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Preface

This volume contains selected papers from WADT 2008, the 19th International
Workshop on Algebraic Development Techniques. After having joined forces with
CMCS for CALCO 2007 in Bergen, WADT took place in 2008 as an individual
workshop and in its traditional format.

Like its predecessors, WADT 2008 focussed on the algebraic approach to
the specification and development of systems, which encompasses many aspects
of formal design. Originally born around formal methods for reasoning about
abstract data types, WADT now covers new specification frameworks and pro-
gramming paradigms (such as object-oriented, aspect-oriented, agent-oriented,
logic and higher-order functional programming) as well as a wide range of ap-
plication areas (including information systems, concurrent, distributed and mo-
bile systems). The main topics are: foundations of algebraic specification and
other approaches to formal specification, including process calculi and models of
concurrent, distributed and mobile computing; specification languages, methods
and environments; semantics of conceptual modelling methods and techniques;
model-driven development; graph transformations, term rewriting and proof sys-
tems; integration of formal specification techniques; formal testing and quality
assurance; and validation and verification.

The Steering Committee of WADT consists of Michel Bidoit, José Fiadeiro,
Hans-Jorg Kreowski, Till Mossakowski, Peter Mosses, Fernando Orejas, Francesco
Parisi-Presicce, and Andrzej Tarlecki.

WADT 2008 took place during June 13-16, 2008, at Hotel Santa Croce in
Fossabanda, a former monastery in the center of Pisa, and was organized by a
committee chaired by Andrea Corradini and including Filippo Bonchi, Roberto
Bruni, Vincenzo Ciancia and Fabio Gadducci. The scientific program consisted
of 33 presentations selected on the basis of submitted abstracts, as well as invited
talks by Egon Borger, Luca Cardelli and Stephen Gilmore.

The workshop took place under the auspices of IFIP WG 1.3 (Foundations of
System Specification), and it was organized by the Dipartimento di Informatica
of the University of Pisa. It was sponsored by IFIP TC1 and by the University
of Pisa.

All the authors were invited to submit a full paper for possible inclusion in this
volume. An Evaluation Committee was formed which consisted of the Steering
Committee of WADT with the additional members Andrea Corradini (Co-chair),
Fabio Gadducci, Reiko Heckel, Narciso Marti-Oliet, Ugo Montanari (Co-chair),
Markus Roggenbach, Grigore Rosu, Don Sannella, Pierre Yves Schoebbens and
Martin Wirsing.

All submissions underwent a careful refereeing process. We are also grateful
to the following additional referees for their help in reviewing the submissions:
Cyril Allauzen, Dénes Bisztray, Paolo Baldan, Filippo Bonchi, Artur Boronat,



VI Preface

Vincenzo Ciancia, Razvan Diaconescu, Renate Klempien-Hinrichs, Alexander
Kurz, Sabine Kuske, Alberto Lluch Lafuente, Carlos Gustavo Lopez Pombo,
Christoph Liith, Hernan Melgratti, Giacoma Valentina Monreale, Miguel
Palomino, Marius Petria, Laure Petrucci, Andrei Popescu, Florian Rabe,
Pierre-Yves Schobbens, Lutz Schréder, Traian Serbanuta, Gheorghe Stefanescu
and Paolo Torrini. This volume contains the final versions of the contributions
that were accepted.

March 2009 Andrea Corradini
Ugo Montanari



Table of Contents

Invited Talks

Concurrent Abstract State Machines and TC AL Programs ............ 1
Michael Altenhofen and Egon Bérger

Molecules as Automata (Extended Abstract) ........................ 18
Luca Cardelli

Service-Level Agreements for Service-Oriented Computing............. 21
Allan Clark, Stephen Gilmore, and Mirco Tribastone

Contributed Papers

Tiles for Reo ... oo 37
Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese, and
Ugo Montanari

C-semiring Frameworks for Minimum Spanning Tree Problems......... 56
Stefano Bistarelli and Francesco Santini

What Is a Multi-modeling Language?....... ... ... .. . i, 71
Artur Boronat, Alexander Knapp, José Meseguer, and
Martin Wirsing

Generalized Theoroidal Institution Comorphisms..................... 88
Mihai Codescu

Graph Transformation with Dependencies for the Specification of
Interactive Systems . ... ... . 102
Andrea Corradini, Luciana Foss, and Leila Ribeiro

Finitely Branching Labelled Transition Systems from Reaction
Semantics for Process Calculi......... .. ... ... .. o i .. 119
Pietro Di Gianantonio, Furio Honsell, and Marina Lenisa

A Rewriting Logic Approach to Type Inference ...................... 135
Chucky FEllison, Traian Florin Serbanutd, and Grigore Rosu

A Term-Graph Syntax for Algebras over Multisets ................... 152
Fabio Gadducci

Transformations of Conditional Rewrite Systems Revisited ............ 166
Karl Gmeiner and Bernhard Gramlich



VIII Table of Contents

Towards a Module System for K ........ .. ... ... . ... 187
Mark Hills and Grigore Rosu

Property Preserving Refinement for CSP-CASL.......... ... ... ...... 206
Temesghen Kahsai and Markus Roggenbach

Reconfiguring Distributed Reo Connectors . ......... ... ... ... ... ... 221
Christian Koehler, Farhad Arbab, and Erik de Vink

A Rewrite Approach for Pattern Containment ....................... 236
Barbara Kordy

A Coalgebraic Characterization of Behaviours in the Linear
Time — Branching Time Spectrum .......... ... ... ... ... ... ... 251
Luis Monteiro

Heterogeneous Logical Environments for Distributed Specifications . . . .. 266
Till Mossakowski and Andrzej Tarlecki

Term-Generic LOgic ... ..ot 290
Andrei Popescu and Grigore Rosu

Declarative Debugging of Rewriting Logic Specifications .............. 308
Adrian Riesco, Alberto Verdejo, Rafael Caballero, and
Narciso Marti-Oliet

Translating a Dependently-Typed Logic to First-Order Logic .......... 326
Kristina Sojakova and Florian Rabe

Author Index . ... ... 343



Concurrent Abstract State Machines and TCAL
Programs

Michael Altenhofen' and Egon Borger?

1 SAP Research, Karlsruhe, Germany
Michael.Altenhofen@sap.com
2 Universita di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. We apply the ASM semantics framework to define the await
construct in the context of concurrent ASMs. We link * CAL programs
to concurrent control state ASMs with turbo ASM submachines.

1 Introduction

In recent work we made use of the Abstract State Machines (ASM) method [§] to
analyze a given cluster protocol implementation. We extracted from the code a
high-level model that could be used for the analysis. We also refined the abstract
model to an executable CoreASM [I0JII] model so that we could run scenarios
in the model. The imperative to keep the abstract models succinct and gras-
pable for the human eye led us to work with the await construct for multiple
agent asynchronous ASMs. In this paper we define this construct for ASMs by
a conservative extension of basic ASMs.

1.1 Problem of Blocking ASM Rules

As is well known, await Cond can be programmed in a non-parallel program-
ming context as while not Cond do skip, where Cond describes the wait
condition; see the flowchart definition of the control state ASM in Fig. [[l where
as usual the circles represent control states (called internal states for Finite State
Machines, FSMs) and the rhombs a test.

One has to be careful when using this construct in an asynchronous multi-
agent (in the sequel shortly called concurrent) ASM, given that the semantics of
each involved single-agent ASM is characterized by the synchronous parallelism
of a basic machine step, instead of the usual sequential programming paradigm
or interleaving-based action system approaches like the B method [I], where for
each step one fireable rule out of possibly multiple applicable rules is chosen
for execution. The problem is to appropriately define the scope of the blocking
effect of await, determining which part of a parallel execution is blocked where
await occurs as submachine. One can achieve this using control states, which
play the role of the internal states of FSMs; see for example Fig. [ or the fol-
lowing control state ASM, which in case ctl state = wait and not Cond holds
produces the empty update set and remains in ctl state = wait, thus ‘blocking’

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 1-[L7, 2009.
© Springer-Verlag Berlin Heidelberg 2009



2 M. Altenhofen and E. Borger

done

visualized also as follows, skipping
mentioning the control states:

Fig. 1. Control State ASM for await Cond

the execution (under the assumption that in the given ASM no other rule is
guarded by ctl state = wait:

await Cond =
if ctl state = wait then
if Cond then ctl state := done

However, when the underlying computational framework is not the execution of
one rule, but the synchronous parallel execution of multiple transition rules, the
explicit use of control states leads quickly to hard to grasp complex combinations
of conditions resulting from the guards of different rules where an await Cond
has to be executed. The complexity of the corresponding flowchart diagrams can
be reduced up to a certain point using the triangle visualization in Fig. [ Tt
represents the right half of the traditional rhomb representation for check points
in an FSM flowchart—where the right half represents the exit for yes (when the
checked condition evaluates to true) and the left half the exit for no (when the
checked condition evaluates to false). Is there a simple definition for the semantics
of the await construct within the context of synchronous parallel basic ASMs?

! ‘Blocking’ here means that as long as the empty update set is produced, the state
of the machine—in particular its control state—does not change.
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Otherwise stated, can a definition of the semantics of the await Cond do M
machine, namely to wait until Cond becomes true and then to proceed with
executing M, be smoothly incorporated into the usual semantical definition of
ASMs based on constructing update sets?

Such a definition would avoid the need for control states in the high-level
definition of await (without hindering its implementation by control states).
Above all it would preserve a main advantage of the update set construction in
defining what is an ASM step, namely to elegantly capture what is intended to
be considered as a basic machine step. This is important where one has to work
with different degrees of granularity of what constitutes a basic machine step,
usually called ‘atomic’ step to differentiate it from the typical sequence of actions
in a standard program with “;” (sequential execution). For example basic ASMs,
which consist only of rules if Cond then Updates, have been equipped in [7] with
a notation for operators to sequentialize or call submachines. It is defined within
the ASM semantics framework in such a way that the computation performed
by M seq N appears to the outside world as one atomic step, producing the
overall effect of first executing an atomic M-step and in the thus produced state
an atomic N-step; analogously for submachine execution. Machines with these
constructs are called turbo ASMs because they offer two levels of analysis, the
macro step level and the view of a macro step as a sequence of micro steps (which
may contain again some macro steps, etc.).

We provide in this paper a similar application of the ASM semantics frame-
work to define the meaning of await for concurrent ASMs, in the context of the
synchronous parallelism of single-agent ASMs.

1.2 Atomicity in Control State ASMs and + CAL

When discussing this issue with Margus Veanes from Microsoft Research at the
ABZ2008 conference in London, our attention was drawn to the recently defined
language T CAL for describing concurrent algorithms. It is proposed in [21] as “an
algorithm language that is designed to replace pseudo-code” (op.cit., abstract),
the idea being that describing algorithms in the T CAL language provides two
advantages over traditional pseudo-code whose “obvious problems ... are that it
is imprecise and . .. cannot be executed” (op.cit. p.2): a) “a user can understand
the precise meaning of an algorithm by reading its TLA™ translation”, and b)
“an algorithm written in TCAL ... can be executed—either exhaustively by
model checking or with non-deterministic choices made randomly” (ibid.), using
the TLC model checker.

These two features advocated for " CAL are not new. ASMs have been used
successfully since the beginning of the 1990’ies as an accurate model for pseudo-
code, explicitly proposed in this function in [203]. A user can understand the
precise meaning of ASMs directly, namely as a natural extension of Finite State
Machines (FSMs). Defining rigorously the operational semantics of ASMs uses
only standard algorithmic concepts and no translation to a logic language. Fur-
thermore, comprehensive classes of ASMs have been made ezecutable, using var-
ious interpreters, the first two defined in 1990 at Quintus and at the university of
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Dortmund (Germany) for experiments with models of PrologH the more recent
ones built at Microsoft Research (AsmL [12]) and as open source project (Core-
ASM [I0]). ASMs have also been linked to various standard and probabilistic
model checkers [WTATHITEIT22I23/25]. Last but not least from ASMs reliable
executable code can be compiled, for a published industrial example see [6].

What we find interesting and helpful in * CAL is (besides the link it provides
to model checking) the succinct programming notation it offers for denoting
groups of sequentially executed instructions as atomic steps in a concurrent al-
gorithm, interpreted as basic steps of the underlying algorithm. As mentioned
above, such a malleable atomicity concept allowing sequential subcomputations
and procedure calls has already been provided through the seq, iterate and
submachine concepts for turbo ASMs [7], which turn a sequence or iteration of
submachine steps into one atomic step for the main machine. However the label-
notation of ¥ CAL, which is a variation of the control state notation for FSMs,
will be more familiar to algorithm designers and programmers than the seq no-
tation (in AsmL [I2] the name step is used instead of seq) and is more concise.
We will illustrate that one can exploit the T CAL notation in particular as a
convenient textual pendant to the FSM flowchart diagram description technique
for control state ASMs which contain turbo ASM submachines. As side effect
of linking corresponding features in ¥ CAL and in concurrent ASMs one obtains
an ASM interpretation for ¥ CAL programs, which supports directly the intu-
itive understanding of * CAL constructs and is independent of the translation of
+CAL to the logic language TLA*

In Section 2l we extend the standard semantics of ASMs to concurrent ASMs
with the await construct. For the standard semantics of ASMs we refer the
reader to [§]. In Section 2] we link the corresponding constructs in T CAL and in
the class of concurrent constrol state ASMs with await.

2 Concurrent ASMs with the await Construct

A basic ASM consists of a signature, a set of initial states, a set of rule decla-
rations and a main rule. A rule is essentially a parallel composition of so-called
transition rules if Cond then Updates, where Updates is a finite set of assign-
ment statements f(es,...,e,) := e with expressions e;, e. In each step of the
machine all its transition rules that are applicable in the given state are exe-
cuted simultaneously (synchronous parallelism); a rule is applicable in state S if
its guard Cond evaluates in S to true.

In more detail, the result of an M-step in state S can be defined in two parts.
First one collects the set U of all updates which will be performed by any of the
rules if Cond then Updates that are applicable in the given state S; by update
we understand a pair (I, v) of a location [ and its to be assigned value v, read:

2 see the historical account in [4].

3 For the sake of completeness we remark that there is a simple scheme for translating
basic ASMs to TLA™ formulae which describe the intended machine semantics. Via
such a translation one can model check ASMs using the TLC model checker of TLA™.
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the value the expression exp of an assignment f(eg,...,e,) := e evaluates to
in S. The reader may think of a location as an array variable (f,val), where
val consists of a sequence of parameter values to which the expressions e; in the
left side f(e1,..., e,) of the assignment evaluate in S. Then, if U is consistent,
the next (so-called internal) state S+ U resulting from the M-step in state S is
defined as the state that satisfies the following two properties:

for every location (f, val) that is not element of the update set U, its value,
written in standard mathematical notation as f(val), coincides with its value
in S (no change outside U),

each location (f, val) with update ((f,val),v) € U gets as value f(val) = v
(which may be its previous value in S, but usually will be a new value).

In case U is inconsistent no next state is defined for 9, so that the M-computation
terminates abruptly in an error state because M can make no step in S. For use
below we also mention that in case the next internal state S + U is defined,
the next step of M takes place in the state S + U + E resulting from S + U
by the environmental updates of (some of) the monitored or shared locations as
described by an update set F.

The reader who is interested in technical details can find a precise (also a
formal) definition of this concept in the AsmBook [ Sect.2.4]. In particular
there is a recursive definition which assigns to each of the basic ASM constructaﬁ
P its update set U such that yield(P, S, I, U) holds (read: executing transition
rule P in state S with the interpretation I of the free variables of P yields the
update set U), for each state S and each variable interpretation /. We extend
this definition here by defining yield (await Cond, S, I, U). The guiding principle
of the definition we are going to explain is the following:

(the agent which executes) an ASM M becomes blocked when at least one
of its rules, which is called for execution and will be applied simultaneously
with all other applicable rules in the given state S, is an await Cond whose
Cond evaluates in S to false,

(the agent which executes) M is unblocked when (by actions of other execut-
ing agents which constitute the concurrent environment where M is running)
a state S’ is reached where for each await Cond rule of M that is called
for execution in S/, Cond evaluates to true.

In the sequential programming or interleaving-based action systems context
there is at each moment at most one applicable rule to consider and thus at
most one await Cond called for execution. In the ASM computation model,
where at each moment each agent fires simultaneously all the rules that are ap-
plicable, it seems natural to block the computation at the level of agents, so that
possibly multiple await Cond machines have to be considered simultaneously.
Variations of the definition below are possible. We leave it to further experimen-
tation to evaluate which definition fits best practical needs, if we do not want
to abandon the advantage of the synchronous parallelism of basic ASMs (whose
benefit is to force the designer to avoid sequentiality wherever possible).

4 skip, par, if then else, let, choose, forall, seq and machine call.
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The technical idea is to add to the machine signature a location phase with
values running or waz’t which can be used to prevent the application of the
internal state change function S + U in case Cond of an await Cond called for
execution does not evaluate to true in S. In this case we define await Cond to
yield the phase update (phase, wait) and use the presence of this update in U
to block the state change function S + U from being applied. This leads to the
following definition:

yield(await Cond, S,I,U) =
0 if Cond is true in S // proceed
{(phase, wait)} else //change phase to wait

We now adapt the definition of the next internal state function S + U to the
case that U may contain a phase update. The intuitive understanding of an
await Cond statement is that the executing agent starts to wait, continuously
testing Cond without performing any state change, until Cond becomes true
(through actions of some other agents in the environment). In other words,
a machine M continues to compute its update set, but upon encountering an
await Cond with false Condition it does not trigger a state change. We therefore
define as follows (assuming yields(M, S, I, U)):

If phase = running in S and U contains no update (phase, wait), it means
that no await Cond statement is called to be executed in state S. In this
case the definition of S+ U is taken unchanged from basic ASMs as described
above and phase = running remains unchanged.

If phase = running in S and the update (phase, wait) is an element of U,
then some await Cond statement has been called to be executed in state S
and its wait Condition is false. In this case we set S+ U = S+{(phase, wait)}.
This means that the execution of any await Cond statement in P whose
Cond is false in the given state S blocks the (agent who is executing the)
machine P as part of which such a statement is executed. Whatever other
updates—except for the phase location—the machine P may compute in U
to change the current state, they will not be realized (yet) and the internal
state remains unchanged (except for the phase update).

If in state S phase = wait holds and the update (phase,wait) is element
of U, we set the next internal state S + U as undefined (blocking effect
without internal state change). This definition reflects that all the await
Cond statements that are called for execution in a state S have to succeed
simultaneously, i.e. to find their Cond to be true, to let the execution of P
proceed (see the next case). In the special case of a sequential program
without parallelism, in each moment at most one await Cond statement is
called for execution so that in this case our definition for ASMs corresponds
to the usual programming interpretation of await Cond.

% phase could be used to take also other values of interest in the concurrency context,
besides running and wait for example ready, suspended, resumed, etc., but here we
restrict our attention to the two values running and wait.
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If phase = wait holds in S and U contains no phase update (phase, wait), it
means that each await Cond statement that may be called to be executed
in state S has its cond evaluated to true. In this case the next internal
state is defined as S + U + {(phase, running)}, i.e. the internal state S +
U as defined for basic ASMs with additionally phase updated to running.
Otherwise stated when all the waiting conditions are satisfied, the machine
continues to run updating its state via the computed set U of updates.

The first and fourth case of this definition imply the conservativity of the re-
sulting semantics with respect to the semantics of basic ASMs: if in a state with
phase = running no await Cond statement is called, then the machine behaves
as a basic ASM; if in a state with phase = wait only await Cond statements with
true waiting Condition are called, then the machine switches to phase = running
and behaves as a basic ASM.

One can now define await Cond M as parallel composition of await Cond
and M. Only when Cond evaluates to true will await Cond yield no phase
update (phase, wait) so that the updates produced by M are taken into account
for the state change obtained by one M-step.

await Cond M =
await Cond
M

Remark. The reason why we let a machine M in a state S with phase = wait
recompute its update set is twofold. Assume that await Cond is one of the rules
in the then branch M; of M = if guard then M; else M, but not in the else
branch. Assume in state S guard is true, phase = running and Cond is false, so
that executing await Cond as part of executing M; triggers the blocking effect.
Now assume that, due to updates made by the environment of M, in the next
state guard changes to false. Then await Cond is not called for execution any
more, so that the blocking effect has vanished. Symmetrically an await Cond
that has not been called for execution in S may be called for execution in the next
state §’, due to a change of a guard governing await Cond; if in S’ Condition
is false, a new reason for blocking M appears that was not present in state S.
Clearly such effects cannot happen in a sequential execution model because there,
a program counter which points to an await Cond statement will point there
until the statement proceeds because Cond became true.

The above definition represents one possibility to incorporate waiting into
the ASM framework. We are aware of the fact that its combination with the
definition of turbo ASMs may produce undesired effects, due to the different
scoping disciplines of the two constructs[§ Other definitions of await Cond M
with different scoping effect and combined with non-atomic sequentialization
concepts should be tried out.

5 Consider for example M seq await Cond or await Cond seq M, where M contains
no await, applied in a state where Cond evaluates to false. The update (phase, wait)
of await Cond will be overwritten by executing M even if Cond remains false.
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3 Linking Concurrent ASMs and * CAL Programs

The reader has seen in the previous section that in the ASM framework a basic
step of a machine M is simply a step of M, which computes in the given state with
given variable interpretation the set U of updates such that yield(M,S,I, U)
and applies it to produce the next state S+ U. Once an update set U has been
used to build S + U, there remains no trace in S + U about which subsets
of Updates, via which M-rule if Cond then Updates that is executable in the
given state, have contributed to form this state. Thus each step of an ASM is
considered as atomic and the grain of atomicity is determined by the choice made
for the level of abstraction (the guards and the abstract updates) at which the
given algorithm is described by M. Typically precise links between corresponding
ASMs at different levels of abstraction are established by the ASM refinement
concept defined in [5].

The ASM literature is full of examples which exploit the atomicity of the sin-
gle steps of an ASM and their hierarchical refinements. A simple example men-
tioned in the introduction is the class of turbo ASMs, which is defined from basic
ASMs by allowing also the sequential composition M = M; seq Ms or iteration
M = iterate M; of machines and the (possibly recursive) call M (a4, ..., a,) of
submachines for given argument values a;. In these cases the result of executing
in state S a sequential or iterative step or a submachine call is defined by com-
puting the comprehensive update set, produced by the execution of all applicable
rules of M, and applying it to define the next state. The definition provides a
big-step semantics of turbo ASMs, which has been characterized in [I3] by a
tree-like relation between a turbo ASM macro step and the micro steps it hides
(see [, 4.1]).

Another way to describe the partitioning of an ASM-computation into atomic
steps has been introduced in [3] by generalizing Finite State Machines (FSMs)
to control state ASMs. In a control state ASM M every rule has the following
form:

Fsm(4, cond, rule,j) =
if ctl state = i then
if cond then
rule
ctl state :==j

Such rules are visualized in Fig. 2l which uses the classical graphical FSM no-
tation and provides for it a well-defined textual pendant for control state ASMs
with a rigorously defined semantics. We denote by dgm(i, cond, rule, j) the di-
agram representing FsMm(i, cond, rule, j). We skip cond when it is identical to
true. In control state ASMs each single step is controlled by the unique cur-
rent control state value and a guard. Every M-step leads from the uniquely
determined current ctl state value, say i, to its next value ji (out of {Ji,...,jn},
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depending on which one of the guards condy, is true in the given stateﬂ)—the way
FSMs change their internal states depending on the input they read. Otherwise
stated the control state pair (4, ji) specifies the desired grain of atomicity, namely
any ruley constituting a single machine step. This is essentially what is used in
T CAL to indicate atomicity, except for the notational difference that the control
states are written as labels and the fact that ™ CAL is based upon the sequential
programming paradigm (see the details below).

if ctl state = ¢ then

if cond; then
cond »| rule }—»( ! 1
! l ! rule;
77777 ctl state := 71
N if cond, then
cond,, = ke, }—’@ rulen

ctl state := jn

Fig. 2. Flowchart for control state ASMs

However, each rule;, may be a complex ASM, for example another control-state
ASM whose execution may consists of multiple, possibly sequential or iterated
substepsﬁ If their execution has to be considered as one step of the main ma-
chine M where rule; appears, namely the step determined by going from control
state ¢ to control state jx, a notation is needed to distinguish the control states
within ruley from those which define the boundary of the computation segment
that is considered as atomic.

There are various ways to make such a distinction. The M seq N operator
can be interpreted as composing control state ASMs with unique start and end
control state, namely by identifying endy; = starty. Suppressing the visualiza-
tion of this intermediate control state, as indicated in Fig. Bl provides a way
to render also graphically that the entire machine execution leading from con-
trol state start = startp; to control state end = endy is considered as atomic.
This corresponds to the distinction made in the ¥ CAL language: it is based
upon sequential control (denoted by the semicolon) the way we are used from
programming languages, but specific sequences of such sequential steps can be
aggregated using labels, namely by defining as (atomic) step each “control path
that starts at a label, ends at a label, and passes through no other labels” (op.cit.,
p-19). T CAL programs appear to be equivalent to control state ASMs with turbo
submachines; the labels play the role of the control states and the turbo sub-
machines the role of sequentially executed nonatomic ¥ CAL code between two

" If two guards condy,cond; have a non empty intersection, in case ctl state, #
ctl state; an inconsistent update set U is produced so that by definition S + U
is undefined. If instead a non-deterministic interpretation of FSM rules is intended,
this non-determinism can be expressed using the ASM choose construct.

8 Replacing Fsm(i, rule,5) by Fsm(i, M,j) with a new control state ASM M is a
frequent ASM refinement step, called procedural in [5].
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Fig. 3. Sequential composition of control state ASMs

labels. This is explained by further details in Sect. B and illustrated in Sect.
by writing the major example from [2I] as a turbo control state ASM.

3.1 Control State ASM Interpretation of + CAL Programs

T CAL is proposed as an algorithm language to describe multiprocess algorithms.
The chosen concurrency model is interleaving:

A multiprocess algorithm is executed by repeatedly choosing an arbitrary
process and executing one step of that process, if that step’s execution
is possible. [20, p.26]

This can be formalized verbatim by an ASM-scheme MULTIPROCESS for multi-
agent ASMs, parameterized by a given set Proc of constituting processes. The
execution behavior of each single process is defined by the semantics of basic
(sometimes misleadingly also called sequential) ASMs. The ASM choose con-
struct expresses choosing, for executing one step, an arbitrary process out of the
set CanExec(Proc) of those P € Proc which can execute their next stepﬁ

MULTIPROCESS(Proc) =
choose P € CanEzxec(Proc)
P

Therefore for the rest of this section we focus on describing the behavior of sin-
gle T CAL programs by ASMs, so that MULTIPROCESS becomes an interpreter
scheme for T CAL programs. The program behavior is determined by the exe-
cution of the statements that form the program body (called algorithm body in
TCAL), so that we can concentrate our attention on the operational description
of TCAL statements and disregard here the declarations as belonging to the
signature definition.

We apply the FSM flowchart notation to associate to each ¥ CAL program
body P a diagram dgm(P) representing a control state ASM asm(P) which
defines the behavior of P (so that no translation of P to TLA™ is needed to define
the semantics of P). Each label in P is interpreted as what we call a concurrent

9 There are various ways to deal with the constraint “if that step’s execution is pos-
sible”. Using the ASM choose operator has the effect that in case CanEzec(P) is
empty, nothing happens (more precisely: an empty update set is produced whose ap-
plication does not change the current state). If one wants this case to be interpreted
as explicitly blocking the scheduler, it suffices to add the await CanEzec(P) # 0
machine. The predicate CanFEzec(P) is defined inductively.
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control state. The other control states in dgm(P) are called sequential control
states because they serve to describe the sequentiality of micro-steps (denoted
in P by the semicolon), the constituents of sequences which are considered as an
atomic step. They are the control states that are hidden by applying the seq,
while and submachine call operators. Since the construction of dgm(P) uses only
standard techniques we limit ourselves here to show the graphical representation
for each type of ¥ CAL statements. Out of these components and adding rules
for the evaluation of expressions one can build a + CAL interpreter ASM, using
the technique developed in [24] to construct an ASM interpreter for Java and
JVM programs. We leave out the print statement and the assert statement; the
latter is of interest only when model checking a * CAL program.

As basic statements a T CAL program can contain assignment statements
or the empty statement skip. Program composition is done via the structured
programming constructs sequencing (denoted by the semicolon), if then else,
while together with await (named when) statements (a concurrent pendant of
if statements), two forms of choice statements (nondeterminism), statements to
call or return from subprograms. Since statements can be labeled, also Goto [
statements are included in the language, which clearly correspond to simple
updates of ctl state resp. arrows in the graphical representation.

For the structured programming constructs the associated diagram dgm/(stm)
defining the normal control flow consists of the traditional flowchart representa-
tion of FSMs, as illustrated in Fig. Bl and Fig. @ One could drop writing “yes”
and “no” on the two exits if the layout convention is adopted that the “yes”
exit is on the upper or hight half of the rhomb and the “no” exit on the lower
or left half, as is usually the case. In Fig. ] we explicitly indicate for each dia-
gram its control state for begin (called start) and end (called done), where each
dgm(stm) has its own begin and end control state, so that start and done are
considered as implicitly indexed per stm to guarantee a unique name. Most of
these control states will be sequential control states in the diagram of the entire
program that is composed from the subdiagrams of the single statements. These
sequential control states can therefore be replaced by the turbo ASM operator
seq as done in Fig. Bl which makes the atomicity of the sequence explicit.

await statements are written when Cond; in T CAL. The semantical defini-
tion of asm(await Cond) has been given within the ASM framework in Sect. 2
extending the sequential programming definition in Fig. [l For the visualization
we define dgm(when Cond;) by the triangle shown in that figure.

Basic statements stm are represented by the traditional FSM graph of Fig. 2]
in Sect. B denoted by dgm(start, asm(stm), done). The statement skip; “does
nothing” and thus has the behavior of the homonymous ASM asm(skip ;) =
skip, which in every state yields an empty update set. An assignment state-
ment in TCAL is a finite sequence stm = lhs; := expy || ... || Ihs, := expy, of
assignments, executed by “first evaluating the right-hand sides of all its assign-
ments, and then performing those assignments from left to right”. This behavior
is that of the following ASM, where the expression evaluation is performed in
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st

@@ if Cond then M
else N

dgn‘“l(N) =@—

ldentify. done = done,, = donhe,

while Cond M

Fig. 4. Control State ASM for Structured Programming Concepts

parallel for all expressions in the current state, whereafter the assignment of the
computed values is done in sequence

asm(lhsy = expy || ... || lhsy = expy ;) =
forall 1 < i < nletz; = exp;
lhs1 := x1 seq ... seq lhs, := z,

The behavior of statements Goto [ ; is to “end the execution of the current
step and causes control to go to the statement labeled [” [20, p.25], where-
for such statements are required to be followed (in the place where they oc-
cur in the program) by a labeled statement. Thus the behavior is defined by
asm(Goto | ;) = (ctl state := 1) and dgm(Goto [ ;) as an arrow leading to
control state [ from the position of the Goto [ ;, which is a control state in case
the statement is labeled.

The two constructs expressing a non determinstic choice can be defined as
shown in Fig.

10 Tt seems that this treatment of assignment statements is related to the semantics of
nested EXCEPTs in TLA™ and thus permits a simple compilation.
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CHOOQSEi € { k | CanExec(M,),1 =k = n}
ctl_state:=start(IM,)

identify
done(M,)=done for each k

CHOOSExe S  — ... dgm(M(x)) ..

Fig. 5. Control State ASMs for Choice Statements

The first type of non deterministic statement either M; or M> or ... or
M,,; chooses an executable statement among finitely many statements M;. It
is defined to be executable if and only if one of M; is executable. This means
that the execution of the statement has a blocking character, namely to wait
as long as none of the substatements is executable. Similarly the second type of
non deterministic statement, written with id € S do M;, is meant to choose
an element in a set S if there is one and to execute M for it. The statement is
considered as not executable (blocking) if the set to choose from is empty.

Since the ASM choose construct is defined as non blocking, but yields an
empty update set in case no choice is possible, we make use of the await con-
struct to let choose have an effect only when there is something to choose from.
We write CanFzec for the executability predicate.

asm(either M; or M or ... or M,;) =
await forsome 1 < j < n CanEzec(M;)
choose i € {j | CanEzec(M;) and 1 <j < n}
asm(M;)
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asm(with id € S do M;) =
await S # ()
choose id € S
asm(M (id))

The remaining * CAL statements deal with procedure call and return in a stan-
dard stack machine like manner. Define frame as quadruple consisting of a
control state, the values of the procedure’s arguments respectively of its lo-
cal variables and the procedure name. We denote the frame stack by a location
stack and the current frame by a quadruple of four locations ctl state, args
(which is a sequence, of any finite length, of variables standing for the param-
eters), locals (which is a sequence, of any finite length, of local variables) and
proc (which denotes the currently executed procedure). For a call statement
P(expry, ..., expry,); “executing this call assigns the current values of the ex-
pressions expr; to the corresponding parameters param;, initializes the proce-
dure’s local variables, and puts control at the beginning of the procedure body”,
which “must begin with a labeled statement” [20, p.27]. As preparation for the
return statement one has also to record the current frame on the frame stack.
We denote the sequence of local variables of P by locVars(P) and their ini-
tial values by initVal. For the sake of brevity, for sequences locs of locations

and wals of values we write locs := wals for the simultaneous componentwise
assignment of the values to the corresponding locations, to be precise for the
machine asm(locsy := walsy || ... || locs, := wals, ;) defined above where
locs = (locsy, ..., locs,) and wvals = (valsy,...,vals,). Let startp denote the

label of the first statement of P.

asm(P(exp,...,exp,)) =
PusHFRAME(P, (exp1, ..., €xpy)
where
PUsHFRAME(P, exps) =
stack := stack.[ctl state, args, locals, proc] // push current frame
proc := P
args := exps // pass the call parameters
locals := initVal(locVars(P)) // initialize the local variables
ctl state := startp // start execution of the procedure body

A return statement consists in the inverse machine POPFRAME. If ctl is the
point of a call statement in the given program, let next(ctl) denote the point
immediately following the call statement.

asm(return) =
let stack = stack’.[ctl, prevArgs, prevLocs, callingProc] in
ctl state := next(ctl) // go to next stm after the call stm
args := prevArgs // reassign previous values to args
locals := prevLocs |/ reassign previous values to locals
proc := callingProc
stack := stack’ // pop frame stack
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3.2 Fast Mutex Example

Fig.Blillustrates the diagram notation explained in Sect. Bl for T CAL programs.
The * CAL program for the fast mutual exclusion algorithm from [19] is given
in [21]. Fig. [ does not show the declaration part, which is given in the signature
definition. We write Ncs and Cs for the submachines defining the non critical
resp. critical section, which in T CAL are denoted by an atomic skip instruction
describing—via the underlying stuttering mechanism of 7L A—a nonatomic pro-
gram. Given the structural simplicity of this program, which says nothing about
the combinatorial complexity of the runs the program produces, there is only
one sequential subprogram. It corresponds to two simultaneous updates, so that
the sequentialization can be avoided and really no turbo ASM is needed because
there are no control states which do not correspond to + CAL labels. This case
is a frequent one when modeling systems at an abstract level, as the experi-
ence with ASMs shows. In general, the synchronous parallelism of ASMs drives
the model designer to avoid sequentialization as much as possible and to think
instead about orthogonal components which constitute atomic steps.
Comparing the two representations the reader will notice that even the layouts
can be made to be in strict correspondence, so that each of the labeled lines in the

b[self]:=true

b[self]:=false

8 N >

®
\

b[self]:=false

Fig. 6. Control state ASM for the Fast Mutual Exclusion * CAL Program
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textual description corresponds to a line starting a new control state subdiagram.
This is in line with the following well-known fact we quote from [I8], p.72]:

The visual structure of go to statements is like that of flowcharts, except
reduced to one dimension in our source languages.

We can confirm from our own work the experience reported in [21] that the
notation works well for programs one can write on a couple of pages, making
judicious use of procedures where possible to cut down the size of each single
program one has to analyze. Such programs seem to be the main target for
TCAL code and model checkable TLA™ translations for concurrent algorithms
with combinatorially involved behaviour. For larger programs flowcharts present
some small advantage over the representation of programs as strings, however,
as Knuth continues op.cit.:

... werapidly loose our ability to understand larger and larger flowcharts;
some intermediate levels of abstraction are necessary.

The needed abstractions can be provided in control state ASMs by using sepa-
rately defined complex submachines, which in the flowcharts appear as simple
rectangles to be executed when passing from one to the next control state. This
follows an advice formulated by Knuth op.cit. as one of the conclusions of his
discussion of structured programming with go to statements:

... we should give meaningful names for the larger constructs in our pro-
gram that correspond to meaningul levels of abstraction, and we should
define those levels of abstraction in one place, and merely use their names
(instead of including the detailed code) when they are used to build larger
concepts.

Acknowledgement. We thank L. Lamport and S.Merz for the discussion of
a preliminary version of this paper. We also thank M. Butler and A. Prinz for
some helpful comment and S. Tahar for pointing out a relevant reference.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)

2. Borger, E.: Why use Evolving Algebras for hardware and software engineering? In:
Bartosek, M., Staudek, J., Wiedermann, J. (eds.) SOFSEM 1995. LNCS, vol. 1012,
pp. 236-271. Springer, Heidelberg (1995)

3. Borger, E.: High-level system design and analysis using Abstract State Machines.
In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.) FM-Trends 1998.
LNCS, vol. 1641, pp. 1-43. Springer, Heidelberg (1999)

4. Borger, E.: The origins and the development of the ASM method for high-level
system design and analysis. J. Universal Computer Science 8(1), 2-74 (2002)

5. Borger, E.: The ASM refinement method. Formal Aspects of Computing 15,
237-257 (2003)



10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Concurrent Abstract State Machines and T CAL Programs 17

. Borger, E., Pappinghaus, P., Schmid, J.: Report on a practical application of ASMs

in software design. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.)
ASM 2000. LNCS, vol. 1912, pp. 361-366. Springer, Heidelberg (2000)

. Borger, E., Schmid, J.: Composition and submachine concepts for sequential ASMs.

In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 41-60.
Springer, Heidelberg (2000)

. Borger, E., Stark, R.F.: Abstract State Machines. In: A Method for High-Level

System Design and Analysis. Springer, Heidelberg (2003)

. Del Castillo, G., Winter, K.: Model checking support for the ASM high-level lan-

guage. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 331-346. Springer, Heidelberg (2000)

Farahbod, R., et al.: The CoreASM Project, http://www.coreasm.org

Farahbod, R., Gervasi, V., Glasser, U.: CoreASM: An Extensible ASM Execution
Engine. Fundamenta Informaticae XXI (2006)

Foundations of Software Engineering Group, Microsoft Research. AsmL. Web pages
(2001), http://research.microsoft.com/foundations/AsmL/

Fruja, N.G., Stark, R.F.: The hidden computation steps of turbo Abstract State
Machines. In: Borger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS,
vol. 2589, pp. 244-262. Springer, Heidelberg (2003)

Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to generate tests from
ASM specifications. In: Borger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263-277. Springer, Heidelberg (2003)

Gawanmeh, A., Tahar, S., Winter, K.: Interfacing ASMs with the MDG tool.
In: Borger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589,
pp. 278-292. Springer, Heidelberg (2003)

Gawanmeh, A., Tahar, S., Winter, K.: Formal verification of asms using mdgs.
Journal of Systems Architecture 54(1-2), 15-34 (2008)

Glasser, U., Rastkar, S., Vajihollahi, M.: Computational Modeling and Experi-
mental Validation of Aviation Security Procedures. In: Mehrotra, S., Zeng, D.D.,
Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975,
pp. 420-431. Springer, Heidelberg (2006)

Knuth, D.: Structured programming with goto statements. Computing Surveys 6
(December 1974)

Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions of Computer
Systems 5(1), 1-11 (1987)

Lamport, L.: A +CAL user’s manual.P-syntax version. (June 29, 2007),
http://research.microsoft.com/users/lamport/tla

Lamport, L.. The +CAL algorithm language. (February 14, 2008),
http://research.microsoft.com/users/lamport/tla/pluscal.html

Plonka, C.N.: Model checking for the design with Abstract State Machines. Diplom
thesis, CS Department of University of Ulm, Germany (January 2000)

Slissenko, A., Vasilyev, P.: Simulation of timed Abstract State Machines with predi-
cate logic model-checking. J. Universal Computer Science 14(12), 1984-2007 (2008)
Stéark, R.F., Schmid, J., Borger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

Winter, K.: Model checking for Abstract State Machines. J. Universal Computer
Science 3(5), 689-701 (1997)


http://www.coreasm.org
http://research.microsoft.com/foundations/AsmL/
http://research.microsoft.com/users/lamport/tla
http://research.microsoft.com/users/lamport/tla/pluscal.html

Molecules as Automata

Luca Cardelli

Microsoft Research, Cambridge, U.K.

luca@microsoft.com

Extended Abstract

Molecular biology investigates the structure and function of biochemical systems
starting from their basic building blocks: macromolecules. A macromolecule is a
large, complex molecule (a protein or a nucleic acid) that usually has inner muta-
ble state and external activity. Informal explanations of biochemical events trace
individual macromolecules through their state changes and their interaction his-
tories: a macromolecule is endowed with an identity that is retained through its
transformations, even through changes in molecular energy and mass. A macro-
molecule, therefore, is qualitatively different from the small molecules of inorganic
chemistry. Such molecules are stateless: in the standard notation for chemical re-
actions they are seemingly created and destroyed, and their atomic structure is
used mainly for the bookkeeping required by the conservation of mass.

Attributing identity and state transitions to molecules provides more than
just a different way of looking at a chemical event: it solves a fundamental dif-
ficulty with chemical-style descriptions. Each macromolecule can have a huge
number of internal states, exponentially with respect to its size, and can join
with other macromolecules to from even larger state configurations, correspond-
ing to the product of their states. If each molecular state is to be represented
as a stateless chemical species, transformed by chemical reactions, then we have
a huge explosion in the number of species and reactions with respect to the
number of different macromolecules that actually, physically, exist. Moreover,
macromolecules can join to each other indefinitely, resulting in situations cor-
responding to infinite sets of chemical reactions among infinite sets of different
chemical species. In contrast, the description of a biochemical system at the level
of macromolecular states and transitions remains finite: the unbounded complex-
ity of the system is implicit in the potential molecular interactions, but does not
have to be written down explicitly. Molecular biology textbooks widely adopt
this finite description style, at least for the purpose of illustration.

Many proposal now exist that aim to formalize the combinatorial complexity
of biological systems without a corresponding explosion in the notation. Macro-
molecules, in particular, are seen as stateful concurrent agents that interact with
each other through a dynamic interface. While this style of descriptions is (like
many others) not quite accurate at the atomic level, it forms the basis of a
formalized and growing body of biological knowledge.

The complex chemical structure of a macromolecule is thus commonly ab-
stracted into just internal states and potential interactions with the environment.
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Each macromolecule forms, symmetrically, part of the environment for the other
macromolecules, and can be described without having to describe the whole
environment. Such an open system descriptive style allows modelers to extend
systems by composition, and is fundamental to avoid enumerating the whole
combinatorial state of the system (as one ends up doing in closed systems of
chemical reactions). The programs-as-models approach is growing in popularity
with the growing modeling ambitions in systems biology, and is, incidentally, the
same approach taken in the organization of software systems. The basic problem
and the basic solution are similar: programs are finite and compact models of
potentially unbounded state spaces.

At the core, we can therefore regard a macromolecule as some kind of au-
tomaton, characterized by a set of internal states and a set of discrete transi-
tions between states driven by external interactions. We can thus try to handle
molecular automata by some branch of automata theory and its outgrowths:
cellular automata, Petri nets, and process algebra. The peculiarities of biochem-
istry, however, are such that until recently one could not easily pick a suitable
piece of automata theory off the shelf. Many sophisticated approaches have now
been developed, and we are particularly fond of stochastic process algebra. In
this talk, however, we do our outmost to remain within the bounds of a much
simpler theory. We go back, in a sense, to a time before cellular automata, Petri
nets and process algebra, which all arose from the basic intuition that automata
should interact with each other. Our main criterion is that, as in finite-state au-
tomata, we should be able to easily and separately draw the individual automata,
both as a visual aid to design and analysis, and to emulate the illustration-based
approach found in molecular biology textbooks.

With those aims, we investigate stochastic automata collectives. Technically,
we place ourselves within a small fragment of a well-know process algebra
(stochastic pi-calculus), but the novelty of the application domain, namely the
mass action behavior of large numbers of well-mixed automata, demands a
broader outlook. By a collective we mean a large set of interacting, finite state
automata. This is not quite the situation we have in classical automata theory,
because we are interested automata interactions. It is also not quite the sit-
uation with cellular automata, because our automata are interacting, but not
necessarily on a regular grid. And it is not quite the situation in process algebra,
because we are interested in the behavior of collectives, not of individuals. And
in contrast to Petri nets, we model separate parts of a system separately. By
stochastic we mean that automata interactions have rates. These rates induce a
quantitative semantics for the behavior of collectives, and allow them to mimic
chemical kinetics. Chemical systems are, physically, formed by the stochastic
interactions of discrete particles. For large number of particles it is usually pos-
sible to consider them as formed by continuous quantities that evolve according
to deterministic laws, and to analyze them by ordinary differential equations.
However, one should keep in mind that continuity is an abstraction, and that
sometimes it is not even a correct limit approximation.
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In biochemistry, the stochastic discrete approach is particularly appropriate
because cells often contain very low numbers of molecules of critical species:
that is a situation where continuous models may be misleading. Stochastic au-
tomata collectives are hence directly inspired by biochemical systems, which are
sets of interacting macromolecules, whose stochastic behavior ultimately derives
from molecular dynamics. Some examples of the mismatch between discrete and
continuous models are discussed.
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Abstract. Service-oriented computing is dynamic. There may be many
possible service instances available for binding, leading to uncertainty
about where service requests will execute. We present a novel Markovian
process calculus which allows the formal expression of uncertainty about
binding as found in service-oriented computing. We show how to com-
pute meaningful quantitative information about the quality of service
provided in such a setting. These numerical results can be used to allow
the expression of accurate service-level agreements about service-oriented
computing.

1 Introduction

Dynamic configuration is the essence of service-oriented computing. Service
providers publish their services in a public registry. Service consumers discover
services at run-time and bind to them dynamically, choosing from the available
service instances according to the criteria which are of most importance to them.
This architecture provides robust service in difficult operational conditions. If
one instance of a service is temporarily unavailable then another one is there to
take its place. It is likely though that this replacement is not fully functionally
identical. It might have some missing functionality, or it might even offer addi-
tional functionality not found in the temporarily unavailable service instance.

However, even in the case of a functionally-identical replacement matters are
still not straightforward when non-functional criteria such as availability and
performance are brought into the picture. It is frequently the case that the
functionally-equivalent replacement for the temporarily unavailable service will
exhibit different performance characteristics simply because it hosts a copy of
the service on another hardware platform. This impacts on essentially all per-
formance measures which one would think to evaluate over the system configu-
ration.

The world of distributed systems in which service-oriented computing resides
is resource-sharing in nature. In such systems we have the additional compli-
cation that services may only be partially available in the sense that they are
operational, but heavily loaded. In principle, all of their functionality is available,
but only at a fraction of the usual level of performance. This becomes a pressing
concern when service providers wish to advertise service-level agreements which
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provide service consumers with formal statements about the quality of service of-
fered. For example, a service provider might believe that 90% of requests receive
a response within 3 seconds, but how can they check this?

Analytical or numerical performance evaluation provides valuable insights into
the timed behaviour of systems over the short or long run. Prominent methods
used in the field include the numerical evaluation of continuous-time Markov
chains (CTMCs). These bring a controlled degree of randomness to the sys-
tem description by using exponentially-distributed random variables governed
by rate constants to characterise activities of varying duration. Often generated
from a high-level description language such as a Petri net or a process alge-
bra, CTMCs are applied to study fixed, static system configurations with known
subcomponents with known rate parameters. This is far from the operating con-
ditions of service-oriented computing where for critical service components a set
of replacements with perhaps vastly different performance qualities stand ready
to substitute for components which are either unavailable, or the consumer just
simply chooses not to bind to them. How can we bridge this gap and apply
Markovian performance evaluation to the assessment of service-level agreements
about service-oriented computing?

In the present paper we propose a new Markovian process calculus which in-
cludes language constructs for the formal expression of uncertainty about bind-
ing and parameters (in addition to the other dimension of uncertainty about
durations modelled in the Markovian setting through the use of exponentially-
distributed random variables). We put forward a method of numerical evaluation
for this calculus which scales well with increasing problem size to allow precise
comparisons to be made across all of the possible service bindings and levels
of availability considered. Numerical evaluation is supported inside a modelling
environment for the calculus. We demonstrate the approach by considering an ex-
ample of a (fictional) virtual university formed by bringing together the resources
of several (real) universities. Our calculus is supported by a freely-available soft-
ware tool.

Structure of this paper: In SectionPlwe introduce our new Markovian calculus. In
Section [3] we present an example service-oriented computing system, a “virtual
university”. In Section @l we describe the analysis which can be performed on
our process calculus models. In Section Bl we explain the software tools which we
use. We discuss related work in Section [l and present conclusions in Section [7

2 SRMC: Sensoria Reference Markovian Calculus

SRMC is a Markovian process calculus in the tradition of PEPA [I], Stochastic
KLAIM [2], and Stochastic FSP [3]. On top of a classical process calculus, SRMC
adds namespaces to allow the structured description of models of large size, and
dynamic binding to represent uncertainty about component specification or the
values of parameters. As a first step in machine processing, namespaces and
dynamic binding can be resolved in order to map into a Markovian calculus
without these features such as PEPA (for performance analysis [45]). Going
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further, rate information can also be erased in order to map into an untimed
process calculus such as FSP (for analysis of safety and liveness properties [0]).

Namespaces in SRMC may be nested. Dynamic binding is notated by writing
in the form of a set all of the possible values which may be taken. The bind-
ing records that the value is one of the values in the set (but we are not sure
which one). The following example uses the name UEDIN for a location, the name
Server for the server located there, the constant processors for the number of
processors which the Edinburgh server has, and the constant availability for
the availability of the server (which is between 50% and 100%).

UEDIN: : {
Server: :{
processors = 2;
availability = { 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 };
}
}

Outside the namespace scope one refers to the first constant using the fully
qualified name UEDIN: : Server: :processors and to the second using the name
UEDIN: :Server::availability.

In addition to being able to give names to numerical constants and values
it is also possible to give names to processes (in order to describe recursive
behaviour). Process terms are built up using prefix (.) and choice (+). The
following process definition describes a lossy buffer which loses, on average, one
datum in every ten. As the example shows, activity rates can be conditioned by
probabilities (0.1 and 0.9 here).

LossyBuffer: :{
Empty = (put, 0.1 * r).Empty + (put, 0.9 * r).Full;
Full = (get, s).Empty;

}

Processes of the SRMC language give rise to labelled transition systems which
are converted to Continuous-Time Markov Chain (CTMC) representations in
the way which is familiar from PEPA [I].

Process expressions can be defined conditionally in SRMC depending on the
values obtained in the resolution of dynamic binding. For example, a server might
allow additional sessions to be opened if availability is above 70% and forbid the
creation of new sessions otherwise.

if availability > 0.7 then (openSession, r).ServeClient

An equivalent effect can be obtained using functional rates [7] which can allow
the use of space-efficient state-space representation using Kronecker methods.
The equivalent process expression using functional rates is below.

(openSession, if availability > 0.7 then r else 0.0).ServeClient
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In stochastic Petri nets functional rates are termed “marking dependent rates”.

Dynamic service binding is described by associating a name with a set of
processes. The example below records that the server is either the Edinburgh
server (UEDIN) or the Bologna server (UNIBO).

Server = { UEDIN::Server, UNIBO::Server };

2.1 Discussion

It might seem that it is not necessary to have the ability to describe sets of
processes, binding to one of these later because it would be possible to implement
the idea of dynamic binding instead using well-known process calculus primitives.
For example, one could use a silent, internal 7 transition at the start of the
lifetime of one of the components to choose to behave as one of the binding
sites, thereafter ignoring all of the possible behaviour described by the other
components from the other sites. While this is possible, we do not favour this
approach because it leads to the consideration of the full state space for every
evaluation of parameters of the system. In contrast, the method of first projecting
down to a particular binding and then evaluating this leads to the smallest
possible state-space for each evaluation run, with attendant benefits for run-
times and stability of the results. Further, the binding projection method allows
the problem to be decomposed in a larger number of smaller problems, each of
which can be solved independently and the results combined. We wish to perform
scalable analysis of scalable systems and so this approach suits us well.

2.2 Numerical Evaluation

We have been keen to decompose the analysis problem so that we can ensure
that the analysis can be performed as a large number of numerical evaluations
of small size. Our preference for problems of this form stems from the fact that
they are easy to distribute across a network of workstations. Thus, we use a
distributed computing platform (Condor [§]) to accelerate the numerical eval-
uation work by distributing the computation across a cluster of workstations
(a Condor “pool”). In this way we can greatly increase the speed of generation
of results. In practice we have found that our Condor pool of 70 machines gives
a speedup over sequential evaluation close to 70-fold. Because we are aware that
others may wish to use our software but may not have a local Condor pool we
also provide a purely sequential evaluation framework which does not depend on
Condor.

We know that numerical linear algebra is not to everyone’s taste so we will
just give an outline of what we do here and refer the curious to [9]. Investigation
of SLAs requires the transient analysis of a CTMC, represented as an n X n
state transition matrix @ (the “generator matrix”). We are concerned with find-
ing the transient state probability row vector w(t) = [m1(¢),..., 7 ()] where
m;(t) denotes the probability that the CTMC is in state ¢ at time . Transient
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and passage-time analysis of CTMCs proceeds by a procedure called uniform-
isation [I0JII]. The generator matrix, @, is “uniformized” with:

P=Q/q+1

where ¢ > max; |Q;| and I is the identity matrix. This process transforms a
CTMC into one in which all states have the same mean holding time 1/q.

Passage-time computation is concerned with knowing the probability of reach-
ing a designated target state from a designated source state. It rests on two key
sub-computations. First, the time to complete n hops (n = 1,2,3,...), which is
an Erlang distribution with parameters n and q. Second, the probability that
the transition between source and target states occurs in exactly n hops.

3 Example: Distributed e-Learning Case Study

Our general concern is with evaluating quality of service in the presence of uncer-
tainty such as that caused by dynamic binding but as a lighthearted example to
illustrate the approach we consider a (fictional) Web Service-based distributed e-
Learning and course management system run by the Sensoria Virtual University
(SVU).

The SVU is a virtual organisation formed by bringing together the resources
of the universities at Edinburgh (UEDIN), Munich (LMU), Bologna (UNIBO),
Pisa (UNIPI) and others not listed in this example. The SVU federates the
teaching and assessment capabilities of the universities allowing students to en-
rol in courses irrespective of where they are delivered geographically. Students
download learning objects from the content download portals of the universities
involved and upload archives of their project work for assessment. By agreement
within the SVU, students may download from (or upload to) the portals at any
of the SVU sites, not just the one which is geographically closest.

Learning objects may contain digital audio or video presentation of lecture
courses and students may be required to upload archives of full-year project
work. Both of these may be large files so the scalability of such a system to
support large numbers of students is a matter of concern. We have addressed
this issue previously [T2/13].

3.1 The Servers

We start by describing the servers which are available for use. Dedicated up-
load and download portals are available at each site. At Edinburgh the portals
sometimes fail and need to be repaired before they are available to serve content
again. They are usually relatively lightly loaded and availability is between 70%
and 100%. The portals at Edinburgh are described in SRMC thus.

UEDIN: : {
lambda = 1.65; mu = 0.0275; gamma = 0.125; delta = 3.215;
avail = { 0.7, 0.8, 0.9, 1.0 };
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UploadPortal: :{
Idle = (upload, avail * lambda).Idle + (fail, mu).Down;
Down = (repair, gamma).Idle;

}

DownloadPortal::{
Idle = (download, avail * delta).Idle + (fail, mu) .Down;
Down = (repair, gamma).Idle;

}

The portals at Munich are so reliable that it is not worth modelling the very
unlikely event of their failure. However, they are slower than the equivalent
portals at Edinburgh and availability is more variable and usually lower, because
the portals are serving a larger pool of local students.
LMU: : {
lambda = 0.965; delta = 2.576;
avail = { 0.5, 0.6, 0.7, 0.8, 0.9 };
UploadPortal::{
Idle = (upload, avail * lambda).Idle;
}
DownloadPortal: :{
Idle = (download, avail * delta).Idle;
}
}

Because it is running a more recent release of the portal software the Bologna
site offers secure upload and download also. Availability is usually very good.
To maintain good availability the more expensive operations of secure upload
and secure download are not offered if the system seems to be becoming heavily
loaded.

UNIBO::{
lambda = 1.65; mu = 0.0275; gamma = 0.125; delta = 3.215;
slambda = 1.25; sdelta = 2.255; avail = { 0.8, 0.9, 1.0 };
UploadPortal::{
Idle = (upload, avail * lambda).Idle + (fail, mu).Down
+ if avail > 0.8 then (supload, avail * slambda).Idle;
Down = (repair, gamma).Idle;
}
DownloadPortal::{
Idle = (download, avail * delta).Idle + (fail, mu) .Down
+ if avail > 0.8 then (sdownload, avail * sdelta).Idle;
Down = (repair, gamma).Idle;

}

The Pisa site is just like the Bologna site, but uses a higher grade of encryption,
meaning that secure upload and download are slower (slambda = 0.975, sdelta
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= 1.765). We can list the possible bindings for upload and download portals in
the following way.

UploadPortal =
{ UEDIN: :UploadPortal::Idle, LMU: :UploadPortal::Idle,
UNIBO: :UploadPortal::Idle, UNIPI::UploadPortal::Idle };

DownloadPortal =
{ UEDIN: :DownloadPortal::Idle, LMU: :DownloadPortal::Idle,
UNIBO: :DownloadPortal::Idle, UNIPI::DownloadPortal::Idle };

3.2 The Clients

We now describe two typical clients of the system, Harry and Sally. Both Harry
and Sally wish to accomplish the same task, which is to download three sets
of learning materials and to upload two coursework submissions. They perform
this behaviour cyclically. Harry is unconcerned about security and never uses
secure upload or download even if it is available. Sally uses secure upload and
secure download sometimes when it is available, and uses non-secure upload and
download when it is not. We are interested in the passage of time from start to
finish for both Harry and Sally. Clients do not determine the rates of activities:
others do (we write “ ” for the rate here).

Harry::{
Idle = (start, 1.0).Download;
Download = (download, _).(download, _).(download, _).Upload;
Upload = (upload, _).(upload, _).Disconnect;
Disconnect = (finish, 1.0).Idle;

}
Sally::{
Idle = (start, 1.0).Download;
Download = (download, _).(download, _).(download, _).Upload
+ (sdownload, _).(sdownload, _).(sdownload, _).Upload;
Upload = (upload, _).(upload, _).Disconnect
+ (supload, _).(supload, _).Disconnect;
Disconnect = (finish, 1.0).Idle;
}

The client is either Harry or Sally, both initially idle.
Client = { Harry::Idle, Sally::Idle };

Finally, the complete system is formed by composing the client with the two por-
tals, cooperating over upload and download. The upload and download portals
do not communicate with each other (<>).

System = Client <upload, download, supload, sdownload>
(UploadPortal <> DownloadPortal);
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4 Analysis

The analysis applied to SRMC models is a staged computation:

Resolving service bindings: Each possible service binding is chosen in turn.
This involves selecting one element of each set of possibilities for service
providers.

Model minimisation: The model is reduced to remove unused definitions of
processes and rate constants. This is a necessary economy applied to make
the next stage more productive.

Parameter sweep: Parameter sweep is performed over the remaining rate val-
ues, executing processes in a distributed fashion on a Condor pool, or se-
quentially on a single machine.

Analysis and visualisation: The results are collected and summarised using
statistical procedures. We visualise the results to aid in model interpretation
and analysis.

4.1 Qualitative Analysis

On the way towards the quantitative results which we seek our state-space analy-
sis delivers qualitative insights about the function of the system being modelled.
We list three of the things which we learn here:

1. The system is deadlock-free for all configurations. No binding of service in-
stances to service parameters gave rise to a model with a deadlock.

2. The system is livelock-free for all configurations. No binding of service in-
stances to service parameters gave rise to a model where states could be
visited only a finite number of times (a transient state, in Markov chain
terminology).

3. All activities in the model are weakly live. That is, for each activity (such
as supload) there is some configuration which allows that activity to occur,
although it may be blocked in other configurations. Put more plainly, the
SRMC model has no “dead code” (activities which can never occur).

4.2 Sensitivity Analysis

We are here concerned generally with lack of certainty about parameters such
as rates but even in the case where rate information can be known with high
confidence the framework which we have available for performing a parameter
sweep across the rate constants can be used to perform sensitivity analysis.
One way in which the results obtained by sensitivity analysis can be used is to
determine which activities of the system are bottlenecks. That is, to discover
which rate or rates should we alter to ensure that the user sees the greatest
improvement in performance. We have an evaluation function which assigns a
score to each solution of the underlying Markov chain. In this case, the less is
the response time then the higher is the score.

It might seem that the results obtained from sensitivity analysis are likely to
be pretty unsurprising and that it will turn out to be the case that increasing the
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Fig.1. Graphs showing sensitivity analysis over the rates in the produced models.
The basic plot is a cumulative distribution function showing how the probability of
completion of the uploads and downloads increases as a function of time. The surface
plot is obtained from this because we vary one of the parameters. Here in both cases
we vary the availability of the Munich server from 50% availability to 90% availability.
Expressed as a scaling factor this becomes 0.5 to 0.9.

rate of any activity brings about a proportional decrease in response time. To see
that this is not the case, we will compare two sets of results. Recall that SRMC
generates many PEPA models; we number these. The first set of results shown
in Fig. [l comes from PEPA model 1, where Edinburgh is the upload portal, Mu-
nich the download portal, and Harry is the client. In model 3 they swap around so
that Munich is the upload portal, Edinburgh the download, and Harry is again
the client. In the latter case low availability of the Munich server makes a no-
ticeable impact on response time (the curve takes longer to get up to 1) but in
the former case the low availability of the Munich server has negligible impact.
This is made clear in the results but it is unlikely that a modeller would see this
trend just by inspecting the model; we needed to see the results to get this in-
sight. We have generated many results so we have been able to get many such
insights.

4.3 Computing Response-Time Percentiles

The results shown in Fig. [l show ten of the nearly 250 cumulative distribution
functions which we computed for the possible configurations of the example. We
wanted to produce a simple statistical summary which brought together all of
the results obtained. We computed percentiles of the results which declare that
in (say) 90% of the possible configurations of the system the response-time will
be in this region. This tells us about the experience which most users will have
(where here, “most” means “90% of”). Some will see better response times, and
some with see worse, but it is usually interesting to consider the common case
response times.

To illustrate how percentiles can be used to summarise the results we show in
Fig.[2(a) forty sets of results in the form of the cumulative distribution functions
which we computed. These give a sense of the “envelope” in which the results are
contained. Most configurations of the system produced by resolving the service
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Fig. 2. Sub-figure (a) shows 40 of the response-time distributions computed for the
Sensoria Virtual University example. Sub-figure (b) shows the 10% to 90% percentile
of the results over all of the runs. The median value is also marked as a horizontal
line cutting across the thick bar in the candlestick. From sub-figure (b) we can report
results of the form “All uploads and downloads will have completed by time ¢t = 10
with probability between 0.90 and 0.97, in 90% of configurations”.

instance bindings are very likely to have completed the work to be done by ¢ = 10.
The majority of configurations give response-time distributions which put them
towards the top of the “envelope” but there are a few configurations which
perform quite a bit worse (and our analysis has identified which configurations
these are).

The graph in Fig. (b) is known as a “candlestick” graph and is a summary
of all of the solutions produced. It shows that 90% of the time the response time
distribution will lie within the area described by the thick bar of the candlestick,
but it has been seen to be as high as the top of the candlestick, and it has been
seen to be as low as the bottom of the candlestick.

4.4 Comparisons across All Runs

Even for traditional computer systems without dynamic binding, service-level
agreements are already quite complex because they relate a path through the
system behaviour, a time bound, and a probability bound. (A typical example of
an SLA is “We guarantee that 97.5% of requests will receive a response within
three seconds”. Here “from request to response” is the path through the system,
three seconds is the time bound, and 97.5% gives the probability bound.) In
the service-oriented computing setting we have yet another dimension of com-
plication because we must add a qualifier speaking about the quantile of system
configurations being considered (“...in 90% of the possible configurations”).
Complicated service-level agreements of this form are unattractive.

We have found that an alternative presentation of the results can be easier
to interpret in some cases and so the SRMC software supports a presentation
mode where we show the probability of completion by a particular point in
time, across all possible configurations. Having all of the results to hand, we are
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Fig. 3. Probability of completion of all uploads and downloads against time across
all (nearly 250) possible configurations of the example. In sub-figure (a) the times
considered are t = 1.0, 2.0, 5.0, and 10.0. In sub-figure (b) ¢ = 1.0 and 10.0 are repeated
for reference and t = 3.0 and 6.0 are also presented. By time ¢ = 10.0 we are able to
make meaningful comments about all configurations. For example, we can say that
there is at least a 90% chance of having completed the uploads and downloads by time
t = 10.0, irrespective of the system configuration. The greatest variability is seen at
times around ¢t = 3.0. Here for the best configurations the system has a 70% chance of
having completed the work for the worst configurations there is less than a 40% chance
of having completed.

able to reduce the dimension of the problem and make statements about the
probability of completion of the work at a particular point in time, irrespective
of the configuration of the system.

In reference to Fig.Blwe can see not a statistical summary (as we saw in Fig. 2{(b)
before) but the actual results of all runs at a particular point in time. This makes
clear the difference between the best-performing configurations at time ¢ and the
worst-performing configurations at time ¢t. For low values of ¢ such as 1.0 there
is little chance that any user has completed all uploads and downloads. For high
values of ¢ such as 10.0 there is little chance that they have not.

5 Software Tool Support

SRMC is supported by a tool chain whose main design goal has been to provide
a friendly and rich graphical user interface as well as a set of efficient model
solvers. The software comprises a graphical front-end written in Java for the
Eclipse framework and a back-end implemented in Haskell and C++4. The latter
exposes its functionality via a command-line interface, and thus can be used as
a stand-alone application in headless environments such as Condor or to reduce
the tool’s overall memory footprint. This section provides an overview of both
modules; further information is available at the SRMC Web site [14], which also
provides a download link to the tool.
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5.1 Analysis Tools in the Back-end

The analysis back-end is implemented as a series of three applications: the Sen-
soria Markovian Compiler (smc), the Imperial PEPA Compiler (ipc) and the
Hypergraph-based Distributed Response-Time Analyser (hydra). smc accepts
SRMC models as input and generates the intermediate PEPA descriptions that
represent all the possible configurations of the system. The main tasks performed
by smc are resolving binding instantiations, name-resolution and flattening of
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Fig. 4. Screenshot showing the SRMC Eclipse plug-in processing the SVU example.
Displayed in the screenshot are (i) the workspace navigator showing compiled repre-
sentations of the SRMC model as PEPA models, Hydra models and compiled Hydra
C++ files; (ii) the SRMC model editor; (iii) the user-interface dialogue used for setting
parameters on the analyser and running the transient analysis repeatedly; and (iv)
a graphical display showing the results of all passage-time analysis runs expressed in
the form of the cumulative distribution functions computed numerically by the Markov
chain solver. In addition to providing user-interface widgets, the plug-in exposes SRMC
tools to the framework through an application programming interface for third-party
Eclipse plug-ins.
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the SRMC model’s namespaces, and generation of PEPA models for analysis.
A database file produced by srmc maintains associations between the original
SRMC model and the underlying PEPA models.

Such models are the basic units on which analysis is to be carried out. As
PEPA benefits from extensive software support, a number of analysis tools are
readily available for re-use in this context. Here, each PEPA model is run through
ipc [I5]. It translates the description into a format suitable for hydra [16], which
performs passage-time analysis and stores the results to disk. Such results can
be related back to the SRMC description via the database file from smc.

5.2 Presentation Layer at the Front-end

The graphical user interface is implemented as a contribution (plug-in) to Eclipse,
a popular extensible cross-platform development framework. The plug-in pro-
vides an editor and a standard Eclipse contribution to the Qutline view to con-
cisely display information about the model. The plug-in also adds a top-level
menu item through which SRMC features are accessible. In particular, a wiz-
ard dialogue guides the user through the set-up of passage-time analysis. Upon
completion, the wizard schedules an array of background processes that run the
back-end tool chain as described above. All the intermediate resources such as
the PEPA model instances and the hydra description files are available in the
user’s workspace for further inspection via the Eclipse Navigator view. When
the analysis is complete, the results are collected and presented to the user as a
plot in the Graph view. Figured shows a screenshot of an Eclipse session running
the SRMC plug-in.

6 Related Work

The SRMC language builds on the PEPA language and tools. PEPA has been
applied to a wide range of modelling problems across computer science including
software [I7UI8/T9], hardware [20021)22], and services [2324]. We see our work on
modelling with SRMC as being similar in style but with an increased emphasis
on experimentation.

In our numerical evaluation of the many possible system configurations which
are described by an SRMC model we have essentially used the “brute force” so-
lution of solving for all possible bindings. This has the advantage that it ensures
that all of the bindings are considered, and is trivially parallelisable, but still
costs a lot of computation time. It is possible that we could do fewer numerical
evaluations and still explore the space of all possibilities well by applying meth-
ods which are well-known in the field of design of experiments. Similar strategic
exploration of the solution space is found in state-of-the-art modelling platforms
such as Mé&bius [25].
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7 Conclusions

For software engineering to improve as a well-managed discipline we believe that
it is critical to have access to a modelling process which can make sound quanti-
tative predictions about the performance of complex systems. We have addressed
the problem of how virtual organisations can defend any quantitative statements
about their quality of service as expressed in service-level agreements given that
their operation is founded on service-oriented computing. The essential function
of dynamic binding brings uncertainty to the model concerning both functional
and non-functional aspects. We have been able to control this uncertainty by
considering all possible bindings, undertaking separate numerical evaluations of
these, and combining the results to correctly quantify the uncertainty induced
by dynamic binding and degree of availability.

We decomposed the computations needed into a large number of indepen-
dent numerical evaluations each of which has modest memory requirements. We
distributed the independent runs across a network of workstations. The dis-
tributed computing platform which we chose, Condor, makes use of the idle
cycles on networked workstations meaning that we could perform all of the com-
putations which were needed on typical desktop PCs when they were unused in
our student computing laboratories. Widely-used in computational science, this
approach uses stock hardware and scales well to apply to more complex prob-
lem cases with a greater range of possible configurations and parameter values.
More computing power can be deployed on larger problems simply by adding
more machines to the Condor pool. We hope that this is a “real-world” approach
to a “real-world” problem.

Acknowledgements. The authors are supported by the EU FET-IST Global
Computing 2 project SENSORIA (“Software Engineering for Service-Oriented
Overlay Computers” (IST-3-016004-IP-09)). The Imperial PEPA Compiler was
developed by Jeremy Bradley of Imperial College, London. The Hydra response-
time analyser was developed by Will Knottenbelt and Nick Dingle of Imperial
College, London. We extended both of these software tools for the present work.

References

1. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

2. De Nicola, R., Katoen, J.P., Latella, D., Massink, M.: STOKLAIM: A stochastic
extension of KLAIM. Technical Report ISTI-2006-TR-01, Consiglio Nazionale delle
Ricerche (2006)

3. Ayles, T.P., Field, A.J., Magee, J., Bennett, A.: Adding Performance Evaluation
to the LTSA Tool. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS,
vol. 2794. Springer, Heidelberg (2003)

4. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), September 2007, pp. 55-56. IEEE, Los
Alamitos (2007)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Service-Level Agreements for Service-Oriented Computing 35

. Tribastone, M.: The PEPA Plug-in Project. In: Harchol-Balter, M., Kwiatkowska,

M., Telek, M. (eds.) Proceedings of the 4th International Conference on the
Quantitative Evaluation of SysTems (QEST), September 2007, pp. 53-54. IEEE,
Los Alamitos (2007)

. Magee, J., Kramer, J.: Concurrency: State Models and Java Programming, 2nd

edn. Wiley, Chichester (2006)

. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In:

de Alfaro, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and
PAPM 2001. LNCS, vol. 2165, pp. 120-135. Springer, Heidelberg (2001)

. Thain, D., Tannenbaum, T'., Livny, M.: Distributed computing in practice: the Con-

dor experience. Concurrency — Practice and Experience 17(2—4), 323-356 (2005)

. Knottenbelt, W.: Performance Analysis of Large Markov Models. PhD. thesis, Im-

perial College of Science, Technology and Medicine, London, UK (February 2000)
Grassmann, W.: Transient solutions in Markovian queueing systems. Computers
and Operations Research 4, 47-53 (1977)

Gross, D., Miller, D.: The randomization technique as a modelling tool and solution
procedure for transient Markov processes. Operations Research 32, 343-361 (1984)
Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-
based distributed e-learning and course management system. In: Bravetti, M.,
Nufez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214-226.
Springer, Heidelberg (2006)

Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for
scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS,
vol. 4912, pp. 204-221. Springer, Heidelberg (2008)

SRMC Team: Sensoria Reference Markovian Calculus Web Site and Software
(October 2008), http://groups.inf.ed.ac.uk/srmc

Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time
densities in PEPA models using IPC: The Imperial PEPA Compiler. In: Kotsis, G.
(ed.) Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems, Univer-
sity of Central Florida, pp. 344-351. IEEE Computer Society Press, Los Alamitos
(2003)

Dingle, N., Harrison, P., Knottenbelt, W.: HYDRA: HYpergraph-based Distributed
Response-time Analyser. In: Proc. International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA 2003), Las Vegas,
Nevada, USA, June 2003, pp. 215-219 (2003)

Hillston, J., Kloul, L.: Performance investigation of an on-line auction system.
Concurrency and Computation: Practice and Experience 13, 23-41 (2001)
Hillston, J., Kloul, L., Mokhtari, A.: Active nodes performance analysis using
PEPA. In: Jarvis, S. (ed.) Proceedings of the Nineteenth annual UK Performance
Engineering Workshop, July 2003, pp. 244-256. University of Warwick (2003)
Buchholtz, M., Gilmore, S., Hillston, J., Nielson, F.: Securing statically-verified
communications protocols against timing attacks. Electr. Notes Theor. Comput.
Sci. 128(4), 123-143 (2005)

Holton, D.: A PEPA specification of an industrial production cell. In:
Gilmore, S., Hillston, J. (eds.) Proceedings of the Third International Workshop
on Process Algebras and Performance Modelling, Special Issue of The Computer
Journal 38(7), 542-551 (1995)

Gilmore, S., Hillston, J., Holton, D., Rettelbach, M.: Specifications in stochastic
process algebra for a robot control problem. International Journal of Production
Research 34(4), 1065-1080 (1996)


http://groups.inf.ed.ac.uk/srmc

36

22.

23.

24.

25.

A. Clark, S. Gilmore, and M. Tribastone

Console, L., Picardi, C., Ribaudo, M.: Diagnosis and diagnosability analysis using
PEPA. In: Proc. of 14th European Conference on Artificial Intelligence, Berlin
(August 2000); A longer version appeared in the Proc. of 11th Int. Workshop on
Principles of Diagnosis (DX 2000), Morelia, Mexico (June 2000)

Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, August 2006,
pp. 172-185 (2006)

Argent-Katwala, A., Clark, A., Foster, H., Gilmore, S., Mayer, P., Tribastone, M.:
Safety and response-time analysis of an automotive accident assistance service.
In: Proceedings of the 3rd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2008), Porto Sani, Octo-
ber 2008. Communications in Computer and Information Science (CCIS), vol. 17.
Springer, Heidelberg (2008)

Courtney, T., Gaonkar, S.;, McQuinn, M., Rozier, E., Sanders, W., Webster, P.:
Design of Experiments within the Mobius Modeling Environment. In:
Harchol-Balter, M., Kwiatkowska, M., Telek, M. (eds.) Proceedings of the 4th
International Conference on the Quantitative Evaluation of SysTems (QEST),
pp. 161-162. IEEE, Los Alamitos (2007)



Tiles for Reo*

Farhad Arbab!, Roberto Bruni2, Dave Clarke3, Ivan Lanese?, and Ugo MontanariZ
I CWI, Amsterdam, The Netherlands
farhad@cwi.nl
2 Dipartimento di Informatica, Universita di Pisa, Italy
{bruni,ugo}@di.unipi.it
3 Department of Computer Science, Katholicke Universiteit Leuven, Belgium
Dave.Clarke€@cs.kuleuven.be
4 Dipartimento di Scienze dell’Informazione, Universita di Bologna, Italy
lanese@cs.unibo.it

Abstract. Reo is an exogenous coordination model for software components.
The informal semantics of Reo has been matched by several proposals of formal-
ization, exploiting co-algebraic techniques, constraint-automata, and coloring ta-
bles. We aim to show that the Tile Model offers a flexible and adequate semantic
setting for Reo, such that: (i) it is able to capture context-aware behavior; (ii) it is
equipped with a natural notion of behavioral equivalence which is compositional;
(iii) it offers a uniform setting for representing not only the ordinary execution of
Reo systems but also dynamic reconfiguration strategies.

1 Introduction

Reo [1I78] is an exogenous coordination model for software components. It is based on
channel-like connectors that mediate the flow of data and signals among components.
Notably, a small set of point-to-point primitive connectors is sufficient to
express a large variety of interesting constraints over the behavior of connected com-
ponents, including various forms of mutual exclusion, synchronization, alternation, and
context-dependency. In fact, components and primitive connectors can be composed in
a circuit fashion via suitable attach points, called Reo nodes. Typical primitive con-
nectors are the synchronous / asynchronous / lossy channels and the asynchronous
one-place buffer. The informal semantics of Reo has been formalized in several ways,
exploiting co-algebraic techniques [2], constraint-automata [3]], and coloring tables [35].
However all the formalizations in the literature that we are aware of are unsatisfactory
from some points of view. In fact, both [2] and [3] provide detailed characterizations of
the behavior of connectors, allowing to exploit coinductive techniques, but they do not
support context-awareness, and, in particular, they are not able to faithfully model the
LossySync connector. Up to now, the only approach that takes context-awareness into
account is the 3-color semantics presented in [S]]. This semantics, however, describes
only a single computational step, thus it does not describe the evolution of the state
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of a connector. Also, none of these semantics allows reconfiguration, which then, for
instance as in [[12]], has to be added on top of them. The interplay between the dataflow
semantics of Reo circuits and their reconfiguration has been considered in [[L1] and [10]]
using graph transformations triggered by the 3-color semantics.

We aim to show that the Tile Model [9] offers a flexible and adequate semantic
setting for Reo. The name ‘tile’ is due to the graphical representation of such rules
(see Fig.[Alin Section[3)). The tile o states that the inifial configuration s can be triggered
by the event a to reach the final configuration t, producing the effect b. Tiles resemble
Gordon Plotkin’s SOS inference rules [17]], but they can be composed in three different
ways to generate larger proof steps: (i) horizontally (synchronization), when the effect
of one tile matches the trigger for another tile; (ii) vertically (composition in time),
when the final configuration of one tile matches the initial configuration of another
tile; and (iii) in parallel (concurrency). Tiles take inspiration from Andrea Corradini
and Ugo Montanari’s Structured Transition Systems [6]] and generalise Kim Larsen
and Liu Xinxin’s context systems [13]], by allowing for more general rule formats. The
Tile Model also extends José Meseguer’s rewriting logic [15] (in the non-conditional
case) by taking into account rewrite with side effects and rewrite synchronization. As
rewriting logic, the Tile Model admits a purely logical formulation, where tiles are seen
as sequents subject to certain inference rules.

Roughly, in our tile encoding, Reo nodes and primitive connectors are represented
as hyper-edges (with typed incoming and outgoing tentacles) that can be composed
by connecting their tentacles. The one-step semantics of each primitive connector C is
defined by suitable basic tiles whose initial configuration is the hyper-edge C (we use
the same notation for primitive connectors and corresponding hyper-edges) and whose
triggers and effects define how the data can flow through C.

A mapping of a fragment of Reo into the Tile Model has been already presented
in [4]]. There the emphasis was on exploiting for Reo connectors the normalization and
axiomatization techniques developed therein for the used algebra of tile connectors. For
this reason the mapping concentrated only on the synchronization connectors, i.e., data
values were abstracted away, and data-sensitive connectors such as filters or stateful
connectors such as buffers were not considered. The reason was that axiomatization for
those more complex connectors was not available. The induced semantics corresponded
to the data-insensitive 2-color semantics of Reo [5]].

In this paper we extend the mapping in [4] to deal with all Reo connectors, and
we concentrate on the 3-color semantics [J], the only one which captures context-
awareness. The 3-color semantics for Reo that we propose in Section [6] recovers the
good properties of the semantics in the literature, and provides also some additional
benefits:

— it allows to model context dependency, and models faithfully the 3-color semantics
of [5] as far as a single computational step is concerned;

— it is data-sensitive, describing the actual data that flow inside the connector;

— it can model whole computations, keeping into account the evolution of the state;

— it has a natural notion of behavioral equivalence, tile bisimilarity, that allows to
exploit coinductive techniques similar to the ones in [2/3]];

— the provided notion of bisimilarity is a congruence, i.e. the behavioral semantics is
compositional;
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— the congruence property can be easily proved by exploiting standard meta-theoreti-
cal results;

— it can be smoothly extended to deal with some form of reconfiguration (Section [7),
and the extension also specifies in a formal way the interplay between computation
and reconfiguration.

To clarify the approach we first model the simpler 2-color semantics and then show
how to handle the 3-color case. In both cases we consider a data-sensitive semantics. In-
terestingly, the two semantics can be expressed in the same setting (and in a very similar
way). Also, they give rise in a natural way to a notion of behavioral equivalence called
tile bisimilarity, which is compositional. Finally, we hint at how the same setting can be
exploited to model Reo reconfigurations, an aspect that is not considered by the standard
Reo semantics. A more detailed treatment of this complex task is left for future work.

Structure of the paper. In Sections [2land [3] we give some minimal background on Reo
and Tile Logic. In Section ] we define the representation of Reo graphs of connectors
in terms of tile configurations. Sections 3 and [6] are dedicated respectively to the mod-
eling of the 2-color and the 3-color semantics. Section [7] outlines the modeling of Reo
reconfiguration. Concluding remarks are given in Section [8] together with some hints
on future work we have in mind.

2 Reo Connectors

Reo [LL7U8] allows compositional construction of complex connectors with arbitrary
behavior out of simpler ones. The simplest (atomic) connectors in Reo consist of a user
defined set of channels. A channel is a binary connector: a medium of communication
with exactly two directed ends. There are two types of channel ends: source and sink. A
source channel end accepts data into its channel. A sink channel end dispenses data out
of its channel. Every channel (type) specifies its own particular behavior as constraints
on the flow of data through its ends. These constraints relate, for example, the content,
the conditions for loss and/or creation of data that pass through the ends of a channel,
as well as the atomicity, exclusion, order, and/or timing of their passage.

Although all channels used in Reo are user-defined and users can indeed define chan-
nels with any complex behavior (expressible in the semantic model) that they wish, a
very small set of channels, each with very simple behavior, suffices to construct useful
Reo connectors with significantly complex behavior [8]]. Figure [[l shows a common set
of primitive channels often used to build Reo connectors.

The Sync channel takes a data item from its source end and synchronously makes
it available at its sink end. This transfer can succeed only if both ends are ready to
communicate. The LossySync has the same behavior, except that it does not block its

> > > > < > - AN

Sync LossySync FIFO1 SyncDrain AsyncDrain Filter(P)

Fig. 1. A typical set of Reo channels
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® ® [ ]
Source node Sink node Mixed node
Fig. 2. Reo nodes

writer if its reader end cannot accept data. In this and only this case, the channel accepts
the written data item and loses it. The FIFO1 is an asynchronous channel that has a
buffer of size one. Unlike the prior channels, FIFO1 is a stateful channel: its behavior
depends on whether its buffer is empty or full. The SyncDrain channel has two source
ends (and no sink end) through which it can only consume data. It behaves as follows:
if and only if there are data items available at both ends, it consumes (and loses) both
of them atomically. The AsyncDrain is the asynchronous counterpart of the SyncDrain:
it consumes and loses data items from either of its two ends only one at a time, but
never from both ends together at the same time. Filter(P) is a synchronous channel with
a data-sensitive behavior: it accepts through its source end and loses any data items that
do not match its filter pattern P; it accepts a data item that matches P only if it can
synchronously dispose of it through its sink end (exactly as if it were a Sync channel).

A channel end can be composed with other channel ends into Reo nodes to build
more complex connectors. Reo nodes are logical places where channel ends coincide
and coordinate their dataflows as prescribed by node types. Figure 2] shows the three
possible node types in Reo. A node with only source channel ends is a source node;
a node with only sink channel ends is a sink node; and a node with both source and
sink channel ends is a mixed node. The term boundary nodes is also sometimes used
to collectively refer to source and sink nodes. Boundary nodes define the interface of
a connector. Components connect to the boundary nodes of a connector and interact
anonymously with each other through this interface by performing I/O operations on the
boundary nodes of the connector: fake operations on sink nodes, and write operations
on source nodes.

Reo fixes the semantics of (i.e., the constraints on the dataflow through) Reo nodes.
Data flow through a source node only if a write operation offers a data item on this node
and every one of its source channel ends can accept a copy of this data item. A source
node, thus, behaves as a synchronized replicator. Data flow through a sink node only if
at least one of its sink channel ends offers a data item and an input operation pending
on this node can accept this data item. If more than one sink channel end offers data,
the node picks one non-deterministically and excludes the offers of all the rest. A sink
node, thus, behaves as a non-deterministic merger. The behavior of a mixed node is a
combination of that of the other two: data flow through a mixed node only if at least one
of its sink channel ends offers a data item and every one of its source channel ends can
accept a copy of this data item. If more than one sink channel end offers data, the node
picks one non-deterministically and excludes the offers of all the rest. Because a node
has no buffer, data cannot be stored in a node. Hence, nodes instigate the propagation
of synchrony and exclusion constraints on dataflow throughout a connector.
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Fig. 3. Reo circuit for (a) exclusive router (from A to either F or G) and (b) Alternator

The simplest formalization of this behavior is the 2-color semantics presented in [S].
The two colors l/LJ model the flow/absence-of-flow of data at each node respectively
(this is the so-called data-insensitive semantics; instead if different colors are used to
distinguish the kind of data one obtains a data-sensitive semantics). This coloring must
satisfy the constraint conditions imposed by connectors. Each connector determines the
possible color combinations on its ends. For instance, both ends of Sync must have the
same color (i.e. either the datum flows through the whole connector or no data flow
at all), while AsyncDrain allows any coloring but (I, W), which would represent data
flowing synchronously at both of its ends. All channel ends connected to a [J node
must be colored by [J, while for B nodes, exactly one of the incoming channel ends,
and all the outgoing channel ends, must have the B color. Deriving the semantics of a
Reo connector amounts to resolving the composition of the constraints of its constituent
channels and nodes. Given a connector C a coloring ¢ for C is a function associating a
color to each node in C. The 2-color semantics of C is given by its coloring table Tc,
which contains all of its allowed colorings. For instance the coloring table of a connector
with two nodes A and B connected by a Sync connectoris 7 = {[A — l,B+— W], [A —
0,B+— O]}

In Fig. 3l we present two examples of Reo connectors that illustrate how non-trivial
dataflow behavior emerges from composing simple channels using Reo nodes. The lo-
cal constraints of individual channels propagate through (the synchronous regions of)
a connector to its boundary nodes. This propagation also induces a certain context-
awareness in connectors. See [3]] for a detailed discussion of this.

The connector shown in Fig. Bla) is an exclusive router: it routes data from A to
either F or G (but not both). This connector can accept data only if there is a write
operation at the source node A, and there is at least one taker at the sink nodes F' and
G. If both F and G can dispense data, the choice of routing to F or G follows from the
non-deterministic decision by the mixed node E: E can accept data only from one of its
sink ends, excluding the flow of data through the other, which forces the latter’s respec-
tive LossySync to lose the data it obtains from A, while the other LossySync passes its
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Fig. 4. A 2-coloring example for the exclusive router

data as if it were a Sync. A valid coloring of the exclusive router is shown in Fig. [
The case shown in Fig.[] corresponds to the forwarding of the data available on node A
to the node F but not to G. There are two other possible 2-colorings for the exclusive
router: one representing the case where the flow goes from A to G and not to F (i.e.
the mirrored diagram w.r.t. Fig. ) and one representing no dataflow (all the boxes are
empty).

The connector shown in Fig. BIb) is an alternator that imposes an ordering on the
flow of the data from its input nodes A and B to its output node C. The SyncDrain
enforces that data flow through A and B only synchronously. The empty buffer together
with the SyncDrain guarantee that the data item obtained from A is delivered to C while
the data item obtained from B is stored in the FIFO1 buffer. After this, the buffer of the
FIFO1 is full and data cannot flow in through either A or B, but C can dispense the data
stored in the FIFO1 buffer, which makes it empty again.

3 Tile Logic

Reo connectors are naturally represented as graphs. The advantage of using (freely
generated) symmetric monoidal categories for representing configuration graphs is two-
fold. First, it introduces a suitable notion of (observable) interfaces for configurations.
Second, the natural isomorphism defined by symmetries allows to take graphs up to
interface-preserving graph isomorphisms.

We recall that a (strict) monoidal category [14] (C,®,e) is a category C together
with a functor ®: C x C — C called the fensor product and an object e called the
unit, such that for any arrows 0/1,0,03 € C we have (0] @ 02) @ 03 = o) ® (0 ®
o3) and o) ® id, = 0 = id, ® ol1. The tensor product has higher precedence than the
categorical composition ;. Note that we focus only on “strict” monoidal categories,
where the monoidal axioms hold as equalities and not just up to natural isomorphisms.
By functoriality of ® we have, e.g., 0l; ® O = Ol ®idy,;idp, @ 0 = id, @ 0; 0 Qid),
forany o : a; — b;,i € {1,2}.
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Definition 1 (symmetric monoidal categories). A symmetric (strict) monoidal cat-
egory (C,®,e,Y) is a (strict) monoidal category (C,®,e) together with a family of
arrows {Yap: a®b — bQa}tap, called symmetries, indexed by pairs of objects in C
such that for any two arrows o.,0p € C with 0;: a; — b;, we have 0lj ® 02;Yp, b, =
Yay 42502 @ Ot (that is, Y is a natural isomorphism) that satisfies the coherence equali-
ties (for any objects a,b,c):

Ya,b;yb,u - idu@h Ya@b,c - ida ® Yb,c';Ya,C ® ldh

The categories we are interested in are those freely generated from a sorted (hyper)si-
gnature X, i.e., from a sorted family of operators f: T; — T¢. The objects are words on
some alphabet S expressing the sorts of interfaces (we use € to denote the empty word).
Consider, e.g., S = {e,0}. Then f: eo — ee means that f has two “attach points”
on both the interfaces, with types eo for the initial one and ee for the final one. The
operators G € X are seen as basic arrows with source and target defined according to the
sort of 6. Symmetries can always be expressed in terms of the basic sorted symmetries
Yry: X®y — y®x. Intuitively, symmetries can be used to rearrange the input-output
interfaces of graph-like configurations.

In this paper, we choose the Tile Model [9] for defining the operational and observa-
tional semantics of Reo connectors. In fact, tile configurations are particularly suitable
to represent the above concept of connector, which includes input and output interfaces
where actions can be observed and that can be used to compose configurations and also
to coordinate their local behaviors.

A tile 0.: s 5 1 is a rewrite rule stating that the inifial configuration s can evolve

b

to the final configuration t via o, producing the effect b; but the step is allowed only
if the ‘arguments’ of s can contribute by producing a, which acts as the trigger of a
(see Fig.[3l1)). Triggers and effects are called observations and tile vertices are called
interfaces.

Tiles can be composed horizontally, in parallel, or vertically to generate larger steps
(see Fig.[3). Horizontal composition o; B coordinates the evolution of the initial configu-
ration of o with that of B, yielding the ‘synchronization’ of the two rewrites. Horizontal
composition is possible only if the initial configurations of o and P interact cooper-
atively: the effect of oo must provide the trigger for . Vertical composition o * 3 is
sequential composition of computations. The parallel composition o ® [ builds concur-
rent steps.

The operational semantics of concurrent systems can be expressed via tiles if system
configurations form a monoidal category #{, and observations form a monoidal category

o >o
s o > 0
o >0 o > O > 0 v o v o oﬁ
(ay @ yb )y @y by GDo o G ¥ Y
o >o 0o >0 >o0 v B v o ¢ -0
o >o

Fig. 5. Examples of tiles and their composition
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9 with the same underlying set of objects as . Abusing the notation, we denote by
® both monoidal functors of 4 and ¥ and by ; both sequential compositions in H
and V.

Definition 2 (tile system). A tile system is a tuple R = (H,V,N,R) where H and
V' are monoidal categories with the same set of objects O4 = Oy, N is the set of
rule names and R: N — H x V x V x H is a function such that for all A € N, if
R(A) = (s,a,b,t), then the arrows s,a,b,t can form a tile like in Fig.Bli).

Like rewrite rules in rewriting logic, tiles can be seen as sequents of zile logic: the se-
quent s % t is entailed by the tile logic associated with R, written R F s % t, if it can

be obtained by horizontal, parallel, and/or vertical composition of some basic tiles in
R, plus possibly some auxiliary tiles such as identities id — id which propagate obser-

vations, and horizontal symmetries Yy ——> y which swap the order in which concurrent
b®a

observations are attached to the left and right interfaces. The “borders” of composed
sequents are defined in Fig.

The main feature of tiles is their double labeling with triggers and effects, allowing
to observe the input-output behavior of configurations. By taking (trigger, effect) pairs
as labels one can see tiles as a labeled transition system. In this context, the usual notion
of bisimilarity is called tile bisimilarity.

Definition 3 (tile bisimilarity). Let R = (H,V,N,R) be a tile system. A symmetric
relation ~y on configurations is called a tile bisimulation if whenever s ~¢t and R
s % s', then t' exists such that R -t = ¢’ and s’ ~ t'.

The maximal tile bisimulation is called tile bisimilarity and it is denoted by ~.

a b s Lt hi>f a c
s—1 h—f b d s—t t—h
b c (nor) o (par) b B d (ver)
sshS e f s@h ~1®f s % h
c b®d bid

Fig. 6. Inference rules for tile logic

Note that s ~; ¢ only if s and 7 have the same input-output interfaces.
The basic source property is a syntactic criterion ensuring that tile bisimilarity is a
congruence.

Definition 4 (basic source property). A tile system R = (H,V,N,R) enjoys the basic
source property if for each A € N if R(A) = (s,a,b,t), then s is an operator in X.

The following result from [9] can be used to ensure that tile bisimilarity is a congruence.

Lemma 1. If a tile system R_enjoys the basic source property, then tile bisimilarity is
a congruence for R.
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4 From Reo Connectors to Tile Configurations

In order to give semantics to Reo connectors using tile logic, we first need to map them
into tile configurations. The basic entities of Reo connectors are nodes and channels,
which are then composed by plugging channels into nodes. Here we consider Reo nodes
as composed out of replicators, mergers, and basic nodes, as in [5]], since this will sim-
plify our mapping. A replicator is a ternary atomic connector with one source and two
sink ends. A merger is a ternary atomic connector with two source and one sink ends.
A basic node is one that has at most one source and at most one sink ends. Essentially,
anode N with n > 1 incoming and m > 1 outgoing channel ends will be represented by
a basic node with one incoming tree of n — 1 mergers and one outgoing tree of m — 1
replicators. Incoming channel ends of N will be connected to the leaves of the tree of
mergers, and outgoing channel ends of N will be connected to the leaves of the tree of
replicators.

The horizontal signature of the tile system for modeling Reo connectors, thus, in-
cludes operators for basic nodes, mergers, replicators, and channels. As usual, when
modeling graphs with tiles (see, e.g., [16]), nodes are on the left, with their interfaces
heading toward right, and channels are on the right with their interfaces toward left. The
two interfaces are joined using symmetries, mergers and replicators. Notice that this
technique for representing graphs is fully general, i.e. any graph can be represented in
this style. Since we do not model components explicitly, boundary nodes are nodes with
a non-connected element of their right interface (the sink for source nodes, the source
for sink nodes). Interfaces are typed according to the direction of flow of data: e for data
going from left to right (from nodes to channels) and o for data going from right to left
(from channels to nodes). Thus, e.g., the Merger operator has sort Merger : o — oo. This
denotes the fact that data flow in the Merger operator from right to left. Similarly the
Sync channel has sort Sync : eo — €, with an empty right interface as for all channels.
Note that the order of elements in the interface matters. However, symmetries can be
used to reorder the elements in an interface as necessary. A basic node, with one sink
end and one source end has sort Node : € — oe. The full horizontal signature of our tile
system (for a sample set of basic connectors) is presented in Fig.[7} on the left-hand side
in textual notation, and on the right-hand side in graphical notation, where for simplicity
we abbreviate the names of operators using their initials.

The tile model for a general node, with n sink and m source ends is obtained by com-
posing the tiles of a basic node, n — 1 mergers, and m — 1 replicators, as explained above.
For instance, a node with 2 sinks and 3 sources is: Node; Merger ® Replicator; idoce ®
Replicator: € — oo @ e e (see Fig.[§).

We can now define the mapping [-] from Reo connectors to tile configurations. If
a connector C has n boundary nodes, then [C] : € — ® where @ € {e,0}" is a word of
length n. The mapping is parametric with respect to an interface function 7, associating
to each boundary node in C an element in , i.e. / is a bijection between nodes of C and

{1,...,n}.

Definition 5 (from Reo to tile configurations). Given a Reo connector C with n bound-
ary nodes and an interface function I, the tile configuration [C];, is defined as follows:
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Fig. 7. Signature for Reo configurations
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Fig. 8. A tile configuration representing a mixed node

— on the left, it has a parallel composition of Node operators, one for each node
in C, with the two ends connected to trees composed by n — 1 mergers and m — 1
replicators respectively, if the Reo node has n sources and m sinks (the trees may
be empty); for boundary nodes one of the two attach points has no connected tree,
and will be connected to the outside interface;

— on the right, it has a parallel composition of channel operators, one for each chan-
nel in C;

— the two parts are connected via identities and symmetries, so that each incoming
channel is connected to the Merger tree of the corresponding node, and similarly
for outgoing channels and Replicator trees;

— for each boundary node A, its free attach point is connected to the interface element
I,(A) via identities and symmetries.

The tile configurations corresponding to the Reo connectors that define the exclusive
router and the alternator are presented in Fig.[9 The corresponding textual notation for
the alternator is below (where Perm is a composition of identities and symmetries):

Node ® Node ® Node; id, ® Replicator ® id, ® Replicator @ Merger ® id, ; Perm;
idogo ® SyncDrain @ Sync @ FIFO1® ide : € — 0o e

Now we can give semantics to Reo connectors via tiles.
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N,

Ng

Ng

Fig. 9. Exclusive router and alternator as tile configurations

5 Modeling the 2-Color Semantics of Reo

The one-step tile semantics of a connector C is the set of all tiles that have C as their
starting configuration. In order to give semantics to Reo connectors we need to pro-
vide the basic tiles defining the semantics of each operator, and then tile composition
operations allow the derivation of the semantics of general connectors. We begin by pre-
senting the 2-color data-sensitive semantics, which cannot express context-dependent
behavior, but which is simpler than the corresponding 3-color semantics that we will
introduce in the next section.

We choose as basic observations the data communicated at the interfaces of con-
nectors, to model data-sensitive semantics, and we consider also a special observation

untick to denote no data communication. For instance, the tile Merger Ll: Merger
a®untic

allows a Merger connector to get an action a from the first element in its right interface
and propagate it to its left interface, provided that there is no piece of data on the other
element of the right interface.

The basic tiles are described in Fig. assuming an alphabet Act for basic actions.
We also assume that x and y range over ActU {untick} and @ and b range over Act. A
graphical representation of the tile that models the filling of a FIFO1 buffer is in Fig.[T1l
Note that observations on the interface are drawn along the vertical dimension.

These tiles define an LTS semantics for Reo, where states are tile configurations and
observations are (trigger, effect) pairs. This semantics recovers all the information in
the 2-color tile semantics for Reo described in [5]. Furthermore it adds to it: (i) the
possibility of observing the actual data flowing in the connector, allowing to model
data-sensitive primitive connectors such as filters, (ii) the possibility to consider full
computations instead of single steps, keeping track also of how the state evolves (par-
ticularly, whether buffers get full or become empty). The theorem below shows how the
information provided by the 2-color semantics can be recovered from the tile seman-
tics. We call a connector data-insensitive if its behavior (i.e., whether or not it allows
data to flow) does not depend on data values. Specifically, every connector built using
any of the primitive connectors described above, excluding filters, is a data-insensitive
connector. To formalize the correspondence between our tile model and the 2-color se-
mantics, we must restrict tiles to the one-step semantics of the connectors, and therefore
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® . . id
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. b . . tick®@untick .
Sync % Sync SyncDrain % SyncDrain SyncDrain m SyncDrain
ide lde
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ldg
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. tick . . untick .
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ide lde
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Fig. 10. Tiles for data-sensitive, 2-color semantics
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Fig. 11. The tile for filling a FIFO1 buffer (left) and three bisimilar configurations (right)

we do not need vertical composition of tiles. However, including vertical composition

does not add any one-step transition either.

Theorem 1 (correspondence between 2-color coloring tables and tiles). Ler T¢c be
the 2-color coloring table of a data-insensitive Reo connector C with n boundary nodes.
Tc contains a coloring c iff for each interface function I,, there exists a tile obtained
without using vertical composition having as initial configuration [C];, such that, for

each node A, ¢(A) = O iff the observation at the interface I,(A) in the tile is untick.



Tiles for Reo 49

Proof (Sketch). First notice that there is a bijection between colorings for channels,
mergers and replicators and the basic tiles that have the corresponding operators as
their starting configurations, i.e. a basic connector allows a coloring c iff there is a basic
tile with that operator as its starting configuration and observation untick on an interface
iff the corresponding node has color [J in the coloring.

One has to prove that the correspondence is preserved while composing colorings on
one side and tiles on the other side. We consider the left-to-right implication, the other
being simpler. Colorings can be composed iff they agree on the color of their common
nodes (see Definition 3 in [5]]). In order to compose the corresponding tiles to derive a
tile with the desired starting configuration, observations on matching interfaces have to
coincide. Let us consider the case of just one possible data value. Then the possibility
of composing the tiles follows from the hypothesis if connectors are connected directly
(e.g., channels to mergers and replicators), and from the properties of the auxiliary tiles
for identities and symmetries and the basic tiles for nodes if connectors are connected
via them.

Let us now consider the general case of an arbitrary set of data values. Note that for
data-insensitive connectors, if a tile for a certain data flow exists, then a tile with the
same data flow, but where all the data are equal can be built (this can be easily proved
by induction on the number of operators in the starting configuration of the tile), thus
the case of an arbitrary set of data values can be reduced to the one data value case.
Notice that the above property does not hold for data-sensitive connectors. O

As we have seen, all information provided by the coloring tables can be deduced from
the tile semantics. Furthermore, the final configuration of a tile represents the state of the
connector after the data flow has been performed. This can be used also to recover infor-
mation provided by the constraint-automata or coalgebraic semantics of Reo. However
a detailed comparison with those semantics is left for future work.

The theorem below ensures that the tile semantics is compositional w.r.t. the opera-
tors of parallel and sequential composition provided by tiles.

Theorem 2 (2-coloring congruence). Tile bisimilarity is a congruence for the 2-color
semantics of Reo connectors.

Proof. Straightforward by inspection, using Lemmal[il a

Note that the compositionality is proved w.r.t. the operators of tile composition, how-
ever this can be extended also to Reo composition operators. Composition in Reo is
obtained by merging boundary nodes. In the tile model this can be obtained by con-
necting them via Sync channels (this corresponds to compose them in parallel and then
sequentially with the Sync channel and some identities). The example below shows that
the additional channel does not influence the behavior of the composition.

Example 1. Consider the simple Reo connector C; composed out of a mixed node with
one source end and one sink end, Node : € — oe (see Fig.[T1l top-center). We can show
that this is bisimilar to a Reo connector C; composed out of two such nodes connected
by a Sync channel: Node ® Node;id, ® Sync ® id, : € — oe (see Fig. [[] top-right).
First, note that the two connectors have the same interface. Then, observe that for both
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connectors the only possible tiles are vertical compositions of tiles C; = C; (with i = 1
X

or i = 2). Thus, from the definition of bisimilarity C; ~; C,. Therefore, thanks to the
congruence theorem, in each connector we can replace the two nodes connected by a
Sync channel with a single node without changing the overall behavior. A third bisimilar
configuration is in Fig.[IT] bottom-right.

6 Modeling the 3-Color Semantics of Reo

As pointed out in [3], the 2-color semantics of Reo fails to fully capture the context-
dependent behavior of Reo connectors. Consider in fact the connector in Fig.[12] which
is represented by the tile configuration:

Node ® Node ® Node; id, ® LossySync ® FIFO1 ® id, : € — ce

® e e

Fig. 12. Overflow-lossy FIFO1

There are two possible tiles with this initial configuration and with the observa-
tion (ide,a ® untick) modeling data entering in the connector. The first one loses the
data item in the LossySync channel and has the final configuration Node ® Node ®
Node;id, ® LossySync ® FIFO1 ® id.. The second one transports the data item into
the buffer of the FIFO1(a) channel and has the final configuration Node ® Node ®
Node; id, ® LossySync ® FIFO1(a) ® id.. The expected behavior corresponds to the sec-
ond one, since there is no reason for the data to be lost. However, both the 2-color se-
mantics and the tile model we presented above generate both alternatives as permissible
behavior for this connector.

The 3-color semantics of Reo discussed in [3]] solves this problem by tracking ‘rea-
sons to prohibit data flow’, and allows LossySync to lose data only if there is a reason
for the data not to flow out of the channel (e.g., an attached full buffer or an interface
that does not accept data at the other end). The 3-color semantics replaces the [ color
by two colors corresponding to ‘giving a reason for no data flow’ and ‘requiring a rea-
son for no data flow.” Briefly, ‘giving a reason’ is used to model either a choice made by
the connector or to capture the absence of data flow on a particular channel end. On the
other hand, ‘requiring a reason’ is used to model that the context determines whether a
particular choice is made. Consider the two key tiles for LossySync:

LossySync % LossySync LossySync @TD> LossySync
idg ldg

The first one simply states that data flow through the LossySync. The second states that
data will be lost in the LossySync if a reason for no flow can be provided by the context
in which the channel is plugged. If a tile with the label a ® <1 was also present, this
would say that the LossySync provides a reason for the data to be lost, and thus the
LossySync would lose the property that the decision ought to be made by the context.
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Composition in the 3-color model includes the additional requirement that at each
basic node where there is no data flow, at least one reason for no flow must be present.

We show that tile logic can also easily model this more detailed semantics. To this
end, we must refine our untick observation into <i, which models ‘requires a reason
for no data flow,” and >, which models ‘gives a reason for no data flow,” when these
symbols occur on the left-hand side of the tile (above the line in the rule format). When
these observations occur on the right-hand side of a tile, their meanings are reversed.
For instance, one of the rules for Replicator:

Replicator AN Replicator
>R

means that a reason is required from the channel end on the left of the tile (above the
line) and will be given (propagated) to the channel ends on the right of the tile (below
the line). This captures that no-input to the Replicator is sufficient to cause no data flow
through the Replicator, and that this reason is passed onto the sink ends.

The main tiles for modeling the 3-color semantics of Reo are in Fig. The others
are analogous.

®y . .
Y = Y Replicator LN Replicator
yex a®a

Replicator LN Replicator Replicator =, Replicator Replicator SN Replicator
>®> >®<9 9>
ide id ide ide
Node —— Node Node —— Node Node —— Node Node —— Node
a®a 9> >®<9 <®<
Merger BN Merger Merger -, Merger Merger ., Merger Merger -9, Merger
a®r> >®a >®> 4R

Sync % Sync Sync % Sync Sync Ddﬂ> Sync Sync :&> Sync
ide ide idg lde

LossySync ‘Ziﬁ) LossySync LossySync % LossySync LossySync :ﬁ> LossySync
idg g lae

FIFO1 Zﬁ, FIFO1 FIFO1 % FIFO1(a) FIFO1(a) % FIFO1 FIFO1(a)<§—>>FIFO1(a)
idg idg idg ldg

Fig. 13. Tiles for data-sensitive, 3-color semantics

Note that the tile Node includes a behavior that mimics the so-called flip rule in
connector coloring [5]. The point of the flip rule is to reduce the size of coloring tables
using the fact that nodes need no more than one reason. The fact that nodes can also
accept multiple reasons is captured by the tile:

Node id—5> Node
<1A®4

Results analogous to the one in the previous section can be proved, showing that the
3-color tile semantics recovers all the information provided by the standard 3-color
semantics of Reo. As for the 2-color semantics, the tile semantics is data-sensitive, and
allows to track the state of connectors and model full computations.
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Theorem 3 (correspondence between 3-color coloring tables and tiles). Ler T¢c be
the 3-color coloring table (see [S)]) of a data-insensitive Reo connector C with n bound-
ary nodes. Tc contains a coloring c iff for each interface function I, there exists a tile
obtained without using vertical composition with initial configuration [C];, such that,
for each node A:

— ¢(A) is the color for no dataflow with the reason coming into the node (given) iff
the observation at the interface element I,(A) in the tile is > (this is always below
the line);

— ¢(A) is the color for no dataflow with the reason leaving the node (required) iff the
observation at the interface element I,(A) in the tile is <1 (this is always below the
line).

Proof. The proof is similar to the one of Theorem/[Il O
As for the 2-color semantics, tile bisimilarity is a congruence.

Theorem 4 (3-coloring congruence). Tile bisimilarity is a congruence for the 3-color
semantics of Reo connectors.

7 Reconfiguration of Reo Connectors

Since the tile semantics of a Reo connector includes also the state of the connector
after each step, one can model inside the Tile Model also the reconfiguration of Reo
connectors triggered by dataflow as presented in [11]].

The idea is that some connectors, when suitable conditions concerning their state
and the ongoing dataflow are met, can automatically be reconfigured to meet the re-
quirements of the environment. We sketch this approach by demonstrating it through
the example of an infinite FIFO buffer [11], and leave a more detailed study of recon-
figuration for future work. An infinite FIFO buffer is a FIFO buffer that grows when
a new datum arrives to be inserted and its buffer is full, and shrinks when a datum is
consumed out of the buffer. To model this we require two new channels: FIFO., is the
empty infinite buffer, and FIFOtmp(a) is a temporary buffer, containing value a, that
will disappear when the a is consumed.

For simplicity we give semantics to the infinite FIFO buffer using the 2-color seman-
tics, however, the 3-color semantics can be used as well. The necessary basic tiles can
be found in Fig.[T4l Note that the tile for shrinking the buffer transforms the temporary
buffer FIFOtmp(a) into a Sync channel. Thanks to Example[Il up to bisimilarity, this

FIFO.. ”““Ck‘j’”““% FIFO..  FIFO.. “®"™%, i4, ® Node ® ido; FIFO.. ® FIFOtmp(a)
ldg lde
FIFOtmp(a) u"ti_Ck®i> Sync FIFOtmp(a) u"tiCk_ju"ﬂ% FIFOtmp(a)
ldg ldg

Fig. 14. Tiles for 2-color semantics of infinite buffer
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5

O—{TM(a) —

Fime(a)

= S TM(a)

Fig. 15. Some graphical shorthand

TM(b)

Fig. 16. Datum b arrives (left) and datum a leaves

corresponds to removing the temporary buffer and its nearby node. However, the tile
needed to actually do the garbage collection would not satisfy the basic source prop-
erty, thus we preferr this approach.

To sketch the evolution of infinite buffers, we draw some possible proof steps ob-
tained by horizontal composition of basic tiles. To simplify the graphical notation we
introduce some suitable graphical shorthand in Fig. [L3] (left) for the composition of a
node and a temporary buffer (TM) and for the composition of a node and a synchronous
channel (FWD) that basically behaves as a forwarder. Using the shorthand, the tile for
inserting a new datum in the infinite buffer can be drawn as in Fig.[[3 (right). Figure[16]
shows what happens if a new datum b arrives when the buffer already contains a datum
a (left) and what happens if a datum is then requested from the buffer (right). Note that
it is also allowed for the arrival and departure of data happen at the same time (see

Fig.[[D).

Proposition 1 (a reconfiguration congruence). Tile bisimilarity is a congruence for
the 2-color semantics of Reo connectors including the infinite FIFO buffer.

Observe that in this approach reconfiguration and computation are fully integrated
(while in [[L1] and [1O11] the two aspects are dealt with by separate models). Fur-
thermore, reconfigurable connectors and normal connectors can be used together, since
reconfiguration is not visible from the outside. However, our tile model currently cannot
express more complex reconfigurations that change the interfaces of connectors. Cap-
turing these reconfiguration in such a way as to allow the congruence of bisimilarity to
be proved using the basic source property, requires (1) connectors to agree on when and
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FWD [—O—TM(b) U

Fig. 17. Datum c arrives while datum a leaves

which reconfiguration to perform, and (2) nodes to propagate this kind of information.
We leave an analysis of this approach for future work.

8 Conclusion

We have shown that the Tile Model can be used to describe all main aspects of the
semantics of Reo connectors: synchronization, dataflow, context dependency, and re-
configuration. This is the first semantic description of Reo connectors able to present
all these aspects natively in a single framework. Furthermore, the semantics is compo-
sitional.

As future work we want to consider an alternative approach to the 3-color semantics
based on priorities: one can specify that losing data in the LossySync channel has lower
priority than data flowing through it. Our goal is to match the expected intuitive seman-
tics of Reo, and solve the problem of causes for data-discard that arises in some cycles
in the 3-color semantics, as discussed in [S)]. However, further research is necessary to
understand how to apply this reasoning to complex connectors. Another long term goal
of our work is to understand how to define complex reconfigurations along the lines
sketched at the end of Section[7l
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Abstract. In this paper we define general algebraic frameworks for the
Minimum Spanning Tree problem based on the structure of c-semirings.
We propose general algorithms that can compute such trees by follow-
ing different cost criteria, which must be all specific instantiation of c-
semirings. Our algorithms are extensions of well-known procedures, as
Prim or Kruskal, and show the expressivity of these algebraic structures.
They can deal also with partially-ordered costs on the edges.

1 Introduction

Classical Minimum Spanning Tree (MST) problems [II2] in a weighted directed
graph arise in various contexts. One of the most immediate examples is related to
the multicast communication scheme in networks with Quality of Service (QoS)
requirements [3]. For example, we could need to optimize the bandwidth, the
delay or a generic cost (for device/link management or to obtain the customer’s
bill) of the distribution towards several final receivers. Therefore, the aim is to
minimize the cost of the tree in order to satisfy the needs of several clients at the
same time. Other possible applications may concern other networks in general, as
social, electrical/power, pipeline or telecommunication (in a broad sense) ones.

In our study we would like to define a general algebraic framework for the MST
problem based on the structure of c-semirings [4J5], that is, a constraint-based
semiring; in the following of the paper we will use “c-semiring” and “semiring”
as synonyms. We want to give algorithms that work with any semiring covered
by our framework, where different semirings are used to model different QoS
metrics. Classical MST problems can be generalized to other weight sets, and to
other operations. A general algebraic framework for computing these problems
has not been already studied, even if a similar work has been already proposed
for shortest path problems [6].

More precisely, the algebraic structure that provides the appropriate frame-
work for these problems is a semiring S = (4, +, X, 0,1). This five-tuple repre-
sents the set of preferences/costs (i.e. A), the operation to compose and choose

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 56-[70] 2009.
© Springer-Verlag Berlin Heidelberg 2009
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them (i.e. respectively x and +) and the best (i.e. 1) and worst (i.e. 0) pref-
erences in A. Semirings consist in flexible and parametric algebraic structure
that can be simply instantiated to represent different costs, or QoS metrics (e.g.
bandwidth) as we mainly suppose in this paper [71g].

Our goal is to provide a general algebraic framework similar to the one created
in [6] for shortest-path algorithms, a work from which we have sensibly taken
inspiration for this work. Clearly, our intent is to reach analogous results, but,
in this case, for tree structures instead that for plain paths.

The absence of a unifying framework for single-source shortest paths problems
was already solved in [6], where the author defines general algebraic frameworks
for shortest-distance problems based on the structure of semirings. According to
these semiring properties, the author gives also a generic algorithm for finding
single-source shortest distances in a weighted directed graph. Moreover, the work
in [6] shows some specific instances of this generic algorithm by examining differ-
ent semirings; the goal is to illustrate their use and compare them with existing
methods and algorithms. Notice that, while in [6] the author uses also semirings
with a non-idempotent +, we would like to focus mainly on c-semirings instead
(i.e. even with an idempotent +). To further clarify our intents, we would like
to say that the ideas in this paper are developed to show the expressivity of
semirings, and not to enrich the field of graph theory.

The multi-criteria MST problem has seldom received attention in network
optimization. The solution of this problem is a set of Pareto-optimal trees, but
their computation is difficult since the problem is NP-hard [9]. One solution,
based on a genetic algorithm, has been given in [9]; however, even this solution
is not feasible, since a successive work [10] proved that it is not guaranteed that
each tree returned by the algorithm in [9] is Pareto optimal. Our goal is to
describe this problem from an algebraic point of view.

2 C-semirings

A c-semiring [IBITT] is a tuple (4, 4+, x,0,1) such that:

1. Aisaset and 0,1 € A;

2. + is commutative, associative and 0 is its unit element;

3. X is associative, distributes over +, 1 is its unit element and 0 is its absorbing
element.

A c-semiring is a semiring (A, +, X,0,1) such that + is idempotent, 1 is its
absorbing element and x is commutative. Let us consider the relation <g over
A such that a <g b iff a + b = b. Then it is possible to prove that (see [5]):

<g is a partial order;

+ and X are monotone on <g;

X is intensive on <g: a x b <g a, b;

0 is its minimum and 1 its maximum;

(A, <g) is a complete lattice and, for all a,b € A, + is the least upper bound
operator, that is, a + b = lub(a, b).

Gu L=
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Moreover, if x is idempotent, then: + distributes over x; (A4, <g) is a com-
plete distributive lattice and X its glb. Informally, the relation <g gives us a
way to compare semiring values and constraints. In fact, when we have a <g b,
we will say that b is better than a. In the following, when the semiring will
be clear from the context, a <g b will be often indicated by a < b. The
cartesian product of multiple semirings is still semiring [4]: for instance, S =
{([0,1],R*), (maz, min), (min, +), (0, +00), (1,0)) (+ is the arithmetic sum) cor-
responds to the cartesian product of a fuzzy and a weighted semiring, and S is
a semiring.

In [12] the authors extended the semiring structure by adding the notion of
division, i.e. -, as a weak inverse operation of x. An absorptive semiring S
is invertible if, for all the elements a,b € A such that a < b, there exists an
element ¢ € A such that b x ¢ = a [12]. If S is absorptive and invertible, then, S
is invertible by residuation if the set {x € A | b x x = a} admits a maximum for
all elements a,b € A such that a < b [I2]. Moreover, if S is absorptive, then it
is residuated if the set {x € A | b x < a} admits a maximum for all elements
a,b € A, denoted a +b. With an abuse of notation, the maximal element among
solutions is denoted a-=-b. This choice is not ambiguous: if an absorptive semiring
is invertible and residuated, then it is also invertible by residuation, and the two
definitions yield the same value.

To use these properties, in [12] it is stated that if we have an absorptive
and complete semiringﬂ, then it is residuated. For this reason, since all classical
soft constraint instances (i.e. Classical CSPs, Fuzzy CSPs, Probabilistic CSPs
and Weighted CSPs) are complete and consequently residuated, the notion of
semiring division (i.e. +) can be applied to all of them.

The semiring algebraic structure proves to be an appropriate and very expres-
sive cost model to represent QoS metrics. Weighted semirings (R*, min, +, 0o, 0)
(+ is the arithmetic sum) can be used to find the best MST by optimizing, for in-
stance, the cost of the tree in terms of money, e.g. for link maintenance or billing
criteria in order to charge the final user. Fuzzy semirings ([0, 1], max, min, 0, 1)
represent fuzzy preferences on links, e.g. low, medium or high traffic on the
links. Probabilistic semirings ([0, 1], max, X, 0,1) (X is the arithmetic multipli-
cation). As an example, the probabilistic semiring can optimize (i.e. maximize)
the probability of successful delivery of packets (due to errors). Classical semir-
ings ({0,1},V, A,0,1) can be adopted to test the reachability of receivers has to
be tested.

3 Algorithms for MST and Totally Ordered Semirings

As a reminder, a MST can be defined as in Def. [l

L If S is an absorptive semiring, then S is complete if it is closed with respect to infinite
sums, and the distributivity law holds also for an infinite number of summands.
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Definition 1. Given an undirected graph G = (V, E), where each edge (u,v) €
E has a weight w(u,v), the tree T C E that connects all the vertices V and

minimizes the sum w(t) = Z w(u,v) is defined as the MST of G.
(u,c)€T

A first sketch of a possible algorithm for a MST problem over a graph G(V, E)
is given in Alg. [l Tt is obtained by modifying the classical Kruskal algorithm [I]
in order to use c-semiring values and operators which are taken as input, i.e.
(A,+, x,0,1). The algorithm (as Alg. 2)) work only with totally ordered edge
costs.

In Alg. [l b corresponds to the best edge in the current iteration of the repeat
command (line 2) and it is found (in line 3) by applying the € operator over
all the remaining edges in the set P (i.e. the set of possible edges), instantiated
to E at the beginning (line 1); @ : F — P(E) is a new operator that finds
the edge b with the best cost in E, according to the ordering defined by the +
operator of the semiring. Then the (partial) solution tree is updated with the
X : P(E) x P(E) — P(E) operator, which adds the new edge and updates the
cost of the tree according to the x operator of the semiring (line 5). At last, b
is removed from P (line 7).

Algorithm 1. Kruskal with semiring structures
INPUT: G(V,E), (A, +, x,0,1)
. T=0,P=E
2: repeat
3: letbe @(P) \\ Best edge in P
4:  if (endpoints of b are disconnected in T") then
5 T=TQ{b} \\ Add the best edge to the solution
6: end if
7. P=P\{b}
8: until P ==
OUTPUT: T = MST over G

Theorem 1. To find a Minimum Spanning Tree T, the complexity of the algo-
rithm is O(|E| In|E|) as in the original procedure [1)].

The proof follows the ideas in [I]. Having sorted the edges in O(|E| in|E|), the
P operator runs in constant time. Consider that here the sorting procedure
takes also the + of the chosen semiring as a parameter, in order to select the
best values according to the partial ordering defined by <g (see Sec.[2]). By using
disjoint-set data structures [I], we can check in O(in|E|) time that each of the
O(|E]) edge insertions in T does not create a cycle [I]. This last step is identical
to the last check in the classical Kruskal algorithm, and it is used only to keep
the structure of a tree.

We can show also that the other best-known algorithm for solving the MST
problem can be generalized with semiring structures (see Alg. 2l). Step by step,
the modified Prim’s algorithm [I] adds an edge to the (partial solution) tree
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T, instead of joining a forest of trees in a single connected tree, as in Kruskal’s
algorithm. However, even Prim’s procedure proceeds in a greedy way by choosing
the best-cost edge (i.e. (v;,u;) in line 4) in order to add it to the solution (line
5) through the ) operator. The operator € is the same as the one defined for
Alg. [[l even if in this case it is applied only to those edges for which one of the
endpoints has not been already visited. This set of nodes, i.e. R, is initialized in
line 1 with an arbitrary node, and updated at each step (line 5). The algorithm
ends when all the nodes of the graph have been visited, that is R == V.

Notice also that both Alg.[Iland Alg. 2l properly work only if the set of costs is
totally ordered, while they need to be modified for a multicriteria optimization,
since the costs of the edges can be partially ordered. In this case, the semiring
operators have to deal with multisets of solutions that are Pareto-optimal: in
Sec. @l we modify the € operator in order to select and manage a set of edges
(and not only a singleton) with incomparable costs within the same step.

Algorithm 2. Prim with semiring structures
INPUT: G(V,E), (A, +, x,0,1)

1: T =10, R={vs}, v is arbitrary

2: repeat

3:  let P={(vk,u:) € E|(vk € R) A (u: € R)}

4 let (vi,u;) € P(P)

5: T:T®{(vi,uj)}

6: R =RUuyy

7: until R==V
OUTPUT: T = MST over G

4 Partially Ordered Extensions

As said in Sec. Bl Alg. [l and Alg. Pl are not able to compute a solution for the
MST in case the costs of the edges are partially ordered. The reason is that,
since we have a partial order over the chosen semiring S, two costs ¢; and c;
may possibly be incomparable (i.e. ¢; <> ¢g2). According to this view, the
operators presented in Alg. [l and Alg. 2l must be extended in order to choose a
set of edges within the same step, instead of only a single arc.

In the next paragraph we present the Kruskal algorithm extended to manage
partially ordered costs for the edges. Further on, we provide the proof of cor-
rectness/soundness and the complexity analysis of its operations (in the second
paragraph of this section). Then, in the third paragraph we show an alterna-
tive algorithm that incrementally deletes the worst edges from the graph until
it reaches the MST; the original version is called Reverse-delete algorithm [13].

Kruskal extended with partial order. For a partially ordered set of costs we can
use Alg. Bl The most notable difference w.r.t. the totally ordered version of the
algorithm (see Alg. [I) is the definition of the € operator (used in line 3 of

Alg. B3):
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End
Inf Step 2 =
<6,7>
<2,6>
© O O<7‘6> Step 1
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<3,3> O <6.2>
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o
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Fig.1. In a) a set of partially ordered costs are represented, and in b) how they are
partitioned according to the € operator in Alg. Bl

Definition 2. The @ : P(E) — P(E) operator takes a set W of edges and
returns a set W\U = X, such that Yu € U,z € X.cost(u) <g cost(zx), where >g
(see Sec.[d) depends on the chosen semiring S and the cost function returns the
cost of an edge.

In words, the € operator chooses all the best edges (according to <g) whose
costs are incomparable with at least one other cost. To show an example, we
consider the cartesian product of two weighted semirings, i.e. S = ((RT,RT),
(min, min), (+,+), (00,00),(0,0)): given the set W of edges whose costs are
represented by {(3,3), (2,6), (6,2), (5,5), (6,7),(7,6)}, (W) = X whose costs
are instead {(3,3), (2,6), (6,2), (5,5)}. The partially ordered costs of the edges
in W are graphically represented also in the plane of Fig. [[h. Notice that the
set X contains also edges whose costs totally dominate the other costs of edges
in the same set X: e.g. (3,3) >g (5,5). However, (5,5) is still selected by € to
be in X since it cannot be compared with (6,2) (and also (2,6)): only (6,7) and
(7,6) are not chosen, since they are totally dominated by the other costs (they
will be chosen by the algorithm in the second step, as shown in Fig.[Ib). In other
words, the set X is obtained from the Pareto optimal frontier, by adding all the
edges with incomparable costs.

The set X = @(W) is then examined in line 4 —7 of Alg.[Bl in order to find all
its maximal cardinality and best cost subsets of edges (i.e. the R in line 7) that
can be added to the solution without introducing cycles. In line 5, X set collects
all the sets of edges in X that do not form a cycle with a partial solution 75: in
this way we enforce the connectivity condition of a tree. Each T; € T represents
a partial solution, and T collects them all; T} represents instead an updated T;
(see line 9). Among all these sets in X, in line 6 we select those subsets with
the maximal cardinality, i.e. Rset. The reason is that (Lemma [), in order to
minimize the cost of the spanning tree, it is better to connect its components
by using as many low cost edges (in X) as possible, having introduced the €
operator (see Def. ).
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Algorithm 3. Kruskal extended for partial ordering
INPUT: G(V,E), (A,+, x,0,1), A partially ordered
1: letT =JT; where To = {0}, W = FE

2: repeat '

3 X=pW)

4 for all T; € T do

5: Xset ={X'|X' C X,T; ® X' has not cycles} \\ No cycles

6: Rset = {X*|X* € Xset,VX' € Xset,|X*| >=|X'|} \\ Max Cardinality
7 R ={R'|R' € Rset,YR" € Rsetst. T; @ R" s T, @ R’} \\ Best Cost
8: for all R; € R do

10: end for
11: end for

12: W =W\X
13: until W ==

OUTPUT: T = the set of all MSTs over G

Therefore, in line 7 we only take the R’ subsets in Rset that, composed with
the partial solutions T; (i.e. T; @ R’), are not completely dominated by another
R” € Rset. In this way, the algorithm discards the completely dominated partial
solutions since they can lead only to a completely dominated final solution (thus,
not a MST), as explained in Lemma [T}

In lines 8 — 10, each R; € R is added to the related partial solution 75, in order
to remember all the possible partial solutions that can be obtained within the
same step, i.e. the set of all the T}: they consist in all the best (i.e. dominating)
partial trees and need to be stored since they can lead to different MST with an
incomparable cost.

At last, the set X of examined edges is removed from W (line 12). This
procedure is repeated until all the edges in W have been examined (at the
beginning, W = E, i.e. the set of edges in the graph). Considering the costs in
Fig. [Ih, in Fig. [Ib it is possible to see the W sets of edges that will be selected
at the first and second step of Alg. Bl At the last step, T" collects all the MST's
(i.e. T;) that can be obtained over the graph G. A full example of the algorithm
execution is given is Sec. .11

To give a particular example of a single iteration, we suppose that at the first
step the algorithm has added the edges (ng,n.) and (n,,n,) to the solution T, as
shown in Fig. 2 thus, the cost of the partial solution is (2, 3). We still consider the
cartesian product of two weighted semirings. Then, at the second step @ (W) =
{(nj,nx), (ns, ny), (Ni, ny), (nj,n,)} (represented with dashed lines in Fig. [),
whose costs respectively are (3,4), (4,3), (1,10) and (10, 1). Following line 5 of
Alg. Bl at this step we can add either (n;,ng) or (n;,n,) to the first component
and either (n;,n,) or (n;,n,) to the second one; otherwise, we would introduce
a cycle in the solution. Notice that all these edges are selected within the same
step, since their costs are partially ordered (see Def. [2)).
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Fig. 2. The graphical intuition of the mincost operation in Alg. Bl

Therefore, according to lines 5 and 6, Rset = {R' = {(nj,n.), (ni,ny)}, R? =
{(nj7 nz)u (niv nu)}u R3:{(nj7 nk)7 (niv nv)}v R = {(nja nk)u (niv nu)}} The costs
of these four sets of edges are respectively (14,4), (11,11), (7,7) and (4, 14). The
operation in line 7 of Alg. Bldiscards R? (whose cost is (11,11)), since T @ R? <g
T Q R3: (13,14) <g (9,10). Therefore, we have that R = {{(nj,n.), (ni,n,)},
{(nj, i), (ni,ny)}, {(nj,nk), (ni,ny)}} (R is obtained at line 7). Then the par-
tial solution T' (after the first step T = {{(ng,n.), (ny,n,)}}) becomes T =
{T®R1 = {<nk’ nz)7 (nu’ nv)’ (nﬁnz)’ (ni7nv)}7 T®R3 = {(n/ﬁnz)’ (nwnv) )
(nj’ nk)’ (ni’ nv)}7 T® R = {(nk7 nz)’ (nw nv)7 (nj’ nk)7 (ni’ nu)}}

Reverse-delete. In the original version of the Reverse-delete algorithm [13], if
the graph is disconnected, this algorithm will find a MST for each connected
component of the graph. The set of these minimum spanning trees is called
a minimum spanning forest, which consists of every vertex in the graph. The
Reverse-Delete algorithm starts with the original graph and deletes the worst
edges from it, instead of adding solution edges to the empty set, step by step as
in Kruskal’s algorithm. If the graph is connected, the algorithm is able to find
the MST.

Considering Alg. @ the S : P(E) — P(F) operator in line 3 selects the set X
of the worst completely dominated edges in W, which is the set of edges that still
need to be checked; at the beginning W = E, and the only one partial solution
consists in all the edges in the graph, i.e. T = {E}. Formally, ©(W) = {e €
W :Ze’ € W, cost(e) <g cost(e’)}, where S is the chosen semiring and the cost
function return the weight of an edge. Each T; € T represents a partial solution,
and T collects them all; T represents instead an updated T; (see line 9).

Then, like Alg.[3] in lines 5—6 the algorithm finds Rset, i.e. the set of maximal
cardinality subsets of X whose removal still keeps the graph connected. Among
all these subsets, in line 7 we select R, which is the set of subsets of Rset with the
worst possible (incomparable) costs according to the semiring partial order (i.e.
<g): to do so we use the & : P(E) x P(F) — P(F) operator, which removes
the second set of edges from the first one and then updates the cost of the partial
solution according to the = operator presented in Sec. [ (i.e. the weak inverse
operator of x). We can consider € as the inverse operator of () in Alg. Bl All
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Algorithm 4. Reverse-delete Kruskal extended for partial ordering
INPUT: G(V,E), (A,+, x,0,1), A partially ordered
1: letT =JT; where T = {E},W = E

2: repeat '

X = 9(W)

4 for all T; € T do

5: Xset ={X'|X' C X,T; ©X' is connected}  \\ Connectivity

6: Rset = {X*|X* € Xset,VX' € Xset,|X*| >=|X'|} \\ Max Cardinality
7.

8

R ={R'|R' € Rset,YR" € Rsetst. T, ©R" #sT; ©R'} \\ Worst Cost
: for all R; € R do
9: T, =T, ©R;

10: end for
11: end for

122 W=W\S
13: until W ==

OUTPUT: T = the set of all MST over G

the edge sets in Rset can be removed from the partial solutions 7T; (lines 8 — 10)
by still using the © operator.

At last, the procedure updates W by removing the set X of checked edges
(line 12). These steps are repeated until all the edges in E have been examined.
Following similar steps as for Alg. Bl we can prove Theo. [3

4.1 Examples

In this section we provide an example to better explain how Alg. Bl and Alg. [
work in a proper way.

Ezample on Alg.[3. Concerning Alg.[Bland consequently a non-idempotent semir-
ing, as a reference we consider the graph G(V, E) represented in Fig. Bh, where
the edges in E are labeled with partially ordered costs taken from the semiring
S = ((R*,[0,1]), (+, x),(min,maz), (c0,0),(0,1)). This semiring is obtained
through the cartesian product of the weighted and probabilistic semirings, and its
vectorized X operator is non-idempotent since at least one of the original x op-
erators is non-idempotent (in this case, both the operators are non-idempotent).
Therefore, the costs are expressed in terms of couples of values, i.e. (¢, p), and
the cost of a tree is obtained by arithmetically summing all the money costs
and multiplying all the probability costs of the chosen edges. At the end of
the computation, Alg. Bl finds the two best MSTs (i.e. T} and T%) by minimiz-
ing ¢ and maximizing p for the entire obtained tree, which are represented in
Fig. Bb and Fig. Bk. The first MST has a cost of (28,0.6), while the second one,
(29,0.61): they are not comparable costs and thus they represent two distinct
optimal solutions.

Figure [ reports the steps of the algorithm with the related X, X Set and
R sets, as obtained from Alg. Bl At step 1 in Fig. @ the two edges
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b)

n2 <5,.93> n3 n2 <5,.93> n3

Fig. 3. A graph labeled with partially ordered costs (in a), and the best MST trees (in
b) obtained by using ((R™, [0..1]), (+, X), (min, maz), (0o, 0), (0, 1))

Step X XSet R
1 {(n47n5)7(n67n7)} {{(n47n5)7(n67n7)}7 {{(n47n5)7(n67n7)}}
{(na,ns)}, {(ne,n7)}}

2 {(n3,n4)} {{(ns,n4)}} {{(ns,n4)}}

3 {(n2,n3), (n3,ns5)} {{(n2,n3)}} {{(n2,n3)}}

4 {(n1,n2), (n1,n3)}  {{(n1,n2), (n1,m3)},  {{(n1,n2)}, {(n1,ns)}}
{(n1,n2)}, {(n1,n3)}}

5 {(n1,m4)} 0 1]

6 {(n2,n7), (n1,ns)} {{(n2,n7)}} {{(n2,n7)}}

7 {(n5,n6),(n1,n7)} (Z) @

Fig. 4. The steps of Alg. 3 applied on the graph in Fig. Bh

X = {(n4,ns5), (ng,n7)} are selected since their costs totally dominate all the
other costs (i.e. (2,0.96) and (1,0.95)) and are partially ordered w.r.t. each other,
since the first shows a better (i.e. higher) probability and the second a better
(lower) cost. Therefore, since they do not form any cycle, they are both added
to the solution, i.e. R = {(n4,ns5)}, {(ne,n7)}}.

Step 2 works in the same way for the edge (ns,n4). At step 3, Alg. Bl chooses
X = {(na,n3), (n3,ns)} with costs (5,0.93) and (4,0.92), but only (nz2,ns) is
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Step X XSet R
1 {(n57n6)7(n17n7)} {{(n57n6)7(n17n7)}7 {{(n57n6)7(n17n7)}}
{(ns,n6)}, {(ns,n6)}
2 {(n2,n7),(n1,ms5)} {{(n1,ns5)} {{(n1,ns5)}
{(n1,m4)} {{(n1,n4)}} {{(n1,n4)}}
4 {(n1,n2),(n1,n3)}  {{(n1,n2),(n1,n3)},  {{(n1,n2)}, {(n1,ns)}}
{(n1,n2)}, {(n1,n3)}}

w

5  {(n2,n3),(ns,ns)} {{(ns,n5)}} {{(ns,n35)}}
6 {(ns,na)} 0 0
7 {(n4,n5), (ne,n7)} 0 0

Fig. 5. The steps of Alg. @ applied on the graph in Fig. Bh

added to the solution (i.e. R = {{(n2,n3)}}), since (n3,ns) would create the
cycle ng — ng — ns; for this reason, the operation in line 5 (see Alg. B]) discards
it from X set.

At step 4, the € operator selects X = {(n1,n2), (n1,n3)}: in this case, these
two edges cannot be added at the same time to the solution, since it would create
a cycle among 1y — ne — ng. Therefore, from this bifurcation step, the algorithm
remembers and updates two distinct partial solutions T and T (see Alg. [
at line 9), one given by adding {(n1,n2)}, and one given by adding {(n1,n3)}
(i.e. R = {{(n1,n2)},{(n1,n3)}}). While steps 5 and 7 cannot respectively add
(n1,n5) and (ns,ne) or (n1,ny) since it would create a cycle, at step 6 only
(ng2,n7) can be added because (ns,ng) would form a cycle as well.

Ezample on Alg.[§} Clearly, the two MST solutions in Fig. Bb and Fig. Bk can be
obtained also with Alg. @l as well. The steps of the algorithm are shown in Fig. B}
as a reminder, notice that the sets R of edges are now removed from the set £
of graph edges, in order to find a (minimum cost) tree structure: the considered
semiring is still S = ((R*,[0,1]), (+, X), (min, maz), (00, 0),(0,1)). In the first
step, we can safely remove two edges, i.e. R = {{(ns,ns), (n1,n7)}}, while at
step 2, Alg. @l can only remove (n1,n5) (i.e. R = {{(n1,n5)}}), otherwise the re-
sulting graph would be disconnected. At step 3, we can remove R = {{(n1,n4)}},
while at step 4 we can remove only one edge between (n1,n2) and (n1,ns) or
graph would be disconnected: from this step we store two different (partially
ordered) solutions Ty = E ©{(ns,ns), (n1,n7), (n1,ns5), (n1,n4), (n1,n2)} and
T = E &{(ns,n6), (n1,n7), (n1,n5), (11, 14), (N1, 13) }.

The two solutions in Fig. Bb and Fig. Bt are then obtained at step 5, which re-
moves R = {{(n3,ns5)}} (removing (ng, n3) would disconnect the tree). Then the
remaining edges are checked (step 6 —7) but not removed due to the connectivity

property.

4.2 Correctness Considerations

We can show the correctness of Algorithm [B]step-by-step. The following property
comes from the definition at line 5 in Alg.
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Proposition 1. Let X' € Xset. Adding even one edge in X'\ X to X would
produce a cycle in the partial solution T; (for this reason, at each iteration it is
possible to discard X from the edges to check, i.e. W = W\X in Alg.[3).

Therefore, line 5 maintains a tree structure and avoids cycles. The cost of the
R’ subsets in Alg. [l can be obtained by using the X operator of the considered
semiring, and the best subset is the result of applying the + operator in order
to choose the best cost according to the ordering defined by +, i.e. <g in Sec.[2l
Therefore, referring to lines 5 — 6 in Alg. Bl we can prove that:

Lemma 1. By adding the maximal cardinality subsets of partially ordered edges
X* € Rset that do not form any cycle (i.e. X' € Xset), at each step we connect
the mazimum number of forests possible. Since all the R’ € R are the subsets
with the best (incomparable) costs, each T; @ R; forest is connected with the best
possible cost according to the + operator of the semiring.

As a reminder, a forest is an acyclic undirected graph, while a set of connected
forests corresponds to a tree [I]. Lemma [Tl extends the safety property explained
for MST [I]. At each step ¢ we obtain a new forest made of distinct components,
which are tree-shaped. For each of these components, the edge that connects
them is light [1], in the sense that it has the best cost (according to +); therefore,
all the added edges are safe. In words, Alg. Bl extends the classical Kruskal
algorithm by connecting more than two components within the same step. This
connection shows the best possible cost, since it is characterized by the maximal
cardinality (the reason is highlighted in Prop.[]) and the best cost, according to
the partial order defined by +, among those sets of best cardinality.

We can prove that by replacing an edge chosen with € at one step of Alg. B
with an edge that will be selected at a successive step, we obtain a worse spanning
tree (according to the + operator):

Proposition 2. Connecting the two same components with an edge (whose cost
is c) chosen with @ at the step i+n (with n > 0) instead of an edge selected at
step i (with cost cj) results in a completely dominated cost for the final solution.

The proof comes from the fact that ¢; >g ¢ according to the definition of @ (see
Def. 2), and the x operator, used to compose the costs, is monotone. Prop.
explains why we need to consider only those X* € Xset with the maximal
cardinality: otherwise we will need to connect that same component with a
completely dominated edge, found at a successive iteration.

Notice that we could have several maximal cardinality subsets R’ € Rset that
can be added to the same partial solution 73, thus obtaining different partially
ordered solutions T} = T; @ R; (see line 9 of Alg. [3). These solutions represent
the best possible forests that can be obtained at a given step (defined by the @
operator). However, some of them can be safely deleted at the successive steps
if they become completely dominated by even only one other partial solution T7,
as explained for Fig.
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Lemma 2. Given two sets of edges R', R" € Rset suchthatT; Q R' >s T; Q R”,
then R" is not added to R (line 7 of Alg.[3), and the partial solution T; @ R is
consequently discarded from the possible ones.

The proof of this Lemma comes from the fact that, if a partial solution T; &) R”
is completely dominated (T; Q) R’) at a given step, it will inevitably create a
completely dominated tree at the end of the algorithm (thus, not a MST). The
reason is that the x operator of the semiring is monotone, i.e. if a >g b then
axc>gbxc (see Sec. 2.

Theorem 2. Following the steps of Algorithm[3 over a graph G = (V, E), we
find all the Minimum Spanning Trees T; € T even if the costs of the edges, taken
from a semiring (A,+, x,0,1), are partially ordered.

The proof of Theo. [2 derives from Lemma [l and Lemma 2l Since Lemma [I]
satisfies the safety property at each step, if the graph G = (V, E) is connected,
at the end we find a tree spanning all the vertices and satisfying the safety
property. The final tree spans all the nodes because we suppose that our graph
G is connected, and as stated in Lemma [Il we connect the maximum number of
forests possible without adding any cycles. Similar considerations can be proved
for Algorithm [4]

Theorem 3. Following the steps of Algorithm[f] over a graph G = (V, E), we
find all the Minimum Spanning Trees T; € T even if the costs of the edges, taken
from a semiring (A, +, x,0,1), are partially ordered.

4.3 Complexity Considerations

The complexity of Alg. Bl obviously resides in the operations performed at line
5 — 7, that is in finding the R best-cost subsets among all the possible ones of
maximal cardinality. The other operations in Alg. Blmerely delete or add subsets
of edges. We suppose the set E of edges as already ordered by according to the
cost: this step can be performed in O(|E| In|E|) [1] and choosing the best edges
(with the € operator) can be consequently accomplished in a constant time.
Concerning the space/time complexity, the algorithm is, in the worst case,
exponential in the number of the edges with partially ordered costs, since with
lines 8 — 10 we have to store all the possible non-comparable (best) partial
solutions, i.e. the number of T; sets in T can be exponential. This is the case
when all the edges in the graph G = (V, E) show incomparable costs, and the
number of MSTs can correspond to the number of all the possible spanning
trees over G: |V[IVI=2 following to Cayley’s formula [I4]. After having ordered
the edges according to their cost, the @ operator (see Def. 2]) partitions them
into k disjoint sets P;, as represented in Fig. Il when & = 1 all the edges in
G are not comparable (i.e. an exponential number of MSTs in the worst case)
and when k = |E| all the edge costs are totally ordered and the complexity
corresponds to Alg. [ (i.e. O(|E| In|E|)), as for the original Kruskal procedure.
The complexity of Alg. B is then O(|E| In|E| + k dl¥=2)), where k is the
number P; of the disjoint edge sets and d is the maximum number of nodes
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which have an incident edge in the P; set, among all the P;: for instance if P,
stores the edges incident in 4 nodes, P in 3 nodes and Ps in 2, then d = 4. When
d << |V|, i.e. there are few incomparable edges in each P;, the complexity is
linear (i.e. O(|E| In|E|)). Consider that it is possible to estimate the complexity
of the algorithm after having ordered the edges (in O(|E| In|E|)), since after that
step we know the number k and the respective size of the P; sets (consequently,
we know d). Therefore, we can easily know how the algorithm will perform before
executing it.

Notice also that, with an idempotent x operator (e.g. min), Alg. B] returns
only a subset of the possible MSTs. To find all of them we should keep all the
possible spanning trees (deleting line 7 from Alg. B]) until the last iteration, since
the cost of the whole tree is flattened on the (not comparable) costs found in
the last step. In this case, the number of solutions could not be limited step-by-
step. Identical complexity and x-idempotency considerations can be provided
for Alg. [l

5 Conclusions

We have shown that c-semirings are expressive and generic structures that can
be used inside slightly modified versions of classical MST algorithms (as Kruskal,
Prim and Reverse-delete Kruskal), in order to find the best spanning trees ac-
cording to different QoS metrics with different features (but still representable
with a semiring). Classical algorithms have been extended to deal with semiring
structures and partially ordered costs; moreover, an analysis of correctness and
complexity has been provided for the extension Kruskal’s algorithm for partially
ordered costs.

The weight of a tree from a node p to a set of destination nodes D, is obtained
by “multiplying” the edge weights along the tree by using the x semiring oper-
ator (see Sec.2]), and the cost of the min-weight tree is the “sum” of the weights
of all such trees, obtained by using the + semiring operator. By parametrically
varying the semiring, we can represent many different kinds of problems, hav-
ing features like fuzziness, probability, and optimization [4]. This paper extends
other works focused only on semirings and shortest path algorithms [6].

In the future, one ambition could be to merge these frameworks with con-
straints concerning the considered QoS metrics (e.g. delay < 40), since Soft
Constraint Satisfaction Problems based on c-semirings have been already suc-
cessfully applied to this field [7U8TH].
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Abstract. In large software projects often multiple modeling languages are used
in order to cover the different domains and views of the application and the
language skills of the developers appropriately. Such “multi-modeling” raises
many methodological and semantical questions, ranging from semantic consis-
tency of the models written in different sublanguages to the correctness of model
transformations between the sublanguages. We provide a first formal basis for
answering such questions by proposing semantically well-founded notions of a
multi-modeling language and of semantic correctness for model transformations.
In our approach, a multi-modeling language consists of a set of sublanguages and
correct model transformations between some of the sublanguages. The abstract
syntax of the sublanguages is given by MOF meta-models. The semantics of a
multi-modeling language is given by associating an institution, i.e., an appropri-
ate logic, to each of its sublanguages. The correctness of model transformations
is defined by semantic connections between the institutions.

1 Introduction

In an idealized software engineering world, development teams would follow well-
defined processes in which one single modeling language is used for all requirements
and design documents; but in practice “multi-modeling” happens: in a large software
project entity-relationship diagrams and XML may be used for domain modeling, BPEL
for business process orchestration, and UML for design and deployment. In fact, UML
itself can be seen as a multi-modeling language comprising several sublanguages such
as class diagrams, OCL, and state machines; each sub-modeling language provides a
particular view of a software system. Such views have the advantage of complexity re-
duction: a software engineer can concentrate on a particular aspect of the system such
as the domain architecture or dynamic interactions between objects.

On the other hand, multi-modeling raises a host of methodological and semantical
questions: are the different modeling sublanguages semantically consistent with each
other? How can we correctly transform an abstract model in one modeling language into
a more concrete one in another language? How can we detect semantic inconsistencies
between heterogeneous models expressed in different modeling sublanguages? More

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 71-87] 2009.
(© Springer-Verlag Berlin Heidelberg 2009



72 A. Boronat et al.

generally, is there a notion of “multi-modeling language” which provides more insight
than just an ad-hoc collection of modeling languages put together? Is it possible to give
a semantics to multi-modeling languages which allows one to deal with consistency,
validation and verification but that retains the advantages of multiple views by providing
a local semantics and local reasoning capabilities for each modeling language?

The methodological use of views and viewpoints in software modelling is a long
standing research topic [18]. In the literature, there are three main complementary
approaches for interrelating modeling notations: the “system model approach”, the
“model-driven architecture approach”, and the “heterogeneous semantics and devel-
opment approach”. In the system model approach the different modeling languages
are translated into a common (formally defined) modeling notation called system
model [10] which serves as unique semantic basis and for analyzing consistency of
software engineering models. In the “model-driven architecture approach” [27] model
transformations and consistency issues are typically dealt with at the syntactic level of
the modeling notation. In the third approach different modeling languages are inter-
related by semantic-preserving mappings [13124]; a mathematical semantics is given
locally for each modeling language and the consistency between different languages is
analyzed semantically through the semantic-preserving mappings. All three approaches
have been applied to several modeling languages including UML, but to the best of our
knowledge, multi-modeling languages in the software engineering sense have never
been systematically studied. However, research within the theory of institutions [19] on
institution morphisms and comorphims [20], and on “heterogeneous institutions” [24]
is directly relevant to this problem.

We combine ideas from model-driven architecture and heterogeneous semantics and
propose a new, semantically well-founded notion of a multi-modeling language and a
new notion of semantic correctness for model transformations. In particular, our for-
mal definition of a multi-modeling language L: () uses the Meta-Object Facility MOF
and its algebraic semantics [9] for describing the metamodels and models of the sub-
languages of L; (i¢) associates an institution to each sublanguage S of L and gives a
mathematical semantics to each software engineering modeﬁ of S by a corresponding
(logical) theory in the institution of .S; (4i7) defines the links between different sublan-
guages of S by model transformations and provides a notion of semantic correctness for
such transformations; and (iv) provides a notion of consistent heterogeneous (software
engineering) model in the multi-modeling language L, which is derived from a notion
of a class of heterogeneous mathematical models at the institution level.

The approach is illustrated in Fig. [T} There are three sublanguages S1, So, and S5
of a common multi-modeling language L, software engineering models My, Ms, and
M3 conforming to (the meta-model representations of) the sublanguages, and having a
formal semantics in the institutions Z;, Zo, Z3. The model transformations transis and
trans,s between the sublanguages S, and S5, and S7 and Ss, respectively, are applied

! For distinguishing semantic models from the models of a modeling language we write “soft-
ware engineering model (SE-model)” for a (syntactic) model defined in a modeling language
such as UML. In contrast to this, “(semantic) models” are part of the mathematical seman-
tics of a modeling language so that a semantic model corresponds to a model of a theory in a
suitable logic; here, we will use institutional models (Ins-models).
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Fig. 1. Relations between metamodels, models, and semantic domains

to M, yielding (sub-models of) My and M3. These model transformations are backed
by semantic connections connis and connis between Z; and 7y, Zs which make it
possible to show that these model transformations are correct.

In addition to make these concepts precise, we illustrate them by a case study in-
volving (UML) class diagrams and relational database schema diagrams as modeling
languages. Based on earlier work [13] we show that class diagrams and schema di-
agrams form a multi-modeling language where class diagrams are related to schema
diagrams by a semantically correct model transformation.

The paper is organized as follows: In Sect. [2 we briefly recall the necessary back-
ground from the theory of institutions. Section [3] shows how MOF metamodels and
model transformations are algebraically formalized as membership equational theories.
In Sect. 4] we present the institutional semantics of metamodels and in Sect. 3] our for-
mal notions of semantic connections between institutions and of correct model trans-
formations. The notions of multi-modeling languages and consistent multi-models are
introduced in Sect.[@ In Sect.[7lwe discuss related and future work.

2 Preliminaries: Institutions and Institution (Co-)Morphisms

We briefly recall basic notions on institutions and their morphisms and comorphisms
which form the framework for our institutional semantics of multi-modeling languages.
We assume familiarity with the most elementary notions of category theory: category,
functor, and natural transformation (see, e.g., [21])).

An institution [19] Z is a tuple Z = (Signy, Senz, Modz, =7), with: (i) Sign; a
category whose objects are called signatures; (ii) a functor Senz : Signy — Set,
called the sentence functor, from Sign; to Set, the category of sets; (iii) a contravariant
functor Modz : Sign?® — Cat, called the model functor, from Signy to Cat, the cat-
egory of categories; and (iv) a family |=7 = {|=1 s} sesign, of satisfaction relations
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between X-models M € Modz(X') and X-sentences ¢ € Senz(X'), such that for each
H:XY — X in Signy, M’ € Modz(X"), and ¢ € Senz(X), we have the equivalence

Modz(H)(M') 1,5 ¢ <= M’ Fz1,5 Senz(H)(p) .

An institution provides a categorical semantics for the model-theoretic aspects of a
logic, focusing on the satisfaction relation between models and sentences, and empha-
sizing that satisfaction is invariant under changes of syntax by signature morphisms.
Note that, given an institution Z, we can always define an associated category Thz of
theories (theory presentations to be more exact, see, e.g., [22]]), where theories are pairs
(X, I') with I' C Senz(X), and theory morphisms H : (X, ") — (X', I"") are signa-
ture morphisms H : X' — X’ such that I'" =5/ Senz(H)(I"), where the satisfaction
relation is extended to a semantic consequence relation between sets of sentences in the
usual way (see [19]). There is then an obvious functor sign : Thz — Sign; defined on
objects by the equation sign (X, ") = X.

An institution morphism [19] p : Z — Z’ from an institution Z to another insti-
tution Z’ is given by: (i) a functor 9" : Sign; — Signz.; (i) a natural trans-
formation p5¢" : p%9": Senz = Senz; and (iii) a natural transformation p°¢ :
Mods = u9"""; Modz:, such that for each M € Modz(X) and each sentence
@' € Senz: (u%9" (X)) we have

M Ez.5 u%‘m((p’) — u%”d(M) v, usion () 0.

Dually, an institution comorphism [20] (called a plain map of institutions in [22])
p: I — T'is given by: (i) a functor p°9" : Sign; — Signz; (ii) a natural trans-
formation p°¢" : Sen; = p°9": Senz/; and (iii) a natural transformation pM°? :
p%9"™": Modz: = Modz, such that for each M’ € Modz: (p°" (X)) and each sen-
tence ¢ € Senz(X) we have

M’ =g psn(sy P37 (@) <= p3 (M) 1,5 0.

Note that, given an institution comorphism p : Z — Z’, the functor p>9" extends
naturally to a functor p™* : Thy — Thz with pT"(X, ') = (p%97( X)), p5e™(I')).

3 Algebraic Semantics of MOF and of Model Transformations

We briefly explain how a MOF metamodel defines a modeling language, how it is for-
malized by means of a membership-equational logic theory, and how model transfor-
mations are formalized as equationally-defined functions in MOMENT?2.

3.1 MOF

MOF [28]] is a semiformal approach to define modeling languages. It provides a four-
level hierarchy, with levels My, My, Mo and Ms;, where level M, serves as the meta-
level for level M;. The entities populating level M; are collections of a certain type,
which is defined by means of an entity at level M; ;. Level Mj contains collections
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class diagram metamodel specification (CD) relational metamodel specification (RDBS)
H Class 1.1 properties H Property
T name : EString - T name : EString .
owningClass 0.* H Table owningTable 0.* H Column
owningClass 1.1 7 name : EString | 1.1 columns | & name : EString
type &t : ESt
) T type : EString
L1 H AssociationEnd E Attribute ) L1 lownlngTable T nnv: EBoolean
= lower : Eint T type : EString owningTable - T unique : EBoolean
= upper : Elnt
0.
ownedOperatipn| ) fks columns
0..1 | opposite 0.*
5 [ Parameter - L1
E Operation 1.1 parameters, = name : EString g ForeignKey key H Key
- - N e = EStri
= name : EString |0wningOperation  0.*| = type : EString 7 name : EString < name : Estring
refersTo 1]

context AssociationEnd

inv: not(self.opposite.ocllsUndefined) implies context ForeignKey
(self.type=self.opposite.owningClass and inv: self.owningTable.columns -> includesAll( self.columns)
self.owningClass=self.opposite.type)
inv: (lower = 0 or lower = 1) and (upper = 1 or upper = -1) A
M2 /l\ I conforms to
............................................................................................. [rrrrerre e
M1 conforms to I Tutor relational schema
H Tutor Tutor_tid : NUMBER (NNV unique) (model)
= tName : EString tname : VARCHAR
PK (Tutor_tid) Student
tutors| 1.+ - Student_tid : NUMBER (NNV unique)
EOffice._Tutor PK (Student_tid)
eOffice | 1.1 EOffice_Tutor_tid : NUMBER (NNV unique) | FK
. H EOffice tutor_fk : NUMBER (NNV unique) EOffice
class diagram | eOffice_fk : NUMBER (NNV)

:{A EOffice_tid:NUMBER (NNV unique)

model (Cd) @ addTutor(Tutor) | PK (EOffice_Tutor_tid ) PK (EOffice_tid)

Fig. 2. Levels M2 and M of the MOF hierarchy: metamodel and model examples

of structured data that are defined by using a specific model in a modeling space, e.g.,
tuples in a database or class instances of a class diagram. Level M; contains mod-
els, which are used to represent a specific reality by using a well-defined language for
computer-based interpretation such as class diagrams or relational schemas. Level My
contains metamodels. A metamodel is a model specifying the types that can be used in
a modeling language, such as the metamodel CD for defining class diagrams and the
metamodel RDBS for defining relational schemas, as shown in Fig.2l An entity at level
M3 is a meta-metamodel enabling the definition of metamodels at the level M.

For a model M at level M7 and a metamodel .# at level My, we write M : .# to de-
note the metamodel conformance relation. In addition, a metamodel .# can be enriched
with a set ¢ of OCL constraints constituting a metamodel specification (A ,€) (8] so
that a model M conforms to (.#, ¢’) when it conforms to the metamodel .# and sat-
isfies the constraints %’. In Fig.[2] the OCL constraints over the CD metamodel defines
the concept of opposite association ends and restricts the set of possible cardinalities.
The OCL constraint over the RDBS metamodel indicates that the columns of a foreign
key should be contained in the same table where the column is defined.

3.2 Algebraic Semantics of Metamodel Specifications and MOMENT2

The goal of the algebraic semantics of metamodel specifications in [8l9] is to give a
precise semantics to the conformance relation M : (.#, %) between a model M and
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a metamodel specification (.#, %) (this subsumes M : .# using M : (.#,()). This
semantics is achieved as follows. First of all, the set of MOF-conformant metamodel
specifications (.#, €) is a syntactically well-defined set MetamodelSpecs. Second, the
set of equational theories in the institution of membership equational logic (MEL [23])
is another well-defined set Thyy. . The algebraic semantics is then defined as a function

A : MetamodelSpecs — Thyg, : (M, €) — A M, F) .

The key point of this algebraic semantics is that the set of models M conformant with
(A ,€), which we denote [[(#,€)], is precisely axiomatized as the carrier of the sort
CModel in the initial algebra Ty 4 ) of the MEL theory A(.#,%’). That is, we have
the definitional equality [(.#,€)] = Ta(x,%),cModer» and hence

M(%a(g) — MEH(%,%)H — Mem(%,(g),CModel-

Intuitively, the elements of sort CModel are models algebraically represented as sets
of objects with an associative, commutative union operation with identity (ACU), cor-
responding to an algebraic description of graphs. MEL is used in an essential way to
impose the OCL constraints 4" by means of a conditional membership.

The algebraic semantics supports the notion of submodel (see [6] for details). From
a graph-theoretic point of view, given My, My € [(.#,%)], we say that M; is a sub-
model of Mo, written M, C M, iff it is a subgraph, so that all the nodes (objects with
attribute values) and edges (association ends) of M; are included in M5 up to name and
edge order isomorphism. The submodel relation is a partial order, endowing [(.#, %]
with a poset structure ([(#,%)], C). The notion of submodel will be very useful to
obtain a flexible notion of multi-model in a multi-modeling language.

These notions are implemented in Maude and integrated within the Eclipse Modeling
Framework (EMF) in the MOMENT?2 tool [648.9].

3.3 Model Transformations

In this work we consider functional model transformations that map input models M,
such that M : (.#,€), to output models 5(M) so that (M) : (A',€"), where in
general (A, €) # (M',€").

Definition 1. Given metamodel specifications (M ,€) and (M',€"), a functional
model transformation from (A, %) to (M',€") is a function 3 : [(M,€)] —
[(«4’',€")]. The transformation (3 is called monotonic, if, in addition, it is a mono-

tonic function 3 : ([(A,€)],C) — ([(#',€")], Q).

MEL theories A(.#, %) associated to MOF metamodel specifications (.#, %) are by
construction executable by rewriting in Maude [[14]; in fact by confluent and terminat-
ing equations modulo ACU. Therefore, the initial algebra 7, ) is computable [4].
Furthermore, any computable function § : [(.#,%)] — [(#',%€")] can in such a case
be specified by a finite set of confluent and terminating equations modulo ACU. This
is exactly the approach taken in MOMENT?2, where a model transformation /3 can be
specified as a set of recursive model equations, which are automatically translated into
ordinary MEL equations, as detailed in [6].
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Fig. 3. Model equation: MOMENT?2 format (left) and graphical representation (right)

Let us consider a model transformation between the metamodel specifications for
class diagrams (CD) and for relational database schemas (RDBS) in Fig. Rt Bcq2rdbs :
[(#cp,6cp)] — [(A#rpss, érpes)]- The transformation is defined by several
model equations that specify the translation process: classes are transformed into tables
with primary keys, class attributes are transformed into table columns, and bidirectional
associations are transformed into auxiliar tables that contain foreign keys that point to
the tables that correspond to the associated classes. The complete specification of the
model transformation is given in [7]] using the concrete syntax of MOMENT?2. In Fig.[3]
we show a simplified version of the model equation that generates columns in a table
from attributes of a class. The model equation is specified by a left-hand side (LHS)
model pattern, a right-hand side (RHS) model pattern, and a negative application con-
dition (NAC), which is applied over a LHS instance. The NAC ensures that the rule
is applied only once for each attribute. MOMENT?2 formalizes this model transforma-
tion as the function (Bcq2rdbs, Which is internally defined by equations that are generated
from the user defined model equations of the transformation (see [6] for further details).

Bedardbs maps the class diagram model cd in Fig. 2 to the relational schema
Bedzrdbs(cd) C rs, where rs is the relational schema shown in Fig.[2l This model trans-
formation is monotonic by considering the submodel relation in both source and target
metamodel specifications. In particular, we consider the submodel tutor of cd that is
constituted only by the class Tutor, i.e., tutor, cd € [(.#cp,%cp)] and tutor C cd.
We have then that Scdardbs(tutor) C Bedardbs(cd).

4 Institutional Semantics of Metamodels

In order to capture the semantics of models conforming to a given metamodel, we use
the mathematical framework of institutions.

Definition 2. Given a MOF-compliant metamodel specification (A , %), an institu-
tional semantics for (4, %) is specified by: (i) an institution Z; and (ii) a functor
o: ([(A#,6)],C) — Thy.
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Therefore, an SE-model M € [(.#,€)] is interpreted as a theory (M) € Thz in the
corresponding institution. This definition highlights a crucial difference between “mod-
els” in the software engineering sense, which we call SE-models, and semantic models
in the institution Z, which we call Ins-models, and in this case Z-models. The key point
is that an SE-model of a system is only a partial specification of such a system, allowing
many possible implementations. For example, in a UML class diagram the semantics
of the methods involved is typically only partially specified. By contrast, an Ins-model
is typically much closer to an actual implementation, and may fully constrain various
relevant aspects of such an implementation: for example, the full semantic specification
of the methods in a class diagram.

This is captured by the above definition which gives semantics to an SE-model
M € [(#,€)] asalogical theory (M) € Thz. Thatis, o(M) is a “partial” specifica-
tion describing not a single Ins-model, but a class (actually a category) of Ins-models in
the institution Z, viz. the class Modz(o(M)). Such Z-models typically fully constrain
some relevant aspects of the system partially specified by the SE-model M. For exam-
ple, if we choose for Z a computational logic, some of the Z-models associated to M
may be executable as programs. Therefore, an institutional semantics for a metamodel
specification may support program generation methods that are correct by construction.
For relational database schemas as SE-models, e.g., the Ins-models may be relational
models of actual databases conformant with the given schema.

The functoriality condition in the definition of institutional semantics is very natural.
Intuitively, if M C M’, then any implementation of the system partially specified by
the SE-model M’ should a fortiori give us an implementation of the system partially
specified by M, essentially by disregarding the implementation of the extra features in
M’ \ M. Mathematically, this is captured by the fact that 