Malu Castellanos
Umesh Dayal
Timos Sellis (Eds.)

Business Intelligence
for the Real-Time
Enterprise

Second International Workshop, BIRTE 2008
Auckland, New Zealand, August 2008
Revised Selected Papers

@ Springer

Lecture Notes
in Business Information Processing

Series Editors

Wil van der Aalst

Eindhoven Technical University, The Netherlands
John Mylopoulos

University of Trento, Italy
Norman M. Sadeh

Carnegie Mellon University, Pittsburgh, PA, USA
Michael J. Shaw

University of lllinois, Urbana-Champaign, IL, USA
Clemens Szyperski

Microsoft Research, Redmond, WA, USA

27

Malu Castellanos Umesh Dayal
Timos Sellis (Eds.)

Business Intelligence
for the Real-Time
Enterprise

Second International Workshop, BIRTE 2008
Auckland, New Zealand, August 24, 2008
Revised Selected Papers

@ Springer

Volume Editors

Malu Castellanos

Umesh Dayal

Hewlett-Packard

1501 Page Mill rd, MS-1142, Palo Alto, CA 94304, USA
E-mail: {malu.castellanos,umeshwar.dayal } @hp.com

Timos Sellis

Institute for the Management of Information Systems
17 Mpakou str, Athens 11524, Greece

E-mail: timos @imis.athena-innovation.gr

Library of Congress Control Number: 2009931688

ACM Computing Classification (1998): H.3, H.2, J.1

ISSN 1865-1348
ISBN-10 3-642-03421-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03421-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12718801 06/3180 543210

Preface

In todayis competitive and highly dynamic environment, analyzing data to understand
how the business is performing, to predict outcomes and trends, and to improve the
effectiveness of business processes underlying business operations has become criti-
cal. The traditional approach to reporting is no longer adequate, users now demand
easy-to-use intelligent platforms and applications capable of analyzing real-time busi-
ness data to provide insight and actionable information at the right time. The end goal
is to improve the enterprise performance by better and timelier decision making, en-
abled by the availability of up-to-date, high-quality information.

As a response, the notion of "real-time enterprise” has emerged and is beginning to
be recognized in the industry. Gartner defines it as “using up-to-date information,
getting rid of delays, and using speed for competitive advantage is what the real-time
enterprise is all about... Indeed, the goal of the real-time enterprise is to act on events
as they happen.” Although there has been progress in this direction and many compa-
nies are introducing products toward making this vision a reality, there is still a long
way to go. In particular, the whole lifecycle of business intelligence requires new
techniques and methodologies capable of dealing with the new requirements imposed
by the real-time enterprise. From the capturing of real-time business performance data
to the injection of actionable information back into business processes, all the stages
of the business intelligence (BI) cycle call for new algorithms and paradigms as the
basis of new functionalities including dynamic integration of real-time data feeds from
operational sources, evolution of ETL transformations and analytical models, and
dynamic generation of adaptive real-time dashboards, just to name a few.

The series of BIRTE workshops aims to provide a forum for discussing topics re-
lated to this emerging field and setting research directions of business intelligence (BI)
toward the vision of the real-time enterprise. Following the success of BIRTE 2006
held in Seoul, Korea in conjunction with VLDB 2006, BIRTE 2008 was held in Auck-
land, New Zealand, on August 24, 2008, in conjunction with VLDB 2008. It included
one keynote talk and three sessions where ten papers were presented. In contrast to
BIRTE 2006, on this occasion we had six invited talks given by well-known research-
ers from academia and industry driving major efforts in areas that are fundamental to
BIRTE. The papers by the keynote speaker, four invited talks and the four accepted
papers are included here.

Volker Markl (Technische Universitit Berlin) gave the keynote talk on “Situational
Business Intelligence.” Volker is an expert in BI and has a long research record in the
area. He presented the state of the art for situational applications and the impact of
Web 2.0 on these applications; he also presented examples and research challenges
that the information management research community needs to address in order to
arrive at a platform for situational business intelligence.

We wish to express special thanks to the Program Committee members for provid-
ing their technical expertise in reviewing the submitted papers and helping us prepare

VI Preface

an interesting program. To our keynote speaker and the presenters of the papers we
express our appreciation for sharing their work and experiences in this workshop. We
thank the VLDB 2008 organizers for their help and organizational support. Finally,
we would like to extend many thanks to Alkis Simitsis for maintaining the workshop’s
website, for preparing the e-proceedings and for his help in producing this volume.

April 2009 Malu Castellanos
Umesh Dayal
Timos Sellis

Organizing Committee

General Chair

Umeshwar Dayal

Organization

Hewlett-Packard, USA

Program Committee Chairs

Malu Castellanos
Timos Sellis

Program Committee

Martin Bichler
Christof Bornhoevd
Mike Carey

Fabio Casati

Surajit Chaudhuri
Dimitrios Georgakopoulos
Jayant Haritsa
Howard Ho

Tan Kian-Lee
Wolfgang Lehner
Torben B. Pedersen
Krithi Ramamritham
Stefano Rizzi
Donovan Schneider
Alkis Simitsis

Panos Vassiliadis
Andrew Witkowski

Publication Chair

Alkis Simitsis

Hewlett-Packard, USA
Institute for the Management of Information Systems
and National Technical University of Athens, Greece

Technical University of Munich, Germany
SAP Labs, USA

BEA, USA

University of Trento, Italy

Microsoft, USA

Telcordia Technologies, USA

1ISc, India

IBM Almaden, USA

National University of Singapore, Singapore
University of Dresden, Germany

Aalborg University, Denmark

IIT Bombay, India

University of Bologna, Italy

Yahoo, USA

Stanford University, USA

University of loannina, Greece

Oracle, USA

Stanford University, USA

Table of Contents

Situational Business Intelligence
Alexander Léser, Fabian Hueske, and Volker Markl

On Solving Efficiently the View Selection Problem under
Bag-Semantics
Foto Afrati, Matthew Damigos, and Manolis Gergatsoulis

QoS-Aware Publish-Subscribe Service for Real-Time Data

ACqUisition . . . ot o e
Xingie Lu, Xin Li, Tian Yang, Zaifei Liao, Wei Liu, and
Hongan Wang

A Near Real-Time Reporting System for Enterprises Using JavaScript
Instrumentation with Inter-colo Event Replication
Timothy Tully

A Hybrid Row-Column OLTP Database Architecture for Operational
Reportingo
Jan Schaffner, Anja Bog, Jens Kriger, and Alexander Zeier

The Reality of Real-Time Business Intelligence
Divyakant Agrawal

Beyond Conventional Data Warehousing—Massively Parallel Data
Processing with Greenplum Database (Invited Talk)
Florian M. Waas

Scalable Data-Intensive Analytics o ..
Meichun Hsu and Qiming Chen

Simplifying Information Integration: Object-Based Flow-of-Mappings
Framework for Integration
Bogdan Alexe, Michael Gubanov, Mauricio A. Herndndez,
Howard Ho, Jen-Wei Huang, Yannis Katsis, Lucian Popa,
Barna Saha, and Ioana Stanoi

Author Index

Situational Business Intelligence

Alexander Loser, Fabian Hueske, and Volker Markl

TU Berlin
Database System and Information Management Group
Berlin, Germany
firstname.lastname@tu-berlin.de

Abstract. Traditional business intelligence has focused on creating dimensional
models and data warehouses, where after a high modeling and creation cost
structurally similar queries are processed on a regular basis. So called "ad-hoc"
queries aggregate data from one or several dimensional models, but fail to
incorporate other external information that is not considered in the pre-defined
data model. We focus on a different kind of business intelligence, which
spontaneously correlates data from a company's data warehouse with "external"
information sources that may come from the corporate intranet, are acquired
from some external vendor, or are derived from the internet. Such situational
applications are usually short-lived programs created for a small group of users
with a specific business need. We will showcase the state-of-the-art for
situational applications as well as the impact of Web 2.0 for these applications.
We will also present examples and research challenges that the information
management research community needs to address in order to arrive at a
platform for Situational Business Intelligence.

Keywords: Business intelligence over text, Ad-hoc analysis, Cloud Computing.

1 Introduction

The long tail phenomenon is often observed with the popularity of consumer goods,
web pages or tags, used in “Flickr” or “MySpace”. Interestingly, current enterprise
applications are characterized by a long tail distribution as well: A small number of
business critical applications are maintained by the IT-department. Such applications
typically require high availability, high scalability and are requested by a large
number of users. Examples for such business critical systems are mostly systems that
manage business transactions e.g., accounting, customer relationship management
(CRM), enterprise resource planning (ERP) and simple online analytical processing
application. Besides of these business critical applications a “long tail” of situational
applications exists. These are created to solve a short term problem and are often
developed ad-hoc and independent from the IT-department. However, the growing
amount of unstructured text in the web, intranets or user-generated content in blogs or
reviews [RT07] needs to be integrated with structured information from a local ware
house in an ad-hoc application. Neither conventional search engines nor conventional
BI tools address this problem, which lies at the intersection of their capabilities.
However, situational business intelligence applications tackle this problem. They tap

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 1411, P009.
© Springer-Verlag Berlin Heidelberg 2009

2 A. Loser, F. Hueske, and V. Markl

into the wealth of unstructured information in order to determine new trends and give
an enterprise a competitive advantage. Major building blocks of situational business
intelligence applications are information extraction algorithms and frameworks like
UIMA [FL04], which identify relevant concepts and relationships within and between
documents.

In situational business intelligence, the value of information decreases over time.
Hence, the time for a-priori building semantic indexes may prevent BI users from
getting a fast answer. Therefore another building block will be cloud computing. This
technology enables an information worker to analyze and extract information ad-hoc
and at query time from large corpora, such as a sample of several 10.000s documents
from the web returned by a search web engine. Cloud architectures strive to massively
parallelize complex computations on a large cluster through a computational model
motivated by functional programming. Its scale-out and adaptability are exactly the
kind of features needed to parallelize and scale-out UIMA aggregate analysis engines.
Computing clouds provide highly available storage and compute capacity through
distribution and redundancy. Most importantly, cloud computing architectures
promise to adapt to changing requirements with respect to compute- and storage
capacity by dynamically provisioning new compute or data nodes.

Our vision: We will develop a novel, database-inspired approach to ad-hoc analyze,
aggregate and query very large data collections on cloud architectures. Our project
builds upon the following five principles:

e Common Algebraic Core. We provide a common core of Situational Business
Intelligence Applications - an extensible, algebraic model for executing complex
queries over unstructured and (semi-) structured data. That model integrates data
and text analysis operators and allows the analyst to describe, plan, optimize, and
execute the proposed information extraction and query processing tasks.

e Unstructured Text is a First Class Citizen. Local analysis operations on a
single document [RRK+08], global analysis operations on a set of documents
[BCS+07] and entity ranking approaches for uncertain, extracted data [KSI+08,
CYCO07] must seamlessly fit into the algebraic framework and must be distributed
efficiently on computing clouds.

e Elementary Operators on the Cloud. The algebra translates Situational
Business Intelligence queries into functional data flow programs that are
executed in a distributed fashion on a computing cloud. As starting point we base
on elemental functional operators map and reduce and will add elementary
operators, such as a merge-operator for combining multiple inputs, a split-
operator for partitioning data and a tree-operator for improving efficiency of the
relational join operation.

¢ Query Optimization. In order to minimize resource consumption or response
time, we will identify beneficial heuristics and rules for rewriting initial query
plans. We also need to identify parameters that impact execution to derive the
preconditions under which the application of certain rewrite rules on the query
plan is beneficial. Also, we will need to study how these parameters can be
obtained efficiently before a particular query or a particular operation starts to
execute.

Situational Business Intelligence 3

e Query Refinement. Analysts need query refinement methods while selecting
data sources, extractors, measurements and dimensions in an iterative query
refinement process. We will investigate algorithms which determine alternative
queries that serve the pragmatics of the querying user. Such an algorithm must
determine the distance between the original query and some generated candidate
query with respect to query semantics and coverage. Based on these tests it
determines the candidate query whose results fit best the expectations of the
querying user.

The rest of the paper is structured as follows: In Section 2 we propose typical use
cases for business intelligence applications and identify major requirements, Section 3
reviews the building blocks of the system for running Situational Business
Intelligence applications and outlines major research challenges that need to be solved
before building such a system.

2 Situational Business Intelligence

The next generation of business intelligence applications requires analyzing and
combining large data sets of both structured and unstructured data. According to
current estimates, professional content providers (webmasters, journalists, technical
writers, etc) produce about 2GB of textual content per day, whereas all user-generated
content on the web amounts to 8-10GB per day [RTO7]. Especially textual data
usually is not processed in any manner, i.e., is not cleansed or annotated with an
analysis schema. In this section we introduce our example scenarios and to our query
answering process.

2.1 Example Scenario

Companies more and more tap into the analysis of consumer responses of consumers
on company driven forums or external blogging sites. Incentives for analyzing the
user-generated content are to increase customer loyalty, to bring ideas into the
company, to research the market or to amplify "word of mouth" marketing. Often
such analysis activities are initiated by non-IT people, e.g., product or marketing
managers. The following use case tackles the ad-hoc analysis of “Business to
Customer” communities of an “ordinary” product manager:

Example 1: A reseller of electronic goods is analyzing the digital camera market
during the last 12 months. Therefore the reseller poses the following query:

Select customer reactions (sentiments) for digital cameras featuring 7-9 megapixels
and below 400 euro during the last 12 months. Use results from amazon.com,
google.com, blogspot.com and dpreview.com as data source.”

The system receives ca. 560.000 candidate pages from a web search engine and filters
out pages which do not contain any sentiments and do belong to dpreview.com,
blogspot.com or amazon.com. From the remaining pages, the system extracts camera
attributes (megapixel, price etc.), sentiments (time, author, positive/negative) and

4 A. Loser, F. Hueske, and V. Markl

relationships between them. To avoid sparse data sets in the sentiments, identical
camera models and their attributes are merged. Repeated sentiments from the same
user and for same camera are counted. Next, the cleansed sentiment data is merged
with structured sales data records from an internal data ware house. Finally, the
system presents the product manager a time shift diagram, where he could identify
correlations between sentiments and sales during the last 12 months.

2.2 Answering SBI Queries

Answering Situational Business Intelligence queries requires a close interaction
between components for gathering text data, for extracting structured data from text,
for cleansing extracted data, for obtaining a schema from the extracted data and for
processing the extracted data on top of the generated schema. In the following, we
review each step in the answering process.

1. Ad-hoc Data Retrieval: SBI queries access various diverse data sources such as
the Internet, cooperative intranets, data warehouses or office documents. While
databases allow the retrieval of information with simple SQL interfaces, web
sources are not accessible in such a structured way. E.g., the given example
requires access to a data warehouse holding sales data for cameras and needs to
retrieve user comments from internet blogs. Common methods to access web
content are crawlers which materialize web sites locally by following links, such
as Nutch-Hadoop, or to use web query languages, such as YQL'.

2. Ad-hoc Data Extraction: Unstructured data like forum pages or blogs contain lots
of valuable information. Information extraction techniques are required to
transform this information into a semi-structured model and make it accessible.
For our example query, camera makes and models as well as user opinions
(sentiment analysis) need to be extracted from blogging websites.

3. Data Cleansing of Extracted Data: Data provided by data extraction services is
often of low quality. E.g., the chosen extractor might not capture the semantic of
the blogger and therefore not all attributes of a complex entity could be
identified. Often current extraction services such as “OpenCalais.com” do not
fuse syntactical different entities (e.g., “Dell” and “Dell Inc.”) to a common
logical entity. Data cleansing are resolving unique entities [WNJOS] or filling up
missing information e.g., from domain knowledge.

4. Schema Generation from Uncertain Extracted Data: In contrast to a static
schema in a data ware house, Situational Business Intelligence applications
require a flexible view over the data that is no longer coupled neither on available
data in the data warehouse nor to a common 'one size fits all' schema. When
formulating such an ad-hoc query over unstructured data, the analyst needs to
estimate data volume and quality, available dimensions, facts and measurements
for the chosen unstructured data source at query definition time. Cleary, for most
data sources, the analyst will not have enough information to incorporate such
estimates into ones query and requires additional system support.

5. Query Processing: The data integration step requires all data available in
structured or semi-structured format. Traditional database operators like filter,

! Yahoo! Query Language: http://developer.yahoo.com/yql

Situational Business Intelligence 5

join, grouping and aggregating operators are applied on that data. For our
example, the extracted blog data is filtered for camera of a specific manufacturer.
This information is grouped by model and positive and negative opinions are
counted. Finally, this data is joined with sales data for cameras models from the
data warehouse.

3 Building a SBI System

Based on the requirements for a SBI system in this section we show a draft of the
architecture of a Situational Business Intelligence system. Later, we define research
challenges we face when building such a system and present recent technologies
which have the capabilities to overcome these problems.

3.1 Architecture and Components

A business intelligence system needs to analyze large amounts of data in an ad-hoc
fashion. Large amount of data result from a web search or a web crawl, where in a
worst case millions of web search results or hundreds of GB of user-generated content
need to be analyzed. To worsen the situation a business intelligence system must be
able to answer an ad-hoc query usually in a few seconds to a few minutes. To address
these goals, the authors of [LHDB2008] provided a basic model and process for
analyzing structured and unstructured user generated content in a business warehouse.
We extended their findings towards an ad-hoc query processing model and defined an

Query Builder

Query Processing

Crawler H Extractor || Analyzer

Parallel Execution Engine

Computing Cloud

Fig. 1. Architecture of a situational business intelligence system

6 A. Loser, F. Hueske, and V. Markl

architecture model for a parallel data management system. In the following we list
components for processing Situational Business Intelligence analytics queries.

Base Analytics: Enable Ad-hoc Queries but hide Complexity of Parallelization.
Processing a large of data in a short amount of time is computationally intensive. The
ability to parallelize, the fault-tolerance, and the adaptability of cloud architectures
enable information management systems to answer queries on an internet-wide scale.
However, the architecture of such a system is fundamentally different from a
client/server architecture and storage subsystems, which traditional database systems
utilize.

¢ Cloud Computing. Although Cloud Computing is not a fixed term, it describes
network architectures with many lousily coupled computer nodes. These nodes
are often built from commodity hardware. The property of loose coupling
requires that cloud computing software must be able to cope with nodes joining
or leaving the system, i.e. be fault tolerant and scalable. Due to the adaptability of
the cloud, query optimization is mostly dynamic. Performance, cost, and energy
consumption of the cloud guide adaptation of query execution plans at run-time.

e Parallel Data Storage. A distributed file system has to take the role of shared
memory and storage system. Cached results and metadata have to be stored and
indexed on the distributed file system of the cloud. Google's GFS [GGL03] or
Microsoft's COSMOS [31] are optimized towards provide performance and fault
tolerance. Hadoop®, the open source MapReduce framework of the Apache
Project, combines a distributed file system (HDFS) and a MapReduce runtime
environment. However, current file systems do not provide random data access
beyond file level. To overcome this limitation, column oriented data stores like
Google's BigTable [CDG06] or HBASE have been built on top of distributed file
systems. These stores organize data in a column oriented fashion which allows
for simple extensions of storing schemata and sparse data, a feature which is
crucial for ad-hoc text extraction tasks where often no schema is a-priori
provided.

e Parallel Execution Engine. Due to the large number of nodes, Cloud Computing
is especially applicable for parallel computing task working on elementary
operations, such as map and reduce. MapReduce programs are executed in a
runtime environment that is responsible for the distribution of computing tasks.
These environments handle errors transparently and ensure the scalability of the
system. [Dgh0O4] and [YDHO7] provide details on the MapReduce programming
paradigm and its applications.

e Query Processor. On cloud architectures, queries need to be translated into
functional data flow programs. Above basic operations range from simple
crawling over complex linguistic processing of a set of text documents to data
analysis operations, such as value aggregation. Recently, data processing
languages have been designed to reduce the efforts to implement data analysis
applications on top of a distributed system. These languages are often tailored
towards mass data analysis on flat data models, such as found at query log file

2 http://hadoop.apache.org/

Situational Business Intelligence 7

analysis. Examples for this type of query language are Piglatin [ORS08], Scope
[CILO8] or the Cascading framework®. The language JAQL* supports a semi-
structured data model and provides basic data analysis operations.

e Query Builder. Current query processing engines allow an analyst to model a
data flow, which is executed as map-reduce program. The data flow is either
specified as script language in a text document, such as with JAQL or PigLatin,
or is included into a programming environment, such as in Cascading. However,
current query builder do not provide specific operations for harvesting text data
from the web, extracting entities and relationships and discovering a suitable
analysis schema e.g., an OLAP-schema.

Advanced analytics: Run fast Analytics on Text Data. Particularly, complex ad-
hoc queries over unstructured text require a data and processing model for a cloud
architecture that seamlessly integrates advanced information extraction, and complex
analysis operators with base analysis flow operators (filter, merge, join, aggregate,
etc.). Functional map reduce programs can parallelize these advanced analysis
operations but have to be integrated into the optimization framework of the overall
system. We name requirements for executing advanced analysis operators on a map
reduce platform:

e Parallel Extraction leveraging Cost Models. Information Extraction transforms
unstructured textual information into semi-structured data and is a core
component of a Situational Business Intelligence system. Current extraction
systems [KKR06, SDN+07] combine local and global analysis techniques in an
extraction plan. Parallelizing executing plans on a cloud platform would
drastically reduce execution times. However, dependencies between “slower” and
“faster” extractors during global analysis operations can cause bottlenecks. To
avoid such bottlenecks each extractor provides a cost model. An optimizer will
used it to distribute extraction load optimal over cloud nodes.

e Parallel Testing of “Extractor - Data Source Combinations”. We except in
the feature several providers of “text analytics” as service or by the domain
independent information extraction paradigm [BCS+07]. A component is
required that tests the quality and “fitness” of these services against text-data
sources e.g., blogging web sites or news websites. To evaluate many potential
“extractor—data source combination” fast, this component need to drastically
parallelize the data gathering extraction and analysis process.

= Distributed Data Cleansing. Current text-analytics-as-service applications, such
as OpenCalais.com, or UIMA annotators provide extracted but still “dirty” data
snippets. We expect that new data cleansing techniques will benefit from
additional context information in the text e.g., about the position of the extracted
entities in the text. To leverage that information for large volumes of “user-
generated-content”, data cleansing techniques should be executed on a cloud.

= Discovering Analysis Schemas from Uncertain, Extracted Data. Schema
discovery is the problem of constructing a relational schema that best describes
extracted data. However, with text data, the analyst often is unfamiliar with the

3 http://www.cascading.org/
* http://jagl.org/

8 A. Loser, F. Hueske, and V. Markl

data structure and cannot estimate the number of types and relationships a text
will provide. Often the extracted data is inherently noisy, was extracted with a
low precision or is ambiguous. Current research prototypes, such as NAGA
[KSI+08], R-CUBE [PLAPOS8] or EntityRank [CYCO07], use language models to
rank in a top-k fashion entities and relationships from an extracted fact data base.
Their probabilistic approaches consider uncertainty at the level of the extractor, at
the level of the extracted span and the level of the document. A schema
generation approach for Situational Business Intelligence applications needs to
incorporate that uncertainty when generating the schema on a web-scale.
“Starting points” are existing schema generation solutions for mining keys and
foreign keys [SBHRO06] for discovered high level structures in schemas
[WRSMO08] or for generating schemas from domain independent information
extraction systems [CSEQ7].

3.2 Research Challenges

The challenge of executing Situational Business Intelligence analytics focuses on ad-
hoc queries that neither traditional database management systems nor search engines
could answer. In order to achieve that goal, we will address the following research
challenges to improved base and advanced analytics:

Base Analytics: Extend language like JAQL, PIG or CASCADING as a single
analysis-algebra for data gathering, extraction and processing. Unsolved research
questions tackle the data and processing model in order to execute complex ad-hoc
queries over structured and unstructured data. Can the model be formalized as a
closed algebra? How can the model be translated efficiently to a cloud computing
executing environment?

Base Analytics: Leveraging existing principles for distributed data management.
Principles from Peer-to-Peer networks and Grid Computing techniques need to be
transferred and improved for a cloud information management system. How does one
perform query and storage load-balancing between the various processors in the cloud
while not giving up data locality during query processing? How could a cloud run in a
fault-tolerant way with high scalability and low cost? What management features are
needed?

Advanced Analytics: Execute Relationship Extraction Techniques in Parallel.
Common techniques to extract relationships base either on domain-dependent, rule-
based systems or on domain-independent, open information extraction systems. Rule-
based systems use dictionaries, grammars or extraction algebras to define the
structure of entities and their relationships. However, the structure of entities and their
relationships need to be known a-priori when formulating the rules for a specific text.
Most rule-based tasks are local analysis tasks which could be executed as a map job
and cloud be run in parallel execution mode. Open information extraction systems
first train a classifier to detect relationships between entities on a set of documents.
The classifier receives a set of entities (e.g., two company names for detecting an
acquisition) and outputs a set of common grammatical and syntactic patterns (verbs,
participles etc.) between these entities in the text. Based on these patterns

Situational Business Intelligence 9

relationships between entities are found, that are not known a-priori or where used in
the training phase. The training step of these systems applies local analysis, such as
detecting relationships in the training process per documents which could be executed
as a map operation. However, training the classifier also includes and global analysis
techniques to aggregate relationship patterns found on all documents within the
corpus. Currently it is unclear on how to execute these global analysis operations and
other problems e.g., web-wide key-generation from extracted data, data fusion of
extracted data, anchor text analysis and home page search efficiently on a cloud. How
can dependencies between extractors on global analysis tasks be optimized to
guarantee a fast classifier building time and extraction time? How can we produce
classifiers for millions of individual document collections on the fly?

Advanced analytics: On-demand Data Processing and Integration Operations.
Typical advanced operations are time series or data cleansing operations. How can
one flexibly extend the system with additional analysis operations on-demand? Often
analyzed web data e.g., customer sentiments or data extracted from emails, needs to
be “joined” with master data. How can one integrate operators for processing of
structured and unstructured data sources into the cloud architecture?

Advanced analytics: End-user-driven Analysis. To drastically raise the number of
users for analysts and lower the costs for developing the system infrastructure,
ordinary “information worker” should have a simple access for posing ad-hoc
analytics queries. Which new end-user driven analysis paradigms need to be offered?
Can a dimensional model (in an OLAP sense) be derived ad-hoc from unstructured
data? How can the user be guided to ask the right questions for deriving that model?
How can ad-hoc user queries be reformulated based on available data and extraction
operations? How can aggregation be performed and defined in a meaningful way,
when the grouping criteria may not be known in advance, but are themselves
extracted from the data?

Advanced Analytics: Data Flow Optimization across Analysis Operations.
Currently, cloud computing languages, such as JAQL or Cascading do focus only on
executing queries. Optimizations are conducted at the level of the MapReduce
platform e.g., Hadoop. Given a system, where on-demand new operations are plugged
in, how will the execution be parallelized, optimized and dynamically adapted? E.g.,
how does one combine or group crawling, extraction and analyzing data in order to
efficiently process these operations on the same processor of the cloud? How do the
operators have to be implemented to conduct optimizing of the entire flow? What is a
“generic” cost model for such an operator?

4 Related Work

The internet is a source of lots of valuable information. There have been several
attempts to leverage this data. The Cimple project [DSCO7] provides a software
platform which aims to integrate all information about specific user communities of
the internet. The system starts with a high quality seed, consisting of initial data

10 A. Loser, F. Hueske, and V. Markl

sources, relations and expert domain knowledge. From then on, it crawls its given
web sources, extracts valuable information, integrates it and provides a web front end
for browsing the joined information. Similar to Situational Business Intelligence
systems, the Cimple platform autonomously crawls the web, extracts and integrates
information. It differs from the concept of Situational Business Intelligence in that it
is rather collecting information than allowing for extensive analyses. The Avatar
project [KKRO6] aims to provide semantic search over large data corpora such as
corporate intranets or email archives. When answering a user query, the system is
looking for documents whose content matches the intent of the search query. This
requires three semantic analyses. First, the semantics of a document needs to be
determined, second the intent of the query must be identified and finally the match
between the documents semantic and the query intent must be checked. The matching
step is done by a look-up in a semantic search index, which is build a-priori by
applying information extraction techniques on all documents of the corpus. In contrast
to Situational Business Intelligence systems the Avatar system does not analyze
documents is an ad-hoc fashion. Furthermore, it only provides search functionality
rather than complex analysis features. [BDJO7] presents methods to compute OLAP
queries over uncertain data. Such data might result from applying information
extraction techniques. Therefore, these methods might prove beneficial in the context
of Situational Business Intelligence.

5 Conclusion

We have introduced a novel a class of applications for answering Situational Business
Intelligence queries over web data. To answer such queries in an ad-hoc and fast
fashion for samples including 10000s of web documents, we have introduced how
cloud computing techniques need to be incorporated with text analytics, query
processing and query refinement methods. We have named a few projects
investigating how to integrate text analytics and query processing on top of extracted
data. The next step is to drastically increase execution speed of these algorithms. The
envisioned path for ad-hoc OLAP style query processing over textual web data may
take a long time to mature.-In any case, it is an exciting challenge that should appeal
to and benefit from several research communities, most notably, the database, text
analytics and distributed system worlds. -

References

[BCS+07] Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open
Information Extraction from the Web. In: IJCAI 2007 (2007)

[BDJO7] Burdick, D., Deshpande, P.M., Jayram, T.S., Ramakrishnan, R., Vaithyanathan, S.:
OLAP Over Uncertain and Imprecise Data. VLDB Journal 16(1) (January 2007)

[CILO8] Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:
SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. In: VLDB 2008
(2008)

Situational Business Intelligence 11

[CRSO8] Cooper, B., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s Hosted Data Serving
Platform. In: VLDB 2008 (2008)

[CDGO6] Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for Structured Data. In:
OSDI 2006 (2006)

[CSEO7] Cafarella, M., Suciu, D., Etzioni, O.: Navigating Extracted Data with Schema
Discovery. In: WebDB 2007 (2007)

[CYCO7] Cheng, T., Yan, X., Chen-Chuan Chang, K.: EntityRank: Searching Entities Directly
and Holistically. In: VLDB 2007, pp. 387-398 (2007)

[DGO4] Dean, J., Ghemawat, S.: Map Reduce: Simplified Data Processing on Large Clusters.
In: OSDI 2004 (2004)

[DSCO7] DeRose, P., Shen, W., Chen, F., Doan, A., Ramakrishnan, R.: Building Structured
Web Community Portals: A Top-Down, Compositional, and Incremental Approach. In:
VLDB 2007 (2007)

[FLO4] Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured information
processing in the corporate research environment. Natural Language Engineering 10(3-4)
(September 2004)

[Gart08] Gartner Executive Programs CIO Survey 2008 (January 10, 2008)

[GGLO3] Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP 2003 (2003)

[GS04] Gotz, T., Suhre, O.: Design and implementation of the UIMA Common Analysis
System. IBM Systems Journal 43(3) (2004)

[IBY+07] Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed Data-
Parallel Programs from Sequential Building Blocks. In: EuroSys 2007 (2007)

[KKRO6] Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.: Avatar
semantic search: a database approach to information retrieval. In: SIGMOD 2006 (2006)
[KSI+08] Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: NAGA:

Searching and Ranking Knowledge. In: ICDE 2008 (2008)

[ORSO08] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-
Foreign Language for Data Processing. In: Sigmod 2008 (2008)

[PLAPO8] Pérez, J.M., Llavori, R.B., Aramburu, M.J., Pedersen, T.B.: Integrating Data
Warehouses with Web Data: A Survey. IEEE Trans. Knowl. Data Eng. 20(7), 940-955
(2008)

[RRK+08] Reiss, F., Raghavan, S., Krishnamurthy, R., Zhu, H., Vaithyanathan, S.: An
Algebraic Approach to Rule-Based Information Extraction. In: ICDE 2008 (2008)

[RTO7] Ramakrishnan, R., Tomkins, A.: Towards a PeopleWeb. IEEE Computer 40(8) (2007)

[SBHRO6] Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: GORDIAN: Efficient and
Scalable Discovery of Composite Keys. In: VLDB 2006 (2006)

[SDN+07] Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative information
extraction using datalog with embedded extraction predicates. In: VLDB 2007 (2007)

[WNJO8] Weis, M., Naumann, F., Jehle, U., Lufter, J., Schuster, H.: Industry-Scale Duplicate
Detection. In: VLDB 2008 (2008)

[WRSMO08] Wu, W., Reinwald, B., Sismanis, Y., Manjrekar, R.: Discovering topical structures
of databases. In: SIGMOD Conference 2008 (2008)

[YDHO7] Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-Reduce-Merge: Simplified Relational
Data Processing on Large Clusters. In: Sigmod 2007 (2007)

On Solving Efficiently the View Selection
Problem under Bag-Semantics*

Foto Afrati', Matthew Damigos', and Manolis Gergatsoulis?

! Department of Electrical and Computing Engineering,
National Technical University of Athens (NTUA), 15773 Athens, Greece
{afrati,mgdamig}@softlab.ntua.gr
2 Department of Archive and Library Sciences, Ionian University,
Toannou Theotoki 72, 49100 Corfu, Greece
manolis@ionio.gr

Abstract. In this paper, we investigate the problem of view selection
for workloads of conjunctive queries under bag semantics. In particular
we aim to limit the search space of candidate viewsets. In that respect we
start delineating the boundary between query workloads for which cer-
tain restricted search spaces suffice. They suffice in the sense that they
do not compromise optimality in that they contain at least one of the
optimal solutions. We start with the general case, where we give a tight
condition that candidate views can satisfy and still the search space (thus
limited) does contain at least one optimal solution. Preliminary exper-
iments show that this reduces the size of the search space significantly.
Then we study special cases. We show that for chain query workloads,
taking only chain views may miss all optimum solutions, whereas, if we
further limit the queries to be path queries (i.e., chain queries over a
single binary relation), then path views suffice. This last result shows
that in the case of path queries, taking query subexpressions suffice.

1 Introduction

The view selection problem has received significant attention in many data-
management scenarios, such as information integration, data warehousing, web-
site designs, and query optimization. The static version of this problem is to
choose a set of views to materialize over a database schema, such that (a) the
cost of evaluating a set of queries is minimized, and (b) the views fit into a
prespecified storage space. In query optimization, evaluating a set of queries us-
ing previously materialized views can significantly speed-up query processing,
as part of the computation necessary for each query may have been done while
computing views. Moreover, a set of similar queries (e.g. queries with similar

* This paper is part of the 03EA176 research project, implemented within the frame-
work of the “Reinforcement Programme of Human Research Manpower” (PENED)
and co-financed by National and Community Funds (25% from the Greek Ministry
of Development-General Secretariat of Research and Technology and 75% from E.U.-
European Social Fund).

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 122009.
© Springer-Verlag Berlin Heidelberg 2009

On Solving Efficiently the View Selection Problem under Bag-Semantics 13

subexpressions) can be computed efficiently by selecting an appropriate set of
views that exploits these sharing opportunities. In a data warehouse, a successful
selection of views to materialize can preclude costly access to the base relations
and consequently helps to answer a batch of queries in efficient way. Similarly,
the choice of a proper set of views to precompute may improve the performance
of web-sites; because the set of expected queries can be answered quickly [10].

In contrast to the query answering problem using views, where the set of views
is initially given, the view selection problem indicates automated techniques to
produce the appropriate set of materialized views. In this paper, we focus on the
view selection problem using query rewriting techniques, assuming that both
query and view definitions are conjunctive queries. We use bag-semantics, which
means that duplicate occurrences of tuples are allowed to query answers and to
database relations [19]. The “bag-approach” of the problem is more practical
because of its close relationship to the SQL features where bag-relations are
allowed and the duplicate tuples are not eliminated during the query evaluation;
unless explicitly requested (by using the DISTINCT keyword).

The hardness of the view selection, as defined and investigated in [SI27IT2],
is caused by the bicriteria nature of the problem. These criteria are: (1) for
a given set of views, the selection of the less-costly equivalent rewritings of
the queries and (2) the choice of the appropriate set of views which does not
violate the storage constraint. Bicriteria settings have different variants (and
consequently different solutions and complexity results) depending of which of
the two objective functions of these two criteria is required to be optimized
under the constraint that the value of the other objective function does not
exceed a bound that is given by the designer of the system. In this paper, we
consider the variant of the problem in which we want to find a viewset such
that it does not exceed the storage constraint and is optimum with respect to
the evaluation cost of the query workload. We count the size of a viewset as
the number of tuples required to store all the views in the viewset (however we
notice that all our results hold under a more general count) and the cost of query
evaluation is based on the sum-of-joins cost model for left-linear query plans (the
exact definitions can be found in subsequent section). In [2] the same problem is
investigated and is shown that we can restrict the search space for views in the
viewset only to those views that are generalizations of query subexpressions.

Our contributions in this paper are: a) In Section I we improve the search
space of [2] by showing that it suffices to consider only the least general gen-
eralizations of query subexpressions. In particular, we show that if we restrict
ourselves to this smaller search space, an optimal solution is always retained,
i.e., a solution which satisfies the storage limit and achieves the optimum value
for the evaluation cost. b) Based on these results, we develop in Section an
efficient algorithm for finding an optimal solution. ¢) We study (Section []) the
problem for two special cases, namely when all queries in the workload are chain
queries and when they are path queries. In the first case we show that we cannot
restrict the search space to only chain views because we may loose all optimal

14 F. Afrati, M. Damigos, and M. Gergatsoulis

solutions (Section [B.)). In the second case, we show that we can restrict further
the search space to consider only path views (Section [5.2).

2 Related Work

The problem of automatic selection of views to materialize has attracted the in-
terest of many researchers. In [7], the space requirements for the view selection
problem in the context of data warehouse design under set-semantics, are con-
sidered. This paper, also investigates conditions under which the search space of
optimal configurations can be reduced to the views that are subexpressions of
the queries in the workload. In [2TI23], the extraction of common subexpressions
of the queries in the workload is studied. The authors in [21], study the problem
of searching for a maximum common subexpression of a workload, while [23] pro-
poses an algorithm for searching for maximum common subexpressions for a sub-
class of select-project-join SQL queries, using query graphs. Another approach
for finding similar subexpressions is proposed in [25] where workloads of select-
project-join-groupby queries are considered. The authors propose a solution for
the multi-query optimization problem which is incorporated in the Microsoft
SQL Server. The algorithm has a lightweight mechanism (table-signatures) to
detect common subexpressions and multiple sharing opportunities.

In [12], it is stated the view selection problem using AND-OR graphs to
represent the query plans. Two types of constraints on materialized views are
assumed, a storage limit and a maintenance-cost constraint. The candidate set
of view configurations are given as input, hence the time of the construction of
view configurations is not considered in the response time of the algorithms.

In [20], the view selection problem assuming a maintenance-cost constraint
in the data warehouse environment and proposed an algorithm based on multi-
query graphs, is studied. In [24], the authors examine greedy /heuristic algorithms
for solving the view-selection problem assuming a maintenance-cost constraint
and OLAP queries in multidimensional data warehouse environment. In [6] the
problem for multidimensional databases is studied and an algorithm that selects
views by reducing significantly the solution space is proposed; considering only
the relevant elements of the multidimensional lattice. The authors considered the
standard SQL notion of group-by and aggregate functions in order to capture
queries with aggregation. In earlier work, Rizzi and Saltarelli [I8] presented a
comparative evaluation that uses view materialization and indexing for a single
GSPJ (Group-by-Select-Project-Join) query expressed on a star scheme for the
data warehousing context.

The view selection problem, in the context of multidimensional data ware-
houses, also studied by several authors [TAT3/TT]. In [T4], it is described a system
which was incorporated in Microsoft SQL Server and focuses on selection of both
views and indexes. Earlier, the authors of [13] propose algorithms for selecting
views in the case of data cubes and study the complexity of the problem. In [I1],
the work of [13] was further extended to include index selection.

A significant result that underlines the difference of the view selection problem
in the case of queries with and without aggregation is presented in [3]. In this

On Solving Efficiently the View Selection Problem under Bag-Semantics 15

work, an algorithm for selecting views is proposed and complexity results are
presented, using a theoretical approach to express GSPJ queries. The authors
also showed that using materialized views to compute aggregate queries results
greater benefits than for purely conjunctive queries; as a view with aggregation
precomputes some of the grouping/aggregation on some of the query’s subgoals.
In [§], Chirkova et al. observed that the complexity of view selection problem
under set semantics, and assuming conjunctive query workload, depends crucially
on the quality of the estimates that a query optimizer has on the size of views. In
[8], it is also shown that an optimal choice of views may involve an exponential
number of views in the size of the database schema. In the same context, in [2],
Afrati et al. study the search space of candidate sets of views, under bag, set
and bag-set semantics. Finally, the problem of selecting minimal-size-views to
materialize has been studied theoretically in [9], where the problem has been
proven decidable and an upper bound is given on this problem’s complexity.

3 Preliminaries

3.1 Basic Definitions

A relation schema is a named relation defined by its name R (called relation
name) and a set A of attributes. A relation instance r for a relation schema
is a collection of tuples over its attribute set. The schemas of the relations
in a database constitute its database schema. A relational database instance
(database, for short) is a collection of stored relation instances. A relation in-
stance can be viewed either as a set or as a bag (or multiset) of tuples. A bag
(or bag-relation [22]) can be thought of as a set of elements with multiplicities
attached to each element. In a set-valued database, all stored relations are sets;
in a bag-valued database, multiset stored relations are allowed. The bag-operators
[22] are similar to the set-operators. The difference is that in bag-selection and
bag-projection duplicate tuples in the result are not eliminated. Concerning the
Cartesian product, the difference is that the multiplicity of each tuple ¢ ob-
tained in R x S from a tuple t; of R and a tuple t3 of S is m - n, where m is
the multiplicity of ¢; and n is the multiplicity of ¢3. Depending on whether a
database is bag or set-valued and the operators are set or bag operators, the
queries may be computed under set-semantics (considering set-valued databases
and operators), bag-semantics (considering bag-valued databases and operators),
or bag-set semantics (considering set-valued databases and bag-operators). We
consider bag-semantics in this paper.

A query is a mapping from databases to databases, usually specified by a
logical formula on the schema S of the input databases. Typically, the output
database (called query answer) is a database with a single relation. In this paper
we focus on the class of select-project-join SQL queries with equality compar-
isons, a.k.a. safe conjunctive queries (CQs for short). Formally, a conjunctive
query definition [I] is a rule of the form:

Q:q(X) = g1(X1), ..., gn(Xn)

16 F. Afrati, M. Damigos, and M. Gergatsoulis

where g1, ..., gy, are database relations and X, X1, ..., X, are vectors of vari-
ables or constants. The atom ¢(X) is the head of Q while the atoms on the
right of :- are said to be the body of Q. Each g¢;(X;) is also called a subgoal of
Q. The variables in X are called distinguished or head variables of QQ, whereas
the variables in X; are called body variables of Q. A body variable which is not
also a head variable is called non-distinguished variable of Q. In this work, we
consider safe conjunctive queries that is CQs whose head variables also occur in
their body. A chain query is a conjunctive query of the following form:

Q : q(X07Xn) - TI(X07X1)7TQ(X17X2)7 e 7/’1n(Xn717Xn)

where rq,...,7,, are binary relations and Xy, X1, ..., X,, are variables. If the
relation symbols rq, ..., 7, are identical then the query is called path query of
length n, denoted as P,. A view refers to a named query. A view is said to be
materialized if its answer is stored in the database. In this work, we are restricted
to the use of views defined by conjunctive queries called conjunctive views.

A substitution 6 [15] is a finite set of the form {X;/Y1,...,X,,/Y,}, where
each Y; is a variable or a constant, and X1, ..., X,, are distinct variables. When
Y1,...,Y, are distinct variables, 6 is called renaming substitution. In the fol-
lowing we also use the notion of expression to denote a conjunction of atoms.
Let 6 = {X1/Y1,...,X,/Y,} be a substitution. Then the instance Ef of an
expression (resp. a query) F, is the expression (resp. the query) obtained by
simultaneously replacing each occurrence of X; in £ by Y; foralli =1,... n.

Definition 1. An expression E is a generalization of an expression E' if E' is
an instance of E. E is a common generalization of F1, ..., By, withn > 1 if E
s a generalization of each expression E;, with 1 <i < n. E is a least common
generalization (or a least general generalization - lgg [16]) of E1, ..., E,, with
n > 1, if E is a common generalization of Ey, ..., E,, and for each common
generalization G of E1, ..., E,, the expression G is a generalization of E.

3.2 Query Rewriting and the View Selection Problem

Given a set of views (also, called viewset) V defined on a database schema S, and
a database D on the schema S, then by V(D) we denote the database obtained
by computing all the view relations in V on D. Moreover, let @ be a query
defined on §. A query R is a rewriting of the query @ using the views in V
if all subgoals of R are view atoms defined in V. The expansion R®**P of R is
obtained by replacing all view atoms in the body of R with their corresponding
base relations. Non-distinguished variables in a view definition are replaced with
fresh variables in R*P. A rewriting R of a query @ on a viewset V is an equivalent
rewriting if R(V(D)) = Q(D), for every database D. In [19], it is proved that a
rewriting R of a query @, under bag-semantics, is equivalent to @ if and only if
there is an one-to-one containment mapping from @ to the R®*P.

Given a set Q of queries (also called query workload), defined on a schema S,
and a database instance D, we want to find and precompute offline a viewset

On Solving Efficiently the View Selection Problem under Bag-Semantics 17

V defined on S, such that the views in V can be used to compute the answers
to all queries in the workload Q. More specifically, our problem, called the view
selection problem, is to find a set of views that when materialized, (a) would
satisfy a set £ of constraints on the size of the views, and (b) can be used to
get equivalent rewritings of the queries in @ which minimizes the evaluation
cost of the queries. We refer to the tuple P = (S, Q, D, L) as the input of
view selection problem. The view selection problem is said to be bag-oriented
(resp. set-oriented, or bag-set-oriented) if we consider bag semantics (resp. set
semantics, or bag-set semantics).

In this paper, we consider that the only constraint on materialized views is
a storage limit L (i.e. £ = {L}), which is a bound on the size of the views
(which represents the available disk space for storing the views). Our goal is to
choose the viewsets which minimize the evaluation cost of the queries and whose
size will not exceed the limit L. Notice that, if the storage limit is sufficiently
large then we can materialize all query answers, which is an optimal viewset.
The problem becomes interesting when the storage limit is less than that. In the
following we measure the size of a relation R as the number of tuples in R.

Definition 2. Let P = (S, Q,D, L) be a view selection problem input. A viewset
V is said to be admissible for P if (1) V gives equivalent (candidate) rewritings of
all the queries in Q, (2) for every view V € V, there exists at least one equivalent
rewriting of a query in Q that uses V', and (3) V satisfies the constraints L.

The following definition formally defines the solution and optimal solution of
view selection problem for a given input.

Definition 3. Let a view selection problem input P = (S, Q, D, L).

— A solution of P is a tuple Vadm,R), where Voam is an admissible viewset
for P and R is a set of equivalent rewritings of the queries in Q using Vadm.-

— An optimal solution for P is a solution which minimizes the cost of evalu-
ating the queries in the workload among all solutions of P. The viewset in
an optimal solution is said to be an optimal viewset.

Optimal solutions relate to the estimation of the cost of evaluating a query. We
thus demand from the optimal solutions to minimize a given cost-function that
we employ. We assume that the view relations have been precomputed, hence
we do not assume any cost of computing the views. For conjunctive queries we
use the sum-of-joins cost model which measures the cost of query evaluation as
the sum of the costs of all the joins in the evaluation. More precisely, suppose we
are given a query () and a database D. We assume use of only left-linear query
plans, where selections are pushed as far as they go and projection is the last
operation. Thus, each plan is a permutation of the subgoals of the query, and
the cost of this query plan on a given database instance D is defined inductively
as follows. For n = 1, the cost of query plan Q = R; is the size of the relation
R;. For each n > 2, the cost of query plan (... ((R; > R2) b R3) > ... X1 Ry,)
over n relations is the sum of the following four values:

18 F. Afrati, M. Damigos, and M. Gergatsoulis

the cost of query plan (... ((Ry >t Rg) > R3) ... ><IRp,_1)
the size of relation Ry p<... < R,_1

the size of relation R,, and

the size of relation Ry b<... < R,

Ll

The cost of evaluating a query) on a database D, denoted as C(Q, D), is the
minimum cost over all @’s query plans when evaluated on D. Moreover, the cost
of a query workload, denoted as C'(Q, D), is defined as the sum of the costs of
all queries in the workload. In this paper, although we use the above cost model,
our results also hold for cost-models for which the evaluation cost is increasing
with the size of intermediate relations [TTUSI214].

4 The Space of Optimal Solutions

In this section, we elaborate on the search space analysis of candidate solutions
for bag-oriented view selection problems, considering that both queries and views
are conjunctive queries/views. The main results of this section are as follows: In
Subsection 1] we propose techniques to reduce the search space of candidate
views and demonstrate that if there exists a solution for a given problem input,
then there is at least one optimal solution of a specific form. We refer to these
solutions as the representative (optimal) set of solutions. In Subsection 2] an
algorithm is presented that computes the representative set of optimal solutions.

4.1 Representative Set of Solutions

In [2], it has been proved that for workloads of conjunctive queries each view in
any admissible viewset (and thus in any optimal viewset) can be defined as a
generalization of a subexpression of some query in the workload. The following
lemma, which combines Lemmas 2 and 3 of [2], presents this result formally:

Lemma 1. Let P = (S, Q,D, L) be a conjunctive bag-oriented problem input, V
be any admissible viewset for P, and Q be any query in Q. Suppose that V' CV
is the set of all views used in an equivalent rewriting R of Q) in terms of V. Then:

1. The subgoals in the expansion of R corresponding to the definitions of views
V' form a partition of the (subgoals in the) definition of Q.

2. Each view in V' can be defined as a generalization of a subexpression of Q
which is a member of the partition as defined in (1).

Lemma, [precisely describes a search space (consisting of all query subexpres-
sions and their generalizations) to look for view definitions. As, in general, this
search space is huge, it is crucial to investigate ways to reduce this search space
(possibly for special cases of the view selection problem) in order to construct
efficient algorithms for solving the view selection problem. A significant improve-
ment in this direction might be to restrict the search space to contain only the
subexpressions of the queries in the query workload (i.e. to exclude the gener-
alizations of the subexpressions). Unfortunately, as it is shown in the following
example, in the general case this is not possible.

On Solving Efficiently the View Selection Problem under Bag-Semantics 19

Example 1. Consider a database schema S that contains only the relation e of
arity 4 and a query workload Q = {Q1,Q2} on S, where:

Q1: a(X,Y) - e(X, X, X,Y).
Q2: @(X,Y) - e(X,Y,Y,Y).

Consider also the following three viewsets Vi, V5 and Vs:

- Vl = {VH,VQ}, where:
Vin s o1 (X1, Xo) - e(Xq, X1, X1, Xo).
Vig 1 v12(X1, Xo) - e(X1, X, Xo, Xo).

Vy = {V2}, where:
‘/2 : 02(X17X27X3) = e(X17X27X27X3)'

Vs = {V3}, where:
Va i v3(X1, Xo, X3, X4) - e(X1, Xo, X3, X4).

Notice that the bodies of the view definitions of V; are subexpressions of the
bodies of the queries in Q (in fact they are obtained from the bodies of @1 and
Q@2 by renaming their variables), while the bodies of the views in Vo and V5 are
generalizations of these subexpressions. Using each one of the above viewsets we
get equivalent rewritings for the queries in Q. More specifically, using V; we get:

R1 : Tl(X, Y) - ’Ull(X, Y)
R2 : TQ(X, Y) - 1)12(X, Y)

where Ry and Ry are equivalent rewritings of Q1 and @2 respectively. Using Vs
we get:

R} i (X,)Y) - v2(X, X,Y).

R’ r(X,Y) - va(X, YY),

where R} and R} are equivalent rewritings of Q1 and Q2 respectively. Finally,
using V3 we get:
R!:r(X,Y) = vs(X, X, X, V).
Ry :r(X,Y) - vs(X,Y,Y,Y).
where R{ and RY are equivalent rewritings of @1 and Q2 respectively.
Assuming a database instance D={(e(a, a, a, a);1), (e(a, b, ¢, d);5)}, the sets
Vl(D), VQ(D) and Vg(D) are:

Vi(D) = {(vi1(a, a); 1), (vi2(a, a); 1)}
Vo(D) = {(v2(a,a,a);1)}.
V3(D) = {(vs(a,a,a,a); 1), (v3(a,b, c,d); 5)}.

Since size(V3(D)) =6, size(V1(D))=2 and size(V2(D))=1, we have size(V3(D))
> size(V1(D)) > size(V2(D)). If we choose a storage limit L = size(V2(D)) =1,
then Vs is the only admissible viewset among the above three.

Example [I] shows that, in some cases, any optimal solution requires views that
cannot be constructed as subexpressions of the queries in the query workload.

20 F. Afrati, M. Damigos, and M. Gergatsoulis

The optimal solution in Example [Tl uses views constructed using generalizations
of subexpressions of the queries. In particular, the view in the optimal viewset
Vs is defined as a common generalization of the bodies of both queries in the
query workload Q. Based on these observations two questions arise:

1. Are there any special cases of the view selection problem for which there
are optimal solutions whose viewset can be constructed by considering only
subexpressions of the queries in the query workload?

2. For the general case, can we reduce the search space specified by Lemma, [Tl
which consists of all possible generalizations of query subexpressions?

Both questions can be answered affirmatively as shown in the following Propo-
sitions [Il and 21

Proposition 1. Let P = (S, Q,D, L) be a conjunctive bag-oriented view selec-
tion problem input such that every relation in S appears at most once in a body
of some query in Q. If there exists a solution for P, then there exists an optimal
solution A = (V,R) such that each view in V is defined as a subexpression of a
query in Q.

Notice that, when the assumptions of Proposition [l hold, the queries in the
workload Q do not contain self-joins. In this case, because of Theorem 5 of [2],
we can rewrite each query in @ without using self-joins of views in V.

We now focus on the general case and prove, in Proposition [that, in order
to construct an optimal viewset, we need to consider both subexpressions of
queries and 1gg’s of subexpressions. We can thus exclude all those generalizations
of subexpressions that are not lgg’s of two or more subexpressions.

Proposition 2. Let P = (S, Q,D, L) be a conjunctive bag-oriented view selec-
tion problem. If there exists a solution for P, then there is an optimal solution
A= (V,R) for P such that the body of each view in V is either a subexpression
of a query in Q@ or an lgg of two or more subexpressions of queries in Q.

The intuition behind Propositions [I] and Bl is that the use of generalization of
subexpressions in defining a view is useful only when this view definition will
be subsequently used two or more times to construct equivalent rewritings for
the queries in the workload Q. This is the case of the viewsets Vs and V3 in
Example [Tl Besides, it is not useful to generalize the subexpression more than
needed as this, in general, increases the number of the tuples obtained when
materializing this “overgeneralized” view definition and this does not contribute
towards an improvement of the evaluation of the rewriting . An example of such
“overgeneralization” is the viewset V3 in Example Il

We further refine Propositions [Il and 2] by restricting also the vector of vari-
ables in the heads of the view definitions. The simplest choice is to put as ar-
guments of a view head all different variables appearing in the view’s body.
However, this is not always the “best” choice as the following example shows:

Ezample 2. Consider a query workload Q = {Q}, where:
Q : ql(Xv Y) - 6(X, Z)7 f(Zv W),g(VV, Y)

On Solving Efficiently the View Selection Problem under Bag-Semantics 21

Consider also the following viewset Vi = {V11, Vi2}:

Vit :on(X, Z,W) - e(X, 2), f(Z,W).
Vig 1 vi2(W)Y) - g(WY).

Notice that using V; as we can get the following equivalent rewriting R of Q:
R:r(X)Y) - v1(X, Z, W), v12(W,Y).

It is easy to see, however, that the variable Z in the head of V47 is redundant.
More specifically, if we replace the view Vi1 in V; by the following view V{;:

V1/1 : Ulll(Xa W) - €(X7 Z)7 f(Za W)
we get R’ which is also an equivalent rewriting of Q:
R 7 (X,)Y) - v (X, W), v12(W,Y).

Comparing V31 and V{,, it is easy to see that, under bag semantics, for every
database D we have size(V11(D)) = size(Vi;(D)). Also, the query R’, obtained
by using V{; to rewrite @, is computed more efficiently than the rewriting R
obtained by using V1 to rewrite Q.

We now show how to choose the appropriate set of variables to be used as head
arguments of the view definitions.

Definition 4. LetQ be a query of the form H :- By, ..., B, and S= B3, ..., Bi,
with1 < k < n, be a subexpression of the body of Q. Let Q' = Q— S be the query ob-
tained by removing from the body of Q the atoms in S. Then, the setlvars(Q, S) =
Vars(Q') N Vars(S), is called the linking variables of @ and S.

Ezample 3. (Continued from Example 2) Consider the query @ in Example
and the subexpression S = e(X, Z), f(Z, W) of Q. It is easy to see that the set
of linking variables of @ and S is lvars(Q, S) = {X, W}.

Proposition 3. Let QQ be a conjunctive query and V be a view whose body is
defined as a subexpression of Q. Then the view V can be used in an equivalent
rewriting of @, if and only if lvars(Q, S) C vars(head(V)).

The linking variables are related to the shared-variables property introduced by
[17]; that holds in the set-oriented context.

What the above proposition indicates is that the set of linking variables is the
minimum set of variables that should be put in the head of the view definition
so as this view can be used in an equivalent rewriting of the query.

Ezample 4. (Continued from Example [B]) Notice that the variables in {X, W},
which are the linking variables of () and .S, appear in the heads orf both views
Vi1 and VY] constructed from the subexpression S of Q. Observe that, if we

22 F. Afrati, M. Damigos, and M. Gergatsoulis

remove X or W or both from the head of the view Vi1 (or the view V), then
the corresponding viewset cannot give equivalent rewriting for the query Q.

Proposition Bl refers to views which are defined as subexpressions of the queries
in the query workload. We now investigate the problem of selecting the head
arguments of the views defined as least general generalizations of subexpressions
of queries. For this we need the following definition:

Definition 5. Let E ={S1,..., Sk}, with k > 1, be a set of expressions, and G
be their least general generalization (supposing that such an lgg exists). Let S be
an expression in B and M be a mapping for the arguments of S to the arguments
of G such that each argument of S in a position (i,j), where i is the order of an
atom in S and j is the order of the argument in the i-th atom of S, maps to the
argument which is in the position (i,j) on G. Let X be a variable in vars(S).
Then the corresponding variable set of X in G is defined as {Y|X appears in a
position (i,7) of S and 'Y is the variable in the position (i,7) of G}.

Proposition @ specifies the minimum set of variables that should be put in the
head of a view defined as the lgg of two or more subexpressions.

Proposition 4. LetQq,...,Qx, withk > 1, be (not necessarily different) queries
n a query workload Q, and let S1, ..., Sk, be expressions such that S; is a subex-
pression of Q; for 1 < i < k. Suppose that the least general generalization of
S1, ...,k exists and that V is a view whose body is the least general generalization
of S1,...,Sk. Then the view V can be used in an equivalent rewriting of Q;, for
k k
alli =1,...,k, if and only if |J L; U U M; C vars(head(V)), where (a) L; is
i=1 i=1

the union of the corresponding variable sets of the variables in lvars(Q;, S;), and
(b) M; is the union of the corresponding variable sets of the variables in S; whose
corresponding variable sets are not singletons.

Another way to construct the view V' whose body is the least general general-
ization of the subexpressions S7 and S5 of two queries ()1 and @2 respectively
proceeds in two steps as follows:

1. We construct the views V; and V5 using the subexpressions S7 and .S; respec-
tively as bodies and the linking variables with @1 and @2 as head variables.
2. By considering V1 and V5, as queries we construct V' with body the lgg of the
bodies of V; and V5 and with head variables the minimum set of variables
specified by Propositiondl V is said to be an lgview of the views V; and V5.

This procedure can be easily generalized for more than two subexpressions.

An interesting question referring to lgviews is the following: “Does the in-
equality size(V) < size(V7) + size(Va) always hold for the lgview V of two
views V1 and V5?7”. Notice that, if the answer is “yes” for any bag-oriented view
selection problem input, then whenever an lgview exists, the original views can
be discarded eliminating in this way the search space for finding viewsets. Un-
fortunately, the inequality does not always hold, as the following example shows.

On Solving Efficiently the View Selection Problem under Bag-Semantics 23

Ezample 5. Let a viewset V = {V1, Va}, where the definitions of the views are:

Vi :Ul(Xa Z) = pl(XaX)7p2(Xa Z)
Vot UQ(Xa Z) = pl(Xa Z)7p2<Z7 Z)

where p; and ps are binary relations on the database schema S§. Consider also
another viewset W = {W} whose view W is defined as:

W w(A,B,C) - p1(4, B),p2(B,C).
Notice that W is the lgview of the views in V. Assuming the database instance:

D= {p1(17 1),]?1(17 2),]91(374),]?2(1, 1)7p2<1’ 2)7p2(27 2),]72(27 3),]72(47 5)}’

in which the multiplicity of each database tuple in this example is 1 and for this
we omit it, and materializing the views over this database we get:

V(D) = {vi(1, 1), v1(1,2), v2(1, 1), v2(1, 2)}
WD) = {w(l, 1, 1), w(1,1,2),w(1,2,2), w(1,2,3),w(3,4,5)}.

It is easy to see that size(V(D)) < sizeWV(D)).
The following theorem summarizes the results of this section:

Theorem 1. Let a bag-oriented view selection input P = (S, Q, D, L). If there is
a solution for P, then there exists an optimal solution A = (V,R) such that each
view in V is either a subexpression view or an lgview whose body is constructed
as specified by Proposition [3, and whose head is constructed using the minimal
set of variables specified by Propositions [3 and[4), respectively.

Thus the class of solutions constructed as above is a representative set of solu-
tions for a given bag-oriented view selection problem input P.

4.2 LGG-VSB Algorithm

An algorithm, called LGG-VSB, which is based on the results of the previous
section, and outputs the representative set of optimal solutions, for a given view
selection problem input, is proposed in this section. LGG-VSB incorporates the
results of the Theorem [l and Lemma [to the algorithm CGALG (introduced
in [2]), reducing significantly the search space for finding an optimal solution. In
particular, LGG-VSB avoids the construction of viewsets that do not rewrite the
queries in the workload, by producing the candidate viewsets in such a way that
the construction of the equivalent rewritings of the query is quickly achieved;
i.e. instead of construction of every set of views whose body is a generalization
of a subexpression of a query’s body (CGALG), LGG-VSB constructs viewsets
that form a partition of the body of each query in the workload.

24 F. Afrati, M. Damigos, and M. Gergatsoulis

Algorithm LGG-VSB.
Input: A bag oriented view selection problem inputl] P = {§,9,D,L}.
Output: A, the representative set of optimal solutions.
Begin
1. Let V be a set of viewsets constructed as follows: Each V' € V is of
the form V' = V; U...UV,, where n is the number of queries in Q
and each viewset V; is obtained from the query @; € Q as follows:
- Let P; be a partition of the subgoals of @Q;.
- For each block B; € P;, add a view definition V; ; in V; whose body
consists of the atoms in B; and whose head variables are the
variables in lvars(Q;, B;).
2. Set Gy = V; set i = 0.
3. while G; # 0 do
- Gip1 = {Vy|Vy = (V' = M) U {V}}, where V' € G; and M C V'
and V; = lgview(M)}.
-i=i4 1.
end while
4. Let V=, ;Gj
5. Compute the cost C’(Q D) of Q on D and set it to Cope.
6. For every viewset V' € V, such that size(V') < L, do
- Construct the set Ry of all equivalent rewritings of Q using V'.
- Set A = 0.
- For every distinct subset R of Ry such that R contains an
equivalent rewriting of each query in Q, do
- Let ¢ = C(R,V'(D)).
- If ¢ < Cypt, then set Cpp = c and set A = {(V',R)}
else if ¢ = Cypy, then A =AU {(V',R)}.
end.

5 Chain and Path Queries

In this section, we study the bag-oriented view selection problem when the query
workload is a set of either chain queries or path queries. The main results are as
follows: Subsection 1] demonstrates that for a problem input P = (S, Q, D, L),
where Q is a workload of chain queries, we cannot restrict the space of optimal
solutions by searching admissible viewsets which contain only chain-views, i.e.
views defined by chain queries. Subsection demonstrates that for a problem
input P = (S,9,D, L), where Q is a workload of path queries, if there exists
a solution for P, then there is at least one optimal solution for P which is
constructed by an admissible viewset containing only path views (Theorem [2)).

5.1 Chain-Query Workload

In this section we study the view selection problem for workloads containing
only chain-queries. In particular, we focus our attention on whether there is an

! Recall that £ = {L}, where L is a single storage limit constraint.

On Solving Efficiently the View Selection Problem under Bag-Semantics 25

optimal solution constructed by a set of chain-views. Unfortunately, as the fol-
lowing proposition shows, there are cases in which none of the optimal solutions
is constructed by a set of chain-views.

Proposition 5. There exists at least one bag-oriented view selection problem
input P = (S, Q,D, L) such that:

— Q is a set of chain queries, and
— P has optimal solutions but there is mo optimal solution A = (V, R) such
that V contains only chain queries.

Proof. The following example proves this proposition.

Ezample 6. Consider a query workload Q = {@} on a database schema S that
contains the binary relations r1, ro and r3, where Q is the following chain query:

Q:q¢(X)Y) -1 (X, 2),r2(Z, W), rs(W,Y).

Consider also the following five viewsets V;, i € {1,2,3,4,5}:

V1 = {Vi1, Viz}, where:
Vvu : 1)11(X, Z7I/V,Y) - Tl(X, Z)77’3(VV, Y)
‘/12 : ’U12(X, Y) - T2(X7Y).
Vy = {Va1, Vaz }, where:
‘/21 . 1}21(X7 Y) - Tl(X, Z), T2(Z,Y).
‘/22 : U22(X7 Y) - 7“3(X, Y)
V3 = {V31, Vaz}, where:
‘/31 . 1}31()(7 Y) - TQ(X, Z), 7“3(Z7 Y)
‘/32 : 1}32()(7 Y) - Tl(X, Y)
V4 = {V41}, where:
‘/211 . 1}41()(7 Y) - Tl(X7 Z)7 TQ(Z, VV)7 ’I"3(VV7 Y)
Vs = {Vsl, ‘/:52, V53}, where:
‘/51 : 1)51(X,Y) - Tl(X, Y)
‘/52 : 1)52(X,Y) - TQ(X, Y)
‘/53 : U53(X7Y) - 7“3()(7 Y)
Observe that the above viewsets are all possible viewsets constructed as de-
scribed in Section [l
Suppose that we are given database instance D = {(r1(a,b);5), (r2(b,c);10),
(rs(c,d);5)}. Considering a storage limit L=35 tuples, the following viewsets:

V1(D) = {(v11(a, b, ¢, d); 25), (v12(b, ¢); 10) }
V5(D) = {(vs1(a,b); 5), (vs2(b, ¢); 10), (vs3(c,d); 5)}

do not violate the storage limit constraint. In contrast, the viewsets:

}
}

VQ (D) = {(1}21 (a, C); 50), ('UQQ(C7 d),
V3 (D) = {(1}31 (a, C); 50), ('1)32(67 d),
V4(D) = {(v41(a, c); 250)}

)
)

~ —

26 F. Afrati, M. Damigos, and M. Gergatsoulis

do violate it. Thus, A = (V4, R) and A’ = (V5, R') are solutions for input P,
where the rewritings R and R’ are the following;:

R: q(X, Y) - 1)11(X, ZJ/V,YY)/UH(Z7 W)
R/ : q(X, Y) - 1)51(X, Z)/U52(Z7 VV),'U53(VV7 Y)

Using the cost model presented in Section Bl the costs of A and A’ are
C(R,V1(D)) = 55 and C(R',V4(D)) = 325 respectively. As a consequence, A
is an optimal solution for P.

5.2 Path-Query Workload

In this section we study the view selection problem for path-query workloads (i.e.
workloads of path queries). Unlike to the problem for chain query workloads in
which we cannot reduce the search space to the class of chain views, for path-
query workloads we can reduce the search space even more. The main result of
this section, presented by the following theorem, is that whenever the workload
is a set of path-queries, we can focus on path-viewsets whose views have at most
as many subgoals as the length of the longest path-query in the workload.

Theorem 2. Let P = (S, Q,D, L), be a conjunctive bag-oriented view selection
input, and Q contains a set of path queries. If there exists a solution A = (V,, R,)
for P, then there is an optimal solution A" = (V! R.) for P such that:

— each view in V! is defined as a path of the same relation as a query Q € Q,

— every view in V! has at most n subgoals, where n is the length of the longest
query in Q,

— every R € R, is a chain query.

Consequently, we may restrict our attention in searching optimal solutions con-
structed by path-viewsets. In this case, the number of admissible viewsets is
exponential to the number of subgoals of the path-queries in the workload. This
exponential bound is implied by the reduction of the problem of searching path-
viewsets to the integer-partitioning problem [5].

Based on Theorem 2] we can improve the LGG-VSB for workloads containing
only path-queries.In particular, when we know that the workload Q consists of
n path-queries of the same relation, steps 1-4 of LGG-VSB can be replaced by:

— Each V7 € V contains a path-view Vi of length k, for every distinct integer
k € Z, where the set of integers 7 is of the form 7 = 7, U...UZ}, , and Ty, is
a partition of the length of path-query Py, € Q, i € {1,...n}; the partitions
of an integer can be computed using an algorithm from [26].

6 Conclusion

In this paper we studied the problem of view selection under bag semantics.
In particular, we investigated ways to limit the search space of candidate views,

On Solving Efficiently the View Selection Problem under Bag-Semantics 27

given a workload of CQs. We improved previous results by exploiting very refined
characterizations of views that participate in equivalent rewritings. Based on
these characterizations we proposed sound and complete algorithms to select
views for a query workload. Besides, we studied the problem in two special cases,
that is, when the workload contains only (a) chain queries, or (b) path queries,
and present interesting results which further improve the proposed algorithm.
Concerning the experimental evaluation of our approach, we have contacted
preliminary experiments that gave promising results.

There is a lot to be done for future work including the following: (a) studying
further the potential features of lgviews, (b) studying more special cases of the
view selection problem, (c) studying the view selection problem for parameter-
ized queries, and (d) studying the exact complexity of the problem.

Acknowledgements. We would like to thank Timos Sellis and the anonymous
reviewers for their valuable comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Afrati, F., Chirkova, R., Gergatsoulis, M., Pavlaki, V.: View selection for real
conjunctive queries. Acta Inf. 44(5), 289-321 (2007)

3. Afrati, F.N., Chirkova, R.: Selecting and using views to compute aggregate queries
(extended abstract). In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363,
pp. 383-397. Springer, Heidelberg (2004)

4. Afrati, F.N., Li, C., Ullman, J.D.: Generating efficient plans for queries using views.
In: SIGMOD Conference 2001, pp. 319-330 (2001)

5. Andrews, G.E., Eriksson, K.: Integer Partitions. Cambridge University Press, Cam-
bridge (2004)

6. Baralis, E., Paraboschi, S., Teniente, E.: Materialized views selection in a multidi-
mensional database. In: VLDB 1997, pp. 156-165 (1997)

7. Chirkova, R., Genesereth, M.R.: Linearly bounded reformulations of conjunctive
databases. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Fur-
bach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS,
vol. 1861, pp. 987-1001. Springer, Heidelberg (2000)

8. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection
problem. The VLDB Journal 11(3), 216-237 (2002)

9. Chirkova, R., Li, C.: Materializing views with minimal size to answer queries. In:
PODS, pp. 38-48 (2003)

10. Florescu, D., Levy, A.Y., Suciu, D., Yagoub, K.: Optimization of run-time man-
agement of data intensive web-sites. In: VLDB 1999, pp. 627-638 (1999)

11. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index selection for
OLAP. In: ICDE 1997, pp. 208-219 (1997)

12. Gupta, H., Mumick, 1.S.: Selection of views to materialize in a data warehouse.
IEEE Trans. Knowl. Data Eng. 17(1), 24-43 (2005)

13. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently.
SIGMOD Rec. 25(2), 205-216 (1996)

14. Karloff, H., Mihail, M.: On the complexity of the view-selection problem. In: PODS
1999, pp. 167-173 (1999)

28

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

F. Afrati, M. Damigos, and M. Gergatsoulis

Lloyd, J.W.: Foundations of logic programming. Springer, Heidelberg (1984)
Plotkin, G.: A note on inductive generalization. Machine Intelligence 5, 153-163
(1970)

Pottinger, R., Halevy, A.: Minicon: A scalable algorithm for answering queries
using views. The VLDB Journal 10(2-3), 182-198 (2001)

Rizzi, S., Saltarelli, E.: View materialization vs. indexing: Balancing space con-
straints in data warehouse design. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003.
LNCS, vol. 2681, pp. 502-519. Springer, Heidelberg (2003)

Surajit Chaudhuri, M., Vardi, M.Y.: Optimization of real conjunctive queries. In:
PODS 1993, pp. 59-70 (1993)

Theodoratos, D., Sellis, T.K.: Data warehouse configuration. In: VLDB 1997, pp.
126-135 (1997)

Theodoratos, D., Xu, W.: Constructing search spaces for materialized view selec-
tion. In: DOLAP, pp. 112-121 (2004)

Ullman, J.D., Garcia-Molina, H., Widom, J.: Database Systems: The Complete
Book. Prentice Hall PTR, Upper Saddle River (2001)

Xu, W., Theodoratos, D., Zuzarte, C.: Computing closest common subexpressions
for view selection problems. In: DOLAP, pp. 75-82 (2006)

Yu, J.X., Choi, C.-H., Gou, G., Lu, H.: Selecting views with maintenance cost
constraints: Issues, heuristics and performance. Journal of Research and Practice
in Information Technology 36(2), 89-110 (2004)

Zhou, J., Larson, P.-A., Freytag, J.C., Lehner, W.: Efficient exploitation of similar
subexpressions for query processing. In: SIGMOD Conference, pp. 533-544 (2007)
Zoghbi, A., Stojmenovié, I.: Fast algorithms for generating integer partitions. Int.
J. Comput. Math. 70(2), 319-332 (1998)

QoS-Aware Publish-Subscribe Service for
Real-Time Data Acquisition*

Xinjie Lu'*, Xin Li?, Tian Yang"*, Zaifei Liao'4,
Wei Liu', and Hongan Wang!?

! Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
xinjieO5@ios.cn
2 State Key Lab. of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China
3 Department of Computer Science and Technology, Shandong University,
Jinan Shandong 250101, China
4 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Abstract. Many complex distributed real-time applications need com-
plicated processing and sharing of an extensive amount of data under
critical timing constraints. In this paper, we present a comprehensive
overview of the Data Distribution Service standard (DDS) and describe
its QoS features for developing real-time applications. An overview of an
active real-time database (ARTDB) named Agilor is also provided. For
efficient expressing QoS policy in Agilor, a Real-time ECA (RECA) rule
model is presented based on common ECA rule. And then we propose
a novel QoS-aware Real-Time Publish-Subscribe (QRTPS) service com-
patible to DDS for distributed real-time data acquisition. Furthermore,
QRTPS is implemented on Agilor by using objects and RECA rules in
Agilor. To illustrate the benefits of QRTPS for real-time data acquisi-
tion, an example application is presented.

Keywords: QoS, Real-Time Publish-Subscribe, ECA Rule, Active Real-
Time Database.

1 Introduction

Many complex distributed real-time applications require complicated processing
and sharing of an extensive amount of data under critical timing constraints.
These applications include collecting data from the environment, processing ac-
quired data in the context of historical data and providing timely response. How
to transmit or disseminate these data timely and exactly by simple configuration
is a noticeable problem as yet.

Image that we periodically receive sensor data from a mine in a colliery, these
data might contain information about gas, temperature, smog, etc. of every Ob-
servation Point. The system is required to disseminate these data under specific

* This work was supported in part by the National High Technology Research and
Development Program (”863” Program) of China under Grant No. 2006AA04Z182.

M. Castellanos, U. Dayal, and T. Sellis (Eds.): BIRTE 2008, LNBIP 27, pp. 29 2009.
© Springer-Verlag Berlin Heidelberg 2009

30 X. Lu et al.

timing constraints for the following abnormal scene detection. Hereinto, publish-
subscribe model is very suitable for such repetitive, time-critical data distribu-
tion. A limitation of most existing architectures that support publish-subscribe
is their limited support for the expression and enforcement of Quality of Ser-
vice (QoS) parameters (such as required bandwidth or latency, for instance).
This observation ranges from models, such as the CORBA Event Service [2],
CORBA Notification Service [I], Java Message Service [3], to systems, such as
CEA (Cambridge Event Architecture) [4], Distributed Asynchronous Collections
[9], SIENA (Scalable Internet Event Notification Architectures) [8] or Cayuga
[27]. This is a significant shortcoming, since QoS features are an important com-
ponent of applications, and they have been widely studied in the context of direct
communication [BEITIT0I22/24125].

Data Distribution Service (DDS) is a newly adopted specification from the
Object Management Group (OMG). DDS is aimed at a diverse community
of users requiring data-centric publish-subscribe communications. DDS departs
from previous approaches in two primary aspects: (1) enumerating and providing
formal definitions for the QoS settings that can be used to configure the service,
and (2) the tight binding of a "topic” to a data-type, along-with the additional
QoS settings, implementing optimizations such as pre-allocating the resources
needed to send or receive a ”topic” [11].

To meet the requirements of real-time and active capabilities described in QoS
policies of DDS [15], we introduce active real-time databases (ARTDB) [16] to
implement these QoS policies. The ARTDB [I7] is proposed to provide both
active and real-time capabilities. In the context of an ARTDB, data distribution
can be implemented via ECA rules, and applications can consume data at spe-
cific rate on specific condition. So it would be desirable to develop a QoS-aware
Real-Time Publish-Subscribe (QRTPS) system on ARTDB. This system infras-
tructure should be efficient, scalable, flexible, and cater for the architecture of
active real-time database system, except for providing real-time predictability.
The contributions of this paper are:

1. An original and highly flexible real-time publish/subscribe system, QRTPS,
that supports QoS in the subscription and the publication. It supports QoS
policies settings and is fully implemented with Agilor. The QRTPS allows for
various configurations to express different users’ QoS requests only by minor
programming effort, whereas in traditional distributed systems providing so
many QoS features is an error prone and complex task.

2. For expressing QoS policies effectively and setting conveniently, we propose
a Real-time ECA rule model (RECA) that extends common ECA in com-
plicated temporal events, composite conditions and several coupling models.
By means of the primitives defined in Agilor, all of QoS policies can be con-
veniently configured for both subscription and publication through RECA.

3. In order to illustrate some features of QRTPS, a simplified example appli-
cation is presented, which is a sensor-based active monitoring system. The
related data structures, parameters settings of QoS and translated RECA
rules are described in detail.

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 31

The remainder of this paper is organized as follows. The next section intro-
duces high-level design and active object model of Agilor as background, for
further incorporating QRTPS into Agilor. In Section 3, we propose Real-time
ECA (RECA) rule model to express QRTPS. Section 4 discusses a simplified
example application to illustrate some of the previously mentioned features of
QRTPS. We conclude this paper and present future work in Section 5.

2 Background

2.1 Overview of Agilor

Agilor is a typical active real-time database and its architecture as
consists of some kernel modules and critical services. We present the main func-
tion of each component in sequence and introduce an example to illustrate the
operation mechanism of Agilor.

Key Components and Their Duties: The Storage Manager takes charge of
persistent objects and rules storage on disks and support read/write interfaces.
The Object Manager and Rule Manager, resident in main-memory, are responsi-
ble to add/delete/update objects and ECA rules, respectively. The Transaction
Scheduler deals with all transactions and access objects through interface in the
Object Manager.

The Rule Manager not only stores rules into the rule-base, but also per-
forms rule processing by the FEwvent Detector and Condition Fvaluator. The
Rule Manager also submits actions and necessary parameters (e.g. deadline,
worst-case execution time) to the Transaction Scheduler. The Event Detector
monitors events occurred in database and system. The Condition Fvaluator
checks whether specific conditions are satisfied on receiving events from FEvent

| C Access Certification I Access QoSPolicy < Do_m_ain k0.1 <<in_terface>>
| Real-Time Historical Service Participant Listener
: Serv1ce Serv1ce :
{ Transactlon Scheduler R ion |
Controller
(\ true/false Publisher Topic Subscriber
Object > —
Manager 1) " .
[Object],
—
[7
i | K
[Storage Manager DataWriter DataReader
* *
Data Data Data
Collector Collector Collector
Data

Fig. 1. Agilor Architecture

Fig.2. DCPS conceptual model [12/23]

32 X. Lu et al.

Detector. When conditions are satisfied, relevant actions will be submitted by
Rule Manager to Transaction Scheduler to execute.

The Admission Controller ensures that admitted transactions do not over-
burden the system. This module inspects whether to accept or reject a new
transaction based on a feedback mechanism considering resources and workload
in system and the importance of the transaction.

The data access services consist of Real-time Service, Historical Service and
Access Certification. They support retrieval of historical data as well as real-time
data (synchronous mode or subscription mode) under time constraints. In these
services, real-time publish-subscription service provides push mechanism based
on RECA rules. The access certification service ensures that access is provided
only to entitled applications. An important building block of the Agilor is ECA
rule and we will discuss its extension edition Real-time ECA in Section 3.

Real-time Data Acquisition Example: We assume that a real-time produc-
tion monitoring system needs instantaneous flow readings from a production
device PD timely. And it also need to accumulate the instantaneous readings to
form another data, named accumulated readings.

This requirement can be divided into two asynchronous flow: Collecting and
Querying. Collecting finishes getting instantaneous readings from PD, saving
them in a certain topic(refer to INS) and accumulating them to another
topic(refer to ACC) in Agilor. Querying achieves continuous querying the latest
value in these two topics.

Collecting: Real-time instantaneous readings are collected by Data Collector
and then stored in INS by Storage Manager. Once INS are updated, Fvent De-
tector will find this change and trigger Condition Evaluator to evaluate whether
this new instantaneous reading is legal. If the result is true, Rule Manager will
submit the accumulation action to Transaction Scheduler. Then, Transaction
Scheduler will execute this action in appropriate occasion. As a consequence,
ACC are also updated timely.

Querying: The real-time production monitoring system will query INS and
ACC every second. The query request is submitted to Real-time Service and
passes through the authentication of Access Certification with TP address and
Application ID. Then, Real-time Service sends this request to Transaction Sched-
uler with the permission of Admission Controller. Finally, the latest values in
INS and ACC return as the response of that query request.

2.2 Conceptual Model of DDS

DDS describes two levels of interfaces [12]:

— Alower DCPS (Data-Centric Publish-Subscribe) level that is targeted towards
the efficient delivery of the proper information to the proper recipients.

— An optional higher DLRL (Data Local Reconstruction Layer) level, which
allows for a simple integration of the Service into the application layer.

We restrict our discussion of DDS to the DCPS layer. The overall DCPS model
is illustrated in which consists of the following entities: Data Writer,

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 33

Table 1. DDS QoS Policies [19]

QoS Policy Meanings
Durability Determines if data outlives the time when written or read.
Deadline Determines rate at which periodic data is refreshed.
Latency Budget Sets guidelines for acceptable end-to-end delays.
Ownership Controls writer(s) of data.

Ownership Strength Sets ownership of data.
Allows the application to take advantage of transports capable

T Priori . . . c e
ransport Priority of sending messages with different priorities

Liveliness Sets liveness properties of topics, data readers, data writers.
Time Based Filter = Mediates exchanges between consumers and producers.
Reliability Controls reliability of data transmission.

History Sets how much data is kept to be read.

Resource Limits Controls resources used to meet requirements.

DataReader, Publisher, Subscriber, and Topic. All these classes extend Domain-
Participant, representing their ability to be configured through QoS policies and
each of them has a set of QoS Policies that are suitable to it.

2.3 Supported QoS of DDS

The DCPS entities in DDS include Topics, which describe the type of data to be
writ-ten or read; Data Readers, which subscribe to the values or instances of par-
ticular topics; and Data Writers, which publish values or instances for particular
topics. Various properties of these entities can be configured using combinations
of the 22 QoS policies. Moreover, Publishers manage groups of data writers and
Subscribers manage groups of data readers. We summarize all the DDS QoS poli-
cies related to our work in [Table 1] and a more detailed discussion can be found
in [T2]. Each QoS policy has several attributes with the majority of the attributes
having a large number of possible values, e.g. an attribute of type long or charac-
ter string. Moreover, not all QoS policies are applicable to all DCPS entities, nor
are all combinations of policy values semantically compatible [T9J23].

3 Real-Time ECA

ECA Rules are used to specify constraints that define correct states of objects as
well as actions to be taken on certain events. To efficiently describe QoS policy
in Agilor, a Real-time ECA (RECA) rule model is proposed, which extends
common ECA [2I] in complicated temporal events, composite conditions and
coupling models. The RECA rule model is divided into three parts: Event,
Condition and Action.

Formally, a rule is modeled by <RN, RD, RV, E, C, A, CMEC, CMCA,
CMEA, CMRR>, in which RN, RD, RV is the name, deadline and value of

34 X. Lu et al.

the rule, respectively. The deadline reflects urgency of the rule (including the
action) while the value reflects importance of the rule. The value decides the
order of condition evaluations when multiple rules are triggered at the same
time. F is a set of events that can invoke rules, C is a set of conditions and
A is a set of ordered actions. Actions should be taken when specific conditions
are satisfied. CMEC and CMCA are the coupling modes between event and
condition evaluation and between condition and action execution separately, i.e.
when condition evaluation and action execution can take place relative to the
time of triggering events. CMEA and CMRR are the coupling modes between
event and action execution and between two rules [20/21].

3.1 Event

Events are occurrences of interests which are predefined in the system such as
data update events and clock events. Events can be divided into primitive events,
which refer to simple and atomic events, and composite events, which consist of
primitive events combined with event operators.

Events can be described formally as follow:

E = p|(=E)|[(Op1 421 E) [(EAAE2) [(E1VER)[(E1Ojp1,19) E2) | (E1 O< 2. E)
[(O(e1,12) (E1— E2)) (O, 12 (E1 AE2))|(Op1,42) (E1V E2)) (1)
|(Opt1,12) (Br—E)AN(E— E2)).

The predication p is a primitive event. The symbol ’=’’A’and’V’ stand for nega-
tion(not), conjunction(and), disjunction(or) operator, respectively. (E1 Oj1 2) F2)
is a sequence of events to occur over a time interval [t1,t2], in which the latter event
E2 must occur after the former event E1 between [t1,t2]. The composite event arises
when the last event in the sequence has occurred.

Three kinds of primitive events are realized in Agilor and they are

1. system events: some particular events of operating system or database sys-
tem, e.g. OnTimer and OnlOError;

2. method events: data manipulation events of an object/class, e.g. OnUpdate
and OnDelete;

3. custom events: events predefined by user’s application for specified purpose,
such as sensor failure event. Custom events are always triggered explicitly
by application calling RaiseCustomEvent() function.

The method events are primary events in ARTDB and any data manipulation
event of an object/class can be a potential method event. Method events will be
triggered automatically when the corresponding method is invoked.

A method event can be defined by 6-tuple <EN, T, OM, CMME, EP, SL>,
where EN is the name of event, T is the time of occurrence, OM is the name
of object method which should be one of the existing methods in object base,
and the coupling mode CMME is an indication of whether the event should be
generated before or after the execution of the method. EP is the parameter set

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 35

Table 2. Extension of Complicated Temporal Events

Event Definition Semantics
type

Durative event E occurs at regular intervals between two time Opx y E
event instants, X and Y.
Time con- E1 Seq-Within[X seconds| E2, occurs when both E1 E;—O<xEs
strained and E2 have occurred in that order within X seconds.
sequence
Durative E1 Seq-During[X,Y] E2, occurs when both E1 and E2 Ox y|(E1—0Ez2)
sequence have occurred in that order at regular intervals from
time instant X to Y.
Durative E1 AND-During[X,Y] E2, occurs when both E1 and O;x yj(E1AEz2)
conjunc- E2 have occurred in any order at regular intervals from
tion time instant X to Y.
Durative E1 OR-During[X,Y] E2, occurs when either E1 or E2 Ox yj(E1VEz2)
discon- occurs or when both E1 and E2 occur at regular inter-
junction vals from time instant X to Y.
Durative Between-During (E1, E2)[X,Y], occurs when there are O(x yj((E1—{E)
between events occur between event E1 and E2 between starting A(E—QEz2))
time X and ending time Y, ignoring the relative order
of their occurrences.

of the event corresponding to the parameters of the method which will be passed
to condition evaluator for check. SL is a subscribers list made up of the rules
and composite events which subscribe this event. The subscribers of this event
will be notified when the event occurs.

In order to express more complicated temporal events [2T], we extend common
ECA rules as shown in The six kinds of patterns focus on duration-
related aspect of complicated event and all have typical application scenarios
in real-world. For the sake of limited space, we give two examples. We still use
the data acquisition scene introduced in Section 2.1. Let E1 denote the event
of update on topic INS and E2 denote the event of update on topic ACC. We
define t as an arbitrary time instant and n as an integer. Durative Fvent event,
Olt,t4n)E1, can occur every n second because E1 occurs per second between t
and t+n. Durative Sequence event, E1 Seq-During[t,t+n] E2, can occur every n
seconds because both E1 and E2 have occurred in that order every second.

For complicated temporal events scan, a useful approach has been to adopt
Nondeterministic Finite Automata(NFA) to represent the structure of an event
sequence [26]. Furthermore, the NFA-based approach can be extended to handle
sequence construction, as proposed in YFilter [28] in the context of XML message
filtering.

36 X. Lu et al.

3.2 Condition

The event indicates the need to check; whereas the condition determines what
to check. The condition set C describes the situations that are used to check
whether all prerequisites are satisfied for actions.

Conditions can be described formally as follow:

C = p‘(_‘C)KCl/\CQ)‘(C]\/CQ). (2)

The predication p is a primitive condition and in Agilor it can be

(1) Selection condition: evaluation of a single attribute value of one object (e.g.
OP.Gas>20),

(2) Aggregation condition: comparison of a single attribute aggregated over mul-
tiple instances (e.g. Max(OP.Smog)>100),

(3) Join condition: comparison of a single common attribute of multiple homo-
geneous objects (e.g. OP1.Pressure=OP2.Pressure),

(4) Transition condition: comparison of a single attribute over multiple instances
(e.g. OP1.Gas>OP1.GetLast(Gas)) and

(5) Application-specific condition: evaluation of functions predefined by appli-
cations.

Applications also can define composite conditions by combining a set of prim-
itive conditions with logical operators such as disjunction and conjunction.

3.3 Action

The action set A defines a set of ordered actions, which are similar to the defini-
tion of methods in object model. Actions could be database operations including
deletion and update, as well as external actions such as procedure call (e.g. pub-
lishing data or signaling an alarm to applications). Deadline as an additional
parameter should be assigned to the action. It is a relative delay to the oc-
currence time of the triggering event. For example, a triggered action must be
finished in 10 milliseconds after a temporal attribute X is updated.

3.4 Coupling Modes

The CMEC, CMCA, CMEA and CMRR identify the time semantics when con-
dition evaluation and action execution can take place relative to the triggering
event, with the constraint that condition evaluation must be performed before
action execution. The optional values and meanings of each coupling mode are
summarized in[Table 3l If CMEC is configured to immediate, when event occurs,
the current running transaction will be suspended, and condition evaluation is
performed immediately. While detached, the evaluation of condition will be fin-
ished in a different transaction. Similarly, CMCA defines such a relationship
between condition and action. CMFEA describes this relationship between event
and action. CMEC, CMCA, CMFEA are aimed at dealing with each part in one
ECA rule, while CMRR focuses on the relationship between ECA rules. Using

QoS-Aware Publish-Subscribe Service for Real-Time Data Acquisition 37

Table 3. Coupling modes definition

Name Optional Meanings
Value
CMEC immediate When events occur, the transaction is suspended,and condition
evaluation is performed immediately.
detached Condition evaluation is done in another transaction.
CMCA immediate The triggered action is executed immediately after condition
evaluation.
detached The triggered action is treated as a new separate transaction.
immediate The triggered action is executed immediately after event occurs.
CMEA . L. .
detached The triggered action is treated as a new separate transaction.
CMRR immediate Execution of one rule immediately triggers another rule.

concurrent Many rules may be triggered at the same time.

these two optional values, immediate and concurrent, we can build a ECA rules
chain or a ECA rules net to achieve more sophisticated business flow.

To avoid unpredictable increase of the execution time of the triggering trans-
action in a real-time environment, the combinations of CMEC and CMCA had
better be immediate-detached or detached-immediate. Similarly, the limit is put
on the depth of triggered rules to avoid uncontrolled cascade triggering.

3.5 Semantic for RECA Rules

The basic structure of the rules in Agilor is expressed as triggering events, condi-
tions and actions, as well as the timing constraints and coupling modes. Deadline
and value are considered in each RECA rule and the semantic for rules is defined
as follow:

Rule::=BEGIN RULE <RuleName>
VA