
Heterogeneous Logical Environments for
Distributed Specifications�

Till Mossakowski1,2 and Andrzej Tarlecki3,4

1 Institute for Computer Science, Albert-Ludwigs-Universität Freiburg
2 Safe and Secure Cognitive Systems, DFKI GmbH, Bremen

3 Institute of Informatics, University of Warsaw
4 Institute of Computer Science, Polish Academy of Sciences

Abstract. We use the theory of institutions to capture the concept of a
heterogeneous logical environment as a number of institutions linked by
institution morphisms and comorphisms. We discuss heterogeneous spec-
ifications built in such environments, with inter-institutional specification
morphisms based on both institution morphisms and comorphisms. We
distinguish three kinds of heterogeneity: (1) specifications in logical envi-
ronments with universal logic (2) heterogeneous specifications focused at
a particular logic, and (3) heterogeneous specifications distributed over
a number of logics.

1 Introduction

The theory of institutions [GB92] provides an excellent framework where the
theory of specification and formal software development may be presented in
an adequately general and abstract way [ST88a, ST97, Tar03]. The initial work
within this area captured specifications built and developments carried out in
an arbitrary but fixed logical system formalised as an institution. However, the
practice of software specification and development goes much beyond this. Dif-
ferent logical systems may be appropriate or most convenient for specification of
different modules of the same system, of different aspects of system behaviour,
or of different stages of system development. This leads to the need for a number
of logical systems to be used in the same specification and development project,
linked by appropriate notions of morphisms between institutions [GR02]. This
observation spurred a substantial amount of research work already, and moti-
vates the research presented here.

In such a framework, one works in a heterogeneous logical environment formed
by a number of logical systems formalised as institutions and linked with each
other in a way captured by various maps between institutions. One such logical
environment is the Hets family of institutions [Mos05], supported by a tool to
build and work with heterogeneous specifications [MML07].
� This work has been partially supported by European projects IST-2005-015905 MO-

BIUS and IST-2005-016004 SENSORIA, by a visiting grant to the University of Illi-
nois at Urbana-Champaign (AT) and by the German Federal Ministry of Education
and Research (Project 01 IW 07002 FormalSafe) and by the DFG-funded SFB/TR
8 “Spatial cognition” (TM).

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 266–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Heterogeneous Logical Environments for Distributed Specifications 267

Given a heterogeneous logical environment, there are several possible ways of
using it to build heterogeneous specifications:

1. In some logical environments, we have a single logical system (usually com-
ing with good tool support) that can be used as a universal logic into which
all other systems are mapped. Then the maps between logics are used for
mapping specifications from all logics in the environment into the universal
logic, where they can be further combined then as usual. Various logical sys-
tems have been proposed and used as such universal logics, including higher-
order logic in various versions [NPW02], Edinburgh LF [HHP93], rewriting
logic [MOM02], fork algebra [PF06], etc.

2. Focused heterogeneous specifications are more liberal: parts of a specifica-
tion may be written in different logics (also exploiting the availability of
specialised tools for these logics). However, these parts ultimately are as-
sembled in one logical system, where the models of interest live. This is
made possible by extending the repertoire of specification-building opera-
tions with ones that move specifications from one logic to another using
various maps between logical systems, as perhaps first mentioned in the
context similar to what we use here in [ST88b] and further developed in
[Tar96, Tar00, Mos03, Dia02].

3. Distributed heterogeneous specifications involve a number of specifications
in different logical systems, with compatibility links between them given by
logic maps, but not necessarily with a single specification in a particular logic
providing an overall integration. Heterogeneous development graphs [Mos02b]
offer a first hint in this direction.

While the first two methodologies have been studied in the literature, the third
one seems to have attracted only little attention from the formal specification
community so far, although it is clear that in frameworks like UML, distributed
heterogeneous specifications arise rather naturally.

In this paper we largely set up a framework for further work, collecting the
ideas, concepts and facts put forward earlier at other places (by us and others).
No new big results are to be expected at this stage. However, a new overall
view of heterogeneous logical environments and distributed specifications in such
environment seems to be emerging here.

We introduce a notion of a heterogeneous logical environment, and study to
what extent such environments can be made uniform, i.e., based on one kind
of a mapping between institutions. We discuss various ways of building focused
heterogeneous specifications in such environments. Then, given heterogeneous,
inter-institutional (co)morphisms between such specifications and specification
categories they define, we introduce distributed specifications as specification
diagrams. These come with a natural notion of a distributed model, and so
also other standard concepts like consistency, consequence, implementations,
etc. Finally, we show that these concepts apply in the context of heterogeneous
specification categories built over any heterogeneous logical environment.

268 T. Mossakowski and A. Tarlecki

2 Heterogeneous Logical Environments

Let us begin by recalling the notion of an institution, as a formalisation of an
arbitrary logical system [GB92], assuming that the reader is familiar with all the
intuitions that this notion brings in.

Definition 2.1. An institution I consists of:

– a category SignI of signatures;
– a functor SenI : SignI → Set,1 giving a set Sen(Σ) of Σ-sentences for

each signature Σ ∈ |SignI |, and a function Sen(σ) : Sen(Σ) → Sen(Σ′),
denoted by σ, that yields σ-translation of Σ-sentences to Σ′-sentences for
each signature morphism σ : Σ → Σ′;

– a functor ModI : Signop
I → Set,2 giving a set Mod(Σ) of Σ-models for

each signature Σ ∈ |SignI |, and a functor Mod(σ) : Mod(Σ′) → Mod(Σ),
denoted by |σ, that yields σ-reducts of Σ′-models for each signature mor-
phism σ : Σ → Σ′; and

– for each Σ ∈ |SignI |, a satisfaction relation |=I,Σ ⊆ ModI(Σ)×SenI(Σ)

such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ SenI(Σ)
and Σ′-model M ′ ∈ ModI(Σ′):

M ′ |=I,Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I,Σ ϕ [Satisfaction condition]

Whenever convenient, we avoid spelling out the standard notations for insti-
tution components, and allow primes, subscripts and superscripts to determine
which institution is referred to.

The next concept we need is a mapping between institutions. We concentrate
here on institution morphisms [GB92] and on institution comorphisms (named
so in [GR02]; see “plain maps of institutions” in [Mes89] and “institution repre-
sentations” in [Tar87, Tar96]).

Definition 2.2. Let I and I ′ be institutions. An institution morphism μ : I →
I ′ consists of:

– a functor μSign : Sign → Sign′;
– a natural transformation μSen : μSign ;Sen′ → Sen,3 that is, a family of

functions μSen
Σ : Sen′(μSign(Σ)) → Sen(Σ), natural in Σ ∈ |Sign|; and

– a natural transformation μMod : Mod → (μSign)op ;Mod′, that is, a family
of functions μMod

Σ : Mod(Σ) → Mod′(μSign(Σ)), natural in Σ ∈ |Sign|,
such that for any signature Σ ∈ |Sign|, the translations μSen

Σ : Sen′(ρSign(Σ)) →
Sen(Σ) of sentences and μMod

Σ : Mod(Σ) → Mod′(ρSign (Σ)) of models preserve
the satisfaction relation, i.e., for any ϕ′ ∈ Sen′(μSign(Σ)) and M ∈ Mod(Σ):
1 The category Set has all sets as objects and all functions as morphisms.
2 To keep things simple, we work with the version of institutions where morphisms

between models, not needed here, are disregarded. To capture standard examples,
we should allow here for the use of classes, rather than just sets of models — but
again, we will disregard such foundational subtleties here.

3 We write composition of morphisms in any category in the diagrammatic order and
denote it by “;” (semicolon).

Heterogeneous Logical Environments for Distributed Specifications 269

M |=Σ μSen
Σ (ϕ′) ⇐⇒ μMod

Σ (M) |=′
μSign (Σ) ϕ′ [Satisfaction condition]

Institution morphisms compose in the obvious, component-wise manner. The
category of institutions with institution morphisms is denoted by INS.

An institution comorphism ρ : I → I′ consists of:

– a functor ρSign : Sign → Sign′;
– a natural transformation ρSen : Sen → ρSign ;Sen′, that is, a family of func-

tions ρSen
Σ : Sen(Σ) → Sen′(ρSign(Σ)), natural in Σ ∈ |Sign|; and

– a natural transformation ρMod : (ρSign)op ;Mod′ → Mod, that is, a family
of functions ρMod

Σ : Mod′(ρSign (Σ)) → Mod(Σ), natural in Σ ∈ |Sign|,
such that for any Σ ∈ |Sign|, the translations ρSen

Σ : Sen(Σ) → Sen′(ρSign(Σ))
of sentences and ρMod

Σ : Mod′(ρSign (Σ)) → Mod(Σ) of models preserve the
satisfaction relation, i.e., for any ϕ ∈ Sen(Σ) and M ′ ∈ Mod′(ρSign(Σ)):

M ′ |=′
ρSign(Σ) ρSen

Σ (ϕ) ⇐⇒ ρMod
Σ (M ′) |=Σ ϕ [Satisfaction condition]

Institution comorphisms compose in the obvious, component-wise manner. The
category of institutions with institution comorphisms is denoted by coINS.

Whenever no confusion may arise, the superscripts identifying the components of
an institution morphism will be omitted, so that all components of an institution
morphism μ will be written as μ, and similarly for institution comorphisms.

Even though the only essential difference between institution morphisms and
comorphisms is in the direction of sentence and model translations w.r.t. signa-
ture translation, the intuition they capture is quite different. Very informally,
an institution morphism μ : I → I′ shows how a “richer” institution I is “pro-
jected” onto a “poorer” institution I′ (by removing some parts of signatures and
models of I to obtain the simpler signatures and models of I′, and by embedding
simpler I′-sentences into more powerful I-sentences). Then, an institution co-
morphism I → I′ shows how a “simpler” institution I is represented in a “more
complex” institution I ′ (by representing the simpler signatures and sentences of
I as signatures and sentences of I′, and extracting simpler I-models from more
complex I ′-models).4

Given the two possible ways to link institutions with each other, a notion of
a heterogeneous logical environment may be formalised as a collection of insti-
tutions linked by institution morphisms and comorphisms.

Definition 2.3. A heterogeneous logical environment HLE is a collection of in-
stitutions and of institution morphisms and comorphisms between them, that is,
a pair of diagrams 〈HLEμ : Gμ → INS , HLEρ : Gρ → coINS〉5 in the category
4 Variants of comorphisms are also used to encode “more complex” institutions into

“simpler” ones: e.g. in [GR02], a so-called simple theoroidal comorphism is used
to code first-order logic with equality in first-order logic without equality. See also
[MDT09] for discussion of relative strength of logical systems in a similar context.

5 We assume that Gμ is a graph that gives the shape of the diagram; its nodes n ∈ |Gμ|
carry institutions HLEμ(n) linked by institution morphisms HLEμ(e) : HLEμ(n) →
HLEμ(m) for each edge e : n → m in G. Similar notation is used for diagrams in
other categories.

270 T. Mossakowski and A. Tarlecki

INS of institutions and their morphisms and coINS of institutions and their
comorphisms, respectively, such that the two underlying graphs have no common
edges and diagrams coincide on common nodes, i.e., for all nodes n ∈ |Gμ| ∩ |Gρ|,
HLEμ(n) = HLEρ(n).

We write G for the union of Gμ and Gρ, and w.l.o.g. assume that all the nodes
of the underlying graphs are common, |G| = |Gμ| = |Gρ|.

Such a heterogeneous logical environment is morphism-uniform if Gρ is dis-
crete (has no edges); we can then identify HLE with HLEμ : G → INS. Simi-
larly, HLE is comorphism-uniform if Gμ is discrete; we can identify it then with
HLEρ : G → INS.

The lack of uniformity in linking institutions in heterogeneous environments (we
use both institution morphisms and comorphisms here; other kinds of maps be-
tween institutions may be considered as well) may be somewhat surprising and
certainly is technically cumbersome. Morphism-uniform environments, where
only institution morphisms are used, are conveniently captured by a single di-
agram in the appropriate institution category, and similarly for comorphism-
uniform environments. These concepts coincide with what was studied in the
literature as indexed institutions [Dia02] and indexed coinstitutions [Mos02a].

One way to make logical environments uniform is by noticing that in fact a
link of each kind may be captured by links of the other kind, albeit in general
a span of those may be needed. This has been noticed already in [Mos03] and
spelled out in [Mos05]; see also [MW98] for similar ideas with institution forward
morphisms (called transformations there) as a primary notion.

Definition 2.4. Consider an institution morphism μ : I → I′. We build an
“intermediate institution” by re-indexing I′ using the signature translation: I ′

0 =
〈Sign, μSign ;Sen′, μSign ;Mod′, 〈|=′

μSign(Σ)〉Σ∈|Sign|〉. Two comorphisms emerge
then6: ρμ,1 = 〈id , μSen , μMod〉 : I ′

0 → I and ρμ,2 = 〈μSign , id , id〉 : I ′
0 → I ′.

The comorphism span for μ, written span(μ), is the following span of institution
comorphisms: I ρμ,1←− I′

0
ρμ,2−→ I′.

Consider an institution comorphism ρ : I → I′. We build an “intermediate
institution”: I ′

0 = 〈Sign, ρSign ;Sen′, ρSign ;Mod′, 〈|=′
ρSign (Σ)〉Σ∈|Sign|〉. Two in-

stitution morphisms emerge then: μρ,1 = 〈id , ρSen , ρMod〉 : I ′
0 → I and μρ,2 =

〈μSign , id , id〉 : I ′
0 → I ′. The morphism span for ρ, written span(ρ), is the fol-

lowing span of institution morphisms: I μρ,1←− I′
0

μρ,2−→ I′.

Informally, the span of comorphisms span(μ) captures exactly the same relation-
ship between the components of I and I′ as the original institution morphism
μ : I → I′; and similarly, the span of morphisms span(ρ) captures exactly the
same relationship between the components of I and I ′ as the original institution
comorphism ρ : I → I′.

6 We write id for identities in any category, in particular, here for the identity functor
as well as the identity natural transformations.

Heterogeneous Logical Environments for Distributed Specifications 271

This essentially allows us to concentrate on heterogeneous logical environ-
ments that are uniform in the sense that only institution morphisms (or comor-
phisms) are used to link with each other the institutions involved.

Definition 2.5. Let HLE = 〈HLEμ : Gμ → INS, HLEρ : Gρ → coINS〉 be
a heterogeneous logical environment. By spanμ(HLE) : spanμ(G) → INS we
denote the morphism-uniform environment obtained from HLE by replacing each
comorphism ρ in HLEρ by span(ρ). Similarly, by spanρ(HLE) : spanρ(G) →
coINS we denote the comorphism-uniform environment obtained from HLE by
replacing each morphism μ in HLEμ by span(μ).

Note that the “uniformisation” described above typically will change the shape
of the graph underlying the heterogeneous logical environment: while building
spanμ(HLE) we remove each edge in Gρ adding a corresponding span of edges
in Gμ, with a new node that carries the new “intermediate” institution, and
similarly for spanρ(HLE).

A very rough intuition about various ways of linking institutions by spans

and sinks of (co)morphisms is that in a span of comorphisms I ρ←− I0
ρ′

−→ I′

and in a sink of morphisms I μ−→ I0
μ′

←− I ′, the intermediate institution I0
captures the common features of I and I ′, and so this relationship may be used
to express some “sharing” requirements between models of I and I′. Dually,

in a sink of comorphisms I ρ−→ I0
ρ′

←− I ′ and in a span of morphisms I μ←−
I0

μ′

−→ I′, the intermediate institution I0 is richer than both I and I ′ and
combines the features present in them, and therefore may be used to express
some “consistency” properties between models of I and I′.

3 Specifications and Their Heterogeneous Categories

The original purpose of introducing the notion of institution (under the name
of a language in [BG80]) was to free the theory of specifications from depen-
dency on any particular logical system. We follow [ST88a] and for an arbitrary
institution I consider a class SpecI of specifications built in I starting from
basic specifications (presentations, which essentially consist of a signature and
a set of sentences over this signature) by means of a number of specifications-
building operations, including union of specifications with common signature
(written SP1 ∪ SP2), translation along a signature morphism (written σ(SP)),
hiding (or “derive”) w.r.t. a signature morphism (written SP ′|σ), etc. We will
not dwell here on the particular choice of these operations, as usual assuming
though that specifications come with their basic semantics given in terms of
model classes. That is, for each specification SP ∈ SpecI , we have its signa-
ture Sig [SP] ∈ |Sign| and its class of models Mod [SP] ⊆ Mod(Sig [SP]). In
particular, we have Mod [SP1 ∪ SP2] = Mod [SP1] ∩ Mod [SP2], Mod [σ(SP)] =
{M ′ | M ′|σ ∈ Mod [SP]}, and Mod [SP ′|σ] = {M ′|σ | M ′ ∈ Mod [SP ′]}. The se-
mantics also determines the obvious notion of specification equivalence: SP1 ≡
SP2 iff Sig [SP1] = Sig[SP2] and Mod [SP1] = Mod [SP2].

272 T. Mossakowski and A. Tarlecki

Working in a heterogeneous logical environment, where we have a number
of institutions linked by institution morphisms and comorphisms (no uniformity
assumption necessary at this stage), we can enrich the collection of specification-
building operations by translation along institution comorphisms and hiding
w.r.t. institution morphisms, see [ST88b, Tar96]. Somewhat less naturally, we can
also define translation along institution morphisms and hiding w.r.t. institution
comorphisms, but the target signature has to be given explicitly then:

Definition 3.1. Let μ : I → I′ be an institution morphism. Given a specifica-
tion SP ∈ SpecI , we write SP |μ for a new specification in SpecI′ with the se-
mantics given by Sig [SP |μ] = μSign(Sig [SP]) and Mod [SP |μ] = μMod(Mod [SP])
(= {μMod

Sig[SP](M) | M ∈ Mod [SP]}).
Given a specification SP ′ ∈ SpecI′ and signature Σ ∈ |Sign| such that

μSign(Σ) = Sig[SP ′], we write μ(SP ′)Σ for a new specification in SpecI with the
semantics given by Sig [μ(SP ′)Σ] = Σ and Mod [μ(SP ′)Σ] = (μMod)−1(Mod [SP ′])
(= {M ∈ Mod(Σ) | μMod

Σ (M) ∈ Mod [SP ′]}).
Let ρ : I → I′ be an institution comorphism. Given a specification SP ∈

SpecI, we write ρ(SP) for a new specification in SpecI′ with the semantics given
by Sig [ρ(SP)] = ρSign(Sig [SP]) and Mod [ρ(SP)] = (ρMod)−1(Mod [SP]) (=
{M ′ ∈ Mod′(ρSign(Sig [SP])) | ρMod

Sig[SP](M
′) ∈ Mod [SP]}).

Given a specification SP ′ ∈ SpecI′ and signature Σ ∈ |Sign| such that
ρSign(Σ) = Sig [SP ′], we write SP ′|Σρ for a new specification in SpecI with
the semantics given by Sig [SP ′|Σρ] = Σ and Mod [SP ′|Σρ] = ρMod(Mod [SP ′])
(= {ρMod

Σ (M ′) | M ′ ∈ Mod [SP ′]}).

These new, inter-institutional specification-building operations may be arbi-
trarily mixed with other (intra-institutional) operations, yielding heterogeneous
specifications. Parts of such specifications may be given in different institutions
of the heterogeneous logical environment we work in. However, each such a spec-
ification as a whole eventually focuses on a particular institution in this environ-
ment, where its overall semantics (signature and the class of models) is given. In
essence, viewed from a certain perspective, such focused heterogeneous specifica-
tions do not differ much from the structured specifications built within a single
institution. For instance, the view of a software specification and development
process as presented in [ST88b, ST97] directly adapts to the use of such specifi-
cations without much (semantic) change. For each institution I, we still denote
the class of such heterogeneous specifications focused on I by SpecI .

The standard notion of a specification morphism carries over to heteroge-
neous specifications focused at the same institution without any change: a spec-
ification morphism between specifications SP ,SP ′ ∈ SpecI is a signature mor-
phism σ : Sig [SP] → Sig [SP ′] such that for all models M ′ ∈ Mod [SP ′], M ′|σ ∈
Mod [SP]. This yields the category SpecI of specifications focused on I, with
the model-class semantics that extends to the functor Mod : Specop

I → Set.
To generalise this definition to a truly heterogeneous case, with specifications

involved focused on different institutions, we first have to appropriately generalise

Heterogeneous Logical Environments for Distributed Specifications 273

the notion of a signature morphism. Of course, we need some link (given by an
institution morphism or comorphism) between the institutions involved.

Definition 3.2. Consider institutions I and I ′ and signatures Σ ∈ |Sign| and
Σ′ ∈ |Sign′|.

A heterogeneous signature morphism is a pair 〈μ, σ〉 : Σ → Σ′ that consists of
an institution morphism μ : I′ → I and a signature morphism σ : Σ → μSign(Σ′)
in Sign. It induces the heterogeneous reduct |〈μ,σ〉 : Mod′(Σ′) → Mod(Σ)
defined as the composition μMod

Σ′ ;Mod(σ), i.e., M ′|〈μ,σ〉 = μMod
Σ′ (M ′)|σ, for all

M ′ ∈ Mod′(Σ′).
A heterogeneous signature comorphism is a pair 〈ρ, σ′〉 : Σ → Σ′ that consists

of an institution comorphism ρ:I → I′ and a signature morphism σ′:ρSign(Σ) →
Σ′ in Sign′. It induces the heterogeneous reduct |〈ρ,σ′〉 : Mod′(Σ′) → Mod(Σ)
defined as the composition Mod′(σ′) ; ρMod

Σ , i.e., M ′|〈ρ,σ′〉 = ρMod
Σ (M ′|σ′), for

all M ′ ∈ Mod′(Σ′).
Heterogeneous signature morphisms compose as expected: 〈μ1, σ1〉 ;〈μ2, σ2〉 =

〈μ2 ; μ1, σ1 ; μSign
1 (σ2)〉. For any morphism-uniform heterogeneous logical envi-

ronment HLEμ : Gμ → INS this yields the heterogeneous category Sign(HLEμ)
of signatures in institutions in HLEμ with heterogeneous morphisms that involve
institution morphisms in HLEμ (and their compositions, and identities). Then
model functors extend to Mod(HLEμ) : Sign(HLEμ)op → Set using the reducts
defined above.

Heterogeneous signature comorphisms compose as expected: 〈ρ1, σ1〉 ;〈ρ2, σ2〉 =
〈ρ1 ; ρ2, ρ

Sign
2 (σ1) ; σ2〉. For any comorphism-uniform heterogeneous logical envi-

ronment HLEρ : Gρ →coINS this yields the heterogeneous category Sign(HLEρ)
of signatures in institutions in HLEρ with heterogeneous comorphisms that in-
volve institution comorphisms in HLEρ (and their compositions, and identities).
Then model functors extend to Mod(HLEρ) : Sign(HLEρ)op → Set using the
reducts defined above.

We stop short here of defining translation of sentences and proving the satis-
faction condition. Otherwise though, the above follows the construction of the
category of signatures and model reducts in the Grothendieck institution given
in [Dia02] for the morphism-uniform case and in [Mos02a] for the comorphism-
uniform case (heterogeneous signature (co)morphisms were called Grothendieck
signature morphisms there). For full formality, signatures in the heterogeneous
categories of signatures defined above should really be written as pairs 〈I, Σ〉,
marking them explicitly with the institution they come from (or even with the
nodes in the institution diagram) but we continue relying on the reader’s good
will to decipher the institution from the context.

Note that we retain the overall informal idea that a signature morphism goes
from the simpler to more complex signature — hence the contravariance with
the use of institution morphisms in the definition of heterogeneous signature
morphism. This intuition also dictated the choice of the placement and direction
of signature morphism components in heterogeneous signature (co)morphisms.

274 T. Mossakowski and A. Tarlecki

Note also that the inter-institutional specification-building operations given in
Def. 3.1 arise now as hiding w.r.t. and translation along heterogeneous signature
morphisms and comorphisms (with the identities as signature morphisms).

In a (non-uniform) heterogeneous logical environment HLE , Def. 3.2 yields
two heterogeneous signature categories, one for the morphism-uniform, the other
for the comorphism-uniform part of HLE . The two categories share all objects,
but have different morphisms. We can put these categories together by formally
adding compositions of morphisms of the two kinds involved, modulo the ex-
pected identification of morphisms that arise from intra-institutional signature
morphisms by adding identity institution (co)morphisms.

Definition 3.3. Let HLE = 〈HLEμ, HLEρ〉 be a heterogeneous logical environ-
ment, and consider the disjoint union of the signature categories of all insti-
tutions in HLE, which embeds in the obvious way into both Sign(HLEμ) and
Sign(HLEρ). We write Sign(HLE) for the heterogeneous category of signa-
tures in HLE and their generalised heterogeneous morphisms, defined as the
pushout (in Cat7) of the two embedding functors. The model functors extend
to Mod(HLE) : Sign(HLE)op → Set using the compositions of reducts from
Def. 3.2.

We again stop short from extending this definition to a complete construction of
a Bi-Grothendieck institution for HLE with Sign(HLE) as its signature category
and Mod(HLE) as its model functor, as spelled out in [Mos03].

Given the above, the definitions of inter-institutional specification morphisms
are now obvious (cf. [Dia98] for a similar notion of an extra theory morphism, and
the notions of specification morphisms arising in Grothendieck (co)institutions).

Definition 3.4. Consider a heterogeneous logical environment HLE, institu-
tions I and I ′ in HLE and specifications SP ∈ SpecI and SP ′ ∈ SpecI′ .

A generalised heterogeneous signature morphism ζ : Sig [SP] → Sig [SP ′] ∈
Sign(HLE) is a heterogeneous specification morphism ζ : SP → SP ′ if for all
models M ′ ∈ Mod [SP ′], M ′|ζ ∈ Mod [SP]. Heterogeneous specification mor-
phisms compose, which yields the heterogeneous category Spec(HLE) of spec-
ifications focused on institutions in HLE. The model functions extend to the
functor Mod(HLE) : Spec(HLE)op → Set, using heterogeneous reducts.

Given a heterogeneous logical environment HLE = 〈HLEμ, HLEρ〉, the hetero-
geneous category of specifications Spec(HLE) has subcategories Spec(HLEμ)
and Spec(HLEρ), given by heterogeneous signature morphisms of the form
〈μ, σ〉 ∈ Sign(HLEμ) and, respectively, by heterogeneous signature comorphisms
of the form 〈ρ, σ〉 ∈ Sign(HLEρ).

The category SpecI of specifications focused on a particular institution in an
environment is a subcategory of the heterogeneous category of specifications built
in the environment (via the obvious embedding which adds identity institution
(co)morphisms).

Directly from the definitions:
7 Cat is the (quasi-)category of all categories, as usual.

Heterogeneous Logical Environments for Distributed Specifications 275

Lemma 3.5. Consider institutions I, I ′ and specifications SP ∈ SpecI , SP ′ ∈
SpecI′ .

A heterogeneous signature morphism 〈μ, σ〉 : Sig [SP] → Sig[SP ′] (so that
μ : I ′ → I, σ : Sig [SP] → μSign (Sig [SP ′])) is a heterogeneous specification mor-
phism 〈μ, σ〉 : SP → SP ′ if and only if σ : SP → SP ′|μ is a specification mor-
phism (in SpecI).

A heterogeneous signature comorphism 〈ρ, σ′〉 : Sig[SP] → Sig [SP ′] (so that
ρ : I → I′, σ′ : ρSign(Sig [SP]) → Sig [SP ′]) is a heterogeneous specification mor-
phism 〈ρ, σ′〉 : SP → SP ′ if and only if σ′ : ρ(SP) → SP ′ is a specification
morphism (in SpecI′).

In all the specification categories we consider, equivalent specifications are iso-
morphic (identity signature morphisms being isomorphisms between them).

One observation about the heterogeneous categories of specifications as de-
fined above is that they reveal a potential problem with making heterogeneous
logical environments uniform. Replacing institution morphisms by spans of co-
morphisms, and vice-versa, replacing institution comorphisms by spans of mor-
phisms, changes the inter-institutional specification-building operations that are
available in the logical environment. Fortunately, in view of symmetry in Def. 3.1,
this is not much of a problem:

Lemma 3.6. Let μ : I → I′ be an institution morphism, and let span(μ) be
I ρμ,1←− I′

0
ρμ,2−→ I′.

– SP |μ ≡ ρμ,2(SP |Σρμ,1
) for any SP ∈ SpecI with Sig [SP] = Σ.

– μ(SP ′)Σ ≡ ρμ,1(SP ′|Σρμ,2
) for any SP ′ ∈ SpecI′ with μSign(Σ) = Sig [SP ′].

Dually then, let ρ : I → I′ be an institution comorphism, and let span(ρ) be
I μρ,1←− I′

0
μρ,2−→ I′.

– ρ(SP) ≡ μρ,1(SP)Σ |μρ,2 for any SP ∈ SpecI with Sig [SP] = Σ.
– SP ′|Σρ ≡ μρ,2(SP ′)Σ |μρ,1 for any SP ′ ∈ SpecI′ with ρSign(Σ) = Sig [SP ′].

Together with Lemma 3.5, this yields a useful characterisation of heterogeneous
specification (co)morphisms, see [Mos03]:

Proposition 3.7. Let μ : I → I′ be an institution morphism, where span(μ) is
I ρμ,1←− I′

0
ρμ,2−→ I′. Consider specifications SP ∈ SpecI and SP ′ ∈ SpecI′ and het-

erogeneous signature morphism 〈μ, σ〉 : Sig [SP ′] → Sig [SP]. Then 〈μ, σ〉 : SP ′ →
SP is a specification morphism if and only if σ : SP ′ → ρμ,2(SP |Sig [SP]

ρμ,1) is a
specification morphism (in SpecI′).

Let ρ : I → I′ be an institution morphism, where span(ρ) is I μρ,1←− I ′
0

μρ,2−→ I′.
Consider specifications SP ∈ SpecI and SP ′ ∈ SpecI′ and heterogeneous sig-
nature comorphism 〈ρ, σ〉 : Sig [SP] → Sig [SP ′]. Then 〈ρ, σ〉 : SP → SP ′ is a
specification morphism if and only if σ : μρ,1(SP)Sig [SP]|μρ,2 → SP ′ is a specifi-
cation morphism (in SpecI′).

This proposition is the central motivation for the use of spans. It means that
all proof obligations arising in a mixed heterogeneous logical environment can

276 T. Mossakowski and A. Tarlecki

be properly expressed already in a uniform heterogeneous logical environment,
using spans (even if one cannot express them directly as a theory morphism
between original specifications).

However, specification morphisms that arise from institution morphisms and
spans of comorphisms that replace them are quite different, and similarly for
comorphisms and spans of morphisms. In particular, given a heterogeneous spec-
ification morphism 〈μ, σ〉 : SP ′ → SP , with an institution morphism μ : I → I′,
there seems to be no natural way to link specifications SP and SP ′ by het-
erogeneous specification comorphisms built over the comorphism span span(μ)
(but see Sect. 5.5 for more on this). Consequently, for a heterogeneous logi-
cal environment HLE , the heterogeneous specification categories Spec(HLE),
Spec(spanμ(HLE)) and Spec(spanρ(HLE)) are quite different in general.

4 Uniformity via Signature Adjunctions

The discrepancybetween the categories of heterogeneous specifications built on in-
stitution morphisms and the one built on the spans of comorphisms that could re-
place them, pointed out in Sect. 3, may seem a bit disturbing and suggests a search
for “better” ways of making heterogeneous logical environment uniform. One such
possibility arises in most practical examples, when institution morphisms involve
“forgetful” signature functors that have left adjoints (which restores the “forgot-
ten” structure of signatures in the source institution in the free way) and/or when
institution comorphisms involve signature functors that have right adjoints (that
forget the extra structure added to signatures of the source institution to encode
them in the target institution). Under such circumstances, institution morphisms
can be turned into comorphisms, and vice versa, see [AF96, Dia08]:

Theorem 4.1. Let μ : I ′ → I be an institution morphism and let μSign :Sign′ →
Sign have a left adjoint ρSign : Sign → Sign′ with unit η : idSign → ρSign ; μSign .
Then L(μ) = 〈ρSign , ρSen , ρMod〉, where for Σ ∈ |Sign|, ρSen

Σ = Sen(ηΣ);μSen
ρSign (Σ)

and ρMod
Σ = μMod

ρSign (Σ) ;Mod(ηΣ), is an institution comorphism L(μ) : I → I′.
Let ρ : I → I′ be an institution comorphism and let ρSign :Sign → Sign′ have

a right adjoint μSign : Sign′ → Sign with counit ε : μSign ; ρSign → idSign′ . Then
R(ρ) = 〈μSign , μSen , μMod〉, where for Σ′ ∈ |Sign′|, μSen

Σ′ = ρSen
μSign (Σ′) ;Sen′(εΣ′)

and μMod
Σ = Mod′(εΣ′) ; ρMod

μSign (Σ′), is an institution morphism R(ρ) : I ′ → I.
Moreover, R and L can be chosen so that R(L(μ)) = μ and L(R(ρ)) = ρ.

Now, given any heterogeneous logical environment HLE = 〈HLEμ, HLEρ〉, if
all institution comorphisms in HLEρ have signature functors with right ad-
joints, we can build a morphism-uniform heterogeneous logical environment
adj μ(HLE) with each institution comorphism ρ in HLEρ replaced by the in-
stitution morphism R(ρ). Then the specification categories Spec(HLE) and
Spec(adj μ(HLE)) are equivalent. Similarly, if all institution morphisms in HLEμ

have signature functors with left adjoints, we can build a comorphism-uniform
heterogeneous logical environment adj ρ(HLE) with each institution morphism

Heterogeneous Logical Environments for Distributed Specifications 277

μ in HLEμ replaced by the institution comorphism L(μ). Then the specification
categories Spec(HLE) and Spec(adj ρ(HLE)) are equivalent. These equivalences
follow essentially from results in [Mos02a, Dia08], which show that switching be-
tween institution morphisms and comorphisms as in Thm. 4.1, and so between
indexed institutions and indexed coinstitutions, does not affect the resulting
Grothendieck institution that can be built.

More explicitly, focused heterogeneous specifications that one can build as
in Def. 3.1 using an institution morphism coincide (up to equivalence) with
those one can build using the institution comorphism determined by the left
adjoint to the signature functor of the institution morphism, and vice versa.
Moreover, in each case, heterogeneous specification morphisms determine each
other (generalising the original result of [AF96] for theories).

Lemma 4.2. Let μ and ρ be as in Thm. 4.1, with L(μ) = ρ and R(ρ) = μ.
Consider specifications SP ∈ SpecI, SP ′ ∈ SpecI′ with Sig [SP] = Σ and
Sig [SP ′] = Σ′. Then:

– SP ′|μ ≡ (SP ′|εΣ′)|μ(Σ′)
ρ

– ρ(SP) ≡ μ(ηΣ(SP))ρ(Σ)

– μ(SP)Σ′
0 ≡ εΣ′

0
(ρ(SP)), for any Σ′

0 ∈ |Sign′| with μSign (Σ′
0) = Σ,

– SP ′|Σ0
ρ ≡ (SP |μ)|ηΣ0

, for any Σ0 ∈ |Sign| with ρSign(Σ0) = Σ′.

Moreover, if σ : Σ → μSign(Σ′) and σ′ : ρSign(Σ) → Σ′ are signature morphisms
corresponding to each other under bijection given by the adjunction between sig-
nature categories (i.e., such that ηΣ ; μSign(σ′) = σ) then 〈μ, σ〉 is a heteroge-
neous specification morphism 〈μ, σ〉 : SP → SP ′ iff 〈ρ, σ′〉 is a heterogeneous
specification comorphism 〈ρ, σ′〉 : SP → SP ′.

Overall this means that then when in a heterogeneous logical environment the in-
stitution morphisms or comorphisms link signature categories by adjunctions, we
can gracefully make the environment uniform by replacing institution morphisms
by the corresponding comorphisms or, respectively, by replacing institution co-
morphisms by the corresponding morphisms, with losing neither specifications
that can be built nor heterogeneous (co)morphisms between them.

5 Distributed Specifications

Heterogeneity of the logical environment was used in focused heterogeneous spec-
ifications to build various parts of specifications in various logical systems (in-
stitutions) and then put them together to end up in one logical system, where
the models of interest are. However, quite often, for instance in UML [BRJ98],
heterogeneous specifications are presented rather differently, by simply giving a
number of specifications in various logical systems, and then (implicitly or ex-
plicitly) linking them with each other to ensure the expected compatibility prop-
erties. This leads to the idea of distributed specifications which we will present
in this section; see also [CKTW08] for an earlier sketch of this to provide an
understanding of distributed heterogeneous UML specifications.

278 T. Mossakowski and A. Tarlecki

5.1 Distributed Specifications and Their Models

We will work in the context of a specification frame: a category Spec of (abstract)
specifications with semantics given by a model functor Mod : Specop → Set.
The terminology follows [CBEO99], the concept appeared earlier as “specifica-
tion logic” in [EBCO92, EBO93]). As before, functions Mod(σ), for σ : SP →
SP ′ in Spec, will be called reducts and denoted by |σ. Moreover, specification
frames can be linked by morphisms and comorphisms much in the same way as
institutions, by just leaving out the sentence translation component.

For a while we will not need to discuss how such a specification frame was built:
for instance, it may be the category of specifications built in an institution (which
is perhaps the prime example) or a heterogeneous category of specifications built
over a heterogeneous logical framework (which are examples of interest here).

Definition 5.1. Let F = 〈Spec,Mod : Specop → Set〉 be a specification frame.
A distributed specification in F is a collection of specifications linked by speci-
fication morphisms, that is, a diagram DSP : G → Spec in Spec.

A distributed model of DSP is a family of models 〈Mn〉n∈|G| that is compat-
ible with morphisms in DSP (i.e., for each edge e : n → m in G, Mm|DSP(e) =
Mn) and such that for each node n ∈ |G|, Mn ∈ Mod(DSP(n)). We write
Mod [DSP] for the collection of all such distributed models of DSP.

A specification morphism between distributed specifications DSP : G → Spec
and DSP ′ : G′ → Spec is a pair (F, τ), where F : G → G′ is a functor, and
τ : DSP → F ;DSP ′ a natural transformation. Such morphisms compose as
usual, which yields the category DSpec(F) of distributed specifications in F .

Distributed model reducts w.r.t. such morphisms are defined in the obvi-
ous way: for M′ = 〈M ′

n〉n∈|G′| ∈ Mod [DSP ′], M′|(F,τ) = M, where M =
〈M ′

F (m)|τm〉m∈|G| ∈ Mod [DSP].
This defines a new specification frame DSP(F) of distributed specifications

in F and their distributed models.

Similar concepts were introduced for instance already in [Cla93]. The definition
of DSP(F) resembles the construction of the institution of structured theories
in [DM03], but differs from it somewhat by using whole specifications (linked by
specification morphisms) as the building blocks for our distributed specifications,
whereas the institution of structured theories relies on the use of collections of
sentences distributed over signature diagrams.

Given the notion of a distributed specification and its class of models, many
concepts and terminology carry over from standard to distributed specifica-
tions. For instance, consistency: a distributed specification DSP is consistent
if Mod [DSP]
= ∅.

5.2 Removing Distributivity

The literature so far focused largely on specification frames that are homogeneous
in some sense, for instance arise as the category of theories or of specifications

Heterogeneous Logical Environments for Distributed Specifications 279

built in a single institution, with the usual semantics. In such a case, the follow-
ing fact will often apply and could be used to diminish the role of distributed
specifications by using a corresponding standard (colimit) specification.

Proposition 5.2. Let F = 〈Spec,Mod : Specop → Set〉 be a (finitely) exact
specification frame — that is, Spec is (finitely) cocomplete and Mod preserves
(finite) limits.8

Then for any (finite) distributed specification DSP : G → Spec in F , there
exists a (colimit of DSP) specification SP ∈ |Spec| with specification mor-
phisms 〈ιn : DSP(n) → SP〉n∈|G| such that each model M ∈ Mod [SP] deter-
mines uniquely a distributed model of DSP, 〈M |ιn〉n∈|G| ∈ Mod [DSP], and vice
versa: each distributed model 〈Mn〉n∈|G| ∈ Mod [DSP] determines a unique model
M ∈ Mod [SP] such that Mn = M |ιn for n ∈ |G|.

This construction can easily be turned into both a morphism and a comorphism
of specification frames:

Proposition 5.3. Let F = 〈Spec,Mod : Specop → Set〉 be an exact specifica-
tion frame. Then there is a specification frame (co)morphism Colim : DSP(F) →
F , taking a distributed specification to its colimit, that is an isomorphism on
model classes.

A similar fact, although not stated explicitly there, is already present in the
proof of Thm. 20 in [DM03].

The assumption necessary for Props. 5.2 and 5.3 holds for instance for spec-
ification frames given by the categories of theories or of specifications (closed
under translation and union) built in any (finitely) exact institution, where the
category of signatures is (finitely) cocomplete and the model functor preserves
(finite) limits, see [GB92, ST88a, DGS93]. It is well-known that practically all
institutions that capture many-sorted logics are in fact exact. For single-sorted
case, the model functors tend not to preserve coproducts, but typically such in-
stitutions are semi-exact (signature pushouts exists and the model functor maps
them to pullbacks in Set). Then the resulting specification frames are semi-exact
in the analogous sense, which is enough to establish the fact as above for finite
connected distributed specifications.

However, this is quite in contrast with specification frames typically arising in
heterogeneous logical environments, where (semi-)exactness is very rare. What
one essential would need then is the (semi-)exactness of Grothendieck institu-
tions built over (uniform) heterogeneous logical environments. See [Dia02] for
results than ensure this for the morphism-uniform case, and [Mos02a] for the
comorphism-uniform case. Unfortunately, albeit mathematically interesting and
elegant, these results tend to rely on assumptions that are rarely met by the
environments arising in practice — for instance, they require the shape of the
heterogeneous logical environment to be (co)complete. This essentially would
imply that in our logical environment there already is a single “maximal” insti-
tution capable of expressing all the specifications built in other institutions in
8 That is, Mod maps (finite) colimits in Spec to limits in Set.

280 T. Mossakowski and A. Tarlecki

the environment via a unique representation. For example, in the Heterogeneous
Tool Set Hets [MML07], there is no such “maximal” institution, rather, there
are “local maxima”, like the logic of Isabelle/HOL, which is used to encode many
other logics. But even when restricting to a subgraph of logics represented in Is-
abelle/HOL, each logic is typically represented in it in more than one way, and
so this is not a colimit (indeed, a colimit would have to make identifications that
turn it into a rather artificial institution). Moreover, not all of the comorphisms
involved in Hets are exact, but this would be needed to make the Grothendieck
institution exact.

This is why distributed specifications become of real interest and relevance in
the context of heterogeneous logical environments.

As stated above, the exactness assumption of Prop. 5.3 is unrealistically
strong. A somewhat more realistic assumption is the following:

Definition 5.4. A specification frame F = 〈Spec,Mod : Specop → Set〉 is
quasi-exact if each diagram D : G → Spec has a cocone 〈ιn : D(n) → SP〉n∈|G|
that, moreover, is weakly amalgamable. The latter means that any compatible
family of models 〈Mn ∈ Mod(D(n))〉n∈|G| can be amalgamated to a (not neces-
sarily unique) model M ∈ Mod(SP) with M |ιn = Mn for n ∈ |G|.

This notion leads to a mathematically less elegant, but practically somewhat
more applicable variant of Prop. 5.3:

Proposition 5.5. Let F = 〈Spec,Mod : Specop → Set〉 be a quasi-exact spec-
ification frame. Let Discr(DSP(F)) be the sub-specification frame of DSP(F)
where all non-identity specification morphisms are removed. Then there is at
least one specification frame comorphism WeakAmalg : Discr (DSP(F)) → F
that is surjective on models, taking a distributed specification to the tip of a
weakly amalgamable cocone.

Note that the need of the move to discrete specification categories (via Discr ())
is caused by the construction not being functorial.

5.3 Implementing Distributed Specifications

Working in a specification frame F = 〈Spec,Mod〉, in this section we adapt to
distributed specifications the standard view of the process of systematic software
development, as presented using implementation steps involving constructors,
see [ST88b, ST97]. Recall that for (standard) specifications SP and SP ′, a con-
structor from SP ′ to SP is simply a function κ : Mod [SP ′] → Mod [SP]. Given
such a constructor, we say that SP ′ implements SP via κ, written SP κ� SP ′.9

To generalise this to distributed specifications, we also have to “distribute” the
constructor:
9 The definition in the framework of an institution is a bit more delicate: κ is a partial

function between model classes over the signatures of SP ′ and SP , respectively, and
then for SP κ� SP ′ one requires that on models in Mod [SP ′], κ is defined and yields
models in Mod [SP].

Heterogeneous Logical Environments for Distributed Specifications 281

Definition 5.6. To implement a distributed specification DSP : G → Spec by
DSP ′ : G′ → Spec, one needs to provide a covering function f : |G| → |G′| and
a family of constructors K = 〈κn : Mod [DSP ′(f(n))] → Mod [DSP(n)]〉n∈|G|.

Then DSP ′ implements DSP via f and K, written DSP
f, K
� DSP ′, if for

each distributed model 〈Mn′〉n′∈|G′| ∈ Mod [DSP ′], the family 〈κn(Mf(n))〉n∈|G|
is compatible with morphisms in DSP.

Of course, if DSP
f, K
� DSP ′ then for each distributed model 〈Mn′〉n′∈|G′| ∈

Mod [DSP ′], 〈κn(Mf(n))〉n∈|G| is a model of DSP .
As can be seen directly from the definition, to establish DSP

f, K
� DSP ′

we first have to show that for all n ∈ |G|, DSP(n) κn
� DSP ′(f(n)) (which is

just as in the implementation steps for standard specifications) and then add
that the constructors in K on the respective models from any family satisfying
(and hence compatible with) DSP ′ yield a family of models compatible with
DSP . The latter requirement is essentially new and, in general, may require new
proof techniques. However, in some simple cases it can be shown using standard
categorical reasoning:

Proposition 5.7. Consider any distributed specifications DSP : G → Spec and
DSP ′ : G′ → Spec, and let (F, τ) : DSP → DSP ′ be a specification morphism in
DSpec(F). Then DSP

f, K
� DSP ′, where f is the object (node) part of F and

K = 〈 |τn〉n∈|G| is the family of reducts w.r.t. τn, n ∈ |G|.

Note that the above is just an instance (in DSP(F)) of the well-known general
fact that for any specification morphism σ : SP → SP ′, the reduct w.r.t. σ yields
a correct implementation of SP by SP ′, SP |σ� SP ′, cf. [ST88b].

In the case captured by the proposition above, we ensure that the family of
constructors given as reducts w.r.t. specification morphisms preserves compat-
ibility of model families in the most simple and expected categorical way. The
use of reducts as constructors here may seem very restrictive, but in fact, if one
works in a sufficiently rich specification frame, for instance based on institutions
with “derived” signature morphisms, then reducts may cover essentially all rele-
vant constructors. Here, a very general concept of a derived signature morphism
may be used. Informally, a derived signature morphism δ : Σ → Σ′ maps each
symbol in Σ to its definition in terms of symbols in Σ′; then for any Σ′-model
which interprets the symbols in Σ′, its reduct w.r.t. δ is a Σ-model built using
the definitions for the symbols in Σ given by δ. In an institution-independent set-
ting, a derived signature morphism could be defined to be an ordinary signature
into a definitional extension (see Def. 5.8 below).

Finally, we should stress here that the above notion of implementation cov-
ers all possible (and necessary in the development process) changes. First, as
usual, individual specifications may be refined, by adding more requirements
and “implementation decisions”. Second, the structure of the distributed spec-
ification may change here: ultimately, we may even arrive at a single standard

282 T. Mossakowski and A. Tarlecki

specification. Finally, in the case when we are working in the heterogeneous
category of specifications built in a heterogeneous logical framework, institutions
in which individual specifications are built may be changed as well!

5.4 Comparing Distributed Specifications

For usual (homogeneous or focused heterogeneous) specifications, we have in-
troduced the basic notion of equivalence as a way to identify specifications with
the same model classes. For distributed specifications, this cannot be so simple.
The point is that, very informally, some of the nodes in a distributed speci-
fication may play only an auxiliary role, so that in any distributed model of
such a distributed specification, the individual models given for such nodes are
always uniquely determined by the rest of the family. Effectively, such nodes
and their corresponding individual models may be disregarded when compar-
ing distributed models of distributed specifications. This leads to a generali-
sation of the notion of equivalence of specifications in any specification frame
F = 〈Spec,Mod〉.

Definition 5.8. A specifications SP ′ is a definitional extension of a specifica-
tion SP along a specification morphism σ : SP → SP ′ if any SP-model has a
unique σ-expansion to an SP ′-model, i.e., the reduct |σ : Mod [SP ′] → Mod [SP]
is a bijection.

Definition 5.9. Two specifications SP1 and SP2 are pre-equivalent, written
SP1 ∼= SP2, iff there is a common definitional extension SP of SP1 and SP2.
Derived equivalence10 of specification is defined to be transitive closure of pre-
equivalence.

Proposition 5.10. Derived equivalence is an equivalence. In exact specifica-
tion frames, pre-equivalence is transitive, hence derived equivalence and pre-
equivalence coincide.

Now, two distributed specifications DSP1 : G1 → Spec and DSP2 : G2 → Spec
are pre-equivalent (in DSP(F)) iff there is a distributed specification DSP : G →
Spec with distributed specification morphisms (F1, τ1) : DSP1 → DSP and
(F2, τ2) : DSP2 → DSP such that DSP is a definitional extension of DSP1
along (F1, τ1) and of DSP2 along (F2, τ2). In other words, any distributed model
M1 ∈ Mod [DSP1] extends then uniquely along (F1, τ1) to a distributed model of
DSP , which in turn reduces (uniquely) w.r.t. (F2, τ2) to a distributed model of
DSP2, and vice versa, yielding a “natural” bijection between distributed models
of DSP1 and DSP2, respectively.

5.5 Distributed Heterogeneous Specifications

The machinery developed above may now be employed to deal with distributed
heterogeneous specifications in a heterogeneous logical environment HLE ,
10 This terminology is meant to reflect the comments concerning derived specification

morphisms in Sect. 5.3 above.

Heterogeneous Logical Environments for Distributed Specifications 283

understood as collections of specifications in HLE linked by (generalised) het-
erogeneous specification morphisms. Formally, such a distributed heterogeneous
specification is just a distributed specification in the sense of Def. 5.1 in the
specification frame HSF(HLE) = 〈Spec(HLE),Mod(HLE)〉, given by Def. 3.4.
This yields the specification frame DSP(HSF(HLE)) of distributed heteroge-
neous specifications. We can extend it further to an institution:

Definition 5.11. Let HLE be a heterogeneous logical environment. Then the
institution DHSI(HLE) has the category DSpec(HSF(HLE)) of distributed
heterogeneous specifications as its “signature” category; the model functor is in-
herited from DSP(HSF(HLE)). Given a distributed specification DSP : G →
Spec(HLE) in |DSpec(HSF(HLE))|, a DSP-sentence is of the form 〈n, ϕ〉
for n ∈ |G| and ϕ ∈ SenIn(Σn), where Sig[DSP(n)] = 〈In, Σn〉. A distributed
model 〈Mk〉k∈|G| ∈ Mod [DSP] satisfies such a sentence 〈n, ϕ〉 if Mn |= ϕ in In.
For a distributed specification morphism (F, τ) : (DSP : G → Spec(HLE)) →
(DSP ′ : G′ → Spec(HLE)) in DSpec(HSF(HLE)), translation of such a sen-
tence is given by (F, τ)(〈n, ϕ〉) = 〈F (n), τn(ϕ)〉, where for each n ∈ |G|, the
translation τn(ϕ) of ϕ along the generalised heterogeneous specification mor-
phism τn is defined by composing in the natural order the translations along
the signature morphism and the institution (co)morphism involved in τn. The
satisfaction condition follows easily.

DHSI(HLE) leads, in the expected way, to a notion of logical consequences
of a distributed specification (sentences that hold in all models of the dis-
tributed specifications). Spelling this out: for DSP : G → Spec(HLE), n ∈ |G|,
Sig [DSP(n)] = 〈In, Σn〉, and ϕ ∈ SenIn(Σn)), we say that 〈n, ϕ〉 is a conse-
quence of DSP , written DSP |=n ϕ, iff for all distributed models 〈Mk〉k∈|G| ∈
Mod [DSP], Mn |=In,Σn ϕ. Note that such consequences include, in general prop-
erly, the usual consequences of the individual specifications involved.

DHSI(HLE) also gives a notion of a (distributed heterogeneous) theory of
a distributed heterogeneous specification: for DSP : G → Spec(HLE) and n ∈
|G| with Sig [DSP(n)] = 〈In.Σn〉, we have Th(DSP)(n) = {ϕ ∈ SenIn(Σn) |
DSP |=n ϕ}. Then for each e : m → n in G, the signature morphism DSP(e) is a
theory morphism, DSP(e) : Th(DSP)(m) → Th(DSP)(n), so that we get a dia-
gram in the usual (heterogeneous) category of theories of HLE . Note though that
the individual theories Th(DSP)(n) need not be in general finitely presentable
in In, even if all the individual specifications in DSP are finite presentations.

An interesting alternative way to present distributed heterogeneous specifi-
cations would be to first define an institution that differs from DHSI(HLE)
by taking as signatures diagrams in the category Sign(HLE) of heterogeneous
signatures (which would coincide with the institution of structured theories,
as defined in [DM03], built for the Bi-Grothendieck institution of HLE). It is
easy to see that each distributed heterogeneous specification could be then ob-
tained as a structured specification built in this institution. Moreover, although
structured specifications in this institution would also correspond to families of
specifications with their signatures linked by signature morphisms that are not

284 T. Mossakowski and A. Tarlecki

necessarily specification morphisms, it can be shown that for such structured
specifications, at least when their signatures are finite directed diagrams, we can
always give an equivalent distributed heterogeneous specification as defined here.

If the specification frame HSF(HLE) is quasi-exact, Prop. 5.5 can be used
for DSP(HSF(HLE)). Moreover, it can be checked that the specification frame
morphism WeakAmalg defined on Discr(DSP(HSF(HLE))) there can be ex-
tended to an institution comorphism from DHSI(HLE) to the Bi-Grothendieck
institution build on HLE . The importance of this fact lies in the possibility of
transferring logical consequence:

Proposition 5.12. For any institution comorphism ρ : I → I ′ that is surjective
on models, and set of Σ-sentences Γ ∪ {ϕ} in I, we have:

Γ |=I
Σ ϕ iff ρSen

Σ (Γ) |=I′
ρSen

Σ (ϕ)

That is, given any proof calculus or theorem prover capturing logical consequence
in I ′, we can re-use it to capture logical consequence in I. When combined
with Prop. 5.5, this means that for quasi-exact (Bi-Grothendieck) institutions,
logical consequence for distributed heterogeneous specifications can be reduced
to logical consequence for focused heterogeneous specifications.

In a heterogeneous setting, the property of quasi-exactness for the specification
frame (or institution) of heterogeneous specifications remains quite a strong
requirement. However, if one restricts attention to distributed specifications with
particular shapes of diagram (namely, so-called connected finitely bounded inf-
complete diagrams), then it can be obtained under rather realistic assumptions.
For details, see Corollaries 30 and 31 of [CM08].

Finally, we can return in this setting to the issue of making heterogeneous logi-
cal environments uniform. It turns out that for any heterogeneous logical environ-
ment HLE , even though the heterogeneous specification categories Spec(HLE),
Spec(spanμ(HLE)) and Spec(spanρ(HLE)) are quite different, the distributed
specifications we can build in each of these categories are essentially the same.

Proposition 5.13. Given a heterogeneous logical environment HLE , consider
any distributed heterogeneous specification DSP ∈ |DSpec(HLE)|. There ex-
ists then a comorphism-uniform distributed heterogeneous specification DSPρ ∈
|DSpec(spanρ(HLE))| such that DSPρ ∼= DSP. Similarly, there is a morphism-
uniform distributed heterogeneous specification DSPμ ∈ |DSpec(spanμ(HLE))|
such that DSPμ ∼= DSP.

The proof is related to that of Thm. 11 of [Mos03], relying on Prop. 3.7. For
instance, consider an institution morphism μ : I → I′, where span(μ) is I ρμ,1←−
I ′

0
ρμ,2−→ I′, specifications SP ∈ SpecI , with Sig [SP] = Σ, and SP ′ ∈ SpecI′ , and a

signature morphism σ : Sig [SP ′] → μSign(Σ). Then a heterogeneous specification

morphism SP ′ 〈μ,σ〉−→ SP in a distributed heterogeneous specification may be

replaced by a sequence of heterogeneous specifications comorphisms SP ′ 〈id ,σ〉−→
ρμ,2(SP |Σρμ,1

)
〈ρμ,2,id〉←− SP |Σρμ,1

〈ρμ,1,id〉−→ SP .

Heterogeneous Logical Environments for Distributed Specifications 285

6 Final Remarks

The sentence part of the institution morphisms and comorphisms has rarely
played any role in the considerations in this paper (that is, after sentences have
been used to build basic specifications). Consequently, we could replace the use
of institution morphisms and comorphisms by institution semi-morphisms and
semi-comorphisms, respectively (semi-(co)morphisms are just like (co)morphisms
but without the translation of sentences, and hence without caring about the
satisfaction at all, see [ST88b, Tar96]). With the obvious projection from the
category of institutions and their (co)morphisms to the category of institutions
and their semi-(co)morphisms, essentially all we presented here would be a spe-
cial case of a formally more general (but in the presentation basically identi-
cal) development using semi-morphisms and semi-comorphisms. Of course, the
sentences and satisfaction start matter when it comes to consideration of con-
sequence and proofs in the framework presented here. Remarks on theories for
distributed specifications and discussion of Prop. 5.5 in Sect. 5.5 give but the first
hints in this direction. Then full institution morphisms and comorphisms pro-
vide considerably more possibilities then their “semi-” versions. A proof calculus
for focused heterogeneous specifications has been developed in [Mos02a, Mos05].
Using Prop. 5.5, it can be extended to distributed heterogeneous specifications
under suitable conditions using weakly amalgamable cocones, which are not un-
realistic to be met in practice. The exact tuning of these conditions remains a
topic for further research. In cases without weak amalgamation, probably there
is no better way than to resolve the proof problems on a case-by-case basis, for
each specific link between institutions.

A simple analysis of possible mutual directions of translations involved in
maps between institutions leads to further notions of maps between institutions,
as suggested in [Tar96] and then studied in [GR02] (see also [MW98]). In partic-
ular, when all translations go in the same direction, we obtain institution forward
morphisms, and when both sentences and models are translated contravariantly
w.r.t. signatures, we obtain forward comorphisms. It turns out that the span
construction helps here again: with spans of morphisms, we can simulate for-
ward (co)morphisms (as well as semi-(co)morphisms) much in the same way as
we have been able to simulate comorphisms, see [Mos05] for details. (A similar
remark holds for spans of comorphisms.) It may be a bit more difficult to bring
into the picture institution (co)morphisms in their theoroidal versions, where
signatures of one institution are mapped to theories, rather than just signa-
tures, of the other institution [Mes89, GR02]. A technically easy way to achieve
this is to add to the heterogeneous logical environment enough infrastructure
to allow for expressing theoroidal institution (co)morphisms as plain institution
(co)morphisms: for each institution I, its institution of theories Ith needs to be
added, along with the obvious morphism Ith → I and comorphism I → Ith.11

11 Even generalised theoroidal comorphisms in the sense of [Cod] can then be expressed
as semi-comorphisms between institutions of theories.

286 T. Mossakowski and A. Tarlecki

While the general theory works also for this extended heterogeneous logical envi-
ronment, it remains to be checked which properties of the heterogeneous logical
environment are preserved under this extension, and whether the duplication of
I into I and Ith can be eliminated, possibly using techniques of [Mos96]. At
least it is clear that a theorem prover for I can easily be lifted to Ith.

While non-uniform heterogeneous logical environments naturally arise and
can be used in practice, we also offer two ways to make them uniform. The first
way, via adjunctions between signature categories, leaves the resulting category
of heterogeneous specifications essentially untouched. However, adjunctions are
not always available. The second way, via the construction involving spans, is
completely general, but leads to a certain modification of the category of het-
erogeneous specifications. While the same focused heterogeneous specifications
can be expressed, we do not directly obtain the same heterogeneous specification
(co)morphisms. Nevertheless, we can capture the proof obligations that the mor-
phisms in the non-uniform environment carry by considering logically equivalent
specification diagrams. The same method shows that making a heterogeneous
logical environment uniform preserves (up to equivalence) the set of distributed
heterogeneous specifications.

Another possibility would be to consider an even more general category of in-
stitutions, where both morphisms and comorphisms (as well as their semi- and
forward versions) can be placed together. One obvious candidate could be based
on a notion of institution relational links, where the categories of signatures are
linked e.g. by distributors (also called profunctors) [Bor94], which are a relational
version of functors. Then for any two related signatures, a relation between the
sentences over them and a relation between models over them would be given,
natural in the related signature morphisms. Generalising the satisfaction condi-
tion for institution (co)morphisms, we would of course require these relations to
preserve satisfaction. Such relational links clearly compose and cover all kinds
of maps between institutions we considered. Hence, in this way we would obtain
a category of institutions with relational links between them, into which each
of the categories of institutions considered so far could be faithfully embedded.
However, as far as we can see, such a category brings little benefit: the notion
so obtained seems a bit artificial, and does not ensure any of the expected prop-
erties (e.g., entailment is in general neither preserved nor reflected by relational
links, the category is neither finitely complete nor finitely cocomplete, etc).

One consequence may be that we have to live with non-uniform environments,
where the maps considered do not compose in general, and so we cannot view
them simply as diagrams in a category of institutions. In fact, this is what is
really happening in Hets [MML07, Mos05], where both institution morphisms
and comorphisms are used, while the projection (via spans) to a comorphism-
uniform environment is applied for theorem proving. Future work will apply
this approach to the heterogeneous logical environment arising from UML (see
[CKTW08] for initial promising steps in this direction).

Acknowledgements. Many thanks to the anonymous referees for detailed com-
ments.

Heterogeneous Logical Environments for Distributed Specifications 287

References

[AF96] Arrais, M., Fiadeiro, J.-L.: Unifying theories in different institutions. In:
Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995
and COMPASS 1995. LNCS, vol. 1130, pp. 81–101. Springer, Heidelberg
(1996)

[BG80] Burstall, R.M., Goguen, J.A.: The semantics of CLEAR, a specification
language. In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS,
vol. 86, pp. 292–332. Springer, Heidelberg (1980)

[Bor94] Borceux, F.: Handbook of Categorical Algebra I. Cambridge University
Press, Cambridge (1994)

[BRJ98] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language
User Guide. Addison-Wesley, Reading (1998)

[CBEO99] Cornelius, F., Baldamus, M., Ehrig, H., Orejas, F.: Abstract and be-
haviour module specifications. Mathematical Structures in Computer Sci-
ence 9(1), 21–62 (1999)

[CKTW08] Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous
approach to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402.
Springer, Heidelberg (2008)

[Cla93] Classen, I.: Compositionality of application oriented structuring mecha-
nisms for algebraic specification languages with initial algebra semantics.
Phd thesis, Technische Universität Berlin (1993)

[CM08] Codescu, M., Mossakowski, T.: Heterogeneous colimits. In: Boulanger, F.,
Gaston, C., Schobbens, P.-Y. (eds.) MoVaH 2008 Workshop on Modeling,
Validation and Heterogeneity. IEEE press, Los Alamitos (2008)

[Cod] Codescu, M.: Generalized theoroidal institution comorphisms. This vol-
ume

[DGS93] Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modulari-
sation. In: Huet, G., Plotkin, G. (eds.) Logical Environments, pp. 83–130.
Cambridge Univ. Press, Cambridge (1993)

[Dia98] Diaconescu, R.: Extra theory morphisms for institutions: Logical seman-
tics for multi-paradigm languages. J. Applied Categorical Structures 6,
427–453 (1998)

[Dia02] Diaconescu, R.: Grothendieck institutions. J. Applied Categorical Struc-
tures 10, 383–402 (2002)

[Dia08] Diaconescu, R.: Institution-independent model theory. Birkhäuser, Basel
(2008)

[DM03] Durán, F., Meseguer, J.: Structured theories and institutions. Theor.
Comput. Sci. 309(1-3), 357–380 (2003)

[EBCO92] Ehrig, H., Baldamus, M., Cornelius, F., Orejas, F.: Theory of algebraic
module specification including behavioral semantics and constraints. In:
Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.) Algebraic Methodology
and Software Technology AMAST 1991, Proc. 2nd Intl. Conf., Iowa City,
1991, Workshops in Computing, pp. 145–172. Springer, Heidelberg (1992)

[EBO93] Ehrig, H., Baldamus, M., Orejas, F.: New concepts of amalgamation and
extension for a general theory of specifications. In: Bidoit, M., Choppy, C.
(eds.) Abstract Data Types 1991 and COMPASS 1991. LNCS, vol. 655,
pp. 199–221. Springer, Heidelberg (1993)

288 T. Mossakowski and A. Tarlecki

[GB92] Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for
specification and programming. Journal of the ACM 39(1), 95–146 (1992)

[GR02] Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Com-
pututing 13(3-5), 274–307 (2002)

[HHP93] Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics.
Journal of the ACM 40(1), 143–184 (1993)

[MDT09] Mossakowski, T., Diaconescu, R., Tarlecki, A.: What is a logic trans-
lation? In: Beziau, J.-Y. (ed.) Logica Universalis, Birkhäuser, Basel (to
appear, 2009)

[Mes89] Meseguer, J.: General logics. In: Logic Colloquium 1987, pp. 275–329.
North Holland, Amsterdam (1989)

[MML07] Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
519–522. Springer, Heidelberg (2007)

[MOM02] Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography.
Theor. Comput. Sci. 285(2), 121–154 (2002)

[Mos96] Mossakowski, T.: Different types of arrow between logical frameworks. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099,
pp. 158–169. Springer, Heidelberg (1996)

[Mos02a] Mossakowski, T.: Comorphism-based Grothendieck logics. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer,
Heidelberg (2002)

[Mos02b] Mossakowski, T.: Heterogeneous development graphs and heterogeneous
borrowing. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS,
vol. 2303, pp. 326–341. Springer, Heidelberg (2002)

[Mos03] Mossakowski, T.: Foundations of heterogeneous specification. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 359–375. Springer, Heidelberg (2003)

[Mos05] Mossakowski, T.: Heterogeneous Specification and the Heterogeneous
Tool Set. Habilitation thesis, Universität Bremen (2005)

[MW98] Martini, A., Wolter, U.: A single perspective on arrows between insti-
tutions. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp.
486–501. Springer, Heidelberg (1998)

[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg
(2002)

[PF06] López Pombo, C., Frias, M.F.: Fork algebras as a sufficiently rich uni-
versal institution. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS,
vol. 4019, pp. 235–247. Springer, Heidelberg (2006)

[ST88a] Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. In-
formation and Computation 76, 165–210 (1988)

[ST88b] Sannella, D., Tarlecki, A.: Toward formal development of programs from
algebraic specifications: Implementations revisited. Acta Informatica 25,
233–281 (1988)

[ST97] Sannella, D., Tarlecki, A.: Essential concepts of algebraic specification
and program development. Formal Aspects of Computing 9, 229–269
(1997)

[Tar87] Tarlecki, A.: Institution representation. Unpublished note, Dept. of Com-
puter Science, University of Edinburgh (1987)

Heterogeneous Logical Environments for Distributed Specifications 289

[Tar96] Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl,
O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995.
LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)

[Tar00] Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de
Rijke, M. (eds.) Frontiers of Combining Systems 2. Studies in Logic and
Computation, pp. 337–360. Research Studies Press (2000)

[Tar03] Tarlecki, A.: Abstract specification theory: An overview. In: Broy, M.,
Pizka, M. (eds.) Models, Algebras, and Logics of Engineering Software.
NATO Science Series — Computer and System Sciences, vol. 191, pp.
43–79. IOS Press, Amsterdam (2003)

	Heterogeneous Logical Environments for Distributed Specifications
	Introduction
	Heterogeneous Logical Environments
	Specifications and Their Heterogeneous Categories
	Uniformity via Signature Adjunctions
	Distributed Specifications
	Distributed Specifications and Their Models
	Removing Distributivity
	Implementing Distributed Specifications
	Comparing Distributed Specifications
	Distributed Heterogeneous Specifications

	Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

