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Preface

This volume contains selected papers from WADT 2008, the 19th International
Workshop on Algebraic Development Techniques. After having joined forces with
CMCS for CALCO 2007 in Bergen, WADT took place in 2008 as an individual
workshop and in its traditional format.

Like its predecessors, WADT 2008 focussed on the algebraic approach to
the specification and development of systems, which encompasses many aspects
of formal design. Originally born around formal methods for reasoning about
abstract data types, WADT now covers new specification frameworks and pro-
gramming paradigms (such as object-oriented, aspect-oriented, agent-oriented,
logic and higher-order functional programming) as well as a wide range of ap-
plication areas (including information systems, concurrent, distributed and mo-
bile systems). The main topics are: foundations of algebraic specification and
other approaches to formal specification, including process calculi and models of
concurrent, distributed and mobile computing; specification languages, methods
and environments; semantics of conceptual modelling methods and techniques;
model-driven development; graph transformations, term rewriting and proof sys-
tems; integration of formal specification techniques; formal testing and quality
assurance; and validation and verification.

The Steering Committee of WADT consists of Michel Bidoit, José Fiadeiro,
Hans-JörgKreowski,Till Mossakowski, Peter Mosses, Fernando Orejas, Francesco
Parisi-Presicce, and Andrzej Tarlecki.

WADT 2008 took place during June 13–16, 2008, at Hotel Santa Croce in
Fossabanda, a former monastery in the center of Pisa, and was organized by a
committee chaired by Andrea Corradini and including Filippo Bonchi, Roberto
Bruni, Vincenzo Ciancia and Fabio Gadducci. The scientific program consisted
of 33 presentations selected on the basis of submitted abstracts, as well as invited
talks by Egon Börger, Luca Cardelli and Stephen Gilmore.

The workshop took place under the auspices of IFIP WG 1.3 (Foundations of
System Specification), and it was organized by the Dipartimento di Informatica
of the University of Pisa. It was sponsored by IFIP TC1 and by the University
of Pisa.

All the authors were invited to submit a full paper for possible inclusion in this
volume. An Evaluation Committee was formed which consisted of the Steering
Committee of WADT with the additional members Andrea Corradini (Co-chair),
Fabio Gadducci, Reiko Heckel, Narciso Mart́ı-Oliet, Ugo Montanari (Co-chair),
Markus Roggenbach, Grigore Roşu, Don Sannella, Pierre Yves Schoebbens and
Martin Wirsing.

All submissions underwent a careful refereeing process. We are also grateful
to the following additional referees for their help in reviewing the submissions:
Cyril Allauzen, Dénes Bisztray, Paolo Baldan, Filippo Bonchi, Artur Boronat,



VI Preface

Vincenzo Ciancia, Razvan Diaconescu, Renate Klempien-Hinrichs, Alexander
Kurz, Sabine Kuske, Alberto Lluch Lafuente, Carlos Gustavo Lopez Pombo,
Christoph Lüth, Hernan Melgratti, Giacoma Valentina Monreale, Miguel
Palomino, Marius Petria, Laure Petrucci, Andrei Popescu, Florian Rabe,
Pierre-Yves Schobbens, Lutz Schröder, Traian Şerbănuţă, Gheorghe Stefanescu
and Paolo Torrini. This volume contains the final versions of the contributions
that were accepted.

March 2009 Andrea Corradini
Ugo Montanari
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Concurrent Abstract State Machines and +CAL

Programs

Michael Altenhofen1 and Egon Börger2

1 SAP Research, Karlsruhe, Germany
Michael.Altenhofen@sap.com

2 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. We apply the ASM semantics framework to define the await
construct in the context of concurrent ASMs. We link +CAL programs
to concurrent control state ASMs with turbo ASM submachines.

1 Introduction

In recent work we made use of the Abstract State Machines (ASM) method [8] to
analyze a given cluster protocol implementation. We extracted from the code a
high-level model that could be used for the analysis. We also refined the abstract
model to an executable CoreASM [10,11] model so that we could run scenarios
in the model. The imperative to keep the abstract models succinct and gras-
pable for the human eye led us to work with the await construct for multiple
agent asynchronous ASMs. In this paper we define this construct for ASMs by
a conservative extension of basic ASMs.

1.1 Problem of Blocking ASM Rules

As is well known, await Cond can be programmed in a non-parallel program-
ming context as while not Cond do skip, where Cond describes the wait
condition; see the flowchart definition of the control state ASM in Fig. 1, where
as usual the circles represent control states (called internal states for Finite State
Machines, FSMs) and the rhombs a test.

One has to be careful when using this construct in an asynchronous multi-
agent (in the sequel shortly called concurrent) ASM, given that the semantics of
each involved single-agent ASM is characterized by the synchronous parallelism
of a basic machine step, instead of the usual sequential programming paradigm
or interleaving-based action system approaches like the B method [1], where for
each step one fireable rule out of possibly multiple applicable rules is chosen
for execution. The problem is to appropriately define the scope of the blocking
effect of await, determining which part of a parallel execution is blocked where
await occurs as submachine. One can achieve this using control states, which
play the role of the internal states of FSMs; see for example Fig. 1 or the fol-
lowing control state ASM, which in case ctl state = wait and not Cond holds
produces the empty update set and remains in ctl state = wait , thus ‘blocking’

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M. Altenhofen and E. Börger

Fig. 1. Control State ASM for await Cond

the execution (under the assumption that in the given ASM no other rule is
guarded by ctl state = wait)1:

await Cond =
if ctl state = wait then

if Cond then ctl state := done

However, when the underlying computational framework is not the execution of
one rule, but the synchronous parallel execution of multiple transition rules, the
explicit use of control states leads quickly to hard to grasp complex combinations
of conditions resulting from the guards of different rules where an await Cond
has to be executed. The complexity of the corresponding flowchart diagrams can
be reduced up to a certain point using the triangle visualization in Fig. 1. It
represents the right half of the traditional rhomb representation for check points
in an FSM flowchart—where the right half represents the exit for yes (when the
checked condition evaluates to true) and the left half the exit for no (when the
checked condition evaluates to false). Is there a simple definition for the semantics
of the await construct within the context of synchronous parallel basic ASMs?
1 ‘Blocking’ here means that as long as the empty update set is produced, the state

of the machine—in particular its control state—does not change.
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Otherwise stated, can a definition of the semantics of the await Cond do M
machine, namely to wait until Cond becomes true and then to proceed with
executing M , be smoothly incorporated into the usual semantical definition of
ASMs based on constructing update sets?

Such a definition would avoid the need for control states in the high-level
definition of await (without hindering its implementation by control states).
Above all it would preserve a main advantage of the update set construction in
defining what is an ASM step, namely to elegantly capture what is intended to
be considered as a basic machine step. This is important where one has to work
with different degrees of granularity of what constitutes a basic machine step,
usually called ‘atomic’ step to differentiate it from the typical sequence of actions
in a standard program with “;” (sequential execution). For example basic ASMs,
which consist only of rules if Cond then Updates , have been equipped in [7] with
a notation for operators to sequentialize or call submachines. It is defined within
the ASM semantics framework in such a way that the computation performed
by M seq N appears to the outside world as one atomic step, producing the
overall effect of first executing an atomic M -step and in the thus produced state
an atomic N -step; analogously for submachine execution. Machines with these
constructs are called turbo ASMs because they offer two levels of analysis, the
macro step level and the view of a macro step as a sequence of micro steps (which
may contain again some macro steps, etc.).

We provide in this paper a similar application of the ASM semantics frame-
work to define the meaning of await for concurrent ASMs, in the context of the
synchronous parallelism of single-agent ASMs.

1.2 Atomicity in Control State ASMs and +CAL

When discussing this issue with Margus Veanes from Microsoft Research at the
ABZ2008 conference in London, our attention was drawn to the recently defined
language +CAL for describing concurrent algorithms. It is proposed in [21] as “an
algorithm language that is designed to replace pseudo-code” (op.cit., abstract),
the idea being that describing algorithms in the +CAL language provides two
advantages over traditional pseudo-code whose “obvious problems . . . are that it
is imprecise and . . . cannot be executed” (op.cit. p.2): a) “a user can understand
the precise meaning of an algorithm by reading its TLA+ translation”, and b)
“an algorithm written in +CAL . . . can be executed—either exhaustively by
model checking or with non-deterministic choices made randomly”(ibid.), using
the TLC model checker.

These two features advocated for +CAL are not new. ASMs have been used
successfully since the beginning of the 1990’ies as an accurate model for pseudo-
code, explicitly proposed in this function in [2,3]. A user can understand the
precise meaning of ASMs directly, namely as a natural extension of Finite State
Machines (FSMs). Defining rigorously the operational semantics of ASMs uses
only standard algorithmic concepts and no translation to a logic language. Fur-
thermore, comprehensive classes of ASMs have been made executable, using var-
ious interpreters, the first two defined in 1990 at Quintus and at the university of
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Dortmund (Germany) for experiments with models of Prolog,2 the more recent
ones built at Microsoft Research (AsmL [12]) and as open source project (Core-
ASM [10]). ASMs have also been linked to various standard and probabilistic
model checkers [9,14,15,16,17,22,23,25]. Last but not least from ASMs reliable
executable code can be compiled, for a published industrial example see [6].

What we find interesting and helpful in +CAL is (besides the link it provides
to model checking) the succinct programming notation it offers for denoting
groups of sequentially executed instructions as atomic steps in a concurrent al-
gorithm, interpreted as basic steps of the underlying algorithm. As mentioned
above, such a malleable atomicity concept allowing sequential subcomputations
and procedure calls has already been provided through the seq, iterate and
submachine concepts for turbo ASMs [7], which turn a sequence or iteration of
submachine steps into one atomic step for the main machine. However the label-
notation of +CAL, which is a variation of the control state notation for FSMs,
will be more familiar to algorithm designers and programmers than the seq no-
tation (in AsmL [12] the name step is used instead of seq) and is more concise.
We will illustrate that one can exploit the +CAL notation in particular as a
convenient textual pendant to the FSM flowchart diagram description technique
for control state ASMs which contain turbo ASM submachines. As side effect
of linking corresponding features in +CAL and in concurrent ASMs one obtains
an ASM interpretation for +CAL programs, which supports directly the intu-
itive understanding of +CAL constructs and is independent of the translation of
+CAL to the logic language TLA+.3

In Section 2 we extend the standard semantics of ASMs to concurrent ASMs
with the await construct. For the standard semantics of ASMs we refer the
reader to [8]. In Section 2 we link the corresponding constructs in +CAL and in
the class of concurrent constrol state ASMs with await.

2 Concurrent ASMs with the await Construct

A basic ASM consists of a signature, a set of initial states, a set of rule decla-
rations and a main rule. A rule is essentially a parallel composition of so-called
transition rules if Cond then Updates , where Updates is a finite set of assign-
ment statements f (e1, . . . , en) := e with expressions ei , e. In each step of the
machine all its transition rules that are applicable in the given state are exe-
cuted simultaneously (synchronous parallelism); a rule is applicable in state S if
its guard Cond evaluates in S to true.

In more detail, the result of an M -step in state S can be defined in two parts.
First one collects the set U of all updates which will be performed by any of the
rules if Cond then Updates that are applicable in the given state S ; by update
we understand a pair (l , v) of a location l and its to be assigned value v , read:

2 see the historical account in [4].
3 For the sake of completeness we remark that there is a simple scheme for translating

basic ASMs to TLA+ formulae which describe the intended machine semantics. Via
such a translation one can model check ASMs using the TLC model checker of TLA+.
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the value the expression exp of an assignment f (e1, . . . , en) := e evaluates to
in S . The reader may think of a location as an array variable (f , val), where
val consists of a sequence of parameter values to which the expressions ei in the
left side f (e1, . . . , en) of the assignment evaluate in S . Then, if U is consistent,
the next (so-called internal) state S + U resulting from the M -step in state S is
defined as the state that satisfies the following two properties:

for every location (f , val) that is not element of the update set U , its value,
written in standard mathematical notation as f (val), coincides with its value
in S (no change outside U ),
each location (f , val) with update ((f , val), v) ∈ U gets as value f (val) = v
(which may be its previous value in S , but usually will be a new value).

In case U is inconsistent no next state is defined for S , so that the M -computation
terminates abruptly in an error state because M can make no step in S . For use
below we also mention that in case the next internal state S + U is defined,
the next step of M takes place in the state S + U + E resulting from S + U
by the environmental updates of (some of) the monitored or shared locations as
described by an update set E .

The reader who is interested in technical details can find a precise (also a
formal) definition of this concept in the AsmBook [8, Sect.2.4]. In particular,
there is a recursive definition which assigns to each of the basic ASM constructs4

P its update set U such that yield(P ,S , I ,U ) holds (read: executing transition
rule P in state S with the interpretation I of the free variables of P yields the
update set U ), for each state S and each variable interpretation I . We extend
this definition here by defining yield(await Cond ,S , I ,U ). The guiding principle
of the definition we are going to explain is the following:

(the agent which executes) an ASM M becomes blocked when at least one
of its rules, which is called for execution and will be applied simultaneously
with all other applicable rules in the given state S , is an await Cond whose
Cond evaluates in S to false,
(the agent which executes) M is unblocked when (by actions of other execut-
ing agents which constitute the concurrent environment where M is running)
a state S ′ is reached where for each await Cond rule of M that is called
for execution in S ′, Cond evaluates to true.

In the sequential programming or interleaving-based action systems context
there is at each moment at most one applicable rule to consider and thus at
most one await Cond called for execution. In the ASM computation model,
where at each moment each agent fires simultaneously all the rules that are ap-
plicable, it seems natural to block the computation at the level of agents, so that
possibly multiple await Cond machines have to be considered simultaneously.
Variations of the definition below are possible. We leave it to further experimen-
tation to evaluate which definition fits best practical needs, if we do not want
to abandon the advantage of the synchronous parallelism of basic ASMs (whose
benefit is to force the designer to avoid sequentiality wherever possible).

4 skip, par, if then else, let, choose, forall, seq and machine call.
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The technical idea is to add to the machine signature a location phase with
values running or wait ,5 which can be used to prevent the application of the
internal state change function S + U in case Cond of an await Cond called for
execution does not evaluate to true in S . In this case we define await Cond to
yield the phase update (phase,wait) and use the presence of this update in U
to block the state change function S + U from being applied. This leads to the
following definition:

yield(await Cond ,S , I ,U ) =
∅ if Cond is true in S // proceed
{(phase,wait)} else //change phase to wait

We now adapt the definition of the next internal state function S + U to the
case that U may contain a phase update. The intuitive understanding of an
await Cond statement is that the executing agent starts to wait, continuously
testing Cond without performing any state change, until Cond becomes true
(through actions of some other agents in the environment). In other words,
a machine M continues to compute its update set, but upon encountering an
await Cond with false Cond ition it does not trigger a state change. We therefore
define as follows (assuming yields(M ,S , I ,U )):

If phase = running in S and U contains no update (phase,wait), it means
that no await Cond statement is called to be executed in state S . In this
case the definition of S +U is taken unchanged from basic ASMs as described
above and phase = running remains unchanged.
If phase = running in S and the update (phase,wait) is an element of U ,
then some await Cond statement has been called to be executed in state S
and its wait Cond ition is false. In this case we set S+U = S+{(phase,wait)}.
This means that the execution of any await Cond statement in P whose
Cond is false in the given state S blocks the (agent who is executing the)
machine P as part of which such a statement is executed. Whatever other
updates—except for the phase location—the machine P may compute in U
to change the current state, they will not be realized (yet) and the internal
state remains unchanged (except for the phase update).
If in state S phase = wait holds and the update (phase,wait) is element
of U , we set the next internal state S + U as undefined (blocking effect
without internal state change). This definition reflects that all the await
Cond statements that are called for execution in a state S have to succeed
simultaneously, i.e. to find their Cond to be true, to let the execution of P
proceed (see the next case). In the special case of a sequential program
without parallelism, in each moment at most one await Cond statement is
called for execution so that in this case our definition for ASMs corresponds
to the usual programming interpretation of await Cond .

5 phase could be used to take also other values of interest in the concurrency context,
besides running and wait for example ready , suspended , resumed , etc., but here we
restrict our attention to the two values running and wait .
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If phase = wait holds in S and U contains no phase update (phase,wait), it
means that each await Cond statement that may be called to be executed
in state S has its cond evaluated to true. In this case the next internal
state is defined as S + U + {(phase, running)}, i.e. the internal state S +
U as defined for basic ASMs with additionally phase updated to running.
Otherwise stated when all the waiting conditions are satisfied, the machine
continues to run updating its state via the computed set U of updates.

The first and fourth case of this definition imply the conservativity of the re-
sulting semantics with respect to the semantics of basic ASMs: if in a state with
phase = running no await Cond statement is called, then the machine behaves
as a basic ASM; if in a state with phase = wait only await Cond statements with
true waiting Cond ition are called, then the machine switches to phase = running
and behaves as a basic ASM.

One can now define await Cond M as parallel composition of await Cond
and M . Only when Cond evaluates to true will await Cond yield no phase
update (phase,wait) so that the updates produced by M are taken into account
for the state change obtained by one M -step.

await Cond M =
await Cond
M

Remark. The reason why we let a machine M in a state S with phase = wait
recompute its update set is twofold. Assume that await Cond is one of the rules
in the then branch M1 of M = if guard then M1 else M2, but not in the else
branch. Assume in state S guard is true, phase = running and Cond is false, so
that executing await Cond as part of executing M1 triggers the blocking effect.
Now assume that, due to updates made by the environment of M , in the next
state guard changes to false. Then await Cond is not called for execution any
more, so that the blocking effect has vanished. Symmetrically an await Cond
that has not been called for execution in S may be called for execution in the next
state S ′, due to a change of a guard governing await Cond ; if in S ′ Cond ition
is false, a new reason for blocking M appears that was not present in state S .
Clearly such effects cannot happen in a sequential execution model because there,
a program counter which points to an await Cond statement will point there
until the statement proceeds because Cond became true.

The above definition represents one possibility to incorporate waiting into
the ASM framework. We are aware of the fact that its combination with the
definition of turbo ASMs may produce undesired effects, due to the different
scoping disciplines of the two constructs.6 Other definitions of await Cond M
with different scoping effect and combined with non-atomic sequentialization
concepts should be tried out.

6 Consider for example M seq await Cond or await Cond seq M , where M contains
no await, applied in a state where Cond evaluates to false. The update (phase, wait)
of await Cond will be overwritten by executing M even if Cond remains false.
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3 Linking Concurrent ASMs and +CAL Programs

The reader has seen in the previous section that in the ASM framework a basic
step of a machine M is simply a step of M , which computes in the given state with
given variable interpretation the set U of updates such that yield(M ,S , I ,U )
and applies it to produce the next state S + U . Once an update set U has been
used to build S + U , there remains no trace in S + U about which subsets
of Updates , via which M -rule if Cond then Updates that is executable in the
given state, have contributed to form this state. Thus each step of an ASM is
considered as atomic and the grain of atomicity is determined by the choice made
for the level of abstraction (the guards and the abstract updates) at which the
given algorithm is described by M . Typically precise links between corresponding
ASMs at different levels of abstraction are established by the ASM refinement
concept defined in [5].

The ASM literature is full of examples which exploit the atomicity of the sin-
gle steps of an ASM and their hierarchical refinements. A simple example men-
tioned in the introduction is the class of turbo ASMs, which is defined from basic
ASMs by allowing also the sequential composition M = M1 seq M2 or iteration
M = iterate M1 of machines and the (possibly recursive) call M (a1, . . . , an) of
submachines for given argument values ai . In these cases the result of executing
in state S a sequential or iterative step or a submachine call is defined by com-
puting the comprehensive update set, produced by the execution of all applicable
rules of M , and applying it to define the next state. The definition provides a
big-step semantics of turbo ASMs, which has been characterized in [13] by a
tree-like relation between a turbo ASM macro step and the micro steps it hides
(see [8, 4.1]).

Another way to describe the partitioning of an ASM-computation into atomic
steps has been introduced in [3] by generalizing Finite State Machines (FSMs)
to control state ASMs. In a control state ASM M every rule has the following
form:

Fsm(i , cond , rule, j ) =
if ctl state = i then

if cond then
rule
ctl state := j

Such rules are visualized in Fig. 2, which uses the classical graphical FSM no-
tation and provides for it a well-defined textual pendant for control state ASMs
with a rigorously defined semantics. We denote by dgm(i , cond , rule, j ) the di-
agram representing Fsm(i , cond , rule, j ). We skip cond when it is identical to
true. In control state ASMs each single step is controlled by the unique cur-
rent control state value and a guard. Every M -step leads from the uniquely
determined current ctl state value, say i , to its next value jk (out of {j1, . . . , jn},
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depending on which one of the guards condk is true in the given state7)—the way
FSMs change their internal states depending on the input they read. Otherwise
stated the control state pair (i , jk ) specifies the desired grain of atomicity, namely
any rulek constituting a single machine step. This is essentially what is used in
+CAL to indicate atomicity, except for the notational difference that the control
states are written as labels and the fact that +CAL is based upon the sequential
programming paradigm (see the details below).

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 2. Flowchart for control state ASMs

However, each rulek may be a complex ASM, for example another control-state
ASM whose execution may consists of multiple, possibly sequential or iterated
substeps.8 If their execution has to be considered as one step of the main ma-
chine M where rulek appears, namely the step determined by going from control
state i to control state jk , a notation is needed to distinguish the control states
within rulek from those which define the boundary of the computation segment
that is considered as atomic.

There are various ways to make such a distinction. The M seq N operator
can be interpreted as composing control state ASMs with unique start and end
control state, namely by identifying endM = startN . Suppressing the visualiza-
tion of this intermediate control state, as indicated in Fig. 3, provides a way
to render also graphically that the entire machine execution leading from con-
trol state start = startM to control state end = endN is considered as atomic.
This corresponds to the distinction made in the +CAL language: it is based
upon sequential control (denoted by the semicolon) the way we are used from
programming languages, but specific sequences of such sequential steps can be
aggregated using labels, namely by defining as (atomic) step each “control path
that starts at a label, ends at a label, and passes through no other labels” (op.cit.,
p.19). +CAL programs appear to be equivalent to control state ASMs with turbo
submachines; the labels play the role of the control states and the turbo sub-
machines the role of sequentially executed nonatomic +CAL code between two
7 If two guards condk , condl have a non empty intersection, in case ctl statek �=

ctl statel an inconsistent update set U is produced so that by definition S + U
is undefined. If instead a non-deterministic interpretation of FSM rules is intended,
this non-determinism can be expressed using the ASM choose construct.

8 Replacing Fsm(i , rule, j ) by Fsm(i ,M , j ) with a new control state ASM M is a
frequent ASM refinement step, called procedural in [5].
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Fig. 3. Sequential composition of control state ASMs

labels. This is explained by further details in Sect. 3.1 and illustrated in Sect. 3.2
by writing the major example from [21] as a turbo control state ASM.

3.1 Control State ASM Interpretation of +CAL Programs

+CAL is proposed as an algorithm language to describe multiprocess algorithms.
The chosen concurrency model is interleaving:

A multiprocess algorithm is executed by repeatedly choosing an arbitrary
process and executing one step of that process, if that step’s execution
is possible. [20, p.26]

This can be formalized verbatim by an ASM-scheme MultiProcess for multi-
agent ASMs, parameterized by a given set Proc of constituting processes. The
execution behavior of each single process is defined by the semantics of basic
(sometimes misleadingly also called sequential) ASMs. The ASM choose con-
struct expresses choosing, for executing one step, an arbitrary process out of the
set CanExec(Proc) of those P ∈ Proc which can execute their next step:9

MultiProcess(Proc) =
choose P ∈ CanExec(Proc)

P

Therefore for the rest of this section we focus on describing the behavior of sin-
gle +CAL programs by ASMs, so that MultiProcess becomes an interpreter
scheme for +CAL programs. The program behavior is determined by the exe-
cution of the statements that form the program body (called algorithm body in
+CAL), so that we can concentrate our attention on the operational description
of +CAL statements and disregard here the declarations as belonging to the
signature definition.

We apply the FSM flowchart notation to associate to each +CAL program
body P a diagram dgm(P) representing a control state ASM asm(P) which
defines the behavior of P (so that no translation of P to TLA+ is needed to define
the semantics of P). Each label in P is interpreted as what we call a concurrent

9 There are various ways to deal with the constraint “if that step’s execution is pos-
sible”. Using the ASM choose operator has the effect that in case CanExec(P) is
empty, nothing happens (more precisely: an empty update set is produced whose ap-
plication does not change the current state). If one wants this case to be interpreted
as explicitly blocking the scheduler, it suffices to add the await CanExec(P) �= ∅
machine. The predicate CanExec(P) is defined inductively.
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control state. The other control states in dgm(P) are called sequential control
states because they serve to describe the sequentiality of micro-steps (denoted
in P by the semicolon), the constituents of sequences which are considered as an
atomic step. They are the control states that are hidden by applying the seq,
while and submachine call operators. Since the construction of dgm(P) uses only
standard techniques we limit ourselves here to show the graphical representation
for each type of +CAL statements. Out of these components and adding rules
for the evaluation of expressions one can build a +CAL interpreter ASM, using
the technique developed in [24] to construct an ASM interpreter for Java and
JVM programs. We leave out the print statement and the assert statement; the
latter is of interest only when model checking a +CAL program.

As basic statements a +CAL program can contain assignment statements
or the empty statement skip. Program composition is done via the structured
programming constructs sequencing (denoted by the semicolon), if then else,
while together with await (named when) statements (a concurrent pendant of
if statements), two forms of choice statements (nondeterminism), statements to
call or return from subprograms. Since statements can be labeled, also Goto l
statements are included in the language, which clearly correspond to simple
updates of ctl state resp. arrows in the graphical representation.

For the structured programming constructs the associated diagram dgm(stm)
defining the normal control flow consists of the traditional flowchart representa-
tion of FSMs, as illustrated in Fig. 3 and Fig. 4. One could drop writing “yes”
and “no” on the two exits if the layout convention is adopted that the “yes”
exit is on the upper or hight half of the rhomb and the “no” exit on the lower
or left half, as is usually the case. In Fig. 4 we explicitly indicate for each dia-
gram its control state for begin (called start) and end (called done), where each
dgm(stm) has its own begin and end control state, so that start and done are
considered as implicitly indexed per stm to guarantee a unique name. Most of
these control states will be sequential control states in the diagram of the entire
program that is composed from the subdiagrams of the single statements. These
sequential control states can therefore be replaced by the turbo ASM operator
seq as done in Fig. 3, which makes the atomicity of the sequence explicit.

await statements are written when Cond ; in +CAL. The semantical defini-
tion of asm(await Cond) has been given within the ASM framework in Sect. 2,
extending the sequential programming definition in Fig. 1. For the visualization
we define dgm(when Cond ; ) by the triangle shown in that figure.

Basic statements stm are represented by the traditional FSM graph of Fig. 2,
in Sect. 3 denoted by dgm(start , asm(stm), done). The statement skip; “does
nothing” and thus has the behavior of the homonymous ASM asm(skip ; ) =
skip, which in every state yields an empty update set. An assignment state-
ment in +CAL is a finite sequence stm = lhs1 := exp1 || . . . || lhsn := expn of
assignments, executed by “first evaluating the right-hand sides of all its assign-
ments, and then performing those assignments from left to right”. This behavior
is that of the following ASM, where the expression evaluation is performed in
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Fig. 4. Control State ASM for Structured Programming Concepts

parallel for all expressions in the current state, whereafter the assignment of the
computed values is done in sequence.10

asm(lhs1 := exp1 || . . . || lhsn := expn ; ) =
forall 1 ≤ i ≤ n let xi = expi

lhs1 := x1 seq . . . seq lhsn := xn

The behavior of statements Goto l ; is to “end the execution of the current
step and causes control to go to the statement labeled l” [20, p.25], where-
for such statements are required to be followed (in the place where they oc-
cur in the program) by a labeled statement. Thus the behavior is defined by
asm(Goto l ; ) = (ctl state := l) and dgm(Goto l ; ) as an arrow leading to
control state l from the position of the Goto l ;, which is a control state in case
the statement is labeled.

The two constructs expressing a non determinstic choice can be defined as
shown in Fig. 5.

10 It seems that this treatment of assignment statements is related to the semantics of
nested EXCEPTs in TLA+ and thus permits a simple compilation.
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Fig. 5. Control State ASMs for Choice Statements

The first type of non deterministic statement either M1 or M2 or . . . or
Mn ; chooses an executable statement among finitely many statements Mi . It
is defined to be executable if and only if one of Mi is executable. This means
that the execution of the statement has a blocking character, namely to wait
as long as none of the substatements is executable. Similarly the second type of
non deterministic statement, written with id ∈ S do M ;, is meant to choose
an element in a set S if there is one and to execute M for it. The statement is
considered as not executable (blocking) if the set to choose from is empty.

Since the ASM choose construct is defined as non blocking, but yields an
empty update set in case no choice is possible, we make use of the await con-
struct to let choose have an effect only when there is something to choose from.
We write CanExec for the executability predicate.

asm(either M1 or M2 or . . . or Mn ; ) =
await forsome 1 ≤ j ≤ n CanExec(Mj )
choose i ∈ {j | CanExec(Mj ) and 1 ≤ j ≤ n}

asm(Mi )



14 M. Altenhofen and E. Börger

asm(with id ∈ S do M ; ) =
await S �= ∅
choose id ∈ S

asm(M (id))

The remaining +CAL statements deal with procedure call and return in a stan-
dard stack machine like manner. Define frame as quadruple consisting of a
control state, the values of the procedure’s arguments respectively of its lo-
cal variables and the procedure name. We denote the frame stack by a location
stack and the current frame by a quadruple of four locations ctl state, args
(which is a sequence, of any finite length, of variables standing for the param-
eters), locals (which is a sequence, of any finite length, of local variables) and
proc (which denotes the currently executed procedure). For a call statement
P(expr1, . . . , exprn);, “executing this call assigns the current values of the ex-
pressions expri to the corresponding parameters parami , initializes the proce-
dure’s local variables, and puts control at the beginning of the procedure body”,
which “must begin with a labeled statement” [20, p.27]. As preparation for the
return statement one has also to record the current frame on the frame stack .
We denote the sequence of local variables of P by locVars(P) and their ini-
tial values by initVal . For the sake of brevity, for sequences locs of locations
and vals of values we write locs := vals for the simultaneous componentwise
assignment of the values to the corresponding locations, to be precise for the
machine asm(locs1 := vals1 || . . . || locsn := valsn ; ) defined above where
locs = (locs1, . . . , locsn ) and vals = (vals1, . . . , valsn). Let startP denote the
label of the first statement of P .

asm(P(exp1, . . . , expn)) =
PushFrame(P , (exp1, . . . , expn)

where
PushFrame(P , exps) =

stack := stack .[ctl state, args , locals , proc] // push current frame
proc := P
args := exps // pass the call parameters
locals := initVal(locVars(P)) // initialize the local variables
ctl state := startP // start execution of the procedure body

A return statement consists in the inverse machine PopFrame. If ctl is the
point of a call statement in the given program, let next(ctl) denote the point
immediately following the call statement.

asm(return) =
let stack = stack ′.[ctl , prevArgs , prevLocs , callingProc] in

ctl state := next(ctl) // go to next stm after the call stm
args := prevArgs // reassign previous values to args
locals := prevLocs // reassign previous values to locals
proc := callingProc
stack := stack ′ // pop frame stack
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3.2 Fast Mutex Example

Fig. 6 illustrates the diagram notation explained in Sect. 3.1 for +CAL programs.
The +CAL program for the fast mutual exclusion algorithm from [19] is given

in [21]. Fig. 6 does not show the declaration part, which is given in the signature
definition. We write Ncs and Cs for the submachines defining the non critical
resp. critical section, which in +CAL are denoted by an atomic skip instruction
describing—via the underlying stuttering mechanism of TLA—a nonatomic pro-
gram. Given the structural simplicity of this program, which says nothing about
the combinatorial complexity of the runs the program produces, there is only
one sequential subprogram. It corresponds to two simultaneous updates, so that
the sequentialization can be avoided and really no turbo ASM is needed because
there are no control states which do not correspond to +CAL labels. This case
is a frequent one when modeling systems at an abstract level, as the experi-
ence with ASMs shows. In general, the synchronous parallelism of ASMs drives
the model designer to avoid sequentialization as much as possible and to think
instead about orthogonal components which constitute atomic steps.

Comparing the two representations the reader will notice that even the layouts
can be made to be in strict correspondence, so that each of the labeled lines in the

Fig. 6. Control state ASM for the Fast Mutual Exclusion +CAL Program
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textual description corresponds to a line starting a new control state subdiagram.
This is in line with the following well-known fact we quote from [18, p.72]:

The visual structure of go to statements is like that of flowcharts, except
reduced to one dimension in our source languages.

We can confirm from our own work the experience reported in [21] that the
notation works well for programs one can write on a couple of pages, making
judicious use of procedures where possible to cut down the size of each single
program one has to analyze. Such programs seem to be the main target for
+CAL code and model checkable TLA+ translations for concurrent algorithms
with combinatorially involved behaviour. For larger programs flowcharts present
some small advantage over the representation of programs as strings, however,
as Knuth continues op.cit.:

. . . we rapidly loose our ability to understand larger and larger flowcharts;
some intermediate levels of abstraction are necessary.

The needed abstractions can be provided in control state ASMs by using sepa-
rately defined complex submachines, which in the flowcharts appear as simple
rectangles to be executed when passing from one to the next control state. This
follows an advice formulated by Knuth op.cit. as one of the conclusions of his
discussion of structured programming with go to statements:

. . . we should give meaningful names for the larger constructs in our pro-
gram that correspond to meaningul levels of abstraction, and we should
define those levels of abstraction in one place, and merely use their names
(instead of including the detailed code) when they are used to build larger
concepts.
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Extended Abstract

Molecular biology investigates the structure and function of biochemical systems
starting from their basic building blocks: macromolecules. A macromolecule is a
large, complex molecule (a protein or a nucleic acid) that usually has inner muta-
ble state and external activity. Informal explanations of biochemical events trace
individual macromolecules through their state changes and their interaction his-
tories: a macromolecule is endowed with an identity that is retained through its
transformations, even through changes in molecular energy and mass. A macro-
molecule, therefore, is qualitatively different from the small molecules of inorganic
chemistry. Such molecules are stateless: in the standard notation for chemical re-
actions they are seemingly created and destroyed, and their atomic structure is
used mainly for the bookkeeping required by the conservation of mass.

Attributing identity and state transitions to molecules provides more than
just a different way of looking at a chemical event: it solves a fundamental dif-
ficulty with chemical-style descriptions. Each macromolecule can have a huge
number of internal states, exponentially with respect to its size, and can join
with other macromolecules to from even larger state configurations, correspond-
ing to the product of their states. If each molecular state is to be represented
as a stateless chemical species, transformed by chemical reactions, then we have
a huge explosion in the number of species and reactions with respect to the
number of different macromolecules that actually, physically, exist. Moreover,
macromolecules can join to each other indefinitely, resulting in situations cor-
responding to infinite sets of chemical reactions among infinite sets of different
chemical species. In contrast, the description of a biochemical system at the level
of macromolecular states and transitions remains finite: the unbounded complex-
ity of the system is implicit in the potential molecular interactions, but does not
have to be written down explicitly. Molecular biology textbooks widely adopt
this finite description style, at least for the purpose of illustration.

Many proposal now exist that aim to formalize the combinatorial complexity
of biological systems without a corresponding explosion in the notation. Macro-
molecules, in particular, are seen as stateful concurrent agents that interact with
each other through a dynamic interface. While this style of descriptions is (like
many others) not quite accurate at the atomic level, it forms the basis of a
formalized and growing body of biological knowledge.

The complex chemical structure of a macromolecule is thus commonly ab-
stracted into just internal states and potential interactions with the environment.
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Each macromolecule forms, symmetrically, part of the environment for the other
macromolecules, and can be described without having to describe the whole
environment. Such an open system descriptive style allows modelers to extend
systems by composition, and is fundamental to avoid enumerating the whole
combinatorial state of the system (as one ends up doing in closed systems of
chemical reactions). The programs-as-models approach is growing in popularity
with the growing modeling ambitions in systems biology, and is, incidentally, the
same approach taken in the organization of software systems. The basic problem
and the basic solution are similar: programs are finite and compact models of
potentially unbounded state spaces.

At the core, we can therefore regard a macromolecule as some kind of au-
tomaton, characterized by a set of internal states and a set of discrete transi-
tions between states driven by external interactions. We can thus try to handle
molecular automata by some branch of automata theory and its outgrowths:
cellular automata, Petri nets, and process algebra. The peculiarities of biochem-
istry, however, are such that until recently one could not easily pick a suitable
piece of automata theory off the shelf. Many sophisticated approaches have now
been developed, and we are particularly fond of stochastic process algebra. In
this talk, however, we do our outmost to remain within the bounds of a much
simpler theory. We go back, in a sense, to a time before cellular automata, Petri
nets and process algebra, which all arose from the basic intuition that automata
should interact with each other. Our main criterion is that, as in finite-state au-
tomata, we should be able to easily and separately draw the individual automata,
both as a visual aid to design and analysis, and to emulate the illustration-based
approach found in molecular biology textbooks.

With those aims, we investigate stochastic automata collectives. Technically,
we place ourselves within a small fragment of a well-know process algebra
(stochastic pi-calculus), but the novelty of the application domain, namely the
mass action behavior of large numbers of well-mixed automata, demands a
broader outlook. By a collective we mean a large set of interacting, finite state
automata. This is not quite the situation we have in classical automata theory,
because we are interested automata interactions. It is also not quite the sit-
uation with cellular automata, because our automata are interacting, but not
necessarily on a regular grid. And it is not quite the situation in process algebra,
because we are interested in the behavior of collectives, not of individuals. And
in contrast to Petri nets, we model separate parts of a system separately. By
stochastic we mean that automata interactions have rates. These rates induce a
quantitative semantics for the behavior of collectives, and allow them to mimic
chemical kinetics. Chemical systems are, physically, formed by the stochastic
interactions of discrete particles. For large number of particles it is usually pos-
sible to consider them as formed by continuous quantities that evolve according
to deterministic laws, and to analyze them by ordinary differential equations.
However, one should keep in mind that continuity is an abstraction, and that
sometimes it is not even a correct limit approximation.
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In biochemistry, the stochastic discrete approach is particularly appropriate
because cells often contain very low numbers of molecules of critical species:
that is a situation where continuous models may be misleading. Stochastic au-
tomata collectives are hence directly inspired by biochemical systems, which are
sets of interacting macromolecules, whose stochastic behavior ultimately derives
from molecular dynamics. Some examples of the mismatch between discrete and
continuous models are discussed.
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Abstract. Service-oriented computing is dynamic. There may be many
possible service instances available for binding, leading to uncertainty
about where service requests will execute. We present a novel Markovian
process calculus which allows the formal expression of uncertainty about
binding as found in service-oriented computing. We show how to com-
pute meaningful quantitative information about the quality of service
provided in such a setting. These numerical results can be used to allow
the expression of accurate service-level agreements about service-oriented
computing.

1 Introduction

Dynamic configuration is the essence of service-oriented computing. Service
providers publish their services in a public registry. Service consumers discover
services at run-time and bind to them dynamically, choosing from the available
service instances according to the criteria which are of most importance to them.
This architecture provides robust service in difficult operational conditions. If
one instance of a service is temporarily unavailable then another one is there to
take its place. It is likely though that this replacement is not fully functionally
identical. It might have some missing functionality, or it might even offer addi-
tional functionality not found in the temporarily unavailable service instance.

However, even in the case of a functionally-identical replacement matters are
still not straightforward when non-functional criteria such as availability and
performance are brought into the picture. It is frequently the case that the
functionally-equivalent replacement for the temporarily unavailable service will
exhibit different performance characteristics simply because it hosts a copy of
the service on another hardware platform. This impacts on essentially all per-
formance measures which one would think to evaluate over the system configu-
ration.

The world of distributed systems in which service-oriented computing resides
is resource-sharing in nature. In such systems we have the additional compli-
cation that services may only be partially available in the sense that they are
operational, but heavily loaded. In principle, all of their functionality is available,
but only at a fraction of the usual level of performance. This becomes a pressing
concern when service providers wish to advertise service-level agreements which
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provide service consumers with formal statements about the quality of service of-
fered. For example, a service provider might believe that 90% of requests receive
a response within 3 seconds, but how can they check this?

Analytical or numerical performance evaluation provides valuable insights into
the timed behaviour of systems over the short or long run. Prominent methods
used in the field include the numerical evaluation of continuous-time Markov
chains (CTMCs). These bring a controlled degree of randomness to the sys-
tem description by using exponentially-distributed random variables governed
by rate constants to characterise activities of varying duration. Often generated
from a high-level description language such as a Petri net or a process alge-
bra, CTMCs are applied to study fixed, static system configurations with known
subcomponents with known rate parameters. This is far from the operating con-
ditions of service-oriented computing where for critical service components a set
of replacements with perhaps vastly different performance qualities stand ready
to substitute for components which are either unavailable, or the consumer just
simply chooses not to bind to them. How can we bridge this gap and apply
Markovian performance evaluation to the assessment of service-level agreements
about service-oriented computing?

In the present paper we propose a new Markovian process calculus which in-
cludes language constructs for the formal expression of uncertainty about bind-
ing and parameters (in addition to the other dimension of uncertainty about
durations modelled in the Markovian setting through the use of exponentially-
distributed random variables). We put forward a method of numerical evaluation
for this calculus which scales well with increasing problem size to allow precise
comparisons to be made across all of the possible service bindings and levels
of availability considered. Numerical evaluation is supported inside a modelling
environment for the calculus. We demonstrate the approach by considering an ex-
ample of a (fictional) virtual university formed by bringing together the resources
of several (real) universities. Our calculus is supported by a freely-available soft-
ware tool.

Structure of this paper: In Section 2 we introduce our new Markovian calculus. In
Section 3 we present an example service-oriented computing system, a “virtual
university”. In Section 4 we describe the analysis which can be performed on
our process calculus models. In Section 5 we explain the software tools which we
use. We discuss related work in Section 6 and present conclusions in Section 7.

2 SRMC: Sensoria Reference Markovian Calculus

SRMC is a Markovian process calculus in the tradition of PEPA [1], Stochastic
KLAIM [2], and Stochastic FSP [3]. On top of a classical process calculus, SRMC
adds namespaces to allow the structured description of models of large size, and
dynamic binding to represent uncertainty about component specification or the
values of parameters. As a first step in machine processing, namespaces and
dynamic binding can be resolved in order to map into a Markovian calculus
without these features such as PEPA (for performance analysis [4,5]). Going
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further, rate information can also be erased in order to map into an untimed
process calculus such as FSP (for analysis of safety and liveness properties [6]).

Namespaces in SRMC may be nested. Dynamic binding is notated by writing
in the form of a set all of the possible values which may be taken. The bind-
ing records that the value is one of the values in the set (but we are not sure
which one). The following example uses the name UEDIN for a location, the name
Server for the server located there, the constant processors for the number of
processors which the Edinburgh server has, and the constant availability for
the availability of the server (which is between 50% and 100%).

UEDIN::{
Server::{

processors = 2;
availability = { 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 };

}
...

}

Outside the namespace scope one refers to the first constant using the fully
qualified name UEDIN::Server::processors and to the second using the name
UEDIN::Server::availability.

In addition to being able to give names to numerical constants and values
it is also possible to give names to processes (in order to describe recursive
behaviour). Process terms are built up using prefix (.) and choice (+). The
following process definition describes a lossy buffer which loses, on average, one
datum in every ten. As the example shows, activity rates can be conditioned by
probabilities (0.1 and 0.9 here).

LossyBuffer::{
Empty = (put, 0.1 * r).Empty + (put, 0.9 * r).Full;
Full = (get, s).Empty;

}

Processes of the SRMC language give rise to labelled transition systems which
are converted to Continuous-Time Markov Chain (CTMC) representations in
the way which is familiar from PEPA [1].

Process expressions can be defined conditionally in SRMC depending on the
values obtained in the resolution of dynamic binding. For example, a server might
allow additional sessions to be opened if availability is above 70% and forbid the
creation of new sessions otherwise.

if availability > 0.7 then (openSession, r).ServeClient

An equivalent effect can be obtained using functional rates [7] which can allow
the use of space-efficient state-space representation using Kronecker methods.
The equivalent process expression using functional rates is below.

(openSession, if availability > 0.7 then r else 0.0).ServeClient
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In stochastic Petri nets functional rates are termed “marking dependent rates”.
Dynamic service binding is described by associating a name with a set of

processes. The example below records that the server is either the Edinburgh
server (UEDIN) or the Bologna server (UNIBO).

Server = { UEDIN::Server, UNIBO::Server };

2.1 Discussion

It might seem that it is not necessary to have the ability to describe sets of
processes, binding to one of these later because it would be possible to implement
the idea of dynamic binding instead using well-known process calculus primitives.
For example, one could use a silent, internal τ transition at the start of the
lifetime of one of the components to choose to behave as one of the binding
sites, thereafter ignoring all of the possible behaviour described by the other
components from the other sites. While this is possible, we do not favour this
approach because it leads to the consideration of the full state space for every
evaluation of parameters of the system. In contrast, the method of first projecting
down to a particular binding and then evaluating this leads to the smallest
possible state-space for each evaluation run, with attendant benefits for run-
times and stability of the results. Further, the binding projection method allows
the problem to be decomposed in a larger number of smaller problems, each of
which can be solved independently and the results combined. We wish to perform
scalable analysis of scalable systems and so this approach suits us well.

2.2 Numerical Evaluation

We have been keen to decompose the analysis problem so that we can ensure
that the analysis can be performed as a large number of numerical evaluations
of small size. Our preference for problems of this form stems from the fact that
they are easy to distribute across a network of workstations. Thus, we use a
distributed computing platform (Condor [8]) to accelerate the numerical eval-
uation work by distributing the computation across a cluster of workstations
(a Condor “pool”). In this way we can greatly increase the speed of generation
of results. In practice we have found that our Condor pool of 70 machines gives
a speedup over sequential evaluation close to 70-fold. Because we are aware that
others may wish to use our software but may not have a local Condor pool we
also provide a purely sequential evaluation framework which does not depend on
Condor.

We know that numerical linear algebra is not to everyone’s taste so we will
just give an outline of what we do here and refer the curious to [9]. Investigation
of SLAs requires the transient analysis of a CTMC, represented as an n × n
state transition matrix Q (the “generator matrix”). We are concerned with find-
ing the transient state probability row vector π(t) = [π1(t), . . . , πn(t)] where
πi(t) denotes the probability that the CTMC is in state i at time t. Transient
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and passage-time analysis of CTMCs proceeds by a procedure called uniform-
isation [10,11]. The generator matrix, Q, is “uniformized” with:

P = Q/q + I

where q > maxi |Qii| and I is the identity matrix. This process transforms a
CTMC into one in which all states have the same mean holding time 1/q.

Passage-time computation is concerned with knowing the probability of reach-
ing a designated target state from a designated source state. It rests on two key
sub-computations. First, the time to complete n hops (n = 1, 2, 3, . . .), which is
an Erlang distribution with parameters n and q. Second, the probability that
the transition between source and target states occurs in exactly n hops.

3 Example: Distributed e-Learning Case Study

Our general concern is with evaluating quality of service in the presence of uncer-
tainty such as that caused by dynamic binding but as a lighthearted example to
illustrate the approach we consider a (fictional) Web Service-based distributed e-
Learning and course management system run by the Sensoria Virtual University
(SVU).

The SVU is a virtual organisation formed by bringing together the resources
of the universities at Edinburgh (UEDIN), Munich (LMU), Bologna (UNIBO),
Pisa (UNIPI) and others not listed in this example. The SVU federates the
teaching and assessment capabilities of the universities allowing students to en-
rol in courses irrespective of where they are delivered geographically. Students
download learning objects from the content download portals of the universities
involved and upload archives of their project work for assessment. By agreement
within the SVU, students may download from (or upload to) the portals at any
of the SVU sites, not just the one which is geographically closest.

Learning objects may contain digital audio or video presentation of lecture
courses and students may be required to upload archives of full-year project
work. Both of these may be large files so the scalability of such a system to
support large numbers of students is a matter of concern. We have addressed
this issue previously [12,13].

3.1 The Servers

We start by describing the servers which are available for use. Dedicated up-
load and download portals are available at each site. At Edinburgh the portals
sometimes fail and need to be repaired before they are available to serve content
again. They are usually relatively lightly loaded and availability is between 70%
and 100%. The portals at Edinburgh are described in SRMC thus.

UEDIN::{
lambda = 1.65; mu = 0.0275; gamma = 0.125; delta = 3.215;
avail = { 0.7, 0.8, 0.9, 1.0 };
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UploadPortal::{
Idle = (upload, avail * lambda).Idle + (fail, mu).Down;
Down = (repair, gamma).Idle;

}
DownloadPortal::{

Idle = (download, avail * delta).Idle + (fail, mu).Down;
Down = (repair, gamma).Idle;

}
}

The portals at Munich are so reliable that it is not worth modelling the very
unlikely event of their failure. However, they are slower than the equivalent
portals at Edinburgh and availability is more variable and usually lower, because
the portals are serving a larger pool of local students.

LMU::{
lambda = 0.965; delta = 2.576;
avail = { 0.5, 0.6, 0.7, 0.8, 0.9 };
UploadPortal::{

Idle = (upload, avail * lambda).Idle;
}
DownloadPortal::{

Idle = (download, avail * delta).Idle;
}

}

Because it is running a more recent release of the portal software the Bologna
site offers secure upload and download also. Availability is usually very good.
To maintain good availability the more expensive operations of secure upload
and secure download are not offered if the system seems to be becoming heavily
loaded.

UNIBO::{
lambda = 1.65; mu = 0.0275; gamma = 0.125; delta = 3.215;
slambda = 1.25; sdelta = 2.255; avail = { 0.8, 0.9, 1.0 };
UploadPortal::{

Idle = (upload, avail * lambda).Idle + (fail, mu).Down
+ if avail > 0.8 then (supload, avail * slambda).Idle;

Down = (repair, gamma).Idle;
}
DownloadPortal::{

Idle = (download, avail * delta).Idle + (fail, mu).Down
+ if avail > 0.8 then (sdownload, avail * sdelta).Idle;

Down = (repair, gamma).Idle;
}

}

The Pisa site is just like the Bologna site, but uses a higher grade of encryption,
meaning that secure upload and download are slower (slambda = 0.975, sdelta
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= 1.765). We can list the possible bindings for upload and download portals in
the following way.

UploadPortal =
{ UEDIN::UploadPortal::Idle, LMU::UploadPortal::Idle,
UNIBO::UploadPortal::Idle, UNIPI::UploadPortal::Idle };

DownloadPortal =
{ UEDIN::DownloadPortal::Idle, LMU::DownloadPortal::Idle,
UNIBO::DownloadPortal::Idle, UNIPI::DownloadPortal::Idle };

3.2 The Clients

We now describe two typical clients of the system, Harry and Sally. Both Harry
and Sally wish to accomplish the same task, which is to download three sets
of learning materials and to upload two coursework submissions. They perform
this behaviour cyclically. Harry is unconcerned about security and never uses
secure upload or download even if it is available. Sally uses secure upload and
secure download sometimes when it is available, and uses non-secure upload and
download when it is not. We are interested in the passage of time from start to
finish for both Harry and Sally. Clients do not determine the rates of activities:
others do (we write “ ” for the rate here).

Harry::{
Idle = (start, 1.0).Download;
Download = (download, _).(download, _).(download, _).Upload;
Upload = (upload, _).(upload, _).Disconnect;
Disconnect = (finish, 1.0).Idle;

}

Sally::{
Idle = (start, 1.0).Download;
Download = (download, _).(download, _).(download, _).Upload

+ (sdownload, _).(sdownload, _).(sdownload, _).Upload;
Upload = (upload, _).(upload, _).Disconnect

+ (supload, _).(supload, _).Disconnect;
Disconnect = (finish, 1.0).Idle;

}

The client is either Harry or Sally, both initially idle.

Client = { Harry::Idle, Sally::Idle };

Finally, the complete system is formed by composing the client with the two por-
tals, cooperating over upload and download. The upload and download portals
do not communicate with each other (<>).

System = Client <upload, download, supload, sdownload>
(UploadPortal <> DownloadPortal);
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4 Analysis

The analysis applied to SRMC models is a staged computation:

Resolving service bindings: Each possible service binding is chosen in turn.
This involves selecting one element of each set of possibilities for service
providers.

Model minimisation: The model is reduced to remove unused definitions of
processes and rate constants. This is a necessary economy applied to make
the next stage more productive.

Parameter sweep: Parameter sweep is performed over the remaining rate val-
ues, executing processes in a distributed fashion on a Condor pool, or se-
quentially on a single machine.

Analysis and visualisation: The results are collected and summarised using
statistical procedures. We visualise the results to aid in model interpretation
and analysis.

4.1 Qualitative Analysis

On the way towards the quantitative results which we seek our state-space analy-
sis delivers qualitative insights about the function of the system being modelled.
We list three of the things which we learn here:

1. The system is deadlock-free for all configurations. No binding of service in-
stances to service parameters gave rise to a model with a deadlock.

2. The system is livelock-free for all configurations. No binding of service in-
stances to service parameters gave rise to a model where states could be
visited only a finite number of times (a transient state, in Markov chain
terminology).

3. All activities in the model are weakly live. That is, for each activity (such
as supload) there is some configuration which allows that activity to occur,
although it may be blocked in other configurations. Put more plainly, the
SRMC model has no “dead code” (activities which can never occur).

4.2 Sensitivity Analysis

We are here concerned generally with lack of certainty about parameters such
as rates but even in the case where rate information can be known with high
confidence the framework which we have available for performing a parameter
sweep across the rate constants can be used to perform sensitivity analysis.
One way in which the results obtained by sensitivity analysis can be used is to
determine which activities of the system are bottlenecks. That is, to discover
which rate or rates should we alter to ensure that the user sees the greatest
improvement in performance. We have an evaluation function which assigns a
score to each solution of the underlying Markov chain. In this case, the less is
the response time then the higher is the score.

It might seem that the results obtained from sensitivity analysis are likely to
be pretty unsurprising and that it will turn out to be the case that increasing the
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Fig. 1. Graphs showing sensitivity analysis over the rates in the produced models.
The basic plot is a cumulative distribution function showing how the probability of
completion of the uploads and downloads increases as a function of time. The surface
plot is obtained from this because we vary one of the parameters. Here in both cases
we vary the availability of the Munich server from 50% availability to 90% availability.
Expressed as a scaling factor this becomes 0.5 to 0.9.

rate of any activity brings about a proportional decrease in response time. To see
that this is not the case, we will compare two sets of results. Recall that SRMC
generates many PEPA models; we number these. The first set of results shown
in Fig. 1 comes from PEPA model 1, where Edinburgh is the upload portal, Mu-
nich the download portal, and Harry is the client. In model 3 they swap around so
that Munich is the upload portal, Edinburgh the download, and Harry is again
the client. In the latter case low availability of the Munich server makes a no-
ticeable impact on response time (the curve takes longer to get up to 1) but in
the former case the low availability of the Munich server has negligible impact.
This is made clear in the results but it is unlikely that a modeller would see this
trend just by inspecting the model; we needed to see the results to get this in-
sight. We have generated many results so we have been able to get many such
insights.

4.3 Computing Response-Time Percentiles

The results shown in Fig. 1 show ten of the nearly 250 cumulative distribution
functions which we computed for the possible configurations of the example. We
wanted to produce a simple statistical summary which brought together all of
the results obtained. We computed percentiles of the results which declare that
in (say) 90% of the possible configurations of the system the response-time will
be in this region. This tells us about the experience which most users will have
(where here, “most” means “90% of”). Some will see better response times, and
some with see worse, but it is usually interesting to consider the common case
response times.

To illustrate how percentiles can be used to summarise the results we show in
Fig. 2(a) forty sets of results in the form of the cumulative distribution functions
which we computed. These give a sense of the “envelope” in which the results are
contained. Most configurations of the system produced by resolving the service
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Fig. 2. Sub-figure (a) shows 40 of the response-time distributions computed for the
Sensoria Virtual University example. Sub-figure (b) shows the 10% to 90% percentile
of the results over all of the runs. The median value is also marked as a horizontal
line cutting across the thick bar in the candlestick. From sub-figure (b) we can report
results of the form “All uploads and downloads will have completed by time t = 10
with probability between 0.90 and 0.97, in 90% of configurations”.

instance bindings are very likely to have completed the work to be done by t = 10.
The majority of configurations give response-time distributions which put them
towards the top of the “envelope” but there are a few configurations which
perform quite a bit worse (and our analysis has identified which configurations
these are).

The graph in Fig. 2(b) is known as a “candlestick” graph and is a summary
of all of the solutions produced. It shows that 90% of the time the response time
distribution will lie within the area described by the thick bar of the candlestick,
but it has been seen to be as high as the top of the candlestick, and it has been
seen to be as low as the bottom of the candlestick.

4.4 Comparisons across All Runs

Even for traditional computer systems without dynamic binding, service-level
agreements are already quite complex because they relate a path through the
system behaviour, a time bound, and a probability bound. (A typical example of
an SLA is “We guarantee that 97.5% of requests will receive a response within
three seconds”. Here “from request to response” is the path through the system,
three seconds is the time bound, and 97.5% gives the probability bound.) In
the service-oriented computing setting we have yet another dimension of com-
plication because we must add a qualifier speaking about the quantile of system
configurations being considered (“. . . in 90% of the possible configurations”).
Complicated service-level agreements of this form are unattractive.

We have found that an alternative presentation of the results can be easier
to interpret in some cases and so the SRMC software supports a presentation
mode where we show the probability of completion by a particular point in
time, across all possible configurations. Having all of the results to hand, we are
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Fig. 3. Probability of completion of all uploads and downloads against time across
all (nearly 250) possible configurations of the example. In sub-figure (a) the times
considered are t = 1.0, 2.0, 5.0, and 10.0. In sub-figure (b) t = 1.0 and 10.0 are repeated
for reference and t = 3.0 and 6.0 are also presented. By time t = 10.0 we are able to
make meaningful comments about all configurations. For example, we can say that
there is at least a 90% chance of having completed the uploads and downloads by time
t = 10.0, irrespective of the system configuration. The greatest variability is seen at
times around t = 3.0. Here for the best configurations the system has a 70% chance of
having completed the work for the worst configurations there is less than a 40% chance
of having completed.

able to reduce the dimension of the problem and make statements about the
probability of completion of the work at a particular point in time, irrespective
of the configuration of the system.

In reference to Fig. 3 we can see not a statistical summary (as we saw in Fig. 2(b)
before) but the actual results of all runs at a particular point in time. This makes
clear the difference between the best-performing configurations at time t and the
worst-performing configurations at time t. For low values of t such as 1.0 there
is little chance that any user has completed all uploads and downloads. For high
values of t such as 10.0 there is little chance that they have not.

5 Software Tool Support

SRMC is supported by a tool chain whose main design goal has been to provide
a friendly and rich graphical user interface as well as a set of efficient model
solvers. The software comprises a graphical front-end written in Java for the
Eclipse framework and a back-end implemented in Haskell and C++. The latter
exposes its functionality via a command-line interface, and thus can be used as
a stand-alone application in headless environments such as Condor or to reduce
the tool’s overall memory footprint. This section provides an overview of both
modules; further information is available at the SRMC Web site [14], which also
provides a download link to the tool.
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5.1 Analysis Tools in the Back-end

The analysis back-end is implemented as a series of three applications: the Sen-
soria Markovian Compiler (smc), the Imperial PEPA Compiler (ipc) and the
Hypergraph-based Distributed Response-Time Analyser (hydra). smc accepts
SRMC models as input and generates the intermediate PEPA descriptions that
represent all the possible configurations of the system. The main tasks performed
by smc are resolving binding instantiations, name-resolution and flattening of

Fig. 4. Screenshot showing the SRMC Eclipse plug-in processing the SVU example.
Displayed in the screenshot are (i) the workspace navigator showing compiled repre-
sentations of the SRMC model as PEPA models, Hydra models and compiled Hydra
C++ files; (ii) the SRMC model editor; (iii) the user-interface dialogue used for setting
parameters on the analyser and running the transient analysis repeatedly; and (iv)
a graphical display showing the results of all passage-time analysis runs expressed in
the form of the cumulative distribution functions computed numerically by the Markov
chain solver. In addition to providing user-interface widgets, the plug-in exposes SRMC
tools to the framework through an application programming interface for third-party
Eclipse plug-ins.
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the SRMC model’s namespaces, and generation of PEPA models for analysis.
A database file produced by srmc maintains associations between the original
SRMC model and the underlying PEPA models.

Such models are the basic units on which analysis is to be carried out. As
PEPA benefits from extensive software support, a number of analysis tools are
readily available for re-use in this context. Here, each PEPA model is run through
ipc [15]. It translates the description into a format suitable for hydra [16], which
performs passage-time analysis and stores the results to disk. Such results can
be related back to the SRMC description via the database file from smc.

5.2 Presentation Layer at the Front-end

The graphical user interface is implemented as a contribution (plug-in) to Eclipse,
a popular extensible cross-platform development framework. The plug-in pro-
vides an editor and a standard Eclipse contribution to the Outline view to con-
cisely display information about the model. The plug-in also adds a top-level
menu item through which SRMC features are accessible. In particular, a wiz-
ard dialogue guides the user through the set-up of passage-time analysis. Upon
completion, the wizard schedules an array of background processes that run the
back-end tool chain as described above. All the intermediate resources such as
the PEPA model instances and the hydra description files are available in the
user’s workspace for further inspection via the Eclipse Navigator view. When
the analysis is complete, the results are collected and presented to the user as a
plot in the Graph view. Figure 4 shows a screenshot of an Eclipse session running
the SRMC plug-in.

6 Related Work

The SRMC language builds on the PEPA language and tools. PEPA has been
applied to a wide range of modelling problems across computer science including
software [17,18,19], hardware [20,21,22], and services [23,24]. We see our work on
modelling with SRMC as being similar in style but with an increased emphasis
on experimentation.

In our numerical evaluation of the many possible system configurations which
are described by an SRMC model we have essentially used the “brute force” so-
lution of solving for all possible bindings. This has the advantage that it ensures
that all of the bindings are considered, and is trivially parallelisable, but still
costs a lot of computation time. It is possible that we could do fewer numerical
evaluations and still explore the space of all possibilities well by applying meth-
ods which are well-known in the field of design of experiments. Similar strategic
exploration of the solution space is found in state-of-the-art modelling platforms
such as Möbius [25].
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7 Conclusions

For software engineering to improve as a well-managed discipline we believe that
it is critical to have access to a modelling process which can make sound quanti-
tative predictions about the performance of complex systems. We have addressed
the problem of how virtual organisations can defend any quantitative statements
about their quality of service as expressed in service-level agreements given that
their operation is founded on service-oriented computing. The essential function
of dynamic binding brings uncertainty to the model concerning both functional
and non-functional aspects. We have been able to control this uncertainty by
considering all possible bindings, undertaking separate numerical evaluations of
these, and combining the results to correctly quantify the uncertainty induced
by dynamic binding and degree of availability.

We decomposed the computations needed into a large number of indepen-
dent numerical evaluations each of which has modest memory requirements. We
distributed the independent runs across a network of workstations. The dis-
tributed computing platform which we chose, Condor, makes use of the idle
cycles on networked workstations meaning that we could perform all of the com-
putations which were needed on typical desktop PCs when they were unused in
our student computing laboratories. Widely-used in computational science, this
approach uses stock hardware and scales well to apply to more complex prob-
lem cases with a greater range of possible configurations and parameter values.
More computing power can be deployed on larger problems simply by adding
more machines to the Condor pool. We hope that this is a “real-world” approach
to a “real-world” problem.
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Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226.
Springer, Heidelberg (2006)

13. Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for
scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS,
vol. 4912, pp. 204–221. Springer, Heidelberg (2008)

14. SRMC Team: Sensoria Reference Markovian Calculus Web Site and Software
(October 2008), http://groups.inf.ed.ac.uk/srmc

15. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time
densities in PEPA models using IPC: The Imperial PEPA Compiler. In: Kotsis, G.
(ed.) Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems, Univer-
sity of Central Florida, pp. 344–351. IEEE Computer Society Press, Los Alamitos
(2003)

16. Dingle, N., Harrison, P., Knottenbelt, W.: HYDRA: HYpergraph-based Distributed
Response-time Analyser. In: Proc. International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA 2003), Las Vegas,
Nevada, USA, June 2003, pp. 215–219 (2003)

17. Hillston, J., Kloul, L.: Performance investigation of an on-line auction system.
Concurrency and Computation: Practice and Experience 13, 23–41 (2001)

18. Hillston, J., Kloul, L., Mokhtari, A.: Active nodes performance analysis using
PEPA. In: Jarvis, S. (ed.) Proceedings of the Nineteenth annual UK Performance
Engineering Workshop, July 2003, pp. 244–256. University of Warwick (2003)

19. Buchholtz, M., Gilmore, S., Hillston, J., Nielson, F.: Securing statically-verified
communications protocols against timing attacks. Electr. Notes Theor. Comput.
Sci. 128(4), 123–143 (2005)

20. Holton, D.: A PEPA specification of an industrial production cell. In:
Gilmore, S., Hillston, J. (eds.) Proceedings of the Third International Workshop
on Process Algebras and Performance Modelling, Special Issue of The Computer
Journal 38(7), 542–551 (1995)

21. Gilmore, S., Hillston, J., Holton, D., Rettelbach, M.: Specifications in stochastic
process algebra for a robot control problem. International Journal of Production
Research 34(4), 1065–1080 (1996)

http://groups.inf.ed.ac.uk/srmc


36 A. Clark, S. Gilmore, and M. Tribastone

22. Console, L., Picardi, C., Ribaudo, M.: Diagnosis and diagnosability analysis using
PEPA. In: Proc. of 14th European Conference on Artificial Intelligence, Berlin
(August 2000); A longer version appeared in the Proc. of 11th Int. Workshop on
Principles of Diagnosis (DX 2000), Morelia, Mexico (June 2000)

23. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, August 2006,
pp. 172–185 (2006)

24. Argent-Katwala, A., Clark, A., Foster, H., Gilmore, S., Mayer, P., Tribastone, M.:
Safety and response-time analysis of an automotive accident assistance service.
In: Proceedings of the 3rd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2008), Porto Sani, Octo-
ber 2008. Communications in Computer and Information Science (CCIS), vol. 17.
Springer, Heidelberg (2008)

25. Courtney, T., Gaonkar, S., McQuinn, M., Rozier, E., Sanders, W., Webster, P.:
Design of Experiments within the Möbius Modeling Environment. In:
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Abstract. Reo is an exogenous coordination model for software components.
The informal semantics of Reo has been matched by several proposals of formal-
ization, exploiting co-algebraic techniques, constraint-automata, and coloring ta-
bles. We aim to show that the Tile Model offers a flexible and adequate semantic
setting for Reo, such that: (i) it is able to capture context-aware behavior; (ii) it is
equipped with a natural notion of behavioral equivalence which is compositional;
(iii) it offers a uniform setting for representing not only the ordinary execution of
Reo systems but also dynamic reconfiguration strategies.

1 Introduction

Reo [1,7,8] is an exogenous coordination model for software components. It is based on
channel-like connectors that mediate the flow of data and signals among components.
Notably, a small set of point-to-point primitive connectors is sufficient to
express a large variety of interesting constraints over the behavior of connected com-
ponents, including various forms of mutual exclusion, synchronization, alternation, and
context-dependency. In fact, components and primitive connectors can be composed in
a circuit fashion via suitable attach points, called Reo nodes. Typical primitive con-
nectors are the synchronous / asynchronous / lossy channels and the asynchronous
one-place buffer. The informal semantics of Reo has been formalized in several ways,
exploiting co-algebraic techniques [2], constraint-automata [3], and coloring tables [5].
However all the formalizations in the literature that we are aware of are unsatisfactory
from some points of view. In fact, both [2] and [3] provide detailed characterizations of
the behavior of connectors, allowing to exploit coinductive techniques, but they do not
support context-awareness, and, in particular, they are not able to faithfully model the
LossySync connector. Up to now, the only approach that takes context-awareness into
account is the 3-color semantics presented in [5]. This semantics, however, describes
only a single computational step, thus it does not describe the evolution of the state
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of a connector. Also, none of these semantics allows reconfiguration, which then, for
instance as in [12], has to be added on top of them. The interplay between the dataflow
semantics of Reo circuits and their reconfiguration has been considered in [11] and [10]
using graph transformations triggered by the 3-color semantics.

We aim to show that the Tile Model [9] offers a flexible and adequate semantic
setting for Reo. The name ‘tile’ is due to the graphical representation of such rules
(see Fig. 5 in Section 3). The tile α states that the initial configuration s can be triggered
by the event a to reach the final configuration t, producing the effect b. Tiles resemble
Gordon Plotkin’s SOS inference rules [17], but they can be composed in three different
ways to generate larger proof steps: (i) horizontally (synchronization), when the effect
of one tile matches the trigger for another tile; (ii) vertically (composition in time),
when the final configuration of one tile matches the initial configuration of another
tile; and (iii) in parallel (concurrency). Tiles take inspiration from Andrea Corradini
and Ugo Montanari’s Structured Transition Systems [6] and generalise Kim Larsen
and Liu Xinxin’s context systems [13], by allowing for more general rule formats. The
Tile Model also extends José Meseguer’s rewriting logic [15] (in the non-conditional
case) by taking into account rewrite with side effects and rewrite synchronization. As
rewriting logic, the Tile Model admits a purely logical formulation, where tiles are seen
as sequents subject to certain inference rules.

Roughly, in our tile encoding, Reo nodes and primitive connectors are represented
as hyper-edges (with typed incoming and outgoing tentacles) that can be composed
by connecting their tentacles. The one-step semantics of each primitive connector C is
defined by suitable basic tiles whose initial configuration is the hyper-edge C (we use
the same notation for primitive connectors and corresponding hyper-edges) and whose
triggers and effects define how the data can flow through C.

A mapping of a fragment of Reo into the Tile Model has been already presented
in [4]. There the emphasis was on exploiting for Reo connectors the normalization and
axiomatization techniques developed therein for the used algebra of tile connectors. For
this reason the mapping concentrated only on the synchronization connectors, i.e., data
values were abstracted away, and data-sensitive connectors such as filters or stateful
connectors such as buffers were not considered. The reason was that axiomatization for
those more complex connectors was not available. The induced semantics corresponded
to the data-insensitive 2-color semantics of Reo [5].

In this paper we extend the mapping in [4] to deal with all Reo connectors, and
we concentrate on the 3-color semantics [5], the only one which captures context-
awareness. The 3-color semantics for Reo that we propose in Section 6 recovers the
good properties of the semantics in the literature, and provides also some additional
benefits:

– it allows to model context dependency, and models faithfully the 3-color semantics
of [5] as far as a single computational step is concerned;

– it is data-sensitive, describing the actual data that flow inside the connector;
– it can model whole computations, keeping into account the evolution of the state;
– it has a natural notion of behavioral equivalence, tile bisimilarity, that allows to

exploit coinductive techniques similar to the ones in [2,3];
– the provided notion of bisimilarity is a congruence, i.e. the behavioral semantics is

compositional;
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– the congruence property can be easily proved by exploiting standard meta-theoreti-
cal results;

– it can be smoothly extended to deal with some form of reconfiguration (Section 7),
and the extension also specifies in a formal way the interplay between computation
and reconfiguration.

To clarify the approach we first model the simpler 2-color semantics and then show
how to handle the 3-color case. In both cases we consider a data-sensitive semantics. In-
terestingly, the two semantics can be expressed in the same setting (and in a very similar
way). Also, they give rise in a natural way to a notion of behavioral equivalence called
tile bisimilarity, which is compositional. Finally, we hint at how the same setting can be
exploited to model Reo reconfigurations, an aspect that is not considered by the standard
Reo semantics. A more detailed treatment of this complex task is left for future work.

Structure of the paper. In Sections 2 and 3 we give some minimal background on Reo
and Tile Logic. In Section 4 we define the representation of Reo graphs of connectors
in terms of tile configurations. Sections 5 and 6 are dedicated respectively to the mod-
eling of the 2-color and the 3-color semantics. Section 7 outlines the modeling of Reo
reconfiguration. Concluding remarks are given in Section 8, together with some hints
on future work we have in mind.

2 Reo Connectors

Reo [1,7,8] allows compositional construction of complex connectors with arbitrary
behavior out of simpler ones. The simplest (atomic) connectors in Reo consist of a user
defined set of channels. A channel is a binary connector: a medium of communication
with exactly two directed ends. There are two types of channel ends: source and sink. A
source channel end accepts data into its channel. A sink channel end dispenses data out
of its channel. Every channel (type) specifies its own particular behavior as constraints
on the flow of data through its ends. These constraints relate, for example, the content,
the conditions for loss and/or creation of data that pass through the ends of a channel,
as well as the atomicity, exclusion, order, and/or timing of their passage.

Although all channels used in Reo are user-defined and users can indeed define chan-
nels with any complex behavior (expressible in the semantic model) that they wish, a
very small set of channels, each with very simple behavior, suffices to construct useful
Reo connectors with significantly complex behavior [8]. Figure 1 shows a common set
of primitive channels often used to build Reo connectors.

The Sync channel takes a data item from its source end and synchronously makes
it available at its sink end. This transfer can succeed only if both ends are ready to
communicate. The LossySync has the same behavior, except that it does not block its

Fig. 1. A typical set of Reo channels
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Fig. 2. Reo nodes

writer if its reader end cannot accept data. In this and only this case, the channel accepts
the written data item and loses it. The FIFO1 is an asynchronous channel that has a
buffer of size one. Unlike the prior channels, FIFO1 is a stateful channel: its behavior
depends on whether its buffer is empty or full. The SyncDrain channel has two source
ends (and no sink end) through which it can only consume data. It behaves as follows:
if and only if there are data items available at both ends, it consumes (and loses) both
of them atomically. The AsyncDrain is the asynchronous counterpart of the SyncDrain:
it consumes and loses data items from either of its two ends only one at a time, but
never from both ends together at the same time. Filter(P) is a synchronous channel with
a data-sensitive behavior: it accepts through its source end and loses any data items that
do not match its filter pattern P; it accepts a data item that matches P only if it can
synchronously dispose of it through its sink end (exactly as if it were a Sync channel).

A channel end can be composed with other channel ends into Reo nodes to build
more complex connectors. Reo nodes are logical places where channel ends coincide
and coordinate their dataflows as prescribed by node types. Figure 2 shows the three
possible node types in Reo. A node with only source channel ends is a source node;
a node with only sink channel ends is a sink node; and a node with both source and
sink channel ends is a mixed node. The term boundary nodes is also sometimes used
to collectively refer to source and sink nodes. Boundary nodes define the interface of
a connector. Components connect to the boundary nodes of a connector and interact
anonymously with each other through this interface by performing I/O operations on the
boundary nodes of the connector: take operations on sink nodes, and write operations
on source nodes.

Reo fixes the semantics of (i.e., the constraints on the dataflow through) Reo nodes.
Data flow through a source node only if a write operation offers a data item on this node
and every one of its source channel ends can accept a copy of this data item. A source
node, thus, behaves as a synchronized replicator. Data flow through a sink node only if
at least one of its sink channel ends offers a data item and an input operation pending
on this node can accept this data item. If more than one sink channel end offers data,
the node picks one non-deterministically and excludes the offers of all the rest. A sink
node, thus, behaves as a non-deterministic merger. The behavior of a mixed node is a
combination of that of the other two: data flow through a mixed node only if at least one
of its sink channel ends offers a data item and every one of its source channel ends can
accept a copy of this data item. If more than one sink channel end offers data, the node
picks one non-deterministically and excludes the offers of all the rest. Because a node
has no buffer, data cannot be stored in a node. Hence, nodes instigate the propagation
of synchrony and exclusion constraints on dataflow throughout a connector.
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Fig. 3. Reo circuit for (a) exclusive router (from A to either F or G) and (b) Alternator

The simplest formalization of this behavior is the 2-color semantics presented in [5].
The two colors �/� model the flow/absence-of-flow of data at each node respectively
(this is the so-called data-insensitive semantics; instead if different colors are used to
distinguish the kind of data one obtains a data-sensitive semantics). This coloring must
satisfy the constraint conditions imposed by connectors. Each connector determines the
possible color combinations on its ends. For instance, both ends of Sync must have the
same color (i.e. either the datum flows through the whole connector or no data flow
at all), while AsyncDrain allows any coloring but (�,�), which would represent data
flowing synchronously at both of its ends. All channel ends connected to a � node
must be colored by �, while for � nodes, exactly one of the incoming channel ends,
and all the outgoing channel ends, must have the � color. Deriving the semantics of a
Reo connector amounts to resolving the composition of the constraints of its constituent
channels and nodes. Given a connector C a coloring c for C is a function associating a
color to each node in C. The 2-color semantics of C is given by its coloring table TC,
which contains all of its allowed colorings. For instance the coloring table of a connector
with two nodes A and B connected by a Sync connector is T = {[A �→ �,B �→�], [A �→
�,B �→ �]}.

In Fig. 3 we present two examples of Reo connectors that illustrate how non-trivial
dataflow behavior emerges from composing simple channels using Reo nodes. The lo-
cal constraints of individual channels propagate through (the synchronous regions of)
a connector to its boundary nodes. This propagation also induces a certain context-
awareness in connectors. See [5] for a detailed discussion of this.

The connector shown in Fig. 3(a) is an exclusive router: it routes data from A to
either F or G (but not both). This connector can accept data only if there is a write
operation at the source node A, and there is at least one taker at the sink nodes F and
G. If both F and G can dispense data, the choice of routing to F or G follows from the
non-deterministic decision by the mixed node E: E can accept data only from one of its
sink ends, excluding the flow of data through the other, which forces the latter’s respec-
tive LossySync to lose the data it obtains from A, while the other LossySync passes its
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Fig. 4. A 2-coloring example for the exclusive router

data as if it were a Sync. A valid coloring of the exclusive router is shown in Fig. 4.
The case shown in Fig. 4 corresponds to the forwarding of the data available on node A
to the node F but not to G. There are two other possible 2-colorings for the exclusive
router: one representing the case where the flow goes from A to G and not to F (i.e.
the mirrored diagram w.r.t. Fig. 4) and one representing no dataflow (all the boxes are
empty).

The connector shown in Fig. 3(b) is an alternator that imposes an ordering on the
flow of the data from its input nodes A and B to its output node C. The SyncDrain
enforces that data flow through A and B only synchronously. The empty buffer together
with the SyncDrain guarantee that the data item obtained from A is delivered to C while
the data item obtained from B is stored in the FIFO1 buffer. After this, the buffer of the
FIFO1 is full and data cannot flow in through either A or B, but C can dispense the data
stored in the FIFO1 buffer, which makes it empty again.

3 Tile Logic

Reo connectors are naturally represented as graphs. The advantage of using (freely
generated) symmetric monoidal categories for representing configuration graphs is two-
fold. First, it introduces a suitable notion of (observable) interfaces for configurations.
Second, the natural isomorphism defined by symmetries allows to take graphs up to
interface-preserving graph isomorphisms.

We recall that a (strict) monoidal category [14] (C ,⊗,e) is a category C together
with a functor ⊗ : C × C → C called the tensor product and an object e called the
unit, such that for any arrows α1,α2,α3 ∈ C we have (α1 ⊗α2)⊗α3 = α1⊗ (α2⊗
α3) and α1⊗ ide = α1 = ide⊗α1. The tensor product has higher precedence than the
categorical composition ;. Note that we focus only on “strict” monoidal categories,
where the monoidal axioms hold as equalities and not just up to natural isomorphisms.
By functoriality of⊗we have, e.g., α1⊗α2 = α1⊗ ida2; idb1⊗α2 = ida1⊗α2;α1⊗ idb2

for any αi : ai → bi, i ∈ {1,2}.
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Definition 1 (symmetric monoidal categories). A symmetric (strict) monoidal cat-
egory (C ,⊗,e,γ) is a (strict) monoidal category (C ,⊗,e) together with a family of
arrows {γa,b : a⊗ b → b⊗ a}a,b, called symmetries, indexed by pairs of objects in C
such that for any two arrows α1,α2 ∈ C with αi : ai → bi, we have α1⊗α2;γb1,b2 =
γa1,a2 ;α2⊗α1 (that is, γ is a natural isomorphism) that satisfies the coherence equali-
ties (for any objects a,b,c):

γa,b;γb,a = ida⊗b γa⊗b,c = ida⊗ γb,c;γa,c⊗ idb.

The categories we are interested in are those freely generated from a sorted (hyper)si-
gnature Σ, i.e., from a sorted family of operators f : τi → τ f . The objects are words on
some alphabet S expressing the sorts of interfaces (we use ε to denote the empty word).
Consider, e.g., S = {•,◦}. Then f : • ◦→ •• means that f has two “attach points”
on both the interfaces, with types •◦ for the initial one and •• for the final one. The
operators σ∈ Σ are seen as basic arrows with source and target defined according to the
sort of σ. Symmetries can always be expressed in terms of the basic sorted symmetries
γx,y : x⊗ y → y⊗ x. Intuitively, symmetries can be used to rearrange the input-output
interfaces of graph-like configurations.

In this paper, we choose the Tile Model [9] for defining the operational and observa-
tional semantics of Reo connectors. In fact, tile configurations are particularly suitable
to represent the above concept of connector, which includes input and output interfaces
where actions can be observed and that can be used to compose configurations and also
to coordinate their local behaviors.

A tile α : s
a−→
b

t is a rewrite rule stating that the initial configuration s can evolve

to the final configuration t via α, producing the effect b; but the step is allowed only
if the ‘arguments’ of s can contribute by producing a, which acts as the trigger of α
(see Fig. 5(i)). Triggers and effects are called observations and tile vertices are called
interfaces.

Tiles can be composed horizontally, in parallel, or vertically to generate larger steps
(see Fig. 5). Horizontal composition α;β coordinates the evolution of the initial configu-
ration of α with that of β, yielding the ‘synchronization’ of the two rewrites. Horizontal
composition is possible only if the initial configurations of α and β interact cooper-
atively: the effect of α must provide the trigger for β. Vertical composition α ∗ β is
sequential composition of computations. The parallel composition α⊗β builds concur-
rent steps.

The operational semantics of concurrent systems can be expressed via tiles if system
configurations form a monoidal category H , and observations form a monoidal category

(i)
◦ s ��

a �� α
◦

b��◦
t

�� ◦
(ii)

◦ ��

�� α
◦ ��

�� β
◦
��◦ �� ◦ �� ◦

(iii)

◦ ��

�� α
◦
��◦ ��

�� β
◦
��◦ �� ◦

(iv)

◦ ��

��
◦
��◦ ��

��
◦
��

β

◦ �� ◦
◦ ��α ◦

Fig. 5. Examples of tiles and their composition
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V with the same underlying set of objects as H . Abusing the notation, we denote by
⊗ both monoidal functors of H and V and by ; both sequential compositions in H

and V .

Definition 2 (tile system). A tile system is a tuple R = (H ,V ,N,R) where H and
V are monoidal categories with the same set of objects OH = OV , N is the set of
rule names and R : N → H ×V ×V ×H is a function such that for all A ∈ N, if
R(A) = 〈s,a,b,t〉, then the arrows s,a,b,t can form a tile like in Fig. 5(i).

Like rewrite rules in rewriting logic, tiles can be seen as sequents of tile logic: the se-
quent s

a−→
b

t is entailed by the tile logic associated with R , written R 	 s
a−→
b

t, if it can

be obtained by horizontal, parallel, and/or vertical composition of some basic tiles in
R, plus possibly some auxiliary tiles such as identities id

a−→
a

id which propagate obser-

vations, and horizontal symmetries γ a⊗b−−→
b⊗a

γ which swap the order in which concurrent

observations are attached to the left and right interfaces. The “borders” of composed
sequents are defined in Fig. 6.

The main feature of tiles is their double labeling with triggers and effects, allowing
to observe the input-output behavior of configurations. By taking 〈trigger,effect〉 pairs
as labels one can see tiles as a labeled transition system. In this context, the usual notion
of bisimilarity is called tile bisimilarity.

Definition 3 (tile bisimilarity). Let R = (H ,V ,N,R) be a tile system. A symmetric
relation ∼t on configurations is called a tile bisimulation if whenever s ∼t t and R 	
s

a−→
b

s′, then t ′ exists such that R 	 t
a−→
b

t ′ and s′ ∼t t ′.
The maximal tile bisimulation is called tile bisimilarity and it is denoted by �t.

s
a−→
b

t h
b−→
c

f

s;h
a−→
c

t; f
(hor)

s
a−→
b

t h
c−→
d

f

s⊗h
a⊗c ��
b⊗d

t⊗ f

(par)
s

a−→
b

t t
c−→
d

h

s
a;c−−→
b;d

h
(ver)

Fig. 6. Inference rules for tile logic

Note that s�t t only if s and t have the same input-output interfaces.
The basic source property is a syntactic criterion ensuring that tile bisimilarity is a

congruence.

Definition 4 (basic source property). A tile system R = (H ,V ,N,R) enjoys the basic
source property if for each A ∈ N if R(A) = 〈s,a,b, t〉, then s is an operator in Σ.

The following result from [9] can be used to ensure that tile bisimilarity is a congruence.

Lemma 1. If a tile system R enjoys the basic source property, then tile bisimilarity is
a congruence for R .
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4 From Reo Connectors to Tile Configurations

In order to give semantics to Reo connectors using tile logic, we first need to map them
into tile configurations. The basic entities of Reo connectors are nodes and channels,
which are then composed by plugging channels into nodes. Here we consider Reo nodes
as composed out of replicators, mergers, and basic nodes, as in [5], since this will sim-
plify our mapping. A replicator is a ternary atomic connector with one source and two
sink ends. A merger is a ternary atomic connector with two source and one sink ends.
A basic node is one that has at most one source and at most one sink ends. Essentially,
a node N with n > 1 incoming and m > 1 outgoing channel ends will be represented by
a basic node with one incoming tree of n− 1 mergers and one outgoing tree of m− 1
replicators. Incoming channel ends of N will be connected to the leaves of the tree of
mergers, and outgoing channel ends of N will be connected to the leaves of the tree of
replicators.

The horizontal signature of the tile system for modeling Reo connectors, thus, in-
cludes operators for basic nodes, mergers, replicators, and channels. As usual, when
modeling graphs with tiles (see, e.g., [16]), nodes are on the left, with their interfaces
heading toward right, and channels are on the right with their interfaces toward left. The
two interfaces are joined using symmetries, mergers and replicators. Notice that this
technique for representing graphs is fully general, i.e. any graph can be represented in
this style. Since we do not model components explicitly, boundary nodes are nodes with
a non-connected element of their right interface (the sink for source nodes, the source
for sink nodes). Interfaces are typed according to the direction of flow of data: • for data
going from left to right (from nodes to channels) and ◦ for data going from right to left
(from channels to nodes). Thus, e.g., the Merger operator has sort Merger : ◦→ ◦◦. This
denotes the fact that data flow in the Merger operator from right to left. Similarly the
Sync channel has sort Sync : •◦→ ε, with an empty right interface as for all channels.
Note that the order of elements in the interface matters. However, symmetries can be
used to reorder the elements in an interface as necessary. A basic node, with one sink
end and one source end has sort Node : ε → ◦•. The full horizontal signature of our tile
system (for a sample set of basic connectors) is presented in Fig. 7: on the left-hand side
in textual notation, and on the right-hand side in graphical notation, where for simplicity
we abbreviate the names of operators using their initials.

The tile model for a general node, with n sink and m source ends is obtained by com-
posing the tiles of a basic node, n−1 mergers, and m−1 replicators, as explained above.
For instance, a node with 2 sinks and 3 sources is: Node;Merger⊗Replicator; id◦◦• ⊗
Replicator : ε → ◦ ◦ • • • (see Fig. 8).

We can now define the mapping � ·� from Reo connectors to tile configurations. If
a connector C has n boundary nodes, then �C� : ε → ω where ω ∈ {•,◦}n is a word of
length n. The mapping is parametric with respect to an interface function In associating
to each boundary node in C an element in ω, i.e. I is a bijection between nodes of C and
{1, . . . ,n}.
Definition 5 (from Reo to tile configurations). Given a Reo connectorC with n bound-
ary nodes and an interface function In, the tile configuration �C�In is defined as follows:
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Replicator : •→ •• Merger : ◦→ ◦◦
Node : ε → ◦• Sync : •◦→ ε

SyncDrain : ••→ ε LossySync : •◦→ ε
SyncSpout : ◦◦→ ε AsyncDrain : ••→ ε

AsyncSpout : ◦◦→ ε Filter(p) : •◦→ ε
FIFO1 : •◦→ ε FIFO1(x) : •◦→ ε

Fig. 7. Signature for Reo configurations

Fig. 8. A tile configuration representing a mixed node

– on the left, it has a parallel composition of Node operators, one for each node
in C, with the two ends connected to trees composed by n− 1 mergers and m− 1
replicators respectively, if the Reo node has n sources and m sinks (the trees may
be empty); for boundary nodes one of the two attach points has no connected tree,
and will be connected to the outside interface;

– on the right, it has a parallel composition of channel operators, one for each chan-
nel in C;

– the two parts are connected via identities and symmetries, so that each incoming
channel is connected to the Merger tree of the corresponding node, and similarly
for outgoing channels and Replicator trees;

– for each boundary node A, its free attach point is connected to the interface element
In(A) via identities and symmetries.

The tile configurations corresponding to the Reo connectors that define the exclusive
router and the alternator are presented in Fig. 9. The corresponding textual notation for
the alternator is below (where Perm is a composition of identities and symmetries):

Node⊗Node⊗Node; id◦ ⊗Replicator⊗ id◦ ⊗Replicator⊗Merger⊗ id•;Perm;

id◦⊗◦ ⊗SyncDrain⊗Sync⊗FIFO1⊗ id• : ε → ◦ ◦ •

Now we can give semantics to Reo connectors via tiles.
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Fig. 9. Exclusive router and alternator as tile configurations

5 Modeling the 2-Color Semantics of Reo

The one-step tile semantics of a connector C is the set of all tiles that have C as their
starting configuration. In order to give semantics to Reo connectors we need to pro-
vide the basic tiles defining the semantics of each operator, and then tile composition
operations allow the derivation of the semantics of general connectors. We begin by pre-
senting the 2-color data-sensitive semantics, which cannot express context-dependent
behavior, but which is simpler than the corresponding 3-color semantics that we will
introduce in the next section.

We choose as basic observations the data communicated at the interfaces of con-
nectors, to model data-sensitive semantics, and we consider also a special observation
untick to denote no data communication. For instance, the tile Merger

a−−−−−→
a⊗untick

Merger

allows a Merger connector to get an action a from the first element in its right interface
and propagate it to its left interface, provided that there is no piece of data on the other
element of the right interface.

The basic tiles are described in Fig. 10, assuming an alphabet Act for basic actions.
We also assume that x and y range over Act∪{untick} and a and b range over Act. A
graphical representation of the tile that models the filling of a FIFO1 buffer is in Fig. 11.
Note that observations on the interface are drawn along the vertical dimension.

These tiles define an LTS semantics for Reo, where states are tile configurations and
observations are 〈trigger,effect〉 pairs. This semantics recovers all the information in
the 2-color tile semantics for Reo described in [5]. Furthermore it adds to it: (i) the
possibility of observing the actual data flowing in the connector, allowing to model
data-sensitive primitive connectors such as filters, (ii) the possibility to consider full
computations instead of single steps, keeping track also of how the state evolves (par-
ticularly, whether buffers get full or become empty). The theorem below shows how the
information provided by the 2-color semantics can be recovered from the tile seman-
tics. We call a connector data-insensitive if its behavior (i.e., whether or not it allows
data to flow) does not depend on data values. Specifically, every connector built using
any of the primitive connectors described above, excluding filters, is a data-insensitive
connector. To formalize the correspondence between our tile model and the 2-color se-
mantics, we must restrict tiles to the one-step semantics of the connectors, and therefore
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γ x⊗y−−→
y⊗x

γ Replicator
x−−→

x⊗x
Replicator Node

idε−−→
x⊗x

Node

Merger
a−−−−−→

a⊗untick
Merger Merger

a−−−−−→
untick⊗a

Merger Merger
untick−−−−−−−−−→

untick⊗untick
Merger

Sync
x⊗x−−→
idε

Sync SyncDrain
a⊗b−−→
idε

SyncDrain SyncDrain
untick⊗untick−−−−−−−−−→

idε
SyncDrain

SyncSpout
a⊗b−−→
idε

SyncSpout SyncSpout
untick⊗untick−−−−−−−−−→

idε
SyncSpout

AsyncDrain
x⊗untick−−−−−→

idε
AsyncDrain AsyncDrain

untick⊗x−−−−−→
idε

AsyncDrain

AsyncSpout
x⊗untick−−−−−→

idε
AsyncSpout AsyncSpout

untick⊗x−−−−−→
idε

AsyncSpout

LossySync
x⊗x−−→
idε

LossySync LossySync
a⊗untick−−−−−→

idε
LossySync

FIFO1
a⊗untick−−−−−→

idε
FIFO1(a) FIFO1

untick⊗untick−−−−−−−−−→
idε

FIFO1

FIFO1(a)
untick⊗a−−−−−→

idε
FIFO1 FIFO1(a)

untick⊗untick−−−−−−−−−→
idε

FIFO1(a)

Filter(P)
a⊗a−−→
idε

Filter(P) if P(a) Filter(P)
a⊗untick−−−−−→

idε
Filter(P) if ¬P(a)

Fig. 10. Tiles for data-sensitive, 2-color semantics

Fig. 11. The tile for filling a FIFO1 buffer (left) and three bisimilar configurations (right)

we do not need vertical composition of tiles. However, including vertical composition
does not add any one-step transition either.

Theorem 1 (correspondence between 2-color coloring tables and tiles). Let TC be
the 2-color coloring table of a data-insensitive Reo connector C with n boundary nodes.
TC contains a coloring c iff for each interface function In there exists a tile obtained
without using vertical composition having as initial configuration �C�In such that, for
each node A, c(A) = � iff the observation at the interface In(A) in the tile is untick.
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Proof (Sketch). First notice that there is a bijection between colorings for channels,
mergers and replicators and the basic tiles that have the corresponding operators as
their starting configurations, i.e. a basic connector allows a coloring c iff there is a basic
tile with that operator as its starting configuration and observation untick on an interface
iff the corresponding node has color � in the coloring.

One has to prove that the correspondence is preserved while composing colorings on
one side and tiles on the other side. We consider the left-to-right implication, the other
being simpler. Colorings can be composed iff they agree on the color of their common
nodes (see Definition 3 in [5]). In order to compose the corresponding tiles to derive a
tile with the desired starting configuration, observations on matching interfaces have to
coincide. Let us consider the case of just one possible data value. Then the possibility
of composing the tiles follows from the hypothesis if connectors are connected directly
(e.g., channels to mergers and replicators), and from the properties of the auxiliary tiles
for identities and symmetries and the basic tiles for nodes if connectors are connected
via them.

Let us now consider the general case of an arbitrary set of data values. Note that for
data-insensitive connectors, if a tile for a certain data flow exists, then a tile with the
same data flow, but where all the data are equal can be built (this can be easily proved
by induction on the number of operators in the starting configuration of the tile), thus
the case of an arbitrary set of data values can be reduced to the one data value case.
Notice that the above property does not hold for data-sensitive connectors. ��
As we have seen, all information provided by the coloring tables can be deduced from
the tile semantics. Furthermore, the final configuration of a tile represents the state of the
connector after the data flow has been performed. This can be used also to recover infor-
mation provided by the constraint-automata or coalgebraic semantics of Reo. However
a detailed comparison with those semantics is left for future work.

The theorem below ensures that the tile semantics is compositional w.r.t. the opera-
tors of parallel and sequential composition provided by tiles.

Theorem 2 (2-coloring congruence). Tile bisimilarity is a congruence for the 2-color
semantics of Reo connectors.

Proof. Straightforward by inspection, using Lemma 1. ��
Note that the compositionality is proved w.r.t. the operators of tile composition, how-
ever this can be extended also to Reo composition operators. Composition in Reo is
obtained by merging boundary nodes. In the tile model this can be obtained by con-
necting them via Sync channels (this corresponds to compose them in parallel and then
sequentially with the Sync channel and some identities). The example below shows that
the additional channel does not influence the behavior of the composition.

Example 1. Consider the simple Reo connector C1 composed out of a mixed node with
one source end and one sink end, Node : ε → ◦• (see Fig. 11, top-center). We can show
that this is bisimilar to a Reo connector C2 composed out of two such nodes connected
by a Sync channel: Node⊗Node; id◦ ⊗Sync⊗ id• : ε → ◦• (see Fig. 11, top-right).
First, note that the two connectors have the same interface. Then, observe that for both
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connectors the only possible tiles are vertical compositions of tiles Ci
x−→
x

Ci (with i = 1

or i = 2). Thus, from the definition of bisimilarity C1 ∼t C2. Therefore, thanks to the
congruence theorem, in each connector we can replace the two nodes connected by a
Sync channel with a single node without changing the overall behavior. A third bisimilar
configuration is in Fig. 11, bottom-right.

6 Modeling the 3-Color Semantics of Reo

As pointed out in [5], the 2-color semantics of Reo fails to fully capture the context-
dependent behavior of Reo connectors. Consider in fact the connector in Fig. 12, which
is represented by the tile configuration:

Node⊗Node⊗Node; id◦ ⊗LossySync⊗FIFO1⊗ id• : ε → ◦•

Fig. 12. Overflow-lossy FIFO1

There are two possible tiles with this initial configuration and with the observa-
tion 〈idε,a⊗ untick〉 modeling data entering in the connector. The first one loses the
data item in the LossySync channel and has the final configuration Node⊗Node⊗
Node; id◦ ⊗ LossySync⊗ FIFO1⊗ id•. The second one transports the data item into
the buffer of the FIFO1(a) channel and has the final configuration Node⊗ Node⊗
Node; id◦⊗LossySync⊗FIFO1(a)⊗ id•. The expected behavior corresponds to the sec-
ond one, since there is no reason for the data to be lost. However, both the 2-color se-
mantics and the tile model we presented above generate both alternatives as permissible
behavior for this connector.

The 3-color semantics of Reo discussed in [5] solves this problem by tracking ‘rea-
sons to prohibit data flow’, and allows LossySync to lose data only if there is a reason
for the data not to flow out of the channel (e.g., an attached full buffer or an interface
that does not accept data at the other end). The 3-color semantics replaces the � color
by two colors corresponding to ‘giving a reason for no data flow’ and ‘requiring a rea-
son for no data flow.’ Briefly, ‘giving a reason’ is used to model either a choice made by
the connector or to capture the absence of data flow on a particular channel end. On the
other hand, ‘requiring a reason’ is used to model that the context determines whether a
particular choice is made. Consider the two key tiles for LossySync:

LossySync
a⊗a−−→
idε

LossySync LossySync
a⊗�−−−→
idε

LossySync

The first one simply states that data flow through the LossySync. The second states that
data will be lost in the LossySync if a reason for no flow can be provided by the context
in which the channel is plugged. If a tile with the label a⊗� was also present, this
would say that the LossySync provides a reason for the data to be lost, and thus the
LossySync would lose the property that the decision ought to be made by the context.



Tiles for Reo 51

Composition in the 3-color model includes the additional requirement that at each
basic node where there is no data flow, at least one reason for no flow must be present.

We show that tile logic can also easily model this more detailed semantics. To this
end, we must refine our untick observation into �, which models ‘requires a reason
for no data flow,’ and �, which models ‘gives a reason for no data flow,’ when these
symbols occur on the left-hand side of the tile (above the line in the rule format). When
these observations occur on the right-hand side of a tile, their meanings are reversed.
For instance, one of the rules for Replicator:

Replicator
�−−−→

�⊗�
Replicator

means that a reason is required from the channel end on the left of the tile (above the
line) and will be given (propagated) to the channel ends on the right of the tile (below
the line). This captures that no-input to the Replicator is sufficient to cause no data flow
through the Replicator, and that this reason is passed onto the sink ends.

The main tiles for modeling the 3-color semantics of Reo are in Fig. 13. The others
are analogous.

γ x⊗y−−→
y⊗x

γ Replicator
a−−→

a⊗a
Replicator

Replicator
�−−−→�⊗� Replicator Replicator

�−−−→�⊗� Replicator Replicator
�−−−→�⊗� Replicator

Node
idε−−→

a⊗a
Node Node

idε−−−→�⊗� Node Node
idε−−−→�⊗� Node Node

idε−−−→�⊗� Node

Merger
a−−−→

a⊗� Merger Merger
a−−−→�⊗a

Merger Merger
�−−−→�⊗� Merger Merger

�−−−→�⊗� Merger

Sync
a⊗a−−→
idε

Sync Sync
�⊗�−−−→

idε
Sync Sync

�⊗�−−−→
idε

Sync Sync
�⊗�−−−→

idε
Sync

LossySync
a⊗a−−→
idε

LossySync LossySync
a⊗�−−−→
idε

LossySync LossySync
�⊗�−−−→

idε
LossySync

FIFO1
�⊗�−−−→

idε
FIFO1 FIFO1

a⊗�−−−→
idε

FIFO1(a) FIFO1(a)
�⊗a−−−→
idε

FIFO1 FIFO1(a)
�⊗�−−−→

idε
FIFO1(a)

Fig. 13. Tiles for data-sensitive, 3-color semantics

Note that the tile Node includes a behavior that mimics the so-called flip rule in
connector coloring [5]. The point of the flip rule is to reduce the size of coloring tables
using the fact that nodes need no more than one reason. The fact that nodes can also
accept multiple reasons is captured by the tile:

Node
idε−−−→

�⊗�
Node

Results analogous to the one in the previous section can be proved, showing that the
3-color tile semantics recovers all the information provided by the standard 3-color
semantics of Reo. As for the 2-color semantics, the tile semantics is data-sensitive, and
allows to track the state of connectors and model full computations.
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Theorem 3 (correspondence between 3-color coloring tables and tiles). Let TC be
the 3-color coloring table (see [5]) of a data-insensitive Reo connector C with n bound-
ary nodes. TC contains a coloring c iff for each interface function In there exists a tile
obtained without using vertical composition with initial configuration �C�In such that,
for each node A:

– c(A) is the color for no dataflow with the reason coming into the node (given) iff
the observation at the interface element In(A) in the tile is � (this is always below
the line);

– c(A) is the color for no dataflow with the reason leaving the node (required) iff the
observation at the interface element In(A) in the tile is � (this is always below the
line).

Proof. The proof is similar to the one of Theorem 1. ��
As for the 2-color semantics, tile bisimilarity is a congruence.

Theorem 4 (3-coloring congruence). Tile bisimilarity is a congruence for the 3-color
semantics of Reo connectors.

7 Reconfiguration of Reo Connectors

Since the tile semantics of a Reo connector includes also the state of the connector
after each step, one can model inside the Tile Model also the reconfiguration of Reo
connectors triggered by dataflow as presented in [11].

The idea is that some connectors, when suitable conditions concerning their state
and the ongoing dataflow are met, can automatically be reconfigured to meet the re-
quirements of the environment. We sketch this approach by demonstrating it through
the example of an infinite FIFO buffer [11], and leave a more detailed study of recon-
figuration for future work. An infinite FIFO buffer is a FIFO buffer that grows when
a new datum arrives to be inserted and its buffer is full, and shrinks when a datum is
consumed out of the buffer. To model this we require two new channels: FIFO∞ is the
empty infinite buffer, and FIFOtmp(a) is a temporary buffer, containing value a, that
will disappear when the a is consumed.

For simplicity we give semantics to the infinite FIFO buffer using the 2-color seman-
tics, however, the 3-color semantics can be used as well. The necessary basic tiles can
be found in Fig. 14. Note that the tile for shrinking the buffer transforms the temporary
buffer FIFOtmp(a) into a Sync channel. Thanks to Example 1, up to bisimilarity, this

FIFO∞
idε

FIFO∞ FIFO∞
a

idε
id Node id ;FIFO∞ FIFOtmp(a)

FIFOtmp(a)
a

idε
Sync FIFOtmp(a)

idε
FIFOtmp(a)

Fig. 14. Tiles for 2-color semantics of infinite buffer
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Fig. 15. Some graphical shorthand

Fig. 16. Datum b arrives (left) and datum a leaves

corresponds to removing the temporary buffer and its nearby node. However, the tile
needed to actually do the garbage collection would not satisfy the basic source prop-
erty, thus we preferr this approach.

To sketch the evolution of infinite buffers, we draw some possible proof steps ob-
tained by horizontal composition of basic tiles. To simplify the graphical notation we
introduce some suitable graphical shorthand in Fig. 15 (left) for the composition of a
node and a temporary buffer (TM) and for the composition of a node and a synchronous
channel (FWD) that basically behaves as a forwarder. Using the shorthand, the tile for
inserting a new datum in the infinite buffer can be drawn as in Fig. 15 (right). Figure 16
shows what happens if a new datum b arrives when the buffer already contains a datum
a (left) and what happens if a datum is then requested from the buffer (right). Note that
it is also allowed for the arrival and departure of data happen at the same time (see
Fig. 17).

Proposition 1 (a reconfiguration congruence). Tile bisimilarity is a congruence for
the 2-color semantics of Reo connectors including the infinite FIFO buffer.

Observe that in this approach reconfiguration and computation are fully integrated
(while in [11] and [10,11] the two aspects are dealt with by separate models). Fur-
thermore, reconfigurable connectors and normal connectors can be used together, since
reconfiguration is not visible from the outside. However, our tile model currently cannot
express more complex reconfigurations that change the interfaces of connectors. Cap-
turing these reconfiguration in such a way as to allow the congruence of bisimilarity to
be proved using the basic source property, requires (1) connectors to agree on when and
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Fig. 17. Datum c arrives while datum a leaves

which reconfiguration to perform, and (2) nodes to propagate this kind of information.
We leave an analysis of this approach for future work.

8 Conclusion

We have shown that the Tile Model can be used to describe all main aspects of the
semantics of Reo connectors: synchronization, dataflow, context dependency, and re-
configuration. This is the first semantic description of Reo connectors able to present
all these aspects natively in a single framework. Furthermore, the semantics is compo-
sitional.

As future work we want to consider an alternative approach to the 3-color semantics
based on priorities: one can specify that losing data in the LossySync channel has lower
priority than data flowing through it. Our goal is to match the expected intuitive seman-
tics of Reo, and solve the problem of causes for data-discard that arises in some cycles
in the 3-color semantics, as discussed in [5]. However, further research is necessary to
understand how to apply this reasoning to complex connectors. Another long term goal
of our work is to understand how to define complex reconfigurations along the lines
sketched at the end of Section 7.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition. Math.
Struct. in Comput. Sci. 14(3), 1–38 (2004)

2. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer,
Heidelberg (2003)

3. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo
by constraint automata. Sci. Comput. Program 61(2), 75–113 (2006)

4. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theoret. Com-
put. Sci. 366(1-2), 98–120 (2006)

5. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and context depen-
dency. Sci. Comput. Program 66(3), 205–225 (2007)

6. Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and
its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)

7. CWI. Reo home page, http://reo.project.cwi.nl

http://reo.project.cwi.nl


Tiles for Reo 55

8. CWI. A repository of Reo connectors, http://homepages.cwi.nl/˜proenca/webreo/
9. Gadducci, F., Montanar, U.: The tile model. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)

Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT
Press, Cambridge (2000)

10. Koehler, C., Arbab, F., de Vink, E.: Reconfiguring Distributed Reo Connectors. In: Corradini,
A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 221–235. Springer, Heidelberg
(2009)

11. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors triggered
by dataflow. In: Ermel, C., Heckel, R., de Lara, J. (eds.) Proceedings of GT-VMT 2008.
Elect. Communic. of the European Association of Software Science and Technology, vol. 10,
pp. 1–13. EASST (2008)

12. Koehler, C., Lazovik, A., Arbab, F.: Connector rewriting with high-level replacement sys-
tems. In: Canal, C., Poizat, P., Viroli, M. (eds.) Proceedings of FOCLASA 2007. Elect. Notes
in Th. Comput. Sci. Elsevier Science, Amsterdam (2007)

13. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In:
Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 526–539. Springer, Heidelberg (1990)

14. MacLane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)
15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Com-

put. Sci. 96, 73–155 (1992)
16. Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordinating dis-

tributed systems. Applied Categorical Structures 7(4), 333–370 (1999)
17. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program.

60-61, 17–139 (2004)

http://homepages.cwi.nl/~proenca/webreo/


C-semiring Frameworks for Minimum Spanning
Tree Problems

Stefano Bistarelli1,2,3 and Francesco Santini3,4

1 Dipartimento di Informatica e Matematica, Università di Perugia, Italy
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2 Dipartimento di Scienze, Università “G. d’Annunzio” di Chieti-Pescara, Italy
bista@sci.unich.it

3 Istituto di Informatica e Telematica (CNR), Pisa, Italy
{stefano.bistarelli,francesco.santini}@iit.cnr.it

4 IMT - Istituto di Studi Avanzati, Lucca, Italy
f.santini@imtlucca.it

Abstract. In this paper we define general algebraic frameworks for the
Minimum Spanning Tree problem based on the structure of c-semirings.
We propose general algorithms that can compute such trees by follow-
ing different cost criteria, which must be all specific instantiation of c-
semirings. Our algorithms are extensions of well-known procedures, as
Prim or Kruskal, and show the expressivity of these algebraic structures.
They can deal also with partially-ordered costs on the edges.

1 Introduction

Classical Minimum Spanning Tree (MST) problems [1,2] in a weighted directed
graph arise in various contexts. One of the most immediate examples is related to
the multicast communication scheme in networks with Quality of Service (QoS)
requirements [3]. For example, we could need to optimize the bandwidth, the
delay or a generic cost (for device/link management or to obtain the customer’s
bill) of the distribution towards several final receivers. Therefore, the aim is to
minimize the cost of the tree in order to satisfy the needs of several clients at the
same time. Other possible applications may concern other networks in general, as
social, electrical/power, pipeline or telecommunication (in a broad sense) ones.

In our study we would like to define a general algebraic framework for the MST
problem based on the structure of c-semirings [4,5], that is, a constraint-based
semiring; in the following of the paper we will use “c-semiring” and “semiring”
as synonyms. We want to give algorithms that work with any semiring covered
by our framework, where different semirings are used to model different QoS
metrics. Classical MST problems can be generalized to other weight sets, and to
other operations. A general algebraic framework for computing these problems
has not been already studied, even if a similar work has been already proposed
for shortest path problems [6].

More precisely, the algebraic structure that provides the appropriate frame-
work for these problems is a semiring S = 〈A, +,×,0,1〉. This five-tuple repre-
sents the set of preferences/costs (i.e. A), the operation to compose and choose

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 56–70, 2009.
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them (i.e. respectively × and +) and the best (i.e. 1) and worst (i.e. 0) pref-
erences in A. Semirings consist in flexible and parametric algebraic structure
that can be simply instantiated to represent different costs, or QoS metrics (e.g.
bandwidth) as we mainly suppose in this paper [7,8].

Our goal is to provide a general algebraic framework similar to the one created
in [6] for shortest-path algorithms, a work from which we have sensibly taken
inspiration for this work. Clearly, our intent is to reach analogous results, but,
in this case, for tree structures instead that for plain paths.

The absence of a unifying framework for single-source shortest paths problems
was already solved in [6], where the author defines general algebraic frameworks
for shortest-distance problems based on the structure of semirings. According to
these semiring properties, the author gives also a generic algorithm for finding
single-source shortest distances in a weighted directed graph. Moreover, the work
in [6] shows some specific instances of this generic algorithm by examining differ-
ent semirings; the goal is to illustrate their use and compare them with existing
methods and algorithms. Notice that, while in [6] the author uses also semirings
with a non-idempotent +, we would like to focus mainly on c-semirings instead
(i.e. even with an idempotent +). To further clarify our intents, we would like
to say that the ideas in this paper are developed to show the expressivity of
semirings, and not to enrich the field of graph theory.

The multi-criteria MST problem has seldom received attention in network
optimization. The solution of this problem is a set of Pareto-optimal trees, but
their computation is difficult since the problem is NP-hard [9]. One solution,
based on a genetic algorithm, has been given in [9]; however, even this solution
is not feasible, since a successive work [10] proved that it is not guaranteed that
each tree returned by the algorithm in [9] is Pareto optimal. Our goal is to
describe this problem from an algebraic point of view.

2 C-semirings

A c-semiring [4,5,11] is a tuple 〈A, +,×,0,1〉 such that:

1. A is a set and 0,1 ∈ A;
2. + is commutative, associative and 0 is its unit element;
3. × is associative, distributes over +, 1 is its unit element and 0 is its absorbing

element.

A c-semiring is a semiring 〈A, +,×,0,1〉 such that + is idempotent, 1 is its
absorbing element and × is commutative. Let us consider the relation ≤S over
A such that a ≤S b iff a + b = b. Then it is possible to prove that (see [5]):

1. ≤S is a partial order;
2. + and × are monotone on ≤S;
3. × is intensive on ≤S : a× b ≤S a, b;
4. 0 is its minimum and 1 its maximum;
5. 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, + is the least upper bound

operator, that is, a + b = lub(a, b).
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Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤S〉 is a com-
plete distributive lattice and × its glb. Informally, the relation ≤S gives us a
way to compare semiring values and constraints. In fact, when we have a ≤S b,
we will say that b is better than a. In the following, when the semiring will
be clear from the context, a ≤S b will be often indicated by a ≤ b. The
cartesian product of multiple semirings is still semiring [4]: for instance, S =
〈〈[0, 1], R+〉, 〈max, min〉, 〈min, +̂〉, 〈0, +∞〉, 〈1, 0〉〉 (+̂ is the arithmetic sum) cor-
responds to the cartesian product of a fuzzy and a weighted semiring, and S is
a semiring.

In [12] the authors extended the semiring structure by adding the notion of
division, i.e. ÷, as a weak inverse operation of ×. An absorptive semiring S
is invertible if, for all the elements a, b ∈ A such that a ≤ b, there exists an
element c ∈ A such that b× c = a [12]. If S is absorptive and invertible, then, S
is invertible by residuation if the set {x ∈ A | b× x = a} admits a maximum for
all elements a, b ∈ A such that a ≤ b [12]. Moreover, if S is absorptive, then it
is residuated if the set {x ∈ A | b × x ≤ a} admits a maximum for all elements
a, b ∈ A, denoted a÷ b. With an abuse of notation, the maximal element among
solutions is denoted a÷b. This choice is not ambiguous: if an absorptive semiring
is invertible and residuated, then it is also invertible by residuation, and the two
definitions yield the same value.

To use these properties, in [12] it is stated that if we have an absorptive
and complete semiring1, then it is residuated. For this reason, since all classical
soft constraint instances (i.e. Classical CSPs, Fuzzy CSPs, Probabilistic CSPs
and Weighted CSPs) are complete and consequently residuated, the notion of
semiring division (i.e. ÷) can be applied to all of them.

The semiring algebraic structure proves to be an appropriate and very expres-
sive cost model to represent QoS metrics. Weighted semirings 〈R+, min, +̂,∞, 0〉
(+̂ is the arithmetic sum) can be used to find the best MST by optimizing, for in-
stance, the cost of the tree in terms of money, e.g. for link maintenance or billing
criteria in order to charge the final user. Fuzzy semirings 〈[0, 1], max, min, 0, 1〉
represent fuzzy preferences on links, e.g. low, medium or high traffic on the
links. Probabilistic semirings 〈[0, 1], max, ×̂, 0, 1〉 (×̂ is the arithmetic multipli-
cation). As an example, the probabilistic semiring can optimize (i.e. maximize)
the probability of successful delivery of packets (due to errors). Classical semir-
ings 〈{0, 1},∨,∧, 0, 1〉 can be adopted to test the reachability of receivers has to
be tested.

3 Algorithms for MST and Totally Ordered Semirings

As a reminder, a MST can be defined as in Def. 1.

1 If S is an absorptive semiring, then S is complete if it is closed with respect to infinite
sums, and the distributivity law holds also for an infinite number of summands.
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Definition 1. Given an undirected graph G ≡ (V, E), where each edge (u, v) ∈
E has a weight w(u, v), the tree T ⊆ E that connects all the vertices V and
minimizes the sum w(t) =

∑

(u,c)∈T

w(u, v) is defined as the MST of G.

A first sketch of a possible algorithm for a MST problem over a graph G(V, E)
is given in Alg. 1. It is obtained by modifying the classical Kruskal algorithm [1]
in order to use c-semiring values and operators which are taken as input, i.e.
〈A, +,×,0,1〉. The algorithm (as Alg. 2) work only with totally ordered edge
costs.

In Alg. 1, b corresponds to the best edge in the current iteration of the repeat
command (line 2) and it is found (in line 3) by applying the

⊕
operator over

all the remaining edges in the set P (i.e. the set of possible edges), instantiated
to E at the beginning (line 1);

⊕
: E → P(E) is a new operator that finds

the edge b with the best cost in E, according to the ordering defined by the +
operator of the semiring. Then the (partial) solution tree is updated with the⊗

: P(E)× P(E) → P(E) operator, which adds the new edge and updates the
cost of the tree according to the × operator of the semiring (line 5). At last, b
is removed from P (line 7).

Algorithm 1. Kruskal with semiring structures

INPUT: G(V, E), 〈A, +,×,0, 1〉
1: T = ∅, P = E
2: repeat
3: let b ∈ ⊕

(P ) \\ Best edge in P
4: if (endpoints of b are disconnected in T ) then
5: T = T

⊗{b} \\ Add the best edge to the solution
6: end if
7: P = P \ {b}
8: until P == ∅

OUTPUT: T ≡ MST over G

Theorem 1. To find a Minimum Spanning Tree T , the complexity of the algo-
rithm is O(|E| ln|E|) as in the original procedure [1].

The proof follows the ideas in [1]. Having sorted the edges in O(|E| ln|E|), the⊕
operator runs in constant time. Consider that here the sorting procedure

takes also the + of the chosen semiring as a parameter, in order to select the
best values according to the partial ordering defined by ≤S (see Sec. 2). By using
disjoint-set data structures [1], we can check in O(ln|E|) time that each of the
O(|E|) edge insertions in T does not create a cycle [1]. This last step is identical
to the last check in the classical Kruskal algorithm, and it is used only to keep
the structure of a tree.

We can show also that the other best-known algorithm for solving the MST
problem can be generalized with semiring structures (see Alg. 2). Step by step,
the modified Prim’s algorithm [1] adds an edge to the (partial solution) tree
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T , instead of joining a forest of trees in a single connected tree, as in Kruskal’s
algorithm. However, even Prim’s procedure proceeds in a greedy way by choosing
the best-cost edge (i.e. (vi, uj) in line 4) in order to add it to the solution (line
5) through the

⊗
operator. The operator

⊕
is the same as the one defined for

Alg. 1, even if in this case it is applied only to those edges for which one of the
endpoints has not been already visited. This set of nodes, i.e. R, is initialized in
line 1 with an arbitrary node, and updated at each step (line 5). The algorithm
ends when all the nodes of the graph have been visited, that is R == V .

Notice also that both Alg. 1 and Alg. 2 properly work only if the set of costs is
totally ordered, while they need to be modified for a multicriteria optimization,
since the costs of the edges can be partially ordered. In this case, the semiring
operators have to deal with multisets of solutions that are Pareto-optimal: in
Sec. 4 we modify the

⊕
operator in order to select and manage a set of edges

(and not only a singleton) with incomparable costs within the same step.

Algorithm 2. Prim with semiring structures

INPUT: G(V, E), 〈A, +,×,0, 1〉
1: T = ∅, R = {vk}, vk is arbitrary
2: repeat
3: let P = {(vk, uz) ∈ E | (vk ∈ R) ∧ (uz �∈ R)}
4: let (vi, uj) ∈ ⊕

(P )
5: T = T

⊗{(vi, uj)}
6: R = R ∪ uj

7: until R == V

OUTPUT: T ≡ MST over G

4 Partially Ordered Extensions

As said in Sec. 3, Alg. 1 and Alg. 2 are not able to compute a solution for the
MST in case the costs of the edges are partially ordered. The reason is that,
since we have a partial order over the chosen semiring S, two costs c1 and c2

may possibly be incomparable (i.e. c1 <> c2). According to this view, the
⊕

operators presented in Alg. 1 and Alg. 2 must be extended in order to choose a
set of edges within the same step, instead of only a single arc.

In the next paragraph we present the Kruskal algorithm extended to manage
partially ordered costs for the edges. Further on, we provide the proof of cor-
rectness/soundness and the complexity analysis of its operations (in the second
paragraph of this section). Then, in the third paragraph we show an alterna-
tive algorithm that incrementally deletes the worst edges from the graph until
it reaches the MST; the original version is called Reverse-delete algorithm [13].

Kruskal extended with partial order. For a partially ordered set of costs we can
use Alg. 3. The most notable difference w.r.t. the totally ordered version of the
algorithm (see Alg. 1) is the definition of the

⊕
operator (used in line 3 of

Alg. 3):
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Fig. 1. In a) a set of partially ordered costs are represented, and in b) how they are
partitioned according to the

⊕
operator in Alg. 3

Definition 2. The
⊕

: P(E) → P(E) operator takes a set W of edges and
returns a set W\U = X, such that ∀u ∈ U, x ∈ X.cost(u) <S cost(x), where >S

(see Sec. 2) depends on the chosen semiring S and the cost function returns the
cost of an edge.

In words, the
⊕

operator chooses all the best edges (according to <S) whose
costs are incomparable with at least one other cost. To show an example, we
consider the cartesian product of two weighted semirings, i.e. S = 〈〈R+, R+〉,
〈min, min〉, 〈+̂, +̂〉, 〈∞,∞〉, 〈0, 0〉〉: given the set W of edges whose costs are
represented by {〈3, 3〉, 〈2, 6〉, 〈6, 2〉, 〈5, 5〉, 〈6, 7〉, 〈7, 6〉}, ⊕

(W ) = X whose costs
are instead {〈3, 3〉, 〈2, 6〉, 〈6, 2〉, 〈5, 5〉}. The partially ordered costs of the edges
in W are graphically represented also in the plane of Fig. 1a. Notice that the
set X contains also edges whose costs totally dominate the other costs of edges
in the same set X : e.g. 〈3, 3〉 >S 〈5, 5〉. However, 〈5, 5〉 is still selected by

⊕
to

be in X since it cannot be compared with 〈6, 2〉 (and also 〈2, 6〉): only 〈6, 7〉 and
〈7, 6〉 are not chosen, since they are totally dominated by the other costs (they
will be chosen by the algorithm in the second step, as shown in Fig. 1b). In other
words, the set X is obtained from the Pareto optimal frontier, by adding all the
edges with incomparable costs.

The set X =
⊕

(W ) is then examined in line 4−7 of Alg. 3, in order to find all
its maximal cardinality and best cost subsets of edges (i.e. the R in line 7) that
can be added to the solution without introducing cycles. In line 5, Xset collects
all the sets of edges in X that do not form a cycle with a partial solution Ti: in
this way we enforce the connectivity condition of a tree. Each Ti ∈ T represents
a partial solution, and T collects them all; T ′

i represents instead an updated Ti

(see line 9). Among all these sets in X , in line 6 we select those subsets with
the maximal cardinality, i.e. Rset. The reason is that (Lemma 1), in order to
minimize the cost of the spanning tree, it is better to connect its components
by using as many low cost edges (in X) as possible, having introduced the

⊕

operator (see Def. 2).



62 S. Bistarelli and F. Santini

Algorithm 3. Kruskal extended for partial ordering

INPUT: G(V, E), 〈A, +,×,0, 1〉, A partially ordered
1: let T =

⋃
i

Ti where T0 = {∅}, W = E

2: repeat
3: X =

⊕
(W )

4: for all Ti ∈ T do
5: Xset = {X ′|X ′ ⊆ X, Ti

⊗
X ′ has not cycles} \\ No cycles

6: Rset = {X∗|X∗ ∈ Xset,∀X ′ ∈ Xset, |X∗| >= |X ′|} \\ Max Cardinality
7: R = {R′|R′ ∈ Rset,∀R′′ ∈ Rset s.t. Ti

⊗
R′′ �>S Ti

⊗
R′} \\ Best Cost

8: for all Ri ∈ R do
9: T ′

i = Ti

⊗
Ri

10: end for
11: end for
12: W = W\X
13: until W == ∅
OUTPUT: T ≡ the set of all MSTs over G

Therefore, in line 7 we only take the R′ subsets in Rset that, composed with
the partial solutions Ti (i.e. Ti

⊗
R′), are not completely dominated by another

R′′ ∈ Rset. In this way, the algorithm discards the completely dominated partial
solutions since they can lead only to a completely dominated final solution (thus,
not a MST), as explained in Lemma 1.

In lines 8−10, each Ri ∈ R is added to the related partial solution Ti, in order
to remember all the possible partial solutions that can be obtained within the
same step, i.e. the set of all the T ′

i : they consist in all the best (i.e. dominating)
partial trees and need to be stored since they can lead to different MST with an
incomparable cost.

At last, the set X of examined edges is removed from W (line 12). This
procedure is repeated until all the edges in W have been examined (at the
beginning, W = E, i.e. the set of edges in the graph). Considering the costs in
Fig. 1a, in Fig. 1b it is possible to see the W sets of edges that will be selected
at the first and second step of Alg. 3. At the last step, T collects all the MSTs
(i.e. Ti) that can be obtained over the graph G. A full example of the algorithm
execution is given is Sec. 4.1.

To give a particular example of a single iteration, we suppose that at the first
step the algorithm has added the edges (nk, nz) and (nu, nv) to the solution T , as
shown in Fig. 2; thus, the cost of the partial solution is 〈2, 3〉. We still consider the
cartesian product of two weighted semirings. Then, at the second step

⊕
(W ) =

{(nj, nk), (ni, nv), (ni, nu), (nj , nz)} (represented with dashed lines in Fig. 2),
whose costs respectively are 〈3, 4〉, 〈4, 3〉, 〈1, 10〉 and 〈10, 1〉. Following line 5 of
Alg. 3, at this step we can add either (nj , nk) or (nj , nz) to the first component
and either (ni, nu) or (ni, nv) to the second one; otherwise, we would introduce
a cycle in the solution. Notice that all these edges are selected within the same
step, since their costs are partially ordered (see Def. 2).
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Fig. 2. The graphical intuition of the mincost operation in Alg. 3

Therefore, according to lines 5 and 6, Rset = {R1 = {(nj, nz), (ni, nv)}, R2 =
{(nj, nz), (ni, nu)}, R3={(nj , nk), (ni, nv)}, R4 = {(nj, nk), (ni, nu)}}. The costs
of these four sets of edges are respectively 〈14, 4〉, 〈11, 11〉, 〈7, 7〉 and 〈4, 14〉. The
operation in line 7 of Alg. 3 discards R2 (whose cost is 〈11, 11〉), since T

⊗
R2 <S

T
⊗

R3: 〈13, 14〉 <S 〈9, 10〉. Therefore, we have that R = {{(nj, nz), (ni, nv)} ,
{(nj, nk), (ni, nv)}, {(nj, nk), (ni, nu)}} (R is obtained at line 7). Then the par-
tial solution T (after the first step T = {{(nk, nz), (nu, nv)}}) becomes T =
{T ⊗

R1 = {(nk, nz), (nu, nv), (nj , nz), (ni, nv)}, T
⊗

R3 = {(nk, nz), (nu, nv) ,
(nj , nk), (ni, nv)}, T ⊗

R4 = {(nk, nz), (nu, nv), (nj , nk), (ni, nu)}}.

Reverse-delete. In the original version of the Reverse-delete algorithm [13], if
the graph is disconnected, this algorithm will find a MST for each connected
component of the graph. The set of these minimum spanning trees is called
a minimum spanning forest, which consists of every vertex in the graph. The
Reverse-Delete algorithm starts with the original graph and deletes the worst
edges from it, instead of adding solution edges to the empty set, step by step as
in Kruskal’s algorithm. If the graph is connected, the algorithm is able to find
the MST.

Considering Alg. 4, the �− : P(E) → P(E) operator in line 3 selects the set X
of the worst completely dominated edges in W , which is the set of edges that still
need to be checked; at the beginning W = E, and the only one partial solution
consists in all the edges in the graph, i.e. T = {E}. Formally, �−(W ) = {e ∈
W :�∃e′ ∈ W, cost(e) ≤S cost(e′)}, where S is the chosen semiring and the cost
function return the weight of an edge. Each Ti ∈ T represents a partial solution,
and T collects them all; T ′

i represents instead an updated Ti (see line 9).
Then, like Alg. 3, in lines 5−6 the algorithm finds Rset, i.e. the set of maximal

cardinality subsets of X whose removal still keeps the graph connected. Among
all these subsets, in line 7 we select R, which is the set of subsets of Rset with the
worst possible (incomparable) costs according to the semiring partial order (i.e.
<S): to do so we use the �÷ : P(E) × P(E) → P(E) operator, which removes
the second set of edges from the first one and then updates the cost of the partial
solution according to the ÷ operator presented in Sec. 2 (i.e. the weak inverse
operator of ×). We can consider �÷ as the inverse operator of

⊗
in Alg. 3. All
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Algorithm 4. Reverse-delete Kruskal extended for partial ordering

INPUT: G(V, E), 〈A, +,×,0, 1〉, A partially ordered
1: let T =

⋃
i

Ti where T0 = {E}, W = E

2: repeat
3: X = �−(W )
4: for all Ti ∈ T do
5: Xset = {X ′|X ′ ⊆ X, Ti �÷X ′ is connected} \\ Connectivity
6: Rset = {X∗|X∗ ∈ Xset,∀X ′ ∈ Xset, |X∗| >= |X ′|} \\ Max Cardinality
7: R = {R′|R′ ∈ Rset,∀R′′ ∈ Rset s.t. Ti �÷R′′ �>S Ti �÷R′} \\ Worst Cost
8: for all Ri ∈ R do
9: T ′

i = Ti �÷Ri

10: end for
11: end for
12: W = W \ S
13: until W == ∅
OUTPUT: T ≡ the set of all MST over G

the edge sets in Rset can be removed from the partial solutions Ti (lines 8− 10)
by still using the �÷ operator.

At last, the procedure updates W by removing the set X of checked edges
(line 12). These steps are repeated until all the edges in E have been examined.
Following similar steps as for Alg. 3, we can prove Theo. 3.

4.1 Examples

In this section we provide an example to better explain how Alg. 3 and Alg. 4
work in a proper way.

Example on Alg. 3. Concerning Alg. 3 and consequently a non-idempotent semir-
ing, as a reference we consider the graph G(V, E) represented in Fig. 3a, where
the edges in E are labeled with partially ordered costs taken from the semiring
S = 〈〈R+, [0, 1]〉, 〈+̂, ×̂〉, 〈min, max〉, 〈∞, 0〉, 〈0, 1〉〉. This semiring is obtained
through the cartesian product of the weighted and probabilistic semirings, and its
vectorized × operator is non-idempotent since at least one of the original × op-
erators is non-idempotent (in this case, both the operators are non-idempotent).
Therefore, the costs are expressed in terms of couples of values, i.e. 〈c, p〉, and
the cost of a tree is obtained by arithmetically summing all the money costs
and multiplying all the probability costs of the chosen edges. At the end of
the computation, Alg. 3 finds the two best MSTs (i.e. T1 and T2) by minimiz-
ing c and maximizing p for the entire obtained tree, which are represented in
Fig. 3b and Fig. 3c. The first MST has a cost of 〈28, 0.6〉, while the second one,
〈29, 0.61〉: they are not comparable costs and thus they represent two distinct
optimal solutions.

Figure 4 reports the steps of the algorithm with the related X , XSet and
R sets, as obtained from Alg. 3. At step 1 in Fig. 4, the two edges
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Fig. 3. A graph labeled with partially ordered costs (in a), and the best MST trees (in
b) obtained by using 〈〈R+, [0..1]〉, 〈+̂, ×̂〉, 〈min, max〉, 〈∞, 0〉, 〈0, 1〉〉

Step X XSet R
1 {(n4, n5), (n6, n7)} {{(n4, n5), (n6, n7)}, {{(n4, n5), (n6, n7)}}

{(n4, n5)}, {(n6, n7)}}
2 {(n3, n4)} {{(n3, n4)}} {{(n3, n4)}}
3 {(n2, n3), (n3, n5)} {{(n2, n3)}} {{(n2, n3)}}
4 {(n1, n2), (n1, n3)} {{(n1, n2), (n1, n3)}, {{(n1, n2)}, {(n1, n3)}}

{(n1, n2)}, {(n1, n3)}}
5 {(n1, n4)} ∅ ∅
6 {(n2, n7), (n1, n5)} {{(n2, n7)}} {{(n2, n7)}}
7 {(n5, n6), (n1, n7)} ∅ ∅

Fig. 4. The steps of Alg. 3 applied on the graph in Fig. 3a

X = {(n4, n5), (n6, n7)} are selected since their costs totally dominate all the
other costs (i.e. 〈2, 0.96〉 and 〈1, 0.95〉) and are partially ordered w.r.t. each other,
since the first shows a better (i.e. higher) probability and the second a better
(lower) cost. Therefore, since they do not form any cycle, they are both added
to the solution, i.e. R = {(n4, n5)}, {(n6, n7)}}.

Step 2 works in the same way for the edge (n3, n4). At step 3, Alg. 3 chooses
X = {(n2, n3), (n3, n5)} with costs 〈5, 0.93〉 and 〈4, 0.92〉, but only (n2, n3) is
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Step X XSet R
1 {(n5, n6), (n1, n7)} {{(n5, n6), (n1, n7)}, {{(n5, n6), (n1, n7)}}

{(n5, n6)}, {(n5, n6)}
2 {(n2, n7), (n1, n5)} {{(n1, n5)} {{(n1, n5)}
3 {(n1, n4)} {{(n1, n4)}} {{(n1, n4)}}
4 {(n1, n2), (n1, n3)} {{(n1, n2), (n1, n3)}, {{(n1, n2)}, {(n1, n3)}}

{(n1, n2)}, {(n1, n3)}}
5 {(n2, n3), (n3, n5)} {{(n3, n5)}} {{(n3, n5)}}
6 {(n3, n4)} ∅ ∅
7 {(n4, n5), (n6, n7)} ∅ ∅

Fig. 5. The steps of Alg. 4 applied on the graph in Fig. 3a

added to the solution (i.e. R = {{(n2, n3)}}), since (n3, n5) would create the
cycle n3 − n4 − n5; for this reason, the operation in line 5 (see Alg. 3) discards
it from Xset.

At step 4, the
⊕

operator selects X = {(n1, n2), (n1, n3)}: in this case, these
two edges cannot be added at the same time to the solution, since it would create
a cycle among n1−n2−n3. Therefore, from this bifurcation step, the algorithm
remembers and updates two distinct partial solutions T1 and T2 (see Alg. 3
at line 9), one given by adding {(n1, n2)}, and one given by adding {(n1, n3)}
(i.e. R = {{(n1, n2)}, {(n1, n3)}}). While steps 5 and 7 cannot respectively add
(n1, n5) and (n5, n6) or (n1, n7) since it would create a cycle, at step 6 only
(n2, n7) can be added because (n5, n6) would form a cycle as well.

Example on Alg. 4. Clearly, the two MST solutions in Fig. 3b and Fig. 3c can be
obtained also with Alg. 4 as well. The steps of the algorithm are shown in Fig. 5;
as a reminder, notice that the sets R of edges are now removed from the set E
of graph edges, in order to find a (minimum cost) tree structure: the considered
semiring is still S = 〈〈R+, [0, 1]〉, 〈+̂, ×̂〉, 〈min, max〉, 〈∞, 0〉, 〈0, 1〉〉. In the first
step, we can safely remove two edges, i.e. R = {{(n5, n6), (n1, n7)}}, while at
step 2, Alg. 4 can only remove (n1, n5) (i.e. R = {{(n1, n5)}}), otherwise the re-
sulting graph would be disconnected. At step 3, we can remove R = {{(n1, n4)}},
while at step 4 we can remove only one edge between (n1, n2) and (n1, n3) or
graph would be disconnected: from this step we store two different (partially
ordered) solutions T1 = E �÷{(n5, n6), (n1, n7), (n1, n5), (n1, n4), (n1, n2)} and
T2 = E �÷{(n5, n6), (n1, n7), (n1, n5), (n1, n4), (n1, n3)}.

The two solutions in Fig. 3b and Fig. 3c are then obtained at step 5, which re-
moves R = {{(n3, n5)}} (removing (n2, n3) would disconnect the tree). Then the
remaining edges are checked (step 6−7) but not removed due to the connectivity
property.

4.2 Correctness Considerations

We can show the correctness of Algorithm 3 step-by-step. The following property
comes from the definition at line 5 in Alg. 3:
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Proposition 1. Let X ′ ∈ Xset. Adding even one edge in X ′\X to X would
produce a cycle in the partial solution Ti (for this reason, at each iteration it is
possible to discard X from the edges to check, i.e. W = W\X in Alg. 3).

Therefore, line 5 maintains a tree structure and avoids cycles. The cost of the
R′ subsets in Alg. 3 can be obtained by using the × operator of the considered
semiring, and the best subset is the result of applying the + operator in order
to choose the best cost according to the ordering defined by +, i.e. ≤S in Sec. 2.
Therefore, referring to lines 5− 6 in Alg. 3, we can prove that:

Lemma 1. By adding the maximal cardinality subsets of partially ordered edges
X∗ ∈ Rset that do not form any cycle (i.e. X ′ ∈ Xset), at each step we connect
the maximum number of forests possible. Since all the R′ ∈ R are the subsets
with the best (incomparable) costs, each Ti

⊗
Ri forest is connected with the best

possible cost according to the + operator of the semiring.

As a reminder, a forest is an acyclic undirected graph, while a set of connected
forests corresponds to a tree [1]. Lemma 1 extends the safety property explained
for MST [1]. At each step i we obtain a new forest made of distinct components,
which are tree-shaped. For each of these components, the edge that connects
them is light [1], in the sense that it has the best cost (according to +); therefore,
all the added edges are safe. In words, Alg. 3 extends the classical Kruskal
algorithm by connecting more than two components within the same step. This
connection shows the best possible cost, since it is characterized by the maximal
cardinality (the reason is highlighted in Prop. 2) and the best cost, according to
the partial order defined by +, among those sets of best cardinality.

We can prove that by replacing an edge chosen with
⊕

at one step of Alg. 3
with an edge that will be selected at a successive step, we obtain a worse spanning
tree (according to the + operator):

Proposition 2. Connecting the two same components with an edge (whose cost
is ck) chosen with

⊕
at the step i+n (with n > 0) instead of an edge selected at

step i (with cost cj) results in a completely dominated cost for the final solution.

The proof comes from the fact that cj >S ck according to the definition of
⊕

(see
Def. 2), and the × operator, used to compose the costs, is monotone. Prop. 2
explains why we need to consider only those X∗ ∈ Xset with the maximal
cardinality: otherwise we will need to connect that same component with a
completely dominated edge, found at a successive iteration.

Notice that we could have several maximal cardinality subsets R′ ∈ Rset that
can be added to the same partial solution Ti, thus obtaining different partially
ordered solutions T ′

i = Ti

⊗
Ri (see line 9 of Alg. 3). These solutions represent

the best possible forests that can be obtained at a given step (defined by the
⊕

operator). However, some of them can be safely deleted at the successive steps
if they become completely dominated by even only one other partial solution Ti,
as explained for Fig. 2:
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Lemma 2. Given two sets of edges R′, R′′ ∈ Rset such that Ti

⊗
R′ >S Ti

⊗
R′′,

then R′′ is not added to R (line 7 of Alg. 3), and the partial solution Ti

⊗
R′′ is

consequently discarded from the possible ones.

The proof of this Lemma comes from the fact that, if a partial solution Ti

⊗
R′′

is completely dominated (Ti

⊗
R′) at a given step, it will inevitably create a

completely dominated tree at the end of the algorithm (thus, not a MST). The
reason is that the × operator of the semiring is monotone, i.e. if a ≥S b then
a× c ≥S b× c (see Sec. 2).

Theorem 2. Following the steps of Algorithm 3 over a graph G = (V, E), we
find all the Minimum Spanning Trees Ti ∈ T even if the costs of the edges, taken
from a semiring 〈A, +,×,0,1〉, are partially ordered.

The proof of Theo. 2 derives from Lemma 1 and Lemma 2. Since Lemma 1
satisfies the safety property at each step, if the graph G = (V, E) is connected,
at the end we find a tree spanning all the vertices and satisfying the safety
property. The final tree spans all the nodes because we suppose that our graph
G is connected, and as stated in Lemma 1, we connect the maximum number of
forests possible without adding any cycles. Similar considerations can be proved
for Algorithm 4.

Theorem 3. Following the steps of Algorithm 4 over a graph G = (V, E), we
find all the Minimum Spanning Trees Ti ∈ T even if the costs of the edges, taken
from a semiring 〈A, +,×,0,1〉, are partially ordered.

4.3 Complexity Considerations

The complexity of Alg. 3 obviously resides in the operations performed at line
5 − 7, that is in finding the R best-cost subsets among all the possible ones of
maximal cardinality. The other operations in Alg. 3 merely delete or add subsets
of edges. We suppose the set E of edges as already ordered by according to the
cost: this step can be performed in O(|E| ln|E|) [1] and choosing the best edges
(with the

⊕
operator) can be consequently accomplished in a constant time.

Concerning the space/time complexity, the algorithm is, in the worst case,
exponential in the number of the edges with partially ordered costs, since with
lines 8 − 10 we have to store all the possible non-comparable (best) partial
solutions, i.e. the number of Ti sets in T can be exponential. This is the case
when all the edges in the graph G = (V, E) show incomparable costs, and the
number of MSTs can correspond to the number of all the possible spanning
trees over G: |V ||V |−2 following to Cayley’s formula [14]. After having ordered
the edges according to their cost, the

⊕
operator (see Def. 2) partitions them

into k disjoint sets Pi, as represented in Fig. 1; when k = 1 all the edges in
G are not comparable (i.e. an exponential number of MSTs in the worst case)
and when k = |E| all the edge costs are totally ordered and the complexity
corresponds to Alg. 1 (i.e. O(|E| ln|E|)), as for the original Kruskal procedure.

The complexity of Alg. 3 is then O(|E| ln|E| + k d|d|−2)), where k is the
number Pi of the disjoint edge sets and d is the maximum number of nodes
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which have an incident edge in the Pi set, among all the Pi: for instance if P1

stores the edges incident in 4 nodes, P2 in 3 nodes and P3 in 2, then d = 4. When
d << |V |, i.e. there are few incomparable edges in each Pi, the complexity is
linear (i.e. O(|E| ln|E|)). Consider that it is possible to estimate the complexity
of the algorithm after having ordered the edges (in O(|E| ln|E|)), since after that
step we know the number k and the respective size of the Pi sets (consequently,
we know d). Therefore, we can easily know how the algorithm will perform before
executing it.

Notice also that, with an idempotent × operator (e.g. min), Alg. 3 returns
only a subset of the possible MSTs. To find all of them we should keep all the
possible spanning trees (deleting line 7 from Alg. 3) until the last iteration, since
the cost of the whole tree is flattened on the (not comparable) costs found in
the last step. In this case, the number of solutions could not be limited step-by-
step. Identical complexity and ×-idempotency considerations can be provided
for Alg. 4.

5 Conclusions

We have shown that c-semirings are expressive and generic structures that can
be used inside slightly modified versions of classical MST algorithms (as Kruskal,
Prim and Reverse-delete Kruskal), in order to find the best spanning trees ac-
cording to different QoS metrics with different features (but still representable
with a semiring). Classical algorithms have been extended to deal with semiring
structures and partially ordered costs; moreover, an analysis of correctness and
complexity has been provided for the extension Kruskal’s algorithm for partially
ordered costs.

The weight of a tree from a node p to a set of destination nodes D, is obtained
by “multiplying” the edge weights along the tree by using the × semiring oper-
ator (see Sec. 2), and the cost of the min-weight tree is the “sum” of the weights
of all such trees, obtained by using the + semiring operator. By parametrically
varying the semiring, we can represent many different kinds of problems, hav-
ing features like fuzziness, probability, and optimization [4]. This paper extends
other works focused only on semirings and shortest path algorithms [6].

In the future, one ambition could be to merge these frameworks with con-
straints concerning the considered QoS metrics (e.g. delay ≤ 40), since Soft
Constraint Satisfaction Problems based on c-semirings have been already suc-
cessfully applied to this field [7,8,15].
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Abstract. In large software projects often multiple modeling languages are used
in order to cover the different domains and views of the application and the
language skills of the developers appropriately. Such “multi-modeling” raises
many methodological and semantical questions, ranging from semantic consis-
tency of the models written in different sublanguages to the correctness of model
transformations between the sublanguages. We provide a first formal basis for
answering such questions by proposing semantically well-founded notions of a
multi-modeling language and of semantic correctness for model transformations.
In our approach, a multi-modeling language consists of a set of sublanguages and
correct model transformations between some of the sublanguages. The abstract
syntax of the sublanguages is given by MOF meta-models. The semantics of a
multi-modeling language is given by associating an institution, i.e., an appropri-
ate logic, to each of its sublanguages. The correctness of model transformations
is defined by semantic connections between the institutions.

1 Introduction

In an idealized software engineering world, development teams would follow well-
defined processes in which one single modeling language is used for all requirements
and design documents; but in practice “multi-modeling” happens: in a large software
project entity-relationship diagrams and XML may be used for domain modeling, BPEL
for business process orchestration, and UML for design and deployment. In fact, UML
itself can be seen as a multi-modeling language comprising several sublanguages such
as class diagrams, OCL, and state machines; each sub-modeling language provides a
particular view of a software system. Such views have the advantage of complexity re-
duction: a software engineer can concentrate on a particular aspect of the system such
as the domain architecture or dynamic interactions between objects.

On the other hand, multi-modeling raises a host of methodological and semantical
questions: are the different modeling sublanguages semantically consistent with each
other? How can we correctly transform an abstract model in one modeling language into
a more concrete one in another language? How can we detect semantic inconsistencies
between heterogeneous models expressed in different modeling sublanguages? More
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generally, is there a notion of “multi-modeling language” which provides more insight
than just an ad-hoc collection of modeling languages put together? Is it possible to give
a semantics to multi-modeling languages which allows one to deal with consistency,
validation and verification but that retains the advantages of multiple views by providing
a local semantics and local reasoning capabilities for each modeling language?

The methodological use of views and viewpoints in software modelling is a long
standing research topic [18]. In the literature, there are three main complementary
approaches for interrelating modeling notations: the “system model approach”, the
“model-driven architecture approach”, and the “heterogeneous semantics and devel-
opment approach”. In the system model approach the different modeling languages
are translated into a common (formally defined) modeling notation called system
model [10] which serves as unique semantic basis and for analyzing consistency of
software engineering models. In the “model-driven architecture approach” [27] model
transformations and consistency issues are typically dealt with at the syntactic level of
the modeling notation. In the third approach different modeling languages are inter-
related by semantic-preserving mappings [13,24]; a mathematical semantics is given
locally for each modeling language and the consistency between different languages is
analyzed semantically through the semantic-preserving mappings. All three approaches
have been applied to several modeling languages including UML, but to the best of our
knowledge, multi-modeling languages in the software engineering sense have never
been systematically studied. However, research within the theory of institutions [19] on
institution morphisms and comorphims [20], and on “heterogeneous institutions” [24]
is directly relevant to this problem.

We combine ideas from model-driven architecture and heterogeneous semantics and
propose a new, semantically well-founded notion of a multi-modeling language and a
new notion of semantic correctness for model transformations. In particular, our for-
mal definition of a multi-modeling language L: (i) uses the Meta-Object Facility MOF
and its algebraic semantics [9] for describing the metamodels and models of the sub-
languages of L; (ii) associates an institution to each sublanguage S of L and gives a
mathematical semantics to each software engineering model1 of S by a corresponding
(logical) theory in the institution of S; (iii) defines the links between different sublan-
guages of S by model transformations and provides a notion of semantic correctness for
such transformations; and (iv) provides a notion of consistent heterogeneous (software
engineering) model in the multi-modeling language L, which is derived from a notion
of a class of heterogeneous mathematical models at the institution level.

The approach is illustrated in Fig. 1: There are three sublanguages S1, S2, and S3

of a common multi-modeling language L, software engineering models M1, M2, and
M3 conforming to (the meta-model representations of) the sublanguages, and having a
formal semantics in the institutions I1, I2, I3. The model transformations trans12 and
trans13 between the sublanguages S1 and S2, and S1 and S3, respectively, are applied

1 For distinguishing semantic models from the models of a modeling language we write “soft-
ware engineering model (SE-model)” for a (syntactic) model defined in a modeling language
such as UML. In contrast to this, “(semantic) models” are part of the mathematical seman-
tics of a modeling language so that a semantic model corresponds to a model of a theory in a
suitable logic; here, we will use institutional models (Ins-models).
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Fig. 1. Relations between metamodels, models, and semantic domains

to M1 yielding (sub-models of) M2 and M3. These model transformations are backed
by semantic connections conn12 and conn13 between I1 and I2, I3 which make it
possible to show that these model transformations are correct.

In addition to make these concepts precise, we illustrate them by a case study in-
volving (UML) class diagrams and relational database schema diagrams as modeling
languages. Based on earlier work [13] we show that class diagrams and schema di-
agrams form a multi-modeling language where class diagrams are related to schema
diagrams by a semantically correct model transformation.

The paper is organized as follows: In Sect. 2 we briefly recall the necessary back-
ground from the theory of institutions. Section 3 shows how MOF metamodels and
model transformations are algebraically formalized as membership equational theories.
In Sect. 4 we present the institutional semantics of metamodels and in Sect. 5 our for-
mal notions of semantic connections between institutions and of correct model trans-
formations. The notions of multi-modeling languages and consistent multi-models are
introduced in Sect. 6. In Sect. 7 we discuss related and future work.

2 Preliminaries: Institutions and Institution (Co-)Morphisms

We briefly recall basic notions on institutions and their morphisms and comorphisms
which form the framework for our institutional semantics of multi-modeling languages.
We assume familiarity with the most elementary notions of category theory: category,
functor, and natural transformation (see, e.g., [21]).

An institution [19] I is a tuple I = (SignI ,SenI ,ModI , |=I), with: (i) SignI a
category whose objects are called signatures; (ii) a functor SenI : SignI → Set ,
called the sentence functor, from SignI to Set , the category of sets; (iii) a contravariant
functor ModI : Signop

I → Cat , called the model functor, from SignI to Cat , the cat-
egory of categories; and (iv) a family |=I = {|=I,Σ}Σ∈SignI of satisfaction relations
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between Σ-models M ∈ ModI(Σ) and Σ-sentences ϕ ∈ SenI(Σ), such that for each
H : Σ → Σ′ in SignI , M ′ ∈ ModI(Σ′), and ϕ ∈ SenI(Σ), we have the equivalence

ModI(H)(M ′) |=I,Σ ϕ ⇐⇒ M ′ |=I,Σ′ SenI(H)(ϕ) .

An institution provides a categorical semantics for the model-theoretic aspects of a
logic, focusing on the satisfaction relation between models and sentences, and empha-
sizing that satisfaction is invariant under changes of syntax by signature morphisms.
Note that, given an institution I, we can always define an associated category ThI of
theories (theory presentations to be more exact, see, e.g., [22]), where theories are pairs
(Σ, Γ ) with Γ ⊆ SenI(Σ), and theory morphisms H : (Σ, Γ ) → (Σ′, Γ ′) are signa-
ture morphisms H : Σ → Σ′ such that Γ ′ |=Σ′ SenI(H)(Γ ), where the satisfaction
relation is extended to a semantic consequence relation between sets of sentences in the
usual way (see [19]). There is then an obvious functor sign : ThI → SignI defined on
objects by the equation sign(Σ, Γ ) = Σ.

An institution morphism [19] μ : I � I ′ from an institution I to another insti-
tution I ′ is given by: (i) a functor μSign : SignI → SignI′ ; (ii) a natural trans-
formation μSen : μSign ;SenI′ ⇒ SenI ; and (iii) a natural transformation μMod :
ModI ⇒ μSignop

;ModI′ , such that for each M ∈ ModI(Σ) and each sentence
ϕ′ ∈ SenI′(μSign(Σ)) we have

M |=I,Σ μSen
Σ (ϕ′) ⇐⇒ μMod

Σ (M) |=I′,μSign(Σ) ϕ′ .

Dually, an institution comorphism [20] (called a plain map of institutions in [22])
ρ : I → I′ is given by: (i) a functor ρSign : SignI → SignI′ ; (ii) a natural trans-
formation ρSen : SenI ⇒ ρSign ;SenI′ ; and (iii) a natural transformation ρMod :
ρSignop

;ModI′ ⇒ ModI , such that for each M ′ ∈ ModI′(ρSign(Σ)) and each sen-
tence ϕ ∈ SenI(Σ) we have

M ′ |=I′,ρSign(Σ) ρSen
Σ (ϕ) ⇐⇒ ρMod

Σ (M ′) |=I,Σ ϕ .

Note that, given an institution comorphism ρ : I → I′, the functor ρSign extends
naturally to a functor ρTh : ThI → ThI′ with ρTh(Σ, Γ ) = (ρSign(Σ), ρSen

Σ (Γ )).

3 Algebraic Semantics of MOF and of Model Transformations

We briefly explain how a MOF metamodel defines a modeling language, how it is for-
malized by means of a membership-equational logic theory, and how model transfor-
mations are formalized as equationally-defined functions in MOMENT2.

3.1 MOF

MOF [28] is a semiformal approach to define modeling languages. It provides a four-
level hierarchy, with levels M0, M1, M2 and M3, where level Mi+1 serves as the meta-
level for level Mi. The entities populating level Mi are collections of a certain type,
which is defined by means of an entity at level Mi+1. Level M0 contains collections
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Fig. 2. Levels M2 and M1 of the MOF hierarchy: metamodel and model examples

of structured data that are defined by using a specific model in a modeling space, e.g.,
tuples in a database or class instances of a class diagram. Level M1 contains mod-
els, which are used to represent a specific reality by using a well-defined language for
computer-based interpretation such as class diagrams or relational schemas. Level M2

contains metamodels. A metamodel is a model specifying the types that can be used in
a modeling language, such as the metamodel CD for defining class diagrams and the
metamodel RDBS for defining relational schemas, as shown in Fig. 2. An entity at level
M3 is a meta-metamodel enabling the definition of metamodels at the level M2.

For a model M at level M1 and a metamodel M at level M2, we write M : M to de-
note the metamodel conformance relation. In addition, a metamodel M can be enriched
with a set C of OCL constraints constituting a metamodel specification (M , C ) [8] so
that a model M conforms to (M , C ) when it conforms to the metamodel M and sat-
isfies the constraints C . In Fig. 2, the OCL constraints over the CD metamodel defines
the concept of opposite association ends and restricts the set of possible cardinalities.
The OCL constraint over the RDBS metamodel indicates that the columns of a foreign
key should be contained in the same table where the column is defined.

3.2 Algebraic Semantics of Metamodel Specifications and MOMENT2

The goal of the algebraic semantics of metamodel specifications in [8,9] is to give a
precise semantics to the conformance relation M : (M , C ) between a model M and
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a metamodel specification (M , C ) (this subsumes M : M using M : (M , ∅)). This
semantics is achieved as follows. First of all, the set of MOF-conformant metamodel
specifications (M , C ) is a syntactically well-defined set MetamodelSpecs. Second, the
set of equational theories in the institution of membership equational logic (MEL [23])
is another well-defined set ThMEL . The algebraic semantics is then defined as a function

A : MetamodelSpecs → ThMEL : (M , C ) �→ A(M , C ) .

The key point of this algebraic semantics is that the set of models M conformant with
(M , C ), which we denote �(M , C )�, is precisely axiomatized as the carrier of the sort
CModel in the initial algebra TA(M ,C ) of the MEL theory A(M , C ). That is, we have
the definitional equality �(M , C )� = TA(M ,C ),CModel , and hence

M : (M , C ) ⇐⇒ M ∈ �(M , C )� ⇐⇒ M ∈ TA(M ,C ),CModel .

Intuitively, the elements of sort CModel are models algebraically represented as sets
of objects with an associative, commutative union operation with identity (ACU), cor-
responding to an algebraic description of graphs. MEL is used in an essential way to
impose the OCL constraints C by means of a conditional membership.

The algebraic semantics supports the notion of submodel (see [6] for details). From
a graph-theoretic point of view, given M1, M2 ∈ �(M , C )�, we say that M1 is a sub-
model of M2, written M1 ⊆ M2 iff it is a subgraph, so that all the nodes (objects with
attribute values) and edges (association ends) of M1 are included in M2 up to name and
edge order isomorphism. The submodel relation is a partial order, endowing �(M , C )�
with a poset structure (�(M , C )�,⊆). The notion of submodel will be very useful to
obtain a flexible notion of multi-model in a multi-modeling language.

These notions are implemented in Maude and integrated within the Eclipse Modeling
Framework (EMF) in the MOMENT2 tool [6,8,9].

3.3 Model Transformations

In this work we consider functional model transformations that map input models M ,
such that M : (M , C ), to output models β(M) so that β(M) : (M ′, C ′), where in
general (M , C ) �= (M ′, C ′).

Definition 1. Given metamodel specifications (M , C ) and (M ′, C ′), a functional
model transformation from (M , C ) to (M ′, C ′) is a function β : �(M , C )� →
�(M ′, C ′)�. The transformation β is called monotonic, if, in addition, it is a mono-
tonic function β : (�(M , C )�,⊆) → (�(M ′, C ′)�,⊆).

MEL theories A(M , C ) associated to MOF metamodel specifications (M , C ) are by
construction executable by rewriting in Maude [14]; in fact by confluent and terminat-
ing equations modulo ACU. Therefore, the initial algebra TA(M ,C ) is computable [4].
Furthermore, any computable function β : �(M , C )� → �(M ′, C ′)� can in such a case
be specified by a finite set of confluent and terminating equations modulo ACU. This
is exactly the approach taken in MOMENT2, where a model transformation β can be
specified as a set of recursive model equations, which are automatically translated into
ordinary MEL equations, as detailed in [6].
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Fig. 3. Model equation: MOMENT2 format (left) and graphical representation (right)

Let us consider a model transformation between the metamodel specifications for
class diagrams (CD) and for relational database schemas (RDBS) in Fig. 2: βcd2rdbs :
�(MCD, CCD)� → �(MRDBS, CRDBS)�. The transformation is defined by several
model equations that specify the translation process: classes are transformed into tables
with primary keys, class attributes are transformed into table columns, and bidirectional
associations are transformed into auxiliar tables that contain foreign keys that point to
the tables that correspond to the associated classes. The complete specification of the
model transformation is given in [7] using the concrete syntax of MOMENT2. In Fig. 3
we show a simplified version of the model equation that generates columns in a table
from attributes of a class. The model equation is specified by a left-hand side (LHS)
model pattern, a right-hand side (RHS) model pattern, and a negative application con-
dition (NAC), which is applied over a LHS instance. The NAC ensures that the rule
is applied only once for each attribute. MOMENT2 formalizes this model transforma-
tion as the function βcd2rdbs, which is internally defined by equations that are generated
from the user defined model equations of the transformation (see [6] for further details).

βcd2rdbs maps the class diagram model cd in Fig. 2 to the relational schema
βcd2rdbs(cd) ⊆ rs , where rs is the relational schema shown in Fig. 2. This model trans-
formation is monotonic by considering the submodel relation in both source and target
metamodel specifications. In particular, we consider the submodel tutor of cd that is
constituted only by the class Tutor, i.e., tutor , cd ∈ �(MCD, CCD)� and tutor ⊆ cd .
We have then that βcd2rdbs(tutor) ⊆ βcd2rdbs(cd).

4 Institutional Semantics of Metamodels

In order to capture the semantics of models conforming to a given metamodel, we use
the mathematical framework of institutions.

Definition 2. Given a MOF-compliant metamodel specification (M , C ), an institu-
tional semantics for (M , C ) is specified by: (i) an institution I; and (ii) a functor
σ : (�(M , C )�,⊆) → ThI .
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Therefore, an SE-model M ∈ �(M , C )� is interpreted as a theory σ(M) ∈ ThI in the
corresponding institution. This definition highlights a crucial difference between “mod-
els” in the software engineering sense, which we call SE-models, and semantic models
in the institution I, which we call Ins-models, and in this case I-models. The key point
is that an SE-model of a system is only a partial specification of such a system, allowing
many possible implementations. For example, in a UML class diagram the semantics
of the methods involved is typically only partially specified. By contrast, an Ins-model
is typically much closer to an actual implementation, and may fully constrain various
relevant aspects of such an implementation: for example, the full semantic specification
of the methods in a class diagram.

This is captured by the above definition which gives semantics to an SE-model
M ∈ �(M , C )� as a logical theory σ(M) ∈ ThI . That is, σ(M) is a “partial” specifica-
tion describing not a single Ins-model, but a class (actually a category) of Ins-models in
the institution I, viz. the class ModI(σ(M)). Such I-models typically fully constrain
some relevant aspects of the system partially specified by the SE-model M . For exam-
ple, if we choose for I a computational logic, some of the I-models associated to M
may be executable as programs. Therefore, an institutional semantics for a metamodel
specification may support program generation methods that are correct by construction.
For relational database schemas as SE-models, e.g., the Ins-models may be relational
models of actual databases conformant with the given schema.

The functoriality condition in the definition of institutional semantics is very natural.
Intuitively, if M ⊆ M ′, then any implementation of the system partially specified by
the SE-model M ′ should a fortiori give us an implementation of the system partially
specified by M , essentially by disregarding the implementation of the extra features in
M ′ \M . Mathematically, this is captured by the fact that the submodel inclusion M ⊆
M ′ induces a theory morphism σ(M) → σ(M ′), which, in turn, by the contravariance
of the functor ModI : Signop

I → Cat , induces a forgetful functor ModI(σ(M ′)) →
ModI(σ(M)), corresponding to the intuition that from an implementation of M ′ we
can always obtain an implementation of M . This functoriality condition will be useful
to arrive at a proper notion of Ins-models for an SE-multi-model.

Let us exemplify the definition by explaining the institutional semantics for our run-
ning examples of (simplified) UML class diagrams and relational database schemas.
The first is described in more detail in [12], the second builds on the traditional seman-
tics of relational database schemas [15].

Institutional semantics for class diagrams. Signatures of the class diagram institu-
tion ICD declare class names, typed attributes, operations, and association names
with corresponding properties as association ends. On the signature part, the functor
σCD : (�MCD, CCD�,⊆) → ThICD maps, for instance, the class diagram in Fig. 2 to
the ICD-signature

({EOffice, Tutor, EString, Void},
{tName : Tutor → EString},
{addTutor : EOffice× Tutor → Void},
{tuteof ⊆ tutors : Tutor× eOffice : EOffice}) .
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Sentences associated with a signature of ICD declare multiplicities of form
0..1, 0..�, 1..1, 1..� for associations. Applying σCD to the class diagram of Fig. 2 yields
a theory with a single sentence

association(tuteof, tutors : Tutor : 1..�, eOffice : EOffice : 1..1) .

Models of a class diagram signature are given as sets of object states. Object states are
sets of created object identifiers of the declared class names, together with functions that
interpret attributes and methods, as well as relations that interpret associations. More-
over, models of a presentation are required to satisfy the constraints put on associations.
In our example, for each e-office, there is at least one tutor, and for each tutor there is
exactly one e-office, such that if we navigate from a tutor to his e-office, then we can
navigate back to the tutor, and vice versa.

A signature morphism between two class diagram signatures consistently maps class
names, properties, methods, and association names. For example, there is an embed-
ding signature morphism from the signature induced by our sample model without the
method addTutor to the signature of the sample model above. The reduct of any model
along a signature morphism simply “forgets” all additional information of the target.
Signature morphisms canonically extend to sentences.

Institutional semantics for relational database schemas. Signatures of the relational
database schema institution IRDBS declare the primitive types, the table names, the
columns names, the typing of columns, and the primary keys of tables where each
primary key of a table has to be a column of that table. On the signature part, the
functor σRDBS : (�MRDBS, CRDBS�,⊆) → ThIRDBS maps, for instance, the relational
schema in Fig. 2 to the IRDBS-signature

({NUMBER, VARCHAR},
{EOffice, EOffice_Tutor, Tutor},
{Tutor_tid, tname, tutor_fk, eOffice_fk, EOffice_tid},
{(Tutor, Tutor_tid) �→ NUMBER, (Tutor, tname) �→ VARCHAR,

(EOffice_Tutor, tutor_fk) �→ NUMBER, (EOffice_Tutor, eOffice_fk) �→ NUMBER,

(EOffice, EOffice_tid) �→ NUMBER},
{Tutor �→ Tutor_tid, EOffice_Tutor �→ tutor_fk, EOffice �→ EOffice_tid})

Sentences associated with a signature of IRDBS declare constraints on tables and
columns: all column entries in a table that do not correspond to either primary keys
or foreign keys can be null (not nnv ) and not unique, all columns that correspond to
primary keys shall be nnv and unique, and all columns that correspond to foreign keys
(fk ) encode cardinality constraints as nnv and unique statements. Applying σRDBS to
the example in Fig. 2 yields a theory with the following sentences:

nnv(Tutor, Tutor_id) unique(Tutor, Tutor_id)
nnv(EOffice_Tutor, tutor_fk) unique(EOffice_Tutor, tutor_fk)
nnv(EOffice_Tutor, eOffice_fk)
fk(EOffice_Tutor, tutor_fk, Tutor) fk (EOffice_Tutor, eOffice_fk, EOffice)
nnv(EOffice, EOffice_id) unique(EOffice, EOffice_id)
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Models of a relational database signature are given by relations over interpretations of
the primitive types such that the typings of the columns in tables are satisfied. The in-
terpretation of primitive types introduces special null-values. A model satisfies a clause
nnv(t, c) if the projection corresponding to the column c of the interpretation of the
table t does not contain null values; and it satisfies clause unique(t, c), if the projection
of t to c (as a multiset) does not show duplicated entries. A model satisfies a clause
fk(t1, ci1 . . . cik

, t2) if for all tuples in t1 projected to ci1 . . . cik
, there exists a tuple in

t2 projected over its primary key columns.
A signature morphism between two relational database signatures consistently maps

the primitive types, the table names, and the columns names such that this mapping can
be extended to the typing of columns and the primary keys of tables.

5 Semantic Connections and Correct Model Transformations

The institutional semantics of metamodel specifications provides a formal framework
without which the following burning question in software engineering cannot be given
any precise meaning: When is a model transformation β : �(M , C )� → �(M ′, C ′)�
correct?

The point is that, although model transformations can be very useful to leverage
model building efforts in one modeling language to be used in another modeling lan-
guage, we can in principle define many such βs, but some of them may be disastrous.
Given an SE-model M ∈ �(M , C )�, which gives us a partial specification of a system,
we want the transformed model β(M) ∈ �(M ′, C ′)� to be a model of the same system
from a different perspective. In particular, β(M) should never have implementations
that are incompatible with those allowed by M . However, when modeling languages do
not have any precise mathematical semantics, this very real problem can be painfully
experienced in practice, but there is no way to systematically understand and prevent it.

5.1 Semantic Connections

Institution (co-)morphisms provide relations between different institutions which can be
used to reflect model transformations semantically. Intuitively, institution comorphisms
map a “poorer” institution into a “richer” one, whereas institution morphisms forget
logical structure by mapping a “richer” institution into a “poorer” one. Sometimes,
however, we have situations in which two institutions cannot be naturally related by
either an institution morphism or an institution comorphism. In the example, ICD shows
operations which have no counterpart in IRDBS; on the other hand, IRDBS allows the
uniqueness constraint to be stated while this cannot be mimicked in ICD. However, we
may choose a “lowest common denominator” institution IPCD, which is poorer than
both ICD and IRDBS: the institution of “poor man’s class diagrams”, which is defined
like ICD but does not show operations in its signature. We can then use this IPCD to
relate ICD and IRDBS by what we call a semantic connection.2

2 In recent discussions with A. Tarlecki we have learned that the same idea is also contemplated
in his upcoming paper with T. Mossakowski [25].
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Definition 3. A semantic connection between an institution I and another institution
I ′ is a pair (μ, ρ) of the form I μ� I0

ρ→ I ′, where I0 is a third institution, μ is an
institution morphism, and ρ is an institution comorphism.

Using IPCD, we may define a semantic connection ICD
μC2R� IPCD

ρC2R→ IRDBS be-
tween ICD and IRDBS as follows: The signature part μSign

C2R of the institution morphism
μC2R : ICD → IPCD forgets all operations and the sentence part μSen

C2R is the iden-
tity. On the other hand, the institution comorphism ρC2R is defined along the lines
of the model transformation βcd2rdbs in Sect. 3.3, adding primary keys and encoding
association -clauses as nnv and unique properties of the columns that are involved in
foreign keys; here the model part ρMod

C2R is the identity.
A semantic connection I μ� I0

ρ→ I ′ also allows us to relate models in I and I ′ by
viewing them both as models in the “common semantic ground” I0:

Definition 4. Given institutions I, I ′, and a semantic connection I μ� I0
ρ→ I ′, a

pair of models (M, M
′
), with M ∈ ModI(Σ), M

′ ∈ ModI′(ρSign(μSign (Σ)), and
Σ ∈ SignI , is called (μ, ρ)-consistent, if μMod

Σ (M) = ρMod
μSign(Σ)(M

′
).

For the semantic connection ICD
μC2R� IPCD

ρC2R→ IRDBS, e.g., two models for the class
diagram and the relational database schema in Fig. 2 which have a different number of
Tutors would be inconsistent.

5.2 Correctness of Model Transformations

Based on semantic connections, we may go on to define a notion of semantic correctness
for a model transformation.

Definition 5. Given metamodel specifications (M , C ) and (M ′, C ′) with corre-
sponding institutional semantics (I, σ : (�(M , C )�,⊆) → ThI) and (I ′, σ′ :
(�(M ′, C ′)�,⊆) → ThI′), and given a semantic connection I μ� I0

ρ→ I ′, a model
transformation β : �(M , C )� → �(M ′, C ′)� is called (μ, ρ)-correct, if the following
two conditions hold:

1. For each M ∈ �(M , C )� we have

ρSign(μSign(sign(σ(M)))) = sign ′(σ′(β(M))) .

This condition can be visualized as the commutativity of the diagram:

�(M ,C )� �(M ′,C ′)�

ThI ThI′

SignI SignI0 SignI′

β

σ σ′

μSign ρSign
sign sign ′
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where if β is not monotonic this is just a commuting diagram of functions, but if β
is monotonic we further require it to be a commuting diagram of functors.

2. For each M ∈ �(M , C )� we have the containment:

ρMod
Σ0

(ModI′(σ′(β(M)))) ⊆ μMod
Σ (ModI(σ(M)))

where Σ = sign(σ(M)), Σ0 = μSign(Σ).

Note that condition (1) is a sanity check for the SE-models M and β(M) to be relat-
able at the semantic level, since the signatures of their corresponding theories σ(M) and
σ′(β(M)) should be compatible. Condition (2) assumes condition (1) and adds the fur-
ther stipulation that each I ′-model M

′
of β(M), when brought to the common ground

I0, should also be (the downgraded version of) an I-model M of M , that is, (M, M
′
)

are (μ, ρ)-consistent. This captures the crucial requirement that an implementation of
β(M) should never be incompatible with the implementations allowed by M .

The model transformation βcd2rdbs is indeed correct w.r.t. the semantic connection
ICD

μC2R� IPCD
ρC2R→ IRDBS, as, given a class diagram cd ∈ (MCD, CCD), the “poor

man’s”-models of σRDBS(βcd2rdbs(cd)) in IPCD still fulfill all cardinality constraints
induced by associations.

6 Multi-modeling Languages

At the very least, a multi-modeling language should be a collection of modeling lan-
guages supporting different views of a system. But if no interactions of any kind are
supported between models in the different modeling sublanguages, a multi-modeling
language is not very useful, since there is no way of taking advantage of model build-
ing and model analysis efforts in one sublanguage to benefit similar efforts in another
sublanguage. Therefore, we assume in what follows that a multi-modeling language
supports model transformations between some of its sublanguages.

Definition 6. A multi-modeling language is specified by

1. A family ((Mi, Ci))i∈I of metamodel specifications.
2. An irreflexive relation K ⊆ I×I where each pair (i, j) ∈ K is called a connection.
3. For each (i, j) ∈ K a model transformation βij : �(Mi, Ci)� → �(Mj , Cj)�.

The family LC&R = (Mi, Ci)i∈{CD,RDBS} with KC&R = {(CD, RDBS)} and
βC&R = {βCD,RDBS} with βCD,RDBS = βcd2rdbs may serve as a simple example
of a multi-modeling language C&R = (LC&R, KC&R, βC&R) .

It is assumed that for the purposes of the multi-modeling language there is, given
(i, j) ∈ K a single model transformation relating (Ci, Mi) to (Cj , Mj). This seems
reasonable, since such a model transformation is used to provide a systematic “change
of viewpoint” from the perspective supported by (Ci, Mi) to that of (Cj , Mj).

We envision teams of system designers and developers using such a multi-modeling
language to design and develop a given system. A useful division of labor is sup-
ported by the multi-modeling language, so that some team members may concentrate
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their efforts on building and validating models mostly in a given sublanguage. If the
team is well-coordinated and the multi-modeling language has a good infrastructure,
team members working in different sublanguages will benefit from the efforts of their
colleagues working in other sublanguages. For example, if a model in sublanguage
(Cj , Mj) has not yet been developed, a modeler may not have to begin from scratch,
but may have available model fragments in (Cj , Mj) that have been obtained by trans-
formations from models in other sublanguages (Ci, Mi). Or a person responsible for
model analysis in sublanguage (Cj , Mj) may be asked to verify some properties of a
model in (Cj , Mj) after it is transformed by βi,j . This leads to the important question:
What is a multi-model? for which we provide the following definition.

Definition 7. Given a multi-modeling language (((Mi, Ci))i∈I , K, β) an I-indexed
family (Mi)i∈I is called

1. a pre-multi-model, if Mi ∈ �(Mi, Ci)� for all i ∈ I;
2. a multi-model, if it is a pre-multi-model and, furthermore, we have βij(Mi) ⊆Mj

for all (i, j) ∈ K .

The notion of pre-multi-model may seem chaotic, but may accurately reflect the real
situation of a team at moments when different team members are actively developing
different models quite independently of each other. We think of this as a hopefully
transient but very common situation, reflecting the fact that the software team may be
large and geographically distributed, so that it may not be feasible for model changes
in different sublanguages to be immediately taken into account across sublanguages.

However, to avoid dangerous and costly design divergences, from time to time team
members should try to keep their model building efforts coordinated by freezing the
current pre-multi-model M = (Mi)i∈I and asking some hard questions about it. A very
natural question to ask is: is it the case that for each (i, j) ∈ K we have βij(Mi) ⊆Mj?
This may not be the case, and then this may perhaps reveal that incompatible design
decisions may have been made in different sublanguages.

The idea behind the model inclusion βij(Mi) ⊆ Mj is that the model Mi, even
when we transform it, may only account for part of all the information that must be
modeled from the (Mj , Cj) modeling point of view. Therefore, requiring an equality
βij(Mi) = Mj would be too restrictive. The inclusion requirement βij(Mi) ⊆ Mj

could perhaps be relaxed to a requirement that βij(Mi) can be “mapped” to a submodel
of Mj , but we do not explore this further here. For our example of tutors and e-offices in
Fig. 2, the models not only form a multi-model in the multi-modeling language C&R,
but also βcd2rdbs(cd) ⊆ rs holds.

Note that a multi-modeling language as defined so far lacks an institutional seman-
tics. This means that the requirements βij(Mi) ⊆ Mj , although useful for the coher-
ence of the overall effort, are primarily syntactic and do not address the burning issue
of the semantic correctness of the transformations βij supported by the multi-modeling
language. For this we need an institutional semantics.

Definition 8. Given a multi-modeling language (((Mi, Ci))i∈I , K, β) an Ins-
semantics for it is specified by:
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1. an Ins-semantics (Ii, σi) for each (Mi, Ci), i ∈ I;

2. for each (i, j) ∈ K a semantic connection Ii
μij� Iij

ρij→ Ij such that βij is
(μij , ρij)-correct.

Applying this definition to C&R we get that ((Ii, σi)i∈{CD,RDBS}, ICD
μC2R�

IPCD
ρC2R→ IRDBS) is an Ins-semantics for the multi-modeling language C&R.

The above Ins-semantics for a multi-modeling language can be very useful in several
ways. First of all, it can make sure that its model transformations βij are semantically
correct. Since they will be used all the time across many modeling efforts and their
incorrectness would be disastrous, this is a very valuable requirement worth verifying.
There is, however, a second very useful consequence, namely, that we also obtain a
notion of Ins-model for a multi-model.

Definition 9. Let M = (Mi)i∈I be a multi-model in a multi-modeling language with
an Ins-semantics. Then the class of its Ins-models is defined as the set Mod (M) of all
families (M i)i∈I where

1. M i ∈ ModIi(σi(Mi)), that is, each M i is an Ins-model for the model Mi.
2. For each (i, j) ∈ K the models M i and ModIj (σj(βij(Mi) ⊆ Mj))(M j) are

(μij , ρij)-consistent.

The second condition is an “obvious” semantic compatibility condition, but it is some-
what terse in its formulation, so let us unpack it. Since M = (Mi)i∈I is a multi-model,
for (i, j) ∈ K we must have βij(Mi) ⊆ Mj . By the functoriality of σj this then gives
us a theory morphism σj(βij(Mi) ⊆ Mj), which is also a signature morphism, and
which when applying the contravariant functor ModIj to it gives us a reduct of M j to a
model in ModIj(sign(σj(βij(Mi)))). This reduct and the model Mi are the ones that
must be (μij , ρij)-consistent.

Why are such Ins-models useful from a software engineering point of view? Because
they allow us to address another burning practical question: When is a multi-model
inconsistent? Intuitively, a multi-model is inconsistent when it has no implementation
meeting all the requirements imposed by all the models of the multi-model. But since
Ins-models are mathematical surrogates for implementations of the different system
aspects (and may in fact be implementations when the logics are computable), if a
multi-model has no Ins-models, then there is no hope for it to have an implementation.

Definition 10. In a multi-modeling language with an Ins-semantics a multi-model
M = (Mi)i∈I is called consistent, if Mod (M) �= ∅.
The point, therefore, is that if Mod (M) = ∅, then the whole software design is incon-
sistent and unrealizable: the different models Mi in M place semantic constraints on
each other that cannot be simultaneously satisfied.

7 Related Work and Conclusions

Interrelating different modeling notations is a difficult task due to the variety of possible
structuring mechanisms and underlying computational paradigms. In the introduction
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we have already shortly discussed the three main approaches: the “system model ap-
proach”, the “model-driven architecture approach”, and the “heterogeneous semantics
and development approach”.

Further system model formalisms are for example, stream-based [11], graph gram-
mar [17] and rewrite system models [14], or the integration of different specification
formalisms, like CSP and Z [33]. In the model-driven architecture approach, the MOF
standard permits the syntactical definition of modeling languages by means of the meta-
model notion. The formal semantics of the MOF standard and its use for model trans-
formations have been studied in algebraic [9], relational [2], graph grammar [5] and
type-theoretic [29,30] settings. OCL-constraints of meta-models have been added in
our algebraic setting in [8] and in the relational approach for Alloy in [3]. Most of these
model transformation approaches are also well supported by tools such as AGG [1],
VIATRA2 [32], and MOMENT2 [6]. The heterogeneous semantics line of research
concentrates on the comparison and integration of different specification formalisms,
retaining the formalisms most appropriate for expressing parts of the overall prob-
lem [34]. The theory of institutions [19] and its subsequent development into a power-
ful framework for heterogenous specifications [16,24,26,31] provide the mathematical
foundations for our approach.

This paper is intended as a first step for developing a consistent and semantically
well-founded framework for software development with multiple modeling languages.
We have presented a novel notion of multi-modeling language which not only allows
the developer to study the consistency of a multi-language design, but makes it also easy
to integrate additional modeling languages. In our approach a multi-modeling language
consists of a set of sublanguages and correct model transformations between some of
the sublanguages. The abstract syntax of the sublanguages is specified by MOF meta-
models. The semantics of a multi-modeling language is then given by associating an
institution to each of its sublanguages. A further main result of the paper is the notion
of semantic correctness of model transformations. It is defined by a so-called semantic
connection between the institutions of the source and target meta-model of the transfor-
mation. The main correctness condition is given by a model inclusion which expresses
the fact that a model transformation is understood as a kind of semantic refinement re-
lation. This definition corresponds well with the use of model transformations in MDA;
in other settings one may use other kinds of model transformations such as refactorings
and abstraction mappings. For such cases our correctness notion may not be adequate
and we may need to distinguish between different notions of correctness such as refine-
ment correctness, abstraction correctness, and structural correctness.

A careful reader may have observed that our algebraic semantics for MOF, which
has provided what might be called the “metalevel” at which the Ins-semantics for mod-
eling languages is defined, is itself an instance of this Ins-semantics. Specifically, all
MOF-compliant metamodels are exactly the SE-models of the MOF meta-metamodel.
Therefore, our algebraic semantics A for MOF is just an institutional semantics for
a modeling language in the general sense we have proposed. Namely, a semantics in
which the (meta-)metamodel is MOF itself, and the institution in question is MEL. This
suggests several important generalizations of the present work. Why restricting our-
selves to MOF? Why not considering similar semantics for multi-modeling languages
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in other modeling frameworks? More generally, why not considering multi-framework
multi-languages? Many challenging questions remain open and will be subject of our
further studies including verification and tool support for multi-language consistency.
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Abstract. We propose a generalization of the notion of theoroidal co-
morphism, motivated by several logic translations of practical impor-
tance, encountered in the implementation of Heterogeneous Tool Set
Hets. We discuss the impact of this generalization on the level of het-
erogenous specifications, by presenting the Grothendieck construction
over a diagram of institutions and translations modelled as generalized
comorphisms. Conditions for heterogeneous proofs are also evaluated.

1 Introduction

Heterogeneous specifications are needed since a large number of logics, like equa-
tional logics, description logics, higher-order logics, modal logics etc. are used in
formal specification and computer science and when large systems are involved,
one may use different formalisms for different parts or aspects. The approach of
heterogeneous specification is not to combine the features of each logic into a
single logic, but rather to keep them specific and to provide means for translat-
ing between formalisms during the specification and verification processes, thus
using the logic which suits best the problem to be solved and offers best tool
support.

The Heterogeneous tool set (Hets) [17] is an integration tool, providing, (1)
at the logic-specific level, parser, static analysis and proof support, via dedicated
tools and (2) at the logic-independent level, heterogeneous structuring mecha-
nisms and heterogeneous proof calculus based on the formalism of development
graphs. Unlike other specification languages, like UML, Hets is fully formal.
The logical notions are formalized using the theory of institutions and the core
of Hets is based on a graph of institutions and translations between them.
Their combination is obtained via the so-called Grothendieck institution [3],
which provides the semantics of heterogeneous specifications. This construction
is characterized by the fact that no interaction between logics is made otherwise
than via the logic translations.

Several notions of translations between institutions have been proposed, cap-
turing different concepts; among them, institution comorphisms, also called rep-
resentations or maps of institutions, which usually represent logic encodings or
inclusions. This formalization is used in Hets, as the conditions for lifting the
properties from the logic-specific level to the logic-independent one are in this
case easier to meet in practice; however, other kind of logic translation can also
be added [15]. Comorphisms, in their theoroidal variant, are required to map
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theories of the same signature (i.e. using the same symbols) to theories over
the same signature and this mapping must interact well with the translation of
sentences. We present several logic translations of practical importance encoun-
tered in Hets that do not have this properties. This motivates us to investigate,
building on the ideas in [12], in which conditions the notion of comorphism
can be generalized by dropping these restrictions and what the impact of this
generalization at the heterogeneous level is.

2 Preliminaries

We assume the reader is familiar with category theory notions like functor, nat-
ural transformation or colimit. Note that we prefer to use diagrammatic order
for composition and denote it with “;”.

Institutions [6] formalize in a model-oriented way the notion of logical system,
abstracting away the details of signatures, sentences and models by not imposing
other restrictions on them than the satisfaction condition, which has the meaning
that truth is invariant under change of notation and enlargement of context.
The advantage of using the theory of institutions as foundation for specification
theory is that the concepts can be defined at the general level, indepedently of
the underlying logic.

Definition 1. An institution I = (Sign, Sen, Mod, |=) consists of:

– a category Sign of signatures,
– a functor Sen : Sign−→Set, giving for each signature Σ the set of sentences

Sen(Σ) and for each signature morphism ϕ : Σ−→Σ′ a sentence translation
map Sen(ϕ) : Sen(Σ)−→Sen(Σ′), where we may write Sen(ϕ)(e) as ϕ(e),

– a functor Mod : Signop −→ Cat giving for each signature Σ the category of
models Mod(Σ) and for each signature morphism ϕ : Σ −→Σ′, the reduct
functor Mod(ϕ) : Mod(Σ′)−→Mod(Σ), where we may write Mod(ϕ)(M ′) as
M ′ �ϕ;

– a binary relation |=Σ⊆ |Mod(Σ)| × Sen(Σ), for each signature Σ, called the
satisfaction relation

such that the following satisfaction condition holds:

M ′ �ϕ|=Σ e ⇐⇒ M ′ |=Σ′ ϕ(e)

for each signature morphism ϕ : Σ−→Σ′ , each Σ-sentence e and each Σ′-model
M ′.

Example 2. Partial many-sorted first-order logic with equality [14]
Signatures consist of a set of sorts and sets of total and partial operations and
predicates symbols, divided by their profile. Signature morphisms map the sorts
and the symbols in a compatible way, and such that the totality of operation
symbols is preserved. Models are first-order structures, interpreting sorts as sets,
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operation symbols as total/partial functions and predicates as relations. First-
order sentences are built from the atomic ones, using the usual first-order logic
features (connectives and quantification). Atomic sentences are predications, ex-
istential and strong equations and definedness assertions. The satisfaction of
formulas is the Tarskian first-order satisfaction. One can check that thus we
defined an institution, denoted PFOL=.

Example 3. Subsorted partial first-order logic [1]
A subsorted signature extends a many-sorted signature with a pre-order on its
set of sorts. A signature morphism is required to preserve the subsort relation
(and also overloadings, but because they are not essential for the scope of the
paper, they are ommited). Models are defined in terms of an associated many-
sorted signature, where embeddings, projections and membership symbols are
added to the original subsorted signature. Sentences are also usual many-sorted
sentences over the associated signature, and satisfaction is defined as in PFOL.
Let us denote this logic SubPFOL=.

Example 4. Subsorted partial constraint first-order logic
This is the logic of specification language Casl [18], which was designed by
Common Framework Initiative with the purpose to provide a standard language
for algebraic specification of software systems and it combines first-order logic
with induction mechanisms for specifying inductive datatypes. We denote this
logic Casl or SubPCFOL=. It extends subsorted partial first-order logic with
an additional type of sentences, called sort generation constraints, for expressing
that all values of a given set of sorts are reachable by some term in the function
symbols, possibly containing variables of other sorts. Formally, a sort generation
constraint over a signature Σ is represented a a triple (S′, F ′, θ) where θ : Σ1 =
(S1, TF1, PF1, P1) → Σ, S′ ⊆ S1 and F1 ⊆ TF1 ∪ PF1.

A Σ-constraint (S′, F ′, θ) holds in a Σ-model M if the carrier sets of M �θ

of the sorts in S′ are generated by the function symbols in F ′ i.e. for every sort
s ∈ S′ and every value a ∈ (M �θ)s, there is a Σ1-term t containing only function
symbols from F ′ and variables of sorts not in S′ such that v(t) = a for some
valuation v into M �θ (denoted the same when defined on terms).

A Σ-constraint (S′, F ′, θ) is translated along a signature morphism φ to
(S′, F ′, θ; φ). It can be shown [18] that the satisfaction condition is fulfilled and
we get thus an institution.

Definition 5. A logic is an institution (Sign, Sen, Mod, |=) together with an en-
tailment system, which is a relation 	Σ⊆ P(Sen(Σ))×Sen(Σ) for each signature
Σ, such that:

1. reflexivity: for any e ∈ Sen(Σ), {e} 	Σ e;
2. monotonicity: if E 	Σ e and E ⊆ E′, then E′ 	Σ e;
3. transitivity: if E 	Σ ei, for i ∈ Ind and E∪{ei|i ∈ Ind} 	Σ e, then E 	Σ e;
4. translation: if E 	Σ e and σ : Σ → Σ′, then σ(E) 	σ(Σ) σ(e);
5. soundness: if E 	Σ e, then E |=Σ e.

Moreover, a logic is complete if E |=Σ e implies E 	Σ e.



Generalized Theoroidal Institution Comorphisms 91

Let us further assume an arbitrary institution I = (Sign, Sen, Mod, |=).
A theory is a pair (Σ, E) where Σ is a signature and E is a set of Σ-sentences.

A model of a theory (Σ, E) is a Σ-model which satisfies E.
A theory morphism σ : (Σ, E) −→ (Σ′, E′) is a signature morphism σ : Σ −→

Σ′ such that E′ |=Σ′ σ(E)1.

Definition 6. A theory morphism φ : (Σ, E) → (Σ′, E′) is called model-theore-
tically conservative if any (Σ, E)-model M has (at least) an expansion along φ
to a (Σ′, E′)-model, i.e. a model M ′ that satisfies E′ such that M ′ �φ= M .
Moreover, a theory morphism φ : (Σ, E) → (Σ′, E′) is called proof-theoretically
conservative if E′ |= φ(e) implies E |= e, for any Σ-sentence e.

It is known that the model-theoretic implies proof-theoretic conservativity, but
the converse is not true in general (see [10] for an example involving description
logics).

The institution of theories Ith has as signature category the category of the-
ories of I. The remaining components are inherited from I, but with models of
a theory restricted to those actually satisfying its axioms.

Given a diagram D : J → Sign, a cocone (Σ, (μj)j∈|J|) is called weakly
amalgamable if for any family of models (Mj)j∈|J| such that Mk �D(σ)= Mj for
any σ : j → k ∈ J , there exists a Σ-model M with M �μj = Mj for each j in |J |.
If this model is unique, the cocone is called amalgamable. If such cocone exists
whenever D is a span, we say that I is quasi-semi-exact, and if it is a colimiting
cocone, we say that I is semi-exact.

Several types of translations between institutions have been introduced. Among
them, institution comorphisms typically express that an institution is included or
encoded into another one.

Definition 7. Given two institutions I1 = (Sign1, Sen1, Mod1, |=1) and I2 =
(Sign2, Sen2, Mod2, |=2), an institution comorphism consists of a functor φ :
Sign1 → Sign2, a natural transformation β : φ; Mod2 ⇒ Mod1 and a natural
transformation α : Sen1 → φ; Sen2 such that the following satisfaction condition
holds for each Σ ∈ |Sign1|, M ′ ∈ |Mod2(φ(Σ))| and e ∈ Sen1(Σ)

βΣ(M ′) |=Σ e ⇔ M ′ |=φ(Σ) αΣ(e)

As noticed in [11], it is often a natural case that the signatures of the source
logic are translated to theories of the target one rather than just signatures.
This leads to a generalization of the concept of institution comorphism, called
theoroidal comorphism in [5]. A theoroidal comorphism between two institutions
is defined as a regular comorphism between their corresponding institutions of
theories such that the theory translation is (1) signature preserving, i.e. denoting
φ the theory translation functor of the comorphism and signi : Thi → Signi the
forgetful functor, there is a functor φ′ translating signatures such that φ; sign2 =

1 Given two set of Σ-sentences, E and E′, we say that E |= E′ if for any Σ-model M
such that M |= E, we have M |= E′.
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sign1; φ′ (notice that two theories over the same signature are mapped by φ to
theories over the same signature in the target logic) and (2) α-sensible, i.e. given
a theory T in the source logic, the consequences of its translated theory along
the comorphism are exactly the consequences of the theory obtained by first
translating the signature of T along the comorphism, paired with the empty sets
of axioms and goals (notice that axioms may occur in the resulting theory) and
then adding as axioms the translations of the axioms of T along the sentence
translation component of the comorphism.

Given an institution comorphism μ = (φ, α, β) : I1 → I2, we say that μ has
(weak) amalgamation property if for any signature morphism σ : Σ1 → Σ2 the
diagram:

Mod2(φ(Σ2))

Mod2(φ(σ))

��

βΣ2 �� Mod1(Σ2)

Mod1(σ)

��
Mod2(φ(Σ1))

βΣ1

�� Mod1(Σ1)

admits weak amalgamation, in the sense that for any two models M2 ∈ |Mod1(Σ2)|
and M ′

1 ∈ |Mod2(φ(Σ1))| such that M2 �σ= βΣ1(M
′
1), there is (at least) a model

M ′
2 ∈ |Mod2(φ(Σ2))| such that βΣ2(M ′

2) = M2 and M ′
2 �φ(σ)= M ′

1.

3 Generalized Comorphisms

We will now present several translations between logics whose theory translation
part is not signature preserving. For space limitation reasons, we decided not to
give definitions of the institutions and translations involved, but rather to present
them in an intuitive fashion, using examples.

Example 8. The comorphism CASL2SubCFOL encoding partiality with the
help of bottom or ’undefined’ elements, described as translation (5a’) in [14]
acts at the level of signature by introducing, for each sort s such that there is a
term of sort s using a partial function or a projection, a bottom element bots , a
definedness predicate defineds , total function symbols for projections to subsorts
(when the case) and by turning the partial functions into total ones. Moreover,
axioms are introduced for expressing the undefinedness of the bottom element,
the non-emptiness of each sort, injectivity of projection and that projection maps
elements identically from the supersort to the subsort.

However, the resulting theory may still contain many symbols that are not
actually needed for the proofs, so we try to optimize this translation by mapping
an entire theory and introduce symbols for encoding partiality depending on
its sentences. Namely, the set of sorts for which there exists a partial term is
computed considering only the subsort projections on those subsorts for which
there is a sentence in the theory with a membership or a cast on the subsort, and
then adding all their supersorts. The motivation for making this simplification
is that provers are more efficient on smaller theories.
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spec SP =
sorts Nat < Int ; Car < Vehicle
ops speed limit : Vehicle → Int ;

car speed limit : Int
• ∀ v : Vehicle
• v ∈ Car ⇒ speed limit(v) = car speed limit

end

Fig. 1. First-order specification of vehicles

spec spec =
sorts Nat < Int ; Car < Vehicle
op car speed limit : Int
op gn bottom Car : Car
op gn bottom Int : Int
op gn bottom Vehicle : Vehicle
op gn proj Vehicle Car : Vehicle → Car
op speed limit : Vehicle → Int
pred gn defined : Car ; pred gn defined : Int ; pred gn defined : Vehicle
∀ x, y : Vehicle
• gn defined(gn proj Vehicle Car(x))
∧ gn defined(gn proj Vehicle Car(y))
∧ gn proj Vehicle Car(x) = gn proj Vehicle Car(y)
⇒ x = y

∀ x : Car
• gn defined(x) ⇒ gn proj Vehicle Car(x) = x
• ∃ x : Car • gn defined(x)
∀ x : Car
• ¬ gn defined(x) ⇔ x = gn bottom Car
∀ v : Vehicle
• gn defined(v)
⇒ gn defined(gn proj Vehicle Car(v))

⇒ speed limit(v) = car speed limit

Fig. 2. Translated signature and axioms illustrating the effect of the translation on
sort Car

Let us consider the specification from Fig. 1, where the axiom tests whether
a V ehicle is a Car. Then the projection from V ehicle to Car is considered for
determining the partial terms. Note that speed limit(v) can be undefined if v is
the bottom element on sort V ehicle, so Int gets a bottom as well. However, no
membership or cast involves the sort Nat, so it shall not get a bottom element.
Fig. 2 presents the resulting signature and also the axioms introduced by the
translation on a sort, for exemplification purposes.

Notice that one can also decompose this translation as the composition of
the original comorphism with an endo-translation on SubCFOL, making the
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spec Nat =
free type Nat ::= 0 | suc(Nat)

end

spec CommPlus =
Nat

then op + : Nat × Nat → Nat
vars x, y : Nat
• 0 + y = y
• suc(x) + y = suc(x + y)
• 0 + x = x + 0 %implied
• suc(x) + y = x + suc(y) %implied
• x + y = y + x %implied

end

Fig. 3. Specification of natural numbers, with goals marked as implied

simplification. As this endo-translation maps theories in a formula-dependent
way, it fails to be a comorphism.

Example 9. In [9] a comorphism from CASL to SoftFOL (an untyped variant
of first-order logic with sort generation constraints, details ommited) is intro-
duced with the purpose of connecting Casl to theorem provers. The resulting
SoftFOL theory is translated to provers’ input format; however, existing provers
like SPASS do not provide support for inductive datatypes. Recovering induc-
tion proofs can be done, as explained also in [9], by instanciating the induction
principles corresponding to sort generation constraints for each given proof goal.
Note that lemmas still have to be provided by the user.

For example, consider the specification of natural numbers as a free type gen-
erated by 0 and successor and assume we want to prove commutativity of +,
using two lemmas, as in Fig. 3. Then Fig. 4 presents the axioms introduced
by translation CASL2SoftFOLInduction, which extends CASL2SoftFOL as de-
scribed above.

This translation is preserving signatures when mapping theories, but, since
new axioms are introduced, the α-sensibility condition of the comorphism does
not hold.

Example 10. This example actually contains two translations, CASL2HasCASL
[16] and CASL2Isabelle (translation (7) in [14]), which are similar in the sense
that the same type of problem is encountered when translating theories.

HasCASL [20] is a higher-order extension of Casl allowing polymorphic
datatypes and functions. It is closely related to the functional programming
language Haskell [7]. Isabelle [19] is the logic of the interactive theorem prover
Isabelle. Both in Haskell and in Isabelle, it is essential to know the constructors of
a datatype when doing the analysis of program blocks, because pattern-matching
is allowed only against the constructors. Therefore, this information has to be
stored in the signature (see Fig. 5 with the translations of the Casl theory
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• (0 + 0 = 0 + 0
∧ ∀ y : Nat • 0 + y = y + 0 ⇒ 0 + succ(y) = succ(y) + 0)
⇒ ∀ x : Nat • 0 + x = x + 0

%(Ax4)%
• ((∀ y : Nat • succ(0) + y = 0 + succ(y))

∧ ∀ y1 : Nat
• (∀ y : Nat • succ(y1 ) + y = y1 + succ(y))
⇒ ∀ y : Nat

• succ(succ(y1 )) + y = succ(y1 ) + succ(y))
⇒ ∀ x, y : Nat • succ(x) + y = y + succ(x)

%(Ax5)%
• ((∀ y : Nat • 0 + y = y + 0)

∧ ∀ y1 : Nat
• (∀ y : Nat • y1 + y = y + y1 )
⇒ ∀ y : Nat • succ(y1 ) + y = y1 + succ(y))

⇒ ∀ x, y : Nat • x + y = y + x
%(Ax6)%

Fig. 4. Axioms added by the translation CASL2SoftFOLInduction

logic HasCASL.PPolyHOL=

spec spec =
type Nat
op 0 : Nat %(constructor)%
op suc : Nat → Nat %(constructor)%
∀ X1 : Nat ; Y1 : Nat
• suc X1 = suc Y1 ⇔ X1 = Y1 ;
∀ Y1 : Nat • ¬ 0 = suc Y1 ;
free type Nat ::= 0 | suc Nat

end

Fig. 5. Translation of spec Nat to HasCASL with 0 and suc marked as constructors

nat from Fig. 3 to HasCASL, where 0 and suc are constructors in the result-
ing HasCASL theory and displayed as such), unlike the case of Casl, where
datatypes are sentences. This causes the theory mapping of the comorphism
not to be signature-preserving, as it depends on the presence of sort generation
constraints in the source Casl theory.

Notice that it is not a solution to keep the constructors of datatypes in
the Casl signatures as well: if we would restrict signature morphisms to map
datatypes to datatypes, we would lose many views which are now correct in
Casl and if we allow signature morphisms to map datatypes to ordinary sorts,
a comorphism from this new logic to Casl which introduces a sort gener-
ation constraint axiom for each datatype loses functoriality of the signature
translation.
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The previous examples show that there are cases when logic translations can not
be formalized as (theoroidal) comorphisms, as one of the two requirements on
the theory mapping components, namely signature preserving and α-sensibility,
fails to hold. We have therefore to generalize the notion to a concept that does
not have these restrictions anymore.

Specification frames [4] formalize abstract specifications and models of speci-
fications, while there is no notions of sentence and satisfaction.

Definition 11. A specification frame F = (Th, Mod) consists of

– a category Th whose objects are called theories and
– a functor Mod : (Th)op → CAT giving the category of models of a theory.

Translation between specification frames provide the generality that they make
no restriction on the way the objects of Th are mapped.

Definition 12. A specification frame comorphism (or representation) μ : F →
F ′ consists of

– a functor φ : Th → Th′ and
– a natural transformation β : φop; Mod′ → Mod.

For generalizing the concept of theoroidal comorphism, we proceed in two steps.
First, given an institution I, we can associate with it a specification frame in
a natural way, by defining the category Th to be the category of the theories
of I and the functor Mod of the specification frame assigns to each theory its
category of models. Let us denote SF (I) the specification frame assigned to I
[2]. Notice that the sentences are not completely lost, but rather stored in the
theories. We can then define generalized theoroidal comorphisms.

Definition 13. A generalized theoroidal institution comorphism μ : I → I ′ is
just a specification frame comorphism μ : SF (I) → SF (J).

Let us denote genIns the category of institutions and generalized theoroidal
institution comorphisms. We can define a functor, denoted SF : genIns− >
Spec, (where Spec is the category of specification frames and specification frame
comorphisms) which assigns to each institution its associated specification frame
and maps generalized theoroidal institution comorphisms identically.

4 Heterogeneous Specifications

Heterogeneous specification is based on some graph of logics and logic trans-
lations. The so-called Grothendieck institution [3,13] is a technical device for
giving a semantics to heterogeneous specifications. This institution is basically
a flattening, or disjoint union, of the logic graph, but with Grothendieck sig-
nature morphisms comprising both ordinary (intra-institution) signature mor-
phisms as well as (inter-institution) translations. Notice that we have not chosen
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some formalization for translations in this intuitive description; in Hets, the
comorphism-based Grothendieck construction is preferred.

Generalized comorphisms do not come with an explicit sentence translation
component, but this can be in some sense recovered, because the sentences of the
logics are stored in the theories. Given a theory T = (Σ, E) and a Σ-sentence e,
we can add e to the set of sentences to obtain a theory extension. This leads us
to consider all theory morphisms of source T as sentences of the theory T . We
can also define a notion of satisfaction for morphisms, in terms of expansions:
a T -model M satisfies a theory morphism φ : T → T ′ if there exists at least
a φ-expansion of M to a T ′-model. The idea of theory extensions as sentences
originates from [12].

To make the Grothendieck construction over a diagram I : Indop → genIns of
institutions and generalized theoroidal comorphisms, we first compose I with the
functor SF to obtain a diagram of specification frames and specification frame
comorphisms. We will then investigate the hypotheses under which specifica-
tion frames and their comorphisms can be extended to institutions/institution
comorphisms, using morphisms as sentences, as described above. Thus, we will
have defined a functor INS to coIns and, by further composing I; SF with INS,
we get a diagram to coIns for which we can build the known comorphism-based
Grothendieck institution.

Proposition 14. Let Specamalg be the subcategory of Spec such that:

– each object S of Specamalg has pushouts of theories, with a canonical selec-
tion of pushouts such that selected pushouts compose and is weakly semi-exact
and,

– each morphism of Specamalg has weak amalgamation property and preserves
selected pushouts.

We can then define a canonical functor INS : Specamalg → coIns using
theory morphisms as sentences.

Proof:
We define the functor on objects: let S = (Th, Mod) be an object of Specamalg

and denote the institution that we define INS(S) = (SignI , SenI , ModI , |=).
The signatures and the models of INS(S) are inherited from S (that is,

SignI = Th and ModI = Mod) and we only have to define sentences and the
satisfaction relation.

For any object T of Th, we define the sentences of T to be all morphisms of
source T in Th, i.e. SenI(T ) = Th(T, •).2 For any objects T, T ′ of Th and any
morphism f ∈ Th(T, T ′), SenI(f) : SenI(T ) → SenI(T ′) is the function that
maps each morphism e : T → T1 to the morphism of source T ′ of the selected
pushout of the span formed by e and f .

2 Note that morphisms of source T form rather a class than a set. This problem can be
overcomed if we consider institutions with small signature categories, which suffice
in practical situations.
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T
f ��

e

��

T ′

θ1=f(e)

��
T1

θ2 �� T ′
1

The functoriality of SenI is ensured by the fact that selected pushouts
compose.

Let T be an object of Th, M a T -model and e : T → T ′ be a T -sentence in
INS(S). Then M |= e if there exists a T ′-expansion of M .

The satisfaction condition follows easily from weak semi-exactness of S. Thus
we have defined the institution INS(S).

Given a specification frame comorphism in Specamalg, μ = (φ, β) : S → S′, we
need to define an institution comorphism ρ : INS(S) → INS(S′). As expected,
the action of ρ on signatures and models is inherited from μ and we only need
to define the sentence translation componenent.

Let T be an object of S. Then we define αT : Sen(T ) → Sen′(φ(T )) to be the
function that maps each morphism e of source T to his image φ(e) along the sig-
nature morphism translation of μ. The naturality of α is ensured by the fact that
translations preserve selected pushouts, while the satisfaction condition of the co-
morphism follows immediately from weak amalgamability property of μ. ��
Note that the hypotheses about the objects and morphisms of Specamalg have
to hold for the institutions in the image of I, for the composition (I; SF ); INS
to be well defined.

Let us compare our resulting institution (I; SF ; INS)# with the Grothendieck
logic obtained by flattening a diagram D : Indop → coIns which only involves
institutions existing in the logic graph. The differences are at the levels of sen-
tences and satisfaction relation. In the case of morphisms ι : (i, (Σ, E)) →
(i, (Σ, E∪{e})), where e is a sentence in Ii and ι is the identity morphism, notice
that the satisfaction of ι in the Grothendieck institution I# coincides with the
’local’ satisfaction of the sentence e in institution Ii. From a practical point of
view, this is important because it allows us to write specifications using the sen-
tences of the logics and to obtain sentences as morphisms only when translating
along a generalized theoroidal comorphism. Moreover, when we translate along
a theoroidal comorphism that is α-simple in the sense of [11], i.e. the functor φ
between theories is the α-extension to theories of a functor taking signatures to
theories, then by translation along the corresponding generalized comorphism,
we still obtain αΣ(e) as the translation of ι.

5 Heterogeneous Proofs

Heterogeneous proving is done in the Grothendieck institution using the formal-
ism of development graphs. For the construction based on a graph of institutions
and non-generalized comorphisms, conditions needed for completeness of devel-
opment graph calculus have been investigated in [13], [16].
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When using generalized comorphisms, the sentences of the Grothendieck in-
stitution are, as defined in the previous section, theory morphisms of the orig-
inal institution. We would like to obtain an entailment system on sentences
of INS(SF (I) which extends or at least approximates the entailment system
of the original logic I. We start by noticing that the semantic entailment of
INS(SF (I)) can be expressed in terms of model-theoretic conservativity.

Remark 15. Let I be an institution with pushouts of signatures and weakly
semi-exact. Then for any theory T of I, for any set of T -sentences E ∪ {e}
in INS(SF (I)), we have E |=T φ in INS(SF (I)) if and only if the unique
morphism from the colimit of the diagram formed by the theory morphisms in
E to the colimit of the diagram formed by the theory morphisms in E ∪ {e},
denoted χE,e is model-theoretically conservative.

Unfortunately, there is no known logic-independent characterization or approx-
imation of model theoretical conservativity based on proof theoretical one, that
could be employed in defining entailment in INS(SF (I)). We can instead as-
sume the existence of a ”proof-theoretical conservativity” predicate on theory
morphisms of I, logic specific, with the property that whenever the predicate
holds for a morphism φ, φ is model-theoretically conservative. This would allow
us to define entailment in INS(SF (I)) based on it as follows:

E 	 e ⇔ the proof − theoretical conservativity predicate holds for χE,e,

where χE,e is as denoted above. The property of the predicate ensures that
entailment thus defined is sound. To prove that the relation 	 is indeed an
entailment system, one could attempt to make an analysis of the properties that
the predicate should fulfill, but it is the case that they can not be completely
derived in a logic-independent manner i.e. some of the properties expected for
entailment system rely on the particular choice of the predicate.

In practical situations, proof-theoretical conservativity needs to be studied for
the logics involved. For the case of Casl, we refer the reader to [8].

6 Conclusions

We have introduced the notion of generalized theoroidal institution comorphism,
which eliminates the restrictions on the the way theories are translated. This
new notion broadens the class of logic encodings formalized as comorphisms. We
also describe a framework for heterogeneous specifications based on a graph of
institutions and generalized comorphism and briefly discuss conditions in which
we can equip the resulting Grothendieck institution with an entailment system.

Comparing our resulting framework with the comorphism-based Grothendieck
institution of [13], notice that at the heterogeneous specification level the differ-
ences are almost invisible for the user, since sentences of the logics can still be
used and logic translations that can be formalized as comorphisms do not map
sentences in a different way when they are represented as generalized theoroidal
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comorphisms. Moreover, notice that at this level pushouts of signatures are not
actually needed and therefore we can use approximations of colimits i.e. weakly
amalgamable cocones, so the hypotheses turn to be equivalent. However, the
changes are semnificative when it comes to heterogeneous proving. The assump-
tion that pushouts should exists is, on one side, mandatory and, on the other
side, too strong to hold in all practical situations. In particular, this is also the
case for some institutions in the logic graph of Hets.

Future work should concern the study of interaction of logic-specific tools with
the heterogenous sentences and the implementation of this interaction in Hets.
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2 Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil

3 Computer Science Department, University of York, England

Abstract. We propose a notion of Graph Transformation Systems (gts)
with dependency relation, more expressive than a previously proposed
one, and suitable for the specification of interactions. We show how a
specification using gts with dependencies can be implemented, at a lower
level of abstraction, by a transactional gts, that is, a gts equipped
with the notion of observable (stable) items in which computations that
correspond to “complete” interactions are characterized as transactions.

1 Introduction

Reactive systems, in contrast to transformational systems, are characterized by
continuously having to react to stimuli from the environment [1]. This kind of
system is naturally data-driven, since reactions are triggered by the presence of
signals or messages. The basic behavior of a reactive system is that the arrival
of a signal from the environment, requiring that some task should be performed,
triggers a reaction, that is a computation typically involving a series of inter-
actions between the environment and the system until the task is completed.
Therefore, a suitable abstract description of a reaction is an interaction pattern,
rather than a relation between inputs and outputs, which is the usual abstrac-
tion for transformational systems. Consequently, a method for the specification
of reactive systems should provide a way to describe abstractly a whole compu-
tation (a reaction) in which the interaction pattern is highlighted, because what
the users (and also the developers) of a reactive system must know is in which
series of interaction patterns the system may engage.

Specification of Reactive Systems
One of the techniques that is widely used in practice to define possible interac-
tion patterns of a system is the language of Message Sequence Charts (MSC)
and its variants (like Sequence Diagrams). However, although very useful in the
early stages of the software development process, they do not provide sufficient
information for driving the implementation of a system [2], since they represent
a set of desired interaction patterns a system may engage in, but offer no in-
formation about forbidden or required runs, nor about independence of events
within one interaction (that could lead to the existence of interaction patterns
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which differ only because independent events occur in different orders). There-
fore, most approaches for the specification of reactive systems do not consider
them as starting points.

Several methods for design and analysis of reactive systems propose syn-
chronous languages as specification formalism [3,4,5], where the time of reaction
to an event is null, i.e., all actions involved in the reaction occur simultaneously.
This characteristic is useful to simplify the model, but frequently it does not cor-
respond to the reality, like in the case of distributed systems where the commu-
nication between components may take some time. Other methods [6,7] propose
to use asynchronous languages to specify communication between components
and define mechanisms to model activities that are performed atomically.

These formalisms propose different ways to abstract computations and to
represent interactions. For example, in [5], the interaction pattern of the system
is defined by a discrete sequence of instants: at each instant several input and
output signals can occur simultaneously forming an instantaneous computation.
Instead in [6] an abstract computation consists of a sequence of steps: at each
step the enabled actions are executed by first modifying the local variables, and
then updating simultaneously all the shared global variables. However, these
methods do not provide a clear relationship between the abstract level, which
shows the interactions a system may engage in the big-steps of execution, and
the lower level, in which these interactions are implemented by small-steps. This
relation is really needed if one wants to validate the implementation with respect
to a (set of) message sequence charts.

There are methods for specifying reactive systems that are extensions of
MSCs. Live sequence charts (LSCs) [8] describe the set of interactions a sys-
tem may engage in using a modal logics, by defining the properties the runs of a
system must obey. In this way, it is clear how to check whether an implementa-
tion is suitable for the specification. However, generating such an implementation
automatically is not straightforward (a user-assisted way is provided by a tool).
Another interesting approach are causal MSCs [9], in which the linear order of
messages within a MSC is replaced by a partial order describing the causality
relationships among the exchanged messages.

Using Graph Transformation to Specify Reactive Systems
Graph transformation systems (gtss) are a flexible formalism for the specifi-
cation of complex systems, that may take into account aspects such as object-
orientedness, concurrency, mobility and distribution [10]. The states are modeled
as graphs and the events occurring in the system, which are responsible for the
evolution from one state into another, are modeled by the application of suit-
able transformation rules (or productions). This specification formalism has a
data-driven nature: the productions of a system can be (non-deterministically)
applied to the graph representing the current state whenever it contains a copy
of the left-hand side of the production. Due to the use of productions to specify
the behavior of the systems, this specification formalism is well-suited for reac-
tive systems: the left-hand side of a production describes the incoming signals
and the right-hand side defines the reactions to these signals.
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Transactional graph transformation systems (t-gts) are an extension of gtss,
providing a notion of transaction. A graph transaction is an abstraction of a
suitable kind of computation using the productions of a gts. This approach
is data driven: when a transaction starts, some items are created in the state
graph and marked as unstable items, and the transaction is completed when
all unstable items created during its execution are deleted. The intuitive idea is
that, to perform a task, the system creates resources that are not observable to
the environment, and only when these internal resources are consumed, the task
is completed. We can have two different views on transactions. At a lower level
of abstraction, we can see them as computations that start and end in states
without unstable items. But at a more abstract level, the unstable items can
be forgotten and a transaction can be seen as an atomic production. Using this
latter view, a whole computation of a reactive system can be considered as an
atomic step, taking a null time to produce a reaction.

Since an interaction may consists of several signals exchanged in both direc-
tions with the environment, it could be represented, naively, by a production
which includes in the left-hand side the signals that are needed (received), and
in the right-hand side the signals that are generated. However such a represen-
tation would not be adequate, because it would abstract out from the relation-
ships between input and output signals. In [11] an extension of gtss, called gts

with dependency relations was introduced, equipping productions with a relation
defining the dependencies between consumed (input) and generated (output)
items. However, this relation was not rich enough to enable the description of
complex interaction patterns like the ones occurring in (causal) MSCs.

In this paper we extend this framework, by allowing a more expressive de-
pendency relationship to be associated with each production. This relationship
allows to describe more faithfully the possible interactions a component may
engage in – one production with dependencies specifies a set of big-steps of a sys-
tem, that is a set of possible interactions, equivalent with respect to concurrency.
Moreover, we will define a way to implement a production with dependencies by
a set of small-step productions (a transactional graph transformation system),
and show that the provided construction is really a suitable implementation.

This paper is organized as follows: in Section 2 we introduce the main con-
cepts of graph transformation systems and the new notion of productions with
dependencies; in Section 3 we review transactional graph transformation system
and in Section 4 we define how to obtain an implementation for a d-gts.

2 Graph Transformation

The basic definitions of typed graph transformation systems (gts) in the al-
gebraic (double-pushout) approach will be reviewed in Section 2.1. Then we
will define the notion of graph transformation systems with dependency relation
(Section 2.2), that is a kind of GTS in which productions specify interactions.
This definition is an extension of the corresponding notion presented in [11].
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2.1 Graph Transformation Systems

We present here the basics of the DPO-approach to gtss [12]. Intuitively, a gts

describes the evolution of a system in terms of productions that change the state,
where states are represented as graphs. We use a typing mechanism for graphs
(see [13] for more details), that can be seen as a labeling technique which allows
to label each graph over a structure that is itself a graph (called the type graph).
The basis of this approach is the category of graphs and graph morphisms.

Definition 1 ((typed) graphs and graph morphisms). A graph is a tuple
G = 〈VG, EG, sG, tG〉, where VG and EG are the sets of nodes and edges with
VG ∩ EG = ∅, and sG, tG : EG → VG are the source and target functions.
We denote by |G| the set of items of G, i.e., |G| = VG ∪ EG. A (total) graph
morphism f : G → G′ is a pair of functions (fV : VG → VG′ , fE : EG → EG′)
such that fV ◦ sG = sG′ ◦ fE and fV ◦ tG = tG

′ ◦ fE. A graph morphism is an
inclusion, denoted f : G ↪→ G′, if fE and fV are both inclusions. The category
of graphs and total graph morphisms is called Graph.

Let T ∈ Graph be a fixed graph, called the type graph. A T -typed graph GT

is given by a graph G and a graph morphism tG : G → T . When the type graph
is clear from the context we will write G instead of GT . A morphism of T -typed
graphs f : GT → G′T is a graph morphism f : G→ G′ that satisfies tG′ ◦f = tG.
A typed graph GT is called injective if the typing morphism tG is injective. The
category of T -typed graphs and T -typed graph morphisms is called T -Graph.1

The behavior of a graph transformation system is determined by the application
of rewriting rules, also called graph productions.

Definition 2 (productions and graph transformation systems). A (T -

typed graph) production is a tuple q : Lq

lq←↩ Kq

rq

↪→ Rq, where q is the
name of the production, Lq, Kq and Rq are T -typed graphs (called the left-hand
side, the interface and the right-hand side of p, respectively), and lq and rq

are inclusions. Additionally we require that lq is not an isomorphism and it is
surjective on nodes. Without loss of generality, we assume that Kq is the in-
tersection, componentwise, of Lq and Rq, i.e., |Kq| = |Lq| ∩ |Rq|. The class
of all T -typed graph productions is denoted by T -Prod. We define the follow-
ing sets of items: consumed(q) = |Lq| − |Kq|, created(q) = |Rq| − |Kq| and
preserved(q) = |Kq|, where “−” denotes set difference.

A (typed) graph transformation system (gts) is a tuple G = 〈T, P, π〉,
where T is a type graph, P is a set of production names, and π is a function
mapping production names to productions in T -Prod.

If there exists a homomorphic image of the left-hand side of a production in a
given graph, this production can be applied if a diagram involving two pushouts
in the category T -Graph can be constructed [12], obtaining a direct derivation.
The first pushout has the effect of removing from the given graph all items in

1 T -Graph can be defined equivalently as the comma category Graph↓T .
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the image of consumed(q), while the second one adds to it a fresh copy of all
items in created(q).

Definition 3 ((direct) derivations). Given a T -typed graph G, a T -typed

graph production q = Lq
l←↩ Kq

r
↪→ Rq and a match (an injective T -typed graph

morphism) m : Lq → G, a direct derivation from G to H using q (based on
m), denoted by δ : G

q,m⇒ H, exists if and only if both squares in the diagram
below are pushouts in T -Graph.

Lq

(1)

��
m

��

Kq� �l�� � � r ��

k

��
(2)

Rq

m∗

��
G D

l∗
��

r∗
�� H

Given a gts G = 〈T, P, π〉, a derivation ρ : G0
p1,m1⇒

G1
p2,m2⇒ G2 · · ·Gn−1

pn,mn⇒ Gn of G is a finite se-
quence of direct derivations δi : Gi

pi+1,mi+1⇒ Gi+1 for
0 ≤ i < n.

Since we consider injective matches only and productions do not delete nodes,
a rule is always applicable at a given match, because the gluing conditions [12]
are always satisfied.

2.2 Graph Transformations Systems with Dependencies

In our approach, reactions of a system are modeled by computations (deriva-
tions), but we are also interested in a more abstract specification, which is
conceptually at the same abstraction level of, for example, Message Sequence
Charts. If we consider reactions where the input signals present in the begin-
ning are consumed in an arbitrary order, and the output signals are produced
in any order and are all available at the end, then we can use productions to
abstractly represent such reactions: the left-hand side is the initial graph of the
derivation modeling the reaction, and the right-hand side is its final graph. Then
the application of a single “abstract” production simulates the execution of a
whole interaction, hiding the internal processing. However, when a reaction in-
volves a more complex interaction pattern, where the input signals cannot be
consumed in an arbitrary order and, similarly, the output signals cannot be pro-
duced in any order, then a production (interpreted in the traditional way) is not
a good abstraction, because we should be able to specify the relation between
the elements of left- and right-hand sides in a more sophisticated way.

To this aim, we equip productions with a dependency relation, which describes
some extra relationships between the deleted and created elements. A production
with dependencies describes a set of interactions: the set of all concrete traces in
which items are created/deleted according to the dependency relation. Of course,
dependency relations must satisfy suitable constraints, which are listed in the
next definition and are explained intuitively after. Based on these constraints,
we will show (in Section 4) that it is always possible to find an implementation
(in terms of the small steps that build an interaction) for a production with
dependencies.

In the following, for a set of items C ⊆ |G| we will denote by leastG(C),
the least subgraph of G containing all elements of C. Furthermore, we denote
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by MC(p) the set of all maximal created connected components of a production
p. More precisely, M ∈ MC(p) if M ⊆ created(p), M is connected (x, y ∈
M ⇒ ∃〈x = x0, x1, . . . , xn = y〉 ⊆ M . ∀0 ≤ i < n . (xi = s(xi+1)∨xi = t(xi+1)∨
s(xi) = xi+1∨t(xi) = xi+1)), and it is maximal (x ∈M, y ∈ created(p)∧(s(y) =
x ∨ t(y) = x ∨ y = s(x) ∨ y = t(x)) ⇒ y ∈ M).

Definition 4 (dependency relation and dep-production). Given a T -typed
production p : Lp←↩Kp→Rp. A dependency relation ≺p for p is a relation
over (Lp ∪Rp) satisfying the following conditions:

1. ≺p is acyclic and transitive;
2. min(≺p) ⊆ Lp;
3. max(≺p) ⊆ Rp;
4. for each element b ∈ created(p), there exists at least one element a ∈

consumed(p), such that a ≺p b;
5. for each element a ∈ Lp, there exists at least one element b ∈ created(p),

such that a ≺p b;
6. two items a and b in consumed(p) (resp. created(p)) can only be related

if there exists an item c ∈ created(p) (resp. consumed(p)) such that a ≺p

c ≺p b.
7. each element a ∈ preserved(p) can be related directly via ≺p only to ele-

ments of created(p);
8. there is at least one element in max(≺p) that is related to all elements of

min(≺p);
9. for each M ∈MC(p), all elements of M must have the same dependencies.

A dep-production is a tuple 〈Lp ←↩ Kp ↪→ Rp,≺p〉, where Lp ←↩ Kp ↪→ Rp is
the span of production p and ≺p is a dependency relation for p. The class of all
T -typed dep-production is denoted by T -DProd.

The definition above is more expressive than the one we proposed earlier in [11],
because dependencies between items of the left-hand side (or the right-hand
side) are possible. This allows for the definition of much more complex interaction
patterns within a rule. The restrictions imposed for a dependency relation are (1)
the relation is acyclic, to enable the existence of a computation implementing it;
(2, 3) the minimal and maximal elements with respect to the dependency relation
must be contained in the left- and right-hand sides of the rule, respectively;
(4, 5) each element of the production is related to at least another element –
a production with dependencies models an interaction, and should not include
items that are neither a cause nor a reaction within the interaction; (6) two
items both consumed or both created by a production may only be related by
transitivity – if two input signals s1 and s2 are related, then there should be
an output signal that is sent (produced) before s2 is received (consumed), and
analogously for the relations between output signals; (7) only items created by
a production can depend directly on elements preserved by this production; (8)
there is at least one element that is caused by all elements that are minimal of
the relation – this characterizes the interaction as a whole, as a unit that can not
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Fig. 1. Productions and type graph of a d-gts modeling a gas station system

be split, as one “complete” task; (9) the last condition formalizes the fact that
the output signals produced by the interaction modeled by the production (the
created items) cannot be used again in the same interaction, not even to connect
a new output signal, thus connected signals have to be created simultaneously.
A gts with dep-productions is defined as a gts where the π function maps each
production name into a dep-production.

Example 1 (GTS with dependency relation). Figure 1 shows an example of gts

with dependency relation. It models the behavior of a gas station Operator

when a customer arrives. There are two possible interactions, described by pro-
ductions p1 and p2, which are equipped with the dependency relations depicted
below. In the first case, when the Operator receives a request for pre-payment
from a Customer, it declines it generating a Busy signal. The other possible be-
havior is to engage in an interaction modeled by production p2: when receiving
a pre-payment (consuming the input signal Prepay), the Operator generates an
output signal Start for the Customer, after which the other available input sig-
nals can be consumed: Supply, Finish and Free. No specific order is prescribed
by relation ≺p2 among these last signals, but only after all of them are consumed
the output signals Free and Change can be produced. In representing the de-
pendencies, curly brackets group items with the same dependencies. Items above
the dashed line are created or deleted, while items below (if any) are preserved
by the production.
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Given the intuitive meaning of a dep-production as an abstraction of an interac-
tion, using it to transform a given state graph with a direct derivation would not
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be sound. In fact, this would require that all the items of the left-hand side are
present in the given state, but some of them could depend on produced items in
the right-hand side, and thus should not be available in the given state. There-
fore a production of a d-gts does not describe a derivation step, but can be seen
as a big-step, an abstraction for a set of computations that implement this inter-
action via small-steps. In the next section we review the notion of transactions
for gtss, which are a good description for synchronous reactions: a computation
that occurs atomically at an abstract level. We will use transactions to provide
small-step implementations for d-gts.

3 Transactional Graph Transformation Systems

In transactional graph transformation systems (t-gtss), introduced in [14] and
inspired by zero-safe Petri nets [15], the basic tool is a typing mechanism for
graphs which induces a distinction between stable and unstable graph items.
Transactions are “minimal” computations starting from a completely stable
graph, evolving through graphs with unstable items and eventually ending up
in a new stable state. We will use t-gtss in the next section to provide an im-
plementation for the productions with dependency relations introduced before.

Definition 5 (transactional graph transformation systems). A transac-
tional gts is a pair 〈G, Ts〉, where G = 〈T, P, π〉 is a T -typed gts and Ts ⊆ T is
a subgraph of the type graph of G, called the stable type graph.

Example 2 (transactional GTS). Figure 2 shows a transactional graph transfor-
mation system. The dashed items in the type graph and productions are the
unstable ones. The idea is that these productions may be used as small-steps to
construct the big-step productions of Figure 1. Here we see how the interaction
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can actually be implemented. For example, in production Accept, when the
Prepay signal is received, an internal signal is sent (PreOrd), and this will later
be used to trigger the activation of the Pump, while sending a Start signal to
the Customer (production Serve).

Given a T -typed graph tG: G → T , we denote by S(G) its stable subgraph, i.e.,
the Ts-typed graph obtained as the (codomain) restriction of tG with respect to
Ts ⊆ T . A T -typed graph G is stable if G ≈ S(G), otherwise it is unstable.

As anticipated above, the transactions of a t-gts are defined in [14] as
“minimal” derivations starting from and ending into stable graphs, where all
intermediate graphs are unstable. Actually, since the order in which indepen-
dent productions are applied is considered irrelevant, transactions are defined
as shift-equivalence classes of derivations. In [16], by exploiting the one-to-one
correspondence between shift-equivalence classes of derivations and graph pro-
cesses, it was shown that transactions could be characterized more conveniently
as graph processes satisfying suitable properties.

A graph process is a special kind of t-gts which can be obtained via a colimit
construction applied to a derivation of Z. This construction essentially builds
the type graph of the process as a copy of the start graph and of all the items
created during the derivation. Furthermore, the productions of the process are
the occurrences of production applications of the original derivation. The process
is also equipped with a mapping to the original t-gts which is a morphism in a
suitable category, but this structure will not be needed in the present framework.

Definition 6 (process from a derivation). Let Z = 〈〈T, P, π〉, Ts〉 be a t-

gts, and let ρ = G0
q1,m1⇒ G1

q2,m2⇒ . . .
qn,mn⇒ Gn be a derivation in Z. A process

φ associated with ρ is a t-gts Oφ = 〈〈Tφ, Pφ, πφ〉, Tφs〉 obtained as follows
− T T

φ = 〈Tφ, tTφ
〉 is a colimit object (in

T -Graph) of the diagram representing
derivation ρ, as depicted (for a single
derivation step) in the diagram on the
right, where cXi : XT

i → T T
φ is the induced

injection for X ∈ {D, G, L, K, R};
− Graph Tφs ↪→ Tφ and morphism Tφs → Ts

are obtained as the codomain restriction of
tTφ

: Tφ → T along Ts ↪→ T ;
− Pφ = {〈qi, i〉 | i ∈ {1, . . . , n}};
− πφ(〈qi, i〉) = 〈Li, cLi〉

li←↩ 〈Ki, cKi〉
ri
↪→

〈Ri, cRi〉 (see the diagram on the right);

qi :LT
i��
gi

��

cLi

��

KT
i

� �
li�� � � ri ��

ki

��

cKi

��

RT
i

hi

��

cRi

��

GT
i−1

cGi−1

��

DT
i

bi�� di ��

cDi

��

GT
i

cGi

��
T T

φ

In order to characterize the processes that are transactions, we need to intro-
duce some auxiliary notions. Since in a derivation all matches are injective,
in the associated process all productions are typed injectively, i.e., morphisms
cXi : XT

i → T T
φ are injective for X ∈ {L, K, R}. Therefore we can say unam-

biguously that a production consumes, preserves or creates elements of the
type graph. Using the notation introduced in Definition 2, for each produc-
tion q = 〈qi, i〉 of the process we define the following sets of items of T T

φ :
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consumedT (q) = cLi(consumed(q)), createdT (q) = cRi(created(q)) and
preservedT (q) = cKi(preserved(q)). Furthermore, for each item x ∈ |T T

φ | we
define preT (x) = {q | x ∈ createdT (q)}, postT (x) = {q | x ∈ consumedT (q)},
and preserveT (x) = {q | x ∈ preservedT (q)}. Exploiting these definitions, we
can define the minimal and maximal subgraphs of the type graph of a process, as
well as a causal relation among the items of the type graph and the productions
of a process.

Definition 7 (minimal and maximal graphs, causal relation). Let Oφ =
〈〈Tφ, Pφ, πφ〉, Tφs〉 be a process. The minimal graph of Oφ, denoted by Min(Oφ),
is the subgraph of Tφ consisting of the items x such that preT (x) = ∅. The
maximal graph of Oφ, denoted by Max (Oφ), is the subgraph of Tφ consisting of
the items x such that postT (x) = ∅.

The causal relation of a process Oφ is the least transitive and reflexive relation
≤φ over |Tφ| ! Pφ such that for all x ∈ |Tφ| and q, q′ ∈ Pφ:

x ≤φ q if x ∈ consumedT (q),
q ≤φ x if x ∈ createdT (q), and
q ≤φ q′ if ((createdT (q) ∩ preservedT (q′)) ∪

(preservedT (q) ∩ consumedT (q′))) �= ∅
For a ≤φ-left-closed P ′ ⊆ Pφ, the reachable set associated with P ′ is SP ′ ⊆ |Tφ|,
defined as x ∈ SP ′ iff ∀q ∈ Pφ � (x ≤φ q ⇒ q �∈ P ′) ∧ (q ≤φ x ⇒ q ∈ P ′).

The reachable sets of a process are subsets of items of the type graph of the
process. It can be shown that each of them represents a graph reachable from
the minimal graph, applying a subset of productions of the process. A transaction
is a special process.

Definition 8 (Transaction). Let Z = 〈〈T, P, π〉, Ts〉 be a t-gts. A transac-
tion (t-process) is a process Oφ of Z such that

1. for any stable item x ∈ Tφs, at most one of the sets preT (x), postT (x),
preserveT (x) is not empty;

2. for any x ∈Min(Oφ), there exists q ∈ Pφ such that either x ∈ consumedT (q)
or x ∈ preservedT (q);

3. for any reachable set SP ′ associated with a non-empty P ′ ⊂ Pφ, there exists
x ∈ SP ′ such that x �∈ Tφs;

4. Min(Oφ) ∪Max (Oφ) ⊆ Tφs.

The family of t-processes of Z is denoted by tProc(Z).

Condition 1 implies that each stable item is either in the source or in the target
graph of the process. Additionally, each stable item that is preserved by at
least one production cannot be generated nor consumed in the process itself. By
condition 2, any item in the source state is used in the computation. Condition 3
ensures that the process is not decomposable into “smaller pieces”: by executing
only an initial, non-empty subset P ′ of the productions of the process, we end up
in a graph SP ′ which contains at least one unstable item. Finally, in a transaction
the source and target states are required to be stable.
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Example 3. Figure 3 depicts a derivation of the t-gts of Example 2, whose pro-
cess is a transaction. The rules involved in this derivation are just indicated by
their names, the matches being obvious). Note that the initial and final states are
totally stable, whereas in any intermediate state there is at least one unstable item.

4 Implementing GTS with Dependencies

In this section we will show that, given a d-gts, it is possible to find a suitable
implementation for it, that is, a gts that has the observable behavior according
to the dependencies specified in the d-gts. We will call this a small-step gts

corresponding to a d-gts, since the idea is that this graph transformation system
contains the small steps needed to implement the big-steps specified by the
productions of the d-gts. The existence of such an implementation will be shown
using t-gts, in which the stable part is the type graph of the original d-gts,
and in which the transactions are the desired observable behavior (i.e., they
implement the productions of the d-gts).

First we show that, given the restriction on the dependency relation of the
productions, it is possible to define a set of (small-step) productions that imple-
ments the (big-step) dep-production. This set of productions is such that, if all
elements of the left-hand side of the dep-production are given, it will produce
a graph containing all elements of the right-hand side of the production. This
output graph will be constructed stepwise applying the small-step productions,
and the dependency induced by this derivation is coherent with the dependency
relation of the dep-production. The small-step productions are typed over the
original type of the dep-production, with additional unstable types that are
needed to recast the dependencies relation of the dep-production.

If we order all elements of a dep-production, based on its dependencies, the
functions before() and after() give us the elements that are related directly
(not by transitivity). Given a dep-production p, for all a ∈ |Lp| ∪ |Rp|, we define
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before(a) = {b | b ≺p a ∧ � ∃c ∈ |Lp| ∪ |Rp| : b ≺p c ∧ c ≺p a}
after(a) = {b | a ≺p b ∧ � ∃c ∈ |Lp| ∪ |Rp| : a ≺p c ∧ c ≺p b}

For a graph G, we will write before(G) (resp. after(G)) to denote
⋃

x∈|G| before
(x) (resp.

⋃
x∈|G| after(x)).

The small-step gts implementing a dep-production will be a t-gts having one
production for each element deleted by the production and one production for
each maximal connected component created by it. In the following, for a, b ∈ |G|
we write KindG(a, b) = true if and only if a and b are both nodes, or they are
edges with the same source and target nodes. Formally,

KindG(a, b) ⇐⇒ (a, b ∈ VG) ∨ (a, b ∈ EG ∧ sG(a) = sG(b) ∧ tG(a) = tG(b))

Definition 9 (Small-step GTS of a dep-production). Given a dep-production
r : 〈Lp ←↩ Kp ↪→ Rp,≺p〉 over type graph T d, the small-step GTS of r, denoted
by smallStep(r), is the t-gts 〈G, T d〉 where G = 〈T, P, π〉, and the productions
and type graph of G are obtained as follows:

– T = T d ∪ {〈a, x〉 | x ∈ consumedT (p) ∧ a ∈ before(x)} ∪ {〈x, b〉 | x ∈
createdT (p) ∧ b ∈ after(x)};

– P = {deletex | x ∈ consumedT (p)} ∪ {createG | G ∈ MC(p)}
– ∀ deletex ∈ P : π(deletex) = Lq ←↩ Kq ↪→ Rq, where

• Lq = Kq ∪ {x} ∪ {〈a, x〉 | a ∈ before(x), with Kind(〈a, x〉, x) = true},
• Kq = Dx ∪ Cx and
• Rq = Kq ∪ {〈x, a〉 | a ∈ after(x), with Kind(〈x, a〉, a) = true}

with Dx = (leastLp({x})− {x}) and Cx = leastRp(after(x)) − after(x).
– ∀ createG ∈ P : π(createG) = Lq ←↩ Kq ↪→ Rq, where G is a maximal

created connected component of p and
• Lq = Kp ∪ {〈a, x〉 | x ∈ G ∧ a ∈ (before(x) ∩ consumedT (p)), with

Kind(〈a, x〉, x) = true},
• Kq = DG ∪ CG and
• Rq = Kp ∪ G ∪ {〈x, a〉 | x ∈ G ∧ a ∈ after(x), with Kind(〈x, a〉, a) =
true}

with DG = leastLp(before(G))−(before(G)∩consumedT (p)) and CG =
(G ∩ preservedT (p)) ∪ (leastLp(after(G)) − after(G)).

In the previous definition, each deletex production consumes the stable element
x and one unstable element 〈a, x〉 for each element a ∈ before(x); preserves
the least set of elements needed to {x} be a graph2; and creates one unstable
element 〈x, a〉 for each element a ∈ after(x). Each createG production consumes
all unstable created elements 〈a, x〉, where x is an element of G (a maximal
created connected component of the dep-production) and a is a deleted element
in before(x)3. Furthermore, for each x in G, it preserves the items in before(x)
2 When x is an edge, we need its source and target, too.
3 Note that, by definition of ≺p, before(x) contains also the preserved elements if x

is created by p.
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that are preserved by the production, x (if it is preserved by the production),
and the least sets of elements needed to have a graph containing the elements
of after(x) and the preserved elements of before(x). Finally, they create each
element x in G and all unstable element 〈x, a〉, where a ∈ after(x).

Example 4 (Small-step GTS of a dep-production). The small-step gts corre-
sponding to the production p2 of Figure 1 is shown in Figure 4 (the type graph
was omitted, since it is just the type graph of the original d-gts including all
non-observable items that appear in Figure 4).
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Fig. 4. Small-step of production p2 of Example 1

Now, given a d-gts, we can define an implementation for it by constructing
suitable implementations for each of its productions.

Definition 10 (Small-step GTS of a d-GTS). Let be given a d-gts dG =
〈T d, P d, πd〉 and, for all pi ∈ P d, smallStep(pi) = 〈〈Tpi , Ppi , πpi〉, T d〉. The
small-step GTS of dG, denoted by smallStep(dG), is the t-gts 〈〈T, P, π〉, T d〉,
where

– T is the colimit along all T d ↪→ Tpi ;
– P =

⊎
pi∈P d Ppi and π =

⊎
pi∈P d πpi .

To be able to check whether the small-step t-gts is really a suitable implemen-
tation for a d-gts, we need to define the notion of implementation formally.
Intuitively, we will require that (i) the observable part of the small-step gts

is the type graph of the d-gts, and (ii) the big-step productions of the d-gts
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correspond to transactions of the small step gts, that model the “complete”
computations (or complete interactions). A transaction is actually a (special
equivalence class of) derivation, and the causal dependency relation of the cor-
responding process is the one obtained by the actual production application
within this derivation. Just requiring that the dependency relation of a dep-
production is a subset of this causal relation is not adequate because the depen-
dency relation may relate items within the left-hand side (or right-hand side) of
a production, and this relation will never be present in a causal order generated
by a derivation. Nevertheless, it is possible to enrich the causal relation of a
process adding dependencies to describe the fact that some elements will always
be consumed/produced in a certain order within any derivation described by the
process. We will call this new relation dependency relation of a process.

Definition 11 (dependency relation of a process). Let R∗ be the transitive
closure of R. Given a process Oφ of a t-gts Z, its dependency relation is the
relation ≺φ over Min(Oφ)∪Max (Oφ), defined by ≺φ = (R1∪R2)∗∩{(a, b) | a, b ∈
Min(Oφ)∪Max (Oφ)}, where R1 =

⋃
p∈Pφ

{(a, b) | a ∈ Lp and b ∈ createdT (p)}
and R2 is defined by

R2 = {(a, b) | ∃q1, q2 ∈ Pφ . q1 ≤φ q2 ∧ a ∈ (createdT (q1) ∩Max (Oφ))∧

b ∈ (consumedT (q2) ∩Min(Oφ))}

The relation R1 contains the obvious dependencies between created and con-
sumed/preserved elements. R2 describes instead the dependencies between the
productions, i.e, if one production depends on another one, all consumed (in
the minimal graph) elements of the second production depends on all created
(in the maximal graph) elements of the first one. By transitivity, the relation
R2 captures the order in which the elements must be consumed/created in any
derivation that corresponds to this process.

We can obtain a dep-production associated with a transaction, considering
its minimal and maximal graphs as left- and right-hand sides, and their inter-
section as interface. The dependency relation of this production is given by the
dependency relation associated with the transactional process. Thus, we obtain
an abstract description (dep-production) of a transaction, and we can see the
transaction as an implementation of this abstract description.

Definition 12 (dep-production associated with a t-process). Given a pro-
cess Oφ of a t-gts Z, we have ΠZ(Oφ) = 〈Min(Oφ)←↩ Min(Oφ)∩Max (Oφ) ↪→
Max (Oφ),≺φ〉, where the intersection Min(Oφ) ∩Max (Oφ) is taken componen-
twise and ≺φ is the dependency relation associated with φ.

Now we can formalize the notion of implementation of a d-gts via a t-gts.
This is done in the following definition. An implementation is given by a pair of
mappings: (i) a morphism between the type graphs and (ii) a function mapping
each production of the source d-gts into a transaction of the target one.
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Definition 13 (d-GTS implementation relationship)
Given a d-gts G = 〈T, P, π〉 and a t-gts Z = 〈〈T ′, P ′, π′〉, T ′

s〉, an (d-gts)
implementation relationship from G to Z is a pair 〈fT , fP 〉, where fT : T → T ′

s

is a graph morphism from the type graph of G to the stable type graph of Z,
and fP : P → tProc(Z) maps each dep-production of G to a transaction of Z,
preserving (modulo morphism fT ) the left- and right-hand sides and the interface,
as well as the dependency relation. More formally, for each q ∈ P there must exist
isomorphisms (in T -Graph) fL

ι :Min(fP (q)) ∼= tLq ; fT and fR
ι :Max (fP (q)) ∼=

tRq ; fT which agree on Kq = Lq ∩ Rq, and such that for all x, y ∈ |Lq| ∪ |Rq|,
x ≺q y ⇐⇒ fι(x) ≺fP (q) fι(y).

Finally, we can prove that the standard implementation defined above is actually
an implementation of the original d-gts. By proving this theorem we (i) prove
that there is always at least one possible implementation of a d-gts, that is, all
its rules are feasible; and (ii) give an automatic construction method to obtain
an implementation for a the give d-gts.

Theorem 1. Given a d-gts G = 〈T d, P d, πd〉 and its small-step gts Z =
〈〈T, P, π〉, T d〉, there exists an d-gts implementation relationship f :G → Z.

Proof. (Sketch) Let us define f = 〈fT , fP 〉 as follows:

– fT is the identity of T d in Graph;
– for each p ∈ P d, fP (p) is the transaction of Z obtained from smallStep(p).

In order to show that this definition is well-given, we need to prove that each
smallStep(p) has a transaction compatible with p (with the same associated dep-
production) and that all these transactions are in tProc(Z). Since Z is obtained
by gluing smallStep(p), for all p ∈ P d, all transactions of each smallStep(p) are
in tProc(Z). Then it remains to prove that for each p ∈ P d:

1. smallStep(p) has a transaction Oφ of Z. Let’s consider a process contain-
ing all productions in smallStep(p), obtained from the derivation applying
the productions from Lp. The productions are constructed considering the
dependency relation of p, then, since ≺p is acyclic, it is possible to apply
all productions because: the elements needed to apply deletex productions
are in Lp (stable consumed or preserved elements) or are created by createG

productions (unstable elements); and the elements needed to apply createG

productions are created by deletex productions. Therefore, there exists such
a derivation and it corresponds to a transaction if it matches the following
restrictions, that can be proved to hold:
(a) for any stable element it is either consumed, or deleted, or preserved ;
(b) for any element in Min(Oφ) there exists a production that consumes or

preserves it ;
(c) there is no intermediate stable graph;
(d) all elements in the minimal and maximal graphs are stable.
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2. the dep-production associated with Oφ is isomorphic to p: as stated
in (b) above, the minimal graph of Oφ corresponds to Lp. Since all elements
in Rp are created by some createG production and all unstable created items
are consumed by some production, the maximal graph of Oφ corresponds to
Rp. Therefore, by definition of dep-production associated with a t-process
and because the dependency relation of Oφ is the same of p by construction,
the production associated with Oφ and p are the same.

5 Conclusion

In this paper we presented an extension of Graph Transformation Systems (gts)
to enable the specification of complex interaction patterns using productions,
called gts with dependencies (d-gts). Moreover, we showed by providing an
explicit construction that it is always possible to find an implementation for the
productions of a d-gts in terms of transactions of a suitable, more refined trans-
actional gts (t-gts). This is a relevant contribution for software development,
since the user may start by specifying the possible interactions a system may
engage in (like it is usually done with Message Sequence Charts, but here we
propose a more expressive formalism to describe interactions), providing then an
implementation (as a t-gts), and finally checking whether its implementation
is really compatible with the interaction patterns he defined. This can be done
by generating all possible transactions of the t-gts (an algorithm that can con-
struct this set of transactions for t-gts with certain restrictions was proposed
in [17]), and then comparing the corresponding abstractions (productions asso-
ciated to transactions) with the productions with dependencies of the original
d-gts. The interest in comparing the set of transactions of the implementation
of a d-gts with its original set of rules is to find out whether unexpected behav-
ior was introduced in the small-step gts. Note that, since any implementation
of a d-gts is compatible with the dependencies specified in the dep-productions,
this situation reveals that there are dependencies that were not explicitly speci-
fied in productions, but may arise from interference among different interaction
patterns (different productions deleting/creating the same signals). This might
be a hint that the specification of interaction patterns of the system, given by
the d-gts, should be revised.

The new notions presented here may serve as a starting point for defining
restrictions on sets of interaction patterns (on d-gts) that may assure that they
define completely the possible behaviors of a system (in the sense that no un-
expected behavior can arise from implementations respecting the dependencies
given by the productions with dependencies). We are also interested in investi-
gating the relationships between different implementations of the same system,
and whether it is possible to define a “universal” implementation (at least for d-
gts with some restrictions, like the one discussed above). Other research topics
include the development of a graphical representation of production with depen-
dencies that is closer to the MSC notation, since this would make it easier for
developers already familiar with that notation to use the proposed framework.
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Abstract. We investigate Leifer-Milner RPO approach for CCS and π-
calculus. The basic category in which we carry out the construction is
the category of term contexts. Several issues and problems emerge from
this experiment; for them we propose some new solutions.

Introduction

Recently, much attention has been devoted to derive labelled transition systems
and bisimilarity congruences from reactive systems, in the context of process lan-
guages and graph rewriting, [1,2,3,4,5,6]. In the theory of process algebras, the
operational semantics of CCS was originally given by a labelled transition system
(LTS), while more recent process calculi have been presented by means of reac-
tive systems plus structural rules. Reactive systems naturally induce behavioral
equivalences which are congruences w.r.t. contexts, while LTS’s naturally in-
duce bisimilarity equivalences with coinductive characterizations. However, such
equivalences are not congruences in general, or else it is an heavy, ad-hoc task
to prove that they are congruences.

Leifer and Milner [1] presented a general categorical method, based on the
notion of Relative Pushout (RPO), for deriving a transition system from a re-
active system, in such a way that the induced bisimilarity is a congruence. The
labels in Leifer-Milner’s transition system are those contexts which are minimal
for a given reaction to fire.

In the literature, some case studies have been carried out in the setting of
process calculi, for testing the expressivity of Leifer-Milner’s approach. Some dif-
ficulties have arisen in applying the approach directly to such languages, viewed
as Lawvere theories, because of structural rules. Thus more complex categorical
constructions have been introduced by Sassone and Sobocinski in [6].

In this work, we apply the RPO technique to the prototypical examples of
CCS and π-calculus.

Aims and basic choices are the following.

(i) To consider simple and quite fundamental case studies in which to experi-
ment the RPO approach.
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(ii) To apply the RPO approach in the category of term contexts. In this cate-
gory, arrows represent syntactic terms or contexts. The use of a category so
strictly related to the original syntax has the advantage that the generated
LTS has a quite direct and intuitive interpretation.

In carrying out the simpler case study given by CCS, we have found the following
problems. For all of them we propose some new solutions.
– Structural rules. In [6], Sassone and Sobocinski proposed the use of G-categories
to deal with reduction systems like CCS, where, beside the reduction rules, there
is a series of structural rules. However, so far G-categories have been used to treat
just tiny fragments of CCS, while in other treatments of CCS [2], structural
rules are avoided through a graph encoding; namely there is a single graph
representation for each class of structurally equivalent terms. In this work, we
show how, using a suitably defined G-category, one can directly apply the RPO
approach to the full CCS calculus.
– Names. Another issue is given by names, and name biding. In this work we
propose de Brujin indexes as a suitable instrument to deal with the issues that
name manipulation poses. We found out that de Brujin indexes can be used also
for π-calculus, where name manipulation is more sophisticated than in CCS.
– Pruning the LTS. The simple application of the RPO approach generates
LTS’s that are quite redundant, in the sense that most of the transitions can
be eliminated from the LTS without affecting the induced bisimilarity. From a
practical point of view, having such large trees makes the proofs of bisimilarity
unnecessarily complex. In this work, we propose a general technique that can be
used in order to identify sets of transitions that can be eliminated from the LTS,
without modifying the induced bisimilarity. In detail, we introduce a notion of
definability of a transition in terms of a set of other transitions T . We prove that,
given a LTS constructed by the RPO technique, if the class T of transitions is
such that any other transition in the original LTS is definable from T , then the
restricted LTS, obtained by considering only transitions in T , induces the same
bisimilarity of the original LTS.

The result of the above technique is a LTS for CCS that coincides with the
original LTS proposed by Milner. The above construction, applied to the more
sophisticated case of the π-calculus, gives us a notion of bisimilarity which turns
out to coincide with the syntactical bisimilarity of [4], and it is strictly included
in Sangiorgi’s open bisimilarity. In the π-calculus case, the LTS that we obtain,
although quite reduced, is not directly finitely branching. However, it can be
turned into a finite one, by working in the setting of categories of second-order
term contexts of [7], where parametric rules can be represented.

Summary. In Section 1, we present CCS syntax and reaction semantics with de
Brujin indexes. In Section 2, we summarize the theory of G-categories, and Leifer-
Milner theory of reactive systems in a G-category setting. In Section 3, we present
a construction allowing to prune the LTS obtained by applying the previous the-
ory of reactive systems. In Sections 4 and 5, we study LTS’s and bisimilarities
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obtained by applying the above general constructions to CCS, and π-calculus, re-
spectively. Final remarks and directions for future work appear in Section 6.

1 CCS Processes with de Brujin Indexes

In this section, we present a version of Milner’s CCS with de Brujin indexes,
together with the reactive system. Such presentation allows us to deal smoothly
with binding operators, and it is needed for extending in a natural way the
structural congruence on processes to contexts.

In our presentation, CCS names a0, a1, . . . are replaced by de Brujin indexes
r0, r1, . . ., which are name references. The intuition about indexes is that

– the index ri refers to the free name aj if j = i−n ≥ 0 and ri appears under
the scope of n ν’s;

– otherwise, if i < n, then ri is bound by the i + 1-th ν on its left;
– binding operators ν do not contain any name.

E.g. in ννr0.r2.0, r0 is bound by the internal ν, while r2 refers to the free
name a0. Formally:

Definition 1 (CCS Processes). Let r0, r1, . . . ∈ NR be a set of name ref-
erences, let α ∈ Act = {ri, ri|ri ∈ N} ∪ {τ} be a set of actions, and let
x, y, z, . . . ∈ X be a set of process variables, then we define

(G $) M ::= 0 | α.P | M1 + M2 | α.x guarded processes
(P $) P ::= M | νP | P1|P2 | rec x.P | ϕP processes

where ϕ is a (injective) index transformation, obtained as a finite composition
of the transformations {δi}i≥0 ∪ {si}i≥0, where δi, si represent the i-th shifting
and the i-th swapping, respectively, defined by

δi(rj) =

{
rj+1 if j ≥ i

rj if j < i
si(rj) =

⎧
⎪⎨

⎪⎩

rj if j �= i, i + 1
ri+1 if j = i

ri if j = i + 1

A closed process is a process in which each occurrence of a variable is in the
scope of a rec operator.

The index transformations ϕ in Definition 1 above are needed for dealing with
α-rule explicitly.

In order to apply the GRPO technique to CCS, it is convenient to extend the
structural congruence, which is usually defined only on processes, to all contexts.
Here is where the syntax presentation à la de Brujin plays an important rôle.
Namely the CCS rule

(νaP ) | Q ≡ νa(P | Q) , if a not free in Q

is problematic to extend to contexts with the usual syntax, since, if Q is a
context, we have to avoid captures, by the ν-operator, of the free variables of
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the processes, that will appear in the holes of Q. Using de Brujin indexes (and
index transformations), the above rule can be naturally extended to contexts as:

C[ ]|(νC′[ ]) ≡ ν((δ0C[ ])|C′[ ])

where the shifting operator δ0 avoids the capture of free name references.
The complete definition of structural congruence is as follows:

Definition 2 (Structural Congruence). Let C[ ], C′[ ], C′′[ ] denote 0-holed
or 1-holed contexts. The structural congruence is the relation ≡, closed un-
der process constructors, inductively generated by the following set of axioms:
(par) C[ ]|0 ≡ C[ ] C[ ]|C′[ ] ≡ C′[ ]|C[ ]

C[ ]|(C′[ ]|C′′[ ]) ≡ (C[ ]|C′[ ])|C′′[ ]

(plus) C[ ] + 0 ≡ C[ ] C[ ] + C′[ ] ≡ C′[ ] + C[ ]
C[ ] + (C′[ ] + C′′[ ]) ≡ (C[ ] + C′[ ]) + C′′[ ]

(rec) rec x.C[ ] ≡ C[ ][rec x.C[ ]/x]

(nu) ν0 ≡ 0 C[ ]|(νC′[ ]) ≡ ν((δ0C[ ])|C′[ ]) ννC[ ] ≡ ννs0C[ ]

(phi) ϕ(νC[ ]) ≡ ν(ϕ+1C[ ]) ϕ0 ≡ 0 ϕ(α.C[ ]) ≡ ϕ(α).ϕ(C[ ])
ϕ(C[ ]|C′[ ]) ≡ ϕ(C[ ])|ϕ(C′[ ]) ϕ(rec x.C[ ]) ≡ rec x.(ϕC[ ])
ϕ(C[ ] + C′[ ]) ≡ ϕ(C[ ]) + ϕ(C′[ ])
ϕ1 . . . ϕm[ ] ≡ ϕ′

1 . . . ϕ′
n[ ] , if ϕ1 ◦ . . . ◦ ϕm = ϕ′

1 ◦ . . . ◦ ϕ′
n

where ϕ+1(ri) =

{
r0 if i = 0
(ϕ(ri−1))+1 otherwise

ϕ(α) =

⎧
⎪⎨

⎪⎩

ϕ(r) if α = r

ϕ(r) if α = r

τ if α = τ

The last (phi)-rule in the above definition is useful for dealing with structural
congruence of contexts (but of course is not necessary when dealing only with
processes). Notice that there is an effective procedure to determine whether
ϕ1 ◦ . . . ◦ ϕm = ϕ′

1 ◦ . . . ◦ ϕ′
n. Namely, the two compositions are equal if and

only if they contain the same number of transformations in the forms δi and
their behavior coincides on an initial segment of indexes (whose length can be
calculated from the δi’s and the si’s involved.)

As in the standard presentation, one can easily show that each CCS process
is structurally congruent to a process in normal form, i.e. a process of the shape
νk(Σm1

j=1α1,j .P1,j | . . . | Σmn

j=1αn,j.Pn,j), where all unguarded restrictions are at
the top level, and index transformations do not appear at the top level. A similar
normal form can be defined also for contexts. Reaction semantics, defined up-to
structural congruence, is as follows:

Definition 3 (Reaction Semantics). The reaction relation → is the least re-
lation (on closed processes) closed under the following reaction rules and reactive
contexts:

Reaction rules. r.P + M | r.Q + N → P |Q τ.P + M → P

Reaction contexts. D[ ] ::= [ ] | νD[ ] | P |D[ ] | D[ ]|P
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Of course, one can easily define a mapping from standard CCS syntax into our
de Brujin presentation, in such a way that reaction semantics is preserved. We
omit the details.

2 Reactive Systems in the G-category Setting

In this section, we summarize the categorical notions necessary in the remaining
of the article. These are the theories of G-categories, and the reactive systems
formulated in a G-category setting [1,8].

The basic idea is to formulate the notion of reactive system, in a setting
whereby contexts are modeled as arrows of a category, terms are arrows having
as source a special object 0, and reaction rules are pairs of terms.

For our purpose it is necessary to consider a more involved formulation of
the theory where G-categories are used. G-categories are a particular form of 2-
categories where morphisms between arrows are all isomorphisms. G-categories
are useful in dealing with calculi where there are structural equivalence relations
on terms, CCS and π-calculus are typical examples. For these calculi, two cells
isomorphisms represent equivalence relations on contexts. The extra complexity
of using G-categories is motivated by the fact that the simpler approach of using
categories with arrows representing equivalence classes of contexts (or terms)
induces an incorrect bisimilarity, [8].

Definition 4. A 2-category C consists of

– A set of objects: X, Y, Z, ...
– For any pair of objects X, Y ∈ C, a category C(X, Y ). Objects in C(X, Y ) are

called 1-cells morphisms, and denoted by f : X → Y . Arrows in C(X, Y ) are

called 2-cells isomorphisms and represented by α : f ⇒ g or by X

f
��

g

��

�� ��
�� α Y .

Composition in C(X, Y ), called vertical composition, is denoted by •.
– For all objects X, Y and Z, there is a functor ◦ : C(Y, Z) × C(X, Y ) →
C(X, Y ), called horizontal composition, which is associative and admits the
identity 2-cells of idX as identities.

A G-category is a 2-category whose 2-cells morphisms are all isomorphisms.

We define here the G-category formed by the finite (i.e. without the rec operator)
CCS terms and contexts, with terms (and contexts) equipped with a structural
equivalence. Since the CCS grammar needs to distinguish between guarded and
generic terms, the category needs to contain two distinct objects. Formally:

– Objects are 0,G,P .
– Arrows from 0 to G (P) are guarded processes (generic processes). Arrows

from G (P) are contexts that take a guarded term (a term). More formally,
the arrows A → B are the contexts CB

A[ ] generated by the grammar:
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CG
G [ ] ::= [ ] | α.CP

G [ ] | CG
G [ ] + M | M + CG

G [ ]
CG

P [ ] ::= α.CP
P [ ] | CG

P [ ] + M | M + CG
P [ ]

CP
G [ ] ::= CG

G [ ] | νCP
G [ ] | CP

G [ ]|P | P |CP
G [ ] | δCP

G [ ]
CP

P [ ] ::= [ ] | CG
P [ ] | νCP

P [ ] | CP
P [ ]|P | P |CP

P [ ] | δCP
P [ ]

For simplicity, in what follows we will omit the tag P ,G from the contexts.
– 2-cell isomorphisms between C[ ] and C′[ ] are the one-to-one maps between

the instances of actions in C[ ] and C′[ ] induced by the proof of structural
congruence. By structural induction on the proof of structural congruence, it
is possible to show that two structurally congruent finite terms have the same
number of instances for each action, and each proof of congruence induces a
one to one map between actions in an obvious way.

Here we restrict the G-category to contain only finite processes because we
need the 2-cell morphisms to be isomorphisms. When CCS processes contain
the rec operator, two congruent processes can contain two different numbers of
actions, so there cannot exists a one-to-one map between the sets of actions.
However, it is possible to recover a LTS for the whole CCS processes by defin-
ing the LTS associated to an infinite process P (a term containing rec) as the
supremum of the LTS associated to the approximants of P . For lack of space we
omit the details.

Definition 5 (G-Reactive System). A G-reactive system C consists of:

– a G-category C;
– a distinguished object 0 ∈ |C|;
– a collection D of 1-cells morphisms, in C. D is referred as the set of reactive

contexts, it is required to be closed under 2-cells, and to reflect composition.
– a set of pairs R ⊆ ⋃

I∈|C| C[0, I]× C[0, I] of reaction rules.

The reactive contexts are those in which a reaction can occur. By composition-
reflecting we mean that d ◦ d′ ∈ D implies d, d′ ∈ D, while by closure under
2-cells we mean that if d ∈ D, α : d ⇒ d′ then d′ ∈ D.

In our leading example a G-reactive system for CCS is obtained by taking as
reaction rules and reactive contexts the ones given in Definition 3. It is immediate
to check that this definition is correct.

A G-reactive system induces a reaction relation → on 1-cells, defined by:
t → u if there exist 〈l, r〉 ∈ R, α : dl ⇒ t and β : u ⇒ dr. Observe that the
reaction relation is closed by 2-cell isomorphisms. In the CCS example, the above
reaction relation coincides with the canonical one given in Definition 3.

The behavior of a reactive system is expressed as an unlabelled transition
system. On the other hand, many useful behavioral equivalences are only defined
for LTS’s.

From a reactive system it is possible to derive a LTS by taking as labels the
contexts that transform a term into a term for which a reduction rule applies.
In [1], the authors formalize these ideas and propose to take as labels the “min-
imal contexts allowing for a reaction”. A categorical criterion for identifying
the smallest contexts is given by the relative pushouts construction. In [8] this
categorical construction is extended to G-categories.
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Definition 6 (GRPO/GIPO)

(i) Let C be a G-category and let us consider the commutative diagram in
Fig. 1(i). Any tuple 〈I5, e, f, g, β, γ, δ〉 which makes diagram in Fig. 1(ii)
commute and such that δl • gβ • γt = α is called a candidate for (i).

(ii) A G relative pushout (RPO) is the smallest such candidate, i.e. it satisfies
the universal property that given any other candidate 〈I6, e

′, f ′, g′, β′, γ′, δ′〉,
there exists a mediating morphism given by a tuple 〈h, ϕ, ψ, τ〉, with τ :
g′h ⇒ g, such that diagrams in Fig. 1(iii) commute. Moreover, the fol-
lowing identities on two cells need to be satisfied: γ = τe • g′ϕ • γ′, δ =
δ′ • g′ψ • τ−1f , β′ = ψl • hβ • ϕt. Such a mediating morphism must be
unique, up to 2-cell isomorphisms.

(iii) A commuting square such as diagram in Fig 1(i) is a G-idem pushout
(GIPO) if 〈I4, c, d, idI4 , α, 1c, 1d〉 is its GRPO.

I4

I2

c

����������
α=⇒ I3

d

����������

0
(i)

t

���������� l

����������

I4

I2
e ��

�������

c

		

���� �	
γ

I5

g





I3

f
��

�������

��

d
����	
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0
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����������
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ϕ

														

c









 
�
γ′
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h





I3

f
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�������

��

f ′
����	
 ψ

��������������

��

d������
δ′

Fig. 1. Redex Square and Relative Pushout

Definition 7 (GIPO Transition System)
– States: equivalence classes of arrows [t] : 0 → I in C, for any I; two arrows

are in the same equivalence class if there exists a 2-cell isomorphism between
them;

– Transitions: [t]
[c]−→I [dr] iff d ∈ D, 〈l, r〉 ∈ R and the diagram in Fig. 1(i) is

a GIPO.

An important property of GIPO squares is that they are preserved by the sub-
stitution of one edge with a two 2-cell isomorphic one, [8]. It follows that the
transition relation is independent from the chosen representative of an equiva-
lence class. Let ∼I denote the bisimilarity induced by the GIPO LTS.

Another important property is the pasting property for GIPO squares.

Lemma 1 (GIPO pasting, [8]). Suppose that the square in Fig. 2(i) has an
GRPO and that both squares in Fig. 2(ii) commute.

(i) If the two squares of Fig. 2(ii) are GIPOs so is the outer rectangle.
(ii) It the outer rectangle and the left square of Fig. 2(ii) are GIPOs so is the

right square.
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e0

��

f0 ��

f1

��

e2

��

g0
��

g1α•σf0 �






(i)
g1

��

e0

��

f0 ��
f1 ��

e1

��

e2

��

g0
��

α �






(ii)

g1
��

σ �






Fig. 2. IPO pasting

Definition 8 (Redex GRPO). Let C be a G-reactive system and t : 0 → I2

an arrow in C. A redex square is a diagram in the form of Fig. 1(i), with l the
left-hand side of a reaction rule and d a reactive context. A G-reactive system C
is said to have redex GRPOs if every redex square has a GRPO.

The following fundamental theorem is provable using the GIPO pasting lemma:

Theorem 1. Let C be a G-reactive system having redex GRPOs. Then the
GIPO bisimilarity ∼I is a congruence w.r.t. all contexts, i.e. if a∼Ib then for
all c of the appropriate type, ca∼Icb.

3 Pruning the GIPO LTS

In this section we present a construction allowing to prune the LTS obtained
by the GIPO construction. In this way it is possible to derive simpler and more
usable LTS’s. The key notion is that of definability. We will prove that in a GIPO
LTS, the GIPO transitions that are “definable” in some suitable sense can be
removed without affecting the bisimilarity induced by the LTS.

Definition 9. Given a G-reactive system C, having redex GRPOs, let T be a
subset of the whole set of GIPO transitions,

(i) we say that T is closed under bisimulation if for any [t1], [t′1], [t2], [t′2], [f ],

such that [t1]∼I [t′1], [t2]∼I [t′2], [t1]
[f ]−→I [t2], [t′1]

[f ]−→I [t′2], we have that:

[t1]
[f ]−→I [t2] ∈ T iff [t′1]

[f ]−→I [t′2] ∈ T
(ii) we say that the whole GIPO LTS is definable from T if there exists a set

of tuples { 〈[fk], [f ′
k], Pk, ek〉|k ∈ K} of the following form:

– [fk] GIPO label, [f ′
k] GIPO label or f ′

k = ε with fk : Ik → I ′k, f ′
k : Ik →

Jk (where we set ε : Ik → Ik)
– Pk is a Hennessy-Milner proposition with modal operators labeled by

GIPO labels
– ek : Jk → Ik (with Jk possibly 0)

and such that, in the whole GIPO LTS, there is a transition [t]
[f ]−→I [t′] if

and only if there exist k ∈ K, t′′ : 0 → Jk satisfying:
– [f ] = [fk],
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– ([t]
[f ′

k]−→I [t′′] ∈ T ) or (t′′ = t ∧ f ′
k = ε)

– in the T LTS, the state [t′′] satisfies the proposition Pk

– ([t′] = [ek(t′′)] ∧ Jk �= 0) or ([t′] = [ek] ∧ Jk = 0)

Remark 1. Intuitively a tuple 〈[fk], [f ′
k], Pk, ek〉 says that some of the transitions

with label [fk] can be simulated by transitions with label [f ′
k] and contexts ek. We

allow the extra case of f ′
k = ε to deal with those transitions that can be simulated

by just inserting the original term in a contexts ek, following [9] we can call not
engaged these kind of transitions. The Hennessy-Milner propositions Pk are a sort
of guard conditions. In the present work these propositions have no use: in all cases
considered Pk is the proposition true. However, there are examples of calculi where
the extra expressivity given by the Hennessy-Milner propositions is useful, and so
we prefer to present the proposition below in its full strength.

Proposition 1. Given a reactive system C, and a subset T of transition that is
closed under GIPO bisimulation and such that the whole GIPO LTS is definable
from T , then ∼I =∼T , i.e. the two GIPO LTS induce the same bisimilarity.

Proof. Consider the relation S = {〈[ct], [cu]〉 | [t] ∼T [u], c context}. It is easy to
prove that ∼I ⊆∼T⊆ S. If we prove that S is an GIPO bisimilarity (i.e. S ⊆ ∼I),
then the three relations are equal. So we prove that, for any 〈[ct], [cu]〉 ∈ S, if

[ct]
[f ]−→I [t′], then there exists u′ s.t. [cu]

[f ]−→I [u′] with [t′]S[u′].
Consider the following diagram:

0
t ��

l

��

I0
c ��

f ′

��

I2

f

��

I3
d

��

α 
�����

I1
d′

��

β 
�����

I4

where the outer rectangle is the GIPO inducing the transition [ct]
[f ]−→I [t′], namely

[t′] = [d′dr] with 〈l, r〉 reaction rule, and the left square is obtained from an GIPO
construction starting from l and t. There are two cases to consider:

– If the transition labeled by [f ′] is in T , then, since [t]
[f ′]−→I [dr], there exists u′′,

[u]
[f ′]−→I [u′′], [u′′] ∼T [dr]. By composition of GRPO squares, [cu]

[f ]−→I [d′u′′],
from which the thesis.

– If the transition labeled by [f ′] is not in T , then it is definable by T , and

since [t]
[f ′]−→I [dr], there exists a tuple 〈[f ′], [fk], Pk, ek〉 and a term t′′ such that

[t]
[fk]−→I [t′′], Pk([t′′]), and [dr] = [ekt′′] (or [dr] = [ek]). From the last equality

it follows [t′] = [d′dr] = [d′ekt′′] (= [d′ek]). Since [t] ∼T [u], there exists

u′′, [u]
[fk]−→I [u′′], [t′′] ∼T [u′′] and so Pk([u′′]) (Hennessy-Milner propositions

cannot separate bisimilar elements). From this, [u]
[f ′]−→I [eku′′] (

[f ′]−→I = [ek]).

By composition of GRPO squares, [cu]
[f ]−→I [d′eku′′] (

[f ]−→I [d′ek]), from which
the thesis. ��
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In using the above proposition for the CCS and π-calculus cases, we are not
going to use the extra expressivity given by the Hennessy-Milner propositions
Pk; in all the tuples 〈[fk], [f ′

k], Pk, ek〉 defined in the following, the propositions
Pk will be set equal to true. Nevertheless, we prefer here to present this general
version of the proposition.

4 Applying the GRPO Technique to CCS

In this section, we study LTS’s obtained by applying the GRPO technique to
CCS. First, we consider the LTS obtained by applying Leifer-Milner theorem in
the GRPO setting (Theorem 1 of Section 2). This turns out to be still infinitely
branching. However, by applying our general pruning technique of Section 3, we
are able to get a finitely branching LTS and GIPO bisimilarity, which coincide
with the original Milner’s LTS and strong bisimilarity, respectively.

The property that allows to apply the GRPO construction is the following:

Proposition 2. The G-reactive system of finite CCS processes has redex GRPO.

Proof. There are several cases to consider depending also on the reaction rule
involved, here we consider only the reaction rule r.P + M | r.Q + N → P |Q.
Given the commuting redex square α : C[ ] ◦ P ⇒ D[ ] ◦ L, by structural rules,
the reactive contexts D[ ] can be written in the form νn([ ]|P1| . . . |Ph), while the
context C[ ] can be written as νmC′[ϕ[ ]], with C′[ ] not containing any name
transformation ϕ′, or hiding operator ν.

If the redex L is all contained (or better mapped by α−1) in the process P ,
the GRPO has form α′ : ϕ[ ] ◦ P ⇒ (νm[ ]|Pi1 | . . . |Pik

) ◦ L. Notice that the
transformation ϕ[ ], cannot be factorized by the GRPO construction.

If the process P contains only one side of the redex L, the GRPO has form
α′ : (ϕ[ ]|P ′) ◦ P ⇒ (νm[ ]|Pi1 | . . . |Pik

) ◦L, with the process P ′ giving the other
side of the redex.

If the redex L is all contained in the context C[ ], the GRPO has form α′ :
C′′[ϕ[ ]] ◦ P ⇒ (νm[ ]|P ′) ◦ L, with ϕP contained in P ′.

In the remaining cases, where the main connectives of the redex L are con-
tained in C′[ ], the GRPO has the form α′ : C′′[ϕ[ ]] ◦ P ⇒ (νm[ ]) ◦ L ��
Table 4 summarizes the set of GIPO contexts (up-to structural congruence)
obtained by applying Theorem 1. For simplicity, we denote an equivalence class
[C[ ]] by a special representative.

The second raw in Table 4 corresponds to the case where an internal transition
of the process P is considered. In such case the GIPO context is empty. If the pro-
cess P exposes a non-τ action (third raw), then a communication with a context
exposing a complementary action can arise: the formula δk

0 (α) = ϕ+k(αi,j)
expresses that the actions are complementary. Finally, the last raw shows all
GIPO contexts where the reduction is “all inside the context” (and the process
plays a passive rôle).
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Table 1. CCS GIPO contexts

Process P ≡ νk(Σm1
j=1α1,j .P1,j | . . . | Σmn

j=1αn,j .Pn,j) GIPO contexts

∃i, j. αi,j = τ ∨ (∃i, j, i′, j′. αi,j = rl ∧ αi′,j′ = rl) ϕ[ ]

∃i, j. αi,j 
= τ ϕ[ ] + M | α.Q + N

with δk
0 (α) = ϕ+k(αi,j)

C[ ] | α.Q + M | α.R + N
C[ ] + α.Q | α.R + N
C[ ] + τ.Q
C[ ] | τ.Q + N
α.C[ ] + M | α.Q + N
τ.C[ ] + N

Notice that if we do not use G-categories and work on the category where ar-
rows are equivalence classes of processes, the process α.0 | α.0 has as only GIPO
contexts the contexts ϕ[ ] and the GIPO contexts ϕ[ ] + M | α.Q+N are missing.

The GIPO LTS described above is still infinitely branching. However, there
are many GIPO contexts which are intuitively redundant, e.g. all the contexts
in the last raw. These are not engaged, i.e. the reduction is all inside the context
(and this is why they are not considered in the LTS of [2]). Also the class of
contexts in the third raw is redundant; namely, the contexts of the shape [ ]|α.0
are sufficient to define the whole class, in the sense of Definition 9 of Section 3.
More precisely, we have:

Proposition 3
i) The GIPO LTS is definable from set of GIPO transitions labeled by {[ ]} ∪
{[ ]|α.0 | α ∈ A}.
ii) The bisimilarity induced by the LTS defined by such GIPO contexts (see
Table 4) is a congruence.

Proof. i) Transitions corresponding to GIPO contexts of the shape ϕ[ ] (second
raw in Table 4) are definable by the tuple 〈ϕ[ ], [ ], true, ϕ[ ]〉. Transitions cor-
responding to GIPO contexts of the shape ϕ[ ] + M | α.Q + N (third raw in
Table 4) are definable by the tuple 〈ϕ[ ] + M | α.Q + N, [ ]|α′.0, true, ϕ[ ]|Q〉,
where δk

0 (α′) = αij . Transitions corresponding to the contexts C[ ] in the last
raw of Table 4 are definable by tuples of the shape 〈C[ ], ε, true, E[ ]〉, where E[ ]
is a 0 or 1-holed context defined according to the following table:

GIPO context E[ ]
C[ ] | α.Q + M | α.R + N C[ ] | Q | R
C[ ] + α.Q | α.R + N Q | R
C[ ] + τ.Q Q
C[ ] | τ.Q + N C[ ] | Q
α.C[ ] + M | α.Q + N C[ ] | Q
τ.C[ ] + N C[ ]
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Table 2. CCS reduced GIPO contexts

Process P ≡ νk(Σm1
j=1α1,j .P1,j | . . . | Σmn

j=1αn,j .Pn,j) GIPO contexts

∃i, j. αi,j = τ ∨ (∃i, j, i′, j′. αi,j = rl ∧ αi′,j′ = rl) [ ]

∃i, j. αi,j 
= τ [ ] | αi,j .0

ii) The proof follows from Proposition 1. ��
Now, it is immediate to see that the above GIPO LTS coincides with the standard
LTS; namely the GIPO context [ ] corresponds to the τ -transition, while the
GIPO context [ ] | α.0 corresponds to a α-transition.

Summarizing, we have:

Proposition 4. The reduced GIPO LTS coincides with the original LTS for
CCS, and the GIPO bisimilarity coincides with CCS strong bisimilarity.

5 The π-calculus Case

In this section, we apply the above machinery to π-calculus. The latter is sig-
nificantly more difficult to deal with than CCS, because of name substitutions,
which arise in the reaction semantics. We will show that the reduced GIPO
LTS for π-calculus induces the syntactical bisimilarity of [4], which is finer than
Sangiorgi’s open bisimilarity. Our pruning technique does not give us directly
a finitely branching LTS, however we will briefly discuss how a finitary GIPO
LTS can be obtained by working in the setting of categories of second-order term
contexts of [7].

We start by introducing the π-calculus syntax with de Brujin indexes.

Definition 10 (π-calculus Processes). Let r0, r1, . . . , s0, s1, . . . ∈NR be name
references, and let x, y, z, . . . ∈ X be process variables. We define

(Act $) α ::= τ | r() | rs actions
(G $) M ::= 0 | α.P | M1 + M2 | α.x guarded processes

(P $) P ::= M | νP | P1|P2 | rec x.P | σP processes

where σ is a substitution obtained as a finite composition of shifting operators
δi’s, swapping operators si’s, and singleton substitutions ti,j, defined by:

ti,j(rk) =

{
rk if k �= i

rj if k = i

A closed process is a process in which each occurrence of a variable is in the
scope of a rec operator.

We denote by dom(σ) the set of name references on which σ is not the identity,
i.e. {ri | σ(ri) �= ri}. π-calculus contexts are defined similarly to CCS contexts.
The structural congruence extended to contexts is defined as follows:
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Definition 11 (Structural Congruence). Let C[ ], C′[ ], C′′[ ] denote 0-holed
or 1-holed contexts. The structural congruence is the relation ≡, closed under
process constructors, inductively generated by the following set of axioms:

(par) C[ ]|0 ≡ C[ ] C[ ]|C′[ ] ≡ C′[ ]|C[ ]
C[ ]|(C′[ ]|C′′[ ]) ≡ (C[ ]|C′[ ])|C′′[ ]

(plus) C[ ] + 0 ≡ C[ ] C[ ] + C′[ ] ≡ C′[ ] + C[ ]
C[ ] + (C′[ ] + C′′[ ]) ≡ (C[ ] + C′[ ]) + C′′[ ]

(rec) rec x.C[ ] ≡ C[ ][rec x.C[ ]/x]

(nu) ν0 ≡ 0 C[ ]|(νC′[ ]) ≡ ν((δ0C[ ])|C′[ ]) ννC[ ] ≡ ννs0C[ ]

(sigma) σ0 ≡ 0 σ(rs.C[ ]) ≡ σ(r)σ(s).σ(C[ ])
σ(τ.C[ ]) ≡ τ.σ(C[ ]) σ(r().C[ ]) ≡ σ(r)().σ+1C[ ]
σ(C[ ]|C′[ ]) ≡ σ(C[ ])|σ(C′[ ]) σ(rec x.C[ ]) ≡ rec x.(σC[ ])
σ(C[ ] + C′[ ]) ≡ σ(C[ ]) + σ(C′[ ]) σ(νC[ ]) ≡ ν(σ+1C[ ])
σ1 . . . σm[ ] ≡ σ′

1 . . . σ′
n[ ] , if σ1 ◦ . . . ◦ σm = σ′

1 ◦ . . . ◦ σ′
n

Notice that, similarly to the CCS case, the last (sigma)-rule is effective, by
definition of the substitutions σi, σ′

i.
As in the standard presentation, one can easily show that each π-calculus pro-

cess P is structurally congruent to a process in normal form, i.e. a process of the
shape νk(Σm1

j=1α1,j .P1,j | . . . | Σmn

j=1αn,j .Pn,j), where all unguarded restrictions
are at the top level, and substitutions do not appear at the top level.

Definition 12 (Reaction Semantics). The reaction relation → is the least
relation closed under the following reaction rules and reactive contexts:

Reaction rules. r().P + M | rrj .Q + N → (ν(t0,j+1P ))|Q τ.P + M → P

Reaction contexts. D[ ] ::= [ ] | νD[ ] | P |D[ ] | D[ ]|P
The above rule for communication may seem strange, but one can easily check
that it is equivalent to the original one. It is motivated by the fact that, by using
a ν operator in the resulting process, we avoid the introduction of operators for
index decrementing, which would be problematic for the GRPO construction.

Table 3 summarizes the set of GIPO contexts (up-to structural congruence)
obtained by applying Theorem 1. Table 4 summarizes the set of reduced GIPO
contexts, which define the whole LTS, according to Definition 9 of Section 3.

Notice that, when the process exposes an output action and the context an
input one, i.e. C[ ] = σ[ ] + M | r′().Q+N (fifth raw in Table 3), we cannot get rid
of Q in the reduced context (last raw of Table 4). This is because the transition
provides a substitution for Q, depending on the process P (and hence the context
e() required in Definition 9 would not be uniform on all processes). Moreover,
if σ acts also on fr (νQ), then we cannot get rid of it, since otherwise it would
appear in the context e() and it would act also on names in Q, which we do not
want. Therefore, the reduced GIPO LTS that we obtain, although significantly
simpler than the original one, is still infinitely branching, since a process P ,
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Table 3. π-calculus GIPO contexts

Process GIPO contexts
P ≡ νk(Σm1

j=1α1,j .P1,j | . . . | Σmn
j=1αn,j .Pn,j)

∃i, j. αi,j = τ σ[ ]

∃i, j, i′, j′. i 
= i′ ∧ αi,j = rh() ∧ αi′,j′ = rls σ[ ]
with σ+k(rh) = σ+k(rl)

∃i, j. αi,j = r() σ[ ] + M | r′s.Q + N

with δk
0 (r′) = σ+k(r)

∃i, j. αi,j = rs σ[ ] + M | r′().Q + N

with δk
0 (r′) = σ+k(r)

C[ ] | r().Q + M | rs.R + N
C[ ] + r().Q | rs.R + N
C[ ] + τ.Q
C[ ] | τ.Q + N
r().C[ ] + M | rs.Q + N
τ.C[ ] + N

Table 4. π-calculus reduced GIPO contexts

Process Reduced GIPO Contexts
P ≡ νk(Σm1

j=1α1,j .P1,j | . . . | Σmn
j=1αn,j .Pn,j)

∃i, j. αi,j = τ [ ]

∃i, j, i′, j′. αi,j = rh() ∧ αi′,j′ = rls σ[ ] with
· σ identity, if h = l
· σ singleton, σ+k(rh) = σ+k(rl), if h 
= l

∃i, j. αi,j = r() [ ] | r′s.0
with δk

0 (r′) = r

∃i, j. αi,j = rs σ[ ] | r′().Q
with dom(σ) ⊆ fr(νQ), δk

0 (r′) = σ+k(r)

which exposes an output action, makes infinitely many transitions P
σ[ ]|r′().Q−→ ,

for any Q. In Section 5.1, we will sketch how to overcome this problem getting
a finitely branching characterization of the GIPO LTS and bisimilarity.

5.1 Finitely Branching LTS’s for π-calculus

First of all, notice that in the context [ ] | r′s.0 (Table 4, fourth raw), it is
sufficient for the name s to range over the names in P together with a fresh
name. Moreover, the substitution σ appearing in the GIPO context σ[ ]|r′().Q
in the last raw of Table 4 is actually redundant, even if it cannot be eliminated
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using Proposition 1. However, by a direct reasoning, one can show that contexts
of the shape [ ]|r′().Q are sufficient.

Moreover, one can show that the GIPO bisimilarity that we have obtained
coincides with the extension to the whole π-calculus of the syntactical bisimi-
larity introduced in [4] for the open π-calculus. In the syntactical bisimilarity
one essentially observes input/output actions and name fusions allowing for a
communication. The prefix and the communication rules of the symbolic LTS
in [4] are represented as follows, in our setting:

(pre) P
rrj−→ P ′ Q

r′( )−→ Q′

P | Q
r=r′−→ P ′ | ν(t0,j+1Q

′)
The notion of syntactical bisimilarity is as defined by:

Definition 13 (Syntactical Bisimilarity). A symmetric relation R is a syn-
tactical bisimulation if whenever PRQ it holds that:

– if P
α−→ P ′ then Q

α−→ Q′,
– if P

r=r′
−→ P ′ then Q

r=r′
−→ Q′ and (σP ′)R(σQ′),

where σ is a fusion that fuses r to r′.
The union of all syntactical bisimulations is syntactical bisimilarity.
Intuitively, our (reduced) GIPO LTS corresponds to the one of [4]. Notice in
particular that, when P exposes an output action, in the LTS of [4] we have a
transition P

rs−→ P ′, where we recall both the output channel r and the object

s in the label, while in our LTS we have P
[ ] | r( ).Q−→ P ′ | ν(σQ), where we

keep track of the object s not in the label, but in the substitution applied to Q.
Summarizing, one can prove:

Theorem 2. The GIPO bisimilarity on π-calculus coincides with the syntactical
bisimilarity.

As it has been observed in [4], the above bisimilarity is strictly included in
Sangiorgi’s open bisimilarity (where there is the extra freedom of matching a
fusion transition of a process with a τ -transition of the other).

The LTS of [4] provides a finitely branching characterization of our GIPO
bisimilarity. However, it is possible to get a more direct finitary characterization
of the GIPO equivalence, by working in the setting of categories of second-order
term contexts, introduced in [7]. In this setting one can represent parametric

transitions such as P
[ ] | r( ).X−→ P ′ | ν(σX), where X is a second-order variable

representing a generic term, which will be possibly instantiated in the future
(with the most general substitution allowing for a reaction). In this way we can
avoid to have infinitely many ground transitions. We aim to present the whole
construction in a further work.

6 Conclusions and Directions for Further Work

In this paper, we have refined Leifer-Milner construction for deriving LTS’s from
reactive systems, by studying general conditions under which we can prune the
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GIPO LTS. Then we have carried out two fundamental case studies in process
calculi, by working in categories of term contexts. In order to deal properly
with structural rules, we had to work in the setting of G-categories. For CCS
the result is quite satisfactory, since we have obtained as GIPO LTS exactly
Milner’s original LTS together with strong bisimilarity. There are other works
in the literature, where the case study of CCS has been considered, but often a
graph encoding is used and furthermore the original LTS is not directly obtained
from the general construction, but it is recovered only a posteriori, using an ad
hoc reasoning. A similar observation applies also to π-calculus, to which the RPO
approach has not been previously applied directly to its reaction semantics, but
to a (often ad hoc) enriched semantics. Under this perspective, it would be
interesting to develop in all details also the π-calculus case study in the second-
order setting, as hinted at the end of Section 5.1.

Finally, it would be interesting to compare our work with [10], where a LTS
for the π-calculus is presented, whose labels are taken to be contexts on a higher
order syntax. However, that work does not apply the Leifer-Milner technique
to derive the LTS, and the higher-order syntax does not coincide with the one
proposed in [7] for second-order contexts. It is not clear how the proposed LTS is
related to the one obtained by the GIPO technique in the second-order setting.
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Abstract. Meseguer and Ros,u proposed rewriting logic semantics (RLS)
as a programing language definitional framework that unifies operational
and algebraic denotational semantics. RLS has already been used to de-
fine a series of didactic and real languages, but its benefits in connection
with defining and reasoning about type systems have not been fully in-
vestigated. This paper shows how the same RLS style employed for giving
formal definitions of languages can be used to define type systems. The
same term-rewriting mechanism used to execute RLS language defini-
tions can now be used to execute type systems, giving type checkers or
type inferencers. The proposed approach is exemplified by defining the
Hindley-Milner polymorphic type inferencer W as a rewrite logic theory
and using this definition to obtain a type inferencer by executing it in a
rewriting logic engine. The inferencer obtained this way compares favor-
ably with other definitions or implementations of W . The performance
of the executable definition is within an order of magnitude of that of
highly optimized implementations of type inferencers, such as that of
OCaml.

1 Introduction

Meseguer and Ros,u proposed rewriting logic as a semantic foundation for the
definition and analysis of languages [1,2], as well as type systems and policy
checkers for languages [2]. More precisely, they proposed rewriting integer values
to their types and incrementally rewriting a program until it becomes a type or
other desired abstract value. That idea was further explored by Ros,u [3], but not
used to define polymorphic type systems. Also, no implementation, no proofs,
and no empirical evaluation of the idea were provided. A similar idea has been
recently proposed by Kuan, MacQueen, and Findler [4] in the context of Felleisen
et al.’s reduction semantics with evaluation contexts [5,6] and Matthews et al.’s
PLT Redex system [7].

In this paper we show how the same rewriting logic semantics (RLS) frame-
work and definitional style employed in giving formal semantics to languages
can be used to also define type systems as rewrite logic theories. This way, both
the language and its type system(s) can be defined using the same formalism,
facilitating reasoning about programs, languages, and type systems.
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We use the Hindley-Milner polymorphic type inferencer W [8] for Milner’s
Exp language to exemplify our technique. We give one rewrite logic theory for
W and use it to obtain an efficient, executable type-inferencer.

Our definitional style gains modularity by specifying the minimum amount
of information needed for a transition to occur, and compositionality by using
strictness attributes associated with the language constructs. These allow us, for
example, to have the rule for function application corresponding to the one in W
look as follows (assuming application was declared strict in both arguments):

�t1 t2
tvar

|〉k 〈| ·
t1 = t2 → tvar

|〉eqns where tvar is a fresh type variable

which reads as follows: once all constraints for both sides of an application con-
struct are gathered, the application of t1 to t2 will have a new type, tvar, with
the additional constraint that t1 is the function type t2 → tvar.

This paper makes two novel contributions:

1. It shows how non-trivial type systems are defined as RLS theories, following
the same style used for defining languages and other formal analyses;

2. It shows that RLS definitions of type systems, when executed on existing
rewrite engines, yield competitive type inferencers.

Related work. In addition to the work mentioned above, there has been other
previous work combining term rewriting with type systems. For example, the
Stratego reference manual [9] describes a method of using rewriting to add type-
check notations to a program. Also, pure type systems, which are a generalization
of the λ-cube [10], have been represented in membership equational logic [11], a
subset of rewriting logic. There is a large body on term graph rewriting [12,13]
and its applications to type systems [14,15]. There are similarities with our work,
such as using a similar syntax for both types and terms, and a process of re-
duction or normalization to reduce programs to their types. A collection of the-
oretical papers on type theory and term rewriting can be found in [16]. Adding
rewrite rules as annotations to a particular language in order to assist a separate
algorithm with type checking has been explored [17], as well as adding type an-
notations to rewrite rules that define program transformations [18]. Much work
has been done on defining type systems modularly [19,20,21,22,23]. The style
we propose in this paper is different from previous approaches combining term
rewriting with type systems. Specifically, we use an executable definitional style
within rewriting logic semantics, called K [3,24]. The use of K makes the defined
type inferencers easy to read and understand, as well as efficient when executed.

Section 2 introduces RLS and the K definitional style, and gives an RLS
definition of Milner’s Exp language. Section 3 defines the Hindley-Milner W
algorithm as an RLS theory and reports on some experiments. Section 4 shows
that our RLS definition faithfully captures the Hindley-Milner algorithm, and
gives a summary of preservation results. Section 5 concludes the paper.
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2 Rewriting Semantics

This section recalls the RLS project, then presents the K technique for designing
programming languages. We briefly discuss these, and show how Milner’s Exp
language [8] can be defined as an RLS theory using K. The rest of the paper
employs the same technique to define type systems as RLS theories.

2.1 Rewriting Logic

Term rewriting is a standard computational model supported by many systems.
Meseguer’s rewriting logic [25], not to be confused with term rewriting, organizes
term rewriting modulo equations as a logic with a complete proof system and
initial model semantics. Meseguer and Ros,u’s RLS [1,2] seeks to make rewriting
logic a foundation for programming language semantics and analysis that unifies
operational and algebraic denotational semantics.

In contrast to term rewriting, which is just a method of computation, rewrit-
ing logic is a computational logic built upon equational logic, proposed by
Meseguer [25] as a logic for true concurrency. In equational logic, a number
of sorts (types) and equations are defined, specifying which terms are to be con-
sidered equivalent. Rewriting logic adds rules to equational logic, thought of as
irreversible transitions: a rewrite theory is an equational theory extended with
rewrite rules. Rewriting logic admits a complete proof system and an initial
model semantics [25] that makes inductive proofs valid. Rewriting logic is con-
nected to term rewriting in that all the equations l = r can be transformed into
term rewriting rules l → r. This provides a means of taking a rewriting logic the-
ory, together with an initial term, and“executing” it. Any of the existing rewrite
engines can be used for this purpose. Some of the engines, e.g., Maude [26], pro-
vide even richer support than execution, such as an inductive theorem prover, a
state space exploration tool, a model checker, and more.

RLS builds upon the observation that programming languages can be defined
as rewrite logic theories. By doing so, one gets “for free” not only an interpreter
and an initial model semantics for the defined language, but also a series of
formal analysis tools obtained as instances of existing tools for rewriting logic.
Operationally speaking, the major difference between conventional reduction se-
mantics, with [5] or without [27] evaluation contexts, and RLS is that the former
typically impose contextual restrictions on applications of reduction steps and
the reduction steps happen one at a time, while the latter imposes no such
restrictions. To avoid undesired applications of rewrite steps, one has to obey
certain methodologies when using rewriting logic. In particular, one can capture
the conventional definitional styles by appropriate uses of conditional rules. Con-
sequently, one can define a language many different ways in rewriting logic. In
this paper, we use Ros,u’s K technique [3], which is inspired by abstract state
machines [28] and continuations [29], and which glosses over many rewriting
logic details that are irrelevant for programming languages. Ros,u’s K language
definitional style optimizes the use of RLS by means of a definitional technique
and a specialized notation.
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2.2 K

The idea underlying K is to represent the program configuration as a nested
“soup” (multiset) of configuration item terms, also called configuration cells, rep-
resenting the current infrastructure needed to process the remaining program or
fragment of program; these may include the current computation (a continuation-
like structure), environment, store, remaining input, output, analysis results,
bookkeeping information, etc. The set of configuration cells is not fixed and is
typically different from definition to definition. K assumes lists, sets and multisets
over any sort whenever needed; for a sort S, List[S] denotes comma-separated
lists of terms of sort S, and Set[S] denotes white space separated sets of terms
of sort S. For both lists and sets, we use “·” as unit (nil, empty, etc.). To use a
particular list- or set-separator, one writes it as an index; for example, List�[S]
stands for �-separated lists of terms of sort S. Lists and sets admit straight-
forward equational definitions in rewriting logic (a list is an associative binary
operator, while a set is an associative, commutative, and idempotent binary
operator). Formally, configurations have the following structure:

ConfigLabel ::= % | k | env | store | ...
(descriptive names; first two common, rest differ with language)

Config ::= �K� | ... | �S�ConfigLabel
(S can be any sort, including Set[Config])

The advantage of representing configurations as nested “soups” is that language
rules only need to mention applicable configuration cells. This is one aspect of
K’s modularity. We can add or remove elements from the configuration set as
we like, only impacting rules that use those particular items. Rules do not need
to be changed to match what the new configuration looks like.

Almost all definitions share the configuration labels % (which stands for “top”)
and k (which stands for “current computation”). The remaining configuration la-
bels typically differ with the language or analysis technique to be defined in
K. A configuration �c�l may also be called a configuration item (or cell) named
(or labeled) l; interesting configuration cells are the nested ones, namely those
where c ∈ Set[Config]. One is also allowed to define some language-specific con-
figuration constructs, to more elegantly intialize and terminate computations.
A common such additional configuration construct is �p�, which takes the given
program to an initial configuration. An equation therefore needs to be given,
taking such special initializing configuration into an actual configuration cell; in
most definitions, an equation identifies a term of the form �p� with one of the
form ��p�k...��, for some appropriate configuration items replacing the dots. If
one’s goal is to give a dynamic semantics of a language and if p is some terminat-
ing program, then �p� eventually produces (after a series of rewrites) the result
of evaluating p; if one’s goal is to analyze p, for example to type check it, then
�p� eventually rewrites to the result of the analysis, for example a type when p
is well-typed or an error term when p is not well-typed.
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The most important configuration item, present in all K definitions and
“wrapped” with the ConfigLabel k, is the computation, denoted by K. Compu-
tations generalize abstract syntax by adding a special list construct (associative
operator) � :

K ::= KResult | KLabel(List[K]) | List�[K]
KResult ::= (finished computations, e.g., values, or types, etc.)
KLabel ::= (one per language construct)

The construct KLabel(List[K]) captures any programming language syntax, un-
der the form of an abstract syntax tree. If one wants more K syntactic categories,
then one can do that, too, but we prefer to keep only one here. In our Maude
implementation, thanks to Maude’s mixfix notation for syntax, we write, e.g.,
“if b then s1 else s2” in our definitions instead of “if then else (b, s1, s2)”.

The distinctive K feature is � . Intuitively, k1 � k2 says “process k1

then k2”. How this is used and what the meaning of “process” is left open and
depends upon the particular definition. For example, in a concrete semantic
language definition it can mean “evaluate k1 then k2”, while in a type inferencer
definition it can mean“type and accumulate type constraints in k1 then in k2”. A
K definition consists of two types of sentences: structural equations and rewrite
rules. Structural equations carry no computational meaning; they only say which
terms should be viewed as identical and their role is to transparently modify
the term so that rewrite rules can apply. Rewrite rules are seen as irreversible
computational steps and can happen concurrently on a match-and-apply basis.
The following are examples of structural equations:

a1 + a2 = a1 � � + a2

a1 + a2 = a2 � a1 + �
if b then s1 else s2 = b � if � then s1 else s2

Note that, unlike in evaluation contexts, � is not a “hole,” but rather part of
a KLabel, carrying the obvious “plug” intuition; e.g., the KLabels involving �
above are � + , + �, and if � then else , respectively. To avoid writing such
obvious, distracting, and mechanical structural equations, the language syntax
can be annotated with strict attributes when defining language constructs: a
strict construct is associated with an equation as above for each of its subex-
pressions. If an operator is intended to be strict in only some of its arguments,
then the positions of the strict arguments are listed as arguments of the strict
attribute; for example, the above three equations correspond to the attributes
strict for + and strict(1) for if then else . All these structural equations are
automatically generated from strictness attributes in our implementation.

Structural equations can be applied back and forth; for example, the first equa-
tion for + can be applied left-to-right to“schedule”a1 for processing; once eval-
uated to i1, the equation is applied in reverse to“plug”the result back in context,
thena2 is scheduledwith the second equation left-to-right, then its result i2plugged
back into context, and then finally the rewrite rule can apply the irreversible com-
putational step. Special care must be taken so that side effects are propagated ap-
propriately: they are only generated at the leftmost side of the computation.
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The following are examples of rewrite rules:

i1 + i2 → i, where i is the sum of i1 and i2
if true then s1 else s2 → s1

if false then s1 else s2 → s2

In contrast to structural equations, rewrite rules can only be applied left to right.

2.3 A Concrete Example: Milner’s Exp Language

Milner proved the correctness of his W type inferencer in the context of a simple
higher-order language that he called Exp [8]. Recall that W is the basis for the
type checkers of all statically typed functional languages.

Exp is a simple expression language containing lambda abstraction and ap-
plication, conditional, fix point, and “let” and “letrec” binders. To exemplify K
and also to remind the reader of Milner’s Exp language, we next define it using
K. Figure 1 shows its K annotated syntax and Figure 2 shows its K semantics.
We also use this to point out some other K notational conventions. Note that
application is strict in both its arguments (call-by-value) and that let and letrec
are desugared. Additionally, syntactic constructs may be annotated with desug-
aring equations. In Figure 2, we see that λ-abstractions are defined as values,
which are also KResults in this definition; KResults are not further “scheduled”
for processing in structural equations. Since Exp is simple, there is only one
ConfigItem needed, wrapped by ConfigLabel k. The first two equations initialize

Var ::= standard identifiers
Exp ::= Var | ... add basic values (Bools, ints, etc.)

| λ Var . Exp
| Exp Exp [strict]
| μ Var .Exp
| if Exp then Exp else Exp [strict(1)]
| let Var = Exp in Exp [(let x = e in e′) = ((λx.e′) e)]
| letrec VarVar = Exp in Exp [(letrec f x = e in e′) = (let f = μf.(λx.e) in e′)]

Fig. 1. K-Annotated Syntax of Exp

Val ::= λVar .Exp | ...(Bools, ints, etc.)
KResult ::= Val
Config ::= Val | �K� | �K�k

�e� = �e�k

�v�k = v
� (λx.e)v

e[x ← v]
|〉k

� μ x.e

e[x ← μ x.e]
|〉k

if true then e1 else e2 → e1

if false then e1 else e2 → e2

Fig. 2. K Configuration and Semantics of Exp
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and terminate the computation process. The third applies the β-reduction when
(λx.e) v is the first item in the computation; we here use two other pieces of K
notation: list/set fragment matching and the two-dimensional writing for rules.
The first allows us to use angle brackets for unimportant fragments of lists or
sets; for example, �T |〉 matches a list whose prefix is T , 〈|T � matches a list whose
suffix is T , and 〈|T |〉 matches a list containing a contiguous fragment T ; same
for sets, but the three have the same meaning there. Therefore, special paren-
theses � and � represent respective ends of a list/set, while angled variants mean
“the rest.” The second allows us to avoid repetition of contexts; for example,
instead of writing a rule of the form C[t1, t2, ..., tn] → C[t′1, t

′
2, ..., t

′
n] (rewriting

the above-mentioned subterms in context C) listing the context (which can be
quite large) C twice, we can write it C[t1

t′1

, t2
t′2

, ..., tn
t′n

] with the obvious meaning,

mentioning the context only once. The remaining Exp semantics is straightfor-
ward. Note that we used the conventional substitution, which is also provided
in our Maude implementation.

The Exp syntax and semantics defined in Figures 1 and 2 is all we need to
write in our implementation of K. To test the semantics, one can now execute
programs against the obtained interpreter.

3 Defining Milner’s W Type Inferencer

We next define Milner’s W type inferencer [8] using the same K approach.
Figure 3 shows the new K annotated syntax for W ; it changes the conditional to
be strict in all arguments, makes let strict in its second argument, and desugars
letrec to let (because let is typed differently than its Exp desugaring). Unification
over type expressions is needed and defined in Figure 4 (with tv ∈ TypeVar). For-
tunately, unification is straightforward to define equationally using set matching;
we define it using rewrite rules, though, to emphasize that it is executable. Our
definition is equivalent to the nondeterministic unification algorithm by Martelli
and Montanari [30, Algorithm 1], instantiated to types and type variables, and
with a particular rule evaluation order. [30, Theorem 2.3] provides a proof of cor-
rectness of the strategy. We implement their multi-set of equations by collecting
equations and using associative and commutative (AC) matching. Finally, we
should note that our substitution is kept canonical and is calculated as we go.

Var ::= standard identifiers
Exp ::= Var | ... add basic values (Bools, ints, etc.)

| λ Var . Exp
| Exp Exp [strict]
| μ Var .Exp
| if Exp then Exp else Exp [strict]
| let Var = Exp in Exp [strict(2)]
| letrec VarVar = Exp in Exp [(letrec f x = e in e′) = (let f = μf.(λx.e) in e′)]

Fig. 3. K-Annotated Syntax of Exp for W
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Type ::= ... | int | bool | Type �→ Type | TypeVar
Eqn ::= Type = Type

Eqns ::= Set[Eqn]

(t = t) → ·
(t1 �→ t2 = t′1 �→ t′2) → (t1 = t′1), (t2 = t′2)
(t = tv) → (tv = t) when t 
∈ TypeVar
tv = t, tv = t′ → tv = t, t = t′ when t, t′ 
= tv

tv = t, t′v = t′ → tv = t, t′v = t′[tv ← t]
when tv 
= t′v, tv 
= t, t′v 
= t′, and tv ∈ vars(t′)

Fig. 4. Unification

The first rule in Figure 4 eliminates non-informative type equalities. The sec-
ond distributes equalities over function types to equalities over their sources and
their targets; the third swaps type equalities for convenience (to always have type
variables as lhs’s of equalities); the fourth ensures that, eventually, no two type
equalities have the same lhs variable; finally, the fifth rule canonizes the sub-
stitution. As expected, these rules take a set of type equalities and eventually
produce a most general unifier for them:

Theorem 1. Let γ ∈ Eqns be a set of type equations. Then:

– The five-rule rewrite system above terminates (modulo AC); let θ ∈ Eqns be
the normal form of γ.

– γ is unifiable iff θ contains only pairs of the form tv = t, where tv �∈ vars(t);
if that is the case, then we identify θ with the implicit substitution that it
comprises, that is, θ(tv) = t when there is some type equality tv = t in θ,
and θ(tv) = tv when there is no type equality of the form tv = t in θ.

– If γ is unifiable then θ is idempotent (i.e., θ ◦ θ = θ) and is a most general
unifier of γ.

Therefore, the five rules above give us a rewriting procedure for unification. The
structure of θ in the second item above may be expensive to check every time
the unification procedure is invoked; in our Maude implementation of the rules
above, we sub-sort (once and for all) each equality of the form tv = t with
tv �∈ vars(t) to a “proper” equality, and then allow only proper equalities in the
sort Eqns (the improper ones remain part of the “kind” [Eqns]). If γ ∈ Eqns is
a set of type equations and t ∈ Type is some type expression, then we let γ[t]
denote θ(t); if γ is not unifiable, then γ[t] is some error term (in the kind [Type]).

Figure 5 shows the K definition of W . The configuration has four items: the
computation, the type environment, the set of type equations (constraints), and
a counter for generating fresh type variables. Due to the strictness attributes,
we can assume that the corresponding arguments of the language constructs (in
which these constructs were defined strict) have already been“evaluated”to their
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KResult ::= Type
TEnv ::= Map[Name,Type]
Type ::= ... | let(Type)

ConfigLabel ::= k | tenv | eqns | nextType
Config ::= Type | �K� | �S�ConfigLabel | �Set[ConfigItem]��

K ::= . . . | Type → K [strict(2)]

�e� = ��e�k �·�tenv �·�eqns �t0�nextType��
〈|�t�k �γ�eqns|〉� = γ[t]
i → int, true → bool, false → bool
�t1 + t2

int

|〉k 〈| ·
t1 = int, t2 = int

|〉eqns

� x

(γ[t])[tl ← tl′]
|〉k �η�tenv �γ�eqns � tv

tv + |tl|
�nextType when η[x] = let(t),

tl = vars(γ[t]) − vars(η),
and tl′ = tv . . . (tv + |tl| − 1)

� x

η[x]
|〉k �η�tenv when η[x] 
= let(t)

� λx.e

(tv → e) � restore(η)
|〉k � η

η[x ← tv]
�tenv � tv

tv + 1
�nextType

�t1 t2
tv

|〉k 〈| ·
t1 = t2 → tv

|〉eqns � tv

tv + 1
�nextType

� μx.e

e �?=(tv) � restore(η)
|〉k � η

η[x ← tv]
�tenv � tv

tv + 1
�nextType

�t → ?=tv

·
|〉k 〈| ·

tv = t

|〉eqns

� let x = t in e

e � restore(η)
|〉k � η

η[x ← let(t)]
�tenv

�if t then t1 else t2
t1

|〉k 〈| ·
t = bool, t1 = t2

|〉eqns

�restore(η)
·

|〉k�η′

η

�tenv

Fig. 5. K Configuration and Semantics of W

types and the corresponding type constraints have been propagated. Lambda
and fix-point abstractions perform normal bindings in the type environment,
while the let performs a special binding, namely one to a type wrapped with a
new “let” type construct. When names are looked up in the type environment,
the “let” types are instantiated with fresh type variables for their “universal”
type variables, namely those that do not occur in the type environment.

We believe that the K definition of W is as simple to understand as the orig-
inal W procedure proposed [8] by Milner, once the reader has an understanding
of the K notation. However, note that Milner’s procedure is an algorithm, rather
than a formal definition. The K definition above is an ordinary rewriting logic
theory—the same as the definition of Exp itself. That does not mean that our
K definition, when executed, must be slower than an actual implementation of
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Table 1. Speed of various W implementations

System
Average Stress test
Speed n = 10 n = 11 n = 12 n = 13 n = 14

OCaml 0.6s 0.6s 2.1s 7.9s 30.6s 120.5s
Haskell 1.2s 0.5s 0.9s 1.5s 2.5s 5.8s
SML/NJ 4.0s 5.1s 14.6s 110.2s 721.9s -
W in K 1.1s 2.6s 7.8s 26.9s 103.1s 373.2s
!W in K 2.0s 2.6s 7.7s 26.1s 96.4s 360.4s
W in PLT/Redex 134.8s >1h - - - -
W in OCaml 49.8s 105.9s 9m14 >1h - -

W . Experiments using Maude (see [31] for the complete Maude definition) show
that our K definition of W is comparable to state of the art implementations of
type inferencers in conventional functional languages: in our experiments, it was
only about twice slower on average than that of OCaml, and had average times
comparable, or even better than Haskell ghci and SML/NJ.

We have tested type inferencers both under normal operating conditions and
under stressful conditions. For normal operating conditions, we have used small
programs such as factorial computation together with small erroneous programs
such as λx.(xx). We have built a collection of 10 such small programs and type-
checked each of them 1,000 times. The results in Table 1 (average speed column)
show the average time in seconds in which the type inferencer can check the
type of a program. For the “stress test” we have used a program for which type
inferencing is known to be exponential in the size of the input. Concretely, the
program (which is polymorphic in 2n + 1 type variables!):

let f0 = λx.λy.x in
let f1 = λx.f0(f0x) in
let f2 = λx.f1(f1x) in

...
let fn = λx.fn−1(fn−1x) in fn

takes the time shown in columns 3–7 to be type checked using OCaml (version
3.10.1), Haskell (ghci version 6.8.2), SML/NJ (version 110.67), our K definition
executed in Maude (version 2.3), the PLT-Redex definition of the W proce-
dure [4], and an “off-the-shelf” implementation of W using OCaml [32].

These experiments have been conducted on a 3.4GHz/2GB Linux machine.
All the tests performed were already in normal form, so no evaluation was nec-
essary (other than type checking and compiling). For OCaml we have used the
type mode of the Enhanced OCaml Toplevel [33] to only enable type checking.
For Haskell we have used the type directive “:t”. For SML the table presents
the entire compilation time since we did not find a satisfactory way to only
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obtain typing time. Only the user time has been recorded. Except for SML,
the user time was very close to the real time; for SML, the real time was
30% larger than the user time. Moreover, an extension to W , which we call
!W (see Figures 6 and 7), containing lists, products, side effects (through ref-
erencing, dereferencing, and assignment) and weak polymorphism did not add
any significant slowdown. Therefore, our K definitions yield quite realistic im-
plementations of type checkers/inferencers when executed on an efficient rewrite
engine.

Exp ::= ... | refExp | & Var | ! Exp | Exp := Exp | [ExpList]
| carExp | cdrExp | null?Exp | consExpExp | Exp ; Exp

KResult ::= Type
TEnv ::= Map[Name,Type]

ConfigLabel ::= k | tenv | eqns | nextType | results | mkLet
Config ::= Type | �K� | �S�ConfigLabel | �Set[Config]��

Fig. 6. The !W type inferencer, Syntax & Configuration

Our Maude “implementation” of an extension1 to the K definition of W has
about 30 lines of code. How is it possible that a formal definition of a type
system, written in 30 lines of code, can be executed as is with comparable ef-
ficiency to well-engineered implementations of the same type system in widely
used programming languages? We think that the answer to this question in-
volves at least two aspects. On one hand, Maude, despite its generality, is a
well-engineered rewrite engine implementing state-of-the-art AC matching and
term indexing algorithms [34]. On the other hand, our K definition makes inten-
sive use of what Maude is very good at, namely AC matching. For example, note
the fourth rule in Figure 4: the type variable tv appears twice in the lhs of the
rule, once in each of the two type equalities involved. Maude will therefore need
to search and then index for two type equalities in the set of type constraints
which share the same type variable. Similarly, the fifth rule involves two type
equalities, the second containing in its t′ some occurrence of the type variable
tv that appears in the first. Without appropriate indexing to avoid rematching
of rules, which is what Maude does well, such operations can be very expen-
sive. Moreover, note that our type constraints can be “solved” incrementally (by
applying the five unification rewrite rules), as generated, into a most general
substitution; incremental solving of the type constraints can have a significant
impact on the complexity of unification as we defined it, and Maude indeed
does that.

1 With conventional arithmetic and boolean operators added for writing and testing
our definition on meaningful programs.
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Rules from Figure 5, with modifications or additions as follows:

� x

t′[tl ← tl′]
|〉k �η�tenv �γ�eqns � tv

tv + |tl|
�nextType when η[x] = let(t),

t′ = γ[t], t′ : RefType,
tl = vars(γ[t]) − vars(η),
and tl′ = tv . . . (tv + |tl| − 1)

� λxl.e

bind(xl) � e � mkFunType(xl) � restore(η)
|〉k �η�tenv

t � mkFunType(tl) = tl → t
�t � mkFunType(xl)

η[xl] → t

|〉k�η�tenv

� let xl = el in e

el � mkLet(·) � bindTo(xl) � e � restore(η)
|〉k �η�tenv

�t

·
|〉results � 〈| ·

let (t)
�mkLet

� ·
tl

�results � �tl�mkLet
·

� letrec xl = el in e

bind(xl) � el � addEqns(xl) � mkLet(·) � bindTo(xl) � e � restore(η)
|〉k�η�tenv

�results(tl′) � addEqns(tl)
·

|〉k 〈| ·
tl = tl′

|〉eqns

results(tl) � addEqns(xl) = xl � addEqns(tl)
� [tl]
list tv

|〉k �Γ, ·
tv ∗= tl

�eqns � tv

tv + 1
�nextType where t ∗= ·

·
and ·

tv = t

, tv ∗= �t

·
|〉

� cdr t

list tv

|〉k �Γ, ·
t = list tv

�eqns � tv

tv + 1
�nextType

�car t

tv

|〉k �Γ, ·
t = list tv

�eqns � tv

tv + 1
�nextType

�cons t1 t2
t2

|〉k �Γ, ·
t2 = list t1

�eqns

�null? t

bool

|〉k �Γ, ·
t = list tv

�eqns � tv

tv + 1
�nextType

�! t

tv

|〉k �Γ, ·
t = ref tv

�eqns � tv

tv + 1
�nextType

& t → ref t
�t1 := t2

unit

|〉k �Γ, ·
t1 = ref t2

�eqns

�t1 ; t2
t2

|〉k �Γ, ·
t1 = unit

�eqns

Fig. 7. The !W type inferencer, Semantics

4 Analysis and Proof Technique

Here, we sketch an argument that although different in form, our definition of
W is equivalent to Milner’s. We additionally give a brief summary of our work
in proving type system soundness using our formalism.
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4.1 Equivalence of Milner’s and Our W

We would like to make explicit how our rewriting definition is effectively equiva-
lent to Milner’s W , up to the additions of some explicit fundamental data types
and operators. To do this, it is easiest to look at J , Milner’s simplified algo-
rithm, which he proved equivalent to W . Milner’s definition of J is given in
Figure 8 as a convenience for the reader. The main questions of equivalence
center around recursive calls and their environments, as well as the substitution.

J is a recursive algorithm. It calls itself on subexpressions throughout the
computation. We achieve the same effect through the use of strictness attributes
and the saving and restoring of environments. Our strictness attributes cause
subexpressions to be moved to the front of the computation structure, effectively
disabling rules that would apply to the “context,” and enabling rules applying
to the subexpression itself.

To each call of J , a type environment (also called a typed prefix in Milner’s
notation) is passed. Because we have only one global type environment, it is
not immediately obvious that changes to the type environment when evaluating
subexpressions cannot affect the remaining computation. In Milner’s algorithm,
this is handled by virtue of passing the environments by value. We ensure this
by always placing, at the end of the local computation, a restore marker and a
copy of the current environment before affecting the environment. Thus, when

J (p̄, f) = τ

1. If f is x then:
If λxσ is active in p̄, τ := σ.
If let xσ is active in p̄, τ = [βi/αi]Eσ, where αi are the generic type variables of
let xEσ in Ep̄, and βi are new variables.

2. If f is de then:
ρ := J (p̄, d); σ := J (p̄, e);
UNIFY(ρ,σ → β); τ := β; (β new)

3. If f is (if d then e else e′), then:
ρ := J (p̄, d); UNIFY(ρ, bool);
σ := J (p̄, e); σ′ := J (p̄, e′);
UNIFY(σ, σ′); τ := σ

4. If f is (λx · d) then:
ρ := J (p̄ · λxβ, d); τ := β → ρ; (β new)

5. If f is (fix x · d), then:
ρ := J (p̄ · fix xβ, d); (β new)
UNIFY(β,ρ); τ = β;

6. If f is (let x = d in e) then:
ρ := J (p̄, d); σ := J (p̄ · let xρ, e); τ := σ.

UNIFY is a procedure that delivers no result, but has a side effect on a global sub-
stitution E. If UNIFY(σ, τ ) changes E to E′, and if U (Eσ, Eτ ) = U , then E′ = UE,
where U is a unification generator.

Fig. 8. Milner’s J Algorithm



148 C. Ellison, T.F. S, erbănut,ă, and G. Ros,u

the local computation is complete, the environment is restored to what it was
before starting the subcomputation.

Both definitions keep a single, global substitution, to which restrictions are
continually added as side effects. In addition, both only apply the substitution
when doing variable lookup. The calls to UNIFY in the application, if/then/else,
and fix cases are reflected in our rules by the additional formulas added to the
eqns configuration item. Indeed, for the rules of Exp (disregarding our extensions
with integers), these are the only times we affect the unifier. As an example, let
us look at the application de in an environment p̄. In J , two recursive calls to
J are made: J (p̄, d) and J (p̄, e), whose results are called ρ and σ respectively.
Then a restriction to the global unifier is made, equating ρ with σ → β, with β
being a new type variable, and finally β is returned as the type of the expression.

We do a very similar thing. The strictness attributes of the application oper-
ator force evaluation of the arguments d and e first. These eventually transform
into ρσ. We can then apply a rewrite rule where we end up with a new type β,
and add an equation ρ = σ → β to the eqns configuration item. The evaluations
of d and e are guaranteed not to change the environment because we always
restore environments upon returning types.

4.2 Type Preservation

We attempted to prove the preservation property of W using our methodology.
We briefly outline the approach below. For more details of the partial proofs
of soundness for this and other type systems defined in K, see [35]. We use a
few conventions to shorten statements. The variables V , E, and K stand for
values, expressions, and computation items respectively. Additionally, we add E
and W subscripts on constructs that are shared between both the Exp language
and the W algorithm. We then only mention the system in which reductions are
taking place if it is not immediately clear from context. Finally, a statement like
W |= R

∗−→ R′ means that R reduces to R′ under the rewrite rules for W .
A distinguishing feature of our proof technique is that we use an abstrac-

tion function, α, to enable us to convert between a configuration in the language
domain to a corresponding configuration in the typing domain. Using an abstrac-
tion function in proving soundness is a technique used frequently in the domain
of processor construction, as introduced in [36], or compiler optimization [37,38].

Lemma 1. Any reachable configuration in the language domain can be trans-
formed using structural equations into a unique expression.

Proof. This follows from two key ideas. One, you cannot use the structural equa-
tions to transform an expression into any other expression, and two, each struc-
tural equation can be applied backwards even after the rules have applied.

Because of Lemma 1, we can use a simple definition for α: α(�E�E ) = �E�W .
By the lemma, this definition is well-defined for all reachable configurations,
and homomorphic with respect to structural rules. While this function is effec-
tively the identity function, we have experimented with much more complicated
abstraction functions, which lead us to believe the technique scales [35].
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Lemma 2. If W |= α(V ) ∗−→ τ then �V �W
∗−→ τ .

Proof. This follows directly from the W rewrite rules for values.

Lemma 3 (Preservation 1). If �E�W
∗−→ τ and �E�E

∗−→ R for some type τ

and configuration R, then W |= α(R) ∗−→ τ ′ for some τ ′ unifiable with τ .

Lemma 4 (Preservation 2). If �E�W
∗−→ τ and �E�E

∗−→ V for some type τ

and value V , then �V �W
∗−→ τ ′ for some type τ ′.

Proof. This follows directly from Lemmas 2 and 3.

In comparison, the definition of (strong) preservation as given by Wright and
Felleisen [6, Lemma 4.3] states: “If Γ � e1 : τ and e1 −→ e2 then Γ � e2 : τ .” We
cannot define preservation in the same way, because our terms do not necessarily
remain terms as they evaluate. If one accepts the idea of our abstraction function,
then subject reduction is actually closer in spirit to the above Lemma 3. We
were able to verify Lemma 3 for many of the cases, but were unable to show the
necessary correspondence between the environment and replacement.

5 Conclusions and Further Work

We have shown that rewriting logic, through K, is amenable for defining feasi-
ble type inferencers for programming languages. Evaluation suggests that these
equationally defined type inferencers are comparable in speed with“off-the-shelf”
ones used by real implementations of programming languages. Since both the lan-
guage and its type system are defined uniformly as theories in the same logic, one
can use the standard RLS proof theory to prove properties about languages and
type systems for those languages. These preliminary results lead us to believe
our approach is a good candidate for the PoplMark Challenge [39].
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Polo Scientifico“Guglielmo Marconi”, via dei Colli 90, La Spezia

Abstract. Earlier papers argued that term graphs play for the specifica-
tion of relation-based algebras the same role that standard terms play for
total algebras. The present contribution enforces the claim by showing
that term graphs are a sound and complete representation for multiset
algebras, i.e., algebras whose operators are interpreted over multisets.

1 Introduction

Cartesian categories (i.e., with binary products and terminal object) offer the
right tool for interpreting equational logic: objects are tuples of sorts, and arrows
are tuples of terms, typed accordingly. This is confirmed by the presentation of
the category of (total) algebras for a signature Σ as the category of product-
preserving functors from the cartesian category Th(Σ), the algebraic theory of
Σ, to the category Set of sets and functions. Two arrows in Th(Σ) coincide if
and only if they denote the same function for every functor. Thus, equational
signatures (Σ, E) and their categories of algebras are recast in the framework by
quotienting the arrows corresponding to pairs of terms (s, t) ∈ E (see e.g. [1]).

The remarks above may be summarized by the following sentence: for ordinary
algebras we have a syntactical presentation for terms and term substitutions,
basically based on their correspondence with trees and tree replacement; and a
complete semantics, based on the interpretation of terms as functions on sets,
and of term substitution as function composition. The two sides are reconciled
by the notion of cartesian theory, which underlines the syntax (the free cartesian
category Th(Σ)) and the semantics (the cartesian functors to Set).

Such a neat characterization proved elusive for more complex algebraic for-
malisms, such as partial algebras and especially multi-algebras [2], where oper-
ators are interpreted as partial functions and as additive relations, respectively.
Indeed, there is a long tradition, mostly arising from theoretical computer sci-
ence, looking for suitable syntactical presentations of equational laws for such
algebras. Roughly, after quite some work by German algebraists [3], this search
boiled down to identifying suitable algebraic characterizations, similar to Law-
vere theories, of various tree-like structures (as e.g. data-flow networks). We refer
here to the work on flow graphs by Ştefănescu and others (see e.g. the survey [4],
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and specifically [5] for the algebraic presentation of multiset relations), even if
mostly relevant in recent years have been the graphical characterization of traced
monoidal categories [6], and their duality with compact closed categories.

These categorical characterizations of graphical formalisms have been ex-
ploited early on: see e.g. [7,8] for a recollection of the main players and of some
of the main results, and an application to (term) graph rewriting. However, such
characterizations should have a counterpart in the development of the model-
theoretical side. Namely, in the identification of the semantical domain for which
a chosen algebraic formalism is complete. Our starting point is [9], introducing
categories for a signature Σ (based on the gs-monoidal theory GS-Th(Σ) of Σ,
generalizing the algebraic theory Th(Σ)) for obtaining a functorial representa-
tion of the categories of partial and multi-algebras for Σ.1

The solution proved satisfactory for partial algebras, since the arrows of a
quotient category of GS-Th(Σ) (namely, the g-monoidal theory G-Th(Σ))
are in bijective correspondence with conditioned terms, i.e., with pairs s | D,
where s is the principal term and D is a set of terms used for restricting the
domain of definition of s. Most importantly, two arrows in G-Th(Σ) coincide
if and only if they always denote the same partial function for every possible
functor to PFun (the category of sets and partial functions), thus allowing the
development of a sound and complete deduction system for equational signatures
based on so-called conditioned Kleene equations [11].

Things went less smoothly for multi-algebras. The functorial presentation still
holds, and indeed, the arrows of the gs-monoidal theory GS-Th(Σ) are in bi-
jective correspondence with (acyclic) term graphs, i.e, trees with possibly shared
nodes. However, as shown in [12], only term graphs up-to garbage equivalence are
identified by every functor to Rel (sets and additive relations). Such an equiva-
lence is defined set-theoretically, and an axiomatic presentation is missing.

The present paper further investigates the latter issue. In particular, taking
hints from the solution for Frobenius algebras, as recollected in [13] (also echoed
in the solution for traced monoidal categories [14]), our work shows that the
gs-monoidal theory GS-Th(Σ) allows for a functorial presentation of what we
called multiset algebras, that is, algebras whose operators are interpreted as
(additive) multiset relations. Most importantly, we prove that two term graphs
denote the same multiset relation if and only if they are isomorphic, thus laying
the base for a simple deduction system for such algebras.

The paper is structured as follows. Section 2 recalls the basic definitions con-
cerning (term) graphs with interfaces, our chosen graphical formalism, while Sec-
tion 3 presents a few notions and facts concerning gs-monoidal theories, lifted
from [9]. Section 4 discusses instead a few alternative presentations for multi-set
relations, partly original and partly drawn from classical mathematical litera-
ture, that are needed later on, in Section 5, for proving our main completeness
theorem. Finally, Section 6 recasts our results against the algebraic background,
and highlights some possible directions for future works.

1 The acronym gs stands for graph substitution: it was originally introduced in [10] for
highlighting the correspondence between arrow composition and graph replacement.
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2 Graphs and Graphs with Interfaces

This section presents some definitions concerning (hyper-)graphs, typed graphs
and graphs with interfaces. It also introduces two operators on graphs with
interfaces. We refer to [15] and [10] for a detailed introduction.

Definition 1 (Graphs). A (hyper-)graph is a four-tuple 〈V, E, s, t〉 where V is
the set of nodes, E is the set of edges and s, t : E → V ∗ are the source and target
functions (for V ∗ the free monoid over the set of nodes).

From now on we denote the components of a graph G by VG, EG, sG and tG.

Definition 2 (Graph morphisms). Let G, G′ be graphs. A (hyper-)graph
morphism f : G → G′ is a pair of functions 〈fV , fE〉, such that fV : VG → VG′

and fE : EG → EG′ and source and target functions are preserved, i.e.
f∗

V ◦sG = sG′ ◦fE and f∗
V ◦ tG = tG′ ◦fE (for f∗

V extension of the node function).

The category of graphs is denoted by Graph. We now give the definition of
typed graph [16], i.e., a graph labelled over a structure that is itself a graph.

Definition 3 (Typed graphs). Let T be a graph. A typed graph G over T is
a graph |G| with a graph morphism τG : |G| → T .

The related class of morphisms is obviously defined.

Definition 4 (Typed graph morphisms). Let G, G′ be typed graphs over T .
A typed graph morphism f : G → G′ is a graph morphism f : |G| → |G′|
consistent with the typing, i.e., such that τG = τG′ ◦ f .

The category of graphs typed over T is denoted by T -Graph. In the following,
we assume a chosen type graph T .

To define a notion of substitution, we need operations for composing graphs.
So, we equip typed graphs with suitable “handles” for interacting with an envi-
ronment. To this aim, we consider the class of discrete graphs, i.e., containing
only nodes (thus, often depicted just as a set).

Definition 5 (Graphs with interfaces). Let J, K be typed, discrete graphs.
A graph with input interface J and output interface K is a triple G = 〈j, G, k〉,
where G is a typed graph, j : J → G and k : K → G are typed graph morphisms,
and they are called input and output morphisms, respectively.

A graph with input interface J and output interface K is denoted J
j→ G

k← K.
In the following, we consider graphs with ordered interfaces, i.e., such that the
set of nodes is totally ordered. Moreover, we also assume that the morphism j is
injective. Abusing notation, we refer to the nodes belonging to the image of the
input morphism as inputs, and similarly for the nodes belonging to the image
of the output morphism. We often refer implicitly to a graph with interfaces as
the representative of its isomorphism class. Moreover, we sometimes denote the
class of isomorphic graphs and its components by the same symbol.
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Note that graphs with interfaces are arrows in the category of (left-linear)
cospans Cospan(T -Graph) [17]. This characterization suggests us the definition
of the following two binary operators on graphs with discrete interfaces.

Definition 6 (Sequential composition). Let G = J
j→ G

k← K and G′ =

K
j′→ G′ k′← I be graphs with discrete interfaces. Their sequential composition

is the graph with discrete interfaces G ◦ G′ = J
j′′→ G′′ k′′← I, where G′′ is the

disjoint union G !G′, modulo the equivalence on nodes induced by k(x) = j′(x)
for all x ∈ VK , and j′′ and k′′ are the uniquely induced arrows.

Now, we define IT -Graph the category of ordered interfaces, i.e., such that
the set of nodes is totally ordered, and typed graphs with (ordered) interfaces.
Most importantly, we collapse all “isomorphic” typed graphs with interfaces:
two typed graphs G, G′ with the same interfaces are isomorphic if there exists
a typed graph isomorphism between the underlying graphs G, G′ that preserves
the input and output morphisms.

Definition 7 (Parallel composition). Let G = J
j→ G

k← K and G′ = J ′ j′→
G′ k′← K ′ be graphs with discrete interfaces. Their parallel composition is the

graph with discrete interfaces G ⊗ G′ = (J ! J ′)
j′′→ G ! G′ k′′← (K !K ′), where

! is the disjoint union operator, and j′′, k′′ are the uniquely induced arrows.

Intuitively, the sequential composition G ◦ G′ is obtained just by taking the
disjoint union of the graphs underlying G and G′, and gluing the outputs of G

with the corresponding inputs of G′. The parallel composition G⊗G′ is instead
obtained by taking the disjoint union of the graphs underlying G and G′. Note
that both operations are defined on “concrete” graphs. However, their results do
not depend on the choice of the representatives of their isomorphism classes.

Note that the sequential composition introduced in Definition 6 corresponds
to the standard composition in the category Cospan(T -Graph), and the parallel
composition in Definition 7 corresponds to a monoidal operator in that category.

A graph expression is a term over the syntax containing all graphs with dis-
crete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all the occurrences of both sequential
and parallel composition are defined for the interfaces of their arguments, ac-
cording to Definitions 6 and 7. The interfaces of a well-formed graph expression
are computed inductively from the interfaces of the graphs occurring in it; the
value of the expression is the graph obtained by evaluating all its operators.

Definition 8 (Term graphs). Let G be an acyclic graph. It is a term graph if
s(e) ∈ VG for all its edges, and moreover s(e) = s(e′) implies e = e′.

In other terms, a signature Σ is a graph satisfying the first condition, interpret-
ing each operator f ∈ Σσ×...σn,σ an edge with source σ and target the tuple
〈σ1, . . . , σn〉; while a term graph over Σ is an acyclic graph typed over Σ such
that each node is in the image of the source function of at most one edge.
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Note that the binary operators of sequential and parallel composition pre-
served the properties of being a term graphs. So, in the following we denote as
TIT -Graph the category of term graphs with interfaces, typed over T .

3 Categories with a GS-Monoidal Structure

This section recalls the definition of gs-monoidal category, and states the corre-
spondence between arrows of a gs-monoidal category and term graphs [10].

Definition 9 (GS-Monoidal categories). A gs-monoidal category C is a six-
tuple 〈C0,⊗, e, ρ,∇, !〉, where 〈C0,⊗, e, ρ〉 is a symmetric strict monoidal cate-
gory (see [18]) and ! : Id ⇒ e : C0 → C0, ∇ : Id ⇒ ⊗ ◦D : C0 → C0 are two
transformations (D is the diagonal functor), such that !e = ∇e = ide and they
satisfy the coherence axioms

∇; (∇a ⊗ ida) = ∇; (ida ⊗∇a) ∇a; (ida⊗!a) = ida ∇a; ρa,a = ∇a

and the monoidality axioms

∇a⊗b; (ida ⊗ ρb,a ⊗ idb) = ∇a ⊗∇b !a⊗!b =!a⊗b

A gs-monoidal functor 〈F, φ, φe〉 : C → C′ is a symmetric monoidal functor
(that is, a functor F equipped with two natural isomorphisms φe : F (e)→ e′ and
φ : F (a⊗ b) → F (a)⊗′ F (b)) such that F (!a); φe =!′F (a) and F (∇a); φ = ∇′

F (a);
it is strict if φ and φe are identities. The category of gs-monoidal categories and
their strict functors is denoted by GSM-Cat.

Mimicking the correspondence between terms and trees, morphisms of a gs-
monoidal category correspond to term graphs [10], in the same way terms over
a signature are represented by arrows of its algebraic theory. In particular, the
lack of naturality of morphisms ∇ (i.e., of axioms s;∇ = ∇; (s ⊗ s)) allows the
distinction between the sharing of a term and the occurrence of two copies of it.

Now, let us consider again the category of term graphs with (discrete and
ordered) interfaces: it is actually gs-monoidal. Indeed, for each interface X , the
morphism∇X is represented by the triple 〈X, X, X!X〉, and the obvious arrows;
while the morphism !X is represented by the triple 〈X, ∅, ∅〉. Now, by abuse of
notation let TIT -Graph denote also the gs-monoidal category of term graphs,
typed over T , with the additional, gs-monoidal structure outlined above.

Proposition 1. Let Σ be a signature, let TΣ be the associated graph, and let
GS-Th(Σ) be the free gs-monoidal category over Σ. Then, there exists a full
and faithful, strict gs-monoidal functor from GS-Th(Σ) to TITΣ-Graph.

The result above is a multi-sorted version of [10, Theorem 23]. It implies that
arrows of GS-Th(Σ) are in bijective correspondence with term graphs with
(discrete and ordered) interfaces, typed over Σ. Most importantly, the theorem
states that the isomorphism of these term graphs can be recast in equational
terms, and it can be verified by using the laws holding for gs-monoidal categories.
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Fig. 1. Term graphs F1, F2, and F3

Example 1. In order to help visualising the correspondence stated in Proposi-
tion 1 above, consider the term graphs depicted in Fig. 1: they are taken from [9,
Fig. 2], adopting a slightly more agile presentation. In particular, nodes in the
input (output) interface are denoted by circling them with a dotted (solid) circle;
while edges are boxes with an entering tentacle (from the source) and possibly
many leaving tentacles (to the target).2

The signature under consideration contains three sorts, represented as X , Y ,
and Z. The nodes are simply indicated by their sort. For example, term graph F1

contains four nodes and three edges. The node labelled X is an input node, while
Z is an output node. The signature also contains a unary operator c : X → Y
and a binary operator f : Y × Y → Z: also edges are labelled by boxing their
type. The edge in F1 labelled f has an incoming tentacle from the node labelled
Z, and two outgoing tentacles to two different nodes, both labelled Y .

Now, term graphs F1 and F2 are the graphical counterpart of the arrows
f ◦ (c ⊗ c) ◦ ∇X and α = f ◦ ∇Y ◦ c, respectively, belonging to hom-set GS-
Th(Σ)[X, Z]. These two arrows differ because of the lack of sharing of the term
c in F1, and this is mirrored by the fact that ∇Y is not natural.

We must now remark that it would be impossible to make the distinction if the
standard term presentation is adopted, since both arrows would just represent
the term f(c(x), c(x)): it is necessary to introduce a suitable let -notation, after
the seminal work on computational λ-calculus, so that the let-term associated
to F2 would look like let y be c(x) in f(y, y).

Similarly, the term graph F3 is the counterpart of the (α ⊗ (!Y ◦ c)) ◦ ∇X ,
and it differs from F2 because !Y is not natural. In let-notation, F3 would be
represented by an expression such as let [y be c(x) and y1 be c(x)] in f(y, y).

4 Some Characterizations of Multi-relations

By interpreting the operators of a signature as relations, instead of as functions,
one easily models in an algebraic framework some sort of nondeterministic behav-
ior [2]. For multi-algebras, the relation associated with an operator is regarded
as a function mapping each input value to a set of (possible) output values.
Quite obviously, this is just an alternative definition of relation, equivalent to
the standard one as subset of the direct product.

Definition 10 (Relations). Let A and B be two sets. A relation R : A ↔ B
is a function R : A→ P(B), where P is the finite power-set operator. A relation
2 Thus, the chosen direction for arrows follows the term graph tradition, adopting a

“control flow” view, instead of a (possibly better suited here)“data flow” one.
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is total if |R(a)| ≥ 1 for all a ∈ A; it is functional (univalent) if |R(a)| ≤ 1
for all a ∈ A. Given two relations P : A ↔ B, R : B ↔ C, their composition
P ; R : A ↔ C denotes the relation obtained by composing P with the function
P(R) : P(B)→ P(C), the additive extension of R.

A total relation is a function R : A → P+(B); while a functional relation is a
partial function R : A ⇀ B. A functional and total relation is then just a function
R : A→ B. In the following, we denote with Rel and Pfn the categories having
sets as objects, and relations or functional relations, respectively, as arrows;
clearly, there are obvious inclusion functors Set ↪→ Pfn and Pfn ↪→ Rel.

4.1 Multiset Relations and Semi-modules

We now plan to further generalize the previous definition.

Definition 11 (Multiset relations). Let X and Y be two sets. A multiset
relation is a function from X to [Y → IlN]f , i.e., associating to each element
x ∈ X a function h (with finite support) from Y to the natural numbers.

Being of “finite support” for a function h : Y → IlN means that h(y) �= 0 only for a
finite set of elements y. Thus, a multiset relation associates to an element x ∈ X
a set of “weighted” elements in Y . A partial function requires that h(y) = 1 for
at most one element y, while h(z) = 0 for all the others. An additive relation is
obtained by replacing IlN with the boolean algebra {0, 1}.

An element of [Y → IlN]f is going to be denoted as a (finite) multiset over
Y . It is a standard result that finite multisets (with coefficient in IlN) form a
bi-semi-module [19, p.102]. For the rest of the paper, we adopt a polynomial-like
presentation for finitely supported functions, considered as elements of a semi-
module L[X ]. More explicitly, an expression as n1 · y1 ⊕ . . .⊕ nk · yk represents
the function associating a coefficient ni ∈ IlN to yi, and 0 to the other elements
(assuming the yi’s to be pairwise different). Moreover, the sum of two polyno-
mials is defined as the component-wise sum of the coefficients. In more abstract
terms, the situation boils down to the proposition below.

Proposition 2 (Multisets and semi-modules). Let X be a set. A (finite)
multiset over a set X is an element of the semi-module L[X ] of (finite) linear
polynomial with coefficients on the semiring IlN of natural number: products and
sums on the scalar components of a polynomial are defined in the obvious way,
assuming they satisfy the laws

– ∀n ∈ IlN.x, y ∈ L[X ].n · (x ⊕ y) = n · x⊕ n · y,
– ∀n, m ∈ IlN.x ∈ L[X ].(n + m) · x = n · x⊕m · x,
– ∀n, m ∈ IlN.x ∈ L[X ].n · (m · x) = nm · x.

and requiring furthermore 1 · x = x and 0 · x = ∅ (the empty polynomial).
Furthermore, a multiset relation from X to Y consists of a semi-module ho-

momorphism from L[X ] to L[Y ].
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A semi-module homomorphism is uniquely induced by a function from X to L[Y ].
The one-to-one correspondence between multiset relations and homomorphisms
puts forward the definition below, accounting for relation composition.

Definition 12 (Composition). Let h : X → Y and k : Y → Z be multiset
relations. Then, their composition k ◦ h is defined as

– ∀x ∈ X. k ◦ h(x) =
⊕

ny·y∈h(x) ny · k(y);

We denote with MRel the category having sets as objects, and multiset rela-
tions as arrows.

The definition is well-given: since for each x ∈ X the number of elements y ∈ Y ,
such that their coefficient ny in h(x) is different from 0, is finite, the resulting
multiset relation has finite support.

Clearly, there is an inclusion functor from Pfn to MRel. However, the same
fact does not hold for Rel, since composition needs not to be preserved by the
obvious inclusion relation. Intuitively, each partial function X → Y can be inter-
preted as an homomorphism between the semi-modules L[X ] to L[Y ], mapping
each x ∈ X to either 0 (the empty polynomial) or 1y (the polynomial where
only the coefficient of y is 1), and such property is preserved by homomorphism
composition. Also a relation X → Y can be in the same way interpreted as a
semi-module over the free (idempotent) boolean algebra IlB with elements {0, 1},
but the multiset composition of (the embedding of) two relations does not nec-
essarily result in a relation, but it may describe a multiset relation.

4.2 Multiset Relations and Kleisli Categories

We need to equip the category of multi-relation with a suitable gs-monoidal
structure. To this end, we first present yet another characterization of MRel.

First of all, let us consider the endofunctor L on Set, associating to each set X
the set of finitely supported functions [X → IlN]f . Given a morphism f : X → Y ,
the function F f : [X → IlN]f → [Y → IlN]f is defined as

[F f (h)](y) =
⊕

x∈f−1(y)

h(x)

Proposition 3 (Multisets and monads). The endofunctor L on Set induces
a monad (see [18]), with natural morphisms ηX : X → [X → IlN]f and μX :
[[X → IlN]f → IlN]f → [X → IlN]f defined in the following way

– ηX(x) = 1x, and
– [μX(λ)](x) =

⊕
h:X→IlN λ(h)h(x)

for any λ ∈ [[X → IlN]f → IlN]f and with 1x the usual polynomial.

The cumbersome task of checking the coherence axioms is left to the reader: we
just note that the key requirement about the finite support of [μX(λ)] is verified,
as it is standard practice, via König’s lemma.
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Since we have a monad construction, it is relevant to look at the Kleisli cat-
egory, since it provides a representative for free algebras. It is noteworthy that
the Kleisli category KF associated to F is yet another description for MRel.
Thus, we can now lift the cartesian product on Set to the Kleisli category KF .

Definition 13 (Product). Let h : X → Y and k : W → Z be multiset rela-
tions. Then, their product h⊗ k is defined as

– ∀xw ∈ X ×W. h⊗ k(xw) =
⊕

n·y∈h(x),m·z∈k(w) nm · yz.

The category is indeed gs-monoidal, for !X associating to each element x ∈ X
the empty polynomial ∅; and for ∇X associating to each x ∈ X the polynomial
1xx over X ×X . This is far from surprising, since it is a general property hold-
ing for the Kleisli category of any monad over a cartesian category. From now
on, MRel denotes also the gs-monoidal category of multiset relations with the
additional, gs-monoidal structure outlined above.

The choice is obviosuly not unique: we might as well have lifted the cocartesian
product of Set. However, as argued in [9, Fact 5] and the subsequent paragraph,
the point is that this interpretation would be “in contrast with the intuition that
binary operators, even if non-deterministic, should have as domain the direct
product of the carrier with itself;” and it would be, more explicitly, inconsistent
with the established notions for partial and multi-algebras.

5 Syntax and Semantics for Multiset Algebras

It is now the time to turn to our main theorem, establishing the completeness
of multiset relations for term graphs. However, since we want to spell out the
result in standard algebraic terms, we start by introducing a suitable formalism.

Definition 14 (Multiset algebras). Let Σ be a signature. A multiset algebra
A over Σ consists of the following items

– a set Aσ for each sort σ ∈ Σ;
– a multiset relation Aσ1× . . .×Aσn → Aσ for each operator f ∈ Σσ1×...×σn,σ.

A multiset homomorphism ρ : A → B is a family of functions ρσ : Aσ → Bσ,
one for each sort σ ∈ Σ, such that f(ρσ1(t1), . . . , ρσn(tn)) = [F(ρσ)](f(t1, . . . tn))
for each operator f ∈ Σσ1×...×σn,σ, and for F(ρσ) the polynomial lifting of ρσ.

These homomorphisms are called tight, point-to-point homorphisms in the liter-
ature on multi-algebras. In multiset jargon, each element in the carrier is mapped
into a single term, and the weight of each element is preserved. Indeed, F is the
endofunctor on Set used for our definition of the Kleisli category.

Proposition 4 (Functorial semantics). Let Σ be a signature. Then there
exists an equivalence of categories between the category MSAlg of multiset alge-
bras and (tight, point-to-point) homomorphisms and the category of gs-monoidal
functors [GS-Th(Σ), MRel] and symmetric monoidal natural transformations.
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As it is standard in functorial semantics, the functors are not strict, that is,
as stated in Definition 9, a monoidal functor F may map a product a ⊗ b into
an element that is just isomorphic to F (a) ⊗ F (b), via a natural isomorphism
φ. Moreover, requiring a natural transformation to be symmetric monoidal just
means that such φ’s are preserved. Furthermore, recall that gs-monoidal functors
must preserve the transformations ∇ and !.

The functor category [GS-Th(Σ), MRel] thus offers a faithful description
for multiset algebras and (tight, point-to-point) homomorphisms. The result is
actually obvious at the object level, i.e., the correspondence between algebras and
functors is easily established. At the morphism level, note that the components
of any natural transformation between gs-monoidal functors (i.e., preserving the
transformations ∇ and !) has to be just a function. Indeed, the same property
holds for multi-algebras [9, Theorem 17].

As we already noted, in [9] theorems that are equivalent to the above were
established for partial and multi-algebras. However, as it happens for partial
algebras and conditioned terms, a stronger property holds for multiset algebras.

Theorem 1 (Syntax completeness). Let Σ be a signature, and let s, t be
arrows in GS-Th(Σ). Then, s and t represent isomorphic term graphs if and
only if they are mapped to the same multiset relation for each gs-monoidal functor
from GS-Th(Σ) to MRel.

The correspondence established by the above theorem suggests that term graphs
are an adequate syntax on which to build an equational deduction system, and
possibly an inequational one, for multiset algebras. The expressiveness of such
calculi, of course, should of course be properly assessed.

5.1 A Remark on Partial Functions and Relations

First of all, let us note that one of the main results in [9] was the proof that
the functorial category [GS-Th(Σ), Rel] faithfully represents multi-algebras.
As we argue in the concluding remarks, this is now a consequence of Theorem 1
above. Moreover, functorial equivalence was not captured axiomatically, as it is
shown by the result below (lifted from [20, Theorem 6]).

Proposition 5 (Garbage completeness). Let Σ be a signature, and let s, t
be arrows in GS-Th(Σ). Then, s and t are mapped to the same relation for
each gs-monoidal functor from GS-Th(Σ) to Rel if and only if they represent
garbage equivalent term graphs.

Two typed term graphs with interfaces G, H are garbage equivalent if there exist
graph morphisms j : G → H and i : H → G between the underlying graphs,
such that inputs and outputs are preserved.

Intuitively, it means that G and H may only differ for the sub-graph which is
not reached by the outputs. The main drawback was that such negative result
forbade the development of an equational deduction system (only partly solved
by the inequational one presented in [12]).
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Instead, the arrows of G-Th(Σ) (the category obtained by quotienting GS-
Th(Σ) with respect to axioms ∇Y ◦ f = (f ⊗ f) ◦ ∇X for all f ∈ Σ) represent
conditioned terms, and [G-Th(Σ), PFun] and [GS-Th(Σ), PFun] turn out to
be equivalent: this allows the development of a sound and complete deduction
system for partial algebras based on conditioned Kleene equations.

Example 2. Let us now look at the examples. As arrows of the g-monoidal cat-
egory G-Th(Σ), the three term graphs of Fig. 1 represent the same (possibly)
partial function, corresponding to the conditioned term f(c(x), c(x)) | ∅. How-
ever, they differ from the term graph F4 in Figure 2, which corresponds instead
to conditioned term f(c(x), c(x)) | {b(x)} (in let notation, we have let [y be c(x)
and y1 be b(x)] in f(y, y)). In other words, the sub-term b(x) acts only as a
possible restriction over the domain of definition of f(c(x), c(x)).

The degree of sharing is instead relevant for relations. Indeed, note that F2

and F3 coincide as additive relations, since garbage equivalent: F2 is a subgraph
of F3, while F3 can be embedded in F2 by collapsing the edges labelled by c.

X c�� Y�� f
��
�� �������	Z��

b

�������
Y��

Fig. 2. Term graph F4

Let us now consider a suitable interpretation for the signature with sorts X , Y
and Z, with unary operators b, c ∈ ΣX,Y and the binary operator f ∈ ΣY ×Y,Z .
More specifically, we will consider the multiset algebra E with sort interpretation
X = {x}, Y = {y1, y2} and Z = {zij | i = 1, 2}, and operator interpretation
b(x) = n1 · y1, c(x) =

⊕
i=1,2 ni · yi and f(y1yj) = zij for i, j = 1, 2.

Note now that the derived operation c⊗ c evaluates xx to
⊕

i,j=1,2 ninj ·yiyj ,
and the derived operation c ⊗ b instead evaluates xx to

⊕
i=1,2 nin1 · yiy1. We

leave to the reader to check, by exploiting their arrow representation, that
– F E

1 maps x to
⊕

i,j=1,2 ninj · zij ;
– F E

2 maps x to
⊕

i=1,2 ni · zii;
– F E

3 maps x to
⊕

i,j=1,2 ninj · zii; and
– F E

4 maps x to
⊕

i=1,2 nin1 · zii.

So, the four term graphs differ as multisets. We can see instead that the first
three graphs coincide as partial functions: if at most one of the coefficients n1

and n2 is 1, and the other has to be 0, then the expressions coincide and evaluate
to either ∅, z11 or z22. If n1 = 0, F4 evaluates to ∅, regardless of the value of n2.

The situation is more complex when interpreting the expressions as additive
relations. It means to replace natural numbers with the boolean algebra {0, 1},
thus interpreting ⊕ as ∪. Thus, F1 is evaluated to either ∅ (if n1 = n2 = 0) or
to the set Z. Instead, F2 and F3 do coincide, but they may be evaluated to ∅,
the singletons {z11} and {z22}, or to the set {z11, z22}. As for F4, it may take
the same values of F2, with the exception of the set {z22}.
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6 Conclusions and Further Works

We presented a functorial description for multiset algebras, as well as
stated a completeness property which would allow for a sound and complete
(in)equational deduction system for such algebras based on terms graphs. Such
a proof calculus would be based on the manipulation of graph expressions, as
allowed by the free construction of g- as well as gs-monoidal categories, as e.g.
found in [8,9]; or it could be instead directly instantiated on the set-theoretical
presentation of term graphs, as suggested in [12].

Previous work on the use of (free) semi-modules over IlN for modeling non-
determinism appeared, see among others [21]. However, we believe that the
completeness property we showed, and the underlying connection between the
graphical and the axiomatic presentation of the syntax for multiset algebras, is
new. The relevance of the resulting algebraic formalism is still to be assessed,
even if to a certain extent subsumes multi-algebras. In fact, it is born out of the
attempt to provide an equational presentation for multi-algebras, and we hope
it may help out to find a sound and complete set of axioms for garbage equiv-
alence. This should hopefully turn out to be a rather simple system, favorably
compared with the solutions presented in the literature (see e.g. the recent [22]).

For the sake of readability we focused on the semirings of natural numbers.
Nevertheless, we could have chosen any other semiring, and all the calculations
would have carried through. Hence, term graphs represent a sound formalism for
the description of any algebraic structure whose operators take value in linear
polynomials, with coefficients on a semiring S. Indeed, this fact suggests a way
of distilling a functorial semantics for such algebras, simply considering the gs-
monoidal functors from GS-Th(Σ) to the category of semi-modules over S, as
it happened for multi-algebras in [9].

One of the future aims where we want to exploit our completeness result
is in the definition of a suitable institution for graph rewriting. Indeed, we al-
ready know that we can present term graph rewriting by equipping (traced)
gs-monoidal categories with a suitable ordering between arrows [8]. Intuitively,
the rewriting of a term f(c(x), b(x)) into the term g(c(x)) can be described by
an ordering between the respective representations, as in Figure 3: all “internal”
nodes has to become roots, and the rewriting may possibly leave some garbage.
This way, Proposition 1 of this paper can be lifted to term graph rewriting.

Indeed, it is known that for term rewriting the model-theoretic side of the asso-
ciated institution is obtained by considering pre-ordered algebras (see e.g. [23]).
We plan to seek a suitable notion of pre-ordered multiset algebras. Such no-
tion should exploit the obvious ordering on multiset relations, as induced by the
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Fig. 3. A rewriting rule
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ordering on its coefficients: indeed, the binary relation a ≤ b if there exists a c
such that a + c = b is a pre-order for each semiring, hence for any semi-module.

Finally, note that our completeness result may induce a denotational seman-
tics for those specification formalisms whose components may be described as
graphs: indeed, this is the case for most nominal calculi, whose process congru-
ence and operational semantics can be faithfully described by means of graph
isomorphism and rewriting, respectively (see e.g. [24]).
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Abstract. We revisit known transformations of conditional rewrite sys-
tems to unconditional ones in a systematic way. We present a unified
framework for describing, analyzing and classifying such transformations,
discuss the major problems arising, and finally present a new transfor-
mation which has some advantages as compared to the approach of [6].
The key feature of our new approach (for left-linear confluent normal
1-CTRSs) is that it is backtracking-free due to an appropriate encoding
of the conditions.

1 Background and Overview

Conditional term rewrite systems (CTRSs) and conditional equational specifi-
cations are very important in algebraic specification, prototyping, implemen-
tation and programming. They naturally occur in most practical applications.
Yet, compared to unconditional term rewrite systems (TRSs), CTRSs are much
more complicated, both in theory (especially concerning criteria and proof tech-
niques for major properties of such systems like confluence and termination)
and practice (implementing conditional rewriting in a clever way is far from
being obvious, due to the inherent recursion when evaluating conditions). For
these (theoretical and practical) reasons, transforming CTRSs into (uncondi-
tional) TRSs in an adequate way has been studied for a long time cf. e.g.
[4, 9, 18, 12, 15, 5, 2, 6, 13, 17, 10]. In many other early papers (like [1, 8])
the issue of transforming conditional into unconditional TRSs is not studied in
depth, but at least touched from a programming language point of view.

Roughly, all transformations work by translating the original syntax (signa-
ture and terms) into an extended or modified one using auxiliary function sym-
bols, and by translating the rules in a corresponding way such that the evaluation
of conditions and some control structure is (appropriately) encoded within the
resulting unconditional TRS (in which in some cases reduction is additionally
restricted, see below).

In the papers mentioned above certain of these issues have been investigated
for particular (quite different) transformations and with different terminology. In
order to better understand and relate the different approaches together with their
results, we will propose a kind of unified terminology for such transformations
and their properties.
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In the second main part of the paper we will deal with the issue of backtracking
and the question whether a transformed system is computationally adequate
for simulating the original one. Here we will propose a new approach whose
characteristic feature is “backtracking-freeness”. The underlying goal here is as
follows: If, for some given conditional system, we start a simulation (a reduction
in the transformed TRS) from an “initial” term and obtain a normal form in
the transformed system, then the latter should correspond to a normal form of
the initial term in the original CTRS (this property, together with a few other
requirements, is called computational equivalence in [6]). Otherwise, some form
of backtracking would be needed, because then we are stuck with a failed attempt
of verifying conditions, and may need to try another conditional rule.

The rest of the paper is structured as follows. In Section 2 we introduce
the necessary background about (conditional) term rewriting. Then, in Section
3 we present and discuss a unifying framework for describing transformations
from CTRSs to TRSs. Furthermore known and new unsoundness phenomena
are dealt with briefly. Then, in Section 4 we investigate how to design a trans-
formation that avoids explicit backtracking during simulation in such a way that
the transformed system still enjoys most desired preservation properties. We mo-
tivate the approach by a careful analysis, give a formal definition and present the
main results. Finally, in Section 5 we report on some first experiments with our
new transformation, briefly discuss related work, sketch possible optimizations,
refinements and alternatives, and mention a few interesting perspectives. Due to
lack of space, proofs are omitted in the paper.1

2 Preliminaries

We assume familiarity with the basic notations and terminology in rewriting, cf.
e.g. [3]. We denote by O(t) the set of all subterm positions of a term t, that is
partitioned into all variable positions OX (t) = {p ∈ O(t) | t|p is a variable} and
all non-variable positions O(t) = O(t) \ OX (t). By Vars(t) we denote the set of
all variables occurring in a term t. This notion is extended in the obvious way to
rules and conditions. The set of normal forms of a rewrite system R is denoted
by NF(R). Left- and right-hand sides of rewrite rules are also abbreviated as lhs
and rhs, respectively. Slightly abusing notation, we sometimes confuse a rewrite
system R = (F , R) and its set R of rewrite rules.

Definition 1 (Conditional rewrite system, conditional rewrite relation,
depth of reductions). A conditional term rewriting system (CTRS) R (over
some signature F) consists of rules l → r ⇐ c where c is a conjunction of equa-
tions si = ti. Equality in the conditions may be interpreted (recursively) e.g. as
↔∗ ( semi-equational case), as ↓ ( join case), or as →∗ ( oriented case). In the lat-
ter case, if all right-hand sides of conditions are ground terms that are irreducible
1 More theoretical results, complete proofs and more details about experiments, re-

lated work and possible optimizations and refinements can be found in the full version
of this paper (forthcoming).
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w.r.t. the unconditional version Ru = {l → r | l → r ⇐ c ∈ R} of R, the system
is said to be a normal one. Furthermore, according to the distribution of vari-
ables, a conditional rule l → r ⇐ c may satisfy (1) Vars(r) ∪ Vars(c) ⊆ Vars(l),
(2) Vars(r) ⊆ Vars(l), (3) Vars(r) ⊆ Vars(l) ∪ Vars(c), or (4) no variable con-
straints. If all rules of a CTRS R are of type (i), 1 ≤ i ≤ 4, respectively, we say
that R is an i-CTRS. The rewrite relation of an oriented CTRS R is recursively
defined as follows: R0

def= ∅, Rn+1
def= {lσ → rσ | l → r ⇐ s1 →∗ t1, . . . , sk →∗

tk ∈ R, siσ →∗
Ri

tiσ for all 1 ≤ i ≤ k}, →R
def=

⋃
n≥0 Rn.

In the rest of the paper we will mainly deal with normal 1-CTRSs.

3 A Unifying Approach to Transformations

3.1 Basic Transformation Approaches

Basically, two different lines of approaches can be distinguished, according to
the way in which the conditions and the intermediate condition evaluation pro-
cess are encoded. Consider a conditional rule of a given normal 1-CTRS and a
term s = s[lσ] to be reduced. Obviously, the actual reduction of s = s[lσ] into
s′ = s[rσ] has to be delayed until the conditions siσ →∗ tiσ = ti have been
verified. To this end, the condition evaluation needs to be initiated and per-
formed, while keeping the relevant context, i.e., about the current rule, in order
to be finally able to produce rσ. In one line of approaches (historically the earlier
one), the latter information is encoded in an abstract way that hides any concrete
structure of l, but keeps the variable bindings of the matching substitution σ. Us-
ing the latter, after successful verification of the conditions the corresponding in-
stantiated right-hand side rσ can be produced. This means, we need two rules, an
introduction or initialization rule ρ′ : l → Uρ(s1, . . . , sn,Vars(l)) where Vars(s)
denotes the sequence of the set of all variables occurring in s (in an arbitrary,
but fixed order) and the fresh function symbol Uρ (of appropriate arity) stands
for rule ρ, and an elimination (or reducing) rule ρ′′ : Uρ(t1, . . . , tn,Vars(l)) → r
that completes the successful rule application after the instantiated conditions
siσ →∗ tiσ = ti have been verified (by other rewrite steps in between). The
most prominent representative of this type of approach are Marchiori’s un-
ravelings [12]. Early forerunners (with some restrictions/modifications or spe-
cial cases) and successors of unraveling approaches in the literature are among
others [4, 8, 15].

In the other main line of approaches, when trying to apply a conditional rule,
the left-hand side is not completely abstracted away during verification of the
conditions, but instead is kept in a modified form such that the conditions be-
come additional arguments of some function symbol(s) in l, typically of the root
function symbol. That means, the arity of this function symbol is increased ap-
propriately by conditional (argument) positions which are used to represent the
conditional arguments. Suppose l = f(u1, . . . , uk). Then f is modified into f ′ by
increasing its arity to k+n. For example, for the rule ρ′ : f(x) → x ⇐ x →∗ 0 the
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introduction and elimination rules become f ′(x,⊥) → f ′(x, x) and f ′(x, 0) → x,
respectively. Here, the fresh constant ⊥ stands for an uninitialized condition.
In order to prevent trivial cases of non-preservation of termination2 we will
wrap conditional arguments in some fresh syntactic structure, e.g. as follows:
f ′(x,⊥) → f ′(x, 〈x〉), f ′(x, 〈0〉) → x.3 Now, increasing the arity of some func-
tion symbols in general for storing conditional arguments there requires a more
sophisticated construction of the transformed system, since for every occurrence
of such function symbols in left- and right hand sides as well in the conditions
one has to specify how these conditional arguments should be filled and dealt
with during rewriting. And the basic transformation step has to be done for ev-
ery conditional rule! The basic idea underlying this approach goes back at least
till [1]. Yet, the work that inspired many later approaches in this direction is
by Viry [18].4 Other more recent transformation approaches along this line of
reasoning include [2, 6, 16].

Intuitively, in both lines of approaches certain reductions in the transformed
system during the evaluation of conditions do not correspond to what is done
in the conditional system, e.g., reduction in the variable bindings Vars(l) of
Uρ(s1, . . . , sn,Vars(l)) for unravelings, reduction in the “original arguments” of
f ′(x, 〈x〉), i.e., outside of 〈x〉, in the conditional argument approach, and re-
duction above “non-completed” conditional arguments (in both approaches).
This phenomenon which may have (and indeed has) problematic consequences
for transformations is well-known for a long time. For that reason several ap-
proaches in the literature impose some form of (context-sensitivity or strategy
or order-sortedness) restrictions on rewriting in the transformed system, e.g.
[10, 14, 16, 17, 18], which may lead to better results in theory and/or practice.
We will keep this issue in mind, but not deepen it here due to lack of space.

What makes papers and results about transforming conditional systems some-
times hard to read and to compare, is the diversity of the terminology used to
reason about their properties. In particular, soundness and completeness notions
are usually defined in different ways. We will instead provide now a proposal for
a unified description of such transformations including the relevant terminology.

3.2 A Unified Parameterized Description of Transformations

In view of the existing transformations and since one wants to simulate condi-
tional rewriting in the original system by unconditional rewriting in the trans-
formed one, extending the syntax appears to be unavoidable. So, generally
instead of original terms from T def= T (F ,V) the simulation will happen with

2 Note that the introduction rule is obviously non-terminating, whereas the original
conditional rule terminates (and is even decreasing cf. [7]).

3 Strictly speaking, the symbols ⊥ and 〈. . .〉 here are variadic, since they have as many
arguments as there are conditions in the respective rule. In a fixed-arity setting one
would have to use k-adic symbols ⊥k and 〈. . .〉k instead, for appropriate arities k.

4 Even though several main results (and proofs) in [18] are flawed, the ideas and the
concrete approach developed there have been very influential.
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terms from T ′ def= T (F ′,V) over an extended or modified signature F ′. More-
over, it may be necessary to initially explicitly translate original terms into the
new syntax and associate results obtained in the transformed system to original
terms. For unravelings this would not be absolutely necessary, but still yields
a generalized point of view that turns out to be beneficial for the analysis. For
approaches with encoding conditional arguments at new conditional argument
positions these mappings are essential, though.

Let us start with the general form of a transformation.5

Definition 2 (Transformations of CTRSs). A transformation from a class
of CTRSs into a class of TRSs is a total mapping T that associates to every
conditional system R = (F , R) from the class a triple ((F ′, R′,→R′), φ, ψ), where
(F ′, R′) is a TRS and →R′ is a subset of the rewrite relation induced by R′ =
(F ′, R′).6 We call φ : T → T ′ the initialization mapping (or encoding) and
ψ : T ′ → T the backtranslation (or decoding). Furthermore T has to satisfy the
following requirements:

(1) If R = (F , R) is finite (i.e., both F and R are finite), then R′ = (F ′, R′) is
also finite.

(2) The restriction of T to finite systems (from the considered class of CTRSs)
is effectively constructible.

(3) The initialization mapping φ : T → T ′ is an injective total function.
(4) The backtranslation ψ : T ′ → T is a (partial) function that is defined at

least on T ′
r, the set of all reachable terms7 which is given by T ′

r
def= {t′ ∈

T ′ | φ(s) →∗
R′ t′ for some s ∈ T }.

(5) The backtranslation ψ : T ′ → T satisfies ψ(φ(s)) = s for all s ∈ T , i.e., on
all initialized original terms it acts as inverse function w.r.t φ.

Discussion of requirements: Let us briefly discuss this abstract definition of
transformation and in particular the requirements mentioned.

First, we parameterize transformations by the class of CTRSs that we want
to transform, because this reflects the fact that for different types of CTRSs
transformations are typically defined in different ways.

The transformation of R into ((F ′, R′,→R′), φ, ψ) allows to impose particular
restrictions on →R′ like innermost rewriting or context-sensitivity constraints.
This ability is crucial in some existing transformation approaches. Intuitively,
this happens there in order to simulate more accurately the evaluation of con-
ditions in the transformed setting and to exclude computations that have no
analogue in the original system. If such a restriction of ordinary reduction is
involved in →R′ , we will mention this explicitly. Otherwise, again abusing nota-
tion, we will simply omit the third component in (F ′, R′,→R′).

5 Alternatively, instead of transformation also encoding, embedding or simulation are
used in the literature.

6 Actually, this is an abuse of notation. By writing →R′ we simply want to cover the
case, too, where the rewrite relation induced by R′ is somehow restricted.

7 The notion reachable term stems from [6]. In [2], term of interest was used instead.
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Next, for a given CTRS of the respective class, the transformation does not
only yield a transformed signature and rewrite system, but also an initialization
mapping φ and a backtranslation ψ. For practical reasons, here the need for
requirement (2) is obvious.

Requirement (1) actually is a precondition for (2): When starting with a finite
system, we clearly don’t want to end up with an infinite one after transforma-
tion which usually would lead to non-computability and undecidability problems.
Without (1), the ideal and natural candidate for the transformed unconditional
system would be R′ = (F , R′) where R′ =

⋃
i≥0 Ri with Ri as in Definition 1

(over the same signature), and with φ and ψ the identity function. However,
then in general R′ would be infinite and its rewrite relation undecidable! Actu-
ally, from a logical point of view this choice of R′ would be ideal, since virtually
all typical problems with transformations (like unsoundness phenomena) would
simply disappear, because the rewrite relations (of the original and the trans-
formed system) are exactly the same in this case. Yet, for the mentioned reasons,
this kind of transformation is practically useless.

Since in general the transformation may work on a modified or extended syn-
tax, the original terms possibly need to be translated (via φ) before computation
starts. Hence, φ should be total and also injective (3), since one clearly wants
to be able to distinguish different original terms also after transformation. The
other way round is more subtle. Namely, what should one be able to infer from
derivations in the transformed system, in terms of the original one? First of
all, the backtranslation ψ need not necessarily be total, because there may be
terms in T ′ which do not correspond to intermediate results of computations in
the transformed system. For such garbage terms nothing should be required. In
particular, there need not exist corresponding original terms for them. However,
for every reachable term in the transformed system we do require that there
exists indeed some original term to which the former corresponds (4). In a sense,
this condition is quite strong.8 Yet, on an abstract level in general we do not
know how the treatment of conditions (of R) in R′ actually works. The intuition
behind (4) is that ψ should deliver those “original parts” of an intermediate
result t′ ∈ T ′ which can obviously be obtained by translating back (i.e., which
directly correspond to original syntax). For the other “conditional parts” which
correspond to started attempts of applying conditional rules, ψ should go back
to the “beginning” of this attempt and recursively only translate back (condi-
tional) rule applications that have been entirely completed. Since the former
aspect requires solving reachability problems which are undecidable in general,
due to (2) reasonable computable versions of ψ can only approximate “precise
backtranslations”. Injectivity of ψ would be too strong a requirement, because
typically there exist many terms in T ′ corresponding in a natural way to a single
original term. For initialized original terms φ(s), s ∈ T , it should be obvious and

8 In this sense, (4) is perhaps the most debatable requirement in our abstract definition
of transformation. Though this definition covers all the major approaches from the
literature, it is conceivable that there exist other transformational approaches for
which a step-by-step backtranslation need not make sense.
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intuitive that via ψ we should get back the original term s (5), simply because
the initialization φ is the standard or canonical way of translating original terms
into the transformed setting.

Based on Definition 2 we will now define various important properties of trans-
formations that are crucial not only in theory, but also in practical applications.
Note that the resulting terminology differs from the existing literature.

Definition 3 (Properties of transformations). Let T be a transformation
from a class of CTRSs into the class of TRSs according to Definition 2 and let
R = (F , R) range over the former class of CTRSs. We define (two versions of)
soundness and completeness properties relating (properties P of) the original and
the transformed system (the rectangular brackets indicate the second versions; P
may be e.g. confluence or termination):

(a) T is said to be sound (for reduction) (or simulation sound) [w.r.t. reachable
terms] if for every R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ) we have:
∀s, t ∈ T : φ(s) →∗

R′ φ(t) =⇒ s →∗
R t [∀s′, t′ ∈ T ′

r : s′ →∗
R′ t′ =⇒ ψ(s′) →∗

R
ψ(t′))].

(b) T is said to be complete (for reduction) (or simulation complete) [w.r.t.
reachable terms] if for every R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ)
we have: ∀s, t ∈ T : s →∗

R t =⇒ φ(s) →∗
R′ φ(t) [∀s′ ∈ T ′

r, t ∈ T : ψ(s′) →∗
R

t =⇒ ∃t′ ∈ T ′
r : s′ →∗

R′ t′, ψ(t′) = t ].
(c) T is said to be sound for convertibility [w.r.t. reachable terms] if for every

R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ) we have: ∀s, t ∈ T : φ(s) ↔∗
R′

φ(t) =⇒ s ↔∗
R t [∀s′, t′ ∈ T ′

r : s′ ↔∗
R′ t′ =⇒ ψ(s′) ↔∗

R ψ(t′)].
(d) T is said to be sound for preserving normal forms [w.r.t. reachable terms] if

for every R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ) we have: ∀s, t ∈
T : φ(s) →∗

R′ φ(t) ∈ NF(R′) =⇒ t ∈ NF(R) [∀s′ ∈ T ′
r : s′ →∗

R′ t′ ∈
NF(R′) =⇒ ψ(t′) ∈ NF(R)9].

(e) T is said to be sound for P [w.r.t. reachable terms] if P(R′) implies P(R)
[if P(R′) on reachable terms implies P(R)].

(f) T is said to be complete for P [w.r.t. reachable terms] if P(R) implies P(R′)
[on reachable terms].

The above preservation properties of T are “localized” for particular R, R′ and
T in the obvious way.10

Discussion of terminology: Let us briefly discuss some aspects of these defi-
nitions. First, in general the two variants of “T sound / complete for P” and “T
sound / complete for P w.r.t. reachable terms” are not equivalent. We will see
an example below. One main goal for the design of any transformation should be
soundness for reduction. Technically, the stronger soundness for reduction w.r.t.
reachable terms may be preferable due to proof-technical reasons. Concerning
9 This is equivalent to: ∀s ∈ T ∀t′ ∈ T ′ : φ(s) →∗

R′ t′ ∈ NF(R′) =⇒ ψ(t′) ∈ NF(R).
10 Observe that, regarding termination, in practice one is typically interested in slightly

different preservation properties, namely of the shape “R operationally terminating
(on s) if (only if, iff) R′ terminating (on φ(s))”.
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the computation of normal forms, soundness for preserving normal forms is in
general strictly weaker than soundness for preserving normal forms w.r.t. reach-
able terms, because it is unrealistic to expect that the (or a) normal form of φ(s)
(for s ∈ T ) has the shape φ(t) (for some t ∈ T ). Hence, in practice we need
here the latter notion. It is a specialized version of soundness for reduction, but
strengthened by the requirement that the property of being a normal form is
preserved backward.

Now, which properties of a transformation T would one expect to have for
a computationally feasible simulation of a given system R. Assuming that R
is confluent (a) and operationally terminating (b) (or, equivalently, decreasing,
if we assume only one condition per rule), computing the final unique result
t ∈ NF(R) for some initial s ∈ T could be done via R′ as follows: Initialize
s into φ(s), normalize φ(s) in R′ yielding some t′, and finally translate back
into ψ(t′). For this to work properly, one needs (c) completeness for termination
w.r.t. reachable terms, (d) soundness for preserving normal forms w.r.t. reach-
able terms, and (e) soundness for reduction w.r.t. reachable terms. Then we get
φ(s) →∗

R′ u′ ∈ NF(R′) for some u′ by (b) and (c). Then, by (d) and (e) we
obtain s →∗

R ψ(u′) ∈ NF(R). This together with s →∗
R t ∈ NF(R) and (a)

implies ψ(u′) = t, i.e., the desired final result.
In fact, it is not difficult to view most transformations from the literature, in

particular [12], [2] and [6], as instances of Definition 2 above (with corresponding
φ and ψ), together with the appropriately adapted terminology according to
Definition 3. Due to lack of space, we refrain from describing this in detail. Let
us instead briefly discuss a few aspects of unsoundness.

3.3 On-Unsoundness Phenomena

All transformation approaches that do not strongly restrict rewriting in
the transformed system (like [10, 14, 16, 17]) such that the simulation of
conditional rule application corresponds very closely to what is done in the orig-
inal CTRS, exhibit in general unsoundness phenomena. More precisely, sound-
ness for reduction (simulation soundness) is violated in general. This has been
shown for unravelings by Marchiori in the technical report version [11] of [12]
via a tricky counterexample. We present here a slightly simplified variant of this
counterexample.11

Example 1 (unsoundness (for reduction) in general). The normal 1-CTRS R
consisting of the rules a → c, a → d, b → c, b → d, c → e, c → k, d →
k, h(x, x) → g(x, x, f(d)), g(d, x, x) → A, f(x) → x ⇐ x →∗ e is unraveled ac-
cording to [12] into R′ which is R with the conditional rule replaced by f(x) →
U(x, x) and U(e, x) → x. In R′ we have the following derivation between origi-
nal terms: h(f(a), f(b)) →∗

R′ h(U(c, d), U(c, d)) → g(U(c, d), U(c, d), f(d)) →∗
R′

g(d, U(k, k), U(k, k)) →R′ A. In the original system, however, h(f(a), f(b)) →∗
R

A does not hold as is easily seen!
11 Compared to our version, [11, Example 4.3] has two more rules and two more

constants.
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Note that Example 1 also constitutes a counterexample to soundness (in general)
for most other transformation approaches including [2, 6]. We will not go into
details about sufficient conditions that nevertheless ensure soundness for partic-
ular transformations (some of them are well-known to exist, cf. e.g. [11], [15],
[2], [6]). Instead, let us ask – concerning our proposed terminology – whether
soundness w.r.t reachable terms is strictly stronger than ordinary soundness. In
fact, the answer is Yes, again for most approaches!

Example 2 (soundness is weaker than soundness w.r.t. reachable terms). Con-
sider the normal 1-CTRS R = {a → b, a → c, f(x) → x ⇐ x →∗ c} that, via
[2], is transformed into R′ = {a → b, a → c, f ′(x,⊥) → f ′(x, 〈x〉), f ′(x, 〈c〉) →
x}. In R′ we have f ′(a,⊥) →R′ f ′(a, 〈a〉) →∗

R′ f ′(b, 〈c〉) → b. However, back-
translation of the last two reachable terms here yields ψ(f ′(b, 〈c〉)) = f(b) and
ψ(b) = b. Yet, in R, we clearly do not have f(b) →∗

R b. Hence the transforma-
tion is not sound w.r.t. reachable terms. Note, however, that we do not obtain
ordinary unsoundness here, because φ(f(a)) = f ′(a,⊥) →∗

R′ φ(b) = b implies
indeed f(a) →∗

R b.

Furthermore let us just mention that unravelings are in general also unsound for
convertibility (a counterexample is obtained by extending Example 1 above.

And finally, we observe that some transformations in the literature (e.g. [4] and
the technical report version [11] of [12]) are inherently unsound, because they do
not transmit all variable bindings in the encoding process (in the introduction
rule). Counterexamples for these cases can easily be constructed by adding a
non-left-linear rule.

4 The New Transformation

4.1 Motivation, Goal and Basic Idea

Our transformation will be based on the approach of [2]. The transformation in
[2] is complete, sound w.r.t. reachable terms and sound for preserving normal
forms w.r.t. reachable terms for “constructor-based” (normal 1-)CTRSs that
are left-linear and confluent. However, for other CTRSs it may be unsound or
incomplete for confluence.

Example 3 (Incompleteness for confluence cf. [2, Example 4]). Consider the con-
fluent CTRS R = {g(s(x)) → g(x) , f(g(x)) → x ⇐ x →∗ 0}. The
transformation of [2] returns the TRS R′ = {g(s(x)) → g(x), f ′(g(x),⊥) →
f ′(g(x), 〈x〉), f ′(g(x), 〈0〉)→x}. InR′ we have the derivation f ′(g(s(0),⊥)

(1)−→R′

f ′(g(s(0), 〈s(0)〉) (2)−→R′ f ′(g(0), 〈s(0)〉). The latter term is irreducible and does
not rewrite to 0 although f(g(0)) →R 0. f ′(g(s(0)),⊥) corresponds to f(g(s(0)))
in R that is matched by the lhs of the conditional rule l with the matcher
τ = {x �→ s(0)}. After introducing the introduction step (1) the unconditional
g-rule is applied to the g-subterm (2). f ′(g(0), 〈s(0)〉) corresponds to f(g(0)) in
the original CTRS that is matched by l with the matcher σ = {x �→ 0}. Since
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there are no derivations xτ →∗
R xσ (x ∈ Vars(l)) the conditional argument is

“outdated” and “inconsistent” with the original argument.

Such inconsistencies may block further derivations as in Example 3 or lead to
unsound derivations as in [2, Example 6]. We will refer to derivations that re-
produce a term that is matched by the lhs of a conditional rule as being pattern
preserving. Our goal is to provide a transformation that conservatively extends
the transformation of [2] and does not require explicit propagation of reset in-
formation such that for confluent normal 1-CTRSs no explicit backtracking is
needed. This means that in particular “critical” pattern preserving derivations
are dealt with correctly.

In the derivation of Example 3, the unconditional rule g(s(x)) → g(x), that
is applied in (2) and leads to the “outdated” conditional argument, should elim-
inate (and re-initialize) the conditional argument that has been introduced in
(1). Yet the conditional argument is “out of reach” for the unconditional rule.
By encoding the conditional argument in the g-subterm of the conditional rule,
however, we can eliminate the conditional argument in the unconditional g-rule.
This way R is transformed into R′ = {g′(s(x), z) → g′(x,⊥), f(g′(x,⊥)) →
f(g′(x, 〈x〉)), f(g′(x, 〈0〉)) → x}. Now the conditional argument can be reintro-
duced: f(g′(s(0),⊥)) → f(g′(s(0), 〈s(0)〉)) → f(g′(0,⊥)) →∗ 0.

Following this example our strategy is to encode the conditions in all subterms
of the lhs of a conditional rule that otherwise would give rise to “inconsisten-
cies” of conditional and original arguments. To avoid confusion we will refer to
subterms that directly (i.e., as additional argument of the root function symbol)
contain a conditional argument as subterms encoding a conditional argument.

In certain conditional rules several subterms subterm of the lhs may lead to
pattern preserving derivations. Then we have to encode the conditions multiple
times:

Example 4 (Multiple conditional arguments). Consider the CTRS

R =

{
g(s(x)) → g(x) h(s(x)) → h(x)

f(g(x), h(y)) → i(x, y) ⇐ x →∗ 0, y →∗ 0

}

Both subterms g(x) and h(y) of the lhs of the conditional rule lead to a critical
pattern preserving derivation. Therefore we need to add a conditional argument
to the g-subterm and the h-subterm.

Whenever a conditional argument was eliminated and reinitialized, hence has
become ⊥, we have to reintroduce both conditional arguments via an introduc-
tion step. Therefore we need one introduction rule for each conditional argument.
Only if both conditional arguments “satisfy” the conditions we may reproduce
the corresponding rhs. Hence the transformed TRS R′ here should be

R′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g′(s(x), z) → g′(x,⊥) h′(s(x), z) → h′(x,⊥)

f(g′(x,⊥), h′(y, z2)) → f(g′(x, 〈x, y〉), h′(y, 〈x, y〉))
f(g′(x, z1), h′(y,⊥)) → f(g′(x, 〈x, y〉), h′(y, 〈x, y〉))

f(g′(x, 〈0, 0〉, z2), h′(y, z1, 〈0, 0〉)) → i(x, y)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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Consider a conditional rule ρ : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn of a CTRS
R. Subterms where possibly “critical” pattern preserving derivations start are
always (instances of) non-variable subterms l|p (p ∈ O(l)) of l, because inconsis-
tencies of conditional arguments and original arguments in variables can be re-
solved by rewrite steps in the variable bindings (for confluent CTRSs). However,
in order to detect all possibilities of overlaps (also after rewriting in ‘variable
parts’), we must linearize l into llin. Then we can identify possible lhs’s that
overlap into llin by systematic unification of all non-variable subterms of l with
lhs’s of R and encode the conditions in such subterms of l.

It is not necessary to encode conditions in all subterms of llin that are unifiable
with some lhs. If a subterm does not contain any variables that occur in the
conditions, rewrite steps in this subterm do not influence the satisfiability of the
conditions and therefore it is not necessary to introduce the conditions here. Yet,
we must consider the case that (only) after some rewrite steps in such subterms
a rule may become applicable that did not overlap into llin initially.

Example 5 (Iterative abstraction of overlapping subterms). Consider the CTRS

R =

{
a → b g(s(x), k(b)) → g(x, h(a))

h(b) → k(b) f(g(x, h(a))) → x ⇐ x →∗ 0

}

The only subterm of the linearized lhs of the conditional rule llin into which an
lhs of some rule overlaps is the constant a which does not contain any variable
of the condition. Since there are no other overlaps, we would just encode the
conditions in the root symbol of the conditional rule:

R′ =

{
a → b g(s(x), k(b)) → g(x, h(a)) h(b) → k(b)

f ′(g(x, h(a)),⊥) → f ′(g(x, h(a)), 〈x〉) f ′(g(x, h(a)), 〈s(0)〉) → x

}

In R′ we have the unsound derivation

f ′(g(s(0), h(a)),⊥) → f ′(g(s(0), h(a)), 〈s(0)〉) → f ′(g(s(0), h(b)), 〈s(0)〉)
→ f ′(g(s(0), k(b)), 〈s(0)〉) → f ′(g(0, h(a)), 〈s(0)〉) → 0 .

Although (the lhs of) the g-rule does not overlap into llin, it is applicable af-
ter some rewrite steps. Therefore, we abstract all non-variable subterms of llin,
that are unifiable with some lhs of R, into fresh variables iteratively and try
to unify the non-variable subterms of the resulting terms with lhs’s of R. In
the example, the a-rule overlaps into l0 = f(g(x, h(a))) so that we abstract it
into l1 = f(g(x, h(y))). Because of the overlap with the h-rule this term then is
abstracted into l2 = f(g(x, z)). Now the g-rule overlaps into the g-subterm of
l2 that contains the variable x that also occurs in the conditions. We therefore
encode a conditional argument in the g-subterm instead of f and obtain the
transformed TRS

R′ =

{
a → b g′(s(x), k(b), z) → g′(x, h(a),⊥) h(b) → k(b)

f(g′(x, h(a),⊥)) → f(g′(x, h(a), 〈x〉)) f(g′(x, h(a), 〈0〉)) → x

}
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In CTRSs that give rise to multiple conditional arguments, it may be possible
to “recombine” them in an inconsistent way, if we do not iterate the sketched
construction:

Example 6 (Recombination of conditional arguments). Consider the CTRS

R =

⎧
⎪⎨

⎪⎩

i(0, s(0)) → 0 i(s(0), 0) → 0 f(s(x), y) → s(x)
f(x, s(y)) → s(y) g(s(x)) → g(x) h(s(x)) → h(x)

f(s(g(x)), s(h(y))) → i(x, y) ⇐ i(x, y) →∗ 0

⎫
⎪⎬

⎪⎭

The g-rule and the h-rule overlap into the lhs of the conditional rule, therefore
we would encode the condition in both subterms:

R′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i(0, s(0)) → 0 i(s(0), 0) → 0 f(s(x), y) → s(x)
f(x, s(y)) → s(y) g′(s(x), z) → g′(x,⊥) h′(s(x), z) → h′(x,⊥)

f(s(g′(x,⊥)), s(h′(y, z2))) → f(s(g′(x, 〈i(x, y)〉)), s(h′(y, 〈i(x, y)〉)))
f(s(g′(x, z1)), s(h′(y,⊥))) → f(s(g′(x, 〈i(x, y)〉)), s(h′(y, 〈i(x, y)〉)))

f(s(g′(x, 〈0〉)), s(h′(y, 〈0〉))) → i(x, y)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

In R′, we now have the following derivation:

f(f(s(g′(0,⊥)), s(h′(s(0),⊥))), f(s(g′(s(0),⊥)), s(h′(0,⊥))))
→∗ f(f(s(g′(0, t1)), s(h′(s(0), t1))), f(s(g′(s(0), t2)), s(h′(0, t2))))
→∗ f(s(g′(0, t1)), s(h′(0, t2))) →∗ f(s(g′(0, 〈0〉)), s(h′(0, 〈0〉))) → i(0, 0)

with t1 = 〈i(0, s(0))〉 and t2 = 〈i(s(0), 0)〉, whereas in R we have

f(f(s(g(0)), s(h(s(0)))), f(s(g(s(0))), s(h(0)))) �→∗
R i(0, 0) .

In order to avoid that “fragments” of introduction steps can be inconsistently
rearranged, we will iteratively abstract (in parallel) all non-variable subterms
of the lhs of the conditional rule, that (after transformation) contain condi-
tional arguments, into new variables. This way the lhs of the conditional rule
f(s(g(x), h(y))) is abstracted into f(s(z1), s(z2)). But then we have an overlap
with the unconditional f -rules at root position. Hence, we will also encode the
conditional argument at root position. Thus the above problem disappears.

4.2 Definition of the Transformation

In our transformation we iteratively abstract “overlapping” subterms of lhs’s of
conditional rules into new variables and append conditional arguments to such
subterms provided they contain variables that also occur in the conditions. Ad-
ditionally we have to take into account that also rules into which the lhs of a
conditional rule overlaps may lead to inconsistencies. Before defining our trans-
formation we define some mappings to increase (decrease) the arity of function
symbols:
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Definition 4 (Initialization mapping and backtranslation)

φ⊥
f (t) =

⎧
⎪⎨

⎪⎩

f ′(φ⊥
f (t1), . . . , φ⊥

f (tn),⊥) if t = f(t1, . . . , tn)
g(φ⊥

f (t1), . . . , φ⊥
f (tm)) if t = g(t1, . . . , tm), g �= f

t if t is a variable

ψf (t′) =

⎧
⎪⎨

⎪⎩

f(ψf (t1), . . . , ψf (tn)) if t′ = f ′(t1, . . . , tn, u1)
g(ψf (t1), . . . , ψf (tm)) if t′ = g(t1, . . . , tm), g �= f ′

t′ if t′ is a variable

φX
f (t) =

⎧
⎪⎨

⎪⎩

f ′(φX1
f (t1), . . . , φXn

f (tn), z) if t = f(t1, . . . , tn)
g(φX1

f (t1), . . . , φXm

f (tm)) if t = g(t1, . . . , tm), g �= f

t if t is a variable

where X is an infinite set of new variables, z ∈ X and Xi (i ≥ 1) are infinite
disjoint subsets of X such that z �∈ Xi. We abbreviate multiple applications of
these mappings: φ⊥

f1,...,fn
(t) = φ⊥

f2,...,fn
(φ⊥

f1
(t)), ψf1,...,fn(t) = ψf2,...,fn(ψf1(t))

and φX
f1,...,fn

(t) = φ
X\Vars(φX

f1
(t))

f2,...,fn
(φX

f1
(t)).

By abuse of notation we assume in the following that, if φX is used multiple
times in a term, then always only mutually distinct variables are inserted.

Definition 5 (Definition of the transformation T ). Let R be a normal 1-
CTRS so that the rules are arranged in some arbitrary but fixed total order <.
Let ρ : lρ → rρ ⇐ sρ,1 →∗ tρ,1, . . . , sρ,nρ →∗ tρ,nρ be a conditional rule of R.
Let li and Pi be the following

l0 = llinρ li+1 = li[z1]q1 . . . [zm]qm

P0 = ∅ Pi+1 = Pi ∪ {q ∈ Q | Vars(lρ|q) ∩ Vars(sρ,1, . . . , sρ,nρ) �= ∅}

where Q = {q ∈ O(li) | liσ = liσ[lρ′σ]q, ρ′ ∈ R, ρ′ �= ρ ∨ q �= ε} are all
positions of li that are unifiable with some lhs lρ′ (except ρ′ = ρ at root position),
{q1, . . . , qm} = Q = {q ∈ Q | �q′ ∈ Q : q < q′} are the innermost positions of Q
and z1, . . . , zm are fresh new variables.

Let lρ = lj be the first lj such that lj = lj+1. Then the set of conditional
positions Pρ is

Pρ =

⎧
⎪⎨

⎪⎩

Pj ∪ {ε} if ∃ρ′, lρ′σ = lρ′σ[lρσ]q with q ∈ O(lρ′) and ρ′ �= ρ ∨ q �= ε,
or Pj = ∅ and ρ is a conditional rule

Pj otherwise

Let {pρ,1, . . . , pρ,kρ} = Pρ and fρ,j = root(l|pρ,j ). Then the position of the con-
ditional argument encoded in lρ|pρ,j is

iρ,j = arity(fρ,j) + 1 + |{〈ρ′, j′〉 | 〈ρ′, j′〉 <lex 〈ρ, j〉, fρ′,j′ = fρ,j}|
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Let R = {ρ1, . . . , ρm}. The initialization mapping φ is φ⊥
fρ1,1,...,fρm,kρm

, φX is

φX
fρ1,1,...,fρm,kρm

and the backtranslation ψ is ψfρ1,1,...,fρm,kρm
.

A rule ρ ∈ R is transformed into the rules

ρ′ρ,j : φX (lρ)[⊥]pρ,j .iρ,j → φX (lρ)[〈φ⊥(sρ,1), . . . , φ⊥(sρ,nρ)〉]pρ,1.iρ,1,...,pρ,kρ .iρ,kρ

ρ′ρ,kρ+1 : φX (lρ)[〈φX (tρ,1), . . . , φX (tρ,nρ)〉]pρ,1.iρ,1,...,pρ,kρ .iρ,kρ
→ φ⊥(rρ)

ρ′ρ,1, . . . , ρ
′
ρ,kρ

are the introduction rules and ρ′kρ+1 is the elimination rule of ρ.
The transformed TRS T (R) then is (R′, φ, ψ) where R′ = {ρ′ρ0,1, . . . , ρ

′
ρm,kρm+1}.

In constructor-based normal 1-CTRSs, Pρ is {ε} for all conditional rules ρ so that
in this case our transformation coincides with the transformation of [2], except
for the additional wrapping 〈. . .〉 of the conditional arguments. In unconditional
rules ρ, Pρ = ∅.

The following example of [6] can be interpreted as a “self-sorting” list structure:

Example 7 (Sorting CTRS of [6]). Consider the CTRS

R =

{
0 ≤ y → tt s(x) ≤ 0 → ff s(x) ≤ s(y) → x ≤ y

f(x, f(y, ys)) → f(y, f(x, ys)) ⇐ x ≤ y →∗ ff

}

The (linear) lhs of the conditional rule l0 = f(x, f(y, ys)). The conditional rule
overlaps into itself at position q = 2 such that P1 = {2} and l1 = f(x, z).
Now only the conditional rule itself overlaps into l1 at root position, therefore
l = l1 = f(x, z). Since l overlaps into the lhs of the conditional rule at some
non-root position Pρ = {2} ∪ {ε}. For both positions the root symbol is f and
the arity of f is increased by 2. The transformed TRS then is

R′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ y → tt s(x) ≤ 0 → ff s(x) ≤ s(y) → x ≤ y

f(x, f(y, ys, z1, z2), z3,⊥) → f(x, f(y, ys, 〈x ≤ y〉, z2), z3, 〈x ≤ y〉)
f(x, f(y, ys,⊥, z2), z3, z4) → f(x, f(y, ys, 〈x ≤ y〉, z2), z3, 〈x ≤ y〉)

f(x, f(y, ys, 〈ff 〉, z2), z3, 〈ff 〉) → f(y, f(x, ys,⊥,⊥),⊥,⊥)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

4.3 Properties of the Transformation

In the following we assume that R always denotes a normal 1-CTRS, R′ its
transformed TRS using our transformation T and ρ a conditional rule with lhs
l that leads to k conditional positions p1.i1, . . . , pk.ik.

The following result contains a selection of syntactical preservation properties
of our transformation. Properties (2) - (5) are not satisfied by the transformation
of [6].

Lemma 1 (Syntactic properties)

(1) The transformation is sound and complete for being left-linear.
(2) The transformation is sound and complete for being non-collapsing.
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(3) If R is non-overlapping, then R′ is weakly non-overlapping.
(4) The transformation is sound and complete for being an overlay system.
(5) If R is orthogonal, R′ is weakly orthogonal.

In order to show that our transformation has nice preservation properties for cer-
tain CTRSs, we have to guarantee that inconsistencies of conditional arguments
and original arguments do not occur or are not “critical”.

In a derivation D starting from some initialized term every conditional argu-
ment originates from an introduction step. A conditional argument originating
from a certain introduction step may be viewed as being inconsistent if the
redex of the introduction step is modified at some original argument that is
not inside the matcher of the introduction step (rewrite steps in the matcher
can be reconstructed in the conditional arguments, at least directly after their
introduction). The redex of the “modifying” rewrite step overlaps with the re-
dex of the introduction step so that, according to our transformation, there is
(at least) one conditional argument inside the matcher of the “modifying” redex
(unless the rewrite step is not potentially dangerous, i.e., it does not modify any
variable that occurs in the conditions or it is an introduction step). We will only
consider those conditional arguments as being inconsistent, that are inside such
a redex, and refer to the overlapping rewrite step as the rewrite step in which
the conditional arguments become inconsistent.

Definition 6 (Inconsistent conditional arguments). Let D be a derivation
φ(s) →∗ u0 →q0,ρ′

0
u1 →q1,ρ′

1
· · · (s ∈ T ) in R′. Let ρ′0 be an introduction rule

of ρ and un|q.ij be a conditional argument that is a descendant of u1|q0.pj .ij . The
conditional argument in un|q.ij is inconsistent w.r.t. D, if there is an elimination
step um = um[l′mσ]qm →qm,ρ′

m
um[r′mσ]qm = um+1 in D such that um|q′

m.pj .ij is
a descendant of u1|q0.pj .ij and an ancestor of un|q.ij , and the elimination step
“overlaps with” the descendant um|q′

m
of u0|q0 above pj, i.e., qm < q′m.pj and

there is no q′ ∈ OX (l′m) such that qm.q′ ≤ q′m. A conditional argument that is
not inconsistent (w.r.t. D) is consistent (w.r.t. D).

Lemma 2 (Iterative abstraction, inconsistent conditional arguments)
Let D : φ(s) →∗

R′ s′ →R′ t′ (s ∈ T ) be a derivation in R′ such that root(s′|q) =
root(φ(l|pj )) and s′|q.ij �= ⊥ for some j ∈ {1, . . . , k}. If the conditional argument
s′|q.ij becomes inconsistent w.r.t. D in the last rewrite step s′ → t′ of D, then
there is a q′ ∈ O(s′) such that q′.pj = q and in the iteration of Definition 5 for
ρ we obtain some li that is unifiable with ψ(s′|q′), and there is some conditional
position p.i ∈ {p1.i1, . . . , pk.ik} of ρ such that p < pj.

If inconsistent conditional arguments “block” or “are used in” elimination steps,
we may obtain incompleteness for confluence or unsoundness. We will refer to
those CTRSs where this cannot happen as consistently transformable ones.

Definition 7 (Consistently transformable).R is consistently transformable,
if for every derivation D : φ(s) →∗

R′ s′ (s ∈ T ) such that ψ(s′|q) = lσ, either
s′|q.pj .ij = ⊥ for some j or s′|q.pj .ij is consistent w.r.t. D for all j ∈ {1, . . . , k}.
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Unfortunately, not all CTRSs are consistently transformable:

Example 8 (Inconsistent conditional arguments in collapsing systems). Consider
the CTRS

R =

{
i(a, a) → a g(f(x, b)) → x

f(g(x), y) → h(x) ⇐ i(x, y) →∗ a

}

We obtain P2 = {ε, 1} and hence the transformed TRS is

R′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i(a, a) → a g′(f ′(x, b, z1), z2) → x

f ′(g′(x,⊥), y, z2) → f ′(g′(x, 〈i(x, y)〉), y, 〈i(x, y)〉)
f ′(g′(x, z1), y,⊥) → f ′(g′(x, 〈i(x, y)〉), y, 〈i(x, y)〉)

f ′(g′(x, 〈a〉), y, 〈a〉) → h(x)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

R has two infeasible conditional critical pairs and is therefore confluent (it is
also decreasing). Yet, in R′ we obtain D : f ′(g′(f ′(g′(a,⊥), b,⊥),⊥), a,⊥) →∗

f ′(g′(f ′(g′(a, t1), b, t1), t2), a, t2) → f ′(g′(a, t1), t2) where t1 = 〈i(a, b)〉 and t2 =
〈i(f ′(g′(a,⊥), b,⊥), a)〉. The inner conditional argument is inconsistent w.r.t. D
while the outer conditional argument is consistent. Usually, we would expect that
the inner conditional argument is set to ⊥, but since the g-rule is collapsing, no
conditional argument is set to ⊥ in its rhs. Hence, the inconsistent (w.r.t. D)
conditional argument blocks further reductions.

Lemma 3 (Inconsistent conditional arguments and collapsing rules)
Let D : φ(s) →∗

R′ s′ be a derivation in R′ such that ψ(s′|q) = lσ and s′|q.pj .ij �= ⊥
for all j ∈ {1, . . . , k}. If some conditional argument s′|q.pj .ij is inconsistent w.r.t.
D, then R is collapsing.

Theorem 1 (Sufficient syntactic conditions for consistent transforma-
bility (a)). R is consistently transformable, if R is non-collapsing or all ρ ∈ R
only lead to pairwise parallel subterms encoding conditional arguments.

Theorem 2 (Sufficient syntactic conditions for consistent transforma-
bility (b)). R is consistently transformable, if it is non-collapsing, a constructor
system, a system where all left-hand sides of conditional rules are constructor
terms, or a left-linear overlay system.

Theorem 3 (Soundness w.r.t. reachable terms). If R is consistently trans-
formable and confluent, then for all reachable s′, t′ ∈ T ′

r s′ →∗
R′ t′ ⇒ ψ(s′) →∗

R
ψ(t′).

Theorem 4 (Completeness w.r.t. reachable terms). If R is consistently
transformable, left-linear and confluent, then for all s′ ∈ T ′

r , t ∈ T such that
ψ(s′) →R t there is a t′ ∈ T ′

r with s′ →+
R′ t′ and ψ(t′) = t.

Theorem 5 (Soundness for preserving normal forms w.r.t. reachable
terms). If R is consistently transformable, left-linear and confluent, then R′ is
sound for preserving normal forms w.r.t. reachable terms.
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Theorem 6 (Preservation of termination). If R is consistently transform-
able, decreasing and confluent, then R′ is terminating on reachable terms.

Observe that in Theorem 4 and, consequently, also in Theorem 5 we have left-
linearity as additional assumption! The reason is that non-left-linear rules may
lead to an incomplete (w.r.t. reachable terms) behaviour of our transformation.

Example 9 (Non-left-linearity may lead to incompleteness w.r.t. reachable terms)
Consider the CTRS R = {g(0) → 0, f(x, x) → a, f(g(x), y) → a ⇐ x →∗

0, y →∗ 0} that is transformed into R′ consisting of

g′(0, z) → 0 f ′(x, x, z) → a f ′(g′(x,⊥), y, z2) → f ′(g′(x, 〈x, y〉), y, 〈x, y〉)
f ′(g′(x, z1), y,⊥) → f ′(g′(x, 〈x, y〉), y, 〈x, y〉) f ′(g′(x, 〈0, 0〉), y, 〈0, 0〉) → a

For s = f(g(a), g(a)) we have inR just one normalizing step f(g(a), g(a)) →R a.
In R′ we get the corresponding reduction φ(s) = f ′(g′(a,⊥), g′(a,⊥),⊥) →R′ a,
but also φ(s) →R′ f ′(g′(a, 〈a, g′(a,⊥)〉), g′(a,⊥), 〈a, g′(a,⊥)〉) where the latter
term does not rewrite to a and is even irreducible w.r.t. R′. Hence, in this
example the transformation is neither complete w.r.t. reachable terms nor sound
for preserving normal forms w.r.t. reachable terms.

Our transformation satisfies many properties only for consistently transformable
CTRSs. Although it is undecidable, whether a CTRS is consistently trans-
formable, we can show for large sub-classes of CTRSs that they are consistently
transformable, cf. e.g. Theorem 2. According to Theorem 1 every system, that
is not consistently transformable, must in particular be collapsing. For such
CTRSs we will now show how to handle them via an additional preprocessing
transformation that makes all rules non-collapsing, but retains a one-to-one-
correspondence between rewrite steps.

4.4 Transformation for Non-consistently Transformable CTRSs

For the fully general case, consider a collapsing rule l → x ⇐ c of a CTRS R.
An intuitive method to transformR into a non-collapsing CTRS is to wrap x into
a new symbol C: l → C(x) ⇐ c. In order to retain a one-to-one correspondence
of rewrite steps, it is necessary to wrap all non-variable terms in C consistently.

Definition 8 (Transformation into non-collapsing CTRSs TC) Let R be
some CTRS with signature F , C �∈ F be some new unary function symbol, ρ be
a rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R and let φ′

ρ be the auxiliary mapping

φ′
ρ(t) =

⎧
⎪⎨

⎪⎩

C(f(φ′
ρ(t1), . . . , φ

′
ρ(tn))) if t = f(t1, . . . , tn)

C(r) if t = r and r is a variable
x if t = x and x �= r

Then the transformed rule ρC of ρ is

φ′
ρ(l) → φ′

ρ(r) ⇐ φ′
ρ(s1) →∗ φ′

ρ(t1), . . . , φ
′
ρ(sn) →∗ φ′

ρ(tn)
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The transformed CTRS RC then is RC = {ρC | ρ ∈ R} with signature F ∪ {C}
and the initialization mapping φC and backtranslation ψC are

φC(t) =

{
C(f(φC(t1), . . . , φC(tn))) if t = f(t1, . . . , tn)
C(t) if t is a variable

ψC(t) =

⎧
⎪⎨

⎪⎩

f(ψC(t1), . . . , ψC(tn)) if t = f(t1, . . . , tn)
ψC(t′) if t = C(t′)
t if t is a variable

Using this transformation collapsing rules are replaced by non-collapsing rules
into which all other rules overlap. For reachable terms of TC (these are all φC(s)),
these overlaps are joinable within one step (from both sides).

Definition 9 (Combined transformation T ◦ TC). Let R be a CTRS such
that TC(R) = (RC , φC , ψC) and T (RC) = (R′

C , φ′, ψ′). Then the combined
transformation T ◦ TC is (R′

C , φ′ ◦ φC , ψC ◦ ψ′).

Using this combined transformation, it is easily verified that the “blocking prob-
lem” in Example 8 disappears.12

Theorem 7 (Properties of the combined transformation). Let R be a
normal 1-CTRS such that T ◦ TC(R) = (R′

C , φ, ψ).

(1) If R is confluent, then R′
C is sound w.r.t. reachable terms.

(2) If R is left-linear and confluent, then R′
C is complete w.r.t. reachable terms.

(3) If R is left-linear and confluent, then R′
C is sound for preserving normal

forms w.r.t. reachable terms.
(4) If R is decreasing and confluent, then R′

C is terminating on reachable terms.

5 Experiments, Related Work and Discussion

In our experiments we compared our transformation (T ) with other transforma-
tions, especially the one of [6] (TSR). The “sorting list” of Example 7 is represen-
tative for most of our results. Sorting the descending list f(sn−1(0), f(sn−2(0),
· · · , f(0,nil) · · · )) needs the following number of rewrite steps to obtain the
sorted, irreducible list:

12 As remarked by one of the referees, our construction of introducing separating C-
layers in terms combined with the previous transformation appears to have some
similarity with another complex transformation in [5, 3.4] (based on a different ap-
proach), an early forerunner of [2] and [6]. However, in [5, 3.4] these layers are used
to propagate reset information to outer positions similar to [6].
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no sharing maximal sharing
innermost outermost innermost outermost

n left right left right left right left right
TSR(R) 34 15893 15893 39269 125509 15893 15893 33285 125509

T (R) 27863 27863 34967 46903 14773 14773 9349 19043
TSR(R) 55 62863 62863 166319 820763 62863 62863 140084 820763

T (R) 115335 115335 144538 196955 59895 59895 35144 76537

When using outermost rewriting, TSR requires more rewrite steps, because it
resets conditional arguments “too often”: In T (R) every condition is evaluated
and if it is not satisfied, the conditional arguments is “cached” in terms like
f(0, f(s(0), f(s(s(0)), . . .), 〈tt〉, 〈tt〉),⊥, 〈tt〉). In TSR(R) this term corresponds
to {f(0, f(s(0), f(s(s(0)), . . .), 〈tt〉), 〈tt〉)}. If we exchange two elements at inner
positions, the reset-operator is propagated to outer positions in TSR(R), so that
all conditional arguments are reset and must be reintroduced and reevaluated:
f(0, f(s(0), {. . .}, 〈tt〉), 〈tt〉) →∗ {f(0, f(s(0), f(s(s(0)), . . .),⊥),⊥)}.

Our transformation is rather complex, because we have to iteratively check
terms for unifiability in order to determine the subterms in which we have to
encode conditional arguments. We can approximate these subterms via defined
symbols: For ρ : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn just take Pρ = {p ∈
O(lρ) | root(lρ|p) ∈ D,Vars(lρ|p) ∩ Vars(sρ,1, . . . , sρ,nρ) �= ∅} for encoding. This
approximation clearly yields an “approximation from above”, cf. Definition 5.

In order to transform deterministic CTRSs (DCTRSs) we can use a strategy
that is easily adaptable to other transformations like e.g. [6] or [15]. A deter-
ministic rule is a rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn that may contain extra
variables, yet all extra variables “depend” directly or indirectly on variables in
l: Vars(si) ⊆ Vars(l, t1, . . . , ti−1) and Vars(r) ⊆ Vars(l, t1, . . . , tn). Let w.l.o.g.
the conditions s1 →∗ t1, . . . , sm →∗ tm be those satisfying Vars(s1, . . . , sm) ⊆
Vars(l). By transforming the rule ρ : l → r ⇐ s1 →∗ t1, . . . , sm →∗ tm
we obtain introduction rules ρ′1, . . . , ρ

′
k and an elimination rule ρ′k+1 : l′ → r′

without extra variables. By adding the remaining conditions to the elimination
rule we obtain the deterministic conditional rule l′ → r′ ⇐ φ(sm+1) →∗

φX (tm+1), . . . , φ(sn) →∗ φX (tn) with strictly less conditions than the original
rule. By repeatedly applying the above strategy, we finally obtain an uncondi-
tional TRS. In [13] a similar iterative approach for unravelings is presented.

Regarding future work, we intend to investigate various further aspects of our
transformation, especially whether soundness for left-linear (consistently trans-
formable) normal 1-CTRSs holds, and whether we can somehow get rid of the
left-linearity requirement in Theorems 4, 5 and 7(2)-(3). Moreover we want to ex-
plore the optimizations and refinements sketched above. We also plan to extend
our preliminary practical evaluations and comparison with related approaches.
Another perspective is to analyze possible applications of our approach like con-
ditional narrowing or inversion of rewrite systems ([14]).
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6 Conclusion

We have presented a general framework for analyzing transformations of CTRSs
into TRSs as well as a new approach whose characteristic feature is backtracking-
freeness. It works for left-linear confluent normal 1-CTRSs and extends the ap-
proach of [2] to non-constructor systems. Compared to [6] (which also works for
confluent, but not necessarily left-linear systems) with a “reset”-operator and an
explicit (rule-based) propagation of “reset”-information, our approach directly
incorporates necessary reset information in the transformation.

Acknowledgements. We are grateful to the anonymous referees for their de-
tailed feedback, hints and criticisms. In particular, one of them exhibited ex-
amples (similar to Ex. 8 and 9) that triggered a partial revision of our original
analysis in Section 4.
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thesis, RWTH Aachen (1999)
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Abstract. Research on the semantics of programming languages has
yielded a wide array of notations and methodologies for defining languages
and language features. An important feature many of these notations and
methodologies lack is modularity: the ability to define a language feature
once, insulating it from unrelated changes in other parts of the language,
and allowing it to be reused in other language definitions. This paper intro-
duces ongoing work on modularity features in K, an algebraic, rewriting
logic based formalism for defining language semantics.
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1 Introduction

One important aspect of formalisms for defining the semantics of programming
languages is modularity. Modularity is generally expressed as the ability to add
new language features, or modify existing features, without having to modify
unrelated semantic rules. For instance, when designing a simple expression lan-
guage, one may want to use structural operational semantics (SOS) [29] to define
the semantics of addition:

e1 → e′1
e1 + e2 → e′1 + e2

(EXP-PLUS-L)

e2 → e′2
n1 + e2 → n1 + e′2

(EXP-PLUS-R)

n1 + n2 → n, where n = n1 + n2 (EXP-PLUS)

Further extending the language, one may want to add variables. The standard
way to do this is to define a store, mapping names to values, with rules for binding
values to names (not shown here) and to retrieve the current value of a binding:
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〈x, σ〉→ 〈n, σ〉, where n = σ(x) (VAR-LOOKUP)

With this change to the language, even though the rules for plus do not actu-
ally reference the store they must still be modified to include it as part of the
configuration. As an example, rule EXP-PLUS-L becomes1:

〈e1, σ〉→ 〈e′1, σ〉
〈e1 + e2, σ〉→ 〈e′1 + e2, σ〉

(EXP-PLUS-L)

Similar types of changes to existing rules need to be made to accommodate other
unrelated language features, such as exceptions or function returns. Alternatively,
similar changes may need to be made to add addition expressions to a different
language with a different configuration, even if the different elements of the
configuration are not used in the rules for addition. All these changes are required
because SOS is not modular. Improved support for modularity eliminates the
need to make these changes, offering several advantages:

– Modular definitions of language features allow other parts of a language to
change more easily by allowing existing feature definitions to remain un-
changed in the face of unrelated modifications or additions;

– A modular definition of a language feature can be more easily reused in the
definition of a different language which may be structured much differently;

– Modular definitions are easier to understand, since the rules given for a lan-
guage construct only need to include the information needed by the rule,
instead of including extraneous information used in other parts of the lan-
guage (such as the store in the rules for plus).

For these reasons, improving modularity of language definitions has been a
focus of research across multiple semantic formalisms. One example is modu-
lar structural operational semantics (MSOS) [25, 26], which solves the problem
shown above by leveraging the labels on rule transitions, not normally used in
SOS definitions of programming languages, to encode configuration elements,
with the ability to elide unused parts of the configuration. This is discussed
further with other related work in Section 4.

With a tool supported semantics, modularity can also be expressed as the
ability to package language features into discreet reusable units, which can then
be assembled when defining a language. This form of modularity depends on the
first: it should be possible to plug the same feature into multiple definitions, even
in cases where (unused) parts of the configuration are different. Additionally, it
should be possible to provide clean interfaces to language features and to different
parts of the configuration, something not required in monolithic definitions, or
even in modular definitions written on paper.

1 A more general version of this rule would use σ on the left and σ′ on the right; here,
by using σ on both left and right, we state that expressions do not alter the store,
i.e. they do not have side effects.
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This paper provides a high-level overview of ongoing work on adding modular-
ity features to K [30], an algebraic, rewriting logic based formalism for program-
ming language semantics. This work is focused on both aspects of modularity
mentioned above, allowing the packaging of language features for reuse while
insulating existing features from unrelated changes to the language definition.
Novel aspects of the module system include the use of context transformers, de-
scribed along with K in Section 2; the incorporation of some features, such as
the explicit hiding or requiring of operations and sorts, which are common in
the module systems of programming languages but do not appear to be common
in systems for modular language definition; and the methods used to assemble
the final language and define the shape of the configuration, chosen to support
having multiple distinct semantics for a language and with an eye towards future
improved tool support, including visualization.

The remainder of this paper is organized as follows. First, we provide a brief
overview of term rewriting, equational logic, rewriting logic, and especially K
in Section 2. Next, Section 3 introduces the module system through fragments
of a simple imperative language and illustrates the ability to reuse modules in
language extensions. Section 4 then reviews related work, while in Section 5 we
conclude and discuss future work.

2 Rewriting Logic

This section provides a brief introduction to term rewriting, rewriting logic,
rewriting logic semantics, and K. Term rewriting is a standard computational
model supported by many systems; rewriting logic [18, 19] organizes term rewrit-
ing modulo equations as a complete logic and serves as a foundation for pro-
gramming language semantics using rewriting logic semantics [21, 22]. K [30] is
a rewrite-based method for formally defining computation, here used to provide
formal definitions for programming languages.

2.1 Term Rewriting

Term rewriting is a method of computation that works by progressively changing
(rewriting) a term. This rewriting process is defined by a number of rules –
potentially containing variables – which are each of the form: l → r. A rule can
apply to the entire term being rewritten or to a subterm of the term. First, a
match within the current term is found. This is done by finding a substitution, θ,
from variables to terms such that the left-hand side of the rule, l, matches part
or all of the current term when the variables in l are replaced according to the
substitution. The matched subterm is then replaced by the result of applying
the substitution to the right-hand side of the rule, r. Thus, the part of the
current term matching θ(l) is replaced by θ(r). The rewriting process continues
as long as it is possible to find a subterm, rule, and substitution such that θ(l)
matches the subterm. When no matching subterms are found, the rewriting
process terminates, with the final term being the result of the computation.
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Rewriting, like other methods of computation, can continue forever. There exist
a plethora of term rewriting engines, including ASF+SDF [34], Elan [3], Maude
[6], and OBJ [11]. Rewriting is also a fundamental part of existing languages,
including Tom [2],which integrates rewriting with Java.

2.2 Rewriting Logic

Rewriting logic [18, 19] is a computational logic built upon equational logic which
provides support for concurrency. In equational logic, a number of sorts (types)
and equations are defined. The equations specify which terms are considered to
be equal. All equal terms can then be seen as members of the same equivalence
class of terms, a concept similar to that from the λ calculus with equivalence
classes based on α and β equivalence. Rewriting logic provides rules in addition
to equations, used to transition between equivalence classes of terms. This allows
for concurrency, where different orders of evaluation could lead to non-equivalent
results, such as in the case of data races. The distinction between rules and equa-
tions is crucial for analysis, since terms which are equal according to equational
deduction can all be collapsed into the same analysis state. Rewriting logic is
connected to term rewriting in that the equations and rules of rewriting logic, of
the form l = r and l ⇒ r, respectively, can be transformed into term rewriting
rules by orienting them properly (necessary because equations can be used for
deduction in either direction), transforming both into l → r. This provides a
means of taking a definition in rewriting logic and a term and “executing” it.

2.3 Rewriting Logic Semantics

Rewriting logic semantics (RLS) [21, 22] builds upon the observation that pro-
gramming languages can be defined as rewriting logic theories. By doing so, one
gets essentially “for free” not only an interpreter and an initial model semantics
for the defined language, but also a series of formal analysis tools obtained as in-
stances of existing tools for rewriting logic. The work discussed in this paper has
grown out of a style of RLS called Continuation-Based Semantics [21, 22] which
allows the natural modeling of complex control flow constructs, like exceptions
and continuations, by treating computations as first-class semantic entities.

2.4 K

K [30], a general notation and technique for defining computation, is based on
insights developed in the rewriting logic semantics project [21, 22], with some
concepts inspired by abstract state machines (ASMs) [12], the chemical abstract
machine (CHAM) [10], and continuations [32].2 K provides some domain-specific
abstractions and assumptions, exploited in this paper, to ease the definition of
programming languages.

2 The name K comes from the traditional name of the operator or cell containing the
current control context, k.
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The idea underlying language semantics in K is to represent the program
configuration as a computational structure. This structure contains the context
needed for the computation, with elements of the context represented as multi-
sets or lists each stored inside a K cell. Contexts can also be hierarchical, with
one cell containing others. The context generally includes standard items found
in configurations in other formalisms, such as environments, stores, etc, as well
as items specific to the given semantics, including such items as analysis results
for a semantics focused on program analysis. One regularly used cell, referred to
as k, represents the current computation as a �-separated list of computational
tasks, such as t1 � t2 � ... � tn. Another, %, represents the entire computa-
tional structure. In the rest of the paper, the computational structure will be
referred to as just a computation.

A K definition consists of two types of sentences: structural equations and
rewrite rules. Structural equations carry no computational meaning; instead,
borrowing a concept from CHAMs, structural equations can heat and cool com-
putations. When a computation is heated, it breaks into smaller pieces, exposing
subexpressions of more complex expressions for evaluation. Cooling reverses this
process, reassembling the (potentially modified) pieces into a computation with
the same “shape”. The following are examples of structural equations, with heat-
ing represented as going from left to right and cooling from right to left:

a1 + a2 � a1 � � + a2

if b then s1 else s2 � b � if � then s1 else s2

Note that, unlike in evaluation contexts, � does not represent a context, but is
instead part of the operator definition, providing visual intuition about what is
being evaluated and where the result will go upon cooling; a different scheme
could be used instead. The operators involving � above are � + (in the first
equation) and if � then else (in the second).

Many structural equations can be automatically generated by annotating con-
structs in the language syntax with strict attributes: a strict construct generates
the appropriate equations for each strict argument. If an operator is intended to
be strict in only some of its arguments, then the positions of the strict arguments
are listed as arguments of the strict attribute; for example, the two equations
directly above correspond to the attributes strict for + (i.e., strict in all ar-
guments, with the heating/cooling equations for the second operand not shown)
and strict(1) for if then else .

Rewrite rules represent actual steps of computation:

i1 + i2 → i, where i is the sum of i1 and i2
if true then s1 else s2 → s1

if false then s1 else s2 → s2

�X = V |〉k 〈|(X, L)|〉env 〈|(L, )|〉mem → �·|〉k 〈|(X, L)|〉env 〈|(L, V )|〉mem

Quite often structural equations would be used between applications of rewrite
rules. For example, given an expression a1 + a2, the first equation for + can
be applied left-to-right to “schedule” a1 for processing (which may involve the
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use of one or more rewrite rules); once evaluated to i1, the equation is applied in
reverse to “plug” the result back in context, leaving i1 +a2. a2 would be handled
similarly to a1, yielding expression i1 + i2, which can then be processed using
the first rewrite rule shown above. Note that this step, going from i1 + i2 to
their sum, is not reversible, in contrast to the structural equations for + shown
above. The last rule shows an example with multiple cells: here, the value V is
being assigned to name X . The round bracket at the left, �, represents the head
of the list, forcing this rule to apply only when it will be the next step of this
computation. The “pointed” bracket at the right, |〉, represents the rest of the
list, i.e. the remainder of the computation (intuitively, it is pointed as a reminder
that the list keeps going in that direction). Multisets are bracketed with 〈| and |〉,
indicating they conceptually “continue” in either direction. This is used here for
both env and mem: env is a multiset of Name× Location pairs, while mem is a
multiset of Location× Value pairs. Other notation includes , which represents
an unnamed value (like in many functional languages), and ·, representing the
identity (here, the list identity). Given that, this rule states: when X := V is
the next computational step in this computation, if X is at location L in the
environment, change the value at location L in the store to V (while ignoring the
current value), and then “dissolve” the current computation, leaving the next
item in k (not shown, but to the “right” of |〉) as the next computational step.

Context Transformers: To ensure that rules are modular, it should be possible
to continue using a rule, unchanged, when parts of the context not mentioned
in the rule are modified or replaced. Given a specific rule, the easiest case to
deal with is when the subterm matched by a rule remains the same but the
surrounding context changes (for instance, by adding a new top-level cell). This
case is handled naturally by term rewrite systems, since it is possible to match
a subterm of the term, leaving the rest unnamed in the rule. This handles many
common cases, including the motivating example given in Section 1. However,
this does not handle changes to the hierarchical organization of the context. For
instance, adding threads to a language requires having multiple k cells, repre-
senting the computation occurring in each thread, but only one store, leading to
a revised rule for assignment like the following:

〈|�X = V |〉k 〈|(X, L)|〉env|〉t 〈|(L, )|〉mem → 〈|�·|〉k 〈|(X, L)|〉env|〉t 〈|(L, V )|〉mem

Beyond this, the configurations used in different languages will generally be
quite different, and may be very complex. To allow rules to be reused, both as
a language evolves and in other languages, K uses context transformers. Using
context transformers, only those portions of the configuration actually used in
a rule need to be mentioned. For instance, the assignment rule shown originally
can remain as is, without the need to explicitly add the thread cell, used only
to provide context for the match. To do this, the transformer uses the declared
language configuration (shown in Section 3 in a Language module) to determine
which cells, used only for context, have been elided; these cells can then be added
automatically, using either variables or K brackets to represent unmentioned
parts of the added cells. Several sanity conditions are used to ensure that a
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unique transform is possible, including rules about valid paths between cells and
the reuse of cell names. Planned K tool support will provide appropriate warnings
in cases where ambiguity prevents the context transformers from deriving a
unique transformed version of a rule.

3 The K Module System

While context transformers focus on making individual K rules modular, they
do nothing to address the practical challenge of packaging up rules into reusable
units. This is the purpose of the K module system.

The module system in K is being designed to support a general module syn-
tax incorporating the entire range of functionality needed when defining the
semantics of a language, including the definition of abstract syntax, configura-
tion items, the semantics of language features, and the final collection of features
that make up a specific language. In theory, this would allow a single, monolithic
module to include definitions of all aspects of the semantics. However, to provide
for a better separation of these constructs into more granular modules, and to
allow for construct-specific defaults and syntax, specialized module formats for
various constructs are being defined, with a translation into the more general
syntax. These module formats are illustrated with fragments of the definition of
a simple imperative language, IMP. A complete definition of IMP, without the
extensions presented at the end of this section, is given in Appendices A and B;
note that the definition given in this section differs slightly to better illustrate
features of the module system.

3.1 Semantic Entities

module Int
imports K/Value, K/Int .
subsort Int < Value .

end module

Fig. 1. Integer Values

Semantic entities in K definitions include configura-
tion items, such as environments and stores, and sorts
or operations used during computations, such as com-
putation items and values. A simple example is shown
in Figure 1, which uses subsorting to allow K integers
(modules starting with K/ are built-ins) to be treated
as K values. By default, this declaration is available in any other module that
imports Int.

module Env
imports K/Name .
requires sort Loc .
sortalias Env = Map(Name,Loc) .
var Env[0-9’]* : Env .

end module

Fig. 2. Environments

Another example is shown in Figure 2. This
shows the definition of an environment, which
provides a mapping from names to locations (a
store then maps locations to values; the sepa-
ration easily allows features like nested scopes
and reference parameters for functions). Like in
Figure 1, an existing K definition, in this case
for sort Name, is imported. Instead of similarly
importing a specific definition of locations (sort Loc), module Env uses requires,
meaning that, when the language is finally assembled, one module must provide
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sort Loc. This allows the module to state a requirement without stating the
module that satisfies that requirement, allowing different modules to be used
in different languages. Since K provides lists, multisets, and maps by default,
we can immediately refer to maps from sort Name to sort Loc; sortalias lets
us give this sort a name, Env, which can then be used in the remainder of the
definition. The var declaration allows the definition of a variable pattern: Env,
followed by 0 or more numbers or primes, will be used to represent entities of
sort Env (e.g., Env, Env8, Env’, etc.). Variables used in modules that import Env
and that match this pattern will then be identified as being of sort Env.

3.2 Abstract Syntax

module Exp/AExp[Syntax]
imports Exp[Syntax] with

{ sort Exp renamed AExp } .
# sort AExp . subsort AExp < Exp .
var AE[0-9’a-zA-Z]* : AExp .

end module

Fig. 3. Arithmetic Expressions

Before defining the semantics of language con-
structs, the abstract syntax of those con-
structs needs to be defined. This is done using
abstract syntax modules, which are defined us-
ing a tag of [Syntax] after the module name.
A first example of an abstract syntax mod-
ule is the syntax for arithmetic expressions,
shown in Figure 3. One way to define the sort
of arithmetic expressions would be to define a new sort which could be made a
subsort of Exp, illustrated in a comment in the module (comments start with
#); here, instead, the sort Exp, imported from module Exp, is renamed to AExp
using a sort renaming directive on the import of module Exp. A var pattern to
refer to arithmetic expressions is then defined.

module Exp/AExp/Plus[Syntax]
imports Exp/AExp[Syntax] .
_+_ : AExp AExp -> AExp .

end module

Fig. 4. Plus Expressions

A second abstract syntax module, defining the
addition construct, is shown in Figure 4. Syntax
is defined using mixfix notation with an algebraic
notation similar to that used in Maude or SDF
(although note that op is not required on syntax
definitions). To increase modularity, it is recom-
mended that each module define only one language construct, although it is
possible to define multiple constructs in the same module.

3.3 Semantic Rules

module Exp/AExp/Plus[Dynamic]
imports Exp/AExp/Plus[Syntax]

with { op _+_ now strict,
extends + [Int * Int -> Int] } .

end module

Fig. 5. Dynamic Semantics: Plus

Once the syntax has been de-
fined, the semantics of each con-
struct need to be defined as well.
One explicit goal of the module
system is to allow different se-
mantics to be easily defined for
each language construct. For in-
stance, it should be possible to define a standard dynamic/execution semantics,
a static/typing semantics, and potentially other semantics manipulating differ-
ent notions of value (for instance, various notions of abstract value used during
analysis).
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Figure 5 shows an example of a module defining the dynamic semantics of
a language feature, here integer addition. Normally a semantics module will
implicitly import the related syntax module. Here, since we are modifying the
attributes on an imported operator, we need to explicitly import the syntax mod-
ule. Two attributes are modified. First, we note that the operator is now strict
in all arguments, which will automatically generate the structural heating and
cooling equations. Second, we use extends to automatically “hook” the seman-
tics of the feature to the builtin definition of integer addition. This completely
defines integer addition in the language, so no rules are needed.

module Exp/AExp/Plus[Static] is
imports Exp/AExp/Plus[Syntax] with { op _+_ now strict } .
imports Types .
rl int + int => int .
rl T + T’ => fail [where T =/= int or T’ =/= int] .

end module

Fig. 6. Static Semantics: Plus

Figure 6 shows se-
mantics for the same
feature, but this time
the static semantics (for
type checking) are de-
fined. Like in Figure 5,
the operator for plus is
changed to be strict. In
this case, though, the values being manipulated are types, not integers, so we
also need to import the types and use them in the two rules shown. Here, the
first rule is for when an expression is type correct: the two operands are both
integers, so the result of adding them is also an integer. If one of the operands is
not an integer (checked in the side-condition), the rule will cause a type called
fail, representing a type error, to propagate.3

module Stmt/Block[Dynamic] is
imports Stmt[Syntax], K/K, Env .
rl k(| begin S end |> env(| Env |)
=> k(| S -> restoreEnv(Env) |> env(| Env |) .

end module

Fig. 7. Dynamic Semantics: Blocks

Finally, Figure 7 shows the dy-
namic semantics of blocks. Here,
no changes are made to the
imported syntax, so there is
no need to import the Stmt/
Block[Syntax] module explicitly.
In this language, blocks provide
for nested scoping, so we want to ensure that the current environment is re-
stored after the code inside the block executes. This is done by capturing the
current environment, Env, and placing it on the computation in a restoreEnv
computation item. The rule for restoreEnv, not shown here, will replace the
current environment with its saved environment when it becomes the first item
in the computation.

3.4 Language Definitions

Once the semantic entities, abstract syntax, and language semantics have been
defined, they can be assembled into a language module, tagged Language. An ex-
ample is shown in Figure 8. The line config = defines the language configuration

3 An alternative would be to issue an error message and return the expected type in
the hope of finding additional errors.
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module Imp[Language]
imports K/Configuration, K/K, K/Location,

K/Value, Env, Store, Int, Bool .
config = top(store(Store) env(Env)

k(K) nextLoc(Loc)) .

op [[_]] : K -> Configuration .
eq [[ K ]] = top(store(empty) env(empty)

k(K) nextLoc(initLoc)) .

imports type=Syntax Exp/AExp/Num, Exp/BExp/Bool .
imports type=Dynamic Exp/AExp/Name, Exp/AExp/Plus,
Exp/BExp/LessThanEq, Exp/BExp/Not, Exp/BExp/And,
Stmt/Sequence, Stmt/Assign, Stmt/IfThenElse,
Stmt/While, Stmt/Halt, Pgm .

end module

Fig. 8. Language Definition: IMP

as a multiset, with each K
cell given a name (such as
store or env) and the sort
of information in the cell
(such as Store or Env). Cells
can be nested, to represent
the hierarchies of information
that can be formed. Next,
the [[ ]] operator initial-
izes this configuration, given
an initial computation (K)
representing the program to
run. Finally, all the modules
used in the semantics are im-
ported. type=Dynamic is a directive that states that all modules in this
imports are tagged with the Dynamic tag, and is equivalent to imports
Exp/AExp/Name[Dynamic], Exp/AExp/Plus[Dynamic], etc.

3.5 Taking Advantage of Modularity

The goal of ensuring that K is modular is to allow defined language features
to be reused in new languages and in extensions to existing languages. To illus-
trate this, two extensions to IMP, one for exceptions and one for procedures, are
defined, generating two new versions of IMP. These extensions are then com-
bined to create a third version of IMP, showing that the existing definitions
can be directly leveraged. To save space, the following are not shown: abstract
syntax modules for the new features; the Language modules for IMP with just
exceptions or with just procedures; and imports clauses in module definitions.

module Stmt/TryCatch[Dynamic]
requires op addHandler : Name Stmt -> Computation .
requires op removeHandler : -> Computation .
rl k(| try S catch X in S’ |>
=> k(| addHandler(X,S’) -> S -> removeHandler |> .

end module
module Stmt/Throw[Dynamic]

requires op handleException : -> Computation .
rl k(| throw V |> => k(| V -> handleException |> .

end module

Fig. 9. Exception Semantics

Exceptions: The exceptions
extension assumes an abstract
syntax similar to that for
Java: a try/catch statement
is used to specify an exception
handler, while throw is used
to manually throw an excep-
tion. Figure 9 shows the se-
mantics needed for exceptions.
In the case of a try/catch,
the information needed for the handler is saved with addHandler before the
try statement is executed. If the try body (S) is executed without throwing an
exception, removeHandler removes the handler information. If an exception is
thrown, either implicitly or with throw, the handler will be triggered, in the case
of throw through using handleException.
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module Exceptions/State
sortalias ExHandler = Tuple(K,Env,State) .
sortalias ExStack = List(ExHandler) .
rl k(| removeHandler |> es(| EH |>
=> k(| . |> es(| . |> .
rl k(| addHandler(X,S) |> env(| Env |)

cn(| es(| ES |) CN |)
=> k(| . |> env(| Env |)

cn(| es(| [assignTo(X) -> S -> restoreEnv(Env),
Env, CN] ES |) CN |) .

rl k(| V -> handleException |>
env(| _ |) cn(| es(| [K,Env,CN] |> |>

=> k(| V -> K |) env(| Env |) cn(| es(| . |> CN |) .
end module

Fig. 10. Exception State Manipulation

Figure 10 then shows the
state operations used in the
exception semantics in Fig-
ure 9. An exception handler
is defined as a triple, with a
computation, an environment,
and arbitrary other state (K
cells). These are stored in an
exception handler stack, de-
fined as a list of exception
handlers. Rules then provide
semantics for the operations:
removeHandler just pops the
stack, while addHandler creates the exception handler (assignTo will take the
thrown value, which will be at the head of the computation, and assign it to the
identifier given in the catch statement, while restoreEnv will then restore the
environment back to the given environment, removing this name mapping). Note
the use of two new K cells in these two rules: es, for the exception stack, and cn,
for control context information, like that used in exception handlers (this extra
level of grouping will prove useful later). Finally, handleException will use the
handler to handle the exception, restoring the saved computation, environment,
and control context in the process.

module Stmt/Call[Dynamic]
requires op invoke : Name ValueList -> K .
rl k(| call X(VL) |>
=> k(| invoke(X,VL) |> .

end module
module Stmt/Return[Dynamic]

requires op popCallStack : -> K .
rl k(| return |> => k(| popCallStack |> .

end module

Fig. 11. Procedure Semantics

Procedures: The semantics for proce-
dures are similar to those for excep-
tions. When a procedure is called with
call, it will use invoke to invoke the
procedure and save the current state.
The semantics for return are similar
to throw, using popCallStack to re-
move the current procedure context
and restore state saved at the time of
the call. Figure 11 shows the seman-
tics for both call and return.

module Procedures/State
sortalias CallState = Tuple(K,Env,State) .
sortalias CallStack = List(CallState) .
rl k(| invoke(X,VL) -> K |) env(| Env |)

cn(| cs(| CS |) CN |) pm(PM)
=> k(| VL -> assignTo(XL) -> S |) env(| . |)

cn(| cs(| [K,Env,CN] CS |) CN |) pm(PM)
[where proc(XL,S) := lookup(PM,X)] .

rl k(| popCallStack |> env(| _ |)
cn(| cs(| [K,Env,CN] |> |>

=> k(| K |) env(| Env |) cn(| cs(| . |> CN |) .
end module

Fig. 12. Procedure State Manipulation

Figure 12 then shows the state
manipulation rules, similar in
many ways to those for exceptions.
Note that there are two new K
cells here as well: cs, for the call
stack, and pm, for the procedure
map (from procedure names to
procedure definitions). cn, for con-
trol context, is also used. invoke
saves the current computation,
environment, and other control
context in the call stack while as-
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signing argument values (VL) to parameter names (XL) and then running the
procedure body (S), all in the context of an empty environment (i.e., there are
no global variables). The procedure definition is looked up as part of a side con-
dition (with where in the brackets following the rest of the rule). popCallStack
restores the saved control context, environment, and computation, representing
the return from the procedure.

module ImpWCallWExceptions[Language]
imports K/Configuration, K/K, K/Location, K/Value,

Env, Store, Int, Bool, Procedures/State,
Exceptions/State .

config = top(store(Store) env(Env) k(K) nextLoc(Loc) cn(cs(CallStack)
es(ExStack)) pm(ProcMap)) .

op [[_,_]] : ProcList K -> Configuration .
eq [[PL,K]] = top(store(empty) env(empty) k(processEach(PL) -> K)

nextLoc(initLoc) cn(cs(empty) es(empty)) pm(empty)) .

imports type=Syntax Exp/AExp/Num, Exp/BExp/Bool .
imports type=Dynamic Exp/AExp/Name, Exp/AExp/Plus,
Exp/BExp/LessThanEq, Exp/BExp/Not, Exp/BExp/And,
Stmt/Sequence, Stmt/Assign, Stmt/IfThenElse,
Stmt/While, Stmt/Halt, Stmt/Call, Stmt/Return, Stmt/TryCatch,
Stmt/Throw, Procedure, Pgm.

end module

Fig. 13. IMP with Procedures and Exceptions

Combining Exceptions and Procedures: It should be possible to reuse the defi-
nitions of exceptions and procedures without needing to revisit each. This can
in fact be done, without requiring any changes to the defined language features.
Figure 13 shows the language module, including K cells, that extends IMP with
both procedures and exceptions. The use of cell cn to group context informa-
tion, along with the use of context transformers to transform rules that mention
both k and (for instance) cs into ones that also use cn and the other context
held therein allows the language to be assembled without modifying any exist-
ing module. Note that this is not always possible, as different language features
may need to be aware of one another. For instance, a definition of a loop break
feature may need to be aware of functions, since it is generally not possible to
use break inside a called function to break out of a loop inside the callee.

4 Related Work

Modularity has long been a topic of interest in the language semantics commu-
nity. Listed below are some of the more significant efforts, including comparisons
with the work described in this paper where appropriate.

Action Semantics: One focus of Action Semantics [24] has been on creating
modular definitions. The notation for writing action semantics definitions uses
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a module structure, while language features use facets to separate different lan-
guage construct “concerns”, such as updating the store or communicating be-
tween processes. A number of tools have been created for working with modular
Action Semantics definitions, such as ASD [35], the Action Environment [33],
the Maude Action Tool [7], an implementation using Montages [1], and Modular
Monadic Action Semantics [37]. Other work has focused specifically on ensuring
modules can be easily reused without change, both by using small, focused mod-
ules [8] (the approach taken in the K module system) and by creating a number
of simpler reusable constructs generic to a large number of languages [15, 27].

ASMs: Montages [16] provides a modular way to define language constructs
using Abstract State Machines (ASMs) [14, 31]. Each Montage (i.e., module)
combines a graphical depiction of a language construct with information on the
static and dynamic semantics of the feature. This has the advantage of keeping
all information on a feature in one place, but limits extensibility, since it is not
possible (as it is in K) to provide multiple types of dynamic or static semantics
to the same feature without creating a new Montage.

Denotational Semantics: One effort to improve modularity in denotational se-
mantics definitions has been the use of Monads [23]. This has been most evident
in work on modular, semantics-based definitions of language interpreters and
compilers, especially in the context of languages such as Haskell [17, 36] and
Scheme [9]. Monads have also been used to improve the modularity of other
semantic formalisms, such as Modular Monadic Action Semantics [37], which
provided a monadic semantics in place of the original, non-modular SOS seman-
tics underlying prior versions of Action Semantics [24].

MSOS: The focus of MSOS [25, 26] has been on keeping the benefits of SOS
definitions while defining rules in a modular fashion. This is done by moving
information stored in SOS configurations, such as stores, into the labels on tran-
sition rules, which traditionally have not been used in SOS definitions of lan-
guages. This, along with techniques that allow parts of the label to be elided if
not used by a rule, allow the same rule to be used both when unrelated parts
of the configuration change and when the rule is introduced into a language
with a different configuration. A recent innovation, Implicitly-Modular SOS (I-
MSOS) [28], allows more familiar SOS notation while still providing the benefits
of MSOS.

Rewriting Logic Semantics: Beyond the work done on K, Maude has also been
used as a platform to experiment with other styles of semantics, enabling the
creation of modular language definitions. This includes work on action semantics,
with the Maude Action Tool cited above, and MSOS, using the Maude MSOS
Tool [5]. Work on defining Eden [13], a parallel variant of Haskell, has focused
on modularity to allow for experimentation with the degree of parallelism and
the scheduling algorithm used to select processes for execution. General work on
modularity of rewriting logic semantics definitions [4, 20] has focused on defining
modular features that need not change as a language is extended.
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5 Conclusion and Future Work

In this paper we have presented ongoing work on modularity in K language
definitions. This includes work on the modularity of individual K rules, ensuring
they can be defined once and reused in a variety of contexts, and work on an
actual module system for K, providing a technique to easily package and reuse
individual language features while building a language.

One major, ongoing component of this work is developing tool support for
the module system. Although small modules improve reuse, the large number of
modules this leads to can make it challenging to work with language definitions,
something noted in similar work on tool support for Action Semantics [33]. For
K, work on tool support includes the ongoing development of an Eclipse plugin to
provide a graphical environment for the creation and manipulation of K modules.
This will initially include editor support, a graph view of module dependencies,
and the ability to view both the language features used to define a language and
the various semantics defined for a specific language feature. Longer-term goals
include the graphical assembly of language configurations and links to an online
database of reusable modules. Another part of this work is moving over existing
language definitions to the new, modular format. This has already started for a
number of pedagogical languages defined in K that are used in the classroom;
work on larger languages is waiting on improved tool support.
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A The K Definition of IMP

Figure 14 shows the K definition of the IMP language, a version of which
has been used as the running example for the presentation of the module sys-
tem in this paper. This definition is discussed more fully in a technical report
on K [30].

K-Annotated Syntax of IMP

Int ::= . . . all integer numbers
Bool ::= true | false

Name ::= all identifiers; to be used as names of variables
Val ::= Int

AExp ::= Val | Name
| AExp + AExp [strict, extends +Int×Int→Int]

BExp ::= Bool
| AExp ≤ AExp [seqstrict, extends ≤Int×Int→Bool]
| not BExp [strict, extends ¬Bool→Bool]
| BExp and BExp [strict(1)]

Stmt ::= Stmt;Stmt [s1; s2 = s1 � s2]
| Name := AExp [strict(2)]
| if BExp then Stmt else Stmt [strict(1)]
| while BExp do Stmt
| halt AExp [strict]

Pgm ::= Stmt;AExp

K Configuration and Semantics of IMP

KResult ::= Val
K ::= KResult | List·� [K]

Config ::= �K�k | �State�state
| Val | �K� | �Set[Config]��

�p� = ��p�k �∅�state��
〈|�v�k|〉� = v

� x

σ[x]
|〉k �σ�state

true and b → b
false and b → false
�x := v

·
|〉k � σ

σ[v/x]
�state

if true then s1 else s2 → s1

if false then s1 else s2 → s2

�while b do s|〉k = �if b then (s; while b do s) else ·|〉k
�halt i|〉k = �i�k

Fig. 14. K definition of IMP

B The Modular K Definition of IMP

A number of modules make up the definition of the IMP language. The first
modules shown below make up semantic entities used in the definition.
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module Env
requires sort Name, sort Loc .
sortalias Env = Map(Name,Loc) .
var Env[0-9’]* : Env .

end module

module Store
requires sort Loc, sort Value .
sortalias Store = Map(Loc,Value) .
var Store[0-9’]* : Store .

end module

module Int
imports K/Int .
requires sort Value .
subsort Int < Value .

end module

module Bool
sort Bool .
ops true false : -> Bool .

end module

The next modules define the abstract syntax for IMP. This includes sorts for
arithmetic expressions, boolean expressions, statements, and programs, as well as
a number of syntactic entities (i.e., productions). Note that modules can import
other modules of the same “type” (Syntax, Dynamic, etc) without needing to
specify the type. If this would lead to an ambiguous import a warning message
will be generated.

module Exp/AExp[Syntax]
sort AExp .
var AE[0-9’a-zA-Z]* : AExp .

end module

module Exp/AExp/Num[Syntax]
imports Int, Exp/AExp .
subsort Int < AExp .

end module

module Exp/AExp/Name[Syntax]
imports Exp/AExp .
requires sort Name .
subsort Name < AExp .

end module

module Exp/AExp/Plus[Syntax]
imports Exp/AExp .
_+_ : AExp AExp -> AExp .

end module

module Exp/BExp[Syntax]
sort BExp .
var BE[0-9’a-zA-Z]* : BExp .

end module

module Exp/BExp/Bool[Syntax]
imports Bool, Exp/BExp .
subsort Bool < BExp .

end module

module Exp/BExp/LessThanEq[Syntax]
imports Exp/AExp, Exp/BExp .
_<=_ : AExp AExp -> BExp .

end module

module Exp/BExp/Not[Syntax]
imports Exp/BExp .
not_ : BExp -> BExp .

end module

module Exp/BExp/And[Syntax]
imports Exp/BExp .
_and_ : BExp BExp -> BExp .

end module

module Stmt[Syntax]
sort Stmt .

end module

module Stmt/Sequence[Syntax]
imports Stmt .
_;_ : Stmt Stmt -> Stmt .

end module

module Stmt/Assign[Syntax]
imports Stmt, Exp/AExp .
requires sort Name .
_:=_ : Name AExp -> Stmt .

end module

module Stmt/IfThenElse[Syntax]
imports Stmt, Exp/BExp .
if_then_else_ : BExp Stmt Stmt -> Stmt .

end module

module Stmt/While[Syntax]
imports Stmt, Exp/BExp .
while_do_ : BExp Stmt -> Stmt .

end module

module Stmt/Halt[Syntax]
imports Stmt, Exp/AExp .
halt_ : AExp -> Stmt .

end module

module Pgm[Syntax]
imports Stmt, Exp/AExp .
sort Pgm .
_;_ : Stmt AExp -> Pgm .

end module

Using the abstract syntax, a number of modules are used to define the evaluation
semantics, with one semantics module per language feature. As a reminder, a
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semantics module will automatically import the syntax module of the same name;
explicit imports of syntax modules are used in cases where attributes, such as
strictness, need to be changed. Added strictness information will cause heating
and cooling rules to be automatically generated. The seqstrict attribute, used
on less than, is identical to strict, except it enforces a left to right evaluation
order on the arguments.

module Exp/AExp/Name[Dynamic]
requires sort Name, sort Loc, sort Value .
imports Env, Store, K/K .
rl k(| X |> env<| (X,L) |> store<| (L,V) |>
=> k(| V |> env<| (X,L) |> store<| (L,V) |> .

end module

module Exp/AExp/Plus[Dynamic]
imports Exp/AExp/Plus[Syntax]

with { op _+_ now strict,
extends + [Int * Int -> Int] } .

end module

module Exp/BExp/LessThanEq[Dynamic]
imports Exp/BExp/LessThanEq[Syntax]
with { op _<=_ now seqstrict,

extends <= [Int * Int -> Bool] } .
end module

module Exp/BExp/Not[Dynamic]
imports Exp/BExp/Not[Syntax]
with { op not_ now strict,

extends not [Bool -> Bool] } .
end module

module Exp/BExp/And[Dynamic]
imports Exp/BExp/And[Syntax]
with { op _and_ now strict(1) } .

rl true and BE => BE .
rl false and BE => false .

end module

module Stmt/Sequence[Dynamic]
eq S ; S’ = S -> S’ .

end module

module Stmt/Assign[Dynamic]
imports Stmt/Assign[Syntax]

with { op _:=_ now strict(2) } .
requires sort Name, sort Value, sort Loc .
imports K/K, Env, Store .
rl k(| X := V |> env<| (X,L) |>

store<| (L,_) |>
=> k(| . |> env<| (X,L) |>

store<| (L,V) |> .
end module

module Stmt/IfThenElse[Dynamic]
imports Stmt/IfThenElse[Syntax]

with { op if_then_else_ now strict(1) } .
imports Bool .
rl if true then S else S’ => S .
rl if false then S else S’ => S’ .

end module

module Stmt/While[Dynamic]
imports Stmt/IfThenElse, Exp/BExp[Syntax] .
eq k(| while BE do S |>
= k(| if BE then (S ;

while BE do S) else . |> .
end module

module Stmt/Halt[Dynamic]
imports Stmt/Halt[Syntax]

with {op halt_ now strict } .
imports Int .
eq k(| halt i |> = k(| i |) .

end module

module Pgm[Dynamic]
requires sort Value .
eq top (| k(| V |) |> = V .

end module

Finally, the various modules are assembled together into a language module,
representing the entire programming language.

module Imp[Language]
imports K/Configuration, K/K, K/Location, K/Value,

Env, Store, Int, Bool .
config = top(store(Store) env(Env) k(K) nextLoc(Loc)) .

op [[_]] : K -> Configuration .
eq [[ K ]] = top(store(empty) env(empty) k(K) nextLoc(initLoc)) .

imports type=Syntax Exp/AExp/Num, Exp/BExp/Bool .
imports type=Dynamic Exp/AExp/Name, Exp/AExp/Plus, Exp/BExp/LessThanEq, Exp/BExp/Not,
Exp/BExp/And, Stmt/Sequence, Stmt/Assign, Stmt/IfThenElse, Stmt/While, Stmt/Halt, Pgm .

end module
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Abstract. In this paper we present various notions of the combined refinement
for data and processes within the specification language CSP-CASL. We develop
proof support for our refinement notions and demonstrate how to employ them
for system development and for system analysis. Finally, we apply our technique
to an industrial standard for an electronic payment system.

1 Introduction

System development in a step-by-step fashion has been central to software engineering
at least since Wirth’s seminal paper on program development [22] in 1971. Such a
development starts with an abstract specification, which defines the general setting, e.g.
it might define the components and interfaces involved in the system. In several design
steps this abstract specification is then further developed towards a design specification
which can be implemented directly. In each of these steps some design decisions are
taken and implementation issues are resolved. A design step can for instance refine the
type system, or it might set up a basic dialogue structure. It is essential, however, that
these design steps preserve properties. This idea is captured by the notion of refinement.

In industrial practice, stepwise development usually is carried out informally. In this
paper, we capture such informal developments with formal notions of refinement within
the specification language CSP-CASL [19]. CSP-CASL allows one to specify data and
processes in an integrated way, where CASL [17] is used to describe data and CSP [7,20]
is used to specify the reactive side.

Our notions of refinement for CSP-CASL are based on refinements developed in the
context of the single languages CSP and CASL. In the context of algebraic specifica-
tion, e.g., [4] provides an excellent survey on different approaches. For CSP, each of its
semantical models comes with a refinement notion of its own. There are for instance
traces refinement, failure/divergences refinement, and stable failures refinement [20].
For system development one often is interested in liberal notions of refinements, which
allow substantial changes in the design. For system verification, however, it is impor-
tant that refinement steps preserve properties. The latter concept allows one to verify
properties already on abstract specifications – which in general are less complex than
the more concrete ones. The properties, however, are preserved over the design steps.
These two purposes motivate our study of various refinement notions.

In this paper, we develop proof methods for CSP-CASL. To this end, we decompose
a CSP-CASL refinement into a refinement over CSP and a refinement over CASL alone.
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We show how to use existing tools to discharge the arising proof obligations. Reactive
systems often exhibit the undesirable behaviour of deadlock or divergence (livelock),
which both result in lack of progress in the system. Here, we develop proof techniques
based on refinement for proving deadlock freeness and divergence freeness.

The language CSP dates back at least to 1985 [7]; an excellent reference is the book
[20] (updated 2005). CASL was designed by the CoFI initiative [17]. Tools for CASL

are developed, e.g., in [11,12,13]. The combination CSP-CASL was introduced in [19]
and used for specifying an electronic payment system in [6]. A tool for CSP refinement
was developed in [9]. [5] implements a parser for CSP-CASL, [18] describes a theorem
prover for CSP-CASL. In [16], Mossakowski et al. define a refinement language for
CASL architectural specifications. In [1] Woodcock et al. discuss a proof-by-refinement
technique in the area of Z specification. Deadlock analysis in CSP has been studied in
[20], and an industrial application has been described in [3]. Tools for deadlock analysis
are developed in [8,10]. Livelock analysis in CSP has been applied to an industrial
application in [21].

In the next section we give an overview of the specification language CSP-CASL

and refinement based on model class inclusion. Section 3 we develop proof support
for CSP-CASL refinement and describe how refinement can be employed for deadlock
and divergence analysis In CSP-CASL. In Section 4 we demonstrate that the presented
theoretical results are applicable in an industrial setting.

2 CSP-CASL

CSP-CASL [19] is a specification language which combines processes written in CSP

[7,20] with the specification of data types in CASL [17]. The general idea is to de-
scribe reactive systems in the form of processes based on CSP operators, where the
communications of these processes are the values of data types, which are loosely
specified in CASL. All standard CSP operators are available, such as multiple prefix,
the various parallel operators, operators for non-deterministic choice, communication
over channels. Concerning CASL features, the full language is available to specify data
types, namely many-sorted first order logic with sort-generation constraints, partiality,
and sub-sorting. Furthermore, the various CASL structuring constructs are included,
where the structured free construct adds the possibility to specify data types with initial
semantics.

Syntactically, a CSP-CASL specification with a name Sp consists of a data part D,
which is a structured CASL specification, an (optional) channel part Ch to declare chan-
nels, which are typed according to the data part, and a process part P written in CSP,
within which CASL terms are used as communications, CASL sorts denote sets of com-
munications, relational renaming is described by a binary CASL predicate, and the CSP

conditional construct uses CASL formulae as conditions:

ccspec Sp = data D channel Ch process P end

For concrete examples of CSP-CASL specifications see Section 4. The CSP-CASL chan-
nel part is syntactic sugar over the data part, see [19] for the details of the encoding into
CASL. In our practical examples we will make use of channels. For our semantical
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considerations, however, we will study specifications only without channels. We often
write such specifications shortly as Sp = (D, P).

Semantically, a CSP-CASL specification Sp = (D, P) is a family of process denota-
tions for a CSP process, where each model of the data part D gives rise to one process
denotation. CSP-CASL has a 2-steps semantics. In the first step we construct for each
CASL model M ∈ Mod(D) a CSP process [[P]]M , which communicates in an alphabet
A(M) constructed out of the CASL model M. In the second step we point-wise apply a
denotational CSP semantics. This translates a process [[P]]M into its denotation dM in the
semantic domain of the chosen CSP model. The overall semantical construction is writ-
ten ([[[[P]]M ]]CSP)M∈Mod(D). For a denotational CSP model with domain D, the semantic
domain of CSP-CASL consists of families of process denotations dM ∈ D over some
index set I, (dM)M∈I , where I is a class of CASL models over the same signature.

CSP-CASL refinement is based on refinements developed in the context of the single
languages CSP and CASL. Intuitively, a refinement step, which we write here as ‘�’,
reduces the number of possible implementations. Concerning data, this means a reduced
model class, concerning processes this mean less non-deterministic choice:

Definition 1 (Model class inclusion). For families (dM)M∈I and (d′
M′)M′∈I′ of process

denotations we write (dM)M∈I �D (d′
M′)M′∈I′ iff I′ ⊆ I ∧ ∀M′ ∈ I′ : dM′ +D d′

M′ .

Here, I′ ⊆ I denotes inclusion of model classes over the same signature, and +D is
the refinement notion in the chosen CSP model D. In the traces model T we have for
instance P +T P′ ⇔ traces(P′) ⊆ traces(P), where traces(P) and traces(P′) are
prefixed closed sets of traces. Here we follow the CSP convention, where P′ refines P
is written as P +D P′, i.e. the more specific process is on the right-hand side of the
symbol. The definitions of CSP refinements for D ∈ {T ,N ,F , I,U}, c.f. [20], which
are all based on set inclusion, yield that CSP-CASL refinement is a preorder.

Given CSP-CASL specifications Sp = (D, P) and Sp′ = (D′, P′), by abuse of no-
tation we also write (D, P) �D (D′, P′) if the above refinement notion holds for the
denotations of Sp and Sp′, respectively.

On the syntactic level of specification text, we additionally define the notions of
data refinement and process refinement in order to characterize situations, where one
specification part remains constant. In a data refinement, only the data part changes:

data D process P end
data
�

data D′ process P end

⎫
⎬

⎭ if

{
1. Σ(D) = Σ(D′),
2. Mod(D′) ⊆ Mod(D)

Here, Σ(D) denotes the CASL signature of D. As in a data refinement the process part
remains the same, there is no need to annotate data refinement with a specific process
model: all CSP refinements notions are reflexive. In a process refinement, the data part
is constant:

data D process P end
proc
�D

data D process P′ end

⎫
⎬

⎭ if

{
for all M ∈ Mod(D) :
[[[[P]]M ]]CSP +D [[[[P′]]M]]CSP

Clearly, both these refinements are special forms of CSP-CASL refinement in general.
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3 A Basic Theory of CSP-CASL Refinement

In this section we develop proof support for CSP-CASL refinement, and theories of how
to analyse CSP-CASL specifications.

3.1 Proof Support

Proof support for the CSP-CASL refinement is based on a decomposition theorem. This
decomposition theorem gives rise to a proof method for CSP-CASL, namely, we study
CSP-CASL refinement in terms of CASL refinement and CSP refinement separately.
With regard to CSP-CASL refinement, data turns out to dominate the processes: While
any CSP-CASL refinement can be decomposed into first a data refinement followed by a
process refinement, there is no such decomposition result possible for the reverse order.
This insight is in accordance with the 2-step semantics of CSP-CASL, where in the first
step we evaluate the data part and only in the second step apply the process semantics.

First, we present our positive result concerning decomposition:

Theorem 1. Let Sp = (D, P) and Sp′ = (D′, P′) be CSP-CASL specifications, where D
and D′ are data specifications over the same signature. Let (D′, P) be a new CSP-CASL

specification. For these three specifications holds: (D, P) �D (D′, P′) iff (D, P) data
�

(D′, P) and (D′, P) proc
�D (D′, P′).

This result forms the basis for the CSP-CASL tool support developed in [18]. In order
to prove that a CSP-CASL refinement (D, P) �D (D′, P′) holds, first one uses proof
support for CASL [13] alone in order to establish Mod(D′) ⊆ Mod(D). Independently
of this, one has then to check the process refinement P +D P′. In principle, the latter
step can be carried out using CSP-Prover, see e.g. [9]. The use of CSP-Prover, however,
requires the CASL specification D′ to be translated into an alphabet of communications.
The tool CSP-CASL-Prover [18] implements this translation and also generates proof
support for theorem proving on CSP-CASL.

Changing the order in the above decomposition theorem, i.e., to first perform first a
process refinement followed by a data refinement, however, is not possible in general.
Often, process properties depend on data, as the following counter example illustrates,
in which we have: (D, P) �T (D′, P′) but (D, P) ��T (D, P′). Consider the three CSP-
CASL specifications ABS, MID and CONC, where MID consists of the data part of ABS

and the process part of CONC:

ccspec ABS =
data

sorts S
ops a, b : S;

process
P = a → Stop

end

ccspec MID =
data

sort S
ops a, b : S;

process
Q = a → Stop |[ a ]|

b → Stop
end

ccspec CONC =
data

sort S
ops a, b : S;
axiom a = b

process
R = a → Stop |[ a ]|

b → Stop
end
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Let N be a CASL model of the data part DABS of ABS with N(S) = {#, ∗}, N(a) =
#, N(b) = ∗. Concerning the process denotations in the traces model T relatively to N,
for ABS we obtain the denotation1 dABS = {〈〉, 〈#〉}. In MID, the alphabetized parallel
operator requires synchronization only w.r.t. the event a. As N |= ¬a = b, the rhs of the
parallel operator, which is prepared to engage in b, can proceed with b, which yields
the trace 〈∗〉 in the denotation. The lhs, however, which is prepared to engage in a,
does not find a partner for synchronization and therefore is blocked. This results in the
denotation dMID = {〈〉, 〈∗〉}. As dMID �⊆ dABS, we have ABS ��T MID.

In CONC, the axiom a = b prevents N to be a model of the data part. This makes it
possible to establish ABS �T CONC over the traces model T . Using Theorem 1, we
first prove the data refinement: CONC adds an axiom to ABS – therefore, DABS refines
to DCONC with respect to CASL; concerning the process refinement, using the equation
a = b and the step law for generalized parallel, we obtain a → Stop |[ a ]| b → Stop =T
a → Stop |[ a ]| a → Stop =T a → (Stop |[ a ]| Stop) =T a → Stop – thus, over DCONC

the process parts of ABS CONC are semantically equivalent and therefore in refinement
relation over the traces model T .

3.2 Analysis for Deadlock Freeness

In this section we show how to analyse deadlock freeness in the context of CSP-CASL.
To this end, first we recall how deadlock is characterized in CSP. Then we define what
it means for a CSP-CASL specification to be deadlock free. Finally, we establish a proof
technique for deadlock freeness based on CSP-CASL refinement, which turns out to be
complete.

In the CSP context, the stable failures model F is best suited for deadlock analysis.
The stable failures modelF records two observations on processes: the first observation
is the set of traces a process can perform, this observation is given by the semantic
function traces; the second observation are the so-called stable failures, given by the
semantic function failures. A failure is a pair (s, X), where s represents a trace that the
process can perform, after which the process can refuse to engage in all events of the
set X. We often write (T, F) for such a pair of observations, T denoting the set of traces
and F denoting the set of stable failures. Deadlock is represented by the process STOP.
Let A be the alphabet. Then the process STOP has

({〈〉}, {(〈〉, X) | X ⊆ A�}) ∈ P(A∗�)× P(A∗� × P(A�))

as its denotation inF , i.e., the process STOP can perform only the empty trace, and after
the empty trace the process STOP can refuse to engage in all events. Here, � /∈ A is a
special event denoting successful termination, A� = A∪{�}, and A∗� = A∗∪A∗�〈�〉
is the set of all traces over A possibly ending with �. In CSP, a process P is considered
to be deadlock free, if the process P after performing a trace s never becomes equivalent
to the process STOP. More formally: A process P is deadlock-free in CSP iff

∀ s ∈ A∗.(s, A�) /∈ failures(P).
1 For the sake of readability, we write the element of the carrier sets rather than their correspond-

ing events in the alphabet of communications.
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This definition is justified, as in the model F the set of stable failures is required to be
closed under subset-relation: (s, X) ∈ failures(P) ∧ Y ⊆ X ⇒ (s, Y) ∈ failures(P).
In other words: Before termination, the process P can never refuse all events; there is
always some event that P can perform.

A CSP-CASL specification has a family of process denotations as its semantics. Each
of these denotations represents a possible implementation. We consider a CSP-CASL

specification to be deadlock free, if it enforces all its possible implementations to have
this property. On the semantical level, we capture this idea as follows:

Definition 2. Let (dM)M∈I be a family of process denotations over the stable failures
model, i.e., dM = (TM, FM) ∈ F(A(M)) for all M ∈ I.

– dM is deadlock free if (s, X) ∈ FM and s ∈ A(M)∗ implies that X �= A(M)�.
– (dM)M∈I is deadlock free if for all M ∈ I it holds that dM is deadlock-free.

Deadlock can be analyzed trough refinement checking; that is an implementation is
deadlock-free if it is the refinement of a deadlock free specification:

Theorem 2. Let (dM)M∈I �F (d′
M′)M′∈I′ be a refinement over F between two families

of process denotations. If (dM)M∈I is deadlock-free, then so is (d′
M′)M′∈I′ .

Following an idea from the CSP context, we formulate the most abstract deadlock free
CSP-CASL specification over a subsorted CASL signature Σ = (S, TF, PF, P,≤) – see
[17] for the details – with a set of sort symbols S = {s1, . . . , sn}, n ≥ 1 :

ccspec DFΣ =
data . . . declaration of Σ . . .

process DFS =�
s:S

(!x : s → DFS) � Skip
end

Here, the process !x : s → DFS internally chooses an element x from the sort s, engages
in it, and then behaves like DFS. We observe:

Lemma 1. DFΣ is deadlock free.

Proof. Let (dM)M∈I be the denotation of DFΣ over the stable-failures model, where
dM = (TM, FM). For all M ∈ I holds: TM = A(M)∗� and FM = {(t, X) | t ∈
A(M)∗, X ⊆ A(M) ∨ ∃ a ∈ A(M). X ⊆ A(M)� − {a}} ∪ {(t � 〈�〉, Y) | t ∈
A(M)∗, Y ⊆ A(M)�}.
This result on DFΣ extends to a complete proof method for deadlock freeness in CSP-
CASL:

Theorem 3. A CSP-CASL specification (D, P) is deadlock free iff DFΣ �F (D, P).
Here, Σ is the signature of D.

Proof. If DFΣ �F (D, P), Lemma 1 and Theorem 2 imply that (D, P) is deadlock
free. Now let (D, P) be deadlock free. We apply Theorem 1 to our proof goal DFΣ �F
(D, P) and decompose it into a data refinement and a process refinement. The data
refinement holds, as the model class of DFΣ consists of all CASL models over Σ.
The process refinement holds thanks to the semantics of DFΣ as given in the proof of
Lemma 1.
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3.3 Analysis for Divergence Freeness

For concurrent systems, divergence (or livelock) is regarded as an individual starva-
tion, i.e., a particular process is prevented from engaging in any actions. For CSP, the
failures/divergences modelN is considered best to study systems with regard to diveg-
ence. The CSP process div represents this phenomenon: immediately, it can refuse every
event, and it diverges after any trace. div is the least refined process in the +N model.
The main sources for divergence in CSP are hiding and ill-formed recursive processes.

In the failures/divergences model N , a process is modeled as a pair (F, D). Here,
F represents the failures, while D collects all divergences. Let A be the alphabet. The
process div has

(A∗� × P(A�), A∗�) ∈ P(A∗� × P(A�))× P(A∗�)

as its semantics overN .
Following these ideas, we define what it means for a CSP-CASL specification to be

divergence free: Essentially, after carrying out a sequence of events, the denotation shall
be different from div.

Definition 3. Let (dM)M∈I be a family of process denotations over the failure diver-
gence model, i.e, dM = (FM, DM) ∈ N (A(M)) for all M ∈ I.

– A denotation dM is divergence free iff one of the following conditions holds:
C1. ∀ s ∈ A(M)∗.{(t, X) | (s � t, X) ∈ FM} �= A(M)∗� × P(A(M)�)
C2. ∀ s ∈ A(M)∗.{t | (s � t) ∈ D} �= A(M)∗�.

– (dM)M∈I is divergence free if for all M ∈ I it holds that dM is divergence free.

Like in the case of analysis for deadlock freeness, also the analysis for divergence free-
ness can be checked trough refinement, this time over the modelN .

Theorem 4. Let (dM)M∈I �N (d′
M′)M′∈I′ be a refinement over N between two fam-

ilies of process denotations. Let (dM)M∈I be divergence free. Then (d′
M′)M′∈I′ is diver-

gence free.

As for the analysis of deadlock freeness we formulate the least refined divergence free
CSP-CASL specification over a CASL signature Σ with a set of sort of symbols S =
{s1, . . . , sn}, n ≥ 1.
ccspec DIVFΣ =

data . . . declaration of Σ . . .

process DivF = (Stop � Skip) � (�
s:S

?x : s → DivF )
end

DivF may deadlock at any time, it may terminate successfully at any time, or it may
perform any event at any time, however, it will not diverge. Figure 1 shows DIVFΣ as a
labelled transition system. One can easily see that this transition system does not have
a path of infinite silent actions τ . Here, [si] denotes the collection of events constructed
over the sort si. This observation is reflected in the following lemma:



Property Preserving Refinement for CSP-CASL 213

. . Ω

.

.

τ �
τ

τ

a ∈ [s1] ∪ · · · ∪ [sn]

Fig. 1. An LTS version of DIVFΣ

Lemma 2. DIVFΣ is divergence free.

Proof. Let (dM)M∈I be the semantics of DIVFS over the failures/divergences model
N where dM = (FM, DM) ∈ N (A(M)). For all models M holds: FM = A(M)∗� ×
P(A(M)�) and DM = ∅. Thus, DIVFΣ is divergence free thanks to conditions C.2.

Putting things together, we obtain a complete proof method for divergence freedom of
CSP-CASL specifications:

Theorem 5. A CSP-CASL specification (D, P) is divergence free iff DIVFΣ �F (D, P).
Here Σ is the signature of D.

Proof. If DIVFΣ �N (D, P), Lemma 2 and Theorem 4 imply that (D, P) is divergence
free. Now let (D, P) be divergence free. Assume that ¬(DIVFΣ �N (D, P)). As the
data part of DIVF refines to D, with our decomposition theorem 1 we can conclude that
¬((D, DivF) proc

�N (D, P)). Let (dM)M∈Mod(D) be the semantics of (D, DivF), where
dM = (FM, DM). Let (d′

M)M∈Mod(D) be the semantics of (D, P), where d′
M = (F′

M, D′
M).

By definition of process refinement there exists a model M ∈ Mod(D) such that
F′

M �⊆ FM or D′
M �⊆ DM . As F′

M = A(M)∗� × P(A(M)�), see the proof of Lemma
2, we know that F′

M ⊆ FM holds. Therefore, we know that D′
M �⊆ DM. As DM = ∅,

there exists a trace t ∈ DM not ending with �, as the healthiness condition D3 of the
failures/divergences model asserts that for any trace u′ = u � 〈�〉 ∈ DM also u ∈ DM .

Applying healthiness condition D1 we obtain t � t′ ∈ DM for all t′ ∈ A(M)∗�. Hence,
d′

m is not divergence free, as D′
M violates C.2 – contradiction to (D, P) divergence free.

3.4 Refinement with Change of Signature

Until now we have analyzed properties of specifications based on a notion of refine-
ment over the same signature. Often, in a refinement step, it is the case that the signa-
ture changes. In this section we sketch a first idea of how a theory of refinement with
change of signature might look like. In a CSP-CASL institution as discussed in [15],
the semantics of refinement under change of signature is merely a consequence of our
above Definition 1. The aim of this section, however, is to provide a proof rule for such a
setting. For simplicity, we consider embeddings only and restrict ourselves to the traces
model T .

A subsorted CASL signature Σ = (S, TF, PF, P,≤) consists of a set of sort symbols
S, a set of total functions symbols TF, a set of partial function symbols PF, a set of
predicate symbols P, and a reflexive and transitive subsort relation≤⊆S× S – see [17]
for details.
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Definition 4. We say that a signature Σ = (S, TF, PF, P,≤) is embedded into a sig-
nature Σ′ = (S′, TF′, PF′, P′,≤′) if S ⊆ S′, TF ⊆ TF′, PF ⊆ PF′, P ⊆ P′, and
additionally the following conditions regarding subsorting hold:

preservation and reflection ≤=≤′ ∩ (S × S).
weak non-extension For all sorts s1, s2 ∈ S and u′ ∈ S′ :

if s1 �= s2 and s1, s2 ≤′ u′ then there exists t ∈ S with s1, s2 ≤ t and t ≤′ u.
sort condition S′ ⊆ {s′ ∈ S′ | ∃ s ∈ S : s′ ≤′ s}.
We write σ : Σ → Σ′ for the induced map from Σ to Σ′, where σ(s) = s, σ(f ) =
f , σ(p) = p for all sort symbols s ∈ S, function symbols f ∈ TF ∪ PF and predicate
symbols p ∈ P.

The conditions ‘preservation and reflection’ and ‘weak non-extension’ are inherited
from the CSP-CASL design, see [19]. The ‘sort condition’ ensures that reducts are de-
fined, see Lemma 3. In a development process, these conditions allow one to refine
the type system by the introduction of new subsorts. Operation symbols and predicate
symbols can be added without restriction.

Let Σ = (S, TF, PF, P,≤) be embedded into Σ′ = (S′, TF′, PF′, P′,≤′), then every
Σ′-model M′ defines a the reduct Σ-model M′ |σ, such that (M′ |σ)s = M′(σ(s)) =
M′

s, (M′ |σ)f = M′(σ(s)) = M′
f , and (M′ |σ)p = M′(σ(s)) = M′

p for all sort sym-
bols s ∈ S, function symbols f ∈ TF ∪ PF and predicate symbols p ∈ P. On the
alphabet level, the map σ induces an injective map σA

M′ : A(M′ | σ) → A(M′), where
σA

M′ ([(s, x)]∼M′|σ = [(σS(s), x)]∼M′ – see [19] for the definition of ∼ . In the following,

we will make use of the partial inverse σ̂A
M′ : A(M′) →? A(M′ |σ) of this map. In [13]

it is shown that, given an injective map, the canonical extension of its partial inverse
to trace sets preserves the healthiness conditions in the traces model T . Applying this
result to our setting, we obtain:

T ′ ∈ T (A(M′)) ⇒ σ̂A
M′ (T ′) ∈ T (A(M′ |σ)).

This allows us to lift the maps σ̂A
M′ to the domain of the traces model and we can define:

Definition 5 (Refinement with change of signature). Let Σ and Σ′ be signatures
such that Σ is embedded into Σ′. Let σ : Σ → Σ′ be the induced signature morphism
from Σ to Σ′. Let (dM)M∈I and (d′

M′)M′∈I′ be a families of process denotations over Σ
and Σ′, respectively.

dM �σ
T d′

M′ ⇔ I′|σ⊆ I ∧ ∀M′ ∈ I′ : dM′|σ +T σ̂A
M′(d′

M′ ).

Here, I′|σ= {M′|σ | M′ ∈ I′}, and +T denotes CSP traces refinement. Figure 3 sum-
marize the overall idea of refinement with change of signature. Thanks to the ‘sort
condition’ we have:

Lemma 3. In the above setting, the elements σ̂A
M′ (d′

M′) are defined over the model T .

Let Sp = (D, P) and Sp′ = (D′, P) be two specifications where the signature of D is
embedded into the signature of D′ and the process parts are syntactically identical. We

say that there is a data refinement with hiding from Sp to Sp′ , in signs Sp
data
�σ Sp′, if

Mod(D′)|σ⊆ Mod(D).
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Σ Σ′σ

I
I′

I′|σ
M′M′|σ

d′
M′ ∈ T (A(M′))dM′|σ �T σ̂A

M′(d′
M′|σ )

σ̂A
M′

Fig. 2. Refinement with change of signature

Theorem 6. Let Sp = (D, P) and Sp′ = (D′, P′) be CSP-CASL specifications, such

that the signature of D is embedded into the signature of D′. Then (D, P) data
�σ (D′, P)

and (D′, P) proc
�T (D′, P′) imply (D, P) �σ

T (D′, P′).

Proof. (Sketch) Similar to [14], we prove a reduct property by structural induction,
namely traces([[P]]M′

|σ
[a1/x1, ..., ak/xk]) = σ̂A

M′ ([[P]]M′ [σA
M′ (a1)/x1, ..., σ

A
M′ (ak)/xk])).

Here, the xi : si are free variables in P, and the ai ranges over [si]∼M′|σ , i.e. the set
of values in the alphabet generated by the sort symbol si. We then prove that this reduct
property also applies to least fixed points (in the case of cpo semantics) and unique
fixed points (in the case of cms semantics). Let (D, P) have denotations (dM)M∈Mod(D),
(D′, P) have denotations (d′

M′)M′∈Mod(D′), and (D′, P′) have denotations (d′′
M′)M∈Mod(D′).

The data refinement immediately gives the required model class inclusion. The process
refinement yields d′

M′|σ +T d′′
M′ . As σ̂A

M′ is monotonic w.r.t. traces refinement, and using

the reduct property, we obtain dM′|σ = σ̂A
M′ (d′

M′|σ) +T σ̂A
M′ (d′′

M′).

4 Electronic Payment System: EP2

In this section we apply the theoretical results presented so far in an industrial setting.
The EP2 system is an electronic payment system and it stands for ’EFT/POS 2000’,
short for ’Electronic Fund Transfer/Point Of Service 2000’, is a joint project established
by a number of (mainly Swiss) financial institutes and companies in order to define
EFT/POS infrastructure for credit, debit, and electronic purse terminals in Switzerland
(www.eftpos2000.ch). The system consists of seven autonomous entities: Card-
Holder, Point of Service, Attendant, POS Management, Acquirer, Service Center and
Card. These components are centered around an EP2 Terminal. These entities commu-
nicate with the Terminal and, to a certain extent, with one another via XML-messages in
a fixed format. These messages contain information about authorisation, financial trans-
actions, as well as initialisation and status data. The state of each component heavily
depends on the content of the exchanged data. Each component is a reactive system de-
fined by a number of use cases. Thus, there are both reactive parts and data parts which
need to be modeled, and these parts are heavily intertwined. The EP2 specification con-
sists of 12 documents, each of which describe the different components or some aspect

www.eftpos2000.ch
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common to the components. The way that the specifications are written is typical of a
number of similar industrial application. The specification consists of a mixture of plain
English and semi-formal notation. The top level EP2 documents provide an overview of
the data involved, while the presentation of further details for a specific type is delayed
to separate low-level documents. CSP-CASL is able to match such a document structure
by a library of specifications, where the informal design steps of the EP2 specification
are mirrored in terms of a formal refinement relation defined in the previous sections. A
first modeling approach of the different levels of EP2 in CSP-CASL has been described
in [6].

In this section we consider two levels of the EP2 specification, namely: the archi-
tectural level (ARCH) and the abstract component level (ACL). We choose a dialogue
between the Terminal and the Acquirer. In this dialogue, the Terminal and the Ac-
quirer are supposed to exchange initialization information. For presentation purposes,
we study here only a nucleus of the full dialogue, which, however, exhibits all techni-
calities present in the full version.

4.1 Formal Refinement in EP2

Our notion of CSP-CASL refinement mimics the informal refinement step present in
the EP2 documents: There, the first system design sets up the interface between the
components (architectural level), then these components are developed further (abstract
component level). Here, we demonstrate in terms of a simple example how we can
capture such an informal development in a formal way.

We first specify the data involved using CASL only. The data specification of the
architectural level (D ARCH GETINIT) consists only of one set of data:
spec D ARCH GETINIT =

sort D SI Init
end

In the EP2 system, these values are communicated over channels; data of sort D SI Init
is interchanged on a channel C SI Init linking the Terminal and the Acquirer. On the
architectural level, both these processes just ‘run’, i.e., they are always prepared to com-
municate an event from D SI Init or to terminate. We formalize this in CSP-CASL:
ccspec ARCH INIT =
data D ARCH GETINIT

channel C SI Init : D SI Init
process

let Acquirer = EP2Run Terminal = EP2Run
in Terminal |[ C SI Init ]|Acquirer

end
Here, EP2Run = (C SI Init ? x : D SI Init → EP2Run) � SKIP. On the abstract
component level (D ACL GETINIT), data is refined by introducing a type system on
messages. In CASL, this is realised by introducing subsorts of D SI Init. For our nu-
cleus, we restrict ourselves to four subsorts, the original dialogue involves about twelve
of them.
spec D ACL GETINIT =

sorts SesStart, SesEnd, DataRequest,DataResponse < D SI Init
ops r : DataRequest; e : SesEnd



Property Preserving Refinement for CSP-CASL 217

axioms ∀x : DataRequest; y : SesEnd.¬(x = y)
∀x : DataRequest; y : SesStart.¬(x = y)
∀x : DataResponse; y : SesEnd.¬(x = y)
∀x : DataResponse; y : SesStart.¬(x = y)

end

In the above specification, the axioms prevent confusion between several sorts. Using
this data, we can specify the ACL level of the Acquirer-Terminal dialogue in CSP-CASL.
In the process part the terminal (TerInit) initiates the dialogue by sending a message
of type SesStart; on the other side the Acquirer (AcqInit) receives this message. The
process AcqConf takes the internal decision either to end the dialogue by sending the
message e of type SesEnd or to send another type of message. The Terminal (TerConf ),
waits for a message from the Acquirer, and depending on the type of this message, the
Terminal engages in a data exchange. The system as a whole consists of the parallel
composition of Terminal and Acquirer.
ccspec ACL INIT =
data D ACL GETINIT

channels C ACL Init : D SI Init
process

let AcqInit =C ACL Init ? session : SesStart → AcqConf
AcqConf = C ACL Init ! e → Skip

� C ACL Init ! r → C ACL Init ? resp : DataResponse
→ AcqConf

TerInit =C ACL Init ! session : SesStart → TerConf
TerConf = C ACL Init ? confMess →

(if (confMess : DataRequest)
then C ACL Init ! resp : DataResponse → TerConf

else if (confMess : SesEnd) then Skip else Stop)
in TerInit |[ C ACL Init ]|AcqInit

end

Theorem 7. ARCH INIT �σ
T ACL INIT

Proof. Using tool support, we establish this refinement by introducing two intermediate
specifications RUN ARCH and ACL SEQ:
ccspec RUN ARCH =
data D ARCH GETINIT

channel C SI Init : D SI Init
process EP2Run

end

ccspec ACL SEQ =
data D ACL GETINIT

channels C ACL Init : D SI Init
process

let SeqStart =C ACL Init ! session : SesStart → SeqConf
SeqConf = C ACL Init ! e → Skip

� C ACL Init ! r
→ C ACL Init ! resp : DataResponse → SeqConf

in SeqStart
end
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With CSP-CASL-Prover we proved: ARCH INIT =T RUN ARCH. Now we want to
prove that RUN ARCH �σ

T ACL SEQ. To this end, we apply Theorem 6: Using

HETS [13], we automatically prove the data refinement D ARCH GETINIT
data
� σ

D ACL GETINIT.
Now, we formed the specification (D ACL GETINIT, PACL SEQ), where PACL SEQ

denotes the process part of ACL SEQ. Next we show in CSP-CASL-Prover that, over
the traces model T , this specification refines to ACL SEQ:

theorem Arch_ACL_refinement : "EP2Run <=T SeqStart "
apply(unfold EP2Run_def SeqStart_def)
apply (rule cspT_fp_induct_right[of _ _"Seq_to_Run"])
apply simp_all
apply (induct_tac procName)
...
apply (simp add: cspT_semantics)
apply rule
apply (simp add: in_traces)
apply (auto simp add: D_SI_Init_def SesStart_def SesEnd_def

DataRequest_def DataResponse_def)
...
done

Fig. 3. Snippet of proof script for RUN ARCH �σ
T ACL SEQ.

Figure 3 shows a snippet of the proof script for (D ACL GETINIT, PACL SEQ) proc
�T

ACL SEQ. We first unfold the definitions of EP2Run and SeqStart. Next, we apply
(metric) fixed point induction on the rhs and make a case distinction over the process
names, here encoded as induct tac procName. After rewriting and decomposing
both of the processes we compute the trace semantics and check that there is indeed an
inclusion of traces.

[18] proves ACL INIT =F SEQ INIT. As stable failure equivalence implies trace
equivalence, we obtain ACL INIT =T SEQ INIT. Figure 4 summarizes this proof
structure.

4.2 Deadlock Analysis of EP2

As ACL INIT involves parallel composition, it is possible for this system to deadlock.
Furthermore, the process TerConf includes the CSP process STOP within one branch of
its conditional. Should this branch of TerConf be reached, the whole system will be in
deadlock.

The dialogue between the Terminal and the Acquirer for the exchange of initial-
ization messages have been proven to be deadlock free in [18]. Specifically, it has
been proven that the following refinement holds: ACL SEQ

proc
�F ACL INIT, where

ACL SEQ is a sequential system. Sequential system are regarded to be deadlock-free.
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Fig. 4. Refinement in EP2

With our proof method from Section 3.2, we can strengthen this result by actually
proving that ACL SEQ is deadlock free. To this end, we proved with CSP-CASL-Prover
that DF

proc
�F ACL SEQ where DF is the least refined deadlock-free process described

in Section 3.2.

4.3 Analysis of Divergence Freeness of EP2

As described in Section 3.3 divergence freeness is best analysed in the model N . The
model N has not yet been implemented in CSP-CASL-Prover. However, using basic
step and distributivity laws we have manually shown that ACL INIT =N ACL SEQ

and DIVF �N ACL SEQ, i.e., the EP2 dialogue considered here is divergence free.

5 Conclusions and Future Work

In this paper we have studied various property preserving refinement notions for CSP-
CASL. We established proof methods based on decomposition theorems which enable
us to reason about refinement using interactive theorem proving. We reduce the analysis
of deadlock and divergence freeness to refinement statements.

We showed that our theoretical results apply to a “real world” system. We proved
in a systematic way using CSP-CASL-Prover and HETS a refinement step from the
architectural specification of EP2 to a more detailed one. We proved that at this level of
abstraction EP2 is free of deadlock and free of divergence.

Future work will include the extension of our theory on refinement with change of
signature to arbitrary signature morphisms as well as the exploration of more “sophisti-
cated” refinement notions for CSP-CASL. In [2], Bidoit et al., present a refinement no-
tion based on observational interpretation of CASL specifications. Following this work
we intend to develop observational refinement for CSP-CASL. In the context of EP2
such refinement would be required in order to capture the relations between the more
detailed levels.

Acknowledgements. The authors would like to thank Liam P. O’Reilly for good support
with CSP-CASL-Prover and Erwin R. Catesbeiana (Jr) for numerous, but often divergent
discussions on the topic of refinement.
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13. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, HETS. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Hei-
delberg (2007)

14. Mossakowski, T., Roggenbach, M.: Structured CSP – A Process Algebra as an Institution. In:
Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 92–110. Springer,
Heidelberg (2007)

15. Mossakowski, T., Roggenbach, M.: An institution for processes and data. In: WADT 2008 –
Preliminary Proceedings, TR-08-15. Università di Pisa (2008)
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Abstract. The coordination language Reo defines circuit-like connec-
tors to steer the collaboration of independent components. In this paper,
we present a framework for the modeling of distributed, self-reconfigur-
able connectors based on algebraic graph transformations. Reconfiguring
a connector that is composed with others, may involve a change of shared
interfaces and may therefore require a reconfiguration of the surrounding
connectors as well. We present a method of synchronized local reconfigu-
rations in this setting and discuss a bottom-up strategy for coordinating
synchronized reconfigurations in a connector network. We exploit the
double-pushout approach for the modeling of reconfigurations, and pro-
pose an adaptation of the concept of amalgamation for synchronizing
reconfigurations. We use a nondeterministic scheduler as our running
example.

1 Introduction

Building software systems using an exogenous coordination language, such as
Reo [1], is done by (i) implementing a set of (wrappers for existing) components
or services and (ii) composing these entities using a kind of glue code. In the case
of Reo, circuit-like connectors constitute the glue code. Connectors may consist
of other connectors, but are elementarily composed from channels and nodes. Ev-
ery connector implements a protocol defined by the semantics of its constituents,
and the topology of the connector. Reconfiguring a connector means to change
its topology and thereby the coordination protocol that it implements. Recon-
figuration arises from the need to dynamically adapt the behavior of a system,
e.g., in response to a change in its environment, to cope with altered resource
availability or to retrofit it for a modified mission. The need for considering dis-
tributed connectors arises from two concerns. On the one hand, connectors are
decomposed into logically separate parts, each of which defines a specific sub-
protocol. On the other hand, connectors can be deployed on different physical
locations in a network. In both cases, the concept of distribution facilitates and
promotes the use of black-boxed subconnectors in a larger context.

In this paper, we propose a framework for modeling reconfigurable, distributed
Reo connectors. We consider connectors that are distributed over a network and
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are encapsulated, i.e. their internals are hidden from the outside world and com-
municate only via a published interface. Connectors are linked together via the
interfaces that they share. Reconfiguration of a distributed connector is achieved
by reconfiguring its subconnectors. Ultimately, reconfiguration is defined and
performed locally, that is to say, in the scope of a single connector, but it can
be either triggered from the inside or invoked from the outside. Reconfiguring
a connector may involve a change in its interfaces and may require connectors
in its neighborhood to reconfigure as well. This implies a need for synchronizing
such local reconfigurations into a consistent reconfiguration of the connector as
a whole. It goes without saying that in a distributed setting, we cannot assume
the existence of a (centralized) third party that monitors and coordinates local
reconfigurations. Therefore, other mechanisms should be in place to assure the
consistency of a reconfigured network.

In short, this paper contributes the following: We propose a model for re-
configurable, distributed connectors. We utilize the well-studied framework of
distributed graph transformation [3,4] for this purpose. We show, furthermore,
how reconfigurations can be defined and performed locally using a synchroniza-
tion mechanism based on the notion of amalgamation [5,6,7]. Finally, we propose
a distributed strategy to organize the stepwise reconfiguration of large networks.

Related work. Modeling the distribution of systems via embedding interfaces rep-
resented as morphisms in a suitable category is also used for open Petri-nets [9].
The explicit modeling of glue code and the exploitation of pushout constructions
to deal with composition in this work is similar to ours. However, they do not
consider the application of double pushouts and their concept of amalgamation is
different. In [9], amalgamation serves the composition of deterministic processes
of open Petri-nets, whereas in our approach it is used as a synchronization mech-
anism for the superposition of local reconfiguration rules.

In [10], Architectural Design Rewriting is proposed as a framework for mod-
eling reconfigurable software architectures. This work deals with hierarchical,
non-distributed architectures and uses hyperedge replacement, as opposed to
algebraic graph transformations in our work. A general introduction to system
modeling and system evolution using graph transformation techniques, including
hierarchical and distributed approaches, can be found in [11].

Our approach to coordination achieved by Reo connectors and their dynamic
reconfiguration fits in the framework of runtime software adaptation [12,13]
for component-based software engineering. Process algebraic treatments include
[14,15]. To accommodate dynamic reconfiguration, predicted behavioral changes
combined with revision of message translation are captured by so-called contex-
tual mappings. However, the focus in this work is not on distribution, which is a
key aspect of our paper. A workflow language extension with the so-called con-
figurable elements, e.g. for YAWL, is proposed in [16], with a semantics based
on a variant of Petri-nets, called extended workflow nets (EWF-nets).

Structure of the paper. The rest of this paper is organized as follows. Section 2
contains an overview of the coordination language Reo. We describe basic graph
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transformation techniques using the double pushout approach and an application
to Reo in Section 3. In Section 4, we formally introduce distributed connectors
as typed distributed graphs. In Section 5, we introduce reconfigurations for dis-
tributed connectors and discuss amalgamation as a synchronization mechanism.
Section 6 contains conclusions and future work.

2 Reo Connectors

A Reo connector [1,2] acts as glue code connecting a number of components
together. A connector orchestrates the behavior of the components it connects,
enforcing a specific interaction pattern. By influencing the timing of I/O oper-
ations of the components, it achieves coordination through constraining their
behavior. The computational internals of the components are oblivious to the
connector. As such, Reo falls in the class of exogenous coordination languages.

Taking various flavors of channels as primitive building blocks, more complex
connectors can be composed in Reo from simpler ones. Channels are point-to-
point means to communicate that meet at nodes. Channels have two ends, a
source and a sink, or two sources or two sinks.

The set of primitive Reo channels is user-defined, but typically includes the
channel types in Table 1. The synchronous channel Sync, simultaneously takes
a data item from its source end and makes it available at its sink end. The syn-
chronous drain SyncDrain has two source ends, but no sink end. If there are data
items available at both ends, it consumes and loses both of them simultaneously.
The lossy synchronous channel LossySync behaves like the Sync channel, except
that it does not block its source when its sink end cannot accept data. Instead it
accepts and loses the data item taken from the source. The FIFO1 is an asyn-
chronous and stateful channel, having a buffer of size one. If its buffer is empty
and a data item is available at its source end, the I/O operation succeeds and
the item is stored in the buffer. The FIFO1 blocks any further write requests
until the data item is delivered through its sink end. It then returns back to its
empty state. Other channels are allowed as well, e.g. with filtering capability.
The only requirement for a channel is that it has exactly two ends.

Reo distinguishes three kinds of nodes: source nodes, sink nodes and mixed
nodes. From a connector’s point of view, source and sink nodes are also called
input and output nodes, respectively. Collectively, they form the boundary nodes
of a connector, which interact with its environment. Mixed nodes, on the other
hand, are internal and not accessible from the outside. A mixed node has both
incoming and outgoing channels, i.e. channels meeting at the node with their sink
and source ends. For a mixed node to fire, it needs at least one of its incoming

Table 1. Some primitive channels

Sync SyncDrain LossySync FIFO1
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a) b)

Fig. 1. a) Exclusive router, b) ordering

channels be willing to deliver a data item, while simultaneously all its outgoing
channels are willing to consume it. The node then nondeterministically selects
one of its enabled sink ends and passes its data item to all its source ends. In
all of our examples we will represent mixed nodes as filled circles and boundary
nodes as empty circles.

Example 1. The exclusive router, shown in Figure 1a), routes data from A to
either B or C. The connector can accept data only if there is a write operation at
the source node A, and there is at least one component attached to the sink nodes
B or C, that performs a take operation. If both B and C allow an output, the
choice between B and C is made nondeterministically by the mixed node I. Note
that data flows synchronously through this connector, i.e. there is no buffering
involved. The exclusive router proves to be useful in a number of situations. The
binary exclusive router in Figure 1a) can be generalized straightforwardly to an
n-ary one. The symbol is used as its shorthand in the sequel.

Example 2. The second connector, shown in Figure 1b), imposes an ordering
on the data flow from the input nodes A′ and B′ to the output node C′. The
SyncDrain enforces synchronous flows through A′ and B′. The empty buffer
together with the SyncDrain guarantee that the data item obtained from A′ is
delivered to C′ whereas the data item obtained from B′ is stored in the FIFO
buffer. At this moment, the buffer of the FIFO1 is full and data cannot flow
in, neither through A′ nor B′, as they are coupled by the synchronous drain.
However, C′ can now obtain the data stored in the buffer.

Reo connectors come equipped with a formal data flow semantics based on so-
called connector colorings [17]. The basic idea is to assign to each channel an
admissible communication behavior that is compatible with all nodes. Concep-
tually, the execution cycle for a connector allows for system reconfiguration after
a consistent coloring has been established and the corresponding data flow has
been accomplished. See [17] for more detail on the coloring semantics, and [18]
and [19] for the semantics of Reo based on constraint automata and on tiles,
respectively. Currently, the software suite for Reo includes a number of devel-
opment tools, integrated within Eclipse [20], and runtime engines for various
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platforms. In particular, a distributed implementation of Reo is available, built
on Scala [21], allowing individual nodes to be distributed over the network.1

3 Reconfiguration by Graph Transformation

First, we recall the basic definitions for typed graphs and introduce our running
example. Next, we show how to model basic reconfigurations of Reo connectors
using algebraic graph transformation. We refer to [6,8] for more details on the
algebraic approach to graph transformation.

3.1 Typed Graphs

We use a graph model where edges are directed and have identity, i.e. a graph
is a structure G = 〈V, E, s, t〉 with V a set of nodes, E a set of edges and
s, t : E → V source and target functions. A graph morphism is a pair of functions
h = 〈hV , hE〉 that preserve the source and target functions. Graphs and graph
morphisms form the category Graph.

When modeling Reo connectors as graphs, nodes in a graph represent Reo
nodes and edges represent channels. Intuitively, the set of nodes and channels
allowed in a connector is given via a type graph. For a fixed type graph T , an
instance graph over T is a pair 〈G, type〉 where G is a graph and type : G → T
a morphism into the type graph. A typed graph morphism h : 〈G1, type1〉 →
〈G2, type2〉 is a graph morphism h : G1 → G2 that preserves the type informa-
tion, i.e. type1 = type2 ◦ h. Fixing a type graph T , the category of typed graphs
over T is denoted with GraphT.

For the Reo connectors in our running example, we consider a type graph of
four different node types, two types of internal nodes: ordinary Reo nodes and
exclusive routers , and two types of interface nodes , which are either start
or finish nodes. The type graph further includes an edge for every channel type.
Note that, for undirected channels, such as the SyncDrain, the source and the
target of the edge model both a source or a sink end of the channel. We do not
restrict the use of channels, i.e. a channel of any type can be connected to a node
of any type.2 We further include additional edge types for primitive components
with two ends. The category of Reo graphs is denoted by GraphReo.

Example 3. Figure 2 depicts two connectors, which constitute our running ex-
ample. The first connector in Figure 2a) is a nondeterministic scheduler in its
initial state. It consists of four interface nodes: two start nodes and two finish
nodes, and it is capable of scheduling two tasks. In the first step of execution,
the scheduler enables –if possible– one of the start nodes by moving the token
from the FIFO1 in the middle to one of the other two FIFO1s and replicating
the token on the selected start node. If more than one start node can be enabled,

1 See http://homepages.cwi.nl/~proenca/distributedreo/
2 A more natural way of modeling Reo connectors would use attributed typed graphs

with node inheritance (cf. [22]). For simplicity, we restrict to typed graphs here.

http://homepages.cwi.nl/~proenca/distributedreo/
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a) b)

Fig. 2. a) Nondeterministic scheduler for two tasks, b) task repository with two tasks

the choice is made nondeterministically. At this stage, the scheduler waits until
it can enable the corresponding finish node. When this step is performed, the
connector goes back to its original configuration by moving the token back to
the middle.

The second connector in our example, depicted in Figure 2b), models a task
repository. A task is a primitive component that can be either in the idle or the
processing state. When it is idle and ready to switch to the processing state, it
produces a token on its right-hand end. It signals that it can be stopped again
using a token on its left-hand end. The repository wraps every task using two
SyncDrains and exposes interface nodes for starting and finishing each of them.

In our application scenario, we will connect these two connectors along their
interface nodes. However, instead of gluing the nodes and thereby hardwiring the
connectors, we will consider them as distributed in a network having an exposed
interface to be shared. Before introducing distribution, we first illustrate how to
reconfigure connectors using graph rewriting techniques.

3.2 Algebraic Graph Transformation

We follow the double-pushout (DPO) approach to graph transformation. Graphs
are transformed by applying graph productions, which we will also refer to as
reconfiguration rules in our application. In categorical terms, a production is
a span of injective morphisms p = L


←− K
r−→ R in the category Graph.

The left-hand side L defines the pattern that must be matched to apply the
production. K contains all elements that are not removed by the rule and R ad-
ditionally has those elements of the graph that are created by the rule. Given a
production p, a match is a morphism m : L → M , where M is the graph to be
transformed. A derivation M

p,m
=⇒ N is an application of p with the match m,

formally defined as the following diagram where (1) and (2) are pushouts.

L

m

��
(1)

K

�� r ��

��
(2)

R

��
M C�� �� N

Operationally, the graph M is transformed to the graph N by (i) removing the
occurrence of L\�(K) in M , yielding the intermediate graph C, and (ii) adding



Reconfiguring Distributed Reo Connectors 227

⇒

Fig. 3. Reconfiguration rule for extending a nondeterministic scheduler

a copy of R\r(K) to C. Due to the categorical formulation of the transformation
concepts, the approach can be directly transferred to typed graphs, which we
use in the sequel to model reconfigurations of Reo connectors.

Example 4. To reconfigure the nondeterministic scheduler and the task repos-
itory introduced above, we define a number of reconfiguration rules. Figure 3
depicts an example rule that extends the scheduler with a slot for an additional
task. The gluing graph K is not drawn here, as in all of our rules. It is defined
as the intersection of the left and the right-hand side. The mappings � and r are
indicated by the relative positions of the nodes and channels. In the same way,
we define a rule for adding a task to a repository. By reversing these rules, we
can realize a removal of tasks or slots in the scheduler, respectively.

4 Distributed Connectors

To model reconfigurations of distributed Reo connectors, we use the framework
of Distributed Graph Transformation, as introduced by Taentzer [3] for graphs
and generalized by Ehrig [4] to transformations of distributed objects. In the
following, we recall the notions of the framework that are relevant to the present
setting and apply them to Reo.

4.1 Distributed Typed Graphs

Distribution of graphs can be described by adding a second level of abstraction,
namely by modeling the topology of a system using a so-called network graph.
The nodes in a network graph consist of local graphs and the edges are morphisms
of these local graphs. The idea is that a node models a physical or logical location
of a local graph, whereas an edge indicates an occurrence of the source graph
in the target graph. In particular, multiple outgoing edges from one local graph
model the fact that the source graph is shared among the target graphs.

Formally, a distributed graph is a pair (N, D) where N is an ordinary graph,
the network graph, and D is a mapping that associates to every node n in N
a local graph D(n) and to every edge n

e−→ n′ in N a graph morphism D(e) :
D(n) → D(n′). In categorical terms, this mapping corresponds to a functor
D : N → Graph, also called a diagram, where the graph N is interpreted as a
category. Following [4], this functor is required to be commutative, i.e., for any
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Fig. 4. Nondeterministic scheduler connected to a task repository

two paths p1, p2 : n
∗−→ n′ in N , it must hold that D(p1) = D(p2). This arises

from the assumption that the morphisms associated with edges represent the
sharing of the local graphs. Note that due to the categorical formalization, the
concept of distribution can be applied to typed graphs as well by considering
functors D : N → GraphT. Hence, as a first approximation, distributed Reo
connectors can be modeled as distributed typed graphs.

Example 5. An example of a distributed connector is depicted in Figure 4. The
network graph is drawn using dashed lines. The nondeterministic scheduler and
the task repository appear as nodes in the network graph. The two other nodes
of the network graph are interfaces, each containing two interface nodes, viz. a
start and a finish. Further, there are four embeddings of the interfaces into the
scheduler and the repository. Type preservation by the embedding guarantees
that start nodes map to start nodes and similarly for finish nodes. Obviously,
although details are suppressed here, the two embeddings are supposed to have
disjoint ranges. However, since the interfaces are embedded into both the sched-
uler and the repository, these connectors are considered to be connected along
their interfaces.

Given two distributed typed graphs (N1, D1) and (N2, D2), a morphism f =
(fN , fD) : (N1, D1) → (N2, D2) consists of a graph morphism fN : N1 → N2

and a natural transformation fD : D1 → D2 ◦ fN . We will just write f for the
network morphism fN . By definition, the natural transformation fD assigns to
every node n of N1 a graph morphism fn : D1(n) → D2(f(n)); fn is called
the local graph morphism of n. Furthermore, for every edge n

e−→ n′ in N1 the
following diagram commutes.

D1(n)
D1(e) ��

fn

��

D1(n′)

fn′
��

D2(f(n))
D2(f(e)) �� D2(f(n′))

Example 6. An example morphism of distributed connectors is given in Figure 5.
The unary scheduler in node n′ is mapped into a binary scheduler in node f(n′).
The target network has an interface node and an embedding into the scheduler
that is not in the image of the morphism.

The categories of distributed graphs and of distributed typed graphs are de-
noted by Dis(Graph) and Dis(GraphT). However, for a proper modeling of
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Fig. 5. Example morphism of distributed typed graphs

distributed Reo connectors the typing mechanism of Dis(GraphT) is not suffi-
cient, as we will argue in the following.

4.2 Typed Distributed Graphs

When considering Reo connectors as distributed typed graphs, i.e. objects (N, D)
with D : N → GraphT, only the local graphs are typed. For our application,
we need types at the network level as well, because of the following constraints:

(i) Nodes in a Reo network graph are either Connectors or Interfaces.
(ii) Edges in a network graph are allowed only from Interfaces to Connectors.
(iii) An Interface is linked to at most two Connectors.

A way of dealing with these constraints is to use a typed network graph with
multiplicity constraints (cf. [23]). Multiplicity constraints for edges are useful in
this context, since they allow to restrict the number of links between interfaces
and connectors. Figure 6 depicts a type graph for network graphs that enforces
the above constraints. The edge multiplicities make sure that interfaces always
connect at most two connectors. Interfaces connecting more than two connectors
are avoided, since the merger-replicator semantics of Reo nodes would give the
interfaces a non-trivial and potentially unexpected behavior. Hence, using the

Fig. 6. Network type graph for Reo

network type graph in Figure 6, we can impose the constraints (i)–(iii) above.
However, type constraints that relate the local and the network levels cannot
be expressed by this formalism. Therefore, we require the following additional
constraint for distributed connectors:

(iv) Local graphs assigned to Interfaces consist only of start and finish nodes.

We can model this constraint using typed distributed graphs, as opposed to dis-
tributed typed graphs. The latter approach, as alluded to above, involves consid-
ering objects (N, D) in the category Dis(GraphT), i.e. where D maps the nodes
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of N to typed graphs and the edges to typed graph morphisms. On the other
hand, a typed distributed graph is a tuple (N, D, type) where (N, D) is an object
in Dis(Graph) and type : (N, D) → (NT , DT ) a morphism in Dis(Graph)
with T = (NT , DT ) a fixed distributed graph, called the distributed type graph.
This means, instead of considering the category Dis(GraphT), we use the slice
category Dis(Graph)\T = Dis(Graph)T. This typing mechanism is more ex-
pressive, since the type graph and the type morphisms are distributed already.
Accordingly, we model distributed connectors as typed distributed graphs in the
rest of this paper. The distributed type graph for Reo consists on the network
level of the type graph in Figure 6. On the local level, the node type Inter-
face is mapped to a graph that consists only of the two interface nodes start
and finish. The node type Connector is mapped to the default type graph for
Reo, as presented in Section 3.1. The edge type link is mapped to a graph mor-
phism, that maps the node start in Interface to the node start in Connector, and
analogously for finish. We denote the category of distributed Reo connectors by
Dis(Graph)Reo.

5 Reconfiguration of Distributed Connectors

In order for the double-pushout approach to apply, we must make sure that
Dis(Graph)Reo has pushouts. Since the category Dis(Graph) is cocomplete
(cf. [4]), it follows that Dis(Graph)Reo is cocomplete too, as it is a slice category
of Dis(Graph). Consequently, pushouts exist and we can use DPO-rewriting
for modeling reconfigurations of distributed Reo connectors. Next, we show that
reconfigurations can be defined locally, i.e. in the scope of a single connector,
and we discuss how these local reconfigurations can be synchronized.

5.1 Local Reconfigurations

The need for local reconfigurations arises from the distributed setting, where no
global knowledge of the system is available. In the following example, we give
distributed versions of the reconfiguration rules of our scheduler application.

Example 7. Two distributed reconfiguration rules p1 and p2 are depicted in Fig-
ure 7. Rule p1 extends the nondeterministic scheduler by a slot for an additional
task and creates a new interface for this slot. Rule p2 adds another task to the
repository and creates an interface for this task. Note that the reconfiguration of
the scheduler on the one hand, and the task repository on the other, are modeled
by two separate rules, because we assume that connectors are reconfigured lo-
cally. In principle, the connectors can see each other as black boxes that publish
only their interfaces and reconfigure themselves on demand.

To reconfigure networks using local rules, we need a way to synchronize recon-
figurations. As can be seen from the example above, applying the two reconfig-
uration rules p1 and p2 naively to the network of Figure 4, does not give the
desired result, since each rule creates a new interface whereas we need just one
that is shared by the two connectors.
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Fig. 7. Rules for extending a distributed scheduler / task repository

5.2 Synchronizing Local Reconfigurations

Following [5], we use the concept of amalgamation for synchronizing local
reconfigurations. We first recall the basic definitions for amalgamated graph
transformations.

The synchronization of two productions is achieved by identifying a common
subproduction and gluing the productions along this subproduction. Let

pi = Li

i←− Ki

ri−→ Ri

be two productions with i ∈ {0, 1}. The production p0, together with graph
morphisms in1

L : L0 → L1, in1
K : K0 → K1, in1

R : R0 → R1, are called a
subproduction of p1, if in the following diagram (1) and (2) commute. Putting
in1 = 〈in1

L, in1
K , in1

R〉, we write in1 : p0 → p1 for the embedding of p0 into p1.

L0

in1
L

��
(1)

K0

0�� r0 ��

in1
K

��

R0

in1
R

��
(2)

L1 K1

1�� r1 �� R1

The productions p1 and p2 are called synchronized with respect to p0, if p0 is a
subproduction of both p1 and p2, denoted by p1

in1←− p0
in2−→ p2.

Example 8. A non-trivial, i.e. non-empty, subproduction p0 of the reconfigura-
tion rules p1 and p2 is depicted in Figure 8. The rule creates a new interface node
in a network graph. As a general property of our reconfiguration approach, the
common subproduction of two synchronized rules always describes an interface
change of the involved connectors.

By making explicit the change of interface due to an update of connectors,
synchronized productions can properly describe reconfigurations in a network.
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⇒p0 :

Fig. 8. Common subproduction of p1 and p2 modeling the interface evolution

Execution of synchronized productions can be achieved using amalgamations.
Given two synchronized productions p1

in1←− p0
in2−→ p2, the amalgamated produc-

tion
p1 ⊕p0 p2 : L


←− K
r−→ R

is constructed by gluing p1 and p2 along p0 using the pushouts (1), (2) and (3)
in the diagram below, such that all squares commute. The morphisms � and r
are induced by the universal property of the pushout (2). Applying p1 ⊕p0 p2 to
a graph G yields an amalgamated derivation G ⇒ X .

L0
inL

1

�
��
��

��
� inL

2�����
K0

�� ��
inK

1

����
��

��
� inK

2�����
R0

inR
1

����
��

��
� inR

2�����

L2

����
��

��
�(1)

K2
�� ��

����
��

��
�(2)

R2

����
��

��
�(3)

L1

�����
� K1
�� ��

�����
� R1

�����
�

L K

�� r �� R

Example 9. Amalgamation of the productions p1 and p2 in Figure 7 using the
subproduction p0 in Figure 8, generates the intended rewrite rule for the recon-
figuration of the original distributed system in Figure 4. Note that the complete
network is reconfigured using local rules in one atomic step.

Even though it provides a proper means of synchronizing local reconfigurations,
in general, amalgamation is less-suited for distributed systems. This is because
it requires (i) knowledge of all connectors and their reconfiguration rules, and
(ii) a centralized entity that is aware of the whole network and that performs
the reconfiguration in a non-local fashion. To overcome these problems we show
now a different way of applying synchronized rules.

5.3 Local Execution of Synchronized Rules

The reconfiguration mechanism for distributed connectors that we introduce in
the following, avoids the problem of amalgamations by performing the reconfigu-
ration asynchronously, where locally only a single connector and its interface are
updated at a time. Without repeating the actual constructions, we first recall
(the analysis part of) the so-called amalgamation theorem, which provides the
means to locally execute synchronized reconfiguration rules. For more details
and a proof of the theorem we refer to [5].

Amalgamation Theorem. Let p1
in1←− p0

in2−→ p2 be synchronized productions and
G ⇒ X an amalgamated derivation via p1 ⊕ p0 p2. Then there exist productions
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p′1 and p′2, called the remainders of p1 and p2 with respect to p0, such that the
following derivations exist:

H
p′
2

�������

�����

G

p1
�������

����� p1⊕ p0p2 ��

p2 ����
��

�
��

��
� X

H ′
p′
1

�������
�����

Intuitively, the remainders p′1 and p′2 simulate the effect of p1 and p2 without
performing the action of the subproduction p0. For our application to distributed
Reo connectors, this means that the remainders do the reconfiguration of the
connectors without updating the interfaces, or more precisely, assuming that
they have been updated already.

Example 10. The remainders of the productions p1 and p2 in Figure 7 are the
same as the original rules, except that their left-hand sides contain the newly
created interface already. The rules merely establish a new connection to the
already existing interface, instead of creating it. Hence, the reconfiguration of
the distributed connector in Figure 4 can be done by first applying p1 to update
the scheduler including the interfaces and then p′2 to update the task repository
accordingly. Analogously, it can be also the case that first the repository together
with the interfaces are updated and then the scheduler.

Using the above approach, a network can be reconfigured by a stepwise updating
of its constituent connectors. In particular, the connectors can also be black boxes
that reconfigure themselves. On the other hand, these local reconfigurations must
be coordinated somehow, since the order of local reconfigurations and the choice
of which connector updates the common interface is not clear. For this purpose,
we discuss a strategy in the next subsection.

5.4 Coordinating Local Reconfigurations

We informally describe a strategy for organizing local reconfigurations in a net-
work. The central idea is that a reconfiguration is triggered locally at one of
the subconnectors and that this creates a cascade of follow-up reconfigurations
across the network.

Connectors may define synchronized reconfiguration rules, i.e. rules that de-
scribe how the connector itself is changed, and further, how its interfaces are
updated. We also assume that a connector reconfigures itself triggered by an ex-
ternal request. For this purposes it may publish the names of its reconfiguration
rules. Connectors in the neighborhood can invoke these reconfiguration rules via
their shared interface (through a communication channel that is not explicitly
modeled here). When a rule is invoked, a connector performs the reconfiguration
in three steps:

1. Determine the interface where the request came from and the interfaces of
those connectors in the neighborhood that also need to be updated.
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2. Send reconfiguration requests to those connectors in the neighborhood that
must be updated and block until they are reconfigured.

3. Do the local reconfiguration and reconfigure the interface, if necessary, only
where the request came from.

We assume that there is an ‘active’ party in the network that initiates the re-
configuration by invoking a rule on some connector. Every connector can handle
only one reconfiguration request at a time. Hence, the request builds up a re-
configuration dependency tree in the network. The root of the tree is where
the reconfiguration was initially invoked. The reconfiguration is then executed
bottom-up, starting at the leaves until the root is also reconfigured.

Connectors may also respond to a reconfiguration request with a failure. In
that case, the failure is forwarded in the network and all reconfigurations per-
formed so far are rolled-back. This ensures the atomicity of the reconfigurations.

6 Concluding Remarks

We presented a framework, exploiting algebraic graph transformations, for the
reconfiguration of distributed Reo connectors. This approach allows a black-
boxed view on subconnectors for which reconfigurations can be defined and exe-
cuted locally. We showed how to synchronize local reconfigurations in the absence
of a centralized entity, which is a prime assumption in distributed environments.

Future work includes the formal modeling of the distributed strategy for coor-
dinating local reconfigurations. The typing mechanism used for Reo can be further
extended. In particular, constraints that ensure disjointness of multiple interfaces
are not modeled at present. Our distribution model can also serve as a basis for
describing deployment operations, e.g. transparently moving a connector to an-
other network location. Finally, the dynamic reconfiguration approach presented
here, needs to be incorporated in the existing distributed Reo implementation.
For this purpose, we have already implemented a reconfiguration engine based on
algebraic graph transformation as a part of the Eclipse Coordination Tools [20].
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Abstract. In this paper we introduce an approach that allows to han-
dle the containment problem for the fragment XP(/,//,[ ],∗) of XPath.
Using rewriting techniques we define a necessary and sufficient condi-
tion for pattern containment. This rewrite view is then adapted to query
evaluation on XML documents, and remains valid even if the documents
are given in a compressed form, as dags.

1 Introduction

The focus in this paper is on the containment problem ([1,2]) for the fragment
XP(/,//,[ ],∗) of XPath. XPath ([3]) is the main language for navigating and
selecting nodes in XML documents. The segment XP(/,//,[ ],∗) defines a class
of Core XPath queries expressing descendant relationships between nodes, pos-
sibly containing filters, and allowing to use the don’t–care (or wildcard) symbol
‘∗’. The queries of this fragment can be modeled by patterns: tree like graphs
having two types of edges child and descendant. Every XML document t is an
unranked tree t = (Nodest, Edgest), and can also be seen as a pattern. For any
two patterns P and Q, we say that P is contained in Q (P ⊆ Q), iff the query
represented by Q is more general than the one represented by P . For example,
a/b is contained in a//b, since child (/) is a particular case of descendant (//).

The big interest in the query containment problem ([1,2,4,5]) is motivated by
its applications. Using the notion of pattern containment we can define queries
which are equivalent, i.e., that on any XML document, select the same set of
nodes. The query equivalence problem is closely linked to the query minimization
problem, which is essential for data base researchers. Since the time required for
the evaluation of a given query Q is linear with respect to the size of Q ([6]),
the minimization — possibility of replacing Q by an equivalent query of smaller
size — is of interest from the point of view of complexity ([7,8,9,10]).

We propose to handle the containment problem using a rewrite approach. We
define a set of rewrite rules based on the semantics of XP(/,//,[ ],∗)–query
containment, and show that for any two patterns P and Q, P is contained
in Q if and only if we can rewrite P to Q using these rules. This provides a
characterization of the containment problem using algebraic techniques, which
was missing in the literature. Such a rewrite view gives us a uniform framework to
treat also other problems, for instance query evaluation. We extend our approach
on compressed documents encoded as straightline regular grammars, and apply

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 236–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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our rewrite technique in order to evaluate XP(/,//,[ ],∗)–queries on compressed
or unfolded (arborescent) XML documents.

This paper is organized as follows: In Section 2 we introduce terminology
and notation, and recall some results on the pattern containment problem. Our
rewrite method is presented in Section 3. Finally, in Section 4 we show how to
adapt this rewrite approach to the query evaluation problem.

2 The Pattern Containment Problem

Let Σ be an alphabet containing the element names of all XML documents
considered. In this work we consider the fragment XP(/,//,[ ],∗) of XPath,
which consists of: node tests (symbols from Σ∪{∗}), child axis (/), descendant
axis (//), and qualifiers also called filters ([...]). Any element of XP(/,//,[
],∗) is a query that can be represented as a rooted tree structure graph over
Σ ∪ {∗}, called unary pattern, having:

– edges of two types: simple for child, and double for descendant,
– nodes labeled by the symbols from Σ ∪ {∗},
– one distinguished node marked with a special selection symbol ‘s’ represent-

ing the output information (located at the end of the main path in the query
considered).

For instance, the unary pattern in Figure 1 represents the XP(/,//,[ ],∗) query
/a//b[./b/c/d]/c[./∗//d]. The notion of unary patterns is easily extended to
that of n–ary patterns, where we have n distinguished nodes, that model n–ary
queries selecting n–tuples of nodes. Miklau and Suciu show in [1] that, for the
purpose of the containment problem, it is sufficient to consider only the patterns
of arity zero, called boolean, where there are no distinguished nodes. Thus, all
patterns considered in the sequel will be boolean, and they will be simply called
patterns.

For a given pattern P , we denote by NodesP the set of all its nodes. For any
u ∈ NodesP , nameP (u) stands for the element of Σ∪{∗} labeling the node u. By
Edges↓(P ) and Edges⇓(P ) we mean respectively the set of child and descendant
edges of P . We define the size of P (denoted by |P |) to be the number of all
edges in P .

s

a

b

c

d

b

c

d

*

Fig. 1. Unary pattern representing query /a//b[./b/c/d]/c[./∗//d]
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Definition 1. An XML tree t is a model of a pattern P iff there exists an
embedding from P to t; i.e., a function e : NodesP → Nodest, satisfying the
following conditions:

1. e preserves the root: e(rootP ) = roott;
2. e preserves the names:
∀u ∈ NodesP , nameP (u) = ∗, or nameP (u) = namet(e(u));

3. e preserves the relation child:
∀(u, v) ∈ Edges↓(P ), (e(u), e(v)) ∈ Edgest;

4. e preserves the relation descendant:
∀(u, v) ∈ Edges⇓(P ), (e(u), e(v)) ∈ (Edgest)+,

where (Edgest)+ is the transitive closure of the relation Edgest.

The notion of model is illustrated in Figure 2.

ef

a

b

f

a c

ab d

tP

*

Fig. 2. Pattern P , its model t, and embedding e from P to t

Definition 2. Given two patterns P and Q, we say that P is contained in Q
(P ⊆ Q) iff every model of P is also a model of Q. The patterns P and Q are
equivalent (P ≡ Q) iff P ⊆ Q and Q ⊆ P .

Figure 3 represents two patterns which are easily seen to be equivalent.

Q

a

f

*

a

f

*

P

Fig. 3. Equivalent patterns P and Q

Miklau and Suciu prove in [1] that the containment problem for XP(/,//,[
],∗) is CoNP–complete. They also give a sufficient — but not necessary —
condition for pattern containment. For that purpose, they extend the notion of
embedding to pattern homomorphism:

Definition 3. Given two patterns P and Q, a homomorphism from Q to P is
a function ϕ : NodesQ → NodesP , which is:
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– root and name preserving;
– child preserving:
∀(u, v) ∈ Edges↓(Q), (ϕ(u), ϕ(v)) ∈ Edges↓(P );

– descendant preserving:
∀(u, v) ∈ Edges⇓(Q), (ϕ(u), ϕ(v)) ∈ (Edges↓(P ) ∪ Edges⇓(P ))+.

The authors of [1] prove that if there exists a homomorphism from Q to P , then
P is contained in Q. They give an algorithm which for two given patterns P and
Q verifies, in time O(|P ||Q|), whether there exists a homomorphism from Q to
P . Figure 4 shows the patterns P and Q, and the homomorphism ϕ from Q to
P proving that P ⊆ Q. Nevertheless, the existence of a homomorphism from Q
to P is not a necessary condition for P ⊆ Q (as is easily checked for the patterns
P and Q given in Figure 3, which are equivalent, but there is no homomorphism
neither from Q to P , nor from P to Q). In the following example we show a way
to prove the containment P ⊆ Q, if there is no homomorphism from Q to P .

Qϕϕ
f

a

f

a

f

a*

f

a*

P Q P

Fig. 4. Homomorphism ϕ from Q to P proving that P ⊆ Q
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P

Fig. 5. Patterns s.t. P ⊆ Q, but no homomorphism from Q to P

Example 1. In Figure 5 we have presented two patterns P and Q (borrowed from
[1]) satisfying P ⊆ Q, such that there is no homomorphism from Q to P .

Here, to show the containment P ⊆ Q, we have to reason by cases. Let t be a
model of P , and consider the middle edge c//d of pattern P . This edge can be
realized on t:

– either by the child edge c/d (as in Figure 6),
– or by a path c/∗/. . ./d, having length ≥ 2 (as in Figure 7).

Such an analysis shows that any model of P is also a model of Q, thus P ⊆ Q.
However, it is impossible to define one general homomorphism from Q to P , as
the right branch a//b/c/∗//d of Q corresponds in each case to a different branch
of P .
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Fig. 6. Model of P (and Q), where c//d is realized by c/d
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Fig. 7. Model of P (and Q), where c//d is realized by c/a/d

3 Pattern Containment via Rewriting

We propose to handle the pattern containment problem using an approach based
on rewriting techniques. A key idea is that checking containment requires case
analysis in general, and this can be encoded as rewriting (as we illustrate in
Example 2 below). We construct a rewrite system R that permits to define a
necessary and sufficient condition (see Theorem 1) for pattern containment on
the fragment XP(/,//,[ ],∗).

We start by giving a formal definition of pattern, alternative to that used in
the previous sections.

Definition 4. We define patterns over an alphabet Σ as the expressions P de-
rived from the grammar of Table 1, where ↓ and ⇓ stand respectively for child
and descendant, ω ∈ Σ ∪ {∗}, and ‘∗’ is the don’t–care symbol of XPath that
can replace any σ of Σ.

This grammar produces precisely the patterns as defined in [1,7]. For instance,
the graph P in Figure 8 corresponds to the expression

P = a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ⇓ d}, ↓ c ↓ ∗ ⇓ d}
derived from the grammar of Table 1.

By a term we mean any expression of the type M , S or P derived from the
grammar of Table 1, as well as any finite disjunction P1∨P2∨· · ·∨Pn of patterns.
The terms of the type M correspond to the linear paths without branching, they



A Rewrite Approach for Pattern Containment 241

Table 1. Grammar for patterns

M : ε | ↓ ω | ⇓ ω | MM // path
S : ∅ | {MS} | S ∪ S // set of sibling unrooted terms
P : ωMS // patterns

P

b

c

d

a

b

c

d

b

c

d

*

Fig. 8. Pattern

start by a modal symbol ξ ∈ {↓,⇓}; those of the type S represent a set of terms
having a common parent node; and those of the type P are patterns. The terms
in P are rooted (they start by a symbol from Σ ∪ {∗}), those in M and S are
unrooted. To simplify, we will often identify the singleton {MS} with the term
MS. Given patterns P and Pi, for 1 ≤ i ≤ n, the terms of the form ε, P , or
P1 ∨ · · · ∨ Pn, will also be called d–patterns. A tree t is a model of a d–pattern
P1∨· · ·∨Pn iff t is a model of at least one pattern Pi, for 1 ≤ i ≤ n. Definition 2 of
pattern containment is extended in a natural way to a d–pattern containment. A
disjunctive d–pattern will be used in case analysis to represent different models
of a given pattern with a unique term, as in the following example.

Example 2. Consider the patterns

P = f ↓ ∗ ⇓ a and Q = f ⇓ ∗ ↓ a

given in Figure 3. We know that P ≡ Q, thus in particular P ⊆ Q, but there
is no homomorphism which proves it. Using the rules of our system R defined
below we will be able to rewrite P to Q, and prove the containment P ⊆ Q. The
idea is that every descendant is either a child or has a depth ≥ 2; thus, the edge
∗ ⇓ a of P can be realized either by the child edge ∗ ↓ a, or by a path having at
least one additional node between ‘∗’ and ‘a’, that we can denote by ∗ ⇓ ∗ ↓ a.
We will then rewrite the pattern P to the d–pattern

f ↓ ∗ ↓ a ∨ f ↓ ∗ ⇓ ∗ ↓ a

depicting the two cases mentioned. The two pattern components of this d–pattern
will then be rewritten in parallel. A child, as well as a descendant of depth ≥ 2 are
particular cases of descendant. As a consequence, the edge f ↓ ∗ will be rewritten
to f ⇓ ∗, idem for the path f ↓ ∗ ⇓ ∗. This will give us the following term:

f ⇓ ∗ ↓ a ∨ f ⇓ ∗ ↓ a,
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which will be finally rewritten to Q, since each pattern composing this d–pattern
is exactly the pattern Q.

To formalize the idea employed in the examples above, we introduce a set
R of rules that serve to rewrite rooted and unrooted terms. Let M, S (possibly
with primes, subscripts) be as in the grammar of Table 1; ξ, ξ′ ∈ {↓,⇓}, σ ∈ Σ,
and ω, ω′ ∈ Σ ∪ {∗}:
1. S −→ ∅, M −→ ε //cut;
2. MσS −→ M ∗ S //replace any symbol of Σ by the ‘∗’ of XPath;
3. ↓ ωS −→⇓ ωS //every child is also a descendant;
4. ξωξ′ω′S −→⇓ ω′S //ignore an intermediate node;
5. M{S1, S2} −→ {MS1, MS2} //left distributivity;
6. S −→ S ∪ S′, where S −→ S′ //add new siblings;
7. S ∪ S1 −→ S′ ∪ S1, if S −→ S′ //rewrite some of the siblings;
8. ⇓ ωS −→ (↓ ωS) ∨ (↓ ∗ ⇓ ωS) //case analysis: descendant is either a child

or has depth ≥ 2;
9. ⇓ ωS −→ (↓ ωS) ∨ (⇓ ∗ ↓ ωS) //idem.

By context–pattern we mean any pattern having a special additional hole
symbol ♦ that replaces one of its unrooted sub–terms. Let us consider a context–
pattern C and an unrooted term X . We define the fill–in of C with X (denoted
as C�X) to be the pattern obtained from C by replacing its hole symbol with
the term X ; e.g. for the context–pattern C = f{↓ a,⇓ b{♦, ↓ d},⇓ ∗}, and the
unrooted term X =⇓ x{↓ y,⇓ z}, we get the fill–in:

C�X = f{↓ a,⇓ b{⇓ x{↓ y,⇓ z}, ↓ d},⇓ ∗}.

We also suppose that for any context–pattern C and unrooted terms X and X ′,
the notation C�(X ∨X ′) stands for the disjunctive d–pattern C�X ∨ C�X ′.

To rewrite patterns with the rules of R given above, we use suffix rewriting:

Definition 5. Given a pattern P and a pattern or a d–pattern Q, we say that P
can be rewritten to Q in one step using suffix rewriting, if there exist a context–
pattern C and two unrooted terms X and X ′, such that: P = C�X, Q = C�X ′,
and X −→ X ′ is an instance of a rule in R.

Moreover, disjunctive terms can be rewritten using the following additional two
rules, where P is a pattern, and D, D1, D2 stand for d–patterns:

10. D1 ∨D −→ D2 ∨D, if D1 can be rewritten to D2 //case rewriting;
11. P ∨ P ∨D −→ P ∨D //consider any given case only once.

Rules 10 and 11 are used as follows: if a d–pattern L is an instance (modulo
commutativity) of the LHS of rule 10 or 11, and a d–pattern R is an instance
(modulo commutativity) of the RHS of the same rule, then L can be rewritten
to R. We will denote by A −→R B the fact that a pattern or a d–pattern A is
rewritten in one step to a pattern or a d–pattern B, by using the rules of R.
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The main result of our work is the following:

Theorem 1. For any two patterns P and Q, P is contained in Q if and only if
P

∗−→R Q, i.e., P can be rewritten to Q using the rules of R in zero or finitely
many steps.

Proof. The semantics of the rules in R guarantee that P
∗−→R Q implies P ⊆ Q.

Indeed, if X −→ X ′ is an instance of one of the rules 1−9, then for every context–
pattern C, we have C�X ⊆ C�X ′; if L −→ R is an instance of rule 10 or 11, we
obviously have L ⊆ R.

To show the converse, we start with the following lemma:

Lemma 1. For any patterns P and Q, if there exists a homomorphism from Q
to P , then P

∗−→R Q.

Proof. Given a homomorphism ϕ from Q to P , we construct a pattern P ′, such
that P

∗−→R P ′ ∗−→R Q, as follows:

(a) for every node u of Q, we construct a corresponding node u′ of P ′, and we
set nameP ′(u′) = nameP (ϕ(u));

(b) we construct a child edge (u′, v′) ∈ Edges↓(P ′), if and only if (u, v) ∈
Edges↓(Q);

(c) we construct a descendant edge (u′, v′) ∈ Edges⇓(P ′), if and only if (u, v) ∈
Edges⇓(Q).

The cost of such a construction is linear with respect to the size of Q. The pattern
P ′ can be rewritten to the pattern Q using rule 2 of R. Indeed, the structures
(nodes, simple and double edges) of P ′ and Q are the same, but the names of
some u ∈ NodesQ and the corresponding node u′ ∈ NodesP ′ may be different.
Condition (a) implies that: either nameQ(u) = nameP ′(u′) = nameP (ϕ(u)),
or nameQ(u) �= nameP ′(u′) = nameP (ϕ(u)). In the second case we have (see
Definition 3): nameQ(u) = ∗, and nameP ′(u′) ∈ Σ, thus to rewrite P ′ to Q we
have to use rule 2.

It remains to be shown that P can be rewritten to P ′:

– using rules 1 and 7 (with S′ = ∅), we can ignore all sub–branches of P which
do not contain the nodes images under ϕ;

– if some node w of P is an image of m distinct nodes u1, . . . , um of Q, then
we rewrite the unique node w of P to m nodes u′

1, . . . , u
′
m of P ′, by using

rule 6 (with S′ = S) and/or rule 5;
– case when edge (u′, v′) is in Edges↓(P ′): from condition (b) we know that

(u, v) ∈ Edges↓(Q), thus by Definition 3 we have (ϕ(u), ϕ(v)) ∈ Edges↓(P )
(we have nothing to do with the edge (ϕ(u), ϕ(v)) when rewriting P to P ′);

– case when edge (u′, v′) is in Edges⇓(P ′): from condition (c) and Definition 3
we can deduce that there exist k ≥ 1 and w0, . . . wk ∈ NodesP , such that:
w0 = ϕ(u), wk = ϕ(v), and ∀ i ∈ {0, . . . , k − 1} we have (wi, wi+1) ∈
Edges↓(P ) ∪ Edges⇓(P ). If k = 1 and (ϕ(u), ϕ(v)) ∈ Edges↓(P ), then we
can rewrite P to P ′ using rule 3. If k ≥ 2, then we use (k − 1 times) rule 4
to ignore the nodes w1, . . .wk−1 while rewriting P to P ′.

Finally, we obtain P
∗−→R P ′ ∗−→R Q. ��
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Note that if P is a tree, we also have the converse of Lemma 1. Indeed, it is
sufficient to remark that if P

∗−→R Q and P is a tree, then one can rewrite P
to Q by using only rules 1− 7; if X −→ X ′ is an instance of one of those rules,
then for every context–pattern C, there exists a homomorphism from C�X ′ to
C�X . Of course, in the case when P is a tree, a homomorphism from Q to P is
an embedding from the pattern Q to the tree P . The above considerations give
us the following characterization:

Remark 1. A tree t is a model of a pattern Q iff t
∗−→R Q.

By a homomorphism from a pattern Q to a d–pattern D = P1 ∨ · · · ∨ Pn, we
mean a function which is a homomorphism from Q to Pi, for every 1 ≤ i ≤ n.
Thus, using Lemma 1, we obtain the following corollary:

Corollary 1. For any given pattern Q and a d–pattern D, if there exists a
homomorphism from Q to D, then D

∗−→R Q.

Proof. It suffices to remark that rules 10 and 11 imply that a d–pattern P1 ∨
· · · ∨ Pn can be rewritten to a pattern Q if and only if, for every 1 ≤ i ≤ n, we
have Pi

∗−→R Q. ��
To finish the proof of Theorem 1, we use the following proposition:

Proposition 1. For two patterns P and Q, if P ⊆ Q, then one can construct a
d–pattern D verifying P

∗−→R D, such that there exists a homomorphism from
Q to D.

Proof. From the result of Miklau and Suciu ([1]) we know that it is possible
to check if there exists a homomorphism from Q to P . If it is the case, the
d–pattern D satisfying the proposition is equal to P (see Lemma 1). If not, a
disjunctive d–pattern D satisfying the proposition can be constructed by using
rules 8 and 9 finitely many times. We know that every model of P is also a
model of Q. The idea is to represent all models of P by an equivalent d–pattern
D = P1∨· · ·∨Pn representing case analysis, such that for every 1 ≤ i ≤ n, there
exists a homomorphism from Q to Pi. ��
This terminates the proof of Theorem 1.

The rewrite system R is non–deterministic; nevertheless if P and Q are given,
there exists a well–defined, goal–directed strategy for rewriting P to Q. The idea
is to use only those rules among 1−11 that permit to converge to Q. We illustrate
this strategy in the following example:

Example 3. Let P and Q be the patterns represented in Figure 5. We show
how to rewrite P to Q, and thus prove the containment P ⊆ Q. The pattern
P = a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ⇓ d}, ↓ c ↓ ∗ ⇓ d} can be seen as the fill–in

a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c♦}, ↓ c ↓ ∗ ⇓ d} � ⇓ d.
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Using rule 8 for the underlined term, we encode the cases depicted in Example 1:

a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c♦}, ↓ c ↓ ∗ ⇓ d} � ↓ d

∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c♦}, ↓ c ↓ ∗ ⇓ d} � ↓ ∗ ⇓ d.

We obtain the d–pattern

a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ d}, ↓ c ↓ ∗ ⇓ d}
∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}, ↓ c ↓ ∗ ⇓ d},

which can be seen under the form

a ⇓ b{↓ b{♦, ↓ c ↓ d}, ↓ c ↓ ∗ ⇓ d} � ↓ b ↓ c ↓ d

∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}, ♦} � ↓ c ↓ ∗ ⇓ d.

We rewrite it using rule 10. We cut (rule 1) the underlined parts, and get

a ⇓ b{↓ b{↓ c ↓ d}, ↓ c ↓ ∗ ⇓ d} ∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}}.
The d–pattern that we have obtained is then identified with

a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} ∨ a ⇓ b ↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}.
Its first component is equal to the pattern Q. To the second one, seen as the
fill–in a♦ � ⇓ b ↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}, we apply rule 4, and get the term
a♦ � ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} = a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}. Thus we
obtain the d–pattern

a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} ∨ a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} = Q ∨Q,

that is finally rewritten to Q using rule 11.

Remark 2. Our approach is no longer valid, if it is not based on suffix rewriting;
e.g. for P = ∗ ⇓ ∗ and Q = ∗ ↓ ∗, we have P ⊆ Q (P ∗−→R Q using rules 9, 1),
but P♦ � ↓ a = ∗ ⇓ ∗ ↓ a is not contained in Q♦ � ↓ a = ∗ ↓ ∗ ↓ a: for
instance, the tree t = f ↓ g ↓ b ↓ a is a model of ∗ ⇓ ∗ ↓ a, but not of ∗ ↓ ∗ ↓ a.

4 Applications

The objective of this section is to show that our rewrite approach remains valid
even if the models of patterns are given in a compressed form (as dags), and
that it can be adapted for query evaluation on XML documents.

4.1 Case of Compressed Documents

To model compressed documents we use rooted dags instead of trees (as in
[11,12,13,14]). Figure 9 represents three formats of the same document: tree, fully
and partially compressed format (see [11] for formal definitions). In the sequel, by
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Fig. 9. Tree, fully compressed format, partially compressed format

t we will denote any given representation (tree or dag) of the document con-
sidered. To distinguish between different formats of the same document we use
regular tree grammars. Given a document t, we call normalized grammar for t
a regular tree grammar Gt:

– which recognizes only t,
– where every node of t is represented by exactly one non–terminal,
– the indexes of non–terminals for children nodes are greater then the indexes

of non–terminals for parent nodes.

Such normalized grammars are straightline in the sense defined in [15], i.e., there
is no cycle on their dependency graph. For this reason we will refer to them as
SLR grammars.

Example 4. The SLR grammars for the three dags from Figure 9 are respectively:

X0 → f(X1, X2, X3, X4) Y0 → f(Y1, Y1, Y2, Y1) Z0 → f(Z1, Z1, Z2, Z3)
X1 → a Y1 → a Z1 → a

X2 → a Y2 → b Z2 → b

X3 → b Z3 → a.

X4 → a

We extend the notion of SLR grammar to patterns. To define a normalized
grammar GP for pattern P , it is sufficient that every non–terminal Xi appearing
on the right hand side of any production of GP , is preceded by a modal symbol ↓
or ⇓, corresponding to the type of edge pointing to the node represented by Xi on
P . In order to have a uniform notation that covers patterns as well as documents,
we will do the same on the normalized grammar Gt, for any document t: every
non–terminal Xi appearing on the right hand side of some production in Gt, will
be preceded by ↓. For instance, the grammars GP and Gt respectively for the
pattern P and the tree t of Figure 11, are given in Figure 10.

To define an embedding e from a pattern P to a dag t, we replace the condi-
tions 3 and 4 of Definition 1 respectively by:

3. ∀u, v ∈ NodesP , such that (u, v) ∈ Edges↓(P ), there exists an edge going
form e(u) to e(v) on t;

4. ∀u, v ∈ NodesP , such that (u, v) ∈ Edges⇓(P ), there exists a path going
from e(u) to e(v) in (Edgest)+.
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P0 → ∗(↓ P1,⇓ P2) X0 → f(↓ X2, ↓ X1)

P1 → a X1 → b(↓ X2)

P2 → a X2 → a.

Fig. 10. SLR grammars GP and Gt for P and t from Figure 11

P

*

aa

f

b

a

t

Fig. 11. Pattern P , its compressed model t, and embedding from P to t

The notion of (dag) model of a pattern and the pattern containment problem
are defined in the same way as in the case of tree models. Figure 11 shows a
pattern P , its compressed model t, and an embedding from P to t.

SLR grammars can be used in our rewrite approach. To prove that a given
dag t is a model of a pattern P , it is sufficient (according to Remark 1) to rewrite
the grammar Gt representing t to the grammar GP representing P . We illustrate
this idea in the following example.

Example 5. Consider the grammars GP and Gt given in Figure 10. We show
how to rewrite Gt to GP using rules of R:

X0 → f(↓ X2, ↓ X1)
2−→ X0 → ∗(↓ X2, ↓ X1)

1−→ X0 → ∗(↓ X2)
6−→

X1 → b(↓ X2) X1 → b(↓ X2)
1−→

X2 → a X2 → a X2 → a

The first production of Gt is first rewritten using rule 2; then we cut a branch
represented by X1 (rule 1). At the same time, we can eliminate from Gt the
production X1 → b(↓ X2), since it has become unproductive (there is no more
production having X1 on their right hand sides).

X0 → ∗(↓ X2, ↓ X ′
2)

3−→ X0 → ∗(↓ X2,⇓ X ′
2) ≈ P0 → ∗(↓ P1,⇓ P2)

X2 → a X2 → a ≈ P1 → a

X ′
2 → a X ′

2 → a ≈ P2 → a.

Then, using rule 6 we double the number of children of X0; we introduce a new
non–terminal X ′

2, which produces the same sub–pattern as X2. Finally, by Rule
3, we get a grammar which is equal, up to non–terminal renaming, to GP .
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Fig. 12. Unary pattern P and its compressed model t

4.2 Query Evaluation

SLR grammars help us to adapt the rewrite approach of Section 3 to XP(/,//,[
],∗)–query evaluation on (compressed) documents. To represent unary queries,
we use unary patterns (see Section 2). Let us consider the unary pattern P rep-
resenting the query P = /∗//c[./c]//d[./a], and the compressed document t,
given in Figure 12. The corresponding SLR grammars GP and Gt are respec-
tively:

P0 → ∗(⇓ P1) X0 → f(↓ X1, ↓ X2)
P1 → c(↓ P2,⇓ P3) X2 → b(↓ X6)
P2 → c X1 → a(↓ X6, ↓ X3)
P3(s) → d(↓ P4) X3 → c(↓ X4, ↓ X5)
P4 → a X4 → c(↓ X6)

X5 → d(↓ X6)
X6 → a.

The non–terminal P3 of GP is marked ‘s’, since it represents the output node
of P . To find an answer for P on t, we rewrite the grammar Gt to the grammar
GP , using the rules of R. The non–terminal of Gt which will be rewritten to
the selecting non–terminal P3 of GP , will represent an answer for P on t. We
illustrate this reasoning below:

X0 → f(↓ X1, ↓ X2)
1−→ X0 → f(↓ X1)

2−→ X0 → ∗(↓ X1)
4−→

X2 → b(↓ X6)

X1 → a(↓ X6, ↓ X3)
1−→ X1 → a(↓ X3) X1 → a(↓ X3)

X3 → c(↓ X4, ↓ X5) X3 → c(↓ X4, ↓ X5)
3−→ X3 → c(↓ X4,⇓ X5)

X4 → c(↓ X6)
1−→ X4 → c X4 → c

X5 → d(↓ X6) X5 → d(↓ X6) X5 → d(↓ X6)
X6 → a X6 → a X6 → a
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X0 → ∗(⇓ X3) ≈ P0 → ∗(⇓ P1)
X3 → c(↓ X4,⇓ X5) ≈ P1 → c(↓ P2,⇓ P3)
X4 → c ≈ P2 → c

X5 → d(↓ X6) ≈ P3(s) → d(↓ P4)
X6 → a ≈ P4 → a,

We have obtained an SLR grammar, which is (up to non–terminal renaming)
the SLR grammar GP for P . The non–terminal X5 of Gt has been rewritten to
the non–terminal P3, thus the node represented by X5 is an answer for P on t.

Note that, as any query P of the fragment XP(/,//,[ ],∗) is purely descen-
dant, the answer for P on a document t does not depend on the form under
which t is given (tree or dag); this is no longer valid for queries containing as-
cendant axes (cf.[11]). Remark also that our rewrite approach can be extended
to any n–ary query of XP(/,//,[ ],∗); an n–ary query selects a set of n–tuples
of nodes ([16]), and is easily represented as an n–ary pattern.

5 Conclusion

We have presented an approach based on rewrite techniques, that allows to han-
dle the problem of query containment for the segment XP(/,//,[ ],∗) of XPath.
Such a rewrite view is also appropriate for compressed documents modeled as
dags, and can be adapted to (unary as well as n–ary) query evaluation on (com-
pressed) documents.

Straightline regular tree grammars can provide an exponential space compres-
sion. Nevertheless there exist more efficient compression techniques, like those
based on staightline context–free grammars (SLCF, [15]), giving better (up to
doubly exponential) compression rates. Currently we are studying the possibil-
ity of extending our rewrite approach to such more efficient compressions. We
also hope to adapt our results to larger fragments of XPath, containing queries
modeled by more general patterns, having both descendant and ascendant edges.
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Abstract. The paper outlines an approach for characterizing several
kinds of behaviours for transition systems in coalgebraic terms and illus-
trates the approach with some behaviours in the linear time – branching
time spectrum, namely, traces, ready-traces and failures. The approach
is based on an abstract notion of “behaviour object” that can be defined
in any (concrete) category and enjoys a uniqueness property similar to
the uniqueness of morphisms to final objects. That property makes be-
haviour objects final in a suitable extension of the given category with
additional morphisms, which allows to define the behaviours of arbitrary
objects by the unique morphisms to the behaviour objects. The main
purpose of the paper is to show how trace, ready-trace and failure se-
mantics can be characterized in terms of behaviour objects.

1 Introduction

When coalgebras are viewed as models of general dynamical systems [1], final
coalgebras appear as abstract descriptions of the observable behaviours of such
systems. For many systems, however, several notions of behaviour have been
proposed, depending on the point of view or on the intended application. A case
in point is the class of (labeled) transition systems: in [2], twelve notions of be-
haviour are presented and hierarchically organized in the so-called linear time –
branching time spectrum. The problem is then how to characterize in coalgebraic
terms different notions of behaviour for a given type of system, since final coal-
gebras, when they exist, are unique up to isomorphism and so can not capture
more than one notion of behaviour. In this paper we introduce an abstract notion
of “behaviour object” in any (concrete) category, enjoying a uniqueness property
similar to the uniqueness of morphisms to final objects; not surprisingly, final
objects are themselves instances of behaviour objects. We then proceed to show
how traces, ready-traces and failures give rise to behaviour objects in a category
of transition systems. We believe most other kinds of behaviours in the spectrum
can be treated in a similar way.

Not much work has been done on general notions of behaviour for coalgebras
beyond those based on final coalgebras. It is worth mentioning in this respect
some work on a characterization of traces for some categories of coalgebras that
appear in [3, 4, 5]. Our approach differs from the one in the cited papers, which is
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based on monads and distributive laws. We start from a category C (of transition
systems) equipped with a faithful functor U : C → Set where we assume Uf = f
for arrows f . For each type of behaviours (traces, ready-traces or failures) we
define a full subcategory D whose behaviours are precisely those we wish to
capture. More precisely, the given behaviours can be structured as a final object
Z in D. To associate behaviours of the given kind with an arbitrary transition
system S and not with just those in D, we introduce a functor T from C to C
whose image is contained in D. There is a unique morphism β : TS → Z, but
our interest lies in S, not TS. So the last step is to define ηS : US → UTS which
combined with β gives the “behaviour map” behZ

S
= β ◦ ηS from US to UZ.

Ideally, we would like η to be a natural transformation IdC → T , but as it turns
out ηS is not in general a morphism in C. Thus, η is just a natural transformation
U → UT . We may assume, however, that ηS is a morphism S → TS if S is in
D; in that case behZ

S is a morphism, and in fact the unique morphism S → Z,
thus showing that our notion of behaviour is a conservative extension of the one
based on final objects.

Thus, the behaviour object Z is a final object in the subcategory D; but in
fact it is possible to introduce a new notion of morphism that depends on T , to
be called a “T -morphism”, and Z is also final in the supercategory CT of C that
has T -morphisms as morphisms. The behaviour function behZ

S
is then the unique

T -morphism from S to Z. The categories of the form CT will play a crucial role
in comparing behaviour equivalences with respect to distinct behaviour objects.

The paper is organized as follows. In the next section we present an abstract
framework where we introduce the notion of behaviour object in the setting of
an arbitrary (concrete) category; we also present the general results that will be
used in the concrete cases to be considered next. The three sections that follow
instantiate the framework by considering an appropriate category of transition
systems and studying in turn the cases of traces, ready-traces and failures. A
short section then compares the three behaviour equivalences associated with
the three types of behaviours. The paper ends with some conclusions.

As prerequisites we assume familiarity with the notions of trace, ready-trace
and failure as can be found in [2]; these notions will be defined in the present
paper but no motivation for them will be supplied. From category theory we
only assume knowledge of the basic notions of category, functor, natural trans-
formation and final object. No knowledge of the theory of coalgebras will be
required; when we speak of coalgebras it will always refer to a particular cat-
egory of transition systems and the reader may safely ignore all mentions of
coalgebras. Finally, most results are proved in the paper; some proofs have been
omitted by lack of space, but mostly in cases of routine verification of properties.
An expanded version of this paper containing all proofs appears in [6].

2 The General Framework

Let C be a category and U : C → Set a faithful functor; for simplicity, we
identify in the sequel arrows f in C with the functions Uf , that is, we assume
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that morphisms in C are functions on the underlying sets. These data will be
fixed throughout this section.

Definition 1. An object Z of C will be called a behaviour object if there is a
full subcategory D of C, an endofunctor T on C and a natural transformation
η : U → UT such that Z is final in D, the image of T is contained in D and
ηS : US → UTS is a morphism S → TS whenever S is in D. The composite
behZ

S = β ◦ ηS : US → UZ is the behaviour function determined by Z,D, T, η;
the kernel of the behaviour function is the behavioural equivalence Z=S, that is,
s

Z=S s′ iff behZ

S
(s) = behZ

S
(s′) for all s, s′ ∈ US.

The behaviour function is not in general a morphism of C, but it will prove
useful to view it as a morphism of a supercategory extending C with additional
morphisms called “T -morphisms.” Note that a final object of C, if there is one,
is a behaviour object, for we may take D to be C, T to be the identity functor
and η to be the identity natural transformation of U ; in that case, behZ

S is the
only morphism from S to Z.

Definition 2. Let D, T, η be as in the previous definition. If S1 and S2 are
objects in C, by a T -morphism f : S1 → S2 we mean a function f : US1 → US2

for which there exists a morphism f ′ : TS1 → TS2 such that the following
diagram commutes:

US1
f

��

ηS1

��

US2

ηS2

��

UTS1
f ′

�� UTS2 .

Note that f ′ needs not be unique. If f is a morphism, then f is also a T -
morphism; indeed, take f ′ = Tf in the previous diagram and observe that
the diagram commutes by the naturality of η. Also, every ηS is a T -morphism,
because we may take η′

S
= ηTS, which is a morphism since TS is in D. The

composition of two T -morphisms is a T -morphism and the identity 1S, being a
morphism, is also a T -morphism. This gives a category CT which extends C,
with the same objects as C and with T -morphisms as morphisms.

Theorem 1. Let D be a full subcategory of C containing the image of an
endofunctor T on C and η : U → UT a natural transformation such that
ηS : US → UTS is a morphism for every object S in D. An object Z of D
is final in D iff Z is final in CT and the unique T -morphism TZ → Z is a
morphism.

Proof. Assume Z is final in D. Since TZ is in D, there is a unique morphism
ζ : TZ → Z. Since ηZ is a morphism, because Z is in D, we have ζ ◦ηZ = 1UZ, by
the finality of Z. Given any object S in C, we must show that there is a unique
T -morphism S → Z. The unique morphism β : TS → Z gives a T -morphism
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β ◦ ηS : S → Z. If α : S → Z is another T -morphism, we show that α = β ◦ ηS.
By definition of T -morphism, there is a morphism α′ : TS → TZ such that
ηZ ◦ α = α′ ◦ ηS, as depicted in the next diagram:

US

ηS

��

α �� UZ

ηZ

��

UTS

β

��������������� α′
�� UTZ .

ζ





Using the identities ζ ◦ ηZ = 1UZ, as noted above, and ζ ◦ α′ = β, by the
uniqueness of β, we calculate: β ◦ ηS = ζ ◦ α′ ◦ ηS = ζ ◦ ηZ ◦ α = α.

Conversely, suppose Z is final in CT and ζ is a morphism. Given any object
S in D, we must show that there is a (necessarily unique) morphism S → Z.
By hypothesis, there is a (unique) T -morphism α : S → Z. By definition of
T -morphism, ηZ ◦ α = α′ ◦ ηS for some morphism α′ : TS → TZ. Since ζ is a
morphism, ζ ◦ α′ : TS → Z is a morphism. Composing with ηS : US → UTS,
which is a morphism by hypothesis, gives a morphism ζ ◦ α′ ◦ ηS from S to Z.

In the conditions of the theorem, Z is a behaviour object and behZ

S
: S → Z is the

only T -morphism from S to Z, which is a morphism if S is in D. By uniqueness,
behZ

S
= behZ

TS
◦ ηS; these functions showed up as α = behZ

S
and β = behZ

TS
in the

proof of the previous theorem.
What is the relationship between Z and any final object that C might have?

And between the corresponding behaviour equivalences? The next proposition
shows that general behaviour objects give rise to behaviour equivalences coarser
than the behaviour equivalence determined by a final object. In categories of
coalgebras, bisimilarity is finer than the behaviour equivalence determined by a
final object, so the technique of behaviour objects never gives behaviour equiv-
alences finer than bisimulation.

Proposition 1. Suppose C has a final object W and CT has a final object Z.
Then Z is a subobject of W in C and a retract of W in CT . Furthermore, the
equivalence W=S is finer than Z=S, that is, W=S⊆ Z=S.

Proof. There is a unique morphism α : Z → W and a unique T -morphism
β : W → Z. The composition β ◦α : Z → Z is a T -morphism, hence must be 1Z.
In particular, α is injective, so is monic, and the first conclusion follows. For the
second statement, just note that behZ

S
= behZ

W
◦ behW

S
, by uniqueness.

In the cases considered in this paper C has not a final object, but we may wish to
compare the behaviour equivalences induced by distinct behaviour objects. To per-
form the comparison we must be able to relate the behaviour objects somehow. In
the proposition below we assume that the natural transformation associated with
one of the behaviour objects preserves the behaviours with respect to the other.

Proposition 2. Let W be a behaviour object of C with respect to a full subcat-
egory E, an endofunctor F and a natural transformation ζ, and Z a behaviour
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object with respect to D, T, η. Assume ζ preserves the behaviours over Z, in the
sense that behZ

S
= behZ

FS
◦ ζS. In these conditions, behZ

S
= behZ

W
◦ behW

S
, and

consequently W=S is finer than Z=S.

Proof. We can write behZ

FS
= behZ

W
◦ behW

FS
, by uniqueness, since behW

FS
is a

morphism so that both sides are T -morphisms. On the other hand, by definition
of behW

S
, we have behW

S
= behW

FS
◦ ζS. From these equalities and the one in the

hypothesis of the proposition we derive behZ

S = behZ

W ◦ behW

S , as required.

3 Traces of Transition Systems

For the rest of this paper we fix a set A �= ∅ of actions. Recall that a (labelled)
transition system with labels in A is a pair 〈S,→〉, where S is a set of states
and → is a ternary relation →⊆ S ×A× S; as usual, we write s

a→ t instead of
(s, a, t) ∈→. There are several ways to view a transition system as a coalgebra
S = 〈S, ψ〉; in this paper we assume that ψ maps S to P(S)A, where ψ(s)(a) =
{t | s

a→ t} for all s ∈ S and a ∈ A; the function ψ will sometimes be called
the “dynamics” of the transition system. Thus, transition systems are basically
coalgebras for the functor P(−)A; in the sequel we shall still often write s

a→ t

as an abbreviation of t ∈ ψ(s)(a), for clarity; sometimes we write s
a→ to mean

that s
a→ t for some t. If S′ = 〈S′, ψ′〉 is another transition system, a morphism

f : S → S′ is a function f : S → S′ such that ψ′ ◦ f = P(f)A ◦ ψ, as in the
following commutative diagram:

S

ψ

��

f
�� S′

ψ′

��

P(S)A

P(f)A

�� P(S′)A .

It is easy to see that this notion is equivalent to the following two conditions
taken together:

– whenever s
a→ t in S, then f(s) a→ f(t) in S′;

– if f(s) a→ t′ in S′, there is t ∈ S such that s
a→ t in S and f(t) = t′.

The category of transition systems will be the main category of interest in this
paper, and so it will be denoted C, to agree with the notation introduced in the
previous section. The forgetful functor U : C → Set maps S = 〈S, ψ〉 to S and
any morphism to itself as a function.

Let S = 〈S, ψ〉 be a transition system. We extend the transition relation to
strings x ∈ A∗ by writing s

x→ t if s
a1→ · · · an→ t with x = a1 · · · an; of course,

if n = 0, then x is the null string ε and s
ε→ s. The strings x such that s

x→ t
are the traces of s; we put trS(s) = {x | ∃t, s x→ t}. The set trS(s) is nonempty
and prefix-closed; this amounts to say that ε ∈ trS(s) and whenever xy ∈ trS(s),
then x ∈ trS(s).
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A trace language is a nonempty and prefix-closed subset L ⊆ A∗. If Tr is
the set of all trace languages, trS is then a function from S to Tr . We turn Tr
into a transition system T = 〈Tr , ζTr 〉 by defining ζTr : Tr → P(Tr)A by the
transitions

L
a→ {x | ax ∈ L}

for a ∈ L (to guarantee that {x | ax ∈ L} �= ∅). This system is “deterministic”
in the sense that each ζTr (L)(a) is either empty, in case a �∈ L, or the singleton
{{x | ax ∈ L}} when a ∈ L. Note that trS : S → Tr is not in general a
morphism from S to T; as we shall see, trS is a TTr -morphism for an appropriate
endofunctor TTr of C. The following results are easily proved.

Proposition 3. If f : S1 → S2 is a morphism of transition systems and s is a
state of S1, then s and f(s) have the same traces.

Proposition 4. If L is in Tr, then trT(L) = L.

Let DTr be the full subcategory of C of deterministics transition systems S =
〈S, ψ〉, that is, such that ψ(s)(a) has cardinality at most one for all s ∈ S and
a ∈ A; equivalently, if s

a→ t1 and s
a→ t2 imply t1 = t2, for all s, t1, t2 ∈ S and

a ∈ A.

Theorem 2. The transition system T = 〈Tr , ζTr 〉 is final in DTr . Given S =
〈S, ψ〉 in DTr , the only morphism from S to T is trS : S → Tr.

Proof. To see that trS is a morphism we only have to check that s
a→ t in S implies

trS(s)
a→ trS(t), because S is deterministic. Since s

a→ t is the only transition
from s labeled with a, the traces of s that start with a all go through t, that is,
ax ∈ trS(s) iff x ∈ trS(t); this means that trS(t) = {x | ax ∈ trS(s)}, which is
the same as saying that trS(s)

a→ trS(t). For the uniqueness, if f : S → Tr is
another morphism from S to T and s ∈ S, then trS(s) = trT(f(s)) = f(s), by
the previous propositions, so f = trS.

The endofunctor TTr on C is basically the powerset construction that turns an
arbitrary system into a deterministic one; in the definition that follows, Pne is
the nonempty powerset functor and ⊆ne the nonempty set inclusion. On objects
S = 〈S, ψ〉 let TTrS = S̄ = 〈S̄, ψ̄〉, where S̄ = Pne(S) and ψ̄ : S̄ → P(S̄)A is
given by the transitions M

a→ {t | ∃s ∈ M, s
a→ t} for all M ⊆ne S and a ∈ A,

provided that the set on the right is not empty; on arrows f : S1 → S2 put
TTr(f) = f̄ = Pne(f).

Proposition 5. TTr is well-defined, is a functor and its image is contained in
DTr .

The natural transformation ηTr : U → UTTr is defined by ηTr S(s) = {s} for all
transition systems S and all states s of S.

Proposition 6. η = ηTr is a natural transformation and ηS : S → S̄ is a
morphism whenever S is in DTr .
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Proof. If f : S1 → S2 is a morphism, then ηS2 ◦f = f̄ ◦ηS1 , since both maps apply
any s ∈ S1 to {f(s)}; thus, η is a natural transformation. If S is deterministic,
s

a→ t in S implies {s} a→ {t} in S̄, so ηS is an isomorphism between S and the
subsystem of S̄ generated by the singletons {s} = ηS(s).

We noticed before that trS : S → Tr is not a morphism in general; we are
now ready to prove that trS is not only a TTr -morphism, but is the unique
TTr -morphism from S to T.

Theorem 3. For any transition system S, trS = behT

S , the unique TTr -morphism
from S to T.

Proof. We know by Theorem 1 that behT

S = behT

S̄
◦ ηS, where η abbreviates

ηTr ; see the remark immediately after the proof of that theorem. On the other
hand, behT

S̄
= tr S̄, by Theorem 2, since S̄ = TTrS is in DTr . So to prove that

trS = behT

S
we need to show that trS(s) = tr S̄({s}) for all s ∈ S, that is, s

and {s} have the same traces. But this is easy: if s
a1→ s1

a2→ · · · an→ sn, there
is a sequence of transitions {s} a1→ M1

a2→ · · · an→ Mn since each si is in Mi,
i = 1, . . . , n; conversely, if {s} a1→ M1

a2→ · · · an→ Mn, select an arbitrary sn ∈Mn,
then sn−1 ∈ Mn−1 such that sn−1

an→ sn, and so on, so that s
a1→ s1

a2→ · · · an→ sn.

4 Ready-Traces of Transition Systems

A ready-trace on A is a string (a1, X1) · · · (an, Xn) (n ≥ 0) on A × P(A) such
that ai+1 ∈ Xi for all i, 1 ≤ i < n; for brevity, the ready-trace will be written
simply a1X1 · · ·anXn; if n = 0, the empty ready-trace is just the empty trace ε.
Intuitively, the condition on ready-traces is that any action but the first must
have been declared “ready” in the previous step.1

Given a transition system S = 〈S, ψ〉 and s ∈ S, let I(s) = {a ∈ A | s
a→}

be the set of the initials of s. In order to characterize the ready-traces of S, it
is convenient to define first an auxiliary transition system SI = 〈S, ψI〉. This
system has the same states as S and basically the same transitions, except that
we add to the label of each s

a→ t the initials of t. Thus, SI is a transition system
over A×P(A), where ψI : S → P(S)A×P(A) is defined by the transitions s

a,X−→ t

such that s
a→ t and X = I(t) in S. If f : S → S′ is a morphism of transition

systems over A, then f is also a morphism from SI to S′
I since morphisms

clearly preserve the initials of states; conversely, a morphism SI → S′
I is a also

a morphism S → S′. Thus, the assignment S �→ S′ on objects and f �→ f on
arrows is a functor from C to the category C(A × P(A)) of transition systems
over A × P(A); this functor is injective on objects, full and faithful, so in an
embedding, a fact that will be useful later. We shall have occasion to use the
final system of trace languages over A×P(A), which will be denoted T(A×P(A)).

1 Sometimes a ready-trace is required to start with a set X0 of actions such that
a1 ∈ X0, but this is unnecessary and inconvenient for our purposes.
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The ready-traces of S are by definition the traces of SI ; the set of ready-traces
of s ∈ S is written rtS(s). The set rtS(s), besides being nonempty and prefix-
closed, is extension-closed, in the sense that if raX ∈ rtS(s) and b ∈ X , then
raXbY ∈ rtS(s) for some Y ⊆ A. Intuitively, extension-closure states that any
action declared explicitly as “ready” may actually occur.

A ready-trace language L ⊆ (A × P(A))∗ is a nonempty, prefix-closed and
extension-closed set of ready-traces; the set of all ready-trace languages will be
written Rt , so that rtS is a function from S to Rt . Ready-traces being traces
over A× P(A), the ready-trace languages inherit transitions L

a,X−→ L′ from the
trace languages; we must be careful though and check that the language L′ is in
fact a ready-trace language.

Lemma 1. If L is a ready-trace language, any transition L
a,X−→ L′ has L′ a

ready-trace language.

Thus, the set Rt of ready-trace languages can be seen as a transition system
over A× P(A); it is a subsystem of the transition system of all trace languages
on A × P(A), a fact that will be used later. We are more interested, however,
in seeing Rt as a transition system R = 〈Rt , ζRt〉 over A, defining ζRt by the

transitions L
a→ L′ such that L

a,X−→ L′ for some X ⊆ A.

Proposition 7. Let L be a ready-trace language.

1. The set of initials IR(L) of L in R is the set of all elements in A that start
ready-traces in L.

2. If L
a,X−→ L′, then IR(L′) = X.

3. L
a,X−→ L′ iff L

a→ L′ and IR(L′) = X.
4. Finally, rtR(L) = L.

Proposition 8. If f : S1 → S2 is a morphism of transition systems and s is a
state of S1, then s and f(s) have the same ready-traces.

Proof. We know that f is also a morphism S1I → S2I , so s and f(s) have the
same traces over A×P(A) by Proposition 3, that is, have the same ready-traces.

We say a transition system S = 〈S, ψ〉 is deterministic with respect to the initials,
or I-deterministic, if ψI(s)(a, X) has cardinality at most one for all s ∈ S, a ∈ A

and X ⊆ A; equivalently, if s
a,X−→ t1 and s

a,X−→ t2 imply t1 = t2, or if s
a→ t1,

s
a→ t2 and I(t1) = I(t2) imply t1 = t2. Thus, S in C is I-deterministic iff

SI in C(A × P(A)) is deterministic. Let DRt be the full subcategory of C of
I-deterministic transition systems.

Theorem 4. The transition system R = 〈Rt , ζRt 〉 is final in DRt . Given S =
〈S, ψ〉 in DRt , the only morphism from S to R is rtS : S → Rt.

Proof. Clearly, R is in DRt . To see that rtS : S → Rt is the only morphism from
S to R, it is enough to show that rtS is the only morphism from SI to RI . As SI is
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deterministic by hypothesis, we know by Theorem 2 that trSI : SI → T(A×P(A))
is the only morphism from SI to T(A × P(A)). But rtS is by definition the
restriction of trSI to SI → RI , which is therefore the unique such morphism, as
required.

The endofunctor TRt on C applies objects S = 〈S, ψ〉 to S̆ = 〈S̆, ψ̆〉, where
S̆ = Pne(S) and ψ̆ : S̆ → P(S̆)A has transitions M

a→ {t | ∃s ∈ M, s
a→

t and I(t) = X} for all M ⊆ne S, a ∈ A and X ⊆ A such that the set on the
right is not empty; on arrows, TRt maps f : S → S′ to f̆ = Pne(f).

Proposition 9. TRt is well-defined, is a functor and its image is contained in
DRt .

The natural transformation ηRt : U → UTRt is defined as for traces by ηRtS(s) =
{s}, for all transition systems S and all states s of S.

Proposition 10. η = ηRt is a natural transformation and ηS : S → S̆ is a
morphism whenever S is in DRt .

Proof. The proof is similar to the proof of Proposition 6.

Finally, we arrive at our main result concerning ready-traces.

Theorem 5. For any transition system S, rtS = behR

S , the unique TRt-morphism
from S to R.

Proof. Like in the proof of Theorem 3, we conclude that we need to show that
rtS(s) = rt

S̆
({s}) for all s ∈ S. We calculate: rt

S̆
({s}) = tr

S̆I
({s}) = tr

SI
({s}) =

trSI (s) = rtS(s), where the first and the last equalities are by definition of ready-
trace, the second equality because S̆I = SI as noted in the proof of Proposition 9,
and the third equality by Theorem 3.

5 Failures of Transition Systems

5.1 Failures and Failure-Sets

In this section a pair (x, X) ∈ A∗ × P(A) will be called a failure; the set A will
be fixed throughout, as before. Given a transition system S = 〈S, ψ〉 and s ∈ S,
a pair (x, X) ∈ A∗ × P(A) is a failure of s if there exists t such that s

x→ t
and I(t) ∩ X = ∅; we shall call x the trace and X the refusal of the failure.
Clearly, (x, ∅) is a failure of s iff s

x→ t for some t, so the traces are in bijective
correspondence with the failures with empty refusal. The set of failures of s will
be written fl

S
(s).

Proposition 11. If f : S1 → S2 is a morphism of transition systems and s is a
state of S1, then s and f(s) have the same failures.

A failure-set over A is any set F ⊆ A∗×P(A) such that the following conditions
hold:



260 L. Monteiro

F1 (ε, ∅) ∈ F .
F2 (ε, X) ∈ F ⇒ ∀a ∈ X, (a, ∅) �∈ F .
F3 (xy, X) ∈ F ⇒ (x, ∅) ∈ F .
F4 (x, X) ∈ F ∧ Y ⊆ X ⇒ (x, Y ) ∈ F .
F5 (x, X) ∈ F ∧ ∀a ∈ Y, (xa, ∅) �∈ F ⇒ (x, X ∪ Y ) ∈ F .

Proposition 12. For any state s of a transition system S, flS(s) is a failure-set.

Let Fl be the set of all failure-sets. Our immediate goal is to define a transition
relation in Fl as we did for traces and ready-traces; we start by defining transi-
tions labeled by A× P(A) and then drop the second component of the label to
get transitions labeled by A. Given F ∈ Fl and x ∈ A∗,

CF (x) = {a ∈ A | (xa, ∅) ∈ F}
is the set of continuations of x in F ; if F has the form flS(s), we abbreviate
Cfl

S
(s)(x) to Cs(x); clearly, Cs(x) = {a ∈ A | s

xa−→}, since the conditions
(xa, ∅) ∈ flS(s) and s

xa−→ are equivalent; note that Cs(ε) = I(s). Conditions
F2 and F5 of the definition of failure-set can be rewritten in a form that is
sometimes useful by using sets of continuations CF (x):

F2′ (ε, X) ∈ F ⇒ X ∩ CF (ε) = ∅.
F5′ (x, X) ∈ F ∧ Y ∩ CF (x) = ∅⇒ (x, X ∪ Y ) ∈ F .

The primary failures of F are the failures (x, X) ∈ F for which X ⊆ CF (x).

Proposition 13. Let F ∈ Fl.

1. Every (x, ∅) in F is a primary failure.
2. If (ε, X) is a primary failure, then X = ∅.
3. If (x, X) is a primary failure and Y ⊆ X, then (x, Y ) is a primary failure.
4. (x, X) ∈ F iff (x, X ∩ CF (x)) ∈ F .
5. If F and F ′ have the same primary failures, then F = F ′.

Given F ∈ Fl and a primary failure (a, X) ∈ F , put

F
a,X−→ F ′

where
F ′ = {(ε, Y ) | Y ∩ (CF (a)−X) = ∅}

∪
{(bx, Y ) | (abx, Y ) ∈ F, b �∈ X} .

Proposition 14. F ′ in the previous definition is a failure-set.

The relations
a,X−→ turn Fl into a deterministic transition system with label set

A×P(A). To obtain a transition system with label set A put F
a→ F ′ if F

a,X−→ F ′

for some X . This defines a dynamics ζFl : Fl → P(Fl)A and consequently a
transition system F = 〈Fl , ζFl 〉.
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Lemma 2. Let F be a failure-set.

1. I(F ) = CF (ε).

2. If F
a,X−→ F ′, then I(F ′) = CF (a)−X.

Proof. For the first statement, it is easy to see that F
a→ iff (a, ∅) ∈ F for all

a ∈ A, so I(F ) = {a ∈ A | (a, ∅) ∈ F} = CF (ε). For the second statement, if

F
a,X−→ F ′, then I(F ′) = {b ∈ A | (b, ∅) ∈ F ′} = {b ∈ A | (ab, ∅) ∈ F, b �∈ X} =

CF (a)−X .

Proposition 15. For all F ∈ Fl, F = flF(F ).

This result allows to prove simple properties by going back and forth between
failure-sets F and their sets of failures flF(F ) as convenient. An example with
an obvious proof is: If F

x→ F ′ and (y, Y ) ∈ F ′, then (xy, Y ) ∈ F .

5.2 Failure-Systems

A failure-system is a transition system S = 〈S, ψ〉 such that:

FS1 if s
a→ t1, s

a→ t2 and I(t1) = I(t2), then t1 = t2;
FS2 if s

a→ t and I(t) ⊆ J ⊆ Cs(a), then s
a→ t′ and I(t′) = J for some t′;

FS3 if s
a→ ti

b→ ui (i = 1, 2), then ti
b→ u3−i (1 = 1, 2).


��
����s

a

����
��

��
��

�
a

���
��

��
��

��


��
����t1

b

��

b

��







 
��
����t2b

��� � � � � � � �

b

����������u1 ��������u2

We shall write s
a,X−→ t if s

a→ t and X = Cs(a) − I(t), and s
a,X−→ if s

a,X−→ t for

some t. The relations
a,X−→ are deterministic (functional), because s

a,X−→ t1 and

s
a,X−→ t2 imply I(t1) = Cs(a) −X = I(t2), hence t1 = t2, by FS1. Let DFl be

the full subcategory of C of failure-systems.

Proposition 16. The transition system F = 〈Fl , ζFl 〉 is a failure-system.

Theorem 6. The failure-system F = 〈Fl , ζFl 〉 is final in DFl . For any S =
〈S, ψ〉 in DFl , the unique morphism from S to F is fl

S
: S → Fl.

Proof. Assuming that flS is a morphism, to prove uniqueness suppose there
was another morphism f : S → Fl . By Proposition 11, fl

S
(s) = fl

S
(f(s)) for

every s ∈ S. But by Proposition 15, flS(F ) = F for every failure-set F , so
flS(f(s)) = f(s). Therefore, flS(s) = f(s) for all s ∈ S, that is, f = flS.
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To show that fl
S

is a morphism we prove two statements: (i) if s
a,X−→ t, then

flS(s)
a,X−→ flS(t); (ii) if flS(s)

a,X−→ F , there is t such that s
a,X−→ t and flS(t) = F .

Assuming the first statement, to prove the second one we only need to show that
flS(s)

a,X−→ implies s
a,X−→, since

a,X−→ is deterministic in both systems; to prove this

last condition note that flS(s)
a,X−→ implies by definition that (a, X) is a primary

failure of s, so there is t such that s
a→ t and I(t) ∩ X = ∅; since (a, X) is a

primary failure, X ⊆ Cs(a) − I(t), so that I(t) ⊆ Cs(a) −X ⊆ Cs(a); by FS2,

there is t′ such that s
a→ t′ and I(t′) = Cs(a)−X , hence s

a,X−→ t′.

To prove statement (i) above note that s
a,X−→ t implies by definition that

(a, X) is a primary failure of s, so flS(s)
a,X−→ F for some F ; we show that

F = fl
S
(t); specifically, we show by induction on the length of y that (y, Y ) ∈ F

iff (y, Y ) ∈ flS(t) for all Y . By Proposition 13, we may assume that (y, Y ) is a
primary failure.

Suppose first that (y, Y ) ∈ F . If y = ε, then Y = ∅, and we have immediately
(ε, ∅) ∈ flS(t). If y = bx, then (abx, Y ) ∈ flS(s) and b �∈ X , by definition of the

transition flS(s)
a,X−→ F . By definition of failure of s, there exist u, v and w such

that s
a→ u

b−→ v
x→ w and I(w) ∩ Y = ∅. But s

a,X−→ t and b ∈ Cs(a)−X = I(t)
imply t

b→. By FS3, t
b→ v, so (bx, Y ) ∈ flS(t), again by definition of failure.

Conversely, suppose (y, Y ) ∈ flS(t). If y = ε, we conclude as before that

(y, Y ) ∈ F . If y = bx, then s
a,X−→ t

bx−→ u for some u such that I(u) ∩ Y = ∅,
hence (abx, Y ) ∈ flS(s). But b �∈ X , since X = Cs(a)− I(t), so (bx, Y ) ∈ F . This
ends the proof.

We shall need later to consider the quotient of a transition system by the bisim-
ilarity relation. For future reference, we prove here that the quotient of a failure-
system is again a failure-system. Recall that the quotient of a transition system
S = 〈S, ψ〉 by a bisimulation equivalence R is the system S/R = 〈S/R, ψ/R〉
where S/R is the set of equivalence classes [s]R for s ∈ S and ψ/R is given
by the transitions [s]R

a→ [t]R such that s
a→ t in S. It is easy to see that

I([s]R) = I(s) and C[s]R(x) = Cs(x) for all s and x.

Proposition 17. If S is a failure-system and R is a bisimulation equivalence,
S/R is a failure-system.

Proof. The axioms of failure-systems are easy to check. Consider FS2, for exam-
ple. Suppose [s]R

a→ [t]R and I([s]R) ⊆ J ⊆ C[s]R(a). We may assume without
loss of generality that s

a→ t, and we also have I(s) ⊆ J ⊆ Cs(a). By FS2
applied to S, there is t′ such that s

a→ t′ and I(t′) = J . But then [s]R
a→ [t′]R

and I([t′]R) = J .

When R is the bisimilarity relation ∼, we write simply [s] instead of [s]∼; we
also abbreviate S/∼ to S̃, and similarly for S and ψ. The assignment S �→ S̃

is the object function of a functor that maps a morphism f : S1 → S2 to the
function f̃ : S̃1 → S̃2 such that f̃([s]) = [f(s)].
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5.3 From Transition Systems to Failure-Systems

We now define an endofunctor TFl on C, as we did for traces and ready-traces.
The functor TFl is the composition of a functor FFl with the functor that quo-
tients with respect to the bisimilarity relation. On objects, FFl associates a
failure-system Ŝ = 〈Ŝ, ψ̂〉 with a transition system S = 〈S, ψ〉 as follows. We first
extend the notation I(−) to subsets of S; specifically, put I(M) =

⋃
s∈M I(s)

for any M ⊆ S. We can now define

Ŝ = {(M, J) |M ⊆ne S, I(s) ⊆ J ⊆ I(M) for some s ∈M} .

Note that (M, I(M)) ∈ Ŝ for every M ⊆ne S, and (M, K) ∈ Ŝ whenever (M, I) ∈
Ŝ and I ⊆ K ⊆ I(M). Given (M, J), (N, K) ∈ Ŝ and a ∈ J , put

(M, J) a→ (N, K)

iff M
a→ N in S̄ = TTrS, that is, N = {s′ | s

a→ s′ for some s ∈ M}; this
defines ψ̂. Note that if we also have (M, J) a→ (N ′, K ′), then N = N ′, since S̄ is
deterministic; and if (M, J) ∈ Ŝ, a ∈ J and M

a→ N , then (M, J) a→ (N, I(N)).
This implies that I(M, J) = J and C(M,J)(a) = I(N).

Lemma 3. Ŝ = 〈Ŝ, ψ̂〉 is a failure-system.

To conclude the definition of FFl we describe its effect on arrows f : S1 → S2.
Specifically, put FFl (f) = f̂ , where f̂ : Ŝ1 → Ŝ2 is given by f̂(M, J) = (N, J),
with N = f̄(M) = {f(s) | s ∈ m}.
Proposition 18. FFl is well-defined, is a functor and its image is contained in
DFl .

Proof. To show that FFl is well-defined and a functor it is enough to check that
f̂ is a morphism of transition systems, since it is then obvious that FFl preserves
identity morphisms and the composition of morphisms. The first step is to check
that f̂(M, J) = (f̄(M), J) is indeed in Ŝ2. We must show that f̄(M) �= ∅ and
I(f(s)) ⊆ J ⊆ I(f̄(M)) for some s ∈ M ; this is so because M �= ∅, I(s) ⊆
J ⊆ I(M) for some s ∈ M , I(f(s)) = I(s) and I(f̄(M)) = I(M). Next note
that if (M, J) a→ (N, K), then (f̄(M), J) a→ (f̄(N), K), because a ∈ J and
f̄(M) a→ f̄(N), by Proposition 5. By the same reason, if (f̄(M), J) a→ (N ′, K),
then N ′ = f̄(N) such that M

a→ N , and it is easy to see that (M, J) a→ (N, K).
Finally, the image of TFl is contained in DFl by Lemma 3.

We may now define TFl as the functor that takes quotients with respect to the
bisimilarities composed with FFl . The following result is an immediate conse-
quence of Propositions 17 and 18.

Proposition 19. The image of TFl is contained in DFl .
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In the sequel we shall write TFlS = S† = 〈S†, ψ†〉 and TFlf = f † for any

morphism f , thus abbreviating ˜̂
S to S† and similarly to S, ψ and f . We shall

also abbreviate [({s}, I(s))] ∈ S† to 〈s〉 for every s ∈ S. Note that if f is any
morphism on S, then f †(〈s〉) = [({f(s)}, I(s))] = [({f(s)}, I(f(s)))] = 〈f(s)〉.

The following result is the reason for using TFl rather than FFl .

Lemma 4. If S is a failure-system, the assignment s �→ 〈s〉 is a morphism from
S to S†.

Proof. We first prove a preliminary result: If M = {t′ | s a→ t′} and t ∈ M , then
〈t〉 = [(M, I(t))]. To prove that ({t}, I(t)) ∼ (M, I(t)) we show more specifically
that ({t}, I(t)) b→ (N, K) iff (M, I(t)) b→ (N, K) for all b and all (N, K). Writing
(M, I(t)) b→ (N ′, K ′), it is enough to show that N = N ′. We have N = {u | t b→
u} and N ′ = {u′ | ∃t′ ∈ M, t′

b→ u′}, and it is clear that N ⊆ N ′ since t ∈ M .
In the other direction, if u′ ∈ N ′, we have s

a→ t′
b→ u′ for some t′ ∈ M ; but

b ∈ I(t), so s
a→ t

b→ u for some u; by FS3, t
b→ u′, so u′ ∈ N .

Now consider s
a→ t in S. Then 〈s〉 a→ [(M, I(t))], where t ∈ M = {t′ | s a→ t′}.

By the auxiliary result, 〈t〉 = [(M, I(t))], hence 〈s〉 a→ 〈t〉. On the other hand,
suppose 〈s〉 a→ [(M, J)]; we must find t such that s

a→ t and 〈t〉 = [(M, J)]. We
have M = {t′ | s

a→ t′} and I(t′) ⊆ J ⊆ I(M) for some t′ ∈ M . Since s
a→ t′

and Cs(a) = I(M), there is t such that s
a→ t and I(t) = J , by FS2. By the

auxiliary result, 〈t〉 = [(M, I(t))] = [(M, J)].

The natural transformation ηFl : U → UTFl is defined by ηFl S
(s) = 〈s〉 for all

transition systems S and states s of S.

Proposition 20. η = ηFl is a natural transformation and ηS : S → S† is a
morphism whenever S is in DTr .

Proof. The structure of the proof is similar to that of the proof of Proposition 6.
Let f : S1 → S2 be a morphism of transition systems. We have ηS2 ◦f = f † ◦ηS1 ,
since both sides apply any s ∈ S1 to 〈f(s)〉; thus, η is a natural transformation.
If S is a failure-system, that ηS is a morphism is the statement in Lemma 4.

Lemma 5. Let S be a transition system. Then fl
S
(s) = flS†(〈s〉) for all s ∈ S.

Theorem 7. For any transition system S, flS = behF

S , the unique TFl -morphism
from S to F.

Proof. This result is similar to Theorems 3 and 5, as is its proof, using Lemma 5.

6 Comparing the Behaviour Equivalences

We now compare the behaviour equivalences associated with traces, ready-traces
and failures.
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Proposition 21. The behaviour equivalences for traces, ready-traces and fail-
ures satisfy R=S⊆ F=S⊆ T=S for any transition system S.

Proof. For every s ∈ S, it is easy to see that s and ηFl S(s) = 〈s〉 have the same
traces, and s and ηRtS

(s) = {s} have the same failures. The conclusion follows
from Proposition 2.

7 Concluding Remarks

It is our belief that the coalgebraic reconstruction of the behaviours in the linear
time – branching time spectrum is an important contribution to our under-
standing of those behaviours. In the process of doing so we had to enlarge our
understanding of the notion of behaviour of a coalgebra (system), and we wish
to explore this extended notion of behaviour in other situations. Some ways to
continue the work reported herein are to try to extend the outlined approach
to the remaining cases in the spectrum, to take into account systems with τ -
transitions, to work with categories based on other categories than Set, like
categories of algebras or presheaf categories, and to relate our approach with
the work in [3, 4, 5].

Acknowledgements. I am grateful to the anonymous referees for their sug-
gestions, some of which have not been considered in this paper by lack of space.
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Abstract. We use the theory of institutions to capture the concept of a
heterogeneous logical environment as a number of institutions linked by
institution morphisms and comorphisms. We discuss heterogeneous spec-
ifications built in such environments, with inter-institutional specification
morphisms based on both institution morphisms and comorphisms. We
distinguish three kinds of heterogeneity: (1) specifications in logical envi-
ronments with universal logic (2) heterogeneous specifications focused at
a particular logic, and (3) heterogeneous specifications distributed over
a number of logics.

1 Introduction

The theory of institutions [GB92] provides an excellent framework where the
theory of specification and formal software development may be presented in
an adequately general and abstract way [ST88a, ST97, Tar03]. The initial work
within this area captured specifications built and developments carried out in
an arbitrary but fixed logical system formalised as an institution. However, the
practice of software specification and development goes much beyond this. Dif-
ferent logical systems may be appropriate or most convenient for specification of
different modules of the same system, of different aspects of system behaviour,
or of different stages of system development. This leads to the need for a number
of logical systems to be used in the same specification and development project,
linked by appropriate notions of morphisms between institutions [GR02]. This
observation spurred a substantial amount of research work already, and moti-
vates the research presented here.

In such a framework, one works in a heterogeneous logical environment formed
by a number of logical systems formalised as institutions and linked with each
other in a way captured by various maps between institutions. One such logical
environment is the Hets family of institutions [Mos05], supported by a tool to
build and work with heterogeneous specifications [MML07].
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Given a heterogeneous logical environment, there are several possible ways of
using it to build heterogeneous specifications:

1. In some logical environments, we have a single logical system (usually com-
ing with good tool support) that can be used as a universal logic into which
all other systems are mapped. Then the maps between logics are used for
mapping specifications from all logics in the environment into the universal
logic, where they can be further combined then as usual. Various logical sys-
tems have been proposed and used as such universal logics, including higher-
order logic in various versions [NPW02], Edinburgh LF [HHP93], rewriting
logic [MOM02], fork algebra [PF06], etc.

2. Focused heterogeneous specifications are more liberal: parts of a specifica-
tion may be written in different logics (also exploiting the availability of
specialised tools for these logics). However, these parts ultimately are as-
sembled in one logical system, where the models of interest live. This is
made possible by extending the repertoire of specification-building opera-
tions with ones that move specifications from one logic to another using
various maps between logical systems, as perhaps first mentioned in the
context similar to what we use here in [ST88b] and further developed in
[Tar96, Tar00, Mos03, Dia02].

3. Distributed heterogeneous specifications involve a number of specifications
in different logical systems, with compatibility links between them given by
logic maps, but not necessarily with a single specification in a particular logic
providing an overall integration. Heterogeneous development graphs [Mos02b]
offer a first hint in this direction.

While the first two methodologies have been studied in the literature, the third
one seems to have attracted only little attention from the formal specification
community so far, although it is clear that in frameworks like UML, distributed
heterogeneous specifications arise rather naturally.

In this paper we largely set up a framework for further work, collecting the
ideas, concepts and facts put forward earlier at other places (by us and others).
No new big results are to be expected at this stage. However, a new overall
view of heterogeneous logical environments and distributed specifications in such
environment seems to be emerging here.

We introduce a notion of a heterogeneous logical environment, and study to
what extent such environments can be made uniform, i.e., based on one kind
of a mapping between institutions. We discuss various ways of building focused
heterogeneous specifications in such environments. Then, given heterogeneous,
inter-institutional (co)morphisms between such specifications and specification
categories they define, we introduce distributed specifications as specification
diagrams. These come with a natural notion of a distributed model, and so
also other standard concepts like consistency, consequence, implementations,
etc. Finally, we show that these concepts apply in the context of heterogeneous
specification categories built over any heterogeneous logical environment.
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2 Heterogeneous Logical Environments

Let us begin by recalling the notion of an institution, as a formalisation of an
arbitrary logical system [GB92], assuming that the reader is familiar with all the
intuitions that this notion brings in.

Definition 2.1. An institution I consists of:

– a category SignI of signatures;
– a functor SenI : SignI → Set,1 giving a set Sen(Σ) of Σ-sentences for

each signature Σ ∈ |SignI |, and a function Sen(σ) : Sen(Σ) → Sen(Σ′),
denoted by σ, that yields σ-translation of Σ-sentences to Σ′-sentences for
each signature morphism σ : Σ → Σ′;

– a functor ModI : Signop
I → Set,2 giving a set Mod(Σ) of Σ-models for

each signature Σ ∈ |SignI |, and a functor Mod(σ) : Mod(Σ′)→Mod(Σ),
denoted by |σ, that yields σ-reducts of Σ′-models for each signature mor-
phism σ : Σ → Σ′; and

– for each Σ ∈ |SignI |, a satisfaction relation |=I,Σ ⊆ModI(Σ)×SenI(Σ)

such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ SenI(Σ)
and Σ′-model M ′ ∈ModI(Σ′):

M ′ |=I,Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I,Σ ϕ [Satisfaction condition]

Whenever convenient, we avoid spelling out the standard notations for insti-
tution components, and allow primes, subscripts and superscripts to determine
which institution is referred to.

The next concept we need is a mapping between institutions. We concentrate
here on institution morphisms [GB92] and on institution comorphisms (named
so in [GR02]; see “plain maps of institutions” in [Mes89] and “institution repre-
sentations” in [Tar87, Tar96]).

Definition 2.2. Let I and I ′ be institutions. An institution morphism μ : I →
I ′ consists of:

– a functor μSign : Sign→ Sign′;
– a natural transformation μSen : μSign ;Sen′ → Sen,3 that is, a family of

functions μSen
Σ : Sen′(μSign(Σ))→ Sen(Σ), natural in Σ ∈ |Sign|; and

– a natural transformation μMod : Mod → (μSign )op ;Mod′, that is, a family
of functions μMod

Σ : Mod(Σ)→Mod′(μSign(Σ)), natural in Σ ∈ |Sign|,
such that for any signature Σ ∈ |Sign|, the translations μSen

Σ : Sen′(ρSign(Σ)) →
Sen(Σ) of sentences and μMod

Σ : Mod(Σ)→Mod′(ρSign (Σ)) of models preserve
the satisfaction relation, i.e., for any ϕ′ ∈ Sen′(μSign(Σ)) and M ∈Mod(Σ):
1 The category Set has all sets as objects and all functions as morphisms.
2 To keep things simple, we work with the version of institutions where morphisms

between models, not needed here, are disregarded. To capture standard examples,
we should allow here for the use of classes, rather than just sets of models — but
again, we will disregard such foundational subtleties here.

3 We write composition of morphisms in any category in the diagrammatic order and
denote it by “;” (semicolon).
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M |=Σ μSen
Σ (ϕ′) ⇐⇒ μMod

Σ (M) |=′
μSign (Σ) ϕ′ [Satisfaction condition]

Institution morphisms compose in the obvious, component-wise manner. The
category of institutions with institution morphisms is denoted by INS.

An institution comorphism ρ : I → I′ consists of:

– a functor ρSign : Sign→ Sign′;
– a natural transformation ρSen : Sen→ ρSign ;Sen′, that is, a family of func-

tions ρSen
Σ : Sen(Σ)→ Sen′(ρSign(Σ)), natural in Σ ∈ |Sign|; and

– a natural transformation ρMod : (ρSign)op ;Mod′ → Mod, that is, a family
of functions ρMod

Σ : Mod′(ρSign (Σ))→Mod(Σ), natural in Σ ∈ |Sign|,
such that for any Σ ∈ |Sign|, the translations ρSen

Σ : Sen(Σ)→ Sen′(ρSign(Σ))
of sentences and ρMod

Σ : Mod′(ρSign (Σ)) → Mod(Σ) of models preserve the
satisfaction relation, i.e., for any ϕ ∈ Sen(Σ) and M ′ ∈Mod′(ρSign(Σ)):

M ′ |=′
ρSign(Σ) ρSen

Σ (ϕ) ⇐⇒ ρMod
Σ (M ′) |=Σ ϕ [Satisfaction condition]

Institution comorphisms compose in the obvious, component-wise manner. The
category of institutions with institution comorphisms is denoted by coINS.

Whenever no confusion may arise, the superscripts identifying the components of
an institution morphism will be omitted, so that all components of an institution
morphism μ will be written as μ, and similarly for institution comorphisms.

Even though the only essential difference between institution morphisms and
comorphisms is in the direction of sentence and model translations w.r.t. signa-
ture translation, the intuition they capture is quite different. Very informally,
an institution morphism μ : I → I′ shows how a “richer” institution I is “pro-
jected” onto a “poorer” institution I′ (by removing some parts of signatures and
models of I to obtain the simpler signatures and models of I′, and by embedding
simpler I′-sentences into more powerful I-sentences). Then, an institution co-
morphism I → I′ shows how a “simpler” institution I is represented in a “more
complex” institution I ′ (by representing the simpler signatures and sentences of
I as signatures and sentences of I′, and extracting simpler I-models from more
complex I ′-models).4

Given the two possible ways to link institutions with each other, a notion of
a heterogeneous logical environment may be formalised as a collection of insti-
tutions linked by institution morphisms and comorphisms.

Definition 2.3. A heterogeneous logical environment HLE is a collection of in-
stitutions and of institution morphisms and comorphisms between them, that is,
a pair of diagrams 〈HLEμ : Gμ → INS ,HLEρ : Gρ → coINS〉5 in the category
4 Variants of comorphisms are also used to encode “more complex” institutions into

“simpler” ones: e.g. in [GR02], a so-called simple theoroidal comorphism is used
to code first-order logic with equality in first-order logic without equality. See also
[MDT09] for discussion of relative strength of logical systems in a similar context.

5 We assume that Gμ is a graph that gives the shape of the diagram; its nodes n ∈ |Gμ|
carry institutions HLEμ(n) linked by institution morphisms HLEμ(e) : HLEμ(n) →
HLEμ(m) for each edge e : n → m in G. Similar notation is used for diagrams in
other categories.
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INS of institutions and their morphisms and coINS of institutions and their
comorphisms, respectively, such that the two underlying graphs have no common
edges and diagrams coincide on common nodes, i.e., for all nodes n ∈ |Gμ| ∩ |Gρ|,
HLEμ(n) = HLEρ(n).

We write G for the union of Gμ and Gρ, and w.l.o.g. assume that all the nodes
of the underlying graphs are common, |G| = |Gμ| = |Gρ|.

Such a heterogeneous logical environment is morphism-uniform if Gρ is dis-
crete (has no edges); we can then identify HLE with HLEμ : G → INS. Simi-
larly, HLE is comorphism-uniform if Gμ is discrete; we can identify it then with
HLEρ : G → INS.

The lack of uniformity in linking institutions in heterogeneous environments (we
use both institution morphisms and comorphisms here; other kinds of maps be-
tween institutions may be considered as well) may be somewhat surprising and
certainly is technically cumbersome. Morphism-uniform environments, where
only institution morphisms are used, are conveniently captured by a single di-
agram in the appropriate institution category, and similarly for comorphism-
uniform environments. These concepts coincide with what was studied in the
literature as indexed institutions [Dia02] and indexed coinstitutions [Mos02a].

One way to make logical environments uniform is by noticing that in fact a
link of each kind may be captured by links of the other kind, albeit in general
a span of those may be needed. This has been noticed already in [Mos03] and
spelled out in [Mos05]; see also [MW98] for similar ideas with institution forward
morphisms (called transformations there) as a primary notion.

Definition 2.4. Consider an institution morphism μ : I → I′. We build an
“intermediate institution” by re-indexing I′ using the signature translation: I ′0 =
〈Sign, μSign ;Sen′, μSign ;Mod′, 〈|=′

μSign(Σ)〉Σ∈|Sign|〉. Two comorphisms emerge
then6: ρμ,1 = 〈id , μSen , μMod〉 : I ′0 → I and ρμ,2 = 〈μSign , id , id〉 : I ′0 → I ′.
The comorphism span for μ, written span(μ), is the following span of institution
comorphisms: I ρμ,1←− I′0

ρμ,2−→ I′.
Consider an institution comorphism ρ : I → I′. We build an “intermediate

institution”: I ′0 = 〈Sign, ρSign ;Sen′, ρSign ;Mod′, 〈|=′
ρSign (Σ)〉Σ∈|Sign|〉. Two in-

stitution morphisms emerge then: μρ,1 = 〈id , ρSen , ρMod〉 : I ′0 → I and μρ,2 =
〈μSign , id , id〉 : I ′0 → I ′. The morphism span for ρ, written span(ρ), is the fol-
lowing span of institution morphisms: I μρ,1←− I′0

μρ,2−→ I′.

Informally, the span of comorphisms span(μ) captures exactly the same relation-
ship between the components of I and I′ as the original institution morphism
μ : I → I′; and similarly, the span of morphisms span(ρ) captures exactly the
same relationship between the components of I and I ′ as the original institution
comorphism ρ : I → I′.

6 We write id for identities in any category, in particular, here for the identity functor
as well as the identity natural transformations.
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This essentially allows us to concentrate on heterogeneous logical environ-
ments that are uniform in the sense that only institution morphisms (or comor-
phisms) are used to link with each other the institutions involved.

Definition 2.5. Let HLE = 〈HLEμ : Gμ → INS,HLEρ : Gρ → coINS〉 be
a heterogeneous logical environment. By spanμ(HLE) : spanμ(G) → INS we
denote the morphism-uniform environment obtained from HLE by replacing each
comorphism ρ in HLEρ by span(ρ). Similarly, by spanρ(HLE) : spanρ(G) →
coINS we denote the comorphism-uniform environment obtained from HLE by
replacing each morphism μ in HLEμ by span(μ).

Note that the “uniformisation” described above typically will change the shape
of the graph underlying the heterogeneous logical environment: while building
spanμ(HLE) we remove each edge in Gρ adding a corresponding span of edges
in Gμ, with a new node that carries the new “intermediate” institution, and
similarly for spanρ(HLE).

A very rough intuition about various ways of linking institutions by spans

and sinks of (co)morphisms is that in a span of comorphisms I ρ←− I0
ρ′
−→ I′

and in a sink of morphisms I μ−→ I0
μ′
←− I ′, the intermediate institution I0

captures the common features of I and I ′, and so this relationship may be used
to express some “sharing” requirements between models of I and I′. Dually,

in a sink of comorphisms I ρ−→ I0
ρ′
←− I ′ and in a span of morphisms I μ←−

I0
μ′
−→ I′, the intermediate institution I0 is richer than both I and I ′ and

combines the features present in them, and therefore may be used to express
some “consistency” properties between models of I and I′.

3 Specifications and Their Heterogeneous Categories

The original purpose of introducing the notion of institution (under the name
of a language in [BG80]) was to free the theory of specifications from depen-
dency on any particular logical system. We follow [ST88a] and for an arbitrary
institution I consider a class SpecI of specifications built in I starting from
basic specifications (presentations, which essentially consist of a signature and
a set of sentences over this signature) by means of a number of specifications-
building operations, including union of specifications with common signature
(written SP1 ∪ SP2), translation along a signature morphism (written σ(SP)),
hiding (or “derive”) w.r.t. a signature morphism (written SP ′|σ), etc. We will
not dwell here on the particular choice of these operations, as usual assuming
though that specifications come with their basic semantics given in terms of
model classes. That is, for each specification SP ∈ SpecI , we have its signa-
ture Sig [SP ] ∈ |Sign| and its class of models Mod [SP ] ⊆ Mod(Sig [SP ]). In
particular, we have Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2], Mod [σ(SP)] =
{M ′ |M ′|σ ∈ Mod [SP ]}, and Mod [SP ′|σ] = {M ′|σ |M ′ ∈ Mod [SP ′]}. The se-
mantics also determines the obvious notion of specification equivalence: SP1 ≡
SP2 iff Sig [SP1] = Sig[SP2] and Mod [SP1] = Mod [SP2].
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Working in a heterogeneous logical environment, where we have a number
of institutions linked by institution morphisms and comorphisms (no uniformity
assumption necessary at this stage), we can enrich the collection of specification-
building operations by translation along institution comorphisms and hiding
w.r.t. institution morphisms, see [ST88b, Tar96]. Somewhat less naturally, we can
also define translation along institution morphisms and hiding w.r.t. institution
comorphisms, but the target signature has to be given explicitly then:

Definition 3.1. Let μ : I → I′ be an institution morphism. Given a specifica-
tion SP ∈ SpecI , we write SP |μ for a new specification in SpecI′ with the se-
mantics given by Sig [SP |μ] = μSign(Sig [SP ]) and Mod [SP |μ] = μMod(Mod [SP ])
( = {μMod

Sig[SP ](M) |M ∈ Mod [SP ]}).
Given a specification SP ′ ∈ SpecI′ and signature Σ ∈ |Sign| such that

μSign(Σ) = Sig[SP ′], we write μ(SP ′)Σ for a new specification in SpecI with the
semantics given by Sig [μ(SP ′)Σ ] = Σ and Mod [μ(SP ′)Σ ] = (μMod)−1(Mod [SP ′])
( = {M ∈Mod(Σ) | μMod

Σ (M) ∈ Mod [SP ′]}).
Let ρ : I → I′ be an institution comorphism. Given a specification SP ∈

SpecI, we write ρ(SP) for a new specification in SpecI′ with the semantics given
by Sig [ρ(SP)] = ρSign(Sig [SP ]) and Mod [ρ(SP)] = (ρMod)−1(Mod [SP ]) ( =
{M ′ ∈Mod′(ρSign(Sig [SP ])) | ρMod

Sig[SP ](M
′) ∈ Mod [SP ]}).

Given a specification SP ′ ∈ SpecI′ and signature Σ ∈ |Sign| such that
ρSign(Σ) = Sig [SP ′], we write SP ′|Σρ for a new specification in SpecI with
the semantics given by Sig [SP ′|Σρ ] = Σ and Mod [SP ′|Σρ ] = ρMod(Mod [SP ′])
( = {ρMod

Σ (M ′) |M ′ ∈ Mod [SP ′]}).

These new, inter-institutional specification-building operations may be arbi-
trarily mixed with other (intra-institutional) operations, yielding heterogeneous
specifications. Parts of such specifications may be given in different institutions
of the heterogeneous logical environment we work in. However, each such a spec-
ification as a whole eventually focuses on a particular institution in this environ-
ment, where its overall semantics (signature and the class of models) is given. In
essence, viewed from a certain perspective, such focused heterogeneous specifica-
tions do not differ much from the structured specifications built within a single
institution. For instance, the view of a software specification and development
process as presented in [ST88b, ST97] directly adapts to the use of such specifi-
cations without much (semantic) change. For each institution I, we still denote
the class of such heterogeneous specifications focused on I by SpecI .

The standard notion of a specification morphism carries over to heteroge-
neous specifications focused at the same institution without any change: a spec-
ification morphism between specifications SP ,SP ′ ∈ SpecI is a signature mor-
phism σ : Sig [SP ] → Sig [SP ′] such that for all models M ′ ∈ Mod [SP ′], M ′|σ ∈
Mod [SP ]. This yields the category SpecI of specifications focused on I, with
the model-class semantics that extends to the functor Mod : Specop

I → Set.
To generalise this definition to a truly heterogeneous case, with specifications

involved focused on different institutions, we first have to appropriately generalise
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the notion of a signature morphism. Of course, we need some link (given by an
institution morphism or comorphism) between the institutions involved.

Definition 3.2. Consider institutions I and I ′ and signatures Σ ∈ |Sign| and
Σ′ ∈ |Sign′|.

A heterogeneous signature morphism is a pair 〈μ, σ〉 : Σ → Σ′ that consists of
an institution morphism μ : I′ → I and a signature morphism σ : Σ → μSign(Σ′)
in Sign. It induces the heterogeneous reduct |〈μ,σ〉 : Mod′(Σ′) → Mod(Σ)
defined as the composition μMod

Σ′ ;Mod(σ), i.e., M ′|〈μ,σ〉 = μMod
Σ′ (M ′)|σ, for all

M ′ ∈Mod′(Σ′).
A heterogeneous signature comorphism is a pair 〈ρ, σ′〉 : Σ → Σ′ that consists

of an institution comorphism ρ:I → I′ and a signature morphism σ′:ρSign(Σ)→
Σ′ in Sign′. It induces the heterogeneous reduct |〈ρ,σ′〉 : Mod′(Σ′) →Mod(Σ)
defined as the composition Mod′(σ′) ; ρMod

Σ , i.e., M ′|〈ρ,σ′〉 = ρMod
Σ (M ′|σ′), for

all M ′ ∈Mod′(Σ′).
Heterogeneous signature morphisms compose as expected: 〈μ1, σ1〉 ;〈μ2, σ2〉 =

〈μ2 ; μ1, σ1 ; μSign
1 (σ2)〉. For any morphism-uniform heterogeneous logical envi-

ronment HLEμ : Gμ → INS this yields the heterogeneous category Sign(HLEμ)
of signatures in institutions in HLEμ with heterogeneous morphisms that involve
institution morphisms in HLEμ (and their compositions, and identities). Then
model functors extend to Mod(HLEμ) : Sign(HLEμ)op → Set using the reducts
defined above.

Heterogeneous signature comorphisms compose as expected: 〈ρ1, σ1〉 ;〈ρ2, σ2〉 =
〈ρ1 ; ρ2, ρ

Sign
2 (σ1) ; σ2〉. For any comorphism-uniform heterogeneous logical envi-

ronment HLEρ : Gρ→coINS this yields the heterogeneous category Sign(HLEρ)
of signatures in institutions in HLEρ with heterogeneous comorphisms that in-
volve institution comorphisms in HLEρ (and their compositions, and identities).
Then model functors extend to Mod(HLEρ) : Sign(HLEρ)op → Set using the
reducts defined above.

We stop short here of defining translation of sentences and proving the satis-
faction condition. Otherwise though, the above follows the construction of the
category of signatures and model reducts in the Grothendieck institution given
in [Dia02] for the morphism-uniform case and in [Mos02a] for the comorphism-
uniform case (heterogeneous signature (co)morphisms were called Grothendieck
signature morphisms there). For full formality, signatures in the heterogeneous
categories of signatures defined above should really be written as pairs 〈I, Σ〉,
marking them explicitly with the institution they come from (or even with the
nodes in the institution diagram) but we continue relying on the reader’s good
will to decipher the institution from the context.

Note that we retain the overall informal idea that a signature morphism goes
from the simpler to more complex signature — hence the contravariance with
the use of institution morphisms in the definition of heterogeneous signature
morphism. This intuition also dictated the choice of the placement and direction
of signature morphism components in heterogeneous signature (co)morphisms.
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Note also that the inter-institutional specification-building operations given in
Def. 3.1 arise now as hiding w.r.t. and translation along heterogeneous signature
morphisms and comorphisms (with the identities as signature morphisms).

In a (non-uniform) heterogeneous logical environment HLE , Def. 3.2 yields
two heterogeneous signature categories, one for the morphism-uniform, the other
for the comorphism-uniform part of HLE . The two categories share all objects,
but have different morphisms. We can put these categories together by formally
adding compositions of morphisms of the two kinds involved, modulo the ex-
pected identification of morphisms that arise from intra-institutional signature
morphisms by adding identity institution (co)morphisms.

Definition 3.3. Let HLE = 〈HLEμ,HLEρ〉 be a heterogeneous logical environ-
ment, and consider the disjoint union of the signature categories of all insti-
tutions in HLE, which embeds in the obvious way into both Sign(HLEμ) and
Sign(HLEρ). We write Sign(HLE) for the heterogeneous category of signa-
tures in HLE and their generalised heterogeneous morphisms, defined as the
pushout (in Cat7) of the two embedding functors. The model functors extend
to Mod(HLE) : Sign(HLE)op → Set using the compositions of reducts from
Def. 3.2.

We again stop short from extending this definition to a complete construction of
a Bi-Grothendieck institution forHLE with Sign(HLE) as its signature category
and Mod(HLE) as its model functor, as spelled out in [Mos03].

Given the above, the definitions of inter-institutional specification morphisms
are now obvious (cf. [Dia98] for a similar notion of an extra theory morphism, and
the notions of specification morphisms arising in Grothendieck (co)institutions).

Definition 3.4. Consider a heterogeneous logical environment HLE, institu-
tions I and I ′ in HLE and specifications SP ∈ SpecI and SP ′ ∈ SpecI′ .

A generalised heterogeneous signature morphism ζ : Sig [SP ] → Sig [SP ′] ∈
Sign(HLE) is a heterogeneous specification morphism ζ : SP → SP ′ if for all
models M ′ ∈ Mod [SP ′], M ′|ζ ∈ Mod [SP ]. Heterogeneous specification mor-
phisms compose, which yields the heterogeneous category Spec(HLE) of spec-
ifications focused on institutions in HLE. The model functions extend to the
functor Mod(HLE) : Spec(HLE)op → Set, using heterogeneous reducts.

Given a heterogeneous logical environment HLE = 〈HLEμ,HLEρ〉, the hetero-
geneous category of specifications Spec(HLE) has subcategories Spec(HLEμ)
and Spec(HLEρ), given by heterogeneous signature morphisms of the form
〈μ, σ〉 ∈ Sign(HLEμ) and, respectively, by heterogeneous signature comorphisms
of the form 〈ρ, σ〉 ∈ Sign(HLEρ).

The category SpecI of specifications focused on a particular institution in an
environment is a subcategory of the heterogeneous category of specifications built
in the environment (via the obvious embedding which adds identity institution
(co)morphisms).

Directly from the definitions:
7 Cat is the (quasi-)category of all categories, as usual.
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Lemma 3.5. Consider institutions I, I ′ and specifications SP ∈ SpecI , SP ′ ∈
SpecI′ .

A heterogeneous signature morphism 〈μ, σ〉 : Sig [SP ] → Sig[SP ′] (so that
μ : I ′ → I, σ : Sig [SP ] → μSign (Sig [SP ′])) is a heterogeneous specification mor-
phism 〈μ, σ〉 : SP → SP ′ if and only if σ : SP → SP ′|μ is a specification mor-
phism (in SpecI).

A heterogeneous signature comorphism 〈ρ, σ′〉 : Sig[SP ] → Sig [SP ′] (so that
ρ : I → I′, σ′ : ρSign(Sig [SP ])→ Sig [SP ′]) is a heterogeneous specification mor-
phism 〈ρ, σ′〉 : SP → SP ′ if and only if σ′ : ρ(SP) → SP ′ is a specification
morphism (in SpecI′).

In all the specification categories we consider, equivalent specifications are iso-
morphic (identity signature morphisms being isomorphisms between them).

One observation about the heterogeneous categories of specifications as de-
fined above is that they reveal a potential problem with making heterogeneous
logical environments uniform. Replacing institution morphisms by spans of co-
morphisms, and vice-versa, replacing institution comorphisms by spans of mor-
phisms, changes the inter-institutional specification-building operations that are
available in the logical environment. Fortunately, in view of symmetry in Def. 3.1,
this is not much of a problem:

Lemma 3.6. Let μ : I → I′ be an institution morphism, and let span(μ) be
I ρμ,1←− I′0

ρμ,2−→ I′.
– SP |μ ≡ ρμ,2(SP |Σρμ,1

) for any SP ∈ SpecI with Sig [SP ] = Σ.
– μ(SP ′)Σ ≡ ρμ,1(SP ′|Σρμ,2

) for any SP ′ ∈ SpecI′ with μSign(Σ) = Sig [SP ′].

Dually then, let ρ : I → I′ be an institution comorphism, and let span(ρ) be
I μρ,1←− I′0

μρ,2−→ I′.
– ρ(SP) ≡ μρ,1(SP)Σ |μρ,2 for any SP ∈ SpecI with Sig [SP ] = Σ.
– SP ′|Σρ ≡ μρ,2(SP ′)Σ |μρ,1 for any SP ′ ∈ SpecI′ with ρSign(Σ) = Sig [SP ′].

Together with Lemma 3.5, this yields a useful characterisation of heterogeneous
specification (co)morphisms, see [Mos03]:

Proposition 3.7. Let μ : I → I′ be an institution morphism, where span(μ) is
I ρμ,1←− I′0

ρμ,2−→ I′. Consider specifications SP ∈ SpecI and SP ′ ∈ SpecI′ and het-
erogeneous signature morphism 〈μ, σ〉 : Sig [SP ′]→ Sig [SP ]. Then 〈μ, σ〉 : SP ′ →
SP is a specification morphism if and only if σ : SP ′ → ρμ,2(SP |Sig [SP ]

ρμ,1 ) is a
specification morphism (in SpecI′).

Let ρ : I → I′ be an institution morphism, where span(ρ) is I μρ,1←− I ′0
μρ,2−→ I′.

Consider specifications SP ∈ SpecI and SP ′ ∈ SpecI′ and heterogeneous sig-
nature comorphism 〈ρ, σ〉 : Sig [SP ] → Sig [SP ′]. Then 〈ρ, σ〉 : SP → SP ′ is a
specification morphism if and only if σ : μρ,1(SP)Sig [SP ]|μρ,2 → SP ′ is a specifi-
cation morphism (in SpecI′).

This proposition is the central motivation for the use of spans. It means that
all proof obligations arising in a mixed heterogeneous logical environment can
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be properly expressed already in a uniform heterogeneous logical environment,
using spans (even if one cannot express them directly as a theory morphism
between original specifications).

However, specification morphisms that arise from institution morphisms and
spans of comorphisms that replace them are quite different, and similarly for
comorphisms and spans of morphisms. In particular, given a heterogeneous spec-
ification morphism 〈μ, σ〉 : SP ′ → SP , with an institution morphism μ : I → I′,
there seems to be no natural way to link specifications SP and SP ′ by het-
erogeneous specification comorphisms built over the comorphism span span(μ)
(but see Sect. 5.5 for more on this). Consequently, for a heterogeneous logi-
cal environment HLE , the heterogeneous specification categories Spec(HLE),
Spec(spanμ(HLE)) and Spec(spanρ(HLE)) are quite different in general.

4 Uniformity via Signature Adjunctions

The discrepancybetween the categories of heterogeneous specifications built on in-
stitution morphisms and the one built on the spans of comorphisms that could re-
place them, pointed out in Sect. 3, may seem a bit disturbing and suggests a search
for “better” ways of making heterogeneous logical environment uniform. One such
possibility arises in most practical examples, when institution morphisms involve
“forgetful” signature functors that have left adjoints (which restores the “forgot-
ten” structure of signatures in the source institution in the free way) and/or when
institution comorphisms involve signature functors that have right adjoints (that
forget the extra structure added to signatures of the source institution to encode
them in the target institution). Under such circumstances, institution morphisms
can be turned into comorphisms, and vice versa, see [AF96, Dia08]:

Theorem 4.1. Let μ : I ′ → I be an institution morphism and let μSign :Sign′ →
Sign have a left adjoint ρSign : Sign→ Sign′ with unit η : idSign → ρSign ; μSign .
Then L(μ) = 〈ρSign , ρSen , ρMod〉, where for Σ ∈ |Sign|, ρSen

Σ = Sen(ηΣ);μSen
ρSign (Σ)

and ρMod
Σ = μMod

ρSign (Σ) ;Mod(ηΣ), is an institution comorphism L(μ) : I → I′.
Let ρ : I → I′ be an institution comorphism and let ρSign :Sign→ Sign′ have

a right adjoint μSign : Sign′ → Sign with counit ε : μSign ; ρSign → idSign′ . Then
R(ρ) = 〈μSign , μSen , μMod〉, where for Σ′ ∈ |Sign′|, μSen

Σ′ = ρSen
μSign (Σ′) ;Sen′(εΣ′)

and μMod
Σ = Mod′(εΣ′) ; ρMod

μSign (Σ′), is an institution morphism R(ρ) : I ′ → I.
Moreover, R and L can be chosen so that R(L(μ)) = μ and L(R(ρ)) = ρ.

Now, given any heterogeneous logical environment HLE = 〈HLEμ,HLEρ〉, if
all institution comorphisms in HLEρ have signature functors with right ad-
joints, we can build a morphism-uniform heterogeneous logical environment
adj μ(HLE) with each institution comorphism ρ in HLEρ replaced by the in-
stitution morphism R(ρ). Then the specification categories Spec(HLE) and
Spec(adj μ(HLE)) are equivalent. Similarly, if all institution morphisms inHLEμ

have signature functors with left adjoints, we can build a comorphism-uniform
heterogeneous logical environment adj ρ(HLE) with each institution morphism
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μ in HLEμ replaced by the institution comorphism L(μ). Then the specification
categories Spec(HLE) and Spec(adj ρ(HLE)) are equivalent. These equivalences
follow essentially from results in [Mos02a, Dia08], which show that switching be-
tween institution morphisms and comorphisms as in Thm. 4.1, and so between
indexed institutions and indexed coinstitutions, does not affect the resulting
Grothendieck institution that can be built.

More explicitly, focused heterogeneous specifications that one can build as
in Def. 3.1 using an institution morphism coincide (up to equivalence) with
those one can build using the institution comorphism determined by the left
adjoint to the signature functor of the institution morphism, and vice versa.
Moreover, in each case, heterogeneous specification morphisms determine each
other (generalising the original result of [AF96] for theories).

Lemma 4.2. Let μ and ρ be as in Thm. 4.1, with L(μ) = ρ and R(ρ) = μ.
Consider specifications SP ∈ SpecI, SP ′ ∈ SpecI′ with Sig [SP ] = Σ and
Sig [SP ′] = Σ′. Then:

– SP ′|μ ≡ (SP ′|εΣ′ )|μ(Σ′)
ρ

– ρ(SP) ≡ μ(ηΣ(SP))ρ(Σ)

– μ(SP)Σ′
0 ≡ εΣ′

0
(ρ(SP)), for any Σ′

0 ∈ |Sign′| with μSign (Σ′
0) = Σ,

– SP ′|Σ0
ρ ≡ (SP |μ)|ηΣ0

, for any Σ0 ∈ |Sign| with ρSign(Σ0) = Σ′.

Moreover, if σ : Σ → μSign(Σ′) and σ′ : ρSign(Σ)→ Σ′ are signature morphisms
corresponding to each other under bijection given by the adjunction between sig-
nature categories (i.e., such that ηΣ ; μSign(σ′) = σ) then 〈μ, σ〉 is a heteroge-
neous specification morphism 〈μ, σ〉 : SP → SP ′ iff 〈ρ, σ′〉 is a heterogeneous
specification comorphism 〈ρ, σ′〉 : SP → SP ′.

Overall this means that then when in a heterogeneous logical environment the in-
stitution morphisms or comorphisms link signature categories by adjunctions, we
can gracefully make the environment uniform by replacing institution morphisms
by the corresponding comorphisms or, respectively, by replacing institution co-
morphisms by the corresponding morphisms, with losing neither specifications
that can be built nor heterogeneous (co)morphisms between them.

5 Distributed Specifications

Heterogeneity of the logical environment was used in focused heterogeneous spec-
ifications to build various parts of specifications in various logical systems (in-
stitutions) and then put them together to end up in one logical system, where
the models of interest are. However, quite often, for instance in UML [BRJ98],
heterogeneous specifications are presented rather differently, by simply giving a
number of specifications in various logical systems, and then (implicitly or ex-
plicitly) linking them with each other to ensure the expected compatibility prop-
erties. This leads to the idea of distributed specifications which we will present
in this section; see also [CKTW08] for an earlier sketch of this to provide an
understanding of distributed heterogeneous UML specifications.
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5.1 Distributed Specifications and Their Models

We will work in the context of a specification frame: a category Spec of (abstract)
specifications with semantics given by a model functor Mod : Specop → Set.
The terminology follows [CBEO99], the concept appeared earlier as “specifica-
tion logic” in [EBCO92, EBO93]). As before, functions Mod(σ), for σ : SP →
SP ′ in Spec, will be called reducts and denoted by |σ. Moreover, specification
frames can be linked by morphisms and comorphisms much in the same way as
institutions, by just leaving out the sentence translation component.

For a while we will not need to discuss how such a specification frame was built:
for instance, it may be the category of specifications built in an institution (which
is perhaps the prime example) or a heterogeneous category of specifications built
over a heterogeneous logical framework (which are examples of interest here).

Definition 5.1. Let F = 〈Spec,Mod : Specop → Set〉 be a specification frame.
A distributed specification in F is a collection of specifications linked by speci-
fication morphisms, that is, a diagram DSP : G → Spec in Spec.

A distributed model of DSP is a family of models 〈Mn〉n∈|G| that is compat-
ible with morphisms in DSP (i.e., for each edge e : n → m in G, Mm|DSP(e) =
Mn) and such that for each node n ∈ |G|, Mn ∈ Mod(DSP(n)). We write
Mod [DSP ] for the collection of all such distributed models of DSP.

A specification morphism between distributed specifications DSP : G → Spec
and DSP ′ : G′ → Spec is a pair (F, τ), where F : G → G′ is a functor, and
τ : DSP → F ;DSP ′ a natural transformation. Such morphisms compose as
usual, which yields the category DSpec(F) of distributed specifications in F .

Distributed model reducts w.r.t. such morphisms are defined in the obvi-
ous way: for M′ = 〈M ′

n〉n∈|G′| ∈ Mod [DSP ′], M′|(F,τ) = M, where M =
〈M ′

F (m)|τm〉m∈|G| ∈ Mod [DSP ].
This defines a new specification frame DSP(F) of distributed specifications

in F and their distributed models.

Similar concepts were introduced for instance already in [Cla93]. The definition
of DSP(F) resembles the construction of the institution of structured theories
in [DM03], but differs from it somewhat by using whole specifications (linked by
specification morphisms) as the building blocks for our distributed specifications,
whereas the institution of structured theories relies on the use of collections of
sentences distributed over signature diagrams.

Given the notion of a distributed specification and its class of models, many
concepts and terminology carry over from standard to distributed specifica-
tions. For instance, consistency: a distributed specification DSP is consistent
if Mod [DSP ] �= ∅.

5.2 Removing Distributivity

The literature so far focused largely on specification frames that are homogeneous
in some sense, for instance arise as the category of theories or of specifications
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built in a single institution, with the usual semantics. In such a case, the follow-
ing fact will often apply and could be used to diminish the role of distributed
specifications by using a corresponding standard (colimit) specification.

Proposition 5.2. Let F = 〈Spec,Mod : Specop → Set〉 be a (finitely) exact
specification frame — that is, Spec is (finitely) cocomplete and Mod preserves
(finite) limits.8

Then for any (finite) distributed specification DSP : G → Spec in F , there
exists a (colimit of DSP) specification SP ∈ |Spec| with specification mor-
phisms 〈ιn : DSP(n) → SP〉n∈|G| such that each model M ∈ Mod [SP ] deter-
mines uniquely a distributed model of DSP, 〈M |ιn〉n∈|G| ∈ Mod [DSP ], and vice
versa: each distributed model 〈Mn〉n∈|G| ∈ Mod [DSP ] determines a unique model
M ∈ Mod [SP ] such that Mn = M |ιn for n ∈ |G|.
This construction can easily be turned into both a morphism and a comorphism
of specification frames:

Proposition 5.3. Let F = 〈Spec,Mod : Specop → Set〉 be an exact specifica-
tion frame. Then there is a specification frame (co)morphism Colim : DSP(F) →
F , taking a distributed specification to its colimit, that is an isomorphism on
model classes.

A similar fact, although not stated explicitly there, is already present in the
proof of Thm. 20 in [DM03].

The assumption necessary for Props. 5.2 and 5.3 holds for instance for spec-
ification frames given by the categories of theories or of specifications (closed
under translation and union) built in any (finitely) exact institution, where the
category of signatures is (finitely) cocomplete and the model functor preserves
(finite) limits, see [GB92, ST88a, DGS93]. It is well-known that practically all
institutions that capture many-sorted logics are in fact exact. For single-sorted
case, the model functors tend not to preserve coproducts, but typically such in-
stitutions are semi-exact (signature pushouts exists and the model functor maps
them to pullbacks in Set). Then the resulting specification frames are semi-exact
in the analogous sense, which is enough to establish the fact as above for finite
connected distributed specifications.

However, this is quite in contrast with specification frames typically arising in
heterogeneous logical environments, where (semi-)exactness is very rare. What
one essential would need then is the (semi-)exactness of Grothendieck institu-
tions built over (uniform) heterogeneous logical environments. See [Dia02] for
results than ensure this for the morphism-uniform case, and [Mos02a] for the
comorphism-uniform case. Unfortunately, albeit mathematically interesting and
elegant, these results tend to rely on assumptions that are rarely met by the
environments arising in practice — for instance, they require the shape of the
heterogeneous logical environment to be (co)complete. This essentially would
imply that in our logical environment there already is a single “maximal” insti-
tution capable of expressing all the specifications built in other institutions in
8 That is, Mod maps (finite) colimits in Spec to limits in Set.
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the environment via a unique representation. For example, in the Heterogeneous
Tool Set Hets [MML07], there is no such “maximal” institution, rather, there
are “local maxima”, like the logic of Isabelle/HOL, which is used to encode many
other logics. But even when restricting to a subgraph of logics represented in Is-
abelle/HOL, each logic is typically represented in it in more than one way, and
so this is not a colimit (indeed, a colimit would have to make identifications that
turn it into a rather artificial institution). Moreover, not all of the comorphisms
involved in Hets are exact, but this would be needed to make the Grothendieck
institution exact.

This is why distributed specifications become of real interest and relevance in
the context of heterogeneous logical environments.

As stated above, the exactness assumption of Prop. 5.3 is unrealistically
strong. A somewhat more realistic assumption is the following:

Definition 5.4. A specification frame F = 〈Spec,Mod : Specop → Set〉 is
quasi-exact if each diagram D : G → Spec has a cocone 〈ιn : D(n) → SP〉n∈|G|
that, moreover, is weakly amalgamable. The latter means that any compatible
family of models 〈Mn ∈Mod(D(n))〉n∈|G| can be amalgamated to a (not neces-
sarily unique) model M ∈Mod(SP) with M |ιn = Mn for n ∈ |G|.
This notion leads to a mathematically less elegant, but practically somewhat
more applicable variant of Prop. 5.3:

Proposition 5.5. Let F = 〈Spec,Mod : Specop → Set〉 be a quasi-exact spec-
ification frame. Let Discr(DSP(F)) be the sub-specification frame of DSP(F)
where all non-identity specification morphisms are removed. Then there is at
least one specification frame comorphism WeakAmalg : Discr (DSP(F)) → F
that is surjective on models, taking a distributed specification to the tip of a
weakly amalgamable cocone.

Note that the need of the move to discrete specification categories (via Discr ( ))
is caused by the construction not being functorial.

5.3 Implementing Distributed Specifications

Working in a specification frame F = 〈Spec,Mod〉, in this section we adapt to
distributed specifications the standard view of the process of systematic software
development, as presented using implementation steps involving constructors,
see [ST88b, ST97]. Recall that for (standard) specifications SP and SP ′, a con-
structor from SP ′ to SP is simply a function κ : Mod [SP ′] → Mod [SP ]. Given
such a constructor, we say that SP ′ implements SP via κ, written SP κ� SP ′.9

To generalise this to distributed specifications, we also have to “distribute” the
constructor:
9 The definition in the framework of an institution is a bit more delicate: κ is a partial

function between model classes over the signatures of SP ′ and SP , respectively, and
then for SP κ� SP ′ one requires that on models in Mod [SP ′], κ is defined and yields
models in Mod [SP ].



Heterogeneous Logical Environments for Distributed Specifications 281

Definition 5.6. To implement a distributed specification DSP : G → Spec by
DSP ′ : G′ → Spec, one needs to provide a covering function f : |G| → |G′| and
a family of constructors K = 〈κn : Mod [DSP ′(f(n))] → Mod [DSP(n)]〉n∈|G|.

Then DSP ′ implements DSP via f and K, written DSP
f, K
� DSP ′, if for

each distributed model 〈Mn′〉n′∈|G′| ∈ Mod [DSP ′], the family 〈κn(Mf(n))〉n∈|G|
is compatible with morphisms in DSP.

Of course, if DSP
f, K
� DSP ′ then for each distributed model 〈Mn′〉n′∈|G′| ∈

Mod [DSP ′], 〈κn(Mf(n))〉n∈|G| is a model of DSP .
As can be seen directly from the definition, to establish DSP

f, K
� DSP ′

we first have to show that for all n ∈ |G|, DSP(n) κn
� DSP ′(f(n)) (which is

just as in the implementation steps for standard specifications) and then add
that the constructors in K on the respective models from any family satisfying
(and hence compatible with) DSP ′ yield a family of models compatible with
DSP . The latter requirement is essentially new and, in general, may require new
proof techniques. However, in some simple cases it can be shown using standard
categorical reasoning:

Proposition 5.7. Consider any distributed specifications DSP : G → Spec and
DSP ′ : G′ → Spec, and let (F, τ) : DSP → DSP ′ be a specification morphism in
DSpec(F). Then DSP

f, K
� DSP ′, where f is the object (node) part of F and

K = 〈 |τn〉n∈|G| is the family of reducts w.r.t. τn, n ∈ |G|.
Note that the above is just an instance (in DSP(F)) of the well-known general
fact that for any specification morphism σ : SP → SP ′, the reduct w.r.t. σ yields
a correct implementation of SP by SP ′, SP |σ

� SP ′, cf. [ST88b].
In the case captured by the proposition above, we ensure that the family of

constructors given as reducts w.r.t. specification morphisms preserves compat-
ibility of model families in the most simple and expected categorical way. The
use of reducts as constructors here may seem very restrictive, but in fact, if one
works in a sufficiently rich specification frame, for instance based on institutions
with “derived” signature morphisms, then reducts may cover essentially all rele-
vant constructors. Here, a very general concept of a derived signature morphism
may be used. Informally, a derived signature morphism δ : Σ → Σ′ maps each
symbol in Σ to its definition in terms of symbols in Σ′; then for any Σ′-model
which interprets the symbols in Σ′, its reduct w.r.t. δ is a Σ-model built using
the definitions for the symbols in Σ given by δ. In an institution-independent set-
ting, a derived signature morphism could be defined to be an ordinary signature
into a definitional extension (see Def. 5.8 below).

Finally, we should stress here that the above notion of implementation cov-
ers all possible (and necessary in the development process) changes. First, as
usual, individual specifications may be refined, by adding more requirements
and “implementation decisions”. Second, the structure of the distributed spec-
ification may change here: ultimately, we may even arrive at a single standard
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specification. Finally, in the case when we are working in the heterogeneous
category of specifications built in a heterogeneous logical framework, institutions
in which individual specifications are built may be changed as well!

5.4 Comparing Distributed Specifications

For usual (homogeneous or focused heterogeneous) specifications, we have in-
troduced the basic notion of equivalence as a way to identify specifications with
the same model classes. For distributed specifications, this cannot be so simple.
The point is that, very informally, some of the nodes in a distributed speci-
fication may play only an auxiliary role, so that in any distributed model of
such a distributed specification, the individual models given for such nodes are
always uniquely determined by the rest of the family. Effectively, such nodes
and their corresponding individual models may be disregarded when compar-
ing distributed models of distributed specifications. This leads to a generali-
sation of the notion of equivalence of specifications in any specification frame
F = 〈Spec,Mod〉.
Definition 5.8. A specifications SP ′ is a definitional extension of a specifica-
tion SP along a specification morphism σ : SP → SP ′ if any SP-model has a
unique σ-expansion to an SP ′-model, i.e., the reduct |σ : Mod [SP ′]→ Mod [SP ]
is a bijection.

Definition 5.9. Two specifications SP1 and SP2 are pre-equivalent, written
SP1

∼= SP2, iff there is a common definitional extension SP of SP1 and SP2.
Derived equivalence10 of specification is defined to be transitive closure of pre-
equivalence.

Proposition 5.10. Derived equivalence is an equivalence. In exact specifica-
tion frames, pre-equivalence is transitive, hence derived equivalence and pre-
equivalence coincide.

Now, two distributed specifications DSP1 : G1 → Spec and DSP2 : G2 → Spec
are pre-equivalent (in DSP(F)) iff there is a distributed specification DSP : G →
Spec with distributed specification morphisms (F1, τ1) : DSP1 → DSP and
(F2, τ2) : DSP2 → DSP such that DSP is a definitional extension of DSP1

along (F1, τ1) and of DSP2 along (F2, τ2). In other words, any distributed model
M1 ∈ Mod [DSP1] extends then uniquely along (F1, τ1) to a distributed model of
DSP , which in turn reduces (uniquely) w.r.t. (F2, τ2) to a distributed model of
DSP2, and vice versa, yielding a “natural” bijection between distributed models
of DSP1 and DSP2, respectively.

5.5 Distributed Heterogeneous Specifications

The machinery developed above may now be employed to deal with distributed
heterogeneous specifications in a heterogeneous logical environment HLE ,
10 This terminology is meant to reflect the comments concerning derived specification

morphisms in Sect. 5.3 above.
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understood as collections of specifications in HLE linked by (generalised) het-
erogeneous specification morphisms. Formally, such a distributed heterogeneous
specification is just a distributed specification in the sense of Def. 5.1 in the
specification frameHSF(HLE) = 〈Spec(HLE),Mod(HLE)〉, given by Def. 3.4.
This yields the specification frame DSP(HSF(HLE)) of distributed heteroge-
neous specifications. We can extend it further to an institution:

Definition 5.11. Let HLE be a heterogeneous logical environment. Then the
institution DHSI(HLE) has the category DSpec(HSF(HLE)) of distributed
heterogeneous specifications as its “signature” category; the model functor is in-
herited from DSP(HSF(HLE)). Given a distributed specification DSP : G →
Spec(HLE) in |DSpec(HSF(HLE))|, a DSP-sentence is of the form 〈n, ϕ〉
for n ∈ |G| and ϕ ∈ SenIn(Σn), where Sig[DSP(n)] = 〈In, Σn〉. A distributed
model 〈Mk〉k∈|G| ∈ Mod [DSP ] satisfies such a sentence 〈n, ϕ〉 if Mn |= ϕ in In.
For a distributed specification morphism (F, τ) : (DSP : G → Spec(HLE)) →
(DSP ′ : G′ → Spec(HLE)) in DSpec(HSF(HLE)), translation of such a sen-
tence is given by (F, τ)(〈n, ϕ〉) = 〈F (n), τn(ϕ)〉, where for each n ∈ |G|, the
translation τn(ϕ) of ϕ along the generalised heterogeneous specification mor-
phism τn is defined by composing in the natural order the translations along
the signature morphism and the institution (co)morphism involved in τn. The
satisfaction condition follows easily.

DHSI(HLE) leads, in the expected way, to a notion of logical consequences
of a distributed specification (sentences that hold in all models of the dis-
tributed specifications). Spelling this out: for DSP : G → Spec(HLE), n ∈ |G|,
Sig [DSP(n)] = 〈In, Σn〉, and ϕ ∈ SenIn(Σn)), we say that 〈n, ϕ〉 is a conse-
quence of DSP , written DSP |=n ϕ, iff for all distributed models 〈Mk〉k∈|G| ∈
Mod [DSP ], Mn |=In,Σn ϕ. Note that such consequences include, in general prop-
erly, the usual consequences of the individual specifications involved.
DHSI(HLE) also gives a notion of a (distributed heterogeneous) theory of

a distributed heterogeneous specification: for DSP : G → Spec(HLE) and n ∈
|G| with Sig [DSP(n)] = 〈In.Σn〉, we have Th(DSP)(n) = {ϕ ∈ SenIn(Σn) |
DSP |=n ϕ}. Then for each e : m → n in G, the signature morphism DSP(e) is a
theory morphism, DSP(e) : Th(DSP)(m) → Th(DSP)(n), so that we get a dia-
gram in the usual (heterogeneous) category of theories ofHLE . Note though that
the individual theories Th(DSP)(n) need not be in general finitely presentable
in In, even if all the individual specifications in DSP are finite presentations.

An interesting alternative way to present distributed heterogeneous specifi-
cations would be to first define an institution that differs from DHSI(HLE)
by taking as signatures diagrams in the category Sign(HLE) of heterogeneous
signatures (which would coincide with the institution of structured theories,
as defined in [DM03], built for the Bi-Grothendieck institution of HLE). It is
easy to see that each distributed heterogeneous specification could be then ob-
tained as a structured specification built in this institution. Moreover, although
structured specifications in this institution would also correspond to families of
specifications with their signatures linked by signature morphisms that are not



284 T. Mossakowski and A. Tarlecki

necessarily specification morphisms, it can be shown that for such structured
specifications, at least when their signatures are finite directed diagrams, we can
always give an equivalent distributed heterogeneous specification as defined here.

If the specification frame HSF(HLE) is quasi-exact, Prop. 5.5 can be used
for DSP(HSF(HLE)). Moreover, it can be checked that the specification frame
morphism WeakAmalg defined on Discr(DSP(HSF(HLE))) there can be ex-
tended to an institution comorphism from DHSI(HLE) to the Bi-Grothendieck
institution build on HLE . The importance of this fact lies in the possibility of
transferring logical consequence:

Proposition 5.12. For any institution comorphism ρ : I → I ′ that is surjective
on models, and set of Σ-sentences Γ ∪ {ϕ} in I, we have:

Γ |=I
Σ ϕ iff ρSen

Σ (Γ ) |=I′
ρSen

Σ (ϕ)

That is, given any proof calculus or theorem prover capturing logical consequence
in I ′, we can re-use it to capture logical consequence in I. When combined
with Prop. 5.5, this means that for quasi-exact (Bi-Grothendieck) institutions,
logical consequence for distributed heterogeneous specifications can be reduced
to logical consequence for focused heterogeneous specifications.

In a heterogeneous setting, the property of quasi-exactness for the specification
frame (or institution) of heterogeneous specifications remains quite a strong
requirement. However, if one restricts attention to distributed specifications with
particular shapes of diagram (namely, so-called connected finitely bounded inf-
complete diagrams), then it can be obtained under rather realistic assumptions.
For details, see Corollaries 30 and 31 of [CM08].

Finally, we can return in this setting to the issue of making heterogeneous logi-
cal environments uniform. It turns out that for any heterogeneous logical environ-
ment HLE , even though the heterogeneous specification categories Spec(HLE),
Spec(spanμ(HLE)) and Spec(spanρ(HLE)) are quite different, the distributed
specifications we can build in each of these categories are essentially the same.

Proposition 5.13. Given a heterogeneous logical environment HLE , consider
any distributed heterogeneous specification DSP ∈ |DSpec(HLE)|. There ex-
ists then a comorphism-uniform distributed heterogeneous specification DSPρ ∈
|DSpec(spanρ(HLE))| such that DSPρ ∼= DSP. Similarly, there is a morphism-
uniform distributed heterogeneous specification DSPμ ∈ |DSpec(spanμ(HLE))|
such that DSPμ ∼= DSP.

The proof is related to that of Thm. 11 of [Mos03], relying on Prop. 3.7. For
instance, consider an institution morphism μ : I → I′, where span(μ) is I ρμ,1←−
I ′0

ρμ,2−→ I′, specifications SP ∈ SpecI , with Sig [SP ] = Σ, and SP ′ ∈ SpecI′ , and a
signature morphism σ : Sig [SP ′]→ μSign(Σ). Then a heterogeneous specification

morphism SP ′ 〈μ,σ〉−→ SP in a distributed heterogeneous specification may be

replaced by a sequence of heterogeneous specifications comorphisms SP ′ 〈id ,σ〉−→
ρμ,2(SP |Σρμ,1

)
〈ρμ,2,id〉←− SP |Σρμ,1

〈ρμ,1,id〉−→ SP .
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6 Final Remarks

The sentence part of the institution morphisms and comorphisms has rarely
played any role in the considerations in this paper (that is, after sentences have
been used to build basic specifications). Consequently, we could replace the use
of institution morphisms and comorphisms by institution semi-morphisms and
semi-comorphisms, respectively (semi-(co)morphisms are just like (co)morphisms
but without the translation of sentences, and hence without caring about the
satisfaction at all, see [ST88b, Tar96]). With the obvious projection from the
category of institutions and their (co)morphisms to the category of institutions
and their semi-(co)morphisms, essentially all we presented here would be a spe-
cial case of a formally more general (but in the presentation basically identi-
cal) development using semi-morphisms and semi-comorphisms. Of course, the
sentences and satisfaction start matter when it comes to consideration of con-
sequence and proofs in the framework presented here. Remarks on theories for
distributed specifications and discussion of Prop. 5.5 in Sect. 5.5 give but the first
hints in this direction. Then full institution morphisms and comorphisms pro-
vide considerably more possibilities then their “semi-” versions. A proof calculus
for focused heterogeneous specifications has been developed in [Mos02a, Mos05].
Using Prop. 5.5, it can be extended to distributed heterogeneous specifications
under suitable conditions using weakly amalgamable cocones, which are not un-
realistic to be met in practice. The exact tuning of these conditions remains a
topic for further research. In cases without weak amalgamation, probably there
is no better way than to resolve the proof problems on a case-by-case basis, for
each specific link between institutions.

A simple analysis of possible mutual directions of translations involved in
maps between institutions leads to further notions of maps between institutions,
as suggested in [Tar96] and then studied in [GR02] (see also [MW98]). In partic-
ular, when all translations go in the same direction, we obtain institution forward
morphisms, and when both sentences and models are translated contravariantly
w.r.t. signatures, we obtain forward comorphisms. It turns out that the span
construction helps here again: with spans of morphisms, we can simulate for-
ward (co)morphisms (as well as semi-(co)morphisms) much in the same way as
we have been able to simulate comorphisms, see [Mos05] for details. (A similar
remark holds for spans of comorphisms.) It may be a bit more difficult to bring
into the picture institution (co)morphisms in their theoroidal versions, where
signatures of one institution are mapped to theories, rather than just signa-
tures, of the other institution [Mes89, GR02]. A technically easy way to achieve
this is to add to the heterogeneous logical environment enough infrastructure
to allow for expressing theoroidal institution (co)morphisms as plain institution
(co)morphisms: for each institution I, its institution of theories Ith needs to be
added, along with the obvious morphism Ith → I and comorphism I → Ith.11

11 Even generalised theoroidal comorphisms in the sense of [Cod] can then be expressed
as semi-comorphisms between institutions of theories.
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While the general theory works also for this extended heterogeneous logical envi-
ronment, it remains to be checked which properties of the heterogeneous logical
environment are preserved under this extension, and whether the duplication of
I into I and Ith can be eliminated, possibly using techniques of [Mos96]. At
least it is clear that a theorem prover for I can easily be lifted to Ith.

While non-uniform heterogeneous logical environments naturally arise and
can be used in practice, we also offer two ways to make them uniform. The first
way, via adjunctions between signature categories, leaves the resulting category
of heterogeneous specifications essentially untouched. However, adjunctions are
not always available. The second way, via the construction involving spans, is
completely general, but leads to a certain modification of the category of het-
erogeneous specifications. While the same focused heterogeneous specifications
can be expressed, we do not directly obtain the same heterogeneous specification
(co)morphisms. Nevertheless, we can capture the proof obligations that the mor-
phisms in the non-uniform environment carry by considering logically equivalent
specification diagrams. The same method shows that making a heterogeneous
logical environment uniform preserves (up to equivalence) the set of distributed
heterogeneous specifications.

Another possibility would be to consider an even more general category of in-
stitutions, where both morphisms and comorphisms (as well as their semi- and
forward versions) can be placed together. One obvious candidate could be based
on a notion of institution relational links, where the categories of signatures are
linked e.g. by distributors (also called profunctors) [Bor94], which are a relational
version of functors. Then for any two related signatures, a relation between the
sentences over them and a relation between models over them would be given,
natural in the related signature morphisms. Generalising the satisfaction condi-
tion for institution (co)morphisms, we would of course require these relations to
preserve satisfaction. Such relational links clearly compose and cover all kinds
of maps between institutions we considered. Hence, in this way we would obtain
a category of institutions with relational links between them, into which each
of the categories of institutions considered so far could be faithfully embedded.
However, as far as we can see, such a category brings little benefit: the notion
so obtained seems a bit artificial, and does not ensure any of the expected prop-
erties (e.g., entailment is in general neither preserved nor reflected by relational
links, the category is neither finitely complete nor finitely cocomplete, etc).

One consequence may be that we have to live with non-uniform environments,
where the maps considered do not compose in general, and so we cannot view
them simply as diagrams in a category of institutions. In fact, this is what is
really happening in Hets [MML07, Mos05], where both institution morphisms
and comorphisms are used, while the projection (via spans) to a comorphism-
uniform environment is applied for theorem proving. Future work will apply
this approach to the heterogeneous logical environment arising from UML (see
[CKTW08] for initial promising steps in this direction).

Acknowledgements. Many thanks to the anonymous referees for detailed com-
ments.
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Abstract. Term-generic logic (TGL) is a first-order logic parameterized
with terms defined axiomatically (rather than constructively), by requir-
ing them to only provide generic notions of free variable and substitution
satisfying reasonable properties. TGL has a complete Gentzen system
generalizing that of first-order logic. A certain fragment of TGL, called
Horn

2, possesses a much simpler Gentzen system, similar to traditional
typing derivation systems of λ-calculi. Horn

2 appears to be sufficient for
defining a whole plethora of λ-calculi as theories inside the logic. Within
intuitionistic TGL, a Horn

2 specification of a calculus is likely to be
adequate by default. A bit of extra effort shows adequacy w.r.t. classic
TGL as well, endowing the calculus with a complete loose semantics.

1 Introduction

First-order logic (FOL) does not allow variables to be bound in terms (but only
in formulae, via quantifiers), thus providing a straightforward notion of substi-
tution in terms. On the other hand, most calculi that are used in the domain of
programming languages, and not only, are crucially based on the notion of bind-
ing of variables in terms: terms “export” only a subset of their variables, the free
ones, that can be substituted. Because of their complex formulation for terms,
these calculi cannot be naturally defined as FOL theories. Consequently, they
need to define their own models and deduction rules, and to state their own
theorems of completeness, not always easy to prove. In other words, they are
presented as entirely new logics, as opposed to theories in an existing logic, thus
incurring all the drawbacks (and boredom) of repeating definitions and proofs
following generic, well-understood patterns, but facing new “details”.

In this paper we define term-generic first-order logic, or simply term-generic
logic (TGL), as a first-order logic parameterized by any terms that come with
abstract notions of free variable and substitution. More precisely, in TGL terms
are elements in a generic set Term (including a subset Var whose elements are
called variables) that comes with functions FV :Term → Pf (Var) and Subst :
Term ×TermVar →Term for free variables and substitution, respectively, satisfy-
ing some expected properties. TGL models provide interpretations of terms that
� Supported in part by NSF grants CCF-0448501, CNS-0509321 and CNS-0720512,
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satisfy, again, some reasonable properties. We show that TGL admits a complete
Gentzen-like deduction system, which is syntactically very similar to that of FOL;
its proof of completeness modifies the classic proof of completeness for FOL to use
the generic notions of term, free variables and substitution.

Because of not committing to any particular definition of term, TGL can be
instantiated to different types of terms, such as standard FOL terms or different
categories of (typed or untyped) λ-terms. When instantiated to standard FOL
terms, TGL becomes, as expected, precisely FOL. However, when instantiated to
more complex terms, e.g., the terms of λ-calculus, TGL becomes a logic where
a particular calculus is a particular theory. For example, the TGL axiom for
typing abstractions in simply-typed λ-calculus can be

(∀x. x : t ⇒ X : t′) ⇒ (λx :t.X) : t → t′

where x and t, t′ denote data and type variables, respectively, X denotes an arbi-
trary data term, ⇒ is the logical implication, and → is the arrow type construct
(binary operator on types). The above is an axiom-scheme, parameterized by any
choice of variables x, t, t′ and term X (and, as customary, each of its instances is
implicitly assumed universally quantified over all its free variables). The colons
in x : t and X : t′ and the outermost colon in (λx : t. X) : t → t′ refer to a
binary relation symbol in TGL, while the colon in λx : t.X is part of the term
syntax. The term X may contain the free variable x, which is bound by ∀ in the
lefthand side of the outermost implication, and by λ in the righthand side. Both
these capturings of x from X are intended – in fact, the migration of x between
the two scopes is at the heart of the intended typing mechanism: x is an actual,
but arbitrary input to the function described by X in the former case, and a
formal parameter in the latter; the type t → t′ is assigned to the abstraction
λx : t.X by “experimenting” with arbitrary x’s of type t and “observing” if the
result has type t′. (Using the same notation for actual as for formal parameters
of functional expressions is well-established mathematical practice.)

A possible instance of the above axiom-scheme, taking, e.g., λy : t′′. y x as X
and spelling out all the universal quantifications, is

∀t, t′, t′′. (∀x. x : t ⇒ (λy :t′′. y x) : t′) ⇒ (λx :t. λy :t′′. y x) : t → t′,

which implies in TGL, instantiating t′′ with t → t′′′ and t′ with (t → t′′′) → t′′′,

∀t, t′′′. (∀x. x : t ⇒ (λy :t → t′′′. y x) : (t → t′′′) → t′′′) ⇒
(λx :t. λy :t → t′′′. y x) : t → (t → t′′′) → t′′′.

Moreover, we can prove in TGL, using again the above axiom-scheme and an-
other axiom for application, that the hypothesis (i.e., the lefthand side of the
outermost ⇒) in the latter sentence is true for all t′, t′′′, hence we obtain a TGL
derivation of ∀t, t′′′. (λx :t. λy :t → t′′′. y x) : t → (t → t′′′) → t′′′.

A specification of a calculus in TGL brings a meaningful complete semantics
for that calculus, because the axioms are stated about some models, the content
of the axioms making the models “desirable”. Indeed, TGL models are initially
“blank”, in that they are only required to interpret the terms consistently with
substitution – it is the axioms that customize the models. For instance, the
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previously discussed description of x as an “actual, but arbitrary parameter”
is not merely an informal idea to help the intuition, but a mathematical fact
within the TGL semantics: when “escaped” from the scope of λ into the scope
of ∀, x indeed denotes an actual, but arbitrary inhabitant of a desirable model.

Even though the completeness (being equivalent to semi-decidability) of a frag-
ment of a logic (whose syntax is decidable) follows from the completeness of the
richer logic, there are good reasons to develop complete proof systems for certain
particular sublogics as well. Besides a better understanding and self-containment
of the sublogic, one important reason is the granularity of proofs. Indeed, proofs
of goals in the sublogic that use the proof-system of the larger logic may be rather
long and “junkish” and may look artificial in the context of the sublogic. For exam-
ple, equational logic admits a very intuitive complete proof system [5], that simply
“replaces equals by equals”, thus avoiding the more intricate first-order proofs. An
important goal of this paper is to also investigate conditions under which sublogics
of TGL admit specialized coarse-granularity proof systems.

It appears that a certain fragment of TGL, that we call Horn
2, is sufficient

for calculi-specification purposes. Horn
2 consists of TGL sentences of the form

∀y.(∀x.
∧n

i=1ai(x, y) ⇒ bi(x, y)) ⇒ c(y)

with ai, bi, c atomic formulae (x and y denote tuples of variables), i.e., gener-
alized Horn implications whose conditions are themselves (single-hypothesis)1

Horn implications. We show that, under a reasonable restriction that we call
amenability, a Horn

2 theory admits a complete Gentzen system that “imple-
ments” each Horn

2 formula as above into a deduction rule of the form

Γ, ai(z, T ) � bi(z, T ) for all i ∈ {1, . . . , n}
Γ � c(T )

where T is a tuple of terms substituting y and z is a fresh tuple of variables substi-
tuting x. The (multiple-formulae antecedent, single-formula succedent) structure
of this system follows the style of intuitionistic logic, and indeed we show that
it specializes the Gentzen system of the intuitionistic version of TGL. Thus we
obtain for the Horn

2 fragment an intuitionistic proof system which is complete
w.r.t. classical models! Moreover, this “lower-level” Gentzen system, extracted
from the higher-level notation used in the Horn

2 theory, recovers the original
calculus itself (bringing what in syntactic encoding frameworks is usually re-
ferred to as adequacy of the representation). For instance, the Horn

2 deduction
rule corresponding to the aforementioned typing axiom for typed λ-calculus is
precisely the familiar context-based typing rule for abstractions:

Γ, z :T � Z : T ′

Γ � (λz :T . Z) : T → T ′ [z fresh for Γ ]

By substitution, x from the typing axiom became a fresh z in the deductive
system, the variables t, t′ became arbitrary terms T, T ′, and X became a term Z

1 Single hypothesis, in the sense that each ai(x, y) has to be an atomic formula, as
opposed to being a conjunction of atomic formulae.
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such that the positions in which x occurred in X are the same as the positions in
which z now occurs in Z (because the term X and the positioning of x in X were
arbitrary in the typing axiom, it follows that the term Z and the positioning of
z in Z are also arbitrary in the resulted deduction rule). This transformation is
prescribed uniformly, i.e., calculus-independently, for any Horn

2 theory.
The remainder of this paper is structured as follows. Section 2 introduces clas-

sic TGL (syntax, models, institutional structure, Gentzen system and complete-
ness theorem) and intuitionistic TGL. Section 3 discusses the Horn

2 fragment
and its specialized Gentzen systems, whose completeness “prepares” the logic
for future adequacy results. Section 4 illustrates the TGL adequate by default
specification style for λ-calculi, taking System F as a working example. Section
5 discusses related work and draws conclusions. More details regarding the top-
ics addressed in this paper, including proofs of the stated facts, can be found in
the technical report [23] – the main part of the report has the same content as
this paper, while the appendix of the report contains further details and proofs.

2 Term-Generic First-Order Logic

We introduce a generic notion of first-order term, axiomatized by means of free
variables and substitution, purposely not committing to any concrete syntax for
terms. Then we show our first novel result in this paper, namely a development
of first-order logic that does not depend on the syntax of terms, but only on
the properties of substitution. We first develop the logic in an unsorted form and
without equality, and later sketch equality and order-sorted extensions, as well
as an intuitionistic variant.

Definition 1. Let Var be a countably infinite set of variables. A term syntax
over Var consists of the following data:

(a) A (countably infinite) set Term such that Var ⊆ Term, whose ele-
ments are called terms;

(b) A mapping FV :Term → Pf(Var) (where Pf means “the set of finite
sets of”); the elements of FV(T ) are called free variables, or simply
variables, of T ;

(c) A mapping Subst : Term× TermVar → Term, called substitution.
These are subject to the following requirements (where x ranges over variables,
T, T ′ over terms, and θ, θ′ over maps in TermVar):

(1) Subst(x, θ) = θ(x);
(2) Subst(T,Var ↪→ Term) = T ;
(3) If θ	FV (T )= θ′	FV (T ), then Subst(T, θ) = Subst(T, θ′);2

(4) Subst(Subst(T, θ), θ′) = Subst(T, θ; θ′), where θ; θ′ : Var → Term is
defined by (θ; θ′)(y) = Subst(θ(y), θ′);

(5) FV (x) = {x};
(6) FV (Subst(T, θ)) =

⋃{FV (θ(x)) :x ∈ FV (T )}.
2 Here and later, if f : U → V and U ′ ⊆ U , f	U′ denotes the restriction of f to U ′.
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Note that we assume the notion of term coming together with a notion of substi-
tution which is composable (condition (4) above). In general, for a syntax with
bindings, composability of substitution does not hold for raw terms, but only for
α-equivalence classes – therefore, in the concrete instances of our logic to calculi
with bindings, TGL terms will be α-equivalence classes of what are usually called
(raw) “terms” in these calculi. Conditions (1)-(6) from Definition 1 are natural
(and well-known) properties of substitution holding for virtually all notions of
terms with static binding (modulo α-equivalence).

For distinct variables x1, . . . , xn, we write [T1/x1, . . . , Tn/xn] for the function
Var → Term that maps xi to Ti for i = 1, n and all the other variables to
themselves, and T [T1/x1, . . . , Tn/xn] for Subst(T, [T1/x1, . . . , Tn/xn]).

Definition 2.A term-generic language consists of a term syntax (Term,FV,Subst)
over a set Var and an at most countable ranked set Π = (Πn)n∈IN , of rela-
tion symbols. A TGL model for a language as above is a triple of the form
(A, (AT )T∈Term, (A(n,π))n∈IN,π∈Πn), where:
(a) A is a set, called the carrier set.
(b) For each T ∈ Term, AT is a mapping AVar → A such that the following hold

for all x ∈ Var, T ∈ Term, ρ, ρ′ ∈ AVar, and θ ∈ TermVar:
— (b.i) Ax(ρ) = ρ(x);
— (b.ii) If ρ	FV(T )= ρ′	FV(T ), then AT (ρ) = AT (ρ′);
— (b.iii) ASubst(T, θ)(ρ) = AT (Aθ(ρ)), where Aθ : AVar → AVar is defined by

Aθ(ρ)(y) = Aθ(y)(ρ).
(c) For each n ∈ IN and π ∈ Πn, A(n,π) is an n-ary relation on A.

Thus, unlike in classic FOL models where the interpretation of terms is built
from operations, in TGL models the interpretation of terms is assumed (in the
style of Henkin models). It turns out that condition (b.ii) is redundant (follows
from the other conditions and Definition 1 – see Section F.1 in [23] for a proof)3

– we keep it though as part of the definition of a model for the sake of symmetry
with Definition 1.

In what follows, we let x, xi, y, u, v, etc., range over variables, T, Ti, T
′, etc.,

over terms, θ, θ′, etc., over maps in TermVar , ρ, ρ′, etc., over valuations in AVar ,
and π, π′, etc., over relation symbols. Sometimes we simply write Term for term
syntaxes (Term ,FV ,Subst) and (Term , Π) for term-generic languages.

Formulae are defined as usual, starting from atomic formulae π(T1, . . . , Tn)
and applying connectives ∧,⇒ and quantifier ∀. (Other connectives and quan-
tifiers may of course be also considered, but we omit them since they shall not
be needed for our specifications in this paper.) For each formula ϕ, the set
Aϕ ⊆ AVar , of valuations that make ϕ true in A, is defined recursively on the
structure of formulae as follows: ρ ∈ Aπ(T1,...,Tn) iff (AT1(ρ), . . . , ATn(ρ)) ∈ Aπ ;
ρ ∈ Aϕ⇒ψ iff ρ ∈ Aϕ implies ρ ∈ Aψ ; ρ ∈ Aϕ∧ψ iff ρ ∈ Aϕ and ρ ∈ Aψ; ρ ∈ A∀x.ϕ

iff ρ[x ← a] ∈ Aϕ for all a ∈ A. If ρ ∈ Aϕ we say that A satisfies ϕ under val-
uation ρ and write A |=ρ ϕ. If Aϕ = AVar we say that A satisfies ϕ and write
A |= ϕ. Given a set of formulae Γ , A |= Γ means A |= ϕ for all ϕ ∈ Γ . Above,

3 We are indebted to one of the referees for bringing this to our attention.
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and from now on, we let ϕ, ψ, χ range over formulae and A, B over models (some-
times, when we want to distinguish models from their carrier set A, B, we write
A,B for the models). For formulae, the notions of free variables, α-equivalence,
and substitution are the natural ones, defined similarly to the case of FOL, but
on top of our generic terms rather than FOL terms. For substitution in formu-
lae we adopt notational conventions similar to the ones about substitution in
terms, e.g., ϕ[T/x]. Note that TGL is a logic generic only w.r.t. terms - formulae
are “concrete” first-order formulae built over generic terms, with a “concrete”
(and not generic) notion of α-equivalence, standardly defined using the bind-
ings from quantifiers, which preserves satisfaction and the free variables and is
compatible with substitution and the language constructs. Hereafter we identify
formulae modulo α-equivalence. Let x = (x1, . . . , xn) be a tuple of variables and
J = {y1, . . . , ym} a set of variables. Then Vars(x) denotes the set {x1, . . . , xn},
∀x. ϕ denotes ∀x1 . . .∀xn.ϕ, and ∀J. ϕ denotes ∀y1 . . .∀ym.ϕ (the latter notation
making an (immaterial for our purposes) choice of a total ordering on J). A
sentence is a formula with no free variables. The universal closure of a formula
ϕ is the sentence ∀FV (ϕ). ϕ. (See Section A.1 in [23] for more details.)

The inclusion of an emphasized equality symbol in our logic, interpreted in
all models as equality, yields TGL with equality. Many-sorted and order-sorted
variants of TGL (in the style of [13]) can also be straightforwardly obtained,
by extending Definition 1 to term syntaxes involving multiple sorts (syntactic
categories) and Definition 2 to models having as carriers sort-indexed sets. For
example, in the case of order-sorted TGL, a poset (S, <) of sorts is fixed and
carriers of models are families of sets (As)s∈S such that s < s′ implies As ⊆
As′ for all s, s′ ∈ S. (See Sections A.2 and A.3 in [23] for details.) All the
concepts and results about TGL in this paper, including completeness of various
proof systems for various fragments of the logic, can be easily (but admittedly
tediously) extended to the many-sorted and order-sorted cases.

FOL. As expected, classic FOL is an instance of TGL. Indeed, let (Var , Σ, Π)
be a classic first-order language, where Σ = (Σn)n∈IN and Π = (Πn)n∈IN are
ranked sets of operation and relation symbols. Let Term be the term syntax
consisting of ordinary first-order terms over Σ and Var with FV : Term →
Pf (Var) giving all the variables in each term and Subst : Term × TermVar →
Term the usual substitution on FOL terms. Define a term-generic language as
(Term , Π). A classic FOL model (A, (Aσ)σ∈Σ , (A(n,π))n∈IN,π∈Πn) yields a TGL
model (A, (AT )T∈Term , (A(n,π))n∈IN,π∈Πn) by defining the meaning of terms as
derived operations. Conversely, a TGL model (A, (AT )T∈Term , (A(n,π))n∈IN,π∈Πn)
yields an FOL model by defining Aσ : An → A as Aσ(a1, . . . , an)=Aσ(x1,...,xn)(ρ),
where x1, . . . , xn are distinct variables and ρ is a valuation that maps each xi

to ai. The two model mappings are mutually inverse and preserve satisfaction.
Thus, for this particular choice of terms, TGL yields FOL.

A Formula-Typed Logic (an “Extremely-Typed” λ-Calculus). FOL is a
simple instance of TGL. However, TGL terms may be arbitrarily exotic. Be-
sides terms of λ-calculi (discussed in Section 4), one may also have terms that
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interfere with formulae in non-trivial ways, where, e.g., terms may abstract vari-
ables having formulae as types (thinking of types as sets defined by comprehen-
sion). Let (Var , Σ, Π) be a classic first-order language and:
Term ::= Var | Σ(Term , . . . ,Term) | Term Term | λVar :Fmla .Term
Fmla ::= Π(Term, . . . ,Term) | Fmla ⇒ Fmla | Fmla ∧ Fmla | ∀Var .Fmla,
with the natural restrictions w.r.t. the rank of operations/relations. Free vari-
ables and substitution are as expected, making terms up to α-equivalence a TGL
term syntax. Moreover, although formulae and terms were defined mutually re-
cursively, the former are still nothing but first-order formulae over terms, hence
fall under TGL. Does the interpretation of formulae inside terms match their
first-order interpretation at the top level? The answer is “no, unless axioms
require it” (remember that TGL models are blank, but customizable). Here,
postulating (∀x. (ϕ ⇔ ψ) ∧ (ϕ ⇒ T = T ′)) ⇒ λx :ϕ.T = λx :ψ.T ′ does the job.

The TGL institution. Next we submit TGL to a standard well-behaving test
for a logical system, organizing it as an institution [12]. By doing so, we present
TGL terms and models in a more structural light, and, more importantly, create
a framework for λ-calculi with different flavors to cohabitate with each other
and with classic FOL under different signatures and axioms, but within the same
logic, connected through the railway system of signature morphisms.

Let Var be a fixed set of variables. The signatures are term-generic languages
(Term , Π) over Var . The (Term, Π)- sentences, models and satisfaction relation
were already defined for TGL. Given θ : Var → Term , we write θ for the map
T �→ Subst(T, θ). Moreover, for any model (A, (AT )T∈Term , (A(n,π))n∈IN,π∈Πn)
and map ρ : Var → A, we write ρA for the map T �→ AT (ρ). A model can
be alternatively presented as a tuple A = (A, ·A, (A(n,π))n∈IN,π∈Πn) where the
A(n,π)’s are relations as before and ·A : AV ar → ATerm is such that ρA◦(Var ↪→
Term) = ρ, [ρA(T ) = ρ′

A
(T ) whenever ρ 	FV (T )= ρ′ 	FV (T )], and ρA ◦ θ =

ρA ◦ θ
A
. A model homomorphism between A = (A, ·A, (A(n,π))n∈IN,π∈Πn) and

B = (B, ·B , (B(n,π))n∈IN,π∈Πn) is a map h : A → B that commutes with the

relations in the usual way and has the property that h ◦ ρA = h ◦ ρ
B

for all
ρ ∈ AV ar. (Note the structural similarity between the conditions defining the
three concepts of term syntax, model and model homomorphism, which allows
one to easily see that (Term , · , (Term(n,π))n∈IN,π∈Πn) is a model for any choice
of relations Term(n,π) and that (Term , · , (∅)π∈Π) is freely generated by Var .)

A signature morphism between (Term , Π) and (Term ′, Π ′) is a pair (u, v) with
v = (vn : Πn → Π ′

n)n∈IN and u : Term → Term ′ such that u ◦ (Var ↪→ Term) =
(Var ↪→ Term ′), FV (u(T )) = FV (T ) for all T ∈ Term and u ◦ θ = u ◦ θ

′ ◦ u
(where · ′ is the map Term ′ → Term ′ associated to the term syntax Term ′)
for all θ : Var → Term. (Intuition for the last condition on signature mor-
phism: say we have concrete terms, like the ones of FOL or λ-calculus, θ maps
x to S and all other variables to themselves (thus θ(T ) = T [S/x] for all terms
T ), and u maps each T to the term T [g/f ] obtained by replacing an oper-
ation symbol f with an operation symbol g of the same arity; then one has
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·
Γ � Δ

(Ax)
[Γ ∩ Δ 
= ∅]

Γ � Δ, ϕ Γ, ψ � Δ
Γ, ϕ ⇒ ψ � Δ (Left⇒) Γ, ϕ � Δ, ψ

Γ � Δ, ϕ ⇒ ψ (Right⇒)

Γ, ϕ, ψ � Δ
Γ, ϕ ∧ ψ � Δ

(Left∧) Γ � Δ, ϕ Γ � Δ, ψ
Γ � Δ, ϕ ∧ ψ

(Right∧)

Γ,∀x.ϕ, ϕ[T/x] � Δ
Γ,∀x.ϕ � Δ

(Left∀)
Γ � Δ, ϕ[y/x]
Γ � Δ,∀x.ϕ

(Right∀)
[y fresh]

Fig. 1. Gentzen System G

T [S/x][g/f ] = T [g/f ][S[g/f ]/x], i.e., (u ◦ θ)(T ) = (u ◦ θ
′ ◦ u)(T ), for all terms

T .) To any signature morphism (u, v), we associate:
- A translation map between the sentences of (Term, Π) and (Term ′, Π ′), that
replaces the terms and relation symbols with their images through u and v.
- The following reduct functor between the categories of models of (Term ′, Π ′)
and (Term, Π): On objects, it maps any (Term ′, Π ′)-model A′ = (A′, ·A′

,
(A′

(n,π′))n∈IN,π′∈Π′
n
) to the model A = (A, ·A, (A(n,π))n∈IN,π∈Πn) where A = A′,

A(n,π) = A′
(n,vn(π)) and ·A = ρ �→ ρA′ ◦ u. On morphisms, it maps a function

representing a model homomorphism to the same function regarded as an homo-
morphism between the reduct models. (Details and pictures in [23], Sec. A.4.)

Theorem 1. TGL as organized above forms an institution that extends conser-
vatively the institution of FOL.

TGL Gentzen System and Completeness. The axiomatic properties of
the generic notions of free variable and substitution in TGL provide enough
infrastructure to obtain generic versions of classic FOL results. We are interested
in a completeness theorem here (but other model-theoretic results could be also
generalized). We shall use a generalization of the cut-free system in [10].

We fix a term-generic language (Term , Π). A sequent is a pair written Γ � Δ,
with antecedent Γ and succedent Δ (at most) countable sets of formulae, assumed
to have finite support, in that FV (Γ ) and FV (Δ) are finite, where FV (Γ ) =⋃

ϕ∈Γ FV (ϕ) (and likewise for Δ). (In standard Gentzen systems for FOL, Γ
and Δ are typically assumed finite, which of course implies finite support.) The
sequent Γ � Δ is called tautological, written |= Γ � Δ, if

⋂
ϕ∈Γ Aϕ ⊆

⋃
ψ∈Δ Aψ

for all models A; it is called E-tautological (where E is a set of sentences), written
E |= (Γ � Δ), if A |= E implies

⋂
ϕ∈Γ Aϕ ⊆

⋃
ψ∈Δ Aψ for all models A. If Γ = ∅,

we write E |= Δ instead of E |= (Γ � Δ).
We consider the Gentzen system, say G, given by the rule schemes in Figure 1,

meant to deduce TGL tautological sequents (we write Γ, ϕ instead of Γ ∪ {ϕ}).
Note that these rules make sense in our generic framework, since concrete syntax
of terms is not required; all that is needed here are abstract notions of term and
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substitution. We write 	G Γ � Δ to mean that Γ � Δ is deducible in G. Similar
notation will be used for the other proof systems hereafter.

Theorem 2. G is sound and complete for TGL.

Intuitionistic Term-Generic Logic (ITGL). It has the same syntax as TGL,
and its Gentzen system GI is obtained by modifying G so that the succedents
in sequents are no longer sets of formulae, but single formulae, as follows: (1) Δ
is deleted from all the Right rules and is replaced by a single formula χ in (Ax)
and in all the Left rules except for (Left⇒). (2) The rule (Left⇒) is replaced by
Γ � ϕ Γ, ψ � χ

Γ, ϕ ⇒ ψ � χ
(Section A.5 in [23] gives more details.)

3 The Horn2 Fragment of Term-Generic Logic

We next consider a fragment of TGL, called Horn
2 because it only allows for-

mulae which are universally quantified implications whose conditions are them-
selves universally quantified implications of atomic formulae. A whole plethora
of λ-calculi can be specified by Horn

2 formulae (see Section 4 and [23], Section
C). As shown in the sequel, we can associate uniformly to these specifications
complete intuitionistic proof systems that turn out to coincide with the originals.

In what follows, x denotes variable tuples (x1, . . . , xn), T term tuples
(T1, . . . , Tn), and, for a formula ϕ, ϕ(x) indicates that ϕ has all its free vari-
ables among {x1, . . . , xn}, with ϕ(T ) then denoting ϕ[T1/x1, . . . , Tn/xn]. Since
variables are particular terms, given y = (y1, . . . , yn), we may use the notation
ϕ(y) with two different meanings, with disambiguation coming from the context:
either to indicate that ϕ has its variables among {y1, . . . , yn}, case in which ϕ(y)
is the same as ϕ, or to denote the formula obtained from ϕ(x) by substituting
the variables x with y. (Thus, e.g., in the property (∗) below, ai(x, y) is the same
as ai, where in addition we have indicated that the free variables of ai are among
Vars(x, y) (where (x, y) is the concatenation of the tuples x and y). Later, given
the tuples z and T of appropriate lengths, ai(z, T ) denotes the formula obtained
from ai by substituting the variables of x correspondingly with those of z and
the variables of y correspondingly with the terms of T .) For convenience, we
assume the logic also contains % (meaning “true”) as an atomic formula.

Let Horn
2 be the TGL fragment given by the sentences:

∀y.

(
∀x.

n∧

i=1

(ai(x, y) ⇒ bi(x, y))

)
⇒ c(y) (∗)

where ai, bi, c are atomic formulae and we assume Vars(x)∩Vars(y) = ∅. We call
these Horn

2 sentences (sometimes we shall refer to them as Horn
2 formulae,

not forgetting though that they have no free variables). When one of the above
ai’s is % we write only bi(x, y) instead of ai(x, y) ⇒ bi(x, y), and when all the
ai’s are % we call the sentence (∗) extensional [25]; if, in addition, x has length
0, we obtain a Horn sentence (that is, a universal closure of a Horn formula).
When all bi’s are % or n = 0, the whole sentence (∗) becomes ∀y. c(y). A theory
E is called Horn

2, extensional, or Horn if it consists of such sentences.
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Fix a term-generic language and a Horn
2 theory (i.e., specification) E over

this language. In what follows, we focus on Horn sequents, i.e., sequents Γ � d
with Γ finite set of atomic formulae and d atomic formula, which can be de-
duced from E. Only Horn consequences are usually relevant for λ-calculi, and,
moreover, the other more syntactically complicated consequences can be deduced
from these. We let KE denote the following Gentzen system for Horn sequents:

·
Γ � d

(Axiom)
[d ∈ Γ ]

Γ, ai(z, T ) � bi(z, T ) for i = 1, n

Γ � c(T )
(Inst-e)

In the rule (Inst-e) above (the “instance of e” rule), e is a sentence in E of the
form (∗) (thus ai, bi, c are the atomic formulae that build e), T is a tuple of
terms with the same length as y, and z is a fresh tuple of variables with the
same length as x (where “fresh” (without further attributes) means, as usual,
“fresh for everything in that context”, namely: for Γ , the ai’s, the bi’s, c and T ).
Thus (Inst-e) is a rule (more precisely, a rule-scheme) parameterized not only by
e, but also by z and T as above (and by Γ , too). (More details in [23], Sec. B.)

A first result is that KE deduces all intuitionistic Horn consequences of E:

Theorem 3. 	GI (E ∪ Γ ) � d iff 	KE Γ � d for all Horn sequents Γ � d.

Now consider the following family of rules (Drop) =
(Drop-(e, a))e,a, parameterized by formulae e ∈ E
of the form (∗) and by atomic formulae a such
that a is one of the ai’s (for some i ∈ {1, . . . , n}):

Γ, a(z, T ) � d
Γ � d

(Drop-(e, a))

(T is a tuple of terms of the same length as y and z a tuple of variables of the
same length as x fresh for d (where y and x are the ones referred in (∗)).)

From the point of view of forward proofs, (Drop) effectively drops a(z, T ).
More interesting than the actual usage of (Drop) is its admissibility in a system.
In a specification of a type system for a λ-calculus, a(z, T ) will typically have the
form z :T , and closure of the system under a(z, T ) will be a condensing lemma
[3]: the assumption z :T is useless provided z is not in the succedent.

Next are our main results of this section, exploring closure under (Drop). The
first gives a sufficient criterion ensuring completeness of KE w.r.t. TGL models.
The second gives a stronger fully syntactic criterion.

Theorem 4. Assume that:
-(i) If ai is not %, then Vars(x)∩FV(ai) �= ∅, for all formulae e ∈ E of the form
(∗) and all i ∈ 1, n.
-(ii) (Drop) is admissible in KE.

Then 	KE Γ � d iff E |= (Γ � d) for all Horn sequents Γ � d.

Theorem 5. Assume that all e in E of the form (∗) satisfy the following for all
i ∈ 1, n:
-(i) If ai is not %, then Vars(x) ∩ FV(ai) �= ∅.
-(ii) Vars(y) ∩ FV(bi) ⊆ FV(c).

Then (Drop) is admissible in KE, hence the conclusion of Theorem 4 holds.
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Definition 3. We call a Horn
2 theory E:

- amenable, if it satisfies the hypotheses of Theorem 4;
- syntax-amenable, if it satisfies hypothesis (i) of Theorem 4 (same as hypothesis
(i) of Theorem 5);
- strongly syntax-amenable, if it satisfies the hypotheses of Theorem 5.
(Thus strong syntax-amenability implies amenability.)

If E is a Horn theory, Theorems 4, 5 yield the completeness result for a well-
known Hilbert system of Horn logic. More generally, amenability, hence com-
pleteness, holds trivially for extensional theories, since they have no (Drop) rules.

Thus classic TGL has, with respect to amenable theories and Horn conse-
quences, the same deductive power as intuitionistic TGL. This fact will prove
useful for adequacy results and completeness of the TGL models for various cal-
culi. Because these calculi are traditionally specified following an intuitionistic
pattern, an amenable Horn

2 specification E of a calculus will recover, in the
system KE , the represented calculus itself – we discuss this phenomenon next.

4 Specifying Calculi in Term-Generic Logic

This section illustrates the TGL λ-calculi specification style. Our running exam-
ple is the typing system and reduction of System F, an impredicative polymor-
phic typed λ-calculus introduced independently in [11] and [24]. (Many other
examples can be found in [23], Section C.) Its syntax modulo α-equivalence
clearly forms a two-sorted TGL term syntax. The sorts are type and data, and
we write TVar for Var type (ranged over by t, t′) and DVar for Vardata (ranged
over by x, y), as well as TTerm for Term type (ranged over by T, T ′) and DTerm
for Termdata (ranged over by X, Y ). Here is the grammar for (the raw terms out
of which, by factoring to standard α-equivalence, one obtains) the terms:

T ::= t | T → T ′ | Π t. T
X ::= x | λx : T . X | X Y | λ t. X | X T

A typing context Γ is a finite set {x1 :T1, . . . , xn :Tn} (written x1 :T1, . . . , xn :Tn

for brevity), where the xi’s are data variables, the Ti’s are type terms, and no
data variable appears twice. The typing system for System F, denoted TSF, de-
riving sequents Γ � X : T , is the following:

·
Γ � x :T

(SF-InVar)
[(x :T ) ∈ Γ ]

Γ, x :T � X : T ′

Γ � (λx :T.X) : T → T ′
(SF-Abs)
[x fresh for Γ ]

Γ � X : T → T ′ Γ � Y : T
Γ � X Y : T ′ (SF-App)

Γ � X : T

Γ � (λt.X) : Πt.T

(SF-T-Abs)
[t fresh for Γ ]

Γ � X : Πt.T
Γ � X T ′ : T [T ′/t]

(SF-T-App)

We specify TSF as a Horn
2 theory by identifying the implicit universal quantifi-

cations and implications involved in the original system. For example, we read
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(SF-Abs) as: if one can type X to T ′ uniformly on x assuming x has type T ,
i.e., for all x of type T , then λx :T . X receives type T → T ′. But this is Horn

2!
(T and T ′ above are not involved in any bindings relevant here, hence we can
use TGL variables instead.) Below is the whole theory, T SF , in a term-generic
language over the indicated term syntax and having the infixed relation symbol
“:” with arity data × type. (The colons denoting this relation, although related
with, should not be confounded with the colons used as part of the term syntax
– our poly-semantic usage of “:” mirrors the usage in the original system TSF.)

(∀x. x : t ⇒ X : t′)
⇒ (λx :t.X) : t → t′

(Abs)

x : t → t′ ∧ y : t ⇒ (x y) : t′ (App)

(∀t. X : T )
⇒ (λt.X) : (Πt. T ) (T-Abs)

x : (Πt. T ) ⇒ (x t) : T (T-App)

(Abs), (T-Abs) and (T-App) are axiom-schemes,parameterizedby arbitrary terms
X, T . In (Abs), a presumptive occurrence of x in the leftmost X is in the scope of
the universal quantifier, and in the rightmost X in the scope of the λ-abstraction;
similarly for t versus X and t versus T in (T-Abs). This migration of the variables
x and t between scopes may look surprising at first – note however that the same
situation appears in the corresponding rules ((SF-Abs) and (SF-T-Abs)) from the
familiar system TSF. Thus, in (SF-Abs), any occurrence of x in the term X from
the succedent of the conclusion sequent Γ � (λx :T . X) : T → T ′ is in the scope of
the λ-abstraction, while the same occurrence of x in X when part of the antecedent
of the hypothesis sequent Γ, x : T � X : T ′ is not in the scope of any binder (more
precisely, is in the scope of the implicit outer binder of the sequent).

Both in the original system and in our Horn
2 specification, the assumption

that T, X , etc. are terms modulo α-equivalence is consistent with their usage in
combination with binding constructs, since, for example, the syntactic operator
(λ : . ) : DVar × TTerm × DTerm → DTerm is well defined on α-equivalence
classes. Note that a concrete Horn

2 specification cannot be stated solely in
terms of the logic’s constructs (as is the case of representations in a fixed logic,
like HOL) simply because TGL does not specify the term syntax, but assumes
it. Consequently, our examples of specifications employ, at the meta-level, con-
structs like the above (λ : . ), not “purely TGL”. (This paper does not discuss
how to define and represent term syntaxes conveniently, but how to represent
the structure of a calculus on top of a given term syntax – see also Section 5.)

One should think of the above Horn
2 axioms semantically, as referring to

items called data and types that inhabit TGL models – hence our terminology,
which distinguishes between data terms and variables on the one hand and type
terms and variables on the other (compare this with the more standard terminol-
ogy distinguishing between terms and types from purely syntactic presentations
of λ-calculi). As usual, focussing on the semantics allows one to state the desired
properties without worrying about syntactic details such as typing contexts and
side-conditions; all such lower-level details can nevertheless become available
when one “descends” into the deductive system of TGL.

What is the formal relationship between the original typing system TSF and
the Horn

2 theory T SF? TSF is precisely KT SF from Section 3, the Gentzen
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system associated to a Horn
2 theory in a uniform way. (Namely, referring to the

notations of Section 3: (SF-InVar) is (Axiom), (SF-Abs) is (Inst-Abs), (SF-T-
Abs) is (Inst-T-Abs), (SF-App) is (Inst-App), and (SF-T-App) is (Inst-T-App))
Therefore, not only that T SF specifies TSF, but also TSF implements T SF
as its specialized deductive system. Consequently, the following adequacy result
w.r.t. intuitionistic TGL is built in the representation (via Theorem 3):

Proposition 1. Let x1, . . . , xn be distinct data variables, X data term and
T, T1, . . . , Tn type terms. Then the following are equivalent:
(a) 	TSF x1 :T1, . . . , xn :Tn � X : T .
(b) 	KT SF x1 :T1, . . . , xn :Tn � X : T .
(c) 	GI T SF , x1 : T1, . . . , xn : Tn � X : T
(where T SF , x1 : T1, . . . , xn : Tn is a notation for T SF∪{x1 : T1, . . . , xn : Tn}).
In order to obtain adequacy w.r.t. classic TGL as well, we further need to notice:

Lemma 1. T SF satisfies (a many-sorted version of) strong syntax-amenability.

and then invoke Theorem 5, obtaining:

Proposition 2. Let x1, . . . , xn be distinct data variables, X data term and
T, T1, . . . , Tn type terms. Then the following are equivalent:
(a) 	TSF x1 :T1, . . . , xn :Tn � X : T .
(b) T SF |= (x1 :T1, . . . , xn :Tn � X : T ).

Next, we consider the following standard Hilbert system for reduction in System
F [11,24] (obtained from the one for the untyped λ-calculus [4] by ignoring the
type annotations), denoted RSF:

·
(λx :T. Y )X 
 Y [X/x] (SF-β)

·
(λt. Y )T 
 Y [T/t] (SF-T-β)

X 
 X ′

λx :T.X 
 λx :T.X ′ (SF-ξ)

X 
 X ′

λt.X 
 λt. X ′ (SF-T-ξ)

X 
 X ′

X Y 
 X ′ Y
(SF-AppL)

Y 
 Y ′

X Y 
 X Y ′ (SF-AppR)

X 
 X ′

X T 
 X ′ T
(SF-T-App)

Our Horn
2 specification, denoted RSF , uses relation 
 of arity data × data.

(λx : t. Y )x 
 Y (β)
(λt. Y )t 
 Y (T-β)

(∀x. X 
 X ′) ⇒ λx : t.X 
 λx : t.X ′ (ξ)
(∀t. X 
 X ′) ⇒ λt. X 
 λt.X ′ (T-ξ)

x 
 x′ ⇒ x y 
 x′ y (AppL)
y 
 y′ ⇒ x y 
 x y′ (AppR)
x 
 x′ ⇒ x t 
 x′ t (T-App)

Particularly interesting are our axioms for β-reduction. In (β), we employ the
same variable x to indicate both the formal parameter of the functional expres-
sion λx : t. Y and its actual parameter (the occurrence of x on the right of the
application from the left side of 
). Indeed, in the latter case, as well as in any
presumptive occurrences in the rightmost Y , x is exposed to the environment,
hence denotes an (arbitrary) actual value in a model.
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Again, KRSF is the same as RSF (modulo a standard identification of Hilbert
systems with simple Gentzen systems where antecedents remain unchanged).
Moreover, RSF is an extensional theory, hence trivially amenable, hence both
intuitionistically and classically adequate:

Proposition 3. Let X and Y be data terms. Then the following are equivalent:
(a) 	RSF X 
 Y .
(b) 	GI RSF � X 
 Y .
(c) RSF |= X 
 Y .

One can readily see that, since the relation symbols of ST F and RSF are
distinct, putting these theories together preserves adequacy – in other words,
Propositions 1 and 2 remain true after replacing SFT with SFT ∪ RSF and
Proposition 3 remains true after replacing RSF with SFT ∪ RSF . In the
union language, we can express relevant properties such as type preservation:
∀x, y, t. x : t ∧ x 
 y ⇒ y : t. The proof of such properties requires reasoning
about the calculus, hence transcends the realm of adequate representations. To
handle them, TGL needs to be extended with inductive proof schemes, such as:

ϕ(x) ∧ ϕ(y) ⇒ ϕ(x y) ((∀x. ϕ(X)) ⇒ ϕ(λx :t. X))X∈DTerm

∀x. ϕ(x) (Inductdata)

The problem of meta-reasoning in a framework where object-level calculi are rep-
resented without explicitly encoding free variables and substitution (currently
still open in frameworks such as HOAS) is not addressed in this paper, but is
left as important future work.

Intuitionistic TGL adequacy (Proposition 1) holds immediately (for the same
reason as for System F) for all calculi specified in [23], Section C. Classic TGL
adequacy, on the other hand, while trivial for System F (in the context of our a
priori proof theory), is not so in other calculi, where strong syntax-amenability
does not hold, but only syntax amenability does, and closure under (Drop), while
intuitive, is not obvious to prove. Fortunately however, for most of these calculi
this property coincides with a known result called the condensing lemma (see
[3]): in a typing context Γ � U : V , an assumption x : T from Γ with x fresh
for U and V may be dropped without losing provability. Note that, via the
propositions-as-types correspondence, representing adequately type systems in
TGL also implies representing adequately proof systems for structural logics.

Sometimes a calculus does not come with a reduction relation, but with an
equational theory. (Notably, a standard formulation of untyped λ-calculus [4] is
equational.) For these situations, a version of TGL with equality seems a more
elegant choice, but adequacy proofs along our lines seem to require more effort,
since the TGL equality axioms raise problems regarding amenability (not to
mention that type preservation needs to be proved beforehand for the calculus).
Alternatively, one may provide semantic proofs for adequacy, taking advantage
of the equivalence between the TGL models and some ad hoc models for which
the calculus is known to be complete (see Section E in [23] for this approach).



304 A. Popescu and G. Roşu

5 Concluding Remarks

Summing up the contribution of this paper:
(1) We showed that the development of first-order logic is largely orthogonal to
the particular syntax of terms by defining a logic, TGL, that considers terms as
“black-boxes” exporting substitution and free variables and requires models to
represent terms consistently. TGL forms an institution, hence allows in principle
for well-structured logical specifications.
(2) TGL provides a convenient notation and intuition for defining λ-calculi, that
encourages a semantic specification style. We developed some proof theory to
support this specification style. Intuitionistic TGL allows immediately adequate
specifications, while for classic TGL adequacy, if provable, endows the specified
calculus with a default complete semantics.

The idea of developing first-order logic on top of an abstract term syntax, as
well as our proof-theoretic results that prepare the logic in advance for adequate
representations of λ-calculi, seem new.4 We separate the discussion of related
work into two (non-disjoint) topics.

One concerns semantics. The semantics that TGL offers to the specified calculi
for free falls into the category of loose, or logical semantics. Examples of loose
semantics for λ-calculi include: (so called) “syntactic” models for untyped λ-
calculus, Henkin models for simply-typed λ-calculus, Kripke-style models for re-
cursive types, and Girard’s qualitative domains and Bruce-Meyer-Mitchell mod-
els for System F, not to mention all their categorical variants. The monographs
[4,14,20] contain extensive presentations of these and many other loose seman-
tics for various calculi. For a particular calculus defined as a TGL theory, the
attached TGL semantics has all the advantages, but, naturally, also all the draw-
backs, of loose semantics. It was not the concern of this paper to advocate for
a loose or for a fixed-model semantics, especially because we believe that there
is no absolute answer. What we consider to be a particularly appealing aspect
of TGL semantics though is its uniform, calculus-independent nature. (We argue
in [23] (Section E), with untyped λ-calculus and System F as witnesses, that
the “general-purpose” TGL semantics of a calculus tends to be equivalent to
the set-theoretic “domain-specific” one whose completeness theorem is typically
worked out separately with substantial mathematical effort in the literature.)

The other topic concerns existing specification frameworks in the literature:

- Purely first-order encodings, such as combinatory logic [4], de Bruijn-style
representations [6], and the calculus with explicit substitution [1]. Part of the
motivation of TGL was to avoid the degree of awkwardness and auxiliary proof
or execution overhead of such encodings.

- Higher-order abstract syntax (HOAS) [15,17,21]. This approach encodes (in
a binding-preserving fashion) object-level terms into terms of a fixed meta logic
(usually HOL or an other type theory) – consequently, the interpretation of the
object syntax into presumptive models of the meta logic would be indirect, fil-
tered through the encoding. To the contrary, TGL is a parameterized logic, and
4 But see below the related work on HOAS and categorical models of syntax.
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gets instantiated to various calculi by importing the original term syntax as is
and relating models to this syntax directly through valuations. Moreover, usu-
ally model-theoretic considerations are not the concern of HOAS, which aims at
proof-theoretic adequacy alone, a property that so far seemed to require an intu-
itionistic meta logic; here we also developed for TGL a technique for establishing
adequacy within a classic logic.

Yet, TGL representations have important similarities with HOAS encodings
in variants of HOL (in the style of, e.g., [17]). For instance, our axiom-scheme
(Abs) from the Horn

2 theory T SF may be in such an encoding ∀X. (∀x. x :
t ⇒ X(x) : t′) ⇒ Lam(X) : (t → t′), where X : data −→ data is a second-
order variable and Lam : (data −→ data) −→ data is a third-order constant.
A HOAS encoding has typically two parts, each requiring its own adequacy
result: one deals with representing the syntax of terms, and one with representing
the deductive mechanism. Because TGL does not provide a representation of
syntax (but assumes one already), some of our axioms, namely those changing
variable scopes, such as (Abs), are (still) axiom-schemes, just like the rules of
the original calculus are rule-schemes; to the contrary, the above HOAS axiom
would be a single statement. On the other hand, for the same reason (of not
dealing with term syntax representation), we were able to discuss the second
part, of representing the deductive mechanism, generically, for any term syntax,
and have created a theoretical framework where adequacy for the deductive
mechanisms requires minimal proof effort. ”Pasting” various solutions offered by
HOAS to representing terms into the TGL framework for representing deduction
could allow a HOAS setting to benefit from our theorems in Section 3, as well as
allow a HOAS representation of an effective-syntax fragment of TGL to bypass
the need of axiom-schemes in specifications.

Categorical models of syntax in the style of [9,16] also fall within HOAS. Typ-
ing contexts are explicitly modeled as possible worlds, types becoming
presheaves. The presheaf structure of λ-terms from [16] and the substitution
algebras from [9] are roughly equivalent to our term syntaxes (whose presheaf
structure would come, just like in the concrete cases, from classifying terms by
their sets of free variables). The model theory of the these categorical settings fol-
lows a different approach than ours though – they require the models to support
substitution within themselves and between each other (hence to be inhabited
by syntactic items such as (abstract) terms and variables), while we require the
models to allow valuations from a fixed term model.

- Nominal logic (NL) [22]. It stands somewhere in between purely first-order
encodings and HOAS, as it captures object-level bindings, but not substitution,
by corresponding meta-level mechanisms. The NL terms with bindings form term
syntaxes in our sense. Like in the categorical approaches mentioned above and
unlike TGL models, NL models are inhabited by abstract syntactic objects (hav-
ing, e.g., free names that can be swapped/permuted) rather than constituting
“pure” FOL-like semantics.

- Explicitly closed families of functionals (ECFFs) [2] (a.k.a. binding algebras
[27]). In the tradition of HOL a la Church, all bindings are reduced there to
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functional abstraction. Their terms form term syntaxes in our sense, and ECFFs
are particular cases of TGL models.

- Binding logic (BL) [8]. It is a first-order logic defined on top of a general
notion of syntax with binding, allowing bindings in both operations and atomic
predicates. BL models reflect the bindings functionally (similarly to [2], [27]).
While BL terms form TGL term syntaxes, it appears that the class of BL models
is strictly embedded in that of TGL models for TGL terms syntax instantiated
to a BL language of terms.

- Hereditary Harrop Formulae (HHF). For the FOL and HOL instances of
TGL, Horn

2 formulae are particular cases of such formulae, advocated in [19]
for logic programming. Our proof-theoretic results from Section 3 seem Horn

2-
specific, a generalization to HHF not being apparent.

- In the general realm of logical and algebraic specifications, a salient frame-
work is that of institutions [12,7]. Like TGL, the notion of institution does not
represent logical systems by encoding them, but by becoming instantiated to
them. Since we showed that TGL is itself an institution,5 our work in this paper
offers to the λ-calculi adequately specifiable in TGL institutional citizenship,
hence the algebraic arsenal of tools and techniques from institution theory [26].
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Abstract. Declarative debugging is a semi-automatic technique that
starts from an incorrect computation and locates a program fragment
responsible for the error by building a tree representing this computa-
tion and guiding the user through it to find the wrong statement. This
paper presents the fundamentals for the declarative debugging of rewrit-
ing logic specifications, realized in the Maude language, where a wrong
computation can be a reduction, a type inference, or a rewrite. We define
appropriate debugging trees obtained as the result of collapsing in proof
trees all those nodes whose correctness does not need any justification.
Since these trees are obtained from a suitable semantic calculus, the cor-
rectness and completeness of the debugging technique can be formally
proved. We illustrate how to use the debugger by means of an example
and succinctly describe its implementation in Maude itself thanks to its
reflective and metalanguage features.

1 Introduction

In this paper we present a declarative debugger for Maude specifications, includ-
ing equational functional specifications and concurrent systems specifications.
Maude [10] is a high-level language and high-performance system supporting
both equational and rewriting logic computation for a wide range of applications.
Maude modules correspond to specifications in rewriting logic [14], a simple and
expressive logic which allows the representation of many models of concurrent
and distributed systems. This logic is an extension of equational logic; in par-
ticular, Maude functional modules correspond to specifications in membership
equational logic [1, 15], which, in addition to equations, allows the statement of
membership axioms characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search
trees) whose data are not only defined by means of constructors, but also by the
satisfaction of additional properties. Rewriting logic extends membership equa-
tional logic by adding rewrite rules, that represent transitions in a concurrent
system. Maude system modules are used to define specifications in this logic.
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The Maude system supports several approaches for debugging Maude pro-
grams: tracing, term coloring, and using an internal debugger [10, Chap. 22].
The tracing facilities allow us to follow the execution of a specification, that is,
the sequence of applications of statements that take place. The same ideas have
been applied to the functional paradigm by the tracer Hat [9], where a graph
constructed by graph rewriting is proposed as suitable trace structure. Term col-
oring consists in printing with different colors the operators used to build a term
that does not fully reduce. The Maude debugger allows to define break points in
the execution by selecting some operators or statements. When a break point is
found the debugger is entered. There, we can see the current term and execute
the next rewrite with tracing turned on. The Maude debugger has as a disad-
vantage that, since it is based on the trace, it shows to the user every small step
obtained by using a single statement. Thus the user can lose the general view
of the proof of the incorrect inference that produced the wrong result. That is,
when the user detects an unexpected statement application it is difficult to know
where the incorrect inference started. Here we present a different approach based
on declarative debugging that solves this problem for Maude specifications.

Declarative debugging, also known as algorithmic debugging, was first intro-
duced by E. Y. Shapiro [23]. It has been widely employed in the logic [12, 16, 25],
functional [18, 19, 20], multi-paradigm [3, 7, 13], and object-oriented [4] program-
ming languages. Declarative debugging starts from a computation considered in-
correct by the user (error symptom) and locates a program fragment responsible
for the error. The declarative debugging scheme [17] uses a debugging tree as
logical representation of the computation. Each node in the tree represents the
result of a computation step, which must follow from the results of its child nodes
by some logical inference. Diagnosis proceeds by traversing the debugging tree,
asking questions to an external oracle (generally the user) until a so-called buggy
node is found. A buggy node is a node containing an erroneous result, but whose
children have all correct results. Hence, a buggy node has produced an erroneous
output from correct inputs and corresponds to an erroneous fragment of code,
which is pointed out as an error. From an explanatory point of view, declarative
debugging can be described as consisting of two stages, namely the debugging
tree generation and its navigation following some suitable strategy [24].

The application of declarative debugging to Maude functional modules was
already studied in our previous papers [5, 6]. The executability requirements of
Maude functional modules mean that they are assumed to be confluent, termi-
nating, and sort-decreasing1 [10]. These requirements are assumed in the form of
the questions appearing in the debugging tree. In this paper, we considerably ex-
tend that work by also considering system modules. Now, since the specifications
described in this kind of modules can be non-terminating and non-confluent,
their handling must be quite different.

The debugging process starts with an incorrect computation from the initial
term to an unexpected one. The debugger then builds an appropriate debugging

1 All these requirements must be understood modulo some axioms such as associativity
and commutativity that are associated to some binary operations.
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tree which is an abbreviation of the corresponding proof tree obtained by apply-
ing the inference rules of membership equational logic and rewriting logic. The
abbreviation consists in collapsing those nodes whose correctness does not need
any justification, such as those related with transitivity or congruence. Since the
questions are located in the debugging tree, the answers allow the debugger to
discard a subset of the questions, leading and shortening the debugging process.
In the case of functional modules, the questions have the form “Is it correct that
T fully reduces to T ′?”, which in general are easier to answer. However, in the
absence of confluence and termination, these questions do not make sense; thus,
in the case of system modules, we have decided to develop two different trees
whose nodes produce questions of the form “Is it correct that T is rewritten to
T ′?” where the difference consists in the number of steps involved in the rewrite.
While one of the trees refers only to one-step rewrites, which are often easier
to answer, the other one can also refer to many-steps rewrites that, although
may be harder to answer, in general discard a bigger subset of nodes. The user,
depending on the debugged specification or his “ability” to answer questions
involving several rewrite steps, can choose between these two kinds of trees.

Moreover, exploiting the fact that rewriting logic is reflective [11], a key distin-
guishing feature of Maude is its systematic and efficient use of reflection through
its predefined META-LEVEL module [10, Chap. 14], a feature that makes Maude
remarkably extensible and powerful, and that allows many advanced metapro-
gramming and metalanguage applications. This powerful feature allows access
to metalevel entities such as specifications or computations as usual data. There-
fore, we are able to generate and navigate the debugging tree of a Maude compu-
tation using operations in Maude itself. In addition, the Maude system provides
another module, LOOP-MODE [10, Chap. 17], which can be used to specify in-
put/output interactions with the user. However, instead of using this module
directly, we extend Full Maude [10, Chap. 18], that includes features for parsing,
evaluating, and pretty-printing terms, improving the input/output interaction.
Moreover, Full Maude allows the specification of concurrent object-oriented sys-
tems, that can also be debugged. Thus, our declarative debugger, including its
user interactions, is implemented in Maude itself.

The rest of the paper is structured as follows. Sect. 2 provides a summary of
the main concepts of both membership equational logic and rewriting logic, and
how their specifications are realized in Maude functional and system modules,
respectively. Sect. 3 describes the theoretical foundations of the debugging trees
for inferences in both logics. Sect. 4 shows how to use the debugger by means of
an example, while Sect. 5 comments some aspects of the Maude implementation.
Finally, Sect. 6 concludes and mentions some future work.

Detailed proofs of the results, additional examples, and much more informa-
tion about the implementation can be found in the technical report [21], which,
together with the Maude source files for the debugger, is available from the
webpage http://maude.sip.ucm.es/debugging

http://maude.sip.ucm.es/debugging
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2 Rewriting Logic and Maude

As mentioned in the introduction, Maude modules are executable rewriting logic
specifications. Rewriting logic [14] is a logic of change very suitable for the speci-
fication of concurrent systems that is parameterized by an underlying equational
logic, for which Maude uses membership equational logic (MEL) [1, 15], which, in
addition to equations, allows the statement of membership axioms characterizing
the elements of a sort.

2.1 Membership Equational Logic

A signature in MEL is a triple (K, Σ, S) (just Σ in the following), with K
a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and
S = {Sk}k∈K a pairwise disjoint K-kinded family of sets of sorts. The kind of a
sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to denote respectively the
set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in
X , where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively,
terms with a kind but without a sort represent undefined or error elements.

The atomic formulas of MEL are either equations t = t′, where t and t′ are
Σ-terms of the same kind, or membership axioms of the form t : s, where the
term t has kind k and s ∈ Sk. Sentences are universally-quantified Horn clauses
of the form (∀X)A0 ⇐ A1 ∧ . . . ∧ An, where each Ai is either an equation or
a membership axiom, and X is a set of K-kinded variables containing all the
variables in the Ai. A specification is a pair (Σ, E), where E is a set of sentences
in MEL over the signature Σ.

Models of MEL specifications are Σ-algebras A consisting of a set Ak for
each kind k ∈ K, a function Af : Ak1 × · · · × Akn −→ Ak for each operator
f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A
of a term t in an algebra A is inductively defined as usual. Then, an algebra
A satisfies an equation t = t′ (or the equation holds in the algebra), denoted
A |= t = t′, when both terms have the same meaning: [[t]]A = [[t′]]A. In the same
way, satisfaction of a membership is defined as: A |= t : s when [[t]]A ∈ As.

A MEL specification (Σ, E) has an initial model TΣ/E whose elements are
E-equivalence classes of terms [t]. We refer to [1, 15] for a detailed presentation
of (Σ, E)-algebras, sound and complete deduction rules (that we adapt to our
purposes in Fig. 1 in Sect. 3.1), as well as the construction of initial and free al-
gebras. Since the MEL specifications that we consider are assumed to satisfy the
executability requirements of confluence, termination, and sort-decreasingness,
their equations t = t′ can be oriented from left to right, t→ t′. Such a statement
holds in an algebra, denoted A |= t → t′, exactly when A |= t = t′, i.e., when
[[t]]A = [[t′]]A. Moreover, under those assumptions an equational condition u = v
in a conditional equation can be checked by finding a common term t such that
u → t and v → t. The notation we will use in the inference rules studied in
Sect. 3 for this situation is u ↓ v.
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2.2 Rewriting Logic

Rewriting logic extends equational logic by introducing the notion of rewrites
corresponding to transitions between states; that is, while equations are inter-
preted as equalities and therefore they are symmetric, rewrites denote changes
which can be irreversible. A rewriting logic specification, or rewrite theory, has
the form R = (Σ, E, R), where (Σ, E) is an equational specification and R is a
set of rules as described below. From this definition, one can see that rewriting
logic is built on top of equational logic, so that rewriting logic is parameter-
ized with respect to the version of the underlying equational logic; in our case,
Maude uses MEL, as described in the previous section. A rule in R has the
general conditional form2

(∀X) t⇒ t′ ⇐
n∧

i=1

ui = u′
i ∧

m∧

j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′
k

where the head is a rewrite and the conditions can be equations, memberships,
and rewrites; both sides of a rewrite must have the same kind. From these rewrite
rules, one can deduce rewrites of the form t⇒ t′ by means of general deduction
rules introduced in [2, 14], that we have adapted to our purposes.

Models of rewrite theories are called R-systems in [14]. Such systems are
defined as categories that possess a (Σ, E)-algebra structure, together with a
natural transformation for each rule in the set R. More intuitively, the idea
is that we have a (Σ, E)-algebra, as described in Sect. 2.1, with transitions
between the elements in each set Ak; moreover, these transitions must satisfy
several additional requirements, including that there are identity transitions for
each element, that transitions can be sequentially composed, that the operations
in the signature Σ are also appropriately defined for the transitions, and that
we have enough transitions corresponding to the rules in R. Then, if we keep in
this context the notation A to denote an R-system, a rewrite t ⇒ t′ is satisfied
by A, denoted A |= t ⇒ t′, when there is a transition [[t]]A ⇒A [[t′]]A in the
system between the corresponding meanings of both sides of the rewrite, where
⇒A will be our notation for such transitions. The rewriting logic deduction rules
introduced in [14] are sound and complete with respect to this notion of model.
Moreover, they can be used to build initial and free models; see [14] for details.

2.3 Maude Modules

Maude functional modules [10, Chap. 4], introduced with syntax fmod ...
endfm, are executable membership equational specifications and their seman-
tics is given by the corresponding initial membership algebra in the class of
algebras satisfying the specification. In a functional module we can declare sorts

2 Note that we use the notation ⇒ for rewrites (as in Maude) and → for oriented
equations and reductions using such equations. Other papers on rewriting logic use
instead the notation → for rewrites.
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(by means of keyword sort(s)); subsort relations between sorts (subsort); op-
erators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or
commutative (comm), for example; memberships (mb) asserting that a term has
a sort; and equations (eq) identifying terms. Both memberships and equations
can be conditional (cmb and ceq).

Maude system modules [10, Chap. 6], introduced with syntax mod ... endm,
are executable rewrite theories and their semantics is given by the initial system
in the class of systems corresponding to the rewrite theory. A system module can
contain all the declarations of a functional module and, in addition, declarations
for rules (rl) and conditional rules (crl).

The executability requirements for equations and memberships are confluence,
termination, and sort-decreasingness. With respect to rules, the satisfaction of
all the conditions in a conditional rewrite rule is attempted sequentially from
left to right, solving rewrite conditions by means of search; for this reason, we
can have new variables in such conditions but they must become instantiated
along this process of solving from left to right (see [10] for details). Furthermore,
the strategy followed by Maude in rewriting with rules is to compute the normal
form of a term with respect to the equations before applying a rule. This strategy
is guaranteed not to miss any rewrites when the rules are coherent with respect
to the equations [10, 26].

The following section describes an example of a Maude system module with
both equations and rules.

2.4 An Example: Knight’s Tour Problem

A knight’s tour is a journey around the chessboard in such a way that the
knight lands on each square exactly once. The legal move for a knight is two
spaces in one direction, then one in a perpendicular direction. We want to solve
the problem for a 3×4 chessboard with the knight initially located in one corner.

We represent positions in the chessboard as pairs of integers and journeys as
lists of positions.

(mod KNIGHT is

protecting INT .

sorts Position Movement Journey Problem .

subsort Position < Movement .

subsorts Position < Journey < Problem .

op [_,_] : Int Int -> Position .

op nil : -> Journey .

op __ : Journey Journey -> Journey [assoc id: nil] .

vars N X Y : Int . vars P Q : Position . var J : Journey .

The term move P represents a position reachable from position P. Since the
reachable positions are not unique, this operation is defined by means of rewrite
rules, instead of equations. The reachable positions can be outside the chess-
board, so we define the operation legal, that checks if a position is inside the
3× 4 chessboard.
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op move_ : Position -> Movement .

rl [mv1] : move [X, Y] => [X + 2, Y + 1] .

...

rl [mv8] : move [X, Y] => [X - 1, Y - 2] .

op legal : Position -> Bool .

eq [leg] : legal([X, Y]) = X >= 1 and Y >= 1 and X <= 3 and Y <= 4 .

The function contains(J, P) checks if position P occurs in the journey J.

op contains : Journey Position -> Bool .

eq [con1] : contains(P J, P) = true .

eq [con2] : contains(J, P) = false [otherwise] .

knight(N) represents a journey where the knight has performed N hops. When
no hops are taken, the knight remains at the first position [1, 1]. When N > 0
the problem is recursively solved (using backtracking in an implicit way) as
follows: first a legal journey of N - 1 steps is found, then a new hop from the
last position of that journey is performed, and finally it is checked that this last
hop is legal and compatible with the other ones.

op knight : Nat -> Problem .

rl [k1] : knight(0) => [1, 1] .

crl [k2] : knight(N) => J P Q

if N > 0

/\ knight(N - 1) => J P

/\ move P => Q

/\ legal(Q)

/\ not(contains(J P, Q)) .

endm)

The solution to the 3 × 4 chessboard can be found by looking for a journey
with 11 hops, but we obtain the following unexpected, wrong result, where the
journey contains repeated positions. We will show how to debug it in Sect. 4.

Maude> (rew knight(11) .)

result Journey :

[1,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3]

3 Debugging Trees for Maude Specifications

Now we will describe debugging trees for both MEL specifications and rewriting
logic specifications. Since a MEL specification coincides with a rewrite theory
with an empty set of rules, our treatment will simply be at the level of rewrite
theories. Our proof and debugging trees will include statements for reductions
t → t′, memberships t : s, and rewrites t ⇒ t′, and in the following sections we
will describe how to build the debugging trees from the proof trees taking into
account each kind of statement.
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3.1 Proof Trees

Before defining the debugging trees employed in our declarative debugging frame-
work we introduce the semantic rules defining the semantics of a rewrite theory
R. The inference rules of the calculus can be found in Fig. 1, where θ denotes a
substitution. The rules allow to deduce statements of the three kinds and are an
adaptation of the rules presented in [1, 15] for MEL and in [2, 14] for rewriting
logic. With respect to MEL, because of the executability assumptions, we have
a more operational interpretation of the equations, which are oriented from left
to right. With respect to rewriting logic, we work with terms (as in [2]) instead
of equivalence classes of terms (as in [14]); moreover, unlike [2], replacement is
not nested. Both changes make the logical representation closer to the way the
Maude system operates. As usual, we represent deductions in the calculus as
proof trees, where the premises are the child nodes of the conclusion at each
inference step. We assume that the inference labels (Rep⇒), (Rep→), and (Mb)
decorating the inference steps contain information about the particular rewrite
rule, equation, and membership axiom, respectively, applied during the infer-
ence. This information will be used by the debugger in order to present to the
user the incorrect fragment of code causing the error.

In our debugging framework we assume the existence of an intended interpre-
tation I of the given rewrite theory R = (Σ, E, R). The intended interpretation
must be an R-system corresponding to the model that the user had in mind
while writing the specification R. Therefore the user expects that I |= t ⇒ t′,
I |= t → t′, and I |= t : s for each rewrite t ⇒ t′, reduction t → t′, and mem-
bership t : s computed w.r.t. the specification R. We will say that a statement
t ⇒ t′ (respectively t → t′, t : s) is valid when it holds in I, and invalid other-
wise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging
tree. The concept of validity can be extended to distinguish wrong rules, wrong
equations, and wrong membership axioms, which are those specification pieces
that can deduce something invalid from valid information.

Definition 1. Let r ≡ (af ⇐ ∧n
i=1 ui = u′

i∧
∧m

j=1 vj : sj∧
∧l

k=1 wk ⇒ w′
k) where

af denotes an atomic formula, that is, r is either a rewrite rule, an oriented
equation, or a membership axiom (in the last two cases l = 0) in some rewrite
theory R. Then:

– θ(r) is a wrong rewrite rule instance (respectively wrong equation instance
and wrong membership axiom instance) w.r.t. an intended interpretation I
when
1. There exist terms t1, . . . , tn such that I |= θ(ui) → ti, I |= θ(u′

i) → ti
for i = 1 . . . n.

2. I |= θ(vj) : sj for j = 1 . . . m.
3. I |= θ(wk) ⇒ θ(w′

k) for k = 1 . . . l.
4. θ(af ) does not hold in I.

– r is a wrong rewrite rule (respectively, wrong equation and wrong member-
ship axiom) if it admits some wrong instance.
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(Reflexivity)

t ⇒ t
(Rf ⇒)

t → t
(Rf →)

(Transitivity)
t1 ⇒ t′ t′ ⇒ t2

t1 ⇒ t2
(Tr⇒)

t1 → t′ t′ → t2
t1 → t2

(Tr→)

(Congruence)
t1 ⇒ t′1 . . . tn ⇒ t′n

f(t1, . . . , tn) ⇒ f(t′1, . . . , t′n)
(Cong⇒)

t1 → t′1 . . . tn → t′n
f(t1, . . . , tn) → f(t′1, . . . , t′n)

(Cong→)

(Replacement)
{θ(ui) ↓ θ(u′

i)}n
i=1 {θ(vj) : sj}m

j=1 {θ(wk) ⇒ θ(w′
k)}l

k=1

θ(t) ⇒ θ(t′)
(Rep⇒)

if t ⇒ t′ ⇐ Vn
i=1 ui = u′

i ∧
Vm

j=1 vj : sj ∧ Vl
k=1 wk ⇒ w′

k

{θ(ui) ↓ θ(u′
i)}n

i=1 {θ(vj) : sj}m
j=1

θ(t) → θ(t′)
(Rep→) if t → t′ ⇐ Vn

i=1 ui = u′
i ∧

Vm
j=1 vj : sj

(Equivalence Class)
t → t′ t′ ⇒ t′′ t′′ → t′′′

t ⇒ t′′′
(EC)

(Subject Reduction)
t → t′ t′ : s

t : s
(SRed)

(Membership)
{θ(ui) ↓ θ(u′

i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) : s
(Mb) if t : s ⇐ Vn

i=1 ui = u′
i ∧

Vm
j=1 vj : sj

Fig. 1. Semantic calculus for Maude modules

The general schema of [17] presents declarative debugging as the search of buggy
nodes (invalid nodes with all children valid) in a debugging tree representing an
erroneous computation. In our scheme instance, the proof trees constructed by
the inferences of Fig. 1 seem natural candidates for debugging trees. Although
this is a possible option, we will use instead a suitable abbreviation of these
trees. This is motivated by the following result:

Proposition 1. Let N be a buggy node in some proof tree in the calculus of
Fig. 1 w.r.t. an intended interpretation I. Then:

1. N is the result of either a membership or a replacement inference step.
2. The statement associated to N is either a wrong rewrite rule, a wrong equa-

tion, or a wrong membership axiom.

Both points are a consequence of the definition of the semantic calculus. The
first result states that all the inference steps different from membership and re-
placement are logically sound w.r.t. the definition of R-system, i.e., they always
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produce valid results from valid premises. The second result can be checked by
observing that any membership or replacement buggy node satisfies the require-
ments of Def. 1: the valid premises correspond to the points 1-3 of the definition,
while the invalid conclusion fulfills the last point.

3.2 Abbreviated Proof Trees

Our goal is to find a buggy node in any proof tree T rooted by the initial error
symptom detected by the user. This could be done simply by asking questions
to the user about the validity of the nodes in the tree according to the following
top-down strategy:

Input: A tree T with an invalid root.
Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities: if all the

children of N are valid, then finish pointing out at N as buggy; otherwise,
select the subtree rooted by any invalid child and use recursively the same
strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on
the height of T .

However, we will not use the proof tree T as debugging tree, but a suitable ab-
breviation which we denote by APT (T ) (from Abbreviated Proof Tree), or simply
APT if the proof tree T is clear from the context. The reason for preferring the
APT to the original proof tree is that it reduces and simplifies the questions that
will be asked to the user while keeping the soundness and completeness of the
technique. In particular the APT essentially contains only nodes related to the
replacement and membership inferences using statements included in the spec-
ification, which are the only possible buggy nodes as Prop. 1 indicates. Thus,
in order to minimize the number of questions asked to the user the debugger
should consider the validity of (Rep⇒), (Rep→), or (Mb). The APT rules can
be seen in Fig. 2.

The rules are assumed to be applied top-down: if several APT rules can
be applied at the root of a proof tree, we must choose the first one, that is,
the rule of least number. As a matter of fact, the figure includes rules for two
different possible APTs, which we call one-step abbreviated proof tree (in short
APT o(T )), defined by all the rules in the figure excluding (APTm

4 ), and many-
steps abbreviated proof tree (in short APTm(T )), defined by all the rules in the
figure excluding (APTo

4). Analogously, we will use the notation APT ′o(T ) (resp.
APT ′m(T )) for the subset of rules of APT ′ excluding (APTm

4 ) (resp. (APTo
4)).

The one-step debugging tree follows strictly the idea of keeping only nodes
corresponding to the replacement and membership inference rules. However, the
many-steps debugging tree also keeps nodes corresponding to the transitivity
inference rule for rewrites. The user will choose which debugging tree (one-step
or many-steps) will be used for the declarative debugging session, taking into
account that the many-steps debugging tree usually leads to shorter debugging
sessions (in terms of the number of questions) but with likely more compli-
cated questions. The number of questions is usually reduced because keeping
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(APT1) APT

(
T1 . . . Tn

af
(R)

)
=

APT ′
(

T1 . . . Tn

af
(R)

)

af

(APT2) APT ′
(

t � t
(Rf�)

)
= ∅

(APT3) APT ′

⎛

⎝
T1 . . . Tn

t1 → t′
(Rep→)

T ′

t1 → t2
(Tr→)

⎞

⎠ =

{
APT ′(T1) . . .APT ′(Tn) APT ′(T ′)

t1 → t2
(Rep→)

}

(APTo
4) APT ′

(
T1 T2

t1 ⇒ t2
(Tr⇒)

)
= APT ′(T1)

⋃
APT ′(T2)

(APTm
4 ) APT ′

(
T1 T2

t1 ⇒ t2
(Tr⇒)

)
=

{
APT ′(T1) APT ′(T2)

t1 ⇒ t2
(Tr⇒)

}

(APT5) APT ′
(

T1 . . . Tn

t1 � t2
(Cong�)

)
= APT ′(T1)

⋃
. . .

⋃
APT ′(Tn)

(APT6) APT ′
(

T1 T2

t : s
(SRed)

)
= APT ′(T1)

⋃
APT ′(T2)

(APT7) APT ′
(

T1 . . . Tn

t : s
(Mb)

)
=

{
APT ′(T1) . . . APT ′(Tn)

t : s
(Mb)

}

(APT8) APT ′
(

T1 . . . Tn

t1 � t2
(Rep�)

)
=

{
APT ′(T1) . . .APT ′(Tn)

t1 � t2
(Rep�)

}

(APT9) APT ′

⎛

⎝ T ′
T1 . . . Tn

t ⇒ t′
(Rep⇒)

T ′′

t1 ⇒ t2
(EC)

⎞

⎠ =

{
APT ′(T ′) APT ′(T1) . . .APT ′(Tn) APT ′(T ′′)

t1 ⇒ t2
(Rep⇒)

}

(APT10) APT ′
(

T1 . . . Tn

t1 ⇒ t2
(EC )

)
= APT ′(T1)

⋃
. . .

⋃
APT ′(Tn)

(R) any inference rule � either → or ⇒
af either t1 → t2, t : s or t1 ⇒ t2

Fig. 2. Transforming rules for obtaining abbreviated proof trees
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the transitivity nodes for rewrites shapes some parts of the debugging tree as a
balanced binary tree (each transitivity inference has two premises, i.e., two child
subtrees), and this allows the debugger to use very efficient navigation strate-
gies [23, 24]. On the contrary, removing the transitivity inferences for rewrites
(as rule (APTo

4) does) produces flattened trees where this strategy is no longer
efficient. On the other hand, in rewrites t ⇒ t′ appearing as conclusion of the
transitivity inference rule, the term t′ can contain the result of rewriting several
subterms of t, and determining the validity of such nodes can be complicated,
while in the one-step debugging tree each rewrite node t ⇒ t′ corresponds to a
single rewrite applied at t and checking its validity is usually easier. The user
must balance the pros and cons of each option, and choose the best one for each
debugging session.

The rules (APT3) and (APT9) deserve a more detailed explanation. They
keep the corresponding label (Rep�) but changing the conclusion of the replace-
ment inference in the lefthand side. For instance, (APT3) replaces t1 → t′ by the
conclusion of the next transitivity inference t1 → t2. We do this as a pragmatic
way of simplifying the structure of the APT s, since t2 is obtained from t′ and
hence likely simpler (the root of the tree T ′ in (APT3) must be necessarily of
the form t′ → t2 by the structure of the inference rule for transitivity in Fig. 1).
A similar reasoning explains the form of (APT9). We will formally state now
that these changes are safe from the point of view of the debugger.

Theorem 1. Let T be a finite proof tree representing an inference in the calculus
of Fig. 1 w.r.t. some rewrite theory R. Let I be an intended interpretation of R
such that the root of T is invalid in I. Then:

– Both APT o(T ) and APTm(T ) contain at least one buggy node (complete-
ness).

– Any buggy node in APT o(T ), APTm(T ) has an associated wrong statement
in R (correctness).

The theorem states that we can safely employ the abbreviated proof tree as a
basis for the declarative debugging of Maude system and functional modules:
the technique will find a buggy node starting from any initial symptom detected
by the user. Of course, these results assume that the user answers correctly all
the questions about the validity of the APT nodes asked by the debugger.

4 A Debugging Session

The debugger is initiated in Maude by loading the file dd.maude (available from
http://maude.sip.ucm.es/debugging). This starts an input/output loop that
allows the user to interact with the tool. Then, the user can enter Full Maude
modules and commands, as well as commands for the debugger. The current

http://maude.sip.ucm.es/debugging
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version supports all kinds of modules. When debugging a rewrite computation,
two different debugging trees can be built: one whose questions are related to
one-step rewrites and another whose questions are related to several steps. The
latter tree is partially built so that any node corresponding to a one-step rewrite
is expanded only when the navigation process reaches it.

The debugger provides two strategies to traverse the debugging tree: top-
down, that traverses the tree from the root asking each time for the correctness
of all the children of the current node, and then continues with one of the in-
correct children; and divide and query, that each time selects the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only
this subtree if its root is incorrect, and deleting the whole subtree otherwise.
Note that, although the navigation strategy can be changed during the debug-
ging session, the construction strategy is selected before the tree is built and
cannot be changed.

The user can select a module containing only correct statements. By check-
ing the correctness of the inferences with respect to this module (i.e., using this
module as oracle) the debugger can reduce the number of questions. The debug-
ger allows us to debug specifications where some statements are suspicious and
have been labeled. Only these labeled statements generate nodes in the proof
tree, being the user in charge of this labeling. The user can decide to use all the
labeled statements as suspicious or can use only a subset by trusting labels and
modules. Moreover, the user can answer that he trusts the statement associated
with the currently questioned inference; that is, statements can be trusted “on
the fly.” The user can also give the answer “don’t know,” that postpones the
answer to that question by asking alternative questions. An undo command, al-
lowing the user to return to the previous state, is also provided. We refer the
reader to [21, 22] for further information.

In Sect. 2.4 we described a system module that simulates a knight’s tour. How-
ever, this system module contains a bug and the knight repeats some positions
in its tour. This error is also obtained when looking for a 3 steps journey:

Maude> (rew knight(3) .)

result List : [1,1][2,3][3,1][2,3]

Thus, we debug this smaller computation. Moreover, after inspecting the rewrite
rules describing the eight possible moves, we are sure that they are not respon-
sible for the error; therefore, we trust them by using commands that allow us to
select the suspicious statements.

Maude> (set debug select on .)

Maude> (debug select con1 con2 leg k1 k2 .)

Maude> (debug knight(3) =>* [1,1][2,3][3,1][2,3] .)

The default one-step tree construction strategy is used and the tree shown below
is built, where every operation has been abbreviated with its first letter.
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k(0) ⇒1 [1,1]
k1

l([2,3]) → t
leg

c([1,1],[2,3]) → f
con2

k(1) ⇒1 J2

k2

l([3,1]) → t
leg

c(J2,[3,1]) → f
con2

k(2) ⇒1 J1

k2

l([2,3]) → t
leg

c(J1,[2,3]) → f
con2

k(3) ⇒1 [1,1][2,3][3,1][2,3]
k2

where J1 denotes the journey [1,1][2,3][3,1] and J2 denotes [1,1][2,3].
Since the tree is navigated by using the default divide and query strategy, the

first two questions asked by the debugger are

Is this rewrite (associated with the rule k2) correct?

knight(1) =>1 [1,1][2,3]

Maude> (yes .)

Is this rewrite (associated with the rule k2) correct?

knight(2) =>1 [1,1][2,3][3,1]

Maude> (yes .)

Notice the form =>1 of the arrow in the rewrites appearing in the questions, to
emphasize that they are one-step rewrites.

In both cases the answer is yes because these paths are possible, legal be-
haviors of the knight when it can do one or two hops. These two subtrees are
removed and the current tree looks as follows:

l([2,3])→ t
leg

c(J1,[2,3])→ f
con2

k(3)⇒1 [1,1][2,3][3,1][2,3]
k2

The next question is

Is this reduction (associated with the equation con2) correct?

contains([1,1][2,3][3,1],[2,3]) -> false

Maude> (no .)

Clearly, this is not a correct reduction, since position [2,3] is already in the
path [1,1][2,3][3,1]. With this answer this subtree is selected and, since it
is a single node, the bug is located:

The buggy node is:

contains([1,1][2,3][3,1],[2,3]) -> false

with the associated equation: con2

Looking at the definition of the contains operation, we realize that it defines the
membership operation for sets, not for lists. A correct definition of the contains
operation is as follows:

eq [con1] : contains(nil, P) = false .

eq [con2] : contains(Q J, P) = P == Q or contains(J, P) .



322 A. Riesco et al.

5 The Implementation

As mentioned in the introduction, a key distinguishing feature of Maude is its
systematic and efficient use of reflection through its predefined META-LEVELmod-
ule [10, Chap. 14]. This powerful feature allows access to metalevel entities such
as specifications or computations as usual data. Therefore, we are able to gen-
erate and navigate the debugging tree of a Maude computation using opera-
tions in Maude itself. In addition, the Maude system provides another module,
LOOP-MODE [10, Chap. 17], which can be used to specify input/output interac-
tions with the user. Thus, our declarative debugger, including its user interface,
is implemented in Maude itself, as an extension of Full Maude [10, Chap. 18].
Instead of creating the complete proof tree and then abbreviating it, we build
the abbreviated proof tree directly. Since navigation is done by asking questions
to the user, this stage has to handle the navigation strategy together with the
input/output interaction with the user. The technical report [21] provides a full
explanation of this implementation, including the user interaction.

The way in which the debugging trees for reductions and memberships or
rewrites are built is completely different. In the first case, we use the facts that
equations and membership axioms are both terminating and confluent, which
allow us to build the debugging tree in a “greedy” way, selecting at each moment
the first equation applicable to the current term. However, we have to use a
different methodology in the construction of the debugging tree for incorrect
rewrites. We use breadth-first search to find from the initial term the wrong term
introduced by the user, and then we use the found path to build the debugging
tree in the two possible ways described in previous sections.

The functions in charge of building the debugging trees, that correspond to
the APT function from Fig. 2, have a common initial behavior. They receive
the module where the wrong inference took place, a correct module (or a special
constant when no such module is provided) to prune the tree, the initial term,
the (erroneous) result obtained, and the set of suspicious statements labels. They
keep the initial inference as the root of the tree and generate the forest of abbre-
viated trees corresponding to the inference with functions that, in addition to the
arguments above, receive the initial module “cleaned” of suspicious statements
and correspond to the APT ′ function from Fig. 2. This transformed module is
used to improve the efficiency of the tree construction, because we can use it
to check if an inference can be obtained by using only trusted statements, thus
avoiding to build a tree that will be finally empty.

The function that builds debugging trees for wrong reductions works with the
same innermost strategy as the Maude interpreter: it first fully reduces the sub-
terms recursively building their debugging trees (it mimics a specific behavior
of the congruence rule in Fig. 1), and once all the subterms have been reduced,
if the result is not the final one, it tries to reduce at the top to reach the fi-
nal result by transitivity. Reduction at the top tries to apply one equation,3 by

3 Since the module is assumed to be confluent, we can choose any equation and the
final result should be the same.
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using the replacement rule from Fig. 1. Debugging trees for the conditions of
the equation are also built and placed as children of the replacement rule. The
construction of debugging trees for wrong memberships mimics the subject re-
duction rule from Fig. 1 by computing the tree for the full reduction of the term
and then computing the tree for the membership inference of its least sort by
using the operator declarations and the membership axioms, which corresponds
to a concrete application of the membership inference rule.

The one-step tree for wrong rewrites computes the tree for the reduction
from the initial term to normal form and then computes the rest of the tree,
that corresponds to a rewrite from a fully reduced term (this corresponds to
a concrete application of the equivalence class inference rule from Fig. 1). The
debugging tree for this rewrite is computed from the trace, that is obtained with
the predefined function metaSearchPath. Each step of the trace corresponds to
the application of one rule, that generates a tree, with the trees correspond-
ing to the conditions of the rule as its children (reproducing the replacement
rule). Note that although the information in the trace is related to the whole
rewritten term, the application of a rule can be in a subterm, which corresponds
with the congruence inference rule, so only the rewritten subterms appear in
the debugging tree. Other children are generated for the reduction to normal
form due to the equivalence class inference rule. Finally, all the steps are put
together as children of the same root by using the transitivity inference rule. The
many-steps debugging tree is built by demand, so that the debugging subtrees
corresponding to one-step rewrites are only generated when they are pointed
out as wrong. These one-step nodes are used to create a balanced binary tree,
by dividing them into two forests of approximately the same size, recursively
creating their trees, and then using them as children of a new binary tree that
has as root the combination by transitivity of the rewrites in their roots.

6 Concluding Remarks

In this paper we have developed the foundations of declarative debugging of
executable rewriting logic specifications, and we have applied them to implement
a debugger for Maude modules. The work encompasses and extends previous
presentations [5, 6] on the declarative debugging of Maude functional modules,
which constitute now a particular case of a more general setting.

We have formally described how debugging trees can be obtained from Maude
proof trees, proving the correctness and completeness of the debugging technique.
The tool based on these ideas allows the user to concentrate on the logic of the
program disregarding the operational details. In order to deal with the possibly
complex questions associated to rewrite statements, the tool offers the possibil-
ity of choosing between two different debugging trees: the one-step trees, with
simpler questions and likely longer debugging sessions, and the many-steps trees,
which in general require fewer but more complex questions before finding the
bug. The experience will show the user which one must be chosen in each case
depending on the complexity of the specification.
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In our opinion, this debugger provides a complement to existing debugging
techniques for Maude, such as tracing and term coloring. An important advan-
tage of our debugger is the help provided by the tool in locating the buggy
statements, assuming the user answers correctly the corresponding questions.

As future work we want to provide a graphical interface, that allows the user
to navigate the tree with more freedom. We are also investigating how to improve
the questions done in the presence of the strat operator attribute, that allows
the specifier to define an evaluation strategy. This can be used to represent some
kind of laziness. Finally, we plan to study how to debug missing answers [8, 16]
in addition to the wrong answers we have treated thus far.
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Translating a Dependently-Typed Logic to
First-Order Logic

Kristina Sojakova and Florian Rabe
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Abstract. DFOL is a logic that extends first-order logic with depen-
dent types. We give a translation from DFOL to FOL formalized as an
institution comorphism and show that it admits the model expansion
property. This property together with the borrowing theorem implies
the soundness of borrowing — a result that enables us to reason about
entailment in DFOL by using automated tools for FOL. In addition, the
translation permits us to deduce properties of DFOL such as complete-
ness, compactness, and existence of free models from the corresponding
properties of FOL, and to regard DFOL as a fragment of FOL. We give
an example that shows how problems about DFOL can be solved by us-
ing the automated FOL prover Vampire. Future work will focus on the
integration of the translation into the specification and translation tool
HeTS.

1 Introduction and Related Work

Dependent type theory, DTT, ([ML75]) provides a very elegant language for
many applications ([HHP93, NPS90]). However, its definition is much more in-
volved than that of simple type theory because all well-formed terms, types, and
their equalities must be defined in a single joint induction. Several quite complex
model classes, mainly related to locally cartesian closed categories, have been
studied to provide a model theory for DTT (see [Pit00] for an
overview).

Many of the complications disappear if dependently-typed extensions of first-
order logic are considered, i.e., systems that have dependent types, but no (sim-
ple or dependent) function types. Such systems were investigated in [Mak97],
[Rab06], and [Bel08]. They provide very elegant axiomatizations of many impor-
tant mathematical theories such as those of categories or linear algebra while
retaining completeness with respect to straightforward set-theoretic models.

However, these systems are of relatively little practical use because no au-
tomated reasoning tools, let alone efficient ones, are available. Therefore, our
motivation is to translate one of these systems into first-order logic, FOL. Such
a translation would translate a proof obligation to FOL and discharge it by
calling existing FOL provers. This is called borrowing ([CM93]).

In principle, there are two ways how to establish the soundness of borrowing:
proof-theoretically by translating the obtained proof back to the original logic,

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 326–341, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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or model-theoretically by exhibiting a model-translation between the two log-
ics. Proof-theoretical translations of languages with dependent types have been
used in [JM93] to translate parts of DTT to simple type theory, in [Urb03] to
translate Mizar ([TB85]) into FOL, and in Scunak [Bro06] to translate parts
of DTT into FOL. The Scunak translation is only partial as for example the
translation of lambda expressions is omitted. Similar partial translations, but in
the simply-typed case, are used in Omega ([BCF+97]), Leo-II ([BPTF07]) and
in the sledgehammer tactic of Isabelle ([Pau94]). If the FOL prover succeeds,
the reconstruction of the FOL proof term is possible in practice but somewhat
tricky: For example, sledgehammer uses the output of a strong prover to guide a
second, weaker prover, from whose output the proof term is reconstructed. In the
cases of Mizar and Scunak, it is not done at all. Furthermore, the more complex
the translation of proof goals is, the more difficult it becomes to translate the
FOL proof term back into the original logic.

Here we take the model-theoretic approach and formulate a translation from
the system introduced in [Rab06] to FOL within the framework of institutions
([GB92]). Mathematically, our main results can be summarized as follows. We use
the institution DFOL as given in [Rab06] and give an institution comorphism
from DFOL into FOL. Every DFOL-signature is translated to a FOL-theory
whose axioms are used to express the typing properties of the translated symbols.
The signature translation uses an n+1-ary FOL-predicate Ps for every dependent
type constructor s with n arguments. Then the formulas quantifying over x
of type s(t1, . . . , tn) can be translated by relativizing (see [Obe62]) using the
predicate Ps(t1, . . . , tn, x). Finally, we show that this comorphism admits model
expansion. Using the borrowing theorem ([CM93]), this yields the soundness of
the translation.

Thus, we provide a simple way to write problems in the conveniently expressive
DFOL syntax and solve them by calling FOL theorem provers. It is also pos-
sible to extend FOL theorem provers with dependently typed input languages,
or to integrate DFOL seamlessly into existing implementations of institution-
based algebraic specification languages such as OBJ ([GWM+93]) and CASL
([ABK+02]). Finally, our result provides easier proofs of the free model and
completeness theorems given in [Rab06].

2 Definitions

We now present some definitions necessary for our work. We assume that the
reader is familiar with the basic concepts of category theory and logic. For in-
troduction to category theory, see [Lan98].

Using categories and functors we can define an institution, which is a formal-
ization of a logical system abstracting from notions such as formulas, models,
and satisfaction. Institutions structure the variety of different logics and allow
us to formulate institution-independent theorems for the general theory of logic.
For more on institutions, see [GB92].
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Definition 1 (Institution). An institution is a 4-tuple (Sig, Sen, Mod, |=)
where

– Sig is a category,
– Sen : Sig → Set is a functor,
– Mod : Sig → Catop is a functor,
– |= is a family of relations |=Σ for Σ ∈ |Sig|, |=Σ ⊆ Sen(Σ)× |Mod(Σ)|

such that for each morphism σ : Σ → Σ′, sentence F ∈ Sen(Σ), and model
M ′ ∈ |Mod(Σ′)| we have

Mod(σ)(M ′) |=Σ F iff M ′ |=Σ′ Sen(σ)(F )

The category Sig is called the category of signatures. The morphisms in Sig
are called signature morphisms and represent notation changes. The functor
Sen assigns to each signature Σ a set of sentences over Σ and to each morphism
σ : Σ → Σ′ the induced sentence translation along σ. Similarly, the functor Mod
assigns to each signature Σ a category of models for Σ and to each morphism
σ : Σ → Σ′ the induced model reduction along σ. For a signature Σ, the relation
|=Σ is called a satisfaction relation.
We now define what entailment and theory are in the context of institutions.

Definition 2 (Entailment). Let (Sig, Sen, Mod, |=) be an institution. For a
fixed Σ, let T ⊆ Sen(Σ) and F ∈ Sen(Σ). Then we say that T entails F ,
denoted T |=Σ F , if for any model M ∈ |Mod(Σ)| we have that

if M |=Σ G for all G ∈ T then M |=Σ F

Definition 3 (Category of theories). Let I = (Sig, Sen, Mod, |=) be an in-
stitution. We define the category of theories of I to be the category ThI where

– The objects are pairs (Σ, T ), with Σ ∈ |Sig|, T ⊆ Sen(Σ)
– σ is a morphism from (Σ, T ) to (Σ′, T ′) iff σ is a signature morphism from

Σ to Σ′ in I and for each F ∈ T we have that T ′ |=Σ Sen(σ)(F )

The objects in ThI are called theories of I, and for each theory Th = (Σ, T ), the
set T is called the set of axioms of Th. The morphisms in ThI are called theory
morphisms. For a theory (Σ, T ) and a sentence F over Σ, we say (Σ, T ) |= F in
place of T |=Σ F .
For a given institution I, we sometimes need to construct another institution
ITh, whose signatures are the theories of I. We have the following lemma.

Lemma 1 (Institution of theories). Let I = (Sig, Sen, Mod, |=) be an insti-
tution. Denote by ITh the tuple (ThI , SenTh, ModTh, |=Th) where

– SenTh(Σ, T ) = Sen(Σ) and SenTh(σ) = Sen(σ) for σ : (Σ, T ) → (Σ′, T ′).
– ModTh(Σ, T ) is the full subcategory of Mod(Σ) whose objects are those mod-

els M in |Mod(Σ)| for which we have M |=Σ G whenever G ∈ T . For a the-
ory morphism σ : (Σ, T ) → (Σ′, T ′), ModTh(σ) is the restriction of Mod(σ)
to ModTh(Σ′, T ′).
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– |=Th
(Σ,T ) is the restriction of |=Σ to |ModTh(Σ, T )| × SenTh(Σ, T ).

Then ITh is an institution, called the institution of theories of I.

We are now ready to define a certain kind of translation between two
institutions.

Definition 4 (Institution comorphism). Let I = (SigI , SenI , ModI , |=I),
J = (SigJ , SenJ , ModJ , |=J) be two institutions. An institution comorphism
from I to J is a triple (Φ, α, β) where

– Φ : SigI → SigJ is a functor,
– α : SenI → Φ; SenJ is a natural transformation,
– β : ModI ← Φ; ModJ is a natural transformation

such that for each Σ ∈ |SigI |, F ∈ SenI(Σ), and M ′ ∈ |ModJ(Φ(Σ))| we have

βΣ(M ′) |=I
Σ F iff M ′ |=J

Φ(Σ) αΣ(F )

where βΣ is regarded as a morphism from ModJ (Φ(Σ)) to ModI(Σ) in the
category Cat.

Institution comorphisms are particularly useful if they have the following
property.

Definition 5 (Model expansion property). Let (Φ, α, β) be an institution
comorphism from I to J . We say that the comorphism has the model expansion
property if each functor βΣ for Σ ∈ SigI is surjective on objects.

The following lemma is then applicable.

Lemma 2 (Borrowing). Let (Φ, α, β) be an institution comorphism from ITh

to JTh having the model expansion property. Then for any theory (Σ, T ) in I
and a sentence F over Σ, we have that

(Σ, T ) |=I F iff Φ(Σ, T ) |=J αΣ(F )

In other words, we can use the institution J to reason about theories in I. For
more on borrowing, see [CM93].

3 DFOL and FOL as Institutions

The formal definition of a dependent type theory is typically very complex and
long because both for the syntax and for the semantics a joint induction over sig-
natures, contexts, terms, and types must be used. Therefore, in [Rab06], the syn-
tax of DFOL is defined within the Edinburgh logical framework (LF, [HHP93]),
thus saving one induction. In [Rab08], a model theory for LF is given so that
both inductions can be done once and for all in the logical framework, thus
permitting a very elegant and compact definition of DFOL.

Here, to be self-contained, we give the syntax directly, but omit the precise
definition of well-formed expressions. Then the semantics is given by a partial
interpretation function defined only for well-formed expressions. This has the
advantage of making the main concepts intuitively clear while being short and
precise.
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3.1 Signatures

In DFOL, we have three base types, defined as follows:

S : type Univ : S → type o : type

Here S is the type of sorts (semantically: names of universes). The type Univ is
an operator assigning to each sort the type of its terms (semantically: its universe
of individuals). The type o is the type of formulas (semantically: the values true
and false).
A DFOL signature consists of a finite sequence of declarations of the form

c : Πx1 : Univ(S1), . . . , Πxn : Univ(Sn). T

meaning that c is a function taking n arguments of types S1, . . . , Sn respectively,
and returning an argument of type T , where T is one of the three base types.
Here Πxi : Univ(Si) denotes the domain of a dependent function type, i.e., xi

may occur in Si+1, . . . , Sn, T .
When the return type of c is o, we say that c is a predicate symbol. Likewise, if
the return type is S or Univ(S), we say that c is a sort symbol or a function
symbol respectively. We abbreviate Πx : Univ(S) as Πx : S and Πx : A. B as
A → B if the variable x does not occur in B.
We define DFOL signatures Σ inductively on the number of declarations. Let Σk

be a DFOL signature consisting of k declarations, k ≥ 0. We define a function
over Σk as follows:

– Any variable symbol is a function over Σk

– If f in Σk is a function symbol of arity n and μ1, . . . , μn are functions over
Σk, then f(μ1, . . . , μn) is a function over Σk

If s in Σk is a sort symbol of arity n and μ1, . . . , μn are functions over Σk, then
s(μ1, . . . , μn) is a sort over Σk. Similarly, if p in Σk is a predicate symbol of
arity n and μ1, . . . , μn are functions over Σk, then p(μ1, . . . , μn) is a predicate
over Σk. The word term refers to either a function, a sort, or a predicate.
Clearly, not all terms are well-formed in DFOL. A context Γ for a signature Σ
in DFOL has the form Γ = x1 : S1, . . . , xn : Sn, where S1, . . . , Sn are sorts and
Si contains no variables except possibly x1, . . . , xi−1. Given a valid context Γ ,
a DFOL term is well-formed with respect to Γ only if it is well-typed in the LF
type theory. For details we refer the reader to [Rab06].
Now the k + 1-th declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
where S1, . . . , Sn are sorts over Σk and Si contains no variables except pos-
sibly x1, . . . , xi−1. We say that s is a sort symbol.

– f : Πx1 : S1, . . . , Πxn : Sn. Sn+1

where S1, . . . , Sn+1 are sorts over Σk and Si contains no variables except
possibly x1, . . . , xi−1.

– p : Πx1 : S1, . . . , Πxn : Sn. o
where S1, . . . , Sn are sorts over Σk and Si contains no variables except pos-
sibly x1, . . . , xi−1. We say that p is a predicate symbol.

As with terms, the declaration must be a well-typed according to the rules of LF.
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Running example. The theory of categories has the following DFOL signature
Ob : S
Mor : Ob → Ob → S
id : ΠA : Ob. Mor(A, A)
◦ : ΠA, B, C : Ob. Mor(A, B) → Mor(B, C) → Mor(A, C)
term : Ob → o
isom : Ob → Ob → o For simplicity, we declare the signature model mor-
phisms in DFOL to just be the identity morphisms.

3.2 Sentences

The set of DFOL formulas over a signature Σ can be described as follows:

– If P is a predicate over Σ, then P is a Σ-formula
– If μ1, μ2 are functions over Σ, then μ1

.= μ2 is a Σ-formula
– If F is a Σ-formula, then ¬F is a Σ-formula
– If F, G are Σ-formulas, then F ∧G, F ∨G, and F ⇒ G are Σ-formulas
– If F is a Σ-formula and S is a sort term over Σ, then ∀x : S. F is a Σ-formula
– If F is a Σ-formula and S is a sort term over Σ, then ∃x : S. F is a Σ-formula

Closed and atomic formulas are defined in the obvious way analogous to first-
order logic. As with terms, DFOL formulas are well-formed only if they are
well-typed in the LF type theory. For a precise definition, see [Rab06].

Running example. We have the following axioms for the theory of categories,
with equivalence defined as usual
I1 : ∀A, B : Ob. ∀f : Mor(A, B). id(A) ◦ f

.= f
I2 : ∀A, B : Ob. ∀f : Mor(B, A). f ◦ id(A) .= f
A1 : ∀A, B, C, D : Ob. ∀f : Mor(A, B). ∀g : Mor(B, C). ∀h : Mor(C, D).
f ◦ (g ◦ h) .= (f ◦ g) ◦ h
D1 : ∀A : Ob. (term(A) ⇐⇒ ∀B : Ob. ∃f : Mor(B, A). ∀g : Mor(B, A). f

.= g)
D2 : ∀A, B : Ob. (isom(A, B) ⇐⇒ ∃f : Mor(A, B). ∃g : Mor(B, A).
(f ◦ g

.= id(A) ∧ g ◦ f
.= id(B)))

3.3 Models

A model of a DFOL signature Σ is an interpretation function I. Since the declara-
tion of a symbol may depend on symbols declared before, we define I inductively
on the number of declarations.
Suppose I is defined for the first k declarations, k ≥ 0. An assignment function
ϕ for I is a function mapping each variable to an element of any set defined by
I as an interpretation of a sort symbol.
Let μ be a term over Σ. We define the interpretation of μ induced by ϕ to be
Iϕ(μ), where Iϕ is given by:

– Iϕ(x) = ϕ(x) for any variable x
– Iϕ(d(μ1, . . . , μk)) = dI(Iϕ(μ1), . . . , Iϕ(μk)) for a sort, predicate, or function

symbol d if
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• each of the interpretations Iϕ(μ1), . . . , Iϕ(μn) exists and
• dI is defined for the tuple (Iϕ(μ1), . . . , Iϕ(μn))

Otherwise we say Iϕ(d(μ1, . . . , μk)) does not exist.

Given a valid context Γ = x1 : S1, . . . , xn : Sn and an assignment function ϕ,
we say that ϕ is an assignment function for Γ if for each i we have that Iϕ(Si)
exists and ϕ(xi) ∈ Iϕ(Si). From now on, we will only talk about assignment
functions for a context; the general definition was introduced only to avoid some
technical difficulties.
Now the k + 1-st declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

sI(ϕ(x1), . . . , ϕ(xn)) is a (possibly empty) set

disjoint from any other set defined by I as an interpretation of a sort symbol.
– f : Πx1 : S1, . . . , Πxn : Sn. S

Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

f I(ϕ(x1), . . . , ϕ(xn)) ∈ Iϕ(S)

– p is a predicate symbol, p : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

pI(ϕ(x1), . . . , ϕ(xn)) ∈ {true, false}

Running example. An example model I for the signature of categories is given
by any small category C. Then we have ObI = |C|, MorI(A, B) = C(A, B), and
the obvious interpretations for composition and identity. Furthermore, we can
put termI(A) = true iff A is a terminal element and isomI(A, B) = true iff A
and B are isomorphic.

3.4 Satisfaction Relation

To define the satisfaction relation, we first define the interpretation of formulas.
Let Σ be a DFOL signature, I be a DFOL model for Σ, and Γ be a valid context
over Σ. Furthermore, let ϕ be an assignment function for Γ and F be a well-
formed DFOL formula for Γ . Then we define Iϕ(F ) recursively on the structure
of F :

– F is a predicate. Then Iϕ(F ) is true if and only if pI(Iϕ(μ1), . . . , Iϕ(μn)) =
true.

– F is of the form μ1
.= μ2. Then Iϕ(F ) is true if and only if Iϕ(μ1) = Iϕ(μ2).

– F is of the form ¬G. Then Iϕ(F ) is true if and only if Iϕ(G) is false.
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– F is of the form F1 ∧ F2. Then Iϕ(F ) is true if and only if both Iϕ(F1) and
Iϕ(F2) are true.

– F is of the form F1 ∨ F2. Then Iϕ(F ) is true if and only if Iϕ(F1) is true or
Iϕ(F2) is true.

– F is of the form F1 =⇒ F2. Then Iϕ(F ) is true if and only if Iϕ(F1) is false
or Iϕ(F2) is true.

– F is of the form ∃x : S. G. Then Iϕ(F ) is true if and only if Iϕ[x/a](G) is
true for some a ∈ Iϕ(S).

– F is of the form ∀x : S. G. Then Iϕ(F ) is true if and only if Iϕ[x/a](G) is
true for any a ∈ Iϕ(S).

Now if F is in fact a closed formula, its interpretation is independent of ϕ. Hence,
we define that I satisfies F if and only if Iϕ(F ) is true for some ϕ.

Running example. It is easy to see that the example model for the signature of
categories satisfies the axioms given in section 3.2.

Putting our previous definitions together, we have the following lemma.

Lemma 3. DFOL = (Sig, Sen, Mod, |=) is an institution.

The FOL institution is then obtained from DFOL by restricting the signatures
to contain a unique sort symbol, having arity 0. Any other symbols are either
function or predicate symbols. (Technically, this does not yield FOL because
DFOL permits empty universes. But our FOL signatures will always have a
nullary function symbol so that this does not constitute a problem). A FOL
model is then denoted as (U, I), where I is the interpretation function and U is
the universe corresponding to the unique sort symbol.

4 Translation of DFOL to FOL

The main idea of the translation is to associate with each n-ary sort symbol in
DFOL an n+1-ary predicate in FOL and relativize the universal and existential
quantifiers (the technique of relativization was first introduced by Oberschelp in
[Obe62]).

Formally, the translation will be given as an institution comorphism from
DFOL to FOLTh. We specify a functor Φ, mapping DFOL signatures to FOL
theories and DFOL signature morphisms to FOL theory morphisms. For each
DFOL signature Σ, we give a function αΣ mapping DFOL sentences over Σ to
FOL sentences over the translated signature Φ(Σ), and show that the family of
functions αΣ defines a natural transformation. Similarly, for each DFOL signa-
ture Σ we give a functor βΣ mapping FOL models for the translated signature
Φ(Σ) to DFOL models for Σ, and show that the family of functors βΣ defines a
natural transformation. Finally, we prove the satisfaction condition for (Φ, α, β)
and show that the comorphism has the model expansion property.

Definition 6 (Signature translation). Let Σ be a DFOL signature. We de-
fine Φ(Σ) to be the FOL theory (Σ′, T ′), where Σ′ and T ′ are specified as follows.
Σ′ contains:
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– an n-ary function symbol f for each n-ary function symbol f in Σ,
– an n-ary predicate symbol p for each n-ary predicate symbol p in Σ,
– an n + 1-ary predicate symbol s for each n-ary sort symbol s in Σ,
– a special constant symbol ⊥, different from any of the above symbols,
– no other symbols besides the above

T ′ contains:

S1. Axioms ensuring that no element can belong to the universe of more than
one sort. For any two sort symbols s1, s2 with s1 different from s2, we have
the axiom

∀x1, . . . , xn, y1, . . . , ym, z.
(
s1(x1, . . . , xn, z) =⇒ ¬s2(y1, . . . , ym, z)

)

and for each sort symbol s1 we have the axiom

∀x1, . . . , xn, y1, . . . , yn, z.
(
s1(x1, . . . , xn, z) ∧ s1(y1, . . . , yn, z)

=⇒ x1
.= y1 ∧ . . . ∧ xn

.= yn

)

S2. An axiom ensuring that each element different from ⊥ belongs to the universe
of at least one sort. If s1, . . . , sk are the sort symbols, then we have the axiom

∀y.
(¬y

.= ⊥ =⇒ ∃x1, . . . , xn1 . s1(x1, . . . , xn1 , y) ∨ . . . ∨
∃x1, . . . , xnk

. sk(x1, . . . , xnk
, y)

)

S3. Axioms ensuring that the special symbol ⊥ is not contained in the universe
of any sort. For each sort symbol s, we have the axiom

∀x1, . . . , xn. ¬s(x1, . . . , xn,⊥)

S4. Axioms ensuring that if the arguments to a sort constructor are not of the
correct types, the resulting sort has an empty universe. For each sort symbol
s : Πx1 : s1(μ1

1, . . . , μ
1
k1

), . . . , Πxn : sn(μn
1 , . . . , μn

kn
). S, we have the axiom

∀x1, . . . , xn.
(¬s1(μ1

1, . . . , μ
1
k1

, x1) ∨ . . . ∨ ¬sn(μn
1 , . . . , μn

kn
, xn)

=⇒ ∀y. ¬s(x1, . . . , xn, y)
)

F1. Axioms ensuring that if the arguments to a function are of the correct types,
the function returns a value of the correct type. For each function symbol
f : Πx1 : s1(μ1

1, . . . , μ
1
k1

), . . . , Πxn : sn(μn
1 , . . . , μn

kn
). s(μ1, . . . , μk), we

have the axiom

∀x1, . . . , xn.
(
s1(μ1

1, . . . , μ
1
k1

, x1) ∧ . . . ∧ sn(μn
1 , . . . , μn

kn
, xn) =⇒

s(μ1, . . . , μk, f(x1, . . . , xn))
)

F2. Axioms ensuring that if the arguments to a function are not of the correct
types, the function returns the special symbol ⊥. For each function symbol
f : Πx1 : s1(μ1

1, . . . , μ
1
k1

), . . . , Πxn : sn(μn
1 , . . . , μn

kn
). s(μ1, . . . , μk), we

have the axiom

∀x1, . . . , xn.
(¬s1(μ1

1, . . . , μ
1
k1

, x1) ∨ . . . ∨ ¬sn(μn
1 , . . . , μn

kn
, xn)

=⇒ f(x1, . . . , xn) .= ⊥)
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P1. Axioms ensuring that if the arguments to a predicate are not of the correct
types, the predicate is false. For each predicate symbol
p : Πx1 : s1(μ1

1, . . . , μ
1
k1

), . . . , Πxn : sn(μn
1 , . . . , μn

kn
). o, we have the axiom

∀x1, . . . , xn.
(¬s1(μ1

1, . . . , μ
1
k1

, x1) ∨ . . . ∨ ¬sn(μn
1 , . . . , μn

kn
, xn)

=⇒ ¬p(x1, . . . , xn)
)

N. No other axioms besides the above

Defining Φ on signature morphisms is trivial since by our definition the only
signature morphisms in DFOL are the identity morphisms. From this it follows
immediately that Φ is a functor.

Running example. Denote the translated signature of categories by the theory
(Σ′, T ′). Then Σ′ contains the following symbols:

– Function symbols:
• id of arity 1
• ◦ of arity 5
• ⊥ of arity 0

– Predicate symbols:
• ob of arity 1
• mor of arity 3
• term of arity 1
• isom of arity 2

The theory T ′ consists of the axioms S1.1 up to P1.2 in Fig.1.

Definition 7 (Sentence translation). Let Σ be a DFOL signature. We define
the function αΣ on the set of all DFOL formulas over Σ. We do this recursively
on the structure of the formula F :

– If F is of the form p(μ1, . . . , μn), we set αΣ(F ) = F
– If F is of the form μ1

.= μ2, we set αΣ(F ) = F
– If F is of the form ¬G, we set αΣ(F ) = ¬αΣ(G)
– If F is of the form F1 ∧ F2, we set αΣ(F ) = αΣ(F1) ∧ αΣ(F2)
– If F is of the form F1 ∨ F2, we set αΣ(F ) = αΣ(F1) ∨ αΣ(F2)
– If F is of the form F1 =⇒ F2, we set αΣ(F ) to be the formula

αΣ(F1) =⇒ αΣ(F2)

– If F is of the form ∀x : s(μ1, . . . , μn). G, we set αΣ(F ) to be the formula

∀x. s(μ1, . . . , μn, x) =⇒ αΣ(G)

– If F is of the form ∃x : s(μ1, . . . , μn). G, we set αΣ(F ) to be the formula

∃x. s(μ1, . . . , μn, x) ∧ αΣ(G)

It is easy to see that αΣ maps closed formulas to closed formulas. Hence, we can
restrict αΣ to the set of DFOL sentences over Σ to obtain our desired trans-
lation map. The naturality of αΣ follows immediately since the only signature
morphisms in DFOL are the identity morphisms.
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S1.1 : ∀A1, B1, f. (mor(A1, B1, f) =⇒ ∀A2, B2. (mor(A2, B2, f)
=⇒ A2

.= A1 ∧ B2
.= B1))

S1.2 : ∀y,B, C. (ob(y) =⇒ ¬mor(B, C, y))
S2 : ∀y. (¬y

.= ⊥ =⇒ ob(y) ∨ ∃A, B. mor(A,B, y))
S3.1 : ¬ob(⊥)
S3.2 : ∀A, B. ¬mor(A,B,⊥)
S4 : ∀A, B. ((¬ob(A) ∨ ¬ob(B)) =⇒ ∀f. ¬mor(A,B, f))
F1.1 : ∀A. (ob(A) =⇒ mor(A,A, id(A)))
F1.2 : ∀A, B,C, f, g. (ob(A) ∧ ob(B) ∧ ob(C) ∧ mor(A,B, f) ∧ mor(B, C, g) =⇒
mor(A,C, f ; g))
F2.1 : ∀A. (¬ob(A) =⇒ id(A) .= ⊥)
F2.2 : ∀A, B, C, f, g. (¬ob(A) ∨ ¬ob(B) ∨ ¬ob(C) ∨ ¬mor(A,B, f) ∨
¬mor(B, C, g) =⇒ f ; g .= ⊥)
P1.1 : ∀A. (¬ob(A) =⇒ ¬term(A))
P1.2 : ∀A,B. (¬ob(A) ∨ ¬ob(B) =⇒ ¬isom(A, B))

I1 : ∀A,B, f. (ob(A) ∧ ob(B) ∧ mor(A,B, f) =⇒ id(A); f .= f)
I2 : ∀A,B, f. (ob(A) ∧ ob(B) ∧ mor(B,A, f) =⇒ f ; id(A) .= f)
A1 : ∀A, B,C, D, f, g, h. (ob(A) ∧ ob(B) ∧ ob(C) ∧ ob(D) ∧ mor(A,B, f) ∧
mor(B,C, g) ∧ mor(C, D, h) =⇒ f ; (g; h) .= (f ; g); h)
D1 : ∀A. (ob(A) =⇒ (term(A) ⇐⇒ ∀B. (ob(B) =⇒ ∃f. (mor(B,A, f) ∧
∀g. (mor(B, A, g) =⇒ f

.= g)))))
D2 : ∀A, B. (ob(A) ∧ obj(B) =⇒ (isom(A,B) ⇐⇒ ∃f, g. (mor(A,B, f) ∧
mor(B,A, g) ∧ f ; g .= id(A) ∧ g; f .= id(B))))

Conjecture : ∀A,B. (ob(A) ∧ obj(B) ∧ term(A) ∧ term(B) =⇒ isom(A,B))

Fig. 1. Translation of the running example

Running example. The translated axioms of the theory of categories are the
axioms I1 up to D2 in Fig.1.

Definition 8 (Model reduction). Let Σ be a DFOL signature and M = (U, I)
be a FOL model for Φ(Σ). We define the translated DFOL model βΣ(M) for Σ
to be the interpretation function J , defined inductively on the number of decla-
rations in Σ.
Suppose J is defined for the first k symbols in Σ, k ≥ 0. Then the (k + 1)-st
declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

sJ(ϕ(x1), . . . , ϕ(xn)) = {u ∈ U | sI(ϕ(x1), . . . , ϕ(xn), u)}
– f : Πx1 : S1, . . . , Πxn : Sn. S

Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

fJ(ϕ(x1), . . . , ϕ(xn)) = f I(ϕ(x1), . . . , ϕ(xn))
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– p is a predicate symbol, c : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

pJ(ϕ(x1), . . . , ϕ(xn)) iff pI(ϕ(x1), . . . , ϕ(xn))

We note here how the axioms introduced earlier are needed to ensure that J
is indeed a DFOL model for Σ. We now turn to the proof of the satisfaction
condition.

Theorem 1 (Satisfaction condition). (Φ, α, β) is an institution comorphism.

Proof. We have already shown that Φ is a functor and α, β are natural transfor-
mations. It remains to show that the satisfaction condition holds.
Let Σ be a DFOL signature, Γ be a valid context for Σ, ϕ be an assignment
function for Γ , and F be a well-formed DFOL sentence for Γ . Furthermore, let
M = (U, I) be a FOL model for the translated signature Φ(Σ), and J be the
translated model βΣ(M). We first observe the following two facts:

– ϕ is also an assignment function for M
– if μ is a well-formed function term for Γ , then Jϕ(μ) = Iϕ(μ)

Both of these facts follow directly from the construction of J . We now show that
we have

Jϕ(F ) iff Iϕ(αΣ(F ))

To prove the claim, we proceed recursively on the structure of F :

– F is of the form p(μ1, . . . , μn). Then Jϕ(F ) is true if and only if
pJ(Jϕ(μ1), . . . , Jϕ(μn)). By the construction of J , we have

pJ(Jϕ(μ1), . . . , Jϕ(μn)) iff pI(Jϕ(μ1), . . . , Jϕ(μn))

As noted above, Jϕ(μi) = Iϕ(μi) for each i, hence

pJ (Jϕ(μ1), . . . , Jϕ(μn)) iff pI(Iϕ(μ1), . . . , Iϕ(μn))

Thus we have Jϕ(F ) if and only if Iϕ(F ). Since F = αΣ(F ), this proves the
claim.

– F is of the form μ1
.= μ2. Then Jϕ(F ) is true if and only if Jϕ(μ1) = Jϕ(μ2).

As noted above, Jϕ(μ1) = Iϕ(μ1) and Jϕ(μ2) = Iϕ(μ2), hence

Jϕ(μ1) = Jϕ(μ2) iff Iϕ(μ1) = Iϕ(μ2)

Thus we have Jϕ(F ) if and only if Iϕ(F ). Since F = αΣ(F ), this proves the
claim.

– F is of the form ¬G. Then Jϕ(F ) is true if and only if Jϕ(G) is false. By
the induction hypothesis, we have Jϕ(G) iff Iϕ(αΣ(G)). Thus Jϕ(F ) is true
if and only if Iϕ(αΣ(G)) is false, or equivalently

Jϕ(F ) iff Iϕ(¬αΣ(G))
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Since ¬αΣ(G) = αΣ(F ), this proves the claim.
– F is of the form F1 ∧ F2. Then Jϕ(F ) is true if and only if both Jϕ(F1) and

Jϕ(F2) are true. By the induction hypothesis, we have Jϕ(F1) iff Iϕ(αΣ(F1))
and Jϕ(F2) iff Iϕ(αΣ(F2)). Hence, Jϕ(F ) is true if and only if both
Iϕ(αΣ(F1)) and Iϕ(αΣ(F2)) are true. Equivalently,

Jϕ(F ) iff Iϕ(αΣ(F1) ∧ αΣ(F2))

Since αΣ(F1) ∧ αΣ(F2) = αΣ(F ), this proves the claim.
– F is of the form F1 ∨F2. Since F is equivalent to the formula ¬(¬F1 ∧¬F2),

the claim follows from the previous steps.
– F is of the form F1 =⇒ F2. Since F is equivalent to the formula ¬F1 ∨ F2,

the claim follows from the previous steps.
– F is of the form ∃x : s(μ1, . . . , μn). G. By definition, Jϕ(F ) is true if and

only if there exists an a ∈ Jϕ(s(μ1, . . . , μn)) such that Jϕ[x/a](G) is true.
Again by definition,

Jϕ(s(μ1, . . . , μn)) = sJ (Jϕ(μ1), . . . , Jϕ(μn))

Since Jϕ(μi) = Iϕ(μi) for each i, we have

sJ(Jϕ(μ1), . . . , Jϕ(μn)) = sJ (Iϕ(μ1), . . . , Iϕ(μn))

By the construction of J , we have that a belongs to sJ(Iϕ(μ1), . . . , Iϕ(μn))
if and only if a belongs to U and sI(Iϕ(μ1), . . . , Iϕ(μn), a) = true. Now since
μi does not contain x for any i, we have that

sI(Iϕ(μ1), . . . , Iϕ(μn), a) = Iϕ[x/a](s(μ1, . . . , μn, x))

Also, by the induction hypothesis we have that

Jϕ[x/a](G) iff Iϕ[x/a](αΣ(G))

Combining this, we get precisely that

Jϕ(F ) iff Iϕ(∃x. s(μ1, . . . , μn, x) ∧ αΣ(G))

Since ∃x. s(μ1, . . . , μn, x) ∧ αΣ(G) = αΣ(F ), this proves the claim.
– F is of the form ∀x : s(μ1, . . . , μn). G. Since F is equivalent to the formula
¬∃x : s(μ1, . . . , μn). ¬G, the claim follows from the previous steps.

At last, we prove the model expansion property.

Theorem 2 (Model expansion property). The institution comorphism
(Φ, α, β) has the model expansion property.

Proof. Let Σ be a DFOL signature and J be a DFOL model for Σ. We construct
a FOL model M = (U, I) for the translated signature Φ(Σ) such that J =
βΣ(M).
To define U , let s1, . . . , sk be the sort symbols of Σ. For si of arity ni, set

Ui =
⋃

(x1,...,xni
)

si(x1, . . . , xni)
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where (x1, . . . , xni) ranges through all ni-tuples for which si is defined. Set

U = {⊥} ∪ U1 ∪ . . . ∪ Un

We now define I as follows.

– Let p be a predicate symbol in Σ, p : Πx1 : S1, . . . , Πxn : Sn. o. Let ϕ
be an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

pI(ϕ(x1), . . . , ϕ(xn)) iff pJ (ϕ(x1), . . . , ϕ(xn))

otherwise we set pI(ϕ(x1), . . . , ϕ(xn)) to be false.
– Let f be a function symbol in Σ, f : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ be

an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

f I(ϕ(x1), . . . , ϕ(xn)) = fJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set f I(ϕ(x1), . . . , ϕ(xn)) = ⊥.
– Let s be a sort symbol in Σ, s : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ be

an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) iff ϕ(y) ∈ sJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) = false.

It is easy to see that M = (U, I) satisfies all the axioms in the translated signature
Φ(Σ) and that we have J = βΣ(M).

Hence, the institution comorphism (Φ, α, β) permits borrowing and we have
that a DFOL theory entails a sentence if and only if the translated FOL theory
entails the translated sentence.

5 Conclusion and Future Work

We have given an institution comorphism from a dependently-typed logic to FOL
and have shown that it admits model expansion. Together with the borrowing
theorem [CM93] this implies the soundness of borrowing.

This result is important for several reasons. The need for dependent types
arises in several areas of mathematics such as linear algebra and category theory.
DFOL provides a more natural way of formulating mathematical problems while
staying close to FOL formally and intuitively. On the other hand, for FOL we
have machine support in the form of automated theorem-provers and model-
finders. The translation enables us to formulate a DFOL problem, translate it
to FOL, and then use the known automated methods for FOL (e.g., theorem-
provers such as Vampire [RV02] or SPASS [WAB+99], and model finders such
as Paradox [CS03]) to find a solution.
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First experiments with the translation have proved successful: For example,
Vampire was able to prove instantaneously that the translation of our running
example is a FOL theorem. It remains to be seen how much the encoding of type
information in predicates and the addition of axioms in the translation affects
the performance of FOL provers on larger theories. In the future we will integrate
our translation into HeTS ([MML07]), a CASL-based application that provides
a framework for the implementation of institutions and institution translations.
That will provide the infrastructure to create and translate big, structured DFOL
theories, and thus to apply our translation on a larger scale.

Since DFOL is defined within LF, we will also treat it as a running example
for an implementation of the framework introduced in [Rab08]. That will per-
mit to define arbitrary institutions and institution translations in LF and then
incorporate these definitions into HeTS.

On the theoretical side, the translation shows that DFOL can be regarded
as a fragment of FOL, which generalizes the well-known results for many-sorted
first-order logic. In particular, we are able to derive properties of DFOL such as
completeness, compactness, and the existence of free models immediately from
the corresponding properties of FOL.
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