
Multiresolution schemes for conservation laws

Siegfried Müller

Abstract The concept of fully adaptive multiresolution finite volume schemes has
been developed and investigated during the past decade. By now it has been suc-
cessfully employed in numerous applications arising in engineering. In the present
work a review on the methodology is given that aims to summarize the underlying
concepts and to give an outlook on future developments.

1 Introduction

Nowadays scientific computing has become an indispensable tool in engineering.
For instance, numerical simulations of fluid flow can help to shorten the develop-
ment cycle of new airplanes. In the near future, it might be even possible to perform
real-time simulations of flying airplanes, to determine aerodynamical loads for the
entire flight regime, to numerically predict the performance and the flight quality of
an airplane before the maiden flight, as well as to do the certification before the air-
plane construction on the basis of numerical data. These are the challenging goals of
the new Center for Computer Applications in Aerospace Science and Engineering
(C2A2S2E) funded in 2007 at the DLR Braunschweig.

Typically the numerical simulation of such real-world applications requires
meshes with several millions of cells. This poses enormous challenges to comput-
ing resources and data management strategies. Improved hardware or purely data
oriented strategies such as parallel computing are not sufficient to overcome the
arising difficulties. In the long run, they have to be complemented by mathemati-
cal concepts that aim at minimizing the size of the resulting discrete problems and,
thus, to keep the computational complexity tractable. One promising approach in
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this direction is based on local grid adaptation which aims to adjust the resolution
of the discretization to the local regularity of the underlying solution.

This paper summarizes some recent work on grid adaptation in the context of
hyperbolic conservation laws that arise, for instance, from the balance equations de-
rived in continuum mechanics and modeling fluid flow. Currently, several different
adaptive concepts for conservation laws are being discussed and investigated in the
literature. A standard approach is based on error indicators, for instance gradient-
based indicators [10, 8] or local residuals [43, 66, 67]. In practice, these approaches
turned out to be very efficient. However, the error indicator is highly case depen-
dent, i.e., it needs a lot of parameter tuning to avoid excessive mesh growth or
missing refinement of important flow features. In particular, it does not estimate
the local discretization error and, hence, it provides no reliable error control. Here
a-posteriori error estimators offer an alternative that aims at the equidistribution of
the error, cf. [48]. These rely on L1-error-estimates. In particular, they are based on
Kruzkov’s entropy condition [49] and Kuznetsov’s a-priori estimates [50] that are
only available for scalar multidimensional conservation laws. If only a functional of
the solution is of interest rather than the solution in the entire flow field, then another
approach is of interest based on the solution of an adjoint problem [5, 42, 70, 69].
Here grid adaptation is tuned with respect to the efficient and accurate computation
of a target quantity, e.g. drag or lift. Since this approach requires to store to some
extent the time history of the evolution, this certainly poses a considerable challenge
to computational resources in case of 3D unsteady problems.

In recent years, the new concept of multiscale-based grid adaptation has been de-
veloped and applied to complex multidimensional flow problems. The main distinc-
tion from previous work lies in the fact that we employ multiresolution techniques.
The starting point is a proposal by Harten [38] to transform the arrays of cell aver-
ages associated with any given finite volume discretization of the underlying conser-
vation laws into a different format that reveals insight into the local behavior of the
solution. The cell averages on a given highest level of resolution (reference mesh)
are represented as cell averages on some coarse level where the fine scale informa-
tion is encoded in arrays of detail coefficients of ascending resolution. This requires
a hierarchy of meshes.

In Harten’s original approach [39, 40, 12], the multiscale analysis is used to con-
trol a hybrid flux computation which can save CPU time for the flux evaluation.
However, the overall computational complexity is not reduced but still stays pro-
portional to the number of cells on the uniformly fine reference mesh which in 3D
calculations is prohibitive. Alternatively to this strategy, threshold techniques are
applied to the multiresolution decomposition in [54, 25], where detail coefficients
below a threshold value are discarded. By means of the remaining significant details,
a locally refined mesh is determined whose complexity is significantly reduced in
comparison to the underlying reference mesh. Thus a principal objective is to ex-
tract the inherent complexity of the problem by placing as few degrees of freedom
as possible while the features of the solution are still captured within a given toler-
ance. A central mathematical problem is to show that the essential information to
be propagated in time is still kept with sufficient accuracy when working on locally
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coarser meshes. This has been proven for scalar onedimensional conservation laws
in [25, 44].

The fully adaptive concept has turned out to be highly efficient and reliable. So
far, it has been applied with great success to different applications, e.g., 2D/3D–
steady and unsteady computations of compressible fluids around airfoils modeled
by the Euler and Navier–Stokes equations, respectively, on block–structured curvi-
linear grid patches [15], backward–facing step on 2D triangulations [26] and simu-
lation of a flame ball modeled by reaction–diffusion equations on 3D Cartesian grids
[63]. These applications have been performed for compressible single-phase fluids.
More recently, this concept has been extended to two-phase fluid flow of compress-
ible gases, and applied to the investigation of non–stationary shock–bubble interac-
tions on 2D Cartesian grids for the Euler equations [1, 55]. By now, there are several
groups working on this subject: Postel et al. [28], Schneider et al. [61, 62], Bürger
et al. [20, 19] and Domingues et al. [30].

The aim of the present work is to give an overview on the concept of multiscale-
based grid adaptation. For this purpose, we first summarize the basic ingredients of
the grid adaptation concept starting with the underlying equations and their dis-
cretization using finite volume schemes, see Section 2. This is followed by the
multiscale analysis of the discrete cell averages resulting from the finite volume
discretization, see Section 3, and the construction of locally refined grids using data
compression techniques, see Section 4. Applying the multiscale analysis to the orig-
inal finite volume discretization on the uniform grid we obtain multiscale evolution
equations, see Section 5. The crucial point is then to perform the time evolution
on the adaptive grid where the accuracy of the uniform discretization is maintained
but the computational complexity is proportional only to the number of cells of the
adaptive grid, see Section 5.5. For this purpose, the computation of the local flux
balances and sources has to be performed judiciously, see Section 5.2, and the adap-
tive grid has to be predicted appropriately from the data of the previous time step,
see Section 5.3. The resulting adaptive multiresolution scheme is further acceler-
ated using multilevel time stepping strategies, see Section 5.4. In order to confirm
that the multiresolution grid adaptation concept can deal with challenging applica-
tions in engineering, we present in Section 6 numerical simulations of two vortices
generated at an airplane wing and moving in the wake of the airplane. The com-
putations have been performed with the adaptive, parallel Quadflow solver [15]. In
Section 7, we conclude with some remarks on future trends of adaptive multireso-
lution schemes.

2 Governing equations and finite volume schemes

The fluid equations are determined by the balance equations

∂
∂ t

∫
V

u dV +
∮

∂V
f(u) ·n dS =

∫
V

s(u) dV , (1)
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where u is the array of the mean conserved quantities, e.g., density of mass, mo-
mentum, specific total energy, f is the array of the corresponding convective and
diffusive fluxes, and s denotes a source term that may occur, for instance, in turbu-
lence modeling. For simplicity of representation, we will always assume that V is
time-independent. In principle, the concepts presented below can easily be extended
to moving boundaries, cf. [15, 52].

The balance equations (1) are approximated by a finite volume scheme. For this
purpose the finite fluid domain Ω ⊂ Rd is split into a finite set of subdomains,
the cells Vi, such that all Vi are disjoint and their union covers Ω . According to
our simplifying assumption, the grid does not move in time. Furthermore let N(i)
be the set of cells that have a common edge with the cell i, and for j ∈ N(i) let
Γi j := ∂Vi ∩ ∂Vj be the interface between the cells i and j and ni j the outer normal
of Γi j corresponding to the cell i. In time we use a global time step τn for all cells
that might change due to the Courant-Friedrich-Levy (CFL) condition, i.e., tn+1 =
tn + τn+1, t0 = 0. For the time discretization in (1) we confine to an explicit time
discretization of the approximated cell averages vn

i ≈ |Vi|−1 ∫
Vi

u(tn,x)dx that can
be written in the form

vn+1
i = vn

i −
τn+1

i

|Vi|
(Bn

i + |Vi|Sn
i ). (2)

By this discrete evolution equation the approximated cell averages of the conserved
variables are updated on the new time step. Here the fluxes and the source terms are
approximated by

Bn
i := ∑

j∈N(i)
|Γi j|F(vn

i j,v
n
ji,ni j), Sn

i := S(vn
i ), (3)

where the numerical flux function F(u,w,n) is an approximation for the flux
f (u,n) := f · n in outer normal direction ni j on the edge Γi j. The numerical flux
is assumed to be consistent, i.e., F(u,u,n) = f (u,n). For simplicity of presentation
we neglect the fact that, due to higher order reconstruction, F usually depends on
an enlarged stencil of cell averages. Moreover, to preserve a constant flow field we
assume that the geometric consistency condition ∑ j∈N(i) |Γi j|ni j = 0 holds. This con-
dition is easy to satisfy in case of planar faces. However, for more general discretiza-
tions, e.g. curvilinear grid patches [51], it imposes a constraint on the approximation
of the normal vector ni j.

We want to remark that the finite volume discretization (2) is just a simplified
prototype. More advanced discretizations can be considered where (i) the time dis-
cretization is replaced by some implicit scheme, cf. [15, 56, 57], or a Runge-Kutta
scheme, cf. [63], (ii) the time stepsize is changing locally for each cell, cf. [15, 56],
and (iii) the source term approximation is based on some higher order approxima-
tion.
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3 Multiscale analysis

A finite volume discretization typically works on an array of cell averages. In order
to realize a certain target accuracy at the expense of a possibly low number of de-
grees of freedom, viz. a possibly low computational effort, one should keep the size
of the cells large wherever the data exhibit little variation, reflecting a high regularity
of the searched solution components. Our analysis of the local regularity behavior of
the data is based on the concept of biorthogonal wavelets [21]. This approach may
be seen as a natural generalization of Harten’s discrete framework [41]. The core
ingredients are (i) a hierarchy of nested grids, (ii) biorthogonal wavelets and (iii) the
multiscale decomposition. In what follows we will only summarize the basic ideas.
For the realization and implementation see [54].

Grid hierarchy. Let Ωl := {Vλ}λ∈Il be a sequence of different meshes corre-
sponding to different resolution levels l ∈ N0, where the mesh size decreases with
increasing refinement level. The grid hierarchy is assumed to be nested. This implies
that each cell λ ∈ Il on level l is the union of cells μ ∈ M0

λ ⊂ Il+1 on the next higher
refinement level l +1, i.e.,

Vλ =
⋃

μ∈M0
λ⊂Il+1

Vμ , λ ∈ Il , (4)

where M0
λ ⊂ Il+1 is the refinement set. A simple example is shown in Figure 1 for a

dyadic grid refinement of Cartesian meshes. Note that the framework presented here
is not restricted to this simple configuration but can also be applied to unstructured
grids and irregular grid refinements, cf. [54].

Fig. 1 Sequence of nested grids

Example. In the sequel, the concept will be illustrated for 1D dyadic grid re-
finements on the real axis. Then a nested grid hierarchy is determined by Gl :=
{Vl,k}k∈Il , l ∈ N0, Il = Z. These meshes are composed of the intervals Vl,k =
[xl,k,xl,k+1] determined by the grid points xl,k = 2−l k, k ∈ Il , with interval length
hl = 2−l . Due to the subdivision Vl,k = Vl+1,2k ∪Vl+1,2k+1 the refinement set is de-
termined by M0

l,k = {2k,2k +1}. Here the index λ is identified by (l,k).
Box function and cell averages. With each cell Vλ in the partitions Ωl we asso-

ciate the so–called box function

φ̃λ (x) :=
1

|Vλ |
χ

Vλ
(x) =

{
1/|Vλ | , x ∈Vλ

0 , x �∈Vλ
, λ ∈ Il (5)
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defined as the L1–normalized characteristic function of Vλ . By |V | we denote the
volume of a cell V . Then the averages of a scalar, integrable function u ∈ L1(Ω) can
be interpreted as an inner product, i.e.,

ûλ := 〈u, φ̃λ 〉Ω with 〈u,v〉Ω :=
∫

Ω
uvdx. (6)

Obviously, the nestedness of the grids as well as the linearity of integration imply
the two–scale relations

φ̃λ = ∑
μ∈M0

λ⊂Il

ml,0
μ,λ φ̃μ and ûλ = ∑

μ∈M0
λ⊂Il

ml,0
μ,λ ûμ , λ ∈ Il−1, (7)

where the mask coefficients turn out to be ml,0
μ,λ := |Vμ |/|Vλ | for each cell μ ∈ M0

λ
in the refinement set.

Example. In case of the 1D dyadic grid refinement the box function is just
φ̃l,k(x) := 2−l for x ∈Vl,k and zero elsewhere, see Figure 2 (left). The corresponding

mask coefficients are ml,0
r,k := |Vl+1,r|/|Vl,k| = 0.5 for r ∈ M0

l,k ⊂ Il+1, k ∈ Il . For a
general grid hierarchy the mask coefficients may depend on the level and the posi-
tion.

Wavelets and details. In order to detect singularities of the solution we consider
the difference of the cell averages corresponding to different resolution levels. For
this purpose we introduce the wavelet functions ψ̃λ as linear combinations of the
box functions, i.e.,

ψ̃λ := ∑
μ∈M1

λ⊂Il+1

ml,1
μ,λ φ̃μ , λ ∈ Jl , (8)

with mask coefficients ml,1
μ,λ that only depend on the grids. Here the wavelet func-

tions Ψ̃l := (ψ̃λ )λ∈Jl
build an appropriate completion of the basis system Φ̃l :=

(φ̃λ )λ∈Il . By this we mean (i) they are locally supported, (ii) provide vanishing mo-
ments of a certain order and (iii) there exists a biorthogonal system Φl and Ψl of
primal functions satisfying two-scale relations similar to (7) and (8). The last re-
quirement is typically the hardest to satisfy. It is closely related to the Riesz basis
property of the infinite collection Φ̃0 ∪

⋃∞
l=0Ψ̃l of L2(Ω). For details we refer to the

concept of stable completions, see [21].
Aside from these stability aspects, the biorthogonal framework allows for an ef-

ficient change of basis. While the relations (7) and (8) provide expressions of the
coarse scale box functions and detail functions as linear combinations of fine scale
box functions, the mask coefficients in the analogous two-scale relations for the dual
system Φl ,Ψl give rise to the reverse change of basis between Φ̃l ∪Ψ̃l and Φ̃l+1, i.e.,

φ̃λ = ∑
μ∈G0

λ⊂Il

gl,0
μ,λ φ̃μ + ∑

μ∈G1
λ⊂Jl

gl,1
μ,λ ψ̃μ , λ ∈ Il+1, (9)
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where we rewrite the basis function φ̃λ on level l + 1 by the scaling functions φ̃μ
and the wavelet functions ψ̃μ on the next coarser scale l. Here again the mask coef-

ficients gl,0
μ,λ and gl,1

μ,λ depend only on the grid geometry.
Biorthogonality also yields a data representation in terms of the primal system

Ψ . The expansion coefficients dλ with respect to the basis Ψ are obtained by testing
u with the elements from Ψ̃ , i.e.,

dλ := 〈u, ψ̃λ 〉Ω = ∑
μ∈M1

λ

ml,1
μ,λ ûμ , λ ∈ Jl . (10)

These are referred to as the detail coefficients. Their two-scale format follows from
the functional counterpart of (8).

Note that the dual system Ψ̃ is used to expand the cell averages which are func-
tionals of the solution u whose propagation in time gives rise to the finite volume
scheme. The primal basis itself will actually never be used to represent the solution
u. Instead, the enhanced accuracy of the approximate cell averages can be used for
higher order reconstructions commonly used in finite volume schemes.

Example. In case of the 1D dyadic grid refinement, the L1-normalized Haar
wavelet ψ̃H

l,k := (φ̃l+1,2k + φ̃l+1,2k+1)/2 can be used, see Figure 2 (middle). The cor-

responding mask coefficients are ml,1
r,k := 0.5 for r ∈ M1

l,k ≡ M0
l,k ⊂ Il+1, k ∈ Il . For a

general grid hierarchy the mask coefficients may depend on the level and the posi-
tion.

Fig. 2 Box function φ̃0,0 (left), Haar wavelet ψ̃H
0,0 (middle), and modified Haar wavelet ψ̃0,0 with

s = 2 (right)

Cancellation Property. It can be shown that the details become small with in-
creasing refinement level when the underlying function is smooth

|dλ | ≤C 2−l M ‖u(M)‖L∞(Vλ ) (11)

in the support of the wavelet ψ̃λ . More precisely, the details decay at a rate of at least
2−l M , provided that the function u is sufficiently differentiable and the wavelets have
vanishing moments of order M, i.e.,

〈p, ψ̃λ 〉Ω = 0 (12)

for all polynomials p of degree less than M. Here we assume that the grid hierarchy
is quasi-uniform in the sense that the diameters of the cells on each level l are
proportional to 2−l .
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If coefficient and function norms behave essentially the same, as asserted by the
Riesz basis property, (11) suggests to neglect all sufficiently small details in order to
compress the original data. In fact, the higher M the more details may be discarded
in smooth regions.

Example. The Haar wavelet has only one vanishing moment as can be easily
checked from its definition. Then (10) implies that the corresponding details vanish
when the function u is locally constant.

Higher vanishing moments. In order to realize a better compression by exploit-
ing a higher order smoothness we have to raise the order of vanishing polynomial
moments. The basic idea is first to construct the box wavelets ψ̃H

λ , λ ∈ Il , cf. [37, 54],
and then to modify the box wavelet by some coarse grid box functions φ̃μ , μ ∈ Il ,
leading to the ansatz

ψ̃λ := ψ̃H
λ + ∑

μ∈Lλ

lλ
μ φ̃μ , (13)

with parameters lλ
μ that are still to be determined. Here the stencil Lλ ⊂ Il denotes

a finite number of cells Vμ in the local neighborhood of the cell Vλ . Then the pa-
rameters lλ

μ are chosen such that (12) holds for all polynomials p of degree less than

M. This will lead to a linear system of equations for the coefficients lλ
μ . In higher

dimensions, the cardinality of the stencil Lλ is typically chosen larger than the num-
ber of conditions imposed by (12). Then the under-determined system can be solved
using the Moore-Penrose inverse.

Fig. 3 Primal scaling function φ0,0 (left) and primal wavelet ψ0,0 (right) corresponding to the
modified Haar wavelet ψ̃0,0 with s = 2

Example. Modified Haar wavelets with higher vanishing moments M = 2s + 1
can be obtained according to the above procedure where we choose Ll,k = {k −
s, . . . ,k+s}. In this particular case, the resulting linear system has a unique solution.
Furthermore, there exists a primal system of scaling and wavelet functions that is
biorthogonal to the dual system of the box function and the modified Haar wavelet.
For s = 2 the modified Haar wavelet and the corresponding primal functions are
shown in Figures 2 (right) and 3, respectively. The biorthogonal system coincides
with the system derived from the pair 1Φ̃ , 1,ÑΨ̃ and 1Φ , 1,ÑΨ corresponding to the
B-spline function 1Φ̃ = χ

[0,1]
of order 1 with Ñ = M = 2s+1 as constructed in [24].

Note that for our purposes the dual and the primal functions are normalized with
respect to L1 and L∞, respectively, instead of L2 in [24].

Multiscale Transformation. In order to exploit the above compression potential,
the idea is to transform the array of cell averages uL := (ûλ )λ∈IL corresponding to a
finest uniform discretization level into a sequence of coarse grid data u0 := (ûλ )λ∈I0
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Fig. 4 Two-scale Transformation Fig. 5 Multiscale transformation

and details dl := (dλ )λ∈Jl
, l = 0, . . . ,L−1, representing the successive update from

a coarser resolution to a higher resolution.
In summary, according to (7) and (10), the change of basis provides two–scale

relations for the coefficients inherited from the two–scale relations of the box func-
tions and the wavelet functions

ûλ = ∑
μ∈M0

λ⊂Il+1

ml,0
μ,λ ûμ , λ ∈ Il , dλ = ∑

μ∈M1
λ⊂Il+1

ml,1
μ,λ ûμ , λ ∈ Jl ,

(14)
and, conversely,

ûλ = ∑
μ∈G0

λ⊂Il

gl,0
μ,λ ûμ + ∑

μ∈G1
λ⊂Jl

gl,1
μ,λ dμ , λ ∈ Il+1, (15)

which reflects the typical cascadic format of a wavelet transform. The two-scale
relations are illustrated for the 1D case in Figure 4.

A successive application of the relations (14), see Figure 5, decomposes the array
ûL into coarse scale averages and higher level fluctuations. We refer to this trans-
formation as the multiscale transformation. It is inverted by the inverse multiscale
transformation (15).

4 Multiscale-based spatial grid adaptation

To determine a locally refined grid we employ the above multiscale decomposition.
The basic idea is to perform data compression on the vector of detail coefficients
using hard thresholding as suggested by the cancellation property. This will signifi-
cantly reduce the complexity of the data. Based on the thresholded array we then
perform local grid adaptation where we refine a cell whenever there exists a signifi-
cant detail, i.e. a detail coefficient with absolute value above the given threshold.
The main steps in this procedure are summarized in the following:

Step 1: Multiscale analysis. Let vn
L be the cell averages representing the dis-

cretized flow field at some fixed time step tn on a given locally refined grid with
highest level of resolution l = L. This sequence is encoded in arrays of detail coeffi-
cients dn

l , l = 0, . . . ,L−1 of ascending resolution, see Figure 5, and cell averages on
some coarsest level l = 0. For this purpose the multiscale transformation (14) needs
to be performed locally which is possible due to the locality of the mask coefficients.
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Step 2: Thresholding. In order to compress the original data we discard all detail
coefficients dλ whose absolute values fall below a level-dependent threshold value
εl = 2l−Lε . Let

Dn
L,ε :=

{
λ ; |dn

λ | > εl , λ ∈ Il , l ∈ {0, . . . ,L−1}
}

be the set of significant details. The ideal strategy would be to determine the thresh-
old value ε such that the discretization error of the reference scheme, i.e., difference
between exact solution and reference scheme, and the perturbation error, i.e., the
difference between the reference scheme and the adaptive scheme, are balanced. For
a detailed treatment of this issue we refer to [25].

Step 3: Prediction and grading. Since the flow field evolves in time, grid adap-
tation is performed after each evolution step to provide the adaptive grid at the new
time step. In order to guarantee the adaptive scheme to be reliable in the sense that
no significant future feature of the solution is missed, we have to predict all signifi-
cant details at the new time step n+1 by means of the details at the old time step n.
Let D̃n+1

L,ε be the prediction set satisfying the reliability condition

Dn
L,ε ∪Dn+1

L,ε ⊂ D̃n+1
L,ε . (16)

Basically there are two prediction strategies (i.e. ways of choosing D̃n+1
L,ε ) discussed

in the literature, see [40, 25]. Moreover, in order to perform the grid adaptation
process, this set is additionally inflated somewhat such that the grid refinement his-
tory, i.e., the parent-child relations of subdivided cells, corresponds to a graded tree.
Then the set of significant details can be interpreted as a graph where all details are
connected by an edge in the graph.

Step 4: Grid adaptation. By means of the set D̃n+1
L,ε a locally refined grid is deter-

mined along the following lines. We check for the transformed flow data represented
on D̃n+1

L,ε proceeding levelwise from coarse to fine whether the detail associated with
any cell marked by the prediction set is significant or not. If it is, we refine the
respective cell. We finally obtain the locally refined grid with hanging nodes repre-
sented by the index set G̃n+1

L,ε . The flow data on the new grid can be computed from
the detail coefficients in the same loop where we locally apply the inverse multiscale
transformation (15).

Fig. 6 Grid adaptation: refinement tree (left) and corresponding adaptive grid (right)
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5 Adaptive multiresolution finite volume schemes

The rationale behind our design of adaptive multiresolution finite volume schemes
(MR-FVS) is to accelerate a given finite volume scheme (reference scheme) on a
uniformly refined mesh (reference mesh) by computing actually only on a locally
refined adapted subgrid, while preserving (up to a fixed constant multiple) the ac-
curacy of the discretization on the full uniform grid. We shall briefly indicate now
how to realize this strategy with the aid of the ingredients discussed in the previous
section.

5.1 From the reference scheme to an adaptive scheme

The conceptual starting point is to rewrite the evolution equations (2) for the cell
averages vλ , λ ∈ IL, of the reference scheme in terms of evolution equations for
the multiscale coefficients. For this purpose we apply the multiscale transformation
(14) to the set of evolution equations (2). Then we discard all equations that do not
correspond to the prediction set D̃n+1

L,ε of significant details. Finally we apply locally
the inverse multiscale transformation (15) and obtain the evolution equations for the
cell averages on the adaptive grid G̃n+1

L,ε which is obtained from D̃n+1
L,ε as explained

before:
vn+1

λ = vn
λ −λλ (Bn

λ + |Vλ |S
n
λ ), (17)

for all λ ∈ G̃n+1
L,ε where λλ := Δ tn+1/|Vλ |. Here the flux balances B

n
λ , the numerical

fluxes F
n
λ and the source terms S

n
λ are recursively defined from fine to coarse scale

via

B
n
λ = ∑

Γ l
λ ,μ⊂∂Vλ

|Γ l
λ ,μ |F

l,n
λ ,μ , (18)

F
l,n
λ ,μ = ∑

Γ l+1
μ ,ν ⊂Γ l

λ ,μ

|Γ l+1
μ,ν |Fl+1,n

μ,ν = . . . = ∑
Γ L

μ ,ν⊂Γ l
λ ,μ

|Γ L
μ,ν |F(vn

L,μν ,vn
L,νμ ,nL,μν), (19)

S
n
λ = ∑

Vμ⊂Vλ ,μ∈Il+1

|Vμ |
|Vλ |

S
n
μ = . . . = ∑

Vμ⊂Vλ ,μ∈IL

|Vμ |
|Vλ |

S(vn
μ). (20)

We refer to (19) and (20) as exact flux and source reconstruction, respectively. Since
in (20) we have to compute all sources on the finest scale, there is no complexity
reduction, i.e., we still have the complexity #IL of the reference mesh. In order to
gain efficiency we therefore have to replace the exact flux and source reconstruction
by some approximation such that the overall accuracy is maintained. The local flux
and source computation and the choice of the prediction set D̃n+1

L,ε will be discussed
in detail in Section 5.2 and 5.3, respectively.

The complete adaptive scheme consists now of the following three steps:
Step 1. (Refinement) Determine the prediction set D̃n+1

L,ε from the data of the old
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time step tn and project the data of the old time step onto the pre-refined grid G̃n+1
L,ε

of the new time step, i.e.,

{vn
λ}λ∈Gn →{vn

λ}λ∈G̃n+1 .

Step 2. (Evolution) Evolve the cell averages associated to the pre-refined grid G̃n+1
L,ε

according to (17), where the numerical fluxes and sources are not necessarily deter-
mined by (19) and (20), respectively, i.e.,

{vn
λ}λ∈G̃n+1

L,ε
→{vn+1

λ }λ∈G̃n+1
L,ε

.

Step 3. (Coarsening) Compress the data of the new time step by thresholding the
corresponding detail coefficients and project the data to the (somewhat coarsened
new) adaptive grid Gn+1

L,ε , i.e.,

{vn+1
λ }λ∈G̃n+1

L,ε
→{vn+1

λ }λ∈Gn+1
L,ε

.

5.2 Approximate flux and source approximation strategies

As already mentioned above, the adaptive MR-FVS with exact flux and source re-
construction (19) and (20) will have the same complexity as the reference scheme
performed on the reference mesh. If there is no inhomogeneity, i.e., s ≡ 0, then
the complexity of the resulting algorithm might be significantly reduced from the
cardinality of the reference mesh to the cardinality of the refined mesh. To see
this we note that, due to the nestedness of the grid hierarchy and the conservation
property of the numerical fluxes, the coarse-scale flux balances are only computed
by the fine-scale fluxes corresponding to the edges of the coarse cells, see (19).
Those in turn, have to be determined by the fine scale data. However, the internal
fluxes are canceled and, hence, the overall complexity is reduced. For instance, for
a d-dimensional Cartesian grid hierarchy we would have to compute 2d 2(L−l)(d−1)

fluxes corresponding to all fine-scale interfaces μ ∈ IL with ∂Vμ ⊂ ∂Vλ where λ ∈ Il ,
l ≤ L, due to the subdivision of the cell faces. Note that in both cases missing data
on the finest scale have to be determined by locally applying the inverse two-scale
transformation. This is illustrated in Figure 7. On the other hand, the coarse scale
sources can be computed similarly with the aid of the recursive formulae (20). Here,
however, we have to compute all sources on the finest scale which at the first glance
prevents the desired complexity reduction.

Hence the adaptive scheme with both exact flux and source reconstruction is
useless for practical purposes. However, in the reliability analysis one may perform
the adaptive scheme with some approximate flux and source reconstruction to be
considered as a further perturbation of the “exact” adaptive scheme.
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Fig. 7 Exact (left) versus local (right) flux and source computation

In order to retain efficiency we therefore have to replace the exact flux and source
reconstruction by some approximation such that the overall accuracy is maintained.
A naive approach would be to use the local data provided by the adaptive grid, i.e.,

F
l,n
λ ,μ = F(vn

l,λ μ ,vn
l,μλ ,nl,λ μ), S

n
λ = S(vn

λ ) (21)

for λ ,μ ∈ Il .
So far, this approach is applied in Quadflow. Obviously, the complexity of the

resulting adaptive MR-FVS is reduced to the cardinality of the adaptive grid. Unfor-
tunately, this approach may suffer from serious loss in accuracy in comparison with
the reference scheme.

Recently, in [44] a new approach was suggested using an approximate flux and
source reconstruction strategy that are discussed along the following lines:

Step 1. Determine for each cell Vλ , λ ∈ G̃n+1
L,ε , a higher order reconstruction poly-

nomial RN
λ of degree N using only local data corresponding to the adaptive grid.

Step 2. Approximate the boundary and volume integrals in (19) and (20) by some
appropriate quadrature rules.
Step 3. Compute fluxes and source terms in quadrature nodes by determining point-
values or cell averages on level L of the local reconstruction polynomial RN

λ , respec-
tively.

This concept has been analyzed in detail for the 1D case, cf. [44]. In particular, it
was proven that the accuracy of the reference scheme can be maintained when using
the prediction strategy in [25] and appropriately tuning the parameters such as the
reconstruction order and the quadrature rules. Computations verify the analytical
results. Therefore the new approach seems to be superior to the naive approach with
respect to accuracy and efficiency.
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5.3 Prediction strategies

The accuracy of the adaptive scheme crucially relies on the grid refinement process.
In our case it is triggered by the details. In order to guarantee that all significant
flow features are always adequately resolved, we have to pre-refine the grid before
performing the time evolution. For this purpose, we have to predict all details D̃n+1

L,ε
on the new time step that may become significant due to the evolution by means
of the details Dn

L,ε on the old time step. We consider the prediction set D̃n+1
L,ε to

be reliable, if the reliability condition (16) is satisfied in each time step where, of
course, Dn+1

L,ε is not known yet. Then no significant future feature of the solution is
missed on the old and the new time step, respectively.

Harten’s strategy. A first strategy was proposed by Harten in [40]. The basic
idea of his heuristic approach is based on two characteristic features of hyperbolic
conservation laws: (i) details in a local neighborhood Nq

λ := {μ ∈ Il ; ‖μ−λ‖∞ ≤ q}
of a significant detail λ ∈ Il may also become significant within one time step, i.e.,

λ ∈ Dn
L,ε ⇒ D̃n+1

L,ε = D̃n+1
L,ε ∪Nq

λ , (22)

due to the finite speed of propagation, and (ii) gradients may become steeper causing
significant details on a higher refinement level due to the developing of discontinu-
ities, i.e.,

λ ∈ Dn
L,ε ⇒ D̃n+1

L,ε = D̃n+1
L,ε ∪M0

λ , (23)

where M0
λ ⊂ Il+1 is the refinement set of cell Vλ , λ ∈ Il . Note that the choice of

q in (22) depends on the CFL number. If the CFL number is less than 1, that is
reasonable for explicit time discretizations, we may choose q = 1. However, in case
of an implicit time discretization higher CFL numbers might be admissible. In this
case an information could move by more than one cell and we have to adjust q
accordingly. In general, the range of influence of an information within one time
step depends on the configuration at hand. If the flow field is weakly instationary,
cf. [69], or even stationary, cf. [15], then an information will not move by as many
cells as is indicated by the CFL number, cf. [27]. This also holds in case of small
parabolic perturbations due to viscosity terms, cf. [11].

So far Harten’s approach could not be rigorously verified to satisfy (16). Never-
theless, it is frequently used in applications and turned out to give good results.

Strategy by Cohen et al.. A slight modification of Harten’s prediction strategy
has been shown to lead to a reliable prediction strategy in the sense of (16). This
was rigorously proven for a certain class of explicit finite volume schemes applied to
one–dimensional scalar conservation laws without source terms on uniform dyadic
grids as base hierarchies, using exact flux reconstruction, cf. [25]. Recently, the
proof has been extended for conservation laws with source term using approximate
flux and source reconstruction, cf. [44]. In the following we briefly summarize the
strategy. For simplicity of representation, we first introduce the convention dλ := vλ
for λ ∈ I−1, where we identify I−1 with I0 but replace the level l = 0 by l = −1.
Then the prediction set can be determined in three steps:
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Step 1: First of all, we determine the influence set Dλ that contains all coeffi-
cients dn+1

μ on the new time step which are influenced by a coefficient dn
λ on the old

time step. For this purpose, we first have to compute the range of influence Σλ of the
coefficient dn

λ and the domain of dependence Σ̃μ of the coefficient dn+1
μ . In the range

of influence we collect the indices of all averages vn
ν , ν ∈ IL, that are influenced by

the detail dn
λ whereas the domain of dependence contains the indices of all averages

vn+1
ν , ν ∈ IL, that are needed to compute the coefficient dn+1

μ . Note that the index
sets Σ̃μ ⊂ IL and Σλ ⊂ IL correspond to data on the reference mesh but for differ-
ent time steps, n + 1 and n, respectively. By the evolution process (17) with exact
reconstruction (19) and (20), the domain of dependence has to be extended taking
into account the stencil Sλ ⊂ Il of the numerical flux F and source S associated to
the cell λ ∈ Il , i.e., Σ̃−

μ :=
⋃

λ∈Σ̃μ
Sλ . Then the influence set is determined by

Dλ = {μ ; Σ̃−
μ ∩Σλ �= /0}.

Step 2: The prediction strategy has to take into account that the coefficients dn
λ

may not only cause a perturbation in the neighborhood of the cell Vλ , λ ∈ Il , because
of the time evolution but may also influence coefficients dn+1

μ , μ ∈ Il′ , on higher
scales, i.e., l′ ≥ l +1. Since the additional higher levels inflate the influence set, we
would like to bound the number of higher levels to a minimum number. For this
purpose, we fix some σ > 1 and assign to each coefficient corresponding to λ ∈ Dn

a unique index ν = ν(λ ) such that

2ν(λ )σ εl < |dn
λ | ≤ 2(ν(λ )+1)σ εl , λ ∈ Il , l ∈ {0, . . . ,L−1},

2ν(λ )σ ε0 < |vn
λ | ≤ 2(ν(λ )+1)σ ε0, λ ∈ I0.

This process is referred to as nesting of details. The parameter σ is linked to the
smoothness of the primal wavelet functions, cf. [25]. Since the index ν(λ ) becomes
smaller the larger σ is, it is convenient to choose σ as large as possible.

Step 3: Finally, we determine the prediction set from the influence set Dλ and
the nesting of coefficients

D̃n+1
L,ε := Dn

L,ε ∪
⋃

λ∈Dn
L,ε∪I−1

{μ ; μ ∈ Dλ\I−1 and l′ ≤ l +ν(λ )}. (24)

Note that opposite to Harten’s original prediction strategy, a significant detail might
affect cells not only at one higher level but up to ν(λ ) additional scales.

5.4 Multilevel time stepping

For instationary problems, the time step is typically restricted for stability reasons
by some CFL condition. This holds true even for implicit time discretizations due to
nonlinear stability criteria, e.g., total variation diminishing (TVD) property. There-
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fore the time stepsize has to be bounded by the smallest cell in the grid. Hence τ is
determined by the CFL condition on the highest refinement level L, i.e., τ = τL. For
reasons of simplicity, we neglect the time index n here. However, for cells on the
coarser scales l = 0, . . . ,L− 1 we may use τl = 2L−l τL to locally satisfy the CFL
condition.

In [56] a local time stepping strategy has been incorporated into the adaptive
multiresolution finite volume scheme as presented in previous sections. This stra-
tegy has been extended to multidimensional problems in [53, 52]. Here ideas similar
to the predictor-corrector scheme [58] and the adaptive mesh refinement (AMR)
technique [10, 9] are used. The differences between classical approaches and the
multilevel strategy are discussed in [56] in detail.

Time evolution. The basic idea is to evolve each cell on level l with the level-
dependent time discretization τl = 2L−l τL, l = 0, . . . ,L. Obviously, after having per-
formed 2l time steps with τl , all cell averages correspond to the same integration
time, i.e., the cells are synchronized. Therefore one macro time step with τ0 = 2L τL

consists of 2L intermediate time steps with step size τL. Obviously, at time tn+i2−L

all cells on levels l = li, . . . ,L are synchronized. Here li denotes the smallest syn-
chronization level that is determined by

li := min{l ; 0 ≤ l ≤ L, i mod2L−l = 0}, i = 0, . . . ,2L −1.

Then the time evolution for the intermediate time steps i = 0, . . . ,2L − 1, takes the
form

vn+(i+1)2−L

λ = vn+i2−L

λ −λλ (Bn+i2−L

λ + |Vλ |S
n+i2−L

λ ), (25)

for any cell λ ∈ G̃L,ε of the current locally adapted grid. Similar to (18) the nume-
rical flux balance is determined by

Bn+i2−L

λ = ∑
Γ l

λ ,μ⊂∂Vλ

|Γ l
λ ,μ |F

l,n+i2−L

λ ,μ .

However, the numerical flux computation is performed differently. Here the basic
idea is (i) to update the fluxes on the synchronized levels li ≤ l ≤ L, whereas (ii)
for all other interfaces we do not update the numerical flux but use the same value
as in the previous intermediate time step. In detail, we proceed as follows: (i) if the
neighbor cell Vμ is living on the same level l, then we apply the flux computation
strategy as in case of global time stepping, where we either use the exact strategy
(19), the naive strategy (21), or the reconstruction strategy according to Section 5.2,
respectively. Alternatively, the neighboring cell could live on the finer level l + 1
due to grid refinement. Then there exist hanging nodes at the interface Γ l

λ ,μ . and we
compute the numerical flux by the fluxes on the finer scale, i.e.,

F
l,n+i2−L

λ ,μ = ∑
Γ l+1

μ ,ν ⊂Γ l
λ ,μ

|Γ l+1
μ,ν |Fl+1,n+i2−L

μ,ν . (26)
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Fig. 8 Synchronized time evolution on space-time grid, horizontal axis: 1D space, vertical axis:
time

This is motivated by (19) and immediately implies the conservation property of the
scheme. Note that the refinement level of two adjacent cells differs by at most one,
i.e., there is at most one hanging node at one edge. This can be ensured by a grading
process of the adaptive grid, cf. Section 4. (ii) For all other interfaces in the adaptive
grid we use the flux of the previous intermediate time step, i.e.,

F
l,n+i2−L

λ ,μ = |Γ l
μ,ν |F

n+(i−1)2−L

λ . (27)

To ensure that the fluxes at an interface with hanging nodes have already been
computed when determining the corresponding flux on the coarser level, we perform
in each intermediate time step the time evolution first for the cells on the highest
level and then successively for the coarser levels. This procedure is similar to the
predictor-corrector method in [58].

The source terms are updated accordingly, where we either apply the naive stra-
tegy (21) or the reconstruction strategy, cf. Section 5.2, respectively, on the synchro-
nized levels li ≤ l ≤ L or use the source term from the previous intermediate time
step for the non-synchronized levels l < li, i.e.,

Sn+i2−L

λ = Sn+(i−1)2−L

λ . (28)

Note that for the lower levels 0, . . . , li−1 we do not compute new fluxes or source
terms. This makes the local time stepping version of the adaptive multiresolution
concept more efficient then the standard approach using a global time stepsize. How-
ever, book-keeping of the interfaces with hanging nodes is time consuming and the
algorithms become hard to read and to implement, cf. [56, 27]. In practice, it is more
convenient to perform the time evolution (25) for all cells of the adaptive grid for all
intermediate time steps. Then all data are synchronized at any time. Of course, there
is a small overhead to perform (25) for non-synchronized level l < li. However, this
is negligible in comparison to the time needed to evaluate the original numerical
fluxes that typically requires the solution of some Riemann problem. Then only few
changes are needed to embed the multilevel time stepping into an existing code.

In Figure 8 the time evolution algorithm is schematically illustrated in the one-
dimensional case: In a global time stepping, i.e., using Δ t = τL for all cells, each
vertical line section appearing in Fig. 8 (left) represents a flux evaluation and each
horizontal line (dashed or solid) represents a cell update of the cell average due to
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the fluxes. In the multilevel time stepping a flux evaluation is only performed at
vertical line sections that emanate from a point where at least one solid horizontal
line section is attached. If a vertical line section emanates from a point, where two
dashed horizontal sections are attached, then we do not recompute the flux, but
keep the flux value from the preceeding vertical line section. Hence fluxes are only
computed for the vertical edges in Fig. 8 (right).

Intermediate grid adaptation. Finally, we have to comment on the grid adap-
tation step. The ultimate goal is to provide an approximation after one macro time
step with τ0 = 2LτL as good as having performed 2L time steps with the reference
scheme on the reference mesh using the time step size τL. Therefore we have to
make sure that the solution is adequately resolved at each intermediate time step.

For the original adaptive multiresolution scheme this is ensured by the prediction
step of the grid adaption, see Section 5.3. The prediction of the details ensures that
a significant information can only move by at most one cell on the finest level,
e.g. controlled by parameter q in (22) typically set to 1. However, by employing the
same strategy for the local time stepping this information could move up to one cell
on the coarsest mesh or 2L cells on the finest mesh, respectively. This would result
in a completely underresolution of discontinuities on the new time step. To account
for this we have to modify the prediction set D̃n+1

L,ε such that the modified reliability
condition

2L⋃
i=0

Dn+i2−L

L,ε ⊂ D̃n+1
L,ε , (29)

holds where the sets Dn+i2−L

L,ε correspond to the significant details of the solution at
the intermediate times tn+i2−L = tn + iτL, i = 0, . . . ,2L.

Obviously, using q = 2L would ensure that all effects are properly resolved on the
new time step after having performed the macro time step. However, the efficiency
degrades tremendously. A very efficient and reliable alternative was suggested in
[56]. The idea is to perform additional grid adaptation steps according to Section 4
before each even intermediate time step, i.e., i = 0,2, . . . ,2L−2. However, we do not
apply the adaptation process for the whole computational domain, but only for the
cells on the levels l = li, . . . ,L, i.e., level li is considered to be the coarsest scale in the
multiscale analysis. Note, that only for this range of scales new fluxes and sources

have to be recomputed. This process provides us with the sets Gn+(i+1)2−L

L,ε for which
we perform the evolution step (25). For the odd intermediate time steps we use the

same grid as in the previous step, i.e., Gn+i2−L

L,ε = Gn+(i−1)2−L

L,ε , i = 1,3, . . . ,2L − 1.
Hence, it is possible to track, for instance, the shock position on the intermediate
time steps instead of a-priori refining the whole range of influence, see Fig. 8 (right).
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5.5 Error analysis

The performance of the adaptive MR-FVS crucially depends on the threshold pa-
rameter ε . With decreasing value the adaptive grid becomes richer and, finally, if
ε tends to zero, we obtain the uniform reference mesh, i.e., the adaptive scheme
coincides with the reference scheme. On the other hand, the adaptive grid becomes
coarser with increasing threshold value, i.e., the computation becomes faster but
provides a less accurate solution. An ideal choice would maintain the accuracy of
the reference scheme at reduced computational cost. For a detailed analysis we refer
to [25, 44] and explain only the main ideas here.

In order to estimate the error, we introduce the averages ûn
L of the exact solu-

tion, the averages vn
L determined by the reference FVS and the averages vn

L of the
adaptive scheme prolongated to the reference mesh by means of the inverse mul-
tiscale transformation where non-significant details are simply set to zero. Ideally
one would like to choose the threshold ε so as to guarantee that ‖ûn

L − vn
L‖ ≤ tol

where tol is a given target accuracy and ‖·‖ denotes the standard weighted l1-norm.
Since vn

L can be regarded as a perturbation of vn
L, this is only possible if L is chosen

so as to ensure that the reference scheme is sufficiently accurate, i.e. one also has
‖ûn

L −vn
L‖ ≤ tol. Again ideally, a possibly low number of refinement levels L should

be determined during the computation such that the error meets the desired toler-
ance ‖ûn

L − vn
L‖ ≤ tol. Since no explicit error estimator is available for the adaptive

scheme, we try to assess the error by splitting the error into two parts corresponding
to the discretization error τn

L := ûn
L − vn

L of the reference FVS and the perturbation
error en

L := vn
L−vn

L. We now assume that there is an a priori error estimate of the dis-
cretization error, i.e., τn

L ∼ hα
L where hL denotes the spatial step size and α the con-

vergence order. Then, ideally we would determine the number of refinement levels
L such that hα

L ∼ tol. In order to preserve the accuracy of the reference FVS, we may
now admit a perturbation error which is proportional to the discretization error, i.e.,
‖en

L‖ ∼ ‖τn
L‖. From this, one can derive a suitable level L = L(tol,α) and ε = ε(L).

Therefore it remains to verify that the perturbation error can be controlled. To
this end, note that in each time step we introduce an error due to the thresholding
procedure. Obviously, this error accumulates in each step, i.e., the best we can hope
for is an estimate of the form ‖en

L‖ ≤ C nε. However, the threshold error may be
amplified in addition by the evolution step. In order to control the cumulative per-
turbation error, we have to prove that the constant C is independent of L, n, τ and
ε . For a simplified model problem this was rigorously done in [25] for homoge-
neous problems and exact reconstruction and, recently, in [44] for inhomogeneous
problems using approximate flux and source reconstruction.

6 Numerical results

Finally, we would like to demonstrate that the multiscale-based grid adaptation con-
cept has been developed beyond pure academic investigations and can be applied
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to real-world problems. For this purpose, we present the results of 3D simulations
that have been recently performed with the new solver Quadflow for a challenging
problem arising in aerodynamics.

6.1 The solver Quadflow

The above multiscale-based grid adaptation concept has been integrated into the new
adaptive and parallel solver Quadflow [14, 15]. This solver has been developed for
more than one decade within the collaborative research center SFB 401 Modulation
of Flow and Fluid-Structure Interaction at Airplane Wings, cf. [3, 65]. In order to
exploit synergy effects, it has been designed as an integrated tool where each of the
core ingredients, namely, (i) the flow solver concept based on a finite volume dis-
cretization [13], (ii) the grid adaptation concept based on wavelet techniques [54],
and (iii) the grid generator based on B-spline mappings [51] is adapted to the needs
of the others. In particular, the three tools are not just treated as independent black
boxes communicating via interfaces. Instead, they are highly intertwined on a con-
ceptual level mainly linking (i) the multiresolution-based grid adaption that reliably
detects and resolves all physical relevant effects, and (ii) the B-spline grid generator
which reduces grid changes to just moving a few control points whose number is,
in particular, independent of any local grid refinement. The mathematical concepts
have been complemented recently by parallelization techniques that are indispens-
able for further reducing the computational time to an affordable order of magnitude
when dealing with realistic 3D computations for complex geometries, cf. [18, 4].

6.2 Application

The efficiency of an airport is strongly influenced by the takeoff and landing fre-
quency that is determined by the system of vortices generated at the wing tips. These
vortices continue to exist for a long period of time in the wake of an airplane, see
Figure 9. It is possible to detect wake vortices as far as 100 wing spans behind the
airplane, which are a hazard to following airplanes. In the SFB 401, the research
aimed to induce instabilities into the system of vortices to accelerate their collapse.
The effects of different measures, e.g. additional flaps installed at each airfoil, taken
in order to destabilize the vortices have been examined in a water tunnel. A model
of a wing was mounted in a water tunnel and the velocity components in the area
behind the wing were measured using particle image velocimetry It was possible to
conduct measurements over a length of 4 wing spans. The experimental analysis of
a system of vortices far behind the wing poses great difficulties due to the size of the
measuring system. Numerical simulations are not subject to such severe constraints
and therefore Quadflow is used to examine the behavior of vortices far behind the
wing. To minimize the computational effort, the grid adaptation adjusts the refine-
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ment of the grid with the goal to resolve all important flow phenomena, while using
as few cells as possible.

Fig. 9 System of wing tip vortices in the wake of an airplane. (Courtesy of Institute of Aeronautics
and Astronautics, RWTH Aachen)

In the present study instationary, quasi incompressible, inviscid fluid flow de-
scribed by the Euler equations is considered. An assessment is presented to validate
the ability of Quadflow to simulate the behavior of the wake of an airplane. A veloc-
ity field based on the experimental measurements is prescribed as boundary condi-
tion in the inflow plane. Here the measured velocity fields at the wing tip and at the
flap, respectively, have been used to generate two different Lamb-Oseen vortices.
These vortices are used to specify the circumferential part of the velocity distribu-
tion vΘ (r). The circumferential velocity distribution of one Lamb-Oseen vortex is
computed by

vΘ (r) =
Γ

2πr

(
1− e

−
(

r
d0

)2
)

. (30)

The radius r is the distance from the center of a boundary face in the inflow plane to
the vortex core. The two parameters of the Lamb-Oseen vortices, circulation Γ and
core radius d0 are chosen in such a way that the models fit to the measured velocity
field of the wing tip vortex and the flap vortex as close as possible, respectively.
As observed in the experiment, both vortices are rotating in the same direction. The
circumferential part of the velocity distribution at the inflow boundary is computed
by the superposition of the velocity distribution of both vortices. The axial velocity
component in the inflow direction is set to the constant inflow velocity of the water
tunnel.

Instead of water, which is used as fluid in the experiment to visualize the vor-
tices, the computation relies on air as fluid. This is justified because of the low
Mach number Ma = 0.05 and, hence, compressibility effects are negligible. The
inflow velocity in the x-direction, u∞, is computed to fulfill the condition that the
Reynolds number in the computational test case is the same as in the experiment.
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The experimental conditions are a flow velocity uw = 1.1ms−1 and a Reynolds
number Rew = 1.9×105. From the condition Reair = Rew the inflow velocity in the
x-direction has been determined as u∞ = 16.21ms−1. For purpose of consistency,
the circumferential velocity vθ has also been multiplied by the factor u∞/uw. The
velocity of the initial solution is set to parallel, uniform flow u0 = u∞, v0 = w0 = 0.0.

The computation1 has been performed on 32 Intel Xeon E5450 processors run-
ning at 3 GHz clock speed. The CPU time spent was about 214 hours. The com-
putational domain matches the experimental setup which extents l = 6m in the x-
direction, b = 1.5m in the y-direction and h = 1.1m in the z-direction. The bound-
aries parallel to the x-direction have been modeled as symmetry walls. This domain
is discretized by a coarse grid with 40 cells in flow direction, 14 cells in y-direction
and 10 cells in the z-direction. The maximum number of refinement levels has been
set to L = 6. With this setting, both vortices can be resolved on the finest level by
about 80 points in the y-z-plane.

Fig. 10 Initial computational grid

Since Quadflow solves the compressible Euler equations, a preconditioner for
low Mach numbers was applied in a dual-time framework acting only on the dual
time-derivatives. It has been used for the purposes of numerical discretization and
iterative solution, cf. [59]. The spatial discretization of the convective fluxes is based
on the AUSMDV(P) flux vector splitting method [32]. For time integration the im-
plicit midpoint rule is applied. In each time step the unsteady residual of the Newton
iterations is reduced by about three orders of magnitude. The physical time step is
uniformly set to Δ t = 5×10−5 s which corresponds to a maximum CFL number of
about CFLmax = 28.0 in the domain. Grid adaptation is performed after each time
step. After every 100th time step the load balancing is repeated.

1 The computations have been performed by Gero Schieffer. They have been made possible by the
parallelization concept of space-filling curves embedded in the multiscale library by Silvia-Sorana
Mogosan and Kolja Brix.
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Fig. 11 Slices of the computational grid after 6046 time steps at seven different positions and the
distribution of λ2 = −100

When the computation starts, the vortices have to be resolved properly on a suf-
ficiently refined grid. For this purpose, the grid on the inflow plane is pre-refined
to the maximum level, see Figure 10. Due to this procedure the first grid contains
384000 cells. When the information at the inlet has crossed the first cell layer, the
pre-adaptation of the cells at the inlet is no longer needed and then the grid is only
adapted according to the adaptation criterion based on the multiscale analysis. For
the multiscale analysis we use modified box wavelets with M = 2 vanishing mo-
ments, see Section 3. The threshold value is set to ε = 2.5×10−4. For the prediction
step we apply Harten’s original strategy summarized in Section 5.3.

Fig. 12 Slices of the computational grid at two different positions in x-direction, the grid color is
consistent with the value of λ2. Left Figure: Slice of the computational grid at x = 0.0m. Right
Figure: Slice of the computational grid at x = 3.0m
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After 6046 time steps, which corresponds to a computed real time of t = 0.3023s,
the grid contains 3.04× 106 cells in total. This is about 0.2 % of the uniformly re-
fined reference mesh, i.e., by grid adaptation the computational complexity is re-
duced by a factor of about 500. Figure 11 shows seven cross sections of the mesh,
which are equally spaced in x-direction with distances Δx = 1.0m. In addition,
the isosurface of the λ2-criterion is presented with the value λ2 = −100. The λ2-
criterion has been proposed by Jeong et al. [45] to detect vortices. A negative value
of λ2 identifies a vortex, whereas the smallest of these negative values marks the core
of the vortex. As can be seen from Figure 11, the vortices are transported through
the computational domain. The locally adapted grid exhibits high levels of refine-
ment only in the vicinity of the vortices. A more detailed view of the grid for the
cross sections at x = 0.0m and x = 3.0m is presented in Figure 12.

From the engineering point of view, the interaction of the two vortices is of spe-
cial interest. The central question is whether the strong wing tip vortex can be desta-
bilized by the flap vortex. For this purpose, the computation has to be continued.
This is subject of current research. Nevertheless, the computations performed so far
verify that the presented concepts are sustainable and necessary in order to investi-
gate this challenging problem.

7 Conclusion and trends

Adaptive multiresolution schemes have turned out be very efficient in numerous ap-
plications. In particular, the adaptation process is only controlled by the threshold
parameter. The choice of this parameter seems to be very robust with respect to vary-
ing configurations and applications. Ideally, it depends on the discretization error of
the reference finite volume scheme. This was confirmed by rigorous mathematical
estimates for scalar model problems.

Originally, the multiresolution-based grid adaptation technique was kept separate
from the treatment of discrete evolution equations. However, the multiresolution
analysis offers a much higher potential when applying it directly to the (discrete)
evolution equations. Therefore we would like to conclude with some comments on
the future development of adaptive multiresolution schemes that is beyond mere
grid adaptation.

Trend 1: Adaptive mesh refinement and multiresolution analysis. In order to
optimize computational resources, AMR techniques have become a standard way to
optimize computational resources. These techniques have been originally developed
in the 1980’s by Berger et al. [10, 8, 7]. Typically, the refinement process is triggered
by gradients [60] or higher order interpolation [2]. Recent investigations by [31]
show that using a discrete multiresolution analysis instead leads to a much more
efficient refinement criteria. In particular, in areas of partial smoothness such as
rarefaction waves. It turned out that only minimal changes in the existing AMR
code were necessary to embed the multiresolution-based refinement criterion.
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In principle, it would be possible to embed the multiresolution-based grid adap-
tation concept to any AMR code as a black box, where the data have to be trans-
ferred between the two tools. This has been realized in the Quadflow solver [14, 15].
However, this requires some computational overhead in terms of memory and CPU
time. In particular, the multiresolution-based grid adaptation technique is kept sep-
arate from the treatment of discrete evolution equations and therefore we could not
employ the much higher potential of the multiresolution analysis when applying it
directly to the discrete evolution.

Trend 2: Implicit time discretization. In Section 5, adaptive multiresolution fi-
nite volume schemes have been derived only for explicit time discretizations. We
may proceed similarly in case of an implicit time discretization, cf. [15]. These are
of interest when dealing with stationary flow problems, weakly instationary prob-
lems or models that exhibit some stiffness due to relaxation processes, e.g. chemical
reactions, or dissipation, e.g. diffusion, viscosity and heat conduction, resulting in
anisotropic flow structures such as boundary layers. For these types of problems an
explicit time discretization would lead to very small time steps in order to meet the
CFL condition. Although the derivation is straight-forward, several new questions
arise:

(i) In each time step the implicit time discretization results in a nonlinear system
of discrete evolution equations. Typically this system is solved by Newton-Krylov
methods. For steady state problems, only one Newton step is performed, because
the time plays only the role of a relaxation parameter and there is no need to be
accurate in each time step. However, for instationary problems several Newton steps
are needed to maintain the accuracy in each time step. In recent work by Steiner et
al. [69, 68], it was possible to design a break condition for the Newton methods that
relies on the threshold value of the multiscale method.

To improve the efficiency of the solution of the nonlinear system one might em-
ploy the multilevel structure of the underlying grid hierarchy in the multiscale ana-
lysis similar to adaptive multigrid techniques such as Brandt’s so-called multilevel
adaptive technique (MLAT), cf. [16, 17], that is an adaptive generalization of the
full approximation scheme (FAS). The efficiency of these methods crucially relies
on the proper choice of problem-dependent transfer and relaxation operators. First
investigations in [56] and [57] for unsteady state and steady state flow problems,
respectively, show that opposite to classical adaptive multigrid schemes we may
employ the multiresolution analysis using biorthogonal wavelets to define the re-
striction and prolongation operators. Since the underlying problem is nonlinear, the
FAS [16] is used for the coarse grid correction. Further investigations are needed
to fully employ the high potential of the multiresolution analysis when applying it
directly to the discrete evolution equations arising from the finite volume discretiza-
tion rather than just using it as a data compression tool for the set of discrete cell
data.

(ii) By the implicit time discretization, the data in all cells are coupled and, hence,
an information could propagate throughout the entire computational domain in one
time step. Since the prediction strategy in Section 5.3 relies on the fact that the
information propagates at most by one cell, the prediction has to be adjusted. Typ-
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ically, for convection-dominated problems such as compressible fluid flow at high
Reynolds numbers the influence of a local perturbation decays rapidly in space and
stays more or less local. In [11], a heuristic approach has been developed for vis-
cous problems where the parameter q in Harten’s strategy has been coupled with the
viscosity parameter. However, a rigorous mathematical justification of its reliability
in the sense of the condition (16) is still missing.

Trend 3: Time step adaptation. The crux of adaptive multiresolution schemes
is the multiresolution analysis of data corresponding to an arbitrary but fixed time.
Therefore the local time variation is not directly accessible from the analysis of the
spatial variation. In recent years, there have been several attempts to develop time
adaptive scheme where the time step is controlled. This is not to be confused with
multilevel time stepping as presented in Section 5.4.

A possible strategy has been investigated by Ferm and Lotstedt [36] based on
time step control strategies for ODEs. Here a Runge-Kutta-Fehlberg method is ap-
plied to the semi-discretized flow equations by which the local spatial and temporal
errors are estimated. These errors determine the local stepsize in time and space.
Later on, this idea was also embedded in fully adaptive multiresolution finite volume
schemes, cf. [30]. Alternatively, Kröner and Ohlberger [48] based their space-time
adaptivity upon Kuznetsov-type a-posteriori L1-error-estimates for scalar conserva-
tion laws.

More recently, explicit and implicit finite volume solvers on adaptively refined
meshes have been coupled with adjoint techniques to control the time stepsizes for
the solution of weakly instationary compressible inviscid flow problems like trans-
onic flight. These can be considered perturbations of stationary flows. While time
accuracy is still needed to study phenomena like aero-elastic interactions, large time
steps may be possible when the perturbations have passed. Here the time step control
is based on a space-time-splitting of the adjoint error representation, cf. [33, 5, 6].
In [68, 69] the multiscale-based grid adaptation was combined with these adjoint
techniques to solve efficiently instationary problems. The advantage of this space
adaptive method is that it also provides an efficient break condition for the Newton
iteration in the implicit time integration.

Trend 4: Parallelization. Although multiscale-based grid adaptation leads to a
significant reduction of the computational complexity (CPU time and memory) in
comparison to computations on uniform meshes, this is not sufficient to perform 3D
computations for complex geometries efficiently. In addition, we need paralleliza-
tion techniques in order to further reduce the computational time to an affordable
order of magnitude. On a distributed memory architecture, the performance of a par-
allelized code crucially depends on the load-balancing and the interprocessor com-
munication. Since the underlying adaptive grids are unstructured due to hanging
nodes, this task cannot be considered trivial. For this purpose, graph partitioning
methods are frequently employed using the Metis software [47, 46]. An alterna-
tive approach is based on space-filling curves, cf. [71]. Here the basic idea is to
map level-dependent multiindices identifying the cells in a dyadic grid hierarchy of
nested grids to a onedimensional line. The interval is then split into different parts
each containing the same number of entries. In the context of adaptive multiresolu-
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tion schemes both the graph-partitioning and the space-filling curve approach have
been used, cf. [61, 62] and [18, 4], respectively.

Nowadays more and more powerful parallel hardware architectures based on
clusters of shared memory machines are being developed. Therefore the above con-
cepts have to be reconsidered. In order to fully employ the power of the machines,
a redesign of algorithms and data structures seems to be indispensable taking into
account issues such as caching and threading.

Trend 5: Turbulence Modeling. The potential of the multiresolution analysis
is not only restricted to pure data analysis but can be used, for instance, to model
turbulent flow. The inherent problem of simulating turbulent flows comes from the
number of degrees of freedom needed to resolve turbulent structures. This number
is proportional to Re9/4 and becomes dramatically large with increasing Reynolds
number Re, e.g. in aerodynamics Re ∼ 106, that makes a direct numerical simula-
tion (DNS) impossible in many applications. In general, the interest is not in the
fully resolved turbulent flow field but in some macroscopic quantities such as lift
and drag coefficients. At the macroscale the quantities can be resolved. However,
they are influenced by the non-resolved fluctuations. Typically, the influence of
the fluctuations is described using some algebraic models, the Reynolds-averaged
Navier-Stokes equations (RANS) or large eddy simulations (LES). Alternatively,
the coherent vortex simulation (CVS) developed by Farge et al. [35, 64, 34] for
incompressible flows has been designed to compute this problem with a reduced
number of degrees of freedom. This methodology is based on the wavelet represen-
tation of the vorticity. The basic idea is to extract the coherent vortex structures from
the noise which will then be modeled to compute the flow evolution.

Up to now, it is not apriorily known whether the choice of degrees of freedom
corresponding to the resolved macroscale is sufficient to capture adequately the in-
fluence of the small scales on the macroscale. Using multiresolution techniques in
combination with recent quantitative estimates for the action of the nonlinearity on
different scales of the flow field, cf. [22, 23], seem to offer a promising possibility
to investigate more rigorously the effect of the fluctuations on the coarse scales. In
particular, it will be interesting to adjust the local scale of resolution adaptively at
run time instead of fixing it before starting the computation. Work in this regard is
done in [29].
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