

Lecture Notes
in Business Information Processing 27

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Norman M. Sadeh
Carnegie Mellon University, Pittsburgh, PA, USA

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Malu Castellanos Umesh Dayal
Timos Sellis (Eds.)

Business Intelligence
for the Real-Time
Enterprise

Second International Workshop, BIRTE 2008
Auckland, New Zealand, August 24, 2008
Revised Selected Papers

13

Volume Editors

Malu Castellanos
Umesh Dayal
Hewlett-Packard
1501 Page Mill rd, MS-1142, Palo Alto, CA 94304, USA
E-mail: {malu.castellanos,umeshwar.dayal}@hp.com

Timos Sellis
Institute for the Management of Information Systems
17 Mpakou str, Athens 11524, Greece
E-mail: timos@imis.athena-innovation.gr

Library of Congress Control Number: 2009931688

ACM Computing Classification (1998): H.3, H.2, J.1

ISSN 1865-1348
ISBN-10 3-642-03421-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03421-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12718801 06/3180 5 4 3 2 1 0

Preface

In todayís competitive and highly dynamic environment, analyzing data to understand
how the business is performing, to predict outcomes and trends, and to improve the
effectiveness of business processes underlying business operations has become criti-
cal. The traditional approach to reporting is no longer adequate, users now demand
easy-to-use intelligent platforms and applications capable of analyzing real-time busi-
ness data to provide insight and actionable information at the right time. The end goal
is to improve the enterprise performance by better and timelier decision making, en-
abled by the availability of up-to-date, high-quality information.

As a response, the notion of "real-time enterprise" has emerged and is beginning to
be recognized in the industry. Gartner defines it as “using up-to-date information,
getting rid of delays, and using speed for competitive advantage is what the real-time
enterprise is all about... Indeed, the goal of the real-time enterprise is to act on events
as they happen.” Although there has been progress in this direction and many compa-
nies are introducing products toward making this vision a reality, there is still a long
way to go. In particular, the whole lifecycle of business intelligence requires new
techniques and methodologies capable of dealing with the new requirements imposed
by the real-time enterprise. From the capturing of real-time business performance data
to the injection of actionable information back into business processes, all the stages
of the business intelligence (BI) cycle call for new algorithms and paradigms as the
basis of new functionalities including dynamic integration of real-time data feeds from
operational sources, evolution of ETL transformations and analytical models, and
dynamic generation of adaptive real-time dashboards, just to name a few.

The series of BIRTE workshops aims to provide a forum for discussing topics re-
lated to this emerging field and setting research directions of business intelligence (BI)
toward the vision of the real-time enterprise. Following the success of BIRTE 2006
held in Seoul, Korea in conjunction with VLDB 2006, BIRTE 2008 was held in Auck-
land, New Zealand, on August 24, 2008, in conjunction with VLDB 2008. It included
one keynote talk and three sessions where ten papers were presented. In contrast to
BIRTE 2006, on this occasion we had six invited talks given by well-known research-
ers from academia and industry driving major efforts in areas that are fundamental to
BIRTE. The papers by the keynote speaker, four invited talks and the four accepted
papers are included here.

Volker Markl (Technische Universität Berlin) gave the keynote talk on “Situational
Business Intelligence.” Volker is an expert in BI and has a long research record in the
area. He presented the state of the art for situational applications and the impact of
Web 2.0 on these applications; he also presented examples and research challenges
that the information management research community needs to address in order to
arrive at a platform for situational business intelligence.

We wish to express special thanks to the Program Committee members for provid-
ing their technical expertise in reviewing the submitted papers and helping us prepare

 Preface VI

an interesting program. To our keynote speaker and the presenters of the papers we
express our appreciation for sharing their work and experiences in this workshop. We
thank the VLDB 2008 organizers for their help and organizational support. Finally,
we would like to extend many thanks to Alkis Simitsis for maintaining the workshop’s
website, for preparing the e-proceedings and for his help in producing this volume.

April 2009 Malu Castellanos
Umesh Dayal
Timos Sellis

Organization

Organizing Committee

General Chair

Umeshwar Dayal Hewlett-Packard, USA

Program Committee Chairs

Malu Castellanos Hewlett-Packard, USA
Timos Sellis Institute for the Management of Information Systems

and National Technical University of Athens, Greece

Program Committee

Martin Bichler Technical University of Munich, Germany
Christof Bornhoevd SAP Labs, USA
Mike Carey BEA, USA
Fabio Casati University of Trento, Italy
Surajit Chaudhuri Microsoft, USA
Dimitrios Georgakopoulos Telcordia Technologies, USA
Jayant Haritsa IISc, India
Howard Ho IBM Almaden, USA
Tan Kian-Lee National University of Singapore, Singapore
Wolfgang Lehner University of Dresden, Germany
Torben B. Pedersen Aalborg University, Denmark
Krithi Ramamritham IIT Bombay, India
Stefano Rizzi University of Bologna, Italy
Donovan Schneider Yahoo, USA
Alkis Simitsis Stanford University, USA
Panos Vassiliadis University of Ioannina, Greece
Andrew Witkowski Oracle, USA

Publication Chair

Alkis Simitsis Stanford University, USA

Table of Contents

Situational Business Intelligence . 1
Alexander Löser, Fabian Hueske, and Volker Markl

On Solving Efficiently the View Selection Problem under
Bag-Semantics . 12

Foto Afrati, Matthew Damigos, and Manolis Gergatsoulis

QoS-Aware Publish-Subscribe Service for Real-Time Data
Acquisition . 29

Xinjie Lu, Xin Li, Tian Yang, Zaifei Liao, Wei Liu, and
Hongan Wang

A Near Real-Time Reporting System for Enterprises Using JavaScript
Instrumentation with Inter-colo Event Replication 45

Timothy Tully

A Hybrid Row-Column OLTP Database Architecture for Operational
Reporting . 61

Jan Schaffner, Anja Bog, Jens Krüger, and Alexander Zeier

The Reality of Real-Time Business Intelligence . 75
Divyakant Agrawal

Beyond Conventional Data Warehousing—Massively Parallel Data
Processing with Greenplum Database (Invited Talk) 89

Florian M. Waas

Scalable Data-Intensive Analytics . 97
Meichun Hsu and Qiming Chen

Simplifying Information Integration: Object-Based Flow-of-Mappings
Framework for Integration . 108

Bogdan Alexe, Michael Gubanov, Mauricio A. Hernández,
Howard Ho, Jen-Wei Huang, Yannis Katsis, Lucian Popa,
Barna Saha, and Ioana Stanoi

Author Index . 123

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 1–11, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Situational Business Intelligence

Alexander Löser, Fabian Hueske, and Volker Markl

TU Berlin
Database System and Information Management Group

Berlin, Germany
firstname.lastname@tu-berlin.de

Abstract. Traditional business intelligence has focused on creating dimensional
models and data warehouses, where after a high modeling and creation cost
structurally similar queries are processed on a regular basis. So called "ad-hoc"
queries aggregate data from one or several dimensional models, but fail to
incorporate other external information that is not considered in the pre-defined
data model. We focus on a different kind of business intelligence, which
spontaneously correlates data from a company's data warehouse with "external"
information sources that may come from the corporate intranet, are acquired
from some external vendor, or are derived from the internet. Such situational
applications are usually short-lived programs created for a small group of users
with a specific business need. We will showcase the state-of-the-art for
situational applications as well as the impact of Web 2.0 for these applications.
We will also present examples and research challenges that the information
management research community needs to address in order to arrive at a
platform for Situational Business Intelligence.

Keywords: Business intelligence over text, Ad-hoc analysis, Cloud Computing.

1 Introduction

The long tail phenomenon is often observed with the popularity of consumer goods,
web pages or tags, used in “Flickr” or “MySpace”. Interestingly, current enterprise
applications are characterized by a long tail distribution as well: A small number of
business critical applications are maintained by the IT-department. Such applications
typically require high availability, high scalability and are requested by a large
number of users. Examples for such business critical systems are mostly systems that
manage business transactions e.g., accounting, customer relationship management
(CRM), enterprise resource planning (ERP) and simple online analytical processing
application. Besides of these business critical applications a “long tail” of situational
applications exists. These are created to solve a short term problem and are often
developed ad-hoc and independent from the IT-department. However, the growing
amount of unstructured text in the web, intranets or user-generated content in blogs or
reviews [RT07] needs to be integrated with structured information from a local ware
house in an ad-hoc application. Neither conventional search engines nor conventional
BI tools address this problem, which lies at the intersection of their capabilities.
However, situational business intelligence applications tackle this problem. They tap

2 A. Löser, F. Hueske, and V. Markl

into the wealth of unstructured information in order to determine new trends and give
an enterprise a competitive advantage. Major building blocks of situational business
intelligence applications are information extraction algorithms and frameworks like
UIMA [FL04], which identify relevant concepts and relationships within and between
documents.

In situational business intelligence, the value of information decreases over time.
Hence, the time for a-priori building semantic indexes may prevent BI users from
getting a fast answer. Therefore another building block will be cloud computing. This
technology enables an information worker to analyze and extract information ad-hoc
and at query time from large corpora, such as a sample of several 10.000s documents
from the web returned by a search web engine. Cloud architectures strive to massively
parallelize complex computations on a large cluster through a computational model
motivated by functional programming. Its scale-out and adaptability are exactly the
kind of features needed to parallelize and scale-out UIMA aggregate analysis engines.
Computing clouds provide highly available storage and compute capacity through
distribution and redundancy. Most importantly, cloud computing architectures
promise to adapt to changing requirements with respect to compute- and storage
capacity by dynamically provisioning new compute or data nodes.

Our vision: We will develop a novel, database-inspired approach to ad-hoc analyze,
aggregate and query very large data collections on cloud architectures. Our project
builds upon the following five principles:

• Common Algebraic Core. We provide a common core of Situational Business
Intelligence Applications - an extensible, algebraic model for executing complex
queries over unstructured and (semi-) structured data. That model integrates data
and text analysis operators and allows the analyst to describe, plan, optimize, and
execute the proposed information extraction and query processing tasks.

• Unstructured Text is a First Class Citizen. Local analysis operations on a
single document [RRK+08], global analysis operations on a set of documents
[BCS+07] and entity ranking approaches for uncertain, extracted data [KSI+08,
CYC07] must seamlessly fit into the algebraic framework and must be distributed
efficiently on computing clouds.

• Elementary Operators on the Cloud. The algebra translates Situational
Business Intelligence queries into functional data flow programs that are
executed in a distributed fashion on a computing cloud. As starting point we base
on elemental functional operators map and reduce and will add elementary
operators, such as a merge-operator for combining multiple inputs, a split-
operator for partitioning data and a tree-operator for improving efficiency of the
relational join operation.

• Query Optimization. In order to minimize resource consumption or response
time, we will identify beneficial heuristics and rules for rewriting initial query
plans. We also need to identify parameters that impact execution to derive the
preconditions under which the application of certain rewrite rules on the query
plan is beneficial. Also, we will need to study how these parameters can be
obtained efficiently before a particular query or a particular operation starts to
execute.

 Situational Business Intelligence 3

• Query Refinement. Analysts need query refinement methods while selecting
data sources, extractors, measurements and dimensions in an iterative query
refinement process. We will investigate algorithms which determine alternative
queries that serve the pragmatics of the querying user. Such an algorithm must
determine the distance between the original query and some generated candidate
query with respect to query semantics and coverage. Based on these tests it
determines the candidate query whose results fit best the expectations of the
querying user.

The rest of the paper is structured as follows: In Section 2 we propose typical use
cases for business intelligence applications and identify major requirements, Section 3
reviews the building blocks of the system for running Situational Business
Intelligence applications and outlines major research challenges that need to be solved
before building such a system.

2 Situational Business Intelligence

The next generation of business intelligence applications requires analyzing and
combining large data sets of both structured and unstructured data. According to
current estimates, professional content providers (webmasters, journalists, technical
writers, etc) produce about 2GB of textual content per day, whereas all user-generated
content on the web amounts to 8-10GB per day [RT07]. Especially textual data
usually is not processed in any manner, i.e., is not cleansed or annotated with an
analysis schema. In this section we introduce our example scenarios and to our query
answering process.

2.1 Example Scenario

Companies more and more tap into the analysis of consumer responses of consumers
on company driven forums or external blogging sites. Incentives for analyzing the
user-generated content are to increase customer loyalty, to bring ideas into the
company, to research the market or to amplify "word of mouth" marketing. Often
such analysis activities are initiated by non-IT people, e.g., product or marketing
managers. The following use case tackles the ad-hoc analysis of “Business to
Customer” communities of an “ordinary” product manager:

Example 1: A reseller of electronic goods is analyzing the digital camera market
during the last 12 months. Therefore the reseller poses the following query:

Select customer reactions (sentiments) for digital cameras featuring 7-9 megapixels
and below 400 euro during the last 12 months. Use results from amazon.com,
google.com, blogspot.com and dpreview.com as data source.”

The system receives ca. 560.000 candidate pages from a web search engine and filters
out pages which do not contain any sentiments and do belong to dpreview.com,
blogspot.com or amazon.com. From the remaining pages, the system extracts camera
attributes (megapixel, price etc.), sentiments (time, author, positive/negative) and

4 A. Löser, F. Hueske, and V. Markl

relationships between them. To avoid sparse data sets in the sentiments, identical
camera models and their attributes are merged. Repeated sentiments from the same
user and for same camera are counted. Next, the cleansed sentiment data is merged
with structured sales data records from an internal data ware house. Finally, the
system presents the product manager a time shift diagram, where he could identify
correlations between sentiments and sales during the last 12 months.

2.2 Answering SBI Queries

Answering Situational Business Intelligence queries requires a close interaction
between components for gathering text data, for extracting structured data from text,
for cleansing extracted data, for obtaining a schema from the extracted data and for
processing the extracted data on top of the generated schema. In the following, we
review each step in the answering process.

1. Ad-hoc Data Retrieval: SBI queries access various diverse data sources such as

the Internet, cooperative intranets, data warehouses or office documents. While
databases allow the retrieval of information with simple SQL interfaces, web
sources are not accessible in such a structured way. E.g., the given example
requires access to a data warehouse holding sales data for cameras and needs to
retrieve user comments from internet blogs. Common methods to access web
content are crawlers which materialize web sites locally by following links, such
as Nutch-Hadoop, or to use web query languages, such as YQL1.

2. Ad-hoc Data Extraction: Unstructured data like forum pages or blogs contain lots
of valuable information. Information extraction techniques are required to
transform this information into a semi-structured model and make it accessible.
For our example query, camera makes and models as well as user opinions
(sentiment analysis) need to be extracted from blogging websites.

3. Data Cleansing of Extracted Data: Data provided by data extraction services is
often of low quality. E.g., the chosen extractor might not capture the semantic of
the blogger and therefore not all attributes of a complex entity could be
identified. Often current extraction services such as “OpenCalais.com” do not
fuse syntactical different entities (e.g., “Dell” and “Dell Inc.”) to a common
logical entity. Data cleansing are resolving unique entities [WNJ08] or filling up
missing information e.g., from domain knowledge.

4. Schema Generation from Uncertain Extracted Data: In contrast to a static
schema in a data ware house, Situational Business Intelligence applications
require a flexible view over the data that is no longer coupled neither on available
data in the data warehouse nor to a common 'one size fits all' schema. When
formulating such an ad-hoc query over unstructured data, the analyst needs to
estimate data volume and quality, available dimensions, facts and measurements
for the chosen unstructured data source at query definition time. Cleary, for most
data sources, the analyst will not have enough information to incorporate such
estimates into ones query and requires additional system support.

5. Query Processing: The data integration step requires all data available in
structured or semi-structured format. Traditional database operators like filter,

1 Yahoo! Query Language: http://developer.yahoo.com/yql

 Situational Business Intelligence 5

join, grouping and aggregating operators are applied on that data. For our
example, the extracted blog data is filtered for camera of a specific manufacturer.
This information is grouped by model and positive and negative opinions are
counted. Finally, this data is joined with sales data for cameras models from the
data warehouse.

3 Building a SBI System

Based on the requirements for a SBI system in this section we show a draft of the
architecture of a Situational Business Intelligence system. Later, we define research
challenges we face when building such a system and present recent technologies
which have the capabilities to overcome these problems.

3.1 Architecture and Components

A business intelligence system needs to analyze large amounts of data in an ad-hoc
fashion. Large amount of data result from a web search or a web crawl, where in a
worst case millions of web search results or hundreds of GB of user-generated content
need to be analyzed. To worsen the situation a business intelligence system must be
able to answer an ad-hoc query usually in a few seconds to a few minutes. To address
these goals, the authors of [LHDB2008] provided a basic model and process for
analyzing structured and unstructured user generated content in a business warehouse.
We extended their findings towards an ad-hoc query processing model and defined an

Fig. 1. Architecture of a situational business intelligence system

6 A. Löser, F. Hueske, and V. Markl

architecture model for a parallel data management system. In the following we list
components for processing Situational Business Intelligence analytics queries.

Base Analytics: Enable Ad-hoc Queries but hide Complexity of Parallelization.
Processing a large of data in a short amount of time is computationally intensive. The
ability to parallelize, the fault-tolerance, and the adaptability of cloud architectures
enable information management systems to answer queries on an internet-wide scale.
However, the architecture of such a system is fundamentally different from a
client/server architecture and storage subsystems, which traditional database systems
utilize.

• Cloud Computing. Although Cloud Computing is not a fixed term, it describes

network architectures with many lousily coupled computer nodes. These nodes
are often built from commodity hardware. The property of loose coupling
requires that cloud computing software must be able to cope with nodes joining
or leaving the system, i.e. be fault tolerant and scalable. Due to the adaptability of
the cloud, query optimization is mostly dynamic. Performance, cost, and energy
consumption of the cloud guide adaptation of query execution plans at run-time.

• Parallel Data Storage. A distributed file system has to take the role of shared
memory and storage system. Cached results and metadata have to be stored and
indexed on the distributed file system of the cloud. Google's GFS [GGL03] or
Microsoft's COSMOS [31] are optimized towards provide performance and fault
tolerance. Hadoop2, the open source MapReduce framework of the Apache
Project, combines a distributed file system (HDFS) and a MapReduce runtime
environment. However, current file systems do not provide random data access
beyond file level. To overcome this limitation, column oriented data stores like
Google's BigTable [CDG06] or HBASE have been built on top of distributed file
systems. These stores organize data in a column oriented fashion which allows
for simple extensions of storing schemata and sparse data, a feature which is
crucial for ad-hoc text extraction tasks where often no schema is a-priori
provided.

• Parallel Execution Engine. Due to the large number of nodes, Cloud Computing
is especially applicable for parallel computing task working on elementary
operations, such as map and reduce. MapReduce programs are executed in a
runtime environment that is responsible for the distribution of computing tasks.
These environments handle errors transparently and ensure the scalability of the
system. [Dgh04] and [YDH07] provide details on the MapReduce programming
paradigm and its applications.

• Query Processor. On cloud architectures, queries need to be translated into
functional data flow programs. Above basic operations range from simple
crawling over complex linguistic processing of a set of text documents to data
analysis operations, such as value aggregation. Recently, data processing
languages have been designed to reduce the efforts to implement data analysis
applications on top of a distributed system. These languages are often tailored
towards mass data analysis on flat data models, such as found at query log file

2 http://hadoop.apache.org/

 Situational Business Intelligence 7

analysis. Examples for this type of query language are PigLatin [ORS08], Scope
[CJL08] or the Cascading framework3. The language JAQL4 supports a semi-
structured data model and provides basic data analysis operations.

• Query Builder. Current query processing engines allow an analyst to model a
data flow, which is executed as map-reduce program. The data flow is either
specified as script language in a text document, such as with JAQL or PigLatin,
or is included into a programming environment, such as in Cascading. However,
current query builder do not provide specific operations for harvesting text data
from the web, extracting entities and relationships and discovering a suitable
analysis schema e.g., an OLAP-schema.

Advanced analytics: Run fast Analytics on Text Data. Particularly, complex ad-
hoc queries over unstructured text require a data and processing model for a cloud
architecture that seamlessly integrates advanced information extraction, and complex
analysis operators with base analysis flow operators (filter, merge, join, aggregate,
etc.). Functional map reduce programs can parallelize these advanced analysis
operations but have to be integrated into the optimization framework of the overall
system. We name requirements for executing advanced analysis operators on a map
reduce platform:

• Parallel Extraction leveraging Cost Models. Information Extraction transforms

unstructured textual information into semi-structured data and is a core
component of a Situational Business Intelligence system. Current extraction
systems [KKR06, SDN+07] combine local and global analysis techniques in an
extraction plan. Parallelizing executing plans on a cloud platform would
drastically reduce execution times. However, dependencies between “slower” and
“faster” extractors during global analysis operations can cause bottlenecks. To
avoid such bottlenecks each extractor provides a cost model. An optimizer will
used it to distribute extraction load optimal over cloud nodes.

• Parallel Testing of “Extractor - Data Source Combinations”. We except in
the feature several providers of “text analytics” as service or by the domain
independent information extraction paradigm [BCS+07]. A component is
required that tests the quality and “fitness” of these services against text-data
sources e.g., blogging web sites or news websites. To evaluate many potential
“extractor–data source combination” fast, this component need to drastically
parallelize the data gathering extraction and analysis process.

 Distributed Data Cleansing. Current text-analytics-as-service applications, such
as OpenCalais.com, or UIMA annotators provide extracted but still “dirty” data
snippets. We expect that new data cleansing techniques will benefit from
additional context information in the text e.g., about the position of the extracted
entities in the text. To leverage that information for large volumes of “user-
generated-content”, data cleansing techniques should be executed on a cloud.

 Discovering Analysis Schemas from Uncertain, Extracted Data. Schema
discovery is the problem of constructing a relational schema that best describes
extracted data. However, with text data, the analyst often is unfamiliar with the

3 http://www.cascading.org/
4 http://jaql.org/

8 A. Löser, F. Hueske, and V. Markl

data structure and cannot estimate the number of types and relationships a text
will provide. Often the extracted data is inherently noisy, was extracted with a
low precision or is ambiguous. Current research prototypes, such as NAGA
[KSI+08], R-CUBE [PLAP08] or EntityRank [CYC07], use language models to
rank in a top-k fashion entities and relationships from an extracted fact data base.
Their probabilistic approaches consider uncertainty at the level of the extractor, at
the level of the extracted span and the level of the document. A schema
generation approach for Situational Business Intelligence applications needs to
incorporate that uncertainty when generating the schema on a web-scale.
“Starting points” are existing schema generation solutions for mining keys and
foreign keys [SBHR06] for discovered high level structures in schemas
[WRSM08] or for generating schemas from domain independent information
extraction systems [CSE07].

3.2 Research Challenges

The challenge of executing Situational Business Intelligence analytics focuses on ad-
hoc queries that neither traditional database management systems nor search engines
could answer. In order to achieve that goal, we will address the following research
challenges to improved base and advanced analytics:

Base Analytics: Extend language like JAQL, PIG or CASCADING as a single
analysis-algebra for data gathering, extraction and processing. Unsolved research
questions tackle the data and processing model in order to execute complex ad-hoc
queries over structured and unstructured data. Can the model be formalized as a
closed algebra? How can the model be translated efficiently to a cloud computing
executing environment?

Base Analytics: Leveraging existing principles for distributed data management.
Principles from Peer-to-Peer networks and Grid Computing techniques need to be
transferred and improved for a cloud information management system. How does one
perform query and storage load-balancing between the various processors in the cloud
while not giving up data locality during query processing? How could a cloud run in a
fault-tolerant way with high scalability and low cost? What management features are
needed?

Advanced Analytics: Execute Relationship Extraction Techniques in Parallel.
Common techniques to extract relationships base either on domain-dependent, rule-
based systems or on domain-independent, open information extraction systems. Rule-
based systems use dictionaries, grammars or extraction algebras to define the
structure of entities and their relationships. However, the structure of entities and their
relationships need to be known a-priori when formulating the rules for a specific text.
Most rule-based tasks are local analysis tasks which could be executed as a map job
and cloud be run in parallel execution mode. Open information extraction systems
first train a classifier to detect relationships between entities on a set of documents.
The classifier receives a set of entities (e.g., two company names for detecting an
acquisition) and outputs a set of common grammatical and syntactic patterns (verbs,
participles etc.) between these entities in the text. Based on these patterns

 Situational Business Intelligence 9

relationships between entities are found, that are not known a-priori or where used in
the training phase. The training step of these systems applies local analysis, such as
detecting relationships in the training process per documents which could be executed
as a map operation. However, training the classifier also includes and global analysis
techniques to aggregate relationship patterns found on all documents within the
corpus. Currently it is unclear on how to execute these global analysis operations and
other problems e.g., web-wide key-generation from extracted data, data fusion of
extracted data, anchor text analysis and home page search efficiently on a cloud. How
can dependencies between extractors on global analysis tasks be optimized to
guarantee a fast classifier building time and extraction time? How can we produce
classifiers for millions of individual document collections on the fly?

Advanced analytics: On-demand Data Processing and Integration Operations.
Typical advanced operations are time series or data cleansing operations. How can
one flexibly extend the system with additional analysis operations on-demand? Often
analyzed web data e.g., customer sentiments or data extracted from emails, needs to
be “joined” with master data. How can one integrate operators for processing of
structured and unstructured data sources into the cloud architecture?

Advanced analytics: End-user-driven Analysis. To drastically raise the number of
users for analysts and lower the costs for developing the system infrastructure,
ordinary “information worker” should have a simple access for posing ad-hoc
analytics queries. Which new end-user driven analysis paradigms need to be offered?
Can a dimensional model (in an OLAP sense) be derived ad-hoc from unstructured
data? How can the user be guided to ask the right questions for deriving that model?
How can ad-hoc user queries be reformulated based on available data and extraction
operations? How can aggregation be performed and defined in a meaningful way,
when the grouping criteria may not be known in advance, but are themselves
extracted from the data?

Advanced Analytics: Data Flow Optimization across Analysis Operations.
Currently, cloud computing languages, such as JAQL or Cascading do focus only on
executing queries. Optimizations are conducted at the level of the MapReduce
platform e.g., Hadoop. Given a system, where on-demand new operations are plugged
in, how will the execution be parallelized, optimized and dynamically adapted? E.g.,
how does one combine or group crawling, extraction and analyzing data in order to
efficiently process these operations on the same processor of the cloud? How do the
operators have to be implemented to conduct optimizing of the entire flow? What is a
“generic” cost model for such an operator?

4 Related Work

The internet is a source of lots of valuable information. There have been several
attempts to leverage this data. The Cimple project [DSC07] provides a software
platform which aims to integrate all information about specific user communities of
the internet. The system starts with a high quality seed, consisting of initial data

10 A. Löser, F. Hueske, and V. Markl

sources, relations and expert domain knowledge. From then on, it crawls its given
web sources, extracts valuable information, integrates it and provides a web front end
for browsing the joined information. Similar to Situational Business Intelligence
systems, the Cimple platform autonomously crawls the web, extracts and integrates
information. It differs from the concept of Situational Business Intelligence in that it
is rather collecting information than allowing for extensive analyses. The Avatar
project [KKR06] aims to provide semantic search over large data corpora such as
corporate intranets or email archives. When answering a user query, the system is
looking for documents whose content matches the intent of the search query. This
requires three semantic analyses. First, the semantics of a document needs to be
determined, second the intent of the query must be identified and finally the match
between the documents semantic and the query intent must be checked. The matching
step is done by a look-up in a semantic search index, which is build a-priori by
applying information extraction techniques on all documents of the corpus. In contrast
to Situational Business Intelligence systems the Avatar system does not analyze
documents is an ad-hoc fashion. Furthermore, it only provides search functionality
rather than complex analysis features. [BDJ07] presents methods to compute OLAP
queries over uncertain data. Such data might result from applying information
extraction techniques. Therefore, these methods might prove beneficial in the context
of Situational Business Intelligence.

5 Conclusion

We have introduced a novel a class of applications for answering Situational Business
Intelligence queries over web data. To answer such queries in an ad-hoc and fast
fashion for samples including 10000s of web documents, we have introduced how
cloud computing techniques need to be incorporated with text analytics, query
processing and query refinement methods. We have named a few projects
investigating how to integrate text analytics and query processing on top of extracted
data. The next step is to drastically increase execution speed of these algorithms. The
envisioned path for ad-hoc OLAP style query processing over textual web data may
take a long time to mature.�In any case, it is an exciting challenge that should appeal
to and benefit from several research communities, most notably, the database, text
analytics and distributed system worlds. �

References

[BCS+07] Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open
Information Extraction from the Web. In: IJCAI 2007 (2007)

[BDJ07] Burdick, D., Deshpande, P.M., Jayram, T.S., Ramakrishnan, R., Vaithyanathan, S.:
OLAP Over Uncertain and Imprecise Data. VLDB Journal 16(1) (January 2007)

[CJL08] Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:
SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. In: VLDB 2008
(2008)

 Situational Business Intelligence 11

[CRS08] Cooper, B., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s Hosted Data Serving
Platform. In: VLDB 2008 (2008)

[CDG06] Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for Structured Data. In:
OSDI 2006 (2006)

[CSE07] Cafarella, M., Suciu, D., Etzioni, O.: Navigating Extracted Data with Schema
Discovery. In: WebDB 2007 (2007)

[CYC07] Cheng, T., Yan, X., Chen-Chuan Chang, K.: EntityRank: Searching Entities Directly
and Holistically. In: VLDB 2007, pp. 387–398 (2007)

[DG04] Dean, J., Ghemawat, S.: Map Reduce: Simplified Data Processing on Large Clusters.
In: OSDI 2004 (2004)

[DSC07] DeRose, P., Shen, W., Chen, F., Doan, A., Ramakrishnan, R.: Building Structured
Web Community Portals: A Top-Down, Compositional, and Incremental Approach. In:
VLDB 2007 (2007)

[FL04] Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured information
processing in the corporate research environment. Natural Language Engineering 10(3-4)
(September 2004)

[Gart08] Gartner Executive Programs CIO Survey 2008 (January 10, 2008)
[GGL03] Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP 2003 (2003)
[GS04] Götz, T., Suhre, O.: Design and implementation of the UIMA Common Analysis

System. IBM Systems Journal 43(3) (2004)
[IBY+07] Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed Data-

Parallel Programs from Sequential Building Blocks. In: EuroSys 2007 (2007)
[KKR06] Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.: Avatar

semantic search: a database approach to information retrieval. In: SIGMOD 2006 (2006)
[KSI+08] Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: NAGA:

Searching and Ranking Knowledge. In: ICDE 2008 (2008)
[ORS08] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-

Foreign Language for Data Processing. In: Sigmod 2008 (2008)
[PLAP08] Pérez, J.M., Llavori, R.B., Aramburu, M.J., Pedersen, T.B.: Integrating Data

Warehouses with Web Data: A Survey. IEEE Trans. Knowl. Data Eng. 20(7), 940–955
(2008)

[RRK+08] Reiss, F., Raghavan, S., Krishnamurthy, R., Zhu, H., Vaithyanathan, S.: An
Algebraic Approach to Rule-Based Information Extraction. In: ICDE 2008 (2008)

[RT07] Ramakrishnan, R., Tomkins, A.: Towards a PeopleWeb. IEEE Computer 40(8) (2007)
[SBHR06] Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: GORDIAN: Efficient and

Scalable Discovery of Composite Keys. In: VLDB 2006 (2006)
[SDN+07] Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative information

extraction using datalog with embedded extraction predicates. In: VLDB 2007 (2007)
[WNJ08] Weis, M., Naumann, F., Jehle, U., Lufter, J., Schuster, H.: Industry-Scale Duplicate

Detection. In: VLDB 2008 (2008)
[WRSM08] Wu, W., Reinwald, B., Sismanis, Y., Manjrekar, R.: Discovering topical structures

of databases. In: SIGMOD Conference 2008 (2008)
[YDH07] Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-Reduce-Merge: Simplified Relational

Data Processing on Large Clusters. In: Sigmod 2007 (2007)

On Solving Efficiently the View Selection
Problem under Bag-Semantics�

Foto Afrati1, Matthew Damigos1, and Manolis Gergatsoulis2

1 Department of Electrical and Computing Engineering,
National Technical University of Athens (NTUA), 15773 Athens, Greece

{afrati,mgdamig}@softlab.ntua.gr
2 Department of Archive and Library Sciences, Ionian University,

Ioannou Theotoki 72, 49100 Corfu, Greece
manolis@ionio.gr

Abstract. In this paper, we investigate the problem of view selection
for workloads of conjunctive queries under bag semantics. In particular
we aim to limit the search space of candidate viewsets. In that respect we
start delineating the boundary between query workloads for which cer-
tain restricted search spaces suffice. They suffice in the sense that they
do not compromise optimality in that they contain at least one of the
optimal solutions. We start with the general case, where we give a tight
condition that candidate views can satisfy and still the search space (thus
limited) does contain at least one optimal solution. Preliminary exper-
iments show that this reduces the size of the search space significantly.
Then we study special cases. We show that for chain query workloads,
taking only chain views may miss all optimum solutions, whereas, if we
further limit the queries to be path queries (i.e., chain queries over a
single binary relation), then path views suffice. This last result shows
that in the case of path queries, taking query subexpressions suffice.

1 Introduction

The view selection problem has received significant attention in many data-
management scenarios, such as information integration, data warehousing, web-
site designs, and query optimization. The static version of this problem is to
choose a set of views to materialize over a database schema, such that (a) the
cost of evaluating a set of queries is minimized, and (b) the views fit into a
prespecified storage space. In query optimization, evaluating a set of queries us-
ing previously materialized views can significantly speed-up query processing,
as part of the computation necessary for each query may have been done while
computing views. Moreover, a set of similar queries (e.g. queries with similar
� This paper is part of the 03EΔ176 research project, implemented within the frame-

work of the “Reinforcement Programme of Human Research Manpower” (PENED)
and co-financed by National and Community Funds (25% from the Greek Ministry
of Development-General Secretariat of Research and Technology and 75% from E.U.-
European Social Fund).

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 12–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Solving Efficiently the View Selection Problem under Bag-Semantics 13

subexpressions) can be computed efficiently by selecting an appropriate set of
views that exploits these sharing opportunities. In a data warehouse, a successful
selection of views to materialize can preclude costly access to the base relations
and consequently helps to answer a batch of queries in efficient way. Similarly,
the choice of a proper set of views to precompute may improve the performance
of web-sites; because the set of expected queries can be answered quickly [10].

In contrast to the query answering problem using views, where the set of views
is initially given, the view selection problem indicates automated techniques to
produce the appropriate set of materialized views. In this paper, we focus on the
view selection problem using query rewriting techniques, assuming that both
query and view definitions are conjunctive queries. We use bag-semantics, which
means that duplicate occurrences of tuples are allowed to query answers and to
database relations [19]. The “bag-approach” of the problem is more practical
because of its close relationship to the SQL features where bag-relations are
allowed and the duplicate tuples are not eliminated during the query evaluation;
unless explicitly requested (by using the DISTINCT keyword).

The hardness of the view selection, as defined and investigated in [8,2,7,12],
is caused by the bicriteria nature of the problem. These criteria are: (1) for
a given set of views, the selection of the less-costly equivalent rewritings of
the queries and (2) the choice of the appropriate set of views which does not
violate the storage constraint. Bicriteria settings have different variants (and
consequently different solutions and complexity results) depending of which of
the two objective functions of these two criteria is required to be optimized
under the constraint that the value of the other objective function does not
exceed a bound that is given by the designer of the system. In this paper, we
consider the variant of the problem in which we want to find a viewset such
that it does not exceed the storage constraint and is optimum with respect to
the evaluation cost of the query workload. We count the size of a viewset as
the number of tuples required to store all the views in the viewset (however we
notice that all our results hold under a more general count) and the cost of query
evaluation is based on the sum-of-joins cost model for left-linear query plans (the
exact definitions can be found in subsequent section). In [2] the same problem is
investigated and is shown that we can restrict the search space for views in the
viewset only to those views that are generalizations of query subexpressions.

Our contributions in this paper are: a) In Section 4.1, we improve the search
space of [2] by showing that it suffices to consider only the least general gen-
eralizations of query subexpressions. In particular, we show that if we restrict
ourselves to this smaller search space, an optimal solution is always retained,
i.e., a solution which satisfies the storage limit and achieves the optimum value
for the evaluation cost. b) Based on these results, we develop in Section 4.2 an
efficient algorithm for finding an optimal solution. c) We study (Section 5) the
problem for two special cases, namely when all queries in the workload are chain
queries and when they are path queries. In the first case we show that we cannot
restrict the search space to only chain views because we may loose all optimal

14 F. Afrati, M. Damigos, and M. Gergatsoulis

solutions (Section 5.1). In the second case, we show that we can restrict further
the search space to consider only path views (Section 5.2).

2 Related Work

The problem of automatic selection of views to materialize has attracted the in-
terest of many researchers. In [7], the space requirements for the view selection
problem in the context of data warehouse design under set-semantics, are con-
sidered. This paper, also investigates conditions under which the search space of
optimal configurations can be reduced to the views that are subexpressions of
the queries in the workload. In [21,23], the extraction of common subexpressions
of the queries in the workload is studied. The authors in [21], study the problem
of searching for a maximum common subexpression of a workload, while [23] pro-
poses an algorithm for searching for maximum common subexpressions for a sub-
class of select-project-join SQL queries, using query graphs. Another approach
for finding similar subexpressions is proposed in [25] where workloads of select-
project-join-groupby queries are considered. The authors propose a solution for
the multi-query optimization problem which is incorporated in the Microsoft
SQL Server. The algorithm has a lightweight mechanism (table-signatures) to
detect common subexpressions and multiple sharing opportunities.

In [12], it is stated the view selection problem using AND-OR graphs to
represent the query plans. Two types of constraints on materialized views are
assumed, a storage limit and a maintenance-cost constraint. The candidate set
of view configurations are given as input, hence the time of the construction of
view configurations is not considered in the response time of the algorithms.

In [20], the view selection problem assuming a maintenance-cost constraint
in the data warehouse environment and proposed an algorithm based on multi-
query graphs, is studied. In [24], the authors examine greedy/heuristic algorithms
for solving the view-selection problem assuming a maintenance-cost constraint
and OLAP queries in multidimensional data warehouse environment. In [6] the
problem for multidimensional databases is studied and an algorithm that selects
views by reducing significantly the solution space is proposed; considering only
the relevant elements of the multidimensional lattice. The authors considered the
standard SQL notion of group-by and aggregate functions in order to capture
queries with aggregation. In earlier work, Rizzi and Saltarelli [18] presented a
comparative evaluation that uses view materialization and indexing for a single
GSPJ (Group-by-Select-Project-Join) query expressed on a star scheme for the
data warehousing context.

The view selection problem, in the context of multidimensional data ware-
houses, also studied by several authors [14,13,11]. In [14], it is described a system
which was incorporated in Microsoft SQL Server and focuses on selection of both
views and indexes. Earlier, the authors of [13] propose algorithms for selecting
views in the case of data cubes and study the complexity of the problem. In [11],
the work of [13] was further extended to include index selection.

A significant result that underlines the difference of the view selection problem
in the case of queries with and without aggregation is presented in [3]. In this

On Solving Efficiently the View Selection Problem under Bag-Semantics 15

work, an algorithm for selecting views is proposed and complexity results are
presented, using a theoretical approach to express GSPJ queries. The authors
also showed that using materialized views to compute aggregate queries results
greater benefits than for purely conjunctive queries; as a view with aggregation
precomputes some of the grouping/aggregation on some of the query’s subgoals.

In [8], Chirkova et al. observed that the complexity of view selection problem
under set semantics, and assuming conjunctive query workload, depends crucially
on the quality of the estimates that a query optimizer has on the size of views. In
[8], it is also shown that an optimal choice of views may involve an exponential
number of views in the size of the database schema. In the same context, in [2],
Afrati et al. study the search space of candidate sets of views, under bag, set
and bag-set semantics. Finally, the problem of selecting minimal-size-views to
materialize has been studied theoretically in [9], where the problem has been
proven decidable and an upper bound is given on this problem’s complexity.

3 Preliminaries

3.1 Basic Definitions

A relation schema is a named relation defined by its name R (called relation
name) and a set A of attributes. A relation instance r for a relation schema
is a collection of tuples over its attribute set. The schemas of the relations
in a database constitute its database schema. A relational database instance
(database, for short) is a collection of stored relation instances. A relation in-
stance can be viewed either as a set or as a bag (or multiset) of tuples. A bag
(or bag-relation [22]) can be thought of as a set of elements with multiplicities
attached to each element. In a set-valued database, all stored relations are sets;
in a bag-valued database, multiset stored relations are allowed. The bag-operators
[22] are similar to the set-operators. The difference is that in bag-selection and
bag-projection duplicate tuples in the result are not eliminated. Concerning the
Cartesian product, the difference is that the multiplicity of each tuple t ob-
tained in R × S from a tuple t1 of R and a tuple t2 of S is m · n, where m is
the multiplicity of t1 and n is the multiplicity of t2. Depending on whether a
database is bag or set-valued and the operators are set or bag operators, the
queries may be computed under set-semantics (considering set-valued databases
and operators), bag-semantics (considering bag-valued databases and operators),
or bag-set semantics (considering set-valued databases and bag-operators). We
consider bag-semantics in this paper.

A query is a mapping from databases to databases, usually specified by a
logical formula on the schema S of the input databases. Typically, the output
database (called query answer) is a database with a single relation. In this paper
we focus on the class of select-project-join SQL queries with equality compar-
isons, a.k.a. safe conjunctive queries (CQs for short). Formally, a conjunctive
query definition [1] is a rule of the form:

Q : q(X) :- g1(X1), . . . , gn(Xn)

16 F. Afrati, M. Damigos, and M. Gergatsoulis

where g1, . . . , gn are database relations and X, X1, . . ., Xn are vectors of vari-
ables or constants. The atom q(X) is the head of Q while the atoms on the
right of :- are said to be the body of Q. Each gi(X i) is also called a subgoal of
Q. The variables in X are called distinguished or head variables of Q, whereas
the variables in X i are called body variables of Q. A body variable which is not
also a head variable is called non-distinguished variable of Q. In this work, we
consider safe conjunctive queries that is CQs whose head variables also occur in
their body. A chain query is a conjunctive query of the following form:

Q : q(X0, Xn) :- r1(X0, X1), r2(X1, X2), . . . , rn(Xn−1, Xn)

where r1, . . . , rn, are binary relations and X0, X1, . . . , Xn are variables. If the
relation symbols r1, . . ., rn are identical then the query is called path query of
length n, denoted as Pn. A view refers to a named query. A view is said to be
materialized if its answer is stored in the database. In this work, we are restricted
to the use of views defined by conjunctive queries called conjunctive views.

A substitution θ [15] is a finite set of the form {X1/Y1, . . . , Xn/Yn}, where
each Yi is a variable or a constant, and X1, . . ., Xn are distinct variables. When
Y1, . . . , Yn are distinct variables, θ is called renaming substitution. In the fol-
lowing we also use the notion of expression to denote a conjunction of atoms.
Let θ = {X1/Y1, . . . , Xn/Yn} be a substitution. Then the instance Eθ of an
expression (resp. a query) E, is the expression (resp. the query) obtained by
simultaneously replacing each occurrence of Xi in E by Yi for all i = 1, . . . , n.

Definition 1. An expression E is a generalization of an expression E′ if E′ is
an instance of E. E is a common generalization of E1, . . ., En, with n > 1 if E
is a generalization of each expression Ei, with 1 ≤ i ≤ n. E is a least common
generalization (or a least general generalization - lgg [16]) of E1, . . ., En, with
n > 1, if E is a common generalization of E1, . . ., En, and for each common
generalization G of E1, . . ., En, the expression G is a generalization of E.

3.2 Query Rewriting and the View Selection Problem

Given a set of views (also, called viewset) V defined on a database schema S, and
a database D on the schema S, then by V(D) we denote the database obtained
by computing all the view relations in V on D. Moreover, let Q be a query
defined on S. A query R is a rewriting of the query Q using the views in V
if all subgoals of R are view atoms defined in V . The expansion Rexp of R is
obtained by replacing all view atoms in the body of R with their corresponding
base relations. Non-distinguished variables in a view definition are replaced with
fresh variables in Rexp. A rewriting R of a query Q on a viewset V is an equivalent
rewriting if R(V(D)) = Q(D), for every database D. In [19], it is proved that a
rewriting R of a query Q, under bag-semantics, is equivalent to Q if and only if
there is an one-to-one containment mapping from Q to the Rexp.

Given a set Q of queries (also called query workload), defined on a schema S,
and a database instance D, we want to find and precompute offline a viewset

On Solving Efficiently the View Selection Problem under Bag-Semantics 17

V defined on S, such that the views in V can be used to compute the answers
to all queries in the workload Q. More specifically, our problem, called the view
selection problem, is to find a set of views that when materialized, (a) would
satisfy a set L of constraints on the size of the views, and (b) can be used to
get equivalent rewritings of the queries in Q which minimizes the evaluation
cost of the queries. We refer to the tuple P = (S, Q, D, L) as the input of
view selection problem. The view selection problem is said to be bag-oriented
(resp. set-oriented, or bag-set-oriented) if we consider bag semantics (resp. set
semantics, or bag-set semantics).

In this paper, we consider that the only constraint on materialized views is
a storage limit L (i.e. L = {L}), which is a bound on the size of the views
(which represents the available disk space for storing the views). Our goal is to
choose the viewsets which minimize the evaluation cost of the queries and whose
size will not exceed the limit L. Notice that, if the storage limit is sufficiently
large then we can materialize all query answers, which is an optimal viewset.
The problem becomes interesting when the storage limit is less than that. In the
following we measure the size of a relation R as the number of tuples in R.

Definition 2. Let P = (S,Q,D,L) be a view selection problem input. A viewset
V is said to be admissible for P if (1) V gives equivalent (candidate) rewritings of
all the queries in Q, (2) for every view V ∈ V, there exists at least one equivalent
rewriting of a query in Q that uses V , and (3) V satisfies the constraints L.

The following definition formally defines the solution and optimal solution of
view selection problem for a given input.

Definition 3. Let a view selection problem input P = (S,Q,D,L).

– A solution of P is a tuple (Vadm,R), where Vadm is an admissible viewset
for P and R is a set of equivalent rewritings of the queries in Q using Vadm.

– An optimal solution for P is a solution which minimizes the cost of evalu-
ating the queries in the workload among all solutions of P. The viewset in
an optimal solution is said to be an optimal viewset.

Optimal solutions relate to the estimation of the cost of evaluating a query. We
thus demand from the optimal solutions to minimize a given cost-function that
we employ. We assume that the view relations have been precomputed, hence
we do not assume any cost of computing the views. For conjunctive queries we
use the sum-of-joins cost model which measures the cost of query evaluation as
the sum of the costs of all the joins in the evaluation. More precisely, suppose we
are given a query Q and a database D. We assume use of only left-linear query
plans, where selections are pushed as far as they go and projection is the last
operation. Thus, each plan is a permutation of the subgoals of the query, and
the cost of this query plan on a given database instance D is defined inductively
as follows. For n = 1, the cost of query plan Q = R1 is the size of the relation
R1. For each n ≥ 2, the cost of query plan (. . . ((R1 �� R2) �� R3) �� . . . �� Rn)
over n relations is the sum of the following four values:

18 F. Afrati, M. Damigos, and M. Gergatsoulis

1. the cost of query plan (. . . ((R1 �� R2) �� R3) �� . . . �� Rn−1)
2. the size of relation R1 �� . . . �� Rn−1

3. the size of relation Rn and
4. the size of relation R1 �� . . . �� Rn

The cost of evaluating a query Q on a database D, denoted as C(Q,D), is the
minimum cost over all Q’s query plans when evaluated on D. Moreover, the cost
of a query workload, denoted as C(Q,D), is defined as the sum of the costs of
all queries in the workload. In this paper, although we use the above cost model,
our results also hold for cost-models for which the evaluation cost is increasing
with the size of intermediate relations [11,8,2,4].

4 The Space of Optimal Solutions

In this section, we elaborate on the search space analysis of candidate solutions
for bag-oriented view selection problems, considering that both queries and views
are conjunctive queries/views. The main results of this section are as follows: In
Subsection 4.1, we propose techniques to reduce the search space of candidate
views and demonstrate that if there exists a solution for a given problem input,
then there is at least one optimal solution of a specific form. We refer to these
solutions as the representative (optimal) set of solutions. In Subsection 4.2, an
algorithm is presented that computes the representative set of optimal solutions.

4.1 Representative Set of Solutions

In [2], it has been proved that for workloads of conjunctive queries each view in
any admissible viewset (and thus in any optimal viewset) can be defined as a
generalization of a subexpression of some query in the workload. The following
lemma, which combines Lemmas 2 and 3 of [2], presents this result formally:

Lemma 1. Let P = (S,Q,D,L) be a conjunctive bag-oriented problem input, V
be any admissible viewset for P, and Q be any query in Q. Suppose that V ′ ⊆ V
is the set of all views used in an equivalent rewriting R of Q in terms of V. Then:

1. The subgoals in the expansion of R corresponding to the definitions of views
V ′ form a partition of the (subgoals in the) definition of Q.

2. Each view in V ′ can be defined as a generalization of a subexpression of Q
which is a member of the partition as defined in (1).

Lemma 1 precisely describes a search space (consisting of all query subexpres-
sions and their generalizations) to look for view definitions. As, in general, this
search space is huge, it is crucial to investigate ways to reduce this search space
(possibly for special cases of the view selection problem) in order to construct
efficient algorithms for solving the view selection problem. A significant improve-
ment in this direction might be to restrict the search space to contain only the
subexpressions of the queries in the query workload (i.e. to exclude the gener-
alizations of the subexpressions). Unfortunately, as it is shown in the following
example, in the general case this is not possible.

On Solving Efficiently the View Selection Problem under Bag-Semantics 19

Example 1. Consider a database schema S that contains only the relation e of
arity 4 and a query workload Q = {Q1, Q2} on S, where:

Q1 : q1(X, Y) :- e(X, X, X, Y).
Q2 : q2(X, Y) :- e(X, Y, Y, Y).

Consider also the following three viewsets V1, V2 and V3:

– V1 = {V11, V12}, where:
V11 : v11(X1, X2) :- e(X1, X1, X1, X2).
V12 : v12(X1, X2) :- e(X1, X2, X2, X2).

– V2 = {V2}, where:
V2 : v2(X1, X2, X3) :- e(X1, X2, X2, X3).

– V3 = {V3}, where:
V3 : v3(X1, X2, X3, X4) :- e(X1, X2, X3, X4).

Notice that the bodies of the view definitions of V1 are subexpressions of the
bodies of the queries in Q (in fact they are obtained from the bodies of Q1 and
Q2 by renaming their variables), while the bodies of the views in V2 and V3 are
generalizations of these subexpressions. Using each one of the above viewsets we
get equivalent rewritings for the queries in Q. More specifically, using V1 we get:

R1 : r1(X, Y) :- v11(X, Y).
R2 : r2(X, Y) :- v12(X, Y).

where R1 and R2 are equivalent rewritings of Q1 and Q2 respectively. Using V2

we get:
R′

1 : r′1(X, Y) :- v2(X, X, Y).
R′

2 : r′2(X, Y) :- v2(X, Y, Y).

where R′
1 and R′

2 are equivalent rewritings of Q1 and Q2 respectively. Finally,
using V3 we get:

R′′
1 : r′′1 (X, Y) :- v3(X, X, X, Y).

R′′
2 : r′′2 (X, Y) :- v3(X, Y, Y, Y).

where R′′
1 and R′′

2 are equivalent rewritings of Q1 and Q2 respectively.
Assuming a database instance D={(e(a, a, a, a);1), (e(a, b, c, d);5)}, the sets

V1(D), V2(D) and V3(D) are:

V1(D) = {(v11(a, a); 1), (v12(a, a); 1)}.
V2(D) = {(v2(a, a, a); 1)}.
V3(D) = {(v3(a, a, a, a); 1), (v3(a, b, c, d); 5)}.

Since size(V3(D))=6, size(V1(D))=2 and size(V2(D))=1, we have size(V3(D))
> size(V1(D)) > size(V2(D)). If we choose a storage limit L = size(V2(D)) = 1,
then V2 is the only admissible viewset among the above three.

Example 1 shows that, in some cases, any optimal solution requires views that
cannot be constructed as subexpressions of the queries in the query workload.

20 F. Afrati, M. Damigos, and M. Gergatsoulis

The optimal solution in Example 1 uses views constructed using generalizations
of subexpressions of the queries. In particular, the view in the optimal viewset
V2 is defined as a common generalization of the bodies of both queries in the
query workload Q. Based on these observations two questions arise:

1. Are there any special cases of the view selection problem for which there
are optimal solutions whose viewset can be constructed by considering only
subexpressions of the queries in the query workload?

2. For the general case, can we reduce the search space specified by Lemma 1
which consists of all possible generalizations of query subexpressions?

Both questions can be answered affirmatively as shown in the following Propo-
sitions 1 and 2.

Proposition 1. Let P = (S,Q,D,L) be a conjunctive bag-oriented view selec-
tion problem input such that every relation in S appears at most once in a body
of some query in Q. If there exists a solution for P, then there exists an optimal
solution Λ = (V ,R) such that each view in V is defined as a subexpression of a
query in Q.

Notice that, when the assumptions of Proposition 1 hold, the queries in the
workload Q do not contain self-joins. In this case, because of Theorem 5 of [2],
we can rewrite each query in Q without using self-joins of views in V .

We now focus on the general case and prove, in Proposition 2, that, in order
to construct an optimal viewset, we need to consider both subexpressions of
queries and lgg’s of subexpressions. We can thus exclude all those generalizations
of subexpressions that are not lgg’s of two or more subexpressions.

Proposition 2. Let P = (S,Q,D,L) be a conjunctive bag-oriented view selec-
tion problem. If there exists a solution for P, then there is an optimal solution
Λ = (V ,R) for P such that the body of each view in V is either a subexpression
of a query in Q or an lgg of two or more subexpressions of queries in Q.

The intuition behind Propositions 1 and 2 is that the use of generalization of
subexpressions in defining a view is useful only when this view definition will
be subsequently used two or more times to construct equivalent rewritings for
the queries in the workload Q. This is the case of the viewsets V2 and V3 in
Example 1. Besides, it is not useful to generalize the subexpression more than
needed as this, in general, increases the number of the tuples obtained when
materializing this “overgeneralized” view definition and this does not contribute
towards an improvement of the evaluation of the rewriting . An example of such
“overgeneralization” is the viewset V3 in Example 1.

We further refine Propositions 1 and 2 by restricting also the vector of vari-
ables in the heads of the view definitions. The simplest choice is to put as ar-
guments of a view head all different variables appearing in the view’s body.
However, this is not always the “best” choice as the following example shows:

Example 2. Consider a query workload Q = {Q}, where:

Q : q1(X, Y) :- e(X, Z), f(Z, W), g(W, Y).

On Solving Efficiently the View Selection Problem under Bag-Semantics 21

Consider also the following viewset V1 = {V11, V12}:

V11 : v11(X, Z, W) :- e(X, Z), f(Z, W).
V12 : v12(W, Y) :- g(W, Y).

Notice that using V1 as we can get the following equivalent rewriting R of Q:

R : r(X, Y) :- v11(X, Z, W), v12(W, Y).

It is easy to see, however, that the variable Z in the head of V11 is redundant.
More specifically, if we replace the view V11 in V1 by the following view V ′

11:

V ′
11 : v′11(X, W) :- e(X, Z), f(Z, W).

we get R′ which is also an equivalent rewriting of Q:

R′ : r′(X, Y) :- v′11(X, W), v12(W, Y).

Comparing V11 and V ′
11, it is easy to see that, under bag semantics, for every

database D we have size(V11(D)) = size(V ′
11(D)). Also, the query R′, obtained

by using V ′
11 to rewrite Q, is computed more efficiently than the rewriting R

obtained by using V11 to rewrite Q.

We now show how to choose the appropriate set of variables to be used as head
arguments of the view definitions.

Definition 4. Let Q be a query of the form H :- B1, . . . , Bn and S =B11, . . . , B1k,
with 1 ≤ k ≤ n, be a subexpression of the body of Q. Let Q′ = Q−S be the query ob-
tained by removing from the body of Q the atoms in S. Then, the set lvars(Q, S) =
V ars(Q′) ∩ V ars(S), is called the linking variables of Q and S.

Example 3. (Continued from Example 2) Consider the query Q in Example 2
and the subexpression S = e(X, Z), f(Z, W) of Q. It is easy to see that the set
of linking variables of Q and S is lvars(Q, S) = {X, W}.
Proposition 3. Let Q be a conjunctive query and V be a view whose body is
defined as a subexpression of Q. Then the view V can be used in an equivalent
rewriting of Q, if and only if lvars(Q, S) ⊆ vars(head(V)).

The linking variables are related to the shared-variables property introduced by
[17]; that holds in the set-oriented context.

What the above proposition indicates is that the set of linking variables is the
minimum set of variables that should be put in the head of the view definition
so as this view can be used in an equivalent rewriting of the query.

Example 4. (Continued from Example 3) Notice that the variables in {X, W},
which are the linking variables of Q and S, appear in the heads orf both views
V11 and V ′

11 constructed from the subexpression S of Q. Observe that, if we

22 F. Afrati, M. Damigos, and M. Gergatsoulis

remove X or W or both from the head of the view V11 (or the view V ′
11), then

the corresponding viewset cannot give equivalent rewriting for the query Q.

Proposition 3 refers to views which are defined as subexpressions of the queries
in the query workload. We now investigate the problem of selecting the head
arguments of the views defined as least general generalizations of subexpressions
of queries. For this we need the following definition:

Definition 5. Let E = {S1, . . . , Sk}, with k > 1, be a set of expressions, and G
be their least general generalization (supposing that such an lgg exists). Let S be
an expression in E and M be a mapping for the arguments of S to the arguments
of G such that each argument of S in a position (i, j), where i is the order of an
atom in S and j is the order of the argument in the i-th atom of S, maps to the
argument which is in the position (i, j) on G. Let X be a variable in vars(S).
Then the corresponding variable set of X in G is defined as {Y |X appears in a
position (i, j) of S and Y is the variable in the position (i, j) of G}.
Proposition 4 specifies the minimum set of variables that should be put in the
head of a view defined as the lgg of two or more subexpressions.

Proposition 4. Let Q1, . . . , Qk, with k > 1, be (not necessarily different) queries
in a query workload Q, and let S1, . . . , Sk, be expressions such that Si is a subex-
pression of Qi for 1 < i ≤ k. Suppose that the least general generalization of
S1, . . . , Sk exists and that V is a view whose body is the least general generalization
of S1, . . . , Sk. Then the view V can be used in an equivalent rewriting of Qi, for

all i = 1, . . . , k, if and only if
k⋃

i=1

Li ∪
k⋃

i=1

Mi ⊆ vars(head(V)), where (a) Li is

the union of the corresponding variable sets of the variables in lvars(Qi, Si), and
(b) Mi is the union of the corresponding variable sets of the variables in Si whose
corresponding variable sets are not singletons.

Another way to construct the view V whose body is the least general general-
ization of the subexpressions S1 and S2 of two queries Q1 and Q2 respectively
proceeds in two steps as follows:

1. We construct the views V1 and V2 using the subexpressions S1 and S2 respec-
tively as bodies and the linking variables with Q1 and Q2 as head variables.

2. By considering V1 and V2 as queries we construct V with body the lgg of the
bodies of V1 and V2 and with head variables the minimum set of variables
specified by Proposition 4. V is said to be an lgview of the views V1 and V2.

This procedure can be easily generalized for more than two subexpressions.
An interesting question referring to lgviews is the following: “Does the in-

equality size(V) ≤ size(V1) + size(V2) always hold for the lgview V of two
views V1 and V2?”. Notice that, if the answer is “yes” for any bag-oriented view
selection problem input, then whenever an lgview exists, the original views can
be discarded eliminating in this way the search space for finding viewsets. Un-
fortunately, the inequality does not always hold, as the following example shows.

On Solving Efficiently the View Selection Problem under Bag-Semantics 23

Example 5. Let a viewset V = {V1, V2}, where the definitions of the views are:

V1 : v1(X, Z) :- p1(X, X), p2(X, Z).
V2 : v2(X, Z) :- p1(X, Z), p2(Z, Z).

where p1 and p2 are binary relations on the database schema S. Consider also
another viewset W = {W} whose view W is defined as:

W : w(A, B, C) :- p1(A, B), p2(B, C).

Notice that W is the lgview of the views in V . Assuming the database instance:

D = {p1(1, 1), p1(1, 2), p1(3, 4), p2(1, 1), p2(1, 2), p2(2, 2), p2(2, 3), p2(4, 5)},

in which the multiplicity of each database tuple in this example is 1 and for this
we omit it, and materializing the views over this database we get:

V(D) = {v1(1, 1), v1(1, 2), v2(1, 1), v2(1, 2)}.
W(D) = {w(1, 1, 1), w(1, 1, 2), w(1, 2, 2), w(1, 2, 3), w(3, 4, 5)}.

It is easy to see that size(V(D)) < size(W(D)).

The following theorem summarizes the results of this section:

Theorem 1. Let a bag-oriented view selection input P = (S,Q,D,L). If there is
a solution for P, then there exists an optimal solution Λ = (V ,R) such that each
view in V is either a subexpression view or an lgview whose body is constructed
as specified by Proposition 2, and whose head is constructed using the minimal
set of variables specified by Propositions 3 and 4, respectively.

Thus the class of solutions constructed as above is a representative set of solu-
tions for a given bag-oriented view selection problem input P .

4.2 LGG-VSB Algorithm

An algorithm, called LGG-VSB, which is based on the results of the previous
section, and outputs the representative set of optimal solutions, for a given view
selection problem input, is proposed in this section. LGG-VSB incorporates the
results of the Theorem 1 and Lemma 1 to the algorithm CGALG (introduced
in [2]), reducing significantly the search space for finding an optimal solution. In
particular, LGG-VSB avoids the construction of viewsets that do not rewrite the
queries in the workload, by producing the candidate viewsets in such a way that
the construction of the equivalent rewritings of the query is quickly achieved;
i.e. instead of construction of every set of views whose body is a generalization
of a subexpression of a query’s body (CGALG), LGG-VSB constructs viewsets
that form a partition of the body of each query in the workload.

24 F. Afrati, M. Damigos, and M. Gergatsoulis

Algorithm LGG-VSB.
Input: A bag oriented view selection problem input1 P = {S,Q,D,L}.
Output: Λ, the representative set of optimal solutions.

Begin
1. Let V be a set of viewsets constructed as follows: Each V ′ ∈ V is of

the form V ′ = V1 ∪ . . . ∪ Vn, where n is the number of queries in Q
and each viewset Vi is obtained from the query Qi ∈ Q as follows:
- Let Pi be a partition of the subgoals of Qi.
- For each block Bj ∈ Pi, add a view definition Vi,j in Vi whose body

consists of the atoms in Bj and whose head variables are the
variables in lvars(Qi, Bj).

2. Set G0 = V ; set i = 0.
3. while Gi �= ∅ do

- Gi+1 = {Vg|Vg = (V ′ −M) ∪ {Vl}, where V ′ ∈ Gi and M ⊆ V ′

and Vl = lgview(M)}.
- i = i + 1.

end while
4. Let V =

⋃
j=0,...,i Gj .

5. Compute the cost C(Q,D) of Q on D and set it to Copt.
6. For every viewset V ′ ∈ V , such that size(V ′) ≤ L, do

- Construct the set RV′ of all equivalent rewritings of Q using V ′.
- Set Λ = ∅.
- For every distinct subset R of RV′ such that R contains an

equivalent rewriting of each query in Q, do
- Let c = C(R,V ′(D)).
- If c < Copt, then set Copt = c and set Λ = {(V ′,R)}

else if c = Copt, then Λ = Λ ∪ {(V ′,R)}.
end.

5 Chain and Path Queries

In this section, we study the bag-oriented view selection problem when the query
workload is a set of either chain queries or path queries. The main results are as
follows: Subsection 5.1 demonstrates that for a problem input P = (S,Q,D,L),
where Q is a workload of chain queries, we cannot restrict the space of optimal
solutions by searching admissible viewsets which contain only chain-views, i.e.
views defined by chain queries. Subsection 5.2 demonstrates that for a problem
input P = (S,Q,D,L), where Q is a workload of path queries, if there exists
a solution for P , then there is at least one optimal solution for P which is
constructed by an admissible viewset containing only path views (Theorem 2).

5.1 Chain-Query Workload

In this section we study the view selection problem for workloads containing
only chain-queries. In particular, we focus our attention on whether there is an
1 Recall that L = {L}, where L is a single storage limit constraint.

On Solving Efficiently the View Selection Problem under Bag-Semantics 25

optimal solution constructed by a set of chain-views. Unfortunately, as the fol-
lowing proposition shows, there are cases in which none of the optimal solutions
is constructed by a set of chain-views.

Proposition 5. There exists at least one bag-oriented view selection problem
input P = (S,Q,D,L) such that:

– Q is a set of chain queries, and
– P has optimal solutions but there is no optimal solution Λ = (V , R) such

that V contains only chain queries.

Proof. The following example proves this proposition.

Example 6. Consider a query workload Q = {Q} on a database schema S that
contains the binary relations r1, r2 and r3, where Q is the following chain query:

Q : q(X, Y) :- r1(X, Z), r2(Z, W), r3(W, Y).

Consider also the following five viewsets Vi, i ∈ {1, 2, 3, 4, 5}:
V1 = {V11, V12}, where:

V11 : v11(X, Z, W, Y) :- r1(X, Z), r3(W, Y).
V12 : v12(X, Y) :- r2(X, Y).

V2 = {V21, V22}, where:
V21 : v21(X, Y) :- r1(X, Z), r2(Z, Y).
V22 : v22(X, Y) :- r3(X, Y).

V3 = {V31, V32}, where:
V31 : v31(X, Y) :- r2(X, Z), r3(Z, Y).
V32 : v32(X, Y) :- r1(X, Y).

V4 = {V41}, where:
V41 : v41(X, Y) :- r1(X, Z), r2(Z, W), r3(W, Y).

V5 = {V51, V52, V53}, where:
V51 : v51(X, Y) :- r1(X, Y).
V52 : v52(X, Y) :- r2(X, Y).
V53 : v53(X, Y) :- r3(X, Y).

Observe that the above viewsets are all possible viewsets constructed as de-
scribed in Section 4.

Suppose that we are given database instance D = {(r1(a,b);5), (r2(b,c);10),
(r3(c,d);5)}. Considering a storage limit L=35 tuples, the following viewsets:

V1(D) = {(v11(a, b, c, d); 25), (v12(b, c); 10)}
V5(D) = {(v51(a, b); 5), (v52(b, c); 10), (v53(c, d); 5)}

do not violate the storage limit constraint. In contrast, the viewsets:

V2(D) = {(v21(a, c); 50), (v22(c, d); 5)}
V3(D) = {(v31(a, c); 50), (v32(c, d); 5)}
V4(D) = {(v41(a, c); 250)}

26 F. Afrati, M. Damigos, and M. Gergatsoulis

do violate it. Thus, Λ = (V1, R) and Λ′ = (V5, R
′) are solutions for input P ,

where the rewritings R and R′ are the following:

R : q(X, Y) :- v11(X, Z, W, Y), v12(Z, W).
R′ : q(X, Y) :- v51(X, Z), v52(Z, W), v53(W, Y).

Using the cost model presented in Section 3, the costs of Λ and Λ′ are
C(R,V1(D)) = 55 and C(R′,V4(D)) = 325 respectively. As a consequence, Λ
is an optimal solution for P .

5.2 Path-Query Workload

In this section we study the view selection problem for path-query workloads (i.e.
workloads of path queries). Unlike to the problem for chain query workloads in
which we cannot reduce the search space to the class of chain views, for path-
query workloads we can reduce the search space even more. The main result of
this section, presented by the following theorem, is that whenever the workload
is a set of path-queries, we can focus on path-viewsets whose views have at most
as many subgoals as the length of the longest path-query in the workload.

Theorem 2. Let P = (S,Q,D,L), be a conjunctive bag-oriented view selection
input, and Q contains a set of path queries. If there exists a solution Λ = (Vo,Ro)
for P, then there is an optimal solution Λ′ = (V ′

o,R′
o) for P such that:

– each view in V ′
o is defined as a path of the same relation as a query Q ∈ Q,

– every view in V ′
o has at most n subgoals, where n is the length of the longest

query in Q,
– every R ∈ R′

o is a chain query.

Consequently, we may restrict our attention in searching optimal solutions con-
structed by path-viewsets. In this case, the number of admissible viewsets is
exponential to the number of subgoals of the path-queries in the workload. This
exponential bound is implied by the reduction of the problem of searching path-
viewsets to the integer-partitioning problem [5].

Based on Theorem 2, we can improve the LGG-VSB for workloads containing
only path-queries.In particular, when we know that the workload Q consists of
n path-queries of the same relation, steps 1-4 of LGG-VSB can be replaced by:

– Each VI ∈ V contains a path-view Vk of length k, for every distinct integer
k ∈ I, where the set of integers I is of the form I = Ik1 ∪ . . .∪Ikn , and Iki is
a partition of the length of path-query Pki ∈ Q, i ∈ {1, . . . n}; the partitions
of an integer can be computed using an algorithm from [26].

6 Conclusion

In this paper we studied the problem of view selection under bag semantics.
In particular, we investigated ways to limit the search space of candidate views,

On Solving Efficiently the View Selection Problem under Bag-Semantics 27

given a workload of CQs. We improved previous results by exploiting very refined
characterizations of views that participate in equivalent rewritings. Based on
these characterizations we proposed sound and complete algorithms to select
views for a query workload. Besides, we studied the problem in two special cases,
that is, when the workload contains only (a) chain queries, or (b) path queries,
and present interesting results which further improve the proposed algorithm.
Concerning the experimental evaluation of our approach, we have contacted
preliminary experiments that gave promising results.

There is a lot to be done for future work including the following: (a) studying
further the potential features of lgviews, (b) studying more special cases of the
view selection problem, (c) studying the view selection problem for parameter-
ized queries, and (d) studying the exact complexity of the problem.

Acknowledgements. We would like to thank Timos Sellis and the anonymous
reviewers for their valuable comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Afrati, F., Chirkova, R., Gergatsoulis, M., Pavlaki, V.: View selection for real
conjunctive queries. Acta Inf. 44(5), 289–321 (2007)

3. Afrati, F.N., Chirkova, R.: Selecting and using views to compute aggregate queries
(extended abstract). In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363,
pp. 383–397. Springer, Heidelberg (2004)

4. Afrati, F.N., Li, C., Ullman, J.D.: Generating efficient plans for queries using views.
In: SIGMOD Conference 2001, pp. 319–330 (2001)

5. Andrews, G.E., Eriksson, K.: Integer Partitions. Cambridge University Press, Cam-
bridge (2004)

6. Baralis, E., Paraboschi, S., Teniente, E.: Materialized views selection in a multidi-
mensional database. In: VLDB 1997, pp. 156–165 (1997)

7. Chirkova, R., Genesereth, M.R.: Linearly bounded reformulations of conjunctive
databases. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Fur-
bach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS,
vol. 1861, pp. 987–1001. Springer, Heidelberg (2000)

8. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection
problem. The VLDB Journal 11(3), 216–237 (2002)

9. Chirkova, R., Li, C.: Materializing views with minimal size to answer queries. In:
PODS, pp. 38–48 (2003)

10. Florescu, D., Levy, A.Y., Suciu, D., Yagoub, K.: Optimization of run-time man-
agement of data intensive web-sites. In: VLDB 1999, pp. 627–638 (1999)

11. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index selection for
OLAP. In: ICDE 1997, pp. 208–219 (1997)

12. Gupta, H., Mumick, I.S.: Selection of views to materialize in a data warehouse.
IEEE Trans. Knowl. Data Eng. 17(1), 24–43 (2005)

13. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently.
SIGMOD Rec. 25(2), 205–216 (1996)

14. Karloff, H., Mihail, M.: On the complexity of the view-selection problem. In: PODS
1999, pp. 167–173 (1999)

28 F. Afrati, M. Damigos, and M. Gergatsoulis

15. Lloyd, J.W.: Foundations of logic programming. Springer, Heidelberg (1984)
16. Plotkin, G.: A note on inductive generalization. Machine Intelligence 5, 153–163

(1970)
17. Pottinger, R., Halevy, A.: Minicon: A scalable algorithm for answering queries

using views. The VLDB Journal 10(2-3), 182–198 (2001)
18. Rizzi, S., Saltarelli, E.: View materialization vs. indexing: Balancing space con-

straints in data warehouse design. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003.
LNCS, vol. 2681, pp. 502–519. Springer, Heidelberg (2003)

19. Surajit Chaudhuri, M., Vardi, M.Y.: Optimization of real conjunctive queries. In:
PODS 1993, pp. 59–70 (1993)

20. Theodoratos, D., Sellis, T.K.: Data warehouse configuration. In: VLDB 1997, pp.
126–135 (1997)

21. Theodoratos, D., Xu, W.: Constructing search spaces for materialized view selec-
tion. In: DOLAP, pp. 112–121 (2004)

22. Ullman, J.D., Garcia-Molina, H., Widom, J.: Database Systems: The Complete
Book. Prentice Hall PTR, Upper Saddle River (2001)

23. Xu, W., Theodoratos, D., Zuzarte, C.: Computing closest common subexpressions
for view selection problems. In: DOLAP, pp. 75–82 (2006)

24. Yu, J.X., Choi, C.-H., Gou, G., Lu, H.: Selecting views with maintenance cost
constraints: Issues, heuristics and performance. Journal of Research and Practice
in Information Technology 36(2), 89–110 (2004)

25. Zhou, J., Larson, P.-A., Freytag, J.C., Lehner, W.: Efficient exploitation of similar
subexpressions for query processing. In: SIGMOD Conference, pp. 533–544 (2007)

26. Zoghbi, A., Stojmenović, I.: Fast algorithms for generating integer partitions. Int.
J. Comput. Math. 70(2), 319–332 (1998)

QoS-Aware Publish-Subscribe Service for
Real-Time Data Acquisition�

Xinjie Lu1,4, Xin Li3, Tian Yang1,4, Zaifei Liao1,4,
Wei Liu1, and Hongan Wang1,2

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
xinjie05@ios.cn

2 State Key Lab. of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

3 Department of Computer Science and Technology, Shandong University,
Jinan Shandong 250101, China

4 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Abstract. Many complex distributed real-time applications need com-
plicated processing and sharing of an extensive amount of data under
critical timing constraints. In this paper, we present a comprehensive
overview of the Data Distribution Service standard (DDS) and describe
its QoS features for developing real-time applications. An overview of an
active real-time database (ARTDB) named Agilor is also provided. For
efficient expressing QoS policy in Agilor, a Real-time ECA (RECA) rule
model is presented based on common ECA rule. And then we propose
a novel QoS-aware Real-Time Publish-Subscribe (QRTPS) service com-
patible to DDS for distributed real-time data acquisition. Furthermore,
QRTPS is implemented on Agilor by using objects and RECA rules in
Agilor. To illustrate the benefits of QRTPS for real-time data acquisi-
tion, an example application is presented.

Keywords: QoS, Real-Time Publish-Subscribe, ECA Rule, Active Real-
Time Database.

1 Introduction

Many complex distributed real-time applications require complicated processing
and sharing of an extensive amount of data under critical timing constraints.
These applications include collecting data from the environment, processing ac-
quired data in the context of historical data and providing timely response. How
to transmit or disseminate these data timely and exactly by simple configuration
is a noticeable problem as yet.

Image that we periodically receive sensor data from a mine in a colliery, these
data might contain information about gas, temperature, smog, etc. of every Ob-
servation Point. The system is required to disseminate these data under specific
� This work was supported in part by the National High Technology Research and

Development Program (”863”Program) of China under Grant No. 2006AA04Z182.

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 29–44, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

30 X. Lu et al.

timing constraints for the following abnormal scene detection. Hereinto, publish-
subscribe model is very suitable for such repetitive, time-critical data distribu-
tion. A limitation of most existing architectures that support publish-subscribe
is their limited support for the expression and enforcement of Quality of Ser-
vice (QoS) parameters (such as required bandwidth or latency, for instance).
This observation ranges from models, such as the CORBA Event Service [2],
CORBA Notification Service [1], Java Message Service [3], to systems, such as
CEA (Cambridge Event Architecture) [4], Distributed Asynchronous Collections
[9], SIENA (Scalable Internet Event Notification Architectures) [8] or Cayuga
[27]. This is a significant shortcoming, since QoS features are an important com-
ponent of applications, and they have been widely studied in the context of direct
communication [5,6,7,10,22,24,25].

Data Distribution Service (DDS) is a newly adopted specification from the
Object Management Group (OMG). DDS is aimed at a diverse community
of users requiring data-centric publish-subscribe communications. DDS departs
from previous approaches in two primary aspects: (1) enumerating and providing
formal definitions for the QoS settings that can be used to configure the service,
and (2) the tight binding of a ”topic” to a data-type, along-with the additional
QoS settings, implementing optimizations such as pre-allocating the resources
needed to send or receive a ”topic” [11].

To meet the requirements of real-time and active capabilities described in QoS
policies of DDS [15], we introduce active real-time databases (ARTDB) [16] to
implement these QoS policies. The ARTDB [17] is proposed to provide both
active and real-time capabilities. In the context of an ARTDB, data distribution
can be implemented via ECA rules, and applications can consume data at spe-
cific rate on specific condition. So it would be desirable to develop a QoS-aware
Real-Time Publish-Subscribe (QRTPS) system on ARTDB. This system infras-
tructure should be efficient, scalable, flexible, and cater for the architecture of
active real-time database system, except for providing real-time predictability.
The contributions of this paper are:

1. An original and highly flexible real-time publish/subscribe system, QRTPS,
that supports QoS in the subscription and the publication. It supports QoS
policies settings and is fully implemented with Agilor. The QRTPS allows for
various configurations to express different users’ QoS requests only by minor
programming effort, whereas in traditional distributed systems providing so
many QoS features is an error prone and complex task.

2. For expressing QoS policies effectively and setting conveniently, we propose
a Real-time ECA rule model (RECA) that extends common ECA in com-
plicated temporal events, composite conditions and several coupling models.
By means of the primitives defined in Agilor, all of QoS policies can be con-
veniently configured for both subscription and publication through RECA.

3. In order to illustrate some features of QRTPS, a simplified example appli-
cation is presented, which is a sensor-based active monitoring system. The
related data structures, parameters settings of QoS and translated RECA
rules are described in detail.

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 31

The remainder of this paper is organized as follows. The next section intro-
duces high-level design and active object model of Agilor as background, for
further incorporating QRTPS into Agilor. In Section 3, we propose Real-time
ECA (RECA) rule model to express QRTPS. Section 4 discusses a simplified
example application to illustrate some of the previously mentioned features of
QRTPS. We conclude this paper and present future work in Section 5.

2 Background

2.1 Overview of Agilor

Agilor is a typical active real-time database and its architecture as Figure 1
consists of some kernel modules and critical services. We present the main func-
tion of each component in sequence and introduce an example to illustrate the
operation mechanism of Agilor.

Key Components and Their Duties: The Storage Manager takes charge of
persistent objects and rules storage on disks and support read/write interfaces.
The Object Manager and Rule Manager, resident in main-memory, are responsi-
ble to add/delete/update objects and ECA rules, respectively. The Transaction
Scheduler deals with all transactions and access objects through interface in the
Object Manager.

The Rule Manager not only stores rules into the rule-base, but also per-
forms rule processing by the Event Detector and Condition Evaluator. The
Rule Manager also submits actions and necessary parameters (e.g. deadline,
worst-case execution time) to the Transaction Scheduler. The Event Detector
monitors events occurred in database and system. The Condition Evaluator
checks whether specific conditions are satisfied on receiving events from Event

Object

Fig. 1. Agilor Architecture Fig. 2. DCPS conceptual model [12,23]

32 X. Lu et al.

Detector. When conditions are satisfied, relevant actions will be submitted by
Rule Manager to Transaction Scheduler to execute.

The Admission Controller ensures that admitted transactions do not over-
burden the system. This module inspects whether to accept or reject a new
transaction based on a feedback mechanism considering resources and workload
in system and the importance of the transaction.

The data access services consist of Real-time Service, Historical Service and
Access Certification. They support retrieval of historical data as well as real-time
data (synchronous mode or subscription mode) under time constraints. In these
services, real-time publish-subscription service provides push mechanism based
on RECA rules. The access certification service ensures that access is provided
only to entitled applications. An important building block of the Agilor is ECA
rule and we will discuss its extension edition Real-time ECA in Section 3.

Real-time Data Acquisition Example: We assume that a real-time produc-
tion monitoring system needs instantaneous flow readings from a production
device PD timely. And it also need to accumulate the instantaneous readings to
form another data, named accumulated readings.

This requirement can be divided into two asynchronous flow: Collecting and
Querying. Collecting finishes getting instantaneous readings from PD, saving
them in a certain topic(refer to INS) and accumulating them to another
topic(refer to ACC) in Agilor. Querying achieves continuous querying the latest
value in these two topics.

Collecting: Real-time instantaneous readings are collected by Data Collector
and then stored in INS by Storage Manager. Once INS are updated, Event De-
tector will find this change and trigger Condition Evaluator to evaluate whether
this new instantaneous reading is legal. If the result is true, Rule Manager will
submit the accumulation action to Transaction Scheduler. Then, Transaction
Scheduler will execute this action in appropriate occasion. As a consequence,
ACC are also updated timely.

Querying: The real-time production monitoring system will query INS and
ACC every second. The query request is submitted to Real-time Service and
passes through the authentication of Access Certification with IP address and
Application ID. Then, Real-time Service sends this request to Transaction Sched-
uler with the permission of Admission Controller. Finally, the latest values in
INS and ACC return as the response of that query request.

2.2 Conceptual Model of DDS

DDS describes two levels of interfaces [12]:

– A lower DCPS (Data-Centric Publish-Subscribe) level that is targeted towards
the efficient delivery of the proper information to the proper recipients.

– An optional higher DLRL (Data Local Reconstruction Layer) level, which
allows for a simple integration of the Service into the application layer.

We restrict our discussion of DDS to the DCPS layer. The overall DCPS model
is illustrated in Figure 2, which consists of the following entities: DataWriter,

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 33

Table 1. DDS QoS Policies [19]

QoS Policy Meanings

Durability Determines if data outlives the time when written or read.
Deadline Determines rate at which periodic data is refreshed.
Latency Budget Sets guidelines for acceptable end-to-end delays.
Ownership Controls writer(s) of data.
Ownership Strength Sets ownership of data.

Transport Priority
Allows the application to take advantage of transports capable
of sending messages with different priorities

Liveliness Sets liveness properties of topics, data readers, data writers.
Time Based Filter Mediates exchanges between consumers and producers.
Reliability Controls reliability of data transmission.
History Sets how much data is kept to be read.
Resource Limits Controls resources used to meet requirements.

DataReader, Publisher, Subscriber, and Topic. All these classes extend Domain-
Participant, representing their ability to be configured through QoS policies and
each of them has a set of QoS Policies that are suitable to it.

2.3 Supported QoS of DDS

The DCPS entities in DDS include Topics, which describe the type of data to be
writ-ten or read; Data Readers, which subscribe to the values or instances of par-
ticular topics; and Data Writers, which publish values or instances for particular
topics. Various properties of these entities can be configured using combinations
of the 22 QoS policies. Moreover, Publishers manage groups of data writers and
Subscribers manage groups of data readers. We summarize all the DDS QoS poli-
cies related to our work in Table 1 and a more detailed discussion can be found
in [12]. Each QoS policy has several attributes with the majority of the attributes
having a large number of possible values, e.g. an attribute of type long or charac-
ter string. Moreover, not all QoS policies are applicable to all DCPS entities, nor
are all combinations of policy values semantically compatible [19,23].

3 Real-Time ECA

ECA Rules are used to specify constraints that define correct states of objects as
well as actions to be taken on certain events. To efficiently describe QoS policy
in Agilor, a Real-time ECA (RECA) rule model is proposed, which extends
common ECA [21] in complicated temporal events, composite conditions and
coupling models. The RECA rule model is divided into three parts: Event,
Condition and Action.

Formally, a rule is modeled by <RN, RD, RV, E, C, A, CMEC, CMCA,
CMEA, CMRR>, in which RN, RD, RV is the name, deadline and value of

34 X. Lu et al.

the rule, respectively. The deadline reflects urgency of the rule (including the
action) while the value reflects importance of the rule. The value decides the
order of condition evaluations when multiple rules are triggered at the same
time. E is a set of events that can invoke rules, C is a set of conditions and
A is a set of ordered actions. Actions should be taken when specific conditions
are satisfied. CMEC and CMCA are the coupling modes between event and
condition evaluation and between condition and action execution separately, i.e.
when condition evaluation and action execution can take place relative to the
time of triggering events. CMEA and CMRR are the coupling modes between
event and action execution and between two rules [20,21].

3.1 Event

Events are occurrences of interests which are predefined in the system such as
data update events and clock events. Events can be divided into primitive events,
which refer to simple and atomic events, and composite events, which consist of
primitive events combined with event operators.

Events can be described formally as follow:

E ::= p|(¬E)|(O[t1,t2]E)|(E1∧E2)|(E1∨E2)|(E1O[t1,t2]E2)|(E1O≤t2E2)
|(O[t1,t2](E1→E2))|(O[t1,t2](E1∧E2))|(O[t1,t2](E1∨E2))
|(O[t1,t2]((E1→E)∧(E→E2)).

(1)

The predication p is a primitive event. The symbol ’¬’,’∧’and’∨’ stand for nega-
tion(not), conjunction(and), disjunction(or) operator, respectively. (E1O[t1,t2]E2)
is a sequence of events to occur over a time interval [t1,t2], in which the latter event
E2must occur after the former eventE1between [t1,t2]. The composite event arises
when the last event in the sequence has occurred.

Three kinds of primitive events are realized in Agilor and they are

1. system events : some particular events of operating system or database sys-
tem, e.g. OnTimer and OnIOError;

2. method events : data manipulation events of an object/class, e.g. OnUpdate
and OnDelete;

3. custom events : events predefined by user’s application for specified purpose,
such as sensor failure event. Custom events are always triggered explicitly
by application calling RaiseCustomEvent() function.

The method events are primary events in ARTDB and any data manipulation
event of an object/class can be a potential method event. Method events will be
triggered automatically when the corresponding method is invoked.

A method event can be defined by 6-tuple <EN, T, OM, CMME, EP, SL>,
where EN is the name of event, T is the time of occurrence, OM is the name
of object method which should be one of the existing methods in object base,
and the coupling mode CMME is an indication of whether the event should be
generated before or after the execution of the method. EP is the parameter set

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 35

Table 2. Extension of Complicated Temporal Events

Event
type

Definition Semantics

Durative
event

event E occurs at regular intervals between two time
instants, X and Y.

O[X,Y]E

Time con-
strained
sequence

E1 Seq-Within[X seconds] E2, occurs when both E1
and E2 have occurred in that order within X seconds.

E1→O≤XE2

Durative
sequence

E1 Seq-During[X,Y] E2, occurs when both E1 and E2
have occurred in that order at regular intervals from
time instant X to Y.

O[X,Y](E1→♦E2)

Durative
conjunc-
tion

E1 AND-During[X,Y] E2, occurs when both E1 and
E2 have occurred in any order at regular intervals from
time instant X to Y.

O[X,Y](E1∧E2)

Durative
discon-
junction

E1 OR-During[X,Y] E2, occurs when either E1 or E2
occurs or when both E1 and E2 occur at regular inter-
vals from time instant X to Y.

O[X,Y](E1∨E2)

Durative
between

Between-During (E1, E2)[X,Y], occurs when there are
events occur between event E1 and E2 between starting
time X and ending time Y, ignoring the relative order
of their occurrences.

O[X,Y]((E1→♦E)
∧(E→♦E2))

of the event corresponding to the parameters of the method which will be passed
to condition evaluator for check. SL is a subscribers list made up of the rules
and composite events which subscribe this event. The subscribers of this event
will be notified when the event occurs.

In order to express more complicated temporal events [21], we extend common
ECA rules as shown in Table 2. The six kinds of patterns focus on duration-
related aspect of complicated event and all have typical application scenarios
in real-world. For the sake of limited space, we give two examples. We still use
the data acquisition scene introduced in Section 2.1. Let E1 denote the event
of update on topic INS and E2 denote the event of update on topic ACC. We
define t as an arbitrary time instant and n as an integer. Durative Event event,
O[t,t+n]E1, can occur every n second because E1 occurs per second between t
and t+n. Durative Sequence event, E1 Seq-During[t,t+n] E2, can occur every n
seconds because both E1 and E2 have occurred in that order every second.

For complicated temporal events scan, a useful approach has been to adopt
Nondeterministic Finite Automata(NFA) to represent the structure of an event
sequence [26]. Furthermore, the NFA-based approach can be extended to handle
sequence construction, as proposed in YFilter [28] in the context of XML message
filtering.

36 X. Lu et al.

3.2 Condition

The event indicates the need to check; whereas the condition determines what
to check. The condition set C describes the situations that are used to check
whether all prerequisites are satisfied for actions.

Conditions can be described formally as follow:

C ::= p|(¬C)|(C1∧C2)|(C1∨C2). (2)

The predication p is a primitive condition and in Agilor it can be

(1) Selection condition: evaluation of a single attribute value of one object (e.g.
OP.Gas>20),

(2) Aggregation condition: comparison of a single attribute aggregated over mul-
tiple instances (e.g. Max(OP.Smog)>100),

(3) Join condition: comparison of a single common attribute of multiple homo-
geneous objects (e.g. OP1.Pressure=OP2.Pressure),

(4) Transition condition: comparison of a single attribute over multiple instances
(e.g. OP1.Gas>OP1.GetLast(Gas)) and

(5) Application-specific condition: evaluation of functions predefined by appli-
cations.

Applications also can define composite conditions by combining a set of prim-
itive conditions with logical operators such as disjunction and conjunction.

3.3 Action

The action set A defines a set of ordered actions, which are similar to the defini-
tion of methods in object model. Actions could be database operations including
deletion and update, as well as external actions such as procedure call (e.g. pub-
lishing data or signaling an alarm to applications). Deadline as an additional
parameter should be assigned to the action. It is a relative delay to the oc-
currence time of the triggering event. For example, a triggered action must be
finished in 10 milliseconds after a temporal attribute X is updated.

3.4 Coupling Modes

The CMEC, CMCA, CMEA and CMRR identify the time semantics when con-
dition evaluation and action execution can take place relative to the triggering
event, with the constraint that condition evaluation must be performed before
action execution. The optional values and meanings of each coupling mode are
summarized in Table 3. If CMEC is configured to immediate, when event occurs,
the current running transaction will be suspended, and condition evaluation is
performed immediately. While detached, the evaluation of condition will be fin-
ished in a different transaction. Similarly, CMCA defines such a relationship
between condition and action. CMEA describes this relationship between event
and action. CMEC, CMCA, CMEA are aimed at dealing with each part in one
ECA rule, while CMRR focuses on the relationship between ECA rules. Using

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 37

Table 3. Coupling modes definition

Name Optional
Value

Meanings

CMEC
immediate When events occur, the transaction is suspended,and condition

evaluation is performed immediately.
detached Condition evaluation is done in another transaction.

CMCA
immediate The triggered action is executed immediately after condition

evaluation.
detached The triggered action is treated as a new separate transaction.

CMEA
immediate The triggered action is executed immediately after event occurs.
detached The triggered action is treated as a new separate transaction.

CMRR
immediate Execution of one rule immediately triggers another rule.
concurrent Many rules may be triggered at the same time.

these two optional values, immediate and concurrent, we can build a ECA rules
chain or a ECA rules net to achieve more sophisticated business flow.

To avoid unpredictable increase of the execution time of the triggering trans-
action in a real-time environment, the combinations of CMEC and CMCA had
better be immediate-detached or detached-immediate. Similarly, the limit is put
on the depth of triggered rules to avoid uncontrolled cascade triggering.

3.5 Semantic for RECA Rules

The basic structure of the rules in Agilor is expressed as triggering events, condi-
tions and actions, as well as the timing constraints and coupling modes. Deadline
and value are considered in each RECA rule and the semantic for rules is defined
as follow:

Rule::=BEGIN RULE <RuleName>
VALUE <Value>
WHEN <Event>
IF <Condition> CMEC [immediate|detached]

CMEA [immediate|detached]
THEN <Action> WITHIN <Deadline>
CMCA [immediate|detached]
CMRR [immediate|concurrent]

END RULE

4 Case Study

This section aims to illustrate some of features of QRTPS with a simplified
example application. It is developed by the commercially available QRTPS on

38 X. Lu et al.

Fig. 3. Overview of the example application

Agilor. The example uses QRTPS for the implementation of a sensor-based active
monitoring system. An overview of the proposed system is shown in Figure 3.
The system consists of five Observation Points(OP) in a coal mine and there
are many sensors on each OP to measure different indicators. For the sake of
simplicity, we consider three sensors (e.g. gas, temperature, smog) on each OP.

We use the following requirements for the overall system to demonstrate the
most important features of QRTPS:

1. Fault Tolerant: The data collector and connected applications only consider
the temperature readings of OP1 at a time. If no data from this most-trusted
sensor is received within 5 second, temperature data shall automatically be
received from another OP, thus allowing a seamless failover [29].

2. Composite Event: When the gas readings keep increasing rapidly and tem-
perature readings are greater than a threshold value, the transport priorities
and frequencies of them should be enhanced. Transport priorities of gas and
temperature readings shall be set to 100 and monitoring application shall
receive gas and temperature readings every second.

3. Dynamic Resource Allocation: At the start-up of a production device,
Real-time Monitoring Application shall dynamically create a subscription
about temperature of the equipment and receive data every 5 seconds.

4.1 Related Data Structures

In order to decouple sensor readings and their meta information, we define two
data structures [29], which shall be exchanged between the components, for each
sensor type. The first data structure contains the actual sensor readings to be
transferred. Additional meta information are modeled in an additional struc-
ture and only need to be published when the application starts or if sensors are
exchanged. Thus, subscription can be dynamically reconfigured to accurately
interpret incoming data from different sensors. As an example, the class defi-
nitions for gas sensors are shown below. The class Gas is used to transmit the

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 39

sensor readings, whereas GasSensorInfo contains meta-information to interpret
the sensor data correctly.

Class Gas{ Class GasSensorInfo{
private: private:

long datacollector id; MeasuringUnit unit;
long OP id; double maxGas;
double value; double minGas;

}; double sampleRate;
double thresholdValue;
double abnormalRate;

};

4.2 QoS Policies Settings of Each Entity

In Figure 4, p1 to p5 describe the steps in a publication and s1 to s5 express
the processes in a subscription. QoS policies settings for each requirement above
mentioned are shown in Table 4.

The p1 and p2 of Figure 4 show the creation of the Publisher and DataWriter
respectively. The p3 and p4 show the process of user application writing data to
DataWriter and the process of DataWriter writing data to Topic Queue. The
p5 step shows that the corresponding notifications are propagated according to
the current Publisher ’s policy on sending.

The s1 of Figure 4 shows the Subscriber ’s creation. The s2 shows the life
cycle of a SubscriberListener. Firstly, it must be created and attached to the
Subscriber. Then when notification arrives, it is made available to each related
DataReader. After that, the SubscriberListener is triggered (s3). The application
must get the list of affected DataReader objects; then it can read (s4) the data
directly from Topic Queue. The s5 shows the process of user application reading
data from DataReader.

The first requirement describes that subscribing applications shall get tem-
perature readings from the second-most-trusted sensor, when the most-trusted
sensor stops working because of damage or other reasons. We set the OWN-
ERSHIP.kind parameter to ”exclusive” to ensure that readers will only receive
data from a single sensor. The DEADLINE policy defines the timeout that the
subscribers will automatically failover to the second-most-trusted sensor. Thus,
fault-tolerant distributed applications can easily be developed with the ability
to dynamically react to failures in the system [29].

The second requirement allows enhancing the transport priorities and frequen-
cies during run-time. When the gas readings grow too rapidly and temperature
readings are greater than a threshold value, some anomalies are likely to happen.
To ensure thatmonitoring application receives these real-time data with higher fre-
quency and reliability, we can set the TIME BASED FILTER policy to 1 to guar-
antee DataReader reading every second. Since the TRANSPORT PRIORITY of
DataWriter is set to 100, it is assured that DataWriter will give first priority to

40 X. Lu et al.

U
se

r
A

pp
lic

at
io

n
(S

ub
)

Publication ProcessClient-level Library

Read
Data

Topic Queue

...

D
ata C

ollector (Pub)

p1

p2

s1

p4

p3

N
etw

ork

s3Subscriber

Subscriber
Listener

Publisher

Data
Writer

Data
Reader

s2

s4

Create
Sub

Create
Pub

s5

p5

Write
Data

Fig. 4. Framework and Sequence of QRTPS Service

Table 4. QoS Settings for this Case

Data Entity Policy of IssueConsumer Policy of IssueProducer

1

Temperature OWNERSHIP.kind=EXCLUSIVE; OWNERSHIP.kind
OWNERSHIP STRENGTH.value= =EXCLUSIVE;
datacollectorid of the data collector; DEAD-

DEADLINE.period.sec = 5; LINE.period.sec = 5;

2

Gas, TIME BASED FILTER =1s;

Temperature TRANSPORT PRIORITY =100;

3

Temperature LIVELINESS.kind LIVELINESS.kind
=MANUAL BY TOPIC; =MANUAL BY TOPIC;

LIVELINESS.lease duration LIVELINESS.lease duration
=infinite; =infinite;

TIME BASED FILTER =5s;

these emergent data. In this way, composite event based dynamic priority mecha-
nism can be implemented with the configurations of QoS policies.

The third requirement needs to dynamically create a subscription and receive
data every 5 seconds, when a production device starts up. To create a subscrip-
tion at random time, we can set the LIVELINESS.kind=MANUAL BY TOPIC
and LIVELINESS.lease duration=infinite for both DataReader and DataWriter.
Then, TIME BASED FILTER of temperature is set to 5 to make sure that
DataReader can receive temperature readings every 5 seconds, regardless how
fast the DataWriter publish this information. Similarly, we can dispose these
resources used by this subscription when the equipment stops. By this means,
dynamic resource allocation is achieved with emphasis on resource management
on the grounds of actual production condition.

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 41

BEGIN RULE Rule_1 //Req. 1
VALUE 1
WHEN OnTimer("Timer1",10)
IF True THEN

variant currentvalue;
long currenttime;
long begintime;
begintime = CurrentTime();
while(TopicState(“TempSensor2”)) {

currentvalue =TopicValue(“OP1.TempSensor1”,1);
currenttime = CurrentTime();
if((currenttime- begintime)>5) {

currentvalue =TopicValue(“OP2.TempSensor2”,1);

break;
}

}
WITHIN 3

END RULE

BEGIN RULE Rule_2 // Req. 2
VALUE 1
WHEN OnTimer("Timer2 ",5)
GasMetaInfo ggasmetainfo;
IF (TopicValue(“OP1.GasSensor1”,1)-TopicValue(“OP1.GasSensor1”,2))>

ggasmetainfo.abnormalRate
and TopicValue("OP1.TempSensor3",1)> ggasmetainfo.thresholdValue

THEN
SetTimer("Timer3",1);

WITHIN 3
END RULE

BEGIN RULE Rule_3.1 // Req.3
VALUE 1
WHEN OnStartUp("DeviceID")
IF True THEN

SetTimer("Timer4",5);
EnableRule("Rule_3.2");

WITHIN 3
CMRR [immediate] Rule_3.2

END RULE

BEGIN RULE Rule_3.2 // Req.3
VALUE 1
WHEN OnTimer("Timer4")
IF True THEN

variant currentvalue;
currentvalue=

TopicValue(“OP1.TempSensor1”,1);

WITHIN 3
END RULE

Fig. 5. RECA Rules for Requirements

42 X. Lu et al.

4.3 Translating QoS Settings to RECA

Each requirement’s QoS parameters can be translated into a RECA rule or a set
of RECA rules coupled by RECA’s coupling modes (Section3.4). Due to space
limit, we translate QoS parameters only mentioned on DataReader in Table 4
into RECA rules as shown in Figure 5.

Primitives, defined in Agilor, provide many primary functions for RECA rules.
For example, TopicState(”TempSensor2”) in Rule 1 is to check the running state
of a Topic on TempSensor2 and return true only if it runs normally. TopicValue
(TopicName,index) gets the value identified by index from a Topic namely Topic-
Name. CurrentTime() will get the execution time of this rule. To achieve triggering
some actions at regular intervals, OnTimer(TimerName,interval) is defined to be
triggered every interval seconds. While SetTimer(TimerName, interval) is used to
set the interval of a timer namely TimerName. To implement the coupling modes
between rules, EnableRule(RuleName) and DisableRule(RuleName) are defined
to make a rule activated or deactivated, respectively.

4.4 Limitations of Triggered Rules

Although using event-driven rules(especially ECA rules) has several benefits(e.g.
reactivity, flexibility and manageability), the method also has some limitations.
We present the limitations we have obtained during the study of using ECA for
QoS management [30].

– ECA rules are more suitable for procedural programming, not object-oriented
programming. As we mentioned in Section 4.1, some data structures defined
by object-oriented approach, but we have to map these objects to property-
value pairs during implementation.

– ECA rules do not have states, which means they can not record the progress
of current instance. The common way of compensation is saving some inter-
mediate results in a relational or real-time database for potential use in the
following rules.

– Visualization of ECA rules is not easy to be implemented because only visu-
alizing single ECA rule is not enough. It is more important to visualize the
entire ECA rules chain(or net) which can achieve a whole business flow. In
addition, the validation of ECA rules chain(or net) also n eeds visualization
of these rules.

5 Conclusions and Future Work

In this paper, a new DDS compatible real-time service for data-centric publish-
subscribe communication has been presented. The service is particularly tar-
geting real-time applications which needs to manage resource consumption and
timeliness of the data transfer. QRTPS allows many-to-many communication
and alleviates a number of common problems which are of particular interest
for the development of distributed assembly systems. For example, with its com-
plex QoS support, fault-tolerant service, composite event based dynamic priority

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 43

mechanism and dynamic resource allocation are achieved automatically and in an
efficient manner. Future work can focus on adaptive adjusting QoS parameters
during run-time in order to provide better performance with limited resources.

Acknowledgments. We would like to thank the anonymous referees for many
valuable comments and suggestions, which helped improve the quality of this
paper.

References

1. Object Management Group, OMG Headquarters, 250 First Avenue, Suite 201,
Needham, MA 02494, USA. Notification Service Specification (2000)

2. Object Management Group, OMG Headquarters, 250 First Avenue, Suite 201,
Needham, MA 02494, USA. Event Service Specification (2001)

3. Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303, USA. Java Mes-
sage Service (1999)

4. Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O., Spiteri,
M.: Generic support for distributed applications. IEEE Computer, 68–76 (2000)

5. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An architecture
for differenciated services, RFC 2475 (1998)

6. Braden, E.R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource reservation
protocol (RSVP)-version 1 functional specification, RFC 2205 (1997)

7. Braden, R., Clark, D., Shenker, S.: Integrated services in the internet architecture:
an overview, RFC 1633 (1994)

8. Carzaniga, A.: Architectures for an Event Notification Service Scalable to Wide-
area Networks. PhD thesis, Politecnico di Milano (1998)

9. Eugster, P.T., Guerraoui, R., Sventek, J.: Distributed asynchronous collections:
Abstractions for publish/Subscribe interaction. In: Bertino, E. (ed.) ECOOP 2000.
LNCS, vol. 1850, pp. 252–276. Springer, Heidelberg (2000)

10. Wroclawski, J.: The use of RSVP with IETF integrated services, RFC 2210 (1997)
11. Joshi, R., Castellote, G.-P.: A Comparison and Mapping of Data Distribution Ser-

vice and High-Level Architecture (2006),
http://www.rti.com/docs/Comparison-Mapping-DDS-HLA.pdf

12. Data Distribution Service for Real-time Systems Version 1.2 (2007),
http://www.omg.org/cgi-bin/doc?formal/07-01-01

13. Berndtsson, M., Hansson, J.: Workshop Report: The First International Workshop
on Active and Real-Time Database Systems. ACM SIGMOD Record 25(1), 64–66
(1996)

14. Adelberg, B., Kao, B., et al.: Overview of the Stanford Real-time Information
Processor STRIP. ACM SIGMOD Record 25(1), 34–37 (1996)

15. Ramamritham, K., Shen, C., et al.: Using Windows NT for Real-Time Applications:
Experimental Observations and Recommendations. In: Proceedings of the Fourth
RTAS, Denver, Colombia, pp. 102–111 (1998)

16. Huang, J., Stankovic, J., Towesly, D., Ramamritham, K.: Experimental Evaluation
of Real-Time Transaction Processing. In: Proceedings of the 10th RTSS, pp. 144–
153 (1989)

17. Shen, C., Gonzalez, O., Mizunuma, I.: User Level Scheduling of Communicating
Real-Time Tasks. In: Proceedings of the Fifth RTAS, Vancouver, Canada, pp. 164–
175 (1999)

http://www.rti.com/docs/Comparison-Mapping-DDS-HLA.pdf
http://www.omg.org/cgi-bin/doc?formal/07-01-01

44 X. Lu et al.

18. Wei, L., Qiang, W., Hongan, W., Guozhong, D.: Adaptive Real-Time Publish-
Subscribe Messaging for Distributed Monitoring Systems. Chinese of Journal Elec-
tronics, 569–574 (2005)

19. Hoffert, J., Schmidt, D., Gokhale, A.: A QoS Policy Configuration Modeling
Language for Publish/Subscribe Middleware Platforms. In: DEBS 2007, Toronto,
Canada, pp. 140–145 (2007)

20. Hauer, J.-H., Handziski, V., K?opke, A., Willig, A., Wolisz, A.: A Component
Framework for Content-based Publish/Subscribe in Sensor Networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 369–385. Springer, Heidelberg (2008)

21. Liu, W., Qiao, Y.: A Visual Specification Tool for Event-Condition-Action Rules
Supporting Web-based Environment. In: Proceedings of ICEIS, pp. 246–251 (2008)

22. Araujo, F., Rodrigues, L.: On QoS-Aware Publish-Subscribe. In: Proceedings of
DEBS 2002, Vienna, Austria, pp. 511–515 (2002)

23. Corsaro, A., Querzoni, L., Scipiont, S., Piergiovanni, S.T., Virgillito, A.: Quality of
Service in Publish/Subscribe Middleware. In: Global Data Management, pp. 1–19.
IOS Press, Amsterdam (2006)

24. Eugster, P.T.H., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The Many Faces
of Publish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

25. Sharifi, M., Taleghan, M.A., Taherkordi, A.: A publish-subscribe middleware for
real-time wireless sensor networks. In: Alexandrov, V.N., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 981–984. Springer,
Heidelberg (2006)

26. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Composite event specification in active
databases: Model and implementation. In: Proceedings of the 18th VLDB, pp.
327–338 (1992)

27. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expres-
sive publish/Subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 627–644. Springer, Heidelberg (2006)

28. Diao, Y., Altinel, M., Zhang, H., Franklin, M.J., Fischer, P.M.: Path sharing and
predi-cate evaluation for high-performance XML filtering. TODS 28(4), 467–516
(2003)

29. Ryll, M., Ratchev, S.: Towards A Publish/Subscribe Control Architecture for Pre-
cision Assembly with the Data Distribution Service. In: IFIP International Feder-
ation for Information Processing, vol. 260, pp. 359–369, Springer, Boston (2008)

30. Bry, F., Eckert, M., Patranjan, P.-L., Romanenko, I.: Realizing Business Processes
with ECA Rules: Benefits, Challenges, Limits. In: Alferes, J.J., Bailey, J., May,
W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 48–62. Springer,
Heidelberg (2006)

A Near Real-Time Reporting System for
Enterprises Using JavaScript Instrumentation

with Inter-colo Event Replication

Timothy Tully

Yahoo!, 701 First Ave., Sunnyvale, Ca 94089, USA
timt@yahoo-inc.com

Abstract. Yahoo! is on track to realize its goal of real-time enterprise-
level reporting. Accessing real-time reports allows executives and decision
makers to program content and advertising in a way that benefits both
the business and the end user. This paper describes our legacy archi-
tecture, as well as a new, low latency pipeline. In particular, we show
that by using a combination of novel JavaScript instrumentation tech-
niques, as well as an automated, standardized reporting system on top of
a near real-time inter-colo event collection mechanism, Yahoo! is nearing
its real-time reporting goals.

Keywords: Business Intelligence over Streaming Data, Data Capture
in Real Time, Visualization.

Submission Category: Industry Track

1 Introduction

Cost, complexity, and time delays when deploying real-time business intelligence
solutions slow down a company’s response time and hinders flexibility. On the
business side, executives want to speed up data analysis and assure availability of
data they value for making business decisions. Organizations which have heavily
invested in high latency reporting systems are often reluctant to discard them
for new solutions.

Typically, real-time processing systems needed to be sleek and streamlined to
keep the number of bottlenecks and points of failure to a minimum. Processing
huge amounts of enterprise-scale data was not possible. However, we will describe
an architecture that allows us to process data from thousands of web servers
worldwide, without making sacrifices in latency.

To that end, near real-time reporting had not been in place at Yahoo! for
the first ten years of the company’s existence. Web server1 data collection for
the purposes of analytics was, and in some minor instances still is, a difficult
problem to solve.
1 Yahoo! uses a specialized version of Apache 1.3[1]. Yahoo! has altered it slightly for

performance improvements and to enhance its logging capabilities.

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 45–60, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

46 T. Tully

Consider the amount of data that Yahoo! has to collect on a daily basis.
We have thousands of web servers to collect log data from, and many of these
machines host multiple properties as well as the international versions of those
properties. Moreover, we are collecting data for hundreds of millions of users,
spanning 5,000,000 log files each day. The data comes from colos (colocated data
centers) around the world, totaling a volume of 10TB per day of data, which is
stored into one of our 300TB data warehouses2.

We quickly realized that we would never be able to have any real-time com-
ponent to our business reporting unless portions of our architecture changed.
This paper will describe three components that have helped us to accomplish
real-time reporting:

– Improved instrumentation techniques
– Data collection via colo-to-colo event replication
– Automated reporting of real-time events

In all, when one considers the sheer volume of data, the number of machines
and colos we host in, the number of users per day, and the number of event
records3 per user per day that Yahoo! has on a daily basis, extraction of any
analytical data in a reasonable amount of time is quite a formidable problem.

1.1 Past BI Pipeline Architecture

By describing our past BI (Business Intelligence) pipeline, shown in Figure 1,
the architectural benefits of the new design we describe later are more apparent.
Collecting data from thousands of web servers was a massive daily effort. Server
log files were cut nightly and copied from each of the colos to a main processing
colo, then centrally stored on a number of large-capacity NAS (Network Attached
Storage) devices.

Fig. 1. Legacy Data Pipeline

2 We have other larger petabyte warehouses. [2]
3 An event to Yahoo! is a pageview and its associated page context (ads, links in the

page), or a click (ad or link) and its context.

A Near Real-Time Reporting System for Enterprises Using JavaScript 47

From there, ETL processing took over and picked up those files for data cleans-
ing and normalization, query term canonicalization and more. We also created
pseudo-indices on the data by doing simple lexicographical sorts on columns that
had frequent joins on them, via massively parallel and distributed sorting on the
log data. The data and each of its respective indexed versions were stored in a 300
TB data warehouse as compressed text files. The time from log collection to ETL
to warehouse loading was 16 hours, meaning that post-ETL fact data generated
on a Monday would not be available to consumers until 4 p.m. on Tuesday.

The next step in the pipeline was aggregation. Our aggregations were huge,
complex parallel processing applications that read data from the data warehouse
and wrote aggregated data back to it. This work required enormous numbers
of servers to read the daily volume of data. The processing was always net-
work bound, because our data warehouse read text files over NFS, meaning that
adding more hardware to the problem would not necessarily fix it. From time to
time, we would observe negative scaling because we were network bound, caus-
ing our NAS boxes to begin dropping NFS connections and thus invalidating file
handles for clients due to contentious reads.

The total time to read data from the warehouse, aggregate it, and load the
aggregated data back into the warehouse for digestion by MicroStrategy or other
reporting systems was anywhere from 10 to 24 hours. This meant that for some
properties, data generated on Monday wouldn’t be ready for stakeholders until
4pm on Wednesday.

2 Past Instrumentation Techniques

The instrumentation of web pages was also difficult. Yahoo! had systems that
used Apache modules to write custom log data to disk via PHP and Perl APIs.
These APIs would allow property developers to collect data such as page context,
link view data, and click data. Consequentially, the APIs would also rewrite links
in web pages by appending encoded link metadata to them. This created longer
URI’s than were necessary, making copied and pasted links unnecessarily long and
cryptic to read. For example, the following Yahoo! Real Estate URI is 70 charac-
ters long, but only 35 characters are the actual URI:

http://realestate.yahoo.com/Sellyourhome; ylt=An2NGXCedalneQXdiUrrWjykF7kF.

Everything after the semi-colon is used to track the link.
Developers often spent large amounts of time deploying this instrumentation

code, as it was a very manual process, often causing developers to wrap each web
page link with the API function calls to obtain the rewritten link. Debugging a
page’s instrumentation was difficult because it often involved manual inspection
of raw logs. Also, we had strict ETL filters that periodically made it hard for
engineers to understand why certain page views did not appear in the post-
ETL data. 4 End-to-end instrumentation of the pages, including coding time,
debugging, and validation often took up to two weeks of engineering time.
4 We filter out internal IP traffic, known robot IP blocks, and anomalous records.

48 T. Tully

The steps of training developers on data systems, instrumenting a property,
setting up its ETL processing, writing aggregations and reporting systems to-
gether often took a team of five more than three months. In addition, we were
faced with reports that were stale, frequently having lead times over of two days
after the events occurred.

Yahoo! has many properties in its network, and when a new property came
online, we often needed to create an entire reporting team per site in order to
report data by product launch. We also realized that real-time reporting was a
major business need, and it became necessary to create a simpler methodology
for instrumenting, collecting, and reporting our data faster than before.

In the following section, we will present a JavaScript-based instrumentation
that tracks user activity in a simpler, more elegant way than server-side tracking.
Moreover, we will describe how our instrumentation methodology pipes data
into an event replication system that funnels user-event data streams into a
single colo, where our real-time reporting application digests event data. The
combination of these three components was responsible for bringing our business
intelligence reporting down from a two day latency to six minute latency.

3 New Architecture

Investing large amounts of time to instrument properties in the Yahoo! network
was not scalable, nor the best use of a property engineer’s time. Because of
this, we needed to conceive of a new way to track user behavior - in particular,
pageviews, link views, and link clicks. It needed to be fast to deploy and rela-
tively unobtrusive, meaning that changes in content shouldn’t heavily affect the
instrumentation. We also needed a way to get to the data we were collecting
much faster than we had in the past.

For the instrumentation piece, we finalized on a lightweight JavaScript library
that tracked pageviews, as well as parsed the webpage Document Object Model
(DOM)[3] to extract and record link information. This library also tracked sub-
sequent link clicks in the page.

When executed, the instrumentation code in a web page that leveraged this
library made HTTP [4] GET requests5 for images on Yahoo! servers that sent
back 1x1 pixel clear JPG files. This is often referred to as beaconing, or inserting
web bugs [6].

The images never actually appear in the web page, or the DOM for that mat-
ter. We simply want to make requests for images at a particular URI (containing
page information), which in effect sends out data to remote servers. The servers
that handle the image requests parse the URI’s and log them, effectively be-
coming fact data. Images were used since it allowed us to take advantage of the
native JavaScript Image object, which fetches remote images via URIs set in the
“src” member.
5 In extreme cases, these URIs would be thousands of bytes long, particularly when

there are many link views per page. However, Internet Explorer sets an upper bound
[5] of 2k for URIs, meaning that we always had to stay under 2k.

A Near Real-Time Reporting System for Enterprises Using JavaScript 49

The format of the URI’s was set by the library to indicate what user activity -
page views, link views, or clicks was occurring. Figure 2 shows a simple example
of a page view beacon URI from a Yahoo! UK Movies page:

http://eu.rpd.yahoo.com/p?t=1217134478&k=pn%03Now%20Showing&s=97198815&_

r=uk.movies.yahoo.com&u=uk.movies.yahoo.com%2Fnow-showing.html

Fig. 2. Example of a UK Movies Beacon

Whenever these image requests were made, associated cookies were sent along
in the HTTP header. In the page view case, the URI’s contained information
about the context of the page, such as background color or page title. In addition,
this beacon also contained information about which links were viewed as part of
a module. A module can be thought of as a logical section within a web page.
Examples of modules can be seen in Figure 3. This example has “World” and
“U.S. News” modules, each with five links in them.

We also tracked the position of the link within a section (module), in addition
to the typical CTR tracking (link clicks divided by link views). Again, using
Figure 3, the link “Nepal’s lawmakers abolish the country’s monarchy” would
have position two in the “World” module. Tracking module usage is important
because we’re not only interested in what links were viewed, but also which
modules were viewed.

The advantage for Yahoo! in this new beaconing system is not that it can
report views and clicks - many vendors [7], [8] have been providing this for
several years now, often for zero cost. These vendors employ exactly the same
methodology described above - JavaScript executing in client browsers, asyn-
chronously sending user behavior data to their servers via HTTP requests for im-
ages. The advantage for Yahoo! is the ease and speed by which we can deploy the

Fig. 3. Example of Modules (Sections) and their Respective Links

http://eu.rpd.yahoo.com/p?t=1217134478&k=pn%03Now%20Showing&s=97198815 &_r=uk.movies.yahoo.com&u=uk.movies.yahoo.com%2Fnow-showing.html
http://eu.rpd.yahoo.com/p?t=1217134478&k=pn%03Now%20Showing&s=97198815 &_r=uk.movies.yahoo.com&u=uk.movies.yahoo.com%2Fnow-showing.html

50 T. Tully

instrumentation, and that we can track link view data. The faster we can instru-
ment a page, the faster we can collect usage information about it. Since beacon
data goes to a small pool of servers, the new instrumentation system allowed us
to collect data from fewer machines. This was in contrast to the legacy system
where individual hourly log files were collected from thousands of servers in many
colos, which was a huge part of our end to end latency problems. Furthermore,
our processing had too many log files to process from too many machines, with
too much disk I/O to our NAS devices slowing down the processing.

Not only could the new instrumentation be deployed very quickly, but it could
also be deployed by anybody, including non-engineers, because the JavaScript
required is simple to write. We created a webpage form-based code generator
to write the JavaScript for the person deploying the instrumentation, which we
will describe in Section 3.4.

3.1 Instrumentation

Topics surrounding business intelligence in real-time should not focus solely on
collecting and reporting data quickly. To access reports and derive insights, data
must first be generated. Latency is not just the time it takes to collect and use
data, but also part of an end-to-end pipeline. Generating the fact data is the
first step in that pipeline. Unless data collection mechanisms can be deployed
quickly, the rest of the pipeline will be blocked, waiting for sites to go live, and
stakeholders will wait longer to react to business changes.

Our new data instrumentation library is a JavaScript client-side API that
provides user behavior tracking capabilities. Using the library, one indicates
which modules in a page are to be tracked. The library will then jump to the
logical location of those modules by leveraging the browser’s DOM API. Then,
for each module, it will look for all links that belong to the module. That is, for
each module that is to be tracked, the instrumentation will look for all anchor
elements (<a>) that are children and descendants of the indicated modules. The
first step is to include the library source as a script element:

<script src="http://www.yahoo.com/instrument.js"></script>

Inside of this file, there is a declared function that returns an object. This
function expects a JavaScript object literal, referred to here as the config ob-
ject, to be passed in.6 Using the contents of this config object, the library will
automatically begin tracking link clicks on all anchor tags that are children and
descendants of the modules to track, as specified by the config object. For exam-
ple, consider the following fragment of a web page in Figure 4: In this example,
we have a module that is logically represented by a <div> element. This <div>
has two children, which are anchor tags we want to track. Using the library,
one would only need to pass the element id of the section we want to track, in
this case ‘foo’. The library will then beacon data to our web servers, and in the
6 JavaScript doesn’t really have proper constructors - objects are byproducts of con-

structors, which are functions that create objects. [9]

A Near Real-Time Reporting System for Enterprises Using JavaScript 51

<div id="foo">

Yahoo

Facebook

</div>

Fig. 4. Example HTML Source

beacon will be a page view indicator and the links that were seen (in this case
Yahoo and Facebook). Furthermore, we will begin tracking link clicks on those
two links; each subsequent link click will send a link click beacon.

3.2 Implementation of Library

The instrumentation code placed in a page will operate on the markup of the
page based on the DOM tree of that page. We need to write a small piece of
JavaScript indicating which node (and corresponding subtree containing links)
that we want to instrument. Figure 5 shows an example piece of JavaScript to
track the HTML source shown above in Figure 4:

<script>

var keys = {pn:’my page name’, bg:’red’};

var conf = {tracked_mods:[’foo’], keys:keys};

var ins = new YAHOO.i13n.Track(conf);

ins.init();

</script>

Fig. 5. Example JavaScript Instrumentation Code

A line-by-line explanation of this code is shown below:

1. In line 1, we set the page context object. This is a JavaScript object literal,
or a JSON[10] object. The keys in this object can be anything, as we’ll be
encoding it in the beacon format.

2. In line 2, we setup a configuration object, which will be passed to the
function that constructs our instrumentation object. The first parameter,
tracked mods is an array containing strings that map to element id’s in the
DOM that are the modules we wish to track. The second parameter, keys is
a pointer to the object we created in line 1.

3. In line 3, we instantiate an instrumentation object by passing the conf object
we configured in line 2.

4. In line 4, we call the init method on the object we just created, and this will
execute the instrumentation logic.

After the init() method is called, the library will examine the page DOM,
look at all anchor tags that are child nodes of the element ids indicated in
tracked mods, and create a URI formatted to contain data about all links and
the context of the page that was passed in.

52 T. Tully

Furthermore, the API will attach mouseclick [11] event listeners to the node
elements of tracked mods, and in those listeners, beacon information about the
link click. Although we want to track clicks for each link that is part of a module,
we only need one event handler per module. This is achieved through the use
of event delegation[12]. Using event delegation, the browser allows us to capture
mouseclick events during the bubbling phase[13] of event processing. We can
then inspect the MouseEvent object for its target, which tells us precisely which
link was clicked on.

3.3 Implicitly Collected Data

The API also silently collects many implicit pieces of data. For example, screen
resolution and the (X,Y) screen coordinates of link clicks are also captured and
passed along in the link click beacons. Those two pieces of data can be used to
construct heat maps which overlay mouse click coordinates on top of a web page
to indicate user click locations, as shown in Figure 12.

We were also interested in finding further novel ways to measure robot traffic
on our sites. One way to do this is to track mouse movements in the browser -
something robot traffic cannot generate. We would test pages for mouse move-
ment, and then beacon that data to our servers. This measurement is not done
on each page load, but periodically per user.

3.4 Instrumentation Generation

As described earlier, we had a problem with generating instrumentation code
quicklybecause it involvedmodification of server-sidecode in PHP. We also needed
instrumentation for pages that have short lifetimes, and did not want to invest
significant amounts of time to instrument them. To handle this, we created an in-
strumentation generator that allows developers to fill out web-based forms that
automatically generate the JavaScript necessary to instrument a particular page.
Figure 6 shows an example of the instrumentation generator. In the background
of the page is a form that the developer fills out with details about the page and
what needs to be tracked. After submitting the form, a modal window will appear
in the browser, containing the code used to instrument the site. The developer or
product manager can then simply copy and paste the code.

3.5 Validation of Instrumentation

At this point, we have instrumented our page via JavaScript, and the instrumen-
tation data is asynchronously sent from the browser via HTTP GET requests.
This is convenient, since we can monitor outbound traffic from the browser via
a browser plugin, very similar to what livehttpheaders[14] does.

For our plugin, we built a Firefox sidebar that inspected traffic via the nsI-
HttpChannel interface[15]. We need only to inspect all HTTP headers[16] that
leave the browser, and match the destination hosts in the headers with our known
beacon server hostnames. If one of the HTTP request hostnames matches, then it
is a beacon. We can then decompose the outbound URI and present its contents

A Near Real-Time Reporting System for Enterprises Using JavaScript 53

Fig. 6. Instrumentation Generator

in the sidebar. The developer can see in real-time what data is being tracked as
it occurs, as well as what the resultant instrumentation on that page will be. An
example of the sidebar can be seen in Figure 7.

Each beacon is presented in a tree structure, and each of the elements of the
beacon becomes a node in the tree. Some nodes have their own subtrees, such as
the module/linkview data. Each logical module has its own node in the tree, and
each link that is a member of that module is shown as a child of the module. For
example, the module named “Reviews” has a link to “profiles.yahoo.com...”.

The significance of being able to view live instrumentation as it happens
cannot be understated. In the past, we had to inspect the data as it was generated
on the web server by parsing the server logs and manually reviewing those files.
Having a tool in the browser that reveals what we are instrumenting as it happens
results in large time savings for the developer and results in faster deployment of
pages. Also, it assures the developer that the code placed in the page is indeed
functioning and is sending out the exact data that we want to track.

3.6 Data Collection

In this section we will describe Yahoo!’s method to provide downstream consumers
with access to beacon web server log fact data in near real-time (seconds in colo)
and low-latency (sub-six minute), using an inter-colo event replication system.

Consider the processing of data in any one of the colos that Yahoo! uses
worldwide. It can have thousands of machines that have web server logs for
collection and subsequent ETL and aggregation.

54 T. Tully

Fig. 7. Instrumentation Firefox Sidebar

The standard implementation for retrieving data on each of those machines
would be to write software that cuts log files periodically, batches them, and
copies them over to one colo for ETL, aggregation, and reporting. This is oper-
ationally difficult to maintain since we would have to run this process on every
single web server, as well as have a distributed processing system to coordinate
the file copies. Also, it would prevent us from meeting any real-time data access
requirements in a scalable way.

Another way to attack this problem would be to bypass ETL altogether, and
aggregate data on each of the web servers and then merge that downstream. How-
ever, this would add extra load (to compute aggregates inline) on the servers, not
to mention the fact that we still need the raw fact data for downstream consumers.

However, if we were able to process the log data on a smaller, separate cluster
of machines, processing would be more efficient, less load would be placed on the

A Near Real-Time Reporting System for Enterprises Using JavaScript 55

Fig. 8. Current Log Collection Architecture

web servers, and data processing could be centralized to a smaller set of nodes.
The problem with this solution is getting the upstream fact data, in this case
raw server log files, to that central processing pool.

The architecture diagram in Figure 8 illustrates how we solved our low-latency
log data collection problems. In the diagram we show a typical Yahoo! colo on the
left, seperated by a dashed line which represents the logical separation between
web server colos from our central data-collection colo. Yahoo! has many colos
around the world, just like the one on the left side of the dashed line. Data from
each of the colos is moved to our central processing colo on the right.

Typical Yahoo! colos contain hundreds and even thousands of web servers.
Each of these Apache web servers is fitted with an Apache module [17] whose
responsibility is to stream live events (HTTP requests) off of the server, and
onto a Data Collector (DC). The Data Collector batches data and forwards it
onto a Replication Sender, whose responsibility is to forward data (events) out
of the colo and into our main collection colo.

3.7 In-Colo Collection of Real-Time Data

Note that data can be streamed to applications either in the same colo where
it is generated, or in a centralized location, where data from all colos is merged
into one stream. In the in-colo scenerio, the Data Collector has the capability
to stream data to another set of boxes, namely the Data Distributor. The Data
Distributor is another machine whose responsibility is to replicate the events
to any number of consumers who want to read live data. Typically, it takes
approximately six seconds for events to reach the consumer once Apache receives
them. Data consumed by in-colo applications comes in as per-event records,
streaming over shared TCP socket resources. The downside to this solution is
that this six-second data will be colo-only, and we would not have access to
worldwide colo data.

56 T. Tully

3.8 Centralized Collection of Real-Time Data

For those whose don’t want to consume data in the colo where it was generated,
data can be fetched at the central colo, providing access to data from all world-
wide colos. Revisiting Figure 8, we can see a Replication Receiver in the Central
Colo, receiving streaming data from the Replication Senders in each of our colos.
The Replication Receiver’s sole purpose is to digest the events, store them on
a temporary space (NAS device), and pass the data on to a Data Distributor
cluster. The Data Distributor’s role in the central colo is similar to its role for
the in-colo setup, that is, to distribute data to client applications. The advantage
to doing ETL and data aggregation in the central colo is that data from all colos
can be processed in one location in the six minute latency range.

3.9 Data Filtering

Receiving streaming data from the Data Distributor in the central colo would
allow a consumer to process all events from all web servers in all of the colos,
as a merged stream of data. However, it is rare that we need to see data for all
Yahoo! properties. Often, we’re interested in a handful of properties or fewer. To
accomplish this, a developer may specify an event filter on the Data Distributor.
For example, the consumer may want to only process events from specific servers
or events that have URI’s matching some specified regular expression.

Furthermore, developers may not want all columns that compose a record;
perhaps only one or two columns out of twenty are necessary. In the same way
we specified event filters on the Data Distributor, we can do the same thing
with a projection specification. Using configuration files, we can tell the Data
Distributor exactly which columns of a record we want to digest.

The final high-level architecture for our real-time data collection and reporting
can be seen in Figure 9.

Fig. 9. Real-Time Data Pipeline

3.10 Reporting and Visualization

Real-time data is useless without fast aggregation and insightful data reporting.
In this section we’ll describe a methodology for aggregating fact data on the fly

A Near Real-Time Reporting System for Enterprises Using JavaScript 57

and reporting it in a web browser using an automated data refresh without page
reloading.

Much research has been devoted to the study of streamed data management
and processing [18], [19]. In our architecture, we have developed a real-time
reporting system that reads streaming data from a low latency pipeline in a
centralized colo scenario. Similar to existing stream data processing architectures
such as STREAM[20], we have developed continuous-processing data aggregation
clients that read from the streaming event pipe, bypassing ETL. These processes
only store aggregate data, and fact data is then discarded.

Any number of these clients can run in parallel as part of a larger cluster,
consuming data off of the Data Distributor, as shown in Figure 8. Since the
Data Distributor is multiplexing the fact data across the clients in the cluster,
each fact record is a discrete event and guaranteed to be sent to only one client
in the pool. This is done to avoid over-counting in the aggregation process.

Each of the clients in the cluster aggregates data as it comes in, using a static
list of metrics, such as page views, link and ad clicks, unique users, and more.
Each of these aggregates is segmented by page within the Yahoo! network. We
have metrics for each property, even within an individual page in a property. For
example, we would have page view and unique user counts for both the ”Inbox”
and ”Search” pages in Yahoo! Mail. Each of those pages would have their own
unique page identifier, which is just a string uniquely identifying those pages.

The aggregate data is then stored in a clustered MySQL database every
minute, segmented by page identifier. On top of the MySQL cluster is a web
service layer that returns JSON data structures with the metrics needed for the
reporting page. An example of the resultant real-time reporting page is shown
in Figure 10.

Fig. 10. Pageview Counts Over Time in a Near Real-Time Reporting Portal with
Continuous Updating

58 T. Tully

3.11 Example Use Case

One strong example of leveraging the real-time reporting system is for program-
ming news content and advertising on Yahoo! News. Editors for that page need
to know in real-time which stories are performing (based on link click-through
rate to the stories). Using the reporting pages shown above, the editors can

Fig. 11. Link Performance in a Near Real-Time Reporting Portal with Continuous
Updating

Fig. 12. Mouse Click Heat Maps in a Near Real-Time Reporting Portal with Contin-
uous Updating

A Near Real-Time Reporting System for Enterprises Using JavaScript 59

quickly see which links are popular, and add and remove content in real-time
based on that data.

The reporting page will continually update itself every thirty seconds via AJAX
[21] calls that fetch the JSON data from the backend web service. The web service
fulfills the web service requests by making queries to the MySQL database.

The report refreshes itself through JavaScript’s setInterval function, which
makes the web service call. On web service call return, we get a new set of data
to update the tables and graphs within the page. The tables and graphs were
rendered using the Yahoo User Interface (YUI)[22]. By updating page data via
JavaScript, we can refresh the page content without having to reload the entire
page. The Adobe Flash line graph shown in Figure 10 will shift to the right
and update itself with the most recent data set. The graphs will not flicker or
disappear, as they are animated and seemlessly update themselves in a non-
disruptive way. We also plot the geographic source of incoming traffic, as shown
in the bottom left of Figure 10. Similarly, the link performance table showing
linkviews, clicks, and effective click-through rate (CTR), shown in Figure 11,
will update itself as well. This functionality allows stake-holders to watch the
reporting page report link performance in real-time without refreshing pages.

4 Results and Conclusion

Our data reporting needs have changed, and recently we have moved towards scal-
able, lower latency systems, in particular near real-time reporting. By changing
our methods of instrumentation, data collection, and reporting, Yahoo! has re-
duced its business intelligence latency from multiple days to a matter of minutes.

In order to make this change in reporting lead time, several innovative, fun-
damental changes were made to our data pipeline. First, our instrumentation
needed to be more robust; continually wrapping web site links with function
calls in server side application languages required huge developer time invest-
ments, and often led to erroneous results.

To that end, we introduced a feature-rich JavaScript instrumentation frame-
work that allowed for faster, simpler ways to track user behavior and web site
metrics, as well as more advanced validation tools. This library has brought
instrumentation engineering time down from weeks to minutes.

In addition, our data collection mechanism needed to be transformed from a
divide and conquer raw log collection scheme, to a platform that streams events
between and within colos. We have shown that this novel system can reduce data
collection time from the next day, to minutes.

Finally, we made changes in reporting to introduce real-time aspects to it, as
opposed to static pages that require manual page refreshes. This was achieved by
creating web pages that seamlessly refresh themselves via asynchronous polling
for data updates. In addition, the visualization of our reporting changed; we
created graphs and tables that elegantly present the data to reflect its real-time
aspects.

60 T. Tully

Acknowledgments

The author thanks the reviewers of this paper for their invaluable recommenda-
tions, in particular James Merino and Amit Rustagi.

References

1. Apache web server software, http://www.apache.org
2. Claburn, T.: Yahoo Claims Record With Petabyte Database, Informa-

tionWeek (2008), http://www.informationweek.com/news/software/database/

showArticle.jhtml?articleID=207801436

3. Document Object Model, http://www.w3.org/DOM/
4. Hypertext Transfer Protocol - HTTP/1.1, http://www.w3.org/Protocols/

rfc2616/rfc2616.html

5. Maximum URL Length in 2,083 characters in Internet Explorer, http://support.
microsoft.com/kb/208427

6. Web bug - Wikipedia, http://en.wikipedia.org/wiki/Web_bug
7. Google Analytics, http://www.google.com/analytics/features.html
8. Omniture Web Analytics,

http://www.omniture.com/en/products/web_analytics

9. Private Members in JavaScript,
http://www.crockford.com/javascript/private.html

10. JSON, http://www.json.org
11. Mouse Events in the browser,

http://www.quirksmode.org/js/events_mouse.html

12. Web Browser Event Delegation, http://developer.yahoo.com/yui/examples/

event/event-delegation.html

13. Event Bubbling, http://www.quirksmode.org/js/events_order.html
14. Livehttpheaders, http://livehttpheaders.mozdev.org
15. nsIHttpChannel interface API, http://xulplanet.mozdev.org/references/

xpcomref/nsIHttpChannel.html

16. Header Field Definitions in Internet RFC 2616, http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html

17. Apache Module description, http://httpd.apache.org/modules/
18. Cranor, C., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: A Stream

Database for Network Applications. In: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 647–651. ACM, New York
(2003)

19. Zdonik, S.B., Stonebraker, M., Cherniack, M., Çetintemel, U., Balazinska, M., Bal-
akrishnan, H.: The Aurora and Medusa Projects. In: IEEE DE Bulletin, pp. 3–10
(2003)

20. Stanford Stream Data Manager, http://infolab.stanford.edu/stream/
21. AJAX, http://en.wikipedia.org/wiki/AJAX
22. Yahoo User Interface, http://developer.yahoo.com/yui

http://www.apache.org
http://www.informationweek.com/news/software/database/showArticle.jhtml?articleID=207801436
http://www.informationweek.com/news/software/database/showArticle.jhtml?articleID=207801436
http://www.w3.org/DOM/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://support.microsoft.com/kb/208427
http://support.microsoft.com/kb/208427
http://en.wikipedia.org/wiki/Web_bug
http://www.google.com/analytics/features.html
http://www.omniture.com/en/products/web_analytics
http://www.crockford.com/javascript/private.html
http://www.json.org
http://www.quirksmode.org/js/events_mouse.html
http://developer.yahoo.com/yui/examples/event/event-delegation.html
http://developer.yahoo.com/yui/examples/event/event-delegation.html
http://www.quirksmode.org/js/events_order.html
http://livehttpheaders.mozdev.org
http://xulplanet.mozdev.org/references/xpcomref/nsIHttpChannel.html
http://xulplanet.mozdev.org/references/xpcomref/nsIHttpChannel.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://httpd.apache.org/modules/
http://infolab.stanford.edu/stream/
http://en.wikipedia.org/wiki/AJAX
http://developer.yahoo.com/yui

A Hybrid Row-Column OLTP Database
Architecture for Operational Reporting

Jan Schaffner, Anja Bog, Jens Krüger, and Alexander Zeier

Hasso Plattner Institute for IT Systems Engineering,
University of Potsdam, August-Bebel-Str. 88,

D-14482 Potsdam, Germany
{jan.schaffner,anja.bog,jens.krueger,alexander.zeier}@hpi.uni-potsdam.de

http://epic.hpi.uni-potsdam.de

Abstract. Operational reporting differs from informational reporting
in that its scope is on day-to-day operations and thus requires data on
the detail of individual transactions. It is often not desirable to maintain
data on such detailed level in the data warehouse, due to both exploding
size of the warehouse and the update frequency required for operational
reports. Using an ODS as the source for operational reporting exhibits
a similar information latency.

In this paper, we propose an OLTP database architecture that serves
the conventional OLTP load out of a row-store database and serves op-
erational reporting queries out of a column-store database which holds
the subset of the data in the row store required for operational reports.
The column store is updated within the transaction of the row database,
hence OLTP changes are directly reflected in operational reports. We
also propose the virtual cube as a method for consuming operational
reports from a conventional warehousing environment.

The paper presents the results of a project we did with SAP AG.
The described solution for operational reporting has been implemented
in SAP Business ByDesign and SAP Business Warehouse.

Keywords: Real-timedecision support, real-time operational data stores,
data warehouse evolution.

1 Introduction

Inmon distinguishes operational and informational reporting [10]. According
to his classification, informational reporting is used to support long-term and
strategic decisions, looking at summarized data and long-term horizons. Infor-
mational reporting is typically done using a data warehouse. Operational re-
porting, in contrast, is used to support day-to-day decisions, looking at the data
on a more detailed level than in informational reporting and taking up-to-the-
minute information into account where possible. When using a data warehouse
for operational reporting, the following implications must be considered:

– The data warehouse must be designed to the level of granularity of the
operational data, which might not be desirable.

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 61–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 J. Schaffner et al.

– Updates to the operational data must be replicated into the warehouse on
a frequent basis. While ETL approaches exists that support frequent up-
dates of the warehouse (e.g. Microbatch [3]), the query performance of the
warehouse suffers dramatically during the frequent updates.

At the same time, operational reporting cannot be done on operational data
either: Analytical queries are long-running compared to OLTP (On-Line Trans-
actional Processing) queries, and the locks of the analytical queries might result
in a decreasing transaction throughput, since short running OLTP queries have
to queue until analytical queries touching the same data release their locks.
Hence, a solution is called for that enables operational reporting without affect-
ing neither operations nor standard warehousing for informational reporting.

As the first contribution of this paper, we present a hybrid store OLTP engine
that consists of a traditional row-oriented relational database and a column-
oriented database which holds replicas of all OLTP data relevant for operational
reporting. The column store is updated within the transaction of the relational
database, making all updates available for operational reporting immediately.
The second contribution is the virtual cube construct which is used to map the
transactional data model exposed in the column store to an OLAP (On-Line An-
alytical Processing) structure, providing analytics-style data exploration meth-
ods for our operational reporting architecture. The virtual cube is also useful
when trying to consolidate operational reporting across multiple transactional
systems. However, the virtual cube does only provide a different view on the
columnar operational data, while data cleansing and harmonization techniques
are not applied.

The remainder of this paper is structured as follows: Section 2 reviews the
benefits of column store databases for analytics-style workloads. Section 3 then
describes our hybrid architecture consisting of a row-oriented database for con-
ventional OLTP and a column-oriented database for operational reporting. We
also describe how we implemented this architecture with a prototype on SAP
Business ByDesign, a hosted enterprise resource planning solution for small and
medium enterprises. Section 4 outlines the concept of the virtual cube and de-
scribes our implementation in SAP Business Warehouse. Section 5 surveys re-
lated work, outlines the differences of our hybrid store OLTP engine when com-
pared to operational data stores, and positions the virtual cube construct in the
Business Intelligence landscape. Section 6 concludes the paper.

2 Column Databases

In 1985, Copeland and Khoshafian introduced the decomposed storage model
(DSM) [8]. Each column is stored separately (see Figure 1) while the logical
table schema is preserved by the introduction of surrogate identifiers (which
might be implicit).

The use of surrogate identifiers leads to extra storage consumption, which can
be overcome, for example, by using the positional information of the attributes
in the column as identifier. Encoding approaches exist that avoid the redundant

A Hybrid Row-Column OLTP Database Architecture 63

sID

1

2

3

c1

v11

v21

v31

c2

v12

v22

v32

c3

v13

v23

v33

sID

1

2

3

c1

v11

v21

v31

sID

1

2

3

c2

v12

v22

v32

sID

1

2

3

c3

v13

v23

v33

row-oriented column-oriented

Fig. 1. Row- vs. Column-oriented Storage

storage of attribute values, e.g. null values, or in the case of columns where only
a small amount of differing values exists. We will touch briefly on these later
in this section. The idea of column store databases has been implemented in
multiple projects, for example, MonetDB [4], C-Store [20], or BigTable [6].

Column stores are especially useful for analytical workloads, which is due to
the fact that analytical applications are largely attribute-focused rather than
entity-focused [1], in the that sense only a small number of columns in a table
might be of interest for a particular query. This allows for a model where only
the required columns have to be read while the rest of the table can be ignored.
This is in contrast to the row-oriented model, where all columns of a table – even
those that are not necessary for the result – must be accessed due to their tuple-
at-a-time processing paradigm. Reading only the necessary columns exhibits a
more cache-friendly I/O pattern, for both on-disk and in-memory column store
databases. In the case of an on-disk column store, few disk seeks are needed to
locate the page of a block that has the first field of a particular column. From
there, data can be read in large blocks. In the case of an in-memory column store,
sequentially laid out columns typically ensure a good L2 cache hit ratio, since
modern DRAM controllers use pre-fetching mechanisms which exploit spatial
locality. Abadi demonstrates that these advantages cannot be achieved when
emulating a column-store using a row-based query executor, i.e. using separate
tables and indexes for each column in a logical table [1].

For queries with high projectivity, column-oriented databases have to perform
a positional join for re-assembling the different field in a row, but projectivity
is usually low in analytical workloads. Column stores can leverage the read-
only nature of analytical queries by partitioning (i.e. scale-out): accessing single
columns for values and computing joins can be massively parallelized when dis-
tributing data on multiple machines. Two basic approaches for the distribution
of data onto multiple machines exist. These are horizontal and vertical fragmen-
tation, see Figure 2. Horizontal fragmentation separates tables into sets of rows
and distributes them on different machines in order to perform computations in
parallel. It has been introduced, for example, to solve the problem of handling
tables with a great number of rows, like fact tables in a data warehouse [16].
Column-orientation facilitates vertical fragmentation, where columns of tables
are distributed on multiple machines. SAP BI Accelerator (BIA), the column
store component of our hybrid architecture, uses both techniques [13].

64 J. Schaffner et al.

c1

v11

v21

v31

c2

v12

v22

v32

c3

v13

v23

v33

cn

v1n

v2n

v3n

vk1 vk2 vk3 vkn

c1

v11

v21

v31

c2

v12

v22

v32

c3

v13

v23

v33

cn

v1n

v2n

v3n

vk1 vk2 vk3 vkn

vertical fragmentation

horizontal
fragmentation

Fig. 2. Horizontal and Vertical Fragmentation

In column stores, compression is used for two reasons: saving space and in-
creasing performance. Compressed columns obviously consume less space on disk
or in-memory. Performance can be increased by making the colum-oriented query
executor aware of the type of compression that is being using. Decompressing
when reading data, however, puts more load on the CPU. The main trade-off
in compression is compression ratio vs. the cost for de-compression. However, a
widening gap between the growth rate of CPU speed and memory access speed
can be observed [14]. While CPU speed grows at a rate of 60 percent each year,
the access time to memory (DRAM) increases less than 10 percent per year.
This trend argues for the usage of compression techniques requiring higher ef-
fort for de-compression, since CPU resources grow and the cost for I/O is high.
However, when taking into account that aggregate functions are typical opera-
tions in analytical queries, the use of compression techniques on top of which
these functions can directly be performed without de-compressing becomes more
appealing. Abadi et al. [2] have characterized and evaluated a set of compres-
sion techniques working particularly well under this assumption, e.g. run-length
encoding (RLE) or bit-vector encoding.

Data compression techniques exploit redundancy within data and knowledge
about the data domain for optimal results. Compression applies particularly well
to columnar storage, since all data within a column a) has the same data type
and b) typically has similar semantics and thus a low information entropy (i.e.
there are few distinct values in many cases). In RLE the repetition of values
is compressed to a (value, run-length) pair. For example the sequence “aaaa”
is compressed to “a[4]”. This approach is especially suited for sorted columns
with little variance in the attribute values. For the latter if no sorting is to
be applied, bit-vector encoding is well suited. Many different variants of bit-
vector encoding exist. Essentially, a frequently appearing attribute value within
a column is associated with a bit-string, where the bits reference the position
within the column and only those bits with the attribute value occurring at their
position are set. The column is then stored without the attribute value and can
be reconstructed in combination with the bit-vector. Approaches that have been
used for row-oriented storage are also still applicable for column-oriented storage.
One example is dictionary encoding, where frequently appearing patterns are
replaced by smaller symbols.

A Hybrid Row-Column OLTP Database Architecture 65

Currently, SAP BIA uses integer and dictionary encoding in combination with
bit-vector encoding. Each existing value for an attribute is stored in a dictionary
table and mapped to an integer value. Within the columns only the integer val-
ues are stored. As a first advantage attribute values existing multiple times within
a column reference the same row within the dictionary table. Thereby redundant
storage of attribute values is eliminated and only redundancy of the integers refer-
encing the same attribute value occurs. The second advantage is that the integers
used for encoding consume less storage space than the actual attribute values.

Due to the compression within the columns, the density of information in
relation to the space consumed is increased. As a result more relevant information
can be loaded into the cache for processing at a time. Less load actions from
memory into cache (or disk into memory) are necessary in comparison to row
storage, where even columns of no relevance to the query are loaded into the
cache without being used.

3 A Hybrid Architecture for Operational Reporting

In this section, we will describe a hybrid architecture, consisting of both a row
store and a column store, for performing operational reporting in an OLTP sys-
tem. First, we argue the necessity for operational reporting as we have observed
it at real companies. We will then describe our architecture showing how it is
able to address those needs.

3.1 Necessity of Operational Reporting

Inmon first introduced the notion of operational reporting in 2000 [10], char-
acterizing it as analytical tasks that support day-to-day decisions, looking at
the data on a more detailed level than in informational reporting and taking
up-to-the-minute information into account where possible. However, operational
reporting does not only exist in literature: in the course of our research, we had
the opportunity to work with a number of SAP customers and to understand
what types of applications they implement both on top of their ERP systems
and in their data warehouses. One example are planning activities, for example
when trying to forecast sales for products offered. Such planning is important
to estimate cash-flow and to drive manufacturing planning in order to cater for
the expected demand. This plan will then be tracked against actual sales and
will frequently be updated. While it would be conceivable to trickle-load sales
order data into a data warehouse every night, we have often seen the requirement
to look at the sales data on an intra-day basis to support decisions related to
production planning or financial planning.

3.2 Architecture

This section introduces an architecture for operational reporting where no repli-
cation into a data warehouse occurs, but data is accessed directly in the trans-
actional systems when queried.

66 J. Schaffner et al.

Hybrid OLTP Database

Query Executor / Resource Manager

TREXMaxDB

Queue of TREX
Index Objects
(in DB Tables)

DB tables

Delta
Index

TREX Kernel
Main
Index

R
Read-Only Transactions

MaxDB Kernel

Persistence
(File System)

R
Read / Write Transactions

R

Delta
Updates

R

Persist
Data

ERP System

R
OLTP Queries

R
Operational Reporting Queries

Fig. 3. Integration of TREX with MaxDB

Our architecture consists of both a row-oriented database for the entity-
oriented OLTP operations (i.e. “full-row” queries) and a column-oriented data-
base to handle the operational reporting queries. As the row-oriented database
we use SAP MaxDB, since it is the database underlying SAP Business ByDe-
sign, the mid-market ERP software we extended in our project. It fully supports
ACID1. As the column-oriented database we used SAP’s Text Retrieval and In-
formation Extraction engine (TREX), which is the engine underlying SAP BIA.
TREX has originally been developed as a text search engine for indexing and
fast retrieval of unstructured data. In our work, we use it as the main mem-
ory column database that answers operational reporting in Business ByDesign.
Figure 3 shows how TREX is integrated with MaxDB and how read and write
access is distributed between TREX and MaxDB.

Requests that change data or insert new data are handled by MaxDB, which
ensures the ACID properties. The MaxDB Kernel stores the changes in the
database tables and manages so-called “queue tables” for TREX. Those queue
tables contain information about data that is relevant for operational reporting
and that has been updated or inserted in MaxDB. TREX is notified about the
changes and can update its own data with the help of the queue tables. This
happens within the same database transaction using on-update and on-insert
triggers, which are created inside MaxDB when the system is configured. The
triggers fire stored procedures which forward the queries to TREX. Accordingly,
TREX and MaxDB share a consistent view of data.

1 Atomicity, Consistency, Isolation, Durability.

A Hybrid Row-Column OLTP Database Architecture 67

Queries for operational reporting and some read-only transactions go directly
to TREX. TREX manages its data in so-called main indexes. The main index
holds a subset (i.e. the OLTP data that must be available for operational report-
ing) of the database tables in MaxDB, except that the schema is flattened and
the data is stored column-wise. The advantages of columnar data structures have
already been discussed in section 2. Since the main index is highly optimized for
read access, TREX holds a delta index to allow fast data retrieval while concur-
rently updating its data set. All updates and inserts taken from the queue tables
are collected in the delta index. When responding to a query, data in the delta
index as well as the main index is accessed and the results are merged together
in order to provide a consistent view of the entire data set compared with the
database tables of MaxDB. The delta index is not compressed to allow for fast
writes, while it must be able to provide a reasonable read performance. In the
current implementation delta indexes are organized as a B-tree in memory. It is
important that delta indexes do not grow larger than a certain size limit, since
the read time from the delta index should not exceed the read times from the
main index of a given table (main and delta index are read in parallel). Upon
reaching a certain size (e.g. 5% of the size of the main index) or pre-defined
intervals the delta index is merged with the main index. To do so, a copy of the
index is created in memory along with a new, empty delta index for that copied
index. The queries coming in during the merge will be run against this structure.
In particular, the new delta index that receives all inserts and updates during
the merge. After the merge of the original delta index and the main index, the
new delta index becomes the delta index for the merged index. The copy of the
original main index in memory is now discarded. This procedure for merging a
delta index with a main index ensures that neither read nor write accesses to
TREX are blocked during merge time.

In our implementation, we also extended MaxDB to serve as the primary per-
sistence for the TREX indexes (i.e. the tables), as opposed to using the standard
file system persistence of TREX. The reason is that in case of a disaster both
MaxDB and TREX can be recovered to a valid state using MaxDB’s recovery
manager. Therefore, the queue tables in MaxDB described above also serve as a
recovery log for the TREX delta indexes. A possible direction for future research
would be to conceptually move the delta index in the column store completely
into the row store, instead of buffering the column store delta index in queue
tables in the row store. Fractured Mirrors [17] and C-Store [20] provide a row-
oriented delta mechanism, but do not propose ACID transactions as we do in
the architecture presented here.

4 Virtual Cube

In the previous section we described our architecture for operational report-
ing in OLTP systems using both a row-database for high volume OLTP writes
and a column store for handling the long running operational reporting queries.
In this section, we will describe the second contribution of this paper, a vir-
tual cube which allows for seamless consumption of operational reports from a

68 J. Schaffner et al.

Analytical
Engine

Virtual Cube

R

R

Warehouse

OLTP System

Hybrid OLTP Database

Row Store Column Store

R

Fig. 4. The Environment of the Virtual Cube

data warehouse environment, in the way that the same interface is provided as
for a standard cube. Yet, accessing the operational reports through the data
warehouse imposes the restriction of pre-defining the reports in advance. An al-
ternative user interface to the front-end described in this section are tools for
data exploration. Such tools allow to navigate through a star schema while op-
erating on large cubes (for e.g. SAP BusinessObjects Polestar which integrates
with TREX).

Figure 4 provides a high-level overview of the target architecture. The ana-
lytical engine accesses data through the virtual cube. The virtual cube provides
the same interface for analysis as standard cubes in a data warehouse. This in-
cludes navigation along various levels of hierarchy (i.e. drill-down and roll-up)
as well as slicing and dicing along different dimensions. In our prototypical im-
plementation, we created a virtual cube that plugs into the OLAP engine of
SAP BI. In consequence, all the reporting front-ends supported by SAP BI can
be used to launch queries against the OLTP data. Available front-ends include
HTML reports and Microsoft Excel-based reports. In the case of SAP BI, pre-
defined queries must be run inside these reporting front-ends. These queries can
be specified graphically (using a query design tool) or using MDX2.

In comparison to traditional cubes in a warehouse, the virtual cube does not
store any data. Instead, it is a collection of functions that are executed during the
run-time of a report. The operational reporting queries from the reporting front-
end are sent to the OLAP engine, which then executes OLAP queries against
the virtual cube. The latter transforms the incoming queries into queries against
TREX. This transformation is mainly concerned with passing the requested

2 Multidimensional Expressions:
http://msdn2.microsoft.com/en-us/library/ms145506.aspx

http://msdn2.microsoft.com/en-us/library/ms145506.aspx

A Hybrid Row-Column OLTP Database Architecture 69

key figures (i.e. facts that are to be aggregated) and dimensions to TREX. For
key figures, the type of the desired aggregation (e.g. sum, average, minimum,
maximum) must be passed to TREX along with the name of the attribute,
whereas dimensions (e.g. product, region, quarter) are just listed. All dimension
attributes are added to the GROUP BY part of the query against TREX. While
the strategy for obtaining the best response times for operational reporting is
to push as much computation as possible down to TREX, predicate filtering on
attributes is handled by the OLAP engine of SAP BI in our current prototypical
implementation. While it would technically be possible to push filtering down
to the TREX layer, we chose to use the result filtering capabilities of the OLAP
engine due to some of the particularities of TREX’s query API that would have
required to implement a more elaborate query rewriter between the OLAP engine
and TREX. In some cases this also results in the necessity for post-aggregation
in the OLAP engine after a query against TREX has returned. This is similar to
materialized view selection for multi-cube data models [18] where aggregates are
retrieved from several cubes before post-aggregation occurs. In our case, however,
there are no cubes containing aggregates and the virtual providers queries the
OLTP records directly, since the OLTP data in TREX is stored on the highest
possible level of granularity (i.e. the data does not contain aggregates but is
on item-level). Therefore, aggregations required for different levels within the
hierarchy of a dimension are computed on-the-fly using up-to-date values from
the OLTP system. Our experiments show that on-line aggregation is feasible for
data sets of small- and medium businesses: In case study that we have conducted
with a medium-size brewery, the average response time for a query encompassing
an aggregation of 10 million rows in a table (grouping by four attributes) was
2.1 seconds for a result set containing 200 tuples on a commodity server. Due
to space restrictions we are unable to provide a detailed performance evaluation
for online aggregation in this paper.

5 Related Work

In this section, our hybrid architecture will be positioned among the existing
data warehousing architectures that we are aware of, especially those having a
focus on “real-time” or operational data. We will also address work related to
the virtual cube described in the previous section.

5.1 Common Data Warehouse Architectures

The general architecture of data warehouses is well known. The characteristics
defined by Inmon, i.e. that data in a warehouse must be subject-oriented, inte-
grated, time variant, and non-volatile [11, p. 31], led to an architecture separating
operational and analytical data. Data in OLTP systems is organized according
to the relational model (defined by Codd [7]), i.e. data is highly normalized in
order to ensure consistency and to run day-to-day operations on these systems.
OLAP systems, in contrast, organize data according to the dimensional model,

70 J. Schaffner et al.

OLTP
System

Data Warehouse

ETL
Processor

OLAP
Engine

Staging
Area

Dimensional
Data

R

Fig. 5. Traditional Data Warehouse Architecture

using for example the star or snowflake schema. The reason for this is mainly
the wish to achieve the best query performance for both OLTP and OLAP.

This leads to an architecture as it is shown in Figure 5. The data warehouse
contains an ETL processor which extracts data from various OLTP sources into
a staging area, where data transformations for cleansing and integration are
applied. Once this process has been completed, the ETL processor stores the
data according to a dimensional data storage paradigm, so that an OLAP engine
can run queries against this dimensional data store.

With the proliferation of BI technologies, this general architecture has been
extended with concepts such as data marts or Operational Data Stores (ODS).
Data marts aim at decentralizing warehouses in order to optimize performance
around certain subject areas [11]. The downside is that in data mart architec-
tures, the data warehouse cannot provide a consolidated view on all data relevant
for strategic decision making in an enterprise, which was the original intent of
data warehouses. ODSs store OLTP data, often using an integrated schema, i.e.
the ETL steps of data mapping and cleansing are applied before moving data
into an ODS. The result is increased timeliness of the data on which reporting
can be done, as well as the possibility to work on line-item level in case the ODS
is modeled that way. It remains, however, an expensive operation to refresh the
ODS. As we have seen in section 3, users often have the requirement to run
aggregate queries on line-item level data multiple times a day, which opposes
the concept of, for example, refreshing an ODS once a day.

5.2 Latency-Reduced Reporting Architectures

One possible to optimize timeliness of operational data being available in an
OLAP environment would be to shorten the intervals between ETL runs to
a minimum. The main disadvantage of such Microbatch approaches [3] is the
resource consumption of the frequent ETL runs: The ETL process should only
run in a defined batch window, because the query performance of the warehouse
is dramatically affected during ETL processing time.

A Hybrid Row-Column OLTP Database Architecture 71

To enable less resource-intensive ETL processing, architectures have been pro-
posed that move the data transformation outside of the ETL process. Instead,
the transformations are done in the warehouse after extraction and loading.
Such processing is called ELT, respectively [15]. Also, push architectures for
ETL have been proposed in order to replace bulk processing with the handling
of deltas on a business or database transaction level, cf. [12, p. 427]. Kimball
further suggests to separate historical data from recent data in a warehouse.
The recent data is constantly copied into the so-called real-time partition using
the push approach described above. In doing so, the data warehouse can still
be optimized for queries on historical data, while recent events in an enterprise
are also recorded in the warehouse. Brobst suggests to extend typical message
broker infrastructures in a way that they leverage the ETL push architecture
described above [5]. This is done by hooking a data warehouse adapter into the
message bus that subscribes to messages which are relevant for the data in the
warehouse. Necessary data transformations are done in the warehouse, resem-
bling the concept of ELT, also described above. While the presented approaches
come with less data-capture latency than traditional, batch-oriented ETL ar-
chitectures, changes in the OLTP systems must still be propagated to the data
warehouse, where they are consolidated.

The notion of virtual ODS, as opposed to the traditional, physical ODS dis-
cussed above, describes a pull-oriented OLAP architecture which gathers the
requested information at query run-time. The ODS is virtual in the sense that
it translates data warehousing queries into downstream queries to OLTP or
third-party systems without persisting any data. Inmon argues that virtual ODS
architectures are of limited use when the data in the source systems is not inte-
grated [9]. This is due to the fact that virtual ODS systems do not provide ETL
transformations at run-time, which would be necessary to provide for data inte-
gration. The reason is that ETL transformations are costly and there is, thus,
a trade-off between the extent of functionality offered in a virtual ODS and the
response times experienced by end-users. Virtual ODS is the concept which is
closest to the virtual cube approach presented in section 4. The difference is,
however, that virtual ODSs negatively impact the performance of the OLTP
system they re-direct the OLAP queries to. Our virtual cube is designed to per-
form queries on the column store database part of our hybrid OLTP database,
and does therefore not affect the performance of OLTP.

6 Conclusions

In this paper, we have introduced a hybrid architecture for OLTP systems that
consists of a row-oriented database for high-volume OLTP inserts, updates and
full-row reads for transactions and a column store for reads classified as opera-
tional reporting queries.

The column store holds a replica of the data in the row store from which it
differs in that
– only the subset of the OLTP data that is relevant for operational reporting

is available and

72 J. Schaffner et al.

– the data is transformed into flat (de-normalized) tables when it is transferred
into the column store. This transformation step does include neither consol-
idation for integrating different data sources nor data cleansing as common
in a traditional data warehouse setting.

The data in the column store is consistent with the data in the row-oriented data-
base, which we have ensured by extending the transaction handling of the row
store to span across the inserts and updates of the column store. The architec-
ture presented in this paper allows for operational reporting, which can be char-
acterized as “lightweight analytics”, directly on top of OLTP data. It solves the
problem of mixing short-running OLTP queries with long-running (in relation to
pure OLTP) operational reporting queries by directing each type of query to the
appropriate store (i.e. row or column store) while keeping both stores transaction-
ally consistent. Our prototypical implementation has been commercialized in SAP
Business ByDesign since operational reporting seems to be especially useful in
mid-marketB2B environments. We also presented a virtual cube concept which al-
lows to consume operational reports from outside an OLTP system, namely from a
data warehouse. The virtual cube offers a standard cube interface which is mapped
to queries against the column store part of our OLTP system. Our prototype of
the virtual cube has also been transferred into Business ByDesign.

6.1 Future Work

One possible direction for future research would be to conceptually move the
delta index in the column store completely into the row store, instead of buffer-
ing the column store delta index in queue tables in the row store. Fractured
Mirrors [17] and C-Store [20] provide a row-oriented delta mechanism, but do
not propose ACID transactions as we do in the architecture presented here. An-
other direction for future work addresses the issue that our hybrid approach is
currently local to one instance of an OLTP system. While this appears not to be
problematic for SMEs, it might be the case that larger corporations want to use
operational reporting in an on-premise setting, potentially with the requirement
of consolidation across multiple OLTP systems. When adding this requirement,
the approach must be extended with general purpose ETL functionality. The
ETL process comprises activities such as accessing different source databases,
finding and resolving inconsistencies among the source data, transforming be-
tween different data formats or languages, and, typically, loading the resulting
data into a warehouse. On the case of operational reporting, however, ETL ac-
tivities should be postponed to query runtime. When doing so, it is probably
most challenging to map the transformation steps in ETL processes to operations
which can be efficiently computed on-the-fly using column stores. ETL processes
model complex data flows between the transformations. Transformation activi-
ties can be of atomic or composed nature. An example from the field of financial
accounting would be to show a list containing the opening and closing balance
of an account from January to December of a given year: For each month m,
an aggregation has to be done on only those line items carrying a date between
January 1st and the last day of m. The result is then both the closing balance of

A Hybrid Row-Column OLTP Database Architecture 73

m and the opening balance of m + 1. In this example, the sum operator (i.e. the
aggregation) would be an atomic transformation. A composed transformation is
used to model the process of creating all opening and closing balances. For every
complex report, such workflow-like models could be used for describing the trans-
formations. Simitsis, Vassiliadis, and Sellis treat ETL processes as workflows in
order to find optimizations [19]. Their research is, however, aimed at optimizing
traditional, batch job-like ETL processes. To our knowledge, workflow models
for on-the-fly ETL processes have not been investigated. The corresponding re-
search tasks include the identification of complex reporting scenarios and the
complex transformations they require. An adequate abstraction must then be
found for these transformations, so that they can be generalized to build ETL
workflows with them. Then, efficient implementations on a column store must
be found for the identified transformations.

Acknowledgments

This project has been done in cooperation with SAP AG. In particular, we
would like to thank Torsten Bachmann, Franz Färber, Martin Härtig, Roland
Kurz, Gunther Liebich, Yaseen Rahim, Frank Renkes, Daniel Schneiss, Jun Shi,
Vishal Sikka, Cafer Tosun, and Johannes Wöhler. We would also like to thank our
students, Tilman Giese, Holger Just, Murat Knecht, Thimo Langbehn, Dustin
Lange, Mark Liebetrau, Janek Schumann, and Christian Schwarz, for their work.

References

1. Abadi, D.J.: Query Execution in Column-Oriented Database Systems. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA (Feburary 2008)

2. Abadi, D.J., Madden, S.R., Ferreira, M.: Integrating Compression and Execution in
Column-Oriented Database Systems. In: SIGMOD 2006: Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pp. 671–682.
ACM Press, New York (2006)

3. Adzic, J., Fiore, V., Spelta, S.: Data Warehouse Population Platform. In: Jonker,
W. (ed.) VLDB-WS 2001 and DBTel 2001. LNCS, vol. 2209, p. 9. Springer, Hei-
delberg (2001)

4. Boncz, P.: Monet: A Next-Generation DBMS Kernel for Query-Intensive Appli-
cations. PhD thesis, Universiteit van Amsterdam, Amsterdam, Netherlands (May
2002)

5. Brobst, S.: Enterprise Application Integration and Active Data Warehousing. In:
Proceedings of Data Warehousing 2002, pp. 15–23. Physica-Verlag, Heidelberg
(2002)

6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System
for Structured Data. In: USENIX 2006: Proceedings of the 7th conference on
USENIX Symposium on Operating Systems Design and Implementation, Berkeley,
CA, USA, p. 15. USENIX Association (2006)

7. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM 13, 377–387 (1970)

74 J. Schaffner et al.

8. Copeland, G.P., Khoshafian, S.: A Decomposition Storage Model. In: Navathe,
S.B. (ed.) Proceedings of the 1985 ACM SIGMOD International Conference on
Management of Data, Austin, Texas, May 28-31, pp. 268–279. ACM Press, New
York (1985)

9. Inmon, W.H.: Information Management: World-Class Business Intelligence. DM
Review Magazine (March 2000)

10. Inmon, W.H.: Operational and Informational Reporting: Information Management:
Charting the Course. DM Review Magazine (July 2000)

11. Inmon, W.H.: Building the Data Warehouse, 3rd edn. John Wiley & Sons, Inc.,
New York (2002)

12. Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit: Practical Techniques
for Extracting, Cleaning. John Wiley & Sons, Inc., New York (2004)

13. Legler, T., Lehner, W., Ross, A.: Data Mining with the SAP NetWeaver BI Accel-
erator. In: VLDB 2006: Proceedings of the 32nd International Conference on Very
Large Data Bases, pp. 1059–1068. VLDB Endowment (2006)

14. Mahapatra, N.R., Venkatrao, B.: The Processor-Memory Bottleneck: Problems and
Solutions. Crossroads 5(3), 2 (1999)

15. Moss, L., Adelman, A.: Data Warehousing Methodology. Journal of Data Ware-
housing 5, 23–31 (2000)

16. Noaman, A.Y., Barker, K.: A Horizontal Fragmentation Algorithm for the Fact
Relation in a Distributed Data Warehouse. In: CIKM 1999: Proceedings of the
Eighth International Conference on Information and Knowledge Management, pp.
154–161. ACM Press, New York (1999)

17. Ramamurthy, R., DeWitt, D.J., Su, Q.: A case for fractured mirrors. VLDB
J. 12(2), 89–101 (2003)

18. Shukla, A., Deshpande, P., Naughton, J.F.: Materialized view selection for multi-
cube data models. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.)
EDBT 2000. LNCS, vol. 1777, pp. 269–284. Springer, Heidelberg (2000)

19. Simitsis, A., Vassiliadis, P., Sellis, T.: State-Space Optimization of ETL Workflows.
IEEE Transactions on Knowledge and Data Engineering 17(10), 1404–1419 (2005)

20. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S.R., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik,
S.: C-Store: A Column-oriented DBMS. In: VLDB 2005: Proceedings of the 31st In-
ternational Conference on Very Large Data Bases, pp. 553–564. VLDB Endowment
(2005)

The Reality of Real-Time Business Intelligence

Divyakant Agrawal

University of California at Santa Barbara
Santa Barbara, CA 93106, USA

agrawal@cs.ucsb.edu

http://www.cs.ucsb.edu/~agrawal

Abstract. Real-time Business Intelligence has emerged as a new tech-
nology solution to provide timely data-driven analysis of enterprise wide
data and information. Such type of data analysis is needed for both tac-
tical as well as strategic decision making tasks within an enterprise. Un-
fortunately, there is no clarity about the critical technology components
that distinguish a real-time business intelligence system from traditional
data warehousing and business intelligence solutions. In this paper, we
take an evolutionary approach to obtain a better understanding of the
role of real-time business intelligence in the context of enterprise-wide in-
formation infrastructures. We then propose a reference architecture for
building a real-time business intelligence system. By using this reference
architecture we identify the key research and development challenges in
the areas of data-stream analysis, complex event processing, and real-
time data integration that must be overcome for making real-time busi-
ness intelligence a reality.

Keywords: databases, data-warehousing, data-cube, data-streams.

1 Introduction

In this paper, we take an evolutionary approach to obtain a better understand-
ing of the role of real-time business intelligence in the context of enterprise-wide
information infrastructures. The term business intelligence dates back to 1958 –
introduced by Hans Peter Luhn [5] – an early pioneer in Information Sciences. In
spite of this early vision, business intelligence did not evolve into a mainstream
technology component until only very recently. The intervening years instead
were focused primarily in the development of two key technologies: database
management systems (for the most part) and data warehousing. A wide-scale
adaptation of DBMS technology led to the proliferation of multiple operational
data sources within an enterprise for online transaction processing. The need
for data warehousing arose in order to consolidate transactional data from mul-
tiple operational data sources within an enterprise. The primary role of data
warehousing was envisioned as a way to simplify, streamline, standardize, and
consolidate reporting systems across the enterprise. In order to cause minimal
disruptions to operational data sources, one of the key design decisions was to
integrate transactional data in a batched manner.

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 75–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 D. Agrawal

The early success of extracting valuable information from historical data
stored in large enterprise-level data warehouses accentuated the demand for un-
locking business intelligence. An enabling technology referred to as the data
cube [2] further created a wide-scale acceptance of this type of data analysis.
Unfortunately, due to the batched approach of data integration, typically there
is a significant lag in the currency of information at the data warehouse. In the
Internet and world-wide-web context, the role of data warehousing (and business
intelligence) has changed considerably from a 2nd class technology component
to a critical component in the enterprise information infrastructure. Most com-
mercial enterprises have moved from brick-and-mortar and 8AM-5PM model
of operations to the Web-enabled and 24×7 model of operations. The need to
track customers on per sales transaction has changed to tracking customers and
services on per click interactions. As a consequence the need for performing
continuous optimizations based on real-time performance analysis has become
a necessity. These requirements warrant us to revisit the traditional DW/BI ar-
chitectures that are batch-update oriented and are no longer a tenable solution.

In this paper, we propose architectural modifications to enable real-time BI
capabilities in DW/BI software stack. We then argue for an event-driven ap-
proach to disseminate information from ODSs to the DW storage layer. In doing
so, we also introduce a new component referred to as the stream management
layer which enables a range of stream operators to facilitate real-time analy-
sis of event data. A business-rule engine augmentation at the stream manage-
ment layer partitions event detection for real-time operational intelligence or for
deeper analysis. We conclude this paper with research challenges that need to
be addressed before real-time BI can become a reality.

2 The Origins of Business Intelligence

As alluded to in Section 1, the vision of business intelligence was presented in
1958 paper by Hans Peter Luhn [5]. Luhn envisioned a business intelligence
system as an automatic system to disseminate information to the various sec-
tions of any industrial, scientific, or government organization. Unlike in the cur-
rent context of business intelligence such as data warehousing and database
systems, which are primarily concerned with enterprise-wide transactional data
(e.g., click-stream data or sales transaction data), he was primarily focusing on
information contained in business-related documents. Thus in his work, Luhn
identified three critical technology components for enabling business intelligence:
auto-abstracting of documents, auto-encoding of documents, and auto-creation
and updating of user profiles (action points). The role of his business intelligence
system was to actively route incoming documents to appropriate users by match-
ing document abstracts with stored user profiles. Figure 1 illustrates the overall
architecture of the proposed system.

We make several observations in regard to this vision which is almost 50 years
old but still remains valid in the current context. Luhn’s original definition of
business is rather broad. He states “business is a collection of activities carried

The Reality of Real-Time Business Intelligence 77

Fig. 1. Luhn’s Business Intelligence System for Active Dissemination of Business Doc-
uments

on for whatever purpose, be it science, technology, commerce, industry, law,
government, defense, etc.” In the same vein, he defines intelligence in a more
general sense “as the ability to apprehend the interrelationships of presented
facts in such a way as to guide actions towards desired goal.” Finally, we note
that the term business intelligence predates the notions of databases and data
management which were introduced in the early sixties.

Given that Luhn’s notion precedes databases and data management, it is not
surprising that his automatic business intelligence system or apparatus used a
Microscopy storage system consisting of documents and their abstracts. In some
ways, Luhn architected a rudimentary information retrieval system and put forth
the idea of active information delivery to appropriate action points using his no-
tion of business intelligence (i.e., statistical matching of abstracts to profiles).
To a certain degree, it can be argued that the original vision remains relatively
unchanged in the current context. However, the underlying information compo-
nent instead of being a collection of documents is instead enterprise-wide data
encompassing diverse types of information. Given the finer granularity of the un-
derlying data and complex interrelationship among different data-elements, our
greatest challenge is how to extract useful and meaningful “intelligence” from
such data. In the following we now detail the advances and efforts that have
been made to overcome this challenge.

78 D. Agrawal

3 The Early Years (1970s – 1980s)

In spite the overarching vision of business intelligence which was set forth as far
back as in 1958, very little progress was made in the realization of this vision in
in the subsequent years – in fact for almost four decades. Instead much of the
research and development activities were primarily focused on another nascent
technology that was mainly concerned with simplifying the large amount of
data processing tasks within an enterprise. Early incarnation of data processing
meant running millions of punched cards through banks of sorting, collating, and
tabulating machines, with results being printed on paper or punched onto still
more cards. Data management meant physically organizing, filing, and storing
all this paper and punched cards.

This rudimentary form of data underwent a transformative change with the
advent of I/O devices such as magnetic tapes and disks. The basic idea that
emerged was to develop data management systems that will enable enterprises
to manage their data by storing and cataloging it in a structured manner on such
storage devices for subsequent retrieval, update, and processing. In 1961, Charles
Bachman at General Electric Company developed the first successful data man-
agement system which was termed as Integrated Data Store and incorporated
advanced features such as data schemas and data logging. IBM subsequently
commercialized this technology and marketed its first data management sys-
tem called IMS in 1968 – which was a hierarchical database that ran on IBM
mainframe machines.

Around the same time, IBM researchers in Silicon Valley were actively in-
volved in pushing the frontiers of database technology. Notable among them was
IBM researcher Edgar F. Codd who proposed a revolutionary approach for or-
ganizing complex enterprise data in terms of flat structures referred to as Tables
(or more formally relations). He also, developed a formal declarative language to
manipulate data stored in relations and referred to it as relational algebra (also
formally called relational calculus). IBM created a large team of researchers
during the 1970s to work on a project code-named, System/R, in an effort to
commercialize relational databases. Unfortunately, due to sheer inertia of IBM’s
commitment to IMS and mainframes, IBM did not release a relational database
product well into 1980s. Curiously enough, RDBMS became a product in 1973
as a result of two academic researchers Michael Stonebraker and Eugene Wong
from UC Berkeley, who founded a company INGRES Corp. which marketed one
of the first data management product based on RDBMS technology.

Although IBM can be faulted for not commercializing RDBMS technology
in a timely manner, its contributions towards advancing the state-of-the-art of
data management technology cannot be ignored. While Codd at IBM was de-
veloping the right models and abstractions for representing complex data and
information within an enterprise, another group of IBM researchers under the
leadership of Jim Gray was working on the orthogonal problem of changing the
nature of database from an offline file-processing system to an online transaction
processing system. Until then databases were deployed in such a way that daily
transactions were processed in a batched environment (generally during the off

The Reality of Real-Time Business Intelligence 79

hours e.g., during the night). This caused a significant latency on the currency
of information available from the database especially when it pertained to the
current status of important pieces of information such as total amount of cash
available in the bank, the current inventory of products on the shelves etc. Jim
Gray and his collaborators invented the notion of an online transaction as well
as developed associated algorithms and system to enable online execution of
transactions against the live database to ensure that the database view remains
up-to-date at all times. In our view these developments were very critical and
perhaps the “seeds” of real-time business intelligence as we see it today. Were it
not for online transaction processing we would have remained in the dark ages
of information era – in which the current state of the enterprise data would have
been clouded by the outdated information in the database.

Latter half of the eighties saw a rapid adaptation of both RDBMS technology
and online transaction processing widely in most commercial enterprises espe-
cially with the increasing reliance on data and information for both strategic
and tactical decision-making.

4 Data Warehousing (1990s –)

Rapid proliferation of online transaction processing systems based on the re-
lational model of data resulted not only such systems being used widely but
also resulted in multiple such systems being used within an enterprise. In par-
ticular, each department or functional area within a large enterprise such as
the Financial Department, the Inventory Control Department, the Customer
Relations Department, and so on, for variety of reasons had their own oper-
ational data store for their day-to-day operations. At the enterprise level, the
reliance on data-driven decision making warranted that online reports from such
disparate systems be delivered to the end-users which were mostly business an-
alysts distilling information from these reports to make high-level decision mak-
ing tasks. Demand for online reporting and online data analysis was further
fueled due to some of the enabling technologies at this time: personal computing
and computerized spread-sheets that made large-scale number crunching signif-
icantly easier. There were two powerful forces that led to an overall realization
that the then prevalent information infrastructure cannot sustain the status-
quo. One of the problems is that due to the complete autonomy of operational
data sources within an enterprise, obtaining a unified analytical view of data
and reports derived from multiple system was extremely labor-intensive task.
Multiple teams of analysts needed to manually construct a unified view over
reports derived from multiple data sources – a task which was highly prone to
errors and mistakes. The second problem with this infrastructure was that the
ever-increasing demands from business analysts for more reports and data from
operational systems started to interfere with the normal day-to-day operations of
most departments. This was particularly so – since the workload characteristics
of analytical queries typically involved large table-scans, data aggregation and

80 D. Agrawal

summarization which often resulted in consuming precious I/O and CPU time
from normal operations.

In 1988, Devlin and Murphy [1] reported a design of an integrated business
information system that was developed to create a unified view of data and in-
formation contained in multiple operational systems that were in use by different
functional areas within IBM. In this paper, the authors report that the overall
architecture of such a system was motivated due to the fractured view of an en-
terprise since data accessors needed to request reports from multiple operational
systems. It is in this article, the authors coined the term business data warehouse
and propose an architecture shown in Figure 2. Furthermore, the authors report
that similar efforts were underway at that time in many other large enterprises
where there was an emergent need to create an integrated view of business data
and information stored in multiple operational data sources.

From the technology market perspective, there were several companies such as
Teradata (founded in 1979) there were primarily focused on marketing RDBMS
technology primarily for decision support systems. Such technology companies
reoriented themselves as data warehousing providers and the next few years saw
an increasing interest in building enterprise scale data warehouses. The early
years of adaptation of data warehousing was mired with severe problems. Early
approaches of data warehouse design relied on a rather ad-hoc design process.
This design process entailed bringing schema-level information from multiple
operational data sources and then a painstaking efforts were needed to resolve
all these schemas with each other to create one giant schema at the global level.

Fig. 2. The Business Data Warehouse Architecture used for IBM’s Business Informa-
tion System (1988)

The Reality of Real-Time Business Intelligence 81

This design approach was not only very costly but also very time consuming.
The whole process was further bogged down with the complexity of constant
schema changes that occurred at the operational data sources. Thus the early
efforts for building large-scale data warehouses met with very little success. From
the management perspective, data warehousing was viewed as unproven, imma-
ture, and expensive technology proposition. The distinction between DBMS and
Data Warehousing was not clear and seen as duplication of data at multiple
levels. Finally, an important non-technical factor common to many failed data
warehousing projects was that there was no clear owner or stake-holder of the
enterprise data warehouse resulting in the project itself being relegated to a
second-class entity.

It was only in the mid-nineties, when two database technology practitioners
articulated a methodical approach for designing data warehouses [3,4]. Inmon [3]
articulated a systematic approach of applying database normalization to all col-
lected schemas using a top-down approach. Kimball [4], on the other hand, cham-
pioned the case for dimensional model and star schemas arguing that both from
analysis perspective as well as query processing performance perspective, di-
mensional design is the best approach. This debate resulted in data warehousing
efforts to focus on design methodology instead of being focused on and enamored
with technology. In particular, IT professionals realized that data warehousing
cannot be bought as a shrink-wrapped product. Instead, methodical approaches
are needed to gather user requirements from different constituencies to build the
dimensional model as well as the individual dimensions at the right granularity.
Over the last few years, the Kimball approach of data warehouse design has
become the de-facto standard.

Fig. 3. An Architecture for a Data Warehouse

82 D. Agrawal

The conceptual architecture of a data warehouse is depicted in Figure 3. As
shown in the Figure, the conceptual architecture is fairly straightforward in that
it stipulates integration of data derived from multiple data sources needs to be
installed as an integrated data warehouse view. Some of the difficulties that
arise in the realization of this architecture is the component software to extract
data from the data sources, transform this data so that it is aligned with the
data warehouse schema, and loading of the transformed data. This procedure
is referred to as ETL process (Extraction, Transformation and Loading). As
far as the implementation of the data warehouse itself is concerned, the under-
lying technology supporting the data at the data warehouse remains basically
the relational data model. In spite of this commonality, the technology vendors
continue to distinguish themselves as being Database vendors (e.g., Oracle) or
Data Warehouse vendors (e.g., Teradata). The key distinction that arises is that
database technology is highly optimized for transaction processing whereas data
warehouse technology is primarily designed to for running complex queries in-
volving whole-table scans, joins, and aggregation. In general, parallel hardware
is extensively used in the context of data warehouses to achieve the desirable
performance.

In order to diffuse the tension between DW architects and DBAs running the
operational data sources, Kimball articulated batched updates of the data from
the ODSs to the DW. This resulted in data warehouses that do not provide
up-to-date “state” of the enterprise. Recently, with increasing reliance on the
data from data warehouse for high-level decision-making, it is being felt that
data warehouses should be updated in real-time and therefore the term real-
time data warehousing. However, real-time updating of data-warehouses gives
rise to host of challenges – one of them being maintaining the consistency of
the warehouse view. In conclusion, the key transformative factor for increasing
acceptance of data warehousing is due to the notion of dimensional model based
design methodology – it considerably simplifies the data warehouse design process
resulting in both cost and time savings.

5 Emergence of Business Intelligence (2000–)

By the late nineties and early 2000, Data Warehousing found ready acceptance
in the business arena. Although early justifications for data warehousing were
primarily driven by the needs to provide integrated reporting functionality, the
value of data warehousing became clear for carrying out large analysis tasks to
assist data-driven decision making both for tactical and strategic management
decisions. As the role of analysis expanded rapidly within an enterprise, teams
of business analysts within an enterprise were involved in extracting “interesting
patterns” from enterprise wide data. This notion of extracting and unlocking
useful information from raw data was termed as business intelligence. A com-
panion technology that emerged around this time was referred to as data mining
which leveraged statistical techniques and machine learning algorithm to enable
sophisticated analysis over vast amounts of raw data. For example, data mining

The Reality of Real-Time Business Intelligence 83

techniques were rapidly adapted for marketing by analyzing historical behavior
of customers’ buying patterns. Furthermore, the notion of business intelligence
became more relevant especially in the context of Web-based commercial en-
terprises which were able to collect not only the sales-based information of its
customers but were also able to collect browsing (or click-level) behavior of its
customers. Business intelligence was now seen as a crucial technology compo-
nent that could be used to make sure that a majority of customer visits to an
E-commerce site will result in a conversion to a sales activity. Although we
give motivation for business intelligence in the context of a store-front – its role
can easily be generalized to other activities of an enterprise: inventory control,
customer relation management, order processing, and so on.

Although the case for deriving business intelligence from enterprise data was
well articulated by the technology marketeers, it was primarily used as a catalyst
to sell the concept of data warehousing to the top-level management. In particu-
lar, no attempt was made to clarify if there is a key technology component that
enables unlocking of “business intelligence” from enterprise wide data stored at
the data warehouse. Typical approach was to develop custom-made data analysis
applications for aggregating data across many dimensions looking for anomalies
or unusual patterns. The main shortcoming of these approaches was they re-
lied on SQL aggregation operators in that the SQL aggregate functions and the
GROUP BY operator produced zero-dimensional or one-dimensional aggregates.
Business intelligence applications instead need the N-dimensional generalization
of these operators. Gray et al. [2] developed the notion of such an operator, called
the data cube or simply cube. The cube operator generalized the histogram,

Fig. 4. An Architecture for a Business Intelligence System

84 D. Agrawal

cross-tabulation, roll-up, drill-down, and sub-total constructs that were needed
for business intelligence activities. The novelty of this approach is that cubes
maintained the relational framework of data. Consequently, the cube operator
can easily be embedded in more complex non-procedural data analysis programs.
The cube operator treated each of the N aggregation attributes as a dimension
of N-space. The aggregate of a particular set of attribute values is a point in
this space. The set of points forms an N-dimensional cube. Super-aggregates are
computed by aggregating the N-cube to lower dimensional spaces. This proposal
should be considered as a fundamental breakthrough for enabling data-analysis
which now legitimately can be termed as “business intelligence”. The resulting
architecture of business intelligence system is depicted in Figure 4. The two key
technology components that form the core of business intelligence systems are
the data cube structure and data mining framework that embeds the cube op-
erator for extracting relevant data in the requisite format. This generalization
led to the commercialization of the data cube technology which became an inte-
gral part of all major data warehousing vendors: Hyperion (now part of Oracle
Corp.), COGNOS (now part of IBM Corp.), and Microsoft Analysis Services.
Note that the underlying layers still maintained the offline or batched nature of
updating the data in the warehouse thus not providing “business intelligence”
that is current with respect to the state at individual operational data sources.

6 Real-Time Business Intelligence

Although the technology landscape for business intelligence is still evolving, there
is an emerging debate among database researchers and practitioners about the
need for real-time business intelligence. The argument put forth by the propo-
nents is that it is not enough to deliver “business intelligence” to the decision-
makers but it should also be done in a “timely” manner. This notion of timeli-
ness has resulted in the wide usage of the term real-time business intelligence.
In a recent article, Schneider [8] provides numerous examples in the context
of click-stream analysis to clearly identify the requirements of “degree of time-
liness” in a variety of analysis tasks. He argues that not every analysis task
warrants real-time analysis and the trade-off between the overhead of providing
real-time business intelligence and the intrinsic need for such an analysis should
be carefully considered. Otherwise, the resulting system may have prohibitive
cost associated with it. Nevertheless, the real-time BI proponents present sev-
eral compelling examples derived from actual case-studies where it can be shown
that real-time BI can provide significant benefits to an enterprise. We envision
that as the role of enterprises become increasingly real-time (e.g., E-commerce
enterprises that operate 24×7), real-time BI will indeed play an increasingly
important role in the routine operations of such companies. In particular, the
role of real-time BI will serve as an immediate (and automated) feedback to the
operational data sources for making online tactical decisions. For example, the
window of opportunity for up-sell or cross-sell a product is while a customer is
still around on an E-commerce site not after he/she has left. Thus the need for

The Reality of Real-Time Business Intelligence 85

real-time BI is very well justified. Assuming this our goal is to clearly define the
system architecture for a real-time BI system and identify the key technologies
that must be developed to make the vision of real-time BI a reality much in the
same way as was done in the context of data warehousing (with dimensional
modeling) and business intelligence (with the data cube operator).

Our proposal for a real-time business intelligence architecture is depicted in
Figure 5. As shown in the figure, we leverage from the existing architecture
for a business intelligence system with two major differences. First is the data
delivery from the operational data sources to the data warehouse must be in
real-time in the form of what we refer to as data-streams of events. Thus we
can no longer rely on batched or offline updating of the data warehouse. Second
we introduce a middleware technology component that is referred to as stream
analysis engine. Thus before the incoming data is integrated with the historical
information for integrated reporting and deep analysis it should be subjected to
an immediate analysis for possible outliers and interesting patterns. The goal
of this analysis is to extract crucial information in real-time and is delivered to
appropriate action points which could be either tactical (e.g., incorporating as
an online feedback to the operational data sources) or strategic (e.g., immediate
high-level management decision). In the following, we identify some of the key
research challenges in realizing such an architecture.

It has been widely recognized that ETL technology needed to load all the
data into a data warehouse is a formidable task. During the past few years, sev-
eral ETL tools have appeared in the marketplace that make this task relatively
easier. Nevertheless, in general most of the current ETL technology relies on

Fig. 5. An Architecture for a Real-time Business Intelligence System

86 D. Agrawal

batched updates to the data warehouse. In order to make real-time BI a real-
ity, the ETL process needs to move away from periodic refreshes to continuous
updates. Online updating of data warehouses gives rise to numerous challenges.
One of the problems that must be dealt with is the overlap of long-term analysis
queries in the presence of concurrent updates. The other problem is when data
warehouse views are composed on the basis of data derived from multiple data
sources, indiscriminate updating can give rise to inconsistency in the views. View
synchronization is a complex research topic and efficient solutions are needed to
address this problem. Anther complexity that arises is the problem of schema
updates and evolution both at the data warehouse as well as at the data sources.
Although some progress has been made in this arena, numerous challenges re-
main. In the same vein, real-time updating gives rise to several challenges with
regard to the data transformation that needs to occur before data is loaded into
the warehouse. Recent research [6,9] is emerging to formulate the problem of
real-time ETL and develop novel solutions.

Our vision of stream analysis engine is to enable event monitoring over in-
coming data to enable outlier detection and pattern analysis for operational
intelligence. We also envision that the stream analysis engine will leverage from
models constructed from historical data. For example, in the context of Web
search application, this analysis engine will use the historical data from the data
warehouse to construct sophisticated user models and query models. Based on
this models, incoming event stream can be used to determine if the operational
systems are deviating from the norm. Such information can be extremely useful
for online tuning of the live operational site. The key research challenge in data
stream analysis is that the analysis needs to be done with a single pass over
the incoming data. Numerous data-stream operators have been proposed in the
data-stream research literature to facilitate online computation of frequent el-
ement computation, fraud-detection, performance monitoring, histograms, and
quantile summaries. However, considerable research and development efforts are
needed to implement these operators in a holistic stream management system. A
complementary technology component that will be useful with a stream analysis
sub-system is a rule processing engine that can incorporate high-level business
rules to enable complex event processing to enable real-time analysis of event
stream data.

There are several other research and technology components that are relevant
in the context of real-time BI. First is the need for automated techniques for
data integration. Current approaches of integrating data from operational data
sources into the data warehouse is too tedious and time consuming. There is
some new research in the context of Web-based data that enables automated
schema integration [7]. We envision that some of these techniques can be use-
ful in the context of real-time BI systems although the proposed system does
give rise to the problem of uncertainty of data integration. The second research
challenge is the need for new languages and systems for analytical processing.
Although SQL has served reasonably well for online analytical processing – it
does suffer from significant performance problems. New approaches are being

The Reality of Real-Time Business Intelligence 87

used especially in the context of click-stream data analysis, namely, MapReduce
from Google, PigLatin from Yahoo!, and DRYAD from MicroSoft. However, it
remains to be seen if these paradigms and languages can indeed be useful for
real-time BI. Finally, the most formidable challenge in the case of large scale
data warehouses and business intelligence systems to be able to scale with in-
creasing volumes of data. Just a few years ago, we used to talk about data
warehouses in the scale of terabytes and now a petabyte-scale data warehouse
is not too far-fetched. With this scale of data, certain queries especially those
that involve spatial and temporal correlations need to process vast amounts of
data. Given the fact that complete scan of data is necessary (perhaps multiple
times) to execute such queries, the only recourse we have is to use a data par-
titioning approach coupled with parallel DBMS technology. Companies such as
Teradata have historically used a combination of proprietary parallel hardware
and parallel software solutions. Recently, several new vendors (e.g., GreenPlum
and Aster Data Systems) have emerged who provide parallel DBMS technology
based on commodity hardware and software components. However, emergence
of utility computing or cloud computing is likely to bring about new research
and development challenges as data management activities are outsourced to
external parties.

7 Concluding Remarks

Real-time business intelligence has emerged as a new technology solution to serve
the data-driven decision making needs of contemporary enterprises. Real-time
BI is likely to play a key role in delivering analytics both for tactical as well as for
strategic decision making. Unfortunately, adaptation of real-time BI solutions is
hampered since there is no clarity about the underlying technology components
and custom solutions are not desirable since they are prohibitively expensive. In
this paper, we have taken an evolutionary approach to understand the reasons
for early failures and subsequent successes in the context of data warehouses and
traditional business intelligence systems. We draw from this experience to clearly
outline the reference architecture for a real-time business intelligence system. We
then identify key research and development challenges that must be overcome
to build the necessary technology components that will serve as the key enablers
for building real-time BI systems.

References

1. Devlin, B.A., Murphy, P.T.: An Architecture for a Business and Information System.
IBM systems Journal (1988)

2. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator General-
izing Group-by, Cross-Tab, and Sub Totals. Data Min. Knowl. Discov. 1(1), 29–53
(1997)

3. Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons, New York (1996)

88 D. Agrawal

4. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Di-
mensional Data Warehouses. John Wiley & Sons, New York (1996)

5. Luhn, H.P.: A Business Intelligence System. IBM Journal of Research and Develop-
ment (1958)

6. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Support-
ing Streaming Updates in an Active Data Warehouse. In: Proceedings of the 23rd
International Conference on Data Engineering: ICDE (2007)

7. Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integra-
tion systems. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD (2008)

8. Schneider, D.: Practical Considerations for Real-Time Business Intelligence. In:
Bussler, C.J., Castellanos, M., Dayal, U., Navathe, S. (eds.) BIRTE 2006. LNCS,
vol. 4365, pp. 1–3. Springer, Heidelberg (2007)

9. Vassiliadis, P., Simitsis, A.: Near Real-time ETL: Annals of Information Systems:
New Trends in Data Warehousing and Data Analysis, vol. 3. Springer, US (2008)

Beyond Conventional Data Warehousing —
Massively Parallel Data Processing with

Greenplum Database
(Invited Talk)

Florian M. Waas

Greenplum Inc., San Mateo CA 94403, USA
flw@greenplum.com

http://www.greenplum.com

Abstract. In this presentation we discuss trends and challenges for data
warehousing beyond conventional application areas. In particular, we dis-
cuss how a massively parallel system like Greenplum Database can be
used for MapReduce-like data processing.

Keywords: Data Warehousing, analytics, petabyte-scale, data process-
ing, MapReduce, User-defined Functions.

1 Introduction

Hardly any area of database technology has received as much attention as the
data warehousing segment recently. A number of start-up companies have en-
tered the market with database products specifically engineered for large-scale
data analysis. While the discipline goes back to the early 1960s it was only in
the 1990s that enough compute resources were readily available to apply the
principles of data analysis to significant amounts of data. However, in the past 5
years new application scenarios—often in a Web 2.0 context—have pushed the
limits of conventional solutions. Not long ago data warehouses of a total size of
1 Terabyte (TB) were considered the high end of data management from a data
volume point of view. Today’s data collection mechanisms easily exceed these vol-
umes, however. In our work with customers we frequently encounter application
scenarios with daily loads in excess of 1 TB and requirements for several 100s of
TB for the entire data warehouse. Until a few years ago, only very few database
vendors provided solutions for this market segment, at a price-performance-ratio
that was unaffordable for young Web 2.0 companies.

When first confronted with the problem of having to manage massive amounts
of data, most of these companies invested in building special purpose solutions.
Unfortunately, many of these solutions were not amenable to integration with 3rd

party Business Intelligence Tools and lacked many of the traditional database
features necessary for advanced analytical processes. At the same time many
of these companies demonstrated in impressive ways the value of massive data

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 89–96, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

90 F.M. Waas

collection and monetization of social networks. This in turn attracted more and
more businesses to explore data analytics which in turn drives an increasing
demand for standard solutions in this space.

In this presentation, we first discuss the requirements for a new kind of data
warehouse and details how the Greenplum Database data management platform
addresses them. Then, we focus on advanced analytics and in particular how a
massively parallel data processing system opens up a number of opportunities
to do much more than simply query data. We conclude with a few directions for
future work.

2 Explosive Data Growth

In recent years data warehousing has seen a number of new application areas and
customer scenarios. Generally, we witnessed a trend away from the core scenario
of analysis of sales data, toward analysis of data that describes behavioral as-
pects of a clientele rather than their financial transactions. The most prominent
examples for these new types of data sources are click-streams or ad-impression
logs, often referred to as behavioral data.

Unlike traditional sales data, behavioral data does not capture a deliberate
decision to purchase goods or make otherwise financial transactions; this has two
immediate implications for the analysis of this type of data:

1. individual records are of “lesser” value—the decision to visit a website is
typically made more lightly than purchase decisions—which means the anal-
ysis needs to take into account large amounts of data to obtain statistically
significant insights, and,

2. substantially larger amounts of data than can be processed with conventional
means are being produced.

Both these demands have been driving the scalability requirements for modern
data warehouses. Many of our customers are constantly refining their tracking
processes which results in even larger amounts of data.

Another dimension of data growth is the increasing market penetration of
high-tech devices in emerging markets. Sustained growth rates of over 100% for
entire industries such as telecommunications in various markets in Asia have
been fairly common in the past 5 years. The current developments point to
further increases at similar rates in the next years.

Most importantly, the currently observed growth rates continue to out-pace
Moore’s Law, that is, the advancements in technology development will not catch
up with the market trends in the foreseeable future. In other words, we cannot
rely on hardware improvements to close the gap between today’s conventional
database technology and the requirements for large-scale data warehousing so-
lutions any time soon.

Taking the growth expectations for their businesses into account scalability
requirements call for storage and analysis at a petabyte scale in the near future.

Beyond Conventional Data Warehousing 91

These requirements are clearly outside the range of what can be achieved with
conventional database technology today.

3 A New Kind of Database System

Over the past 5 years, a number of database startups entered the database
market with the promise to address the needs for large-scale data warehousing
indicating a change in the competitive landscape of database technology.

There have been a few notable attempts by startups prior to this recent surge;
mostly catering to special purpose data processing needs. What is different with
the current trend is that the new players are emphasizing many of the core com-
petencies of traditional database technology yet pushing the limits far beyond
what was until recently state of the art.

Companies like Greenplum address the aforementioned drawbacks of conven-
tional DBMS, most importantly: scalability, performance and fault-tolerance.
Unlike traditional database vendors, Greenplum focuses on DW/BI applications
exclusively: Greenplum Database is a highly scalable, fault-tolerant, high per-
formance database system with special emphasis on query processing for OLAP.
Greenplum Database leverages a shared-nothing architecture using commodity
hardware. A typical installation consists of 10’s of individual nodes, each featur-
ing 4, 8 or more CPU cores, 16 GB of main memory and up to 40 TB direct-
attached storage. Configurations range anywhere from 10’s to 100’s of terabytes
of usable storage.

Greenplum Database addresses a fairly varied market. Many of our customers
replaced existing database systems as they reached scalability limits. Hence, one
important requirement is for Greenplum Database to be a drop-in replacement
and as such integrate easily with existing 3rd party tools both for data loading
as well as for analytics and reporting.

In Figure 1 the architecture of Greenplum Database and its integration are de-
picted. As shown in the figure, Greenplum Database is made up of a configurable
number of data hosts and a master host which coordinates query processing as
well as administrative tasks. All data is mirrored across hosts for fault-tolerance.
Similarly a second master host serves as a stand-by (not shown in the drawing).
For brevity’s sake we skip a detailed in-depth description of the system and refer
readers to technical whitepapers [2,3].

One feature that deserves special mention and is relevant for our later discus-
sion is that of parallel loads: in addition to the standard access through an SQL
interface which channels data through the master node, Greenplum Database
also provides parallel load capabilities which allow every data host to access ex-
ternal data be it in the form of flat files on file servers or through special loader
interfaces that directly connect to source applications. This mechanism can be
used not only for loading data into regular data tables in the database but also to
integrate data and make it accessible to queries without actually loading it into
the database. The high data rates make the latter appear seamless and mitigate
the otherwise significant threshold for data integration at a multi-terabyte scale.

92 F.M. Waas

Fig. 1. Architecture and integration of Greenplum Database

4 Alternate Application Areas

Besides providing increased query processing performance, we realized the sys-
tem could be utilized in other application scenarios too. Given its large number
of CPUs and size of main-memory a system can be viewed as a tightly coupled
grid computing platform. In particular, in many cases the Greenplum Database
system is the single largest system in the data center. So, it was natural to look
for alternate processing tasks customers could use the system for. In this pre-
sentation we discussed a case study of how using Greenplum Database enabled
customers to streamline their data integration processes by moving ETL func-
tionality from a dedicated ETL server farm onto Greenplum Database vastly
improving their load times and reducing hardware and maintenance costs for an
additional ETL platform.

The idea of using a database system to implement ETL—or ELT—processes
has been contemplated previously. However, the high requirements for CPU time
and memory limited any attempt to small data sizes and short-running jobs.
With the advent of high-powered data warehouse platforms this approach has
finally become viable.

Example. The following example illustrates this technique. Using a system of 40
data nodes with a combined 160 CPU cores and a total of 1 TB distributed main
memory a daily data loads of 4 TB on average had to be accomplished. Prior to
loading, the data was processed by a hand-crafted parallel data cleansing mech-
anism executed on 6 separate machines. The cleansing of one day’s worth of data
took typically over 15 hours. Unfortunately due to frequent changes in business
requirements data loads have to be repeated to allow cleaning algorithms to
be refined etc. From an operational point of view this meant that occasional
repeats of daily loads could put daily processing at risk and cause backlogs of
daily loads to build up. After a careful analysis of the data cleansing process
we re-engineered the mechanisms using only SQL and instead of loading only
‘clean’ data decided to load raw data directly into staging tables and process

Beyond Conventional Data Warehousing 93

that data using SQL before storing it at its final destination. Compared to the
original way of processing the data, this approach comes with several benefits:

1. Expressing data transformations as queries allows us to leverage Greenplum
Database’s query processor infrastructure that parallelizes queries automat-
ically and executes them efficiently leveraging a potentially massive degree
of parallelism;

2. Using SQL instead of a scripting language simplified the approach and lead
to a cleaner and more robust design;

3. The overall running time for daily loads was reduced to about 2 hours;

Effectively we converted a classical ETL approach into a ELT strategy where
load and transformation phase are swapped. As pointed out before, the idea
to load raw data and process the transformations inside the database has been
considered before, however, only through a massively parallel platform and au-
tomatic parallelization of the application does it become viable.

5 Beyond Conventional Data Warehousing

In opening our platform for unconventional use we enable customers to execute
data-centric tasks on a parallel high-performance computing platform.

5.1 Declarative Programming Models

SQL provides a powerful, declarative programming model, which enables auto-
matic parallelization to a much larger degree than imperative languages. How-
ever, we came to realize that writing complex programs in SQL is widely regarded
as a non-trivial task that requires an advanced skill set. In our interaction with
customers we found users belong typically to one of two camps: (1) programmers
who prefer declarative programming and are comfortable with expressing even
complex data processing logic using SQL and (2) programmers who come from
a purely imperative background who find SQL difficult to use and non-intuitive.
Like most discussions around preferences regarding programming languages, this
has been subject of much debate and while certain application scenarios seem
to favor one or the other there is no definitive consensus among programmers.

5.2 Other Programming Models

In order to provide the same benefits SQL programmers enjoy with automatic
parallelization of their programs etc. to others as well, we investigated alternative
programming language paradigms.

In particular, the concept of User-defined Functions (UDF) can be used to
encapsulate functionality written in a hosted language such as Python, Perl, C,
to name just the most prominent ones. This allows users to strike a convenient
balance: use SQL to describe data access and simple predicates and combine
it with a imperative programming language to express logic otherwise difficult

94 F.M. Waas

to state as SQL. User-defined Aggregates (UDA) are complementary to UDFs
and extend the scope of injecting imperative logic in a declarative model to
aggregation.

5.3 MapReduce

UDF’s and UDA’s provide a powerful framework to encapsulate imperative logic
and to combine it seamlessly with SQL’s declarative paradigm. However, in
practice many programmers find it useful to take the abstraction a step further
and instead of providing a general framework for using UDX’s in a declarative
context prefer using scaffolding that conceals the declarative component entirely.
This paradigm has become popular through a specific implementation known
as MapReduce [1] and has been adopted widely by the parallel programming
community, see e.g. [5].

We view this programming model as a natural extension to the relational
model. Greenplum Database embraces this programming model and provides
primitives supporting software development for MapReduce-like operations in
its latest version v3.2 [4]. Using its query processing infrastructure, Greenplum
Database offers automatic parallelization and mature, highly tuned data access
method technology.

5.4 Cost of Data Transfer

As the amount of data increases data becomes more costly to transfer. We found
many applications simply extract large amounts of data, transfer it to a client
application and perform much of the processing there. While this works fairly
well with small amounts of data, this technique becomes prohibitively expensive
when large amounts of data are concerned. Having capabilities to express com-
plex logic easily and efficiently for server-side processing is not only an elegant
abstraction but becomes increasingly necessary in these scenarios.

6 Future Trends and Challenges

We conclude this presentation by reviewing some of the trends and challenges
we anticipate for the near future for a increasingly broader use of database
technology in general and data warehousing technology in particular.

6.1 Analytics

The new application areas we mentioned above not only demand new technical
solutions to store and access data; they also pose novel challenges to the sta-
tistical analysis of data that is of very different nature than data traditionally
managed in database systems.

The analysis of behavioral data put a strong emphasis on specific OLAP
functionality such as window functions [6] of the SQL language definition. In

Beyond Conventional Data Warehousing 95

addition, customers also demand better integration with special purpose pro-
gramming languages for complex statistical analysis, e.g. R [3].

We anticipate more and more logic currently implemented in external 3rd

party products to be increasingly moved closer to the data, i.e. integrated with
the data warehouse.

6.2 Hardware Developments

Greenplum Database’s success is partly due to the commoditization and avail-
ability of servers with significant amounts of direct-attached storage. This is in
stark contrast to most commercial database systems used for transaction process-
ing that deploy large Storage Area Networks (SAN) or network-attached storage
systems. In comparison to SAN technology, direct-attached storage lowers the
price-performance ratio significantly making petabyte-scale data warehousing
affordable. The commoditization of direct-attached storage can be expected to
continue at a similar pace. An equally important development is the continuous
advancement of CPU miniaturization resulting in increased numbers of CPU
cores. Greenplum Database’s architecture is well-positioned to take advantages
of multi-core CPUs.

Trends toward smaller and less capable, less reliable, lower quality commodity
components as proposed mainly by Web 2.0 companies in the past do not appear
attractive for data warehousing applications due to their high maintenance over-
head. Hence, we do not anticipate these to raise to any significant importance
for data warehousing.

6.3 Database Technology and Programming Paradigms

Scalability and high-availability requirements pose interesting challenges as an
increasing number of applications require management of over a petabyte of data.
Similarly, query optimization and execution strategies need to be extended and
adjusted. We anticipate a further departure from the concept of an all-purpose
database as was promoted by most database vendors in the past: many optimiza-
tions for executing data warehouse query loads are detrimental for transaction
processing workloads.

7 Summary

In this presentation we detailed some of the challenges for database technology
to achieve petabyte-scale storage and data processing capabilities.

Through extended programming models and mechanisms that enable users to
encapsulate special-purpose programming logic into declarative data processing,
complex data analysis tasks can be carried out leveraging the massively parallel
platform of the data warehouse infrastructure.

96 F.M. Waas

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
In: OSDI 2004: Sixth Symposium on Operating System Design and Implementation,
San Francisco, CA (December 2004)

2. Greenplum Inc., Greenplum Database: Powering the Data-driven Enterprise (June
2008), http://www.greenplum.com/resources

3. Greenplum Inc., A Unified Engine for RDBMS and MapReduce (October 2008),
http://www.greenplum.com/resources

4. Greenplum Inc., Release Notes for Greenplum Database 3.2 (September 2008),
http://www.greenplum.com/resources

5. Olston, C., Reed, B., Silberstein, A., Srivastava, U.: Automatic Optimization of Par-
allel Dataflow Programs. In: USENIX 2008, Annual Technical Conference, Boston,
MA (June 2008)

6. SQL Standard 2003, SQL/OLAP, Online Analytical Processing: Amendment (2003)

http://www.greenplum.com/resources
http://www.greenplum.com/resources
http://www.greenplum.com/resources

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 97–107, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Scalable Data-Intensive Analytics

Meichun Hsu and Qiming Chen

HP Labs
Palo Alto, California, USA

Hewlett Packard Co.
{meichun.hsu,qiming.chen}@hp.com

Abstract. To effectively handle the scale of processing required in information
extraction and analytical tasks in an era of information explosion, partitioning
the data streams and applying computation to each partition in parallel is the key.
Even though the concept of MapReduce has been around for some time and is
well known in the functional programming literatures, it is Google which
demonstrated that this very high-level abstraction is especially suitable for data-
intensive computation and potentially has very high performance implementation
as well. If we observe the behavior of a query plan on a modern shared-nothing
parallel database system such as Teradata and HP NeoView, one notices that it
also offers large-scale parallel processing while maintaining the high level
abstraction of a declarative query language. The correspondence between the
MapReduce parallel processing paradigm and the paradigm for parallel query
processing has been observed. In addition to integrated schema management and
declarative query language, the strengths of parallel SQL engines also include
workload management and richer expressive power and parallel processing
patterns. Compared to the MapReduce parallel processing paradigm, however,
the parallel query processing paradigm has focused on native, built-in, algebraic
query operators that are supported in the SQL language. Parallel query
processing engines lack the ability to efficiently handle dynamically-defined
procedures. While the “user-defined function” in SQL can be used to inject
dynamically defined procedures, the ability of standard SQL to support
flexibility of their invocation, and efficient implementation of these user-defined
functions, especially in a highly scaled-out architecture, are not adequate. This
paper discusses some issues and approaches in integrating large scale
information extraction and analytical tasks with parallel data management.

1 Introduction

Scaling data warehouses and analytics to offer operational business intelligence,
which expands business intelligence into real-time adaptive transactional intelligence,
is an important growth opportunity for the BI industry. Next generation business
intelligence will have much more sophisticated algorithms, process peta-size of
dataset, and require real-time or near real-time responses for a broad base of users. It
will also integrate information in near real-time from more heterogeneous sources,
which will require processing large quantity of data and applying sophisticated

98 M. Hsu and Q. Chen

transformation and summarization logic. Furthermore, the growing demand for fusing
BI with data extracted from less-structured content such as documents and the Web is
expected to further increase the need for scalable analytics. While massively parallel
data management systems (e.g. IBM DB2 parallel edition, Teradata, HP Neoview)
have been used to scale the data management capacity, BI analytics and data
integration analytics have increasingly become a bottleneck. Figure 1 (left) illustrates
the current state of BI architecture and the area of challenge.

1.1 The Challenges

With the current technology, BI system software architecture largely separates the BI
analytics layer (BI applications and tools) and the data integration layer (ETL tools
and data ingest applications) from the data management layer (DW). The data
management layer manages the data in the data warehouse and requests expressed in
queries with support of simple aggregates, such as count, sum, min, and max. Many
problems are caused by the separation of analytics and data management in this
traditional approach:

− The amount of data transferred between the DW and BI is becoming the major
bottleneck. This problem has become more pronounced due to the explosion of
data volume and the faster progress on CPU than data bandwidth.

− There is growing concern in large enterprises on the security issue raised by
moving large quantity of data, some of which sensitive, to various applications
outside of the data warehouses.

− When the data set required for analytics is large, once that data set arrives at the
BI analytics application layer, the application layer again is burdened with many
generic data management issues (data structure, layout, indexing, buffer
management etc.) that the data management layer excels at but now need to be
duplicated or handled ad hoc at the application layer.

− Larger data sets imply higher compute requirement at the BI analytics layer.
However, the opportunity to balance resource utilization between the parallel
DWM and parallel BI analytics is lost when these two layers are distinctively
separated, as they are now.

Converging data-intensive analytics computation into a parallel data warehouse is

the key to address these problems [4-6]. One option for the next generation BI system,
illustrated in Figure 1, will have data intensive part of analytics executed in the DW
engine.

To effectively handle the scale of processing required in information extraction and
analytical tasks, partitioning the data streams and applying computation to each
partition in parallel is the key. Google demonstrated that the MapReduce abstraction is
very suitable for highly parallel data-intensive computation [2]. The correspondence
between the MapReduce parallel processing paradigm and the parallel query
processing paradigm has been observed [3]. However, the parallel query processing
paradigm has focused on built-in algebraic query operators that are supported in the
SQL language. Parallel query processing engines lack the ability to efficiently handle
dynamically-defined procedures. While the “user-defined function” in SQL can be
used to inject dynamically defined procedures, the ability of standard SQL to support

 Scalable Data-Intensive Analytics 99

Fig. 1. Analytics and data management separated (left) and converged (right) BI Platform

flexibility of their invocation, and efficient implementation of these user-defined
functions, especially in a highly scaled-out architecture, are not adequate.

There has been quite some research over the years that touch on the issue of
converging data intensive computation and data management. Integrating data mining
with database systems has been explored. Using UDFs is the major mechanism for
carrying out data intensive computation inside database systems. Briefly speaking, a
UDF provides a mechanism for extending the functionality of a database server by
adding a function that can be evaluated in SQL statements. SQL lacks efficient
support for content processing primitives, which will require much more flexible and
open definitions of the procedures. For example, if one wishes to perform word-count
on a text document, the variation in the word-count procedure can be significant
depending on the context at hand. For example, the treatment for “stop words” and
“noun phrases” may vary a great deal. Wrapping applications as UDFs provides the
major way to push computations down to the data management layer; however it also
raises some hard issues.

1.2 The Research Directions

We address the above challenges from several fundamental directions.

Extend UDFs Modeling Power to Support Parallel Processing. Existing SQL
systems offer scalar, aggregate and table functions, where a scalar or aggregate
function cannot return a set; a table functions does return a set but its input is limited to
a single-tuple argument. These types of UDFs are not relation-schema aware, unable to
model complex applications, and cannot be composed with relational operators in a
SQL query. Further, they are typically executed in the tuple-wise pipeline in query
processing, which may incur performance penalty for certain applications, and
prohibits data-parallel computation inside the function body. Although the notion of
relational UDF has been studied by us [1] and others [7], it is not yet realized on any
product due to the difficulties in interacting with the query executor.

Construct SQL process with UDFs to Express General Graph based Dataflow.
Many enterprise applications are based on the information derived step by step from
continuously collected data. The need for automating data derivation has given rise to

Approach:
Develop a
massively
data-parallel
analytics
layer;
integrate into
parallel data
mgmt engine

FFiilleess // TTaabblleess

BI Services delivered to
broad base of users /

applications

BBuussiinneessss IInntteelllliiggeennccee DDaattaa IInntteeggrraattiioonn

MMaassssiivveellyy DDaattaa--ppaarraalllleell AAnnaallyyttiiccss

Parallel Data Warehouse

OLTP systems, sensors,
external feeds, web

content…

FFiilleess // TTaabblleess

PPaarraalllleell DDaattaa WWaarreehhoouussee

BBuussiinneessss IInntteelllliiggeennccee
AAnnaallyyttiiccss

DDaattaa IInntteeggrraattiioonn
AAnnaallyyttiiccss

Massively
parallel
data mgmt

Challenge:
scalable
data-
intensive
analytics

OLTP systems, sensors,
external feeds, web

content…

BI Services delivered to
broad base of users /

applications

100 M. Hsu and Q. Chen

the integration of dataflow processes and data management in the SQL framework.
However, a single SQL statement has limited expressive power at the application
level, since the data flow represented in a SQL query is coincident with the control
flow, but an application often requires additional data flows between its steps. In other
words, the query result at a step cannot be routed to more than one destination, while
the requirement of the dataflow of an application is often modeled as a DAG
(Directed Acyclic Graph). In order to integrate data intensive computation and data
management while keeping the high-level SQL interface, we envisage the need for the
synthesis of SQL and business processes where the business processes describe the
information derivation flow.

In the next Section we describe our work in extending UDF to support
MapReduce-like parallel computation inside a parallel database engine. In Section 3
we illustrate our solution on SQL process. In Section 4 we give concluding remarks.

2 Extend UDFs to Support Parallel Processing

In this section we describe the UDFs extensions we are developing to enable rich,
MapReduce-style analytics to run on a parallel database system. We will illustrate
throughout with K-Means clustering as an example.

2.1 K-Means Clustering Algorithm

The k-means algorithm is used to cluster n objects based on attributes into k
partitions, k << n. It is similar to the expectation-maximization algorithm for mixtures
of Gaussians in that they both attempt to find the centers of natural clusters in the
data. It assumes that the data attributes form a vector space. The objective is to
minimize total intra-cluster variance, or, the squared error function

V = ∑ ∑
= ∈

−
k

i Cp
ij

ij

p
1

2)(μ

where there are k clusters Ci, i = 1, 2, ..., k, and µi is the center or mean point of all the
points pj ∈ Ci.

K-Means is an iterative algorithm. Every iteration of K-means starts with a set of
cluster centers, and executes two steps: the assign_centers step, which takes every
point in the set and identifies a center the point is closest to based on some distance
function (not necessarily Euclidian), and assigns the point to that cluster; and the
compute_new_centers step, finds, for every cluster, the geometric mean of all the
points assigned to that cluster to be the new centers.

Let us consider the SQL expression of K-Means for two-dimensional geographic
points. In one iteration, the first step is to compute, for each point in relation Points
[point_id, x, y], its distances to all centers in relation Centers [cid, x, y]), and assign
its membership to the closest one, resulting in an intermediate relation of the form
Nearest_centers [x, y, cid]. The second step is to re-compute the set of new centers
based on the average location of member points. In SQL, these two steps can be
expressed as

 Scalable Data-Intensive Analytics 101

[Query 1: K-Means with conventional scalar UDF]

 SELECT Cid, AVG(X), AVG(Y) FROM
 (SELECT P.x AS X, P.y AS Y, (SELECT cid FROM Centers C WHERE
 dist(P.x, P.y, C.x, C.y) = (SELECT MIN(dist(P2.x, P2.y, C2.x, C2.y))
 FROM Centers C2, Points P2 WHERE P2.x = P.x AND P2.y = P.y)) AS Cid
 FROM Points P)
GROUP BY Cid;

Since this query uses a scalar UDF evaluated on the per-tuple basis, and the UDF is
unable to receive the whole Centers relation as an input argument, the Centers relation
is not cached but retrieved for each point, and the Centers relation is retrieved again in
a nested query for each point p, to compute the MIN distance from p to the centers.
Such relation fetch overhead is caused by the lack of relation input argument for
UDFs. From the query plan it can be seen that the overhead in fetching the Centers
relation using scalar UDF is quite excessive. Such overhead is proportional to the
number of points.

In addition to the problem of retrieving input relations repeatedly, some
applications cannot be modeled without the presence of whole relations (such as
minimal spanning tree computation). Further, feeding a UDF a set of tuples rather
than a single one is critical for data-parallel computation using multi-core or GPU. All
these have motivated us to support Relation Valued Functions (RVFs).

2.2 K-Means Using Relation Valued Function

The conventional scalar, aggregate and table UDFs are unable to express relational
transformations since their input or output are not relations, and hence cannot be
composed with other relational operators in a query. The conventional UDFs are
typically processed with tuple-wise input which may incur modeling difficulty or
performance penalty for some applications [7]. In order to overcome these limitations
we introduce a kind of UDFs with input as a list of relations and return value as a
relation, called Relation Valued Functions (RVFs). An RVF derives a relation
(although it can have database update effects in the function body) just like a standard
relational operator, thus can be naturally composed with other relational operators or
sub-queries in a SQL query, such as

 SELECT * FROM RVF1(RVF2(Q1, Q2), Q3);

For example, a single iteration of K-Means clustering can be expressed by the
following query that invokes an RVF, where the RVF receives data from the Points
relation tuple by tuple, and from the Centers relation as a whole.

[Query 2: K-Means with RVF]

SELECT Cid, avg(X) AS cx, avg(Y) AS cy
FROM
(SELECT p.x AS X, p.y AS Y,
 nearest_center_rvf (p.x, p.y, “SELECT cid, x, y FROM Centers”) AS Cid FROM

Points p)
GROUP BY Cid;

102 M. Hsu and Q. Chen

In this query, as the repeated retrieval of Centers data is avoided, it has much better
performance.

2.3 K-Means in MapReduce Style on Parallel DB

A MapReduce scheme consists of two operations: map() and reduce(). The map()
reads a set of "records", does any desired filtering and/or transformation, and then
outputs a set of records of the form (key, data). Then a "split" function partitions the
records into M disjoint buckets by applying a function to the key of each output
record. This split function is typically a hash function, though any deterministic
function will suffice. In general, there are multiple instances of the map() operation
running on different nodes of a compute cluster; each map() instance is given a
partition of the input data. The key thing to observe is that all map instances use the
same hash function. Hence, all output records with the same hash value will be in
corresponding output buckets.

The second phase of a MapReduce job executes M instances of the reduce(). All
output records from the map phase with the same hash value will be consumed by the
same reduce instance, no matter which map instance produced them.

To implement and execute one iteration of the K-Means clustering algorithm based
on MapReduce, it would look like what is shown in Fig. 2. It starts with a set of
cluster centers, and executes in two phases:

− finding nearest_centers corresponds to a map function;
− computing new centers corresponds to a reduce function.

Fig. 2. MapReduce Execution of One Iteration of K-Means

On a parallel database engine, while the scalar UDF-based Query 1 fails to exhibit

a similar execution pattern as MapReduce, our RVF-based Query 2 behaves with
essentially the same parallel execution pattern and data flow. In Query 2, map is like
the clause for generating Nearest_centers [x, y, cid], and reduce is analogous to the
aggregate function (in this case, AVG()) that is computed over all the rows with the
same group-by attribute. On a parallel database, the Points table is hash partitioned by
point_id over multiple server nodes, and the map function for assigning the nearest
centers is applied to each data partition in parallel, each yielding a local portion of the
result-set, Nearest_Centers [x, y,cid], which is automatically re-partitioned by center
id (cid) for the parallel reduce computation as

.

. (2) Hash-distribute by
cluster_id

the answer

Assign center per
datapoint

Aggregate per cluster_id

Recalculate Centroids

(1) Map

(3) Reduce
(4)

 Scalable Data-Intensive Analytics 103

 SELECT cid, AVG(x), AVG(y) FROM nearest_centers GROUP BY cid

On a parallel database, aggregating a query result group by selected attributes, is
implemented exactly in the MapReduce style, except the operators corresponding to
map and reduce are not arbitrary computations.

3 SQL Query Process

3.1 Handle Enterprise Dataflow Inside Database Engine

Enterprise applications often implement the information flow and derivation
computations from continuously collected data. Efficient data derivation has given
rise to the need of handling dataflow processes inside the database engine. Fig. 3
illustrates “In-DB ETL” where the dataflow is controlled by SQL query processing
and computation is performed by UDFs.

ETL - clean
ETL – 1st

level roll-up
ETL – 2nd

level roll-up …

INSERT INTO rollup_1 (…)
SELECT k1,k2, k3, aggr1,….
FROM giant_summ_table
GROUP BY k1, k2, k3

INSERT INTO giant_table
SELECT … FROM T1,…T12
WHERE …
/*12-way join while cleans w case
stmts */

INSERT INTO giant_summ_table
SELECT k1,…k10, aggr1(),…aggrn()…
/*10 keys & various agr measures*/
FROM giant_table
GROUPBY k1,k2,…,k10

Fig. 3. In-DB ETL with dataflow by SQL and computation by UDFs

Fig. 4 shows another example where hydrographic information is monitored for
predicting the status of river drainage networks. Under the conventional practice,
applications manage models, compute derived information, and adapt or rebuild
models separately from data management layer. As a result, large quantity of data
travels from DB system to application and back, the applications are hard to scale, to
parallelize, to manage and to trace.

Generated information

Interpretations

Information
Pipes

Collected data

Streams
Drainage Areas
Hydrograph
Channels
Terrain Surfaces…

Models

Feedback
Discovery

Fig. 4. A Hydrographic information flow and derivation example

104 M. Hsu and Q. Chen

However, a single SQL statement has limited expressive power at the application
level, since the data flow represented in a SQL query is coincident with the control
flow, but an application often requires additional data flows between its steps. In the
other words, the query result at a step cannot be routed to more than one destination,
while the requirements of the dataflow of an application are often modeled as a DAG
(Directed Acyclic Graph).

The general solution we take is to represent correlated data flows by multiple SQL
statements which are linked by RVFs. As mentioned before, RVFs have the same
signatures as relational operators.

3.2 Correlated Query Process with RVF

A SQL statement expresses the composition of several data access and manipulation
functions. A query execution plan can be viewed as a process including sequential
and parallel steps, which opens the potential of handling queries at the process level.

For example, Pig Latin developed at Yahoo Research combines the high-level
declarative querying in the spirit of SQL, and low-level, procedural programming. We
share the same view as Pig Latin in treating a query as a process; however, beyond
such a view, we have our specific research goals. As a database centric solution, we
specify “steps” as individual SQL queries to be optimized by the underlying database
engines. For modeling complex applications, we consider multiple correlated queries
together with complex data flows and control flows represented as a DAG rather than
a single query tree.

At the process level, multiple correlated SQL queries and RVFs form the
sequential or concurrent steps of that application with complex data flows between
them. Each step is an individual query or RVF that results in a row set.

In a regular query, the data flow and control flow are consistent and represented by
a query tree. Even when there is a nested structure, a single query is unable to
represent a general DAG-like data flow and control flow. Correlating multiple queries
(including RVFs) into a process allows us to express control flows separately from
data flows.

Refer to Fig. 5, for instance, an application is modeled as a query Q, followed by
RVF f that takes Q’s results as input, then followed by RVFs g1 and g2 which take f’s
as well as Q’s results as input. The data flows and control flows of this application are
not coincident. In order to express data flows separately from control flows, and to
ensure the involved query Q and RVF f to be executed only once, this application
cannot be expressed by a single SQL statement, but by a list of correlated queries
at the process level. Conceptually the data dependency in the above example can
be expressed as a sequence <Q, f, g1, g2> meaning that Q should be provided before
f, …etc; this data dependency sequence is not unique (<Q, f, g2, g1> is another one)
but correct. The control flow can be expressed by [Q, f, [g1, g2]] where [g1, g2] can be
executed in parallel.

Generally, a Query Process is made of one or more correlated SQL queries,
referred to as query steps, which may be sequential, concurrent or nested (for
simplicity we omit certain details such as conditional branch). A query step is a query,
which may invoke RVFs or other UDFs. A QP represents a data intensive application
at the process level where data flows are allowed to be separated from control flows,

 Scalable Data-Intensive Analytics 105

Fig. 5. A simple correlated query process, where data flows (solid and dash lines) and control
flows (solid lines only) are not all coincident

and multiple start and exit points are allowed. We will illustrate the specification of a
QP with an example in the next subsection.

3.3 Data Continuous Query Process

Motivated by automating enterprise information derivation processes, we have
introduced a new kind of dataflow process - Data-Continuous Query Process (DCQP),
which is data-stream driven and continuously running.

The basic operators of a DCQP are queries and RVFs which can be triggered
repeatedly by stream inputs, timers or event-conditions. The sequence of executions
generates a data stream.

To capture such data continuation semantics we have introduced the notion of
station for hosting a continuously-executed queries and RVFs:

− A station is a named entity which hosts a query.
− When two stations are consecutive in the dataflow, a pipe from the upstream

station, say S1, to the downstream station, say S2, is implied in the DCQP where
the query hosted in S2 references S1 as (one of its) input, i.e., S1’s output
becomes input to S2.

− If a station S1 has multiple successor stations, then (conceptually) its output is to
be replicated and sent to all its successor stations as input (fork).

− If a station S has multiple predecessor stations, then S is eligible for execution
when all its predecessors have produced output (join).

Fig. 6. A Query Process for network traffic analysis

Data-source Q f

g1

g2

S1

Traffic

S2

Hosts Users

S4

 Patterns

S3

S2a

106 M. Hsu and Q. Chen

Activated by the availability of input data, the presence of events or the timer,
stations communicate asynchronously. A station is specified by its hosted query, and
optionally with events and timers. The query specifying a station uses its predecessor
stations as its data source.

A DCQP is constructed in the SQL framework and modeled as a graph of stations
(nodes) and links between them. A simplified DCQP example for network traffic
analysis is given in Fig. 6 where station S1 captures point to point network traffic
volumes, S2 summarizes the host-to-host traffic volume; S2a, an RVF, derives the
host-to-host traffic pattern; S3 gets user-to-user traffic; and S4 as another RVF
analyzes the patterns. The pseudo specification of this DCQP is illustrated below.

Create QP Traffic_Analysis {

 Source: Traffic STREAM, Hosts, Patterns, Users

 Define Station S1 As
 SELECT from-ip, to-ip, SUM(bytes) AS bytes FROM Traffic GROUP BY from-ip, to-ip;
 Trigger: time interval

 Define Station S2 As
 SELECT h1.host-id AS f-host, h2.host-id AS t-host, S1.bytes FROM S1, Hosts h1, Hosts h2
 WHERE h1.ip = S1.from-ip AND h2.ip = S1.to-ip;

 Define Station S2a As
 SELECT * FROM Assign_pattern (S2, Pattern);

 Define Station S3 As
 SELECT u1.user-id AS from-user, u2.user-id AS to-user, S1.bytes FROM S1, Users u1,
 Users u2 WHERE u1.ip = S1.from-ip AND u2.ip = S1.to-ip;

 Define Station S4 As
 SELECT * FROM Pattern_analysis (S2a, S3);
 }

3.4 Implementation Issues

We push down the Query Process support to the parallel database engine for fast data
access and reduced dataflow, and in this way turn the database engine into a parallel
computing engine as well. Layered on top of the parallel data management
infrastructure, the QP manager can directly inherit the built-in data parallelism and
distributed processing capability, automatically support partitioned parallelism,
pipelined parallelism, subquery parallelism, etc.

In addition, we support query process execution with the following features:

− The query process definition is converted to a set of SQL queries hosted at
stations.

− A station is provided with data caching capability.
− As the resulting data may be sent to multiple successor stations, an abstract notion

of pipe is introduced to connect two stations; subsequently a pipe is realized as a
queue, and there exist multiple ways to implement queues. We primarily focus on
memory-based queues with support for overflow.

Although the ultimate goal is to extend the query executor of a parallel database

engine to be “process aware”, our experience shows that query processes can be

 Scalable Data-Intensive Analytics 107

realized to a great extent within the existing query executor where RVF support is
added., For example, the following query

 SELECT x, SUM(y) FROM rvf(“SELECT a, b, FROM R1”, “SELECT c, d FROM R2”)
 GROUP BY x;

expresses three queries where the two “parameter queries” of rvf are wrapped by the
outer-most query that takes the result of rvf execution as data source. We have
supported the argument evaluation of an RVF’s relation input with individual queries,
where the RVF acts as the consumer of these query results and applies additional
computation. Under this theme and with the pipe mechanism mentioned above, a QP
can be executed by the query executor naturally.

4 Conclusions

By recognizing the scale, data bandwidth, and manageability challenges of ETL & BI
analytics applications, we propose to leverage parallel processing capability in
parallel data management, generalize and extend with declarative data flows and user-
defined computations, to create a highly data-parallel analytics layer inside the
database engine. This approach can significantly improve the end-to-end scale of BI
systems, enabling very large scale operational BI.

Introducing RVFs is essential for constructing Query Processes for general-
purpose dataflow-oriented computation. An RVF can model more complicated
applications than scalar, aggregate, and table functions; can use multiple relations as
input, and returns a relation as output; and appears wherever a relation list is
expected, so they are easily composed in SQL.

We have built an initial prototype on a proprietary parallel database engine while
experiments with an open-sourced database engine are also on-going. Our experience
reveals the scalability, efficiency and flexibility of the proposed approach.

References

1. Chen, Q., Hsu, M.: Data-Continuous SQL Process Model. In: Proc. 16th Int. Conf. CoopIS
2008 (2008)

2. Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In:
International Conference on Parallel Architecture and Compilation Techniques. ACM, New
York (2006)

3. DeWitt, D., Stonebraker, M.: MapReduce: A major step backward. The Database Column
(2008), http://www.databasecolumn.com/2008/01/mapreduce-a-major-
step-back.html

4. Gray, J., Liu, D.T., Nieto-Santisteban, M.A., Szalay, A.S., Heber, G., DeWitt, D.: Scientific
Data Management in the Coming Decade. SIGMOD Record 34(4) (2005)

5. Greenplum, Greenplum MapReduce for the Petabytes Database (2008),
 http://www.greenplum.com/resources/MapReduce/

6. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel
programs from sequential building blocks. In: EuroSys 2007 (March 2007)

7. Jaedicke, M., Mitschang, B.: User-Defined Table Operators: Enhancing Extensibility of
ORDBMS. In: VLDB 1999 (1999)

Simplifying Information Integration:
Object-Based Flow-of-Mappings Framework for

Integration

Bogdan Alexe1, Michael Gubanov2, Mauricio A. Hernández3, Howard Ho3,
Jen-Wei Huang4, Yannis Katsis5, Lucian Popa3, Barna Saha6,

and Ioana Stanoi3

1 University of California, Santa Cruz
2 University of Washington

3 IBM Almaden Research Center
4 National Taiwan University

5 University of California, San Diego
6 University of Maryland

Abstract. The Clio project at IBM Almaden investigates foundational
aspects of data transformation, with particular emphasis on the design
and execution of schema mappings. We now use Clio as part of a broader
data-flow framework in which mappings are just one component. These
data-flows express complex transformations between several source and
target schemas and require multiple mappings to be specified. This pa-
per describes research issues we have encountered as we try to create
and run these mapping-based data-flows. In particular, we describe how
we use Unified Famous Objects (UFOs), a schema abstraction similar to
business objects, as our data model, how we reason about flows of map-
pings over UFOs, and how we create and deploy transformations into
different run-time engines.

Keywords: Schema Mappings, Schema Decomposition, Mapping Com-
position, Mapping Merge, Data Flows.

1 Introduction

The problem of transforming data between different schemas has been the fo-
cus of a significant amount of work both in the industrial and in the research
sector. This problem arises in many different contexts, such as in exchanging
messages between independently created applications or integrating data from
several heterogeneous data sources into a single global database.

Clio [14,16,9], a research prototype jointly developed by IBM Almaden and
the University of Toronto, investigated algorithmic and foundational aspects of
schema mappings. Figure 1 depicts Clio’s architecture and demonstrates, at a
high-level, the steps involved in transforming data structured under a schema
S (called the source schema) to data structured under a different schema T

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 108–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Simplifying Information Integration 109

����

��������������
��	�
������	�
����

���
������
���
��	�
�����	�
���

�����
�����
�����
�����

����������������	�
���	�������	�
���	�

�����
������
�������������������������������������

����

������
�������
�

��������������������

��	�
��������
��	�
��������

Fig. 1. Clio Architecture

(called the target schema). First, the user specifies a set of correspondences be-
tween attributes of S and T using Clio’s graphical user interface. Based on these
attribute-to-attribute correspondences and the semantic constraints expressed
by S and T , Clio generates a declarative specification of the data transforma-
tion. This declarative specification, which we call schema mapping, is formally
expressed as a set of logical source-to-target constraints [8]. Finally, Clio trans-
lates the declarative schema mapping to executable code that performs the data
transformation.

Clio contains several code generation modules that target different languages.
For instance, when mapping xml-to-xml data, Clio can generate XQuery and
XSLT scripts from the same mapping. Alternatively, when mapping relational
data, Clio can generate SQL queries.

Complex information integration tasks generally need the orchestration or
flow of multiple data tranformation tasks. For instance, data transformations
commonly contain many intermediate steps, such as shredding nested data into
relations, performing joins, computing unions or eliminating duplicates. Parts of
the flow are in charge of extracting relevant information from raw data sources,
while other parts are in charge of transforming data into a common representa-
tion. Later parts of the flow are in charge of deploying the trasformed data into
target data marts or reports. Single monolithic mappings, those that map from a
source schema into a target schema, cannot capture these complex tranformation
semantics. And even in cases when a mapping can capture the tranformation se-
mantics, the source and target schemas might be large and complex, making it
difficult for designers to create and maintain the mapping.

In this paper we discuss Calliope, a data flow system in development at IBM
Almaden that uses mappings as a fundamental building block. Instead of design-
ing a monolithic schema mapping, the users of Calliope create a flow of smaller,
relatively simpler and easier to understand, mappings among small schemas. As
the name implies, the mappings are staged in a dependency graph and earlier
mappings produce intermediate results that are used by later mappings in the

110 B. Alexe et al.

Flow of Simpler Mappings

S

Large S-T Mapping

T

S T

Fig. 2. Monolithic mappings (traditional approach) and flow of mappings in Calliope

flow (Figure 2). The individual mappings themselves can be designed using a
mapping tool (e.g., such as Clio, which is now a component of Calliope). We be-
lieve the adoption of flows of mappings improves reusability, as commonly used
transformation components can be reused either within the same transformation
task (e.g. if an address construct appears twice within the same source schema)
or across transformation tasks.

However, representing transformations as flows of mappings creates a number
of interesting technical challenges. First, we need a uniform data model that
represents data flowing over the graph of mappings. Second, to better under-
stand the transformation semantics of a flow of mappings, we need to compose
and merge mappings before generating run-time objects. Last, we need to gener-
ate transformation scripts over a combination of different runtime systems, each
with different data transformation capabilities. We now briefly discuss each of
these challenges in the rest of this section.

Unified Famous Objects (UFOs).One of the goals of Calliope is to raise the
level of abstraction from schemas, and bring it one step closer to business objects.
This is accomplished through the use of Unified Famous Objects (UFOs). A UFO
is a unified representation of a high-level concept, such as employee or address.
One or more of these concepts may be embedded in a schema. Instead of mapping
directly from an arbitrary complex source schema to an arbitrary complex tar-
get schema, which requires understanding their exact relationship, the mapping
designer can focus on a single schema fragment at a time. Each such fragment is
mapped to one or more UFOs that capture the concepts represented in the current
schema fragment. The specification of the end-to-end transformation is then as-
sembled from the smaller mappings between the source schema and the UFOs, the
mappings between the UFOs and the target schema as well as from mappings be-
tween the UFOs themselves. We believe this approach facilitates thinking in terms
of high-level concepts, which are closer to what users understand. UFOs also allow
mapping reuse. Mappings between UFOs can be reused in various contexts where
transformations are needed for the concepts they represent. Finally, this approach
is modular: When changes occur over the schemas, or the semantics of the desired
transformation changes, only the relevant parts of the smaller mappings involving
UFOs need to be updated. In this new approach the mapping designer will be able

Simplifying Information Integration 111

to focus on the mappings between the end schemas and the UFOs, and reuse as
much as possible previously designed mappings between UFOs.

Mapping Merge. To allow the execution of flows of mappings, Calliope employs
novel mapping technology that allows for the automatic assembly of initially un-
correlated mappings into larger and richer mappings. This technology relies on
two important mechanisms: mapping merging and mapping composition. Map-
ping merging, or correlation, is responsible for joining and fusing data coming
from initially uncorrelated mappings. Mapping composition [7,2] on the other
hand, allows assembling sequences of mappings into larger mappings. Intuitively,
mapping merging combines mappings that correspond to parallel branches in the
mapping flow graph, while mapping composition combines mappings that cor-
respond to sequential paths. We note that mapping merging, which is discussed
in some level of detail in Section 4, is an operator on schema mappings that has
been largely undeveloped until now.

Unified Flow Model (UFM) Framework. Some of our use cases involve
users that want to design a single transformation using a combination of many
different data transformation tools, such as mapping tools, ETL tools or query
languages [3]. Such cases are becoming increasingly common in practice for two
main reasons: First, some data transformation tools are not expressive enough
to represent a data transformation and thus the transformation generated by
the tool has to be augmented with additional operators. For instance, Clio does
not allow sorting of results. Therefore if sorting is desirable, the transformation
generated by Clio has to be augmented with sorting in a language that offers the
appropriate construct, such as SQL. Second, even when a single data transfor-
mation tool can express the entire transformation, users familiar with different
tools want to collaborate on the design of the same transformation. For example,
analysts designing the coarse outline of a transformation in Clio would like to
have it extended with lower-level details by programmers, who are familiar with
ETL-tools.

To address these interoperability requirements we designed the Unified Flow
Model (UFM) framework. At the heart of this framework lies the Unified Flow
Model (UFM), which allows the representation of a data transformation in a
tool-independent way. Given the UFM framework, all it takes to make Calliope
interoperate with other data transformation tools is to design procedures that
translate the internal representation of any data transformation tool to UFM
and vice versa. The main challenges in the context of this framework is finding
the right language for UFM and designing the translations between UFM and
the internal languages for the various data trasformation tools.

The following sections describe in more details the main components of Cal-
liope. Section 2 introduces the notion of UFOs and describes the UFO repository.
Section 3 describes how to decompose a schema into a set of UFOs. Section 4
gives an illustration of the mapping merging technique used in Calliope, and
Section 5 presents the UFM framework.

112 B. Alexe et al.

We note that Calliope is at an early stage and many of the ideas presented in
this paper are still under development.

2 Unified Famous Objects (UFOs)

Traditional mapping tools allow the specification of a transformation by defining
a mapping from a source schema to a target schema. However this approach
becomes problematic as the schemas become larger and the transformation more
complex. Large schemas are hard to understand and it is even harder to create
a mapping between them in a single step. To remedy this problem, Calliope
allows users to split the large and complex mapping of the source to the target
schema into more easily comprehensible steps (which are themselves composed
of multiple mappings) that are based on the use of intermediate Unified Famous
Objects (UFOs).

A UFO, similar to a business object, is a flat object representing a simple
concept, such as an employee, a product or an article. Being similar to a busi-
ness object, it is a higher-level abstraction than a schema and, as such, closer
to the understanding of the mapping designer. In Calliope, UFOs can be either
defined manually or extracted automatically from a source that provides stan-
dardized schemas, such as Freebase or OAGI. Once created, they are stored in
the metadata repository of the system, ready to be used in mappings. To model
semantic relationships between related UFOs, the metadata repository can also
hold mappings between UFOs.

Given the metadata repository, mapping a source schema to a target schema
translates to the following steps: First, the designer finds the UFOs in the meta-
data repository that are relevant to the source schema. To facilitate this process,
the metadata repository offers an interface that allows the designer to browse
and query its contents. Once the relevant UFOs are found, the designer creates a
separate mapping between the source schema fragment representing a particular
concept and the corresponding UFO. After finishing this process for the source
schema, the designer repeats the symmetrical procedure for the target schema:
find UFOs that are relevant to the target schema and design mappings from each
of them to the target schema. The resulting end-to-end transformation between
the source schema and the target schema is then the flow of mappings composed
of: a) mappings from the source schema to UFOs, b) mappings from UFOs to
the target schema and c) any number of intermediate mappings that may be
needed between the UFOs themselves. Some of the intermediate UFO-to-UFO
mappings may have to be designed at this point, but some could be reused from
the metadata repository (if they already exist).

Figure 3 shows a sample flow of mappings between source and target schemas
in the presence of UFOs. The picture displays two types of nodes: schema nodes
(used to represent both source/target schemas and UFOs) and mapping nodes.
Source schemas (inside the box on the left) are mapped to UFOs (inside the
box in the middle). For instance, the source on the top contains information on
projects and employees and therefore it has been mapped to the correspond-
ing two UFOs, representing projects and employees, respectively. Apart from

Simplifying Information Integration 113

Metadata RepositoryMetadata Repository
SourceSource

SchemasSchemas
TargetTarget

SchemaSchemaSource to UFOSource to UFO
mappingsmappings

UFO to TargetUFO to Target
mappingsmappings

Fig. 3. Flows of Schema Mappings

the mappings from source schemas to UFOs, the picture also shows mappings
between UFOs (inside the middle box). For example, the UFO representing a
researcher contains both employee and article information and therefore it has
mappings from the corresponding UFOs. Finally, UFOs are mapped to the target
schema (shown inside the box on the right).

Using UFOs in the mapping process yields several advantages: First, it allows
the designer to decompose a large source-to-target mapping into many smaller
mappings that involve the UFOs. Since each individual mapping is relatively
small, it is easy to create and maintain. Second, by storing in the repository the
mappings between schemas and UFOs, we can improve the precision of match-
ing algorithms by learning from previous mappings. For instance, we can store
attribute name synonyms next to each UFO attribute to help with subsequent
matching. More importantly, UFOs allow for standardization and reuse. A large
part of the mapping and transformation logic can be expressed in terms of a
fixed set of UFOs describing a domain, and this logic can then be reused and
instantiated in different applications (on the same domain).

The presence of the UFO repository also creates some important challenges.
First, as the number of UFOs increases it becomes increasingly harder to find
the UFOs that are relevant to a given schema. To remedy this problem, Calliope
contains a schema decomposition algorithm, described in the following section.
Second, the mappings that are created between the source and target schemas
and the UFOs, as well as the mappings that relate UFOs and are potentially
extracted from the repository, are initially uncorrelated, and possibly indepen-
dently designed. The main challenge here is to orchestrate the flow of uncorre-
lated mappings into a global mapping that describes a meaningful end-to-end
transformation. As a solution to this problem, Calliope relies on a mapping merge
mechanism. We give an overview of this mechanism in Section 4.

114 B. Alexe et al.

3 Schema Decomposition

Today a user will handle new schemas integration tasks by designing the trans-
formation operator flow manually, from scratch. Since defining these operators
is cumbersome [14,16], it is important to bootstrap the process with relevant
operator flows. At the core of reusing operator flows is the task of recogniz-
ing commonalities between a new input schema and fragments of previously
used schemas. Thus, an essential step in using UFOs for schema mapping is
the decomposition of the source and target scheams into the right set of UFOs.
Schema decomposition is the technique of automatically selecting a collection
of concepts from a given repository, which together form a good coverage of a
new input schema. In general, schema decomposition enables the understanding
and representation of large schemas in terms of the granular concepts they rep-
resent. This step should automatically propose good decompositions, and allow
the user to further modify and enhance them. Schema decomposition should be
both efficient in tranversing a large space of UFOs, and effective in producing
decompositions of high quality.

Consider for example the schema in Figure 4(i). An integration advisor, using
the techniques of schema decomposition can automatically identify that the same
Address format has been used before. It will then propose transformation flows
for this specific format of Address.

There has been a lot of work in semi-automated schema matching, proposing
solutions that are based on schema and instance level, element and structure-
level, language and constraint-based matching, as well as composite approaches
[17,18]. Some of the different systems that have been developed for matching in-
clude SemInt [10], CUPID [12], SF [13], LSD [5], GLUE [6], COMA [4], TranScm
[15], Momis [1] etc. The reuse of previously determined match results proposed

Order Person

Bill-To Item
OrderID

Address

Street City Country

Section of an order schema

Name Ship-To

Order
Input
schema UFO

Filtering

Score-computation

Pre-processing

semantic

structural

ItemId Quantity

schema
UFOs Obtaining coverage

(i)

(ii)

Fig. 4. (i) A Schema-Graph, (ii) Components Used in Schema Decomposition

Simplifying Information Integration 115

by Rahm and Bernstein in [17] has also attracted recent research focus and has
been successful in significantly reducing the manual match work [4,11]. How-
ever the reuse of matching is limited to element to element match and not on
any larger matching concepts. Most of these works can only handle small and
structurally simple schemas and define direct schema matching from source to
target. In contrast, our proposed schema decomposition technique can be used
to exploit reuse on much larger matching concepts (UFOs) and make the task of
schema-matching and mapping between structurally complex schemas substan-
tially easier.

Enabling reuse goes beyond the design of schema mappings. It can be ex-
ploited by ETL tools, Mashups and in general by Information Integration sys-
tems. Consider a schema for a new Mashup feed, where similar fragments of the
schema have been used in other data sources. Then the automated advisor can
detect similarities, and advise the user of opportunities for exploiting the new
data in interesting ways. In Information Integration, let us consider two schemas
that are understood in terms of the concepts from the repository. Then common
concepts point to schema matches, and can be used to efficiently direct users
through the task of integrating the two schemas. In all these aspects, schema
decomposition will serve as the fundamental tool.

3.1 An Overview of the Technique

Given a source and a target schema, and a repository of UFOs, schema decom-
position aims towards “covering” the schemas with UFOs as well as possible.
Known matching and transformations between UFOs can then be exploited to
obtain a source to target schema-mapping. Populating the repository with the
right schema fragments can be thought of as a preprocessing step. By contrast,
schema decomposition needs to be handled online, as new input schemas are in-
troduced. Let us denote an input schema by S, and the repository by R. Schema
decomposition identifies the matching concepts (schema fragments) Ui’s from R
that best cover S. The selection of the Ui’s and their corresponding positioning
to cover S are factors in the quality of the coverage. For efficiency, we use a
filter/evaluate/refine approach as described below.

The repository of schema fragments Ui can be quite large, and most of these
fragments will not match at all S. Therefore, it is necessary to reduce the search
space and select only fragments from the repository that have potential to be
relevant. This filtering is performed in two phases. In the first phase, a semantic
filter is used that compares labels of each Ui against labels in S. Note that the
structural relationship between labels is not yet taken into account. The output
of the semantic filter is the set of candidates Ui that have any semantic labels
in common with S. However, this does not test for the structural similarity.
That is, do the labels in any of the Ui’s match a cohesive region of S? And if
yes, how much structural flexibility do we allow when considering a match? The
structural filter evaluates these questions and further refines the candidate set.

The next step in schema decomposition involves a score computation model,
in order to compute the quality scores for the Ui’s in the candidate set. The

116 B. Alexe et al.

score for each Ui is computed based on the portions of S that Ui can poten-
tially cover. Note that considering all possible sub-regions of S and calculating
quality scores of Ui’s for each region is an exponential process. In practice the
score computation model needs to rely on a quality measure that avoids this
exponential running time and can be computed efficiently.

The last step is an optimization step that considers all the selected UFOs
together with their quality score and 1) selects a subset of UFOs and 2) positions
them relative to S so that the aggregated quality score is maximized. Figure 4(ii)
illustrates this framework. This last step is NP-Complete and thus an exhaustive
approach will take exponential time and is potentially of no practical interest.
Instead, approximation algorithms that are fast and guarantee near-optimality
of the result quality should be used.

4 Orchestrating Flows of Schema Mappings

As mentioned before, the mappings between the end schemas and the UFOs, as
well as the mappings that relate UFOs extracted from the repository, are initially
uncorrelated. To express a meaningful end-to-end transformation, the flow of
independently designed, uncorrelated mappings needs to be assembled into a
global mapping. To achieve this, Calliope relies on a mechanism for merging
smaller, uncorrelated mappings into larger, richer mappings, through joining
and fusing data coming from individual mappings.

We give a brief overview of the merging technique through the use of a simple
example. Consider the scenario in Figure 5. It consists of a nested source schema
representing information about projects and the employees associated with each
project. Potentially following the schema decompositionphase, a set of three UFOs
have been identified as relevant to the source schema: Project, Dept, and Em-
ployee. These are possibly extracted from the UFO repository and are

��������	
���
�

�����

�����

���������	
���
�

�����

������

����������

�����

�����

����

�������

�����

�����

�������

�����������

�����

�����

������

����

M
1

M
2

M
3

Fig. 5. Mapping Merge Scenario

Simplifying Information Integration 117

standardized representations of the business objects project, department, and em-
ployee, respectively. Using schema matching techniques and the mapping design
capabilities in Clio, three initial mappings M1, M2, M3 are constructed between
the source schema and each of the three UFOs. These mappings are decorrelated
and, in a real life scenario, may be constructed by independent mapping design-
ers. This mapping scenario may be part of a larger flow of mappings from the
source schema, through the UFOs above, and possibly others, to one or more tar-
get schemas. The mappings in the scenario above can be expressed in a logical
formalism similar to source-to-target constraints [8], as below:

M1 : Projects(p, d, E) → ufoProject(PID, p, DID)
M2 : Projects(p, d, E) → ufoDept(DID′, d, A)

M3 : Projects(p, d, E) ∧ E(e, s) → ufoEmployee(EID, e, s, DID′′)

For instance,mappingM3 above states that for eachproject record in the source,
and each employee record in the set of employees associated with that project,
there must exist a ufoEmployee object where the values for the ename and salary
attributes come from the corresponding attributes in the source employee record.
However, according to M3, the identifier of the ufoEmployee object as well as
the value of the dept attribute remain unspecified, and are allowed to take some
arbitrary values. Similarly, mappings M1 and M2 put in correspondence source
project records to ufoProject and ufoDept objects, respectively. Note that ac-
cording to the mappings above, the values of the dept attribute in ufoProject
and ufoEmployee and the identifier of ufoDept are not correlated.

The mapping merge mechanism in Calliope rewrites and combines the ini-
tial mappings to generate a set of richer mappings that support a meaningful
transformation where target data records the “correct” correlations. As a first
step, the merging technique takes advantage of any constraints that may be
present among the UFOs. In the example above, there are two referential con-
straints, indicated through dashed lines in figure 5. These constraints indicate
that the dept attributes in ufoProject and ufoEmployee must be identifiers
for a ufoDept. The merge mechanism considers these constraints and rewrites
the initial mappings into the following mappings:

M ′
1 : Projects(p, d, E) → ufoProject(PID, p, DID)

∧ ufoDept(DID, d, A′)
M ′

3 : Projects(p, d, E) ∧ E(e, s) → ufoEmployee(EID, e, s, DID′′)
∧ ufoDept(DID′′, d, A′′)

In the new set of mappings, M ′
1 is the result of merging M1 and M2, and M ′

3 is
the result of merging M3 and M2. Note that in M ′

1, the ufoProject and ufoDept
are correlated via the department identifier field. A similar correlation exists in
M ′

3 between ufoEmployee and ufoDept. Note that there is no correlation (yet)
between M ′

1 and M ′
3.

An additional merging step applies by taking advantage of the fact that M ′
3 is

a “specialization” of M ′
1: the latter mapping defines behavior for project records,

118 B. Alexe et al.

in general, whereas the former considers, additionally, the employee records as-
sociated to the project records. Concretely, we can merge the more specific part
of M ′

3 (i.e., the employee mapping behavior) into M ′
1 as a nested sub-mapping.

The resulting mapping is the following:

Projects(p, d, E) → ufoProject(PID, p, DID)
∧ ufoDept(DID, d, A′)
∧[E(e, s) → ufoEmployee(EID, e, s, DID)]

The resulting overall mapping includes now all the “right” correlations be-
tween projects, departments and employees. The top-level mapping transforms
all project records, by creating two correlated instances of ufoProject and
ufoDept for each project record; the sub-mapping, additionally, maps all the
employee records that are associated with a project, and creates instances of
ufoEmployee that are all correlated to the same instance of ufoDept.

This simple example gives just an illustration of the techniques for merging
mappings that are used in Calliope. The full details of the complete algorithm
for merging will be given elsewhere.

5 Unified Flow Model Framework

As a schema mapping tool, Clio aimed in allowing people to transform data
between different schemas. However, it is far from being the only tool available
for this task. Data transformations can nowadays be carried out through a variety
of different tools, such as mapping tools (e.g. Clio, Stylus Studio), Extract-
Transform-Load (ETL) tools (e.g. Datastage), Database Management Systems
(DBMSs) (e.g. DB2, SQL Server, Oracle) etc.

These tools offer different paradigms to design the transformation (and thus
they have different target audiences) and they employ different engines to exe-
cute the designed transformation. Table 1 summarizes the design and runtime
components for mapping tools, ETL tools and DBMSs. For instance, mapping
tools allow the declarative design of transformations (through mappings) and
therefore they are best suited to analysts who want to design a transformation
at a high level. In contrast, ETL tools have a more procedural flavor, allowing
the design of a transformation through the composition of a set of primitive ETL
operators. This makes them the ideal platform for highly-skilled programmers
who want to design complex workflows. Similarly, mapping tools and ETL tools
employ different engines to execute the transformation. Mapping tools usually
translate the transformation down to a query language like XQuery or XSLT,
while ETL tools often contain their custom execution engines optimized for the
supported set of operators.

However by tying together a certain design component and runtime com-
ponent, existing tools severely restrict the users in two significant ways: First,
they force the users to employ both the design and runtime component sup-
ported by the tool. For example, a user cannot design a transformation in Clio

Simplifying Information Integration 119

Table 1. Properties of Mapping Tools, ETL Tools and DBMSs

Mapping Tools ETL Tools DBMS

Design Paradigm Mappings Flow of ETL Op-
erators

Query

Target Audience Analysts Programmers DB Experts
Execution Engine XQuery engine,

XSLT engine etc.
Custom Query Engine

and execute it using the highly optimized internal engine of an ETL tool, since
the ETL’s runtime engine can only execute transformations designed through
the ETL paradigm. Second, they do not allow users to employ different design
paradigms to design a single flow. For example, an ETL programmer willing
to extend the transformation sketched by an analyst in Clio, has to start from
scratch as there is no automatic provision for the translation between design
paradigms supported by different tools.

To alleviate these problems, Calliope is based on the Unified Flow Model
Framework, shown in Figure 6. The heart of this framework is the Unified
Flow Model (UFM); a model that represents data transformations in a tool-
independent way. Different design components can be added in the system in
a modular way by specifying a procedure for translating the internal represen-
tation of the design component to UFM and vice versa. Similarly, a developer
can add an execution engine to the framework by specifying how a transfor-
mation described in UFM can be translated to a language recognized by the
particular execution engine. The result is a framework, where users can design a
data transformation in one or more design components (originating from diverse
tools, such as mapping tools, ETL tools etc.) and subsequently execute it on any
execution engine that has been added to the framework.

ETL
Engine SQL XQuery Jaql

optimizations

Execution Engines

Design Paradigms

ETL flow
design

mapping
design

traditional
SQL-builders

Unified Flow Model (UFM)

Fig. 6. Unified Flow Model Framework

120 B. Alexe et al.

The implementation of the UFM framework poses many important challenges
caused by the differences between various design components (respectively exe-
cution engines). First of all, the translation between different design paradigms
might not be always possible, since they have in general different expressive
power. Should such translations fail or should the system try to translate the
largest subset of the transformation possible? Second, although a transformation
can be optimized at the UFM level, there will be some optimizations that are
execution engine dependent. What types of optimizations can be done on the
UFM level and which optimizations require knowledge of the execution engine
on which the transformation is going to be ran? These are a few of the questions
that arise in the implementation of the UFM framework.

As a first step towards our vision, we have designed the following components
of the UFM framework: a) the UFM model as a flow of ETL-like operators that
can express most common data transformations (which contain all transforma-
tions currently supported by Clio’s mapping language), b) the translation from
Clio’s mapping language to UFM and c) the translation from UFM to Jaql;
a JSON query language that contains a rewriting component that translates
queries to MapReduce jobs that can be executed in Hadoop. This corresponds
to the addition of two components in the architecture shown in Figure 6: the
mapping design component (with a unidirectional arrow into UFM) and the
Hadoop execution engine.

6 Conclusion

We have discussed the main components of Calliope, a system for creating and
maintaining flows of mappings. Our main motivation for Calliope was to extend
and reuse the basic schema mapping operations explored in Clio in more complex
and modular data transformation jobs.

We believe that complex mappings are difficult to build and manage in one
step. Not only is it conceptually hard to understand the relationships between
schemas with a potentially very large number of elements but it is also hard to
visualize and debug them. Calliope allows users to express mappings in terms of
higher-level objects, such as business objects, that are easier to understand and
do not couple implementation with semantics. Further, mappings in Calliope are
smaller and modular, increasing the opportunity for reuse.

Acknowledgements. We acknowledge Hamid Pirahesh for his original sugges-
tion to use UFOs and also for his continuous feedback on this work.

References

1. Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration
of heterogeneous information sources. Data Knowl. Eng. 36(3), 215–249 (2001)

2. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing Mapping Com-
position. In: Proceedings of VLDB, pp. 55–66 (2006)

Simplifying Information Integration 121

3. Dessloch, S., Hernández, M.A., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: Inte-
grating Schema Mapping and ETL. In: ICDE, pp. 1307–1316 (2008)

4. Do, H.-H., Rahm, E.: Coma: a system for flexible combination of schema matching
approaches. In: VLDB 2002, pp. 610–621 (2002)

5. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data
sources: a machine-learning approach. In: SIGMOD 2001, pp. 509–520 (2001)

6. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between on-
tologies on the semantic web. In: WWW 2002, pp. 662–673 (2002)

7. Fagin, R., Kolaitis, P., Popa, L., Tan, W.-C.: Composing Schema Mappings:
Second-Order Dependencies to the Rescue. In: PODS, pp. 83–94 (2004)

8. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoretical Computer Science 336(1), 89–124 (2005)

9. Fuxman, A., Hernández, M.A., Ho, H., Miller, R.J., Papotti, P., Popa, L.: Nested
Mappings: Schema Mapping Reloaded. In: Proceedings of VLDB, pp. 67–78 (2006)

10. Li, W.-S., Clifton, C.: Semint: a tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data Knowl. Eng. 33(1), 49–84
(2000)

11. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema match-
ing. In: ICDE 2005, pp. 57–68 (2005)

12. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB 2001, pp. 49–58 (2001)

13. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm. In: ICDE 2002, pp. 117–128 (2002)

14. Miller, R.J., Haas, L.M., Hernández, M.A.: Schema mapping as query discovery.
In: VLDB 2000, pp. 77–88 (2000)

15. Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data trans-
lation. In: VLDB 1998, pp. 122–133 (1998)

16. Popa, L., Velegrakis, Y., Hernández, M.A., Miller, R.J., Fagin, R.: Translating web
data. In: VLDB 2002, pp. 598–609 (2002)

17. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

18. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-
capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

Author Index

Afrati, Foto 12
Agrawal, Divyakant 75
Alexe, Bogdan 108

Bog, Anja 61

Chen, Qiming 97

Damigos, Matthew 12

Gergatsoulis, Manolis 12
Gubanov, Michael 108

Hernández, Mauricio A. 108
Ho, Howard 108
Hsu, Meichun 97
Huang, Jen-Wei 108
Hueske, Fabian 1

Katsis, Yannis 108
Krüger, Jens 61

Li, Xin 29
Liao, Zaifei 29
Liu, Wei 29
Löser, Alexander 1
Lu, Xinjie 29

Markl, Volker 1

Popa, Lucian 108

Saha, Barna 108
Schaffner, Jan 61
Stanoi, Ioana 108

Tully, Timothy 45

Waas, Florian M. 89
Wang, Hongan 29

Yang, Tian 29

Zeier, Alexander 61

	Title Page
	Preface
	Organization
	Table of Contents
	Situational Business Intelligence
	Introduction
	Situational Business Intelligence
	Example Scenario
	Answering SBI Queries

	Building a SBI System
	Architecture and Components
	Research Challenges

	Related Work
	Conclusion
	References

	On Solving Efficiently the View Selection Problem under Bag-Semantics
	Introduction
	Related Work
	Preliminaries
	Basic Definitions
	Query Rewriting and the View Selection Problem

	The Space of Optimal Solutions
	Representative Set of Solutions
	LGG-VSB Algorithm

	Chain and Path Queries
	Chain-Query Workload
	Path-Query Workload

	Conclusion

	QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition
	Introduction
	Background
	Overview of $Agilor$
	Conceptual Model of DDS
	Supported QoS of DDS

	Real-Time ECA
	Event
	Condition
	Action
	Coupling Modes
	Semantic for $RECA Rules$

	Case Study
	Related Data Structures
	QoS Policies Settings of Each Entity
	Translating QoS Settings to $RECA$
	Limitations of Triggered Rules

	Conclusions and Future Work

	A Near Real-Time Reporting System for Enterprises Using JavaScript Instrumentation with Inter-colo Event Replication
	Introduction
	Past BI Pipeline Architecture

	Past Instrumentation Techniques
	New Architecture
	Instrumentation
	Implementation of Library
	Implicitly Collected Data
	Instrumentation Generation
	Validation of Instrumentation
	Data Collection
	In-Colo Collection of Real-Time Data
	Centralized Collection of Real-Time Data
	Data Filtering
	Reporting and Visualization
	Example Use Case

	Results and Conclusion

	A Hybrid Row-Column OLTP Database Architecture for Operational Reporting
	Introduction
	Column Databases
	A Hybrid Architecture for Operational Reporting
	Necessity of Operational Reporting
	Architecture

	Virtual Cube
	Related Work
	Common Data Warehouse Architectures
	Latency-Reduced Reporting Architectures

	Conclusions
	Future Work

	The Reality of Real-Time Business Intelligence
	Introduction
	The Origins of Business Intelligence
	The Early Years (1970s – 1980s)
	Data Warehousing (1990s –)
	Emergence of Business Intelligence (2000–)
	Real-Time Business Intelligence
	Concluding Remarks

	Beyond Conventional Data Warehousing — Massively Parallel Data Processing with Greenplum Database (Invited Talk)
	Introduction
	Explosive Data Growth
	A New Kind of Database System
	Alternate Application Areas
	Beyond Conventional Data Warehousing
	Declarative Programming Models
	Other Programming Models
	MapReduce
	Cost of Data Transfer

	Future Trends and Challenges
	Analytics
	Hardware Developments
	Database Technology and Programming Paradigms

	Summary

	Scalable Data-Intensive Analytics
	Introduction
	The Challenges
	The Research Directions

	Extend UDFs to Support Parallel Processing
	K-Means Clustering Algorithm
	K-Means Using Relation Valued Function
	K-Means in MapReduce Style on Parallel DB

	SQL Query Process
	Handle Enterprise Dataflow Inside Database Engine
	Correlated Query Process with RVF
	Data Continuous Query Process
	Implementation Issues

	Conclusions
	References

	Simplifying Information Integration: Object-Based Flow-of-Mappings Framework for Integration
	Introduction
	Unified Famous Objects (UFOs)
	Schema Decomposition
	An Overview of the Technique

	Orchestrating Flows of Schema Mappings
	Unified Flow Model Framework
	Conclusion

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

