
Chapter 7

7.1 Introduction and Motivation

The behavior of two or more systems connected in series (or cascade) is relatively easy
to predict. The first system input is a free signal. Its output is the input to the next
system, which in turn responds to this input, and so on, till we reach the end of the
cascade. The behavior of a cascade is well-defined, as long as each sub-system in the
cascade is well-defined1. At each stage the signal is affected by the system in that stage.
Despite its simplicity, we know that a cascade does not always deliver as expected, as
anyone who has ever played the game of Chinese whispers2 knows all too well.

When systems are interconnected in a loop things are different. Even with two sys-
tems in a loop, where do we start? When do we stop chasing our own tail? Predicting
what behavior is going to exist is no longer a matter of simply understanding the sub-
systems in their own right. The interconnection is essential in defining the behavior.
Moreover, where typically cascade connections are always well-defined, feedback con-
nections are not. A well-known example of a feedback loop that is not well-posed is the
acoustic feedback that occurs with having a microphone listening to the output of a
speaker. Depending on the amplifier in the loop, the result can be most unpleasant. The
shower example, illustrated at the start of this chapter, is another example of how feed-
back has to be treated with care.

Just consider two unitary systems interconnected in a positive feedback loop with
external additive input r= 1. Doing some simple calculation you will come to the
absurdity that 1= 0!!!, indicating that the feedback system is not well-posed. A little
more generally, as discussed in Sect. 5.6.2, the basic operator in a simple feedback loop
consisting of two systems G1 and G2, is given by Eq. 5.13, rewritten here

(7.1)

The issue of well-posedness is concerned with the existence of (1+G1G2)−1. In our
previous example this expression is (1+ (−1)(1))−1 for which there is no valid inter-
pretation.

Feedback

We need feedback
to know how well we have done

and to improve our future behavior.
But should it be positive or negative feedback?

1 Tacitly, we are assuming that the outputs of the previous system in the cascade are acceptable inputs to
the next system, but presumably nobody would build or even conceive a cascade unless this was the case.

2 Whispering a small piece of information into a neighbor’s ear, who then transmits the message to the
next in line and so on. At the end of the line, the received message is compared with the original.
Typically the final message bears little resemblance to the initial message!
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In our discussions we are going to make a leap of faith, assuming that engineers and
nature know how to build systems. We are going to simply assume that the feedback
loops are well-posed.

Much of the power of feedback loops has to do with the −1 (denoting the inverse)
in the above expression. A feedback loop creates some kind of an inverse or a division
of an operator. Just like we cannot divide by zero (the previous example told us as
much), inverses of operators are tricky, but being able to divide or take an inverse by
simply interconnecting some elements is pretty neat, and very powerful.

As observed before, feedback is based on the observation of an output to modify the
input to the same system. For this reason, systems incorporating feedback are also known
as reactive systems. From a control point of view, this is a drawback because the control
system in order to react must first detect the output, or error condition, before it can
take action. On the other hand, very little knowledge about the system behavior may
be required to react appropriately. Moreover, feedback reacts to changes in the loop,
sometimes this is referred to as an adaptive response. In contrast, in open-loop (feed-
forward or cascade) for the final output to do what we want it to do, the models of the
systems in the cascade must be precisely known, so as to select the right input signal.
Roughly speaking the desired input into the cascade must equal the output processed
by the inverse of the cascade, not an easy task in general. Moreover, the input to the
cascade cannot react to changes in any element of the cascade.

Feedback plays a key role in systems dynamics. It is ubiquitous in both the engi-
neered and the natural world. In this chapter we consider some of the powerful prop-
erties feedback offers. We start with a number of examples to illustrate the pervasive-
ness of feedback. Next we explore the power of the feedback a little more.

7.2 Internal Feedback

In Chap. 5, we learned that natural and engineered systems alike are mostly composed
of rather elementary systems such as gains, integrators (accumulators) and (transport)
delays, amongst many. It is precisely the existence of feedback that bestows richness on
the dynamic behavior of interconnected systems. Let us revisit some of the feedback
loops we already encountered.

Filling a tank. In Chap. 2, a kitchen sink (Fig. 2.7) is illustrated. The water level is sta-
bilized because there is feedback: a constant inlet flow increases the amount of stored
water until it reaches a level that produces an outlet flow equal to the input flow. We
often identify this situation with a negative feedback loop: the higher the water level,
the greater the outflow, that reduces this water level. See also Fig. 7.1.

Exothermal reaction. Some chemical reactions become more active as the environmental
temperature increases. Some of these chemical reactions are also exothermic, that is, they
release heat. Such a reaction inside a thermally well-insulated vessel will be explosive as
the temperature will increase as a consequence of the reaction, which in turns accelerates
the reaction, which in turn creates more heat, and so on. In this case, a positive feedback
determines the dynamic evolution of the system, which in this case will lead to an explo-
sion of some kind as to destroy the vessel, and terminate the positive feedback loop.



183

Electric circuit. Let us consider a simple loop circuit with a resistor, a capacitor and a
battery. The voltage across the resistance is the difference between the battery voltage
and that of the capacitor. As soon as a current flows through the circuit, the capacitor
accumulates the extra charge and its voltage increases. Once the capacitor voltage equals
the battery voltage the current ceases and the voltage stabilizes.

Motor. A voltage applied to an electric motor driving a fan generates a torque on its
axis. This torque will accelerate the shaft, increasing the angular speed. A counter act-
ing, reactive, friction torque appears as well as a mechanical load (from the wind flow-
ing through the fan) that increases with speed. An equilibrium will be reached once the
motor torque equals the mechanical counter torque.

Ecology. Remember the wolf and rabbits example in Sect. 1.4.4. On the one hand there
is a positive feedback: exponential growth of the rabbit population without the preda-
tors, and on the other hand there is a negative feedback as the rabbits are eaten by the
wolves. The interesting thing here is that these populations do not settle to an equilib-
rium, but rather evolve oscillatory, as in a limit cycle.

Internal Feedback

The dynamic behavior of a system is determined by both the dynamic behavior of the
subsystems (gains, accumulators, delays and so on) as well the interconnection of these.

Feedback is intrinsic to most physical systems.
Compared to a cascade or series connection, a feedback loop made of the same

components will naturally display a richer behavior.
Feedback is used to shape (emphasize, modify) dynamic behavior.

Using some previous examples we illustrate how feedback modifies behavior:

Thermostat. The temperature in a room is stable when heat lost balances against heat
gained. A thermostat will switch a heater on when the room is too cold and when the
room reaches the right temperature it switches the heater off. This rather trivial on/off,
negative feedback, controller based on some measurement of the room temperature is
able to regulate the room temperature, as long as the heater is sufficiently powerful to
reach the set temperature for the given room dynamics as determined by its size, the
outside temperature, and the insulation (windows open or not).

Fig. 7.1. Simple feedback loop

7.2  ·  Internal Feedback
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Motion control. In playing any ball sport, our eyes provide positional feedback and
assist us in directing our motion to intercept the ball, and/or provide it with the desired
motion. Similarly in driving a car we use preview information from the road ahead of
us to steer the car, but we rely on our reflexes (fast control loop) to avoid the dog that
runs across the street.

From these examples we realize that we do not need a lot of information, nor a
precise model of the plant behavior, to implement feedback (control). There is even
model-free control based on feedback (like the thermostat). In many simple systems,
negative feedback usually has a stabilizing effect (as in the tank filling, or the rotating
motor) whereas positive feedback tends to make a system unstable (as in the exother-
mic reaction or the rabbit’s colony from Chap. 1, or indeed the acoustic feedback).

In general though, to predict the dynamic behavior of more complex systems in a
loop or with multiple loops is not straightforward. Feedback may create instabilities,
but it also enables performance and behavior that is nearly impossible to arrive at
otherwise.

Also, positive feedback is not universally bad. For example, oscillators, like clocks,
are important and in biology as in the engineered world, positive feedback is exploited
to create oscillators. In social networks, positive feedback encourages and can engen-
der desired behavior in those that receive it (we all love praise).

7.3 Feedback and Model Uncertainties

The operational amplifier. An operational amplifier is an electronic circuit with a very
large gain A (say A > 105) between its input and output voltage. The normal output
voltage is measured in Volts, say less than 10 V and hence the input voltage will be less
than 0.1 mV (10 V divided by a gain of more than 105).

When building circuits with operational amplifiers, we can rely on the fact that the
gain for any one amplifier is large, but we cannot rely on the precise value of this gain.
Indeed the variation of the gain across operational amplifiers even from the same
manufacturing batch is also very large. A gain variation of a factor of 10 or more is not
uncommon. Also, over the life of the circuit, the gain will change with time and the
temperature of the circuit. The redeeming feature is that the gain stays large no matter
what (say somewhere between 104 and 107). It also follows that that under normal behav-
ior, the input voltage to the operational amplifier will always be negligible (less than 1 mV).

If an operational amplifier is connected in a negative feedback configuration, that
is, the output voltage is looped back to the terminal labeled with a −, as shown in
Fig. 7.2a, the gain in the new circuit, between the output Vo and the input Vi is:

(7.2)

This relationship is represented in the equivalent block diagram Fig. 7.2b. Because
the amplifier’s gain A is very large no matter what, the input-output relationship is well
approximated by
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Observe that the actual gain of the amplifier does not matter, nor does the rest of
the circuit, where Vo or Vi are connected into! (Amplifiers simplify circuit analysis and
synthesis considerably!) The relationship between these two voltages is solely based on
the resistors around the operational amplifier. When these resistors can be defined
very accurately, so is the relationship between the input and output voltage. This is an
important simplification, and all due to large negative feedback.

The Operational Amplifier

For those who know some circuit theory. With Ohm’s law (the current through a resis-
tor is proportional to the voltage drop across a resistor), and Kirchoff’s laws, (that the
sum of voltages in a loop is zero and the sum of currents at a junction is zero), you can
readily derive the input-output relationship for the operational amplifier circuit. From
Fig. 7.2a, at the summing junction 1, using Kirchoff’s current law, knowing that the
input current to the amplifier is zero we have

The amplifier’s equation is simply Vo= Aε. Replacing ε by Vo/ A in the previous equa-
tion, yields after some algebra, Eq. 7.2.

As shown in Fig. 7.2, whatever is in the direct path of the loop is not very important, as
long as the gain is large enough. The whole system behaves as having a net gain of −(Ro)/(Ri).

This result can be extended to any dynamic feedback system. Consider a block dia-
gram from Fig. 6.11. Under the assumption that both the disturbance and the noise
signals are zero, the following relationship holds:

(7.3)

Thus, as far as the gain of the operator GK is much larger than unity, for the signals
of interest, the input/output relationship is only determined by F and H (Eq. 7.4). De-
signing both elements accurately will deliver the desired response, independent of the
plant or the feedback controller:

(7.4)

Fig. 7.2. An operational amplifier

7.3  ·  Feedback and Model Uncertainties
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It may look too good to be true. In general it is, although it is almost true. Indeed we are
not able to make GK >> 1 and also achieve stability or well-posedness for all possible refer-
ence signals r; but it is possible to have GK large where it matters3, when r belongs to some
class of signals, and it is then possible to get the above relationship holding where r matters.

The same concept can be useful when dealing with more complex system and op-
erators (nonlinear, stochastic, multivariable and so on).

By way of illustration, suppose that r is a constant signal, F=H= 1 and there is
neither disturbance nor noise. In this case having in the feedback controller K a pure
integrator (which is retained in GK, which is the case if the plant does not differentiate
its input) would guarantee that y= r whenever steady state is reached. This is true
assuming a well-posed feedback. Indeed in steady state y is a constant. From Fig. 6.11
the input to the feedback controller, K is then r− y also a constant. Because the feed-
back controller contains an integrator, this constant must be zero. If it were not so, then
this constant input would be integrated and this would yield an unbounded signal inside
the loop, which contradicts the steady state assumption.

Compare this reasoning with the discussion of the toilet example. The cistern is the
integrator in this case, and hence by the same argument, the cistern will always be filled
to the right level (regardless of the other elements in the toilet).

For this reason, feedback controllers typically contain an integrator, as the integra-
tor enables tracking of constant reference signals without an error. This is also called
regulation. Having the plant output settled at a given reference level is an important
task in control design, if not the most important one. As a consequence integral action
is included in most industrial feedback controllers. In Sect. 9.3.3 this concept is elabo-
rated on in the so-called PID controllers4, which are literally everywhere in the process
and manufacturing industry.

Clearly feedback can provide a good (although not always a perfect) solution for
tracking, provided the loop gain GK is large and FH−1

≈ 1 where it matters for the
signal to be tracked. These are weak requirements compared to what an open loop
solution would have to do:  F≈G−1. The feedback solution does not need a lot of in-
formation about the plant G in order to achieve good tracking (where r is important
and G is small, K should be large so as to make GK large).

7.4 System Stabilization and Regulation

As already discussed, one of the main features of feedback is the potential to stabilize an
unstable system. This also means that feedback can destabilize. In the example discussed in
Sect. 6.4.3, α  was the feedback parameter to be tuned and we realized that the system behav-
ior could be adjusted (stable, unstable, oscillatory, damped). The system remains unstable
if α  is outside the interval {0,−2}. There is only a small window of opportunity for stability!

In a more physical setting, in a typical servo motor application, where the shaft
must be positioned at a particular angle (think of the radio antennae problem with a

3 For those who may see these relationships as representations in the frequency domain, GK must be
large where the spectral content of r matters.

4 PID, proportional, integral and derivative action.
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fixed look direction) the variables of the system are as depicted in Fig. 7.3a. There is an
electronic power amplifier/rectifier, a mechanical inertia, friction on the axis, as well
as an integrator which links the motor speed to the shaft’s angular position. The opera-
tor in the forward path from the drive voltage Ea to the position ϑ  therefore contains
an integrator. Any desired fixed angle position is clearly open-loop unstable, due to the
integrator. If a voltage is applied, the motor will run, and the shaft will simply rotate.
We can say that the system is unstable.

Let us introduce a negative feedback in such a way that the drive voltage is gener-
ated by, for instance, an amplifier as the one shown in Fig. 7.2a, with two inputs. The
positive terminal has a voltage proportional to the desired position and the negative
(feedback terminal) receives a voltage proportional to the current shaft’s position. This
is also shown in the block diagram Fig. 7.3b. As long as there is an error or a difference
between these two inputs, a voltage will be generated by the amplifier and the motor
will start to run, hopefully in the right direction so as to reduce the error (negative
feedback). When the error vanishes, no voltage will be generated and the motor stops.

There will be problems if the amplifier gain is too high, because of the motor’s in-
ertia. As long as the motor receives a drive voltage it generates torque and rotates. With
a large gain, even if the position error is small, this voltage is large, and the motor will
have too much inertia to immediately stop or reverse direction even when the shaft
went past the reference position. The drive voltage switches polarity, and eventually
the motor starts turning backwards. The whole cycle repeats itself, producing unpleas-
ant oscillations (vibrations). Feedback needs care.

As may be observed, in order to implement feedback, extra system infrastructure is
needed: the components required to build the feedback path. In this servo motor ex-
ample, the sensor could be just a simple potentiometer, transforming the axis position
into a voltage. In other applications, the lack of appropriate measurement devices may
prevent feedback from being considered.

This servo motor example, though rather different in its physical incarnation has all
the features of the toilet cistern’s behavior. The main features are the integrator (the
motor or the cistern) and the negative feedback loop with a gain element (amplifier or
float). Together these lead to a constant steady state equal to the reference (reference
voltage or float position).

Fig. 7.3. A DC motor-based servo

7.4  ·  System Stabilization and Regulation
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7.4.1 ISS and Feedback Systems

The concept of input-to-state stability considers stability of systems with inputs. This
enables its use in system interconnections, and in particular feedback.

When considering a general feedback configuration of ISS systems, as depicted in
Fig. 7.4 the overall system will be also ISS provided the total gain in the loop is suffi-
ciently small. This is the celebrated small gain stability result.

In this figure, the external inputs are u1, u2, and the system states (outputs) are y1, y2
respectively. The internal signals are e1, e2. The meaning of the signals varies, but typically

� u1 are external disturbances from the environment acting on the system of interest;
� u2 are signals expressing control references and perhaps measurement errors;
� y1 the state (output) of the system under control;
� y2 the state (output) of the compensator, or control subsystem, our design freedom;
� e1 the control input into the system under control;
� e2 the measured feedback, derived from the system under control.

Small Gain Theorem
An important stability result associated with Fig. 7.4 goes as follows.

Assume that the ISS gain from input e1 to output e2 through system S1 is given by g1.
This gain calculation is performed independent of the feedback loop structure, i.e. the
input e1 is assumed to be completely unrestricted. In the simplest case, say for linear
systems, the gain tells us that the size of e2 will be less than g1 (a positive scalar) times
the size of e1.

Similarly assume that the ISS gain from input e2 to output e1 through system S2 is g2.
Again, this gain function is determined independent of the feedback loop, g2 is simply
a property of system S2.

Consider now the gain of the cascade S1 after S2 of the systems in the feedback loop.
The gain of this cascade is the composition of the gain functions g1 and g2 and in the
simplest case this gain is the product of the individual gains g= g1g2. This gain is also
called the loop-gain.

Conclusion. Input-to-state stability of the feedback loop, that is from the external in-
puts (u1, u2) to the external outputs/states (y1, y2) and also to the signals in the loop
(e1, e2) requires that the loop-gain g is strictly less than unity.

Fig. 7.4. A generic feedback loop
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Gain Margin

The concepts behind the small gain theorem allow one to quantify a measure of sta-
bility for a system, or a degree of stability, denoted as the gain margin.

Consider in Fig. 7.4 a system G1 (of interest) in a feedback loop, with a pure (scalar)
gain system G2= k.

In general, as the gain k is increased, the feedback loop may become unstable. If the
largest k such that the feedback loop is stable is larger than 1, then this is identified as
the gain margin of system G1. (1 plays a particular role, because traditionally it is as-
sumed that the unity feedback loop is stable.)

This is perhaps counter intuitive in view of the small gain theorem, but systems may
have an infinite gain margin.

More generally, the so-called conditionally stable systems are only stable for a given
range of feedback gains k, say k ∈ (kmin, kmax). If zero does not belong to this interval
(zero = no feedback) then such systems are open-loop unstable.

The small gain result is very useful, but also very conservative. Indeed it may well be that
our estimates of the gain functions are not very tight, and these estimates may fail to meet
the small-gain stability condition and yet the feedback loop may be stable and very well-
behaved. Even if our gain estimates are tight, we should not expect that the small-gain con-
dition captures all possible stable feedback loops. After all the gain functions only capture
the effect of the size of a signal, and there is of course much more to a signal than just its size.

7.4.2 Linear Feedback Systems

In the case of linear systems, the question of stability and input-to-state stability can
be settled using algebra for which there are efficient computational tools.

Let us reconsider Fig. 5.8 which is a special case of Fig. 7.4 for linear systems. It will
become clear that feedback easily alters the stability properties and that the feedback
loop can be stable and yet both systems in the loop unstable. Let the forward operator
from u1 to y1 be G1(z)= N1(z) / D1(z), and the feedback operator from u2 to y2 be
G2(z)=N2(z)/D2(z) (with negative feedback, as defined in Sect. 5.6.2). Using block
diagram calculus, it is easy to see that the transfer function from u to y= y1 is

(7.5)

The roots of the denominator, N1(z)N2(z)+D1(z)D2(z)= 0 are clearly different from
those of the components D1 and D2. That is, stability of the subsystems G1 and G2 does
not imply stability of the feedback system. Neither does stability of the feedback sys-
tem imply stability properties for the subsystems5.

By way of example consider G1 as a pure integrator in continuous time, G1(s)= 1/s
with a feedback system which is a pure scalar gain G2= g2/1. According to the above
calculation, the closed loop stability is determined by g2+ s, so that the feedback system
is stable if g2 > 0 (see also the discussion around Eq. 6.7). The open loop system G1 is

5 This will be a key point in designing feedback controlled systems, as discussed in the next chapters.

7.4  ·  System Stabilization and Regulation
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unstable. The integrator’s gain margin is infinite. Applying a negative gain in G2 has the
effect of applying positive feedback, which indeed destabilizes the loop.

Similarly, in discrete time, with G1= 1/(z− 1), an integrator in discrete time and a
feedback system G2= g2 a pure gain. The feedback loop is stable provided the roots of
g2+ (z− 1)= 0 are less than one in magnitude. The only root is 1− g2, which is less
than one in magnitude for g2∈ (0, 2). Again, the open loop system is not stable. The
gain margin is finite, it equals 2. A negative gain as well as a gain larger than 2 will lead
to instability in this case (remind the example in page 161).

Bode plots and Nyquist plots examine the behavior of the loop gain G1G2 to identify
the boundary of stability and this explains to some extent the popularity of the frequency
domain methods, as before computers appeared, graphical methods provided powerful
design methods. The key in this frequency domain approach is to ensure that at no time
the loop gain G1G2 can have a magnitude larger than one and a phase shift of 180 degrees.

Using the frequency domain ideas, it can be seen that the instability for one or two
integrators described in Sect. 5.7 require positive feedback.

This was obvious in the single integrator loop, Fig. 5.14 where we explicitly used
positive feedback to obtain an unbounded response (as explained just above again).
Using frequency domain ideas, considering sinusoidal signals as input, it is clear that
the integrator produces a sinusoidal output, of the same frequency, but with a phase
shift equal to −π/2,6 regardless of the frequency. It then follows that the loop gain can
be arbitrarily large, and no instability will develop.

Positive feedback can however occur in a loop, even when we think we are applying
negative feedback. As previously discussed, the elements in the loop will determine a
loop gain and phase shift. Assume that for some frequency there is a phase shift of
φ=−π  radians or −180 degrees. That means a change in sign. If the gain at this fre-
quency is higher than one, the effect is similar to a positive feedback and the closed-
loop system is unstable. If the gain is exactly one than a resonance occurs.

This observation can explain loop instabilities and forms the basis of the celebrated
Bode and/or Nyquist stability criteria.

In the two integrator case, Fig. 2.13 without friction, we have exactly −180 degrees
phase shift. Each integrator produces −90 degrees phase shift, so the total phase shift
is φ=−180. The gain in the loop is 1/ω2, which is one for ω= 1 (in this way we have
identified the resonance pulsation).

For the three integrator problem, any constant feedback will result in an unstable
system. To illustrate the effect of the feedback, we use a small trick. First we apply some
small negative feedback loop around each of the integrators, so that we have a nice and
stable behavior in the forward path. This is illustrated in Fig. 7.5. The phase shift for
each of these systems varies from 0 to 90 degrees. Hence in the forward path the total
phase shift varies from 0 for low frequency to 270 for high frequency inputs. (The phase
shift of a linear systems consisting of two linear systems in series is indeed the sum of
the phase shifts of the linear systems.)

Assume unitary feedback around the three-integrator system. The smaller the feed-
back gain we use internally in the components, the larger the gain in the forward path.
This implies that at 180 degrees phase shift the loop gain can be larger than one, pro-

6 A phase shift of π/2 or 90 degrees, a cosine wave input produces a sine wave output.
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vided the introduced feedback gain is sufficiently small. Hence instability will result.
The situation does not change when considering the limit, that is the case of zero feed-
back around the individual integrators, which is exactly the situation of three integra-
tors in series in a negative feedback loop.

7.4.3 The Nyquist Stability Criterion

Proper design of feedback is a challenging problem in many real applications. One of
the pioneers of feedback synthesis was Nyquist, who was faced with stabilizing tele-
graph telecommunication lines that required multiple signal amplifiers. He developed
design rules, and the Nyquist stability criterion which settles the stability of single loop
feedback systems for linear single input single output systems.

To capture the essence of this celebrated result, consider a unity negative feedback
loop (G2= 1) with a plant in the forward path G1 as in Fig. 5.8c, which is stable in itself.
When is this loop stable? When is (1+G1)−1 well-defined?

The problem can be appreciated as follows. Suppose that the input is a sinusoid.
Because of linearity (and the fact that the plant is stable), the response is also sinusoidal
with the same frequency, but with some phase shift and an amplitude change. In fact, all
the signals in the loop will be sinusoidal in steady-state. If, for the applied frequency
the open loop plant response is exactly 180 out of phase with the input with a gain of
at least 1, then our negative feedback loop becomes a positive feedback loop. Because
the gain is 1 or larger, chasing the signal around the loop indicates instability. If the
gain was less than one, the loop results in some finite amplification, and all is well.

In general, the input of a system is not purely sinusoidal, but any signal can be
decomposed in sinusoidal components (its power spectrum). Thus, if we analyze the
frequency response of the plant (G1), it will be easy to detect if for some frequency, the
gain is larger than one and the phase shift being −180 degrees. If this is the case, the
feedback system would be unstable. Graphically if we construct the (polar) plot of G1 as
a function of frequency, (an example in Fig. 7.6), in the complex plane the point (−1, 0)
must stay to the left, or remain outside the Nyquist contour7.

Fig. 7.5. Series connection of three feedback stabilized integrators, in a unity feedback loop; unstable
for sufficiently small feedback gains

7 In the Nyquist criterion, a closed graph is plotted, the Nyquist contour, and the stability is determined
by looking at the possible encircling of the (–1, 0) point.

7.4  ·  System Stabilization and Regulation
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7.4.4 Integrator with Delay and Negative Feedback

Once the danger of positive feedback is appreciated, it is easy to see that systems with
delay can cause havoc (like our shower!). A delay of τ  seconds introduces a phase shift
of value ωτ . Even a simple integrator with delay in a negative feedback loop can lead
to instability when the gain is too large. This is illustrated in Fig. 7.7. Assume a simple
tank, the net input flow q being controlled. The control signal is proportional, k, to the
error in the tank level h with respect to a given reference r. It is not difficult to find
when a gain is too large. The loop gain is k /ω . The total phase shift is −(ω+ π/2).
Therefore a phase shift of −π  occurs when ω= π/2. The loop gain must be less than 1
at this frequency, so k is limited to be less than π/2≈ 1.5. In the example in Fig. 7.7, a
gain of 1 presents stable behavior, but a gain of 2 leads clearly to an unbounded re-
sponse. In this case, the tank will either empty or overflow. Of course we will not see
an unbounded signal, after all that would signify the end of the world as we know it.

Fig. 7.6. Polar plot of a frequency response, from ω = 0 (left) to ω→∞ (origin). As the point (−1, 0) is
to the left of the curve, a unit feedback loop is well-defined

Fig. 7.7. Integrator with delay in a negative feedback loop
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7.5 Disturbance Rejection

Most systems are composed of many subsystems. This opens the possibility that in the
connection between subsystems external, undesirable signals can enter. As the proper
operation of the system depends on the information flow between systems, disturbances
create problems.

Many different disturbances can be distinguished. In the case of signal transmis-
sions they are in the main noise indicating some interference with or perhaps partial
loss of signal. In other systems, as schematically represented in Fig. 6.11, the distur-
bances (signals d and n) may be more severe either corrupting a command signal or
a measurement signal. Often it is either too difficult or too expensive to try to measure
all possible disturbances. In this case, feedback can help to reduce the effect of these
disturbances on the variables of interest. We say that feedback helps to make the sys-
tem response robust with respect to the disturbances.

By way of example, consider an industrial boiler or steam generator (the central
heating system in a building, or in a electrical power generating plant), as in Fig. 7.8,
designed to provide steam (to heat, or to feed an engine).

In order to maximize the efficiency of the boiler it should work under design con-
ditions of water level, temperature and pressure. If the boiler is going to run continu-
ously with the same load, it may be enough to set some prescribed variables and let the
system operate. Normally though the engine downstream or the building to be heated,
does not need the same amount of steam all the time. The demand for steam is vari-
able, and as a consequence the boiler should follow as to produce steam to meet de-
mand. This has implications for feed water supply to the boiler and fuel supply to the
burner. Steam demand is difficult to measure, and often somewhat unpredictable.
Feedback comes to the rescue. Based on, for instance, the measurement of the boiler
temperature, the fuel supply to the burner can be manipulated automatically. Feedback
will react, if properly designed, in such a way that a decrement in the temperature will
result in an increment of the fuel flow and vice versa. The influence of load variations
will be greatly reduced and the temperature will remain close to the required value.
Similarly the water level can be used to control the water supply, as shown in Fig. 7.8.

Again, by recalling the block diagram in Fig. 6.11, suppose that the disturbance d rep-
resents the steam demand, or load on the boiler. Without feedback, the variation in the

Fig. 7.8. Steam generator with some associated instrumentation

7.5  ·  Disturbance Rejection
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temperature (the output y) will be G times this disturbance. On the other hand, the rela-
tionship between the temperature and load variations when using the feedback will be

(7.6)

and again, if the loop-gain of the composed operator GKH is much larger than one for
the signals we are interested in this relation reduces to simply 1/KH. The controller K
can then be chosen to achieve a required disturbance rejection, i.e. K is large where d
is large. For example if d were constant, an integrator in K will reject the load distur-
bance completely i.e. it is not necessary to know the amount of steam required. The
boiler will deliver it!

7.5.1 Noise Feedback

One unavoidable aspect of feedback is that the system input will be influenced through
the measurement on which the feedback acts. This implies that whenever this measure-
ment has an error the feedback will produce erroneous activity. Any measurement im-
plies some deviation between what had to be measured and what is measured, as no sen-
sor is perfectly accurate. Say that the measured signal is the desired signal plus noise.

This noise will therefore excite the system unavoidably. This could lead to undesirable
behavior. For example if measurement noise could excite the resonances in the antennae
structure (see Sect. 3.4), the radio telescope would be a useless instrument. In Fig. 7.9, the
speed of a motor is measured by a tachometer providing a noisy measurement.

Hence we need to measure as well as possible or, failing to do this, to filter the measure-
ment as to suppress the noise and yet retain the necessary feedback information.

Filters, observers or estimators are different forms of elements in the feedback path
that extract from the noisy measurement as much information about the system/sig-
nals as possible. Filters can exploit models of the system dynamics as an advantage, so
as to be able to distinguish a signal that could come from the dynamics from another
one which is external to the dynamics. Sometimes, the information that is extracted is
related not only to the signal that is measured but also to other signals internal to the

Fig. 7.9. A tachometer and the noisy signal it delivers
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system, like the state components, as this may make it easier to compute what feedback
is actually necessary. We will revisit this in the following chapters.

Looking at Fig. 6.11, the sensitivity functions previously defined (Eq. 6.17) are

(7.7)

Under the ideal conditions, (HKG >> 1), these operators will be

(7.8)

Thus, whenever the feedback filter H has a low gain at a given range of frequencies in
order to reduce the effect of noise, the system output/reference will necessarily have high
gain or amplify the input signals in this range of frequencies. This identifies another clear
trade-off between requirements with respect to noise rejection and reference tracking.

Control Performance Trade-Off

There exists a fundamental trade-off in any feedback control system:

a high tracking accuracy inevitably reduces the capacity to reject (similar) disturbances.

Because typically the signals we want to track (steps, ramps, sinusoids) are quite
different (at least from a frequency content point of view) from those appearing as
output disturbances that must be rejected, this trade-off can be negotiated by “strate-
gically” allocating tracking accuracy in the right frequency band.

Moreover, feedback control can be complemented with feed forward as in a two-de-
grees-of-freedom control strategy to improve overall performance (see also Sect. 8.6.1).

7.6 Two-Degrees-of-Freedom Control

If there are unwanted external signals, or disturbances acting on the plant, feedback
can be designed to reduce their effect on the signals of interest. This happens without
the need to measure the disturbance directly, and the feedback acts on the effect the
disturbance has on the signal of interest (which is always measured, otherwise there
would be no feedback). Well-tuned feedback reduces the sensitivity of the plant re-
sponse to disturbances.

This property is very hard to achieve with feed-forward control, because to reduce
the effect of a disturbance through the input to a cascade requires either precise mea-
surement of the disturbance or precise (preview) knowledge. Also, in an open loop
situation, if the systems in the cascade vary, this automatically affects the output. Using
feedback it is possible to make some aspects of the response less dependent on these
system variations, and thus maintain performance.

7.6  ·  Two-Degree-of-Freedom Control
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Consider again the typical control feedback system already discussed in the previ-
ous chapters (Fig. 6.11). The plant or system to be controlled is characterized by the
operator G which is partially known, nonlinear, and perhaps time varying. The system
is subject to an additive input disturbance d, which cannot be measured. For simplicity,
let us assume Gd= 1. The plant output is affected by a (noise) disturbance n. The mea-
surement device has a transfer operator H, which is used to suppress or filter out the
effect of the disturbance n in the feedback loop. The feedback controller is K. A refer-
ence signal r is to be tracked by the output, i.e. we desire y≈ r.

From a design point of view, the questions revolve around the selection of K the
feedback control, F the feed-forward control and to a lesser extent H, the measurement
noise filter. The fact we have both K and F to work with, is captured as two-degrees-of-
freedom control.

Feedback can be used to stabilize an unstable plant, attenuate disturbances, reject
plant variations, and improve tracking performance. On the other hand, as already
alluded to, too much feedback could destabilize the loop. Another unwanted effect is
that feedback acts on what has been measured. So an incorrect measurement (as a
consequence of the signal n in Fig. 6.11) will lead to unwanted control action.

Once feedback K (and H) has been selected mainly for responsiveness and distur-
bance rejection purposes, the tracking performance can be modified by means of F.
As F is outside the loop, it does not influence the loop behavior too much, and does not
affect stability at all. In this way two-degrees-of-freedom control can achieve both
responsiveness and tracking performance. Because the feedback design makes the
response less sensitive to plant variations, feedback is designed first, and then for the
resulting compensated system the feedforward control is designed.

7.7 Feedback Design

Feedback may be used to get a controlled system that performs better than the open-
loop system. Stability, tracking, disturbance rejection, are all aspects feedback may be
used for. When one has the option of designing a new system that must have certain
characteristics it pays to consider both the plant to be controlled and the feedback con-
troller together to achieve the overall purpose. Of course, actually quite often, control arrives
as an afterthought. The plant has been designed, and now some new requirements
come forward, and feedback is added to an existing system. This has clear drawbacks.

Let us consider that you want to design a boat to sail in a race, fast and safe. First you
could design a boat to be really safe, strong and able to master all winds and waves.
This boat is presumably going to be rather heavy and hence sluggish. No amount of
feedback used to optimally steer this boat, and trim the sails to the wind are going to
make this boat behave like an America’s Cup winner. More appropriately we would
design a hull with a low keel, and little friction and large sails. The disadvantage is that
wave action will be able to destabilize the boat, creating large oscillations, that would
be virtually impossible to control by trimming the sails. Indeed this could not be guar-
anteed, as nobody can guarantee wind. Thus, creating a boat with an actuated keel, one
that could be deployed and adjusted according to the wave action, and large sails that
can be automatically trimmed would be the way to go. Not surprisingly the combined
design of control system with plant to be controlled, leads to a superior solution.
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Quite a similar situation may happen in designing the suspension of a car com-
posed by dampers and springs. If they are passive elements, the stiffer they are the
less displacement in the car body, but also the less comfort for the passenger. You may
design them being very soft, but then large and sustained oscillations will result on
a bumpy road. Feedback may provide the option to adjust the damping depending on
the road conditions and the driving behavior: so-called active suspension.

In order to use feedback in systems’ design as an advantage, the following condi-
tions must be satisfied:

� well-defined goal(s) must be articulated;
� variables of interest must be measured, sensor subsystems must be provided;
� sensor information must be able to be related to goal attainment;
� the control algorithm must be able to decide how to take action, given information

from the sensors and the goal(s), as well as the system model;
� feedback action can be applied as required to the system input, appropriately di-

mensioned actuators must be provided.

Open Loop Vs Closed Loop Control

Summarizing, open loop, as in a cascade or feed-forward control; closed-loop as in
feedback control have the following characteristics:

� Open loop system controls cannot affect stability, those in closed loop can.
� Open loop systems are always well-posed, closed loop systems not necessarily.
� Open loop systems are not reactive, closed loop systems are.
� Open loop systems do not reject plant disturbances, closed loop systems can.
� Open loop systems are sensitive to plant variations, closed loop systems can suppress

plant variations.
� Open loop control systems require accurate plant model and disturbance preview

for performance, closed loop control systems do not rely on either an accurate plant
model nor disturbance preview for performance.

� Open loop systems are not responsive to plant measurements, closed loop systems
rely on accurate plant measurements.

� Combined feed-forward and feedback systems, two-degrees-of-freedom have all
the advantages of either approach, and none of the disadvantages.

7.8 Discussion

Feedback is the most important feature in any controlled system.
Feedback is present in most natural as well as engineered systems. This follows

because the basic building blocks in nature, as well as in the engineered world,
are essentially very simple: accumulators (reservoirs, energy storage), gains, sum-
mers and delays. The behavior of these simple building blocks is nearly always
trivial. The complex behavior so clearly observed in many systems, only follows
through the interconnection of many simple subsystems using feedback loops,
since without feedback, without creating loops, there is no complexity at all in the
behavior.

7.8  ·  Discussion
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Let us summarize the key ideas, and observations, together with some warnings:

� Feedback may be used to stabilize or destabilize a system.
� If the loop gain is less than unity, the closed loop is stable.
� Feedback may be used to improve robustness. To accomplish this high gain feed-

back is essential. If there is a high gain in the loop, the process model and or distur-
bances are less relevant and the global behavior mainly depends on the elements in
the feedback path, which are specifically designed to achieve the control objective.

� High gain may result in components, like actuators, to saturate. High gain increases
the risk for instability. There is a trade-off between robustness and stability.

� There is a trade-off between tracking and noise rejection.
� Two-degrees-of-freedom controllers help. The stabilization and disturbance rejec-

tion activities are tasks for the feedback loop, which is to be designed first. The
tracking response is the task of the feed-forward controller, which can be designed
next, based on the feedback stabilized loop.

� Feedback control reacts to errors detected in the system. Dealing with non-mini-
mum phase systems (that is, systems showing an initial inverse response) or time
delayed systems (that is, without any immediate response) require more sophisti-
cated design. Simple high gain solutions will not work.

7.9 Comments and Further Reading

Feedback is a key concept in engineered systems and natural systems alike because of
its ability to create interesting behavior from simple building blocks. As observed, feed-
back can significantly modify behavior. Feedback has a long history (Cruz and Kokotoviõ
1972).

The importance of feedback in life as we know it, is well-established. See, for in-
stance Hoagland and Dodson (1995), which gives a very gentle introduction. The im-
portance of oscillations, and the role feedback plays to establish these in biology are
well-documented in Goldbeter (1997).

A history of feedback control, with the emphasis on feedback starting with some
interesting examples of clocks and float mechanisms is presented in Mayr (1970).

The input-output methodology is developed in Desoer and Vidyasagar (1975), and
also in Mees (1991), which is heavily motivated by biology. Classical frequency domain
ideas, building directly on the early work of Nyquist (1932) followed by Bode (1945)
are developed in detail in Doyle et al. (1992) and a modern treatment using an alge-
braic and optimization-based approach is Green and Limebeer (1995). Despite the fact
that a number of fundamental constraints have been established in feedback, we have
only discussed superficially a few. No comprehensive or unifying treatment of feed-
back from this perspective exists in literature (even for linear systems).

A more mathematical treatment of feedback but still intended for a large audience,
is Astrom and Murray (2008).

A treatise of feedback in a nonlinear systems and input-output setting is still under
development. The role of input-to-state stability is developed in Sontag (1998) and Khalil
(2002). Substantial advances have been made using ideas of passivity which we have
not discussed. Passivity expands on the notion of system gain, and brings in the idea
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of phase, which plays such an important role in the linear system setting. A compre-
hensive treatment of this notion and how it applies to a very large class of nonlinear
systems that can be described using the physical principles of electro-mechanical sys-
tems is Ortega et al. (1998). A more mathematical treatment is van der Schaft (2000).

The importance of feedback in electronic design is undisputed. A particular discus-
sion of just this aspect of electronic design is Waldhauer (1982). The operational amplifier
and its role in modern electronics is taught in all electrical engineering curricula.

The main control module used for feedback in the process industry is the so-called
PID regulator, a good overview of the design questions surrounding PID controllers
can be found in Astrom and Hagglund (2005).

7.9  ·  Comments and Further Reading
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