
Simplifying Information Integration:

Object-Based Flow-of-Mappings Framework for
Integration

Bogdan Alexe1, Michael Gubanov2, Mauricio A. Hernández3, Howard Ho3,
Jen-Wei Huang4, Yannis Katsis5, Lucian Popa3, Barna Saha6,

and Ioana Stanoi3

1 University of California, Santa Cruz
2 University of Washington

3 IBM Almaden Research Center
4 National Taiwan University

5 University of California, San Diego
6 University of Maryland

Abstract. The Clio project at IBM Almaden investigates foundational
aspects of data transformation, with particular emphasis on the design
and execution of schema mappings. We now use Clio as part of a broader
data-flow framework in which mappings are just one component. These
data-flows express complex transformations between several source and
target schemas and require multiple mappings to be specified. This pa-
per describes research issues we have encountered as we try to create
and run these mapping-based data-flows. In particular, we describe how
we use Unified Famous Objects (UFOs), a schema abstraction similar to
business objects, as our data model, how we reason about flows of map-
pings over UFOs, and how we create and deploy transformations into
different run-time engines.

Keywords: Schema Mappings, Schema Decomposition, Mapping Com-
position, Mapping Merge, Data Flows.

1 Introduction

The problem of transforming data between different schemas has been the fo-
cus of a significant amount of work both in the industrial and in the research
sector. This problem arises in many different contexts, such as in exchanging
messages between independently created applications or integrating data from
several heterogeneous data sources into a single global database.

Clio [14,16,9], a research prototype jointly developed by IBM Almaden and
the University of Toronto, investigated algorithmic and foundational aspects of
schema mappings. Figure 1 depicts Clio’s architecture and demonstrates, at a
high-level, the steps involved in transforming data structured under a schema
S (called the source schema) to data structured under a different schema T

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 108–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Simplifying Information Integration 109

����

��������������
��	�
������	�
����

������������
��	�
�����	�
���

�����
����������
�����

����������������	�
���	�������	�
���	�

��

����

��������������

��������������������

��	�
����������	�
��������

Fig. 1. Clio Architecture

(called the target schema). First, the user specifies a set of correspondences be-
tween attributes of S and T using Clio’s graphical user interface. Based on these
attribute-to-attribute correspondences and the semantic constraints expressed
by S and T , Clio generates a declarative specification of the data transforma-
tion. This declarative specification, which we call schema mapping, is formally
expressed as a set of logical source-to-target constraints [8]. Finally, Clio trans-
lates the declarative schema mapping to executable code that performs the data
transformation.

Clio contains several code generation modules that target different languages.
For instance, when mapping xml-to-xml data, Clio can generate XQuery and
XSLT scripts from the same mapping. Alternatively, when mapping relational
data, Clio can generate SQL queries.

Complex information integration tasks generally need the orchestration or
flow of multiple data tranformation tasks. For instance, data transformations
commonly contain many intermediate steps, such as shredding nested data into
relations, performing joins, computing unions or eliminating duplicates. Parts of
the flow are in charge of extracting relevant information from raw data sources,
while other parts are in charge of transforming data into a common representa-
tion. Later parts of the flow are in charge of deploying the trasformed data into
target data marts or reports. Single monolithic mappings, those that map from a
source schema into a target schema, cannot capture these complex tranformation
semantics. And even in cases when a mapping can capture the tranformation se-
mantics, the source and target schemas might be large and complex, making it
difficult for designers to create and maintain the mapping.

In this paper we discuss Calliope, a data flow system in development at IBM
Almaden that uses mappings as a fundamental building block. Instead of design-
ing a monolithic schema mapping, the users of Calliope create a flow of smaller,
relatively simpler and easier to understand, mappings among small schemas. As
the name implies, the mappings are staged in a dependency graph and earlier
mappings produce intermediate results that are used by later mappings in the

110 B. Alexe et al.

Flow of Simpler Mappings

S

Large S-T Mapping

T

S T

Fig. 2. Monolithic mappings (traditional approach) and flow of mappings in Calliope

flow (Figure 2). The individual mappings themselves can be designed using a
mapping tool (e.g., such as Clio, which is now a component of Calliope). We be-
lieve the adoption of flows of mappings improves reusability, as commonly used
transformation components can be reused either within the same transformation
task (e.g. if an address construct appears twice within the same source schema)
or across transformation tasks.

However, representing transformations as flows of mappings creates a number
of interesting technical challenges. First, we need a uniform data model that
represents data flowing over the graph of mappings. Second, to better under-
stand the transformation semantics of a flow of mappings, we need to compose
and merge mappings before generating run-time objects. Last, we need to gener-
ate transformation scripts over a combination of different runtime systems, each
with different data transformation capabilities. We now briefly discuss each of
these challenges in the rest of this section.

Unified Famous Objects (UFOs).One of the goals of Calliope is to raise the
level of abstraction from schemas, and bring it one step closer to business objects.
This is accomplished through the use of Unified Famous Objects (UFOs). A UFO
is a unified representation of a high-level concept, such as employee or address.
One or more of these concepts may be embedded in a schema. Instead of mapping
directly from an arbitrary complex source schema to an arbitrary complex tar-
get schema, which requires understanding their exact relationship, the mapping
designer can focus on a single schema fragment at a time. Each such fragment is
mapped to one or more UFOs that capture the concepts represented in the current
schema fragment. The specification of the end-to-end transformation is then as-
sembled from the smaller mappings between the source schema and the UFOs, the
mappings between the UFOs and the target schema as well as from mappings be-
tween the UFOs themselves. We believe this approach facilitates thinking in terms
of high-level concepts, which are closer to what users understand. UFOs also allow
mapping reuse. Mappings between UFOs can be reused in various contexts where
transformations are needed for the concepts they represent. Finally, this approach
is modular: When changes occur over the schemas, or the semantics of the desired
transformation changes, only the relevant parts of the smaller mappings involving
UFOs need to be updated. In this new approach the mapping designer will be able

Simplifying Information Integration 111

to focus on the mappings between the end schemas and the UFOs, and reuse as
much as possible previously designed mappings between UFOs.

Mapping Merge. To allow the execution of flows of mappings, Calliope employs
novel mapping technology that allows for the automatic assembly of initially un-
correlated mappings into larger and richer mappings. This technology relies on
two important mechanisms: mapping merging and mapping composition. Map-
ping merging, or correlation, is responsible for joining and fusing data coming
from initially uncorrelated mappings. Mapping composition [7,2] on the other
hand, allows assembling sequences of mappings into larger mappings. Intuitively,
mapping merging combines mappings that correspond to parallel branches in the
mapping flow graph, while mapping composition combines mappings that cor-
respond to sequential paths. We note that mapping merging, which is discussed
in some level of detail in Section 4, is an operator on schema mappings that has
been largely undeveloped until now.

Unified Flow Model (UFM) Framework. Some of our use cases involve
users that want to design a single transformation using a combination of many
different data transformation tools, such as mapping tools, ETL tools or query
languages [3]. Such cases are becoming increasingly common in practice for two
main reasons: First, some data transformation tools are not expressive enough
to represent a data transformation and thus the transformation generated by
the tool has to be augmented with additional operators. For instance, Clio does
not allow sorting of results. Therefore if sorting is desirable, the transformation
generated by Clio has to be augmented with sorting in a language that offers the
appropriate construct, such as SQL. Second, even when a single data transfor-
mation tool can express the entire transformation, users familiar with different
tools want to collaborate on the design of the same transformation. For example,
analysts designing the coarse outline of a transformation in Clio would like to
have it extended with lower-level details by programmers, who are familiar with
ETL-tools.

To address these interoperability requirements we designed the Unified Flow
Model (UFM) framework. At the heart of this framework lies the Unified Flow
Model (UFM), which allows the representation of a data transformation in a
tool-independent way. Given the UFM framework, all it takes to make Calliope
interoperate with other data transformation tools is to design procedures that
translate the internal representation of any data transformation tool to UFM
and vice versa. The main challenges in the context of this framework is finding
the right language for UFM and designing the translations between UFM and
the internal languages for the various data trasformation tools.

The following sections describe in more details the main components of Cal-
liope. Section 2 introduces the notion of UFOs and describes the UFO repository.
Section 3 describes how to decompose a schema into a set of UFOs. Section 4
gives an illustration of the mapping merging technique used in Calliope, and
Section 5 presents the UFM framework.

112 B. Alexe et al.

We note that Calliope is at an early stage and many of the ideas presented in
this paper are still under development.

2 Unified Famous Objects (UFOs)

Traditional mapping tools allow the specification of a transformation by defining
a mapping from a source schema to a target schema. However this approach
becomes problematic as the schemas become larger and the transformation more
complex. Large schemas are hard to understand and it is even harder to create
a mapping between them in a single step. To remedy this problem, Calliope
allows users to split the large and complex mapping of the source to the target
schema into more easily comprehensible steps (which are themselves composed
of multiple mappings) that are based on the use of intermediate Unified Famous
Objects (UFOs).

A UFO, similar to a business object, is a flat object representing a simple
concept, such as an employee, a product or an article. Being similar to a busi-
ness object, it is a higher-level abstraction than a schema and, as such, closer
to the understanding of the mapping designer. In Calliope, UFOs can be either
defined manually or extracted automatically from a source that provides stan-
dardized schemas, such as Freebase or OAGI. Once created, they are stored in
the metadata repository of the system, ready to be used in mappings. To model
semantic relationships between related UFOs, the metadata repository can also
hold mappings between UFOs.

Given the metadata repository, mapping a source schema to a target schema
translates to the following steps: First, the designer finds the UFOs in the meta-
data repository that are relevant to the source schema. To facilitate this process,
the metadata repository offers an interface that allows the designer to browse
and query its contents. Once the relevant UFOs are found, the designer creates a
separate mapping between the source schema fragment representing a particular
concept and the corresponding UFO. After finishing this process for the source
schema, the designer repeats the symmetrical procedure for the target schema:
find UFOs that are relevant to the target schema and design mappings from each
of them to the target schema. The resulting end-to-end transformation between
the source schema and the target schema is then the flow of mappings composed
of: a) mappings from the source schema to UFOs, b) mappings from UFOs to
the target schema and c) any number of intermediate mappings that may be
needed between the UFOs themselves. Some of the intermediate UFO-to-UFO
mappings may have to be designed at this point, but some could be reused from
the metadata repository (if they already exist).

Figure 3 shows a sample flow of mappings between source and target schemas
in the presence of UFOs. The picture displays two types of nodes: schema nodes
(used to represent both source/target schemas and UFOs) and mapping nodes.
Source schemas (inside the box on the left) are mapped to UFOs (inside the
box in the middle). For instance, the source on the top contains information on
projects and employees and therefore it has been mapped to the correspond-
ing two UFOs, representing projects and employees, respectively. Apart from

Simplifying Information Integration 113

Metadata RepositoryMetadata Repository
SourceSource

SchemasSchemas
TargetTarget

SchemaSchemaSource to UFOSource to UFO
mappingsmappings

UFO to TargetUFO to Target
mappingsmappings

Fig. 3. Flows of Schema Mappings

the mappings from source schemas to UFOs, the picture also shows mappings
between UFOs (inside the middle box). For example, the UFO representing a
researcher contains both employee and article information and therefore it has
mappings from the corresponding UFOs. Finally, UFOs are mapped to the target
schema (shown inside the box on the right).

Using UFOs in the mapping process yields several advantages: First, it allows
the designer to decompose a large source-to-target mapping into many smaller
mappings that involve the UFOs. Since each individual mapping is relatively
small, it is easy to create and maintain. Second, by storing in the repository the
mappings between schemas and UFOs, we can improve the precision of match-
ing algorithms by learning from previous mappings. For instance, we can store
attribute name synonyms next to each UFO attribute to help with subsequent
matching. More importantly, UFOs allow for standardization and reuse. A large
part of the mapping and transformation logic can be expressed in terms of a
fixed set of UFOs describing a domain, and this logic can then be reused and
instantiated in different applications (on the same domain).

The presence of the UFO repository also creates some important challenges.
First, as the number of UFOs increases it becomes increasingly harder to find
the UFOs that are relevant to a given schema. To remedy this problem, Calliope
contains a schema decomposition algorithm, described in the following section.
Second, the mappings that are created between the source and target schemas
and the UFOs, as well as the mappings that relate UFOs and are potentially
extracted from the repository, are initially uncorrelated, and possibly indepen-
dently designed. The main challenge here is to orchestrate the flow of uncorre-
lated mappings into a global mapping that describes a meaningful end-to-end
transformation. As a solution to this problem, Calliope relies on a mapping merge
mechanism. We give an overview of this mechanism in Section 4.

114 B. Alexe et al.

3 Schema Decomposition

Today a user will handle new schemas integration tasks by designing the trans-
formation operator flow manually, from scratch. Since defining these operators
is cumbersome [14,16], it is important to bootstrap the process with relevant
operator flows. At the core of reusing operator flows is the task of recogniz-
ing commonalities between a new input schema and fragments of previously
used schemas. Thus, an essential step in using UFOs for schema mapping is
the decomposition of the source and target scheams into the right set of UFOs.
Schema decomposition is the technique of automatically selecting a collection
of concepts from a given repository, which together form a good coverage of a
new input schema. In general, schema decomposition enables the understanding
and representation of large schemas in terms of the granular concepts they rep-
resent. This step should automatically propose good decompositions, and allow
the user to further modify and enhance them. Schema decomposition should be
both efficient in tranversing a large space of UFOs, and effective in producing
decompositions of high quality.

Consider for example the schema in Figure 4(i). An integration advisor, using
the techniques of schema decomposition can automatically identify that the same
Address format has been used before. It will then propose transformation flows
for this specific format of Address.

There has been a lot of work in semi-automated schema matching, proposing
solutions that are based on schema and instance level, element and structure-
level, language and constraint-based matching, as well as composite approaches
[17,18]. Some of the different systems that have been developed for matching in-
clude SemInt [10], CUPID [12], SF [13], LSD [5], GLUE [6], COMA [4], TranScm
[15], Momis [1] etc. The reuse of previously determined match results proposed

Order Person

Bill-To Item
OrderID

Address

Street City Country

Section of an order schema

Name Ship-To

Order
Input
schema UFO

Filtering

Score-computation

Pre-processing

semantic

structural

ItemId Quantity

schema
UFOs Obtaining coverage

(i)

(ii)

Fig. 4. (i) A Schema-Graph, (ii) Components Used in Schema Decomposition

Simplifying Information Integration 115

by Rahm and Bernstein in [17] has also attracted recent research focus and has
been successful in significantly reducing the manual match work [4,11]. How-
ever the reuse of matching is limited to element to element match and not on
any larger matching concepts. Most of these works can only handle small and
structurally simple schemas and define direct schema matching from source to
target. In contrast, our proposed schema decomposition technique can be used
to exploit reuse on much larger matching concepts (UFOs) and make the task of
schema-matching and mapping between structurally complex schemas substan-
tially easier.

Enabling reuse goes beyond the design of schema mappings. It can be ex-
ploited by ETL tools, Mashups and in general by Information Integration sys-
tems. Consider a schema for a new Mashup feed, where similar fragments of the
schema have been used in other data sources. Then the automated advisor can
detect similarities, and advise the user of opportunities for exploiting the new
data in interesting ways. In Information Integration, let us consider two schemas
that are understood in terms of the concepts from the repository. Then common
concepts point to schema matches, and can be used to efficiently direct users
through the task of integrating the two schemas. In all these aspects, schema
decomposition will serve as the fundamental tool.

3.1 An Overview of the Technique

Given a source and a target schema, and a repository of UFOs, schema decom-
position aims towards “covering” the schemas with UFOs as well as possible.
Known matching and transformations between UFOs can then be exploited to
obtain a source to target schema-mapping. Populating the repository with the
right schema fragments can be thought of as a preprocessing step. By contrast,
schema decomposition needs to be handled online, as new input schemas are in-
troduced. Let us denote an input schema by S, and the repository by R. Schema
decomposition identifies the matching concepts (schema fragments) Ui’s from R
that best cover S. The selection of the Ui’s and their corresponding positioning
to cover S are factors in the quality of the coverage. For efficiency, we use a
filter/evaluate/refine approach as described below.

The repository of schema fragments Ui can be quite large, and most of these
fragments will not match at all S. Therefore, it is necessary to reduce the search
space and select only fragments from the repository that have potential to be
relevant. This filtering is performed in two phases. In the first phase, a semantic
filter is used that compares labels of each Ui against labels in S. Note that the
structural relationship between labels is not yet taken into account. The output
of the semantic filter is the set of candidates Ui that have any semantic labels
in common with S. However, this does not test for the structural similarity.
That is, do the labels in any of the Ui’s match a cohesive region of S? And if
yes, how much structural flexibility do we allow when considering a match? The
structural filter evaluates these questions and further refines the candidate set.

The next step in schema decomposition involves a score computation model,
in order to compute the quality scores for the Ui’s in the candidate set. The

116 B. Alexe et al.

score for each Ui is computed based on the portions of S that Ui can poten-
tially cover. Note that considering all possible sub-regions of S and calculating
quality scores of Ui’s for each region is an exponential process. In practice the
score computation model needs to rely on a quality measure that avoids this
exponential running time and can be computed efficiently.

The last step is an optimization step that considers all the selected UFOs
together with their quality score and 1) selects a subset of UFOs and 2) positions
them relative to S so that the aggregated quality score is maximized. Figure 4(ii)
illustrates this framework. This last step is NP-Complete and thus an exhaustive
approach will take exponential time and is potentially of no practical interest.
Instead, approximation algorithms that are fast and guarantee near-optimality
of the result quality should be used.

4 Orchestrating Flows of Schema Mappings

As mentioned before, the mappings between the end schemas and the UFOs, as
well as the mappings that relate UFOs extracted from the repository, are initially
uncorrelated. To express a meaningful end-to-end transformation, the flow of
independently designed, uncorrelated mappings needs to be assembled into a
global mapping. To achieve this, Calliope relies on a mechanism for merging
smaller, uncorrelated mappings into larger, richer mappings, through joining
and fusing data coming from individual mappings.

We give a brief overview of the merging technique through the use of a simple
example. Consider the scenario in Figure 5. It consists of a nested source schema
representing information about projects and the employees associated with each
project. Potentially following the schema decompositionphase, a set of three UFOs
have been identified as relevant to the source schema: Project, Dept, and Em-
ployee. These are possibly extracted from the UFO repository and are

��������	
����

�����

�����

���������	
����

�����

������

����������

�����

�����

����

�������

�����

�����

�������

�����������

�����

�����

������

����

M
1

M
2

M
3

Fig. 5. Mapping Merge Scenario

Simplifying Information Integration 117

standardized representations of the business objects project, department, and em-
ployee, respectively. Using schema matching techniques and the mapping design
capabilities in Clio, three initial mappings M1, M2, M3 are constructed between
the source schema and each of the three UFOs. These mappings are decorrelated
and, in a real life scenario, may be constructed by independent mapping design-
ers. This mapping scenario may be part of a larger flow of mappings from the
source schema, through the UFOs above, and possibly others, to one or more tar-
get schemas. The mappings in the scenario above can be expressed in a logical
formalism similar to source-to-target constraints [8], as below:

M1 : Projects(p, d, E) → ufoProject(PID, p, DID)
M2 : Projects(p, d, E) → ufoDept(DID′, d, A)

M3 : Projects(p, d, E) ∧ E(e, s) → ufoEmployee(EID, e, s, DID′′)

For instance,mappingM3 above states that for eachproject record in the source,
and each employee record in the set of employees associated with that project,
there must exist a ufoEmployee object where the values for the ename and salary
attributes come from the corresponding attributes in the source employee record.
However, according to M3, the identifier of the ufoEmployee object as well as
the value of the dept attribute remain unspecified, and are allowed to take some
arbitrary values. Similarly, mappings M1 and M2 put in correspondence source
project records to ufoProject and ufoDept objects, respectively. Note that ac-
cording to the mappings above, the values of the dept attribute in ufoProject
and ufoEmployee and the identifier of ufoDept are not correlated.

The mapping merge mechanism in Calliope rewrites and combines the ini-
tial mappings to generate a set of richer mappings that support a meaningful
transformation where target data records the “correct” correlations. As a first
step, the merging technique takes advantage of any constraints that may be
present among the UFOs. In the example above, there are two referential con-
straints, indicated through dashed lines in figure 5. These constraints indicate
that the dept attributes in ufoProject and ufoEmployee must be identifiers
for a ufoDept. The merge mechanism considers these constraints and rewrites
the initial mappings into the following mappings:

M ′
1 : Projects(p, d, E) → ufoProject(PID, p, DID)

∧ ufoDept(DID, d, A′)
M ′

3 : Projects(p, d, E) ∧ E(e, s) → ufoEmployee(EID, e, s, DID′′)
∧ ufoDept(DID′′, d, A′′)

In the new set of mappings, M ′
1 is the result of merging M1 and M2, and M ′

3 is
the result of merging M3 and M2. Note that in M ′

1, the ufoProject and ufoDept
are correlated via the department identifier field. A similar correlation exists in
M ′

3 between ufoEmployee and ufoDept. Note that there is no correlation (yet)
between M ′

1 and M ′
3.

An additional merging step applies by taking advantage of the fact that M ′
3 is

a “specialization” of M ′
1: the latter mapping defines behavior for project records,

118 B. Alexe et al.

in general, whereas the former considers, additionally, the employee records as-
sociated to the project records. Concretely, we can merge the more specific part
of M ′

3 (i.e., the employee mapping behavior) into M ′
1 as a nested sub-mapping.

The resulting mapping is the following:

Projects(p, d, E) → ufoProject(PID, p, DID)
∧ ufoDept(DID, d, A′)
∧[E(e, s) → ufoEmployee(EID, e, s, DID)]

The resulting overall mapping includes now all the “right” correlations be-
tween projects, departments and employees. The top-level mapping transforms
all project records, by creating two correlated instances of ufoProject and
ufoDept for each project record; the sub-mapping, additionally, maps all the
employee records that are associated with a project, and creates instances of
ufoEmployee that are all correlated to the same instance of ufoDept.

This simple example gives just an illustration of the techniques for merging
mappings that are used in Calliope. The full details of the complete algorithm
for merging will be given elsewhere.

5 Unified Flow Model Framework

As a schema mapping tool, Clio aimed in allowing people to transform data
between different schemas. However, it is far from being the only tool available
for this task. Data transformations can nowadays be carried out through a variety
of different tools, such as mapping tools (e.g. Clio, Stylus Studio), Extract-
Transform-Load (ETL) tools (e.g. Datastage), Database Management Systems
(DBMSs) (e.g. DB2, SQL Server, Oracle) etc.

These tools offer different paradigms to design the transformation (and thus
they have different target audiences) and they employ different engines to exe-
cute the designed transformation. Table 1 summarizes the design and runtime
components for mapping tools, ETL tools and DBMSs. For instance, mapping
tools allow the declarative design of transformations (through mappings) and
therefore they are best suited to analysts who want to design a transformation
at a high level. In contrast, ETL tools have a more procedural flavor, allowing
the design of a transformation through the composition of a set of primitive ETL
operators. This makes them the ideal platform for highly-skilled programmers
who want to design complex workflows. Similarly, mapping tools and ETL tools
employ different engines to execute the transformation. Mapping tools usually
translate the transformation down to a query language like XQuery or XSLT,
while ETL tools often contain their custom execution engines optimized for the
supported set of operators.

However by tying together a certain design component and runtime com-
ponent, existing tools severely restrict the users in two significant ways: First,
they force the users to employ both the design and runtime component sup-
ported by the tool. For example, a user cannot design a transformation in Clio

Simplifying Information Integration 119

Table 1. Properties of Mapping Tools, ETL Tools and DBMSs

Mapping Tools ETL Tools DBMS

Design Paradigm Mappings Flow of ETL Op-
erators

Query

Target Audience Analysts Programmers DB Experts
Execution Engine XQuery engine,

XSLT engine etc.
Custom Query Engine

and execute it using the highly optimized internal engine of an ETL tool, since
the ETL’s runtime engine can only execute transformations designed through
the ETL paradigm. Second, they do not allow users to employ different design
paradigms to design a single flow. For example, an ETL programmer willing
to extend the transformation sketched by an analyst in Clio, has to start from
scratch as there is no automatic provision for the translation between design
paradigms supported by different tools.

To alleviate these problems, Calliope is based on the Unified Flow Model
Framework, shown in Figure 6. The heart of this framework is the Unified
Flow Model (UFM); a model that represents data transformations in a tool-
independent way. Different design components can be added in the system in
a modular way by specifying a procedure for translating the internal represen-
tation of the design component to UFM and vice versa. Similarly, a developer
can add an execution engine to the framework by specifying how a transfor-
mation described in UFM can be translated to a language recognized by the
particular execution engine. The result is a framework, where users can design a
data transformation in one or more design components (originating from diverse
tools, such as mapping tools, ETL tools etc.) and subsequently execute it on any
execution engine that has been added to the framework.

ETL
Engine SQL XQuery Jaql

optimizations

Execution Engines

Design Paradigms

ETL flow
design

mapping
design

traditional
SQL-builders

Unified Flow Model (UFM)

Fig. 6. Unified Flow Model Framework

120 B. Alexe et al.

The implementation of the UFM framework poses many important challenges
caused by the differences between various design components (respectively exe-
cution engines). First of all, the translation between different design paradigms
might not be always possible, since they have in general different expressive
power. Should such translations fail or should the system try to translate the
largest subset of the transformation possible? Second, although a transformation
can be optimized at the UFM level, there will be some optimizations that are
execution engine dependent. What types of optimizations can be done on the
UFM level and which optimizations require knowledge of the execution engine
on which the transformation is going to be ran? These are a few of the questions
that arise in the implementation of the UFM framework.

As a first step towards our vision, we have designed the following components
of the UFM framework: a) the UFM model as a flow of ETL-like operators that
can express most common data transformations (which contain all transforma-
tions currently supported by Clio’s mapping language), b) the translation from
Clio’s mapping language to UFM and c) the translation from UFM to Jaql;
a JSON query language that contains a rewriting component that translates
queries to MapReduce jobs that can be executed in Hadoop. This corresponds
to the addition of two components in the architecture shown in Figure 6: the
mapping design component (with a unidirectional arrow into UFM) and the
Hadoop execution engine.

6 Conclusion

We have discussed the main components of Calliope, a system for creating and
maintaining flows of mappings. Our main motivation for Calliope was to extend
and reuse the basic schema mapping operations explored in Clio in more complex
and modular data transformation jobs.

We believe that complex mappings are difficult to build and manage in one
step. Not only is it conceptually hard to understand the relationships between
schemas with a potentially very large number of elements but it is also hard to
visualize and debug them. Calliope allows users to express mappings in terms of
higher-level objects, such as business objects, that are easier to understand and
do not couple implementation with semantics. Further, mappings in Calliope are
smaller and modular, increasing the opportunity for reuse.

Acknowledgements. We acknowledge Hamid Pirahesh for his original sugges-
tion to use UFOs and also for his continuous feedback on this work.

References

1. Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration
of heterogeneous information sources. Data Knowl. Eng. 36(3), 215–249 (2001)

2. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing Mapping Com-
position. In: Proceedings of VLDB, pp. 55–66 (2006)

Simplifying Information Integration 121

3. Dessloch, S., Hernández, M.A., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: Inte-
grating Schema Mapping and ETL. In: ICDE, pp. 1307–1316 (2008)

4. Do, H.-H., Rahm, E.: Coma: a system for flexible combination of schema matching
approaches. In: VLDB 2002, pp. 610–621 (2002)

5. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data
sources: a machine-learning approach. In: SIGMOD 2001, pp. 509–520 (2001)

6. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between on-
tologies on the semantic web. In: WWW 2002, pp. 662–673 (2002)

7. Fagin, R., Kolaitis, P., Popa, L., Tan, W.-C.: Composing Schema Mappings:
Second-Order Dependencies to the Rescue. In: PODS, pp. 83–94 (2004)

8. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoretical Computer Science 336(1), 89–124 (2005)

9. Fuxman, A., Hernández, M.A., Ho, H., Miller, R.J., Papotti, P., Popa, L.: Nested
Mappings: Schema Mapping Reloaded. In: Proceedings of VLDB, pp. 67–78 (2006)

10. Li, W.-S., Clifton, C.: Semint: a tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data Knowl. Eng. 33(1), 49–84
(2000)

11. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema match-
ing. In: ICDE 2005, pp. 57–68 (2005)

12. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB 2001, pp. 49–58 (2001)

13. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm. In: ICDE 2002, pp. 117–128 (2002)

14. Miller, R.J., Haas, L.M., Hernández, M.A.: Schema mapping as query discovery.
In: VLDB 2000, pp. 77–88 (2000)

15. Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data trans-
lation. In: VLDB 1998, pp. 122–133 (1998)

16. Popa, L., Velegrakis, Y., Hernández, M.A., Miller, R.J., Fagin, R.: Translating web
data. In: VLDB 2002, pp. 598–609 (2002)

17. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

18. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-
capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

	Simplifying Information Integration: Object-Based Flow-of-Mappings Framework for Integration
	Introduction
	Unified Famous Objects (UFOs)
	Schema Decomposition
	An Overview of the Technique

	Orchestrating Flows of Schema Mappings
	Unified Flow Model Framework
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

