
Figure 2 (d)) to maximize response in the beams directed along y-axis.  

Table 1 Member grouping details for 209-member industrial factory building. 

Member Group Name Member Group name 

1 1st floor external columns 8 Truss top chord 

2 1st floor internal columns 9 Truss web diagonals 

3 2nd floor external columns 10 Truss web verticals 

4 2nd floor internal columns 11 1st floor wall braces 

5 1st floor beams 12 2nd floor wall braces 

6 2nd floor beams 13 Floor frames braces 

7 Truss bottom chord 14 Floor truss braces 

Only the wind in the x-direction is considered for design and the corresponding 
wind forces are calculated based on a basic wind speed of 94.46=V m/s (105 
mph) in line with the prescriptions described in ASCE 7-05 [30], which is dis-
cussed in the following example. Two load cases referred to as WL1 and WL2 are 
generated depending on the sign of the internal wind pressure exerted on the ex-
ternal faces of the building, as shown in Figure 3. In both cases, it is assumed that 
wind causes a positive compression pressure on windward face, while it causes a 
negative suction effect on leeward face as well as on side walls of the building. In 
WL1 the suction effect is considered for the entire roof surface, whereas in WL2 
one part of the roof is subjected to compression pressure. From amongst the five 
load cases (DL, CL1, CL2, WL1 and WL2), a total of six load combinations are 
generated for the strength design of each structural member in accordance with 
ASD-AISC [11] specification, as follows:  

(i) 1.0DL + 1.0CL1  
(ii) 1.0DL + 1.0CL1 + 1.0WL1  
(iii) 1.0DL + 1.0CL1 + 1.0WL2  
(iv) 1.0DL + 1.0CL2  
(v) 1.0DL + 1.0CL2 + 1.0WL1  
(vi) 1.0DL + 1.0CL2 + 1.0WL2  

All members are sized using the standard sections in AISC. Accordingly, the beam 
and column members are selected from wide-flange sections (W), and side wall 
and roof bracings are selected from back to back equal leg double angle sections. 
The combined stress, stability and geometric constraints are imposed according to 
the provisions of ASD-AISC [11]. In addition, displacements of all the joints in x 
and y directions are limited to 3.43 cm (1.25 in), and the upper limit of inter-story 
drifts is set to 1.52 cm (0.6 in).      
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Fig. 3 The two wind load cases considered for the design of 209-member industrial factory 
building. 
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Fig. 3 (continued) 
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Fig. 4 The design history for 209-member industrial factory building. 

The industrial factory building described above is designed by using stan-
dard and adaptive harmony search techniques. The harmony memory size hms, 
harmony memory considering rate hmcr and pitch adjustment rate par is taken 
as 50, 0.90 and 0.30 in the standard harmony search method while these pa-
rameters are adjusted dynamically in the adaptive harmony search technique. 
The maximum number of iterations is taken as 50000 in both algorithms in or-
der to provide equal opportunity for both algorithms for attaining the global op-
timum. The design history of both runs is shown in Figure 4. It is apparent from 
the figure that adaptive harmony method exhibits a better convergence rate and 
obtains lighter frame. The minimum weight of the steel frame is attained as 
46685.83kg by the standard harmony search method while the same weight is 
obtained as 44053.45kg by the adaptive harmony search algorithm which is 5.6 
% lighter. It is also apparent from the figure that adaptive harmony search 
method approaches to the vicinity of the minimum weight in early iterations of 
the optimum design process while the standard harmony search method reduces 
the frame weight in a steady manner until the end of the design process. The 
steel section designations determined by the both methods for each member 
groups of the frame are given in Table 2. 
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Table 2 Optimum designs obtained with standard and adaptive harmony search methods 
for 209-member industrial factory building. 

Standard Harmony Search Method Adaptive Harmony Search Method Group 

Number Ready Section Area, (cm2) (in2) Ready Section Area, (cm2) (in2) 

1 W8X31 58.90 (9.13) W8X31 58.90 (9.13) 

2 W12X40 76.13 (11.8) W10X39 74.19 (11.5) 

3 W8X31 58.90 (9.13) W12X26 49.35 (7.65) 

4 W8X40 75.48 (11.7) W8X40 75.48 (11.7) 

5 W24X62 117.42 (18.2) W24X62 117.42 (18.2) 

6 W12X26 49.35 (7.65) W10X26 49.09 (7.61) 

7 2L2.5X2X3/16 10.44 (1.62) 2L2X2X1/8 6.25 (0.97) 

8 2L2X2X1/8 6.25 (0.97) 2L2X2X1/8 6.25 (0.97) 

9 2L3X3X3/16 14.06 (2.18) 2L3X3X3/16 14.06 (2.18) 

10 2L3X2.5X5/16 20.90 (3.24) 2L2X2X1/8 6.25 (0.97) 

11 2L6X6X7/16 65.81 (10.2) 2L6X6X5/16 47.09 (7.30) 

12 2L6X6X3/8 56.26 (8.72) 2L6X6X5/16 47.09 (7.30) 

13 2L6X6X5/16 47.09 (7.30) 2L6X6X5/16 47.09 (7.30) 

14 2L6X6X5/16 47.09 (7.30) 2L5X5X5/16 39.09 (6.06) 

Weight 46685.83kg (102924.73 lb) 44053.45kg (97121.3 lb) 

4.2   568-Member Unbraced Space Steel Frame 

The second design example shown in Figures 5 (a-d) is a 10-story unbraced space 
steel frame consisting of 256 joints and 568 members. This problem has been for-
merly studied in Hasançebi et al. [25] to evaluate the performance of various 
meta-heuristic search techniques in real size optimum design of steel frameworks. 
The objective in this problem is then to compare the performance of adaptive 
harmony search method with those of other meta-heuristic search techniques.  

The columns in a story are collected in three member groups as corner columns, 
inner columns and outer columns, whereas beams are divided into two groups as 
inner beams and outer beams. The corner columns are grouped together as having 
the same section in the first three stories and then over two adjacent stories thereaf-
ter, as are inner columns, outer columns, inner beams and outer beams. This results 
in a total of 25 distinct member groups as shown in Figure 5 (d). The columns are 
selected from the complete W-shape profile list consisting of 297 ready sections, 
whereas a discrete set of 171 economical sections selected from W-shape profile 
list based on area and inertia properties is used to size beam members. 

The frame is subjected to various gravity loads in addition to lateral wind 
forces. The gravity loads acting on floor slabs cover dead (DL), live (LL) and 
snow (SL) loads, which are applied as uniformly distributed loads on the beams 
using load distribution formulas developed for slabs. All the floors, except the roof, 
are subjected to a design dead load of 2.88 kN/m2 (60.13 lb/ft2) and a design  
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live load of 2.39 kN/m2 (50 lb/ft2). The beams of the roof level are subjected to the 
design dead load plus snow load. The design snow load is computed using the fol-
lowing equation in ASCE 7-05 [30]: 

gtess IpCCCp 7.0=                                        (40) 

 
a) 3D view 

     36 ft
(10.97 m)

    84 ft
(25.61 m)

    20 ft
(9.14 m)

     60 ft
(18.29 m)

    20 ft
(9.14 m)

   20 ft
(9.14 m)

    60 ft
(18.29 m)

   20 ft
(9.14 m)

 
 

 

Fig. 5 568-member unbraced space steel frame. 

b) Elevation view c) Plan view 
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* 1st group: inner columns, 2nd group: side columns, 3rd group: corner columns 4th group: 
outer beams 5th group: inner beams, and so forth. 

Fig. 5 (continued) 

where sp  is the design snow load in kN/m2, sC  is the roof slope factor, eC  is the 

exposure factor, tC  is the temperature factor, I  is the importance factor, and gp  

is the ground snow load. For a heated residential building having a flat and fully 
exposed roof, these factors are chosen as follows: 0.1=sC , 9.0=eC , 0.1=tC , 

0.1=I , and 20.1=gp  kN/m2 (25 lb/ft2), resulting in a design snow load of 1.20 

kN/m2 (25 lb/ft2). The resulting gravity loading (GL) on the beams of the roof and 
floors is tabulated in Table 3. 

The wind loads (WL) are applied as uniformly distributed lateral loads on the 
external beams of the frame located at windward and leeward facades at every 
floor level. They are also computed according to ASCE 7-05 [30] using the  
following equation:  
 

))(613.0( 2

pdztzw GCIVKKKp =                               (41) 

 

d) Member grouping 
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Table 3 Gravity loading on the beams of 568-member unbraced space steel frame. 

Uniformly Distributed Load 

Outer Beams Inner Beams Beam Type 

kN/m (lb/ft) kN/m (lb/ft) 

Roof beams 7.38 (505.879) 14.77 (1011.74) 

Floor beams 10.72 (734.20) 21.44 (1468.40) 

Table 4 Wind loading on 568-member unbraced space steel frame. 

Windward Leeward 
Floor No 

kN/m (lb/ft) kN/m (lb/ft) 
1 1.64 (112.51) 1.86 (127.38) 
2 1.88 (128.68) 1.86 (127.38) 
3 2.10 (144.68) 1.86 (127.38) 
4 2.29 (156.86) 1.86 (127.38) 
5 2.44 (167.19) 1.86 (127.38) 
6 2.57 (176.13) 1.86 (127.38) 
7 2.69 (184.06) 1.86 (127.38) 
8 2.79 (191.21) 1.86 (127.38) 
9 2.89 (197.76) 1.86 (127.38) 

10 1.49 (101.90) 0.93 (  63.69) 

where wp  is the design wind pressure in kN/m2, zK  is the velocity exposure coef-

ficient, ztK  is the topographic factor, dK  is the wind direction factor, V  is the ba-

sic wind speed, G  is the gust factor, and pC  is the external pressure coefficient. 

Assuming that the building is located in a flat terrain with a basic wind speed of 
94.46=V m/s (105 mph) and exposure category B, the following values are used 

for these parameters: 0.1=ztK , 85.0=dK , 0.1=I , 85.0=G , and 8.0=pC  for 

windward face and -0.5 for leeward face.  The calculated wind loads at every floor 
level are presented in Table 4.  

The gravity and wind forces are combined under two loading conditions. In the 
first loading condition, the gravity loading is applied with the wind loading acting 
along x-axis (1.0GL + 1.0WL-x), whereas in the second one wind loading is acted 
along y-axis (1.0GL + 1.0WL-y). The combined stress, stability, displacement and 
geometric constraints are imposed according to the provisions of ASD-AISC [11]. 

The optimum design of the unbraced space steel frame described above is car-
ried out using the adaptive harmony search algorithm as well as six different meta-
heuristic techniques. These meta-heuristic techniques are evolutionary strategies 
(ES), tabu search optimization (TSO), simulated annealing (SA), ant colony opti-
mization (ACO), simple genetic algorithm (SGA) and particle swarm optimizer 
(PSO). In each optimization technique the number of iterations is taken as 50000 
in order to allow equal opportunity to every technique to grasp the global  
 



106 M.P. Saka and O. Hasançebi
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

T
ab

le
 5

 C
om

pa
ri

so
n 

of
 o

pt
im

um
 d

es
ig

ns
 o

bt
ai

ne
d 

by
 v

ar
io

us
 m

et
a-

he
ur

is
ti

c 
se

ar
ch

 t
ec

hn
iq

ue
s 

fo
r 

56
8-

m
em

be
r 

un
br

ac
ed

 s
pa

ce
 

st
ee

l f
ra

m
e.

 

R
ea

d
y
 S

ec
ti

o
n

s 
in

 d
es

ig
n

s 
o
b

ta
in

ed
 w

it
h

 e
a
ch

 m
et

a
h

eu
ri

st
ic

 o
p

ti
m

iz
a
ti

o
n

 t
ec

h
n

iq
u

e
M

e
m

b
er

 

g
ro

u
p

s

E
S

s
A

H
S

T
S

O
S

A
A

C
O

S
G

A
P

S
O

1
W

1
4

X
1

9
3

W
1

4
X

1
7

6
W

1
4

X
1

9
3

W
1

4
X

1
9

3
W

1
4

X
1

9
3

W
1

4
X

1
9

3
W

1
4

X
1

5
9

2
W

8
X

4
8

W
1

4
X

4
8

W
8

X
4

8
W

8
X

4
8

W
8

X
4

8
W

8
X

4
8

W
2

4
X

7
6

3
W

1
0

X
3

9
W

1
0

X
3

9
W

8
X

4
0

W
8

X
4

0
W

1
0

X
4

5
W

1
0

X
3

9
W

1
0

X
3

9

4
W

1
0

X
2

2
W

1
0

X
2

2
W

1
0

X
2

2
W

1
0

X
2

2
W

1
0

X
2

2
W

1
0

X
2

6
W

1
0

X
2

2

5
W

2
1

X
5

0
W

2
4

X
5

5
W

2
1

X
5

0
W

2
1

X
4

4
W

2
1

X
5

0
W

2
1

X
5

0
W

2
4

X
5

5

6
W

1
0

X
5

4
W

1
2

X
6

5
W

1
0

X
5

4
W

1
2

X
6

5
W

1
4

X
6

1
W

1
8

X
7

6
W

1
2

X
7

2

7
W

1
4

X
1

0
9

W
1

4
X

1
4

5
W

1
4

X
1

2
0

W
1

4
X

1
4

5
W

1
4

X
1

2
0

W
1

4
X

1
0

9
W

2
7

X
1

4
6

8
W

1
4

X
1

7
6

W
1

4
X

1
5

9
W

1
4

X
1

5
9

W
1

4
X

1
4

5
W

4
0

X
1

9
2

W
4

0
X

1
9

2
W

2
7

X
2

1
7

9
W

1
8

X
4

0
W

1
4

X
3

0
W

2
1

X
4

4
W

2
4

X
6

8
W

1
8

X
3

5
W

1
8

X
4

0
W

1
8

X
4

0

1
0

W
1

8
X

4
0

W
1

8
X

4
0

W
1

8
X

4
0

W
2

4
X

5
5

W
1

8
X

4
0

W
2

1
X

5
0

W
1

8
X

4
0

1
1

W
1

0
X

4
9

W
1

0
X

5
4

W
1

0
X

4
5

W
1

0
X

4
9

W
1

2
X

5
8

W
1

2
X

6
5

W
1

8
X

7
1

1
2

W
1

4
X

9
0

W
1

4
X

9
0

W
1

4
X

9
0

W
1

4
X

9
0

W
1

2
X

9
6

W
2

1
X

1
1

1
W

2
1

X
1

0
1



Adaptive Harmony Search Algorithm  107
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

T
ab

le
 5

 (
co

nt
in

ue
d)

 

1
3

W
1

4
X

1
0

9
W

1
4

X
1

2
0

W
1

2
X

1
2

0
W

1
4

X
1

2
0

W
1

2
X

1
3

6
W

1
2

X
1

5
2

W
1

4
X

1
7

6

1
4

W
1

4
X

3
0

W
1

4
X

3
4

W
2

1
X

4
4

W
1

6
X

3
6

W
1

2
X

3
0

W
1

2
X

3
0

W
1

4
X

3
4

1
5

W
1

6
X

3
6

W
1

8
X

4
0

W
1

6
X

3
6

W
1

6
X

4
0

W
2

1
X

4
4

W
1

6
X

4
0

W
2

1
X

4
4

1
6

W
1

2
X

4
5

W
8

X
3

1
W

1
0

X
3

3
W

1
2

X
4

0
W

8
X

5
8

W
1

4
X

6
8

W
1

2
X

6
5

1
7

W
1

2
X

6
5

W
1

2
X

6
5

W
1

2
X

6
5

W
1

2
X

6
5

W
1

8
X

7
6

W
1

8
X

7
6

W
1

0
X

6
8

1
8

W
1

0
X

2
2

W
1

8
X

3
5

W
1

4
X

3
4

W
1

2
X

2
6

W
1

2
X

3
5

W
8

X
2

8
W

1
2

X
3

5

1
9

W
1

2
X

7
9

W
1

2
X

7
9

W
1

2
X

7
9

W
1

2
X

7
2

W
1

0
X

8
8

W
1

0
X

8
8

W
1

2
X

7
9

2
0

W
1

4
X

3
0

W
1

4
X

3
0

W
1

4
X

3
0

W
1

6
X

3
6

W
1

4
X

3
0

W
1

6
X

3
6

W
1

4
X

3
8

2
1

W
8

X
3

5
W

1
0

X
2

2
W

1
0

X
3

9
W

8
X

2
4

W
8

X
5

8
W

8
X

4
8

W
1

0
X

3
9

2
2

W
1

0
X

3
9

W
1

0
X

4
5

W
1

2
X

4
5

W
1

0
X

4
9

W
8

X
4

0
W

1
4

X
3

4
W

8
X

3
1

2
3

 W
8

X
3

1
W

8
X

3
1

W
1

2
X

3
5

W
8

X
2

4
W

8
X

3
1

W
1

2
X

3
0

W
1

2
X

9
6

2
4

 W
8

X
1

8
W

1
0

X
2

2
W

6
X

2
0

W
1

2
X

2
6

W
8

X
2

4
W

8
X

2
1

W
1

2
X

2
6

2
5

W
1

4
X

3
0

W
1

2
X

2
6

W
1

2
X

2
6

W
1

2
X

2
6

W
1

6
X

4
5

W
1

8
X

3
5

W
1

2
X

2
6

W
e
ig

h
t,

  
k

g

(l
b

)

 2
2

8
5
8

8
.3

3

(5
0

3
9
5

3
.6

3
)

 2
3

2
3
0

1
.2

0

(5
1

2
1
3

9
.1

6
)

 2
3

5
1
6

7
.5

2

(5
1

8
4
5

8
.3

5
)

 2
3

8
7
5

6
.5

1

(5
2

6
3
7

0
.7

6
)

 2
4

1
4
7

0
.3

1

(5
3

2
3
5

3
.7

0
)

 2
4

5
5
6

4
.8

0

(5
4

1
3
8

0
.5

4
)

 2
5

3
2
6

0
.2

3

(5
5

8
3
4

6
.1

5
)



108 M.P. Saka and O. Hasançebi
 

optimum. The design history of each run by each technique is shown in Figure 6 
and the minimum weights as well as W-section designations obtained for each 
members group is given in Table 5. Inspection of the minimum weights reveals 
the fact that the lightest frame is attained by the evolutionary strategies and the op-
timum result obtained by the adaptive harmony search algorithm is the second best 
among all the meta-heuristic algorithms considered in this study. This clearly indi-
cates that the enhancements carried out in the standard harmony search method 
have certainly improved the performance of the technique. In fact the optimum 
design attained by the standard harmony search method for the same frame was 
259072.31 kg (571159.66 lb) as given in [25] which was the heaviest among all. 
The minimum weight found in this study is only 1.6% heavier than the one ob-
tained by evolutionary strategies algorithm. 
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Fig. 6 The design history for meta-heuristic search algorithms used in the optimum design 
of 568-member unbraced space steel frame. 

4.3   1860-Member Braced Space Steel Frame 

The last design example considered in this section is 36-story braced space steel 
frame consisting of 814 joints and 1860 members. The side, plan and 3D views of 
the frame as well as member grouping details are shown in Figures 7 (a-d). An 
economical and effective stiffening of the frame against lateral forces is achieved 
through exterior diagonal bracing members located on the perimeter of the  
building, which also participate in transmitting the gravity forces.  
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d) Plan view. 

Fig. 7 1860-member braced space steel frame. 
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Table 6 Wind loading on 1860-member braced space steel frame. 

Floor 

 

Windward  

kN/m (lb/ft) 

Leeward 

kN/m (lb/ft) 

1 2.05 (140.64) 3.57 (244.70) 

2 2.50 (171.44) 3.57 (244.70) 

3 2.81 (192.49) 3.57 (244.70) 

4 3.05 (208.98) 3.57 (244.70) 

5 3.25 (222.74) 3.57 (244.70) 

6 3.42 (234.65) 3.57 (244.70) 

7 3.58 (245.22) 3.57 (244.70) 

8 3.72 (254.75) 3.57 (244.70) 

9 3.85 (263.47) 3.57 (244.70) 

10 3.96 (271.52) 3.57 (244.70) 

11 4.07 (279.02) 3.57 (244.70) 

12 4.18 (286.04) 3.57 (244.70) 

13 4.27 (292.66) 3.57 (244.70) 

14 4.36 (298.92) 3.57 (244.70) 

15 4.45 (304.87) 3.57 (244.70) 

16 4.53 (310.55) 3.57 (244.70) 

17 4.61 (315.97) 3.57 (244.70) 

18 4.69 (321.18) 3.57 (244.70) 

19 4.76 (326.18) 3.57 (244.70) 

20 4.83 (330.99) 3.57 (244.70) 

21 4.90 (335.64) 3.57 (244.70) 

22 4.97 (340.13) 3.57 (244.70) 

23 5.03 (344.48) 3.57 (244.70) 

24 5.09 (348.69) 3.57 (244.70) 

25 5.15 (352.78) 3.57 (244.70) 

26 5.21 (356.76) 3.57 (244.70) 

27 5.27 (360.62) 3.57 (244.70) 

28 5.32 (364.39) 3.57 (244.70) 

29 5.37 (368.06) 3.57 (244.70) 

30 5.43 (371.65) 3.57 (244.70) 

31 5.48 (375.14) 3.57 (244.70) 

32 5.53 (378.56) 3.57 (244.70) 

33 5.58 (381.90) 3.57 (244.70) 

34 5.62 (385.18) 3.57 (244.70) 

35 5.67 (388.38) 3.57 (244.70) 

36 2.86 (195.76) 1.79 (122.35) 

 
 



Adaptive Harmony Search Algorithm  111
 

Table 7 Gravity loading on the beams of 1860-member braced steel space frame. 

Uniformly Distributed Load, kN/m (lb/ft) 
Beam Type 

Dead Load Live Load Snow Load 

Roof beams 22.44 (1536.66) N.A 5.88 (402.50) 

Floor beams 22.44 (1536.66) 18.66 (1277.78) N.A 

The wide-flange (W) profile list consisting of 297 ready sections is used to size 
column members, while beams and diagonals are selected from discrete sets of 
171 and 147 economical sections selected from wide-flange profile list based  
on area and inertia properties in the former, and on area and radii of gyration 
properties in the latter. The 1860 frame members are collected in 72 different 
member groups, considering the symmetry of the structure and practical fabrica-
tion requirements. That is, the columns in a story are collected in three member 
groups as corner columns, inner columns and outer columns, whereas beams are 
divided into two groups as inner beams and outer beams. The corner columns are 
grouped together as having the same section over three adjacent stories, as are in-
ner columns, outer columns, inner beams and outer beams. Bracing members on 
each facade are designed as three-story deep members, and two bracing groups are 
specified in every six stories.  
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Fig. 8 The design history for standard and adaptive harmony search methods used in the 
optimum design of 1860-member braced space steel frame. 



112 M.P. Saka and O. Hasançebi
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
ab

le
 8

 C
om

pa
ri

so
n 

of
 o

pt
im

um
 d

es
ig

ns
 o

bt
ai

ne
d 

w
it

h 
cl

as
si

ca
l a

nd
 a

da
pt

iv
e 

ha
rm

on
y 

se
ar

ch
 m

et
ho

ds
 f

or
 1

86
0-

m
em

be
r 

br
ac

ed
 s

te
el

 
sp

ac
e 

fr
am

e.
 

S
ta

n
d

a
rd

 H
a
rm

o
n

y
 S

ea
rc

h
 M

et
h

o
d

A
d

ap
ti

v
e
 H

a
rm

o
n

y
 S

ea
rc

h
 M

et
h

o
d

M
e
m

b
er

 

G
ro

u
p

R
ea

d
y

S
e
ct

io
n

M
e
m

b
er

 

G
ro

u
p

R
ea

d
y

S
e
ct

io
n

M
e
m

b
er

 

G
ro

u
p

R
ea

d
y

S
e
ct

io
n

M
e
m

b
er

 

G
ro

u
p

R
ea

d
y

S
e
ct

io
n

1
W

2
7

X
2

5
8

3
7

W
1

8
X

3
5

1
W

2
4

X
3

7
0

3
7

W
1

2
X

1
4

2
W

4
0

X
2

6
8

3
8

W
3

0
X

1
4

8
2

W
1

2
X

3
3

6
3

8
W

1
6

X
2

6

3
W

2
4

X
4

5
0

3
9

W
1

8
X

3
5

3
W

1
2

X
3

0
5

3
9

W
1

4
X

2
2

4
W

2
4

X
2

5
0

4
0

W
3

6
X

2
1

0
4

W
1

2
X

1
9

0
4

0
W

1
4

X
2

6

5
W

2
7

X
1

4
6

4
1

W
1

0
X

3
0

5
W

1
4

X
1

9
3

4
1

W
2

7
X

1
0

2

6
W

3
6

X
8

4
8

4
2

W
3

6
X

1
6

0
6

W
2

4
X

1
1

7
4

2
W

1
6

X
3

1

7
W

3
3

X
2

0
1

4
3

W
1

4
X

3
0

7
W

1
2

X
7

9
4

3
W

1
8

X
3

5

8
W

3
3

X
2

0
1

4
4

W
3

3
X

1
4

1
8

W
1

2
X

7
9

4
4

W
1

8
X

3
5

9
W

1
4

X
4

5
5

4
5

W
1

2
X

1
6

9
W

4
0

X
2

4
4

4
5

W
4

0
X

1
6

7

1
0

W
3

6
X

3
5

9
4

6
W

1
2

X
2

6
1

0
W

1
8

X
8

6
4

6
W

1
4

X
2

2

1
1

W
3

3
X

2
0

1
4

7
W

3
3

X
1

5
2

1
1

W
1

2
X

9
6

4
7

W
2

4
X

6
8

1
2

W
2

4
X

1
7

6
4

8
W

2
1

X
5

0
1

2
W

8
X

2
8

4
8

W
1

6
X

2
6

1
3

W
3

0
X

5
8

1
4

9
W

2
1

X
5

7
1

3
W

3
3

X
4

2
4

4
9

W
2

4
X

6
2

1
4

W
3

6
X

7
9

8
5

0
W

3
3

X
3

8
7

1
4

W
4

0
X

4
3

6
5

0
W

2
7

X
9

4

1
5

W
1

4
X

6
6

5
5

1
W

4
0

X
1

6
7

1
5

W
4

0
X

3
2

4
5

1
W

2
4

X
6

8

1
6

W
3

6
X

7
9

8
5

2
W

3
0

X
2

3
5

1
6

W
3

6
X

2
8

0
5

2
W

2
4

X
7

6

1
7

W
3

6
X

3
9

3
5

3
W

3
0

X
9

0
1

7
W

3
3

X
3

1
8

5
3

W
2

4
X

7
6

1
8

W
3

6
X

8
4

8
5

4
W

2
7

X
8

4
1

8
W

3
3

X
2

9
1

5
4

W
3

0
X

1
1

6



Adaptive Harmony Search Algorithm  113
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

T
ab

le
 8

 (
co

nt
in

ue
d)

 

1
9

W
3

6
X

8
4

8
5

5
W

3
3

X
1

4
1

1
9

W
4

0
X

2
7

7
5

5
W

2
7

X
9

4

2
0

W
3

6
X

8
4

8
5

6
W

3
6

X
5

2
7

2
0

W
2

4
X

2
5

0
5

6
W

2
1

X
8

3

2
1

W
3

3
X

4
2

4
5

7
W

4
0

X
1

6
7

2
1

W
3

6
X

2
6

0
5

7
W

3
0

X
9

0

2
2

W
3

6
X

8
4

8
5

8
W

3
3

X
1

5
2

2
2

W
3

3
X

2
9

1
5

8
W

4
4

X
1

9
8

2
3

W
3

6
X

8
4

8
5

9
W

4
4

X
2

4
8

2
3

W
2

7
X

2
3

5
5

9
W

4
4

X
2

8
5

2
4

W
4

0
X

4
8

0
6

0
W

3
0

X
1

2
4

2
4

W
1

2
X

1
7

0
6

0
W

2
4

X
6

8

2
5

W
3

6
X

8
4

8
6

1
W

1
4

X
6

0
5

2
5

W
1

4
X

6
6

5
6

1
W

1
4

X
4

5
5

2
6

W
3

6
X

7
9

8
6

2
W

1
4

X
7

3
0

2
6

W
3

6
X

7
9

8
6

2
W

1
4

X
3

9
8

2
7

W
3

6
X

5
2

7
6

3
W

3
6

X
3

2
8

2
7

W
3

6
X

7
2

0
6

3
W

4
0

X
3

2
8

2
8

W
3

6
X

8
4

8
6

4
W

3
0

X
1

7
3

2
8

W
3

3
X

6
1

9
6

4
W

1
4

X
2

3
3

2
9

W
1

4
X

5
0

0
6

5
W

1
4

X
1

7
6

2
9

W
4

0
X

5
3

1
6

5
W

1
4

X
1

0
9

3
0

W
2

7
X

2
8

1
6

6
W

2
1

X
1

6
6

3
0

W
3

6
X

4
3

9
6

6
W

1
2

X
7

2

3
1

W
3

6
X

7
9

8
6

7
W

1
4

X
3

1
1

3
1

W
2

7
X

4
9

4
6

7
W

4
0

X
3

2
8

3
2

W
3

6
X

8
4

8
6

8
W

3
3

X
3

8
7

3
2

W
3

3
X

6
1

9
6

8
W

1
4

X
2

8
3

3
3

W
3

6
X

8
4

8
6

9
W

3
6

X
3

0
0

3
3

W
2

1
X

3
6

4
6

9
W

1
4

X
2

3
3

3
4

W
4

0
X

3
2

4
7

0
W

4
0

X
2

4
9

3
4

W
4

0
X

2
9

7
7

0
W

4
0

X
1

9
2

3
5

W
3

6
X

5
2

7
7

1
W

4
0

X
2

4
9

3
5

W
3

6
X

2
4

5
7

1
W

4
0

X
1

9
2

3
6

W
3

6
X

7
9

8
7

2
W

3
0

X
2

6
1

3
6

W
1

4
X

2
8

3
7

2
W

1
4

X
1

3
2

W
e
ig

h
t

4
4

3
8

1
7

2
.3

7
 k

g

(9
7

8
4
4

9
6

.0
1

 l
b

)

2
3

8
3

6
0

4
.6

1
 k

g

(5
2

5
4
9

4
9

.0
8

 l
b

)



114 M.P. Saka and O. Hasançebi
 
The 1860-member braced space steel frame is subjected to two loading condi-

tions of combined gravity and wind forces. These forces are computed as per 
ASCE 7-05 based on the following design values: a design dead load of 2.88 
kN/m2 (60.13 lb/ft2), a design live load of 2.39 kN/m2 (50 lb/ft2), a ground snow 
load of 1.20 kN/m2 (25 lb/ft2) and a basic wind speed of 55.21 m/s (123.5mph). 
Lateral (wind) loads acting at each floor level on windward and leeward faces of 
the frame are tabulated in Table 6 and the gravity loading on the beams of roof and 
floors is given in Table 7. In the first loading condition, gravity loads are applied 
together with wind loads acting along x-axis (1.0 GL + 1.0WL-x), whereas in the 
second one they are applied with wind loads acting along y-axis (1.0 GL + 
1.0WL-y). The combined stress, stability and geometric constraints are imposed 
according to the provisions of ASD-AISC. The joint displacements in x and y di-
rection are restricted to 32.0 cm (12.6 in) which is obtained as height of 
frame/400. Furthermore, story drift constraints are applied to each story of the 
frame which is equal to height of each story/400. 

The 1860-member braced space steel frame is designed separately by using 
both standard and adaptive harmony search method. In the standard harmony 
search method the harmony memory size, harmony memory considering rate and 
pitch adjustment rate are taken as 50, 0.90 and 0.10 respectively. The maximum 
number of iteration is 50000. The design history of both runs is shown in Figure 8 
and the optimum designs obtained by the both algorithm is given in Table 8. The 
minimum weight for the frame is determined as 2383604.61 kg by the adaptive 
harmony search method while standard harmony search algorithm arrived at 
4438172.37 kg which is 46.3% heavier. It is apparent that in optimum design 
problems where the number of design variables relatively large, standard harmony 
search method do not perform well and adaptive harmony search technique dissi-
pates this drawback. Figure 8 clearly demonstrates the better performance of the 
adaptive harmony search method and verifies the above fact. 

5   Comparison of Code Based Optimum Designs 

Figure 9 shows plan and elevation views of a 85-member moment resisting planar 
steel frame, which actually represents one of the interior frameworks of a steel 
building along the short side. The 85 members are grouped into total of 21 inde-
pendent size variables to satisfy practical fabrication requirements, such that  
the exterior columns are grouped together as having the same section over two  
adjacent stories, as are interior columns and beams, as indicated in Figure 9.  

The frame is only subjected to gravity loads, which are computed as per ASCE 
7-05 [30] based on the following design values: a design dead load of 2.88 kN/m2 
(60.13 lb/ft2), a design live load of 2.39 kN/m2 (50 lb/ft2) and a ground snow load 
of 1.20 kN/m2 (25 lb/ft2). The unfactored distributed gravity loads on the beams of 
the roof and floors are tabulated in Table 9. The load and combination factors are 
applied according to each code specification used to size the frame members, as 
follows: 1.0DL + 1.0L + 1.0SL for ASD-AISC; 1.2DL + 1.6LL + 0.5SL for 
LRFD-AISC; and 1.4DL + 1.6LL + 1.6SL for BS5950.  



Adaptive Harmony Search Algorithm  115
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a) elevation                                                b) plan 

Fig. 9 85-member unbraced planar steel frame. 

Table 9 Gravity loading on the beams of 85-member unbraced planar steel frame. 

Uniformly Distributed Load, kN/m (lb/ft) 
Beam Type 

Dead Load Live Load Snow Load 

Roof beams 7.47 (512.22) N.A. 1.96 (134.17) 

Floor beams 7.47 (512.22) 6.21 (425.93) N.A. 

In the ASD-AISC and LRFD-AISC code applications the wide-flange (W) pro-
file list consisting of 297 ready sections is used to size column members, while 
beams are selected from discrete sets of 171 economical sections selected from 
wide-flange profile list based on area and inertia properties in the optimum design 
of the frame. In the case of British Code it is common practice to use universal 
beam (UB) sections for beams and universal column (UC) sections for columns of 
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steel frames. Among the steel sections list 64 universal beam  sections starting 
from 914x419x388UB to 254x102x28UB and 32 universal column sections start-
ing from 356x406x634UC to 152x152x23UC are selected to constitute the dis-
crete set consists of 96 steel sections from which the design algorithm selects the 
sectional designations for the frame members. The stress, strength and stability re-
quirements of all members are imposed according to provisions of each code 
specification employed, as outlined in Section 2. In addition, the top story drift 
and inter-story drifts are limited to a maximum value of H/400 and h/400, respec-
tively, where H is the total building height and h is the story height.  These limita-
tions are somewhat little different in the BS5950 they are given as H/300 and 
h/300 where H and h are the same as the previous definitions.  

The optimum design of the 85-member frame is carried out according to the 
each design code provisions using adaptive harmony search algorithm presented in 
the preceding sections. The optimum designs obtained in each case are given in 
Table 10. Among three design codes LRFD-AISC attains the lightest frame under 
the design loading considered in this study. The minimum weight of the frame is 
determined as 32868.54 kg by LRFD-AISC, 33011 kg by BS5950 and 47472.66 
kg by ASD-AISC. The minimum weights found by BS5950 and LRFD-AISC is 
quite close to each other while the one determined by ASD-AISC is 44.4% heavier 
than the one attained by LRFD-AISC. This expected due to the fact that both 
LRFD-AISC and BS5950 uses the limit state concept in the design of steel frames 
while ASD-AISC is based on the allowable stress design. In the limit state design 
concept steel structure is designed according to the strength, serviceability and 
other limit states at which the structure becomes unfit to be able to serve to the 
purpose for which it is constructed. These limit states are checked under the fac-
tored loads that are given in both design codes. On the other hand in the allowable 
stress design the loads are taken as service loads without any factoring and the 
stresses develop in members are checked against their allowable values. As a re-
sult of this only elastic behavior of a steel structure allowed in allowable stress de-
sign code and allowable stresses are obtained by dividing the yield stress of the 
steel material by a safety factor. It is apparent that a steel structure will not be in 
an unsafe condition even though stresses in some of its members exceed the al-
lowable stress values because of the fact that allowable stresses are much lower 
than the yield stress of the steel material. On the other hand, in the limit state  
design concepts the service loads are increased by load factors and the stresses de-
velop under these loads are allowed to reach to yield strength values of steel mate-
rial. Consequently, the design based on the limit state design concepts yields a 
lighter structure due to the fact that it takes into account the realistic behavior of 
steel structures.  It is worthwhile to state the fact that in this study only gravity 
loadings are considered, the other loading cases are not considered in the optimum 
design. The difference between the optimum designs obtained according to ASD 
and LRFD design codes may be less when all the loading cases are considered. 
However, it is known that design codes based on the limit state concepts results in 
lighter designs [31]. It is interesting to notice that the optimum design obtained by 
considering the design constraints from LRFD-AISC design code is less but not 
very much different than the one obtained considering the design constraints from 
 



Adaptive Harmony Search Algorithm  117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T
ab

le
 1

0 
T

he
 c

om
pa

ri
so

n 
of

 o
pt

im
um

 d
es

ig
ns

 p
ro

du
ce

d 
ac

co
rd

in
g 

to
 A

S
D

-A
IS

C
, L

R
F

D
- 

A
IS

C
 a

nd
 B

S5
95

0 
de

si
gn

 c
od

es
 f

or
 8

5-
m

em
be

r 
un

br
ac

ed
 p

la
na

r 
st

ee
l f

ra
m

e.
 

  
  
  

  
  
  

  
  

  
  
  

B
S

5
9

5
0

A
S

D
-A

IS
C

L
R

F
D

-A
IS

C
M

em
b
e
r 

g
ro

u
p

S
ec

ti
o
n

 D
es

ig
n

at
io

n
A

re
a,

 c
m

2
(i

n
2
)

S
ec

ti
o
n

 D
es

-
A

re
a,

 c
m

2
(i

n
2
)

S
ec

ti
o
n

 D
es

-
A

re
a,

 c
m

2
(i

n
2
)

1
4
5

7
X

1
5

2
X

5
2
 U

B
6
6
.5

 (
1
0
.3

0
)

W
1

2
X

7
2

1
3

6
.1

3
 (

2
1

.1
)

W
1

6
X

3
1

5
8
.9

0
 (

9
.1

3
)

2
4
5

7
X

1
5

2
X

5
2
 U

B
6
6
.5

 (
1
0
.3

0
)

W
1

4
X

6
8

1
2

9
.0

3
 (

2
0

.0
)

W
1

6
X

4
0

7
5
.8

0
 (

1
1
.7

5
)

3
4
5

7
X

1
5

2
X

5
2
 U

B
6
6
.5

 (
1
0
.3

0
)

W
1

6
X

6
7

1
2

7
.0

9
 (

1
9

.7
)

W
1

8
X

4
0

7
5
.9

0
 (

1
1
.7

6
)

4
4
5

7
X

1
5

2
X

5
2
 U

B
6
6
.5

 (
1
0
.3

0
)

W
1

0
X

4
5

8
5
.8

1
 (

1
3
.3

)
W

2
1
X

4
4

8
3
.7

0
 (

1
2
.9

7
)

5
4
5

7
X

1
5

2
X

6
0
 U

B
7
5
.9

 (
1
1
.7

6
)

W
1

4
X

6
8

1
2

9
.0

3
 (

2
0

.0
)

W
2

1
X

4
4

8
3
.7

0
 (

1
2
.9

7
)

6
4
5

7
X

1
5

2
X

5
2
 U

B
6
6
.5

 (
1
0
.3

0
)

W
1

0
X

4
9

9
2
.9

0
 (

1
4
.4

)
W

1
6
X

4
5

8
6
.0

0
 (

1
3
.3

3
)

7
4
5

7
X

1
5

2
X

5
2
 U

B
6
6
.5

 (
1
0
.3

0
)

W
1

2
X

4
5

8
5
.1

6
 (

1
3
.2

)
W

2
1
X

4
4

8
3
.7

0
 (

1
2
.9

7
)

8
4
5

7
X

1
5

2
X

5
2
 U

B
6
6
.5

 (
1
0
.3

0
)

W
1

2
X

5
3

1
0

0
.6

5
 (

1
5

.6
)

W
2

1
X

4
4

8
3
.7

0
 (

1
2
.9

7
)

9
2
0

3
X

2
0

3
X

6
0
 U

C
7
5
.8

 (
1
1
.7

5
)

W
1

4
X

1
3
2

2
5

0
.3

2
 (

3
8

.8
)

W
1

4
X

3
0

5
7
.3

0
 (

8
.8

8
)

1
0

2
0

3
X

2
0

3
X

5
2
 U

C
 

6
6
.4

 (
1
0
.2

9
)

W
1

4
X

1
0
9

2
0

6
.4

5
 (

3
2

.0
)

W
1

4
X

3
0

5
7
.3

0
 (

8
.8

8
)

1
1

2
5

4
X

2
5

4
X

7
3
 U

C
9
2
.9

 (
1
4
.4

0
)

W
1

2
X

9
6

1
8

1
.9

4
 (

2
8

.2
)

W
1

6
X

3
6

6
8
.1

0
 (

1
0
.5

6
)

1
2

2
0

3
X

2
0

3
X

4
6
 U

C
5
8
.8

 (
9
.1

1
)

W
1

2
X

6
5

1
2

3
.2

2
 (

1
9

.1
)

W
1

6
X

3
1

5
8
.9

0
 (

9
.1

3
)

1
3

2
5

4
X

2
5

4
X

7
3
 U

C
9
2
.9

 (
1
4
.4

0
)

W
1

0
X

4
9

9
2
.9

0
 (

1
4
.4

)
W

8
X

3
1

5
8
.6

0
 (

9
.0

8
)

1
4

2
0

3
X

2
0

3
X

5
2
 U

C
6
6
.4

 (
1
0
.2

9
)

W
2

4
X

5
5

1
0

4
.5

1
 (

1
6

.2
)

W
1

4
X

3
4

6
4
.5

0
 (

1
0
.0

)

1
5

3
0

5
X

3
0

5
X

9
7
 U

C
1
2

3
.0

 (
1

9
.0

7
)

W
2

1
X

4
4

8
3
.8

7
 (

1
3
.0

)
W

8
X

4
0

7
5
.6

0
 (

1
1
.7

2
)

1
6

2
0

3
X

2
0

3
X

7
1
 U

C
9
1
.1

 (
1
4
.1

2
)

W
2

4
X

6
8

1
2

9
.6

8
 (

2
0

.1
)

W
1

6
X

4
0

7
5
.8

0
 (

1
1
.7

5
)

1
7

3
0

5
X

3
0

5
X

1
1
8

 U
C

1
5

0
.0

 (
2

3
.2

5
)

W
2

4
X

5
5

1
0

4
.5

1
 (

1
6

.2
)

W
1

8
X

6
0

1
1

4
.0

0
 (

1
7

.6
7
)

1
8

2
5

4
X

2
5

4
X

7
3
 U

C
9
2
.9

 (
1
4
.4

0
)

W
2

4
X

6
8

1
2

9
.6

8
 (

2
0

.1
)

W
1

4
X

4
3

8
1
.4

0
 (

1
2
.6

2
)

1
9

3
0

5
X

3
0

5
X

1
1
8

 U
C

1
5

0
.0

 (
2

3
.2

5
)

W
2

4
X

6
2

1
1

7
.4

2
 (

1
8

.2
)

W
1

4
X

6
1

1
1

6
.0

0
 (

1
7

.9
8
)

2
0

3
0

5
X

3
0

5
X

9
7
 U

C
1
2

3
.0

 (
1

9
.0

7
)

W
2

1
X

4
4

8
3
.8

7
 (

1
3
.0

)
W

1
4
X

4
8

9
1
.1

0
 (

1
4
.1

2
)

2
1

3
5

6
X

3
6

8
X

1
5
3

 U
C

1
9

5
.0

 (
3

0
.2

2
)

W
2

4
X

6
8

1
2

9
.6

8
 (

2
0

.1
)

W
1

2
X

7
2

1
3

6
.0

0
 (

2
1

.0
8
)

W
ei

g
h
t

3
3

0
1

1
k

g
(7

2
7
1

1
.4

5
 l
b
)

  
  
  

  
  
  

4
7

4
7

2
.6

6
 k

g
  
(1

0
4
6

5
9

.2
9
 l

b
)

3
2

8
6

8
.5

4
 k

g
(7

2
4
6

2
.7

3
 l

b
)



118 M.P. Saka and O. Hasançebi
 

BS5950 in spite of the fact that the drift limitations are H/400 in LRFD and H/300 
in BS5950. The reason for this is that in the discrete set of steel sections of the op-
timum design due to BS5950 there are only 96 available British steel sections (64 
Universal Beam sections and 32 Universal Column sections) while in the design 
due to LRFD there are 272 W-sections in the discrete list. Hence the optimum de-
sign that is based on LRFD specifications has larger design space to select from 
compare to the design space which makes use of British steel sections. This differ-
ence provides better selection possibilities to the algorithms based on LRFD.    

6   Conclusions 

Adaptive harmony search algorithm presented in this chapter is efficient and ro-
bust algorithm that can be employed with confidence in the optimum design of 
real size steel skeletal structures. In this technique the harmony search parameters 
are dynamically adjusted by the algorithm itself taking into account varying  
features of the design problem under consideration. The algorithm itself auto-
matically changes the values of harmony considering rate (hmcr) and pitch ad-
justment rate (par) depending on the experience obtained through the design 
process. Hence, varying features of a design space are automatically accounted 
by the algorithm for establishing a tradeoff between explorative and exploitative 
search for the most successful optimization process. It is shown through the de-
sign examples considered in the optimum design of real size steel structures that 
the adaptive harmony search method demonstrates good performance compare to 
standard harmony search method. Inspection of the design history of 209-
member industrial factory building clearly shows the better performance in the 
convergence rate of the adaptive harmony search method compare to standard 
harmony search method. The optimum designs of 568-member and 1860-member 
steel structures are obtained by the presented technique without any difficulty.  
Furthermore, comparison carried out among seven recently developed metaheu-
ristic optimization techniques has shown that adaptive harmony search algorithm 
finds the second lightest frame among the minimum weights obtained by these 
seven metaheuristic algorithms considered in this study while the standard har-
mony search method attains the heaviest design. Finally, the adaptive harmony 
search algorithm eliminates the necessity of carrying out a sensitivity analysis 
with different values of harmony search parameters whenever a new design prob-
lem is to be undertaken. This makes the algorithm more general and applicable to 
the optimum design of large size real-world steel structures. It is also shown in 
the last design example that use of different design codes results in different op-
timum designs. The allowable stress design method naturally yields heavier de-
sign due to the fact that nowhere in the frame stresses are allowed to reach their 
yield values. The load and resistance factor design and British Standards 5950 
which are based on the ultimate state design concept gives lighter optimum de-
signs as expected.   
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Harmony Particle Swarm Algorithm for 
Structural Design Optimization  

Lijuan Li1 and Feng Liu2 

Abstract. This chapter introduces the application of an improved particle swarm 
algorithm to pin connected space structures. The algorithm is named harmony 
particle swarm optimization (HPSO), as it is based on harmony search schemes and 
the standard particle swarm algorithm. The efficiency of HPSO for pin connected 
structures with different variable types including continuous variables and discrete 
variables is compared with that of other intelligent algorithms, and the 
implementation of HPSO is presented in detail. An optimal result of a complex 
practical double-layer grid shell structure is presented to value the effectiveness of 
the HPSO. 

1   Introduction 

In the last 30 years, a great attention has been paid to structural optimization, since 
material consumption is one of the most important factors influencing building 
construction. Designers prefer to reduce the volume or weight of structures 
through optimization. Many traditional mathematical optimization algorithms 
have been used in structural optimization problems. The traditional optimal 
algorithms provide a useful strategy to obtain the global optimal solution in a 
simple model. 

However, many practical engineering optimal problems are very complex and 
hard to solve by the traditional optimal algorithms. Recently, evolutionary 
algorithms (EAs), such as genetic algorithms (GAs), evolutionary programming 
(EP) and evolution strategies (ES) have become more attractive because they do 
not require conventional mathematical assumptions and thus possess better global 
search abilities than the conventional optimization algorithms [1]. For example, 
GAs have been applied for structural optimization problems [2-4]. 

A new evolutionary algorithm called particle swarm optimizer (PSO) was 
developed by Kennedy and Eberhart [5], which was inspired by the social 
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behaviour of animals such as fish schooling and bird flocking. It is a 
population-based algorithm, which is based on the premise that social sharing of 
information among members of a species offers an evolutionary advantage. With 
respect to other algorithms such as evolutionary algorithms, a number of 
advantages make PSO an ideal candidate to be used in optimization tasks. The 
algorithm can handle continuous, discrete and integer variable types with ease. In 
addition, its easiness of implementation makes it more attractive for the 
applications of real-engineering optimization problems. Furthermore, it is a 
population-based algorithm, so it can be efficiently parallelized to reduce the total 
computational effort. The PSO has fewer parameters and is easier to implement 
than the GAs [6]. The PSO also shows a faster convergence rate than the other 
EAs for solving some optimization problems. 

The foundation of PSO is based on the hypothesis that social sharing of 
information among conspecifics offers an evolutionary advantage. It involves a 
number of particles, which are initialized randomly in the search space of an 
objective function. These particles are referred to as swarm. Each particle of the 
swarm represents a potential solution of the optimization problem. The particles 
fly through the search space and their positions are updated based on the best 
positions of individual particles in each iteration. The objective function is 
evaluated for each particle and the fitness values of particles are obtained to 
determine which position in the search space is the best. 

In each iteration, the swarm is updated using the following equations: 

       ( ) ( )1
1 1 2 2- -k k k k k k

i i i i g iV V c r P X c r P Xω+ = + +                         (1) 

                    
1 1k k k

i i iX X V+ += +                                                    (2) 

where Xi and Vi represent the current position and the velocity of the ith particle 
respectively; Pi is the best previous position of the ith particle (called pbest) and Pg 
is the best global position among all the particles in the swarm (called gbest); r1 

and r2 are two uniform random sequences generated from U(0, 1); and ω is the 
inertia weight used to discount the previous velocity of the particle persevered.  

The PSO model is based on the following two factors: 
(1) The autobiographical memory, which remembers the best previous position 

of each individual (
iP ) in the swarm; and 

(2) The publicized knowledge, which is the best solution (
gP ) found currently 

by the population. 
Geem [7] pointed out that although PSO may outperform other evolutionary 

algorithms in the early iterations, its performance may not be competitive as the 
problem size is increased. Recently, many investigations have been undertaken to 
improve the performance of the standard PSO (SPSO). He S et al. [8] found that 
adding the passive congregation model to the SPSO may increase its performance. 
Therefore, they improved the SPSO with passive congregation (PSOPC), which 
can improve the convergence rate and accuracy of the SPSO efficiently. 
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2   Constraint Handling Method: Fly-Back Mechanism 

Most structural optimization problems include the problem-specific constraints, 
which are difficult to solve using the traditional mathematical optimization 
algorithms [9]. Penalty functions have been commonly used to deal with 
constraints. However, the major disadvantage of using the penalty functions is that 
some tuning parameters are added in the algorithm and the penalty coefficients 
have to be tuned in order to balance the objective and penalty functions. If 
appropriate penalty coefficients cannot be provided, difficulties will be 
encountered in the solution of the optimization problems [10, 11]. To avoid such 
difficulties, a new method, called ‘fly-back mechanism’, was developed. 

For most of the optimization problems containing constraints, the global 
minimum locates on or close to the boundary of a feasible design space. The 
particles are initialized in the feasible region. When the optimization process 
starts, the particles fly in the feasible space to search the solution. If any one of the 
particles flies into the infeasible region, it will be forced to fly back to the previous 
position to guarantee a feasible solution. The particle which flies back to the 
previous position may be closer to the boundary at the next iteration. This makes 
the particles to fly to the global minimum in a great probability. Therefore, such a 
‘fly-back mechanism’ technique is suitable for handling the optimization problem 
containing the constraints. Compared with the other constraint handling 
techniques, this method is relatively simple and easy to implement. Some 
experimental results have shown that it can find a better solution with a fewer 
iterations than the other techniques. 

3   Harmony Particle Swarm Optimization (HPSO) 

The harmony particle swarm optimizer (HPSO) [12] is based on the PSOPC and a 
harmony search (HS) scheme, and uses a ‘fly-back mechanism’ method to handle 
the constraints. The pseudo-code for the HPSO algorithm is listed in Table 1. 

When a particle flies in the searching space, it may fly into infeasible regions. 
In this case, there are two possibilities. It may violate either the problem-specific 
constraints or the limits of the variables, as illustrated in Figure 1. Because the 
‘fly-back mechanism’ technique is used to handle the problem-specific 
constraints, the particle will be forced to fly back to its previous position no matter 
if it violates the problem-specific constraints or the variable boundaries. If it flies 
out of the variable boundaries, the solution cannot be used even if the 
problem-specific constraints are satisfied. In our experiments, particles violate the 
variables’ boundary frequently for some simple structural optimization problems. 
If the structure becomes complicated, the number of occurrences of violating tends 
to rise. In other words, a large amount of particles’ flying behaviours are wasted, 
due to searching outside the variables’ boundary. Although minimizing the 
maximum of the velocity can make fewer particles violate the variable boundaries, 
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it may also prevent the particles to cross the problem-specific constraints. 
Therefore, we hope that all of the particles fly inside the variable boundaries and 
then to check whether they violate the problem-specific constraints and get better 
solutions or not. The particles, which fly outside the variables’ boundary, have to 
be regenerated in an alternative way. Here, we introduce a new method to handle 
these particles. It is derived from one of the ideas in a new meta-heuristic 
algorithm called harmony search algorithm [13, 14]. 

 
 

variables 
boundary

problem-specified 
constraints boundary

feasible space

particle

infeasible space

In this region, the particle violates the 
variables boundary, but satisfies the 
problem-specified constraints.

In this region, the particle satisfies the 
variables boundary, but violates the 
problem-specified constraints.

In this region, the particle satisfies
 the variables boundary and the 
problem-specified constraints.

In this region, the particle violates 
the variables boundary and the 
problem-specified constraints.

 
Fig. 1 The particle may violate the problem-specific constraints or the variables’ boundary 

Harmony search algorithm is based on natural musical performance processes 
that occur when a musician searches for a better state of harmony, such as during 
jazz improvisation [15]. The engineers seek for a global solution as determined by 
an objective function, just like the musicians seek to find musically pleasing 
harmony as determined by an aesthetic [16]. The harmony search algorithm 
includes a number of optimization operators, such as the harmony memory (HM), 
the harmony memory size (HMS), the harmony memory considering rate 
(HMCR), and the pitch adjusting rate (PAR). In this chapter, the harmony memory 
(HM) concept has been used in the PSO algorithm to avoid searching trapped in 
local solutions. The other operators have not been employed. How the HS 
algorithm generates a new vector from its harmony memory and how it is used to 
improve the PSO algorithm will be discussed as follows. 
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Table 1 The pseudo-code for the HPSO 
 

Set k=1; 
Randomly initialize positions and velocities of all particles; 
 FOR (each particle i in the initial population)   
  WHILE (the constraints are violated) 
   Randomly re-generate the current particle Xi 
  END WHILE 
 END FOR 
WHILE (the termination conditions are not met) 
 FOR (each particle i in the swarm) 
  Generate the velocity and update the position of the current particle (vector) Xi 
  Check feasibility stage I: Check whether each component of the current vector 

violates its corresponding boundary or not. If it does, select the corresponding 
component of the vector from pbest swarm randomly. 

  Check feasibility stage II: Check whether the current particle violates the problem 
specified constraints or not. If it does, reset it to the previous position Xik-1. 

  Calculate the fitness value f(Xik) of the current particle. 
  Update pbest: Compare the fitness value of pbest with f(Xik). If the f(Xik) is better than 

the fitness value of pbest, set pbest to the current position Xik. 
  Update gbest: Find the global best position in the swarm. If the f(Xik) is better than the 

fitness value of gbest, gbest is set to the position of the current particle Xik. 
 END FOR 

Set k=k+1 
END WHILE 

In the HS algorithm, the harmony memory stores the feasible vectors, which 
are all in the feasible space. The harmony memory size determines how many 
vectors it stores. A new vector is generated by selecting the components of 
different vectors randomly in the harmony memory. Undoubtedly, the new vector 
does not violate the variables boundaries, but it is not certain if it violates the 
problem-specific constraints. When it is generated, the harmony memory will be 
updated by accepting this new vector if it gets a better solution and deleting the 
worst vector.  

Similarly, the PSO stores the feasible and “good” vectors (particles) in the 
pbest swarm, as does the harmony memory in the HS algorithm. Hence, the vector 
(particle) violating the variables’ boundaries can be generated randomly again by 
such a technique-selecting for the components of different vectors in the pbest 
swarm. There are two different ways to apply this technique to the PSO when any 
one of the components of the vector violates its corresponding variables’ 
boundary. Firstly, all the components of this vector should be generated. 
Secondly, only this component of the vector should be generated again by such a 
technique. In our experiments, the results show that the former makes the particles 
moving to the local solution easily, and the latter can reach the global solution in 
relatively less number of iterations. 

Therefore, applying such a technique to the PSOPC can improve its 
performance, although it already has a better convergence rate and accuracy than 
the PSO.  
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4   Application of the HPSO on Truss Structures with 
Continuous Variables 

In this section, five pin-connected structures commonly used in literature are 
selected as benchmark problem to test the HPSO. The proposed algorithm is 
coded in FORTRAN language and executed on a Pentium 4, 2.93GHz machine.  

The examples given in the simulation studies include  
 

• a 10-bar planar truss structure subjected to four concentrated loads;  
• a 17-bar planar truss structure subjected to a single concentrated load at its free 

end;  
• a 22-bar spatial truss structure subjected to three load cases;  
• a 25-bar spatial truss structure subjected to two load cases;  
• a 72-bar spatial truss structure subjected to two load cases. 
 

All these truss structures are analyzed by the finite element method (FEM). 
The PSO, PSOPC and HPSO schemes are applied respectively to all these 

examples and the results are compared in order to evaluate the performance of the 
new algorithm. For all these algorithms, a population of 50 individuals is used; the 
inertia weight ω decrease linearly from 0.9 to 0.4; and the value of acceleration 
constants c1 and c2 are set to be the same and equal to 0.8. The passive 
congregation coefficient c3 is given as 0.6 for the PSOPC [8] and the HPSO 
algorithms. The maximum number of iterations is limited to 3000. The maximum 
velocity is set as the difference between the upper bound and the lower bound of 
variables, which ensures that the particles are able to fly into the problem-specific 
constraints’ region. 

4.1   Numerical Examples 

4.1.1   The 10-Bar Planar Truss Structure 

The 10-bar truss structure, shown in Fig. 2, has previously been analyzed by 
many researchers, such as Lee [16], Schmit [17], Rizzi [18], and Li [19]. The 
material density is 0.1 lb/in3 and the modulus of elasticity is 10,000 kilo-pounds 
per square inch (ksi). The members are subjected to the stress limits of ±25 ksi. 
All nodes in both vertical and horizontal directions are subjected to the 
displacement limits of ±2.0 in. There are 10 design variables in this example and 
the minimum permitted cross-sectional area of each member is 0.1 in2. Two cases 
are considered: Case 1, P1=100 kilo-pounds force (kips) and P2=0; Case 2, P1=150 
kips and P2=50 kips.  
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Fig. 2 A 10-bar planar truss structure 

For both load cases, the PSOPC and the HPSO algorithms achieve the best 
solutions after 3,000 iterations. However, the latter is closer to the best solution  
than the former after about 500 iterations. The HPSO algorithm displays a faster 
convergence rate than the PSOPC algorithm in this example. The performance of 
the PSO algorithm is the worst among the three. Tables 2 and 3 show the 
solutions. Figs. 3 and 4 provide a comparison of the convergence rates of the three 
algorithms. 

Table 2 Comparison of the designs for the 10-bar planar truss (Case 1) 

Optimal cross-sectional areas (in.2) 
Li [19]  Li [19]  Li [19]  Variables 

Schmit [17] Rizzi [18] Lee [16] 
PSO PSOPC HPSO 

1 A1 33.43 30.73 30.15 33.469 30.569 30.704 
2 A2 0.100 0.100 0.102 0.110 0.100 0.100 
3 A3 24.26 23.93 22.71 23.177 22.974 23.167 
4 A4 14.26 14.73 15.27 15.475 15.148 15.183 
5 A5 0.100 0.100 0.102 3.649 0.100 0.100 
6 A6 0.100 0.100 0.544 0.116 0.547 0.551 
7 A7 8.388 8.542 7.541 8.328 7.493 7.460 
8 A8 20.74 20.95 21.56 23.340 21.159 20.978 
9 A9 19.69 21.84 21.45 23.014 21.556 21.508 

10 A10 0.100 0.100 0.100 0.190 0.100 0.100 
Weight (lb) 5089.0 5076.66 5057.88 5529.50 5061.00 5060.92 
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Table 3 Comparison of the designs for the 10-bar planar truss (Case 2) 

Optimal cross-sectional areas (in.2) 
Li [19] Li [19] Li [19] Variables Schmit  

[17] 
Rizzi  
[18] 

Lee  
[16] PSO PSOPC HPSO 

1 A1 24.29 23.53 23.25 22.935 23.743 23.353 
2 A2 0.100 0.100 0.102 0.113 0.101 0.100 
3 A3 23.35 25.29 25.73 25.355 25.287 25.502 
4 A4 13.66 14.37 14.51 14.373 14.413 14.250 
5 A5 0.100 0.100 0.100 0.100 0.100 0.100 
6 A6 1.969 1.970 1.977 1.990 1.969 1.972 
7 A7 12.67 12.39 12.21 12.346 12.362 12.363 
8 A8 12.54 12.83 12.61 12.923 12.694 12.894 
9 A9 21.97 20.33 20.36 20.678 20.323 20.356 

10 A10 0.100 0.100 0.100 0.100 0.103 0.101 
Weight (lb) 4691.84 4676.92 4668.81 4679.47 4677.70 4677.29 
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Fig. 3 Comparison of the convergence rates between the three algorithms for the 10-bar 
planar truss structure (Case 1) 

4.1.2   The 17-Bar Planar Truss Structure 

The 17-bar truss structure, shown in Fig. 5, had been analyzed by Khot [20], Adeli 
[21], Lee [16] and Li [19]. The material density is 0.268 lb/in.3 and the modulus of 
elasticity is 30,000 ksi. The members are subjected to the stress limits of ±50 ksi. 
All nodes in both directions are subjected to the displacement limits of ±2.0 in.  
 



Harmony Particle Swarm Algorithm for Structural Design Optimization 129
 

0 500 1000 1500 2000 2500 3000
4000

5000

6000

7000

8000

9000

W
ei

gh
t (

lb
)

Iteration

 PSO [19]
 PSOPC [19]
 HPSO [19]

10-bar planar truss structure Case 2

 

Fig. 4 Comparison of the convergence rates between the three algorithms for the 10-bar 
planar truss structure (Case 2) 

 

Fig. 5 A 17-bar planar truss structure 

There are 17 design variables in this example and the minimum permitted 
cross-sectional area of each member is 0.1in.2. A single vertical downward load of 
100 kips at node 9 is considered. Table 4 shows the solutions and Fig. 6 compares 
the convergence rates of the three algorithms. 

Both the PSOPC and HPSO algorithms achieve a good solution after 3,000 
iterations and the latter shows a better convergence rate than the former, especially 
at the early stage of iterations. In this case, the PSO algorithm is not fully 
converged when the maximum number of iterations is reached.  
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Fig. 6 Comparison of the convergence rates between the three algorithms for the 17-bar 
planar truss structure 

Table 4 Comparison of the designs for the 17-bar planar truss 

Optimal cross-sectional areas (in.2) 
Li [19] Li [19] Li [19] Variables 

Khot [20] Adeli [21] Lee [16] 
PSO PSOPC HPSO 

1 A1 15.930 16.029 15.821 15.766 15.981 15.896 
2 A2 0.100 0.107 0.108 2.263 0.100 0.103 
3 A3 12.070 12.183 11.996 13.854 12.142 12.092 
4 A4 0.100 0.110 0.100 0.106 0.100 0.100 
5 A5 8.067 8.417 8.150 11.356 8.098 8.063 
6 A6 5.562 5.715 5.507 3.915 5.566 5.591 
7 A7 11.933 11.331 11.829 8.071 11.732 11.915 
8 A8 0.100 0.105 0.100 0.100 0.100 0.100 
9 A9 7.945 7.301 7.934 5.850 7.982 7.965 

10 A10 0.100 0.115 0.100 2.294 0.113 0.100 
11 A11 4.055 4.046 4.093 6.313 4.074 4.076 
12 A12 0.100 0.101 0.100 3.375 0.132 0.100 
13 A13 5.657 5.611 5.660 5.434 5.667 5.670 
14 A14 4.000 4.046 4.061 3.918 3.991 3.998 
15 A15 5.558 5.152 5.656 3.534 5.555 5.548 
16 A16 0.100 0.107 0.100 2.314 0.101 0.103 
17 A17 5.579 5.286 5.582 3.542 5.555 5.537 

Weight (lb) 2581.89 2594.42 2580.81 2724.37 2582.85 2581.94 
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4.1.3   The 22-Bar Spatial Truss Structure 

The 22-bar spatial truss structure, shown in Fig. 7, had been studied by Lee [16] and 
Li [19]. The material density is 0.1 lb/in.3 and the modulus of elasticity is 10,000 ksi. 
The stress limits of the members are listed in Table 5. All nodes in all three 
directions are subjected to the displacement limits of ±2.0 in. Three load cases are 
listed in Table 6. There are 22 members, which fall into 7 groups, as follows: (1) 
A1~A4, (2) A5~A6, (3) A7~A8, (4) A9~A10, (5) A11~A14, (6) A15~A18, and (7) A19~A22. 
The minimum permitted cross-sectional area of each member is 0.1 in.2. 

Table 5 Member stress limits for the 22-bar spatial truss structure 

Variables 
Compressive stress limitations 

(ksi) 
Tensile stress  

Limitation (ksi) 
1 A1 24.0 36.0 
2 A2 30.0 36.0 
3 A3 28.0 36.0 
4 A4 26.0 36.0 
5 A5 22.0 36.0 
6 A6 20.0 36.0 
7 A7 18.0 36.0 

 

Fig. 7 A 22-bar spatial truss structure 

In this example, the HPSO algorithm has converged after 50 iterations, while 
the PSOPC and PSO algorithms need more than 500 and 1000 iterations 
respectively. The optimum results obtained by using the HPSO algorithm are 
significantly better than that obtained by the HS and the PSO algorithms. Table 7 
shows the optimal solutions of the four algorithms and Fig. 8 provides the 
convergence rates of three of the four algorithms. 
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Table 6 Load cases for the 22-bar spatial truss structure 

Case 1 (kips) Case 2 (kips) Case 3 (kips) 
Node 

PX PY PZ PX PY PZ PX PY PZ 
1 -20.0 0.0 -5.0 -20.0 -5.0 0.0 -20.0 0.0 35.0 
2 -20.0 0.0 -5.0 -20.0 -50.0 0.0 -20.0 0.0 0.0 
3 -20.0 0.0 -30.0 -20.0 -5.0 0.0 -20.0 0.0 0.0 
4 -20.0 0.0 -30.0 -20.0 -50.0 0.0 -20.0 0.0 -35.0 

Table 7 Comparison of the designs for the 22-bar spatial truss structure 

Optimal cross-sectional areas (in.2) 
Li [19] Li [19] Li [19] Variables 

Lee [16] 
PSO PSOPC HPSO 

1 A1 2.588 1.657 3.041 3.157 

2 A2 1.083 0.716 1.191 1.269 

3 A3 0.363 0.919 0.985 0.980 
4 A4 0.422 0.175 0.105 0.100 

5 A5 2.827 4.576 3.430 3.280 

6 A6 2.055 3.224 1.543 1.402 

7 A7 2.044 0.450 1.138 1.301 
Weight (lb) 1022.23 1057.14 977.80 977.81 
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Fig. 8 Comparison of the convergence rates between the three algorithms for the 22-bar 
spatial truss structure 

4.1.4   The 25-Bar Spatial Truss Structure 

The 25-bar spatial truss structure shown in Fig. 9 had been studied by several 
researchers, such as Schmit [17], Rizzi [18], Lee [16] and Li [19]. The material 
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density is 0.1 lb/in.3 and the modulus of elasticity is 10,000 ksi. The stress limits of 
the members are listed in Table 8. All nodes in all directions are subjected to the 
displacement limits of ±0.35 in. Two load cases listed in Table 9 are considered. 
There are 25 members, which are divided into 8 groups, as follows: (1) A1, (2) 
A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) A14~A17, (7) A18~A21 and (8) A22~A25. 
The minimum permitted cross-sectional area of each member is 0.01 in2. 

For this spatial truss structure, it takes about 1000 and 3000 iterations, 
respectively, for the PSOPC and the PSO algorithms to converge. However the 
HPSO algorithm takes only 50 iterations to converge. Indeed, in this example, the 
PSO algorithm did not fully converge when the maximum number of iterations is 
reached. Table 10 shows the solutions and Fig. 10 compares the convergence rate 
of the three algorithms. 

 

Fig. 9 A 25-bar spatial truss structure 

Table 8 Member stress limits for the 25-bar spatial truss structure 

Variables 
Compressive stress 

limitations (ksi) 
Tensile stress 

limitation (ksi) 
1 A1 35.092 40.0 
2 A2 11.590 40.0 

3 A3 17.305 40.0 

4 A4 35.092 40.0 

5 A5 35.902 40.0 

6 A6 6.759 40.0 

7 A7 6.959 40.0 
8 A8 11.802 40.0 
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Table 9 Load cases for the 25-bar spatial truss structure 

Case 1 Case 2 
Node PX 

(kips) 
PY 

(kips) 
PZ 

(kips) 
PX 

(kips) 
PY 

(kips) 
PZ 

(kips) 
1 0.0 20.0 -5.0 1.0 10.0 -5.0 
2 0.0 -20.0 -5.0 0.0 10.0 -5.0 
3 0.0 0.0 0.0 0.5 0.0 0.0 
6 0.0 0.0 0.0 0.5 0.0 0.0 

Table 10 Comparison of the designs for the 25-bar spatial truss structure 

Optimal cross-sectional areas (in.2) 
Li [19] Li [19] Li [19] Variables 

Schmit [17] Rizzi [18] Lee [16]
PSO PSOPC HPSO 

1 A1 0.010 0.010 0.047 9.863 0.010 0.010 
2 A2~A5 1.964 1.988 2.022 1.798 1.979 1.970 

3 A6~A9 3.033 2.991 2.950 3.654 3.011 3.016 

4 A10~A11 0.010 0.010 0.010 0.100 0.100 0.010 

5 A12~A13 0.010 0.010 0.014 0.100 0.100 0.010 

6 A14~A17 0.670 0.684 0.688 0.596 0.657 0.694 

7 A18~A21 1.680 1.677 1.657 1.659 1.678 1.681 
8 A22~A25 2.670 2.663 2.663 2.612 2.693 2.643 
Weight (lb) 545.22 545.36 544.38 627.08 545.27 545.19 
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Fig. 10 Convergence rate comparison between the three algorithms for the 25-bar spatial 
truss structure 
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4.1.5   The 72-Bar Spatial Truss Structure 

The 72-bar spatial truss structure shown in Fig. 11 had also been studied by many 
researchers, such as Schmit [17], Khot [20], Adeli [21], Lee [16], Sarma [22] and 
Li [19]. The material density is 0.1 lb/in.3 and the modulus of elasticity is 10,000 
ksi. The members are subjected to the stress limits of ±25 ksi. The uppermost 
nodes are subjected to the displacement limits of ±0.25 in. in both the x and y 
directions. Two load cases are listed in Table 11. There are 72 members classified 
into 16 groups: (1) A1~A4, (2) A5~A12, (3) A13~A16, (4) A17~A18, (5) A19~A22, (6) 
A23~A30 (7) A31~A34, (8) A35~A36, (9) A37~A40, (10) A41~A48, (11) A49~A52, (12) 
A53~A54, (13) A55~A58, (14) A59~A66 (15) A67~A70, (16) A71~A72. For case 1, the 
minimum permitted cross-sectional area of each member is 0.1 in2. For case 2, the 
minimum permitted cross-sectional area of each member is 0.01 in2. 

 

 

Fig. 11 A 72-bar spatial truss structure 

Table 11 Load cases for the 72-bar spatial truss structure 

Case 1 Case 2 
Node 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 
17 5.0 5.0 -5.0 0.0 0.0 -5.0 
18 0.0 0.0 0.0 0.0 0.0 -5.0 
19 0.0 0.0 0.0 0.0 0.0 -5.0 
20 0.0 0.0 0.0 0.0 0.0 -5.0 
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Table 12 Comparison of the designs for the 72-bar spatial truss structure (Case 1) 

Optimal cross-sectional areas (in.2) 
Li [19] Li [19] Li [19] Variables 

Schmit [17] Adeli [21] Khot [20] Lee [16]
PSO PSOPC HPSO 

1 A1~A4 2.078 2.026 1.893 1.7901 41.794 1.855 1.857 
2 A5~A12 0.503 0.533 0.517 0.521 0.195 0.504 0.505 
3 A13~A16 0.100 0.100 0.100 0.100 10.797 0.100 0.100 
4 A17~A18 0.100 0.100 0.100 0.100 6.861 0.100 0.100 
5 A19~A22 1.107 1.157 1.279 1.229 0.438 1.253 1.255 
6 A23~A30 0.579 0.569 0.515 0.522 0.286 0.505 0.503 
7 A31~A34 0.100 0.100 0.100 0.100 18.309 0.100 0.100 
8 A35~A36 0.100 0.100 0.100 0.100 1.220 0.100 0.100 
9 A37~A40 0.264 0.514 0.508 0.517 5.933 0.497 0.496 

10 A41~A48 0.548 0.479 0.520 0.504 19.545 0.508 0.506 
11 A49~A52 0.100 0.100 0.100 0.100 0.159 0.100 0.100 
12 A53~A54 0.151 0.100 0.100 0.101 0.151 0.100 0.100 
13 A55~A58 0.158 0.158 0.157 0.156 10.127 0.100 0.100 
14 A59~A66 0.594 0.550 0.539 0.547 7.320 0.525 0.524 
15 A67~A70 0.341 0.345 0.416 0.442 3.812 0.394 0.400 
16 A71~A72 0.608 0.498 0.551 0.590 18.196 0.535 0.534 
Weight (lb) 388.63 379.31 379.67 379.27 6818.67 369.65 369.65 

Table 13 Comparison of the designs for the 72-bar spatial truss structure (Case 2) 

Optimal cross-sectional areas (in.2) 
Sarma [22] 

Li [19] Li [19]  Li [19] Variables Adeli 
[21] Simple 

GA 
Fuzzy  
GA 

Lee [16]
PSO PSOPC HPSO 

1 A1~A4 2.755 2.141 1.732 1.963 40.053 1.652 1.907 
2 A5~A12 0.510 0.510 0.522 0.481 0.237 0.547 0.524 
3 A13~A16 0.010 0.054 0.010 0.010 21.692 0.100 0.010 
4 A17~A18 0.010 0.010 0.013 0.011 0.657 0.101 0.010 
5 A19~A22 1.370 1.489 1.345 1.233 22.144 1.102 1.288 
6 A23~A30 0.507 0.551 0.551 0.506 0.266 0.589 0.523 
7 A31~A34 0.010 0.057 0.010 0.011 1.654 0.011 0.010 
8 A35~A36 0.010 0.013 0.013 0.012 10.284 0.010 0.010 
9 A37~A40 0.481 0.565 0.492 0.538 0.559 0.581 0.544 

10 A41~A48 0.508 0.527 0.545 0.533 12.883 0.458 0.528 
11 A49~A52 0.010 0.010 0.066 0.010 0.138 0.010 0.019 
12 A53~A54 0.643 0.066 0.013 0.167 0.188 0.152 0.020 
13 A55~A58 0.215 0.174 0.178 0.161 29.048 0.161 0.176 
14 A59~A66 0.518 0.425 0.524 0.542 0.632 0.555 0.535 
15 A67~A70 0.419 0.437 0.396 0.478 3.045 0.514 0.426 
16 A71~A72 0.504 0.641 0.595 0.551 1.711 0.648 0.612 
Weight (lb) 376.50 372.40 364.40 364.33 5417.02 368.45 364.86 
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Fig. 12 Comparison of the convergence rates between the three algorithms for the 72-bar 
spatial truss structure (Case 1) 
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Fig. 13 Comparison of the convergence rates between the three algorithms for the 72-bar 
spatial truss structure (Case 2) 

For both the loading cases, the PSOPC and the HPSO algorithms can achieve 
the optimal solution after 2500 iterations. However, the latter shows a faster 
convergence rate than the former, especially at the early stage of iterations. The 
PSO algorithm cannot reach the optimal solution after the maximum number of 
iterations. The solutions of the two loading cases are given in Tables 12 and 13 
respectively. Figs. 12 and 13 compare the convergence rate of the three algorithms 
for the two loading cases. 
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5   Application of the HPSO on Truss Structures with Discrete 
Variables 

In the past thirty years, many algorithms have been developed to solve structural 
engineering optimization problems. Most of these algorithms are based on the 
assumption that the design variables are continuously valued and the gradients of 
functions and the convexity of the design problem satisfied. However, in reality, 
the design variables of optimization problems such as the cross-section areas are 
discretely valued. They are often chosen from a list of discrete variables. 
Furthermore, the function of the problems is hard to express in an explicit form. 
Traditionally, the discrete optimization problems are solved by mathematical 
methods by employing round-off techniques based on the continuous solutions. 
However, the solutions obtained by this method may be infeasible or far from the 
optimum solutions [23]. 

Most of the applications of the PSO algorithm to structural optimization 
problems are based on the assumption that the variables are continuous. Only in 
few papers PSO algorithm is used to solve the discrete structural optimization 
problems [24, 25]. 

In this section, the HPSO algorithm, which is based on the standard particle 
swarm optimize (SPSO) and the harmony search scheme, is applied to the discrete 
valued structural optimization problems. 

5.1   Mathematical Model for Discrete Structural Optimization 
Problems 

A structural optimization design problem with discrete variables can be 
formulated as a nonlinear programming problem. In the size optimization for a 
truss structure, the cross-section areas of the truss members are selected as the 
design variables. Each of the design variables is chosen from a list of discrete 
cross-sections based on production standard. The objective function is the 
structure weight. The design cross-sections must also satisfy some inequality 
constraints equations, which restrict the discrete variables. The optimization 
design problem for discrete variables can be expressed as follows: 
 

( )1 2min , ,..., df x x x  

subject to 

( )1 2, ,..., 0d
qg x x x ≤  

{ }1 2, , ,d
d px S X X X∈ = L  

1, 2, ,d D= L  

1, 2, ,q M= L  

 

(3) 
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where ( )1 2, , ..., df x x x  is the truss’s weight function, which is a scalar function. 

And 1 2, , ..., dx x x  represent a set of design variables. The design variable dx  

belongs to a scalar
d

S , which includes all permissive discrete 

variables { }1 2
, , ...

p
X X X . The inequality ( )1 2, , ..., 0d

q
g x x x ≤  represents the 

constraint functions. The letters D and M are the number of the design variables 
and inequality functions respectively. The letter p is the number of available 
variables. 

5.2   The Harmony Particle Swarm Optimizer (HPSO) for Discrete 
Variables 

The harmony particle swarm optimizer (HPSO) algorithm introduced by Li [19] is 
originally applied to continuous variable optimization problems. The HPSO 
algorithm then was used for discrete problems [26]. Similarly, The HPSO 
algorithm for the discrete valued variables can be expressed as follows: 

( ) ( ) ( )( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3

k k k k k k k k
i i i i g i i iV V c r P x c r P x c r R xω+ = + − + − + −       (4) 

( )( 1) ( ) ( 1)k k k
i i ix INT x V+ += +     1 i n≤ ≤                   (5) 

where ix  is the vector of a particle’s position, and d

ix  is one component of this 

vector. After the (k+1)th iterations, if ( )d d

ix x LowerBound<  or 

( )d d

ix x UpperBound> , the scalar d

ix  is regenerated by selecting the 

corresponding component of the vector from pbest swarm randomly, which can be 
described as follows: 

          ( )dd
i b t

x P= , ( )( )1,t INT rand n=                    (6) 

where ( )d

b t
P  denotes the dth dimension scalar of pbest swarm of the tth particle, 

and t denotes a random integer number. 
In this section, the HPSO algorithm is tested by five truss structures. The 

algorithm proposed is coded in FORTRAN language and executed on a Pentium 
4, 2.93GHz machine. 

The PSO, the PSOPC and the HPSO algorithms for discrete variables are 
applied to all these examples and the results are compared in order to evaluate the 
performance of the HPSO algorithm for discrete variables. For all these 
algorithms, a population of 50 individuals are used, the inertia weight ω, which 
starts at 0.9 and ends at 0.4, decreases linearly, and the value of acceleration 
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constants c1 and c2 are set to 0.5 [27]. The passive congregation coefficient c3 is set 
to 0.6 for the PSOPC and the HPSO algorithms. All these truss structures have 
been analyzed by the finite element method (FEM). The maximum velocity is set 
as the difference between the upper and the lower bounds, which ensures that the 
particles are able to fly across the problem-specific constraints’ region. Different 
iteration numbers are used for different optimization structures, with smaller 
iteration number for smaller variable number structures and larger one for large 
variable number structures. 

5.3   Numerical Examples 

5.3.1   A 10-Bar Planar Truss Structure 

A 10-bar truss structure, shown in Fig. 14, has previously been analyzed by many 
researchers, such as Wu [24], Rajeev [28], Ringertz [29] and Li [26]. The material 
density is 0.1lb/in3 and the modulus of elasticity is 10,000 ksi. The members are 
subjected to stress limitations of ±25 ksi. All nodes in both directions are 
subjected to displacement limitations of ±2.0 in. P1=105 lbs, P2=0. There are 10 
design variables and two load cases in this example to be optimized. For case 1: 
the discrete variables are selected from the set D={1.62, 1.80, 1.99, 2.13, 2.38, 
2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 
4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 
15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} (in2)；For 
case 2: the discrete variables are selected from the set D={0.1, 0.5, 1.0, 1.5, 2.0, 
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0,  

 

 

Fig. 14 A 10-bar planar truss structure 
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11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 
18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 
25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5} (in2). A 
maximum number of 1000 iterations is imposed. 

Table 14 and Table 15 give the comparison of optimal design results for the 
10-bar planar truss structure under two load cases respectively. Fig.15 and Fig.16 
show the comparison of convergence rates for the 10-bar truss structure. From the 
Table 14 and Table 15, we find the results obtained by the HPSO algorithm are 
larger than those of Wu’s [24]. However, it is found that Wu’s results do not 
satisfy the constraints of this problem. It is believed that Wu’s results need to be 
further evaluated. For both cases of this structure, the PSO, PSOPC and HPSO 
algorithms have achieved the optimal solutions after 1,000 iterations. But the latter 
is much closer to the best solution than the former in the early iterations.  

Table 14 Comparison of optimal designs for the 10-bar planar truss structure (case 1) 

Li [26] Li [26] Li [26] 
Variables (in2) Wu [24] Rajeev [28]

PSO PSOPC HPSO 
A1 26.50 33.50 30.00 30.00  30.00 
A2 1.62 1.62 1.62  1.80 1.62 

A3 16.00 22.00 30.00  26.50 22.90 

A4 14.20 15.50 13.50  15.50 13.50 
A5 1.80 1.62 1.62  1.62 1.62 
A6 1.62 1.62 1.80  1.62 1.62 
A7 5.12 14.20 11.50  11.50 7.97 
A8 16.00 19.90 18.80  18.80 26.50 
A9 18.80 19.90 22.00  22.00 22.00 
A10 2.38 2.62 1.80  3.09 1.80 

Weight (lb) 4376.20 5613.84 5581.76 5593.44 5531.98 

Table 15 Comparison of optimal designs for the 10-bar planar truss structure (case 2) 

Li [26] Li [26] Li [26] Variables 
(in2) 

Wu [24] Ringertz [29] 
PSO PSOPC HPSO 

A1 30.50 30.50 24.50 25.50 31.50 
A2 0.50 0.10 0.10 0.10 0.10 
A3 16.50 23.00 22.50 23.50 24.50 
A4 15.00 15.50 15.50 18.50 15.50 
A5 0.10 0.10 0.10 0.10 0.10 
A6 0.10 0.50 1.50 0.50 0.50 
A7 0.50 7.50 8.50 7.50 7.50 
A8 18.00 21.0 21.50 21.50 20.50 
A9 19.50 21.5 27.50 23.50 20.50 

A10 0.50 0.10 0.10 0.10 0.10 
Weight (lb) 4217.30 5059.9 5243.71 5133.16 5073.51 
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Fig. 15 Comparison of convergence rates for the 10-bar planar truss structure (Case 1) 
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Fig. 16 Comparison of convergence rates for the 10-bar planar truss structure (Case 2) 

5.3.2   A 15-Bar Planar Truss Structure 

A 15-bar planar truss structure, shown in Fig. 17, has previously been analyzed  
by Zhang [30] and Li [26]. The material density is 7800kg/m3 and the modulus  
of elasticity is 200GPa. The members are subjected to stress limitations  
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of ±120MPa. All nodes in both directions are subjected to displacement 
limitations of ±10mm. There are 15 design variables in this example. The discrete 
variables are selected from the set D= {113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 
265.9, 297.1, 308.6, 334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7} (mm2). 
Three load cases are considered: Case 1: P1=35kN, P2=35kN, P3=35kN; Case 2: 
P1=35kN, P2=0kN, P3=35kN; Case 3: P1=35kN, P2=35kN, P3=0kN. A maximum 
number of 500 iterations is imposed. 

 

Fig. 17 A 15-bar planar truss structure 

Table 16 Comparison of optimal designs for the 15-bar planar truss structure 

Li [26] Li [26] Li [26] 
Variables (mm2) Zhang [30] 

PSO PSOPC HPSO 
A1 308.6 185.9 113.2 113.2 
A2 174.9 113.2 113.2 113.2 
A3 338.2 143.2 113.2 113.2 
A4 143.2 113.2 113.2 113.2 
A5 736.7 736.7 736.7 736.7 
A6 185.9 143.2 113.2 113.2 
A7 265.9 113.2 113.2 113.2 
A8 507.6 736.7 736.7 736.7 
A9 143.2 113.2 113.2 113.2 
A10 507.6 113.2 113.2 113.2 
A11 279.1 113.2 113.2 113.2 
A12 174.9 113.2 113.2 113.2 
A13 297.1 113.2 185.9 113.2 
A14 235.9 334.3 334.3 334.3 
A15 265.9 334.3 334.3 334.3 

Weight (kg) 142.117 108.84 108.96 105.735 
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Table 16 and Fig. 18 give the comparison of optimal design results and 
convergence rates of 15-bar planar truss structure respectively. It can be seen that, 
after 500 iterations, three algorithms have obtained good results, which are better 
than the Zhang’s. The Fig. 18 shows that the HPSO algorithm has the fastest 
convergence rate, especially in the early iterations. 
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Fig. 18 Comparison of convergence rates for the 15-bar planar truss structure 

5.3.3   A 25-Bar Spatial Truss Structure 

A 25-bar spatial truss structure, shown in Fig. 19, has been studied by Wu [24], 
Rajeev [28], Ringertz [29], Lee [13] and Li [26]. The material density is 0.1 lb/in.3 
and the modulus of elasticity is 10,000 ksi. The stress limitations of the members 
are ±40000psi. All nodes in three directions are subjected to displacement 
limitations of ±0.35 in. The structure includes 25 members, which are divided 
into 8 groups, as follows: (1) A1, (2) A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) 
A14~A17, (7) A18~A21 and (8) A22~A25. There are three optimization cases to be  
 

Table 17 The load case 1 for the 25-bar spatial truss structure 

Loads 
 Load Cases Nodes 

Px (kips) Py (kips) Pz (kips) 
1 1.0 -10.0 -10.0 
2 0.0 -10.0 -10.0 
3 0.5 0.0 0.0 

Case 1 1 

6 0.6 0.0 0.0 
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Table 18 The load case 2 and case 3 for the 25-bar spatial truss structure 

Loads 
Load Cases Nodes 

Px (kips) Py (kips) Pz (kips) 
1 0.0 20.0 -5.0 

2 
2 0.0 -20.0 -5.0 
1 1.0 10.0 -5.0 
2 0.0 10.0 -5.0 
3 0.5 0.0 0.0 

Case 2 & 3 
3 

6 0.5 0.0 0.0 

Table 19 The available cross-section areas of the ASIC code 

No. in2 mm2 No. in2 mm2 
1 0.111 71.613 33 3.840 2477.414 
2 0.141 90.968 34 3.870 2496.769 
3 0.196 126.451 35 3.880 2503.221 
4 0.250 161.290 36 4.180 2696.769 
5 0.307 198.064 37 4.220 2722.575 
6 0.391 252.258 38 4.490 2896.768 
7 0.442 285.161 39 4.590 2961.284 
8 0.563 363.225 40 4.800 3096.768 
9 0.602 388.386 41 4.970 3206.445 

10 0.766 494.193 42 5.120 3303.219 
11 0.785 506.451 43 5.740 3703.218 
12 0.994 641.289 44 7.220 4658.055 
13 1.000 645.160 45 7.970 5141.925 
14 1.228 792.256 46 8.530 5503.215 
15 1.266 816.773 47 9.300 5999.988 
16 1.457 939.998 48 10.850 6999.986 
17 1.563 1008.385 49 11.500 7419.340 
18 1.620 1045.159 50 13.500 8709.660 
19 1.800 1161.288 51 13.900 8967.724 
20 1.990 1283.868 52 14.200 9161.272 
21 2.130 1374.191 53 15.500 9999.980 
22 2.380 1535.481 54 16.000 10322.560 
23 2.620 1690.319 55 16.900 10903.204 
24 2.630 1696.771 56 18.800 12129.008 
25 2.880 1858.061 57 19.900 12838.684 
26 2.930 1890.319 58 22.000 14193.520 
27 3.090 1993.544 59 22.900 14774.164 
28 1.130 729.031 60 24.500 15806.420 
29 3.380 2180.641 61 26.500 17096.740 
30 3.470 2238.705 62 28.000 18064.480 
31 3.550 2290.318 63 30.000 19354.800 
32 3.630 2341.931 64 33.500 21612.860 
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Fig. 19 A 25-bar spatial truss structure 
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Fig. 20 Comparison of convergence rates for the 25-bar spatial truss structure (case 1) 

implemented. Case 1: The discrete variables are selected from the set D= {0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 
2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4} (in2). The loads are shown in Table 17; 
Case 2: The discrete variables are selected from the set D= {0.01, 0.4, 0.8, 1.2,  
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1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0} (in2). The loads are shown in 
Table 18. Case 3: The discrete variables are selected from the American Institute 
of Steel Construction (AISC) Code, which is shown in Table 19. The loads  
are shown in Table 18. A maximum number of 500 iterations is imposed for  
three cases. 

Table 20, Table 21 and Table 22 show the comparison of optimal design 
results for the 25-bar spatial truss structure under three load cases while Fig. 20, 
Fig.21 and Fig.22 show comparison of convergence rates. For all load cases of this 
structure, three algorithms can achieve the optimal solution after 500 iterations. 
But Figures 20, 21 and 22 show that the HPSO algorithm has the fastest 
convergence rate. 

Table 20 Comparison of optimal designs for the 25-bar spatial truss structure (case 1) 

Case 1 
Li [26] Li [26] Li [26] Variables (in2)

Wu [24] Rajeev [28] Lee [13]
PSO PSOPC HPSO 

A1 0.1 0.1 0.1 0.4 0.1 0.1 
A2~A5 0.5 1.8 0.3 0.6 1.1 0.3 
A6~A9 3.4 2.3 3.4 3.5 3.1 3.4 

A10~A11 0.1 0.2 0.1 0.1 0.1 0.1 
A12~A13 1.5 0.1 2.1 1.7 2.1 2.1 
A14~A17 0.9 0.8 1.0 1.0 1.0 1.0 
A18~A21 0.6 1.8 0.5 0.3 0.1 0.5 
A22~A25 3.4 3.0 3.4 3.4 3.5 3.4 

Weight (lb) 486.29 546.01 484.85 486.54 490.16 484.85 

Table 21 Comparison of optimal designs for the 25-bar spatial truss structure (case 2) 

Case 2 
Li [26] Li [26] Li [26] 

Variables 
 (in2) Wu [24] Ringertz [29] Lee [13]

PSO PSOPC HPSO 
A1 0.4 0.01 0.01 0.01 0.01 0.01 

A2~A5 2.0 1.6 2.0 2.0 2.0 2.0 
A6~A9 3.6 3.6 3.6 3.6 3.6 3.6 

A10~A11 0.01 0.01 0.01 0.01 0.01 0.01 
A12~A13 0.01 0.01 0.01 0.4 0.01 0.01 
A14~A17 0.8 0.8 0.8 0.8 0.8 0.8 
A18~A21 2.0 2.0 1.6 1.6 1.6 1.6 
A22~A25 2.4 2.4 2.4 2.4 2.4 2.4 

Weight (lb) 563.52 568.69 560.59 566.44 560.59 560.59 
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Table 22 Comparison of optimal designs for the 25-bar spatial truss structure (case 3) 

Case 3 
Li [26] Li [26] Li [26] 

Variables 
(in2) Wu [24] 

PSO PSOPC HPSO 
A1 0.307 1.0 0.111 0.111 

A2~A5 1.990 2.62 1.563 2.130 
A6~A9 3.130 2.62 3.380 2.880 

A10~A11 0.111 0.25 0.111 0.111 
A12~A13 0.141 0.307 0.111 0.111 
A14~A17 0.766 0.602 0.766 0.766 
A18~A21 1.620 1.457 1.990 1.620 
A22~A25 2.620 2.880 2.380 2.620 

Weight (lb) 556.43 567.49 556.90 551.14 
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Fig. 21 Comparison of convergence rates for the 25-bar spatial truss structure (case 2) 

5.3.4   A 52-Bar Planar Truss Structure 

A 52-bar planar truss structure, shown in Fig. 23, has been analysed by Wu [24] 
Lee [13] and Li [26]. The members of this structure are divided into 12 groups: (1) 
A1~A4, (2) A5~A6, (3) A7~A8, (4) A9~A10, (5) A11~A14, (6) A15~A18, and (7) A19~A22. 
The material density is 7860.0 kg/m3 and the modulus of elasticity is 2.07×
105MPa. The members are subjected to stress limitations of ±180MPa. Both of 
the loads, Px =100kN, Py =200kN are considered. The discrete variables are 
selected from the Table 19. A maximum number of 3,000 iterations is imposed.  
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Fig. 22 Comparison of convergence rates for the 25-bar spatial truss structure (case 3) 

 
 

Fig. 23 A 52-bar planar truss structure 
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Table 23 and Fig. 24 give the comparison of optimal design results and 
convergence rates of 52-bar planar truss structure respectively. From Table 23 and 
Fig. 24, it can be observed that only the HPSO algorithm achieves the good 
optimal result. The PSO and PSOPC algorithms do not get optimal results when 
the maximum number of iterations is reached. 

Table 23 Comparison of optimal designs for the 52-bar planar truss structure 

Li [26] Li [26] Li [26] 
Variables (mm2) Wu [24] Lee [13] 

PSO PSOPC HPSO 
A1~A4 4658.055 4658.055 4658.055 5999.988 4658.055 
A5~A10 1161.288 1161.288 1374.190 1008.380 1161.288 
A11~A13 645.160 506.451 1858.060 2696.770 363.225 
A14~A17 3303.219 3303.219 3206.440 3206.440 3303.219 
A18~A23 1045.159 940.000 1283.870 1161.290 940.000 
A24~A26 494.193 494.193 252.260 729.030 494.193 
A27~A30 2477.414 2290.318 3303.220 2238.710 2238.705 
A31~A36 1045.159 1008.385 1045.160 1008.380 1008.385 
A37~A39 285.161 2290.318 126.450 494.190 388.386 
A40~A43 1696.771 1535.481 2341.93 1283.870 1283.868 
A44~A49 1045.159 1045.159 1008.38 1161.290 1161.288 
A50~A52 641.289 506.451 1045.16 494.190 792.256 

Weight (kg) 1970.142 1906.76 2230.16 2146.63 1905.495 
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Fig. 24 Comparison of convergence rates for the 52-bar planar truss structure 
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5.3.5   A 72-Bar Spatial Truss Structure 

A 72-bar spatial truss structure, shown in Fig. 25, has been studied by Wu [24] 
Lee [13] and Li [26]. The material density is 0.1 lb/in.3 and the modulus of 
elasticity is 10,000 ksi. The members are subjected to stress limitations of ±25 
ksi. The uppermost nodes are subjected to displacement limitations of ±0.25 in. 
both in x and y directions. Two load cases are listed in Table 24. There are 72 
members, which are divided into 16 groups, as follows: (1) A1~A4, (2) A5~A12, (3) 
A13~A16, (4) A17~A18, (5) A19~A22, (6) A23~A30 (7) A31~A34, (8) A35~A36, (9) A37~A40, 
(10) A41~A48, (11) A49~A52, (12) A53~A54, (13) A55~A58, (14) A59~A66 (15) A67~A70, 
(16) A71~A72. There are two optimization cases to be implemented. Case 1: The 
discrete variables are selected from the set D={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 
 

 

Fig. 25 The 72-bar spatial truss structure 

Table 24 The load cases for the 72-bar spatial truss structure 

Load Case 1 Load Case 2 
Nodes 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 
17 5.0 5.0 -5.0 0.0 0.0 -5.0 
18 0.0 0.0 0.0 0.0 0.0 -5.0 
19 0.0 0.0 0.0 0.0 0.0 -5.0 
20 0.0 0.0 0.0 0.0 0.0 -5.0 



152 L. Li and F. Liu

 

2.8, 2.9, 3.0, 3.1, 3.2} (in2); Case 2: The discrete variables are selected from the 
Table 19. A maximum number of 1,000 iterations is imposed. 

Table 25 and Table 26 are the comparison of optimal design results.  

Table 25 Comparison of optimal designs for the 72-bar spatial truss structure (case 1) 

Li [26] Li [26] Li [26] 
Variables (in2) Wu [24] Lee [13] 

PSO PSOPC HPSO 
A1~A4 1.5 1.9 2.6 3.0 2.1 
A5~A12 0.7 0.5 1.5 1.4 0.6 
A13~A16 0.1 0.1 0.3 0.2 0.1 
A17~A18 0.1 0.1 0.1 0.1 0.1 
A19~A22 1.3 1.4 2.1 2.7 1.4 
A23~A30 0.5 0.6 1.5 1.9 0.5 
A31~A34 0.2 0.1 0.6 0.7 0.1 
A35~A36 0.1 0.1 0.3 0.8 0.1 
A37~A40 0.5 0.6 2.2 1.4 0.5 
A41~A48 0.5 0.5 1.9 1.2 0.5 
A49~A52 0.1 0.1 0.2 0.8 0.1 
A53~A54 0.2 0.1 0.9 0.1 0.1 
A55~A58 0.2 0.2 0.4 0.4 0.2 
A59~A66 0.5 0.5 1.9 1.9 0.5 
A67~A70 0.5 0.4 0.7 0.9 0.3 
A71~A72 0.7 0.6 1.6 1.3 0.7 

Weight (lb) 400.66 387.94 1089.88 1069.79 388.94 

Table 26 Comparison of optimal designs for the 72-bar spatial truss structure (case 2) 

Li [26] Li [26] Li [26] 
Variables (in2) Wu [24] 

PSO PSOPC HPSO 
A1~A4 0.196 7.22 4.49 4.97 
A5~A12 0.602 1.80 1.457 1.228 
A13~A16 0.307 1.13 0.111 0.111 
A17~A18 0.766 0.196 0.111 0.111 
A19~A22 0.391 3.09 2.620 2.88 
A23~A30 0.391 0.785 1.130 1.457 
A31~A34 0.141 0.563 0.196 0.141 
A35~A36 0.111 0.785 0.111 0.111 
A37~A40 1.800 3.09 1.266 1.563 
A41~A48 0.602 1.228 1.457 1.228 
A49~A52 0.141 0.111 0.111 0.111 
A53~A54 0.307 0.563 0.111 0.196 
A55~A58 1.563 1.990 0.442 0.391 
A59~A66 0.766 1.620 1.457 1.457 
A67~A70 0.141 1.563 1.228 0.766 
A71~A72 0.111 1.266 1.457 1.563 

Weight (lb) 427.203 1209.48 941.82 933.09 
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The Fig.26 and Fig.27 are comparison of convergence rates for the 72-bar 
spatial truss structure in two load cases.  
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Fig. 26 Comparison of convergence rates for the 72-bar spatial truss structure (case 1) 
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Fig. 27 Comparison of convergence rates for the 72-bar spatial truss structure (case 2) 



154 L. Li and F. Liu

 

For both of the cases, it seems that Wu’s results [24] achieve smaller weight. 
However, we discovered that both of these results do not satisfy the constraints. 
The results are unacceptable.  

In case 1, the HPSO algorithm gets the optimal solution after 1000 iterations 
and shows a fast convergence rate, especially during the early iterations. For the 
PSO and PSOPC algorithms, they do not get optimal results when the maximum 
number of iterations is reached. In case 2, the HPSO algorithm gets best 
optimization result comparatively among three methods and shows a fast 
convergence rate. 

6   Weight Optimization of Grid Spherical Shell Structure 

A double-layer grid steel shell structure with 83.6m span, 14.0m arc height and 
1.5 shell thickness is shown in Fig. 28. The elastic module is 210GPa and the 
density is 7850 kg/m3. There are 6761 nodes and 1834 bars in this shell. The 1834 
bars were divided into three groups, which were upper chord bars, lower chord 
bars and belly chord bars. All chords were thin circular tubes and their sections 
were limited to Chinese Criterion GB/T8162-1999 [31], which has 779 types of 
size to choose. The circumference nodes of lower chords are constrained. 50kN 
vertical load is acted on each node of upper chords. The maximum permit 
displacement for all nodes is 1/400 of the length of span, that is ±0.209m. The 
maximum permit stress for all chord bars is ±215MPa. The stability of 
compressive chords is considered according to Chinese Standard GB50017-2003 
[32]. The maximum slenderness ratio for compressive chords and tensile chords 
are 180 and 300 respectively.  

 

Fig. 28 The double layer reticulated spherical shell structure 
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The optimization results [26] are shown in Table 27. The convergence velocity 
is shown in Figure 29. It can be seen from Fig. 29 that HPSO can be used 
effectively to optimize the complicated engineering structures. 

Table 27 The optimal solution for the double layer reticulated spherical shell structure 

Upper chord bars Lower chord bars Belly chord bars Weight (kg) 
φ108×4 φ83×3.5 φ89×3.5 148811.71 
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Fig. 29 The convergence rate of the HPSO for the double layer grid spherical shell structure 

As there are only three group optimal variables chosen in this example, the 
convergence rate is considerably fast, within only about 120 iterations. Anyway, 
the weight optimization for a reticulated shell structure with 1834 bars is a very 
complicated engineering problem. It is almost impossible to get an optimal 
solution using traditional optimal methods while the HPSO has an ability of 
handling complex structural optimization problems effectively. 

7   Conclusions Remarks 

In this chapter, a harmony particle swarm optimizer (HPSO), based on the particle 
swarm optimizer with passive congregation (PSOPC) and the harmony search 
(HS) algorithm, was presented. The HPSO algorithm handles the constraints of 
variables using the harmony search scheme in corporation with the ‘fly-back 
mechanism’ method used to deal with the problem-specific constraints. Compared 
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with the PSO and the PSOPC algorithms, the HPSO algorithm does not allow any 
particles to fly outside the boundary of the variables and makes a full use of 
algorithm flying behaviour of each particle. Thus this algorithm performs more 
efficient than the others. 

The efficiency of the HPSO algorithm presented was tested for optimum design 
problems of planar and spatial pin-connected structures with continuous and 
discrete variables. A double-layer grid shell structure was also used to test the 
HPSO. All the results show that the HPSO algorithm has better search behaviour 
avoiding premature convergence while rapidly converging to the optimal solution. 
And the HPSO algorithm converges more quickly than the PSO and the PSOPC 
algorithms, in particular, in the early iterations. 

A drawback of this HPSO algorithm at present is that its convergence rate will 
slow down when the number of the iterations increase. Further study is being 
conducted for improvement. 
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Hybrid Algorithm of Harmony Search, Particle 
Swarm and Ant Colony for Structural Design 
Optimization 

A. Kaveh1 and S. Talatahari2 

Abstract. This chapter considers the implementation of the heuristic particle 
swarm ant colony optimization (HPSACO) methodology to find an optimum de-
sign of different types of structures. HPSACO is an efficient hybridized approach 
based on the harmony search scheme, particle swarm optimizer, and ant colony 
optimization. HPSACO utilizes a particle swarm optimization with a passive con-
gregation algorithm as a global search, and the idea of ant colony approach 
worked as a local search. The harmony search-based mechanism is used to handle 
the variable constraints. In the discrete HPSACO, agents are allowed to select dis-
crete values from the permissible list of cross sections. The efficiency of the 
HPSACO algorithm is investigated to find an optimum design of truss structures 
with continuous or discrete search domains and for frame structures with a dis-
crete search domain. The results indicate that the HPSACO is a quite effective al-
gorithm to find the optimum solution of structural optimization problems with 
continuous or discrete variables. 

1   Introduction 

Structural design optimization is a critical and challenging activity that has re-
ceived considerable attention in the last two decades [1]. A high number of design 
variables, largeness of the search space and controlling a great number of design 
constraints are major preventive factors in performing optimum design in a rea-
sonable time. Despite these facts, designers and owners have always desired to 
have optimal structures [2]. Therefore, different methods of structural optimiza-
tion have been introduced which can be categorized in two general groups: classi-
cal methods and heuristic approaches. 

Classical optimization methods are often based on mathematical programming. 
Many of these methods require substantial gradient information, and final results 
depend on the initially selected points. The number of computational operations 
increases as the design variables of a structure becomes greater and the solution 
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does not necessarily correspond to the global optimum or even the neighborhood 
of it, in some cases. 

The computational drawbacks of classical numerical methods have forced re-
searchers to rely on heuristic algorithms such as genetic algorithms (GAs), particle 
swarm optimizer (PSO), ant colony optimization (ACO) and harmony search 
(HS). These methods have attracted a great deal of attention, because of their high 
potential for modeling engineering problems in environments which have been re-
sistant to a solution by classic techniques. They do not require gradient informa-
tion and possess better global search abilities than the conventional optimization 
algorithms. Although these are approximate methods (i.e. their solutions are good, 
but not provably optimal), they do not require the derivatives of the objective 
function and constraints [3]. Having in common the processes of natural  
evolution, these algorithms share many similarities: each maintains a population 
of solutions which are evolved through random alterations and selection. The dif-
ferences between these procedures lie in the representation technique utilized to 
encode the candidates, the type of alterations used to create new solutions, and the 
mechanism employed for selecting new patterns. 

The genetic algorithm is one of the heuristic algorithms initially suggested by 
Holland, and developed and extended by some of his students, Goldberg and De 
Jong. These algorithms simulate a natural genetics mechanism for synthetic sys-
tems based on operators that are duplicates of natural ones. In the last decade, GA 
has been used in the optimum structural design. One of the first applications was 
the weight minimization of a 10-bar truss by Goldberg and Samtani [4]. Also, 
many researchers have used genetic search in the design of various structures in 
which the search space was non-convex or discrete, Hajela [5], Rajeev and Krish-
namoorthy [6,7], Koumousis and Georgious [8], Hajela and Lee [9], Wu and 
Chow [10], Soh and Yang [11], Camp et al. [12], Shrestha and Ghaboussi [13], 
Pezeshek et al. [14] Erbatur et al. [15], Coello and Christiansen [16],  Greiner et 
al. [17], Kameshki and Saka [18-20], Saka [21, 22], and Kaveh and colleagues 
[23-28], among many others. 

Application of swarm intelligence for optimization was first suggested by Eber-
hart and Kennedy [29] under the name of particle swarm optimization (PSO). The 
strength of PSO is underpinned by the fact that decentralized biological creatures 
can often accomplish complex goals by cooperation. A standard PSO algorithm is 
initialized with a population (swarm) of random potential solutions (particles). 
Each particle iteratively moves across the search space and is attracted to the posi-
tion of the best fitness historically achieved by the particle itself (local best) and 
by the best among the neighbors of the particle (global best) [30]. Compared to 
other evolutionary algorithms based on heuristics, the advantages of PSO consist 
of easy implementation and a smaller number of parameters to be adjusted. There-
fore, it has been widely employed for structural optimization problems [31-35]. 
However, it is known that the PSO algorithm had difficulties in controlling  
the balance between exploration (global investigation of the search place) and  
exploitation (the fine search around a local optimum) [36]. 

Ant colony optimization (ACO) was first proposed by Dorigo [37, 38] as a 
multi-agent approach to solve difficult combinatorial optimization problems and it 
has been applied to various engineering problems in recent years [39-44]. ACO 
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was inspired by the observation of real ant colonies. Ants are social insects whose 
behavior is directed more to the survival of the colony as a whole than to that of a 
single individual component of the colony. An important behavior of ant colonies 
is their foraging behavior, and in particular, how the ants can find shortest paths 
between food sources and their nest. While walking from food sources to the nest 
and vice versa, ants deposit on the ground a substance called pheromone. Ants can 
smell pheromone and when choosing their way, they tend to choose, in probabil-
ity, paths marked by strong pheromone concentrations. When more paths are 
available from the nest to a food source, a colony of ants will be able to exploit the 
pheromone trails left by the individual ants to discover the shortest path from the 
nest to the food source and back. One basic idea of the ACO approach is to  
employ the counterpart of the pheromone trail used by real ants as an indirect 
communication and as a form of memory of previously found solutions. 

The harmony search method, as discussed in the previous chapters, is another 
robust heuristic optimization technique that imitates the musical performance 
process which takes place when a musician searches for a better state of harmony. 
Jazz improvisation seeks to find musically pleasing harmony similar to the opti-
mum design process which seeks to find the optimum solution. The pitch of each 
musical instrument determines the aesthetic quality, just as the objective function 
value is determined by the set of values assigned to each decision variable. This 
approach is suggested by Geem et al. in 2001 [45] and first applied to a design of 
water distribution network. Since then, the algorithm has attracted many research-
ers due to its simplicity and effectiveness [1, 46-51]. 

Although there are several papers utilizing heuristic methods in the structural 
optimization field, using an individual heuristic method has often had some draw-
backs because usually each method is suitable for solving only a specific group of 
problems. Preference for a special method will differ depending on the kind of the 
problem being studied. One technique to overcome these problems is hybridizing 
various methods to reach a robust approach. 

In this chapter, the implementation of an efficient hybrid algorithm based on 
harmony search, particle swarm and ant colony strategies, namely heuristic parti-
cle swarm ant colony optimization (HPSACO), is developed to find an optimum 
design of truss structures with continuous or discrete domains and to find frame 
structures with a discrete search domain. 

2   Review of PSO, ACO and HS Algorithms 

Since HPSACO methodology is based on PSO, ACO and HS, in order to make the 
chapter self-explanatory, the characteristics of these algorithms are briefly  
explained in this section. 

2.1   Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic optimization method capable of 
handling non differentiable, nonlinear, and multi module objective functions. The 
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PSO method is motivated from the social behavior of bird flocking and fish 
schooling [29]. PSO has a population of individuals that move through search 
space and each individual has a velocity that acts as an operator to obtain a new 
set of individuals. Individuals, called particles, adjust their movements depending 
on both their own experience and the population’s experience. Effectively, each 
particle continuously focuses and refocuses on the effort of its search according  
to both the local and global best. This behavior mimics the cultural adaptation  
of a biological agent in a swarm: it evaluates its own position based on certain  
fitness criteria, compares it to others, and imitates the best position in the entire 
swarm [30]. 

Through the updating process, each particle moves by adding a change velocity 
1+k

iV  to the current position k
iX as follows 

 11 ++ += k
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k
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k
i VXX  (1) 

The velocity is a combination of three contributing factors: 

1. Previous velocity, k
iV , considering former attempts; 

2. Movement in the direction of the local best, k
iP , using the autobiographical 

memory; 

3. Movement in the direction of the global best, k
gP , based on the publicized 

knowledge.  

The mathematical relationship can be expressed as 
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where ω  is an inertia weight to control the influence of the previous velocity; 1r  

and 2r  are two random numbers uniformly distributed in the range of (0, 1); 1c  

and 2c are two acceleration constants. k
iP  is the best position of the i th particle 

up to iteration k  and k
gP  is the best position among all particles in the swarm up 

to iteration k . k
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where )(Xf is the objective function, M  is the total number of particles. 
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Fig. 1 The flow chart for the PSOPC algorithm 

The pseudo-code of the PSO algorithm can be summarized as follows: 

Step 1: Initialization. Initialize an array of particles with random positions and 
their associated velocities. 

Step 2: Function evaluation. Evaluate the fitness function of each particle. 
Step 3: Local best updating. Compare the current value of the fitness function 

with the particles’ previous best value and update k
iP  according to Eq. (3). 

Step 4: Global best updating. Determine the current global minimum fitness 

value among the current positions and update k
gP  according to Eq. (4). 

Step 5: Solution construction. Change the velocities according to Eq. (2) and 
move each particle to the new position according to Eq. (1). 

Step 6: Terminating criterion controlling. Repeat Steps 2–5 until a terminating 
criterion is satisfied. The terminating criteria are usually one of the following: 

• Maximum number of iterations: the optimization process is terminated after a 
fixed number of iterations, for example, 1000 iterations. 

• Number of iterations without improvement: the optimization process is termi-
nated after some fixed number of iterations without any improvement. 
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• Minimum objective function error: the error between the values of the objective 
function and the best fitness is less than a pre-fixed anticipated threshold. 

Adding the passive congregation model to the PSO may increase its performance. 
He et al. [52] proposed a hybrid PSO with passive congregation (PSOPC). In this 
method, the velocity is defined as 
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where iR  is a particle selected randomly from the swarm; 3c  is the passive  

congregation coefficient; 3r  is a uniform random sequence in the range (0, 1). 

Several benchmark functions have been tested in Ref. [52]. The results show 
that the PSOPC has a better convergence rate and a higher accuracy than the PSO. 
Figure 1 shows the flow chart for the PSOPC algorithm. 

2.2   Ant Colony Optimization 

In 1992, Dorigo developed a paradigm known as ant colony optimization (ACO), 
a cooperative search technique that mimics the foraging behavior of real live ant 
colonies [37]. The ant algorithms mimic the techniques employed by real ants to 
rapidly establish the shortest route from food source to their nest and vice versa. 
Ants start searching the area surrounding their nest in a random manner. Etholo-
gists observed that ants can construct the shortest path from their colony to the 
feed source and back using pheromone trails [53, 54], as shown in Figure 2(a). 
When ants encounter an obstacle (Figure 2(b)), at first, there is an equal probabil-
ity for all ants to move right or left, but after a while (Figure 2(c)), the number of 
ants choosing the shorter path increases because of the increase in the amount of 
the pheromone on that path. With the increase in the number of ants and phero-
mone on the shorter path, all of the ants will choose and move along the shorter 
path, Figure 2(d). 

 

Fig. 2 Ants find the shortest path around an obstacle 
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In fact, real ants use their pheromone trails as a medium for communication of 
information among them. When an isolated ant comes across some food source in 
its random sojourn, it deposits a quantity of pheromone on that location. Other 
randomly moving ants in the neighborhood can detect this marked pheromone 
trail. Further, they follow this trail with a very high degree of probability and si-
multaneously enhance the trail by depositing their own pheromone. More and 
more ants follow the pheromone rich trail and the probability of the trail being fol-
lowed by other ants is further enhanced by the increased trail deposition. This is 
an autocatalytic (positive feedback) process which favors the path along which 
more ants previously traversed. The ant algorithms are based on the indirect com-
munication capabilities of the ants. In ACO algorithms, virtual ants are deputed to 
generate rules by using heuristic information or visibility and the principle of indi-
rect pheromone communication capabilities for iterative improvement of rules. 

ACO was initially used to solve the traveling salesman problem (TSP). The aim 
of TSP is finding the shortest Hamiltonian graph, G=(N,E), where N denotes the 
set of nodes, and E is the set of edges. The general procedure of the ACO  
algorithm manages the scheduling of four steps [3]: 

Step 1: Initialization. The initialization of the ACO includes two parts: the first 
consists mainly of the initialization of the pheromone trail. Second, a number of 
ants are arbitrarily placed on the nodes chosen randomly. Then each of the distrib-
uted ants will perform a tour on the graph by constructing a path according to the 
node transition rule described below. 

Step 2: Solution construction. Each ant constructs a complete solution to the 
problem according to a probabilistic state transition rule. The state transition rule 
depends mainly on the state of the pheromone and visibility of ants. Visibility is 
an additional element used to make this method more efficient. For the path be-
tween i to j, it is represented as ijη and in TSP, it has a reverse relation with the 

distance between i to j. The node transition rule is probabilistic. For the kth ant on 
node i, the selection of the next node j to follow is according to the node transition 
probability 
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where )(tijτ  is the intensity of pheromone laid on edge ),( ji ; k
iN  is the list of 

neighboring nodes from node i  available to ant k  at time t. Parameters α  and 
β  represent constants which control the relative contribution between the inten-

sity of pheromone laid on edge ),( ji reflecting the previous experiences of the 

ants about this edge, and the value of visibility determined by a Greedy heuristic 
for the original problem.  

Step 3: Pheromone updating rule. When every ant has constructed a solution, 
the intensity of pheromone trails on each edge is updated by the pheromone  
updating rule. The pheromone updating rule is applied in two phases. First, an 
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evaporation phase where a fraction of the pheromone evaporates, and then a rein-
forcement phase when the elitist ant which has the best solution among others,  
deposits an amount of pheromone 

 +Δ⋅+⋅−=+ ijijij tnt τρτρτ )()1()(  (7) 

where ρ ( 10 << ρ ) represents the persistence of pheromone trails (( ρ−1 ) is the 

evaporation rate); n is the number of variables or movements an ant must take to 

complete a tour and +Δ ijτ  is the amount of pheromone increase for the elitist ant 

and equals 

 +
+ =Δ

L
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where +L is the length of the solution found by the elitist ant. 
Step 4: Terminating criterion controlling. Steps 2 and 3 are iterated until a 

terminating criterion. 
The flow chart of the ACO procedure is illustrated in Figure 3. 

 

Fig. 3 The flow chart for the ACO algorithm 

2.3   Harmony Search Algorithm 

Harmony search (HS) algorithm is based on musical performance processes that 
occur when a musician searches for a better state of harmony, such as during jazz 
improvisation [45]. The engineers seek for a global solution as determined by an 
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objective function, just like the musicians seek to find musically pleasing harmony 
as determined by an aesthetic. The HS algorithm was presented in previous chap-
ters, and we briefly explain the steps in the algorithm here. Figure 4 shows the HS 
optimization procedure including the following steps [1]: 

Step 1: Initialization. HS algorithm includes a number of optimization opera-
tors, such as the harmony memory (HM), the harmony memory size (HMS), the 
harmony memory considering rate (HMCR), and the pitch adjusting rate (PAR). 
In the HS algorithm, the HM stores the feasible vectors, which are all in the feasi-
ble space. The harmony memory size determines the number of vectors to be 
stored. 
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Step 2: Solution construction. A new harmony vector is generated from the 
HM, based on memory considerations, pitch adjustments, and randomization. The 
HMCR varying between 0 and 1 sets the rate of choosing a value in the new  
vector from the historic values stored in the HM, and (1−HMCR) sets the rate of 
randomly choosing one value from the possible range of values. 

 

Fig. 4 The flow chart for the HS algorithm 
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where k
ix is the ith design variable in the iteration k, and w.p. is abbreviation for 

“with probability”. The pitch adjusting process is performed only after a value is 
chosen from the HM. The value (1−PAR) sets the rate of doing nothing. A PAR 
of 0.1 indicates that the algorithm will choose a neighboring value with 10% 
×HMCR probability. 

Step 3: Harmony memory updating. In Step 3, if a new harmony vector is bet-
ter than the worst harmony in the HM, judged in terms of the objective function 
value, the new harmony is included in the HM and the existing worst harmony is 
excluded from the HM.  

Step 4: Terminating criterion controlling. Repeat Steps 2 and 3 until the termi-
nating criterion is satisfied. The computations are terminated when the terminating 
criterion is satisfied. Otherwise, Steps 2 and 3 are repeated. 

3   Statement of the Optimization Design Problem 

Selection of the objective function in optimal design problems is highly signifi-
cant. Usually finding a mathematical formula for the objective function is not an 
easy task, especially when the optimization problem is very detailed. In most 
cases, the objective function shows one important feature of a design, but it can 
also contain a combination of different features [2]. Objective functions that can 
be used to measure the quality of design may include minimum construction cost, 
minimum life cycle cost, minimum weight, and maximum stiffness, as well as 
other objectives [1]. However, for structural optimization problems, minimization 
of the weight is often used as the objective function. Structural design is often lim-
ited by problem-specified constraints (e.g., feasible strength, displacements,  
 

 

Fig. 5 Search space division 
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eigen-frequencies) and design variable constraints (e.g., type and size of the avail-
able structural members and cross-sections). The optimum design of structures  
involves a set of design variables that has the minimum weight located in the fea-
sible space which does not violate either problem-specified constraints or design 
variable constraints, as illustrated in Figure 5. 

3.1   Optimum Design of Truss Structures 

Optimum design of truss structures involves arriving at optimum values for  
member cross-sectional areas xi that minimize the structural weight W.  

 

∑
=

⋅⋅=

∈

=

nm

i
iii

ii

ng

LxW

Dx

xxx

1

21

)(   minimize  to

                

],,...,,[        Find

γX

X

 (11) 

where X is the vector containing the design variables; ng is the number of design 
variables or the number of groups; )(XW is the cost function which is taken as the 

weight of the structure; nm is the number of members making up the structure; iγ  

is the material density of member i; iL  is the length of member i; Di is an allow-

able set of values for the design variable xi which can be considered as a continu-
ous set or a discrete one. In the continuous problems, the design variables can vary 
continuously in the optimization 

 { } ],[| max,min, iiiii xxxxD ∈=  (12) 

where min,ix and max,ix  are minimum and maximum allowable values for the de-

sign variable i, respectively. If the design variables represent a selection from a set 
of parts, the problem is considered as discrete 

 { })(,2,1, ,...,, iriiii dddD =  (13) 

where )(ir is the number of available discrete values for the ith design variable. 
This minimum design also has to satisfy the problem-specified constraints that 

limit structural responses, as follows 
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where iσ  and iδ  are the stress and nodal deflection, respectively; m is the number 

of nodes; and min and max mean the lower and upper boundaries, respectively. 
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3.2   Optimum Design of Steel Frames  

Similar to truss structures, the aim of the optimum design of steel frames is to find 
a design with minimum weight as described in Equation (11) which must satisfy 
the following constraints: 

Stress constraints 

  ,...,2,1      maximin nmi =≤≤ σσσ  (15) 

Maximum lateral displacement 

 R
H

T ≤Δ
 (16) 

Inter-story displacement constraints 
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where Di is considered a set of 267 W-sections from the AISC database [55] for 
the design variable xi; TΔ  is the maximum lateral displacement; H is the height of 

the frame structure; R is the maximum drift index; jΔ is the inter-story drift; jh  is 

the story height of the jth floor; ns  is the total number of stories; and RI is the in-
ter-story drift index permitted by the code of the practice. 

For the code of practice AISC [55], the allowed inter-story drift index is given 
as 1/300, and the LRFD interaction formula constraints (AISC, Equation H1-1a,b) 
are expressed as 
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where uP  is the required strength (tension or compression); nP  is the nominal ax-

ial strength (tension or compression); cφ  is the resistance factor ( 9.0=cφ  for 

tension, 85.0=cφ  for compression); uxM  and uyM  are the required flexural 

strengths in the x and y directions, respectively; nxM and nyM  are the nominal 

flexural strengths in the x and y directions (for two-dimensional structures, 
0=nyM ); and bφ  is the flexural resistance reduction factor ( 90.0=bφ ). 
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4   A Heuristic Particle Swarm Ant Colony Optimization 

The heuristic particle swarm ant colony optimization (HPSACO), a hybridized 
approach based on HS, PSO and ACO, is described in this section. HPSACO util-
izes a particle swarm optimization with passive congregation (PSOPC) algorithm 
as a global search, and the ant colony approach worked as a local search. In the 
HPSACO algorithm, fly-back mechanism and the harmony search are used to 
handle the constraints. Fly-back mechanism handles the problem-specific con-
straints, and the HS deals with the variable constraints. HPSACO utilizes an  
efficient terminating criterion considering exactitude of the solutions. This termi-
nating criterion is defined in a way that after decreasing the movements of parti-
cles, the search process stops. In the discrete method of HPSACO, agents are not 
allowed to select any value except discrete cross sections from the permissible list. 

4.1   Combining PSO with ACO 

Compared to other evolutionary algorithms based on heuristics, the advantages of 
PSO include an easy implementation and its smaller number of parameters to be 
adjusted. However, it is known that the original PSO had difficulties in controlling 
the balance between exploration (global investigation of the search place) and ex-
ploitation (the fine search around a local optimum) [36]. In order to improve upon 
this character of PSO, one method is to hybridize PSO with other approaches such 
as ACO. The resulted method, called particle swarm ant colony optimization 
(PSACO), was initially introduced by Shelokar et al. [56] for solving the continu-
ous unconstrained problems and recently utilized for the design of structures by 
authors [57, 58]. We have applied PSOPC instead of the PSO to improve the per-
formance of the new method. The relation of the standard deviation in ACO stage 
is different with Ref. [56] and the inertia weight is changed in PSOPC stage. 

The implementation of PSACO algorithm consists of two stages [57]. In the 
first stage, it applies PSOPC, while ACO is implemented in the second stage. 
ACO works as a local search, wherein, ants apply pheromone-guided mechanism 
to refine the positions found by particles in the PSOPC stage. In the PSACO, a 
simple pheromone-guided mechanism of the ACO is proposed to be applied for 
the local search. The proposed ACO algorithm handles M ants equal to the number 
of particles in PSOPC. 

In ACO stage, each ant generates a solution around k
gP  which can be  

expressed as 

 ),( σk
g

k
i N PZ =  (20) 

In the above equation, ),( σk
gPN  denotes a random number normally distributed 

with mean value k
gP  and variance σ , where 

 ησ ×−= )( minmax xx  (21) 
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η  is used to control the step size. The normal distribution with mean k
gP  can be 

considered as a continuous pheromone which has the maximum value in k
gP  and 

which decreases going away from it. In ACO algorithms, the probability of select-
ing a path with more pheromone is greater than other paths. Similarly, in the nor-

mal distribution, the probability of selecting a solution in the neighborhood of k
gP  

is greater than the others. This principle is used in the PSACO algorithm as a help-
ing factor to guide the exploration and to increase the controlling in exploitation. 

In the present method, the objective function value )( k
if Z  is computed and 

the current position of ant i, k
iZ , is replaced by the current position of particle i in 

the swarm, k
iX , if )()( k

i
k
i ff ZX >  and the current ant is in the feasible space. 

4.2   HS Added to PSACO as a Variable Constraint Handling 
Approach 

The heuristic particle swarm ant colony optimization algorithm (HPSACO) is re-
sulted from combining PSACO and HS [59]. The framework of the HPSACO al-
gorithm is illustrated in Figure 6. A hybrid particle swarm optimizer and harmony 
search scheme (HPSO) was proposed by Li et al. [32] for truss design. A particle 
in the search space may violate either the problem-specific constraints or the limits 
of the variables as illustrated in Figure 5. If a particle flies out of the variable 
boundaries, the solution cannot be used even if the problem-specific constraints 
are satisfied. Using the harmony search-based handling approach, this problem is 
dealt with. In this mechanism, any component of the solution vector (particle)  

violating the variable boundaries can be generated randomly from k
iP  as 
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i
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P

 (22) 

where jix ,  is the jth component of the particle i   The HMCR varying between 0 

and 1 sets the rate of choosing a value in the new vector from the historic values 

stored in the k
iP , and (1−HMCR) sets the rate of randomly choosing one value 

from the possible list of values. The pitch adjusting process is performed only af-

ter a value is chosen from k
iP . The value (1−PAR) sets the rate of doing nothing. 

A PAR (Pitch Adjusting Rate) of 0.1 indicates that the algorithm will choose a 
neighboring value with 10% ×HMCR probability. Therefore, the harmony search 
concept is used to check whether the particles violate the variables’ boundaries. 
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Fig. 6 The flow chart for the HPSACO 
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4.3   Problem-Specified Constraint Handling Approach 

As described in the previous section, there are some problem-specified constraints 
in structural optimization problems that should be carefully handled. So far, a 
number of approaches have been proposed by incorporating constraint-handling 
techniques to solve constrained optimization problems. The most common ap-
proach adopted to deal with constrained search spaces is the use of penalty func-
tions. When using a penalty function, the amount of constraint violation is used to 
punish or penalize an infeasible solution so that feasible solutions are favored by 
the selection process. Despite the popularity of penalty functions, they have sev-
eral drawbacks. The main one is that they require a careful fine tuning of the pen-
alty factors that accurately estimates the degree of penalization to be applied in 
order to approach efficiently the feasible region [60]. 

Several approaches have been proposed to avoid this dependency on the values 
of the penalty factors, like special encodings, whose aim is to generate only feasi-
ble solutions, and the use of special operators to preserve their feasibility during 
all the evolutionary process [61, 62]. An alternative approach is the use of repair 
algorithms whose goal is to change an infeasible solution into a feasible one [63]. 
The separation of constraints and objectives is another approach to deal with con-
strained search spaces, where the idea is to avoid the combination of the value of 
the objective function and the constraints of a problem to assign fitness, like when 
using a penalty function [60, 64]. 

Fly-back mechanism is one of the methods for separating constraints and objective 
functions, introduced by He et al. [64]. Compared to other constraint-handling tech-
niques, this method is relatively simple and easy to implement. For most of the struc-
tural optimization problems, the global minimum locates on or close to the boundary 
of a feasible design space. According to the fly-back mechanism, the particles are ini-
tialized in the feasible region. When the particles fly in the feasible space to search 
the solution, if any one of them flies into the infeasible region, it will be forced to fly 
back to the previous position to guarantee a feasible solution. The particle which flies 
back to the previous position may be closer to the boundary at the next iteration. This 
makes the particles fly to the global minimum with a great probability. Although 
some experimental results have shown that it can find a better solution with a fewer 
number of iterations than the other techniques [64], the fly-back mechanism has the 
difficulty of finding the first valid solutions for the swarm. However, if the first selec-
tions are limited to a neighborhood of the maximum value of permitted cross sec-
tional areas, it can be expected, after a few iterations, the feasible swarm will be  
obtained. This neighborhood can be defined as [59] 

 ⎥⎦

⎤
⎢⎣

⎡ −
− max

minmax
max ,

4
x

xx
x  (23) 

4.4   Terminating Criterion 

The maximum number of the iterations is the most usual terminating criterion in 
PSO literature. If it is selected as a big number, the number of analyses and as a 
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Table 1 The pseudo-code for the HPSACO 
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result, the time of optimization will increase; vice versa, if it is selected small, the 
probability of finding a desirable solution will decrease. Thus, the necessity for an 
exact definition of the terminating criterion is vital. The following terminating  
criterion is considered to fulfill this goal. 

This terminating criterion is defined by using a pre-fixed value denoted by A*. 
For the discrete problems, A* is equal to the minimum value of the difference be-
tween cross-sectional areas of two successive discrete sections, and for continuous 
problems, A* is considered as the required exactitude of the solutions with a re-
verse relation. According to this criterion, as A* increases, exactitude of the solu-
tions decreases and the searching process must be stopped earlier, and if the 
amount of A* decreases, then the searching process must be continued until an ex-
act result is attained. Therefore, if in an iteration of search process, the absolute 
value of the component i in all of the particles' velocity vectors is less than A*/2, 
continuation of the search process cannot change the amount of variable i; then the 
variable i reaches an optimum value and can be deleted from the virtual list of de-
sign variables. As a result, the terminating criterion is defined as continuing the 
search process until all variables are deleted. In the other words, when the varia-
tion of a variable is less than A*/2, this criterion omits it from the virtual list  
of variables. When this list is emptied, the search process stops. With these  
alterations, the number of iterations decreases. 

The pseudo-code for the HPSACO algorithm using this terminating criterion is 
listed in Table 1. 

4.5   A Discrete HPSACO 

In the discrete HPSACO, a new position of each agent is defined as the following: 

For particles 

 )( 11 ++ += k
i

k
i

k
i Fix VXX  (24) 

For ants 

 ( )),( σk
g

k
i NFix PZ =  (25) 

where Fix(X) is a function which rounds each element of X to the nearest permis-
sible discrete value. Using this position updating formula, the agents will be per-
mitted to select discrete values. Although this change is simple and efficient, it 
may reduce the exploration in the algorithm. Therefore, in order to increase the 
exploration, the velocity of particles is redefined [58] as 
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where 4c  is the exploration coefficient; 4r  is a uniformly distributed random 

number in the range of (0, 1); and kRd is a vector generated randomly from the 
search domain. 
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4.6   Parameter Setting 

For the proposed algorithm, a population of 50 individuals is used for both parti-
cles and ants (M=50); the value of constants 1c and 2c are set 0.8 and the passive 

congregation coefficient 3c is taken as 0.6. The value of inertia weight ( )(kω ) 

decreases linearly from 0.9 to 0.4 as follows 

 4.00015.09.0)( ≥×−= kkω  (27) 

where k = the iteration number. In this way, the balance of )(kω  with fast rate of 

convergence in the HPSACO method is maintained.  
The amount of step size (η ) in ACO stage is recommended as 0.01 [57]. If η  

is too small, the velocity of particles will decrease rapidly and the search process 
will stop in early iterations; thus the obtained results stay far away from an opti-
mum; on the contrary, if it is selected too big, the HPSACO algorithm will per-
form similar to the PSOPC algorithm and the effect of the ACO stage will  
be eliminated, and a desirable solution cannot be obtained in smaller number of  
iterations. 

The parameters of the HS part (HMCR and PAR) similar to the effect of η , 

can be investigated. With small values for HMCR (large values for PAR), the ef-
fect of the HS part will be deleted. We have selected these values close to the 
amounts employed in the original HS algorithm [1]. If HMCR is selected from the 
range of [0.8, 0.98] and PAR is taken from [0.05,0.25], we expect a good per-
formance for the HPSACO. In this study, HMCR is set to 0.95 and PAR is taken 
as 0.10. 

5   Discussion on the Efficiency of the HPSACO 

In order to verify the effectiveness of the HPSACO algorithm, a benchmark prob-
lem (10-bar truss) chosen from the literature is employed. In the next section, four 
design examples consisting of a 120-bar dome shaped truss with continuous de-
sign variables, a 582-bar space truss tower with 32 discrete design variables and a 
3-bay 15-story steel frame structure are used to evaluate the numerical perform-
ance of the HPSACO algorithm in optimum design of different types of structures. 

5.1   Benchmark Problem 

The 10-bar truss design has become a common problem in the field of structural 
design for testing and verifying the efficiency of many different optimization 
methods. Figure 7 shows the geometry and support conditions for this 2-
dimensional, cantilevered truss with the corresponding loading condition. The ma-
terial density is 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is 10,000 
ksi (68,950 MPa). The members are subjected to the stress limits of ±25 ksi 
(172.375 MPa) and all nodes in both vertical and horizontal directions are  
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subjected to the displacement limits of ±2.0 in (5.08 cm). There are 10 design 
variables in this example and a set of pseudo variables ranging from 0.1 to 35.0 in2 

(from 0.6452 cm2 to 225.806 cm2). A* is considered as 0.001 for this example.  
The PSO and PSOPC algorithms achieve the best solutions after 3,000 itera-

tions (150,000 analyses) [32] and the HS algorithm reaches a solution after 20,000 
analyses [1]. However, the HPSACO algorithm finds the best solution after about 
426 iterations (10,650 analyses). The best weight of HPSACO is 5056.56 lb while 
the best results of PSO and PSOPC are 5061.00 lb, 5529.50 lb, respectively. The 
results of this method are compared with other methods in Table 2. 

 

Fig. 7 A 10-bar planar truss 

Table 2 Optimal design comparison for the 10-bar planner truss 

Optimal cross-sectional areas (in.2)  

HPSACO PSACO 
[57] 

HPSO 
[32] 

PSOPC 
[32] PSO [32]HS     [1]GA       

[12] 

Element

group

30.307 30.068 30.704 30.569 33.469 30.15  28.92 A11

0.100 0.100 0.100 0.100 0.110 0.102 0.10 A22

23.434 23.207 23.167 22.974 23.177 22.71 24.07 A33

15.505 15.168 15.183 15.148 15.475 15.27 13.96 A44

0.100 0.100 0.100 0.100 3.649 0.102 0.10 A55

0.5241 0.536 0.551 0.547 0.116 0.544 0.56 A66

7.4365 7.462 7.460 7.493 8.328 7.541 7.69 A77

21.079 21.228 20.978 21.159 23.340 21.56 21.95 A88

21.229 21.630 21.508 21.556 23.014 21.45 22.09 A99

0.100 0.100 0.100 0.100 0.190 0.100 0.10 A1010

         

5056.56 5057.36 5060.92 5061.00 5529.50 5057.88 5076.31 Weight (lb) 
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5.2   Discussion 

The main reasons for the improvements obtained by the HPSACO method can be 
summarized as the following [59]: 

1.  Increasing the exploitation: In structural optimization, usually there are some 
local optimums in the neighborhood of a desirable solution. Thus, the probabil-
ity of finding a desirable optimum increases with additional searches around 
the local optimums. HPSACO does extra search (exploitation) around the local 
optimums, and therefore obtains the desirable solution with higher probability 
in a smaller number of iterations. 

The difference between the best and the worst results of the 10-bar truss for 
PSOPC in 50 tests is 365.2lb (7.21%), the average weight is 5173.45lb, and the 
standard deviation is 81.17lb (see Table 3). With adding the ACO principles to the 
PSOPC (PSACO [57]), these values are reduced to 3.2lb (0.06%), 5058.23lb, and 
1.46lb, respectively. In addition, although PSO is a weak approach, applying ACO 
principles in PSO results in a improvement of its performance. The average 
weight of PSO+ACO in 50 runs is 5079.19lb, and the standard deviation is 4.76lb, 
which are better than PSOPC. Therefore, increasing the exploitation by applied 
pheromone-guided mechanism for updating the positions of the particles, not only 
improves the results, but also reduces the standard deviation drastically. 

2. Guiding the exploration: Heuristic methods utilize two factors: the random 
search factor and the information collected from the search space during the 
optimization process. In early iterations, the random search factor has more 
power than the collective information factor, but the increase in the number of 
iterations gradually abates the power of the random search factor and increases 
the power of the collective information factor. In HPSACO, ACO stage  
plays an auxiliary role in rapidly increasing the collective information factor; 
consequently, the convergence rate increases faster. 
Although minimizing the maximum value of the velocity can make fewer parti-
cles violate the variable boundaries, it may also prevent the particles from cross-
ing the problem-specific constraints and can cause the reduction in exploration. 
The harmony search-based handling approach deals with this problem.  

PSOPC requires 3000 iterations to reach a solution for 10-bar truss. However, the 
number of required iterations to reach a solution for PSOPC+ACO (PSACO) in 50 
runs on average is 635.2 iterations. Also, PSO+ACO on average needs 567  
iterations to reach the optimum solution, while PSO cannot reach an appropriate 
solution until the maximum number of iterations is achieved (3000 iterations).  

In order to investigate the advantages of the HS-based handling approach, the 
comparison of the performance of PSOPC with HPSO (PSOPC+HS), or PSO+ 
ACO with PSO+ACO+HS, or PSOPC+ACO (PSACO) with PSOPC+ACO+HS 
(HPSACO) can be helpful. Table 3 summarizes the performances of all the above 
mentioned PSO-based approaches for the 10-bar truss on 50 runs for each algo-
rithm. Although the results and standard deviations of HPSACO and PSACO do 
not differ much, the convergence rate of HPSACO is higher than that of PSACO. 
In average, HPSACO needs 420.3 iterations to reach a solution, while for PSACO 
this average number is 635.2. 
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3.  Efficient terminating criterion: In optimization problems, the terminating crite-
rion is a part of the search process which can be used to eliminate additional 
unnecessary iterations. To fulfill this goal, an efficient terminating criterion is 
defined as continuing the search process until the variation of a variable is less 
than a pre-defined value. 

Figure 8 shows the average and a typical maximum absolute value of velocity for 
the first design variable in 50 tests for the 10-bar truss without considering the 

proposed terminating criterion. As shown in the figure, generally |)max(| 1
k

iV  is a 

decreasing function with a slight disorder. When it gets less than A*, there is a 
probability (even slight) that the values of velocities in the next iterations become 
more than A*. Instead, if the upper bound of the maximum absolute value of ve-
locities is selected as A*/2, there is a small probability that particle velocities in the 
next iterations become more than A* and as a result, continuing the search process 
cannot help to improve the results. 

Table 3 Investigation on the performance of various PSO-based algorithms for the 10-bar 
truss in 50 runs 

Algorithm Minimum 
iterations 

Maximum 
iterations 

Average 
iterations 

Best 
weight 

(lb) 

Worst 
weight 

(lb) 

Average 
weight 

(lb) 

Standard 
deviation 

(lb)  

PSOPC 3000 3000 3000 5061.00 5406.26 5173.45 81.17 

PSOPC+HS 3000 3000 3000 5060.92 5103.63 5078.69 13.05 

PSO+ACO 373 567 439.6 5065.23 5092.71 5079.19 4.76 

PSO+ACO+HS  226 414 296.3 5065.61 5078.26 5070.86 2.87 

PSOPC+ACO 619 655 635.2 5057.36 5060.61 5058.23 1.46 

PSOPC+ACO+HS

(HPSACO) 

405 436 420.3 5056.56  5061.12 5057.66 1.42 
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Fig. 8 The history of |)max(| 1
k

iV  in 50 tests for the 10-bar truss 
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6   Design Examples 

6.1   A Truss Structure with Continuous Design Variables 

Figure 9 shows the topology and group numbers of 120-bar dome shaped truss. 
The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material density is 
0.288 lb/in.3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi (400 
MPa). The dome is considered to be subjected to vertical loading at all the unsup-
ported joints. These loads are taken as −13.49 kips (−60 kN) at node 1, −6.744 
kips (−30 kN) at nodes 2 through 14 and −2.248 kips (−10 kN) at the rest of the 
nodes. The minimum cross-sectional area of all members is 0.775 in.2 (2 cm2). The 
allowable tensile and compressive stresses are used according to the AISC ASD 
[55] code, as follows 
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where −
iσ  is calculated according to the slenderness ratio: 
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where E is the modulus of elasticity; Fy is the yield stress of steel; Cc is the slen-
derness ratio ( iλ ) dividing the elastic and inelastic buckling regions 

( yC FEC 22π= ); iλ  is the slenderness ratio ( iii rkL=λ ); k is the effective 

length factor; iL  is the member length; and ir  is the radius of gyration which can 

be expressed in terms of cross-sectional areas, i.e., b
ii aAr = [29]. Here, a and b are 

the constants depending on the types of sections adopted for the members. Here, 
pipe sections (a = 0.4993 and b = 0.6777) were used for the bars. 

In this example, four cases of constraints are considered: with stress con-
straints and no displacement constraints (Case 1), with stress constraints and 
displacement limitations of ±0.1969 in (±5 mm) imposed on all nodes in x- and 
y-directions (Case 2), no stress constraints but displacement limitations of 
±0.1969 in. (±5 mm) imposed on all nodes in z-directions (Case 3), and all con-
straints explained above (Case 4). For Case 1 and Case 2, the maximum cross-
sectional area it is 5.0 in.2 (32.26 cm2) and for Case 3 and Case 4 is 20.0 in.2 
(129.03 cm2). 
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Fig. 9 A 120-bar dome shaped truss 

The best solution vectors and the corresponding weights for all cases are pro-
vided in Table 4. Figure 10 shows the convergence for different cases. In all cases, 
HPSACO needs nearly 10,000 analyses (400 iterations) to reach a solution which 
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is less than 125,000 (2,500 iterations) and 35,000 analyses for PSOPC and HS  
[1], respectively. Figures 11-14 compare the allowable and existing stress and  
displacement constraint values of the HPSACO results for four cases. In Case 1, 
the stress constraints of some elements in the 4th and 7th groups are active as 
shown in Figure 11(a). According to Figures 12(a), 13(a) and 14(a), the maxi-
mum values of displacements in the x, y and z directions are 0.3817in., 0.4144in. 
and 0.988in., respectively. In Case 2, the stress constraints in the 2nd, 4th and 7th 
groups and the displacement of node 26 in y direction are active. The maximum 
value for displacement in the x direction is 0.1817in. (Figure 11(b)).. The dis-
placement constraints in the x and y directions do not affect the results of Case 3 
and Case 4. The active constraints for Case 3 are the displacements of the 1st to 
13th nodes in the z direction (Figure 14(c)). In Case 4, the stresses in the elements 
of the 7th group and the displacements of the 1st to 13th nodes in z directions affect 
the results. 

Table 4 Optimal design comparison for the 120-bar dome truss (four cases) 

Optimal cross-sectional areas (in.2) 

Case 1    Case 2   
Element 

group 
PSO PSOPC HPSACO  PSO PSOPC HPSACO  

1  3.147 3.235 3.311 15.978 3.083 3.779 

2 6.376  3.370 3.438 9.599 3.639 3.377 

3 5.957 4.116 4.147 7.467 4.095 4.125 

4 4.806 2.784 2.831 2.790 2.765 2.734 

5 0.775 0.777 0.775 4.324 1.776 1.609 

6 13.798 3.343 3.474 3.294 3.779 3.533 

7 2.452 2.454 2.551 2.479 2.438 2.539 

       

Weight (lb) 32432.9 19618.7 19491.3 41052.7 20681.7 20078.0 

 Case 3    Case 4   

 PSO  PSOPC HPSACO  PSO PSOPC HPSACO  
1 1.773 2.098 2.034 12.802 3.040 3.095 

2 17.635 16.444 15.151 11.765 13.149 14.405 

3 7.406 5.613 5.901 5.654 5.646 5.020 

4 2.153 2.312 2.254 6.333 3.143 3.352 

5 15.232 8.793 9.369 6.963 8.759 8.631 

6 19.544 3.629 3.744 6.492 3.758 3.432 

7 0.800 1.954 2.104 4.988 2.502 2.499 

       

Weight (lb) 46893.5 31776.2 31670.0 51986.2 33481.2 33248.9 
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6.2   A Truss Structure with Discrete Design Variables 

A 582-bar tower truss shown in Figure 15 with an 80 m height is chosen from 
[65] as an example of truss structure with discrete design variables. The symme-
try of the tower around x- and y-axes is considered to group the 582 members 
into 32 independent size variables. A single load case is considered consisting of 
lateral loads of 5.0 kN (1.12 kips) applied in both x- and y-directions and a verti-
cal load of −30 kN (−6.74 kips) applied in the z-direction at all nodes of the 
tower. A discrete set of 137 economical standard steel sections selected from the 
W-shape profile list based on area and radii of gyration properties is used to size 
the variables [65]. The lower and upper bounds on size variables are taken as 
6.16 in.2 (39.74 cm2) and 215.0 in.2 (1387.09 cm2), respectively. The stress limi-
tations of the members are imposed according to the provisions of ASD-AISC, as 
in the previous example. The other constraint is the limitation of node displace-
ments (no more than 8.0 cm or 3.15 in. in any direction). In addition, the maxi-
mum slenderness ratio is limited to 300 and 200 for tension and compression 
members, respectively. 

 
 

Fig. 15 A 582-bar tower truss (a) 3D view (b) Top view (c) Side view 
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Table 5 Optimal design comparison for the 582-bar truss tower   

Optimal W-shaped sections 

HPSACO   PSO [65] 

Element 

group 

Area, cm2 (in.2) Ready section  
Area, cm2 

(in.2) 
Ready section  

45.68 (7.08) W8×24 39.74 (6.16) W8×21 1 

136.13 (21.1) W12×72 149.68 (23.2) W12×79 2 

53.16 (8.24) W8×28 45.68 (7.08) W8×24 3 

109.68 (17) W12×58 113.55 (17.08) W10×60 4 

45.68 (7.08) W8×24 45.68 (7.08) W8×24 5 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 6 

92.90 (14.4) W10×49 90.97 (14.1) W8×48 7 

45.68 (7.08) W8×24 45.68 (7.08) W8×24 8 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 9 

75.48 (11.7) W12×40 85.81 (13.3) W10×45 10 

56.71 (8.79) W12×30 45.68 (7.08) W8×24 11 

136.129 (21.1) W12×72 129.03 (20) W10×68 12 

143.87 (23.3) W18×76 140.65 (21.8) W14×74 13 

92.90 (14.4) W10×49 90.97 (14.1) W8×48 14 

154.84 (24) W14×82 143.87 (22.3) W18×76 15 

58.84 (9.12) W8×31 55.90 (9.13) W8×31 16 

115.48 (17.9) W14×61 39.74 (6.16) W8×21 17 

45.68 (7.08) W8×24 127.10 (19.7) W16×67 18 

39.74 (6.16) W8×21 45.68 (7.08) W8×24 19 

75.48 (11.7) W12×40 39.74 (6.16) W8×21 20 

45.68 (7.08) W8×24 75.48 (11.7) W8×40 21 

41.87 (6.49) W14×22 45.68 (7.08) W8×24 22 

58.84 (9.12) W8×31 39.74 (6.16) W8×21 23 

53.16 (8.24) W8×28 41.87 (6.49) W10×22 24 

39.74 (6.16) W8×21 45.68 (7.08) W8×24 25 

39.74 (6.16) W8×21 39.74 (6.16) W8×21 26 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 27 

53.16 (8.24) W8×28 45.68 (7.08) W8×24 28 

68.39 (10.6) W16×36 39.74 (6.16) W8×21 29 

45.68 (7.08) W8×24 39.74 (6.16) W8×21 30 

39.74 (6.16) W8×21 45.68 (7.08) W8×24 31 

45.68 (7.08) W8×24 45.68 (7.08) W8×24 32 

22.0607 m3 22.3958 m3 Volume  

(1346227.65 in3) (1366674.89 in3)   
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PSO has obtained the lightest design when compared to some other meta-
heuristic algorithms such as evolution strategies, simulated annealing, tabu search, 
ant colony optimization, harmony search and genetic algorithms reported by 
Hasançebi et al. [65]. Table 5 gives the best solution vectors of the PSO and 
HPSACO algorithms [66]. The optimum result of the HPSACO approach is 22.06 
m3 while it is 22.39 m3 for the PSO algorithm. HPSACO needs nearly 8,500 
analyses to reach a solution which is significantly less than 50,000 analyses  
for PSO.  

Figure 16 compares the allowable and existing stress ratio and displacement 
value in the x direction of the HPSACO result. The maximum values of displace-
ments in the x, y and z directions are 3.1498 in., 2.9881 in. and 0.9258 in., respec-
tively. The maximum stress ratio is 93.06% as show in the figure. 
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Fig. 16 Comparison of the allowable and the existing constraints for the 582-bar truss using 
the HPSACO (a) displacement in the x direction (b) stress ratio 
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6.3   A Steel Frame Structure 

Figure 17 shows the configuration and applied loads of 3-bay 15-story frame 
structure. The displacement and AISC combined strength constraints are the per-
formance constraint of the frame. The sway of the top story is limited to 9.25 in. 
(23.5 cm). The material has a modulus of elasticity E=29,000 ksi (200,000 MPa) 
and a yield stress of fy=36 ksi (248.2 MPa). The effective length factors of the 
members are calculated as 0≥xK  for a sway-permitted frame and the out-of-plane 
effective length factor is specified as Ky=1.0. Each column is considered as  
unbraced along its length, and the unbraced length for each beam member is  
specified as one-fifth of the span length. 

 
 

Fig. 17 Topology of the 3-bay 15-story frame 
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The optimum design of the frame is obtained after 6,800 analyses by using 
HPSACO, having the minimum weight of 426.36 kN (95.85 kips). The optimum 
designs for PSOPC and PSO had the weight of 452.34 kN (101.69 kips) and 
496.68 kN (111.66 kips), respectively. Table 6 summarizes the optimal designs for 
these algorithms. 

The global sway at the top story is 11.57 cm (4.56 in.), which is less than the 
maximum sway. Figure 18 shows the inter-story drift for each story and the stress 
ratio of elements for the design of the HPSACO algorithm.  
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Fig. 18 Comparison of the allowable and the existing constraints for the 3-bay 15-story 
frame using the HPSACO (a) inter-story drift (b) stress ratio 
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Table 6 Optimal design comparison for the 3-bay 15-story frame  

Optimal W-shaped sections   Element 

HPSACO  PSOPC  PSO  group

W21×111 W26×129 W33×118 1

W18×158 W24×131 W33×263 2

W10×88 W24×103 W24×76 3

W30×116 W33×141 W36×256 4

W21×83  W24×104 W21×73 5

W24×103 W10×88 W18×86 6

W21×55 W14×74 W18×65 7

W26×114 W26×94 W21×68 8

W10×33 W21×57 W18×60 9

W18×46  W18×71 W18×65 10

W21×44 W21×44 W21×44 11

    
426.36 (95.85)452.34 (101.69)  496.68 (111.66)  Weight kN (kips)

11.57   11.36 10.42 The global sway (cm)

99.72% 99.57%  99.54%  Max. stress ratio

7   Summary and Conclusions 

Structural design optimization is a critical and challenging activity that has re-
ceived considerable attention in the last decades. Despite the existing factors that 
prevent performing optimum design, designers and owners have always desired to 
have optimal structures. To fulfill this aim, several classical methods and heuristic 
approaches have been developed. The drawbacks of the classical optimization 
methods consist of complex derivatives, sensitivity to initial values, and the large 
amount of their enumeration memory required. Thus the advantages of heuristic 
algorithms have caused a considerable increase in applying heuristic methods such 
as genetic algorithms (GAs), particle swarm optimizer (PSO), ant colony optimi-
zation (ACO) and harmony search (HS). Heuristic methods are quite suitable and 
powerful for obtaining the solution of optimization problems. These methods have 
attracted a great deal of attention because of their high potential for modeling en-
gineering problems in environments which have been resistant to solutions by 
classic techniques. 

There are several papers utilizing heuristic methods in the field of structural opti-
mization, but using an individual heuristic method has often had some drawbacks be-
cause usually each method is suitable for solving only a specific group of problems 
and preference for a special method will differ depending on the kind of the problem 
being studied. One technique overcome to these problems is to hybridize various 
methods to reach a single robust approach. In this chapter, a new hybridized approach 



Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony  195
 

based on HS, PSO and ACO is presented which is called the heuristic particle swarm 
ant colony optimization (HPSACO). 

HPSACO utilizes a particle swarm optimization with a passive congregation 
(PSOPC) algorithm as a global search, and the idea of an ant colony approach 
worked as a local search which updates the positions of the particles by applied 
pheromone-guided mechanism. This principle is used in the HPSACO as a helping 
factor to guide the exploration and to increase the control of exploitation. In the 
HPSACO algorithm, fly-back mechanism and the harmony search are used to 
handle the constraints. Fly-back mechanism handles the problem-specific con-
straints, and the HS deals with the variable constraints. A particle in the search 
space may violate either the problem-specific constraints or the limits of the vari-
ables. Since the fly-back mechanism is used to handle the problem-specific con-
straints, the particle will be forced to fly back to its previous position regardless 
whether it violates the problem-specific constraints. If it flies out of the variable 
boundaries, the solution cannot be used even if the problem-specific constraints 
are satisfied. Although minimizing the maximum value of the velocity can make 
fewer particles violate the variable boundaries, it may also prevent the particles 
from crossing the problem-specific constraints and can cause the reduction in ex-
ploration. Using a harmony search based handling approach, this problem is dealt 
with. According to this approach, any component of the solution vector violating 
the variable boundaries can be regenerated from harmony memory. 

In optimization problems, and particularly in structural optimization, the num-
ber of iterations is highly important. The terminating criterion is a part of the 
search process which can be used to eliminate additional unnecessary iterations. 
HPSACO utilizes an efficient terminating criterion considering exactitude of the 
solutions. This terminating criterion is defined in a way that after decreasing the 
movements of particles, the search process stops. When the variation of a variable 
is less than a determined exactitude, this criterion deletes it from the virtual list of 
variables. When this list becomes empty, the search process stops. Using this  
terminating criterion, the number of required iterations decreases. 

Some changes are made in order to reach a discrete version of HPSACO. In the 
discrete method, agents are allowed to select discrete values from the permissible 
list of cross sections, and if any one of agents selects another value for a design 
variable, the discrete HPSACO changes the amount of it with the value of the 
nearest discrete cross section. Although this change is simple and efficient, its  
effect may be to reduce exploration of the algorithm. Therefore, the formula of 
particles' velocity is improved by adding an exploration term. 

In order to find an optimum design for different types of structures, the imple-
mentation of the HPSACO methodology is investigated. We start with truss struc-
tures considering a continuous domain as the search space. The second problem 
contains a large-scale truss structure with a discrete search space. Then, the effi-
ciency of the HPSACO algorithm is investigated to find optimum design of frame 
structures. The results confirm that the HPSACO algorithm is quite effective  
in finding the optimum design of structures and can be successfully applied to 
structural optimization problems with continuous or discrete variables. 
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Determining Viscoelastic and Damage 
Properties Based on Harmony Search 
Algorithm 

Sungho Mun1 and Zong Woo Geem2 

Abstract.  This chapter documents the procedure for determining viscoelastic and 
damage properties using a harmony search (HS) algorithm that employs a heuris-
tic algorithm based on an analogy with music phenomenon. To determine the vis-
coelastic material parameters, the steps involved in conducting the interconversion 
between frequency-domain and time-domain functions are outlined, based on the 
presmoothing of raw data using the HS algorithm. Thus, a Prony series representa-
tion of the fitted data can be obtained that includes the determination of the Prony 
series coefficients. To determine the damage properties of hot mix asphalt (HMA) 
concrete, a rate-type evolution law is applied for constructing the damage function 
of the HMA concrete. The damage function can be characterized by fitting ex-
perimental results using the HS algorithm. Results from laboratory tests of uniax-
ial specimens under axial tension at various strain rates are shown to be consistent 
with the rate-type model of evolution law. 

1   Introduction 

Linear viscoelastic (LVE) materials are rheological materials that exhibit time-
temperature rate-of-loading dependence. When their response is not only a 
function of the current input, but also of the current and past input history, the 
characterization of the viscoelastic response can be expressed using the convo-
lution (hereditary) integral. A general overview of time-dependent material 
properties has been presented [1]. Additionally, a detailed description of the 
physical response of LVE materials has been explained [2] based on ramp tests 
to determine the relaxation modulus which is a time-domain LVE response 
function. 

Hot mix asphalt (HMA) concretes used in this study are composite materials 
consisting of aggregates and asphalt binder. Their behavior is characterized by the 
interaction between these two components and the LVE behavior of the HMA 
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concretes, which depends on temperature, loading frequency, and strain magni-
tude. Studying the behavior of the HMA material requires modeling the LVE be-
havior through a dynamic modulus test (DMT) conducted in stress-control within 
the LVE range. This test is run on all previously untested specimens to obtain a 
LVE fingerprint (linear viscoelastic properties characteristic of HMA specimen) 
and to determine the shift factors for the undamaged state after constructing dy-
namic modulus and phase angle mastercurves. Sinusoidal loading in tension and 
compression sufficient to produce total strain amplitude of about 70 micro-strains 
was applied at different frequencies. Based on earlier work [3], the 70 micro-strain 
limit was found not to cause significant damage to the specimen. For mastercurve 
construction, several replicates are tested at four temperatures: –10, 5, 25  
and 40°C.  

Several methods have been proposed to convert the dynamic modulus, a LVE 
response function in the frequency domain, to the corresponding relaxation 
modulus in the time domain.  For a time-domain LVE function, the Prony series is 
a popular representation, mainly because of its ability to describe a wide range of 
viscoelastic response and its relatively simple and rugged computational effi-
ciency associated with its exponential basis functions. In this study, an approach is 
proposed to overcome the problem – namely, oscillations in the fitted curve – as-
sociated with the Prony series fitting. The experimental source data are smoothed 
through a defined log-sigmoidal function using the heuristic optimization tech-
nique of the harmony search (HS) algorithm. The coefficients of the log-sigmoidal 
function can be determined when a defined error norm converges into the mini-
mum point. Thus, this procedure is required to represent the oscillated broadband 
data using the smoothed log-sigmoidal function. The fitted log-sigmoidal function 
is used to obtain the time-domain Prony series. This approach has proved very ef-
fective and stable in fitting a Prony series with positive coefficients to LVE re-
sponse function data, as illustrated in an example using experimental data from a 
dynamic modulus test on HMA concrete. 

In recent years, some success has been achieved in developing a mechanistic 
constitutive equation of HMA concrete for a viscoelastic continuum damage 
(VECD) model. Kim et al. [4] developed a uniaxial VECD model by applying the 
elastic-viscoelastic correspondence principle to separate the effects of viscoelastic-
ity, and then employing internal state variables based on the work potential theory 
to account for the damage evolution under loading. From the verification study it 
was found that this constitutive model has the ability to predict the hysteretic be-
havior of the material under both monotonic and cyclic loading up to failure, vary-
ing loading rates, random rest durations, multiple stress/strain levels, and different 
modes of loading (controlled-stress versus controlled-strain). Daniel and Kim [5] 
discovered a unique damage characteristic curve that describes the reduction in 
material integrity as damage grows in the HMA specimen, regardless of the ap-
plied loading conditions (cyclic versus monotonic, amplitude/rate, and frequency). 
Chehab et al. [6] demonstrated that the time-temperature superposition principle is 
valid not only in the LVE state, but also with growing damage. This finding al-
lows the prediction of mixture responses at various temperatures from laboratory 
testing from a single temperature. 
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To characterize the damage function with respect to an internal state variable 
for the uniaxial behavior of an HMA specimen, the HS algorithm can be applied 
to fit experimental data into a defined damage function, based on minimizing an 
error norm. 

The outline of this chapter is as follows. Section 2 contains the details of the 
heuristic HS algorithm. Section 3 provides the HMA material parameters, which 
must be determined by the HS algorithm. The determination of material parame-
ters and their application to the uniaxial behavior of HMA concrete with damage 
evolution is shown in Section 4. The concluding remarks found in Section 5  
summarize the chapter. 

2   Harmony Search Algorithm 

Many engineering optimization problems are very complex in nature and quite 
difficult to be solved using gradient-based search algorithms. If there is more than 
one local optimum in the problem, the result may depend on the selection of an 
initial point, and the obtained optimal solution may not necessarily be the global 
optimum. To determine the LVE and damage properties of HMA concrete, the  
HS algorithm, which has an analogy between music and optimization, was used in 
this study. 

The HS algorithm conceptualizes a behavioral phenomenon of musicians in the 
improvisation process, where each musician continues to experiment and improve 
his or her contribution in order to search for a better state of harmony [7, 8]. This 
section describes the HS algorithm based on the heuristic algorithm that searches 
for a globally optimized solution. First, a brief overview of the HS algorithm used 
to formulate solution vectors in which the optimization process is generated and 
the object function is evaluated, is provided. Finally, the application procedure of 
the HS algorithm is explained in detail. 

2.1   Algorithm Procedure 

The procedure for a harmony search, which consists of Steps 1 to 5, is shown in 
Figure 1. The algorithm parameters are specified in Step 1, as follows: the har-
mony memory size (HMS) is initialized as the number of solution vectors in har-
mony memory (HM); the harmony memory considering rate (HMCR, between 0 
and 1) is the rate of memory consideration; the pitch adjusting rate (PAR, between 
0 and 1) is the rate of pitch adjustment; and the maximum number of improvisa-
tions, or stopping criterion, is the termination of the HS program. In addition, the 
optimization problem is specified as follows: 

 Minimize )(Χf  subject to NiXx ii ,...,2,1, =∈ ,   (1) 

where f(X) is an objective function; X is the set of each decision variable, xi; N is 
the number of decision variables; Xi is the set of the possible range of values for 
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each decision variable, that is Lxi ≤ Xi ≤ Uxi; and Lxi and Uxi are the lower and  
upper bounds for each decision variable, respectively. 

The HM is a memory location where all the solution vectors (sets of decision 
variables) are stored. The HM is similar to the genetic pool in the genetic algo-
rithm (GA) [9]. Here, the HMCR and PAR are parameters that are used to  
improve the solution vector, as defined in Step 3. 

In Step 2, the HM matrix is initially filled with as many randomly generated so-
lution vectors as the HMS, as well as with the corresponding function value of 
each random vector, f(X). 
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In Step 3, a new harmony vector, X′ = (x1′, x2′, … , xN′), is improvised based on 
the following three mechanisms: 1) random selection, 2) memory consideration, 
and 3) pitch adjustment. In the random selection, the value of each decision vari-
able, xi′, in the new harmony vector is randomly chosen within the value range 
with a probability of (1 – HMCR). The HMCR, which varies between 0 and 1, is 
the rate of choosing one value from the historical values stored in the HM, and (1 
– HMCR) is the rate of randomly selecting one value from the possible range of 
values. 

The value of each decision variable obtained by the memory consideration is 
examined to determine whether it should be pitch-adjusted. This operation uses 
the PAR parameter, which is the rate of pitch adjustment as it should be pitch-
adjusted to neighboring pitches with a probability of HMCR × PAR, while the 
original pitch obtained in the memory consideration is kept with a probability of 
HMCR × (1 – PAR). For example, this operation uses the PAR parameter, which 
ranges between 0 and 1.  

If the pitch adjustment decision for xi′ is made with a probability of PAR, xi′ is 
replaced with xi′ ± rand × bw, where rand and bw are random numbers (e.g., a 
value between 0 and 1) and bandwidths between the lower and upper bounds, re-
spectively. The value of (1 – PAR) sets the rate of performing nothing. Thus, the 
pitch adjustment is applied to each variable as follows: 
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If the new harmony vector is better than the worst harmony in the HM, based on 
the evaluation of an objective function value, the new harmony is included in the 
HM, and the existing worst harmony is excluded from the HM. Finally, if the 
stopping criterion (or maximum number of improvisations) is satisfied, the com-
putation is terminated. Otherwise, Steps 3 and 4 are repeated. 
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Fig. 1 The Harmony Search Minimization Algorithm 

2.2   Application to the Determination of Viscoelastic and Damage 
Properties of HMA Concrete 

In terms of applying the HS algorithm to the determination of viscoelastic and 
damage properties of HMA materials, a VECD model is used, which is generally 
applied to describe the fatigue phenomenon occurring at the HMA layers of a 
flexible pavement. Thus, the optimization problems, which are related to the 
VECD model, can be solved using the HS algorithm process with respect to a) ob-
taining the LVE properties from experimental data, b) determining Prony series 
parameters that are used to represent the LVE HMA by a generalized Maxwell 
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model, and c) constructing the damage parameter of HMA concrete by fitting a 
defined function into the experimental data. Section 3 explains the detailed proce-
dure of the proposed HS algorithm-based method to determine the viscoelastic and 
damage properties. 

3   Material Parameters of HMA Concrete 

An LVE response function defines the response of an LVE material to a unit load. 
As long as the loading conditions do not contribute to damage in the material, the 
response can be expressed using the convolution (hereditary) integral. Thus, the 
LVE material property of HMA concrete is represented by the generalized Max-
well model, which can be viewed as a Prony series expansion of the relaxation 
modulus. The Prony series coefficients are estimated from the experimental data 
using the following material modeling procedure: 

1) Obtain the storage modulus as a function of loading frequency, based on 
smoothing the experimental data. 

2) Convert the frequency domain data into time domain data. 
3) Determine the coefficients of the Prony series representation. 

In this study, an approach is proposed to overcome the problems with Prony series 
fitting, i.e., the oscillations in the fitted curve and the non-negative coefficients of 
the Prony series. First, the frequency-dependent source data are smoothed through 
a defined log-sigmoidal function using the HS algorithm; thus, the coefficients of 
the log-sigmoidal function can be determined when an error norm converges to the 
minimum point. This step is required to represent the oscillated broadband data 
using the smooth log-sigmoidal function. Secondly, the fitted log-sigmoidal func-
tion is used to obtain the discrete time-domain relaxation modulus by an analytical 
method. Then, the HS algorithm is also used to find the solution that represents the 
continuous time-domain LVE function in the form of a log-sigmoidal function. 
Finally, a continuous spectrum method is used to force the coefficients of the 
Prony series to be positive. 

To take the damage of HMA materials into consideration, the constitutive 
model based on previous research [4, 10] can be used. The model uses the elastic-
viscoelastic correspondence principle to eliminate the time dependence of the ma-
terial. The work potential theory [11, 12] is then used to model the damage growth 
in the material as well as to include the viscoelastic effects of microcracking. The 
work potential theory proposes the following rate-type damage evolution law: 
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where the overdot represents the derivative with respect to time; WR is the pseudo 
strain energy density function; αm is a material-dependent constant; and m is not 
summation. 
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In its application to the uniaxial behavior of HMA concrete [13], the experi-
mental stress-strain constitutive relationship is incorporated into the one-
dimensional pseudo strain energy density function of the material in the following 
form: 

    2))((
2

1 RR SCW ε= ,   (5) 

where the damage function, C(S), depends on a single damage parameter, S; and 
εR is the pseudo strain. In order to determine a state variable, S, which is used to 
trace a state of material damage according to the relationship with the pseudo 
strain energy density function in Equation (5), the HS algorithm can be applied for 
fitting the experimental data into a defined function of C(S) based on minimizing 
an error norm. 

3.1   Testing Systems and Methods 

In this study, 12.5 mm and 9.5 mm mixtures were used for unmodified HMA and 
lime-modified HMA, respectively. The 12.5 mm and 9.5 mm mixtures were used 
based on the Superpave mix design [14]. The aggregate blend used consisted of 
95.5% by mass granite aggregates, 3.5% natural sand, and 1% baghouse fines. In 
case of the lime-modified HMA, hydrated lime (1% by aggregate weight) is sub-
stituted for a portion of the baghouse fines. The asphalt binders used were per-
formance grade (PG) 70-22 and PG 58-28 for unmodified and lime-modified 
HMA, respectively. The asphalt contents were 5.2% for the unmodified HMA; 
5.3% and 5.8% for the lime-modified HMA by mass. Mixing and compaction 
temperatures were 166°C and 153°C, respectively. Compaction was done using 
the Superpave gyratory compactor. 

The mixtures were compacted into gyratory plugs of 150 mm in diameter by 
178 mm in height. Then, they were cut and cored to cylindrical specimens with 
dimensions of 100 mm in diameter and 150 mm in height for dynamic modulus 
tests and 75 mm in diameter and 140 mm in height for constant crosshead tests. 

Regarding testing setup and methods, two different closed-loop servo-hydraulic 
testing machines were utilized in this study. The first is a MTS 810 loading frame 
equipped with either a 25 kN or 8.9kN load cell, depending on the nature of the 
test. For this machine, an environmental chamber, equipped with liquid nitrogen 
coolant and a feedback system, was used to control and maintain the test tempera-
ture. The second machine is a UTM-25 machine, manufactured by IPC Global of 
Australia. This machine is equipped with a 25 kN load cell. The environmental 
chamber for the UTM-25 is refrigerator-driven and also uses a feedback system to 
maintain a consistent temperature during the testing. 

Measurements of axial deformations, load, and crosshead movements were 
taken for all tests. The data acquisition system of both machines was identical, 
consisting of a National Instruments 16-bit data acquisition card and Labview 
software. In all tests conducted in this study, axial displacement measurements 
were taken with linear variable differential transformers (LVDTs) from IPC 
Global.  
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Fig. 2 LVDTs Mounting on Specimens: (a) Dynamic Modulus Test; and (b) Constant 
Crosshead Rate Test 

Tests conducted in this study include dynamic modulus testing and constant 
crosshead rate testing. All tests were done in both machines. The dynamic 
modulus test (DMT) shown in Figure 2a is performed by applying a sinusoidal 
load to an asphalt concrete specimen to obtain the linear viscoelastic material 
properties of asphalt mixtures. The loading amplitude is adjusted based on the ma-
terial stiffness, temperature, and frequency to keep the strain response within the 
linear viscoelastic range. 

Regarding the determination of the damage function, C(S), the constant cross-
head rate tests were conducted in tension mode till failure of the specimen at dif-
ferent crosshead rates as shown in Figure 2b. Testing temperatures were 5°C and 
25°C for the lime-modified HMA and the unmodified HMA, respectively, in this 
study. 

3.2   Determination of LVE Material Parameters 

In order to get the experimental data to be fitted in this study, a DMT is performed 
by controlling a micro-strain level of 70 that is targeted as the limit for the LVE. 
The loading is applied until steady-state response is achieved, at which point sev-
eral cycles of data are collected. After each frequency, a five-minute rest period is 
allowed for specimen recovery before the next loading block is applied. The fre-
quencies are applied from the fastest to the slowest ranging from 1 to 20 Hz. 

From the DMT, the complex modulus, E*, which includes the dynamic 
modulus (|E*|) and the phase angle (φ ), can be determined. The complex modulus 

can also be viewed as a composition of storage (E′) and loss modulus (E″) as  
follows: 

    "'* iEEE +=     (6) 

(a) (b) 
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where i  is the 1− . The dynamic modulus is the amplitude of the complex 
modulus and is defined as: 

   22 )''()'(|*| EEE += .    (7) 

The values of the storage and loss modulus, which are shown in Figure 3, are re-
lated to the dynamic modulus and phase angle as follows: 

      φcos|*|' EE =  and φsin|*|'' EE = .   (8) 
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Storage Modulus 

|E*|

)",'(* EEE

 
 

Fig. 3 Complex Modulus Schematic Diagram 

As the material becomes more viscous, the phase angle increases and the loss 
component of the complex modulus increases. Conversely, a decreasing phase an-
gle indicates more elastic behavior and a larger contribution from the storage 
modulus. The dynamic modulus at each frequency is calculated by dividing the 
steady state stress amplitude, σamp, by the strain amplitude, εamp: 

    
amp

amp
E

ε
σ

=|*| .    (9) 

The phase angle, φ , is associated with the time lag, tΔ , between the strain input 
and stress response at the corresponding frequency, f: 

    tfΔ= πφ 2 .               (10) 

In order to determine the storage modulus prior to the conversion (i.e., from fre-
quency domain to time domain) using a Prony series function, the discrete raw 
data need to be fitted using a continuous function. Thus, the quality of raw data 
can be significantly improved using a defined log-sigmoidal function that de-
scribes the full viscoelastic range of the HMA, from the glassy state to the low 
frequency plateau. The log-sigmoidal function, f(ω), is defined as 
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where a1,2,…,6  are the coefficients determined by the HS algorithm, and ω is the 
angular frequency. For example, the optimizing solution between the storage 
modulus data and the log-sigmoidal function that is used to determine the coeffi-
cients of Equation (11) can be expressed by the following Equation (12): 

     Minimize [ ]∑
=

−=
N

i
iii fEg

1
10 )()('log)( ωωω ,             (12) 

where g(ωi) is the objective function (e.g., error norm); E′(ωi) is the storage 
modulus; subscript i denotes the individually selected angular frequency; N is the 
total number of selected angular frequencies; and the vertical bar indicates the ab-
solute value. 

The interconversion between LVE material functions of a frequency-domain, 
E', and a time-domain, E(t), has been provided by several researchers [15, 16]. In 
this study, an approximate analytical solution developed by [15] is used in the fol-
lowing form: 

        )/1(|)('
'

1
)( tEtE =≅ ωω

λ
,              (13) 

where λ' is an adjustment factor that is defined by Γ(1-n)cos(nπ/2); Γ is a gamma 
function; and n is the local log-log slope of the storage modulus, that is, 

         
ω
ω

10

10

log

)('log

d

Ed
n = .               (14) 

Thus, the time-domain relaxation modulus can also be fitted using the defined log-
sigmoidal function with respect to time, which is the same as Equation (11), based 
on the above function-fitting algorithm. 

In order to introduce the time-domain Prony series representation, the uniaxial, 
non-aging, isothermal stress-strain constitutive equation for a LVE material can be 
considered, as follows: 

       τ
τ
τετσ d

d

d
tEt

t

∫ −=
0

)(
)()( ,              (15) 

where σ(t), ε(t), and E(t) are the stress, strain, relaxation modulus components in a 
time domain t, respectively. The relaxation modulus of Equation (13), E(t), which 
is based on a generalized Maxwell model consisting of a series of springs and 
dashpots [17] in the form of a Prony series, can be expressed as follows: 

   ∑
=

∞ −+=
M

m
mm tEEtE

1

)/exp()( ρ ,              (16) 
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where E∞, ρm, and Em are the infinite relaxation modulus, relaxation time, and 
Prony coefficients, respectively. 

Considering the case of an infinite number of Maxwell components with con-
tinuously distributed relaxation times, and neglecting the infinite relaxation 
modulus, E∞, based on the continuous spectrum method [18-20], the relaxation 
modulus can be defined by 

   ∫
∞

∞−

−= ρρρ dtLtE )/exp()()( ,              (17) 

where L(ρ) represents a continuous distribution of the relaxation modulus, and is 
defined by 

   )(
)!1(

)(
lim)( )( ρρρ kE

k

k
L k

k

k −
−=

∞→
.                (18) 

In order to determine the discrete Prony series coefficients, Em, in Equation (16) 
from the continuous spectrum equation of Equation (17), the continuous spectrum 
can be approximated by subdividing lnρ into time intervals Δ(lnρm) = 
ln10Δ(log10ρm), as follows: 

 ∫ ∑
∞

∞− =
Δ−≈−=

M

m
mmm tLdtLtE

1

)(ln)/exp()(ln)/exp()()( ρρρρρρ .     (19) 
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Fig. 4 Adjusting the Vertical Shift of a Relaxation Modulus Curve through the HS Algo-
rithm to Obtain an Infinite Relaxation Modulus, E∞ 
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The Prony coefficients for the chosen relaxation time can be determined by 

   )(log10ln)( 10 mmm LE ρρ Δ= .              (20) 

Finally, the infinite relaxation modulus, E∞, of a Prony series representation can be 
found by adjusting the vertical shift of a relaxation modulus curve through the HS 
algorithm, as shown in Figure 4. 

3.3   Determination of Damage Function, C(S) 

Schapery [12] developed a theory using the method of thermodynamics of irre-
versible processes to describe the mechanical behavior of elastic composite 
 materials with growing damage. Three fundamental elements comprise the work 
potential theory: 

1) Strain energy density function, ),( mij SWW ε=                (21) 

2) Stress-strain relationship, 
ij

ij
W

ε
σ

∂
∂=                  (22) 

3) Damage evolution law, 
m

s

m S

W

S

W

∂
∂

=
∂
∂− ,                (23) 

where σij and εij are stress and strain tensors, respectively; Sm are the internal state 
variables; and Ws = Ws(Sm) is the dissipated energy due to structural changes. Us-
ing Schapery’s elastic-viscoelastic correspondence principle and the rate-type 
damage evolution law [11-13], the physical strains, εij, are replaced with pseudo 

strains, R
ijε , to include the effect of viscoelasticity. The correspondence principle 

proposes the extended elastic-viscoelastic correspondence principle, which is  
applicable to both LVE and nonLVE materials. Schapery [11, 12] suggests that 
constitutive equations for certain viscoelastic media are identical to those for the 
elastic cases, but stresses and strains are not necessarily physical quantities in the 
viscoelastic body. Instead, they are pseudo variables in the form of convolution  
integrals. According to Schapery, the pseudo strain in a uniaxial case is defined as 

      τ
τ
ετε d

d

d
tE

E

t

R

R ∫ −=
0

)(
1

,  (24) 

where ER and E(t) are the reference modulus and relaxation modulus, respectively. 
The use of pseudo strain, as defined in Equation (24), accounts for all the heredi-
tary effects of the material through the convolution integral. Thus, the strain en-
ergy density function, W = W(ε, S), transforms to the pseudo strain energy density 
function. 
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The pseudo strain energy density function of the material is formulated using 
Equation (22). For the uniaxial case, the stress can be determined by using the  
relationship of Equation (5), as follows: 

          R
R

R

SC
W ε
ε

σ )(=
∂
∂= .              (25) 

The damage evolution law, Equation (4), is reduced to the following single equa-
tion for S: 

             

α
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& .               (26) 

To characterize the function C(S) in Equation (25), the damage evolution law and 
experimental data are used. Using the measured stresses and calculated pseudo 
strains, the C values can be determined through Equations (24) and (25). For uni-
axial loading conditions, a single damage variable, S, is used along with the  
associated power, α. Using the experimental data, the following incremental  
relationship can be obtained by combining Equations (5) and (26): 
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The value of α can be found by using the following relationship: α = 1 + 1/n, in 
which n = - log E(t)/log(t). Furthermore, a relationship is constructed between C 
and S, based on a functional form, as follows: 

           )exp()( γβ SSC ⋅−= ,              (29) 

where β and γ  are the parameters that are determined through the best fitting 
process of the HS algorithm between the functional form and the experimental 
data. 

4   Determination of Material Parameters and Uniaxial 
Behaviour of HMA Concrete with Damage Evolution 

A detailed application of the HS algorithm to determine the material parameters  
is as follows: 1) determine the coefficients of the fitting function described in 
Equation (11); 2) determine the Prony series coefficients based on the fitting func-
tion; 3) characterize the damage function, C(S), using experimental data; and 4) 
predict the damage behavior of HMA concrete at various strain input rates. 
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4.1   Determination of the Coefficients of the Fitting Function 

In order to smooth the discrete raw data that need to be fitted using the defined 
log-sigmoidal function of Equation (11), the HS algorithm can be used based on 
minimizing the objective function of Equation (12).  Figure 5 shows the error 
norm of the objective function defined by Equation (12) in terms of the number 
of iterations. Based on Figure 5, it is noted that the best solution converges as the 
number of iterations increases. Finally, Figure 6 shows the log-sigmoidal func-
tion smoothly fitted with the raw data; therefore, the coefficients of Equation (11) 
in the frequency domain can be found through the HS algorithm as shown in  
Table 1. 

At the low frequencies shown in Figure 6b, some minor loss of information 
may be resulted due to some local irregularities of the scattered data. However, the 
fitting function provides a smooth representation over all frequencies. 

4.2   Time-Domain Prony Series Representation 

To determine the Prony series coefficients, the analytical solution of Equation (13) 
is utilized to convert a frequency-domain to a time-domain modulus; also, the 
time-domain modulus is fitted with the defined log-sigmoidal function of Equation 
(11) as shown in Table 1. Based on Equation (20), the Prony coefficients for the 
chosen relaxation times can be found, and the infinite relaxation modulus can be 
found, as shown in Figure 4. Finally, Prony series representation of the relaxation 
modulus is shown in Figure 7. Table 2 shows the Prony series coefficients of the 
unmodified and lime-modified HMA concretes. 

4.3   Comparison between HS Algorithm and Regression Method 
in Terms of Prony Series Representation 

The regression method, which is used for comparing with the HS algorithm, is 
based on fitting raw data into a predefined function through a least squares method 
as shown in Figure 8. Thus, the storage modulus is expressed by the regression 
equation that is similar to other work [4]. 

In order to determine the Prony series coefficients in the regression model, a 
viscoelastic constitutive relationship derived from the generalized Maxwell model 
can be used. The mechanical model consists of a series of springs and dashpots in 
an arrangement shown in Figure 9. For a given applied strain, ε, the stress in the 
single spring, σ¶, is given as follows:  

                                    εσ ∞∞ = E .                   (30) 

The stress, σm, in each of the Maxwell components combining a spring with a 
dashpot is governed by the differential equation: 
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Fig. 5 Convergence of the Objective Function during the Number of Searches: (a) Semi-
Log Scale; (b) Log-Log Scale 
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                (31) 

where mη  is the coefficient of viscosity, and mE  is the spring stiffness (e.g., 

Prony coefficient) in the mth term or Prony coefficient. Based on the linearity of 
the material components, the total stress in the generalized Maxwell model is  
obtained by a summation as follows: 

(a) 

(b) 
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Fig. 6 Fitting the Experimental Data of the Unmodified HMA to the Log-Sigmoidal Func-
tion: (a) Semi-Log Scale; (b) Log-Log Scale 
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Fourier transform is useful in solving the above differential equation based on 
the elastic-viscoelastic correspondence principle, where elastic moduli are re-
placed by their corresponding viscoelastic counterparts in the Fourier transform 
domain [21, 22].  Hence, the differential equation relating stress to strain is con-
verted into an algebraic equation. Applying the Fourier-transform technique  
to Equations (30) to (32), and then eliminating the stresses σ∞ and σm from the 
equation gives: 

 

(a) 

(b) 
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Fig. 7 Fitting the Experimental Data of the Unmodified HMA to the Log-Sigmoidal Func-
tion: (a) Semi-Log Scale; (b) Log-Log Scale 
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where σ(  and ε(  are defined as stress and strain in the Fourier-transform domain, 
with the relaxation time of the mth Maxwell element expressed as follows: 

                                       
m

m
m E

ηρ ≡ .               (34) 

(a) 

(b) 
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Table 2 Prony Series Coefficients of the Unmodified and Lime-Modified HMA Concretes 

Unmodified HMA 
(Binder content: 5.2%) 

Lime-modified HMA 
(Binder content: 5.3%) 

Lime-modified HMA 
(Binder content: 5.6%) 

∞E : 22.40 MPa ∞E : 879.58 MPa ∞E : 800.46 MPa 

mρ  mE  

(MPa) 
mρ  mE  

(MPa) 
mρ  mE  

(MPa) 
1.E-10 507.22 1.E-10 366.30 1.E-10 317.03 
1.E-09 834.93 1.E-09 560.07 1.E-09 497.47 
1.E-08 1353.67 1.E-08 849.91 1.E-08 774.59 
1.E-07 2139.18 1.E-07 1274.78 1.E-07 1191.33 
1.E-06 3237.37 1.E-06 1877.92 1.E-06 1796.96 
1.E-05 4555.73 1.E-05 2690.98 1.E-05 2628.59 
1.E-04 5683.89 1.E-04 3696.78 1.E-04 3665.22 
1.E-03 5855.13 1.E-03 4766.10 1.E-03 4748.17 
1.E-02 4555.50 1.E-02 5597.54 1.E-02 5513.79 
1.E-01 2485.68 1.E-01 5765.33 1.E-01 5492.53 
1.E+00 949.99 1.E+00 4999.45 1.E+00 4501.30 
1.E+01 282.39 1.E+01 3541.64 1.E+01 2976.67 
1.E+02 77.29 1.E+02 2047.75 1.E+02 1624.62 
1.E+03 22.60 1.E+03 1005.01 1.E+03 780.13 

The complex modulus can be obtained from the constitutive equation shown in 
Equation (33) according to the following equation: 

                         ∑
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From Equation (35), the storage modulus in frequency-domain can be determined 
by taking the real parts of the complex modulus: 
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In order to obtain the time-domain relaxation modulus, the Prony series function 
in Equation (16) is determined by using the equivalent E∞, ρm, and Em shown in 
Equation (36); E∞ can be found by the limit of E’(ω)|0<ω<<1. The Prony-series co-
efficients, Em, are obtained based on the selected relaxation times and reduced  
frequencies, ρm and ωn, and the following linear algebraic equation: 

                                     df
vv

1−= E                (37) 
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where the column vectors, f
v

 and d
v

, are Em and E’(ωn)-E∞ respectively; the  

superscript –1 denotes an inversion; the matrix, 1−E , is as follows: 

                     ∑
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1
22

22

,
1ρω

ρω
E , n=1,…,N.              (38) 

Based on the HS algorithm and regression method, two Prony series representa-
tions of relaxation modulus are shown in Figure 10 using the unmodified HMA. In 
case of the regression method, some oscillation can be observed between 0.01 and 
1000 sec. Furthermore, some Prony coefficients shown in Table 3 resulted in 
negative values, which do not physically make sense because spring stiffnesses 
should be positive. In order to obtain the positive values of moduli in case of the 
regression approach, a non-linear optimization process [23] is necessary to  
approach a better solution. 

However, the HS algorithm used in this study addresses the problem of nega-
tive Prony series coefficients or oscillations based on fitting raw data with the 
sigmoidal function when the source data exhibit significant variability. 

4.4   Determination of the Parameters of Damage Function C(S) 

In order to calculate the damage parameter, S, in terms of the damage function, 
C(S), the value of α is found to be equal to 2.9 using the log-scale slope, n, in case 
of the unmodified HMA concrete. Using the HS algorithm as well as the raw data 
obtained from the calculation of Equation (28), the parameters β and γ of Equation 
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Fig. 8 Fitting Raw Data into a Predefined Function through a Least Squares Method 
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Fig. 9 Generalized Maxwell Model Used for the LVE Modeling 

(29) are determined as 0.002757 and 0.543455, respectively, in case of the un-
modified HMA concrete. Figure 11 shows the defined function that is fitted using 
the experimental data of the unmodified HMA. As the same of the determination 
procedure of the unmodified HMA material parameters, the material parameters of 
the lime-modified HMA were found as shown in Table 4. 

4.5   Application to the Prediction of the Damage Behaviour of 
HMA Concrete 

The material parameters, which are determined by the HS algorithm presented in 
Section 3, are used for the verification using experimental results. A series of uni-
axial extension tests was performed on the cylindrical specimens at 25°C at differ-
ent constant strain rates, 0.0063/sec and 0.0294/sec, for the unmodified HMA; at 
5°C at different constant strain rates, 0.00003/sec and 0.000055/sec, for the lime-
modified HMA. Each specimen was glued to the end plates, which were then  
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Fig. 10 Prony Series Representations Based on the HS Algorithm and Regression Method 
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Fig. 11 Damage Function/Parameter Curve of the Unmodified HMA for Raw Data and  
Fitting Function 

Table 3 Prony Coefficients Obtained by Using the Regression Model 

Unmodified HMA 
(Binder content: 5.2%) 

∞E : 34.40 MPa 

mρ  mE  

(MPa) 
2.E-07 -1445.86 
2.E-06 3756.61 
2.E-05 6886.95 
2.E-04 7256.92 
2.E-03 5593.55 
2.E-02 3371.45 
2.E-01 1634.09 
2.E+00 646.07 
2.E+01 210.06 
2.E+02 56.50 
2.E+03 12.40 
2.E+04 3.043 
2.E+05 -2.50 
2.E+06 11.48 
2.E+07 -43.54 
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Table 4 Material Parameter of the Lime-Modified HMA 

Material  
parameters 

Lime-modified 
HMA (Binder 
content: 5.3%) 

Lime-modified 
HMA (Binder 
content: 5.6%) 

α  2.79 3.06 
β  0.001247 0.539442 
γ  0.002001 0.503317 
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Fig. 12 Stress Prediction of the Unmodified HMA: (a) 0.0063/sec Strain Rate; (b) 
0.0294/sec Strain Rate 

(a) 
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Fig. 13 Stress Prediction of the Lime-Modified HMA: (a) 0.00003/sec Strain Rate and 
5.3% Binder Content; (b) 0.000055/sec Strain Rate and 5.8% Binder Content 

connected to the loading frame through a load cell. Axial elongation was obtained 
by measuring the linear variable differential transformer (LVDT) attached to the 
specimen. Test results are shown in Figures 12 and 13 at various strain rates and 
different temperatures. The stress predictions for the given displacement load 
measured from the LVDT are also presented in Figures 12 and 13. Because of ma-
chine compliance (e.g., deformation of certain machine components along the 
loading train under load), the displacements were measured from the LVDT  
 

(a) 

(b) 
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attached to the tested specimens. As shown in these figures, the stress predictions 
are accurately matched using the experimental data. Furthermore, the stress re-
sponse for a given displacement load is sensitive to the strain rate. For example, a 
faster strain rate results in a larger stress level. The purely viscoelastic responses 
of the unmodified and lime-modified HMA concretes are shown in Figures 14 and 
15. It can be observed that the LVE responses depart from the experimental data at 
the early stage.  

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

St
re

ss
 (k

Pa
)

Time (sec)

Lab Data

Predicted Stress

Linear Viscoelastic Response

C(S) = 0.39

 
 

0

2000

4000

6000

8000

10000

12000

14000

0 0.05 0.1 0.15 0.2

St
re

ss
 (k

P
a)

Time (sec)

Lab Data

Predicted Stress

Linear Viscoelastic Response

C(S) = 0.21

 

Fig. 14 LVE Response of the Unmodified HMA: (a) 0.0063/sec Strain Rate; (b) 0.0294/sec 
Strain Rate 
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Fig. 15 LVE response of the Lime-Modified HMA: (a) 0.00003/sec Strain Rate and 5.3% 
Binder Content; (b) 0.000055/sec Strain Rate and 5.8% Binder Content 

5   Conclusions 

In this chapter, the HS algorithm has been implemented in the context of deter-
mining viscoelastic and damage properties. An interconversion method between 
time- and frequency- domain LVE responses for HMA concrete is presented based 
on a methodology of the HS algorithm to pre-smooth the experimental data using 
the log-sigmoidal function before fitting to a Prony series. Also, in order to model 
the material response of HMA concrete to different strain rate loadings, which in-
duce damage growth, the damage function can be characterized by fitting experi-
mental results using the HS algorithm. Through the application to the prediction of 

(a) 

(b) 
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the damage behavior of HMA concrete, the stress predictions result in accurate 
matches using the experimental data. 
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