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Abstract The numerical solution of linear stationary variational problems involving
elliptic partial differential operators usually requires iterative solvers on account of
their problem size. Our guiding principle is to devise theoretically and practically
efficient iterative solution schemes which are optimal in the number of arithmetic
operations, i.e., of linear complexity in the total number of unknowns. For these
algorithms, asymptotically optimal preconditioners are indispensable. This article
collects the main ingredients for multilevel preconditioners based on wavelets for
certain systems of elliptic PDEs with smooth solutions. Specifically, we consider
problems from optimal control with distributed or Dirichlet boundary control con-
strained by elliptic PDEs. Moreover, the wavelet characterization of function space
norms will also be used in modelling the control functional, thereby extending the
range of applicability over conventional methods. The wavelet preconditioners are
optimized for these PDE systems to exhibit small absolute condition numbers and
consequently entail absolute low iteration numbers, as numerical experiments show.

1 Introduction

For variational systems involving linear elliptic partial differential equations (PDEs)
with smooth solutions, standard finite element or finite difference discretizations on
uniform grids lead to the problem to solve a large ill-conditioned system of linear
equations, due to the fact that PDE operators have positive order. Any iterative so-
lution scheme will therefore become prohibitively slow since its speed depends on
the spectral condition number, and the effect becomes even worse when the grid
becomes finer and the number of unknowns increases. But since solutions typically
exhibit a multiscale behaviour, enhancing iterative methods by multilevel ingredi-
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ents have proved to achieve much more efficient solution schemes. Naturally, one
strives for an ‘optimally efficient scheme’, meaning that one can solve the problem
with fine grid accuracy with an amount of arithmetic operations that is proportional
to the number of unknowns on this grid. The first such methods which were proven
to provide an asymptotically optimal iterative scheme were geometric multigrid al-
gorithms [BH]. The basic idea of these schemes is to successively solve smaller
versions of the linear system which can often be interpreted as discretizations with
respect to coarser grids, thereby reducing the spectral condition number of the orig-
inal system matrix and, hence, suggesting the term ‘preconditioner’.

The search for optimal preconditioners was a major topic for numerical elliptic
PDE solvers in the ’80’s. The goal was to better understand the ingredients which
made a preconditioner optimal and, specifically, to find directly applicable versions
which could be interpreted as a change of basis. With the arrival of the hierarchical
basis preconditioner [Y], extending an idea of Babuška from the univariate case, a
simple preconditioner became available. Although it is not optimal — the system
matrix still exhibits a logarithmically growing spectral condition number in the bi-
variate case and exponential growth in three spatial dimensions — its simplicity still
makes it popular up to now [MB]. During this time, a new methodology to derive
preconditioners via space decomposition and subspace corrections was developed
by Jinchao Xu [X1, X2]. The BPX preconditioner proposed first in [BPX] was nu-
merically observed to be optimal; it is based on a weighted hierarchical generator
system. With techniques from Approximation Theory, its optimality was theoreti-
cally established in [DK1, O]. Since then, its range of application has been widened
extensively. For example, for second and fourth order elliptic problems on the sphere
a BPX-type preconditioner has been developed and its optimality proved recently in
[MKB]. The survey article by Jinchao Xu and coauthors in this volume records
extensions of the BPX and of multigrid preconditioners to H(grad), H(curl), and
H(div) systems on adaptive and unstructured grids.

At about the same time, wavelets as a special example of a multiscale basis of
L2(R) with compact support were constructed [Dau]. While initially mainly de-
veloped and used for signal analysis and image compression, wavelets were soon
discovered to also provide optimal preconditioners in the above sense for second
order elliptic boundary value problems [DK1, J]. However, the fact that one cannot
really exploit L2-orthogonality for elliptic boundary value problems together with
the difficulty that the L2-orthogonal Daubechies wavelets are only given implicitly
led to the search for variants which are more practical for numerical PDEs. It was
soon realized that biorthogonal spline-wavelets as developed in [CDF] are better
suited since they allow one to work with piecewise polynomials for the actual dis-
cretization.

The principal and crucial property to prove optimality of a wavelet preconditioner
are norm equivalences between Sobolev norms and sequence norms of weighted
wavelet expansion coefficients. On this basis, optimal conditioning of the resulting
linear system of equations can be achieved by applying the Fast Wavelet Transform
to a single-scale discretization on a uniform grid, together with an application of an
appropriate diagonal matrix.
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Nowadays, the terminology ‘wavelets’ is used in a more general sense that orig-
inally in [Dau]: we rather consider classes of multiscale bases with three main fea-
tures:

(R) Riesz basis property for the underlying function spaces,
(L) locality of the basis functions, and
(CP) cancellation properties.

These will be detailed in Section 3.
After the initial results concerning optimal preconditioning with functions of lo-

cal support in [DK1], research on using wavelets for numerically solving elliptic
PDEs went into different directions. One problem was that the original constructions
in [Dau, CDF] and many others were based on employing the Fourier transform so
that these constructions provide bases only for function spaces on all of R, on the
torus or, by tensorization, on R

n. In contrast, PDEs naturally live on a bounded do-
main Ω ⊂R

n. In order for wavelets to be employed for numerical PDEs, there arose
the need for constructions of wavelets on bounded intervals and domains without,
of course, loosing the crucial properties (R), (L) and (CP). The first such systematic
construction of biorthogonal spline-wavelets on [0,1] and, by tensor products, on
[0,1]n, was provided in [DKU]. Different domain decomposition approaches yield
constructions of biorthogonal wavelets on domains which can be represented as
unions of parametric mappings of [0,1]n [CTU, DS2, DS3, KS], see the article by
Helmut Harbrecht and Reinhold Schneider in this volume and also [U] for details.
Once such bases are available, the absolute value of the condition numbers of (sys-
tems of) elliptic PDEs can be ameliorated significantly by further inexpensive linear
transformations taking into account a setup of the system matrices on the coarsest
grid called operator–based preconditioning [Bu1, Pa].

Aside from optimal preconditioning, the built-in potential of local adaptivity
for wavelets is playing a prominent role when solving stationary PDEs with non–
smooth solutions, on account of the fact that wavelets provide a locally supported
Riesz basis for a whole function space. This issue is extensively addressed in the
article by Rob Stevenson in this volume.

In addition to the material in this volume, there are at least four extensive sur-
veys on wavelet and multiscale methods for more general PDEs addressing, among
other things, the connection between adaptivity and nonlinear approximation and
the evaluation of nonlinearities [Co, D2, D3, D4].

In my article, I want to remain focussed on discretizations for smooth solutions
(for which uniform grids give desired accuracy) since ideally an adaptive scheme
should also perform numerically well for this case. Thus, in order to asses numerical
tests, results for reference schemes on uniform grids should be available.

Another extremely useful application of the Riesz basis property (R) of wavelets
concerns PDE-constrained control problems guided by elliptic boundary value prob-
lems. Here a quadratic optimization functional involving Sobolev norms of the
state and the control of a system is to be minimized, subject to an elliptic PDE in
variational form which couples state and control variables. In wavelet bases, the
numerical evaluation of Sobolev norms even with fractional smoothness indices
amounts to a multiplication with a diagonal basis and can be realized fast [Bu2].
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This allows one to efficiently evaluate natural function space norms as they arise
for PDE–constrained control, or different norms in the control functional more ad-
equate for modelling purposes [Bu1, BK]. Conventional discretizations based on
finite elements have concentrated here on evaluating function space norms with
integer smoothness. Also for linear–quadratic elliptic control problems with non–
smooth solutions, adaptive wavelets provide most efficient solution schemes. Con-
vergence and optimal complexity estimates of respective adaptive wavelet methods
were established in [DK3]. Among such optimization problems, boundary control
problems where the control is exerted through essential boundary conditions, appear
practically most often. Formulating the elliptic PDE as a saddle point problem by
introducing Lagrange multipliers for the boundary conditions allows one to handle
changing boundary controls in a flexible manner. Wavelet approaches for treating
such more involved systems of elliptic PDEs in saddle point form have been inves-
tigated in [K1, K4] and numerically optimized in [Pa].

This paper is of a more introductory nature: its purpose is to collect the basic
ingredients for wavelet preconditioners, apply them to (systems of) linear elliptic
PDEs in variational form and provide some numerical results on their performance.
Specifically, some effort will be spent on the description of nested iterative solution
schemes for systems from PDE-constrained control problems.

The structure of this paper is as follows. First, in Section 2, some well–posed
variational problems are compiled. The simplest example is a linear second order
elliptic boundary value problem for which we derive two forms of an operator equa-
tion, once as a single equation and once as a saddle point system where nonhomo-
geneous boundary conditions are handled by means of Lagrange multipliers. Both
formulations are then used as basic systems for PDE-constrained control problems,
one with control through the right hand side and one involving a Dirichlet bound-
ary control. In Section 3 necessary ingredients and basic properties of wavelets are
assembled. In particular, Section 3.4 collects the essential construction principles
for wavelets on bounded domains which do not rely on Fourier techniques, namely,
multiresolution analyses of function spaces and the concept of stable completions.
In Section 4 we formulate the problem classes introduced in Section 2 in wavelet
coordinates and derive in particular for the control problems the resulting systems of
linear equations arising from the optimality conditions. Section 5 is devoted to the
iterative solution of these systems. We investigate fully iterative schemes on uniform
grids and show that the resulting systems can be solved in the wavelet framework
together with a nested iteration strategy with an amount of arithmetic operations
which is proportional to the total number of unknowns on the finest grid. Numerical
experiments on the performance of the solvers as well as on the modelling issue
round off this contribution.

The following notations are used frequently. The relation a ∼ b always stands for
a <∼ b and b <∼ a where the latter inequality means that b can be bounded by some
constant times a uniformly in all parameters on which a and b may depend. Norms
and inner products are indexed by the corresponding function space. Lp(Ω) are for
1 ≤ p ≤ ∞ the usual Lebesgue spaces on a domain Ω ⊂ R

n, and W k
p (Ω) ⊂ Lp(Ω)
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denote for k ∈N the Sobolev spaces of functions whose weak derivatives up to order
k are bounded in Lp(Ω). For p = 2, we abbreviate Hk(Ω) = W k

2 (Ω).

2 Systems of elliptic partial differential equations (PDEs)

We first formulate the classes of variational problems which will be investigated
here in an abstract form.

2.1 Abstract operator systems

Let H be a Hilbert space with norm ‖ · ‖H with normed dual H ′ endowed with
the norm

‖w‖H ′ := sup
v∈H

〈v,w〉
‖v‖H

(1)

where 〈·, ·〉 denotes the dual pairing between H and H ′.
Given F ∈ H ′, the goal is to find a solution to the operator equation

L U = F (2)

where L : H → H ′ is a linear operator which is assumed to be a bounded bijec-
tion,

‖L V‖H ′ ∼ ‖V‖H , V ∈ H . (3)

The operator equation (2) is well-posed since (3) implies for any given data F ∈H ′

the existence and uniqueness of the solution U ∈ H which depends continuously
on the data. Property (3) is also called mapping property of L .

The examples that we consider will be such that H is a product space

H := H1,0 ×·· ·×Hm,0 , (4)

where each of the Hi,0 ⊆Hi is a Hilbert space or a closed subspace of a Hilbert space
Hi determined, for instance, by homogeneous boundary conditions. The spaces Hi

will be Sobolev spaces living on a bounded domain Ω ⊂ R
n or on (part of) its

boundary. In view of the definition of H , the elements V ∈ H will consist of m
components V = (v1, . . . ,vm)T for which we define ‖V‖2

H := ∑m
i=1 ‖vi‖2

Hi
. The dual

space H ′ is then endowed with the norm

‖W‖H ′ := sup
V∈H

〈V,W 〉
‖V‖H

(5)

where 〈V,W 〉 := ∑m
i=1〈vi,wi〉i in terms of the dual pairing 〈·, ·〉i between Hi and H ′

i .
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We will formulate four classes of problems which fit into this format. A recurring
theme in the derivation of the system of operator equations (2) is the minimization
of a quadratic functional.

2.2 A scalar elliptic boundary value problem

Denote by ∂Ω := Γ ∪ΓN the boundary of Ω which is assumed to be piecewise
smooth. We consider the scalar second order boundary value problem

−∇ · (a∇y)+ cy = f in Ω ,

y = g on Γ , (6)

(a∇y) ·n = 0 on ΓN ,

where n = n(x) is the outward normal at x ∈ Γ , a = a(x) ∈ R
n×n is symmetric,

uniformly positive definite and bounded on Ω , and c ∈ L∞(Ω). Furthermore, f and
g are some given right hand side and boundary data. With the usual definition of the
bilinear form

a(v,w) :=
∫

Ω
(a∇v ·∇w+ cvw)dx, (7)

the weak formulation of (6) requires in the case g ≡ 0 to find y ∈ H where

H := H1
0,Γ (Ω) := {v ∈ H1(Ω) : v|Γ = 0}, (8)

or
H := {v ∈ H1(Ω) :

∫
Ω

v(x)dx = 0} when Γ = /0, (9)

such that
a(y,v) = 〈v, f 〉, v ∈ H . (10)

Neumann–type boundary conditions on ΓN are implicitly contained in the weak for-
mulation (10), therefore called natural boundary conditions. In contrast, Dirichlet
boundary conditions on Γ have to be posed explicitly, therefore called essential
boundary conditions. The easiest way to achieve this for homogeneous Dirichlet
boundary conditions when g ≡ 0 is to include them into the solution space as above
in (8). In the nonhomogeneous case g �≡ 0 on Γ in (6) and Γ �= /0, one can re-
duce this to a problem with homogeneous boundary conditions by homogenization
as follows. Let w ∈ H1(Ω) be such that w ≡ g on Γ . Then ỹ := y − w satisfies
a(ỹ,v) = a(y,v)− a(w,v) = 〈v, f 〉− a(w,v) =: 〈v, f̃ 〉 for all v ∈ H defined in (8),
and on Γ one has ỹ = g−w ≡ 0 yielding ỹ ∈ H . Therefore, it suffices to consider
the weak form (10) with a perhaps modified right hand side. Another possibility
which allows to treat the case g �≡ 0 explicitly is discussed in the next section.

The crucial properties are that the bilinear form defined in (7) is symmetric, con-
tinuous and elliptic on H ,
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a(v,v) ∼ ‖v‖2
H for any v ∈ H , (11)

see, e.g., [B]. By Riesz’ representation theorem, the bilinear form defines a linear
operator A : H → H ′ by

〈w,Av〉 := a(v,w), v,w ∈ H , (12)

which is under the above assumptions an isomorphism,

cA‖v‖H ≤ ‖Av‖H ′ ≤ CA‖v‖H for any v ∈ H . (13)

Relation (13) entails that given any f ∈ H ′, there exists a unique y ∈ H which
solves the linear operator equation

Ay = f in H ′ (14)

derived from (10). This linear system where the operator defines a bounded bijection
in the sense of (13) is the simplest case of a well-posed variational problem (2). In
the notation from Section 2.1, we have here m = 1 and L = A.

2.3 Saddle point problems involving essential boundary conditions

A particular saddle point problem derived from (6) shall be considered next. Since
it is particularly appropriate to handle essential non–homogeneous Dirichlet bound-
ary conditions, it will also be employed later in the context of boundary control
problems.

Recall, e.g., from [B] that the solution y∈H of (10) is also the unique minimizer
of the minimization problem

inf
v∈H

J (v), J (v) :=
1
2

a(v,v)−〈v, f 〉. (15)

This means that y is a critical point for the first order variational derivative of J ,
i.e., δJ (y;v) = 0. Here δ sJ (v;w1, . . . ,ws) denotes the s–th variation of J at v
in directions w1, . . . ,ws. In particular, for s = 1

δJ (v;w) := lim
t→0

J (v+ tw)−J (v)
t

(16)

is the (Gateaux) derivative of J at v in direction w.
Generalizing (15) to the case of nonhomogeneous Dirichlet boundary conditions

g, we want to minimize J over v ∈ H1(Ω) subject to constraints in form of the
essential boundary conditions v = g on Γ . A standard technique from nonlinear op-
timization is to employ a Lagrange multiplier p to append the constraints to the
optimization functional J defined in (15). Satisfying the constraint is guaranteed
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by taking the supremum over all such Lagrange multipliers before taking the infi-
mum. Thus, minimization subject to a constraint leads to the problem of finding a
saddle point (y, p) of the saddle point problem

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ ))′

J (v)+ 〈v−g,q〉Γ . (17)

The choice of the Lagrange multiplier space and the dual form 〈·, ·〉Γ in (17) can
be explained as follows. The boundary expression v = g actually means taking the
trace of v ∈ H1(Ω) to Γ ⊆ ∂Ω which we explicitly write as γv := v|Γ . Classical
trace theorems from, e.g., [Gr] state that for any v ∈ H1(Ω) one looses ‘ 1

2 order
of smoothness’ when taking traces, therefore yielding γv ∈ H1/2(Γ ). Thus, when
the data g is such that g ∈ H1/2(Γ ), the expression in (17) involving the dual form
〈·, ·〉Γ := 〈·, ·〉H1/2(Γ )×(H1/2(Γ ))′ is well–defined, and so is the selection of the mul-

tiplier space (H1/2(Γ ))′. In case of Dirichlet boundary conditions on the whole
boundary of Ω , i.e., the case Γ ≡ ∂Ω , one can identify (H1/2(Γ ))′ = H−1/2(Γ ).

The above formulation (17) was first investigated in [Ba]. Another standard tech-
nique from optimization to handle minimization problems under constraints is to ap-
pend the constraints to J (v) by means of a penalty parameter ε . For this approach,
however, the system matrix depends on ε . So far, no optimal preconditioners have
been established for this case so that we do not discuss this method here any further.

The method of appending essential boundary conditions by Lagrange multipliers
is particularly appealing in connection with fictitious domain methods which may be
used for problems with changing boundaries such as shape optimization problems.
There one embeds the domain Ω into a larger, simple domain �, and formulates
(17) with respect to H1(�) and dual form on the boundary Γ [K2]. One should
note, however, that in the case that Γ is a proper subset of ∂Ω , there may occur
some ambiguity in the relation between the fictitious domain formulation and the
corresponding strong form (6). In fact, without further assumptions, one cannot es-
tablish that the infimum of (17) with respect to H1(�), when restricted to Ω , is the
same as taking the infimum of (17) with respect to H1(Ω). This is indeed guaran-
teed by using another set of Lagrangian multipliers. We currently investigate this for
a problem from electrical impedance tomography in [KK].

In order to bring out the role of the trace operator, we define in addition to (7) a
second bilinear form on H1(Ω)× (H1/2(Γ ))′ by

b(v,q) :=
∫

Γ
(γv)(s)q(s)ds (18)

so that the saddle point problem (17) may be rewritten as

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ ))′

J (v,q), J (v,q) := J (v)+b(v,q)−〈g,q〉Γ . (19)

Determining the critical points of first order variations of J , now with respect to
both v and q, yields the system of equations that a saddle point (y, p) has to satisfy
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a(y,v)+b(v, p) = 〈v, f 〉, v ∈ H1(Ω),
b(y,q) = 〈g,q〉Γ , q ∈ (H1/2(Γ ))′.

(20)

Defining the linear operator B : H1(Ω)→H1/2(Γ ) and its adjoint B′ : (H1/2(Γ ))′ →
(H1(Ω))′ by 〈Bv,q〉Γ = 〈v,B′q〉Γ := b(v,q), this can be rewritten as a linear operator
equation from H := H1(Ω)× (H1/2(Γ ))′ to H ′ as follows:
Given ( f ,g) ∈ H ′, find (y, p) ∈ H that solves

(
A B′

B 0

)(
y
p

)
=

(
f
g

)
. (21)

It can be shown in the present context that the Lagrange multiplier can be determined
by p = −n ·a∇y which can be interpreted as stress force on the boundary [Ba].

We briefly discuss the properties of B representing the trace operator. Classical
trace theorems from, e.g., [Gr], state that for any f ∈ Hs(Ω), 1/2 < s < 3/2, one
has

‖ f |Γ ‖Hs−1/2(Γ ) <∼ ‖ f‖Hs(Ω). (22)

Conversely, for every g∈Hs−1/2(Γ ), there exists some f ∈Hs(Ω) such that f |Γ = g
and

‖ f‖Hs(Ω) <∼ ‖g‖Hs−1/2(Γ ). (23)

Note that the range of s extends accordingly if Γ is more regular. Estimate (22)
immediately entails for s = 1 that B : H1(Ω) → H1/2(Γ ) is continuous. Moreover,
the second property (23) means B is surjective, i.e., rangeB = H1/2(Γ ) and kerB′ =
{0}. This yields that the inf–sup condition

inf
q∈(H1/2(Γ ))′

sup
v∈H1(Ω)

〈Bv,q〉Γ
‖v‖H1(Ω) ‖q‖(H1/2(Γ ))′

>∼ 1 (24)

is satisfied.
In the notation from Section 2.1, the system (21) is a saddle point problem on

H =Y ×Q. Thus, we identify Y = H1(Ω) and Q = (H1/2(Γ ))′ and linear operators
A : Y → Y ′ and B : Y → Q′.

The abstract theory of saddle point problems states that existence and uniqueness
of a solution pair (y, p) ∈ H of (21) holds if and only if A and B are continuous, A
is invertible on kerB ⊆ Y and the range of B is closed in Q′, see, e.g., [B, BF] and
the article in this volume by Ricardo Nochetto and coauthors. The properties for B
and the continuity for A have been assured above. In addition, we will always deal
here with operators A which are invertible on kerB which cover the standard cases
of the Laplacian (a = I and c ≡ 0) and the Helmholtz operator (a = I and c = 1).

Consequently, the operator

L :=
(

A B′

B 0

)
: H → H ′ (25)

is linear bijection, and one has the mapping property
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∥∥∥∥L

(
v
q

)∥∥∥∥
H ′

∼
∥∥∥∥
(

v
q

)∥∥∥∥
H

(26)

for any (v,q) ∈ H with constants depending on upper and lower bounds for A,B.
Finally, the operator equation (21) is established as a well-posed variational problem
in the sense of Section 2.1: for given ( f ,g) ∈ H ′, there exists a unique solution
(y, p) ∈ H = Y ×Q which depends continuously on the data.

2.4 PDE-constrained control problems: Distributed control

An important class of problems where the numerical solution of systems (14) or
(21) is required repeatedly are control problems with PDE-constraints. Using the
notation from Section 2.2, consider as a guiding model the objective to minimize a
quadratic functional of the form

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω
2
‖u‖2

U , (27)

subject to the linear constraints

Ay = f +u in H ′ (28)

where A : H → H ′ is defined as above in (12) satisfying (13), and f ∈ H is given.
The space H is in this subsection defined as in (8) or in (9), and we reserve the
symbol H for a resulting product space later.

In order for a solution y of (28), the state of the system, to be well–defined, the
problem formulation has to ensure that the unknown control u appearing in the right
hand side of (28) is at least in H ′. This can be achieved by choosing the control space
U whose norm appears in (27) such that it is as least as smooth as H ′. The second
ingredient in the optimization functional (27) is a data fidelity term which enforces
a match of the system state y to some prescribed target state y∗, measured in some
norm which is typically weaker than ‖ · ‖H . Thus, we require that the observation
space Z and the control space U are such that the continuous embeddings

‖v‖H ′ <∼ ‖v‖U , v ∈ U , ‖v‖Z <∼ ‖v‖H , v ∈ H, (29)

hold. Mostly one has investigated the simplest cases of norms which occur for U =
Z = L2(Ω) and which are covered by these assumptions [Li]. The parameter ω > 0
balances the norms in (27), the data fidelity term and the control.

Since the control appears in all of the right hand side of (28), such control prob-
lems are called distributed control problems. Although their practical value is of a
rather limited nature, distributed control problems help to bring out the basic mech-
anisms. Note that when the observed data is compatible in the sense that y∗ ≡ A−1 f ,
the control problem yields the trivial control u ≡ 0 which implies J (y,u) ≡ 0.
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Solution schemes for the control problem (27) subject to the constraints (28) can
be based on the system of operator equations derived next by the same variational
principles as employed in the previous section, using a Lagrange multiplier p to
enforce the constraints. Defining the Lagrangian functional

Lagr(y, p,u) := J (y,u)+ 〈p,Ay− f −u〉 (30)

on H ×H ×H ′, the first order necessary conditions or Karush-Kuhn-Tucker (KKT)
conditions δ Lagr(x) = 0 for x = p,y,u can be derived as

Ay = f +u

A′p = −S(y− y∗) (31)

ωRu = p.

Here the linear operators S and R can be interpreted as Riesz operators defined by
the inner products (·, ·)Z and (·, ·)U . The system (31) may be written in saddle point
form as

L V :=
(

A B′

B 0

)
V :=

⎛
⎝S 0 A′

0 ωR −I
A −I 0

⎞
⎠

⎛
⎝y

u
p

⎞
⎠ =

⎛
⎝Sy∗

0
f

⎞
⎠ =: F (32)

on H := H ×H ×H ′. Here we can also allow that Z in (27) is a trace space on
part of the boundary ∂Ω as long as the corresponding condition (29) is satisfied
[K3]. The class of control problems where the control is exerted through Neumann
boundary conditions can also be written in this form since in this case the control
still appears on the right hand side of a single operator equation of a form like (28),
see [DK3]. Well-posedness of the system (32) can now be established by applying
the conditions for saddle point problems stated in Section 2.3.

A few statements on the model of the control problem should be made. While
the PDE constraints (28) that govern the system are fixed, there is in many applica-
tions some ambiguity with respect to the choice of the spaces Z and U . L2 norms
are easily realized in finite element discretizations, although in some applications
smoother norms for the observation ‖ · ‖Z or for the control ‖ · ‖U are desirable.
This is the case, for instance, in temperature cooling processes where also the gra-
dient of the temperature of a material is to be controlled. Once Z and U are fixed,
there is only a single parameter ω to balance the two norms in (27). Modelling the
objective functional is therefore an issue where more flexibility may be advanta-
geous. Specifically in a multiscale setting, one may want to weight contributions on
different scales by multiple parameters.

The wavelet setting which we describe in Section 3 allows for this flexibility. It
is based on formulating the norms in the objective functional in terms of weighted
wavelet coefficient sequences which are equivalent to the norms for Z , U and
which, in addition, support an efficient numerical implementation. Once wavelet
discretizations are introduced, we formulate below control problems with such ob-
jective functionals.
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2.5 PDE-constrained control problems: Dirichlet boundary control

Practically the most relevant control problems are problems with Dirichlet boundary
control. They can be posed using the saddle point formulation from Section 2.3.

We consider as an illustrative guiding model the problem to minimize for some
given data y∗ the quadratic functional

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω
2
‖u‖2

U , (33)

where, adhering to the notation in Section 2.2 the state y and the control u are cou-
pled through the linear second order elliptic boundary value problem

−∇ · (a∇y)+ ky = f in Ω ,
y = u on Γ ,

(a∇y) ·n = 0 on ΓN .
(34)

The appearance of the control u as a Dirichlet boundary condition in (34) is referred
to as a Dirichlet boundary control. In view of the treatment of essential Dirichlet
boundary conditions in the context of saddle point problems derived in Section 2.3,
we write the PDE constraints (34) in the operator form (21) on Y ×Q where Y =
H1(Ω) and Q = (H1/2(Γ ))′.

The model control problem with Dirichlet boundary control then reads as fol-
lows: Minimize for given data y∗ ∈ Z and f ∈ Y ′ the quadratic functional

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω
2
‖u‖2

U (35)

subject to (
A B′

B 0

)(
y
p

)
=

(
f
u

)
. (36)

In view of the problem formulation in Section 2.4 and the discussion of the choice
of the observation space Z and the control space, here we require analogously that
Z and U are such that the continuous embeddings

‖v‖Q′ <∼ ‖v‖U , v ∈ U , ‖v‖Z <∼ ‖v‖Y , v ∈ Y, (37)

hold. Also the case of observations on part of the boundary ∂Ω can be taken into
account [K4]. It should be mentioned that the simple choice U = L2(Γ ) which is
used in many applications of Dirichlet control problems is not covered here. Indeed,
there may arise the problem of well-posedness as follows. The constraints (34) or, in
weak form (21), guarantee a unique weak solution y ∈Y = H1(Ω) provided that the
boundary term u satisfies u ∈ Q′ = H1/2(Γ ). In the framework of control problems,
this smoothness of u therefore has to be required either by the choice of U or by the
choice of Z (such as Z = H1(Ω)) which would assure By ∈ Q′. In the latter case,
we could relax condition (37) on U .



Optimized wavelet preconditioning 337

By variational principles, we can derive as before the first order necessary condi-
tions for a coupled system of saddle point problems. Well-posedness of this system
can again be established by applying the conditions for saddle point problems from
Section 2.3 where the inf-sup condition for the saddle point problem (21) yields
an inf-sup condition for the exterior saddle point problem of interior saddle point
problems [K1].

3 Wavelets

The numerical solution of the afore-mentioned classes of problems hinges on the
availability of appropriate wavelet bases for the function spaces under consideration
which are all specific Hilbert spaces on the domain or on (part of) its boundary.

3.1 Basic properties

For the above classes of problems, we need to have a wavelet basis at our disposal
for each occurring function space. A wavelet basis for a Hilbert space H is here
understood as a collection of functions

ΨH := {ψH,λ : λ ∈ IIH} ⊂ H (38)

which are indexed by elements λ from an infinite index set IIH . Each of the indices
λ comprises different information λ = ( j,k,e) such as the refinement scale or level
of resolution j and a spatial location k = k(λ ) ∈ Z

n. In more than one space dimen-
sions, the basis functions are built from taking tensor products of certain univariate
functions, and in this case the third index e contains information on the type of
wavelet. We will frequently use the symbol |λ | := j to access the resolution level
j. In the univariate case on all of R, ψH,λ is typically generated by means of shifts
and dilates of a single function ψ , i.e., ψλ = ψ j,k = 2 j/2ψ(2 j · −k), j,k ∈ Z, nor-
malized with respect to ‖ · ‖L2 . On bounded domains, the structure of the functions
is essentially the same up to modifications near the boundary.

The three crucial properties that we will assume the wavelet basis to have for the
sequel are the following.

Riesz basis property (R): Every v ∈ H has a unique expansion in terms of ΨH ,

v = ∑
λ∈IIH

vλ ψH,λ =: vT ΨH , v := (vλ )λ∈IIH , (39)

and its expansion coefficients satisfy a norm equivalence: for any v = {vλ : λ ∈ IIH}
one has

cH ‖v‖�2(IIH ) ≤ ‖vTΨH‖H ≤ CH ‖v‖�2(IIH ), v ∈ �2(IIH), (40)
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where 0 < cH ≤CH < ∞. This means that wavelet expansions induce isomorphisms
between certain function spaces and sequence spaces. We write �2 norms without
subscripts as ‖ · ‖ := ‖ · ‖�2(IIH ) when the index set is clear from the context. If the
precise constants do not matter, we write the norm equivalence (40) shortly as

‖v‖ ∼ ‖vTΨH‖H , v ∈ �2(IIH). (41)

Locality (L): The functions ψH,λ have compact support which decreases with in-
creasing level j = |λ |, i.e.,

diam(suppψH,λ ) ∼ 2−|λ |. (42)

Cancellation property (CP): There exists an integer m̃ = m̃H such that

〈v,ψH,λ 〉 <∼ 2−|λ |(n/2−n/p+m̃)|v|W m̃
p (supp ψH,λ ). (43)

This means that integrating against a wavelet has the effect of taking an m̃th order
difference which annihilates the smooth part of v. This property is for wavelets
defined on Euclidean domains typically realized by constructing ΨH in such a way
that it possesses a dual or biorthogonal basis Ψ̃H ⊂ H ′ such that the multiresolution
spaces S̃ j := span{ψ̃H,λ : |λ | < j} contain all polynomials of order m̃. Here dual
basis means that 〈ψH,λ , ψ̃H,ν〉 = δλ ,ν , λ ,ν ∈ IIH .

A few remarks on these properties should be made. In (R), the norm equivalence
(41) is crucial since it means complete control over a function measured in ‖ · ‖H

from above and below by its expansion coefficients: small changes in the coefficients
only cause small changes in the function. Together with the locality (L), this also
means that local changes stay local. This stability is an important feature which is
used for deriving optimal preconditioners. Finally, the cancellation property (CP)
entails that smooth functions have small wavelet coefficients which, on account of
(40) may be neglected in a controllable way. Moreover, (CP) can be used to derive
quasi–sparse representations of a wide class of operators, see the article by Rob
Stevenson in this volume.

By duality arguments one can show that (40) is equivalent to the existence of a
biorthogonal collection which is dual or biorthogonal to ΨH ,

Ψ̃H := {ψ̃H,λ : λ ∈ IIH} ⊂ H ′, 〈ψH,λ , ψ̃H,μ〉 = δλ ,μ , λ ,μ ∈ IIH , (44)

which is a Riesz basis for H ′, that is, for any ṽ = ṽT Ψ̃H ∈ H ′ one has

C−1
H ‖ṽ‖ ≤ ‖ṽTΨ̃H‖H ′ ≤ c−1

H ‖ṽ‖, (45)

see [D1, D3]. Here and in the sequel the tilde expresses that the collection Ψ̃H is a
dual basis to a primal one for the space identified by the subscript, so that Ψ̃H =ΨH ′ .
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Above in (40), we have already introduced the following shorthand notation
which simplifies the presentation of many terms. We will view ΨH both as in (38) as
a collection of functions as well as a (possibly infinite) column vector containing all
functions always assembled in some fixed unspecified order. For a countable collec-
tion of functions Θ and some single function σ , the term 〈Θ ,σ〉 is to be understood
as the column vector with entries 〈θ ,σ〉, θ ∈ Θ , and correspondingly 〈σ ,Θ〉 the
row vector. For two collections Θ ,Σ , the quantity 〈Θ ,Σ〉 is then a (possibly infinite)
matrix with entries (〈θ ,σ〉)θ∈Θ , σ∈Σ for which 〈Θ ,Σ〉= 〈Σ ,Θ〉T . This also implies
for a (possibly infinite) matrix C that 〈CΘ ,Σ〉= C〈Θ ,Σ〉 and 〈Θ ,CΣ〉= 〈Θ ,Σ〉CT .

In this notation, the biorthogonality or duality conditions (44) can be expressed
shortly as

〈Ψ ,Ψ̃〉 = I (46)

with the infinite identity matrix I.
Wavelets with the above properties can actually be obtained in the following way.

In particular, this concerns a scaling depending on the regularity of the space under
consideration. In our case, H will always be a Sobolev space Hs = Hs(Ω) or a
closed subspace of Hs(Ω) determined by homogeneous boundary conditions, or its
dual. For s < 0, Hs is interpreted as above as the dual of H−s.

We typically obtain the wavelet basis ΨH for H from an anchor basis Ψ = {ψλ :
λ ∈ II = IIH} which is a Riesz basis for L2(Ω), meaning that Ψ is scaled such that
‖ψλ‖L2(Ω) ∼ 1. Moreover, its dual basis Ψ̃ is also a Riesz basis for L2(Ω). Ψ and Ψ̃
are constructed in such a way that rescaled versions of both bases Ψ ,Ψ̃ form Riesz
bases for a whole range of (closed subspaces of) Sobolev spaces Hs, for 0 < s < γ, γ̃ ,
respectively. Consequently, one can derive that for each s ∈ (−γ̃,γ) the collection

Ψs := {2−s|λ |ψλ : λ ∈ II} =: D−sΨ (47)

is a Riesz basis for Hs [D1]. This means that there exist positive finite constants
cs,Cs such that

cs ‖v‖ ≤ ‖vTΨs‖Hs ≤ Cs ‖v‖, v ∈ �2(II), (48)

holds for each s ∈ (−γ̃,γ). Such a scaling represented by a diagonal matrix Ds in-
troduced in (47) will play an important role later on. The analogous expression in
terms of the dual basis reads

Ψ̃s := {2s|λ | ψ̃λ : λ ∈ II} = DsΨ̃ , (49)

where Ψ̃s forms a Riesz basis of Hs for s ∈ (−γ, γ̃). This entails the following fact.
For t ∈ (−γ̃,γ) the mapping

Dt : v = vTΨ �→ (Dtv)TΨ = vT DtΨ = ∑
λ∈II

vλ 2t|λ |ψλ (50)

acts as a shift operator between Sobolev scales which means that
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‖Dtv‖Hs ∼ ‖v‖Hs+t ∼ ‖Ds+tv‖, if s, s+ t ∈ (−γ̃,γ). (51)

Concrete constructions of wavelet bases with the above properties for parameters
γ, γ̃ ≤ 3/2 on a bounded Lipschitz domain Ω can be found in [DKU, DSt]. This
suffices for the above mentioned examples where the relevant Sobolev regularity
indices range between −1 and 1.

3.2 Norm equivalences and Riesz maps

As we have seen, the scaling provided by D−s is an important feature to establish
norm equivalences (48) for the range s ∈ (−γ̃,γ) of Sobolev spaces Hs. However,
there are several other norms which are equivalent to ‖ · ‖Hs which may later be
used in the objective functional (27) in the context of control problems. This issue
addresses the mathematical model which we briefly discuss now.

We first consider norm equivalences for the L2 norm. Let as before Ψ be the
anchor wavelet basis for L2 for which the Riesz operator R = RL2 is the (infinite)
Gramian matrix with respect to the inner product (·, ·)L2 defined as

R := (Ψ ,Ψ)L2 = 〈Ψ ,Ψ〉. (52)

Expanding Ψ in terms of Ψ̃ and recalling the duality (46), this yields

I = 〈Ψ ,Ψ̃〉 =
〈
〈Ψ ,Ψ〉Ψ̃ ,Ψ̃

〉
= R〈Ψ̃ ,Ψ̃〉 or R−1 = 〈Ψ̃ ,Ψ̃〉. (53)

R may be interpreted as the transformation matrix for the change of basis from Ψ̃
to Ψ , that is, Ψ = RΨ̃ . For any w = wTΨ ∈ L2, we now obtain the identities

‖w‖2
L2

= (wTΨ ,wTΨ)L2 = wT 〈Ψ ,Ψ〉w = wT Rw = ‖R1/2w‖2 =: ‖ŵ‖2. (54)

Expanding w with respect to the basis Ψ̂ := R−1/2Ψ = R1/2Ψ̃ , that is, w = ŵTΨ̂ ,
yields ‖w‖L2 = ‖ŵ‖. On the other hand, we obtain from (48) with s = 0

c2
0 ‖w‖2 ≤ ‖w‖2

L2
≤ C2

0 ‖w‖2. (55)

From this we can derive the condition number κ(Ψ) of the wavelet basis in terms
of the extreme eigenvalues of R by defining

κ(Ψ) :=
(

C0

c0

)2

=
λmax(R)
λmin(R)

= κ(R) ∼ 1, (56)

where κ(R) also denotes the spectral condition number of R and where the last
relation is assured by the asymptotic estimate (55). However, the absolute constants
will have an impact on numerical results in each individual case.
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For a Hilbert space H denote byΨH a wavelet basis for H satisfying (R), (L), (CP)
with a corresponding dual basis Ψ̃H . The (infinite) Gramian matrix with respect to
the inner product (·, ·)H inducing ‖ · ‖H which is defined by

RH := (ΨH ,ΨH)H (57)

will be also called Riesz operator. The space L2 is covered trivially by R0 = R. For
any function v := vTΨH ∈ H we have then the identity

‖v‖2
H = (v,v)H = (vTΨH ,vTΨH)H = vT (ΨH ,ΨH)H v

= vT RHv = ‖R1/2
H v‖2. (58)

Note that in general RH may not be explicitly computable, in particular, when H is
a fractional Sobolev space.

Again referring to (48), we obtain as in (56) for the more general case

κ(Ψs) :=
(

Cs

cs

)2

=
λmax(RHs)
λmin(RHs)

= κ(RHs) ∼ 1 for each s ∈ (−γ̃ ,γ). (59)

Thus, all Riesz operators on the applicable scale of Sobolev spaces are spectrally
equivalent. Moreover, comparing (59) with (56), we get

cs

C0
‖R1/2v‖ ≤ ‖R1/2

Hs v‖ ≤ Cs

c0
‖R1/2v‖. (60)

Of course, in practice, the constants appearing in this equation may be much sharper,
as the bases for Sobolev spaces with different exponents are only obtained by a
diagonal scaling which preserves much of the structure of the original basis for L2.

We summarize these results for further reference.

Proposition 3.1. In the above notation, we have for any v = vTΨs ∈ Hs the norm
equivalences

‖v‖Hs = ‖R1/2
Hs v‖ ∼ ‖R1/2v‖ ∼ ‖v‖ for each s ∈ (−γ̃,γ). (61)

3.3 Representation of operators

A final ingredient concerns the wavelet representation of linear operators in terms of
wavelets. Let H,V be Hilbert spaces with wavelet bases ΨH ,ΨV and corresponding
duals Ψ̃H , Ψ̃V , and suppose that L : H →V is a linear operator with dual L ′ : V ′ →
H ′ defined by 〈v,L ′w〉 := 〈L v,w〉 for all v ∈ H, w ∈V .

We shall make frequent use of this representation and its properties.

Remark 3.1. The wavelet representation of L : H → V with respect to the bases
ΨH ,Ψ̃V of H, V ′, respectively, is given by
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L := 〈Ψ̃V ,LΨH〉, L v = (Lv)TΨV . (62)

Thus, the expansion coefficients of L v in the basis that spans the range space of L
are obtained by applying the infinite matrix L = 〈Ψ̃V ,LΨH〉 to the coefficient vector
of v. Moreover, boundedness of L implies boundedness of L in �2, i.e.,

‖L v‖V <∼ ‖v‖H , v ∈ H, implies ‖L‖ := sup
‖v‖�2(IIH )≤1

‖Lv‖�2(IIV ) <∼ 1. (63)

Proof. Any image L v ∈V can naturally be expanded with respect to ΨV as L v =
〈L v,Ψ̃V 〉ΨV . Expanding in addition v in the basis ΨH , v = vTΨH yields

L v = vT 〈LΨH ,Ψ̃V 〉ΨV = (〈LΨH ,Ψ̃V 〉T v)TΨV = (〈Ψ̃V ,LΨH〉v)TΨV . (64)

As for (63), we can infer from (40) and (62) that

‖Lv‖�2(IIV ) ∼ ‖(Lv)TΨV‖V = ‖Lv‖V <∼ ‖v‖H ∼ ‖v‖�2(IIH ),

which confirms the claim. �

3.4 Multiscale decomposition of function spaces

In this section, the basic construction principles of the biorthogonal wavelets with
properties (R), (L) and (CP) are summarized, see, e.g., [D2]. Their cornerstones are
multiresolution analyses of the function spaces under consideration and the concept
of stable completions. These concepts are free of Fourier techniques and can there-
fore be applied to derive constructions of wavelets on domains or manifolds which
are subsets of R

n.

Multiresolution of L2 (univariate case). Practical constructions of wavelets typi-
cally start out with multiresolution analyses of function spaces. Consider a multires-
olution S of L2 which consists of closed subspaces S j of L2, called trial spaces,
such that they are nested and their union is dense in L2,

S j0 ⊂ S j0+1 ⊂ . . . ⊂ S j ⊂ S j+1 ⊂ . . .L2, closL2

( ∞⋃
j= j0

S j

)
= L2. (65)

The index j is the refinement level which appeared already in the elements of the
index set II in (38), starting with some coarsest level j0 ∈ N0. We abbreviate for a
finite subset Θ ⊂ L2 the linear span of Θ as

S(Θ) = span{Θ}.

Typically the multiresolution spaces S j have the form
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S j = S(Φ j), Φ j = {φ j,k : k ∈ Δ j}, (66)

for some finite index set Δ j, where the set {Φ j}∞
j= j0

is uniformly stable in the sense
that

‖c‖�2(Δ j) ∼ ‖cT Φ j‖L2 , c = {ck}k∈Δ j ∈ �2(Δ j), (67)

holds uniformly in j. Here we have used again the shorthand notation

cT Φ j = ∑
k∈Δ j

ckφ j,k

and Φ j denotes both the (column) vector containing the functions φ j,k as well as the
set of functions (66).

The collection Φ j is called single scale basis since all its elements live only
on one scale j. In the present context of multiresolution analysis, Φ j is also called
generator basis or shortly generators of the multiresolution. We assume that the φ j,k

are compactly supported with

diam(suppφ j,k) ∼ 2− j. (68)

It follows from (67) that they are scaled such that

‖φ j,k‖L2 ∼ 1 (69)

holds. It is known that nestedness (65) together with stability (67) implies the exis-
tence of matrices M j,0 = (m j

r,k)r∈Δ j+1,k∈Δ j such that the two-scale relation

φ j,k = ∑
r∈Δ j+1

m j
r,kφ j+1,r, k ∈ Δ j, (70)

is satisfied. We can essentially simplify the subsequent presentation of the material
by viewing (70) as a matrix–vector equation which then attains the compact form

Φ j = MT
j,0Φ j+1. (71)

Any set of functions satisfying an equation of this form, the refinement or two–scale
relation, will be called refinable.

Denoting by [X ,Y ] the space of bounded linear operators from a normed linear
space X into the normed linear space Y , one has that

M j,0 ∈ [�2(Δ j), �2(Δ j+1)]

is uniformly sparse which means that the number of entries in each row or column
is uniformly bounded. Furthermore, one infers from (67) that

‖M j,0‖ = O(1), j ≥ j0, (72)

where the corresponding operator norm is defined as
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‖M j,0‖ := sup
c∈�2(Δ j), ‖c‖�2(Δ j)

=1
‖M j,0c‖�2(Δ j+1).

Since the union of S is dense in L2, a basis for L2 can be assembled from func-
tions which span any complement between two successive spaces S j and S j+1, i.e.,

S(Φ j+1) = S(Φ j)⊕S(Ψj) (73)

where
Ψj = {ψ j,k : k ∈ ∇ j}, ∇ j := Δ j+1 \Δ j. (74)

The functions Ψj are called wavelet functions or shortly wavelets if, among other
conditions detailed below, the union {Φ j ∪Ψj} is still uniformly stable in the sense
of (67). Since (73) implies S(Ψj) ⊂ S(Φ j+1), the functions in Ψj must also satisfy a
matrix–vector relation of the form

Ψj = MT
j,1Φ j+1 (75)

with a matrix M j,1 of size (#Δ j+1)× (#∇ j). Furthermore, (73) is equivalent to the
fact that the linear operator composed of M j,0 and M j,1,

M j = (M j,0,M j,1), (76)

is invertible as a mapping from �2(Δ j ∪∇ j) onto �2(Δ j+1). One can also show that
the set {Φ j ∪Ψj} is uniformly stable if and only if

‖M j‖,‖M−1
j ‖ = O(1), j → ∞. (77)

The particular cases that will be important for practical purposes are when not only
M j,0 and M j,1 are uniformly sparse but also the inverse of M j. We denote this
inverse by G j and assume that it is split into

G j = M−1
j =

(
G j,0

G j,1

)
. (78)

A special situation occurs when M j is an orthogonal matrix,

G j = M−1
j = MT

j

which corresponds to the case of L2 orthogonal wavelets [Dau]. A systematic con-
struction of more general M j, G j for spline-wavelets can be found in [DKU], see
also [D2] for more examples, including the hierarchical basis.

Thus, the identification of the functions Ψj which span the complement of S(Φ j)
in S(Φ j+1) is equivalent to completing a given refinement matrix M j,0 to an invert-
ible matrix M j in such a way that (77) is satisfied. Any such completion M j,1 is
called stable completion of M j,0. In other words, the problem of the construction of
compactly supported wavelets can equivalently be formulated as an algebraic prob-
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lem of finding the (uniformly) sparse completion of a (uniformly) sparse matrix
M j,0 in such a way that its inverse is also (uniformly) sparse. The fact that inverses
of sparse matrices are usually dense elucidates the difficulties in the constructions.

The concept of stable completions has been introduced in [CDP] for which a spe-
cial case is known as Sweldens’ lifting scheme. Of course, constructions that yield
compactly supported wavelets are particularly suited for computations in numerical
analysis.

Combining the two–scale relations (71) and (75), one can see that M j performs
a change of bases in the space S j+1,

(
Φ j

Ψj

)
=

(
MT

j,0

MT
j,1

)
Φ j+1 = MT

j Φ j+1. (79)

Conversely, applying the inverse of M j to both sides of (79) results in the recon-
struction identity

Φ j+1 = GT
j

(
Φ j

Ψj

)
= GT

j,0Φ j +GT
j,1Ψj. (80)

An example of the structure of the matrices M j and G j is given in Figure 1.

Fig. 1 Nonzero pattern of matrices M j (left) and G j (right) for boundary-adapted B-splines of
order d = 2 as generators and duals of order d̃ = 4

Fixing a finest resolution level J, one can repeat the decomposition (73) so that
SJ = S(ΦJ) can be written in terms of the functions from the coarsest space supplied
with the complement functions from all intermediate levels,

S(ΦJ) = S(Φ j0)⊕
J−1⊕
j= j0

S(Ψj). (81)
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Thus, every function v ∈ S(ΦJ) can be written in its single–scale representation

v = (cJ)T ΦJ = ∑
k∈ΔJ

cJ,kφJ,k (82)

as well as in its multi–scale form

v = (c j0)
T Φ j0 +(d j0)

TΨj0 + · · ·+(dJ−1)TΨJ−1 (83)

with respect to the multiscale or wavelet basis

Ψ J := Φ j0 ∪
J−1⋃
j= j0

Ψj =:
J−1⋃

j= j0−1

Ψj (84)

Often the single–scale representation of a function may be easier to compute and
evaluate while the multi–scale representation allows one to separate features of the
underlying function characterized by different length scales. Since therefore both
representations are advantageous, it is useful to determine the transformation be-
tween the two representations, commonly referred to as the Wavelet Transform,

TJ : �2(Δ j) → �2(Δ j), dJ �→ cJ , (85)

where
dJ := (c j0 ,d j0 , . . . ,dJ−1)T .

The previous relations (79) and (80) indicate that this will involve the matrices M j

and G j. In fact, TJ has the representation

TJ = TJ,J−1 · · ·TJ, j0 , (86)

where each factor has the form

TJ, j :=
(

M j 0
0 I(#ΔJ−#Δ j+1)

)
∈ R

(#ΔJ)×(#ΔJ). (87)

Schematically TJ can be visualized as a pyramid scheme

M j0 ,0 M j0+1,0 MJ−1,0

c j0 −→ c j0+1 −→ c j0+2 −→ ·· · cJ−1 −→ cJ

M j0 ,1 M j0+1,1 MJ−1,1

↗ ↗ ↗ ·· · ↗
d j0 d j0+1 d j0+2 dJ−1

(88)

Accordingly, the inverse transform T−1
J can be written also in product structure (86)

in reverse order involving the matrices G j as follows:

T−1
J = T−1

J, j0
· · ·T−1

J,J−1, (89)
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where each factor has the form

T−1
J, j :=

(
G j 0
0 I(#ΔJ−#Δ j+1)

)
∈ R

(#ΔJ)×(#ΔJ). (90)

The corresponding pyramid scheme is then

GJ−1,0 GJ−2,0 G j0 ,0

cJ −→ cJ−1 −→ cJ−2 −→ ·· · −→ c j0

GJ−1,1 GJ−2,1 G j0 ,1

↘ ↘ ↘ ·· · ↘
dJ−1 dJ−2 dJ−1 d j0

(91)

Remark 3.2. Property (77) and the fact that M j and G j can be applied in (#Δ j+1)
operations uniformly in j entails that the complexity of applying TJ or T−1

J using
the pyramid scheme is of order O(#ΔJ) = O(dim SJ) uniformly in J. For this reason,
TJ is called the Fast Wavelet Transform (FWT). Note that one should not explicitly
assemble TJ or T−1

J . In fact, due to the particular band structure of M j and G j, this
would result in matrices with O(J #ΔJ) entries.

In Table 1 at the end of this section, spectral condition numbers for the Fast Wavelet
Transform for different constructions of biorthogonal wavelets on the interval com-
puted in [Pa] are displayed.

Since ∪ j≥ j0S j is dense in L2, a basis for the whole space L2 is obtained when
letting J → ∞ in (84),

Ψ :=
∞⋃

j= j0−1

Ψj = {ψ j,k : ( j,k) ∈ II}, Ψj0−1 := Φ j0

II :=
{
{ j0}×Δ j0

}
∪

∞⋃
j= j0

{
{ j}×∇ j

}
.

(92)

The next theorem from [D1] illustrates the relation between Ψ and TJ .

Theorem 3.1. The multiscale transformations TJ are well–conditioned in the sense

‖TJ‖,‖T−1
J ‖ = O(1), J ≥ j0, (93)

if and only if the collection Ψ defined by (92) is a Riesz basis for L2, i.e., every
v ∈ L2 has unique expansions

v =
∞

∑
j= j0−1

〈v,Ψ̃j〉Ψj =
∞

∑
j= j0−1

〈v,Ψj〉Ψ̃j, (94)

where Ψ̃ defined analogously as in (92) is also a Riesz basis for L2 which is
biorthogonal or dual to Ψ ,

〈Ψ ,Ψ̃〉 = I (95)
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such that
‖v‖L2 ∼ ‖〈Ψ̃ ,v〉‖�2(II) ∼ ‖〈Ψ ,v〉‖�2(II). (96)

We briefly explain next how the functions in Ψ̃ , denoted as wavelets dual to Ψ , or
dual wavelets, can be determined. Assume that there is a second multiresolution S̃
of L2 satisfying (65) where

S̃ j = S(Φ̃ j), Φ̃ j = {φ̃ j,k : k ∈ Δ j} (97)

and {Φ̃ j}∞
j= j0

is uniformly stable in j in the sense of (67). Let the functions in Φ̃ j

also have compact support satisfying (68). Furthermore, suppose that the biorthog-
onality conditions

〈Φ j,Φ̃ j〉 = I (98)

hold. We will often refer to Φ j as the primal and to Φ̃ j as the dual generators. The
nestedness of the S̃ j and the stability again implies that Φ̃ j is refinable with some
matrix M̃ j,0, similar to (71),

Φ̃ j = M̃T
j,0Φ̃ j+1. (99)

The problem of determining biorthogonal wavelets now consists in finding bases
Ψj,Ψ̃j for the complements of S(Φ j) in S(Φ j+1), and of S(Φ̃ j) in S(Φ̃ j+1), such that

S(Φ j)⊥S(Ψ̃j), S(Φ̃ j)⊥S(Ψj) (100)

and
S(Ψj)⊥S(Ψ̃r), j �= r, (101)

holds. The connection between the concept of stable completions and the dual gen-
erators and wavelets is made by the following result which is a special case from
[CDP].

Proposition 3.2. Suppose that the biorthogonal collections {Φ j}∞
j= j0

and {Φ̃ j}∞
j= j0

are both uniformly stable and refinable with refinement matrices M j,0, M̃ j,0, i.e.,

Φ j = MT
j,0Φ j+1, Φ̃ j = M̃T

j,0Φ̃ j+1, (102)

and satisfy the duality condition (98). Assume that M̌ j,1 is any stable completion of
M j,0 such that

M̌ j := (M j,0,M̌ j,1) = Ǧ−1
j (103)

satisfies (77).
Then

M j,1 := (I−M j,0M̃T
j,0)M̌ j,1 (104)

is also a stable completion of M j,0, and G j = M−1
j = (M j,0,M j,1)−1 has the form

G j =
(

M̃T
j,0

Ǧ j,1

)
. (105)
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Moreover, the collections of functions

Ψj := MT
j,1Φ j+1, Ψ̃j := Ǧ j,1Φ̃ j+1 (106)

form biorthogonal systems,

〈Ψj,Ψ̃j〉 = I, 〈Ψj,Φ̃ j〉 = 〈Φ j,Ψ̃j〉 = 0, (107)

so that
S(Ψj)⊥S(Ψ̃r), j �= r, S(Φ j)⊥S(Ψ̃j), S(Φ̃ j)⊥S(Ψj). (108)

In particular, the relations (98), (107) imply that the collections

Ψ =
∞⋃

j= j0−1

Ψj, Ψ̃ :=
∞⋃

j= j0−1

Ψ̃j := Φ̃ j0 ∪
∞⋃

j= j0

Ψ̃j (109)

are biorthogonal,
〈Ψ ,Ψ̃〉 = I. (110)

Remark 3.3. Note that the properties needed in addition to (110) to ensure (96) are
neither properties of the complements nor of their bases Ψ ,Ψ̃ but of the multireso-
lution sequences S and S̃ . These can be phrased as approximation and regularity
properties and appear in Theorem 3.2.

We briefly recall yet another useful point of view. The operators

Pjv := 〈v,Φ̃ j〉Φ j = 〈v,Ψ̃ j〉Ψ j = 〈v,Φ̃ j0〉Φ j0 +
j−1

∑
r= j0

〈v,Ψ̃r〉Ψr

P′
jv := 〈v,Φ j〉Φ̃ j = 〈v,Ψ j〉Ψ̃ j = 〈v,Φ j0〉Φ̃ j0 +

j−1

∑
r= j0

〈v,Ψr〉Ψ̃r

(111)

are projectors onto

S(Φ j) = S(Ψ j) and S(Φ̃ j) = S(Ψ̃ j) (112)

respectively, which satisfy

PrPj = Pr, P′
rP′

j = P′
r , r ≤ j. (113)

Remark 3.4. Let {Φ j}∞
j= j0

be uniformly stable. The Pj defined by (111) are uni-
formly bounded if and only if {Φ̃ j}∞

j= j0
is also uniformly stable. Moreover, the Pj

satisfy (113) if and only if the Φ̃ j are refinable as well. Note that then (98) implies

MT
j,0M̃ j,0 = I. (114)

In terms of the projectors, the uniform stability of the complement bases Ψj, Ψ̃j

means that
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‖(Pj+1 −Pj)v‖L2 ∼ ‖〈Ψ̃j,v〉‖�2(∇ j), ‖(P′
j+1 −P′

j)v‖L2 ∼ ‖〈Ψj,v〉‖�2(∇ j), (115)

so that the L2 norm equivalence (96) is equivalent to

‖v‖2
L2

∼
∞

∑
j= j0

‖(Pj −Pj−1)v‖2
L2

∼
∞

∑
j= j0

‖(P′
j −P′

j−1)v‖2
L2

(116)

for any v ∈ L2, where Pj0−1 = P′
j0−1 := 0.

The whole concept derived so far lives from both Φ j and Φ̃ j. It should be pointed
out that in the algorithms one actually does not need Φ̃ j explicitly for computations.

We recall next results that guarantee norm equivalences of the type (40) for
Sobolev spaces.

Multiresolution of Sobolev spaces. Let now S be a multiresolution sequence
consisting of closed subspaces of Hs with the property (65) whose union is dense
in Hs. The following result from [D1] ensures under which conditions norm equiv-
alences hold for the Hs–norm.

Theorem 3.2. Let {Φ j}∞
j= j0

and {Φ̃ j}∞
j= j0

be uniformly stable, refinable, biorthog-
onal collections and let the Pj : Hs → S(Φ j) be defined by (111).
If the Jackson-type estimate

inf
v j∈S j

‖v− v j‖L2
<∼ 2−s j‖v‖Hs , v ∈ Hs, 0 < s ≤ d̄, (117)

and the Bernstein inequality

‖v j‖Hs <∼ 2s j‖v j‖L2 , v j ∈ S j, s < t̄, (118)

hold for

S j =
{

S(Φ j)
S(Φ̃ j)

}
with order d̄ =

{
d
d̃

}
and t̄ =

{
t
t̃

}
, (119)

then for
0 < σ := min{d, t}, 0 < σ̃ := min{d̃, t̃}, (120)

one has

‖v‖2
Hs ∼

∞

∑
j= j0

22s j‖(Pj −Pj−1)v‖2
L2

, s ∈ (−σ̃ ,σ). (121)

Recall that we always write Hs = (H−s)′ for s < 0.
The regularity of S and S̃ is characterized by

t := sup{s : S(Φ j) ⊂ Hs, j ≥ j0}, t̃ := sup{s : S(Φ̃ j) ⊂ Hs, j ≥ j0} (122)

Recalling the representation (115), we can immediately derive the following fact.

Corollary 3.1. Suppose that the assumptions in Theorem 3.2 hold. Then we have
the norm equivalence
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‖v‖2
Hs ∼

∞

∑
j= j0−1

22s j‖〈Ψ̃j,v〉‖2
�2(∇ j), s ∈ (−σ̃ ,σ). (123)

In particular for s = 0 the Riesz basis property of the Ψ , Ψ̃ relative to L2(96) is
recovered. For many applications it suffices to have (121) or (123) only for certain
s > 0 for which one only needs to require (117) and (118) for {Φ j}∞

j= j0
. The Jackson

estimates (117) of order d̃ for S(Φ̃ j) imply the cancellation properties (CP) (43), see,
e.g., [D4].

Remark 3.5. When the wavelets live on Ω ⊂ R
n, (117) means that all polynomials

up to order d̃ are contained in S(Φ̃ j). One also says that S(Φ̃ j) is exact of order d̃.
On account of (95), this implies that the wavelets ψ j,k are orthogonal to polynomials
up to order d̃ or have d̃th order vanishing moments. By Taylor expansion, this in turn
yields (43).

The following generalizations of the discrete norms (116) are useful. Let for
s ∈ R

|||v|||s :=

(
∞

∑
j= j0

22s j‖(Pj −Pj−1)v‖2
L2

)1/2

(124)

which by the relations (115) is also equivalent to

v s :=

(
∞

∑
j= j0−1

22s j‖〈Ψ̃j,v〉‖2
�2(∇ j)

)1/2

. (125)

In this notation, (121) and (123) read

‖v‖Hs ∼ |||v|||s ∼ v s. (126)

In terms of such discrete norms, Jackson and Bernstein estimates hold with con-
stants equal to one.

Lemma 3.1. [K1] Let {Φ j}∞
j= j0

and {Φ̃ j}∞
j= j0

be uniformly stable, refinable, bior-
thogonal collections and let the Pj be defined by (111). Then the estimates

v−Pjv s′ ≤ 2−( j+1)(s−s′) v s, v ∈ Hs, s′ ≤ s ≤ d, (127)

and
v j s ≤ 2 j(s−s′) v j s′ , v j ∈ S(Φ j), s′ ≤ s ≤ d, (128)

are valid, and correspondingly for the dual side.

The same results hold for the norm ||| · ||| defined in (124).

Reverse Cauchy–Schwarz Inequalities. The biorthogonality condition (98)
implies together with direct and inverse estimates the following reverse Cauchy–
Schwarz inequalities for finite–dimensional spaces [DK2]. This is one essential in-
gredient in proving a sufficient condition for satisfying the LBB condition in Section
4.2.
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Lemma 3.2. Let the assumptions in Theorem 3.2 be valid such that the norm equiv-
alence (121) holds for (−σ̃ ,σ) with σ , σ̃ defined in (120). Then for any v ∈ S(Φ j)
there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃ j) such that

‖v‖Hs ‖ṽ∗‖H−s <∼ 〈v, ṽ∗〉 (129)

for any 0 ≤ s < min(σ , σ̃).

The proof of this result given in [DK2] for s = 1/2 in terms of the projectors Pj

defined in (111) and corresponding duals P′
j immediately carries over to more gen-

eral s. Recalling the representation (112) in terms of wavelets, the reverse Cauchy
inequality (129) attains the following sharp form.

Lemma 3.3. [K1] Let the assumptions of Lemma 3.1 hold. Then for every v ∈ S(Φ j)
there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃ j) such that

v s ṽ∗ −s = 〈v, ṽ∗〉 (130)

for any 0 ≤ s ≤ min(σ , σ̃).

Proof. Every v ∈ S(Φ j) can be written as

v =
j−1

∑
r= j0−1

2sr ∑
k∈∇r

vr,kψr,k.

Setting now

ṽ∗ :=
j−1

∑
r= j0−1

2−sr ∑
k∈∇r

vr,kψ̃r,k

with the same coefficients v j,k, the definition of · s yields by biorthogonality (110)

v s ṽ∗ −s =
j−1

∑
r= j0−1

∑
k∈∇r

|v j,k|2.

Combining this with the observation

〈v, ṽ∗〉 =
j−1

∑
r= j0−1

∑
k∈∇r

|v j,k|2

confirms (130). �

Remark 3.6. The previous proof reveals that the identity (130) is also true for ele-
ments from infinite–dimensional spaces Hs and (Hs)′ for which Ψ and Ψ̃ are Riesz
bases.

Biorthogonal wavelets on R. The construction of biorthogonal spline-wavelets on
R from [CDF] for L2 = L2(R) employs the multiresolution framework introduced
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at the beginning of this section. There the φ j,k are generated through the dilates and
translates of a single function φ ∈ L2,

φ j,k = 2 j/2φ(2 j ·−k). (131)

This corresponds to the idea of a uniform virtual underlying grid, explaining the
terminology uniform refinements. B–Splines on uniform grids are known to satisfy
refinement relations (70) in addition to being compactly supported and having L2–
stable integer translates. For computations, they have the additional advantage that
they can be expressed as piecewise polynomials. In the context of variational for-
mulations for second order boundary value problems, a well–used example are the
nodal finite elements φ j,k generated by the cardinal B–Spline of order two, i.e., the
piecewise linear continuous function commonly called the ‘hat function’. For car-
dinal B–Splines as generators, a whole class of dual generators φ̃ j,k (of arbitrary
smoothness at the expense of larger supports) can be constructed which are also
generated by one single function φ̃ through translates and dilates. By Fourier tech-
niques, one can construct from φ , φ̃ then a pair of biorthogonal wavelets ψ , ψ̃ whose
dilates and translates built as in (131) constitute Riesz bases for L2(R).

By taking tensor products of these functions, of course, one can generate bior-
thogonal wavelet bases for L2(Rn).

Biorthogonal wavelets on domains. Some constructions that exist by now have
as a core ingredient tensor products of one-dimensional wavelets on an interval
derived from the biorthogonal wavelets from [CDF] on R. On finite intervals in R,
the corresponding constructions are usually based on keeping the elements of Φ j,Φ̃ j

supported inside the interval while modifying those translates overlapping the end
points of the interval so as to preserve a desired degree of polynomial exactness.
A general detailed construction satisfying all these requirements has been proposed
in [DKU]. Here just the main ideas for constructing a biorthogonal pair Φ j,Φ̃ j and
corresponding wavelets satisfying the above requirements are sketched, where we
apply the techniques derived at the beginning of this section.

We start out with those functions from two collections of biorthogonal genera-
tors ΦR

j ,Φ̃R

j for some fixed j ≥ j0 living on the whole real line whose support has
nonempty intersection with the interval (0,1). In order to treat the boundary effects
separately, we assumed that the coarsest resolution level j0 is large enough so that,
in view of (68), functions overlapping one end of the interval vanish at the other.
One then leaves as many functions from the collection ΦR

j ,Φ̃R

j living in the interior
of the interval untouched and modifies only those near the interval ends. Note that
keeping just the restrictions to the interval of those translates overlapping the end
points would destroy stability (and also the cardinality of the primal and dual basis
functions living on (0,1) since their supports do not have the same size). Therefore,
modifications at the end points are necessary; also, just discarding them from the
collections (66), (97) would produce an error near the end points. The basic idea is
essentially the same for all constructions of orthogonal and biorthogonal wavelets
on R adapted to an interval. Namely, one takes fixed linear combinations of all func-
tions in ΦR

j ,Φ̃R

j living near the ends of the interval in such a way that monomials



354 Angela Kunoth

up to the exactness order are reproduced there and such that the generator bases
have the same cardinality. Because of the boundary modifications, the collections of
generators are there no longer biorthogonal. However, one can show in the case of
cardinal B–Splines as primal generators (which is a widely used class for numerical
analysis) that biorthogonalization is indeed possible. This yields collections denoted

by Φ(0,1)
j ,Φ̃(0,1)

j which then satisfy (98) on (0,1) and all assumptions required in
Proposition 3.2.

For the construction of corresponding wavelets, first an initial stable completion
M̌ j,1 is computed by applying Gaussian eliminations to factor M j,0 and then to find
a uniformly stable inverse of M̌ j. Here we exploit that for cardinal B–Splines as
generators the refinement matrices M j,0 are totally positive. Thus, they can be stably
decomposed by Gaussian elimination without pivoting. Application of Proposition

3.2 then gives the corresponding biorthogonal waveletsΨ (0,1)
j ,Ψ̃ (0,1)

j on (0,1) which
satisfy the requirements in Corollary 3.1. It turns out that these wavelets coincide in
the interior of the interval again with those on all of R from [CDF]. An example of
the primal wavelets for d = 2 generated by piecewise linear continuous functions is
displayed in Figure 2 on the left.

After constructing these basic versions, one can then perform local transforma-
tions near the ends of the interval in order to improve the condition or L2 stability
constants, see [Bu1, Pa] for corresponding results and numerical examples.

We display spectral condition numbers for the FWT for two different construc-
tions of biorthogonal wavelets on the interval in Table 1. The first column denotes
the finest level on which the spectral condition numbers of the FWT are computed.
The next column contains the numbers for the construction of biorthogonal spline-
wavelets on the interval from [DKU] for the case d = 2, d̃ = 4 while the last column
displays the condition numbers for a scaled version derived in [Bu1]. We observe
that the absolute numbers stay constant and low even for high levels j. We will see
later in Section 4.1 how the transformation TJ is used for preconditioning.

j κ2(TDKU) κ2(TB)

4 4.743e+00 4.640e+00

5 6.221e+00 6.024e+00

6 8.154e+00 6.860e+00

7 9.473e+00 7.396e+00

8 1.023e+01 7.707e+00

9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j κ2(TDKU) κ2(TB)

11 1.097e+01 8.011e+00

12 1.103e+01 8.034e+00

13 1.106e+01 8.046e+00

14 1.107e+01 8.051e+00

15 1.108e+01 8.054e+00

16 1.108e+01 8.056e+00

Table 1 Computed spectral condition numbers for the Fast Wavelet Transform on [0,1] for differ-
ent constructions of biorthogonal wavelets on the interval [Pa]
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Along these lines, also biorthogonal generators and wavelets with homogeneous

(Dirichlet) boundary conditions can be constructed. Since the Φ(0,1)
j are locally near

the boundary monomials which all vanish at 0,1 except for one, removing the one

from Φ(0,1)
j which corresponds to the constant function produces a collection of

generators with homogeneous boundary conditions at 0,1. In order for the moment
conditions (43) still to hold for the Ψj, the dual generators have to have comple-
mentary boundary conditions. A corresponding construction has been carried out
in [DS1] and implemented in [Bu1]. Homogeneous boundary conditions of higher
order can be generated accordingly.

By taking tensor products of the wavelets on (0,1), in this manner biorthogonal
wavelets for Sobolev spaces on (0,1)n with or without homogeneous boundary con-
ditions are obtained. This construction can be further extended to any other domain
or manifold which is the image of a regular parametric mapping of the unit cube.
Some results on the construction of wavelets on manifolds are summarized in [D3].
There are essentially two approaches. The first idea is based on domain decom-
position and consists in ‘glueing’ generators across interelement boundaries, see,
e.g., [CTU, DS2]. These approaches all have in common that the norm equivalences
(123) for Hs = Hs(Γ ) can be shown to hold only for the range −1/2 < s < 3/2, due
to the fact that duality arguments apply only for this range because of the nature of
a modified inner product to which biorthogonality refers. The other approach which
overcomes the above limitations on the ranges for which the norm equivalences hold
has been developed in [DS3] based on previous characterizations of function spaces
as Cartesian products from [CF]. The construction in [DS3] has been optimized and
implemented to construct biorthogonal wavelet bases on the sphere in [KS], see the
right graphic in Figure 2. More on such constructions for boundary integral opera-
tors can be found in the article by Helmut Harbrecht and Reinhold Schneider in this
volume.

Fig. 2 Primal wavelets for d = 2 on [0,1] (left) and on a sphere as constructed in [KS] (right)

Of course, there are also different attempts to construct wavelet bases with the
above properties without using tensor products. A construction of biorthogonal
spline-wavelets on triangles introduced by [Stv] has been implemented in two spa-
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tial dimensions with an application to the numerical solution of a linear second order
elliptic boundary value problem in [Kr].

4 Problems in wavelet coordinates

4.1 Elliptic boundary value problems

We now derive a representation of the elliptic boundary value problem from Section
2.2 in terms of (infinite) wavelet coordinates.

Let for H given by (8) or (9) ΨH be a wavelet basis with corresponding dual
Ψ̃H which satisfies the properties (R), (L) and (CP) from Section 3.1. Following the
recipe from Section 3.3, expanding y = yTΨH , f = fTΨ̃H and recalling (12), the
wavelet representation of the elliptic boundary value problem (14) is given by

Ay = f (132)

where
A := a(ΨH ,ΨH ), f := 〈ΨH , f 〉. (133)

Then the mapping property (13) and the Riesz basis property (R) yield the following
fact.

Proposition 4.1. The infinite matrix A is a boundedly invertible mapping from �2 =
�2(IIH ) into itself, and there exists finite positive constants cA ≤CA such that

cA‖v‖ ≤ ‖Av‖ ≤CA‖v‖, v ∈ �2(IIH ). (134)

Proof. For any v∈H with coefficient vector v∈ �2, we have by the lower estimates
in (40), (13) and the upper inequality in (45), respectively,

‖v‖ ≤ c−1
H ‖v‖H ≤ c−1

H c−1
A ‖Av‖H ′ = c−1

H c−1
A ‖(Av)TΨ̃H ‖H ′ ≤ c−2

H c−1
A ‖Av‖

where we have used the wavelet representation (62) for A. Likewise, the converse
estimate

‖Av‖ ≤CH ‖Av‖H ′ ≤CH CA‖v‖H ≤C2
H CA‖v‖

follows by the lower inequality in (45) and the upper estimates in (13) and (40).
The constants appearing in (134) are therefore identified as cA := c2

H cA and CA :=
c2
H CA. �

In the present situation where A is defined via the elliptic bilinear form a(·, ·),
Proposition 4.1 entails the following result with respect to preconditioning. Let for
II = IIH the symbol Λ denote any finite subset of the index set II. For the corre-
sponding set of wavelets ΨΛ := {ψλ : λ ∈ Λ} denote by SΛ := spanΨΛ the respec-
tive finite-dimensional subspace of H . For the wavelet representation of A in terms
of ΨΛ ,
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AΛ := a(ΨΛ ,ΨΛ ), (135)

we obtain the following result.

Proposition 4.2. If a(·, ·) is H -elliptic according to (11), the finite matrix AΛ is
symmetric positive definite and its spectral condition number is bounded uniformly
in Λ , i.e.,

κ2(AΛ ) ≤ CA

cA
, (136)

where cA,CA are the constants from (134).

Proof. Clearly, since AΛ is just a finite section of A, we have ‖AΛ‖ ≤ ‖A‖. On
the other hand, by assumption, a(·, ·) is H -elliptic which entails that a(·, ·) is also
elliptic on every finite subspace SΛ ⊂ H . Thus, we infer ‖A−1

Λ ‖ ≤ ‖A−1‖, and we
have

cA‖vΛ‖ ≤ ‖AΛ vΛ‖ ≤CA‖vΛ‖, vΛ ∈ SΛ . (137)

Together with the definition κ2(AΛ ) := ‖AΛ‖‖A−1
Λ ‖ we obtain the claimed esti-

mate. �

In other words, representations of A with respect to properly scaled wavelet bases
for H entail well-conditioned system matrices AΛ independent of Λ . This in turn
means that the convergence speed of an iterative solver applied to the corresponding
finite system

AΛ yΛ = fΛ (138)

does not deteriorate as |Λ | → ∞.
In summary, ellipticity implies stability of the Galerkin discretizations for any set

Λ ⊂ II. This is not automatically the case for any finite versions of the saddle point
problems, as we will see in Section 4.2.

Fast wavelet transform. We briefly summarize how in the situation of uniform
refinements, i.e., when S(ΦJ) = S(Ψ J), the Fast Wavelet Transformation (FWT) TJ

can be used for preconditioning linear elliptic operators, together with a a diagonal
scaling induced by the norm equivalence (123) [DK1]. We recall the notation from
Section 3.4 where the wavelet basis is in fact the (unscaled) anchor basis from Sec-
tion 3.1. Thus, the norm equivalence (40) using the scaled wavelet basis ΨH is the
same as (123) in the anchor basis. Recall that the norm equivalence (123) implies
that every v ∈ Hs can be expanded uniquely in terms of the Ψ and its expansion
coefficients v satisfy

‖v‖Hs ∼ ‖Dsv‖�2

where Ds is a diagonal matrix with entries Ds
( j,k),( j′,k′) = 2s jδ j, j′δk,k′ . For H ⊂

H1(Ω), the case s = 1 is relevant.
In a stable Galerkin scheme for (10) with respect to S(Ψ J) = S(ΨΛ ), we have

therefore already identified the diagonal (scaling) matrix DJ consisting of the finite
portion of the matrix D = D1 for which j0 − 1 ≤ j ≤ J − 1. The representation of
A with respect to the (unscaled) wavelet basis Ψ J can be expressed in terms of the
Fast Wavelet Transform TJ , that is,
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〈Ψ J ,AΨ J〉 = TT
J 〈ΦJ ,AΦJ〉TJ , (139)

where ΦJ is the single–scale basis for S(Ψ J). Thus, we first set up the operator
equation as in finite element settings in terms of the single–scale basis ΦJ . Applying
the Fast Wavelet Transform TJ together with DJ yields that the operator

AJ := D−1
J TT

J 〈ΦJ ,AΦJ〉TJ D−1
J (140)

has uniformly bounded condition numbers independent of J. This can be seen by
combining the properties of A according to (13) with the norm equivalences (40)
and (45).

It is known that the boundary adaptations of the generators and wavelets aggra-
vate the absolute values of the condition numbers. Nevertheless, these constants can
be substantially reduced by an operator-adapted transformation which takes into
account only the coarsest discretization level and, thus, is inexpensive [Bu1]. Nu-
merical tests confirm that the absolute constants can further be improved by taking
instead of D−1

J the inverse of the diagonal of 〈Ψ J ,AΨ J〉 for the scaling in (140)
[Bu1, Pa].

In Table 2 we display the condition numbers for discretizations using the weak
form of the elliptic operator −Δ + id on (0,1)n in up to three dimensions using
boundary adapted biorthogonal spline-wavelets in the case d = 2, d̃ = 4 with such a
scaling and additional shifts of small eigenvalues which is an inexpensive operation
[Bu1].

j n = 1 n = 2 n = 3

3 22.3 9.6 18.3

4 23.9 11.8 37.1

5 25.0 14.3 39.8

6 25.7 16.0 40.9

8 26.6 18.4

10 27.1

12 27.3

Table 2 Optimized spectral condition numbers of the operator A using tensor products of
biorthogonal wavelets on the interval for space dimensions n = 1,2,3 [Bu1]

4.2 Saddle point problems

As in the previous situation, we derive a representation of the saddle point problem
introduced in Section 2.3 in terms of (infinite) wavelet coordinates.

Let for H =Y ×Q with Y = H1(Ω), Q = (H1/2(Γ ))′ two collections of wavelet
bases ΨY , ΨQ be available, each satisfying (R), (L) and (CP), with respective duals
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Ψ̃Y , Ψ̃Q. Like before, we expand y = yTΨY and p = pTΨQ and test with the elements
from ΨY , ΨQ. Then (21) attains the form

L
(

y
p

)
:=

(
A BT

B 0

)(
y
p

)
=

(
f
g

)
, (141)

where
A := 〈ΨY ,AΨY 〉 f := 〈ΨY , f 〉,
B := 〈ΨQ,BΨY 〉, g := 〈ΨQ,g〉.

(142)

In view of the above assertions, the operator L is an �2–automorphism, i.e., for every
(v,q) ∈ �2(II) = �2(IIY × IIQ) we have

cL

∥∥∥∥
(

v
q

)∥∥∥∥ ≤
∥∥∥∥L

(
v
q

)∥∥∥∥ ≤ CL

∥∥∥∥
(

v
q

)∥∥∥∥ (143)

with constants cL,CL only depending on cL ,CL from (26) and the constants in the
norm equivalences (40) and (45).

For saddle point problems with an operator L satisfying (143), finite sections
are in general not uniformly stable in the sense of (137). In fact, for discretizations
on uniform grids, the validity of the corresponding mapping property relies on a
suitable stability condition, see,e.g., [BF] or the article by Ricardo Nochetto and
coauthors in this volume. Corresponding results derived in [DK2] are as follows.

The bilinear form a(·, ·) defined in (7) is for c > 0 elliptic on all of Y = H1(Ω)
and, hence, also on any finite–dimensional subspace of Y . Let there be two multires-
olution analyses Y of H1(Ω) and Q of Q where the discrete spaces are Yj ⊂H1(Ω)
and QΛ =: Q� ⊂ (H1/2(Γ ))′. With the notation from Section 3.4 and in addition
superscripts referring to the domain on which the functions live, these spaces are
represented by

Yj = S(ΦΩ
j ) = S(Ψ j,Ω ), Ỹj = S(Φ̃Ω

j ) = S(Ψ̃ j,Ω ),

Q� = S(ΦΓ
� ) = S(Ψ �,Γ ), Q̃� = S(Φ̃Γ

� ) = S(Ψ̃ �,Γ ).
(144)

Here the indices j and � refer to mesh sizes on the domain and the boundary,

hΩ ∼ 2− j and hΓ ∼ 2−�.

The discrete inf–sup condition, the LBB condition, for the pair Yj,Q� requires that
there exists a constant β1 > 0 independent of j and � such that

inf
q∈Q�

sup
v∈Yj

b(v,q)
‖v‖H1(Ω) ‖q‖(H1/2(Γ ))′

≥ β1 > 0 (145)

holds. We have investigated in [DK2] the general case in arbitrary spatial dimen-
sions where the Q� are not trace spaces of Yj. Employing the reverse Cauchy-
Schwarz inequalities from Section 3.4, one can show that (145) is satisfied provided
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that hΓ (hΩ )−1 = 2 j−� ≥ cΩ > 1. This is similar to the condition which was known
for bivariate polygons and particular finite elements [Ba]. Although the theoreti-
cal estimates are quite pessimistic, numerical experiments for a circular boundary
within a square show that the spectral condition numbers of BBT are still well-
behaved even when this sufficient condition is violated.

It should be mentioned that the obstructions caused by the LBB condition can be
avoided by means of stabilization techniques proposed, where, however, the loca-
tion of the boundary of Ω relative to the mesh is somewhat constrained. A related
approach which systematically avoids restrictions of the LBB type is based on least
squares techniques [DKS].

It is particularly noteworthy that adaptive schemes based on wavelets can be
designed in such a way that the LBB condition is automatically enforced. This was
first observed in [DDU]. More on this subject can be found in [D4].

In order to get an impression of the value of the constants for the condition num-
bers for A in (136) and the corresponding ones for the saddle point operator on
uniform grids (143), an example with Ω = (0,1)2 and Γ chosen as one face of its
boundary was implemented and investigated in [Pa]. In Table 3, the spectral condi-
tion numbers of A and L with respect to two different constructions of wavelets for
the case d = 2 and d̃ = 4 are displayed. We see next to the first column in which
the refinement level j is listed the spectral condition numbers of A with the wavelet
construction from [DKU] denoted by ADKU and with the modification introduced in
[Bu1] and a further transformation [Pa] denoted by AB. The last columns contain
the respective numbers for the saddle point matrix L where κ2(L) :=

√
κ(LT L).

We observe that the spectral condition numbers stay uniformly bounded and small
as j increases.

j κ2(ADKU) κ2(AB) κ2(LDKU) κ2(LB)

3 5.195e+02 1.898e+01 1.581e+02 4.147e+01

4 6.271e+02 1.066e+02 1.903e+02 1.050e+02

5 6.522e+02 1.423e+02 1.997e+02 1.399e+02

6 6.830e+02 1.820e+02 2.112e+02 1.806e+02

7 7.037e+02 2.162e+02 2.318e+02 2.145e+02

8 7.205e+02 2.457e+02 2.530e+02 2.431e+02

9 7.336e+02 2.679e+02 2.706e+02 2.652e+02

Table 3 Spectral condition numbers of the operators A and L on Ω = (0,1)2 for different con-
structions of biorthogonal wavelets on the interval [Pa]
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4.3 Control problems: Distributed control

After these preparations, we can now discuss appropriate wavelet formulations for
PDE-constrained control problems with distributed control as introduced in Section
2.4. Let for V ∈ {H,Z ,U }ΨV denote a wavelet basis with the properties (R), (L),
(CP) for V with dual basis Ψ̃V .

Let Z ,U satisfy the embedding (29). In terms of wavelet bases, the correspond-
ing canonical injections correspond in view of (47) to a multiplication by a diagonal
matrix. That is, let DZ ,DH be such that

ΨZ = DZ ΨH , Ψ̃H = DHΨU . (146)

Since Z possibly induces a weaker and U a stronger topology, the diagonal ma-
trices DZ ,DH are such that their entries are nondecreasing in scale, and there is a
finite constant C such that

‖D−1
Z ‖,‖D−1

H ‖ ≤C. (147)

For instance, for H = Hα ,Z = Hβ , or for H ′ = H−α , U = H−β , 0 ≤ β ≤ α ,
DZ ,DH have entries (DZ )λ ,λ = (DH)λ ,λ = (Dα−β )λ ,λ = 2(α−β )|λ |.

We expand y in ΨH and u in a wavelet basis ΨU for U ⊂ H ′,

u = uTΨU = (D−1
H u)TΨH ′ . (148)

Following the derivation in Section 4.1, the linear constraints (28) attain the form

Ay = f+D−1
H u (149)

where
A := a(ΨH ,ΨH), f := 〈ΨH , f 〉. (150)

Recall that A has been assumed to be symmetric. The objective functional (33)
is stated in terms of the norms ‖ · ‖Z and ‖ · ‖U . For an exact representation of
these norms, corresponding Riesz operators RZ and RU defined analogously to
(57) would come into play which may not be explicitly computable if Z ,U are
fractional Sobolev spaces. On the other hand, as mentioned before, such a cost func-
tional in many cases serves the purpose of yielding unique solutions while there is
some ambiguity in its exact formulation. Hence, in search for a formulation which
best supports numerical realizations, it is often sufficient to employ norms which
are equivalent to ‖ · ‖Z and ‖ · ‖U . In view of the discussion in Section 3.2, we can
work for the norms ‖·‖Z , ‖·‖U only with the diagonal scaling matrices Ds induced
by the regularity of Z ,U , or we can in addition include the Riesz map R defined in
(52). In the numerical studies in [Bu1], a somewhat better quality of the solution is
observed when R is included. In order to keep track of the appearance of the Riesz
maps in the linear systems derived below, we choose here the latter variant.

Moreover, we expand the given observation function y∗ ∈ Z as

y∗ = 〈y∗,Ψ̃Z 〉ΨZ =: (D−1
Z y∗)TΨZ = yT

∗ΨH . (151)
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The way the vector y∗ is defined here for notational convenience may by itself actu-
ally have infinite norm in �2. However, its occurrence will always include premulti-
plication by D−1

Z which is therefore always well–defined. In view of (61), we obtain
the relations

‖y− y∗‖Z ∼ ‖R1/2D−1
Z (y−y∗)‖ ∼ ‖D−1

Z (y−y∗‖. (152)

Note that here R = 〈Ψ ,Ψ〉 (and not R−1) comes into play since y,y∗ have been
expanded in a scaled version of the primal wavelet basisΨ . Hence, equivalent norms
for ‖ · ‖Z may involve R. As for describing equivalent norms for ‖ · ‖U , recall that
u is expanded in the basis ΨU for U ⊂ H ′. Consequently, R−1 is the natural matrix
to take into account when considering equivalent norms, i.e., we choose here

‖u‖U ∼ ‖R−1/2u‖. (153)

Finally, we formulate the following control problem in (infinite) wavelet coordi-
nates.
(DCP) For given data D−1

Z y∗ ∈ �2(IIZ ), f ∈ �2(IIH), and weight parameter ω > 0,
minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y−y∗)‖2 + ω
2 ‖R−1/2u‖2 (154)

over (y,u) ∈ �2(IIH)× �2(IIH) subject to the linear constraints

Ay = f+D−1
H u. (155)

Remark 4.1. Problem (DCP) can be viewed as (discretized yet still infinite–dimen-
sional) representation of the linear–quadratic control problem (27) together with
(28) in wavelet coordinates in the following sense. The functional J̌(y,u) defined in
(154) is equivalent to the functional J (y,u) from (27) in the sense that there exist
constants 0 < cJ ≤CJ < ∞ such that

cJ J̌(y,u) ≤ J (y,u) ≤ CJ J̌(y,u) (156)

holds for any y = yTΨH ∈H, given y∗ = (D−1
Z y∗)TΨZ ∈Z and any u = uTΨU ∈U .

Moreover, in the case of compatible data y∗ = A−1 f yielding J (y,u) ≡ 0, the re-
spective minimizers coincide, and y∗ = A−1f yields J̌(y,u) ≡ 0. In this sense the
new functional (154) captures the essential features of the model minimization func-
tional.

Once problem (DCP) is posed, we can apply variational principles to derive nec-
essary and sufficient conditions for a unique solution. All control problems con-
sidered here are in fact simple in this regard, as we have to minimize a quadratic
functional subject to linear constraints, for which the first order necessary condi-
tions are also sufficient. In principle, there are two ways to derive the optimality
conditions for (DCP). We have encountered in Section 2.4 already the technique via
the Lagrangian.
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We define for (DCP) the Lagrangian introducing the Lagrange multiplier, adjoint
variable or adjoint state p as

Lagr(y,p,u) := J̌(y,u)+ 〈p,Ay− f−D−1
H u〉. (157)

Then the KKT conditions δ Lagr(w) = 0 for w = p,y,u are, respectively,

Ay = f+D−1
H u, (158a)

AT p = −D−1
Z RD−1

Z (y−y∗) (158b)

ωR−1u = D−1
H p. (158c)

The first system resulting from the variation with respect to the Lagrange multiplier
always recovers the original constraints (155) and will be referred to as the primal
system or the state equation. Accordingly, we call (158b) the adjoint or dual system,
or the costate equation. The third equation (158c) is sometimes denoted as the de-
sign equation. Although A is symmetric, we continue to write AT for the operator
of the adjoint system to distinguish it from the primal system.

The coupled system (158) is to be solved later. However, in order to derive con-
vergent iterations and deduce complexity estimates, a different formulation will
be advantageous. It is based on the fact that A is according to Proposition 4.1 a
boundedly invertible mapping on �2. Thus, we can formally invert (149) to obtain
y = A−1f+A−1D−1

H u. Substitution into (154) yields a functional depending only on
u,

J(u) := 1
2 ‖R1/2D−1

Z

(
A−1D−1

H u− (y∗ −A−1f)
)
‖2 + ω

2 ‖R−1/2u‖2. (159)

Employing the abbreviations

Z := R1/2D−1
Z A−1D−1

H , (160a)

G := −R1/2D−1
Z (A−1f−y∗), (160b)

the functional simplifies to

J(u) = 1
2‖Zu−G‖2 + ω

2 ‖R−1/2u‖2. (161)

Proposition 4.3. [K3] The functional J is twice differentiable with first and second
variation

δJ(u) = (ZT Z+ωR−1)u−ZT G, δ 2J(u) = ZT Z+ωR−1. (162)

In particular, J is convex so that a unique minimizer exists.

Setting
Q := ZT Z+ωR−1, g := ZT G, (163)

the unique minimizer u of (161) is given by solving
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δJ(u) = 0 (164)

or, equivalently, the system
Qu = g. (165)

By definition (163), Q is a symmetric positive definite (infinite) matrix. Hence, fi-
nite versions of (165) could be solved by gradient or conjugate gradient iterative
schemes. As the convergence speed of any such iteration depends on the spectral
condition number of Q, it is important to note that the following result.

Proposition 4.4. The (infinite) matrix Q is uniformly bounded on �2, i.e., there exist
constants 0 < cQ ≤CQ < ∞ such that

cQ ‖v‖ ≤ ‖Qv‖ ≤CQ ‖v‖, v ∈ �2. (166)

The proof follows from (13) and (147) [DK3]. Of course, in order to make such
iterative schemes for (165) practically feasible, the explicit inversion of A in the
definition of Q has to be avoided and replaced by an iterative solver in turn. This is
where the system (158) will come into play. In particular, the third equation (158c)
has the following interpretation which will turn out to be very useful later.

Proposition 4.5. If we solve for a given control vector u successively (155) for y
and (158b) for p, then the residual for (165) attains the form

Qu−g = ωR−1u−D−1
U p. (167)

Proof. Solving consecutively (155) and (158b) and recalling the definitions of Z, g
(160a), (163) we obtain

D−1
H p = −D−1

H (A−T D−1
Z RD−1

Z (y−y∗))

= −ZT R1/2D−1
Z (A−1f+A−1D−1

H u−y∗)

= ZT G−ZT R1/2D−1
Z A−1D−1

H u

= g−ZT Zu.

Hence, the residual Qu−g attains the form

Qu−g = (ZT Z+ωR−1)u−g = ωR−1u−D−1
H p,

where we have used the definition of Q from (163). �

Having derived the optimality conditions (158), the next issue is their efficient
numerical solution. In view of the fact that the system (158) still involves infinite
matrices and vectors, this also raises the question how to derive computable finite
versions. By now we have investigated two scenarios.

The first version with respect to uniform discretizations is based on choosing
finite–dimensional subspaces of the function spaces under consideration. The sec-
ond version which deals with adaptive discretizations is actually based on the infi-
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nite system (158). In both scenarios, a fully iterative numerical scheme for the solu-
tion of (158) can be designed along the following lines. The basic iteration scheme
is a gradient or conjugate gradient iteration for (165) as an outer iteration where
each application of Q is in turn realized by solving the primal and the dual system
(155) and (158b) also by a gradient or conjugate gradient method as inner iterations.

For uniform discretizations for which we wanted to test numerically the role of
equivalent norms and the influence of Riesz maps in the cost functional (154), we
have used in [BK] as central iterative scheme the conjugate gradient (CG) method.
Since the interior systems are only solved up to discretization error accuracy, the
whole procedure may therefore be viewed as an inexact conjugate gradient (CG)
method. We stress already at this point that the iteration numbers of such a method
do not depend on the discretization level as finite versions of all involved operators
are also uniformly well–conditioned in the sense of (166). In each step of the outer
iteration, the error will be reduced by a fixed factor ρ . Combined with a nested
iteration strategy, it will be shown that this yields an asymptotically optimal method
in the amount of arithmetic operations.

Starting from the infinite coupled system (158), we have investigated in [DK3]
adaptive schemes which, given any prescribed accuracy ε > 0, solve (158) such that
the error for y,u,p is controlled by ε . There we have used for a simpler analysis a
gradient scheme as basic iterative scheme.

4.4 Control problems: Dirichlet boundary control

Having derived a representation in wavelet coordinates for both the saddle point
problem from Section 2.3 and the PDE-constrained control problem in the previous
section, an appropriate representation of the control problem with Dirichlet bound-
ary control introduced in Section 2.5 is straightforward. In order not to be overbur-
dened with notation, we specifically choose the control space on the boundary as
U := Q(= (H1/2(Γ ))′). For the more general situation covered by (37), a diago-
nal matrix with nondecreasing entries like in (146) would come into play to switch
between U and Q. Thus, the exact wavelet representation of the constraints (36) is
given by the system (141), where we exchange the given Dirichlet boundary term
g by u in the present situation to express the dependence on the control in the right
hand side, i.e.,

L
(

y
p

)
:=

(
A BT

B 0

)(
y
p

)
=

(
f
u

)
. (168)

The derivation of a representer of the initial objective functional (35) is under the
embedding condition (37) ‖v‖Z <∼ ‖v‖Y for v ∈ Y now the same as in the previous
section, where all reference to the space H is to be exchanged by reference to Y . We
end up with the following minimization problem in wavelet coordinates for the case
of Dirichlet boundary control.
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(DCP) For given data D−1
Z y∗ ∈ �2(IIZ ), f ∈ �2(IIY ), and weight parameter ω > 0,

minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y−y∗)‖2 + ω
2 ‖R−1/2u‖2 (169)

over (y,u) ∈ �2(IIY )× �2(IIY ) subject to the linear constraints (168),

L
(

y
p

)
=

(
f
u

)
.

The corresponding Karush-Kuhn-Tucker conditions can be derived by the same
variational principles as in the previous section by defining a Lagrangian in terms of
the functional J̌(y,u) and appending the constraints (149) with the help of additional
Lagrange multipliers (z,μ)T , see [K3]. We obtain in this case a system of coupled
saddle point problems

L
(

y
p

)
=

(
f
u

)
(170a)

LT
(

z
μ

)
=

(
−ωD−1

Z RD−1
Z (y−y∗)

0

)
(170b)

u = μ. (170c)

Again, the first system appearing here, the primal system, are just the constraints
(149) while (46) will be referred to as the dual or adjoint system. The specific form
of the right hand side of the dual system emerges from the particular formulation
of the minimization functional (169). The (here trivial) equation (170c) stems from
measuring u just in �2, representing measuring the control in its natural trace norm.
Instead of replacing μ by u in (46) and trying to solve the resulting equations, (170c)
will be essential to devise an inexact gradient scheme. In fact, since L in (149) is an
invertible operator, we can rewrite J̌(y,u) by formally inverting (149) as a functional
of u, that is, J(u) := J̌(y(u),u) as above. The following result will be very useful
for the design of the outer–inner iterative solvers

Proposition 4.6. The first variation of J satisfies

δJ(u) = u−μ, (171)

where (u,μ) are part of the solution of (170). Moreover, J is convex so that a unique
minimizer exists.

Hence, equation (170c) is just δJ(u) = 0. For a unified treatment below of both
control problems considered in these notes, it will be useful to rewrite (170c) like in
(165) as a condensed equation for the control u alone. We formally invert (168) and
(170b) and obtain

Qu = g (172)

with the abbreviations
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Q := ZT Z+ωI, g := ZT (y∗ −T�L−1I�f) (173)

and

Z := T�L−1I�, I� :=
(

0
I

)
, T� := (T 0). (174)

Proposition 4.7. The vector u as part of the solution vector (y,p,z,μ,u) of (170)
coincides with the unique solution u of the condensed equations (172).

5 Iterative solution

Each of the four problem classes discussed above lead to the problem to finally solve
a system

δJ(q) = 0 (175)

or, equivalently, a linear system
Mq = b, (176)

where M : �2 → �2 is a (possibly infinite) symmetric positive definite matrix satis-
fying

cM‖v‖ ≤ ‖Mv‖ ≤CM‖v‖, v ∈ �2, (177)

for some constants 0 < cM ≤ CM < ∞ and where b ∈ �2 is some given right hand
side.

A simple gradient method for solving (175) is

qk+1 := qk −α δJ(qk), k = 0,1,2, . . . (178)

with some initial guess q0. In all of the previously considered situations, it has been
asserted that there exists a fixed parameter α , depending on bounds for the second
variation of J, such that (178) converges and reduces the error in each step by at
least a fixed factor ρ < 1, i.e.,

‖q−qk+1‖ ≤ ρ‖q−qk‖, k = 0,1,2, . . . , (179)

where ρ is determined by
ρ := ‖I−αM‖ < 1.

Hence, the scheme (178) is a convergent iteration for the possibly infinite system
(176). Next we will need to discuss how to reduce the infinite systems to computable
finite versions.



368 Angela Kunoth

5.1 Finite systems on uniform grids

We consider finite-dimensional trial spaces with respect to uniform discretizations.
For each of the Hilbert spaces H, this means in the wavelet setting to pick the index
set of all indices up to some highest refinement level J, i.e.,

IIJ,H := {λ ∈ IIH : |λ | ≤ J} ⊂ IIH

satisfying NJ,H := #IIJ,H < ∞. The representation of operators is then built as in
Section 3.3 with respect to this truncated index set which corresponds to deleting all
rows and columns that refer to indices λ such that |λ | > J, and correspondingly for
functions. There is by construction also a coarsest level of resolution denoted by j0.

Computationally the representation of operators according to (62) is in the case
of uniform grids always realized as follows. First, the operator is set up in terms
of the generator basis on the finest level J. This generator basis simply consists of
tensor products of B-Splines, or linear combinations of these near the boundaries.
The representation of an operator in the wavelet basis is then achieved by applying
the Fast Wavelet Transform (FWT) which needs O(NJ,H) arithmetic operations and
is therefore asymptotically optimal, see, e.g., [D2, DKU, K1] and Section 3.4.

In order not to overburden the notation, let in this subsection the resulting system
for N = NJ,H unknowns again be denoted by

Mq = b, (180)

where now M : R
N → R

N is a symmetric positive definite matrix satisfying (177)
on R

N . It will be convenient to abbreviate the residual using an approximation q̃ to
q for (180) as

RESD(q̃) := Mq̃−b. (181)

We will employ a basic conjugate gradient method that iteratively computes an ap-
proximate solution qK to (180) with given initial vector q0 and given tolerance ε > 0
such that

‖MqK −b‖ = ‖RESD(qK)‖ ≤ ε, (182)

where K denotes the number of iterations used. Later we specify ε depending on
the discretization for which (180) is set up. The following scheme CG contains a
routine APP(ηk,M,dk) which in view of the problem classes discussed above is to
have the property that it approximately computes the product Mdk up to a tolerance
ηk = ηk(ε) depending on ε , i.e., the output k of APP(ηk,M,dk) satisfies

‖mk −Mdk‖ ≤ ηk. (183)

For the cases where M = A, this is simply the matrix-vector multiplication Mdk.
For the situations where M may involve the solution of an additional system, this
multiplication will be only approximative.
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CG [ε,q0,M,b] → qK

(I) SET d0 := b−Mq0 AND r0 := −d0. LET k = 0.
(II) WHILE ‖rk‖ > ε

mk := APP(ηk(ε),M,dk)

αk :=
(rk)T rk

(dk)T mk
qk+1 := qk +αkdk

rk+1 := rk +αkmk βk :=
(rk+1)T rk+1

(rk)T rk
dk+1 := −rk+1 +βkdk

k := k +1

(184)

(III) SET K := k−1.

Let us briefly discuss in the case M = A that the final iterate qK indeed satis-
fies (182). From the newly computed iterate qk+1 = qk + αkdk it follows by apply-
ing M on both sides that Mqk+1 − b = Mqk − b + αkMdk which is the same as
RESD(qk+1) = RESD(qk)+ αkMdk. By the initialization for rk used above, this in
turn is the updating term for rk, hence, rk = RESD(qk). After the stopping criterion
based on rk is met, the final iterate qK observes (182).

The routine CG computes the residual up to the stopping criterion ε . From the
residual, we can in view of (177) estimate the error in the solution as

‖q−qK‖ = ‖M−1(b−MqK)‖ ≤ ‖M−1‖‖RESD(qK)‖ ≤ ε
cM

, (185)

that is, it may deviate from the norm of the residual from a factor proportional to the
smallest eigenvalue of M.

Distributed control. Let us now apply the solution scheme to the situation
from Section 4.3 where Q now involves the inversion of finite-dimensional systems
(158a) and (158b). The material in the remainder of this subsection is essentially
contained in [BK].

We begin with a specification of the approximate computation of the right hand
side b which also contains applications of A−1.

RHS[ζ ,A, f,y∗] → bζ

(I) CG [ cA
2C

cA
C2C2

0
ζ ,0,A, f] → b1

(II) CG [ cA
2C ζ ,0,AT ,−D−1

Z RD−1
Z (b1 −y∗)] → b2

(III) bζ := D−1
H b2.

The tolerances used within the two conjugate gradient methods depend on the con-
stants cA,C,C0 from (13), (147) and (55), respectively. Since the additional factor
cA(CC0)−2 in the stopping criterion in step (I) in comparison to step (II) is in gen-
eral smaller than one, this means that the primal system needs to be solved more
accurately than the adjoint system in step (II).
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Proposition 5.1. The result bζ of RHS[ζ ,A, f,y∗] satisfies

‖bζ −b‖ ≤ ζ . (186)

Proof. Recalling the definition (163) of b, step (III) and step (II) yield

‖bζ −b‖ ≤ ‖D−1
H ‖‖b2 −DHb‖

≤C‖A−T‖‖AT b2 −D−1
Z RD−1

Z (A−1f−b1 +b1 −y∗)‖

≤ C
cA

( cA

2C
ζ +‖D−1

Z RD−1
Z (A−1f−b1)‖

)
.

(187)

Employing the upper bounds for D−1
Z and R, we arrive at

‖bζ −b‖ ≤ C
cA

( cA

2C
ζ +C2C2

0 ‖A−1‖‖f−Ab1‖
)

≤ C
cA

(
cA

2C
ζ +

C2C2
0

cA

cA

2C
cA

C2C2
0

ζ
)

= ζ .

(188)

�

Accordingly, an approximation mη to the matrix-vector product Qd is the output
of the following routine APP.

APP[η ,Q,d] → mη

(I) CG [ cA
3C

cA
C2C2

0
η ,0,A, f+D−1

H d] → yη

(II) CG [ cA
3C η ,0,AT ,−D−1

Z RD−1
Z (yη −y∗)] → pη

(III) mη := gη/3 +ωR−1d−D−1
H pη .

The choice of the tolerances for the interior application of CG in steps (I) and
(II) will become clear from the following result.

Proposition 5.2. The result mη of APP[η ,Q,d] satisfies

‖mη −Qd‖ ≤ η . (189)

Proof. Denote by yd the exact solution of (158a) with d in place of u on the right
hand side, and by pd the exact solution of (158b) with yd on the right hand side.
Then we deduce from step (III) and (167) combined with (55) and (147)

‖mη −Qd‖ = ‖gη/3 −g+ωR−1d−D−1
U pη − (Qd−g)‖

≤ 1
3

η +‖ωR−1d−D−1
U pη − (ωR−1d−D−1

U pd)‖

≤ 1
3

η +C‖pd −pη‖.

(190)

Denote by p̂ the exact solution of (158b) with yη on the right hand side. Then we
have pd − p̂ = −A−T D−1

Z RD−1
Z (yd −yη). It follows by (13), (55) and (147) that



Optimized wavelet preconditioning 371

‖pd − p̂‖ ≤ C2C2
0

cA
‖yd −yη‖ ≤

1
3C

η , (191)

where the last estimate follows by the choice of the threshold in step (I). Finally, the
combination(190) and (191) together with (186) and the stopping criterion in step
(II) readily confirms that

‖mη −Qd‖ ≤ 1
3

η +C (‖pd − p̂‖+‖p̂−pη‖)

≤ 1
3

η +C

(
1

3C
η +

1
3C

η
)

= η .

�

The effect of perturbed applications of M in CG and more general Krylov sub-
space schemes with respect to convergence has been investigated in a numerical
linear algebra context for a given linear system (180) in several papers. Here we
have chosen the ηi to be proportional to the outer accuracy ε incorporating a safety
factor accounting for the values of βi and ‖ri‖.

Finally, we can formulate a full nested iteration strategy for finite systems (158)
on uniform grids which employs outer and inner CG routines as follows. The
scheme starts at the coarsest level of resolution j0 with some initial guess u j0

0 and
successively solves (165) with respect to each level j until the norm of the current
residual is below the discretization error on that level.

In wavelet coordinates, ‖ · ‖ corresponds to the energy norm. If we employ on
the primal side for approximation linear combinations of B–splines of order d, the
discretization error is for smooth solutions expected to be proportional to 2−(d−1) j.
Then the refinement level is successively increased until on the finest level J a pre-
scribed tolerance proportional to the discretization error 2−(d−1)J is met. In the fol-
lowing, superscripts on vectors denote the refinement level on which this term is
computed. The given data y j

∗, f j are supposed to be accessible on all levels. On the
coarsest level, the solution of (165) is computed exactly up to double precision by
QR decomposition. Subsequently, the results from level j are prolongated onto the
next higher level j + 1. Using wavelets, this is accomplished by simply adding ze-
ros: wavelet coordinates have the character of differences so that this prolongation
corresponds to the exact representation in higher resolution wavelet coordinates.
The resulting Nested–Iteration–Incomplete–Conjugate–Gradient Algorithm is the
following.

NIICG[J] → uJ

(I) INITIALIZATION FOR COARSEST LEVEL j := j0

(1) COMPUTE RIGHT HAND SIDE g j0 = (ZT G) j0 BY QR DECOMPOSITION

USING (160).
(2) COMPUTE SOLUTION u j0 OF (165) BY QR DECOMPOSITION.

(II) WHILE j < J
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(1) PROLONGATE u j → u j+1
0 BY ADDING ZEROS, SET j := j +1.

(2) COMPUTE RIGHT HAND SIDE USING RHS [2−(d−1) j,A, f j,y j
∗] → g j .

(3) COMPUTE SOLUTION OF (165) USING CG [2−(d−1) j,u j
0,Q,g j] → u j .

Recall that step (II.3) requires multiple calls of APP[η ,Q,d], which in turn invokes
both CG [. . . ,A, . . .] as well as CG [. . . ,AT , . . .] in each application.

On account of (13) and (166), finite versions of the system matrices A and Q have
uniformly bounded condition numbers, entailing that each CG routine employed
in the process reduces the error by a fixed rate ρ < 1 in each iteration step. Let
NJ ∼ 2nJ be the total number of unknowns (for yJ ,uJ and pJ) on the highest level
J. Employing the CG method only on the highest level, one needs O(J) = O(logε)
iterations to achieve the prescribed discretization error accuracy εJ = 2−(d−1)J . As
each application of A and Q requires O(NJ) operations, the solution of (165) by CG
only on the finest level requires O(J NJ) arithmetic operations.

Proposition 5.3. If the residual (167) is computed up to discretization error pro-
portional to 2−(d−1) j on each level j and the corresponding solutions are taken as
initial guesses for the next higher level, NIICG is an asymptotically optimal method
in the sense that it provides the solution uJ up to discretization error on level J in
an overall amount of O(NJ) arithmetic operations.

Proof. In the above notation, nested iteration allows one to get rid of the factor J
in the total amount of operations. Starting with the exact solution on the coarsest
level j0, in view of the uniformly bounded condition numbers of A and Q, one
needs only a fixed amount of iterations to reduce the error up to discretization error
accuracy ε j = 2−(d−1) j on each subsequent level j, taking the solution from the
previous level as initial guess. Thus, on each level, one needs O(Nj) operations to
realize discretization error accuracy. Since the spaces are nested and the number of
unknowns on each level grows like Nj ∼ 2n j, by a geometric series argument the
total number of arithmetic operations stays proportional to O(NJ). �

5.2 Numerical examples

5.2.1 Distributed control problem

As an illustration of the issue which norms to choose in the control functional, we
consider the following example of a one-dimensional distributed control problem
with the Helmholtz operator in (6) (a = I, c = 1) and homogeneous Dirichlet bound-
ary condition. A non–constant right hand side f (x) := 1 + 2.3exp(−15|x−0.5|) is
chosen, and the target state is set to a constant y∗ ≡ 1. We first investigate the role
the different norms ‖ · ‖Z and ‖ · ‖U in (27), which is encoded in the diagonal ma-
trices DZ ,DH from (146), have on the solution. We see in Figure 3 for the choice
U = L2(0,1) and Z = Hs(0,1) for different values of s varying between 0 and 1
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Fig. 3 Distributed control problem for elliptic PDE with Dirichlet boundary conditions, a peak as
right hand side f , y∗ ≡ 1, ω = 0, U = L2(0,1) and varying Z = Hs(0,1). Left: state y, right:
control u

the solution y (left) and the corresponding control u (right) for fixed weight ω = 1.
As s is increased, a stronger tendency of y towards the prescribed state y∗ ≡ 1 can be
observed which is, however, deterred from reaching this state by the homogeneous
boundary conditions. Extensive studies of this type can be found in [Bu1, BK].

An example displaying the performance of the proposed fully iterative scheme
NIICG is shown in Table 4 for n = 2 and in Table 5 for n = 3.

j ‖r j
K‖ #O #E #A #R ‖R(yJ)−y j‖ ‖yJ −P(y j)‖ ‖R(uJ)−u j‖ ‖uJ −P(u j)‖

3 6.86e-03 1.48e-02 1.27e-04 4.38e-04

4 1.79e-05 5 12 5 8 2.29e-03 7.84e-03 4.77e-05 3.55e-04

5 1.98e-05 5 14 6 9 6.59e-04 3.94e-03 1.03e-05 2.68e-04

6 4.92e-06 7 13 5 9 1.74e-04 1.96e-03 2.86e-06 1.94e-04

7 3.35e-06 7 12 5 9 4.55e-05 9.73e-04 9.65e-07 1.35e-04

8 2.42e-06 7 11 5 10 1.25e-05 4.74e-04 7.59e-07 8.88e-05

9 1.20e-06 8 11 5 10 4.55e-06 2.12e-04 4.33e-07 5.14e-05

10 4.68e-07 9 10 5 9 3.02e-06 3.02e-06 2.91e-07 2.91e-07

Table 4 Iteration history for a two-dimensional distributed control problem with Neumann bound-
ary conditions, ω = 1, Z = H1(Ω), U = (H0.5(Ω))′

j ‖r j
K‖ #O #E #A #R ‖R(yJ)−y j‖ ‖yJ −P(y j)‖ ‖R(uJ)−u j‖ ‖uJ −P(u j)‖

3 1.41e-04 2.92e-04 1.13e-05 2.36e-05

4 6.09e-06 10 9 1 49 1.27e-04 1.78e-04 3.46e-06 3.79e-06

5 3.25e-06 10 7 1 58 1.11e-05 6.14e-05 9.47e-07 9.53e-07

6 1.71e-06 7 6 1 57 1.00e-05 2.86e-05 5.03e-07 5.03e-07

7 8.80e-07 6 6 1 53 9.19e-06 9.19e-06 3.72e-07 3.72e-07

Table 5 Iteration history for a three-dimensional distributed control problem with Neumann
boundary conditions, ω = 1, Z = H1(Ω), U = (H1(Ω))′

This is an example of a control problem for the Helmholtz operator with Neu-
mann boundary conditions. The stopping criterion for the outer iteration (relative to
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‖ · ‖ which corresponds to the energy norm) on level j is chosen to be proportional
to 2− j. The second column displays the final value of the residual of the outer CG
scheme on this level, i.e., ‖r j

K‖ = ‖RESD(u j
K)‖. The next three columns show the

number of outer CG iterations (#O) for Q according to the APP scheme followed by
the maximum number of inner iterations for the primal system (#E), the adjoint sys-
tem (#A) and the design equation (#R). We see very well the effect of the uniformly
bounded condition numbers of all involved operators. The last columns display dif-
ferent versions of the actual error in the state y and the control u when compared
to the fine grid solution (R denotes restriction of the fine grid solution to the actual
grid, and P denotes prolongation). Here we can see the slight effect of the constants
appearing in (185). Nevertheless the error is very well controlled by the residual.

More results for up to three spatial dimensions can be found in [Bu1, BK]. All
numbers were obtained on a 3.2GHz Pentium IV computer (family 15, model 4,
stepping 1, with 1MB L2 Cache).

5.2.2 Dirichlet boundary control

For the system of saddle point problems (170) arising from the control problem
with Dirichlet boundary control in Section 2.5, also a fully iterative algorithm NI-
ICG can be designed along the above lines with yet another level of inner iteration.
Again the design equation (170c) for u serves as the equation for which a basic it-
erative scheme (178) can be posed. Of course, the CG method for A then has to be
replaced by a convergent iterative scheme for saddle point operators L like Uzawa’s
algorithm. Also the discretization has to be chosen such that the LBB condition
is satisfied, see Section 4.2. Details can be found in [K3]. Alternatively, since L
has a uniformly bounded condition number, the CG scheme can, in principle, also
be applied to LT L. The performance of wavelet schemes on uniform grids for such
systems of saddle point problems arising from optimal control has been investigated
systematically in [Pa].

For illustration of the choice of different norms for the Dirichlet boundary control
problem, consider the following example. We control the system through the (green)
control boundary Γ in Figure 4 while a prescribed state y∗ ≡ 1 on the (red) observa-
tion boundary Γy opposite the control boundary is to be achieved. The right hand side
is chosen as constant f ≡ 1, and ω = 1. Each layer in Figure 4 corresponds to the
state y for different values of s when the observation term is measured in Hs(Γy), that
is, the objective functional (35) contains a term ‖y− y∗‖2

Hs(Γy)
for increasing s from

bottom to top. We see that as the smoothness index s for the observation increases,
the state moves towards the target state at the observation boundary. In compari-
son, in Figure 5 the weight parameter ω balancing the two terms in the functional
is modified. We observe that the effect on the solution of varying s corresponds to
a similar behaviour of varying the weight. However, as ω directly influences the
conditioning of the system of saddle point operators, a solution scheme with fixed
ω and varying s can be considered numerically more stable.
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Fig. 4 State y of the Dirichlet boundary control problem using the objective functional J (y,u) =
1
2‖y− y∗‖2

Hs(Γy)
+ 1

2‖u‖2
H1/2(Γ )

for control boundary Γ (green) and observation boundary Γy (red)

for different values of the Sobolev smoothness index s on resolution level J = 5 [Pa]

Fig. 5 State y of the Dirichlet boundary control problem using the objective functional J (y,u) =
1
2‖y− y∗‖2

Hs(Γy)
+ ω

2 ‖u‖2
H1/2(Γ )

for control boundary Γ (green) and observation boundary Γy (red)

for different values of the weight parameter ω [Pa]

Finally, we display in Table 6 some numerical results for an elliptic control prob-
lem with Dirichlet boundary control in two spatial dimensions. Among the various
iteration schemes tested, the best results with a minimal amount of iteration numbers
(here: at most 2) were obtained for an inexact gradient iteration on u and Uzawa–
type schemes with conjugate directions for each of the saddle point problems to-
gether with nested iteration.
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j ‖r j‖ ‖y−yJ‖ k j
#Int-It

k j

4 1.6105e-02 7.7490e-00 0 –

5 1.6105e-02 7.7506e-00 0 –

6 6.3219e-03 1.7544e-02 2 1

7 5.8100e-03 3.3873e-02 0 –

8 1.6378e-03 3.4958e-03 2 1

9 1.8247e-03 7.4741e-03 0 –

10 4.3880e-04 9.2663e-04 2 1

11 4.6181e-04 1.8486e-03 0 –

Table 6 Dirichlet boundary control problem in two spatial dimensions with yΓy ≡ 1, f ≡ 1, ω = 1,
s = t = 0.5. The table shows the number of iterations k j needed to reduce the Z -error of r j by a
factor of 0.5 after prolongation of all final vectors from the previous level [Pa]
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