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Preface

On the occasion of his 60th birthday in October 2009, friends, collaborators, and
admirers of Wolfgang Dahmen have organized this volume which touches on vari-
ous of his research interests. This volume will provide an easy to read excursion into
many important topics in applied and computational mathematics. These include
nonlinear and adaptive approximation, multivariate splines, subdivision schemes,
multiscale and wavelet methods, numerical schemes for partial differential and
boundary integral equations, learning theory, and high-dimensional integrals.

College Station, Texas, USA Ronald A. DeVore
Paderborn, Germany Angela Kunoth
June 2009
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Introduction: Wolfgang Dahmen’s mathematical
work

Ronald A. DeVore and Angela Kunoth

Abstract This volume is testimony to the rich and amazingly diverse mathematical
life of Wolfgang Dahmen. The cornerstones of Wolfgang’s research are deep theo-
retical analysis and extensive interdisciplinary projects in high–performance scien-
tific computing. This article touches on some of the highlights of his work and its
impact in application domains.

1 Introduction

Wolfgang Dahmen is at the peak of his mathematical career — witness his recent
forays into learning theory, compressed sensing, and high dimensional problems.
His accomplishments to date have unquestionable diversity and depth. Perhaps the
two characteristics that best identify his mathematics are the constant exploration of
new and emerging fields as well as the quest for relevancy of his work to application
domains. The subsequent contributions to this volume will certainly validate this
view. We therefore take the opportunity in this introductory article to give some
overall feeling on how this all came about.
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2 Ronald A. DeVore and Angela Kunoth

2 The early years: Classical approximation theory

Wolfgang grew up in a small village called Linnich some forty kilometers from
Aachen tucked into the northwest corner of Germany near the Dutch border. So it
was natural for him to pursue his university studies at the RWTH in Aachen. He was
quickly identified as a mathematical talent and offered a Research Assistantship in
the Paul Leo Butzer program in Harmonic Analysis and Approximation — a group
notable for its breadth and talent. He began investigating problems in classical ap-
proximation theory and set out to settle the conjecture of Golumb and Korovkin on
whether convolution operators could simultaneously realize best approximation or-
ders for the entire spectrum of smoothness classes. He disproved this conjecture in
[1, 2] and these results became the core of his dissertation thesis. He went on to give
general connections between the behaviour of norms of operators, asymptotically
best approximation for a particular range, and spectral convergence [3, 4, 5, 6, 7].
He followed this by using these techniques to prove in [8] a slightly corrected con-
jecture of Stechkin. These results would already establish him as a prominent young
analyst.

3 Bonn, Bielefeld, Berlin, and multivariate splines

Wolfgang took an assistant position with Karl Scherer at Universität Bonn in 1976.
Bonn was at this time a hub of activity in approximation theory among the faculty
and assistants as well as the steady stream of visitors who frequented the Institut für
Angewandte Mathematik. It was because of some of this new exposure that Wolf-
gang Dahmen switched to the newly developing field of multivariate splines pro-
moted by Carl de Boor. At that time there was not much known about such smooth
piecewise polynomials in more than one spatial dimension, apart from classical fi-
nite element approaches. Although many engineering sciences built their approxi-
mations on splines, theoretical results for genuine multivariate analogues were not
known.

The starting point for Wolfgang’s work was a suggestion by Carl de Boor to
define multivariate splines through a generalization of a geometrical interpretation
of univariate B-Splines, going back to Iso Schoenberg. This eventually led to the
development of a cohesive and deep theory that is well documented in the article of
Carl de Boor in this volume.

There were several obvious gains that emanated from Wolfgang’s entry into mul-
tivariate splines. One was the exposure to the interconnectivity of various branches
of mathematics. In this case, multivariate splines intersect with commutative alge-
bra, combinatorics, number theory, and geometry, in addition to the obvious connec-
tions to finite element methods. Another big plus for Wolfgang was his collaboration
with Charles A. Micchelli. Wolfgang received an IBM PostDoctoral Fellowship for
1979/1980 which was the starting point for the very fruitful and long-term Dahmen–
Micchelli collaboration.
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Wolfgang returned to Germany and took his first professor position in Bielefeld
in 1981. His work on multivariate splines was now at its peak. Multivariate B-splines
are generated from volumes of intersections of hyperplanes with simplices. While
they have many beautiful properties, they are not so easy to work with numerically.
So they were soon replaced by box splines which are defined by replacing the sim-
plex by a cube. Although box splines result in uniform grid structures, the theory
for box splines needed very different techniques [28, 29, 31, 32, 38].

This box spline theory involved a number of interesting algebraic and combina-
toric problems [33, 34, 37, 38]. Indeed, box-spline techniques had very surprising
applications to questions of combinatorial number theory like reciprocal relations,
Bell’s theorem and linear systems of diophantic equations [41, 43, 65, 66, 68], cul-
minating with far-reaching results in commutative algebra by Dahmen–Micchelli
and by Rong-Qing Jia. Finally, in the long paper [67] together with Andreas Dress
and Charles Micchelli, Wolfgang investigated the application of concepts from ho-
mological algebra for the treatment of the central problem of the determination of
the exact dimension of the intersection of the null space of a family of endomor-
phisms which are characterized by a certain combinatorial structure.

3.1 Computer aided geometric design

The Dahmen–Micchelli collaboration also had lasting impact in Computer Aided
Geometric Design (CAGD) [42]. This work began while in Bielefeld but continued
well during his stay at the Freie Universität in Berlin (1987-1992). A number of
their papers in this area treat data fitting and interpolation problems [49, 50, 51].

Univariate splines have important properties like being variation-diminishing
which is strongly connected to the concept of total positivity. In its full strength,
the latter is inherently one-dimensional. However, there exists a strong coupling to
Polya frequency functions which can in turn be interpreted in the multivariate case
as well. This viewpoint resulted in a number of partly function-theoretic-based in-
vestigations [10, 20] as well as results concerning biinfinite matrices [18, 44, 76].
Roughly speaking, a central result in this context is that totally positive matrices
(which appear, for instance, for splines, Tchebycheff systems, or in the theory of
small oscillations) can be completely factorized into totally positive 2-band matri-
ces. This in turn has a number of important consequences, like corner cutting in
CAGD, knot insertion by repeated convex combinations of knots, and variation-
diminishing properties of B-splines.

A relevant property for data fitting is shape preservation, where the goal is to
preserve properties like monotonicity or convexity [53, 56, 59, 60]. Moreover, a
completely new approach for modelling surfaces with smooth interfaces based on
piecewise algebraic surfaces was proposed in [54, 57, 59].

The motivation for several of Wolfgang’s investigations was the premise that
parametric representations of surfaces are very unsuitable for graphics of high qual-
ity. While in Berlin, Wolfgang had a close collaboration with the nearby company
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Mental Images founded in 1986. During this collaboration, the intent was to de-
velop a modelling library which was able to reduce all CAD formats used at that
time to a unified format and to which after polygonalization a highly efficient ray
tracer could be applied. Since algebraic representations would also support the ray
tracer, one could circumvent polygonalization and the handling of different data
formats. The prototype of such a library has been developed and implemented to-
gether with Mental Images and has in the aftermath triggered a number of related
projects. Nowadays, their website states that “Mental Images is the recognized in-
ternational leader in providing rendering and 3D modeling technology to the en-
tertainment, computer-aided design, scientific visualization, architecture, and other
industries that require sophisticated images”.

3.2 Subdivision and wavelets

An integral part of CAGD is played by subdivision algorithms for quickly gener-
ating, displaying and controlling geometrical surfaces. Here Wolfgang had major
contributions [37, 39, 45, 46, 48] culminating in the monograph [62], written to-
gether with Alfred Cavaretta and Charles Micchelli and published in the Memoirs
of the American Mathematical Society.

CAGD and subdivision in particular were a forerunner of the development of
wavelets which dominated the applied harmonic analysis and image processing
communities in the 80’s and 90’s. So it was natural that the emphasis of Wolf-
gang Dahmen’s work at the beginning of the 90’s became the theory of multiscale
analysis with a particular eye to the application of these new sophisticated tools tor
the numerics of partial differential and integral equations. From 1992 on, this was
fueled by the fact that his new position at RWTH Aachen brought ample research
opportunities with engineers.

Another important factor in this new direction was his exposure to nonlinear ap-
proximation during the Bonn years. Nonlinear spline approximation was a favorite
topic of Karl Scherer. Two of the main proponents of nonlinear methods were Diet-
rich Braess and Ronald A. DeVore who were frequent visitors to Bonn during the
70’s. In fact, Dahmen and DeVore had several collaborations through the years but
this became particularly intense with the wavelet evolution when they teamed up
with the young star Albert Cohen. The impact of their work would be felt in many
applied disciplines including image compression, compressed sensing, learning the-
ory, and numerical partial differential equations (PDEs).
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4 Wavelet and multiscale methods for operator equations

4.1 Multilevel preconditioning

Wolfgang’s work in PDEs took on great momentum at the end of the 80’s. His first
major contributions centered around preconditioning elliptic operators. At that time,
multigrid methods were known to provide fast numerical solvers for the system of
linear equations arising from finite element discretization. A much-discussed ques-
tion from the point of finite elements at the end of the 80’s was under which condi-
tions multilevel preconditioners such as the hierarchical and the BPX preconditioner
(proposed by James H. Bramble, Joseph E. Pasciak and Jinchao Xu) provided uni-
formly bounded spectral condition numbers for the system matrix. This is an essen-
tial point to guarantee fast iterative solvers. Corresponding conditions were derived
in [75] and, specifically, the uniform boundedness of the BPX preconditioner was
established; a result independently obtained by Peter Oswald. From the angle of
wavelets, the corresponding ingredients for optimal preconditioning became much
more transparent [91, 92]. In particular, in [75] the uniform boundedness was estab-
lished for the first time also for adaptively refined grids in a classical finite element
framework. Two articles on preconditioning systems of PDEs by multilevel ingre-
dients are collected in this volume: Angela Kunoth’s on optimized preconditioning
with wavelets, and the survey by Long Chen, Ricardo Nochetto and Jinchao Xu on
BPX and multigrid preconditioning.

Wavelet-based preconditioners directly give norm equivalences for functions in
Sobolev spaces and are therefore not restricted to operators of positive order. This
led Wolfgang and his collaborators to a number of investigations for pseudodifferen-
tial and boundary integral operators for whose compression of operators is an even
more relevant issue, see Section 4.2.

Within the last few years, discontinuous Galerkin methods for PDEs have be-
come increasingly popular, due to the fact that one can relatively easy increase the
polynomial degree and therefore ensure higher order convergence where solutions
are smooth. Very recently, multilevel preconditioners for such interior discontinuous
Galerkin methods have been presented for the first time in [172, 173].

These studies led to two well received extensive surveys on wavelet and multi-
scale methods for the numerical solution of partial differential equations in an Acta
Numerica article [108] and, a few years later, [126].

4.2 Compression of operators

The goal of the multiscale approach to operator equations is to extract efficient rep-
resentations for both the operator and the solution. For boundary integral formula-
tions, conventional discretizations yield fully populated matrices and were therefore
not feasible for 3D problems in reasonable time. Multipole expansions and panel
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clustering methods became very popular as a way of thinning out the system matrix
and making it more amenable to computation.

Multiscale wavelet methods arrived on the scene a little later spurred on by
the observations of Gregory Beylkin, Ronald Coifman and Vladimir Rokhlin that
certain (one dimensional) operators are almost sparse in a wavelet representation.
These authors showed that for a fixed tolerance ε a matrix vector multiplication
can be realized in O(N logN) arithmetic operations with accuracy ε . Wolfgang
and his collaborators, mainly Siegfried Prößdorf und Reinhold Schneider, were
set on developing a rigorous theory that quantified the gain of multiscale methods
[79, 80, 84, 86, 89, 90, 97, 101]. The results in [146] were the first to show for a
large class of elliptic operators, including those of negative order, that the system
matrices can be compressed up to optimal complexity O(N) while at the same time
admitting optimal preconditioning of the system matrix and the solution of the re-
sulting problems with asymptotically optimal convergence order. It also made the
relevant point to bring preconditioning into play. (This topic was not addressed by
Beylkin et al. since they had chosen an operator of order zero for which no con-
ditioning issue arises.) Surveys about the different stages of the investigations for
pseudodifferential and boundary integral operators were provided in [97, 103, 108].

So far, these results referred to discretizations on uniform grids. Another mile-
stone for complexity reduction was achieved by the introduction of adaptively re-
fined a–posteriori discretizations. Optimal complexity estimates for adaptive meth-
ods based on wavelets for integral equations were proved in [162].

A survey of the main results and the current state of the art of wavelet methods
for integral equations is provided by the article by Helmut Harbrecht and Reinhold
Schneider in this volume.

5 Adaptive solvers

Multiscale decompositions have long played an important role in image processing
which leads to efficient compression of images. It is natural to try to bring these
ideas into the realm of numerical PDEs. But of course, new problems arise since the
solution is not known to us but can only be seen through computation.

Wolfgang had already collaborated with Albert Cohen and Ron DeVore on vari-
ous aspects of image compression and multiscale systems but in the latter part of the
1990’s, they begin to turn their attention to PDE solvers with the goal of providing a
rigorous foundation for both theory and algorithms for adaptive methods. Of course,
adaptive finite element methods had been around for some time. However, theoreti-
cal results which established their advantages over non adaptive methods were still
lacking.

It seemed natural to first tackle adaptivity in the context of wavelet methods
since these were already known to have the advantages mentioned above of yield-
ing highly compressible matrix representations. The result was a penetrating theory
and algorithms much beyond the state of the art known for partial differential and in-
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tegral operators. It all began with the work [118] for linear elliptic partial differential
equations which not only developed convergent algorithms but also algorithms with
asymptotically optimal rates of convergence when compared to the wavelet-best N
term approximation. This seminal work was followed by extensions to more general
settings including nonlinear problems [133, 147]. Other collaborations of Wolfgang
extended and substantially refined the notion of adaptive methods of optimal com-
plexity to more general problems including saddle point problems [139, 144], adap-
tivity steered by goals different than the energy norm [165] and problems in optimal
control constrained by an elliptic partial differential equation [150].

Interestingly, these results also applied to operators of negative order. Specifically
for ensuring optimal complexity, a number of techniques known from optimal cod-
ing and compression [121] had to be interwined in a sophisticated way, yielding a
novel approximate matrix-vector multiplication of optimal complexity. The deriva-
tion of adaptive methods with optimal complexity estimates for nonlinear station-
ary partial differential equations posed yet another difficulty which was attacked in
[147] based on tree approximations. Recently, these techniques have been extended
for the first time to deriving convergent adaptive schemes for elliptic eigenvalue
problems in [174].

A survey of the basic principles and the main results is provided in the Ency-
clopedia Article [151] or the longer survey article [153]. Rob Stevenson gives a
very nice overview of the state of the art of adaptive wavelet methods for operator
equations in this volume.

The principles for proving convergence of adaptive methods for linear elliptic
PDEs based on finite elements were known since Willy Dörfler’s article in ’96. How-
ever, it was a much discussed question in practical finite element codes whether a
heuristically used derefinement/coarsening step was really needed for ‘good com-
plexity’. Establishing a sound theory was a difficult issue since a finite element
discretization does not characterize in a natural way the underlying Sobolev space
or the solution like in wavelet theory. Again tree approximations turned out to be the
key for success, resulting in [145] for the first time in optimal complexity estimates
for adaptive finite element methods. This seminal paper triggered numerous follow-
ers and extended into a rich theory, for which an account is given in the article of
Ricardo Nochetto, Kunibert G. Siebert and Andreas Veeser in this volume.

6 Construction and implementation

The numerical implementation of wavelet algorithms is not without challenges. The
main obstacle is to design multiscale systems for domains and manifolds which arise
in applications. The classical development of wavelets is tied to R

n or, via periodiza-
tion, to the torus. Wolfgang was at the heart of multiscale constructions for practical
settings which took place largely in the 1990’s. The initial studies [76, 78, 81] were
devoted to systematically developing Fourier-free concepts and clarifying the basic
relations of stability, Riesz bases, and norm equivalences. These investigations led
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to Fourier-free stability criteria [81, 92, 95] which include biorthogonality as well as
regularity and approximation properties. This results in the preservation of the rele-
vant functional analytic properties of function spaces on domains and manifolds.

Flexible constructions of biorthogonal wavelets for a whole range of Sobolev
spaces on domains and manifolds were provided in [88, 93, 100, 104, 105, 107,
112, 113, 115]. These tools also led to new evaluation algorithms [117, 158]. For
instance, the exact computation of integrals of products of derivatives of scaling
functions can be reduced to solving linear systems whose size is independent of
the discretization [71]. Based on biorthogonal wavelets one can systematically con-
struct for any spatial discretization stable pairs of approximation spaces for saddle
point problems like for the Stokes problem [94] or for treating essential boundary
conditions by Lagrange multipliers [122]. In addition, they admit optimal precon-
ditioners. Starting from wavelets on the interval [104], tensorizing these and finally
using parametric mappings, one can construct wavelets in particular for boundary
integral equations on manifolds in 3D [100, 107, 115]. The construction in [107] is
intrinsically tied to characterizations of function spaces on manifolds through man-
ifold decompositions developed earlier by Zbigniew Ciesielski and Tadeusz Figiel
using orthogonalized B-splines. This approach also leads naturally to domain de-
compositions for boundary integral equations. Finally, in [112] local wavelet bases
with the desired stability and compression properties were constructed for standard
finite element decompositions in up to 3D.

A discussion of implementation and numerical experiments for adaptive wavelet
schemes for linear elliptic partial differential equations, exhibiting the theoretically
predicted convergence rates in an exemplary manner, was provided in [125].

The foundation for many efficient algorithms are norm equivalences for multi-
scale expansions which can be used for preconditioning. So far these concepts have
been derived for discretizations, initially on uniform grids. On the other hand, in
view of problems in dimensions higher than three, in the past years also partition-
of-unity methods which can be applied to essentially nonuniform grids have be-
come fashionable. However, for these methods there was up to [169] no efficient
and analytically proven optimal preconditioner available. Decompositions of spaces
on nonuniform or anisotropic grids are the subject of an ongoing collaboration of
Wolfgang Dahmen with Shai Dekel and Pencho Pestrushev, see their contribution
in this volume.

7 Hyperbolic partial differential equations and conservation
laws

Adaptive methods are also frequently applied to non–elliptic problems, primarily
non-stationary hyperbolic problems. Wolfgang and his collaborators became inter-
ested in this area around the time that Ami Harten developed his compression ap-
proach for conservation laws. Harten’s approach was improved in an essential way
in [119] both with respect to practicability (2D problems on curvilinear grids) as
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well as conceptually with respect to the amount of expensive flux evaluations in an
adaptive grid refinement, see the contribution by Siegfried Müller in this volume.
For the compressible Navier-Stokes equations, these ideas were elaborated in [141].

Another non-elliptic example centers around adaptive multigrid methods for con-
vection dominated problems in [123]. Here adaptivity not only reduces the complex-
ity but also stabilizes a standard Galerkin discretization so that no modification by
artificial introduction of viscosity is necessary.

8 Engineering collaborations

Wolfgang was not immune to collaborating with Engineers and he had an excel-
lent environment for such collaborations in Aachen. For example, he worked with
mechanical engineers at RWTH Aachen, specifically Josef Ballmann, to efficiently
simulate transport phenomena, grid generation, hypersonic flow problems, and the
interaction of aerodynamics and structure. This also resulted in theoretical results
on Riemann solvers for non-convex flux functions including phase transitions for
hyperbolic conservation laws [154] or the well-posedness of modeling problems for
nonlinear elasticity [161].

Wolfgang’s long-term collaboration with the chemical engineer Wolfgang Mar-
quardt at RWTH Aachen is one of the prominent examples of bringing novel math-
ematical concepts into practical applications to substantially improve simulation re-
sults. Here real-time optimization of dynamical chemical processes requires com-
pression of systems of ordinary differential equations [102, 111, 127, 128, 129,
135]–[138].

9 The present

Wolfgang’s research program continues to find interesting new avenues. In the
past few years, Wolfgang Dahmen’s work has primarily been driven by problems
in learning theory and compressed sensing. These investigations have taken place
largely in collaboration with Albert Cohen and Ron DeVore. Their goal, quite
similar to the adaptive PDE program, is to understand in what sense various al-
gorithms in these areas are optimal. This program has led to a series of results
[160, 166, 167, 168, 171, 175] which clarify the gains of sparsity and nonlinear-
ity. These remarkable accomplishments are well documented in the article of Ron
DeVore in this volume.
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10 Final remarks

Wolfgang Dahmen has had an illustrious mathematical career full of high points.
Perhaps his most significant recognition was the awarding of the Gottfried Wilhelm
Leibniz-Award in 2002, the highest scientific award in Germany given to him by the
Deutsche Forschungsgemeinschaft (German Science Foundation). The authors of
this introduction and his many collaborators thank him for his friendship and years
of stimulating mathematics. We look forward to more in the future.
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90. (with S. Prössdorf, R. Schneider) Wavelets zur schnellen Lösung von Randintegralgle-
ichungen und angewandte harmonische Analyse, Z. Angew. Math. Mech. 74, No 6 (1994),
505-507.

91. Multiscale Techniques - Some Concepts and Perspective, in: Proceedings of the International
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The way things were in multivariate splines:
A personal view

Carl de Boor

Abstract A personal account of the author’s encounters with multivariate splines
during their early history.

1 Tensor product spline interpolation

My first contact with multivariate splines occurred in August 1960. In my first year
at the Harvard Graduate School, working as an RA for Garrett Birkhoff, I had not
done too well but, nevertheless, had gotten married and so needed a better income
than the RAship provided. On the (very kind and most helpful) recommendation
of Birkhoff who consulted for the Mathematics Department at General Motors Re-
search in Warren MI, I had been hired in that department in order to be of assistance
to Leona Junko, the resident programmer in that department.

Birkhoff and Henry L. Garabedian, the head of that department, had developed a
scheme for interpolation to data on a rectangular grid meant to mimic cubic spline
interpolation; see [BG]. They would use what they called “linearized spline inter-
polation” and what is now called cubic spline interpolation, along the meshlines in
both directions, in order to obtain values of the first derivative in both directions at
each meshpoint, and then fill in each rectangle by a C1 piecewise low-degree har-
monic polynomial function that would match the given information, of value and
two first-order derivatives, at each corner and, thereby, match the cubic spline inter-
polants along the mesh-lines.

It occurred to me that the same information could be matched by a scheme that
would, say, construct the cubic spline interpolants along all the mesh-lines in the x-
direction, and then use cubic spline interpolation to the resulting spline coefficients
as a function of y to obtain an interpolant that was a cubic spline in x for every value
of y, and C2 rather than just C1. Of course, one could equally well start with the
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cubic spline interpolants along all the mesh-lines in the y-direction, and interpolate
the resulting spline coefficients as a function of x and so obtain an interpolant that
was a cubic spline in y for every x, and it took me some effort to convince Birkhoff
that these two interpolants are the same. This is now known as bicubic spline inter-
polation [dB0], the tensor-product (I learned that term from Don Thomas there) of
univariate cubic spline interpolation, and has become a mainstay in the construction
of smooth interpolants to gridded data. I did write up a paper on n-variable tensor
product interpolation, but Birkhoff thought publication of such a paper unnecessary.

Much later (see [dB4]), I realized that it is quite simple to form and use in a
multivariate context tensor products of univariate programs for the approximation
and evaluation of functions, provided the univariate programs can handle vector-
valued functions.

Around 1960, there was related work (I learned much later) by Feodor Theil-
heimer of the David Taylor Model Basin, see [TS], and, in computer graphics, para-
metric bicubic splines were introduced around that time by J. C. Ferguson at Boeing,
see [Fe], though Ferguson set the crossderivatives DxDy f at all mesh points to zero,
thereby losing C2 and introducing flat spots.

In this connection, I completely missed out on parametric spline work, believing
(incorrectly, I now know) that it is sufficient to work with spline functions on a
suitably oriented domain. Nor did I get involved in the blending approach to the
construction of spline surfaces, even though I was invited by Garabedian on a visit
in 1962 to Coons at M.I.T. (my first plane ride) and saw there, first-hand, an ashtray
being machined as a Coons’ surface [C]. The paper [BdB] (which has my name on
it only grace Birkhoff’s generosity) contains a summary of what was then known
about multivariate splines. I had left General Motors Research by the time that Bill
Gordon did his work on spline-blended surfaces there; see, e.g., [G].

2 Quasiinterpolation

My next foray into multivariate splines occurred in joint work with George Fix,
though my contribution to [dBF] was the univariate part (Birkhoff objected to the
publication of two separate papers). Fix had worked out the existence of a local lin-
ear map into the space of tensor-product splines of (coordinate-)degree < k for a
given mesh, which depended only on the value of derivatives of order < k0 ≤ k at
all the mesh points but did not necessarily reproduce those values (hence Fix’ name
“quasi-interpolate” for the resulting approximation) but did reproduce all polynomi-
als of (total) degree < k0 in such a way that the approximation error can be shown to
be of order k0 in the mesh size. However, there was an unresolved argument between
Fix and his thesis advisor, Garrett Birkhoff, about whether, in the univariate case,
Fix’ scheme was “better” than Birkhoff’s “Local spline approximation by moments”
[B], and Birkhoff had invited me to Cambridge MA for July 1970 to settle the mat-
ter, perhaps. ([B] started out as a joint paper but, inexplicably, did not so end up; I
published the case of even-degree splines later on in [dB1].) Fortunately, once I had
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derived an explicit formula for Fix’ map, the two methods could easily be seen to
be identical.

For k0 = k, Fix’s univariate scheme amounted to interpolation in the sense that it
was a linear projector; nevertheless, it was called “quasi-interpolation” in the spirit
of finite elements of that time since its purpose was not to match given function
values but, rather, to match some suitable linear information in such a way that the
process was local, stable, and reproduced all polynomials of order k, thus ensur-
ing approximation order k. In this sense, Birkhoff’s local spline approximation by
moments is the first quasi-interpolation spline scheme I am aware of (with [dB2] a
close and derivative-free second).

Unfortunately, it was only ten years later that I became aware of Frederick-
son’s immediate reaction [Fr1] to [dBF] in which he constructed quasi-interpolant
schemes onto smooth piecewise polynomials on what we now would call the 3-
direction mesh, using bump functions obtained from the characteristic function of a
triangle in the same way we now obtain a bivariate box spline from the characteristic
function of a square; see [Fr2].

3 Multivariate B-splines

In 1972, I moved to Madison WI, to the Mathematics Research Center (MRC)
funded since 1957 by the United States Army Research Office to carry out re-
search in applied mathematics. It had an extensive postdoc and visitors program,
the only fly in the ointment its location far from the center of the University of
Wisconsin-Madison because its former housing there was bombed in August 1970,
as a protest against the Vietman war, by people who took the very absence of
any mention of military research in the semi-annual reports of that Army-financed
institution as proof of the importance of the military research supposedly go-
ing on there. I had been hired at the time of I. J. Schoenberg’s retirement from
MRC.

The univariate spline theory was in good shape by that time, and, thanks to my
contacts with Martin Schultz and George Fix, and to having been asked to handle the
MRC symposium on the “Mathematical Aspects of Finite Elements in Partial Dif-
ferential Equations” in the summer of 1973, I had begun to look at smooth piecewise
polynomials in two and more variables, as they were being used in finite elements.
That same summer, I participated in the Numerical Analysis conference in Dundee
and heard Gil Strang’s talk [St] there, in which he raised the question of the dimen-
sion of the space of bivariate C(1)-cubics on a given triangulation. I felt like a fraud
for not being able to solve that problem right then and there. As it turned out, except
for “nice” triangulations, this problem is still not understood in 2009, and neither is
the approximation power of such spaces known, although many have worked on it;
see [LS] for what was known by 2007.

At the same time, in practice, the finite element method did not work with
the space of all piecewise polynomials of a certain degree and smoothness on a
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Fig. 1 Schoenberg’s sketch of a bivariate quadratic B-spline

given triangulation, but with suitable subspaces, usually the linear span of suit-
able compactly supported more or less smooth piecewise polynomials called bump
or hill functions. This, together with the essential role played by B-splines in the
univariate spline theory (as summarized, e.g., in [dB3]), made me look for “B-
splines”, i.e., smooth compactly supported piecewise polynomials, in the multi-
variate setting. When discussing this issue in January 1975 with Iso Schoenberg
in his home study, he went to his files and pulled out a letter [Sc] he had writ-
ten to Phil Davis in 1965, with a drawing of a bivariate compactly supported
piecewise quadratic function, with several planar sections drawn in as univari-
ate quadratic B-splines; see Figure 1. The letter was in response to Davis’ pa-
per [Dav], meant to publicize the following formula, due to Motzkin and Schoen-
berg,

1
2A

∫
T

f ′′(z)dxdy =
f (z0)

(z0− z1)(z0− z2)
+

f (z1)
(z1− z0)(z1− z2)

+
f (z2)

(z2− z0)(z2− z1)
,

(1)
valid for all functions f regular in the triangle T in the complex plane with
vertices z0,z1,z2, and with A the area of T . Schoenberg points out that, in as
much as the right side of (1) is the second divided difference Δ(z0,z1,z2) f of
f at z0,z1,z2, therefore the Genocchi-Hermite formula for the nth divided differ-
ence

Δ(z0, . . . ,zn) f =
∫ 1

0

∫ s1

0
· · ·
∫ sn−1

0
f (n)(z0 + s1∇z1 + · · ·+ sn∇zn)dsn · · · ds1 (2)

provides a ready generalization of (1) to an arbitrary finite collection of zi in the
complex plane. Moreover, it is possible to write the integral as a weighted integral
over the convex hull of the zi, i.e., in the form
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Δ(z0, . . . ,zn) f =
∫

conv(z0,...,zn)
f (n)(x+ iy)M(x,y;z0, . . . ,zn)dxdy,

with the value at (x,y) of the weight function M(·, ·;z0, . . . ,zn) the volume of
σ ∩P−1{(x,y)}, with P the orthogonal projector of R

n onto C ∼ R
2 ⊂ R

n, and σ
any n-simplex of unit volume whose set of vertices is mapped by P onto {z0, . . . ,zn}.
This makes M(·, ·;z0, . . . ,zn) the two-dimensional “X-ray” or “shadow” of an n-
dimensional simplex. Hence, M(·, ·;z0, . . . ,zn) is piecewise polynomial in x,y of to-
tal degree n− 2, nonnegative, and nonzero only in the convex hull of the z j, and,
generically, in C(n−3). This is strikingly illustrated in Figure 1, which shows Schoen-
berg’s sketch of the weight function for the case n = 4, with the z j the five fifth-root
of unity, giving a C1 piecewise quadratic weight function.

I was much taken by this geometric construction since it immediately suggested
a way to get a nonnegative partition of unity consisting of compactly supported
smooth piecewise d-variate polynomials of order k: In R

k, take a convex set C of
unit k-dimensional volume (e.g., a simplex), and subdivide the cylinder C×R

d into
non-trivial (k + d-dimensional) simplices. Then their shadows on R

d under the or-
thogonal projection of R

d+k onto R
d provide that partition of unity. For the case

d = 1, Schoenberg was very familiar with the resulting 1-dimensional shadows of
1+k-dimensional simplices. By the Hermite-Genocchi formula, they are univariate
B-splines, a fact used by him in [CS] to prove the log-concavity of the univariate
B-spline.

In a talk [dB3] at the second Texas conference in 1976, on the central role played
by B-splines in the univariate spline theory, I finished with a brief discussion of what
little I knew about Schoenberg’s multivariate B-splines. In particular, I stressed the
lack of recurrence relations to match those available for univariate B-splines, and
should have pointed out that I had no idea (except when d = 1) how to choose the
partition of C×R

d into simplices in order to ensure that the linear span of the result-
ing d-dimensional shadows has nice properties. A very alliterative solution to this
difficult problem was offered in [DMS] but, to me, the most convincing solution is
the one finally given by Mike Neamtu; see [N] and the references therein (although
Höllig’s solution [H2] is not mentioned).

Subsequently, Karl Scherer informed me that his new “Assistent”, Dr. Wolfgang
Dahmen, intended to provide the missing recurrence relations. It seems that Scherer
had given him [dB3] to read as an introduction to splines.

4 Kergin interpolation

In January 1978, I was asked by T. Bloom of Toronto (possibly because his col-
league, Peter Rosenthal, and I had been students together at Ann Arbor) my opin-
ion of a recent result of one of his students, Paul Kergin, and, for this purpose,
was sent a handwritten draft of Kergin’s Ph.D. thesis [K1]. The thesis proposed
a remarkable generalization of univariate Lagrange interpolation from Π≤k at a
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k + 1-set Z = {z0, . . . ,zk} of sites to the multivariate setting, with the interpolant
chosen uniquely from Π≤k (:= the space of polynomials in d variables of total de-
gree ≤ k) and depending continuously on the sites even when there was coales-
cence and, correspondingly, Hermite interpolation. To be sure, in d > 1 dimensions,
dimΠ≤k =

(k+d
d

)
is much larger than k + 1, hence Kergin had to choose additional

interpolation conditions in order to single out a particular element P f ∈ Π≤k for
given f . This he did in the following way. He required that P be linear and such
that, for every 0 ≤ j ≤ k and every homogeneous polynomial q of degree j, and
every j +1-subset Σ of Z, q(D)(id−P) f should vanish at some site in conv(Σ).

The thesis (and subsequent paper [K2]) spends much effort settling the question
of how all these conditions could be satisfied simultaneously, and, in discussions
with members and visitors at MRC that Spring, we looked for some simplifica-
tion. Michael Golomb pointed to the “lifting” Kergin used in his proof as a possible
means for simplification: If the interpoland f is a “ridge function”, i.e., of the form
g ◦ λ with λ a linear functional on R

d , then P f is of the same form; more pre-
cisely, then P f = (Qg)◦λ , with Qg the univariate polynomial interpolant to g at the
possibly coalescent sites λ (Z).

Fortunately, C. A. Micchelli was visiting MRC that year, from 1apr to 15sep, and
readily entered these ongoing discussions on Kergin interpolation (and the missing
recurrence relations for multivariate B-splines). He extended (see [M1]) the linear
functional occurring in the Genocchi-Hermite formula (2) to functions of d variables
by setting

∫
[z0,...,zn]

h :=
∫ 1

0

∫ s1

0
· · ·
∫ sn−1

0
h(z0 + s1∇z1 + · · ·+ sn∇zn)dsn · · · ds1 (3)

for arbitrary z0, . . . ,zn ∈ R
d , recalled the Newton form

Qg =
k

∑
j=0

(·−λ z0) · · ·(·−λ z j−1)Δ(λ z0, . . . ,λ z j)g

for the univariate polynomial interpolant to g at the sites λ (Z), and realized that,
with Dy := ∑ j y jD j the directional derivative in the direction y,

Dx−z0 · · ·Dx−z j−1(g◦λ ) = λ (x− z0) · · ·λ (x− z j−1)(D jg)◦λ ,

hence, using Genocchi-Hermite, saw that

(Qg)◦λ =
k

∑
j=0

λ (·− z0) · · ·λ (·− z j−1)
∫

[λ z0,...,λ z j ]
D jg

=
k

∑
j=0

∫
[z0,...,z j ]

D·−z0 · · ·D·−z j−1(g◦λ ),

and so knew that the ansatz
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P f =
k

∑
j=0

∫
[z0,...,z j ]

D·−z0 · · ·D·−z j−1 f

for the Kergin projector was correct for all ridge functions (given Kergin’s result
concerning interpolation to ridge functions), hence must be correct.

I remember the exact spot on the blackboard in the coffee room at MRC where
Micchelli wrote this last formula down for me, and can still experience my aston-
ishment and admiration. I had no inkling that this was coming, hence declined his
gracious offer of making this a joint paper.

It turned out that P. Milman, who is acknowledged in [K2] for many helpful
discussions, also had this formula, resulting in [MM].

5 The recurrence for multivariate B-splines

Shortly after Micchelli had left MRC that fall, I received from him the one-page
letter shown in Figure 2, containing the sought-after recurrence relations for mul-
tivariate B-splines, a second occasion for me to be astonished. Micchelli had not
made my mistake, of concentrating on the geometric definition of the multivariate
B-spline, but had stuck with the setting in which Schoenberg first thought of these
multivariate B-splines, namely as the representers of the “divided difference” func-
tionals f �→

∫
[z0,...,zn] f defined in (3).

The formula was first published in MRC TSR 1895 in November 1978, a prelim-
inary version of [M1].

The paperclip shown in the upper left corner of Figure 2 holds a copy of
an MRC memo, saying: “Diese schoene Formel schickte mir Charlie Micchelli
kuerzlich. Ihr Carl de Boor”. The memo accompanied a copy of Micchelli’s let-
ter which I mailed to Wolfgang Dahmen, knowing from my short visit to Bonn
in August 1978 that he thought he was on the track to getting recurrence rela-
tions.

Dahmen’s response was swift: in a missive dated 30oct78, he submitted to me di-
rectly for possible publication in SJNA the first version of [D5], containing a proof
of the recurrence relations but based on what we now call multivariate truncated
powers or cone splines since they can be thought of as shadows of high-dimensional
polyhedral cones. A second version reached me 14nov78 which I promptly sent to
Micchelli for refereeing, who was wondering how Dahmen could have found out
so quickly about his formula. In January, Micchelli asked permission (granted, of
course) to contact Dahmen directly during his visit to Germany in February, and
this led to Dahmen’s application (granted, of course) for a research fellowship at
Micchelli’s home institution, the mathematics department at IBM Watson Research
Center in Yorktown Heights NY, and the rest is history. While Dahmen published
various results on multivariate B-splines alone, including papers in conference pro-
ceedings [D1], [D3], [D4], the construction of spaces spanned by such B-splines and
their approximation order [D6], requiring the determination of the polynomials con-
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Fig. 2 Micchelli’s recurrence relation for simplex splines

tained in such a span [D2], all leading up to his Habilitationsschrift [D7], his joint
results with Micchelli on the mathematics of box splines were the pay-off of their
joining forces in 1979. But, for that, the box splines had to make their appearance
first.
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6 Polyhedral splines

It must have happened during my visit with Ron DeVore at the University of South
Carolina in April 1980 that he and I started a discussion on the relative merits in
multivariate piecewise polynomial approximation of using total degree vs. coordi-
nate degree whose outcome is [dBD]. The discussion was motivated by the fact that
the approximation order achievable from a space Ah, of piecewise polynomials on a
partition of mesh size h, is bounded by the maximum k for which Π≤k is contained
in the approximation space Ah, and it seems that a tensor product spline space of
coordinate degree k employs many more degrees of freedom (involving polynomial
pieces of total degree > k) than seem necessary to have Π≤k contained in it.

To be sure, it is not sufficient to have Π≤k ⊂ Ah (see, e.g., [dBH3]); rather, Π≤k

must be contained in Ah locally and stably, i.e., there must be a (local and sta-
ble) quasiinterpolant scheme with range Ah available that reproduces Π≤k. It is this
requirement that becomes increasingly hard and eventually, impossible if one in-
creases the required smoothness of the approximating piecewise polynomials of
order ≤ k for a given partition or mesh. We only considered the bivariate case and
considered only two partitions, a square mesh, and, in order to get some feeling for
triangulations, the square mesh with all northeast diagonals drawn in (now called a
3-direction mesh or uniform type I triangulation). But how to get the smooth com-
pactly supported piecewise polynomials needed? In the case of the 3-direction mesh,
Courant’s hat function offers itself for degree 1 and smoothness 0. But it was the sud-
den (and very pleasant) realization that this function is the 2-dimensional (skewed)
shadow of a 3-cube that provided us with a recipe for the needed “bump functions”
for the 3-direction mesh, as appropriate shadows of higher-dimensional cubes. We
realized that other finite elements, e.g., the piecewise quadratic finite element con-
structed by Powell in [P], and, earlier, by Zwart in [Z], or certain elements discussed
by Sablonnière, see [Sa], as well as those constructed by Sabin [S], could also be
obtained as shadows of higher-dimensional cubes.

However, these new multivariate B-splines might not have been looked at care-
fully all that quickly but for the arrival at MRC, in the summer of 1980, of Klaus
Höllig, for a 2-year postdoc. I had met Höllig the previous summer during an ex-
tended stay with Karl Scherer at the University of Bonn (during which Ron DeVore
and I worked successfully in a local “Weinstube” on a problem of mixed-norm n-
width that had arisen in Höllig’s thesis work; see [dBDH]). Höllig produced in short
order the two papers [H1], [H2], rederiving Micchelli’s (and Dahmen’s) results via
Fourier transforms, and proposing a particular way of choosing a collection of sim-
plices so that their shadows span a linear space of piecewise polynomials of order
k with approximation order k. But, more than that, Höllig was swift to follow up
on the suggestion that Micchelli’s recurrence might be a simple consequence of
Stokes’ theorem, hence there is a version for shadows of cubes and, more generally,
for shadows of convex polyhedra, as follows.

In the spirit of Micchelli’s view of Schoenberg’s multivariate B-spline, for a con-
vex body B in R

n and a linear map P from R
n to R

d , define the corresponding
distribution MB on R

d by
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MBϕ :=
∫

B
ϕ ◦P, all test functions ϕ ,

with
∫

K the k-dimensional integral over the convex K in case the flat �(K) spanned
by K is k-dimensional. Assuming that �(P(B)) = R

d , Mb is a nonnegative piecewise
polynomial function, with P(B) its support. Moreover, at each corner of its support,
it agrees with one of Dahmen’s truncated powers.

Assume that the boundary of B is the essentially disjoint union of finitely many
(n−1)-dimensional convex bodies Bi. Then

DPzMB =−∑
i
〈z,ni〉MBi , z ∈ R

n, (4)

(n−d)MB(Pz) =∑
i
〈bi− z,ni〉MBi(Pz), z ∈ R

n, (5)

with ni the outside normal to �(Bi), 〈x,y〉 the scalar product of x with y, and bi a point
in Bi, hence 〈bi−z,ni〉 is the signed distance of z from �(Bi). The pointwise equality
has to be taken in the sense of distributions. The proof of (5) in [dBH1] follows
Hakopian’s proof of (5) in [Ha] for the special case that B is a simplex. Under the
assumption that B is a convex polytope, repeated application of (4) establishes that
MB is piecewise polynomial of degree at most n− d, and in Cn−ρ−2, with ρ the
greatest integer with the property that a ρ-dimensional face of B is mapped by P
into a (d−1)-dimensional set.

In [dBH2], we called MB a polyhedral spline. Schoenberg’s B-spline became a
simplex spline, Dahmen’s truncated power a cone spline, and the one introduced in
[dBD] a box spline (though Micchelli prefers “cube spline”). These three examples
seem, at present, the only ones carefully studied, probably because their polyhedra
are the only ones whose facets are polyhedra of the same type.

7 Box splines

In contrast to the simplex splines, the construction of a collection of box splines
spanning a useful space of piecewise polynomials is quite simple. If the box spline
in question is

M := MΞ : ϕ �→
∫

[0..1)Ξ
ϕ(Ξx)dx

for some multiset or matrix Ξ of full rank of integer-valued nontrivial directions in
R

d , then
S(Ξ) := SMΞ := span(MΞ(·− j) : j ∈ Z

d)

is a cardinal, i.e., shift-invariant, spline space which contains all polynomials of (to-
tal) degree k where k is maximal with respect to the property that, for any subset
Z of Ξ, Ξ\Z is still of full rank. The full space of polynomials contained in S(Ξ)
is, in general, larger; it is denoted by D(Ξ); it is the joint kernel of the differen-
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tial operators DH := ∏η∈H Dη where H ranges over the set A (Ξ) of all H ⊂ Ξ
that intersect every basis in Ξ. In this connection, for any Z⊂ Ξ, DZMΞ = ∇ZMΞ\Z
and, in particular, DΞMΞ =∇Ξδ , with δ : ϕ �→ ϕ(0). Also, MΞ ∗MZ = MΞ∪Z. How-
ever, linear independence of (M(·− j) : j ∈ Z

d) cannot hold unless Ξ is “unimod-
ular”, i.e., |detZ| = 1 for all bases Z ⊂ Ξ. Nevertheless, even when there is no
linear independence, one can construct, for k0 ≤ k, a quasi-interpolant scheme Q
into S(Ξ) whose dilation Qh : f �→ Q f (·/h)(·h) provides approximation of order
hk0 for every smooth enough f . It is also clear that Schoenberg’s theory of uni-
variate cardinal spline interpolation (see, e.g., [Sc2]) can be extended to multivari-
ate box spline interpolation in case of linear independence of (M(· − j) : j ∈ Z

d)
(a beginning is made in [dBHR]), and that the Strang-Fix theory [FS] of the ap-
proximation order of spaces spanned by the shifts of one function is applicable
here.

While Höllig and I derived such basic results, eventually published in [dBH2],
Dahmen and Micchelli pursued, unknown to us, vigorously much bigger game. We
first learned details of their remarkable results from their survey [DM3] in the pro-
ceedings of the January 1983 Texas conference and from their summary [DM2]
submitted in August 1983, with the former the only reference in the latter, and from
reading [DM1], [DM4] and [DM5] for the details of some of the results announced
in [DM2].

Not only did they prove that (MΞ(· − j) : j ∈ Z
d) is (globally or locally) lin-

early independent iff Ξ is unimodular (something proved independently by Jia [J1],
[J2]), they showed that the volume of the support of MΞ equals the number of
j ∈ Z

d for which the support of MΞ(· − j) has a nontrivial intersection with the
support of MΞ, and showed that support to be the essentially disjoint union of
τZ + Z[0 . . 1]Z for suitable τZ as Z runs over the set B(Ξ) of bases in Ξ, hence
vold(MΞ[0 . . 1]Ξ) = ∑Z∈B(Ξ) |detZ|. They also completely characterized the space

E(Ξ) of linear dependence relations for (MΞ(·− j) : j ∈ Z
d), i.e., the kernel of the

linear map M∗Ξ : C
Z

d → S(Ξ) : c �→ ∑ j MΞ(· − j)c( j) (with the sum well-defined
pointwise), and showed the space of polynomials in S(Ξ), i.e., the joint kernel D(Ξ)
of the differential operators DH, H ∈ A (Ξ), to have dimension equal to #B. Re-
markably, this last assertion holds even without the restriction that Ξ be an integer
matrix.

But there is more. Recall the truncated power TΞ : ϕ �→
∫

R
Ξ
+
ϕ(Ξx)dx introduced

by Dahmen in [D5] for the case that 0 �∈ conv(Ξ), i.e., the shadow of a cone. Already
in [DM2], Dahmen and Micchelli define, under the assumption that 0 �∈ conv(Ξ), the
discrete truncated power t(·|Ξ) associated with Ξ as the map on Z

d for which

∑
α∈Z

Ξ
+

ϕ(Ξα) =: ∑
j∈Z

d

t( j|Ξ)ϕ( j)

for any finitely supported ϕ , hence t( j|Ξ) = #{α ∈ Z
Ξ : Ξα = j}. In other words,

t(·|Ξ) counts the number of nonnegative integer solutions for the linear system
Ξ? = j with integer coefficients. They prove TΞ = ∑ j∈Z

d t( j|Ξ)MΞ(· − j), and so
obtain the remarkable formula ∇ΞTΞ = MΞ. Their subsequent study of the discrete
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truncated power enabled them, as reported in [DM6], to reprove certain conjectures
concerning magic squares, thus opening up a surprising application of box spline
theory.

On the other hand, box splines have had some difficulty in being accepted in areas
of potential applications. A particularly striking example is Rong-Qing Jia’s beau-
tiful paper [J3] which contains a carefully crafted account of the relevant parts of
the theory used in his proof of a long-outstanding conjecture of Stanley’s concern-
ing the number of symmetric magic squares. Referees from Combinatorics seemed
unwilling to believe that such conjectures could be successfully tackled with spline
theory.

In good part because of these (and other) results of Dahmen and Micchelli, there
was a great outflow of work on box splines in the 80s, and it was hard to keep up
with it. For this reason, Höllig, Riemenschneider and I decided to try to tell the
whole story in a cohesive manner, resulting in [dBHR2].

I now wish we had included in the book the exponential box splines of Amos
Ron [R] (followed closely by [DM7]). For, as Amos Ron has pointed out to me
since (and is made clear in [BR]), the (polynomial) box splines can be understood
as a limiting situation of the much simpler setup of exponential box spline. Here is
an example.

Recall the Dahmen-Micchelli result that the dimension of the space D(Ξ) of
polynomials in the span S(Ξ) of the shifts of the box spline MΞ equals the num-
ber #B(Ξ) of bases in Ξ (provided Ξ is of full rank). This is (II.32)Theorem in
the book, and its proof (a version of the Dahmen-Micchelli proof) is inductive and
takes about three pages, with the main issue the claim that dimD(Ξ) ≥ #B(Ξ).
However, this inequality is almost immediate along the following lines suggested
by Amos Ron: Choose, as we may, λ : Ξ→ R so that (pξ : x �→ 〈x,ξ 〉 − λ (ξ ))
is generic, meaning that the unique common zero, vB say, of (pξ : ξ ∈ B) is
different for different B ∈ B(Ξ). Consider H ∈ A (Ξ). Since H intersects each
B ∈ B(Ξ), the polynomial pH := ∏η∈H pη vanishes on V := {vB : B ∈ B(Ξ)}.
Let ev : x �→ exp(〈v,x〉). Then, for arbitrary y ∈ R

d , Dyev = 〈v,y〉ev, hence, for
p ∈ Π, p(D)ev = p(v)ev. In particular, pH(D)ev = 0 for v ∈ V , hence pH(D) f = 0
for arbitrary f = ∑α f̂ (α)()α ∈ Exp(V ) := span{ev : v ∈ V}. But p(D) f = 0 im-
plies p↑(D) f ↓ = 0, with p↑ the “leading term” of p, i.e., the homogeneous poly-
nomial for which deg(p− p↑) < deg p and, correspondingly, f ↓ the “least term” of
f , i.e., the homogeneous polynomial for which ord( f − f ↓) > ord f := min{|α| :
f̂ (α) �= 0}. Since (pH)↑(D) = DH and H was an arbitrary element of A (Ξ), it fol-
lows that D(Ξ) = ∩H∈A (Ξ) kerDH ⊃ Exp(V )↓ := span{ f ↓ : f ∈ Exp(V )}. However,
Exp(V )↓ has dimension ≥ #V = #B(Ξ), since (δv : v ∈ V ) is linearly indepen-
dent on Exp(V )↓. Indeed, for any v ∈ R

d and p ∈ Π, p(v) = (p(D)ev)(0), hence
if ∑v∈V c(v)δv = 0 on Exp(V )↓ yet (c(v) : v∈V ) �= 0, then f :=∑v∈V c(v)ev �= 0 and
so 0 = f ↓(D) f = ∑|α|=ord f f̂ (α)2α! �= 0 which is nonsense.
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8 Smooth multivariate piecewise polynomials and the B-net

I had given up quite early on the study of the space of all piecewise polynomials
of a given order and smoothness on a given partition in more than one variable,
preferring instead the finite element method approach of seeking suitable spaces of
smooth piecewise polynomials spanned by bump functions. This was surely quite
narrow-minded of me as, starting in the 70’s, a very large, interesting and often
challenging literature developed whose results are very well reported in the recent
comprehensive book [LS] by Ming-Jun Lai and Larry Schumaker.

However, in the early 80’s, Peter Alfeld, as a visitor at MRC, introduced me
to the wonderful tool of what is now called the B-form. In this representation, the

elements of the space S(ρ)
k (Δ) of piecewise polynomials of degree ≤ k on the given

triangulation Δ and in C(ρ) are represented, on each triangle τ = conv(V ) in Δ, in
the form

p = ∑
|α|=k

c(α)
(|α|
α
)
�α , (6)

with α = (α(v) : v ∈ V ) ∈ Z
V
+,
(|α|
α
)

:= |α|!/∏vα(v)!, �α := ∏v∈V (�v)α(v), and
with �v := �v,τ the affine polynomial that vanishes on V\v and takes the value 1 at
v, i.e., the �v are the Lagrange polynomials for linear interpolation to data given at
V , hence (�v,τ(x) : v ∈V ) are the socalled barycentric coordinates of x with respect
to the vertex set V of τ . Further, it turns out to be very helpful to associate the
coefficient c(α) = c(α,τ) with the “domain point”

ξα,τ := ∑
v∈V

α(v)v/k

(which happens to be the location of the unique maximum of �αv (in τ)). For example,
v ∈ V is a domain point, namely ξkδv,τ , with δv the vector whose only nonzero
entry is a 1 in position v, and all �w with w �= v vanish at that point, hence the
corresponding coefficient, c(kδv), equals p(v). More generally, on the edge of τ not
containing v, i.e., on the zero set of �v, the only terms in (6) not obviously zero are
those with α(v) = 0, i.e., whose domain point lies on that edge. Hence continuity
across that edge of a piecewise polynomial function is guaranteed by having the B-
form coefficients of the two polynomial pieces abutting along that edge agree in the
sense that coefficients associated with the same domain point coincide. Tbis sets up

a 1-1 linear correspondence between the elements of S(0)
k (Δ) and their “B-net”, i.e.,

the scalar-valued map ξα,τ �→ c(α,τ) on {ξα,τ : α ∈ Z
V
+, |α|= k;τ ∈ Δ}.

Further, for any vector y, Dy�v = �v↑(y), with �v↑ the homogeneous linear part of
the affine map �v, hence

Dy ∑
|α|=k

c(α)
(|α|
α
)
�α = k ∑

|β |=k−1

(
∑
v∈V

c(β +δv)�v↑(y)

)(|β |
β
)
�β . (7)
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Hence, as Gerald Farin, in [Fa], was the first to stress, C1-continuity across the edge
of τ not containing v is guaranteed by the equalities

∑
w∈V

c(β +δw)�w,τ↑(y) = ∑
w∈V ′

c(β +δw)�w,σ ↑(y), |β |= k−1,β ∈ Z
V∩V ′
+ ,

with V ′ the vertex set of the triangle σ sharing that edge with τ . Note that the
coefficients in these homogeneous equations are independent of the index β .

It is clear how ρ-fold iteration of this process produces the homogeneous linear

equations that the B-net coefficients of an element of S(0)
k (Δ) must satisfy for Cρ

continuity across the edge of τ not containing v. Each such equation involves the
“quadrilateral” of coefficients c(β + γ) and c(β + γ ′), with β ∈ Z

V∩V ′
+ , |β |= k−ρ ,

and, γ ∈ Z
V
+, γ ′ ∈ Z

V ′
+ , |γ|= ρ = |γ ′|.

Fig. 3 C1-conditions across an edge in the cubic case

In Figure 3, the situation is illustrated for the cubic case, k = 3. It shows the
relevant domain points in the two triangles τ and σ sharing an edge, as well as the
quadruples of domain points whose corresponding B-net coefficients must satisfy
the same homogeneous linear equation for C1-continuity across that edge.

This figure makes it immediate why the question of the dimension and approxi-
mation order of the space of bivariate C1-cubics on a given triangulation might be
difficult: there is only one domain point in the interior of each triangle, and its coef-
ficient is involved in three homogeneous equations. Hence, the determination of an

element of S(1)
3 (Δ) involves a global linear system. Correspondingly, it is not even

clear whether there is an element of S(1)
3 (Δ) with prescribed values at the vertices

of all the triangles, i.e., with the B-net coefficients corresponding to the vertices
prescribed.

On the other hand, it has been known for some time that there is a local quasi-

interpolant onto S(1)
5 (Δ) reproducingΠ≤5 for any triangulation Δ (though its stability

will depend on the smallest angle in the triangulation). Checking the geometry of



Multivariate splines 33

Fig. 4 C1-conditions across an edge in the quintic case

the smoothness conditions, one realizes (see Figure 4) that 5 is the smallest value
of k for which there is on each edge a ”free” C1-smoothness condition, i.e., one not
touching a smoothness condition for any other edge. This led to the guess that, in

the general case, S(ρ)
k (Δ) has a local quasi-interpolant reproducing Π≤k if there is a

”free” Cρ -smoothness condition on each edge, i.e., one not belonging to the ”ring”
of Cρ -smoothness conditions associated with some vertex v by virtue of the fact that
its edge and the edge of a smoothness condition it touches both contain v. For, one
could hope to use such “free” conditions to “disentangle” or separate neighboring
vertex rings. If ξα is the apex of such a “free” C(ρ)-condition, it would haveα(v)= ρ
for some v, and would have α(w) > ρ for all w ∈V\v, hence k = |α| ≥ 3ρ+2. For
that case, [dBH6] contains a “proof” that, for a triangulation in which all the angles
are bounded below by a constant, the approximation order is full, i.e., of the order
hk+1, where h is the mesh size. Unfortunately, the “proof” fails to take into account
the possibility that the quadrangles corresponding to smoothness conditions across
an edge can become nearly, but not exactly, flat which spoils a certain estimate
on which the “proof” relies. This is explained in more detail in [dB6] which also
contains a detailed account of the construction of a local basis for such spaces. A
satisfactory proof of the main claim of [dBH6] was first given in [CHJ].

The above description of B-form and B-net readily applies to d dimensions (with
the role of triangles played by d-simplices and the role of edges played by faces).
However, in d dimension, existence of “free” C(ρ)-smoothness conditions requires
k≥ (d+1)ρ+d for a generic partition into simplices. In particular, already for d = 3
one would need k ≥ 7 for C(1), which discouraged me from pursuing the study of
all smooth piecewise polynomials on a “triangulation” in higher dimension.

Another result using B-nets in an essential way was the discovery in [dBH3] that,

even on a certain regular triangulation, namely the 3-direction mesh Δ3, S(1)
3 (Δ3)
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does not have full approximation order, even though the space contains Π≤3 lo-
cally. This has been reproved in more generality and with very different methods in
[dBDR].

Altogether, the appearance of the B-net revolutionized the analysis of smooth
piecewise polynomials even (and particularly) in the bivariate case, as is illustrated
by its prominence in [LS].
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[dBH6] Boor, C. de, Höllig, K.: Approximation power of smooth bivariate pp functions. Math.
Z. 197, 343–363 (1988)

[dBHR] Boor, de C., Höllig, K., Riemenschneider, S.: Bivariate cardinal interpolation. In:
C. Chui, L. Schumaker, and J. Ward (eds.) Approximation Theory IV, pp. 359–363.
Academic Press New York (1983)
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On the efficient computation of
high-dimensional integrals and the
approximation by exponential sums

Dietrich Braess and Wolfgang Hackbusch

Abstract The approximation of the functions 1/x and 1/
√

x by exponential sums
enables us to evaluate some high-dimensional integrals by products of one-dimensio-
nal integrals. The degree of approximation can be estimated via the study of ratio-
nal approximation of the square root function. The latter has interesting connections
with the Babylonian method and Gauss’ arithmetic-geometric process.

Key words: exponential sums, rational functions, Chebyshev approximation, best
approximation, completely monotone functions, Heron’s algorithm, complete ellip-
tic integrals, Landen transformation.

AMS Subject Classifications: 11L07, 41A20.

1 Introduction

The approximation of transcendental or other complicated functions by polynomi-
als, rational functions, and spline functions is at the centre of classical approxima-
tion theory. In the last decade the numerical solution of partial differential equations
gave rise to quite different problems in approximation theory. In this paper we will
study the approximation of x−α (α = 1/2 or 1) by exponential sums. Here a simple
function is approximated by a more complicated one, but it enables the fast com-
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putation of some high-dimensional integrals which occur in quantum physics and
quantum chemistry.

A model example is an integral of the form

∫
g1(x1) · · ·gd(xd)
‖x− y‖0

dx (1)

on a domain in R
d , where ‖ · ‖0 refers to the Euclidean norm. When we insert the

approximation
1√
x
≈

n

∑
j=1

α je
−t jx,

then the integral is reduced to a sum of products of one-dimensional integrals

n

∑
j=1

α j

d

∏
i=1

∫
gi(xi)exp[−t j(xi− yi)2]dxi,

and a fast computation is now possible (at least in the domain, where the approxi-
mation is valid, see Section 6.2 for more details). Other examples will be discussed
in Sections 5 and 6.

There are only a few problems in nonlinear approximation theory for which the
degree of approximation can be estimated. Surprisingly, the problem under consid-
eration belongs to those rare cases. The functions x−α (α > 0) are monosplines for
the kernel e−tx. For this reason, results for the rational approximation of the square
root function provide good estimates for the degree of approximation by exponential
sums.

In principle, rational approximation of the square root function is well known
for more than a century from Zolotarov’s results. Elliptic integrals play a central
role in his investigations. We find it more interesting, direct, and less technical to
derive approximation properties from the Babylonian method for the computation
of a square root. Gauss’ arithmetic-geometric process yields a fast computation of
the decay rate of the approximation error.

The rest of the paper is organised as follows. Section 2 is devoted to the connec-
tion of the approximation of x−α by exponential sums with the rational approxima-
tion of

√
x. The investigation of the latter with the help of the Babylonian method

and Gauss’ arithmetic-geometric mean is the main purpose of Section 3. The results
for the approximation of 1/x by exponential sums on finite and infinite intervals
are presented in Section 4. Numerical results show that the theory yields the correct
asymptotic law, while an improvement is possible for infinite intervals. The role
of the approximation problem for the computation of high-dimensional integrals is
elucidated with several examples in Sections 5 and 6. The numerical computation of
the best exponential sums is discussed in Section 7. Appendix A provides auxiliary
results for small intervals. Properties of complete elliptic integrals that are required
for the derivation of the asymptotic rates, are derived in Appendix B. Finally it is
shown in Appendix C that a competing tool yields the same law for infinite intervals.
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2 Approximation of completely monotone functions by
exponential sums

Good estimates for the degree of approximation are available only for a few classes
of nonlinear approximation problems. Fortunately, the asymptotic behaviour is
known for the functions in which we are interested. The functions 1/x and 1/

√
x

are completely monotone for x > 0, i.e., they are Laplace transforms of non-negative
measures:

f (x) =
∫ ∞

0
e−txdμ(t), dμ ≥ 0.

In particular,
1
x

=
∫ ∞

0
e−txdt,

1√
x

=
∫ ∞

0
e−tx dt√

πt
.

In order to avoid degeneracies, we assume that the support of the measure is an
infinite set. We will also restrict ourselves to ℜex≥ 0.

We consider best approximations in the sense of Chebyshev, i.e., the error is to
be minimised with respect to the supremum norm on a given interval. A unique best
exponential sum of order n,

un(x) =
n

∑
ν=1

ανe−tν x (2)

exists for a given completely monotone function f , while this is not true for arbitrary
continuous functions. Moreover, the coefficients αν in the best approximation are
non-negative (cf. [4]).

Our error estimates require the solution of a nonlinear interpolation problem that
is also solvable for completely monotone functions.

Theorem 2.1. Let f be completely monotone for x > 0 and 0 < x1 < x2 < .. . < x2n.
Then there exists an exponential sum un such that

un(x j) = f (x j), j = 1,2, . . . ,2n.

Moreover
un(x) < f (x) for 0 < x < x1 and x > x2n.

If in addition f is continuous at x = 0, also un(0) < f (0) holds.

Sketch of proof. The complete monotonicity allows us to apply deformation argu-
ments from nonlinear analysis. The best approximation un on the interval [ 1

2 x1,x2n +
1] has an alternant of length 2n + 1 (see Definition 3.1). Therefore, f − un has 2n
zeros y1 < y2 < .. . ,y2n. Set

x j(s) := (1− s)y j + sx j, 0≤ s≤ 1, j = 1,2, . . . ,2n.

The set of numbers s ∈ [0,1] for which the interpolation at the points x j(s) is solv-
able, contains the point s = 0. The rules on the zeros of extended exponential sums
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∑ j(α j +β jx)e−t jx and the Newton method imply that the set is open. It follows
from compactness properties of exponential sums that the set is also closed. Hence,
the value s = 1 is included.

The given function f and the approximating exponential sums are analytic func-
tions in the right half plane of C, and the complete monotonicity provides some a
priori bounds. For this reason, we can derive error bounds for our approximation
problem in the interval [a,b] from the knowledge of a function with small values in
[a,b] and symmetry properties. The latter is provided by the rational approximation
of the square root function and is related to other fast computations, as we will see
in the next section.

The extra assumption in the following lemma concerning the continuity of f at
x = 0 will be no drawback, since a shift x �→ x+1/n will recover it.

Lemma 2.1. Let f be completely monotone for x > 0 and continuous at x = 0. As-
sume that pn and qn−1 are polynomials of degree n and n− 1, respectively, and
that ∣∣∣∣ pn(x)

qn−1(x)
−
√

x

∣∣∣∣≤ ε
√

x for x ∈ [a2,b2] (3)

or

∣∣∣∣ pn(x)/qn−1(x)−
√

x
pn(x)/qn−1(x)+

√
x

∣∣∣∣≤ ε for x ∈ [a2,b2], (4)

holds for some ε > 0. Assume also that pn/qn−1−
√

x has 2n zeros in the interval
[a2,b2]. Then there exists an exponential sum un with n terms such that

| f (x)−un(x)| ≤ 2ε f (0) for x ∈ [a,b].

Proof. Put x = z2. Obviously, we can restrict ourselves to the case ε < 1. Now (3)
implies (4) and by assumption

∣∣∣∣ pn(z2)− zqn−1(z2)
pn(z2)+ zqn−1(z2)

∣∣∣∣≤ ε for z ∈ [a,b].

Set P2n(z) := pn(z2)− zqn−1(z2) and write
∣∣∣∣ P2n(z)
P2n(−z)

∣∣∣∣≤ ε for z ∈ [a,b]. (5)

Obviously, ∣∣∣∣ P2n(z)
P2n(−z)

∣∣∣∣= 1 for ℜez = 0 or |z| → ∞.

Let un be the interpolant of f at the 2n zeros of P2n. The last inequality in

| f (z)| ≤ f (0), |un(z)| ≤ un(ℜez)≤ un(0) < f (0) for ℜez≥ 0

follows from Theorem 2.1. Hence,
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∣∣∣∣P2n(−z)
P2n(z)

(
f (z)−un(z)

)∣∣∣∣≤ 2 f (0) (6)

holds at the boundary of the right half-plane. By the maximum principle for analytic
functions (6) holds also in the interior, and

| f (z)−un(z)| ≤ 2 f (0)
∣∣∣∣ P2n(z)
P2n(−z)

∣∣∣∣
completes the proof.

A similar method is sketched in Appendix 10. The maximum principle is applied
to an analytic function on a sector of the complex plane and with properties different
from (5). The inequality (5) is related to the capacity of a capacitor with the plates
[a,b] and [−b,−a]. We are looking for a rational function, whose absolute value is
small on [a,b] and large on [−b,−a].

Lemma 2.1 provides only upper bounds for the degree of approximation. Sur-
prisingly, numerical results in Section 3 lead to the conjecture that the asymptotic
behaviour and the exponential decay is precisely described for finite intervals. The
estimates for infinite intervals reflect the asymptotic behaviour, but are not optimal,
although they are sharper than the estimate obtained via Sinc approximation meth-
ods [7] and §11.

3 Rational approximation of the square root function

3.1 Heron’s algorithm and Gauss’ arithmetic-geometric mean

At the beginning of the second century, Heron of Alexandria described a method to
calculate the square root of a given positive number a using some initial approxi-
mation. The method was probably also known to the Babylonians. A modification
– more precisely a rescaling – will help us to construct best rational approximations
of the square root function in the sense of Chebyshev [22].

Let xn be an approximation of
√

a. Obviously
√

a is the geometric mean of xn

and a/xn. Heron replaced it by the arithmetic mean, i.e., in modern notation:

xn+1 =
1
2
(xn +

a
xn

).

Convergence follows from the recursion relation for the error

xn+1−
√

a =
(xn−

√
a)2

2xn
. (7)

Gauss considered the two means in a different context. At an early age, he became
enamoured of a sequential procedure that is now known as the arithmetic-geometric
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process (see, e.g., [3]). Given two numbers 0 < a0 < b0 , one successively takes the
arithmetic mean and the geometric mean:

a j+1 :=
√

a jb j, b j+1 :=
1
2
(a j +b j). (8)

He expressed the common limit as an elliptic integral (see Appendix 9). The distance
of the two numbers is characterised by λ j := b j/a j. A direct calculation yields

λ j+1 =
1
2

(√
λ j +

1√
λ j

)
or λ j =

(
λ j+1 +
√
λ 2

j+1−1
)2

. (9)

The mapping λ �→ (λ +
√
λ 2−1)2 is called the Landen transformation. The num-

bers in the table below show that a few steps forwards or backwards brings us either
to large numbers or to numbers very close to 1. – Finally, we mention that the num-
bers (λ +1)/(λ −1) and λ ′ with (λ ′)−2 +λ−2 = 1 are moved by the same rule, but
in the opposite direction.

Table 1 Arithmetic-geometric process with λ0 = 1+
√

2 and λ−2
j +(λ ′j)−2 = 1

j λ j
λ j+1
λ j−1 λ ′j

−4 6.825 ·1014 1+2.930 ·10−15 1+1.07 ·10−30

−3 1.306 ·107 1+1.531 ·10−7 1+2.930 ·10−15

−2 1807.08 1.001107 1+1.531 ·10−7

−1 21.26 1.099 1.001107

0 2.414 2.414 1.099

1 1.099 21.26 2.414

2 1.001107 1807.08 21.26

3 1+1.531 ·10−7 1.306 ·107 1807.08

4 1+2.930 ·10−15 6.825 ·1014 1.306 ·107

3.2 Heron’s method and best rational approximation

In view of Lemma 2.1 we are interested in the best relative Chebyshev approxima-
tion of

√
x by rational functions in Rn,n−1. Specifically, vn is called a best approxi-

mation if it yields the solution of the minimisation problem:

En,n−1 := En,n−1,[a,b] := inf
vn∈Rn,n−1

∥∥∥vn−
√

x√
x

∥∥∥
L∞[a,b]

.
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Definition 3.1. An error curve η(x) has an alternant of length �, if there are � points
x1 < x2 < .. . . < x� such that

signη(xi+1) =−signη(xi) for i = 1,2, . . . �−1 (10)

and
|η(xi)|= ‖η‖L∞ for i = 1,2, . . . � (11)

holds.

The following characterisation goes back to Chebyshev. Some degeneracies that
are possible with rational approximation, cannot occur here.

Theorem 3.1 (characterisation theorem). vn is optimal in Rn,n−1 if and only if the
error curve (vn−

√
x)/
√

x has an alternant of length 2n+1.

Fig. 1 Alternant of length 7

Let pn/qn−1 ∈ Rn,n−1 be an approximation of
√

x. The application of one step of
Heron’s algorithm yields the rational function

1
2

(
pn

qn−1
+

x
pn/qn−1

)
=

p2
n + xq2

n−1

2pnqn−1
∈ R2n,2n−1

From (7) we conclude that the associated error curve is non-negative and cannot be
a best approximation; see Figure 2. A rescaling before and after the procedure, how-
ever, will yield a solution. This was already observed by Rutishauser [22], although
he stopped at (12) and did not mention the connection with Gauss’ arithmetic-
geometric process.

Let vn be the best approximation in Rn,n−1. By definition,

1−En,n−1 ≤
vn(x)√

x
≤ 1+En,n−1 .

The corresponding relations for wn := 1√
1−E2

n,n−1

vn are

√
1−En,n−1

1+En,n−1
≤ wn(x)√

x
≤
√

1+En,n−1

1−En,n−1
.

The result of a Heron step is denoted by w2n and
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1≤ w2n(x)√
x

=
1
2

(
wn(x)√

x
+
√

x
wn(x)

)

≤ 1
2

(√
1+En,n−1

1−En,n−1
+

√
1−En,n−1

1+En,n−1

)
=

1√
1−E2

n,n−1

.

We rescale the new rational function, set v2n :=
2
√

1−E2
n,n−1

1+
√

1−E2
n,n−1

w2n, and obtain

2
√

1−E2
n,n−1

1+
√

1−E2
n,n−1

≤ v2n(x)√
x
≤ 2

1+
√

1−E2
n,n−1

.

Fig. 2 Error curves and Heron’s procedure

Figure 2 elucidates that the number of sign changes is doubled, and the equili-
bration above yields the desired alternant of length 4n+1. Hence,

E2n,2n−1 =
2

1+
√

1−E2
n,n−1

−1 =
1−
√

1−E2
n,n−1

1+
√

1−E2
n,n−1

=
E2

n,n−1(
1+
√

1−E2
n,n−1

)2 (12)

or

E−1
2n,2n−1 =

(
E−1

n,n−1 +
√

E−2
n,n−1−1

)2

. (13)

Remark 3.1. The inverse E−1
2n,2n−1 is obtained from E−1

n,n−1 by the Landen transfor-
mation. In particular,

(
1
4

En,n−1)2 ≤ 1
4

E2n,2n−1. (14)

We will make repeated use of the following consequence: The inequality E2n,2n−1 ≤
4A2 with some A > 0 implies En,n−1 ≤ 4A.

A start for the recursive procedure is the best constant function. The best constant
for the interval [a2,b2] and the approximation error follow from a simple optimisa-
tion of the constant:

v0,0 =
2ab

a+b
, E0,0,[a2,b2] =

b−a
b+a

=:
1
ρ

. (15)
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Here ρ is the parameter of the ellipse on which the square root is an analytic func-
tion, if the interval [a2,b2] is transformed into the interval [−1,+1]; cf. Appendix 8.
Another important parameter is

κ :=
a
b

.

Note that v0,0 is the harmonic mean of the function values at the end points.
When Heron’s method is applied to a constant function, a linear function with an

alternant of length 3 is produced. Hence, E−1
1,0 =
(

E−1
0,0 +
√

E−2
0,0 −1
)2

, and Landen

transformations provide the sequence

ρ = E−1
0,0 → E−1

1,0 → E−1
2,1 → E−1

4,3 → E−1
8,7 → . . . (16)

The asymptotic behaviour of En,n−1 for n = 2m can be determined already from this
sequence. There are the trivial inequalities for the sequence (9)

4λ j ≤ (4λ j+1)2. (17)

Let

ω := ω(κ) := ω [a2,b2] := lim
m→∞

(
1
4

E2m,2m−1,[a2,b2]

)−1/2m+1

. (18)

By (14) the sequence on the right-hand side is monotone, the limit exists, and the
monotonicity also implies that

En,n−1,[a2,b2] ≤ 4ω−2n (19)

holds for n = 2m. We will establish the inequality for all n ∈ N. Moreover, ω(κ)
will be expressed in terms of elliptic integrals although the fast convergence of the
arithmetic-geometric process is used for its fast computation, as we will see below.

Remark 3.2. We focus on upper bounds for the degree of rational approximation
although lower bounds can be obtained by suitable modifications. We elucidate this
for a bound corresponding to (19). Let λ j ≥ 1

4 A+ 2
A for some A > 1. Hence,

λ j−1 ≥
[

1
4

A+
2
A

+

√
(

1
16

A2 +1+
4

A2 )−1

]2
≥
(

1
2

A+
2
A

)2

≥ 1
4

A2 +
2

A2 .

The bound of λ j−1 has the same structure as the bound for λ j. Now we obtain by
induction and from (18)

En,n−1,[a2,b2] ≥
4

ω2n +8ω−2n (20)

for n = 2m. A comparison with (19) elucidates the fast convergence.
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3.3 Extension of the estimate (19)

A transformation of the interval will be used for the extension of inequality (19)
which was previously announced. It enables us to derive sharp estimates from the
results for small intervals in Appendix 8. We encounter the arithmetic-geometric
process once more.

Lemma 3.1. Let n ≥ 1 and (a j,b j) be a sequence according to the arithmetic-
geometric mean process (8). Then

En,n−1,[a2
j+1,b

2
j+1] = E2n,2n−1,[a2

j ,b
2
j ]
. (21)

Proof. Set r(x) := (x + a jb j)/2. The function r2(x)/x maps the two subintervals
[a2,ab] and [ab,b2] monotonously onto [a jb j,(a j + b j)2/4] = [a2

j+1,b
2
j+1]. Next,

note that
√

x = r(x)
√

x/r2(x) = r(x)
√
ξ where ξ = x/r(x)2.

Let p/q ∈ Rn,n−1 be the best approximation to
√

x on [a2
j+1,b

2
j+1]. Then

P(x)
Q(x)

:= r(x)
p(x/r2(x))
q(x/r2(x))

∈ R2n,2n−1

provides an approximation for the original interval with the same size of the maxi-
mal relative error as p/q on the smaller interval. The monotonicity of the mapping
r2(x)/x assures that there is an alternant of length 4n+1. Therefore, P/Q is the best
approximation, and the proof is complete.

As a by-product we obtain a closed expression for the approximation by linear
functions. For completeness, we also recall (15):

E1,0,[a2,b2] =
(√b−

√
a√

b+
√

a

)2
, E0,0,[a2,b2] =

b−a
b+a

. (22)

Theorem 3.2. Let ω be defined by (18). Then the degree of approximation is
bounded by (19) for all n ∈ N.

Proof. Let [a2
0,b

2
0] be the interval for which the degree of approximation in Rn,n−1

is to be estimated and ω = ω [a2
0,b

2
0]. Moreover, let � = 2k. By Lemma 3.1 we know

that
E0,0,[a2

k+1,b
2
k+1] = E1,0,[a2

k ,b
2
k ] = E�,�−1,[a2

0,b
2
0] ≤ 4ω−2�.

From (45) it follows that the parameter of the regularity ellipse associated to the
interval [a2

k+1,b
2
k+1] is the inverse, i.e.,

ρ =
1
4
ω2�.

By (44) we have
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En,n−1,[a2
k+1,b

2
k+1] ≤ 4(4ρ−3)−2n ≤ 4(ω2�−3)−2n.

By using the preceding lemma once more we return to the original interval,

E2�n,2�n−1,[a2
0,b

2
0] ≤ 4(ω2�−3)−2n.

The degree of the numerator is 2�n = 2k+1n. Now we perform k + 1 Landen trans-
formations in the opposite direction and recall Remark 3.1 to obtain

En,n−1,[a2
0,b

2
0] ≤ 4(ω2�−3)−2n/2� = 4ω−2n(1−3ω−2�)−2n/2�.

Since we may choose an arbitrarily large �, the proof is complete.

3.4 An explicit formula

The asymptotic behaviour of the degree of approximation was determined for finite
intervals without the knowledge of elliptic integrals – in contrast to [32]. Explicit
formulae will be useful for the treatment of the approximation with exponential
sums on infinite intervals. The relevant properties of complete elliptic integrals are
provided in Appendix 9.

Theorem 3.3. Let k = a/b, then

En,n−1,[a2,b2] ≤ 4ω−2n, for n = 1,2,3, . . . (23)

with

ω(k) = exp

[
πK(k)
K′(k)

]
. (24)

Proof. Set κ− j := E2 j ,2 j−1 and λ− j := 1/κ− j := for j = 0,1,2, . . . and extend the
two sequences by the backward Landen transformation. From (16) we know that λ− j

obeys the rule of the arithmetic-geometric process, and κ− j+1 = 2
√κ− j/(1+κ− j).

By Lemma 9.1 and (53) we obtain

lim
j→∞

(
1
4

E2 j ,2 j−1

)−1/2 j

≥ exp

[
πK′(κ0)
2K(κ0)

]
= exp

[
2πK′(κ2)
K(κ2)

]

= exp

[
2πK(κ ′2)
K′(κ2)

]

= exp

[
2πK(

1−κ1

1+κ1
)
/
K′(

1−κ1

1+κ1
)
]

. (25)

It follows from κ1 = E0,0 and (22) that
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1−κ1

1+κ1
=

a
b

.

Now the left-hand side of (25) can be identified with ω2, and the proof is complete.

Example 3.1. We consider the approximation problem on the interval [1,2], and
from (22) we know that E0,0 = (

√
2− 1)/(

√
2 + 1). The sequence (16) and the

successive calculation of square roots for modelling (18) yields the tableau

√
2−1√
2+1

= 5.828427→ 133.87475→ 4613.84→ 71687.79

×4 ↓
23.140689← 535.4915← 286751.2

Since K(1/
√

2) = K′(1/
√

2), the evaluation of ω by formula (18) is easy. We get
ω = exp(π) = 23.1406924 in accordance with the result in the tableau above.

4 Approximation of 1/xα by exponential sums

4.1 Approximation of 1/x on finite intervals

The symbol En,[a,b]( f ) with only one integer index refers to the approximation by
exponential sums of order n. In order to have a short notation we start with the
approximation of 1/x: First we note that

En,[a,b](1/x) =
1
a

En,[1,b/a](1/x). (26)

Indeed, let un be the best approximation of 1/x on the interval [1,b/a]. The trans-
formation x = at yields

1
x
− 1

a
un

( x
a

)
=

1
a

[
1
t
−un(t)
]
. (27)

Since the alternant is transformed into an alternant, we have (26).

Theorem 4.1. Let 0 < a < b and k = a/b. Then

En,[a,b](1/x)≤ c(k)
a

nω(k)−2n

with ω(k) given by (24) and c(k) depending only on k.

Proof. By (26) it is sufficient to study approximation on the interval [1,1/k]. To this
end, we consider the approximation of f (x) := 1

x+1/n on the interval [1−1/n,1/k−
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1/n]. Since we are interested in upper bounds, we may enlarge the interval to [1−
1/n,1/k]. It follows from Lemma 2.1, Theorem 3.3, and f (0) = n that

En,[1,1/k](1/x)≤ En,[1−1/n,1/k](1/(x+1/n))≤ 2n4

[
ω
(

1−1/n
1/k

)]−2n

.

Since the function k �→ ω(k) is differentiable, we have

ω
(

1−1/n
1/k

)
= ω(k[1−1/n])≥ ω(k)(1− c

n
)

with c = c(k) being a bound of the derivative in a neighbourhood of k. We complete
the proof by recalling limn→∞(1− c/n)2n = e−2c.

Theorem 4.1 provides only an upper bound. The following examples for small
and large intervals, respectively, show that the order of exponential decay proved
there is sharp. The numerical results give rise to the conjecture that the polynomial
term is too conservative and that

En,[a,b](1/x)≈ n1/2ω(k)−2n.

Example 4.1. The parameter for the (small) interval [1,2], i.e., [a2,b2] = [1,4] is
evaluated in the following tableau and is to be compared with the numbers in the
third column of Table 2.

3→ 33.970→ 4613.84→ 85150133
×4 ↓

11.655← 135.85← 18445.3← 340600530

Example 4.2. The parameter for the large interval [1,1000], i.e., [a2,b2] = [1,106] is
evaluated in the following tableau and is to be compared with the numbers in the
third column of Table 3.

1001/999→ 1.13488→ 2.79396→ 29.1906→ 3406.37
×4 ↓

1.813← 3.2869← 10.804← 116.728← 13625

4.2 Approximation of 1/x on [1,∞)

If we fix n and consider the approximation problem on the interval [1,R], then the
bound in Theorem 4.1 increases with R. This does not reflect the right asymptotic
behaviour.
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Table 2 Numerical results for 1/x (left) and 1/
√

x (right) on [1,2]

f 1/x 1/
√

x

n En
2n

2n−1
En−1

En
En

1 2.12794 ·10−2 1.26035 ·10−2

2 2.07958 ·10−4 136.43 9.28688 ·10−5

3 1.83414 ·10−6 136.06 6.83882 ·10−7

4 1.54170 ·10−8 135.96 5.03516 ·10−9

5 1.26034 ·10−10 135.92 3.70688 ·10−11

6 1.01179 ·10−12 135.89 2.72889 ·10−13

Table 3 Numerical results for 1/x (left) and 1/
√

x (right) on [1,1000]

f 1/x 1/
√

x

n En
2n

2n−1
En−1

En
En

5 6.38478 ·10−4 1.21681·10−3

6 2.17693 ·10−4 3.1995 3.68730·10−4

7 7.15300 ·10−5 3.2776 1.11788·10−4

8 2.32088 ·10−5 3.2875 3.39264·10−5

9 7.46801 ·10−6 3.2905 1.03020·10−5

10 2.38880 ·10−6 3.2908 3.12940·10−6

11 7.60494 ·10−7 3.2907 9.50867·10−7

12 2.41164 ·10−7 3.2905 2.88981·10−7

13 7.62271 ·10−8 3.2903 8.78389·10−8

The error curve for the best approximation un has 2n zeros in [1,R]. It follows
from Theorem 2.1 that un(x) < 1/x and

∣∣∣∣1x −un(x)
∣∣∣∣< 1

x
<

1
R

holds for x > R. Hence, for all R > 1,

En,[1,∞](1/x)≤max

{
En,[1,R](1/x),

1
R

}
. (28)

It is our aim to choose R such that the right-hand side of (28) is close to the minimal
value.
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Table 4 Numerical results for 1/x (left) and 1/
√

x (right) on [1,∞)

f 1/x 1/
√

x

n Rn En En eπ
√

2n/ log(2+n) En

1 8.667 8.55641 ·10−2 6.62 1.399 ·10−1

2 41.54 1.78498 ·10−2 6.89 4.087 ·10−2

5 1153 6.42813 ·10−4 6.82 3.297 ·10−3

10 56502 1.31219 ·10−5 6.67 1.852 ·10−4

15 1.175 ·106 6.31072 ·10−7 6.62 2.011 ·10−5

20 1.547 ·107 4.79366 ·10−8 6.60 3.083 ·10−6

25 1.514 ·108 4.89759 ·10−9 6.60 5.898 ·10−7

30 1.198 ·109 6.18824 ·10−10 6.61 1.321 ·10−7

35 8.064 ·109 9.19413 ·10−11 6.62 3.336 ·10−8

40 4.771 ·1010 1.55388 ·10−11 6.64 9.264 ·10−9

45 2.540 ·1011 2.91895 ·10−12 6.66 2.780 ·10−9

50 1.237 ·1012 5.99210 ·10−13 6.68 8.901 ·10−10

In order to avoid the singularity at x = 0, we consider the approximation of
f (x) := 1/(x + 1/2) on the interval [ 1

2 ,R− 1
2 ]. The constant shift of 1/2 is better

suited for estimates on large intervals. Now it follows from Lemma 2.1, Theorem
3.3, and f (0) = 2 that

En,[1,R](1/x)≤ 2 ·2 ·4exp

[
− 2nπK(k)

K′(k)

]

with k = 1/(2R−1). From (48) we know that K(k)≥ π/2. This inequality and (50)
imply

En,[1,R](1/x)≤ 16exp

[
− π2n

log( 4
k +2)

]
≤ 16exp

[
− π2n

log(8R)

]
. (29)

The choice R = 1
8 exp[π

√
n] yields the final result:

En,[1,∞](1/x)≤ 16exp
[
−π
√

n
]
. (30)

The results in Table 4 are based on numerically computed best approximations.
They lead to the conjecture that

En,[1,∞](1/x)≈ logn · exp
[
−π
√

2n
]
. (31)

In particular, the exponents in (30) and (31) differ by a factor of
√

2. The same gap
is found with the method discussed in Appendix 10. (The approximation by sinc
functions leads even to a larger gap [7] and §11.)
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Table 5 Comparison of the approximation of
√

x by rational functions and 1/x by exponential
sums

k−1 E4,3,[1,k−2](
√

x) E4,[1,k−1](1/x)

2 1.174 ·10−8 1.542 ·10−8

10 8.935 ·10−5 5.577 ·10−5

100 9.781 ·10−3 1.066 ·10−3

500 2.220 ·10−2 1.700 ·10−3

The gap may be surprising since the numerical results in the Tables 2 and 3 show
that the theory provides sharp estimates for the asymptotic behaviour for large n. It
is the factor in front of the exponential term in Theorem 4.1 that is responsible. We
have compared the data for n = 4, i.e., for a small n in Table 5. They show that the
application of Lemma 2.1 provides estimates which are too conservative on large
intervals, although the behaviour for large n is well modelled.

The logarithmic factor in front of (31) also shows that it will not be easy to
establish sharper estimates for the infinite interval.

4.3 Approximation of 1/xα , α > 0

When more freedom in the exponent of the given function is admitted, there are no
substantial changes on finite intervals. Proceeding as in the proof of Theorem 4.1
we obtain with k = a/b:

En,[a,b](x
−α)≤ c(k)

aα
nα ω(k)−2n (32)

with ω(k) given in Theorem 4.1. The exponential term on the right-hand side that
dominates the asymptotic behaviour for large n is unchanged.

The situation on infinite intervals is different. Given R > 1, we obtain with k =
1/(2R−1) in analogy to (29)

En,[1,R](x
−α)≤ 2α 8exp

[
− π2n

log( 4
k +2)

]
≤ 2α 8exp

[
− π2n

log(8R)

]
(33)

Moreover, we have En,[1,∞](x−α) ≤ max
{

En,[1,R](x−α),R−α
}

in analogy to (28). A

suitable choice is R = 1
8 exp[π
√

n/α]. It yields

En,[1,∞](x
−α)≤ 2α 8exp[−π

√
αn ]. (34)

The asymptotic decay depends heavily on α .
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5 Applications of 1/x approximations

5.1 About the exponential sums

Let [a,b] ⊂ (0,∞] be a possibly semi-infinite interval, e.g. b = ∞ is allowed. The
best approximation in [a,b] is denoted by

1
x
≈ un,[a,b](x) =∑n

ν=1αν,[a,b] exp(−tν,[a,b] x).

The rule (27) is inherited by the coefficients,

αν,[a,b] :=
1
a
αν,[1,b/a], tν,[a,b] :=

1
a

tν,[1,b/a],

and allows us to reduce the considerations to intervals of the form [1,R]. Due to (26)
the approximation errors En,[a,b] are related by En,[a,b] = 1

a En,[1,b/a]. The coefficients
of vn,[1,R] for various n and R can be found in [31].

5.2 Application in quantum chemistry

The so-called Coupled Cluster (CC) approaches are rather accurate but expensive
numerical methods for solving the electronic many-body problems. The cost may be
O(N7), where N is the number of electrons. One of the bottlenecks is an expression
of the form

numerator
εa + εb + . . .− ε j− εi

,

where εi,ε j, . . . < 0 are energies related to occupied orbitals i, j, . . ., while εa,εb, . . . >
0 are energies related to virtual orbitals a,b, . . . The denominator belongs to an inter-
val [Emin,Emax], where the critical lower energy bound Emin depends on the so-called
HOMO-LUMO gap.

The denominator leads to a coupling of all orbitals a,b, . . . , i, j, . . ., whereas the
numerator possesses a partial separation of variables. Therefore one tries to replace
1/(εa + εb + . . .− εi− ε j) by a separable expression. Such a separation saves one
order in the complexity.

Any exponential sum approximation 1
x ≈∑n

ν=1αν exp(−tνx) leads to the separa-
ble expression

1/(εa + εb + . . .− εi− ε j)≈∑n
ν=1ανe−tν εae−tν εb · · ·etν ε j etν εi .

In quantum chemistry, Almlöf [1] used the representation

1
x

=
∫ ∞

0
e−sxds
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together with a quadrature formula∑n
ν=1ανe−tν x. This ansatz has been used in many

places like the Møller-Plesset second order perturbation theory (MP2, cf. [1, 15, 16,
30]), computation of connected triples contribution in MP4 (cf. [15]), atomic orbital
(AO)-MP2 (cf. [16, 2, 19]), AO-MP2 energy gradient (cf. [16, 24]), combinations
with the resolution of the identity (RI)-MP2 (cf. [10, 9]), and the density-matrix-
based MP2 (cf. [27, 17]).

It is hard to adapt the quadrature to the interval [Emin,Emax] where the approxi-
mation is needed. The favourite choice among those used in quantum chemistry is
the Gauss-Legendre quadrature applied to the transformed integral

∫ ∞

0
e−sxds =

∫ 1

0
e−tx/(1−t) dt

(t−1)2 (s = t/(1− t)).

Best approximations are only considered with respect to a weighted L2-norm (cf.
[23]). Best approximations in the supremum norm has not been considered in
this community. The recent paper [28] contains a comparison between the Gauss-
Legendre approach and the best approximation un,[Emin,Emax] for various applications.
For instance, an error of size ≈ 0.005 of the MP2 energies for benzene with the
aug-cc-pCVTZ basis set is obtained by the Gauss-Legendre quadrature with 14
terms, while the same accuracy is already obtained by the best approximation with 4
terms (best approximations with 14 terms yield an accuracy of 2 ·10−10). The value
R = Emax/Emin for this example is about 278.

5.3 Inverse matrix

The previous application refers to the scalar function 1/x. Now we consider its
matrix-valued version M−1 for a matrix M with positive spectrum σ(M)⊂ [a,b]⊂
(0,∞]. Formally, we have

M−1 ≈ un,[a,b](M) =∑n
ν=1αν,[a,b] exp(−tν,[a,b]M).

Additionally, we assume that M is diagonalisable: M = T−1DT . Then a simple cal-
culation shows the estimate

∥∥M−1−un,[a,b](M)
∥∥

2
≤ cond2(T )En,[a,b]

with respect to the spectral norm. We emphasize that the spectral norm estimate
hinges on a uniform estimate of 1

x − un,[a,b] on the spectral interval [a,b]. Approx-
imations of 1/x by exponential sums with respect to the L2-norm would not be
helpful.

The approximation of M−1 seems to be rather impractical since now matrix ex-
ponentials exp(−tνM) have to be evaluated. The interesting applications, however,
are matrices which are sums of Kronecker products.
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We recall that a differential operator L is called separable in x1, . . . ,xd , if L =
∑d

i=1 Li, where the operator Li applies only to the variable xi and the coefficients of
Li depend only on xi. Let the domain of the boundary value problem be of product
form: Ω = Ω1× . . .×Ωd . Then a suitable discretisation leads to an index set I
of product form: I = ∏d

i=1 Ii, where Ii contains the indices of the i-th coordinate
direction.

The system matrix for a suitable discretisation has the form

M =
d

∑
i=1

I⊗·· ·⊗M(i)⊗·· ·⊗ I, M(i) ∈ R
Ii×Ii (35)

(factor M(i) at i-th position). We assume that all M(i) are positive definite with

smallest eigenvalue λ (i)
min. Since the spectrum of M is the sum ∑d

i=1λ (i) of all

λ (i) ∈ σ(M(i)), the minimal eigenvalue of M is λmin := ∑d
i=1λ

(i)
min . Since λ (i)

min ap-
proximates the smallest eigenvalue of Li, we have λmin = O(1).

Now we take the best approximation E∗n with respect [λmin,b] (b = ∑d
i=1λ

(i)
max or

b = ∞ ). We know that for the symmetric matrices
∥∥un(M)−M−1

∥∥≤ En,[λmin,b].

For the evaluation of un(M) = ∑n
ν=1ανexp(−tνM) we make use of the identity

exp(−tνM) =
⊗d

i=1
exp
(
−tνM(i)

)

with M(i) from (35) (cf. [14, §15.5.2]) and obtain

M−1 ≈
n

∑
ν=1

αν
⊗d

i=1
exp
(
−tνM(i)

)
.

As described in [14, §13.3.1], the hierarchical matrix format allows us to approxi-
mate exp

(
−tνM(i)) with a cost almost linear in the size of M(i). The total number

of arithmetical operations is O(n∑d
i=1 #Ii log∗ #Ii). For #Ii = N (1≤ i≤ d) this ex-

pression is O(ndN log∗N) and depends only linearly on d.
Therefore, it is possible to treat cases with large N and d. In [11], examples can

be found with N = 1024 and d ≈ 1000. Note that in this case M−1 ∈ R
M×M with

M ≈ 103000.



58 Dietrich Braess and Wolfgang Hackbusch

6 Applications of 1/
√

x approximations

6.1 Basic facts

Let [a,b]⊂ (0,∞] be as above. We consider the best approximation of 1/
√

x in [a,b]:

1√
x
≈ un,[a,b](x) =∑n

ν=1αν,[a,b] exp(−tν,[a,b] x).

In this case the relations

αν,[a,b] =
1√
a
αν,[1,b/a], tν,[a,b] =

1
a

tν,[1,b/a], En,[a,b] =
1√
a

En,[1,b/a] (36)

hold, and again it is sufficient to determine vn,[1,R] with R := b/a. The coefficients
of vn,[1,R] for various n and R can be obtained from [31].

The standard application uses the substitution x = ‖y‖2 = ∑d
i=1 y2

i with a vector
y ∈ R

d . Then we obtain the sum

Gn,[a,b](y) :=
n

∑
ν=1

αν,[a2,b2]

d

∏
i=1

exp(−tν,[a2,b2] y
2
i )

of Gaussians which is the best approximation of 1/‖y‖ for ‖y‖ ∈ [a,b]. Since, in
3D, 1/‖y‖ is the Newton potential or Coulomb potential, this function appears in
many problems.

6.2 Application to convolution

A further application refers to the convolution integral

Φ(x) :=
∫

R3

f (y)
‖x− y‖dy.

We assume that f can be written as a sum of simple products. For simplicity we
consider only one term:

f (y) = f1(y1) f2(y2) f3(y3). (37)

When we replace 1/‖x− y‖ by an approximation of the form

Gn(x− y) =∑n
ν=1αν

3

∏
i=1

exp(−tν (xi− yi)
2),

the convolution integral becomes
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Φn(x) :=
∫

R3
Gn(x− y) f (y)dy =

n

∑
ν=1

αν
3

∏
i=1

∫
R

exp(−tν (xi− yi)
2) fi(yi)dyi,

and the 3D convolution is reduced to three 1D convolutions. This fact reduces the
computational cost substantially. In the paper [13] this technique is applied for the
case that the functions fi are piecewise polynomials. However, there still remains
a gap is to be closed. We have used some best approximation Gn = Gn,[a,b] of
1/‖·‖. The value of b may be infinite or finite, if the support of f is finite and
the evaluation of Φ(x) is required for x in a bounded domain. The lower bound a
may be small but positive. Therefore the difference Φ(x)−Φn(x) contains the term
δΦn(x) :=

∫
‖x−y‖≤A

(
1

‖x−y‖ −Gn(x−y)
)

f (y)dy, where the approximation fails. This
contribution can be treated separately to obtain Φn + δΦn ≈ Φ . As shown in [13]
the numerical cost arising from the extra term, is low.

A related problem is the integral I :=
∫
R3
∫
R3

g(x) f (y)
‖x−y‖ dxdy which appears for ex-

ample as “two-electron integral” in Quantum Chemistry. It can be considered and
computed as the scalar product of g with the function Φ from above. Another ap-
proach is the replacement of 1/‖·‖ by the exponential sum Gn. Assuming again that
f and g are simple products like in (37), the identity

In :=
∫

R3

∫
R3

Gn(x− y)g(x) f (y)dxdy

=
n

∑
ν=1

αν
3

∏
i=1

∫
R

∫
R

exp(−tν (xi− yi)
2)gi(xi) fi(yi)dyi

shows that the six-dimensional integral is reduced to three two-dimensional ones.
Concerning the error analysis, we split the integral I = Inear + Ifar into the near-field
and far-field parts

Inear :=
∫
‖z‖≤r

∫
R3

g(z+ y) f (y)
‖z‖ dzdy, Ifar :=

∫
‖z‖≥r

∫
R3

g(z+ y) f (y)
‖z‖ dzdy.

Let In = Inear,n + Ifar,n be the corresponding splitting with 1/‖·‖ replaced by Gn. We
assume that f ,g ∈ C(R3) have bounded support1. Then for ‖z‖ ≤ r the error can
be bounded by |Inear,n|+ |Inear| �

∫
‖z‖≤r

dz
‖z‖ = O(r2). If an error ε is desired, we

need r ∼
√
ε. This requires the choice Gn = Gn,[

√
ε ,∞). The approximation error of

Gn is
∥∥∥1/‖·‖−Gn,[

√
ε ,∞)

∥∥∥
∞,‖z‖≥

√
ε
= En,[ε ,∞) = 1√

ε En,[1,∞) = O( 1√
ε exp(−c

√
n). To

equilibrate both terms, we have to choose n = O(log2 ε).

1 In Quantum Chemistry, the functions have infinite support but decay exponentially. Therefore,
similar error estimates hold.
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6.3 Modification for wavelet applications

Let f be the function which is to be approximated by an exponential sum En.
There are wavelet applications, where scalar products 〈 f ,ψ〉 with wavelets ψ ap-
pear. Wavelets have a certain number of vanishing moments, i.e., 〈p,ψ〉= 0 for all
polynomials of degree ≤ � for some � ∈ N0. In order to keep the moments, one can
approximate f by the mixed ansatz

n

∑
ν=1

αν exp(−tν x)+
�

∑
ν=0

βν xν .

Let u∗n(x) + p∗�(x) be the best approximation of this form in the interval [a,b] ⊃
support(ψ). By definition we have

〈 f ,ψ〉 ≈ 〈u∗n + p∗� ,ψ〉= 〈v∗n,ψ〉 .

Therefore, the polynomial part p∗� need not be stored, and the storage and quadrature
costs of 〈u∗n,ψ〉 are the same as for the usual best approximation un. Of course, the
approximation is improved:

∥∥ f −
(
u∗n + p∗�
)∥∥

∞,[a,b] ≤ ‖ f −un‖∞,[a,b] .

For an illustration we give the approximation accuracy for f (x) = 1/
√

x and n =
4, � = 1 in the interval [1,10]. The standard approximation is E4,[1,10] = 2.856 ·10−5,
while the new approach yields the better result E∗4,[1,10] = ‖ f − (u∗4 + p∗1)‖∞,[1,10] =

2.157 ·10−6. When these approximations are used after the substitution x = ‖y‖2 =
∑d

i=1 y2
i , one has to take into account that p∗�(‖y‖

2) is a polynomial of degree 2�,
i.e., a corresponding number of vanishing moments is required. More details can be
found in [12].

6.4 Expectation values of the H-atom

In [8, 18] the reduction similar to (1) is applied to the evaluation of expectation
values of the H-atom at the ground state. The error is given in terms of the integral

4α2
∫ ∞

0
{vn(r2)− r−1}e−2αrr2dr,

where v(x) = vn(r2) is an exponential sum that approximates 1/
√

x. It is indepen-
dent of α , if vn is adapted for each α in the spirit of (36). According to [8, p.138]
the asymptotic behaviour is

An1/2 exp

[
−π
√

4
3

n

]
. (38)

We will estimate the more conservative integral
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εn := 4
∫ ∞

0
|vn(r2)− r−1|e−2rr2dr. (39)

for (almost) best approximations vn. Without loss of generality we set α = 1. Specif-
ically, (39) is a weighted L1 norm, and the treatment is typical for the estimation of
weighted L1 norms of the error [6]. The infinite interval is split into three parts [0,a],
[a,b], and [b,∞). The points a and b are chosen such that the contributions of the
first and the third interval are small. A bound for the contribution of [a,b] is deter-
mined from the maximal error on this subinterval. Here the results of Section 4 are
applied.

We set a := β
√

2nexp[− 1
2β
√

n] and b := 1
2β
√

n with β to be fixed later with β ≥
1. Let vn be the best approximation or, more generally, be determined by a procedure
such that it interpolates

√
x at 2n points in [a,b]). In these cases |vn− r−1| < r−1

holds for x < a and x > b. Hence,

4
∫ a

0
|vn(r2)− r−1|e−2rr2dr ≤ 4

∫ a

0
rdr = 2a2 = 4β 2nexp[−β

√
n].

Similarly,

4
∫ ∞

b
|vn(r2)− r−1|e−2rr2dr ≤ 4

∫ ∞

b
e−2rrdr = (2b+1)e−2b

≤ 2β
√

nexp[−β
√

n].

Next, set E := maxa≤r≤b |vn(r2)− r−1| and observe that

4
∫ b

a
|vn(r2)− r−1|e−2rr2dr ≤ 4E

∫ ∞

0
e−2rr2dr = E.

The substitution x = r2 shows that we have to consider the approximation on the
interval [a2,b2]. Recalling (36) we apply the guaranteed bound (33) to the best ap-
proximation for R = (b/a)2 = 1

8 exp[−β
√

n]:

E = max
a2≤x≤b2

|vn(x)−
1√
x
| ≤ 1

a
12exp

[
− π2n

log(8R)

]

≤ exp[
1
2
β
√

n]
1

β
√

2n
12exp

[
− π2n
β
√

n

]

≤ 12exp

[
1
2
β
√

n− π2n
β

]
.

Finally we set β = π
√

2
3 to obtain E ≤ 12e−β

√
n. The collection of the integrals

yields

εn ≤ cnexp

[
−π
√

2
3

n

]
.
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This bound is not as good as (38), while the sinc method yields bounds for norms
of the error that are not as sharp as the results in Section 4; cf. [7] and §11.

7 Computation of the best approximation

Let f (x) be the function 1/x or 1/
√

x to be approximated. We make the ansatz
un(x;{αν},{tν}) = ∑n

ν=1αν exp(−tνx) and define the error

ηn (x;{αν},{tν}) := un (x;{αν},{tν})− f (x).

As described in Definition 3.1, the best approximation in the interval [1,R] is charac-
terised by an alternant consisting of 2n+1 points x0 < x1 < · · ·< x2n in the interval
satisfying the equi-oscillation conditions (10) and (11).

Then En,[1,R] := |ηn(xi,{αν},{tν})| is the optimal error
‖un (·;{αν},{tν})− f‖∞,[1,R] over all {αν},{tν}. The Remez algorithm determines
the 2n unknown coefficients {αν} and {tν} from the 2n equations ηn(xi)=−ηn(xi+1).
Details of the implementation which we use will follow below.

There is a specific difference between best approximations by polynomials and
exponential sums. For polynomials, the error |ηn| approaches ∞ as |x| → ∞. Since
in our setting f (x)→ 0 and En (x;{αν},{tν})→ 0 as x → ∞, the error satisfies
|ηn| → 0 for x→ ∞ (cf. §4.2). As a consequence, for each n there is a unique Rn >
0 such that all best approximations in intervals [1,R] with R ≥ Rn have the same
alternants. In particular, x2n =Rn holds. Hence, best approximations in [1,Rn] are
already best approximations in [1,∞). On the other hand, best approximations in
[1,R] with R < Rn satisfy x2n = R and lead to larger errors |ηn(x)| > En,[1,R] for
x > R beyond the end of the interval.

From the equi-oscillation property (10) we conclude that there are zeros ξi ∈
(xi−1,xi) of ηn for 1≤ i≤ 2n . Formally, we set ξ0 := 1 and ξ2n+1 := R. Then
ηn(xi) is the (local) extremum in the interval [ξi,ξi+1] for 0 ≤ i ≤ 2n. Remez-
like algorithms start from quasi-alternants, i.e., sets of points which satisfy (10),
but not yet (11). They replace xi by the true extrema in [ξi,ξi+1] and try to satisfy
ηn(xi) =−ηn(xi+1) or a relaxed version with updated exponential sums (cf. Remez
[21]).

Since the underlying equations are nonlinear, one must use Newton-like methods.
The natural choice of parameters of un are the coefficients {αν} and {tν}. How-
ever variations in these parameters may change the sign structure of ηn = un− f
completely2, but the Remez algorithms relies on the condition (10). Therefore,
we use the zeros ξi (1≤ i≤ 2n) as parameters: un (x;{ξν}) . Since by definition
un (ξi;{ξν}) = f (ξi), the function un (·;{ξν}) can be considered as the interpolating
exponential sum.

2 Note that ηn might be very small, say 1E-12, for good approximations. Then tiny variations of tν
may yield a new ηn which is completely positive.
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In the case of polynomials we have explicit formulae (Lagrange representation)
for the interpolating polynomial. Here, we need a secondary Newton process to
compute the coefficients {αν} = {αν(ξ1, . . . ,ξ2n)} and {tν} = {tν(ξ1, . . . ,ξ2n)}.
This makes the algorithm more costly, but stability has priority. For the implemen-
tation leading to the results in [31] extended precision is used. Then it is possible
to determine, e.g., the approximation u7 of 1/x in [1,2], which leads to the error
E7,[1,2] =8.020E-15, which is rather close to machine precision.

We conclude this section with some practical remarks concerning the computa-
tion. Once a best approximation un is known in some interval [1,R], it can be used
as a good starting value for a next interval [1,R′] with R′ sufficiently close3 to R.
In general, computations with larger R are easier than those with smaller R because
the corresponding size of the error ηn. To determine the first un for a value n, one
should proceed as follows. For rather small n, it is not so difficult to get convergence
from reasonable starting values. Assume that un−1 is known (preferably for a larger
value of R). The structure of the coefficients {αν},{tν} and of the zeros ξi allow
to “extrapolate” for the missing starting values αn, tn and ξ2n−1, ξ2n. The search
for reasonable starting values becomes extremely simple, if one makes use of the
precomputed values in [31].

Appendices

8 Rational approximation of
√

x on small intervals

The rule for the transformation of the intervals allows us to extend the error bound
(3.1) from all powers of 2 to all n∈N, if we verify them for small intervals. Here we
can use Newman’s trick that was first applied to the approximation of e x (see [20]).
It is based on the following observation. The special product of linear polynomials
is a linear and not a quadratic function if considered on the unit circle in C:

(z+β )(z̄+β ) = 2β ℜez+(r2 +β 2) if |z|= 1.

Moreover, the winding number of functions on a circle provide additional informa-
tion that gives rise to estimates from below.

In particular, given ρ > 1, we observe that

(ρ + z)(ρ + z̄) = ρ2 +1+2ρx = 2ρ(a+ x) for |z|= 1, x = ℜez,

where a := 1
2 (ρ +ρ−1). Setting f (z) :=

√
ρ + z, the induced function in the sense

of the lemma below is F(x) = 2ρ
√

a+ x. The quotient of the arguments at the left

3 Let ξ2n belong to [1,R]. Then R′ > ξ2n is required to maintain the quasi-alternant condition (10).
If one wants to get immediately the results for R′ < ξ2n, also the interpolation points ξν must be
diminished (e.g., by ξ ′ν := (ξν −1) R′−1

R−1 +1).
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and the right boundary of the unit interval [−1,+1] is

a−1
a+1

=
(
ρ−1
ρ +1

)2

. (40)

We note that ρ equals the sum of the semi-axes of that ellipse in C with foci +1 and
−1 in which F(x) is an analytic function.

We emphasize that the symbols a and b are generic parameters in this appendix.
Next, we recall a simple formula for complex numbers: f f̄ −gḡ = 2ℜe[ f̄ ( f −g)]−
| f −g|2.

Lemma 8.1 (Newman’s trick). Let r > 0. Assume that f is a real analytic function
in the disk |z| < 1 and that q f − p with p/q ∈ Rmn has m + n + 1 zeros in the disk
while q and f have none. Moreover, let F(x) = f (z) f (z̄) where |z| = r, ℜez = rx,
Then

2min
|z|=r

∣∣∣∣ f
(

f − p
q

)∣∣∣∣≤ Em,n(F) (1+o(1))≤ 2max
|z|=r

∣∣∣∣ f
(

f − p
q

)∣∣∣∣ . (41)

Proof. Since we are concerned with the case | f − p/q| � | f |, we write

f̄ f − p̄
q̄

p
q

= 2ℜe[ f̄

(
f − p

q

)
]−
∣∣∣∣ f − p

q

∣∣∣∣
2

= 2ℜe[ f̄

(
f − p

q

)
] (1+o(1)), (42)

and the upper bound follows from the fact that p̄p/q̄q defines a function in Rm,n.
The lower bound will be derived by using de la Vallée–Poussin’s theorem. Note

that

ℜe

[
f̄

(
f − p

q

)]
=

⎧⎨
⎩

+
∣∣∣ f
(

f − p
q

)∣∣∣ if arg
[

f̄
(

f − p
q

)]
≡ 0 (mod 2π),

−
∣∣∣ f
(

f − p
q

)∣∣∣ if arg
[

f̄
(

f − p
q

)]
≡ π (mod 2π).

(43)

By assumption f−1q−1(q f − p) has m + n + 1 zeros counting multiplicities but no
pole in the disk |z|< r. The winding number of this function is m+n+1. The argu-
ment of f̄ ( f − p/q) = f−1q−1(q f − p)| f |2 is increased by (m+n+1)2π when an
entire circuit is performed. The argument is increased by (m+n+1)π as z traverses
the upper half of the circle. Since the function is real for z = +1 and z = −1, we
get a set of m+n+2 points with sign changes as in (10). By de la Vallée–Poussin’s
theorem, the degree of approximation cannot be smaller than the minimum of the
absolute values at those points, and the proof is complete.

The trick was invented by Newman [20] for deriving an upper bound of the error
when e x is approximated. The application to lower bounds may be traced back to
[5]. The treatment of the square root function followed in [3].
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A rational approximant pn/qn−1 ∈ Rn,n−1 to f (z) :=
√
ρ + z is given by

pn(z) = 1
2

{(√ρ +
√
ρ + z
)2n +
(√ρ−√ρ + z

)2n
}

,

qn−1(z) =
1

2
√
ρ + z

{(√
ρ +
√
ρ + z
)2n−
(√

ρ−
√
ρ + z
)2n
}

,

and the error can be written in the form

√
ρ + z− pn

qn−1
=−
(√ρ−√ρ + z

)2n

qn−1(z)
.

The error curve has a zero of order 2n at z = 0. Therefore, pn/qn−1 is a Padé ap-
proximant and Newman’s trick with x = ℜez (and r = 1) yields

2ρ
√

a+ x − pn(z)pn(z̄)
qn−1(z)qn−1(z̄)

=−2ℜe

[√
ρ + z̄

(√ρ−√ρ + z
)2n

qn−1(z)

]
(1+o(1))

= 8ρ
√

a+ x ℜe
z2n

(√ρ−√ρ + z
)4n− z2n

(1+o(1)).

Note that 4ρ−3≤ |(√ρ+
√
ρ + z)2| ≤ ρ+3. Having upper and lower bounds, the

winding number 2n yields 2n+1 points close to an alternant. The relative error is

En,n−1
(√

a+ x
)

=
4

(4ρ +δ )2n (1+o(1)) (44)

with some |δ | ≤ 3. The parameters a and ρ are related as given by (40). The ap-
proximation of

√
a+ x on the unit interval describes the approximation of

√
x on

[a−1,a+1]. From (22) and (40) it follows that

E0,0(
√

a+ x) =
1
ρ

. (45)

9 The arithmetic-geometric mean and elliptic integrals

Given two numbers 0 < a0 < b0, the common limit lim j→∞ a j = lim j→∞ b j of the
double sequence (8) is called the arithmetic-geometric mean of a0 and b0 and is
denoted as m(a0,b0). It can be expressed in terms of a complete elliptic integral

I(a,b) =
∫ ∞

0

dt√
(a2 + t2)(b2 + t2)

. (46)

Gauss’ crucial observation for establishing the relation between m(a,b) and I(a,b)
is that I(a,b) is invariant under the transformation (a,b) �→ (a1,b1) = (

√
ab, a+b

2 ).
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We see this by the substitution t = 1
2 (x− ab

x ). As x goes from 0 to ∞, the variable t
increases from −∞ to ∞. Moreover,

dt =
x2 +ab

2x2 dx, t2 +
(

a+b
2

)2

=
(x2 +a2)(x2 +b2)

4x2 , t2 +ab =
(x2 +ab)

4x2 .

Hence,

I(a1,b1) =
1
2

∫ ∞

−∞

dt√
(a2

1 + t2)(b2
1 + t2)

=
∫ ∞

0

dx√
(a2 + x2)(b2 + x2)

= I(a,b) (47)

yields the invariance.
Let m = m(a,b), and set a0 = a, b0 = b. By induction it follows that I(a0,b0) =

I(a j,b j) for all j, and by continuity I(a0,b0) = I(m,m). Obviously, I(m,m) =∫ ∞
0

dt
m2+t2 = π

2m , and we conclude that

m(a,b) =
π

2I(a,b)
.

The elliptic integrals are defined by K′(k) := I(k,1) and K′(k) = K(k′). Here
the module k and the complementary module k′ are related by k2 + (k′)2 = 1. A
scaling argument shows that

I(a,b) = b−1K′(a/b) for 0 < a≤ b. (48)

Since the arithmetic-geometric mean of 1 and k lies between the arithmetic mean
and the geometric mean, we get an estimate that is good for k ≈ 1.

π
1+ k

≤K′(k)≤ π
2
√

k
. (49)

An estimate that is good for small k is more involved:

K′(k) = 2
∫ √k

0

dt√
(1+ t2)(k2 + t2)

≤ 2
∫ √k

0

dt√
k2 + t2

= 2
∫ 1/

√
k

0

dt√
1+ t2

= 2log

(√
1
k

+

√
1
k

+1

)
≤ log

(
4

(
1
k

+
1
2

))
. (50)

As a consequence, we have (π/2)K′(k)/K(k)≤ log( 4
k +2) and

1
k
≥ 1

4
exp

[
πK′(k)
2K(k)

]
− 1

2
. (51)

Lemma 9.1. Let λ0, λ−1,λ−2, . . . be a sequence generated by the Landen transfor-
mation and κ0 := 1/λ0. Then
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λ− j ≥
1
4

exp

[
2 j πK′(κ0)

2K(κ0)

]
. (52)

Proof. Let 0 < κ < 1 and κ1 = 2
√
κ

1+κ . Note that

κ1′=
1−κ
1+κ

. (53)

From (47) and (48) it follows that

K′(κ) = I(κ,1) = I

(√
κ,

1+κ
2

)
=

2
1+κ

K′
(

2
√
κ

1+κ

)
=

2
1+κ

K′(κ1)

and with the two means of 1−κ and 1+κ:

K(κ1) = I(κ ′1,1) = I

(
1−κ
1+κ

,1

)
= (1+κ) I(1−κ,1+κ)

= (1+κ) I
(√

1−κ2,1
)

= (1+κ)K(κ).

Hence,
K′(κ)
K(κ)

= 2
K′(κ1)
K(κ1)

(54)

and by induction K′(κ− j)/K(κ− j) = 2 j K′/(κ0)K(κ0). Now (51) yields the pre-
liminary estimate

λ− j ≥
1
4

exp

[
2 j πK′(κ0)

2K(κ0)

]
− 1

2
.

If we apply the estimate to j + 1 instead of j, return to j noting that
√

A2−2 ≥
A+2/A, we see that we can drop the extra term 1/2, and the proof is complete.

10 A direct approach to the infinite interval

There is also a one-step proof for the special function 1/x. It is based on a result
of Vjačeslavov [29] which in turn requires complicated evaluations of some special
integrals; see also [25]. Since constructions on finite intervals are circumvented, it
supports the argument that the non-optimal bound (30) is not induced by the limit
process with large intervals.

Given α > 0 and n ∈ N, there exists a polynomial p of degree n with n zeros in
[0,1] such that

∣∣∣∣xα p(x)
p(−x)

∣∣∣∣≤ c0(α) · e−π
√
αn for 0≤ x≤ 1.
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Let p be the polynomial for α = 1/4 as stated above. Since p(z̄) = p̄(z), it follows
that p(z)/p(−z) = 1 for ℜez = 0 and

∣∣∣∣ p(z2)
p(−z2)

∣∣∣∣= 1 for ℜez = |ℑmz| ≥ 0. (55)

We consider P(z) := p2(1/z2) on the sector S := {z ∈ C : |argz| ≤ π/4}. By
construction P has n double zeros in [1,∞), and from (55) it follows that
∣∣∣∣ P(z)
P(−z)

∣∣∣∣= 1 for z ∈ ∂S ,
P(x)

xP(−x)
≤
(

c0(1/4) · e−π
√

n/4
)2

for x≥ 1.

Now let un be the exponential sum interpolating 1/x and its first derivative at the
(double) zeros of P. Since 1/x− un has no more zeros than the specified ones, we
have un(x)≤ 1/x for x≥ 0. Hence,

|un(z)| ≤ un(ℜez)≤ 1/ℜez≤
√

2/|z| on the boundary of S .

Arguing as in Section 2, we introduce the auxiliary function g(z) :=( 1
z −un(z))z

P(−z)
P(z) .

We know that |g(z)| ≤ 1+
√

2 holds on the boundary of S and therefore in S . Fi-
nally, ∣∣∣∣1z −un(z)

∣∣∣∣=
∣∣∣∣g(z)

P(z)
zP(−z)

∣∣∣∣≤ (1+
√

2)c2
0(1/4)e−π

√
n.

11 Sinc quadrature derived approximations

The sinc quadrature discussed in this section approximates integrals of the form∫ ∞
−∞F(t)dt under certain conditions on F . In particular, we are interested in func-

tions that depend on a further parameter x like F(t,x) = F1(t)exp[F2(t)x], and
the evaluation at a quadrature point t = τν yields ανe−tν x with αν := F1(τν) and
tν := F2(τν). Therefore the sinc quadrature applied to

f (x) :=
∫ ∞

−∞
F(t,x)dt (56)

is a popular method to obtain exponential sums even with guaranteed upper bounds
[8, 18]. Concerning literature we refer to the monograph of Stenger [26] or [14,
Anhang D]. Next, we introduce the sinc quadrature rule T (F,h), its truncated form
TN( f ,h), and its application to 1/x (the application to 1/

√
x is quite similar).

The sinc function sinc(x) := sin(πx)
πx is an analytic functions with the value one at

x = 0 and zero at x ∈ Z\{0}. Given a step size h > 0, the family of functions

Sk,h(x) := sinc(
x
h
− k) (k ∈ Z) ,
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satisfies Sk,h(νh) = δkν (δkν : Kronecker symbol). Let F ∈C(R) decay sufficiently
fast for x→±∞. Then the sum

Fh(x) := ∑
k∈Z

F(kh)Sk,h(x)

converges and interpolates F at all grid points x = νh ∈ hZ. This fact suggests the
interpolatory quadrature rule

∫ ∞
−∞F(t)dt ≈

∫ ∞
−∞Fh(t)dt. Since

∫ ∞
−∞ sinc(t)dt = 1, the

right-hand side leads to the sinc quadrature rule

T (F,h) := h ∑
k∈Z

F(kh)

for
∫ ∞
−∞F(t)dt, and T ( f ,h) can be considered as the infinite trapezoidal rule. The

next step is the truncation (cut-off) of the infinite series to the finite sum

TN( f ,h) := h
N

∑
k=−N

F(kh).

For convenience, we will use N as truncation parameter. It will be related to the
number n of terms in (2) by n = 2N +1.

Before we discuss the quadrature error of T (F,h), we show how to get exponen-
tial sums from this approach. As example we consider the representation of 1

x by∫ ∞
0 exp(−xs)ds. Let s = ϕ(t) be any differentiable transformation of (−∞,∞) onto

(0,∞). This yields the integral

1
x

=
∫ ∞

−∞
exp(−xϕ(t))ϕ ′(t)dt (57)

to which the sinc quadrature TN( f ,h) can be applied:

1
x
≈ TN(exp(−xϕ(·))ϕ ′(·),h) = h

N

∑
k=−N

ϕ ′(kh)e−xϕ(kh).

Obviously, the right-hand side is the exponential sum (2) with αν = hϕ ′((ν − 1−
N)h) and tν = ϕ((ν − 1−N)h) for 1 ≤ ν ≤ n = 2N + 1. Note that different trans-
formations ϕ yield different exponential sums.

A good candidate for ϕ is ϕ(t) := exp(t) leading to4

1
x

=
∫ ∞

−∞
exp(−xet)etdt. (58)

The exponential behaviour tν = const · eνh of the coefficients is sometimes used as
an explicit ansatz for (2). Indeed, the coefficients tν of the best approximations from

4 Also ϕ(t) = exp(At) for A > 0 is possible. The reader may try to analyse the influence of A to
the error analysis.
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Section 4 lead to similar quotients tν+1/tν for ν in the middle range with deviations
for ν close to 1 and n.

Next we study the quadrature error of TN . It is the sum of
∫ ∞
−∞F(t)dt−T (F,h)

and T (F,h)−TN(F,h). The quadrature error of the sinc quadrature

η(F,h) :=
∣∣∣∣
∫ ∞

−∞
F(t)dt−T (F,h)

∣∣∣∣
tends to zero as h→ 0. The truncation error |T (F,h)−TN(F,h)| vanishes as N→∞.
Both discretisation parameters h and N will be related in such a way that both errors
are (asymptotically) equal.

The analysis of η(F,h) requires holomorphy of F in a stripe. Let

Dd := {z = x+ iy : x ∈ R, |y|< d} ⊂ C

be the open stripe along the real axis with width 2d. The function F is assumed to
be holomorphically extendable to Dd such that the L1 integral

‖F‖Dd
:=
∫

R

{|F(x+ id|+ |F(x− id|}dx

over the boundary of Dd exists and is finite. As proved in [26, p. 144 f] the error
η(F,h) of the infinite quadrature rule T (F,h) is bounded by

η(F,h)≤ ‖F‖Dd
exp[−2πd/h]. (59)

The truncation error |T (F,h)−TN(F,h)| equals h
∣∣∑|k|>N F(kh)

∣∣ and depends on
the decay of F as x→±∞ (note that this concerns only the behaviour on the real
axis, not in the stripe Dd).
If, for instance, |F(t)| ≤ c · e−α|t| holds, then |T (F,h)−TN(F,h)| ≤ (2c/α)e−αNh

follows. In this case, the error η(F,h) = O(e−2πd/h) and the truncation error
O(e−αNh) are asymptotically equal if −2πd/h = −αNh, i.e., h =

√
2απdN. This

leads to the estimate of the total error
∣∣∣∣
∫ ∞

−∞
F(t)dt−TN(F,h)

∣∣∣∣≤
(
‖F‖Dd

+
2c
α

)
exp[−
√

2πd/(αN) ]

for h =
√

2απdN. (60)

So far, F is a function of t only and the integral
∫ ∞
−∞F(t)dt is a real number. Now

we replace F by F(t,x) as in (56) such that the integral defines a function f : D→R

on a domain D. The error estimate (60) is still correct, but it holds only pointwise for
x ∈D. We note that ‖F‖Dd

becomes a function ‖F(·,x)‖Dd
of x, and even the width

d of the stripe may change with x. Moreover, if decay inequality |F(t,x)| ≤ c ·e−α|t|
holds with x-dependent factors c(x) and α(x), also these quantities in (60) become
variable. We have to take care that the estimate (60) (with ‖F(·,x)‖Dd

replaced by an
upper bound) is uniform in x∈D, and the error | f (x)−TN(F(·,x),h)| is uniform too.
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In the following, we will simply write F(t) instead of F(t,x), i.e., F(t) is understood
to be function-valued.

We apply this strategy to the error estimation of the integral in (58). The in-
tegrand F(t) = exp(−xet)et is an entire function in t, and to obtain a bounded
norm ‖F‖Dd

we choose d < π/2. Then |F(t± id)| = exp(−xet cos(d))et implies

‖F‖Dd
= 1

xcos(d) . Inequality (59) yields

|η(F,h)| ≤ exp(−2πd/h)
xcos(d)

for all 0 < d < π/2.

Optimisation with respect to d yields d = arctan(2π/h) < π/2 and

|η(F,h)| ≤

√
1+(2π/h)2

x
exp(

−2π arctan(2π/h)
h

).

Concerning |T (F,h)−TN(F,h)|= h
∣∣∑|k|>N F(kh)

∣∣ notice the different behaviour
of F(kh) for k→ ∞ and k→−∞. As k→−∞, the factor ekh describes a uniformly
exponential decay, while exp(−xekh) → 1. For k → +∞, the factor exp(−xekh)
shows a doubly exponential behaviour which, however, depends on the value of
x. The precise asymptotics are given by

h

∣∣∣∣∣ ∑k<−N

F(kh)

∣∣∣∣∣≤ h ∑
k<−N

ekh ≤
∫ −Nh

−∞
exp(t)dt = e−Nh,

h

∣∣∣∣∣ ∑k>+N

F(kh)

∣∣∣∣∣≤ h ∑
k>N

exp(−xekh)ekh

≤
∫ ∞

Nh
exp(−xet)etdt =

1
x

exp(−xeNh).

Here we assume xeNh ≥ 1 for the second inequality, so that the function exp(−xet)et

is monotonously decreasing in [Nh,∞). Altogether, we get the following error esti-
mate between the integral (58) and the exponential sum TN(F,h)

∣∣∣∣1x −TN(F,h)
∣∣∣∣≤
√

1+(2π/h)2

x
exp

(
−2π arctan(2π/h)

h

)

+ e−Nh +
1
x

exp(−xeNh). (61)

To simplify the analysis, we assume x ∈ [1,R], which implies the relation

1
x

exp(−xeNh)≤ e−Nh−1,

i.e., the last term in (61) is smaller than the second one. Further, we use the asymp-
totic behaviour 2π arctan(2π/h) = π2−h+O

(
h3
)

to show that
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exp
−2π arctan(2π/h)

h
= O(exp(−π2/h)).

Therefore, the right-hand side in (61) becomes O(
√

1+(2π/h)2 exp(−π2/h)) +
O(exp(−Nh)). The asymptotically best choice of h is h = π/

√
N which leads to

equal exponents: −π2/h = −Nh = −π
√

N. Inserting this choice of h, we get the
uniform estimate
∣∣∣∣1x −TN(F,h)

∣∣∣∣≤
(
O(1)+2

√
N
)

e−π
√

N ≤O

(√
n exp

[
− π√

2

√
n

])

for all x≥ 1, (62)

where the last expression uses the number n = 2N + 1 of terms in TN(F,h). The
exponential behaviour exp[−π

√
n/2] is not as good as exp [−π

√
n] from (30).

Although we get the same behaviour exp [−const
√

n] of the error as in (30), the
reason is a different one. In the case of the best approximation, we could show
an error behaviour exp [−const ·n] for finite intervals [1,R], whereas exp [−π

√
n]

was caused by the unboundedness of [1,∞). The exp[−π
√

n/2] behaviour of the
sinc quadrature is independent of the choice x ∈ [1,R], R finite, or x ∈ [1,∞).
Even if we restrict x to a single point x0, the error is like in (62). The reason for
exp [−const

√
n] in the sinc case is due to the fact that we have to equalise the expo-

nents in O(exp(−const/h))+O(exp(−const ·Nh)). The error O(exp(−const/h))
of the infinite sinc quadrature can hardly be improved (see (59)), but the truncation
error O(exp(−const ·Nh)) of |T (F,h)−TN(F,h)| depends on the decay behaviour
of F. If, for instance, |F(t)| ≤ c ·exp(−α |t|γ) holds for some γ > 1, this faster decay
yields the smaller truncation error O(exp(−α (Nh)γ)). Finally, h = O(N−γ/(γ+1))
leads to the total error exp

[
−const ·nγ/(γ+1)

]
. For large γ, the exponent comes close

to −const ·n.
An even better decay behaviour is the doubly exponential decrease |F(t)| ≤

c1 · exp(−c2ec3|t|). In this case, the total error can be estimated by

O
(
‖F‖Dd

exp
(
−2πdc3N

log(2πdc3N)

))
(cf. [14, Satz D.4.3]). To obtain a doubly exponential

decay, one can follow the following lines: Start with an integral
∫ ∞
−∞F(t)dt, where F

has the usual exponential asymptotic |F(t)| ≤ c · exp(−α |t|). Then apply the trans-
formation t = sinhτ. The new integral is

∫ ∞
−∞G(τ)dτ with the doubly exponential

integrand G(τ) = F(sinhτ)coshτ. The drawback is that one must ensure that G is
still holomorphic in a stripe Dd and that ‖F‖Dd

is finite. The mentioned transforma-
tion applied to F(t) = exp(−xet)et from above does not succeed. For any d > 0 the
real part of esinhτ may be negative in Dd and, because of the exponentially increas-
ing function exp(−xesinh(τ+id)), the integral with respect to τ ∈R does not exist, i.e.
‖F‖Dd

= ∞.
A possible approach is to replace the first transformation ϕ(t) := exp(t) : [0,∞)→

(−∞,∞) in (57) by ϕ(t) := log(1+ exp(sinh t)), which yields



High-dimensional integrals and the approximation by exponential sums 73

1
x

=
∫ ∞

−∞
exp
(
−x log
(
1+ et)) dt

1+ e−t ; (63)

cf. [14, §D.4.3.2]. The integrand F = exp(−x log(1+ et))/(1+ e−t) in (63) be-
haves simply exponential for t → ∞ and t →−∞. Thanks to this property, the sec-
ond transformation t = sinhτ succeeds in providing an integrand G which is holo-
morphic in Dd for d < π/2 with finite norm ‖G‖Dd

. However, pointwise finiteness
‖G(·,x)‖Dd

< ∞ is not enough. It turns out that in general ‖G(·,x)‖Dd
≤ O(ex),

which destroys the error estimates. For x ∈ [1,R] one has to reduce the stripe Dd

to the width d = d(R) := O(1/ logR). Then involved estimates show that the error∣∣ 1
x −TN(G,h)

∣∣ in 1≤ x≤ R is bounded by

O

(
exp

(
− 2πd(R)N

log(2πd(R)N

))
with d(R) := O(1/ logR)

(cf. [14, §D.4.3.2]). Since a detailed analysis shows d(R)= π
2

1
log(3R)−O(log−2(3R)),

this estimate is almost of the form exp(−Cn) with C := 2π2

log(3R) log(2π2n/ log(3R)) and

may be compared with exp(−C∗n) from (29) with C∗ = π2

log(8R) . Obviously, C < C∗

holds for sufficiently large n, but even for small n, C < C∗ holds, e.g., for R≤ 1600
(n = 4), R≤ 24700 (n = 5), R≤ 3.7105 (n = 6), R≤ 5.5106 (n = 7), and R≤ 8.1107
(n = 8). The latter bounds of R are (much) larger than the value R = 1

8 exp[π
√

n]
introduced in the line before (30). Hence, for values of R for which the best approx-
imation on [1,R] is not already a best approximation for [1,∞), (29) gives a better
result than the sinc estimate from above.
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Adaptive and anisotropic piecewise polynomial
approximation

Albert Cohen and Jean-Marie Mirebeau

Abstract We survey the main results of approximation theory for adaptive piece-
wise polynomial functions. In such methods, the partition on which the piecewise
polynomial approximation is defined is not fixed in advance, but adapted to the
given function f which is approximated. We focus our discussion on (i) the prop-
erties that describe an optimal partition for f , (ii) the smoothness properties of f
that govern the rate of convergence of the approximation in the Lp-norms, and (iii)
fast refinement algorithms that generate near optimal partitions. While these results
constitute a fairly established theory in the univariate case and in the multivariate
case when dealing with elements of isotropic shape, the approximation theory for
adaptive and anisotropic elements is still building up. We put a particular emphasis
on some recent results obtained in this direction.

1 Introduction

1.1 Piecewise polynomial approximation

Approximation by piecewise polynomial functions is a procedure that occurs in nu-
merous applications. In some of them such as terrain data simplification or image
compression, the function f to be approximated might be fully known, while it
might be only partially known or fully unknown in other applications such as de-
noising, statistical learning or in the finite element discretization of PDE’s. In all
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these applications, one usually makes the distinction between uniform and adaptive
approximation. In the uniform case, the domain of interest is decomposed into a
partition where all elements have comparable shape and size, while these attributes
are allowed to vary strongly in the adaptive case. The partition may therefore be
adapted to the local properties of f , with the objective of optimizing the trade-off
between accuracy and complexity of the approximation. This chapter is concerned
with the following fundamental questions:

• Which mathematical properties describe an optimally adapted partition for a
given function f ?

• For such optimally adapted partitions, what smoothness properties of f govern
the convergence properties of the corresponding piecewise polynomial approxi-
mations ?

• Can one construct optimally adapted partitions for a given function f by a fast
algorithm ?

For a given bounded domain Ω ⊂ IRd and a fixed integer m > 0, we associate to any
partition T of Ω the space

VT := { f s.t. f|T ∈ IPm−1, T ∈T }

of piecewise polynomial functions of total degree m−1 over T . The dimension of
this space measures the complexity of a function g ∈ VT . It is proportional to the
cardinality of the partition:

dim(VT ) := Cm,d#(T ), with Cm,d := dim(IPm−1) =
(

m+d−1
d

)
.

In order to describe how accurately a given function f may be described by piece-
wise polynomial functions of a prescribed complexity, it is therefore natural to in-
troduce the error of best approximation in a given norm ‖ · ‖X which is defined as

σN( f )X := inf
#(T )≤N

min
g∈VT

‖ f −g‖X .

This object of study is too vague if we do not make some basic assumptions that
limitate the set of partitions which may be considered. We therefore restrict the def-
inition of the above infimum to a class AN of “admissible partitions” of complexity
at most N. The approximation to f is therefore searched in the set

ΣN := ∪T ∈ANVT ,

and the error of best approximation is now defined as

σN( f )X := inf
g∈ΣN

‖ f −g‖X = inf
T ∈AN

inf
g∈VT

‖ f −g‖X .

The assumptions which define the class AN are usually of the following type:
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1. The elementary geometry of the elements of T . The typical examples that are
considered in this chapter are: intervals when d = 1, triangles or rectangles when
d = 2, simplices when d > 2.

2. Restrictions on the regularity of the partition, in the sense of the relative size
and shape of the elements that constitute the partition T .

3. Restrictions on the conformity of the partition, which impose that each face of
an element T is common to at most one adjacent element T ′.

The conformity restriction is critical when imposing global continuity or higher
smoothness properties in the definition of VT , and if one wants to measure the error
in some smooth norm. In this survey, we limitate our interest to the approxima-
tion error measured in X = Lp. We therefore do not impose any global smoothness
property on the space VT and ignore the conformity requirement.

Throughout this chapter, we use the notation

em,T ( f )p := min
g∈VT

‖ f −g‖Lp ,

to denote the Lp approximation error in the space VT and

σN( f )p := σN( f )Lp = inf
g∈ΣN

‖ f −g‖Lp = inf
T ∈AN

em,T ( f )p.

If T ∈T is an element and f is a function defined on Ω , we denote by

em,T ( f )p := min
π∈IPm−1

‖ f −π‖Lp(T ),

the local approximation error. We thus have

em,T ( f )p =
(
∑

T∈T

em,T ( f )p
p

)1/p
,

when p < ∞ and
em,T ( f )∞ = max

T∈T
em,T ( f )∞.

The norm ‖ f‖Lp without precision on the domain stands for ‖ f‖Lp(Ω) where Ω is
the full domain where f is defined.

1.2 From uniform to adaptive approximation

Concerning the restrictions ont the regularity of the partitions, three situations
should be distinguished:

1. Quasi-uniform partitions: all elements have approximately the same size. This
may be expressed by a restriction of the type
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C1N−1/d ≤ ρT ≤ hT ≤C2N−1/d , (1)

for all T ∈ T with T ∈AN , where 0 < C1 ≤C2 are constants independent of
N, and where hT and ρT respectively denote the diameters of T and of it largest
inscribed disc.

2. Adaptive isotropic partitions: elements may have arbitrarily different size but
their aspect ratio is controlled by a restriction of the type

hT

ρT
≤C, (2)

for all T ∈T with T ∈AN , where C > 1 is independent of N.

3. Adaptive anisotropic partitions: element may have arbitrarily different size and
aspect ratio, i.e. no restriction is made on hT and ρT .

A classical result states that if a function f belongs to the Sobolev space W m,p(Ω)
the Lp error of approximation by piecewise polynomial of degree m on a given
partition satisfies the estimate

em,T ( f )p ≤Chm| f |W m,p , (3)

where h := maxT∈T hT is the maximal mesh-size, | f |W m,p :=
(
∑|α|=m ‖∂α f‖p

Lp

)1/p

is the standard Sobolev semi-norm, and C is a constant that only depends on
(m,d, p). In the case of quasi-uniform partitions, this yields an estimate in terms
of complexity:

σN( f )p ≤CN−m/d | f |W m,p , (4)

where the constant C now also depends on C1 and C2 in (1).

Here and throughout the chapter, C denotes a generic constant which may vary
from one equation to the other. The dependence of this constant with respect to the
relevant parameters will be mentionned when necessary.

Note that the above estimate can be achieved by restricting the family AN to a single
partition: for example, we start from a coarse partition T0 into cubes and recursively
define a nested sequence of partition T j by splitting each cube of T j−1 into 2d cubes
of half side-length. We then set

AN := {T j}, if #(T0)2d j ≤ N < #(T0)2d( j+1).

Similar uniform refinement rules can be proposed for more general partitions into
triangles, simplices or rectangles. With such a choice for AN , the set ΣN on which
one picks the approximation is thus a standard linear space. Piecewise polynomials
on quasi-uniform partitions may therefore be considered as an instance of linear
approximation.
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The interest of adaptive partitions is that the choice of T ∈AN may vary depend-
ing on f , so that the set ΣN is inherently a nonlinear space. Piecewise polynomials
on adaptive partitions are therefore an instance of nonlinear approximation. Other
instances include approximation by rational functions, or by N-term linear combi-
nations of a basis or dictionary. We refer to [28] for a general survey on nonlinear
approximation.

The use of adaptive partitions allows to improve significantly on (4). The theory
that describes these improvements is rather well established for adaptive isotropic
partitions: as explained further, a typical result for such partitions is of the form

σN( f )p ≤CN−m/d | f |W m,τ , (5)

where τ can be chosen smaller than p. Such an estimate reveals that the same rate
of decay N−

m
d as in (4) is achieved for f in a smoothness space which is larger than

W m,p. It also says that for a smooth function, the multiplicative constant govern-
ing this rate might be substantially smaller than when working with quasi-uniform
partitions.

When allowing adaptive anisotropic partitions, one should expect for further im-
provements. From an intuitive point of view, such partitions are needed when the
function f itself displays locally anisotropic features such as jump discontinuities
or sharp transitions along smooth manifolds. The available approximation theory
for such partitions is still at its infancy. Here, typical estimates are also of the form

σN( f )p ≤CN−m/dA( f ), (6)

but they involve quantities A( f ) which are not norms or semi-norms associated with
standard smoothness spaces. These quantities are highly nonlinear in f in the sense
that they do not satisfy A( f +g)≤C(A( f )+A(g)) even with C ≥ 1.

1.3 Outline

This chapter is organized as follows. As a starter, we study in §2 the simple case of
piecewise constant approximation on an interval. This example gives a first illustra-
tion the difference between the approximation properties of uniform and adaptive
partitions. It also illustrates the principle of error equidistribution which plays a cru-
cial role in the construction of adaptive partitions which are optimally adapted to f .
This leads us to propose and study a multiresolution greedy refinement algorithm as
a design tool for such partitions. The distinction between isotropic and anisotropic
partitions is irrelevant in this case, since we work with one-dimensional intervals.

We discuss in §3 the derivation of estimates of the form (5) for adaptive isotropic
partitions. The main guiding principle for the design of the partition is again error
equidistribution. Adaptive greedy refinement algorithms are discussed, similar to
the one-dimensional case.
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We study in §4 an elementary case of adaptive anisotropic partitions for which
all elements are two-dimensional rectangles with sides that are parallel to the x and
y axes. This type of anisotropic partitions suffer from an intrinsic lack of directional
selectivity. We limitate our attention to piecewise constant functions, and identify
the quantity A( f ) involved in (6) for this particular case. The main guiding principles
for the design of the optimal partition are now error equidistribution combined with
a local shape optimization of each element.

In §5, we present some recently available theory for piecewise polynomials on
adaptive anisotropic partitions into triangles (and simplices in dimension d > 2)
which offer more directional selectivity than the previous example. We give a gen-
eral formula for the quantity A( f ) which can be turned into an explicit expression
in terms of the derivatives of f in certain cases such as piecewise linear functions
i.e. m = 2. Due to the fact that A( f ) is not a semi-norm, the function classes de-
fined by the finiteness of A( f ) are not standard smoothness spaces. We show that
these classes include piecewise smooth objects separated by discontinuities or sharp
transitions along smooth edges.

We present in §6 several greedy refinement algorithms which may be used to
derive anisotropic partitions. The convergence analysis of these algorithms is more
delicate than for their isotropic counterpart, yet some first results indicate that they
tend to generate optimally adapted partitions which satisfy convergence estimates
in accordance with (6). This behaviour is illustrated by numerical tests on two-
dimensional functions.

2 Piecewise constant one-dimensional approximation

We consider here the very simple problem of approximating a continuous function
by piecewise constants on the unit interval [0,1], when we measure the error in the
uniform norm. If f ∈C([0,1]) and I ⊂ [0,1] is an arbitrary interval we have

e1,I( f )∞ := min
c∈IR
‖ f − c‖L∞(I) =

1
2

max
x,y∈I

| f (x)− f (y)|.

The constant c that achieves the minimum is the median of f on I. Remark that we
multiply this estimate at most by a factor 2 if we take c = f (z) for any z ∈ I. In
particular, we may choose for c the average of f on I which is still defined when f
is not continuous but simply integrable.

If TN = {I1, · · · , IN} is a partition of [0,1] into N sub-intervals and VTN the cor-
responding space of piecewise constant functions, we thus find hat

e1,TN ( f )∞ := min
g∈VTN

‖ f −g‖L∞ =
1
2

max
k=1,··· ,N

max
x,y∈Ik

| f (x)− f (y)|. (7)
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2.1 Uniform partitions

We first study the error of approximation when the TN are uniform partitions con-
sisting of the intervals Ik = [ k

N , (k+1)
N ]. Assume first that f is a Lipschitz function i.e.

f ′ ∈ L∞. We then have

max
x,y∈Ik

| f (x)− f (y)| ≤ |Ik|‖ f ′‖L∞(Ik) = N−1‖ f ′‖L∞ .

Combining this estimate with (7), we find that for uniform partitions,

f ∈ Lip([0,1])⇒ σN( f )∞ ≤CN−1, (8)

with C = 1
2‖ f ′‖L∞ . For less smooth functions, we may obtain lower convergence

rates: if f is Hölder continuous of exponent 0 < α < 1, we have by definition

| f (x)− f (y)| ≤ | f |Cα |x− y|α ,

which yields
max
x,y∈Ik

| f (x)− f (y)| ≤ N−α | f |Cα .

We thus find that
f ∈Cα([0,1])⇒ σN( f )∞ ≤CN−α , (9)

with C = 1
2 | f |Cα .

The estimates (8) and (9) are sharp in the sense that they admit a converse: it is
easily checked that if f is a continuous function such that σN( f )∞ ≤CN−1 for some
C > 0, it is necessarily Lipschitz. Indeed, for any x and y in [0,1], consider an integer
N such that 1

2 N−1 ≤ |x−y| ≤ N−1. For such an integer, there exists a fN ∈VTN such
that ‖ f − fN‖L∞ ≤CN−1. We thus have

| f (x)− f (y)| ≤ 2CN−1 + | fN(x)− fN(y)|.

Since x and y are either contained in one interval or two adjacent intervals of the
partition TN and since f is continuous, we find that | fN(x)− fN(y)| is either zero or
less than 2CN−1. We therefore have

| f (x)− f (y)| ≤ 4CN−1 ≤ 8C|x− y|,

which shows that f ∈ Lip([0,1]). In summary, we have the following result.

Theorem 2.1. If f is a continuous function defined on [0,1] and if σN( f )∞ denotes
the L∞ error of piecewise constant approximation on uniform partitions, we have

f ∈ Lip([0,1])⇔ σN( f )∞ ≤CN−1. (10)

In an exactly similar way, is can be proved that
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f ∈Cα([0,1])⇔ σN( f )∞ ≤CN−α , (11)

These equivalences reveal that Lipschitz and Holder smoothness are the properties
that do govern the rate of approximation by piecewise constant functions in the
uniform norm.

The estimate (8) is also optimal in the sense that it describes the saturation rate
of piecewise constant approximation: a higher convergence rate cannot be obtained,
even for smoother functions, and the constant C = 1

2‖ f ′‖L∞ cannot be improved. In
order to see this, consider an arbitrary function f ∈C1([0,1]), so that for all ε > 0,
there exists η > 0 such that

|x− y| ≤ η ⇒ | f ′(x)− f ′(y)| ≤ ε.

Therefore if N is such that N−1 ≤ η , we can introduce on each interval Ik an affine
function pk(x) = f (xk)+(x− xk) f ′(xk) where xk is an arbitrary point in Ik, and we
then have

‖ f − pk‖L∞(Ik) ≤ N−1ε.

It follows that
e1,Ik( f )∞ ≥ e1,Ik(pk)∞− e1,Ik( f − pk)∞

≥ e1,Ik(pk)∞− 1
2 N−1ε

= 1
2 N−1(| f ′(xk)|− ε),

where we have used the triangle inequality

em,T ( f +g)p ≤ em,T ( f )p + em,T (g)p, (12)

Choosing for xk the point that maximize | f ′| on Ik and taking the supremum of the
above estimate over all k, we obtain

e1,TN ( f )∞ ≥
1
2

N−1(‖ f ′‖L∞ − ε).

Since ε > 0 is arbitrary, this implies the lower estimate

liminf
N→+∞

NσN( f )∞ ≥
1
2
‖ f ′‖L∞ . (13)

Combining with the upper estimate (8), we thus obtain the equality

lim
N→+∞

NσN( f )∞ =
1
2
‖ f ′‖L∞ , (14)

for any function f ∈C1. This identity shows that for smooth enough functions, the
numerical quantity that governs the rate of convergence N−1 of uniform piecewise
constant approximations is exactly 1

2‖ f ′‖L∞ .
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2.2 Adaptive partitions

We now consider an adaptive partition TN for which the intervals Ik may depend
on f . In order to understand the gain in comparison to uniform partitions, let us
consider a function f such that f ′ ∈ L1, i.e. f ∈W 1,1([0,1]). Remarking that

max
x,y∈I

| f (x)− f (y)| ≤
∫

I
| f ′(t)|dt,

we see that a natural choice fo the Ik can be done by imposing that

∫
Ik
| f ′(t)|dt = N−1

∫ 1

0
| f ′(t)|dt,

which means that the L1 norm of f ′ is equidistributed over all intervals. Combining
this estimate with (7), we find that for adaptive partitions,

f ∈W 1,1([0,1])⇒ σN( f )∞ ≤CN−1, (15)

with C := 1
2‖ f ′‖L1 . This improvement upon uniform partitions in terms of approx-

imation properties was firstly established in [35]. The above argument may be ex-
tended to the case where f belongs to the slightly larger space BV ([0,1]) which may
include discontinuous functions in contrast to W 1,1([0,1]), by asking that the Ik are
such that

| f |BV (Ik) ≤ N−1| f |BV .

We thus have
f ∈ BV ([0,1])⇒ σN( f )∞ ≤CN−1, (16)

Similar to the case of uniform partitions, the estimate (16) is sharp in the sense that
a converse result holds: if f is a continuous function such that σN( f )∞ ≤CN−1 for
some C > 0, then it is necessarily in BV ([0,1]). To see this, consider N > 0 and any
set of points 0≤ x1 < x2 < · · ·< xN ≤ 1. We know that there exists a partition TN of
N intervals and fN ∈ VTN such that ‖ f − fN‖L∞ ≤CN−1. We define a set of points
0≤ y1 < y2 · · ·< yM ≤ 1 by unioning the set of the xk with the nodes that define the
partition TN , excluding 0 and 1, so that M < 2N. We can write

N−1

∑
k=0

| f (xk+1)− f (xk)| ≤ 2C+
N−1

∑
k=0

| fN(xk+1)− fN(xk)| ≤ 2C+
M−1

∑
k=0

| fN(yk+1)− fN(yk)|.

Since yk and yk+1 are either contained in one interval or two adjacent intervals of
the partition TN and since f is continuous, we find that | fN(yk+1)− fN(yk)| is either
zero or less than 2CN−1, from which it follows that

N−1

∑
k=0

| f (xk+1)− f (xk)| ≤ 6C,
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which shows that f has bounded variation. We have thus proved the following result.

Theorem 2.2. If f is a continuous function defined on [0,1] and if σN( f )∞ denotes
the L∞ error of piecewise constant approximation on adaptive partitions, we have

f ∈ BV ([0,1])⇔ σN( f )∞ ≤CN−1. (17)

In comparison with (8) we thus find that same rate N−1 is governed by a weaker
smoothness condition since f ′ is not assumed to be bounded but only a finite mea-
sure. In turn, adaptive partitions may significantly outperform uniform partition for
a given function f : consider for instance the function f (x) = xα for some 0 <α < 1.
According to (11), the convergence rate of uniform approximation for this function
is N−α . On the other hand, since f ′(x) = αxα−1 is integrable, we find that the con-
vergence rate of adaptive approximation is N−1.

The above construction of an adaptive partition is based on equidistributing the
L1 norm of f ′ or the total variation of f on each interval Ik. An alternative is to build
TN in such a way that all local errors are equal, i.e.

ε1,Ik( f )∞ = η , (18)

for some η = η(N) ≥ 0 independent of k. This new construction of TN does not
require that f belongs to BV ([0,1]). In the particular case where f ∈ BV ([0,1]), we
obtain that

Nη ≤
N

∑
k=1

e1,Ik( f )∞ ≤
1
2

N

∑
k=1

| f |BV (Ik) ≤
1
2
| f |BV ,

from which it immediately follows that

e1,TN ( f )∞ = η ≤CN−1,

with C = 1
2 | f |BV . We thus have obtained the same error estimate as with the previ-

ous construction of TN .

The basic principle of error equidistribution, which is expressed by (18) in the case
of piecewise constant approximation in the uniform norm, plays a central role in the
derivation of adaptive partitions for piecewise polynomial approximation.

Similar to the case of uniform partitions we can express the optimality of (15) by
a lower estimate when f is smooth enough. For this purpose, we make a slight re-
striction on the set AN of admissible partitions, assuming that the diameter of all
intervals decreases as N→+∞, according to

max
Ik∈TN

|Ik| ≤ AN−1,

for some A > 0 which may be arbitrarily large. Assume that f ∈C1([0,1]), so that
for all ε > 0, there exists η > 0 such that
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|x− y| ≤ η ⇒ | f ′(x)− f ′(y)| ≤ ε
A

. (19)

If N is such that AN−1 ≤ η , we can introduce on each interval Ik an affine function
pk(x) = f (xk)+(x−xk) f ′(xk) where xk is an arbitrary point in Ik, and we then have

‖ f − pk‖L∞(Ik) ≤ N−1ε.

It follows that
e1,Ik( f )∞ ≥ e1,Ik(pk)∞− e1,Ik( f − pk)∞

≥ e1,Ik(pk)∞− 1
2 N−1ε

= 1
2 (
∫

Ik
|p′k(t)|dt−N−1ε)

≥ 1
2 (
∫

Ik
| f ′(t)|dt−2N−1ε).

Since there exists at least one interval Ik such that
∫

Ik
| f ′(t)|dt ≥ N−1‖ f ′‖L1 , it fol-

lows that

e1,TN ( f )∞ ≥
1
2

N−1(‖ f ′‖L1 −2ε).

This inequality becomes an equality only when all quantities
∫

Ik
| f ′(t)|dt are equal,

which justifies the equidistribution principle for the design of an optimal partition.
Since ε > 0 is arbitrary, we have thus obtained the lower estimate

liminf
N→+∞

NσN( f )≥ 1
2
‖ f ′‖L1 . (20)

The restriction on the family of adaptive partitions AN is not so severe since A
maybe chosen arbitrarily large. In particular, it is easy to prove that the upper esti-
mate is almost preserved in the following sense: for a given f ∈C1 and any ε > 0,
there exists A > 0 depending on ε such that

limsup
N→+∞

NσN( f )≤ 1
2
‖ f ′‖L1 + ε,

These results show that for smooth enough functions, the numerical quantity that
governs the rate of convergence N−1 of adaptive piecewise constant approximations
is exactly 1

2‖ f ′‖L1 . Note that ‖ f ′‖L∞ may be substantially larger than ‖ f ′‖L1 even
for very smooth functions, in which case adaptive partitions performs at a similar
rate as uniform partitions, but with a much more favorable multiplicative constant.

2.3 A greedy refinement algorithm

The principle of error distribution suggests a simple algorithm for the generation of
adaptive partitions, based on a greedy refinement algorithm:

1. Initialization: T1 = {[0,1]}.
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2. Given TN select Im ∈TN that maximizes the local error e1,Ik( f )∞.

3. Split Im into two sub-intervals of equal size to obtain TN+1 and return to step 2.

The family AN of adaptive partitions that are generated by this algorithm is char-
acterized by the restriction that all intervals are of the dyadic type 2− j[n,n + 1]
for some j ≥ 0 and n ∈ {0, · · · ,2 j − 1}. We also note that all such partitions TN

may be identified to a finite subtree with N leaves, picked within an infinite dyadic
master tree M in which each node represents a dyadic interval. The root of M
corresponds to [0,1] and each node I of generation j corresponds to an interval of
length 2− j which has two children nodes of generation j + 1 corresponding to the
two halves of I. This identification, which is illustrated on Figure 1, is useful for
coding purposes since any such subtree can be encoded by 2N bits.

Fig. 1 Adaptive dyadic partitions identify to dyadic trees

We now want to understand how the approximations generated by adaptive re-
finement algorithm behave in comparison to those associated with the optimal par-
tition. In particular, do we also have that e1,TN ( f )∞ ≤ CN−1 when f ′ ∈ L1 ? The
answer to this question turns out to be negative, but it was proved in [30] that a
slight strengthening of the smoothness assumption is sufficient to ensure this con-
vergence rate: we instead assume that the maximal function of f ′ is in L1. We recall
that the maximal function of a locally integrable function g is defined by

Mg(x) := sup
r>0
|B(x,r)|−1

∫
B(x,r)

|g(t)|dt,

It is known that Mg ∈ Lp if and only if g ∈ Lp for 1 < p < ∞ and that Mg ∈ L1 if
and only if g ∈ L logL, i.e.

∫ 1
0 |g(t)| log(1+ |g(t)|)dt <∞, see [42]. In this sense, the

assumption that Mf ′ is integrable is only slightly stronger than f ∈W 1,1.

If TN := (I1, · · · , IN), define the accuracy

η := max
1≤k≤N

e1,Ik( f )∞.

For each k, we denote by Jk the interval which is the parent of Ik in the refinement
process. From the definition of the algorithm, we necessarily have

η ≤ ‖ f −aJk( f )‖L∞ ≤
∫

Jk

| f ′(t)|dt.
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For all x ∈ Ik, the ball B(x,2|Ik|) contains Jk and it follows therefore that

Mf ′(x)≥ |B(x,2|Ik|)|−1
∫

B(x,2|Ik|)
| f ′(t)|dt ≥ [4|Ik|]−1η ,

which implies in turn ∫
Ik

Mf ′(t)dt ≥ η/4.

If Mf ′ is integrable, this yields the estimate

Nη ≤ 4
∫ 1

0
Mf ′(t)dt.

It follows that
e1,TN ( f )∞ = η ≤CN−1

with C = 4‖Mf ′ ‖L1 . We have thus established the following result.

Theorem 2.3. If f is a continuous function defined on [0,1] and if σN( f )∞ denotes
the L∞ error of piecewise constant approximation on adaptive partitions of dyadic
type, we have

Mf ′ ∈ L1([0,1])⇒ σN( f )∞ ≤CN−1, (21)

and that this rate may be achieved by the above described greedy algorithm.

Note however that a converse to (21) does not hold and that we do not so far know
of a simple smoothness property that would be exactly equivalent to the rate of
approximation N−1 by dyadic adaptive partitions. A by-product of (21) is that

f ∈W 1,p([0,1])⇒ σN( f )∞ ≤CN−1, (22)

for any p > 1.

3 Adaptive and isotropic approximation

We now consider the problem of piecewise polynomial approximation on a domain
Ω ⊂ IRd, using adaptive and isotropic partitions. We therefore consider a sequence
(AN)N≥0 of families of partitions that satisfies the restriction (2). We use piecewise
polynomials of degree m−1 for some fixed but arbitrary m.

Here and in all the rest of the chapter, we restrict our attention to partitions
into geometrically simple elements which are either cubes, rectangles or simplices.
These simple elements satisfy a property of affine invariance: there exist a refer-
ence element R such that any T ∈ T ∈AN is the image of R by an invertible affine
transformation AT . We can choose R to be the unit cube [0,1]d or the unit simplex
{0 ≤ x1 ≤ ·· · ≤ xd ≤ 1} in the case of partitions by cubes and rectangles or sim-
plices, respectively.
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3.1 Local estimates

If T ∈T is an element and f is a function defined on Ω , we study the local approx-
imation error

em,T ( f )p := min
π∈IPm−1

‖ f −π‖Lp(T ). (23)

When p = 2 the minimizing polynomial is given by

π := Pm,T f ,

where Pm,T is the L2-orthogonal projection, and can therefore be computed by solv-
ing a least square system. When p �= 2, the minimizing polynomial is generally not
easy to determine. However it is easily seen that the L2-orthogonal projection re-
mains an acceptable choice: indeed, it can easily be checked that the operator norm
of Pm,T in Lp(T ) is bounded by a constant C that only depends on (m,d) but not on
the cube or simplex T . From this we infer that for all f and T one has

em,T ( f )p ≤ ‖ f −Pm,T f‖Lp(T ) ≤ (1+C)em,T ( f )p. (24)

Local estimates for em,T ( f )p can be obtained from local estimates on the reference
element R, remarking that

em,T ( f )p =
( |T |
|R|

)1/p
em,R(g)p, (25)

where g = f ◦AT . Assume that p,τ ≥ 1 are such that 1
τ = 1

p + m
d , and let g∈W m,τ(R).

We know from Sobolev embedding that

‖g‖Lp(R) ≤C‖g‖W m,τ (R),

where the constant C depends on p,τ and R. Accordingly, we obtain

em,R(g)p ≤C min
π∈IPm−1

‖g−π‖W m,τ (R). (26)

We then invoke Deny-Lions theorem which states that if R is a connected domain,
there exists a constant C that only depends on m and R such that

min
π∈IPm−1

‖g−π‖W m,τ (R) ≤C|g|W m,τ (R). (27)

If g = f ◦AT , we obtain by this change of variable that

|g|W m,τ (R) ≤C
( |R|
|T |

)1/τ
‖BT‖m| f |W m,τ (T ), (28)

where BT is the linear part of AT and C is a constant that only depends on m and d.
A well known and easy to derive bound for ‖BT‖ is
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‖BT‖ ≤
hT

ρR
, (29)

Combining (25), (26), (27), (28) and (29), we thus obtain a local estimate of the
form

em,T ( f )p ≤C|T |1/p−1/τ hm
T | f |W m,τ (T ) = C|T |−m/dhm

T | f |W m,τ (T ).

where we have used the relation 1
τ = 1

p + m
d . From the isotropy restriction (2), there

exists a constant C > 0 independent of T such that hd
T ≤C|T |. We have thus estab-

lished the following local error estimate.

Theorem 3.1. If f ∈W m,τ(Ω), we have for all element T

em,T ( f )p ≤C| f |W m,τ (T ), (30)

where the constant C only depends on m, R and the constants in (2).

Let us mention several useful generalizations of the local estimate (30) that can
be obtained by a similar approach based on a change of variable on the reference
element. First, if f ∈W s,τ(Ω) for some 0 < s ≤ m and τ ≥ 1 such that 1

τ = 1
p + s

d ,
we have

em,T ( f )p ≤C| f |W s,τ (T ). (31)

Recall that when s is not an integer, the W s,τ semi-norm is defined by

| f |W s,τ (Ω)q := ∑
|α|=n

∫
Ω×Ω

|∂α f (x)−∂α f (y)|τ

|x− y|(s−n)τ+d
dxdy,

where n is the largest integer below s. In the more general case where 1
τ ≤

1
p + s

d ,
we obtain an estimate that depends on the diameter of T :

em,T ( f )p ≤Chr
T | f |W s,τ (T ), r :=

d
p
− d
τ

+ s≥ 0. (32)

Finally, remark that for a fixed p ≥ 1 and s, the index τ defined by 1
τ = 1

p + s
d may

be smaller than 1, in which case the Sobolev space W s,τ(Ω) is not well defined. The
local estimate remain valid if W s,τ(Ω) is replaced by the Besov space Bs

τ ,τ(Ω). This
space consists of all f ∈ Lτ(Ω) functions such that

| f |Bs
τ ,τ := ‖ωk( f , ·)τ‖Lτ ([0,∞[, dt

t ),

is finite. Here k is the smallest integer above s and ωk( f , t)τ denotes the Lτ -modulus
of smoothness of order k defined by

ωk( f , t)τ := sup
|h|≤t
‖Δ k

h f‖Lτ ,

where Δh f := f (·+ h)− f (·) is the usual difference operator. The space Bs
τ ,τ de-

scribes functions which have “s derivatives in Lτ” in a very similar way as W s,τ .
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In particular it is known that these two spaces coincide when τ ≥ 1 and s is not an
integer. We refer to [29] and [18] for more details on Besov spaces and their char-
acterization by approximation procedures. For all p,τ > 0 and 0 ≤ s≤ m such that
1
τ ≤

1
p + s

d , a local estimate generalizing (32) has the form

em,T ( f )p ≤Chr
T | f |Bs

τ ,τ (T ), r :=
d
p
− d
τ

+ s≥ 0. (33)

3.2 Global estimates

We now turn our local estimates into global estimates, recalling that

em,T ( f )p := min
g∈VT

‖ f −g‖Lp =
(
∑

T∈T

em,T ( f )p
p

)1/p
;

with the usual modification when p = ∞. We apply the principle of error equidistri-
bution assuming that the partition TN is built in such way that

em,T ( f )p = η , (34)

for all T ∈ TN where N = N(η). A first immediate estimate for the global error is
therefore

em,TN ( f )p ≤ N1/pη . (35)

Assume now that f ∈W m,τ(Ω) with τ ≥ 1 such that 1
τ = 1

p + m
d . It then follows

from Theorem 3.1 that

Nητ ≤ ∑
T∈TN

em,T ( f )τp ≤C ∑
T∈TN

| f |τW m,τ (T ) = C| f |τW m,τ ,

Combining with (35) and using the relation 1
τ = 1

p + m
d , we have thus obtained that

for adaptive partitions TN built according to the error equidistribution, we have

em,TN ( f )p ≤CN−m/d | f |W m,τ . (36)

By using (31), we obtain in a similar manner that if 0 ≤ s ≤ m and τ ≥ 1 are such
that 1

τ = 1
p + s

d , then

em,TN ( f )p ≤CN−s/d | f |W s,τ . (37)

Similar results hold when τ < 1 with W s,τ replaced by Bs
τ ,τ but their proof requires a

bit more work due to the fact that | f |τBs
τ ,τ

is not sub-additive with respect to the union
of sets. We also reach similar estimate in the case p =∞ by a standard modification
of the argument.

The estimate (36) suggests that for piecewise polynomial approximation on adap-
tive and isotropic partitions, we have
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σN( f )p ≤CN−m/d | f |W m,τ ,
1
τ

=
1
p

+
m
d

. (38)

Such an estimate should be compared to (4), in a similar way as we compared (17)
with (8) in the one dimensional case: the same same rate N−m/d is governed by a
weaker smoothness condition.

In contrast to the one dimensional case, however, we cannot easily prove the va-
lidity of (38) since it is not obvious that there exists a partition TN ∈ AN which
equidistributes the error in the sense of (34). It should be remarked that the deriva-
tion of estimates such as (36) does not require a strict equidistribution of the error.
It is for instance sufficient to assume that em,T ( f )p ≤ η for all T ∈TN , and that

c1η ≤ em,T ( f )p,

for at least c2N elements of TN , where c1 and c2 are fixed constants. Nevertheless,
the construction of a partition TN satisfying such prescriptions still appears as a
difficult task both from a theoretical and algorithmical point of view.

3.3 An isotropic greedy refinement algorithm

We now discuss a simple adaptive refinement algorithm which emulates error
equidistribution, similar to the algorithm which was discussed in the one dimen-
sional case. For this purpose, we first build a hierarchy of nested quasi-uniform
partitions (D j) j≥0, where D0 is a coarse triangulation and where D j+1 is obtained
from D j by splitting each of its elements into a fixed number K of children. We
therefore have

#(D j) = K j#(D0),

and since the partitions D j are assumed to be quasi-uniform, there exists two con-
stants 0 < c1 ≤ c2 such that

c1K− j/d ≤ hT ≤ c2K− j/d , (39)

for all T ∈ D j and j ≥ 0. For example, in the case of two dimensional triangula-
tions, we may choose K = 4 by splitting each triangle into 4 similar triangles by the
midpoint rule, or K = 2 by bisecting each triangle from one vertex to the midpoint
of the opposite edge according to a prescribed rule in order to preserve isotropy.
Specific rules which have been extensively studied are bisection from the most re-
cently generated vertex [8] or towards the longest edge [41]. In the case of partitions
by rectangles, we may preserve isotropy by splitting each rectangle into 4 similar
rectangles by the midpoint rule.

The refinement algorithm reads as follows:

1. Initialization: TN0 = D0 with N0 := #(D0).

2. Given TN select T ∈TN that maximizes em,T ( f )T .
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3. Split T into its K childrens to obtain TN+K−1 and return to step 2.

Similar to the one dimensional case, the adaptive partitions that are generated by
this algorithm are restricted to a particular family where each element T is picked
within an infinite dyadic master tree M = ∪ j≥0D j which roots are given by the
elements D0. The partition TN may be identified to a finite subtree of M with N
leaves. Figure 2 displays an example of adaptively refined partitions either based on
longest edge bisection for triangles, or by quad-split for squares.

Fig. 2 Adaptively refined partitions based on longest edge bisection (left) or quad-split (right)

This algorithm cannot exactly achieve error equidistribution, but our next result
reveals that it generates partitions that yield error estimates almost similar to (36).

Theorem 3.2. If f ∈W m,τ(Ω) for some τ ≥ 1 such that 1
τ < 1

p + m
d , we then have

for all N ≥ 2N0 = 2#(D0),

em,TN ( f )p ≤CN−m/d | f |W m,τ , (40)

where C depends on τ , m, K, R and the choice of D0. We therefore have for piecewise
polynomial approximation on adaptively refined partitions

σN( f )p ≤CN−m/d | f |W m,τ ,
1
τ

>
1
p

+
m
d

. (41)

Proof: The technique used for proving this result is adapted from the proof of a
similar result for tree-structured wavelet approximation in [19]. We define

η := max
T∈TN

em,T ( f )p, (42)

so that we obviously have when p < ∞,

em,TN ( f )p ≤ N1/pη . (43)

For T ∈TN \D0, we denote by P(T ) its parent in the refinement process. From the
definition of the algorithm, we necessarily have
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η ≤ em,P(T )( f )p,

and therefore, using (32) with s = m, we obtain

η ≤Chr
P(T )| f |W s,τ (P(T )), (44)

with r := d
p −

d
τ + m > 0. We next denote by TN, j := TN ∩D j the elements of

generation j in TN and define Nj := #(TN, j). We estimate Nj by taking the τ power
of (44) and summing over TN, j which gives

Njητ ≤Cτ ∑T∈TN, j
hrτ

P(T )| f |
τ
W s,τ (P(T ))

≤Cτ(supT∈TN, j
hrτ

P(T ))∑T∈TN, j
| f |τW s,τ (P(T ))

≤ KCτ(supT∈D j−1
hrτ

T )| f |τW s,τ .

Using (39) and the fact that #(D j) = N0K j, we thus obtain

Nj ≤min{Cη−τK− jrτ/d | f |τW s,τ , N0K j}.

We now evaluate

N−N0 = ∑
j≥1

Nj ≤ ∑
j≥1

min{Cη−τK− jrτ/d | f |τW s,τ , N0K j}.

By introducing j0 the smallest integer such that Cη−τK− jrτ/d | f |τW s,τ ≤ N0K j, we
find that

N−N0 ≤ N0 ∑
j≤ j0

K j +Cη−τ | f |τW s,τ ∑
j> j0

K− jrτ/d ,

which after evaluation of j0 yields

N−N0 ≤Cη−
dτ

d+rτ | f |
dτ

d+rτ
W s,τ = Cη−

d p
d+mp | f |

d p
d+mp
W s,τ ,

and therefore, assuming that N ≥ 2N0,

η ≤CN−1/p−m/d | f |W s,τ .

Combining this estimate with (43) gives the announced result. In the case p = ∞, a
standard modification of the argument leads to a similar conclusion. �

Remark 3.1. By similar arguments, we obtain that if f ∈W s,τ(Ω) for some τ ≥ 1
and 0≤ s≤ m such that 1

τ < 1
p + s

d , we have

em,TN ( f )p ≤CN−s/d | f |W s,τ .

The restriction τ ≥ 1 may be dropped if we replace W s,τ by the Besov space Bs
τ ,τ , at

the price of a more technical proof.
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Remark 3.2. The same approximation results can be obtained if we replace em,T ( f )p

in the refinement algorithm by the more computable quantity ‖ f −Pm,T f‖Lp(T ), due
to the equivalence (24).

Remark 3.3. The greedy refinement algorithm defines a particular sequence of sub-
trees TN of the master tree M , but TN is not ensured to be the best choice in
the sense of minimizing the approximation error among all subtrees of cardinal-
ity at most N. The selection of an optimal tree can be performed by an additional
pruning strategy after enough refinement has been performed. This approach was
developped in the context of statistical estimation under the acronyme CART (clas-
sification and regression tree), see [12, 32]. Another approach that builds a near
optimal subtree only based on refinement was proposed in [7].

Remark 3.4. The partitions which are built by the greedy refinement algorithm are
non-conforming. Additional refinement steps are needed when the users insists on
conformity, for instance when solving PDE’s. For specific refinement procedures,
it is possible to bound the total number of elements that are due to additional con-
forming refinement by the total number of triangles T which have been refined due
to the fact that em,T ( f )T was the largest at some stage of the algorithm, up to a fixed
multiplicative constant. In turn, the convergence rate is left unchanged compared
to the original non-conforming algorithm. This fact was proved in [8] for adaptive
triangulations built by the rule of newest vertex bisection. A closely related concept
is the amount of additional elements which are needed in order to impose that the
partition satisfies a grading property, in the sense that two adjacent elements may
only differ by one refinement level. For specific partitions, it was proved in [23]
that this amount is bounded up to a fixed multiplicative constant the number of ele-
ments contained in the non-graded partitions. Figure 3 displays the conforming and
graded partitions obtained by the minimal amount of additional refinement from the
partitions of Figure 2.

Fig. 3 Conforming refinement (left) and graded refinement (right)

The refinement algorithm may also be applied to discretized data, such as numer-
ical images. The approximated 512× 512 image is displayed on Figure 4 together
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with its approximation obtained by the refinement algorithm based on newest ver-
tex bisection and the error measured in L2, using N = 2000 triangles. In this case,
f has the form of a discrete array of pixels, and the L2(T )-orthogonal projection
is replaced by the �2(ST )-orthogonal projection, where ST is the set of pixels with
centers contained in T . The use of adaptive isotropic partitions has strong similarity
with wavelet thresholding [28, 18]. In particular, it results in ringing artifacts near
the edges.

Fig. 4 The image ‘peppers” (left) and its approximation by 2000 isotropic triangles obtained by
the greedy algorithm (right)

3.4 The case of smooth functions

Although the estimate (38) might not be achievable for a general f ∈W m,τ(Ω), we
can show that for smooth enough f , the numerical quantity that governs the rate of

convergence N−
n
d is exactly | f |W m,τ :=

(
∑|α|=m ‖∂α f‖τLτ

)1/τ
that we may define

as so even for τ < 1. For this purpose, we assume that f ∈Cm(Ω). Our analysis is
based on the fact that such a function can be locally approximated by a polynomial
of degree m.

We first study in more detail the approximation error on a function q ∈ IPm. We
denote by IHm the space of homogeneous polynomials of degree m. To q ∈ IPm, we
associate its homogeneous part q ∈ IHm, which is such that

q−q ∈ IPm−1.

We denote by qα the coefficient of q associated to the multi-index α = (α1, · · · ,αd)
with |α|= m. We thus have

em,T (q)p = em,T (q)p.
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Using the affine transformation AT which maps the reference element R onto T , and
denoting by BT its linear part, we can write

em,T (q)p =
( |T |
|R|

)1/p
eR,m(q◦AT )p =

( |T |
|R|

)1/p
em,R(q̃)p, q̃ := q◦BT ∈ IHm

where we have used the fact that q̃−q ◦AT ∈ IPm−1. Introducing for any r > 0 the
quasi-norm on IHm

|q|r :=
(
∑
|α|=m

|qα |r
)1/r

,

one easily checks that

C−1‖B−1
T ‖−m|q|r ≤ |q̃|r ≤C‖BT‖m|q|r,

for some constant C > 0 that only depends on m, r and R. We then remark that
eR,m(q)p is a norm on IHm, which is equivalent to |q|r since IHm is finite dimensional.
It follows that there exists constants 0 < C1 ≤C2 such that for all q and T

C1|T |1/p‖B−1
T ‖−m|q|r ≤ em,T (q)p ≤C2|T |1/p‖BT‖m|q|r.

Finally, using the bound (29) for ‖BT‖ and its symmetrical counterpart

‖B−1
T ‖ ≤

hR

ρT
,

together with the isotropy restriction (2), we obtain with 1
τ := 1

p + m
d the equivalence

C1|T |τ |q|r ≤ em,T (q)p ≤C2|T |τ |q|r,

where C1 and C2 only depend on m, R and the constant C in (2). Choosing r = τ this
equivalence can be rewritten as

C1

(
∑
|α|=m

‖qα‖τLτ (T )

)1/τ
≤ em,T (q)p ≤C2

(
∑
|α|=m

‖qα‖τLτ (T )

)1/τ
.

Using shorter notations, this is summarized by the following result.

Lemma 3.1. Let p ≥ 1 and 1
τ := 1

p + m
d . There exists constant C1 and C2 that only

depends on m, R and the constant C in (2) such that

C1|q|W m,τ (T ) ≤ em,T (q)p ≤C2|q|W m,τ (T ), (45)

for all q ∈ IPm.

In what follows, we shall frequently identify the m-th order derivatives of a function
f at some point x with an homogeneous polynomial of degree m. In particular we
write
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|dm f (x)|r :=
(
∑
|α|=m

|∂α f (x)|r
)1/r

.

We first establish a lower estimate on σN( f ), which reflects the saturation rate
N−m/d of the method, under a slight restriction on the set AN of admissible par-
titions, assuming that the diameter of all elements decreases as N→+∞, according
to

max
T∈TN

hT ≤ AN−1/d , (46)

for some A > 0 which may be arbitrarily large.

Theorem 3.3. Under the restriction (46), there exists a constant c > 0 that only
depends on m, R and the constant C in (2) such that

liminf
N→+∞

Nm/dσN( f )p ≥ c| f |W m,τ (47)

for all f ∈Cm(Ω), where 1
τ := 1

p + m
d .

Proof: If f ∈Cm(Ω) and x ∈Ω , we denote by qx the Taylor polynomial of order m
at the point x = (x1, · · · ,xd):

qx(y) = qx(y1, · · · ,yd) := ∑
|α|≤m

1
|α|!∂

α f (x)(y1− x1)α1 · · ·(yd− xd)αd . (48)

If TN is a partition in AN , we may write for each element T ∈TN and x ∈ T

em,T ( f )p ≥ em,T (qx)p−‖ f −qx‖Lp(T )
≥C1|qx|W m,τ (T )−‖ f −qx‖Lp(T )
≥ c| f |W m,τ (T )−C1| f −qx|W m,τ (T )−‖ f −qx‖Lp(T ),

with c := C1 min{1,τ}, where we have used the lower bound in (45) and the quasi-
triangle inequality

‖u+ v‖Lτ ≤max{1,τ−1}(‖u‖Lτ +‖v‖Lτ ).

By the continuity of the m-th order derivative of f , we are ensured that for all ε > 0
there exists δ > 0 such that

|x− y| ≤ δ ⇒ | f (y)−qx(y)| ≤ ε|x− y|m and |dm f (y)−dmqx|τ ≤ ε. (49)

Therefore if N ≥ N0 such that AN−1/d
0 ≤ δ , we have

em,T ( f )p ≥ c| f |W m,τ (T )− (C1ε|T |1/τ + εhm
T |T |1/p)

≥ c| f |W m,τ (T )− (1+C1)εhm+d/p
T

≥ c| f |W m,τ (T )−CεN−1/τ ,
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where the constant C depends on C1 in (45) and A in (46). Using triangle inequality,
it follows that

em,TN ( f )p =
(
∑

T∈T

em,T ( f )p
p

)1/p
≥ c
(
∑

T∈T

| f |pW m,τ (T )

)1/p
−CεN−m/d .

Using Hölder’s inequality, we find that

| f |W m,τ =
(
∑

T∈T

| f |τW m,τ (T )

)1/τ
≤ Nm/d

(
∑

T∈T

| f |pW m,τ (T )

)1/p
, (50)

which combined with the previous estimates shows that

Nm/dem,TN ( f )p ≥ c| f |W m,τ −Cε.

Since ε > 0 is arbitrary this concludes the proof. �

Remark 3.5. The Hölder’s inequality (50) becomes an equality if and only if all
quantities in the sum are equal, which justifies the error equidistribution principle
since these quantities are approximations of em,T ( f )p.

We next show that if f ∈ Cm(Ω), the adaptive approximations obtained by the
greedy refinement algorithm introduced in §3.3 satisfy an upper estimate which
closely matches the lower estimate (47).

Theorem 3.4. There exists a constant C that only depends on m, R and on the choice
of the hierarchy (D j) j≥0 such that for all f ∈Cm(Ω), the partitions TN obtained by
the greedy algorithm satisfy.

limsup
N→+∞

Nm/dem,TN ( f )p ≤C| f |W m,τ , (51)

where 1
τ := 1

p + m
d . In turn, for adaptively refined partitions, we have

limsup
N→+∞

Nm/dσN( f )p ≤C| f |W m,τ , (52)

for all f ∈Cm(Ω).

Proof: For any ε > 0, we choose δ > 0 such that (49) holds. We first remark that
there exists N(δ ) sufficiently large such that for any N ≥N(δ ) at least N/2 elements
T ∈ TN have parents with diameter hP(T ) ≤ δ . Indeed, the uniform isotropy of the
elements ensures that

|T | ≥ chd
P(T ),

for some fixed constant c > 0. We thus have

#{T ∈TN ; hP(T ) ≥ δ} ≤ |Ω |
cδ d ,
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and the right-hand side is less than N/2 for large enough N. We denote by T̃N the
subset of T ∈TN such that hP(T ) ≤ δ . Defining η as previously by (42), we observe
that for all T ∈ T̃N \D0, we have

η ≤ em,P(T )( f )p. (53)

If x is any point contained in T and qx the Taylor polynomial of f at this point
defined by (48), we have

em,P(T )( f )p ≤ em,P(T )(qx)p +‖ f −qx‖Lp(P(T ))
≤C2|qx|W m,τ (P(T )) + εhm

P(T )|P(T )|1/p

≤C2

(
|P(T )|
|T |

)1/τ
|qx|W m,τ (T ) + εhm

P(T )|P(T )|1/p

≤C2

(
|P(T )|
|T |

)1/τ
| f |W m,τ (T ) + εD2

(
|P(T )|
|T |

)1/τ
|T |1/τ + εhm

P(T )|P(T )|1/p,

where C2 is the constant appearing in (45) and D2 := C2 max{1,1/τ}. Combining
this with (53), we obtain that for all T ∈ T̃N ,

η ≤ D(| f |W m,τ (T ) + ε|T |1/τ)

where the constant D depends on C2, m and on the refinement rule defining the
hierarchy (D j) j≥0. Elevating to the power τ and summing on all T ∈ T̃N , we thus
obtain

(N/2−N0)ητ ≤max{1,τ}Dτ(| f |τW m,τ + ετ |Ω |),

where N0 := #(D0). Combining with (43), we therefore obtain

em,TN ( f )p ≤ Dmax{τ 1
τ ,1/τ}N1/p(N/2−N0)−1/τ(| f |W m,τ + ε|Ω |1/τ).

Taking N > 4N0 and remarking that ε > 0 is arbitrary, we conclude that (52) holds
with C = 41/τDmax{τ 1

τ ,1/τ}. �

Theorems 3.3 and 3.4 reveal that for smooth enough functions, the numerical quan-
tity that governs the rate of convergence N−m/d in the Lp norm of piecewise polyno-
mial approximations on adaptive isotropic partitions is exactly | f |W m,τ . In a similar
way one would obtain that the same rate for quasi-uniform partitions is governed by
the quantity | f |W m,p . Note however that these results are of asymptotic nature since
they involve limsup and liminf as N→+∞, in contrast to Theorem 3.2. The results
dealing with piecewise polynomial approximation on anisotropic adaptive partitions
that we present in the next sections are of a similar asymptotic nature.
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4 Anisotropic piecewise constant approximation on rectangles

We first explore a simple case of adaptive approximation on anisotropic partitions
in two space dimensions. More precisely, we consider piecewise constant approxi-
mation in the Lp norm on adaptive partitions by rectangles with sides parallel to the
x and y axes. In order to build such partitions, Ω cannot be any polygonal domain,
and for the sake of simplicity we fix it to be the unit square:

Ω = [0,1]2.

The family AN consists therefore of all partitions of Ω of at most N rectangles of
the form

T = I× J,

where I and J are intervals contained in [0,1]. This type of adaptive anisotropic
partitions suffers from a strong coordinate bias due to the special role of the x and
y direction: functions with sharp transitions on line edges are better approximated
when these eges are parallel to the x and y axes. We shall remedy this defect in §5 by
considering adaptive piecewise polynomial approximation on anisotropic partitions
consisting of triangles, or simplices in higher dimension. Nevertheless, this first
simple example is already instructive. In particular, it reveals that the numerical
quantity governing the rate of approximation has an inherent non-linear structure.
Throughout this section, we assume that f belongs to C1([0,1]2).

4.1 A heuristic estimate

We first establish an error estimate which is based on the heuristic assumption that
the partition is sufficiently fine so that we may consider that ∇ f is constant on each
T , or equivalently f coincides with an affine function qT ∈ IP1 on each T . We thus
first study the local Lp approximation error on T = I× J for an affine function of
the form

q(x,y) = q0 +qxx+qyy.

Denoting by q(x,y) := qxx +qyy the homogeneous linear part of q, we first remark
that

e1,T (q)p = e1,T (q)p, (54)

since q and q differ by a constant. We thus concentrate on e1,T (q)p and discuss
the shape of T that minimizes this error when the area |T | = 1 is prescribed. We
associate to this optimization problem a function Kp that acts on the space of linear
functions according to

Kp(q) = inf
|T |=1

e1,T (q)p. (55)

As we shall explain further, the above infimum may or may not be attained.
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We start by some observations that can be derived by elementary change of vari-
able. If a+T is a translation of T , then

e1,a+T (q)p = e1,T (q)p (56)

since q and q(·−a) differ by a constant. Therefore, if T is a minimizing rectangle
in (55), then a+T is also one. If hT is a dilation of T , then

e1,hT (q)p = h2/p+1e1,T (q)p (57)

Therefore, if we are interested in minimizing the error for an area |T | = A, we find
that

inf
|T |=A

e1,T (q)p = A1/τKp(q),
1
τ

:=
1
p

+
1
2

(58)

and the minimizing rectangles for (58) are obtained by rescaling the minimizing
rectangles for (55).

In order to compute Kp(q), we thus consider a rectangle T = I× J of unit area
which barycenter is the origin. In the case p = ∞, using the notation X := |qx| |I|/2
and Y := |qy| |J|/2, we obtain

e1,T (q)∞ = X +Y.

We are thus interested in the minimization of the function X +Y under the constraint
XY = |qxqy|/4. Elementary computations show that when qxqy �= 0, the infimum is
attained when X = Y = 1

2

√
|qyqx| which yields

|I|=

√
|qy|
|qx|

and |J|=
√
|qx|
|qy|

.

Note that the optimal aspect ratio is given by the simple relation

|I|
|J| =

|qy|
|qx|

, (59)

which expresses the intuitive fact that the refinement should be more pronounced in
the direction where the function varies the most. Computing e1,T (q)∞ for such an
optimized rectangle, we find that

K∞(q) =
√
|qyqx|. (60)

In the case p = 2, we find that
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e1,T (q)2
2 =
∫ |I|/2
−|I|/2

∫ |J|/2
−|J|/2 |qxx+qyy|2dydx

=
∫ |I|/2
−|I|/2

∫ |J|/2
−|J|/2(q

2
xx2 +q2

yy2 +2qxqyxy)dydx

= 4
∫ |I|/2

0

∫ |J|/2
0 (q2

xx2 +q2
yy2)dydx

= 4
3 (q2

x(|I|/2)3|J|/2+q2
y(|J|/2)3|I|/2)

= 1
3 (X2 +Y 2),

where we have used the fact that |I| |J|= 1. We now want to minimize the function
X2 +Y 2 under the constraint XY = |qxqy|/4. Elementary computations again show
that when qxqy �= 0, the infimum is again attained when X = Y = 1

2

√
|qyqx|, and

therefore leads to the same aspect ratio given by (59), and the value

K2(q) =
1√
6

√
|qxqy|. (61)

For other values of p the computation of e1,T (q)p is more tedious, but leads to a
same conclusion: the optimal aspect ratio is given by (59) and the function Kp has
the general form

Kp(q) = Cp

√
|qxqy|, (62)

with Cp :=
(

2
(p+1)(p+2)

)1/p
. Note that the optimal shape of T does not depend on

the Lp metric in which we measure the error.
By (54), (56) and (57), we find that for shape-optimized triangles of arbitrary

area, the error is given by

e1,T (q)p = |T |1/τKp(q)p = Cp

√
|qyqx||T |1/τ , (63)

Note that Cp is uniformly bounded for all p≥ 1.
In the case where q �= 0 but qxqy = 0, the infimum in (55) is not attained, and the

rectangles of a minimizing sequence tend to become infinitely long in the direction
where q is constant. We ignore at the moment this degenerate case.

Since we have assumed that f coincides with an affine function on T , the estimate
(63) yields

e1,T ( f )p = Cp

∥∥∥∥
√
|∂x f∂y f |

∥∥∥∥
Lτ (T )

= ‖Kp(∇ f )‖Lτ ,
1
τ

:=
1
p

+
1
2
. (64)

where we have identifed ∇ f to the linear function (x,y) �→ x∂x f + y∂y f . This local
estimate should be compared to those which were discussed in §3.1 for isotropic el-
ements: in the bidimensional case, the estimate (30) of Theorem 3.1 can be restated
as

e1,T ( f )p ≤C‖∇ f‖Lτ (T ),
1
τ

:=
1
p

+
1
2
.

The improvement in (64) comes the fact that
√
|∂x f∂y f | may be substantially

smaller than |∇ f | when |∂x f | and |∂y f | have different order of magnitude which
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reflects an anisotropic behaviour for the x and y directions. However, let us keep in
mind that the validity of (64) is only when f is identified to an affine function on T .

Assume now that the partition TN is built in such a way that all rectangles have
optimal shape in the above described sense, and obeys in addition the error equidis-
tribution principle, which by (64) means that

‖Kp(∇ f )‖Lτ (T ) = η , T ∈TN .

Then, we have on the one hand that

e1,TN ( f )p ≤ ηN1/p,

and on the other hand, that

Nητ ≤ ‖Kp(∇ f )‖τLτ .

Combining the two above, and using the relation 1
τ := 1

p + 1
2 , we thus obtain the

error estimate
σN( f )p ≤ N−1/2‖Kp(∇ f )‖Lτ . (65)

This estimate should be compared with those which were discussed in §3.2 for adap-
tive partition with isotropic elements: for piecewise constant functions on adaptive
isotropic partitions in the two dimensional case, the estimate (38) can be restated as

σN( f )p ≤CN−1/2‖∇ f‖Lτ ,
1
τ

=
1
p

+
1
2
.

As already observed for local estimates, the improvement in (64) comes from the
fact that |∇ f | is replaced by the possibly much smaller

√
|∂x f∂y f |. It is interesting

to note that the quantity

Ap( f ) := ‖Kp(∇ f )‖Lτ = Cp

∥∥∥∥
√
|∂x f∂y f |

∥∥∥∥
Lτ

,

is strongly nonlinear in the sense that it does not satisfy for any f and g an inequality
of the type Ap( f + g) ≤C(Ap( f )+ Ap(g)), even with C > 1. This reflects the fact
that two functions f and g may be well approximated by piecewise constants on
anisotropic rectangular partitions while their sum f +g may not be.

4.2 A rigourous estimate

We have used heuristic arguments to derive the estimate (65), and a simple example
shows that this estimate cannot hold as such: if f is a non-constant function that
only depends on the variable x or y, the quantity Ap( f ) vanishes while the error
σN( f )p may be non-zero. In this section, we prove a valid estimate by a rigourous
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derivation. The price to pay is in the asymptotic nature of the new estimate, which
has a form similar to those obtained in §3.4.

We first introduce a “tamed” variant of the function Kp, in which we restrict the
search of the infimum to rectangles of limited diameter. For M > 0, we define

Kp,M(q) = min
|T |=1,hT≤M

e1,T (q)p. (66)

In contrast to the definition of Kp, the above minimum is always attained, due to the
compactness in the Hausdorff distance of the set of rectangles of area 1, diameter
less or equal to M, and centered at the origin. It is also not difficult to check that the
functions q �→ e1,T (q)p are uniformly Lipschitz continuous for all T of area 1 and
diameter less than M: there exists a constant CM such that

|e1,T (q)p− e1,T (q̃)p| ≤CM|q− q̃|, (67)

where |q| := (q2
x + q2

y)
1/2. In turn Kp,M is also Lipschitz continuous with constant

CM . Finally, it is obvious that Kp,M(q)→ Kp(q) as M→+∞.
If f is a C1 function, we denote by

ω(δ ) := max
|z−z′|≤δ

|∇ f (z)−∇ f (z′)|,

the modulus of continuity of ∇ f , which satisfies limδ→0ω(δ ) = 0. We also define
for all z ∈Ω

qz(z′) = f (z)+∇ f · (z′ − z),

the Taylor polynomial of order 1 at z. We identify its linear part to the gradient of f
at z:

qz = ∇ f (z).

We thus have
| f (z′)−qz(z′)| ≤ |z− z′|ω(|z− z′|).

At each point z, we denote by TM(z) a rectangle of area 1 which is shape-optimized
with respect to the gradient of f at z in the sense that it solves (66) with q = qz.
The following results gives an estimate of the local error for f for such optimized
triangles.

Lemma 4.1. Let T = a+hTM(z) be a rescaled and shifted version of TM(z). We then
have for any z′ ∈ T

e1,T ( f )p ≤ (Kp,M(qz′)+BMω(max{|z− z′|,hT}))|T |1/τ ,

with BM := 2CM +M.

Proof: For all z,z′ ∈Ω , we have
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e1,TM (qz′) ≤ e1,TM (qz)+CM|qz−qz′ |
= Kp,M(qz)+CM|qz−qz′ |
≤ Kp,M(qz′)+2CM|qz−qz′ |
≤ Kp,M(qz′)+2CMω(|z− z′|).

We then observe that if z′ ∈ T

e1,T ( f )p ≤ e1,T (qz′)+‖ f −qz′‖Lp(T )
≤ e1,TM (qz′)|T |1/τ +‖ f −qz′ ‖L∞(T )|T |1/p

≤ (Kp,M(qz′)+2CMω(|z− z′|))|T |1/τ +hTω(hT )|T |1/p

≤ (Kp,M(qz′)+2CMω(|z− z′|)+Mω(hT ))|T |1/τ ,

which concludes the proof. �

We are now ready to state our main convergence theorem.

Theorem 4.1. For piecewise constant approximation on adaptive anisotropic parti-
tions on rectangles, we have

limsup
N→+∞

N1/2σN( f )p ≤ ‖Kp(∇ f )‖Lτ . (68)

for all f ∈C1([0,1]2).

Proof: We first fix some number δ > 0 and M > 0 that are later pushed towards
0 and +∞ respectively. We define a uniform partition Tδ of [0,1] into squares S of
diameter hS ≤ δ , for example by j0 iterations of uniform dyadic refinement, where
j0 is chosen large enough such that 2− j0+1/2 ≤ δ . We then build partitions TN by
further decomposing the square elements of Tδ in an anisotropic way. For each
S ∈ Tδ , we pick an arbitrary point zS ∈ S (for example the barycenter of S) and
consider the Taylor polynomial qzS of degree 1 of f at this point. We denote by
TS = TM(qzS) the rectangle of area 1 such that,

e1,TS(qzS)p = min
|T |=1,hT≤M

e1,T (qzS)p = Kp,M(qzS).

For h > 0, we rescale this rectangle according to

Th,S = h(Kp,M(qzS)+(BM +CM)ω(δ )+δ )−τ/2TS.

and we define Th,S as the tiling of the plane by Th,S and its translates. We assume
that hCA ≤ δ so that hT ≤ δ for all T ∈Th,S and all S. Finally, we define the partition

TN = {T ∩S ; T ∈Th,S and S ∈Tδ}.

We first estimate the local approximation error. By lemma (4.1), we obtain that for
all T ∈Th,S and z′ ∈ T ∩S
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e1,T∩S( f )p ≤ e1,T ( f )p

≤ (Kp,M(qz′)+BMω(δ ))|T |1/τ

≤ h2/τ(Kp,M(qzS)+(BM+CM)ω(δ ))(Kp,M(qzS)+(BM+CM)ω(δ )+δ )−1

≤ h2/τ

The rescaling has therefore the effect of equidistributing the error on all rectangles
of TN , and the global approximation error is bounded by

e1,TN ( f )p ≤ N1/ph2/τ (69)

We next estimate the number of rectangles N = #(TN), which behaves like

N = (1+η(h))∑S∈Tδ
|S|
|Th,S|

= (1+η(h))h−2∑S∈Tδ
|S|(Kp,M(qzS)+(BM +CM)ω(δ )+δ )τ

= (1+η(h))h−2∑S∈Tδ

∫
S(Kp,M(qzS)+(BM +CM)ω(δ )+δ )τ ,

where η(h)→ 0 as h→ 0. Recalling that Kp,M(qzS) is Lipschitz continuous with
constant CM , it follows that

N ≤ (1+η(h))h−2
∫
Ω

(Kp,M(qz)+(BM +2CM)ω(δ )+δ )τ . (70)

Combining (69) and (70), we have thus obtained

N1/2e1,TN ( f )p ≤ (1+η(h))1/τ‖Kp,M(qz)+(BM +2CM)ω(δ )+δ‖Lτ .

Observing that for all ε > 0, we can choose M large enough and δ and h small
enough so that

(1+η(h))1/τ‖Kp,M(qz)+(BM +2CM)ω(δ )+δ‖Lτ ≤ ‖Kp,M(qz)‖Lτ + ε,

this concludes the proof. �

In a similar way as in Theorem 3.3, we can establish a lower estimate on σN( f ),
which reflects the saturation rate N−1/2 of the method, and shows that the numerical
quantity that governs this rate is exactly equal to ‖Kp(∇ f )‖Lτ . We again impose a
slight restriction on the set AN of admissible partitions, assuming that the diameter
of all elements decreases as N→+∞, according to

max
T∈TN

hT ≤ AN−1/2, (71)

for some A > 0 which may be arbitrarily large.

Theorem 4.2. Under the restriction (71), we have

liminf
N→+∞

N1/2σN( f )p ≥ ‖Kp(∇ f )‖Lτ (72)
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for all f ∈C1(Ω), where 1
τ := 1

p + 1
2 .

Proof: We assume here p < ∞. The case p = ∞ can be treated by a simple modifi-
cation of the argument. Here, we need a lower estimate for the local approximation
error, which is a counterpart to Lemma 4.1. We start by remarking that for all rect-
angle T ∈Ω and z ∈ T , we have

|e1,T ( f )p− e1,T (qz)p| ≤ ‖ f −qz‖Lp(T ) ≤ |T |1/phTω(hT ),

and therefore

e1,T ( f )p ≥ e1,T (qz)p−|T |1/phTω(hT )≥ Kp(qz)|T |1/τ −|T |1/phTω(hT )

Then, using the fact that if (a,b,c) are positive numbers such that a≥ b−c one has
ap ≥ bp− pcbp−1, we find that

e1,T ( f )p
p ≥ Kp(qz)p|T |p/τ − pKp(qz)p−1|T |(p−1)/τ |T |1/phTω(hT )

= Kp(qz)p|T |1+p/2− pKp(qz)p−1|T |1+(p−1)/2hTω(hT ),

Defining C := pmaxz∈Ω Kp(qz)p−1 and remarking that |T |(p−1)/2 ≤ hp−1, this leads
to the estimate

e1,T ( f )p
p ≥ Kp(qz)p|T |1+p/2−Chp

T |T |ω(hT ).

Since we work under the assumption (71), we can rewrite this estimate as

e1,T ( f )p
p ≥ Kp(qz)p|T |1+p/2−C|T |N−p/2ε(N), (73)

where ε(N)→ 0 as N→ ∞. Integrating (73) over T , gives

e1,T ( f )p
p ≥
∫

T
(Kp(qz)p|T |p/2−CN−p/2ε(N))dz.

Summing over all rectangles T ∈TN and denoting by Tz the triangle that contains z,
we thus obtain

e1,TN ( f )p
p ≥
∫
Ω

Kp(∇ f (z))p|Tz|p/2dz−C|Ω |N−p/2ε(N). (74)

Using Hölder inequality, we find that

∫
Ω

Kp(∇ f (z))τdz≤
(∫

Ω
Kp(∇ f (z))p|Tz|p/2dz

)τ/p(∫
Ω
|Tz|−1dz

)1−τ/p
. (75)

Since
∫
Ω |Tz|−1dz = #(TN) = N, it follows that

e1,TN ( f )p
p ≥ ‖Kp(∇ f )‖p

Lτ N−p/2−C|Ω |N−p/2ε(N),

which concludes the proof. �
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Remark 4.1. The Hölder inequality (75) which is used in the above proof becomes
an equality when the quantity Kp(∇ f (z))p|Tz|p/2 and |Tz|−1 are proportional, i.e.
Kp(∇ f (z))|T |1/τ is constant, which again reflects the principle of error equidistri-
bution. In summary, the optimal partitions should combine this principe with locally
optimized shapes for each element.

5 Anisotropic piecewise polynomial approximation

We turn to adaptive piecewise polynomial approximation on anisotropic partitions
consisting of triangles, or simplices in higher dimension. Here Ω ⊂ R

d is a domain
that can be decomposed into such partitions, therefore a polygon when d = 2, a
polyhedron when d = 3, etc. The family AN consists therefore of all partitions of
Ω of at most N simplices. The first estimates of the form (6) were rigorously es-
tablished in [17] and [5] in the case of piecewise linear element for bidimensional
triangulations. Generalization to higher polynomial degree as well as higher dimen-
sions were recently proposed in [14, 15, 16] as well as in [39]. Here we follow the
general approach of [39] to the characterization of optimal partitions.

5.1 The shape function

If f belongs to Cm(Ω), where m−1 is the degree of the piecewise polynomials that
we use for approximation, we mimic the heuristic approach proposed for piecewise
constants on rectangles in §4.1 by assuming that on each triangle T the relative
variation of dm f is small so that it can be considered as a constant over T . This
means that f is locally identified with its Taylor polynomial of degree m at z, which
is defined as

qz(z′) := f (z)+∇ f (z) · (z′ − z)+
m

∑
k=2

1
k!

dk f (z)[z′ − z, · · · ,z′ − z].

If q ∈ IPm is a polynomial of degree m, we denote by q ∈ IHm its homogeneous part
of degree m. For q = qz we can identify qz ∈ IHm with 1

m! dm f (z). Since q−q∈ IPm−1

we have
em,T (q)p = em,T (q)p.

We optimize the shape of the simplex T with respect to q by introducing the function
Km,p defined on the space IHm

Km,p(q) := inf
|T |=1

em,T (q)p, (76)
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where the infimum is taken among all triangles of area 1. This infimum may or may
not be attained. We refer to Km,p as the shape function. It is obviously a generaliza-
tion of the function Kp introduced for piecewise constant on rectangles in §4.1.

As in the case of rectangles, some elementary properties of Km,p are obtained by
change of variable: if a+T is a shifted version of T , then

em,a+T (q)p = em,T (q)p (77)

since q and q(· − a) differ by a polynomial of degree m− 1, and that if hT is a
dilation of T , then

em,hT (q)p = hd/p+mem,T (q)p (78)

Therefore, if T is a minimizing simplex in (76), then a+T is also one, and if we are
interested in minimizing the error for a given area |T |= A, we find that

inf
|T |=A

em,T (q)p = A1/τKm,p(q),
1
τ

:=
1
p

+
m
d

(79)

and the minimizing simplex for (58) are obtained by rescaling the minimizing sim-
plex for (55).

Remarking in addition that if ϕ is an invertible linear transform, we then have for
all f

|det(ϕ)|1/pem,T ( f ◦ϕ)p = em,ϕ(T )( f )p,

and using (79), we also obtain that

Km,p(q◦ϕ) = |det(ϕ)|mKm,p(q) (80)

The minimizing simplex of area 1 for q ◦ϕ is obtained by application of ϕ−1 fol-
lowed by a rescaling by |det(ϕ)|1/d to the minimizing simplex of area 1 for q if it
exists.

5.2 Algebraic expressions of the shape function

The identity (80) can be used to derive the explicit expression of Km,p for particular
values of (m, p,d), as well as the exact shape of the minimizing triangle T in (76).

We first consider the case of piecewise affine elements on two dimensional tri-
angulations, which corresponds to d = m = 2. Here q is a quadratic form and we
denote by det(q) its determinant. We also denote by |q| the positive quadratic form
associated with the absolute value of the symmetric matrix associated to q.

If det(q) �= 0, there exists a ϕ such that q ◦ϕ is either x2 + y2 or x2− y2, up to
a sign change, and we have |det(q)|= |det(ϕ)|−2. It follows from (80) that K2,p(q)
has the simple form

K2,p(q) = κp|det(q)|1/2, (81)

where κp := K2,p(x2 + y2) if det(q) > 0 and κp = K2,p(x2− y2) if det(q) < 0.
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The triangle of area 1 that minimizes the Lp error when q = x2 + y2 is the equi-
lateral triangle, which is unique up to rotations. For q = x2− y2, the triangle that
minimizes the Lp error is unique up to an hyperbolic transformation with eigen-
values t and 1/t and eigenvectors (1,1) and (1,−1) for any t �= 0. Therefore, such
triangles may be highly anisotropic, but at least one of them is isotropic. For exam-
ple, it can be checked that a triangle of area 1 that minimizes the L∞ error is given
by the half square with vertices ((0,0),(

√
2,0),(0,

√
2)). It can also be checked that

an equilateral triangle T of area 1 is a “near-minimizer” in the sense that

e2,T (q)p ≤CK2,p(q),

where C is a constant independent of p. It follows that when det(q) �= 0, the triangles
which are isotropic with respect to the distorted metric induced by |q| are “optimally
adapted” to q in the sense that they nearly minimize the Lp error among all triangles
of similar area.

In the case when det(q) = 0, which corresponds to one-dimensional quadratic
forms q = (ax+by)2, the minimum in (76) is not attained and the minimizing trian-
gles become infinitely long along the null cone of q. In that case one has K2,p(q) = 0
and the equality (81) remains therefore valid.

These results easily generalize to piecewise affine functions on simplicial parti-
tions in higher dimension d > 1: one obtains

K2,p(q) = κp|det(q)|1/d , (82)

where κp only takes a finite number of possible values. When det(q) �= 0, the sim-
plices which are isotropic with respect to the distorted metric induced by |q| are
“optimally adapted” to q in the sense that they nearly minimize the Lp error among
all simplices of similar volume.

The analysis becomes more delicate for higher polynomial degree m ≥ 3. For
piecewise quadratic elements in dimension two, which corresponds to m = 3 and
d = 2, it is proved in [39] that

K3,p(q) = κp|disc(q)|1/4.

for any homogeneous polynomial q ∈ IH3, where

disc(ax3 +bx2y+ cxy2 +dy3) := b2c2−4ac3−4b3d +18abcd−27a2d2,

is the usual discriminant and κp only takes two values depending on the sign of
disc(q). The analysis that leads to this result also describes the shape of the triangles
which are optimally adapted to q.

For other values of m and d, the exact expression of Km,p(q) is unknown, but it is
possible to give equivalent versions in terms of polynomials Qm,d in the coefficients
of q, in the following sense: for all q ∈ IHm

c1(Qm,d(q))
1
r ≤ K3,p(q)≤ c2(Qm,d(q))

1
r ,
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where r := deg(Qm,d), see [39].

Remark 5.1. It is easily checked that the shape functions q �→Km,p(q) are equivalent
for all p p in the sense that there exist constant 0 < C1 ≤C2 that only depend on the
dimension d such that

C1Km,∞(q)≤ Km,p(q)≤C2Km,∞(q),

for all q ∈ IHm and p ≥ 1. In particular a minimizing triangle for Km,∞ is a near-
minimizing triangle for Km,p. In that sense, the optimal shape of the element does
not strongly depend on p.

5.3 Error estimates

Following at first a similar heuristics as in §4.1 for piecewise constants on rect-
angles, we assume that the triangulation TN is such that all its triangles T have
optimized shape with respect to the polynomial q that coincides with f on T .

According to (79), we thus have for any triangle T ∈T ,

em,T ( f )p = |T | 1τ Km,p(q) =
∥∥∥∥Km,p

(dm f
m!

)∥∥∥∥
Lτ (T )

.

We then apply the principle of error equidistribution, assuming that

em,T ( f )p = η ,

From which it follows that em,TN ( f )p ≤ N1/pη and

Nητ ≤
∥∥∥∥Km,p

(dm f
m!

)∥∥∥∥
τ

Lτ
,

and therefore

σN( f )p ≤ N−m/d

∥∥∥∥Km,p

(dm f
m!

)∥∥∥∥
Lτ

. (83)

This estimate should be compared to (38) which was obtained for adaptive parti-
tions with elements of isotropic shape. The essential difference is in the quantity

Km,p

(
dm f
m!

)
which replaces dm f in the Lτ norm, and which may be significantly

smaller. Consider for example the case of piecewise affine elements, for which we
can combine (83) with (82) to obtain

σN( f )p ≤CN−2/d
∥∥∥|det(d2 f )|1/d

∥∥∥
Lτ

. (84)

In comparison to (38), the norm of the hessian |d2 f | is replaced by the quantity
|det(d2 f )|1/d which is geometric mean of its eigenvalues, a quantity which is sig-
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nificantly smaller when two eigenvalues have different orders of magnitude which
reflects an anisotropic behaviour in f .

As in the case of piecewise constants on rectangles, the example of a function f
depending on only one variable shows that the estimate (84) cannot hold as such.
We may obtain some valid estimates by following the same approach as in Theorem
4.1. This leads to the following result which is established in [39].

Theorem 5.1. For piecewise polynomial approximation on adaptive anisotropic
partitions into simplices, we have

limsup
N→+∞

Nm/dσN( f )p ≤C

∥∥∥∥Km,p

(dm f
m!

)∥∥∥∥
Lτ

,
1
τ

:=
1
p

+
m
d

, (85)

for all f ∈ Cm(Ω). The constant C can be chosen equal to 1 in the case of two-
dimensional triangulations d = 2.

The proof of this theorem follows exactly the same line as the one of Theorem
4.1: we build a sequence of partitions TN by refining the triangles S of a sufficiently
fine quasi-uniform partition Tδ , intersecting each S with a partition Th,S by elements
with shape optimally adapted to the local value of dm f on each S. The constant C
can be chosen equal to 1 in the two-dimensional case, due to the fact that it is then
possible to build Th,S as a tiling of triangles which are all optimally adapted. This is
no longer possible in higher dimension, which explains the presence of a constant
C = C(m,d) larger than 1.

We may also obtain lower estimates, following the same approach as in Theo-
rem 4.2: we first impose a slight restriction on the set AN of admissible partitions,
assuming that the diameter of the elements decreases as N→+∞, according to

max
T∈TN

hT ≤ AN−1/d , (86)

for some A > 0 which may be arbitrarily large. We then obtain the following result,
which proof is similar to the one of Theorem 4.2.

Theorem 5.2. Under the restriction (86), we have

liminf
N→+∞

Nm/dσN( f )p ≥
∥∥∥∥Km,p

(dm f
m!

)∥∥∥∥
Lτ

(87)

for all f ∈Cm(Ω), where 1
τ := 1

p + m
d .

5.4 Anisotropic smoothness and cartoon functions

Theorem 5.1 reveals an improvement over the approximation results based on

adaptive isotropic partitions in the sense that ‖Km,p

(
dm f
m!

)
‖Lτ may be significantly
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smaller than ‖dm f‖Lτ , for functions which have an anisotropic behaviour. However,
this result suffers from two major defects:

1. The estimate (85) is asymptotic: it says that for all ε > 0, there exists N0 de-
pending on f and ε such that

σN( f )p ≤CN−m/d
(∥∥∥∥Km,p

(dm f
m!

)∥∥∥∥
Lτ

+ ε
)
,

for all N ≥ N0. However, it does not ensure a uniform bound on N0 which may
be very large for certain f .

2. Theorem 5.1 is based on the assumption f ∈Cm(Ω), and therefore the estimate
(85) only seems to apply to sufficiently smooth functions. This is in contrast to
the estimates that we have obtained for adaptive isotropic partitions, which are
based on the assumption that f ∈W m,τ(Ω) or f ∈ Bm

τ ,τ(Ω).

The first defect is due to the fact that a certain amount of refinement should be
performed before the relative variation of dm f is sufficiently small so that there
is no ambiguity in defining the optimal shape of the simplices. It is in that sense
unavoidable.

The second defect raises a legitimate question concerning the validity of the con-
vergence estimate (85) for functions which are not in Cm(Ω). It suggests in particu-
lar to introduce a class of distributions such that

∥∥∥∥Km,p

(dm f
m!

)∥∥∥∥
Lτ

< +∞,

and to try to understand if the estimate remains valid inside this class which describe
in some sense functions which have a certain amount anisotropic smoothness. The
main difficulty is that that this class is not well defined due to the nonlinear nature of

Km,p

(
dm f
m!

)
. As an example consider the case of piecewise linear elements on two

dimensional triangulation, that corresponds to m = d = 2. In this case, we have seen
that K2,p(q) = κp

√
|det(q)|. The numerical quantity that governs the approximation

rate N−1 is thus

Ap( f ) :=
∥∥∥∥
√
|det(d2 f )|

∥∥∥∥
Lτ

,
1
τ

=
1
p

+1.

However, this quantity cannot be defined in the distribution sense since the product
of two distributions is generally ill-defined. On the other hand, it is known that
the rate N−1 can be achieved for functions which do not have C2 smoothness, and
which may even be discontinuous along curved edges. Specifically, we say that f is
a cartoon function on Ω if it is almost everywhere of the form

f = ∑
1≤i≤k

fiχΩi ,

where the Ωi are disjoint open sets with piecewise C2 boundary, no cusps (i.e. satis-
fying an interior and exterior cone condition), and such that Ω =∪k

i=1Ω i, and where
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for each 1 ≤ i ≤ k, the function fi is C2 on a neighbourhood of Ω i. Such functions
are a natural candidates to represent images with sharp edges or solutions of PDE’s
with shock profiles.

Let us consider a fixed cartoon function f on a polygonal domain Ω associated
with a partition (Ωi)1≤i≤k. We define

Γ :=
⋃

1≤i≤k

∂Ωi,

the union of the boundaries of the Ωi. The above definition implies that Γ is the
disjoint union of a finite set of points P and a finite number of open curves (Γi)1≤i≤l .

Γ =
( ⋃

1≤i≤l

Γi

)
∪P.

If we consider the approximation of f by piecewise affine function on a triangulation
TN of cardinality N, we may distinguish two types of elements of TN . A triangle
T ∈ TN is called “regular” if T ∩Γ = /0, and we denote the set of such triangles by
T r

N . Other triangles are called “edgy” and their set is denoted by T e
N . We can thus

split Ω according to

Ω := (∪T∈T r
N

T )∪ (∪T∈T e
N

T ) = Ω r
N ∪Ω e

N .

We split accordingly the Lp approximation error into

e2,TN ( f )p
p = ∑

T∈T r
N

e2,T ( f )p
p + ∑

T∈T e
N

e2,T ( f )p
p.

We may use O(N) triangles in T e
N and T r

N (for example N/2 in each set). Since
f has discontinuities along Γ , the approximation error on the edgy triangles does
not tend to zero in L∞ and T e

N should be chosen so that Ω e
N has the aspect of a thin

layer around Γ . Since Γ is a finite union of C2 curves, we can build this layer of
width O(N−2) and therefore of global area |Ω e

N | ≤CN−2, by choosing long and thin
triangles in T e

N . On the other hand, since f is uniformly C2 on Ω r
N , we may choose

all triangles in T r
N of regular shape and diameter hT ≤ CN−1/2. Hence we obtain

the following heuristic error estimate, for a well designed anisotropic triangulation:

e2,TN ( f )p ≤ ∑T∈T r
N
|T |e2,T ( f )p

∞ +∑T∈T e
N
|T |e2,T ( f )p

∞
≤C|Ω r

N |(supT∈T r
N

h2
T )‖d2 f‖p

L∞(Ω r
N) +C|Ω e

N |‖ f‖p
L∞(Ω e

N),

and therefore
e2,TN ( f )p ≤CN−min{1,2/p}, (88)

where the constant C depends on ‖d2 f‖L∞(Ω\Γ ), ‖ f‖L∞(Ω) and on the number, length
and maximal curvature of the C2 curves which constitute Γ .

These heuristic estimates have been discussed in [38] and rigorously proved in
[25]. Observe in particular that the error is dominated by the edge contribution when
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p > 2 and by the smooth contribution when p < 2. For the critical value p = 2 the
two contributions have the same order.

For p ≥ 2, we obtain the approximation rate N−1 which suggests that approxi-
mation results such as Theorem 5.1 should also apply to cartoon functions and that
the quantity Ap( f ) should be finite for such functions. In some sense, we want to
“bridge the gap” between results of anisotropic piecewise polynomial approxima-
tion for cartoon functions and for smooth functions. For this purpose, we first need to
give a proper meaning to Ap( f ) when f is a cartoon function. As already explained,
this is not straightforward, due to the fact that the product of two distributions has no
meaning in general. Therefore, we cannot define det(d2 f ) in the distribution sense,
when the coefficients of d2 f are distributions without sufficient smoothness.

We describe a solution to this problem proposed in [22] which is based on a regu-
larization process. In the following, we consider a fixed radial nonnegative function
ϕ of unit integral and supported in the unit ball, and define for all δ > 0 and f
defined on Ω ,

ϕδ (z) :=
1
δ 2ϕ
( z
δ

)
and fδ = f ∗ϕδ . (89)

It is then possible to gives a meaning to Ap( f ) based on this regularization. This
approach is additionally justified by the fact that sharp curves of discontinuity are a
mathematical idealisation. In real world applications, such as photography, several
physical limitations (depth of field, optical blurring) impose a certain level of blur
on the edges.

If f is a cartoon function on a set Ω , and if x ∈ Γ \P , we denote by [ f ](x) the
jump of f at this point. We also denote by |κ(x)| the absolute value of the curvature
at x. For p ∈ [1,∞] and τ defined by 1

τ := 1+ 1
p , we introduce the two quantities

Sp( f ) :=
∥∥∥∥
√
|det(d2 f )|

∥∥∥∥
Lτ (Ω\Γ )

= Ap( f|Ω\Γ ),

Ep( f ) := ‖
√
|κ|[ f ]‖Lτ (Γ ),

which respectively measure the “smooth part” and the “edge part” of f . We also
introduce the constant

Cp,ϕ := ‖
√
|ΦΦ ′|‖Lτ (R), Φ(x) :=

∫
y∈R

ϕ(x,y)dy. (90)

Note that fδ is only properly defined on the set

Ωδ := {z ∈Ω ; B(z,δ )⊂Ω},

and therefore, we define Ap( fδ ) as the Lτ norm of
√
|det(d2 fδ )| on this set. The

following result is proved in [22].

Theorem 5.3. For all cartoon functions f , the quantity Ap( fδ ) behaves as follows:

• If p < 2, then
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lim
δ→0

Ap( fδ ) = Sp( f ).

• If p = 2, then τ = 2
3 and

lim
δ→0

A2( fδ ) = (S2( f )τ +E2( f )τCτ
2,ϕ)1/τ .

• If p > 2, then Ap( fδ )→ ∞ according to

lim
δ→0

δ
1
2−

1
p Ap( fδ ) = Ep( f )Cp,ϕ .

Remark 5.2. This theorem reveals that as δ → 0, the contribution of the neighbour-
hood of Γ to Ap( fδ ) is neglectible when p < 2 and dominant when p > 2, which
was already remarked in the heuristic computation leading to (88).

Remark 5.3. In the case p = 2, it is interesting to compare the limit expression
(S2( f )τ + E2( f )τCτ

2,ϕ)1/τ with the total variation TV ( f ) = | f |BV . For a cartoon
function, the total variation also can be split into a contribution of the smooth part
and a contribution of the edge, according to

TV ( f ) :=
∫
Ω\Γ
|∇ f |+

∫
Γ
|[ f ]|.

Functions of bounded variation are thus allowed to have jump discontinuities along
edges of finite length. For this reason, BV is frequently used as a natural smooth-
ness space to describe the mathematical properties of images. It is also well known
that BV is a regularity space for certain hyperbolic conservation law, in the sense
that the total variation of their solutions remains finite for all time t > 0. In recent
years, it has been observed that the space BV (and more generally classical smooth-
ness spaces) do not provide a fully satisfactory description of piecewise smooth
functions arising in the above mentionned applications, in the sense that the total
variation only takes into account the size of the sets of discontinuities and not their
geometric smoothness. In contrast, we observe that the term E2( f ) incorporates an
information on the smoothness of Γ through the presence of the curvature |κ|. The
quantity A2( f ) appears therefore as a potential substitute to TV ( f ) in order to take
into account the geometric smoothness of the edges in cartoon function and images.

6 Anisotropic greedy refinement algorithms

In the two previous sections, we have established error estimates in Lp norms for
the approximation of a function f by piecewise polynomials on optimally adapted
anisotropic partitions. Our analysis reveals that the optimal partition needs to satisfy
two intuitively desirable features:

1. Equidistribution of the local error.
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2. Optimal shape adaptation of each element based on the local properties of f .

For instance, in the case of piecewise affine approximation on triangulations, these
items mean that each triangle T should be close to equilateral with respect to a
distorted metric induced by the local value of the hessian d2 f .

From the computational viewpoint, a commonly used strategy for designing an
optimal triangulation consists therefore in evaluating the hessian d2 f and imposing
that each triangle is isotropic with respect to a metric which is properly related to
its local value. We refer in particular to [10] and to [9] where this program is exe-
cuted by different approaches, both based on Delaunay mesh generation techniques
(see also the software package [45] which includes this type of mesh generator).
While these algorithms produce anisotropic meshes which are naturally adapted to
the approximated function, they suffer from two intrinsic limitations:

1. They are based on the data of d2 f , and therefore do not apply well to non-
smooth or noisy functions.

2. They are non-hierarchical: for N > M, the triangulation TN is not a refinement
of TM .

Similar remark apply to anisotropic mesh generation techniques in higher dimen-
sions or for finite elements of higher degree.

The need for hierarchical partitions is critical in the construction of wavelet bases,
which play an important role in applications to image and terrain data processing,
in particular data compression [19]. In such applications, the multilevel structure
is also of key use for the fast encoding of the information. Hierarchy is also use-
ful in the design of optimally converging adaptive methods for PDE’s [8, 40, 43].
However, all these developments are so far mostly limited to isotropic refinement
methods, in the spirit of the refinement procedures discussed in §3. Let us mention
that hierarchical and anisotropic triangulations have been investigated in [36], yet in
this work the triangulations are fixed in advance and therefore generally not adapted
to the approximated function.

A natural objective is therefore to design adaptive algorithmic techniques that com-
bine hierarchy and anisotropy, that apply to any function f ∈ Lp(Ω), and that lead
to optimally adapted partitions.

In this section, we discuss anisotropic refinement algorithms which fullfill this ob-
jective. These algorithms have been introduced and studied in [20] for piecewise
polynomial approximation on two-dimensional triangulations. In the particular case
of piecewise affine elements, it was proved in [21] that they lead to optimal error
estimates. The main idea is again to refine the element T that maximizes the local
error em,T ( f )p, but to allow several scenarios of refinement for this element. Here
are two typical instances in two dimensions:

1. For rectangular partitions, we allow to split each rectangle into two rectangles of
equal size by either a vertical or horizontal cut. There are therefore two splitting
scenarios.



118 Albert Cohen and Jean-Marie Mirebeau

2. For triangular partitions, we allow to bisect each triangle from one of its vertex
towards the mid-point of the opposite edge. There are therefore three splitting
scenarios.

We display on Figure 5 two examples of anisotropic partitions respectively obtained
by such splitting techniques. The choice between the different splitting scenarios is

Fig. 5 Anisotropic partitions obtained by rectangle split (left) and triangle bisection (right)

done by a decision rule which depends on the function f . A typical decision rule
is to select the split which best decreases the local error. The greedy refinement
algorithm therefore reads as follows:

1. Initialization: TN0 = D0 with N0 := #(D0).

2. Given TN select T ∈TN that maximizes em,T ( f )T .

3. Use the decision rule in order to select the type of split to be performed on T .

4. Split T into K elements to obtain TN+K−1 and return to step 2.

Intuitively, the error equidistribution is ensured by selecting the element that maxi-
mizes the local error, while the role of the decision rule is to optimize the shape of
the generated elements.

The problem is now to understand if the piecewise polynomial approximations
generated by such refinement algorithms satisfy similar convergence properties as
those which were established in §4 and §5 when using optimally adapted partitions.
We first study the anisotropic refinement algorithm for the simple case of piecewise
constant on rectangles, and we give a complete proof of its optimal convergence
properties. We then present the anisotropic refinement algorithm for piecewise poly-
nomials on triangulations, and give without proof the available results on its optimal
convergence properties.

Remark 6.1. Let us remark that in contrast to the refinement algorithm discussed
in §2.3 and 3.3, the partition TN may not anymore be identified to a finite subtree
within a fixed infinite master tree M . Instead, for each f , the decision rule defines an
infinite master tree M ( f ) that depends on f . The refinement algorithm corresponds
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to selecting a finite subtree within M ( f ). Due to the finite number of splitting pos-
sibilities for each element, this finite subtree may again be encoded by a number of
bits proportional to N. Similar to the isotropic refinement algorithm, one may use
more sophisticated techniques such as CART in order to select an optimal partition
of N elements within M ( f ). On the other hand the selection of the optimal partition
within all possible splitting scenarios is generally of high combinatorial complexity.

Remark 6.2. A closely related algorithm was introduced in [26] and studied in [24].
In this algorithm every element is a convex polygon which may be split into two
convex polygons by an arbitrary line cut, allowing therefore an infinite number
of splitting scenarios. The selected split is again typically the one that decreases
most the local error. Although this approach gives access to more possibilities of
anisotropic partitions, the analysis of its convergence rate is still an open problem.

6.1 The refinement algorithm for piecewise constants on rectangles

As in §4, we work on the square domain Ω = [0,1]2 and we consider piecewise
constant approximation on anisotropic rectangles. At a given stage of the refine-
ment algorithm, the rectangle T = I× J that maximizes e1,T ( f )p is split either ver-
tically or horizontally, which respectively corresponds to split one interval among I
and J into two intervals of equal size and leaving the other interval unchanged. As
already mentionned in the case of the refinement algorithm discussed in §3.3, we
may replace e1,T ( f )p by the more computable quantity ‖ f −P1,T f‖p for selecting
the rectangle T of largest local error. Note that the L2(T )-projection onto constant
functions is simply the average of f on T :

P1,T f =
1
|T |

∫
T

f .

If T is the rectangle that is selected for being split, we denote by (Td ,Tu) the down
and up rectangles which are obtained by a horizontal split of T and by (Tl ,Tr) the
left and right rectangles which are obtained by a vertical split of T . The most nat-
ural decision rule for selecting the type of split to be performed on T is based on
comparing the two quantities

eT,h( f )p :=
(

e1,Td ( f )p
p +e1,Tu( f )p

p

)1/p
and eT,v( f )p :=

(
e1,Tl ( f )p

p +e1,Tr( f )p
p

)1/p
,

which represent the local approximation error after splitting T horizontally or ver-
tically, with the standard modification when p = ∞. The decision rule based on the
Lp error is therefore:

If eT,h( f )p ≤ eT,v( f )p, then T is split horizontally, otherwise T is split vertically.

As already explained, the role of the decision rule is to optimize the shape of the
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generated elements. We have seen in §4.1 that in the case where f is an affine func-
tion

q(x,y) = q0 +qxx+qyy,

the shape of a rectangle T = I× J which is optimally adapted to q is given by the
relation (59). This relation cannot be exactly fullfilled by the rectangles generated by
the refinement algorithm since they are by construction dyadic type, and in particular

|I|
|J| = 2 j,

for some j∈ZZ. We can measure the adaptation of T with respect to q by the quantity

aq(T ) :=
∣∣∣∣log2

( |I| |qx|
|J| |qy|

)∣∣∣∣ , (91)

which is equal to 0 for optimally adapted rectangles and is small for “well adapted”
rectangles. Inspection of the arguments leading the heuristic error estimate (65) in
§4.1 or to the more rigourous estimate (68) in Theorem 4.1 reveals that these esti-
mates also hold up to a fixed multiplicative constant if we use rectangles which have
well adapted shape in the sense that aqT (T ) is uniformly bounded where qT is the
approximate value of f on T .

We notice that for all q such that qxqy �= 0, there exists at least a dyadic rectangle
T such that aT (q) ≤ 1

2 . We may therefore hope that the refinement algorithm leads
to optimal error estimate of a similar form as (68), provided that the decision rule
tends to generate well adapted rectangles. The following result shows that this is
indeed the case when f is exactly an affine function, and when using the decision
rule either based on the L2 or L∞ error.

Proposition 6.1. Let q ∈ IP1 be an affine function and let T be a rectangle. If T
is split according to the decision rule either based on the L2 or L∞ error for this
function and if T ′ a child of T obtained from this splitting, one then has

aq(T ′)≤ |aq(T )−1|. (92)

As a consequence, all rectangles obtained after sufficiently many refinements satisfy
aq(T )≤ 1.

Proof: We first observe that if T = I× J, the local L∞ error is given by

e1,T (q)∞ :=
1
2

max{|qx| |I|, |qy| |J|},

and the local L2 error is given by

e1,T (q)2 :=
1

4
√

3
(q2

x |I|2 +q2
y |J|2)1/2.

Assume that T is such that |I| |qx| ≥ |J| |qy|. In such a case, we find that
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eT,v(q)∞ =
1
2

max{|qx| |I|, |qy| |J|/2}= |qx| |I|/2,

and

eT,h(q)∞ =
1
2

max{|qx| |I|/2, |qy| |J|} ≤ |qx| |I|/2.

Therefore eT,h(q)∞ ≤ eT,v(q)∞ which shows that the horizontal cut is selected by the
decision rule based on the L∞ error. We also find that

eT,v(q)2 :=
1√
6
(q2

x |I|2 +q2
y |J|2/4)1/2,

and

eT,h(q)2 :=
1√
6
(q2

x |I|2/4+q2
y |J|2)1/2,

and therefore eT,h(q)2 ≤ eT,v(q)2 which shows that the horizontal cut is selected by
the decision rule based on the L2 error. Using the fact that

log2

( |I| |qx|
|J| |qy|

)
≥ 0,

we find that if T ′ is any of the two rectangle generated by both decision rules, we
have aq(T ′) = aq(T )−1 if aq(T ) ≥ 1 and aq(T ′) = 1−aq(T ) if aq(T ) ≤ 1. In the
case where |I| |qx|< |J| |qy|, we reach a similar conclusion observing that the vertical
cut is selected by both decision rules. This proves (92) �

Remark 6.3. We expect that the above result also holds for the decision rules based
on the Lp error for p /∈ {2,∞} which therefore also lead to well adapted rectangles
when f is an affine. In this sense all decision rules are equivalent, and it is reasonable
to use the simplest rules based on the L2 or L∞ error in the refinement algorithm that
selects the rectangle which maximizes e1,T ( f )p, even when p differs from 2 or ∞.

6.2 Convergence of the algorithm

From an intuitive point of view, we expect that when we apply the refinement algo-
rithm to an arbitrary function f ∈C1(Ω), the rectangles tend to adopt a locally well
adapted shape, provided that the algorithm reaches a stage where f is sufficiently
close to an affine function on each rectangle. However this may not necessarily hap-
pen due to the fact that we are not ensured that the diameter of all the elements
tend to 0 as N → ∞. Note that this is not ensured either for greedy refinement algo-
rithms based on isotropic elements. However, we have used in the proof of Theorem
3.4 the fact that for N large enough, a fixed portion - say N/2 - of the elements
have arbitrarily small diameter, which is not anymore guaranteed in the anisotropic
setting.
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We can actually give a very simple example of a smooth function f for which
the approximation produced by the anisotropic greedy refinement algorithm fails to
converge towards f due to this problem. Let ϕ be a smooth function of one variable
which is compactly supported on ]0,1[ and positive. We then define f on [0,1]2 by

f (x,y) := ϕ(4x)−ϕ(4x−1).

This function is supported in [0,1/2]× [0,1]. Due to its particular structure, we find
that if T = [0,1]2, the best approximation in Lp(T ) is achieved by the constant c = 0
and one has

e1,T ( f )p = 21/p‖ϕ‖Lp .

We also find that c = 0 is the best approximation on the four subrectangles Td , Tu,
Tl and Tr and that eT,h( f )p = eTv( f )p = e1,T ( f )p which means both horizontal and
vertical split do not reduce the error. According to the decision rule, the horizontal
split is selected. We are then facing a similar situation on Td and Tu which are again
both split horizontally. Therefore, after N−1 greedy refinement steps, the partition
TN consists of rectangles all of the form [0,1]× J where J are dyadic intervals, and
the best approximation remains c = 0 on each of these rectangles. This shows that
the approximation produced by the algorithm fails to converge towards f , and the
global error remains

e1,TN ( f )p = 21/p‖ϕ‖Lp ,

for all N > 0.
The above example illustrates the fact that the anisotropic greedy refinement al-

gorithm may be defeated by simple functions that exhibit an oscillatory behaviour.
One way to correct this defect is to impose that the refinement of T = I× J reduces
its largest side-length the case where the refinement suggested by the original deci-
sion rule does not sufficiently reduce the local error. This means that we modify as
follow the decision rule:

Case 1: if min{eT,h( f )p,eT,v( f )p} ≤ ρe1,T ( f )p, then T is split horizontally if
eT,h( f )p ≤ eT,v( f )p or vertically if eT,h( f )p > eT,v( f )p. We call this a greedy split.

Case 2: if min{eT,h( f )p,eT,v( f )p} > ρe1,T ( f )p, then T is split horizontally if
|I| ≤ |J| or vertically if |I|> |J|. We call this a safety split.

Here ρ is a parameter chosen in ]0,1[. It should not be chosen too small in order to
avoid that all splits are of safety type which would then lead to isotropic partitions.
Our next result shows that the approximation produced by the modified algorithm
does converge towards f .

Theorem 6.1. For any f ∈ Lp(Ω) or in C(Ω) in the case p = ∞, the partitions
TN produced by the modified greedy refinement algorithm with parameter ρ ∈]0,1[
satisfy

lim
N→+∞

e1,TN ( f )p = 0. (93)
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Proof: Similar to the original refinement procedure, the modified one defines a in-
finite master tree M := M ( f ) with root Ω which contains all elements that can
be generated at some stage of the algorithm applied to f . This tree depends on f ,
and the partition TN produced by the modified greedy refinement algorithm may
be identified to a finite subtree within M ( f ). We denote by D j := D j( f ) the par-
tition consisting of the rectangles of area 2− j in M , which are thus obtained by j
refinements of Ω . This partition also depends on f .

We first prove that e1,D j( f )p → 0 as j → ∞. For this purpose we split D j into
two sets Dg

j and D s
j . The first set Dg

j consists of the element T for which more than
half of the splits that led from Ω to T were of greedy type. Due to the fact that such
splits reduce the local approximation error by a factor ρ and that this error is not
increased by a safety split, it is easily cheched by an induction argument that

e1,Dg
j
( f )p =

(
∑

T∈Dg
j

e1,T ( f )p
p

)1/p
≤ ρ j/2e1,Ω ( f )p ≤ ρ j/2‖ f‖Lp ,

which goes to 0 as j→+∞. This result also holds when p = ∞. The second set D s
j

consists of the elements T for which at least half of the splits that led from Ω to T
were safety split. Since two safety splits reduce at least by 2 the diameter of T , we
thus have

max
T∈Ds

j

hT ≤ 21− j/4,

which goes to 0 as j→+∞. From classical properties of density of piecewise con-
stant functions in Lp spaces and in the space of continuous functions, it follows
that

e1,Ds
j
( f )p → 0 as j→+∞.

This proves that

e1,D j( f )p =
(

e1,Dg
j
( f )p

p + e1,Ds
j
( f )p

p

)1/p
→ 0 as j→+∞,

with the standard modification if p = ∞.
In order to prove that e1,TN ( f )p also converges to 0, we first observe that since

e1,D j( f )p → 0, it follows that for all ε > 0, there exists only a finite number of
T ∈M ( f ) such that e1,T ( f )p ≥ ε . In turn, we find that

ε(N) := max
T∈TN

e1,T ( f )p → 0 as N→+∞.

For some j > 0, we split TN into two sets T j+
N and T j−

N which consist of those
T ∈TN which are in Dl for l ≥ j and l < j respectively. We thus have

e1,TN ( f )p =
(

e
1,T j+

N
( f )p

p + e
1,T j+

N
( f )p

p

)1/p
≤
(

e1,D j( f )p
p +2 jε(N)p

)1/p
.
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Since e1,D j( f )p → 0 as j→ +∞ and ε(N)→ 0 as N → ∞, and since j is arbitrary,
this concludes the proof, with the standard modification if p = ∞. �

6.3 Optimal convergence

We now prove that using the specific value ρ = 1√
2

the modified greedy refinement
algorithm has optimal convergence properties similar to (68) in the case where we
measure the error in the L∞ norm. Similar results can be obtained when the error is
measured in Lp with p < ∞, at the price of more technicalities.

Theorem 6.2. There exists a constant C > 0 such that for any f ∈C1(Ω), the par-
tition TN produced by the modified greedy refinement algorithm with parameter
ρ = 1√

2
satisfy the asymptotic convergence estimate

limsup
N→+∞

N1/2e1,TN ( f )∞ ≤C

∥∥∥∥
√
|∂x f ∂y f |

∥∥∥∥
L2

(94)

The proof of this theorem requires a preliminary result. Here and after, we use the
�∞ norm on IR2 for measuring the gradient: for z = (x,y) ∈Ω

|∇ f (z)| := max{|∂x f (z)|, |∂y f (z)|},

and
‖∇ f‖L∞(T ) := sup

z∈T
|∇ f (z)|= max{‖∂x f‖L∞(T ),‖∂y f‖L∞(T )}.

We recall that the local L∞-error on T is given by

e1,T ( f )∞ =
1
2

(
max
z∈T

f (z)−min
z∈T

f (z)
)

.

We also recall from the proof of Theorem 6.1 that

ε(N) := max
T∈TN

e1,T ( f )∞→ 0 as N→+∞.

Finally we sometimes use the notation x(z) and y(z) to denote the coordinates of a
point z ∈ IR2.

Lemma 6.1. Let T0 = I0×J0 ∈TM be a dyadic rectangle obtained at some stage M
of the refinement algorithm, and let T = I× J ∈TN be a dyadic rectangle obtained
at some later stage N > M and such that T ⊂ T0. We then have

|I| ≥min

{
|I0|,

ε(N)
4‖∇ f‖L∞(T0)

}
and |J| ≥min

{
|J0|,

ε(N)
4‖∇ f‖L∞(T0)

}
.



Adaptive and anisotropic piecewise polynomial approximation 125

Proof: Since the coordinates x and y play symmetrical roles, it suffices to prove the
first inequality. We reason by contradiction. If the inequality does not hold, there
exists a rectangle T ′ = I′ × J′ in the chain that led from T0 to T1 which is such that

|I′|< ε(N)
4‖∇ f‖L∞(T0)

,

and such that T ′ is split vertically by the algorithm. If this was a safety split, we
would have that |J′| ≤ |I′| and therefore

e1,T ′( f )∞ ≤ (|I′|+ |J′|)‖∇ f‖L∞(T ) ≤ 2|I′|‖∇ f‖L∞(T ) < ε(N),

which is a contradiction, since all ancestors of T should satisfy e1,T ′( f )∞ ≥ ε(N).
Hence this split was necessarily a greedy split.

Let zm := Argminz∈T ′ f (z) and zM := Argmaxz∈T ′ f (z), and let T ′′ be the child of
T ′ (after the vertical split) containing zM . Then T ′′ also contains a point z′m such that
|x(z′m)− x(zm)| ≤ |I′|/2 and y(z′m) = y(zm). It follows that

eT ′,v( f )∞ = e1,T ′′( f )∞
≥ f (zM)− f (z′m)

2

≥ f (zM)− f (zm)+‖∂x f‖L∞(T ′)|I′|/2

2
≥ 3

4 e1,T ′( f )∞
> ρe1,T ′( f )∞.

The error was therefore insufficiently reduced which contradicts a greedy split. �

Proof of Theorem 6.2: We consider a small but fixed δ > 0, we define h(δ ) as
the maximal h > 0 such that

∀z,z′ ∈Ω , |z− z′| ≤ 2h(δ )⇒ |∇ f (z)−∇ f (z′)| ≤ δ .

For any rectangle T = I× J ⊂Ω , we thus have

e1,T ( f )∞ ≥ (‖∂x f‖L∞(T )−δ )min{h(δ ), |I|},
e1,T ( f )∞ ≥ (‖∂y f‖L∞(T )−δ )min{h(δ ), |J|}. (95)

Let δ > 0 and M = M( f ,δ ) be the smallest value of N such that ε(N) ≤ 9δh(δ ).
For all N ≥M, and therefore ε(N) ≤ 9δh(δ ), we consider the partition TN which
is a refinement of TM . For any rectangle T0 = I0× J0 ∈ TM , we denote by TN(T0)
the set of rectangles of TN that are contained T0. We thus have

TN := ∪T0∈TM TN(T0),

and TN(T0) is a partition of T0. We shall next bound by below the side length of T =
I×J contained in TN(T0), distinguishing different cases depending on the behaviour
of f on T0.
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Case 1. If T0 ∈ TM is such that ‖∇ f‖L∞(T0) ≤ 10δ , then a direct application of
Lemma 6.1 shows that for all T = I× J ∈TN(T0) we have

|I| ≥min

{
|I0|,

ε(N)
40δ

}
and |J| ≥min

{
|J0|,

ε(N)
40δ

}
(96)

Case 2. If T0 ∈TM is such that ‖∂x f‖L∞(T0) ≥ 10δ and ‖∂y f‖L∞(T0) ≥ 10δ , we then
claim that for all T = I× J ∈TN(T0) we have

|I| ≥min{|I0|,
ε(N)

20‖∂x f‖L∞(T0)
} and |J| ≥min{|J0|,

ε(N)
20‖∂x f‖L∞(T0)

}, (97)

and that furthermore

|T0| ‖∂x f‖L∞(T0)‖∂y f‖L∞(T0) ≤
(

10
9

)2 ∫
R∗
|∂x f ∂y f |dxdy. (98)

This last statement easily follows by the following observation: combining (95) with
the fact that ‖∂x f‖L∞(T0) ≥ 10δ and ‖∂y f‖L∞(T0) ≥ 10δ and that e1,T ( f )∞ ≤ ε(N)≤
9δh(δ ), we find that for all z ∈ T0

|∂x f (z)| ≥ ‖∂x f‖L∞(T0)−δ ≥ 9
10
‖∂x f‖L∞(T0),

and

|∂y f (z)| ≥ ‖∂y f‖L∞(T0)−δ ≥ 9
10
‖∂y f‖L∞(T0),

Integrating over T0 yields (98). Moreover for any rectangle T ⊂ T0, we have

9
10
≤ e1,T ( f )∞
‖∂x f‖L∞(T0)|I|+‖∂y f‖L∞(T0)|J|

≤ 1. (99)

Clearly the two inequalities in (97) are symmetrical, and it suffices to prove the
first one. Similar to the proof of Lemma 6.1, we reason by contradiction, assuming
that a rectangle T ′ = I′ × J′ with |I′|‖∂x f‖L∞(T0) < ε(N)

10 was split vertically by the
algorithm in the chain leading from T0 to T . A simple computation using inequality
(99) shows that

eT ′,h( f )∞
e1,T ′( f )∞

≤
eT ′,h( f )∞
eT ′,v( f )∞

≤ 5
9
× 1+2σ

1+σ/2
with σ :=

‖∂x f‖L∞(T0)|I′|
‖∂y f‖L∞(T0)|J′|

.

In particular if σ < 0.2 the algorithm performs a horizontal greedy split on T ′, which
contradicts our assumption. Hence σ ≥ 0.2, but this also leads to a contradiction
since



Adaptive and anisotropic piecewise polynomial approximation 127

ε(N)≤ e1,T ′( f )∞ ≤ ‖∂x f‖L∞(T0)|I′|+‖∂y f‖L∞(T0)|J′| ≤ (1+σ−1)
ε(N)

10
< ε(N)

Case 3. If T0 ∈TM be such that ‖∂x f‖L∞(T0) ≤ 10δ and ‖∂y f‖L∞(T0) ≥ 10δ , we then
claim that for all T = I× J ∈TN(T0) we have

|I| ≥min

{
|I0|,

ε(N)
Cδ

}
and |J| ≥min

{
|J0|,

ε(N)
4‖∇ f‖L∞

}
, with C = 200, (100)

with symmetrical result if T0 is such that ‖∂x f‖L∞(T0) ≥ 10δ and ‖∂y f‖L∞(T0) ≤ 10δ .
The second part of (100) is a direct consequence of Lemma 6.1, hence we focus on
the first part. Applyting the second inequality of (95) to T = T0, we obtain

9δh(δ )≥ e1,T0( f )∞ ≥ (‖∂y f‖L∞(T0)−δ )min{h(δ ), |J0|} ≥ 9δ min{h(δ ), |J0|},

from which we infer that |J0| ≤ h(δ ). If z1,z2 ∈ T0 and x(z1) = x(z2) we therefore
have |∂y f (z1)| ≥ |∂y f (z2)|− δ . It follows that for any rectangle T = I× J ⊂ T0 we
have

(‖∂y f‖L∞(T )−δ )|J| ≤ e1,T ( f )∞ ≤ ‖∂y f‖L∞(T )|J|+10δ |I|. (101)

We then again reason by contradiction, assuming that a rectangle T ′ = I′ × J′ with
|I′| ≤ 2ε(N)

Cδ was split vertically by the algorithm in the chain leading from T0 to T .
If ‖∂y f‖L∞(T ′) ≤ 10δ , then ‖∇ f‖L∞(T ′) ≤ 10δ and Lemma 6.1 shows that T ′ should
not have been split vertically, which is a contradiction. Otherwise ‖∂y f‖L∞(T ′)−δ ≥
9
10‖∂y f‖L∞(T ′), and we obtain

(1−20/C)e1,T ′( f )∞ ≤ ‖∂y f‖L∞(T ′)|J′| ≤
10
9

e1,T ′( f )∞. (102)

We now consider the children T ′v and T ′h of T ′ of maximal error after a horizontal
and vertical split respectively, and we inject (102) in (101). It follows that

eT ′,h( f )∞ = e1,T ′h
( f )∞

≤ ‖∂y f‖L∞(T ′)|J′|/2+10δ |I′|
≤ 5

9 e1,T ′( f )∞ +20ε(N)/C
≤ ( 5

9 +20/C)e1,T ′( f )∞ = 59
90 e1,T ′( f )∞,

and
eT ′,v( f )∞ = e1,T ′h

( f )∞
≥ (‖∂y f‖L∞(T ′)−δ )|J|
≥ 9

10‖∂y f‖L∞(T ′)|J′|
≥ 9

10 (1−20/C)e1,T ′( f )∞ = 81
100 e1,T ′( f )∞.

Therefore eT ′,v( f )∞ > eT ′,h( f )∞ which is a contradiction, since our decision rule
would then select a horizontal split.
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We now choose N large enough so that the minimum in (96), (97) and (100) is
are always equal to the second term. For all T ∈TN(T0), we respectively find that

ε(N)2

|T | ≤C

⎧⎪⎪⎨
⎪⎪⎩

δ 2 if ‖∇ f‖L∞(T0) ≤ 10δ
1
|T0|
∫

T0
|∂x f ∂y f | if ‖∂x f‖L∞(T0) ≥ 10δ and ‖∂y f‖L∞(T0) ≥ 10δ

δ‖∇ f‖L∞ if ‖∂x f‖L∞(T0) ≤ 10δ and ‖∂y f‖L∞(T0) ≥ 10δ
(or reversed).

with C = max{402, 202(10/9)2, 800}= 1600. For z∈Ω , we set ψ(z) := 1
|T | where

T ∈TN such z ∈ T , and obtain

N = #(TN) =
∫
Ω
ψ ≤Cε(N)−2

(∫
Ω
|∂x f ∂y f |dxdy+δ‖∇ f‖L∞ +δ 2

)
.

Taking the limit as δ → 0, we obtain

limsup
N→∞

N
1
2 ‖ f − fN‖ ≤ 40

∥∥∥∥
√
|∂x f∂y f |

∥∥∥∥
L2

,

which concludes the proof. �

Remark 6.4. The proof of the Theorem can be adapted to any choice of parameter
ρ ∈] 1

2 ,1[.

6.4 Refinement algorithms for piecewise polynomials on triangles

As in §5, we work on a polygonal domain Ω ⊂ IR2 and we consider piecewise poly-
nomial approximation on anisotropic triangles. At a given stage of the refinement
algorithm, the triangle T that maximizes em,T ( f )p is split from one of its vertices
ai ⊂ {a1,a2,a3} towards the mid-point bi of the opposite edge ei. Here again, we
may replace em,T ( f )p by the more computable quantity ‖ f −Pm,T f‖p for selecting
the triangle T of largest local error.

If T is the triangle that is selected for being split, we denote by (T ′i ,T
′′

i ) the two
children which are obtained when T is split from ai towards bi. The most natural
decision rule is based on comparing the three quantities

eT,i( f )p :=
(

em,T ′i
( f )p

p + em,T ′′i
( f )p

p

)1/p
, i = 1,2,3.

which represent the local approximation error on T after the three splitting options,
with the standard modification when p =∞. The decision rule based on the Lp error
is therefore:

T is split from ai towards bi for an i that minimizes eT,i( f )p.
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A convergence analysis of this anisotropic greedy algorithm is proposed in [21]
in the case of piecewise affine functions corresponding to m = 2. Since it is by far
more involved than the convergence analysis presented in §6.1, §6.2 and §6.3 for
piecewise constants on rectangles, but possess several similar features, we discuss
without proofs the main available results and we also illustrate their significance
through numerical tests.

No convergence analysis is so far available for the case of higher order piecewise
polynomial m > 2, beside a general convergence theorem similar to Theorem 6.1.
The algorithm can be generalized to simplices in dimension d > 2. For instance, a
3-d simplex can be split into two simplices by a plane connecting one of its edges
to the midpoint of the opposite edge, allowing therefore between 6 possibilities.

As remarked in the end of §6.1, we may use a decision rule based on a local error
measured in another norm than the Lp norm for which we select the element T of
largest local error. In [21], we considered the “L2-projection” decision rule based on
minimizing the quantity

eT,i( f )2 :=
(
‖ f −P2,T ′i

( f )‖2
L2(T ′i ) +‖ f −P2,T ′′i

( f )‖2
L2(T ′′i )

)1/2
,

as well as the “L∞-interpolation” decision rule based on minimizing the quantity

dT,i( f )2 := ‖ f − I2,T ′i
( f )‖L∞(T ′i ) +‖ f − I2,T ′′i

( f )‖L∞(T ′′i ),

where I2,T denotes the local interpolation operator: I2,T ( f ) is the affine function
that is equal to f at the vertices of T . Using either of these two decision rules, it is
possible to prove that the generated triangles tend to adopt a well adapted shape.

In a similar way to the algorithm for piecewise constant approximation on rect-
angles, we first discuss the behaviour of the algorithm when f is exactly a quadratic
function q. Denoting by q its the homogeneous part of degree 2, we have seen in
§5.1 that when det(q) �= 0, the approximation error on an optimally adapted triangle
T is given by

e2,T (q)p = e2,T (q)p = |T |1/τK2,p(q),
1
τ

:=
1
p

+1.

We can measure the adaptation of T with respect to q by the quantity

σq(T )p =
e2,T (q)p

|T |1/τK2,p(q)
,

which is equal to 1 for optimally adapted triangles and small for “well adapted”
triangles. It is easy to check that the functions (q,T ) �→ σT (q)p are equivalent for
all p, similar to the shape functions K2,p as observed in §5.2.

The following theorem, which is a direct consequence of the results in [21],
shows that the decision rule tends to make “most triangles” well adapted to q.
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Theorem 6.3. There exists constants 0 < θ ,μ < 1 and a constant Cp that only de-
pends on p such that the following holds. For any q ∈ IH2 such that det(q) �= 0
and any triangle T , after j refinement levels of T according to the decision rule, a
proportion 1−θ j of the 2 j generated triangles T ′ satisfies

σq(T ′)p ≤min{μ jσq(T )p,Cp}. (103)

As a consequence, for j > j(q,T ) =− logCp−log(σq(T )p)
logμ one has

σq(T ′)p ≤Cp, (104)

for a proportion 1−θ j of the 2 j generated triangles T ′.

This result should be compared to Proposition 6.1 in the case of rectangles. Here
it is not possible to show that all triangles become well adapted to q, but a proportion
that tends to 1 does. It is quite remarkable that with only three splitting options, the
greedy algorithm manages to drive most of the triangles to a near optimal shape. We
illustrate this fact on Figure 6, in the case of the quadratic form q(x,y) := x2 +100y2,
and an initial triangle T which is equilateral for the euclidean metric and therefore
not well adapted to q. Triangles such that σq(T ′)2 ≤ C2 are displayed in white,
others in grey. We observe the growth of the proportion of well adapted triangles as
the refinement level increases.

Fig. 6 Greedy refinement for q(x,y) := x2 +100y2: j = 2 (left), j = 5 (center), j = 8 (right)

From an intuitive point of view, we expect that when we apply the anisotropic
greedy refinement algorithm to an arbitrary function f ∈C2(Ω), the triangles tend
to adopt a locally well adapted shape, provided that the algorithm reaches a stage
where f is sufficiently close to an quadratic function on each triangle. As in the case
of the greedy refinement algorithm for rectangles, this may not always be the case. It
is however possible to prove that this property holds in the case of strictly convex or
concave functions, using the “L∞-interpolation” decision rule. This allows to prove
in such a case that the approximation produced by the anisotropic greedy algorithm
satisfies an optimal convergence estimate in accordance with Theorem 5.1. These
results from [21] can be summarized as follows.



Adaptive and anisotropic piecewise polynomial approximation 131

Theorem 6.4. If f is a C2 function such that d2 f (x)≥ αI or d2 f (x)≤−αI, for all
x ∈ Ω and some α > 0, then the triangulation generated by the anisotropic greedy
refinement algorithm (with the L∞-interpolation decision rule) satisfies

lim
N→+∞

max
T∈TN

hT = 0. (105)

Moreover, there exists a constant C > 0 such that for any such f , the approximation
produced by the anisotropic greedy refinement algorithm satisfies the asymptotic
convergence estimate

limsup
N→+∞

Ne2,TN ( f )p ≤C

∥∥∥∥
√
|det(d2 f )|

∥∥∥∥
Lτ

,
1
τ

:=
1
p

+1. (106)

For a non-convex function, we are not ensured that the diameter of the elements
tends to 0 as N→∞, and similar to the greedy algorithm for rectangles, it is possible
to produce examples of smooth functions f for which the approximation produced
by the anisotropic greedy refinement algorithm fails to converge towards f . A natu-
ral way to modify the algorithm in order to circumvent this problem is to impose a
type of splitting that tend to diminish the diameter, such as longest edge or newest
vertex bisection, in the case where the refinement suggested by the original decision
rule does not sufficiently reduce the local error. This means that we modify as follow
the decision rule:

Case 1: if min{eT,1( f )p,eT,2( f )p,eT,3( f )p} ≤ ρe2,T ( f )p, then split T from ai to-
wards bi for an i that minimizes eT,i( f )p. We call this a greedy split.

Case 2: if min{eT,1( f )p,eT,2( f )p,eT,3( f )p}> ρe2,T ( f )p, then split T from the most
recently generated vertex or towards its longest edge in the euclidean metric. We call
this a safety split.

As in modified greedy algorithm for rectangles, ρ is a parameter chosen in ]0,1[
that should not be chosen too small in order to avoid that all splits are of safety
type which would then lead to isotropic triangulations. It was proved in [20] that
the approximation produced by this modified algorithm does converge towards f
for any f ∈ Lp(Ω). The following result also holds for the generalization of this
algorithm to higher degree piecewise polynomials.

Theorem 6.5. For any f ∈ Lp(Ω) or in C(Ω) in the case p =∞, the approximations
produced by the modified anisotropic greedy refinement algorithm with parameter
ρ ∈]0,1[ satisfies

limsup
N→+∞

e2,TN ( f )p = 0. (107)

Similar to Theorem 6.2, we may expect that the modified anisotropic greedy re-
finement algorithm satisfies optimal convergence estimates for all C2 function, but
this is an open question at the present stage.
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Conjecture. There exists a constant C > 0 and ρ∗ ∈]0,1[ such that for any f ∈C2,
the approximation produced by the modified anisotropic greedy refinement algo-
rithm with parameter ρ ∈]ρ∗,1[ satisfies the asymptotic convergence estimate (106).

We illustrate the performance of the anisotropic greedy refinement algorithm algo-
rithm for a function f which has a sharp transition along a curved edge. Specifically
we consider

f (x,y) = fδ (x,y) := gδ (
√

x2 + y2),

where gδ is defined by gδ (r) = 5−r2

4 for 0 ≤ r ≤ 1, gδ (1 + δ + r) = − 5−(1−r)2

4
for r ≥ 0, gδ is a polynomial of degree 5 on [1,1 + δ ] which is determined by
imposing that gδ is globally C2. The parameter δ therefore measures the sharpness
of the transition. We apply the anisotropic refinement algorithm based on splitting
the triangle that maximizes the local L2-error and we therefore measure the global
error in L2.

Figure 7 displays the triangulation T10000 obtained after 10000 steps of the algo-
rithm for δ = 0.2. In particular, triangles T such that σq(T )2 ≤C2 - where q is the
quadratic form associated with d2 f measured at the barycenter of T - are displayed
in white, others in grey. As expected, most triangles are of the first type therefore
well adapted to f . We also display on this figure the adaptive isotropic triangulation
produced by the greedy tree algorithm based on newest vertex bisection for the same
number of triangles.

Fig. 7 The anisotropic triangulation T10000 (left), detail (center), isotropic triangulation (right)

Since f is a C2 function, approximations by uniform, adaptive isotropic and adap-
tive anisotropic triangulations all yield the convergence rate O(N−1). However the
constant

C := limsup
N→+∞

Ne2,TN ( f )2,

strongly differs depending on the algorithm and on the sharpness of the transition.
We denote by CU , CI and CA the empirical constants (estimated by N‖ f − fN‖2 for
N = 8192) in the uniform, adaptive isotropic and adaptive anisotropic case respec-
tively, and by U( f ) := ‖d2 f‖L2 , I( f ) := ‖d2 f‖L2/3 and A( f ) := ‖

√
|det(d2 f )|‖L2/3
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the theoretical constants suggested by the convergence estimates. We observe on
Figure 8. that CU and CI grow in a similar way as U( f ) and I( f ) as δ → 0 (a
detailed computation shows that U( f ) ≈ 10.37δ−3/2 and I( f ) ≈ 14.01δ−1/2). In
contrast CA and A( f ) remain uniformly bounded, a fact which is in accordance with
Theorem 5.3 and reflects the superiority of anisotropic triangulations as the layer
becomes thinner and fδ tends to a cartoon function.

δ U( f ) I( f ) A( f ) CU CI CA

0.2 103 27 6.75 7.87 1.78 0.74
0.1 602 60 8.50 23.7 2.98 0.92

0.05 1705 82 8.48 65.5 4.13 0.92
0.02 3670 105 8.47 200 6.60 0.92

Fig. 8 Comparison between theoretical and empirical convergence constants for uniform, adaptive
isotropic and anisotropic refinements, and for different values of δ

We finally apply the anisotropic refinement algorithm to the numerical image of
Figure 4 based on the discretized L2 error and using N = 2000 triangles. We ob-
serve on Figure 9 that the ringing artefacts produced by the isotropic greedy refine-
ment algorithm near the edges are strongly reduced. This is due to the fact that the
anisotropic greedy refinement algorithm generates long and thin triangles aligned
with the edges. We also observe that the quality is slightly improved when using the
modified algorithm. Let us mention that a different approach to the approximation of
image by adaptive anisotropic triangulations was proposed in [27]. This approach is
based on a thinning algorithm, which starts from a fine triangulation and iteratively
coarsens it by point removal. The use of adaptive adaptive anisotropic partitions has
also strong similarities with thresholding methods based on representations which
have more directional selectivity than wavelet decompositions [4, 13, 31, 37]. It is
not known so far if these methods satisfy asymptotic error estimates of the same
form as (106).

Fig. 9 Approximation by 2000 anisotropic triangles obtained by the greedy (left) and modified
(right) algorithm
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Anisotropic function spaces with applications

Shai Dekel and Pencho Petrushev

Abstract In this survey we review the recently developed theory of anisotropic
spaces and representations of functions based on anisotropic multilevel ellipsoid
covers (dilations) of R

n. We also exhibit the relations of the ellipsoid cover ap-
proach to earlier concepts of anisotropic structures as well as to the framework of
general spaces of homogeneous type. A number of open problems are presented and
discussed.

1 Introduction

Anisotropic phenomena appear in various contexts in mathematical analysis and its
applications. For instance, functions are frequently very smooth on subdomains of
R

n separated by smooth curves or manofolds, where they have jump discontinuities.
This sort of singularities reduce significantly the classical smoothness of the func-
tions and create problems when attempting to find sparse representations of them.

One perhaps useful approach to resolving the singularities of functions along
smooth curves and manifolds (and more general singular behaviors) is the utiliza-
tion of the framework of anisotropic multiscale ellipsoid covers (dilations) of R

n

which may change rapidly from point to point at any level and in depth. The second
important element of this concept is to use anisotropic ellipsoid covers adaptively
by allowing them to adjust to the singularities of the function under question. Other
critical issues are related, in particular, to the anisotropic representation of functions
and definition and characterization of the respective anisotropic smoothness spaces.
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The purpose of this survey paper is to review the main concepts and problems
of this relatively new undertaking, documented so far in [11, 12, 14]. Although we
will have some answers to reveal to some of the important questions, there will be
plenty of open problems presented as well.

This theory has three main components with the first being the structure of the
underlying ellipsoid covers of R

n. The main role here is played by discrete multi-
level ellipsoid covers of R

n of the form: Θ = ∪m∈ZΘm, where each Θm consists of
ellipsoids of volume ∼ 2−a0 j which cover R

n and any ellipsoids θ1,θ2 ∈Θm with
θ1 ∩ θ2 �= /0 have similar shapes and orientations. In depth the behavior of the el-
lipsoids is similar, namely, if θ1 ∈Θm, θ2 ∈Θm+1 and θ1 ∩θ2 �= /0, then θ1 and θ2

are similar in shape and orientation. An important feature of the set of all ellipsoid
covers of R

n is that it is invariant under affine transforms. Another important issue
is that any ellipsoid cover of R

n generates a quasi-distance, which coupled with the
Lebesgue measure transforms R

n into a homogeneous type space. The properties of
anisotropic covers are explored in [12]. A short description of them is given in §2,
where we also compare ellipsoid covers of R

2 with the so called multilavel strong
local regular (SLR) triangulations of R

2, introduced in [20].
The anisotropic elements (building blocks) introduced in [12] and the re-

lated representations of functions is the second component of our theory. A se-
quence of bases {Φm}m∈Z is naturally associated to each discrete ellipsoid cover
Θ = ∪m∈ZΘm. Here each Φm consists of C∞ functions which are supported on the
ellipsoids in Θm, reproduce polynomials of degree < k and are locally linear inde-
pendent. The key property of these bases is that each Φm is a stable basis in Lp for
0 < p ≤ ∞. This allows to define local projectors into the spaces Sm = span(Φm)
which preserve polynomials of degree < k. In turn, these maps induce a sequence of
two-level-split bases which provide representation of functions and are aligned with
the underlying anisotropic structure in R

n. As is shown in [12] these representations
also allow to characterize the anisotropic Besov spaces of positive smoothness. The
next step is to define smooth (global) duals to {Φm} and thereby to construct ker-
nels {Sm} which reproduce polynomials of a certain degree in both variables. This
enabled us to deploy the machinery of homogeneous spaces to the construction of
continuous and discrete anisotropic wavelet frames. All these constructions and re-
sults are presented in §3.

The third component of the theory we review here consists of anisotropic
spaces associated with anisotropic ellipsoid covers of R

n. The anisotropic homo-
geneous (Ḃα

pq(Θ)) and inhomogeneous (Bα
pq(Θ)) Besov spaces (B-spaces) of pos-

itive smoothness are developed in [12] and briefly introduced in §4. In the same
section we compare them with the anisotropic B-spaces induced by multilevel SLR-
triangulations of R

2 and with classical Besov spaces. In §5 we show that, in analogy
to the classical case, certain B-spaces naturally occur in nonlinear N-term approx-
imation from the two-level-split bases. In §6 we advance the idea of using adap-
tively anisotropic B-space for measuring the smoothness of the functions, which is
closely related to the problem for sparse representation of functions. The develop-
ment of anisotropic Triebel-Lizorkin of an arbitrary smoothness is the grand open
problem in this theory. The key is to construct anisotropic frames with well local-
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ized elements and prescribed vanishing moments which are faithfully aligned with
the underlying anisotropic ellipsoid cover.

Candès and Donoho (e.g. [5, 6]) have developed the so called curvlets, which
provide an alternative scheme for resolving singularities of functions along smooth
curves in R

2. The advantage of curvlets over our approach is that the curvlets form a
frame, while our scheme is adaptive, and hence curvlets are easier to implement. On
the other hand, the curvlet frame is overly redundant. More precisely at every loca-
tion and scale there are numerous directional elements with various orientations (the
number of orientations increases with the scale). Curvlets are purely L2-creatures
which rely on fine cancelations and are unusable for decomposition of functions in
Lp, p �= 2.

Yet another approach to resolving singularities of functions along smooth curves
is developed in [1, 15] and is based on the so called Adaptive Geometric Wavelets.
This method is closely related to the schemes employing ellipsoid covers and nested
triangulations considered here; it proved to be very effective in image compression.

In the final Section 7 the two-level-split bases and the machinery of Besov spaces
are applied in a regular set-up to the development of meshless multilevel Schwarz
preconditioners for elliptic boundary value problems. The details of this develop-
ment are given in [11], which was the starting point of this work.

Throughout we will use |E| to denote the Lebesgue measure of E ⊂ R
n; we will

denote by c, c1, c2, etc. positive constants which may vary at every appearance. The
equivalence a∼ b means c1a≤ b≤ c2a.

2 Anisotropic multiscale structures on R
n

In this article we are mainly concerned with anisotropic structures on R
n induced by

anisotropic ellipsoid covers (dilations) of R
n and the related function spaces . For

comparison we will also briefly review the anisotropic multilevel nested triangula-
tions of R

2.

2.1 Anisotropic multilevel ellipsoid covers (dilations) of R
n

We denote by B(x,r) the Euclidean ball in R
n of radius r centered at x. The image of

the unit ball B∗ := B(0,1) in R
n via an affine transform will be called an ellipsoid.

Definition 2.1. We call
Θ =
⋃

m∈Z

Θm

a discrete multilevel ellipsoid cover of R
n if the following conditions are obeyed,

where a0, . . . ,a8, and N1 are positive constants:

(a) Every levelΘm (m ∈ Z) consists of ellipsoids θ such that
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a12−a0m ≤ |θ | ≤ a22−a0m (1)

andΘm is a cover of R
n, i.e. R

n =
⋃
θ∈Θm

θ .
(b) For θ ∈Θ let Aθ be an affine transform of the form

Aθ (x) = Mθ x+ vθ , Mθ ∈ R
n×n,

such that θ = Aθ (B∗) and vθ := A(0) is the center of θ . We postulate that for
any θ ∈Θm and θ ′ ∈Θm+ν (m ∈ Z,ν ≥ 0) with θ ∩θ ′ �= /0, we have

a32−a4ν ≤ 1/‖M−1
θ ′ Mθ‖�2→�2 ≤ ‖M

−1
θ Mθ ′ ‖�2→�2 ≤ a52−a6ν . (2)

(c) Each ellipsoid θ ∈Θm can be intersected by at most N1 ellipsoids from Θm.
(d) For every x ∈ R

n and m ∈ Z there exists θ ∈Θm such that x ∈ θ �, where θ � is
the dilated version of θ by a factor of a7 < 1, i.e. θ � = Aθ (B(0,a7)).

(e) If θ ∩η �= /0 with θ ∈Θm and η ∈Θm∪Θm+1, then |θ ∩η |> a8|η |.

We will denote by p(Θ) := {a0,a1, . . . ,a8,N1} the set of all parameters in the above
definition.

Several clarifying remarks are in order.

1. It is crucial that the set of all discrete ellipsoid covers of R
n is invariant under

affine transforms. More precisely, the images A(θ) of all ellipsoids θ ∈Θ of a
given cover Θ of R

n via an affine transform A of the form A(x) = Mx + v with
|detM|= 1 form an ellipsoid cover of R

n with the same parameters as Θ .
2. Condition (b) above indicates that if θ ∩θ ′ �= /0, then the ellipsoids θ and θ ′ are

similar in shape and orientation when they are from close levels. In particular, if
M := M−1

θ Mθ ′ and M = UDV is the singular value decomposition of M, where
U and V are orthogonal matrices, and D = diag(σ1,σ2, . . . ,σn) is diagonal with
σ1 ≥ σ2 ≥ ·· · ≥ σn > 0, then

‖M‖�2→�2 = σ1 and ‖M−1
θ ′ Mθ‖�2→�2 = ‖M−1‖�2→�2 = 1/σn.

Therefore, condition (b) is equivalently expressed as

a32−a4ν ≤ σn ≤ ·· · ≤ σ1 ≤ a52−a6ν . (3)

This condition has a clear geometric interpretation: The affine transform A−1
θ ,

which maps the ellipsoid θ onto the unit ball B∗, maps the ellipsoid θ ′ onto an
ellipsoid with semi-axes σ1,σ2, . . . ,σn satisfying (3).

3. Condition (e) may seem restrictive, but this is not the case. As is shown in [12]
if Θ is a discrete ellipsoid cover satisfying conditions (a)− (d) above, then
there exists a discrete ellipsoid cover Θ̃ of R

n which obeys conditions (a)− (e)
(with possibly different constants a1 and a7) obtained by dilating every ellipsoid
θ ∈Θ by a factor rθ satisfying (a7 +1)/2≤ rθ ≤ 1.
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Continuous and semi-continuous ellipsoid covers. Discrete ellipsoid covers of R
n

are easy to derive from semi-continuous or continuous covers, which are in general
easier to construct.

In the case of a semi-continuous ellipsoid cover Θ = ∪m∈ZΘm, an ellipsoid
θ(v,m) ∈Θm is associated to every v ∈ R

n and m ∈ Z such that

a12−a0m ≤ |θ(v,m)| ≤ a22−a0m,

which replaces (1) and the respective affine transforms satisfy a condition similar to
(2); conditions (c)-(e) are void.

In the case of a continuous ellipsoid coverΘ := ∪t∈RΘt , an ellipsoid θ(v, t) ∈Θt

is associated to every v ∈ R
n and t ∈ R such that

a12−a0t ≤ |θ(v, t)| ≤ a22−a0t ,

i.e. the scale is continuous as well. For more detail and the exact definitions of
ellipsoid covers, see §2.2 in [12]

Examples. (i) The one parameter family of diagonal dilation matrices

Dt = diag(2−tb1 ,2−tb2 , . . . ,2−tbn), b j > 0, j = 1, . . . ,n,

apparently induces a continuous ellipsoid cover of R
n.

(ii) Suppose A is an n× n real matrix with eigenvalues λ satisfying |λ | > 1.
Then it is easy to see that the affine transforms Av,m(x) := A−mx+v, v ∈R

n, m ∈ Z,
define a semi-continuous ellipsoid cover (dilations) of R

n. This particular kind of
dilations are used in [2, 3, 4] for the development of anisotropic Hardy, Besov, and
Triebel-Lizorkin spaces.

(iii) The continuous covers used in Section 6 (see also §7 in [12]) are nontrivial
examples of anisotropic ellipsoid covers of R

2, where the ellipsoids change rapidly
from point to point and in depth.

The point is that, on the one hand, continuous and semi-continuous covers are
easier to construct and, on the other, given a semi-continuous or continuous cover
one can construct a discrete ellipsoid cover with essentially the same (equivalent)
metric (see [12]).

Quasi-distance. A quasi-distance is naturally associated with any discrete, semi-
continuous or continuous ellipsoid covers of R

n. Recall that a quasi-distance on a
set X �= /0 is a map ρ : X ×X → [0,∞) satisfying the conditions:

(a) ρ(x,y) = 0⇐⇒ x = y,
(b) ρ(y,x) = ρ(x,y),
(c) ρ(x,z)≤ κ(ρ(x,y)+ρ(y,z)).

Here κ ≥ 1 is a constant.

Definition 2.2. Assuming thatΘ is a continuous, semi-continuous or discrete ellip-
soid cover of R

n, we define ρ : R
n×R

n → [0,∞) by
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ρ(x,y) := inf{|θ | : θ ∈Θ and x,y ∈ θ}. (4)

Proposition 2.1. [12] For any ellipsoid coverΘ of R
n the map ρ : R

n×R
n→ [0,∞)

defined above is a quasi-distance on R
n.

Spaces of homogeneous type were first introduced in [8] (see also [9, 16]) as a
means for extending the Calderón-Zygmund theory of singular integral operators to
more general settings. Let X be a topological space endowed with a Borel measure μ
and a quasi-distance ρ(·, ·). Assume that the balls Bρ(x,r) := {y ∈ X : ρ(x,y) < r},
x ∈ X , r > 0, form a basis for the topology in X . The space (X ,ρ,μ) is said to be of
homogenous type if there exists a constant A > 0 such that for all x ∈ X and r > 0,

μ(Bρ(x,2r))≤ Aμ(Bρ(x,r)). (5)

If (5) holds then μ is said to be a doubling measure [25, Chapter 1, 1.1]. A space of
homogeneous type is said to be normal, if uniformly μ(B(x,r))∼ r.

Suppose Θ is an ellipsoid cover of R
n and let ρ(·, ·) be the associated quasi-

distance, defined in (4). Denote Bρ(x,r) := {y ∈R
n : ρ(x,y) < r} for x ∈R

n, r > 0.
As is shown in [12] there exist ellipsoids θ ′,θ ′′ ∈Θ such that θ ′ ⊂ Bρ(x,r) ⊂ θ ′′
and |θ ′| ∼ |Bρ(x,r)| ∼ |θ ′′| ∼ r. Consequently, R

n equipped with the distance ρ(·, ·)
and the Lebesgue measure, i.e. (Rn,ρ,dx) is a homogeneous type space. Therefore,
the machinery of spaces of homogeneous type can be employed to our purposes
here.

2.2 Comparison of ellipsoid covers with nested triangulations in R
2

An alternative way of introducing anisotropic structures in R
2 is through multilevel

nested triangulations. The strong locally regular (SLR) triangulations, introduced in
[20], provide a structure compatible with ellipsoid covers. We next recall briefly the
definition of SLR-triangulations.

We call T =
⋃

m∈Z Tm an SLR-triangulation of R
2 with levels {Tm} if the fol-

lowing conditions are obeyed:
(a) Every level Tm consists of closed triangles with disjoint interiors which cover

R
2 and there are no hanging vertices.
(b) Tm+1 is a refinement of Tm (m ∈ Z) and each triangle ∈Tm is subdivided

and has uniformly bounded number of children in Tm+1.
(c) For each ∈T let A be an affine transform of the form

A (x) = M x+ v , M ∈ R
n×n,

such that  = A ( ∗), where  ∗ is an equilateral reference triangle. Now the
condition is that for any  ∈ Tm and  ′ ∈ Tm ∪Tm+1 such that  ′ ∩ �= /0 one
has

c1 ≤ 1/‖M−1
 ′ M ‖�2→�2 ≤ ‖M

−1
 M ′‖�2→�2 ≤ c2. (6)
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In [20] condition (c) is formulated in an equivalent form via a minimum angle con-
dition.

Note that the multilevel SLR-triangulations provide a means for constructing
discrete ellipsoid covers of R

2. Given an SLR-triangulation T one considers for
each triangle ∈T the minimum area circumscribed ellipse. Then one dilates the
resulting ellipses by a sufficiently large factor > 1 to obtain a discrete ellipse cover
of R

2.
The main advantage of ellipse covers over SLR-triangulations is that the latter are

nested which makes them less flexible and harder to construct. On the other hand, as
shown in [13] in presence of an SLR-triangulation it is easier to construct building
blocks consisting of piecewise polynomials. Also the respective generalized Besov
spaces and nonlinear approximation theory are easier to develop. We will be more
specific about these issues later on.

3 Building blocks

The construction of simple elements (building blocks) which allow to represent the
functions and characterize the norms of the spaces of interest is imperative for our
theory. Here we first define a sequence of of bases consisting of C∞ functions sup-
ported on the ellipsoids of the underlying anisotropic ellipsoid cover. Secondly, we
construct compactly supported duals which generate local projectrors and two-level-
split bases. Thirdly, we develop smooth global duals which provide polynomial re-
producing kernels that we utilize to the construction of anisotropic frames.

3.1 Construction of a multilevel system of bases

Given a discrete ellipsoid cover Θ of R
n, we first construct for each level m ∈ Z

a stable basis Φm whose elements are smooth functions supported on the ellipsoids
of Θm. The procedure begins by first coloring the ellipsoids in Θ . It is easy to see
that Θ can be split into no more than 2N1 disjoint subsets (colors) {Θ �}2N1

�=1 so that
for any m ∈ Z neither two ellipsoids θ ′,θ ′′ ∈Θm∪Θm+1 with θ ′ ∩θ ′′ �= /0 are of the
same color.

Our second step is to construct locally independent piecewise polynomial bumps.
For fixed positive integers M and k (M ≥ k) we define

φ̃�(x) := (1−|x|2)M+�k
+ , � = 1,2, . . . ,2N1.

Notice that φ̃�, � = 1, . . . ,2N1, being of different degrees are linearly independent on
any ball contained in B∗ = B(0,1).

The next step is to smooth out each φ̃� by convolving it with a compactly sup-
ported C∞ function. Namely, let h ∈ C∞(Rn) be such that supph = B∗, h ≥ 0, and
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∫
Rn h = 1. Denote hδ (x) := δ−nh(δ−1x). Then for 0 < δ < 1 (we choose δ suffi-

ciently small) the bump
φ ∗� := φ̃� ∗hδ

belongs to C∞, φ ∗� is a polynomial of degree exactly 2(M + �k) on B(0,1− δ ) and
suppφ ∗� = B(0,1+δ ). Now we define φ�(x) := φ ∗� ((1+δ )x).

For any θ ∈Θ we let Aθ denote the affine transform from Definition 2.1 such
that Aθ (B∗) = θ and set

φθ := φ� ◦A−1
θ for θ ∈Θ �, 1≤ �≤ 2N1.

We introduce an mth level partition of unity by defining for each θ ∈Θm

ϕθ :=
φθ

∑θ ′∈Θm φθ ′
. (7)

By property (d) of ellipsoids covers it follows that ∑θ∈Θm ϕθ (x) = 1 for x ∈ R
n.

Let
{Pβ : |β | ≤ k−1}, where degPβ = |β |, (8)

be an orthonormal basis in L2(B∗) for the space Pk of all polynomials in n variables
of total degree k−1. For each θ ∈Θ and |β |< k we define

Pθ ,β := |θ |−1/2Pβ ◦A−1
θ and gθ ,β := ϕθPθ ,β . (9)

To simplify our notation, we denote

Λm := {λ := (θ ,β ) : θ ∈Θm, |β |< k} and gλ := gθ ,β , λ = (θ ,β ). (10)

Also, for λ = (θ ,β ) we will denote by θλ and βλ the components of λ .
Now we define the mth level basis Φm by

Φm := {gλ : λ ∈Λm} and set Sm := span(Φm), (11)

where “span” means “closed span”.
By the definition of {gλ} it readily follows that Pk ⊂ Sm. More importantly, Φm

is locally linearly independent and Lp-stable, which will be recorded in the next
theorem.

Theorem 3.1. Any function f ∈ Sm has a unique representation

f (x) = ∑
λ∈Λm

〈 f , g̃λ 〉gλ (x), (12)

where for every x ∈ R
n the sum is finite and the functions {g̃λ} have the follow-

ing properties: supp(g̃λ ) ⊂ θλ , ‖g̃θ ,β‖p ∼ |θ |1/p−1/2 and the biorthogonal rela-
tion 〈gλ ′ , g̃λ 〉 = δλ ′,λ holds. Moreover, for any f ∈ Sm ∩Lp, 0 < p ≤ ∞, such that
f = ∑λ∈Λm cλgλ we have
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‖ f‖p ∼
(
∑

λ∈Λm

‖cλgλ‖p
p

)1/p
(13)

with the obvious modification when p = ∞.

The proof of this theorem is based on the local linear independence of the functions
{gλ : λ ∈Λm} and uses a compactness argument, see [12] for the details.

We will denote Φ̃m := {g̃λ : λ ∈Λm}.

3.2 Compactly supported duals and local projectors

Our next step is to introduce simple operators which map Lloc
p into Sm and locally

preserve the polynomials P∈Pk with Pk being the set of all polynomials of degree
< k. These operators will give us a vehicle for developing a decomposition scheme
which allows to characterize the anisotropic Besov norms induced by ellipsoid cov-
ers of R

n.
Using the bases {Φm} and their duals {Φ̃m} from Theorem 3.1 we introduce

projectors Qm mapping Lloc
p (1≤ p≤ ∞) onto the spaces Sm defined by

Qm f :=
∫

Rn
Qm(x,y) f (y)dy with Qm(x,y) := ∑

λ∈Λm

g̃λ (y)gλ (x). (14)

Evidently, Qm is a linear operator which maps Lloc
p into Sm and preserves locally all

polynomials from Pk. To be more specific, setting

θ ∗ := ∪{θ ′ ∈Θm : θ ∩θ ′ �= /0} for θ ∈Θm, (15)

it is easy to see that if f |θ∗ = P|θ∗ with P ∈Pk, then Qm f |θ = P|θ .
Another simple operator with similar properties is given in [12].
Evidently, the operators {Qm} from above are no longer usable, when working in

Lp with p < 1. In this case, for a given ellipsoid θ ∈Θ , we let Tθ ,p : Lp(θ)→Pk|θ
be a projector such that

‖ f −Tθ ,p f‖Lp(θ) ≤ cEk( f ,θ)p, f ∈ Lp(θ), (16)

where Ek( f ,θ)p := infP∈Pk
‖ f −P‖Lp(θ). Thus Tθ ,p f is simply a near best approx-

imation to f from Pk in Lp(θ), and hence Tθ ,p can be realized as a linear projector
onto Pk|θ if p ≥ 1 by using, say, the Averaged Taylor polynomials, see e.g. [13].
Of course, Tθ ,p is a nonlinear operator if p < 1.

We now define the operator Tm,p : Lloc
p → Sm by

Tm,p f := ∑
θ∈Θm

ϕθTθ ,p f . (17)
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Evidently, the operator Tm,p (0 < p ≤ ∞) is a local projector onto Pk (nonlinear if
p < 1) just like Qm. Since Tm,p f ∈ Sm, it can be represented in terms of the basis
functions gλ as

Tm,p f = ∑
θ∈Θm

∑
|β |<k

bθ ,β ( f )gθ ,β = ∑
λ∈Λm

bλ ( f )gλ , (18)

where bλ ( f ) := 〈Tm,p f , g̃λ 〉 depends nonlinearly on f if p < 1.
In summary, if T̂m := Qm or T̂m := Tm,p, then

T̂m f = ∑
λ∈Λm

bλ ( f )gλ , where bλ ( f ) =
{
〈 f , g̃λ 〉 if T̂m = Qm,
〈Tm,p f , g̃λ 〉 if T̂m = Tm,p.

(19)

We now recall briefly the definition of local and global moduli of smoothness
that are standard means for describing the quality of approximation. The forward
differences of a function f on a set E ⊂ R

n in direction h ∈ R
n are defined by

Δ k
h f (x) :=

k

∑
j=0

(−1)k+ j
(

k
j

)
f (x+ jh) if [x,x+ kh]⊂ E

and Δ k
h f (x) := 0 otherwise. Then the kth Lp-moduli of smoothness on E and R

n are
defined by

ωk( f ,E)p := sup
h∈Rn

‖Δ k
h f‖Lp(E) and ωk( f , t)p := sup

|h|≤t
‖Δ k

h f‖p, t > 0. (20)

We next give the most important properties of the operators Qm and Tm,p from
above.

Proposition 3.1. Suppose T̂m is any of the operators Qm or Tm,p if 1 ≤ p ≤ ∞, and
T̂m := Tm,p if 0 < p < 1. Then for f ∈ Lloc

p and θ ∈Θm (m ∈ Z)

‖ f − T̂m f‖Lp(θ) ≤ c ∑
θ ′∈Θm:θ ′∩θ �= /0

ωk( f ,θ ′)p,

and ‖ f − T̂m f‖Lp(K)→ 0 as m→ ∞ for any compact K ⊂ R
n.

Furthermore, if f ∈ Lp (L∞ := C0), then ‖ f − T̂m f‖p → 0 as m→ ∞.

3.3 Two-level-split bases

Assume that Tm (m ∈ Z) is one of the operators Qm or Tm,p if p≥ 1, and Tm := Tm,p

if p < 1, defined in §3.2. These operators and the bases {Φm}m∈Z from (11) will
be used to define two-level-split bases which will play an important role in what
follows.
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We will make use of the following representation of consecutive level polynomial
bases, defined in (9):

Pθ ,α =: ∑
|β |<k

Cθ ,η
α,βPη ,β , θ ∈Θm, η ∈Θm+1. (21)

Then since ∑η∈Θm+1
ϕη = 1, we have

Pθ ,α = ∑
η∈Θm+1:θ∩η �= /0

∑
|β |<k

Cθ ,η
α,βPη ,βϕη on θ .

This yields

Tm+1 f −Tm f = ∑
η∈Θm+1

∑
|β |<k

bη ,β ( f )Pη ,βϕη − ∑
θ∈Θm

∑
|α|<k

bθ ,α( f )Pθ ,αϕθ (22)

= ∑
θ∈Θm

ϕθ ∑
η∈Θm+1

∑
|β |<k

bη ,β ( f )Pη ,βϕη

− ∑
θ∈Θm

∑
|α|<k

bθ ,α( f ) ∑
θ∩η �= /0

∑
|β |<k

mθ ,η
α,βPη ,βϕθϕη

= ∑
η∈Θm+1

∑
θ∈Θm:θ∩η �= /0

∑
|β |<k

{
bη ,β ( f )− ∑

|α|<k

mθ ,η
α,βbθ ,α( f )

}
Pη ,βϕηϕθ ,

where bλ ( f ) are given by (19) and depends on the choice of Tm. Thus, setting

Vm := {ν = (η ,θ ,β ) : η ∈Θm+1,θ ∈Θm,θ ∩η �= 0, |β |< k}, m ∈ Z, (23)

the building blocks in (22) have the form

Fν := Pη ,βϕηϕθ , ν = (η ,θ ,β ) ∈ Vm, (24)

where Pη ,β are defined in (9) and ϕη , ϕθ are from (7). We define

Fm := {Fν : ν ∈ Vm} and Wm := span(Fm), m ∈ Z. (25)

Note that Fν ∈C∞, suppFν = θ ∩η if ν = (η ,θ ,β ) and ‖Fν‖2 ∼ 1.
One uses the argument of the proof of Theorem 3.1 (see [12]) to establish the

stability of the two-level-split bases:

Theorem 3.2. Any f ∈Wm has a unique representation

f = ∑
ν∈Vm

cν( f )Fν , (26)

where the dual functionals cν(·) are of the following form: For each ν ∈ Vm, ν =
(η ,θ ,β ), there is an ellipsoid Bν ⊂ θ ∩η with |Bν | ∼ |η | and Bν = Aη(B∗ν) for some
ball B∗ν ⊂ B∗ such that cν( f ) = 〈 f , F̃ν〉, where supp F̃ν ⊂ Bν , ‖F̃ν‖p ∼ |η |1/p−1/2.

Moreover, if f ∈Wm and f = ∑ν∈Vm aνFν , then
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‖ f‖p ∼
(
∑

ν∈Vm

‖aνFν‖p
p

)1/p
, 0 < p≤ ∞, (27)

with the obvious modification when p = ∞.

Using the results from §3.2 one easily derives multilevel decompositions of func-
tions using the two-level-split bases from above.

Theorem 3.3. For any f ∈ Lloc
p (Rn), 0 < p≤ ∞,

f = T0 f + ∑
m≥0

(Tm+1 f −Tm f ) = ∑
m≥−1

∑
ν∈Vm

dν( f )Fν , (28)

where the convergence is in Lp(K) for all compacta K ⊂ R
n. Here for m≥ 0

dν( f ) = bη ,β ( f )− ∑
|α|<k

Cθ ,η
α,βbθ ,β ( f ), ν := (η ,θ ,β ) (29)

with Cθ ,η
α,β from (21), while V−1 :=Λ0, Fλ := gλ and dλ ( f ) := bλ ( f ) if λ ∈ V−1.

Moreover, if f ∈ Lp (L∞ := C0), then (28) as well as

f = ∑
m∈Z

(Tm+1−Tm) f (30)

hold in Lp.

3.4 Global duals and polynomial reproducing kernels

A substantial drawback of the operators Qm and Tm,p considered in §§3.2-3.3 is that
their transposed operators do not reproduce polynomials. For instance, it is easy
to see that for the operator Qm from (14) we have QmP(x) =

∫
Rn Qm(x,y)P(y)dy

∀P∈Pk, however, QmP(y) =
∫
Rn Qm(x,y)P(x)dx is no longer true for P∈Pk. Con-

sequently, these operators do not fit in the general framework of approximation to
the identity operators in homogeneous spaces, which allows to construct anisotropic
wavelet frames (see e.g. [16]). This problem is fixed in [14] by introducing smooth
duals to the bases {gλ}λ∈Λm , which we describe next.

As in [14] to simplify our set-up we will assume for the rest of this section that
in the definition of ellipsoid covers of R

n we have a0 = 0 (see Definition 2.1). Also
to make our presentation more compatible with [14] we will slightly change our
notation assuming that all operators of interest reproduce polynomials of degree < r
instead of degree < k.

The next step is to introduce an appropriate generalization to higher orders of the
approximation to the identity definition given in [16]. To this end we first have to
establish some convenient notation. Let K(x,y) be a smooth kernel. For x,y ∈ R

n

the Taylor representation of K(x,y) centered at x with y fixed can be written in the
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form
K(z,y) = Tr−1,x(K(·,y))(z)+Rr,x(K(·,y))(z), z ∈ R

n, (31)

where Tr−1 is the Taylor polynomial of degree r−1 and Rr,x is the rth order Taylor
remainder.

In the particular case of spaces of homogeneous type generated by an anisotropic
ellipsoid cover of R

n with a qusi-distance ρ(·, ·) we will need the notation

μ(x,y,d) :=
{
μ0 if ρ(x,y) < d,
μ1 if ρ(x,y)≥ d.

(32)

Definition 3.1. Let (Rn,ρ,dx) be a normal space of homogeneous type. A sequence
of kernel operators {Sm}m∈Z, formally defined by Sm( f )(x) :=

∫
Rn Sm(x,y) f (y)dy,

is an approximation to the identity of order (μ ,δ ,r), where μ = (μ0,μ1), 0 < μ0 ≤
μ1 ≤ 1, δ > 0, r ∈N, with respect to ρ(·, ·), if for some constant c > 0 the following
conditions are satisfied:

(i) |Sm (x,y)| ≤ c 2−mδ

(2−m+ρ(x,y))1+δ , ∀x,y ∈ R
n.

(ii) For 1≤ k ≤ r and all x,y,z ∈ R
n,

|Rk,x(Sm(·,y))(z)| ≤ cρ(x,z)μ(x,z,2−m)k

×
(

2−mδ

(2−m +ρ(x,y))1+δ+μ(x,z,2−m)k
+

2−mδ

(2−m +ρ(y,z))1+δ+μ(x,z,2−m)k

)
,

|Rk,y(Sm(x, ·))(z)| ≤ cρ(y,z)μ(y,z,2−m)k

×
(

2−mδ

(2−m +ρ(x,y))1+δ+μ(y,z,2−m)k
+

2−mδ

(2−m +ρ(x,z))1+δ+μ(y,z,2−m)k

)
,

(iii) For 1≤ k ≤ r and all x,x′,y,y′ ∈ R
n

|Rk,y(Rk,x(Sm(·, ·))(x′))(y′)|, |Rk,x(Rk,y(Sm(·, ·))(y′))(x′)|
≤ cρ(x,x′)μ(x,x′,2−m)kρ(y,y′)μ(y,y′,2−m)k

×
(

2−mδ

(2−m +ρ(x,y))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

+
2−mδ

(2−m +ρ(x,y′))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

+
2−mδ

(2−m +ρ(x′,y))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

+
2−mδ

(2−m +ρ(x′,y′))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

)
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[To clarify our notation, denote gm(x,x′,y) := Rk,x (Sm(·,y))(x′), then for fixed
x,x′ ∈ R

n, Rk,y
(
Rk,x (Sm(·, ·))(x′)

)
(y′) := Rk,y (gm(x,x′, ·))(y′)].

(iv) P(x) =
∫
Rn Sm(x,y)P(y)dy and P(y) =

∫
Rn Sm(x,y)P(x)dx for all P ∈Pr.

Note that the definition of an approximation of the identity given in [16] corre-
sponds to the case 0 < δ < r = 1.

To construct well localized kernels Sm(x,y) which reproduce polynomials we
need to construct an appropriate dual basis to Φm. Let Gm be the Gram matrix

Gm :=
[
Aλ ,λ ′
]
λ ,λ ′∈Λm

, Aλ ,λ ′ := 〈gλ ,gλ ′ 〉 :=
∫

Rn
gλgλ ′ .

By Theorem 3.1, for any sequence t = (tλ )λ∈Λm in l2(Λm) we have

c1‖t‖l2 ≤ 〈Gmt, t〉=
∥∥∥ ∑
λ∈Λm

tλgλ
∥∥∥

2
≤ c2 ≤ ‖t‖l2 ,

where the constants c1,c2 > 0 are independent on t and m. Therefore, the operator
Gm : l2→ l2 with matrix Gm is symmetric, positive and c1I ≤Gm ≤ c2I. Hence, G−1

m
exists and c−1

2 I ≤ G−1
m ≤ c−1

1 I. Denote by G−1
m =:
[
Bλ ,λ ′
]
λ ,λ ′∈Λm

the matrix of the

operator G−1
m .

The next lemma shows that the entries of G−1
m decay away from its main diagonal

at sub-exponential rate.

Lemma 3.1. [14] There exist constants 0 < q∗,γ < 1 and c > 0 depending only on
p(Θ) and r such that for any entry Bλ ,λ ′ of G−1

m (λ ,λ ′ ∈ Λm) and points x ∈ θλ ,
y ∈ θλ ′

|Bλ ,λ ′ | ≤ cq(2mρ(x,y))γ
∗ . (33)

Definition of smooth duals. We define new duals by

˜̃gλ := ∑
λ ′∈Λm

Bλ ,λ ′gλ ′ , λ ∈Λm, (34)

and set ˜̃Φm := { ˜̃gλ}λ∈Λm . For λ ∈ Λm, let x0 be any point in θλ . Combining (33)
and (34) it follows that

| ˜̃gλ (x)| ≤ c2−m/2 ∑
x∈θλ ′

|Bλ ,λ ′ | ≤ c2−m/2q(2mρ(x,x0))γ
∗ . (35)

Therefore, each ˜̃gλ has sub-exponential decay with respect to the quasi-distance
induced byΘ . Also, it is easy to verify the biorthogonality relation, namely,

〈gλ , ˜̃gλ ′ 〉= ∑
λ ′′∈Λm

Bλ ′,λ ′′ 〈gλ ,gλ ′′ 〉=
(
G−1

m Gm
)
λ ′,λ = δλ ,λ ′ .



Anisotropic function spaces with applications 151

We use the bases Φm and ˜̃Φm to introduce an approximation to the identity deter-
mined by the operators {Sm}m∈Z with kernels

Sm(x,y) := ∑
λ∈Λm

gλ (x) ˜̃gλ (y). (36)

In the next theorem we record the fact that these kernels define the desired ap-
proximation to the identity.

Theorem 3.4. [14] For a discrete ellipsoid coverΘ , the kernels from (36) define an
approximation to the identity with respect to the quasi-distance ρ(·, ·) induced byΘ .
Here the vector μ can be defined as μ := (a6,a4), the parameter δ can be selected
arbitrarily large and the parameter r is the degree of the polynomials used in the
construction of the local ellipsoid “bumps” in §3.1.

3.5 Construction of anisotropic wavelet frames

Wavelet operators. Let {Sm}m∈Z be an approximation to the identity of order
(μ ,δ ,r). Then evidently the kernels of the wavelet operators Dm := Sm+1−Sm sat-
isfy conditins (i)-(iii) in Definition 3.1, while the polynomial reproduction condition
(iv) is replaced by the following zero moment condition

∫
Rn

Dm(x,y)P(y)dy = 0,
∫

Rn
Dm(x,y)P(x)dx = 0 ∀P ∈Pr. (37)

The next lemma shows that any two wavelet operators (kernels) from different
scales are “almost orthogonal”.

Lemma 3.2. [14] Suppose two kernel operators {D1
m}m∈Z and {D2

m}m∈Z satisfy
(37) for some r ≥ 1 and conditions (i)-(ii) of an approximation to the identity of
order (μ ,δ ,r) for some δ ≥ μ1r. Then

|D1
kD2

l (x,y)| ≤ c2−|k−l|μ0r 2−min{k,l}δ
(
2−min{k,l}+ρ(x,y)

)1+δ , k, l ∈ Z. (38)

Dual wavelet operators. In this section we leverage significantly on the results of
Han and Sawyer [19] (see also [16]) concerning the Calderón reproducing formula
in spaces of homogeneous type and adapt them to our specific setting. We begin
with the definitions for anisotropic test functions and molecules.

Definition 3.2. Let ρ(·, ·) be a quasi-distance on R
n. A function f ∈C(Rn) is said to

be in the anisotropic test function space M (ε,δ ,x0, t), 0 < ε,δ ≤ 1, x0 ∈R
n, t ∈R,

if there exists a constant C > 0 such that

(i) | f (x)| ≤C 2−tδ

(2−t+ρ(x,x0))1+δ ∀x ∈ R
n.

(ii) | f (x)− f (y)| ≤Cρ(x,y)ε 2−tδ

(2−t+ρ(x,x0))1+δ+ε for all x,y ∈ R
n,
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where ρ(x,y) ≤ 1
2κ (2−t +ρ(x,x0)) with κ the constant of the quasi-distance (see

§2.1).

One can easily show that M (ε,δ ,x0, t) is a Banach space with norm ‖ f‖M de-
fined as the infimum of all constants C such that (i)-(ii) are valid. We also denote
M (ε,δ ) := M (ε,δ ,0,0).

Definition 3.3. The set of molecules M0(ε,δ ,x0, t) is defined as the set of all
anisotropic test functions f ∈M (ε,δ ,x0, t) such that

∫
Rn f (y)dy = 0.

We denote by M0(ε,δ ) the subspace of all molecules in M (ε,δ ).

For some γ > ε , let
◦

M (ε,δ ) be the closure of M (γ,δ ) in the norm of M (ε,δ ).

Then, we define
◦

M ′(ε,δ ) as the dual of
◦

M (ε,δ ).
We are now prepared to state the Calderón reproducing formula which implies

the existence of dual wavelet operators.

Theorem 3.5. [Continuous Calderón reproducing formula] Suppose (Rn,ρ,dx)
is a normal space of homogeneous type and let {Sm}m∈Z be an approximation to the
identity of order (μ ,δ ,r) with respect to ρ(·, ·). Set Dm := Sm+1−Sm for m∈Z. Then
there exist linear operators {D̃m}m∈Z and {D̂m}m∈Z such that for any f ∈M0(ε,γ),
0 < ε,γ < μ0,

f = ∑
m∈Z

D̃mDm( f ) = ∑
m∈Z

DmD̂m( f ), (39)

where the series converge in the norm of M (ε ′,γ ′), ε ′ < ε , γ ′ < γ , and in Lp(Rn),
1 < p <∞. Furthermore, for any ε < μ0, the kernels of {D̃m} and {D̂m} satisfy con-
ditions (i)-(iii) of an approximation to the identity of order (μ ,ε,1) (with constants
depending on ε) and the r-th zero moments condition (37).

By a duality argument we obtain

Corollary 3.1. Under the hypothesis of Theorem 3.5 for any f ∈
◦

M ′(ε,δ ) the series

in (39) converges in
◦

M ′(ε∗,δ∗) with ε < ε∗ < μ0, γ < γ∗ < μ0.

We next sketch the proof of Theorem 3.5. The method of proof is essentially
similar to the method used in [19]. We use Coifman’s idea to write the identity
operator I as

I =∑
k

Dk =∑
k

Dk∑
l

Dl =∑
k,l

DkDl .

For an integer N > 0 we introduce the operator DN
m := ∑| j|≤N Dm+ j and define the

operators TN and RN by

I =∑
k,l

DkDl = ∑
k∈Z

DN
k Dk + ∑

| j|>N
∑
k∈Z

Dk+ jDk =: TN +RN.

Let 0 < ε,γ < μ0. We claim that RN is bounded on M0(ε,γ,x0, t) for any x0 ∈ R
n

and t ∈ R. Moreover, there exist constants τ > 0 and c > 0 such that
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‖RN f‖M0(ε ,γ,x0,t) ≤ c2−Nτ‖ f‖M0(ε ,γ,x0,t) for f ∈M0(ε,γ,x0, t). (40)

Assume the claim for a moment. Choosing N so that c2−Nτ < 1, then (40) implies
that the operator T−1

N exists and is bounded on M0(ε,γ,x0, t). Thus, we obtain

I = T−1
N TN =∑

m

(
T−1

N DN
m

)
Dm =∑

m
D̃mDm,

where D̃m := T−1
N DN

m. The regularity conditions on the kernels {Dm} and (37) imply
that for any fixed N and y ∈ R

n the function DN
m (·,y) is in M0 (μ0,δ ). This imme-

diately implies that D̃m (·,y) = T−1
N DN

m (·,y) is in M0 (ε,γ) for any 0 < ε,γ < μ0.
Similarly, we can write

I = TNT−1
N = (∑

m
DN

mDm)T−1
N =∑

m
DmDN

mT−1
N =∑

m
DmD̂m,

where D̂m := DN
mT−1

N . By the same token, for any fixed N and x ∈ R
n, the function

D̂m(x, ·) is in M0(ε,γ) for any 0 < ε,γ < μ0 and the proof is complete.

Discussion. In the proof of Theorem 3.5 we applied tools from the general theory
of spaces of homogeneous type to construct dual wavelet operators. Although the
kernels of the dual operators {D̃m} and {D̂m} have the same vanishing moments as
{Dm}, we only claim very “modest” regularity and decay on them. For example, in
Theorem 3.5 we claim that for any 0 < γ < μ0, there exists a constant c > 0 such
that

|D̃m(x,y)|, |D̂m(x,y)| ≤ c2−mγ

(2−m +ρ(x,y))1+γ .

At the same time, the construction of the anisotropic approximation of the identity
over an ellipsoid cover in §3.4 (see Theorem 3.4) produces wavelet kernels {Dm}
such that for any δ > 0

|Dm(x,y)| ≤ c2−mδ

(2−m +ρ(x,y))1+δ , c = c(δ ).

It is an open problem to define higher order anisotropic test function spaces and
prove that the operators RN := ∑| j|>N ∑k∈Z Dk+ jDk are bounded on these higher
order spaces as in (40).

Applying the Calderón reproducing formula we obtain the following Littlewood-
Paley type result (see [16]).

Proposition 3.2. Suppose {Sm}m∈Z is an anisotropic approximation of the identity
and let Dm = Sm+1−Sm, m ∈ Z. Then for any f ∈ Lp(Rn), 1 < p < ∞, we have

‖ f‖p ∼
∥∥∥
(
∑
m
|Dm( f )(·)|2

)1/2∥∥∥
p
.



154 Shai Dekel and Pencho Petrushev

3.6 Discrete wavelet frames

Here we describe briefly the construction of wavelet frames using the discrete
Calderón reproducing formula, which in turn is obtained by “sampling” the con-
tinuous Calderón reproducing formula (see e.g. [16, 14]). We first introduce the
following sampling process.

Definition 3.4. Let ρ(·, ·) be a quasi-distance on R
n. We call a set of closed domains

Ωm,k ⊂ R
n, m ∈ Z, k ∈ Im, and points ym,k ∈ Ωm,k, a sampling set if the following

conditions are satisfied:

(a) For each m ∈ Z, the sets Ωm,k, k ∈ Im, have disjoint interiors.
(b) R

n = ∪k∈ImΩm,k for m ∈ Z.
(c) Each set Ωm,k satisfies Ωm,k ⊂ Bρ(xm,k,c2−m) for some point xm,k ∈ R

n (c > 0
is a constant).

(d) There exists a constant c′ > 0 such that for any m ∈ Z and k ∈ Im, we have
ρ(ym,k,ym,k′) > c′2−m for all k′ ∈ Im, k′ �= k, except perhaps for a set of uniformly
bounded number of points.

In the next theorem we present the discrete Calderón reproducing formula.

Theorem 3.6. [14] Let {Sm}m∈Z be an anisotropic approximation to the identity of
order (μ ,δ ,r) with respect to the quasi-distance induced by an ellipsoid cover Θ
of R

n. Denote Dm := Sm+1− Sm and let {Ωm,k} and {ym,k} with ym,k ∈ Ωm,k be a
sampling set for Θ . Then there exist N > 0 and linear operators {Êm} such that for
any f ∈M0(ε,γ), 0 < ε,γ < μ0,

f = ∑
m∈Z

∑
k∈Im+N

|Ωm+N,k|Êm( f )(ym+N,k)Dm(·,ym+N,k), (41)

where the convergence is in M (ε ′,γ ′), ε ′ < ε , γ ′ < γ , and in Lp(Rn), 1 < p < ∞.
Furthermore, the kernels of {Êm} satisfy conditions (i)-(iii) of anisotropic approx-
imations to the identity of order (μ ,ε,1) for any ε < μ0 (with constants depending
on ε) and the rth degree zero moments condition (37).

The proof of this theorem follows in the footsteps of the proof in the general case
of homogeneous spaces (see e.g. [16]).

Definition of anisotropic wavelet frames. We denote briefly Km := Im+N and define
the functions {ψm,k} by

ψm,k(x) := |Ωm+N,k|1/2Dm(x,ym+N,k)

and the functionals {ψ̃m,k} by

ψ̃m,k(x) := |Ωm+N,k|1/2Êm(ym+N,k,x), m ∈ Z, k ∈ Km.

Then (41) takes the form
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f =∑
m
∑

k∈Km

〈 f , ψ̃m,k〉ψm,k. (42)

The next theorem shows that {ψm,k}, {ψ̃m,k} is a pair of dual frames.

Theorem 3.7. [14] Let {Sm}m∈Z be an anisotropic approximation to the identity of
order (μ ,δ ,r). Denote Dm := Sm+1−Sm and let {Ωm,k} and {ym,k}, ym,k ∈Ωm,k be
a sampling set for Θ . Then there exist constants 0 < A ≤ B < ∞ such that for any
f ∈ L2(Rn)

A‖ f‖2
2 ≤∑

m
∑

k∈Km

|〈 f , ψ̃m,k〉|2 ≤ B‖ f‖2
2. (43)

3.7 Two-level-split frames

We now use the two-level-split construction from §3.3 and the smooth duals { ˜̃gλ}
from §3.4 to derive a useful representation for the wavelet kernels Dm(x,y).

For λ = (θ ,β ) we denote ˜̃gθ ,β := ˜̃gλ , where ˜̃gλ is defined in (34). Then the kernel
Sm(x,y), defined in (36), has the representation

Sm(x,y) = ∑
θ∈Θm

∑
|β |<r

˜̃gθ ,β (y)Pθ ,βϕθ (x).

Now precisely as in §3.3 we get

Dm(x,y) := Sm+1(x,y)−Sm(x,y)

= ∑
η∈Θm+1

∑
θ∈Θm:θ∩η �= /0

∑
|β |<r

{
˜̃gη ,β (y)− ∑

|α|<r

Cθ ,η
α,β

˜̃gθ ,α(y)
}

Pη ,β (x)ϕη(x)ϕθ (x),

The new dual functions ˜̃Fν , ν = (η ,θ ,β ) ∈ Vm, are defined by

˜̃Fν = ˜̃Fη ,θ ,β := ˜̃gη ,β − ∑
|α|<r

Cθ ,η
α,β

˜̃gθ ,α . (44)

Thus we arrive at the following representation

Dm(x,y) = ∑
ν∈Vm

˜̃Fν(y)Fν(x).

Observe that since each θ ∈Θm is intersected by finitely many ellipsoids from
Θm+1 it follows by (35) that the duals { ˜̃Fν} have sub-exponential localization as the
duals { ˜̃gλ}. Also, Theorem 3.2 and Proposition 3.2 imply that {Fν}, { ˜̃Fν} is a pair
of dual frames.

Proposition 3.3. For any f ∈ L2(Rn)
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‖ f‖2 ∼
(
∑
m
‖Dm( f )‖2

2

)1/2
∼
(
∑
ν
〈 f , ˜̃Fν〉2

)1/2
.

4 Anisotropic Besov spaces (B-spaces)

In this section we review the anisotropic Besov spaces of positive smoothness in-
duced by discrete ellipsoid covers of R

n, introduced in [12], and compare them with
the B-spaces based on anisotropic nested triangulations of R

2 from [13, 20]. We will
be mainly interested in the homogeneous versions of these spaces.

4.1 B-spaces induced by anisotropic covers of R
n

Assuming thatΘ is discrete ellipsoid cover of R
n (see Definition 2.1) we will define

the homogeneous B-spaces Ḃα
pq(Θ) of positive smoothness α > 0. In this definition

there is a hidden parameter k which we choose to be the smallest integer satisfying
the condition

k >
a0

a6
· α

n
. (45)

This will guarantee the equivalence of the norms in Ḃα
pq(Θ) introduced below. Here

a0 and a6 are the constants from Definition 2.1, §2.1.

Definition of Ḃα
pq(Θ) via local moduli of smoothness. For α > 0 and 0 < p,q≤∞

the space Ḃα
pq(Θ) is defined as the set of all functions f ∈ Lloc

p such that

‖ f‖Ḃαpq(Θ) :=
(
∑

m∈Z

(
∑

θ∈Θm

|θ |−α p/nωk( f ,θ)p
p

)q/p)1/q
< ∞, (46)

where ωk( f ,θ)p is the kth local modulus of smoothness of f (see (20)).
This definition needs some additional clarification. Observe that ‖P‖Ḃαpq(Θ) = 0

for P ∈Pk and hence the norm in Ḃα
pq(Θ) is a semi-(quasi-)norm and Ḃα

pq(Θ) is
a quotient space modulo Pk. We will use the operators Qm and Tm,p from §3.2 to
construct a meaningful representation of each f ∈ Ḃα

pq(Θ). Let Tm (m ∈ Z) be one
of the operators Qm or Tm,p if p≥ 1, and Tm := Tm,p if p < 1. We define

‖ f‖T
Ḃαpq(Θ) :=

(
∑

m∈Z

(
2a0mα/n‖(Tm+1−Tm) f‖p

)q)1/q
. (47)

Proposition 3.1 and property (c) of ellipsoid covers imply

‖ f −Tm f‖p ≤ c
(
∑

θ∈Θm

ωk( f ,θ)p
p

)1/p
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and since ‖(Tm+1−Tm) f‖p ≤ c‖ f −Tm+1 f‖p + c‖ f −Tm f‖p, we get

‖ f‖T
Ḃαpq(Θ) ≤ c‖ f‖Ḃαpq(Θ). (48)

For more precise description of Ḃα
pq(Θ) we have to distinguish between two basic

cases.

Case 1: 0 < α < n/p or α = n/p and q ≤ 1. Then as is shown in [12] for any
f ∈ Ḃα

pq(Θ) there exists a polynomial P ∈Pk such that

f = ∑
m∈Z

(Tm+1−Tm) f +P in Lp(K) (49)

for all compact sets K ⊂ R
n.

Case 2: α > n/p or α = n/p and q > 1. Now the space Ḃα
pq(Θ) can be viewed as

the set of all regular tempered distributions f such that ‖ f‖Ḃαpq(Θ) < ∞ and

f = ∑
m∈Z

(Tm+1−Tm) f ,

where the convergence is in S ′/Pk. This means that there exist polynomials P ∈
Pk and Pm ∈Pk, m ∈ Z, such that

f = P+ lim
j→−∞

∞

∑
m= j

(Tm+1−Tm) f +Pm in S ′.

In addition, Ḃα
pq(Θ) is continuously embedded in S ′.

Other norms in Ḃα
pq(Θ). The good understanding of the B-spaces depends on hav-

ing several equivalent norms in Ḃα
pq(Θ). Note that if {dν( f )} are defined from

(Tm+1−Tm) f = ∑ν∈Vm dν( f )Fν , then using Theorem 3.2

‖ f‖T
Ḃαpq(Θ) ∼

(
∑

m∈Z

(
∑

ν∈Vm

(|ην |−α/n‖dν( f )Fν‖p)p
)q/p)1/q

. (50)

Observe that the above equivalence holds if dν( f ) are replaced by 〈 f , ˜̃Fν〉 due to the
sub-exponential localization of the duals { ˜̃Fν}.

Also, we define

‖ f‖A
Ḃαpq(Θ) := inf

f =∑ν∈V aνFν

(
∑

m∈Z

(
∑

ν∈Vm

(|ην |−α/n‖aνFν‖p)p
)q/p)1/q

. (51)

Here the infimum is taken over all representations f = ∑ν∈V aνFν , where the con-
vergence is to be understood as described in Cases 1-2 above.

In the next theorem we record the equivalence of the above norms.
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Theorem 4.1. [12] If α > 0, 0 < p,q ≤ ∞, and condition (45) is satisfied, then the
norms ‖ · ‖Ḃαpq(Θ), ‖ · ‖T

Ḃαpq(Θ), and ‖ · ‖A
Ḃαpq(Θ) are equivalent.

The embedding of Ḃα
pq in S ′ or (49) readily imply the completeness of Ḃα

pq(Θ).

Inhomogeneous B-spaces. Sometimes it is more convenient to use the inhomoge-
neous versions Bα

pq(Θ+) of the B-spaces induced by anisotropic ellipsoid covers of
R

n, which are simpler than the homogeneous counterparts Ḃα
pq(Θ).

For the definition of the inhomogeneous spaces Bα
pq(Θ+) one only needs ellip-

soid covers with levels m = 0,1, . . . , i.e. covers of the form

Θ+ :=
∞⋃

m=0

Θm.

The space Bα
pq(Θ+), α > 0, 0 < p,q ≤ ∞, is defined as the set of all functions

f ∈ Lp(Rn) such that

| f |Bαpq(Θ+) :=
(
∑

m≥0

(
∑

θ∈Θm

(|θ |−α p/nωk( f ,θ)p
p

)q/p)1/q
< ∞, (52)

where ωk( f ,θ)p is the kth local modulus of smoothness of f in Lp(θ).
The (quasi-)norm in Bα

pq(Θ+) is defined by

‖ f‖Bαpq(Θ+) := ‖ f‖p + | f |Bαpq(Θ+).

Other equivalent norms in Bα
pq(Θ+) can be defined similarly as for the homogeneous

B-spaces from above. In particular, using the notation from from Theorem 3.3 one
has

‖ f‖Bαpq(Θ+) ∼
(
∑

m≥−1

(
∑

ν∈Vm

(|ην |−α/n‖dν( f )Fν‖p)p
)q/p)1/q

. (53)

For more details about anisotropic B-spaces induced by ellipsoid covers and
proofs we refer the reader to [12].

4.2 B-spaces induced by nested multilevel triangulations of R
2

We first recall briefly some basic definitions and facts from [20, 13].

Spline multiresolution analysis (MRA). Let T =
⋃

m∈Z Tm be an SLR-triangula-
tion of R

2 (see §2.2). Denote by Vm the set of all vertices of triangles from Tm.
For r ≥ 0 and k ≥ 2, we denote by Sk,r

m = Sk,r(Tm) the set of all r times dif-
ferentiable piecewise polynomial functions of degree < k over Tm, i.e. s ∈ Sk,r

m if
s ∈Cr(R2) and s = ∑ ∈Tm 1 ·P with P ∈Pk.
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It will be convenient to denote, for any vertex v ∈ Vm, by Star 1(v) the union of
all triangles  ∈ Tm attached to v. Inductively for � ≥ 2, we define Star �(v) as the
union of Star �−1(v) and the stars of all vertices of Star �−1(v).

We assume that for each m ∈ Z there exists a subspace Sm of Sk,r
m and a family

Φm = {ϕθ : θ ∈Θm} ⊂ Sm satisfying the following conditions:
(a) Sm ⊂ Sm+1 and Pk̃ ⊂ Sm, for some 1≤ k̃ ≤ k,
(b) Φm is a stable basis for Sm in Lp (1≤ p≤ ∞),
(c) For every θ ∈ Θm there is a vertex vθ ∈ Vm such that ϕθ and its dual are

supported on Star �(vθ ), where �≥ 1 is a constant independent of θ and m.
We denote Φ :=

⋃
m∈ZΦm andΘ :=

⋃
m∈ZΘm.

A simple example of spline MRA is the sequence {Sm}m∈Z of all continuous
piecewise linear functions (r = 0, k = 2) on the levels {Tm}m∈Z of a given SLR-
triangulation T of R

2. A basis for each space Sm is given by the set Φm of the
Courant elements ϕθ , supported on the cells θ of Tm (θ is the union of all triangles
of Tm attached to a vertex, say, vθ ). The function ϕθ takes value 1 at vθ and 0 at all
other vertices.

A concrete construction of a spline MRA for an arbitrary SLR-triangulation T

is given in [13], where Sm = Sk,r
m = Sk,r(Tm) for given r ≥ 1 and k > 4r +1.

Local spline approximation. For ∈Tm we set

Ω �
 := ∪{Star �(v) : v ∈Vm,  ⊂ Star �(v)}.

We now let S ( f )p denote the error of Lp-approximation from Sm on Ω �
 , i.e.

S ( f )p := inf
s∈Sm
‖ f − s‖Lp(Ω �

 ). (54)

Definition of Ḃα
pq(Φ). Given a spline MRA {Sm}m∈Z over an SLR-tiangulation T

of R
2 and an associated family of basis functions Φ , as described above, we define

the B-space Ḃα
pq(Φ), α > 0, 0 < p,q≤ ∞, as the set of all f ∈ Lloc

p (R2) such that

‖ f‖Ḃα
pq(Φ) :=

(
∑

m∈Z

[
2mα
(

∑
 ∈T ,2−m≤| |<2−m+1

S ( f )p
p

)1/p]q)1/q

< ∞ (55)

with the �q-norm replaced by the sup-norm if q = ∞.

4.3 Comparison of different B-spaces and Besov spaces

The most substantial distinction between Ḃα
pq(Θ) and Ḃα

pq(Φ) is that the spaces
Ḃα

pq(Θ) are defined via local polynomial approximation∼ωk( f ,θ)p, while Ḃα
pq(Φ)

are defined via local spline approximation: S ( f )p. As a result, loosely speaking the
spaces Ḃα

pq(Θ) have larger norms that the spaces Ḃα
pq(Φ). However, if S ( f )p in

(55) is replaced by ωk( f ,Ω 1
 )p then the resulting quantity would be equivalent to
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‖ f‖Ḃαpq(Θ), where Θ is the ellipse cover of R
2 obtained by dilating the minimum

area circumscribed ellipses for all triangle ∈T as mentioned in §2.2.
Another important distinction between Ḃα

pq(Θ) and Ḃα
pq(Φ) is that the underly-

ing multilevel triangulation for the later space is nested, while the ellipsoid cover
generating the former is not nested. Therefore, in constructing ellipsoid cover and
dealing with B-spaces Ḃα

pq(Θ) one has much more freedom.
It is quite easy to show that (see [11]) if Θ is an ellipsoid cover of R

n con-
sisting of Euclidean balls, then the B-spaces Ḃα

pq(Θ) are the same as the respec-
tive classical Besov spaces Ḃα

q (Lp) (with equivalent norms). We maintain that local
moduli of smoothness rather than global ones are more natural for the definition
of anisotropic (and even classical) Besov spaces of positive smoothness since they
more adequately reflect the nature of the spaces. For the theory of (classical) Besov
spaces we refer the reader to [23, 26].

As already mentioned the powers A j of a real n× n matrix A with eigenvalues
λ obeying |λ | > 1 generate a semi-continuous and hence discrete ellipsoid cover
of R

n. It can be shown that for α > n(1/p− 1)+ the associated B-spaces Ḃα
pq are

exactly the same (with equivalent norms) as the anisotropic Besov spaces (with
weight 1) developed in [3].

As indicated in §2.1, R
n equipped with the distance ρ(·, ·) introduced in Defini-

tion 2.2 and the Lebesgue measure is a space of homogeneous type and hence the
general theory of Besov spaces on homogeneous spaces applies (see e.g. [19]). In
fact, in the specific setting of this paper the anisotropic Besov spaces given by the
general theory are the same as the B-spaces from here for sufficiently small α > 0.
The main distinction between the two theories is that we can handle B-spaces of an
arbitrary smoothness α > 0, while the general theory of Besov spaces on homoge-
neous spaces is only feasible for smoothness α with |α| < ε for some sufficiently
small ε .

5 Nonlinear approximation

One of the main applications of the anisotropic B-spaces is to nonlinear N-term ap-
proximation from the two-level-split bases introduced in §3.3, which is the purpose
of this section. We will also compare here the two-level-split bases with anisotropic
hierarchical spline bases as tools for nonlinear approximation.

The B-spaces of nonlinear approximation. A particular type of B-spaces plays
an important role in nonlinear N-term approximation in Lp. Given 0 < p < ∞ and
α > 0 let τ be defined by

1/τ = α/n+1/p, (56)

which in the case of classical Besov spaces signifies the critical embedding in Lp.
For nonlinear approximation in L∞ := C0 τ is determined by 1/τ = α/n and neces-
sarily α ≥ 1 (otherwise the embedding (60) below is not valid).
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For a given discrete ellipsoid coverΘ of R
n, the homogeneous B-spaces Ḃα

τ (Θ):=
Ḃα
ττ(Θ) are of a particular importance in nonlinear approximation from the two-

level-split bases. From (46) we have

‖ f‖Ḃατ (Θ) :=
(
∑
θ∈Θ
|θ |−ατ/nωk( f ,θ)ττ

)1/τ
. (57)

Observe that in general τ < 1, however, just as in [20] it can be showen that for any
0 < q < p

‖ f‖Ḃατ (Θ) ∼
(
∑
θ∈Θ
|θ |(1/p−1/q)τωk( f ,θ)τq

)1/τ
. (58)

This allows to work in Lq with q≥ 1 if p > 1 instead of Lτ .
The key point here is that the norm in Ḃα

τ (Θ) has the representation

‖ f‖Ḃατ (Θ) ∼
(
∑
ν∈V

‖dν( f )Fν‖τp
)1/τ

, V := ∪m∈ZVm, (59)

which implies the embedding of Ḃα
τ (Θ) in Lp: Every f ∈ Ḃα

τ (Θ) can be identified
modulo Pk as a function in Lp(Rn) such that

‖ f‖p ≤ c‖ f‖Ḃατ (Θ). (60)

This identification will always be assumed in what follows. In fact, the above shows
that Ḃα

τ (Θ) lies on the Sobolev embedding line.
The situation is quite the same for the inhomogeneous B-spaces Bα

τ := Bα
ττ(Θ+)

associated with a discrete ellipsoid coverΘ+ = ∪m≥0Θm of R
n.

Nonlinear N-term approximation from F := ∪m∈ZFm = {Fν : ν ∈ V }. We let
EN denote the nonlinear set of all functions g of the form

g = ∑
ν∈ΓN

aνFν ,

where ΓN ⊂ V , #Γ ≤ N, and Γ is allowed to vary with g. Then the error σN( f )p of
best Lp-approximation of f ∈ Lp(Rn) from EN is defined by

σN( f )p := inf
g∈EN

‖ f −g‖p.

Theorem 5.1 (Jackson estimate). If f ∈ Ḃα
τ (Θ), α > 0, 0 < p≤ ∞, then

σN( f )p ≤ cN−α/n‖ f‖Ḃατ (Θ), (61)

where c depends only on α , p, and the parameters ofΘ .

When 0 < p < ∞, estimate (61) follows by the general Theorem 3.4 in [20] and
in the case p = ∞ its proof can be carried out as the proof of Theorem 3.1 in [21].
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In a standard way the Jackson estimate (61) leads to a direct estimate for nonlin-
ear N-term approximation from F which involves the K-functional between Lp and
Ḃα
τ (Θ). It is a challenging open problem to prove a companion inverse estimate due

to the fact that F is possibly redundant and nonnested.

Comparison with nonlinear N-term approximation from nested spline bases.
Nonlinear N-term approximation in Lp (0 < p≤∞) from the spline basis elements in
Φ = ∪m∈ZΦm (see §4.2) has been developed in [20, 13, 21, 10]. In [20, 13] Jackson
and Bernstein estimates are established involving the B-spaces Ḃα

τ (Φ) := Ḃα
ττ(Φ)

with norm

‖ f‖Ḃα
τ (Φ) :=

(
∑
 ∈T

(| |−αS ( f )τ)τ
)1/τ

, (62)

where 1/τ := α + 1/p for α > 0 if 0 < p < ∞ and α ≥ 1 if p = ∞. Then the
standard machinery of Approximation theory is used to characterize the respective
approximation spaces as real interpolation spaces between Lp and Ḃα

τ (Φ).
The most important difference between the nonlinear N-term approximation

from F and Φ is that the spaces Ḃα
τ (Φ) (defined by local spline approximation)

are specifically designed for the purposes of nonlinear spline approximation and al-
low to characterize the rates of approximation O(N−β ) for all β > 0, while in the
former case β is limited. On the other hand, the spaces Ḃα

τ (Θ) are of more general
nature and are direct generalization of Besov spaces. They are much less sensitive
to changes in the underlying ellipsoid cover Θ compared to changes in Ḃα

τ (Φ)
when changing the respective triangulation T . In general, the spaces Ḃα

τ (Θ) are
better than Ḃα

τ (Φ) as a tool for measuring the anisotropic features of functions (see
below).

6 Measuring smoothness via anisotropic B-spaces

It has always been a question in analysis how to measure the smoothness of a given
function, and as a consequence, there is a variety of smoothness space. We next show
how the anisotropic B-spaces Ḃα

τ (Θ) can be deployed to measuring the smoothness
of functions and how this is related to nonlinear N-term approximation from the
two-level-split bases.

We focus on two “simple” examples of discontinuous functions on R
2, namely,

1B(0,1) the characteristic function of the unit disk B(0,1) and 1Q the characteristic
function of a square Q ⊂ R

2. As shown in [12] each of these functions has higher
order smoothness α in Ḃα

τ (Θ) for an appropriately selected ellipse cover Θ com-
pared with its (classical) Besov space smoothness. Moreover, their smoothness via
suitable covers will be seen to differ substantially.

As in the previous section, for given 0 < p < ∞ and α > 0, let τ be defined by
1/τ = α/2+1/p.
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Theorem 6.1. [12] (i) There exists an anisotropic ellipsoid coverΘ of R
2 such that

1B(0,1) ∈ Ḃα
τ (Θ) for any α < 4/p. In comparison, in the scale of Besov spaces Ḃα

ττ
one has 1B(0,1) ∈ Ḃα

ττ for α < 2/p. Here the bounds for α are sharp.
(ii) For any square Q in R

2 and any α > 0 there exists an anisotropic ellipsoid
cover Θ of R

2 such that 1Q ∈ Ḃα
τ (Θ), while in the scale of Besov spaces Ḃα

ττ one
has only 1Q ∈ Ḃα

ττ for α < 2/p and this bound for α is sharp.

This theorem coupled with the Jackson estimate (61) leads to the following ap-
proximation result.

Corollary 6.1. [12] (i) There exists a discrete ellipse cover Θ of R
2 such that for

any 0 < p < ∞ the nonlinear N-term approximation from FΘ satisfies

σN(1B(0,1))p ≤ cN−γ for all γ < 2/p.

(ii) For any α > 0 there exists a discrete ellipse cover Θ of R
2 such that for any

0 < p < ∞ the nonlinear N-term approximation from FΘ satisfies

σN(1Q)p ≤ cN−α .

For comparison, if σW
m ( f )p denotes the best N-term approximation of f in Lp

(p≥ 1) from any reasonable wavelet basis, then for E = B(0,1) or E = Q

σW
N (1E)p ≤ cN−γ for all γ < 1/p.

All estimates above are sharp.

Discussion. As indicated above for appropriate ellipse covers, the B-space smooth-
ness of the characteristic functions of the unit ball and any square in R

2 is higher
than their Besov space smoothness. Thus by using adaptive dilations the anisotropic
B-spaces are better able to resolve the singularities along smooth or piecewise
smooth curves. Consequently, the two-level-split decompositions of these functions
are substantially sparser than their wavelet decompositions, which leads to better
rates of nonlinear N-term approximation. It might surprise that characteristic func-
tions of polygonal domains have, in a sense, infinite smoothness while those of
domains with smooth boundaries have limited regularity. However, the covers that
yield higher and higher smoothness in the polygonal case have to become less and
less constrained, which means that the parameters in p(Θ) are subjected to more
and more generous bounds. Keeping these parameters within a compact set would
limit the regularity that could be described in this way.

The above two examples illustrate clearly the concept of measuring the smooth-
ness of functions via anisotropic B-space and in particular by the B-spaces of non-
linear approximation Ḃα

τ (Θ). The key idea is to allow the underlying ellipsoid cover
to adapt to the given function.

It is a challenging open problem to devise a scheme which for a given function f
finds an optimal (or near optimal) ellipsoid coverΘ such that f exhibits the highest
order α of smoothness in Ḃα

τ (Θ) in the above sense.
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7 Application to preconditioning for elliptic boundary value
problems

In this section we apply the two-level-split bases from §3.3 in a regular set-up to
the development of multilevel Schwarz preconditioners for elliptic boundary value
problems. We consider the following model problem. Let a(·, ·) : V ×V → R be a
symmetric bilinear form on a Hilbert space V with norm ‖ · ‖V = 〈·, ·〉1/2 that is
V -elliptic, i.e. there exist positive constants ca,Ca such that

a(v,v)≥ ca‖v‖2
V , |a(v,w)| ≤Ca‖v‖V‖w‖V , v,w ∈V. (63)

The problem is, for a given f ∈V ′ to find u ∈V such that

a(u,v) = 〈 f ,v〉, ∀ v ∈V. (64)

For simplicity we only consider the model case V = H1
0 (Ω) corresponding to

Dirichlet boundary conditions. Higher order problems could be treated in an anal-
ogous way. We assume that Ω is a bounded extension domain, which means that
Ω has a sufficiently regular boundary to permit any element v of any Sobolev
or Besov space X(Ω) over Ω to be extended to ṽ ∈ X(Rn), ṽ|Ω = v, so that
‖v‖X(Rn) ≤CX‖v‖X(Ω). This is e.g. the case when the boundary of Ω is piecewise
smooth and Ω obeys a uniform cone condition. The homogeneous boundary condi-
tions are supposed to be realized in the trial spaces by suitable polynomial factors
in the atoms.

We assume that Θ = ∪m≥−1Θm is a regular multilevel cover of R
n consisting

of balls. We will utilize the atoms {Fγ} defined in §3.3 for γ ∈ V =
⋃∞

m=−1 Vm, see
Theorem 3.3. For better notation we will index the elements Fγ of the two-level-split
bases Fm by γ instead of ν as before.

We will put this in the context of stable splittings in the theory of multilevel
Schwarz preconditioners, see e.g. [22, 27].

Let Vγ := span(Fγ), so that H1
0 (Ω) := V = ∑γ Vγ . The key fact is that {Vγ}γ∈V

form a stable splitting for V :

Theorem 7.1. There exist constants cV ,CV > 0 such that for any v ∈V

cV‖v‖V ≤ inf
v=∑γ vγ

(
∑
γ∈V

|ηγ |−2/d‖vγ‖2
2

)1/2

≤CV‖v‖V . (65)

Moreover, {Vγ}γ∈V � with V � :=
⋃�

m=−1 Vm form a uniformly stable splitting for the
spaces Sm := span(Φm) in the sense of (65) with the same constants cV ,CV .

Using that the norms a(·, ·)1/2 and ‖ · ‖H1(Ω) are equivalent and the well known
fact that ‖ · ‖H1(Ω) ∼ ‖ · ‖B1

2(L2(Ω)), estimates (65) are immediate from Theorem 4.1
taking into account that Besov and B-norms are equivalent in the regular setting. The
second part of Theorem 7.1 follows from the fact that the telescoping expansions
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underlying the inhomogeneous version of ‖ · ‖T
Bα (Θ) (see (47) and (53)) terminate

without affecting this norm. For more details, see [11].
This allows us to apply the theory of Schwarz methods along the following lines.

For V0 := S0 = span(Φ0) define PV0 : V →V0 and rV0 ∈ S0 by

a(PV0v,Fγ) = a(v,Fγ), (rV0 ,Fγ)L2 = 〈 f ,Fγ〉, γ ∈ V0 =Θ0.

Furthermore, we introduce the auxiliary bilinear forms:

bγ(v,w) := |ηγ |−2/d(v,w)L2 , v,w ∈Vγ , γ ∈ V \V0. (66)

We now consider the spaces Vγ with norms ‖v‖Vγ := (bγ(v,v))1/2 and define the
linear operators PVγ : V →Vγ and fγ ∈Vγ by

|ηγ |−2/d(PVγ v,Fγ)L2 = a(v,Fγ),
|ηγ |−2/d( fγ ,Fγ)L2 = 〈 f ,Fγ〉.

(67)

Thus, as usual,
PVγ v = aγ(v)Fγ , fγ = rγ( f )Fγ , (68)

where

aγ(v) =
|ηγ |2/da(v,Fγ)
〈Fγ ,Fγ〉

, rγ( f ) =
|ηγ |2/d〈 f ,Fγ〉
〈Fγ ,Fγ〉

. (69)

The following theorem now is an immediate consequence of the results in [18, 22].

Theorem 7.2. Problem (64) is equivalent to the operator equation

PV u = f̄ , where (70)

PV := PV0 + ∑
γ∈V \V0

PVγ , f̄ := rV0 + ∑
γ∈V \V0

fγ .

Moreover, the spectral condition number κ(PV ) of the additive Schwarz operator PV

satisfies

κ(PV )≤ CaCV

cacV
, (71)

where ca,Ca,cV ,CV are the constants from (63) and (65).

Estimate (71) yields that simple iterative schemes, such as Richardson iterations,

un+1 = un +α( f̄ −PV un), n = 0,1,2, . . . , (72)

converge with a fixed error reduction rate per step.
We conclude with a few remarks. First, the operator equation (70) is formulated

in the full infinite dimensional space. Alternatively, restricting the summation to a
finite subset V̄ of V (e.g. V̄ = V �), we obtain a finite dimensional discrete problem
whose condition fulfills (on account of Theorem 7.1) the same bound uniformly in
the size and choice of V̄ . In this sense our preconditioner is asymptotically optimal.



166 Shai Dekel and Pencho Petrushev

On the other hand, it is conceptually useful to consider the full infinite dimen-
sional problem (70). Then (72) has to be understood as an idealized scheme whose
numerical implementation requires appropriate approximate applications of the (in-
finite dimensional) operator PV quite in the spirit of [7]. This can be done by com-
puting in addition to solving the coarse scale problem on S0 = V0 only finitely many
but properly selected components PVγ each requiring only the solution of a one-
dimensional problem. This hints at the adaptive potential of such an approach sim-
ilar to the developments in [7]. This, in turn, raises the question what accuracy can
be achieved at best when using linear combinations of at most N of the atoms. Thus
we arrive at the problem for nonlinear N-term approximation from {Fγ} in H1.

For more details we refer the reader to [11].
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Nonlinear approximation and its applications

Ronald A. DeVore

Abstract I first met Wolfgang Dahmen in 1974 in Oberwolfach. He looked like a
high school student to me but he impressed everyone with his talk on whether poly-
nomial operators could produce both polynomial and spectral orders of approxima-
tion. We became the best of friends and frequent collaborators. While Wolfgang’s
mathematical contributions spread across many disciplines, a major thread in his
work has been the exploitation of nonlinear approximation. This article will reflect
on Wolfgang’s pervasive contributions to the development of nonlinear approxima-
tion and its application. Since many of the contributions in this volume will address
specific application areas in some details, my thoughts on these will be to a large
extent anecdotal.

1 The early years

I was first exposed to approximation theory in a class taught by Ranko Bojanic in
the Fall of 1964 at Ohio State University. Each student was allowed one optional
class (outside of the required algebra and analysis). I do not know why I chose this
from among the other options - perhaps another student had recommended it to me
as a well structured interesting class - but I was immediately hooked. It just seemed
like a natural subject answering natural questions. If we cannot explicitly solve most
real world problems then we better learn how to approximate them.

The course was more on the theory than on the computational side since the
demand for fast computational algorithms did not yet seem as urgent. There were
no wavelets and splines were in their infancy. But there was plenty to intrigue the
student including the Jackson-Bernstein theory of polynomial approximation which
remains to this day as the prototype for understanding the quantitative side of ap-
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proximation. Let us describe the modern form of this theory since it will be useful
as we continue this exposition.

Suppose that we are interested in approximating the elements from a space X
equipped with a norm ‖ · ‖ := ‖ · ‖X by using the elements of the spaces Xn, n =
1,2, . . . . Typical examples are X = Lp or a Sobolev space while the usual suspects
for Xn are spaces of polynomials, splines, or rational functions. We assume that for
all n,m≥ 1, we have

Xn +Xm ⊂ Xc(n+m), for some fixed c≥ 1, (1)

which is certainly the case for the above examples. Given f ∈ X , we define

En( f ) := inf
g∈Xn
‖ f −g‖. (2)

The main challenge in the quantitative arena of approximation is to describe pre-
cisely the elements of X which have a prescribed order of approximation. Special
attention is given to the approximation orders which are of the form n−r since these
occur most often in numerical computation. This gives the primary approximation
spaces A r := A r(X ,(Xn)), r > 0, consisting of all f ∈ X for which

| f |A r := sup
n≥1

nrEn( f ) (3)

is finite. The left side of (3) serves to define a semi-norm on A r. We obtain the norm
for this space by adding ‖ f‖X to the semi-norm.

While the spaces A r are sufficient to understand most approximation methods, it
is sometimes necessary to go to a finer scale of spaces when dealing with nonlinear
approximation. Accordingly, if q > 0, we define A r

q via the quasi-norm

| f |A r
q (X) := ‖(2krE2k( f ))‖�q . (4)

Again, we obtain the norm for this space by adding ‖ f‖X to the semi-norm. When
q = ∞, we obtain the spaces A r because of (1).

The problem of characterizing A r was treated in the following way for the case
when X = C[−π,π] is the space of continuous 2π periodic functions and Xn is the
space of trigonometric polynomials of degree ≤ n. One proves two fundamental
inequalities for trigonometric approximation. The first of these is the following in-
equality proved by D. Jackson:

En( f )≤Ck‖ f (k)‖C[−π,π]n
−k, n,k = 1,2, . . . . (5)

A companion to this is the famous Bernstein inequality which says

‖T (k)‖C[−π,π] ≤ nk‖T‖C[−π,π], n,k = 1,2, . . . (6)

From these two fundamental inequalities, one can show that A r is the general-
ized Lipschitz space Lip r space (defined later in §2) and more generally the A r

q are
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the same as the Besov spaces Br
q(L∞) which are also discussed in §2. It is interesting

to note that the modern way of deriving such characterizations is not much different
than the classical approach for trigonometric polynomials except that everything is
now encasted in the general framework of interpolations spaces. This leads to the
following theory.

Suppose for our approximation setting, we can find a space Yk such that the fol-
lowing generalized Jackson and Bernstein inequalities hold

En( f )X ≤Ck‖ f‖Yk n−k, n = 1,2, . . . . (7)

and
‖S‖Yk ≤Cknk‖S‖X , S ∈ Xn, n = 1,2, . . . . (8)

Then for any 0 < r < k and 0 < q≤ ∞, we have

A r
q (X ,(Xn)) = (X ,Yk)θ ,q, θ := r/k, (9)

where the spaces on the right are the interpolation spaces given by the real method of
interpolation (K-functionals) as described in the next section. In our case of trigono-
metric polynomial approximation the space Yk is Ck with its usual semi-norm. It is
well known that the interpolation spaces between C and Ck are the Besov spaces and
in particular the generalized Lipschitz spaces when q = ∞.

The beauty of the above theory is that it boils down the problem of characterizing
the approximation spaces for a given method of approximation to one of proving
two inequalities: the generalized Jackson and Bernstein inequalities for the given
approximation process. This recipe has been followed many times. An interesting
question is whether the characterization (9) provides essential new information. That
this is indeed the case rests on the fact that these interpolation spaces can be given
a concrete description for most pairs (X ,Yk) of interest. This fact will be discussed
next.

2 Smoothness and interpolation spaces

We all learn early on that the more derivatives a function has then the smoother it
is. This is the coarse idea of smoothness spaces. Modern analysis carries this idea
extensively forward by introducing a myriad of spaces to delineate properties of
functions. We will touch on this with a very broad stroke only to communicate the
heuerestic idea behind the smoothness spaces we shall need for describing rates of
approximation.

For an integer s > 0, the Sobolev space W s(Lp(Ω)), on a domain Ω ⊂ IRd con-
sists of all f ∈ Lp(Ω) for which all of the distributional derivatives Dν f of order s
are also in Lp(Ω). This space is equipped with the semi-norm

| f |W s(Lp(Ω)) := max
|ν|=s

‖Dν f‖Lp(Ω). (10)
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We obtain the norm on W s(Lp(Ω)) by adding ‖ · ‖Lp(Ω) to this semi-norm.
It is of great interest to extend this definition to all s > 0. One can initiate such

an extension from many viewpoints. But the most robust of these approaches is to
replace derivatives by differences. Suppose that we wish to define fractional order
smoothness spaces on IRd . The translation operator Th for h ∈ IRd is defined on a
function f by Th( f ) := f (·+h) and leads to the difference operators

Δ r
h :=

r

∑
k=0

(−1)r−k
(

r
k

)
Tkh. (11)

If we apply Δ r
h to a smooth function f then h−rΔ r

h( f )(x)→ r! f (r)(x) as h→ 0. We
can obtain smoothness spaces in Lp by placing conditions on how fast ‖Δ r

h( f )‖Lp

tends to zero as h→ 0. To measure this we introduce the moduli of smoothness

ωr( f , t)p := sup
|h|≤t
‖Δ r

h( f )‖Lp(Ωrh), (12)

where Ωt consists of all x ∈ Ω for which the line segment [x,x + t] is contained in
Ω .

We get a variety of spaces by placing decay conditions on ωr( f , t)p as t→ 0. The
most classical of these are the generalized Lipschitz spaces Lip α := Lip(α,Lp) in
Lp which consist of all f for which

| f |Lip(α,Lp) := sup
t>0

t−αωr( f , t)p, α < r, (13)

is finite. We obtain the norm on this space by adding ‖ f‖Lp to (13). The above defini-
tion holds for all 0 < p≤∞. We usually make the convention that L∞ is replaced by
the space of continuous functions. Note that the above definition apparently depends
on r but it is easy to show that one obtains exactly the same spaces no matter which
r one choses (as long as r > α) and the (quasi-)seminorms (13) are equivalent.

The generalized Lipschitz spaces are fine for a good understanding of approxi-
mation. However, certain subtle questions require a finer scaling of spaces provided
by the Besov scale. Now, in addition to α we introduce a second fine scale parameter
q ∈ [0,∞). Then the Besov space Bα

q (Lp) is defined by its semi-norm

| f |Bαq (Lp) := {
∫

t>0

[t−αωr( f , t)p]q
dt
t
}1/q, α < r. (14)

2.1 The role of interpolation

We have already noted that approximation spaces can be characterized as interpola-
tion spaces provided the fundamental Bernstein and Jackson type inequalities have
been proven. For this characterization to be of use, we need to be able to describe
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these interpolation spaces. Although this is not always simple, it has been carried out
for all pairs of spaces that arise in linear and nonlinear approximation. To describe
these results we will make a very brief incursion into interpolation.

The subject of operator interpolation grew out of harmonic analysis in the quest
to have a unified approach to characterizing the mapping properties of its primary
operators such as Fourier transforms, conjugate operators, maximal functions and
singular integrals. Of primary interest in approximation theory are the real interpo-
lation spaces. Given a pair of normed linear spaces X ,Y which are both embedded
in a common topological space, we can define the K-functional

K( f , t) := K( f , t;X ,Y ) := inf
f = f0+ f1

{‖ f0‖X + t‖ f1‖Y}. (15)

Often, the norm on Y is replaced by a semi-norm as is the case below when consid-
ering Y as a Sobolev space. The real interpolation spaces (X ,Y )θ ,q are now defined
for any θ ∈ (0,1) and q > 0 by the quasi-norm

‖ f‖(X ,Y )θ ,q
:= ‖t−θK( f , t)‖Lq(μ), (16)

where μ(t) := dt
t is Haar measure. By this time the reader is sure to observe the

common flavor of all these norms (approximation spaces, Besov spaces, and inter-
polation spaces).

We have already mentioned that these interpolation spaces are identical to the
approximation spaces whenever we have the Jackson and Bernstein inequalities in
fold. What is ever more enlightening is that for classical pairs of spaces the K-
functional and the interpolation spaces are always familiar quantities which have
been walking the streets of analysis for decades. Let us give a couple of examples
which will certainly convince even the most skeptical reader of the beautiful way in
which the whole story pieces together.

The Lp spaces are interpolation spaces for the pair (L1,L∞) as is encapsulated
in the Riesz-Thorin interpolation theorem (usually proved by means of complex
interpolation). This theorem also follows from the real method of interpolation since
the K-functional for this pair is easy to describe

K( f , t,L1,L∞) =
t∫

0

f ∗(s)ds, (17)

where f ∗ is the nondecreasing rearrangement of f as introduced by Hardy and
Littlewood. From this characterization, one easily deduces that the interpolation
spaces (L1,L∞)θ ,q are identical to the Lorentz spaces Lp,q with the identification
θ = 1−1/p. When q = p, we obtain Lp = Lp,p.

As a second example, consider the K-functional for the pair (Lp(Ω),W k(Lp(Ω)))
on a Lipschitz domain Ω ⊂ IRd . Johnen and Scherer [37] showed that

K( f , t,Lp(Ω),W k(Lp(Ω))≈ ωr( f , t)p (18)
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our old friend the modulus of smoothness. From this, one immediately deduces that
(Lp(Ω),W k(Lp(Ω))θ ,q = Bs

q(Lp(Ω)) for θ = s/k.
There are numerous other examples of this sort beautifully reported on in the

book by Bennett and Sharpley [8] that unquestionably convince us that the K-
functional is indeed a natural object. These results make our job of characterizing
the approximation spaces quite clear. We need only establish corresponding Jack-
son and Bernstein inequalities for the given approximation process and then finish
the characterization via interpolation theory. This will be our modus operandi in the
sequel.

3 The main types of nonlinear approximation

In application domains, there are four types of nonlinear approximation that are
dominant. We want to see what form the general theory takes for these cases. We
suppose that we are interested in approximating the elements f ∈ X where X is a
(quasi-) Banach space equipped with a norm ‖ · ‖X .

3.1 n-term approximation

A set D ⊂ X of elements from X is called a dictionary if each element g ∈ D has
norm one and the finite linear combinations of the elements in D are dense in X . The
simplest example of a dictionary is when D is a basis for X . However, redundant
systems D are also important. An issue is how much redundancy is possible while
retaining reasonable computation.

Given a positive integer n, we define Σn as the set of all linear combinations of at
most n elements from D . Thus, the general element in Σn takes the form

S = ∑
g∈Λ

cgg, #(Λ) = n. (19)

If we use the elements of Σn to approximate a function f ∈ X , then it induces an
error

σn( f )X := inf
S∈Σn

‖ f −S‖X . (20)

Here we are following tradition to denote the error of nonlinear approximation by
σn rather than using the generic En introduced earlier. The approximation spaces
A r

q (X) are defined as in the general setting. The approximation problem before us
is whether we can characterize these spaces.

Let us consider the simplest case of the above setting where X = H is a real
Hilbert space and D = {φ j}∞j=1 is an orthonormal basis for H . Then, each f ∈H
has an orthogonal expansion
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f =
∞

∑
j=1
〈 f ,φ j〉φ j, ‖ f‖2

H =
∞

∑
j=1
〈 f ,φ j〉2. (21)

Because of the H −→ �2 isometry, a best n term approximation to a given f ∈H
is obtained by retaining its n largest terms (the possibility of ties in the size of the
coefficients shows that this best approximation is not necessarily unique). Thus,
if we let c j = 〈 f ,φ j〉 and (c∗j) be the rearrangement of their absolute values into
nonincreasing order, then the approximation error of n-term approximation to f is

σ2
n ( f ) = ∑

j>n
[c∗j ]

2, n = 1,2, . . . . (22)

There is a simple characterization of the approximation spaces in this setting of
n-term approximation. For example, for the primary spaces, we have that f ∈A r if
and only if the coefficients (c j) are in weak �τ with 1/τ = s+1/2 and

‖ f‖A r ≈ ‖(c j)‖w�τ , (23)

where we recall that weak �τ is the space of all sequences (a j) which satisfy

‖(a j)‖w�τ := sup
n≥1

n1/τa∗n < ∞. (24)

Similar results hold for the secondary spaces A r
q characterizing them by the mem-

bership of the coefficient sequences in the Lorentz spaces �τ ,q, 1/τ = s + 1/2. In-
deed, this can be proved by establishing generalized Jackson-Bernstein inequalities
for the pair H and Yk as the set of f ∈H whose coefficient are in weak �p with
1/p = k +1/2. We refer the reader to [25] for details.

In the case where we are interested in approximation in other spaces than H ,
for example in Lp, p �= 2, things are more subtle and depend very much on the
particular basis {φ j}. Let us restrict our attention to to the wavelet basis which will
play a special role in our discussion.

Suppose that ϕ is a compactly supported univariate scaling function (i.e. ϕ sat-
isfies a two scale relationship) whose shifts form an orthonormal system. Let ψ
be the compactly supported mother wavelet associated to ϕ normalized in L2(IRd):
‖ψ‖L2 = 1. There are two ways to form an orthonormal wavelet system from this
pair. The standard construction is to define ψ0 := ϕ and ψ1 := ψ . If E ′ is the set of
vertices of the unit cube and E the set of nonzero vertices, we define

ψe(x1, . . . ,xd) := ψe1(x1) · · ·ψed (xd), e ∈ E ′. (25)

The shifted dilates ψe
j,k(x) := 2 jd/2ψe(2 j(x− k)), j ∈ ZZ, k ∈ ZZd , e ∈ E, form an

orthonormal system for L2(IRd).
It is convenient to index these wavelets according to their spacial scaling. Let

D(IRd) denote the set of all dyadic cubes in IRd . Each I ∈ D(IRd) has the form
I = 2− jd [k,k + 1] with 1 := (1, . . . ,1). We identify the wavelets with the dyadic
cubes via
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ψe
I := ψe

j,k, I ∈D(IRd),e ∈ E. (26)

This gives the wavelet decomposition

f = ∑
I∈D

∑
e∈E

fI,eψe
I , fI,e := 〈 f ,ψe

I 〉, (27)

which is valid for each f ∈ L1(IRd)+L∞(IRd).
There is a second wavelet basis built directly from tensor products of univariate

wavelets. If R = I1× ·· ·× Id , I j ∈ D(IRd), j = 1, . . . ,d, is a d dimensional dyadic
rectangle, then we define

ψR(x) := ψI1(x1) · · ·ψId (xd), (28)

where each ψI j is a univariate wavelet. This basis is sometimes called the hyperbolic
wavelet basis or sparse grid basis in PDEs. The support of ψR is now associated to
the rectangle R and in the case that ψ is the univariate Haar wavelet it is precisely
this rectangle.

To continue the discussion, let us consider the first of these bases. Some of the re-
sults for L2 approximation carry over to other approximation norms. The vehicle for
doing this is the Littlewood-Paley theory for wavelets which allows one to compute
other norms such as the Lp norms by simple expressions (the square function) of the
wavelet coefficients. Rather than go too far down this road, which is well reported
on in [25], we mention only some of the consequences of this. The first of which
is the fact that it is possible to characterize the approximation spaces A r

q (Lp) for
certain special values of q even when the approximation takes place in an Lp space,
p > 1. This even extends to p≤ 1 if we replace the Lp space by the Hardy space Hp.
Namely, A r

q (Lp(IRd)) = Brd
q (Lq(IRd)), provided 1/q = r +1/p. These results carry

over to approximation on domains Ω ⊂ IRd but now more care must be taken to
define appropriate wavelet bases. The only case that is completely straightforward
is to use the Haar wavelets for a cube such as [0,1]d in IRd .

From the Besov characterizations of the approximation spaces given in the previ-
ous paragraph, we can see the power of nonlinear approximation. If we use the ele-
ments from linear spaces of dimension n (such as polynomials or splines on uniform
partitions) to approximate a function f ∈ Lp(Ω), Ω ⊂ IRd , then we will obtain ap-
proximation of order O(n−r) if and only if f ∈ Brd

∞ (Lp(Ω), i.e. roughly speaking we
need f to have rd derivatives in Lp. However, when using nonlinear methods such
as n-term wavelet approximation it is sufficient to have f ∈ Brd

q (Lq), 1/q = r +1/p,
i.e. rd derivatives in Lq. The gain here is not in the number of derivatives (rd) but
in the space where these derivatives must lie. Since q < p this requirement is much
weaker in the case of nonlinear approximation. Indeed, functions with singularities
may be in f ∈ Brd

q (Lq) but not in f ∈ Brd
∞ (Lp).

Here is a useful way to think about this comparison between linear and nonlinear
for approximation in Lp. If we use linear methods, there will be a largest value sL

such that f ∈ Bs
∞(Lp) for all s < sL. Similarly, there will be a largest sNL such that

f ∈ Bs
q(Lq), 1/q = s/d + 1/p for all s < sNL. We always have sNL ≥ sL. However,
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in many cases sNL is much larger than sL. This translates into being able to approxi-
mate such f with accuracy O(n−sNL/d) for nonlinear methods with n parameters but
only accuracy O(n−sL/d) for linear methods with the same number of parameters.
Consider the case d = 1 and a function f which is piecewise analytic with a finite
number of jump discontinuities. If we approximate this function in L2[0,1] using
linear spaces of dimension n, we will never get approximation orders better than
O(n−1/2) because sL = 1/2, but using nonlinear methods we obtain order O(n−r)
for all r > 0 because sNL = ∞.

Let us turn to the question of how we build a good n-term approximation to
a function f ∈ Lp where there is an important story to tell. It is very simple to
describe how to choose a near best n-term approximation to a given f by simply
choosing the n-terms in the wavelet expansion for which ‖ fI,eψe

I ‖Lp is largest. Let
Λ̃n( f ) := {(I,e)} be the indices of these n largest terms (with ties in the size of the
coefficients handled in an arbitrary way) and Sn( f ) := ∑(I,e)∈Λ̃n( f ) fI,eψe

I . Then we
have the beautiful result of Temlyakov[50]

‖ f −Sn( f )‖Lp(IRd) ≤Cσn( f )Lp(IRd), (29)

with the constant C depending only on d and p.
Sometimes it is notationally beneficial to renormalize the wavelets in Lp. Let

us denote by ψe
I,p these renormalized wavelets and by fI,e,p the coefficients of f

with respect to this renormalized bases. Then a consequence of (29) is that a sim-
ple thresholding of the wavelet coefficients yields near best approximants. Namely,
given any threshold δ > 0, we denote by Λδ ( f ) :=Λδ ,p( f ) := {(I,e) : | fI,e,p|> δ},
and the approximation

Tδ ( f ) := ∑
(I,e)∈Λδ ( f )

fI,e,pψe
I,p. (30)

Then, Tδ ( f ) is a near best n-term approximation to f in Lp(IRd) for n = #(Λδ ( f )).
Notice that there is a slight distinction here between Tδ ( f ) and Sn( f ) because for
some values of n, Sn( f ) cannot be obtained by thresholding because of possible ties
in the size of coefficients.

Let us conclude this discussion of n-term approximation by remarking that it can-
not be implemented directly in a numerical application because it requires a search
over all wavelet coefficients which is an infinite task. In numerical practice this
search is limited by fixing a maximal dyadic level J to limit the search. Other nu-
merically friendly nonlinear algorithms are adaptive and tree based algorithm which
we discuss next.
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3.2 Adaptive approximation

This type of approximation has a long history and owes a lot of its interest to its use-
fulness in describing certain numerical methods for PDEs. To drive home the main
ideas behind adaptive approximation, let us consider the simple setting of approxi-
mating a function f on the unit cube Ω := [0,1]d in IRd using piecewise polynomials
on partitions consisting of dyadic cubes from D(Ω) := {I ∈D(IRd) : I ⊂Ω}. Given
an integer r > 0 and an f ∈ Lp(Ω), we denote by

Er( f , I)p := inf
Q∈Pr−1

‖ f −Q‖Lp(I), (31)

the Lp error in approximating f on I by polynomials of order r (total degree r−1).
The simplest adaptive algorithms are built on an estimator E(I) for Er( f , I)p:

Er( f , I)p ≤ E(I), I ∈D(Ω). (32)

To build an adaptive approximation to f , we let Λ0 := {Ω)} and given that
Λn =Λn( f ) has been defined, we generate Λn+1 by choosing the dyadic cube I = In

from Λn for which the estimator E(In) is largest (with again ties handled arbitrar-
ily) and then removing I and replacing it by its 2d children. Thus, the idea is to
only subdivide where the error is largest. There have been several papers discussing
the approximation properties of such adaptive algorithms starting with the pioneer-
ing work of Birman and Solomjak [13] which established convergence rates (in the
case E(I) = E( f , I)p) very similar to the estimates of the previous section for n-
term wavelet approximation. A typical result is that if a function f is in a Besov
space Bs

q(Lτ) which compactly embeds into Lp then a suitable adaptive algorithm

will provide an approximation to f with accuracy O(n−s/d) where n is the number
of parameters ( proportional to the number of cells in the adaptive partition). One
can easily argue that one cannot do away with the assumption of compact embed-
ding. Such results on adaptive approximation are only slightly weaker than those
for n-term approximation. In the latter one does not assume compactness of the
embedding into Lp.

One can even guarantee a certain near optimal performance of adaptive algo-
rithms although now the rule for subdividing is more subtle. These will be described
in the next section in the more general setting of tree approximation.

3.3 Tree approximation

We have already noted that trees arise in a natural way in nonliner approximation.
The wavelet decomposition organizes itself on trees whose nodes are dyadic cubes
in IRd . We have also seen that adaptive partitioning is described by a tree whose
nodes are the cells created during the adaptive algorithm. It is useful to formalize
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tree approximation and extract its main features since we shall see that it plays a
significant role in applications of nonlinear approximation.

We assume that we have a (generally infinite) master tree T ∗ with one root node.
In the case of adaptive partitioning this root node would be the domain Ω . We also
assume that each node has exactly K children. This matches both the wavelet tree
and the usual refinement rules in adaptive partitioning. Note that in the case the mas-
ter tree arises from adaptive partitioning, it fixes the way a cell must be subdivided
when it arises in an adaptive algorithm. So this setting does not necessarily cover all
possible adaptive strategies.

We shall be interested in finite subtrees T ⊂T ∗. Such a tree T has the property
that for any node in T its parent is also in T . We define L (T ) to be the leaves
of T . This is the set of all terminal nodes in T , i.e. such a node has none of its
children in T . We say that the tree is complete if whenever a node is in T all
of its siblings are also in T . We shall restrict our discussion to complete trees.
Any adaptively generated partition is associated to a complete tree T . We define
N (T ) to be the set of the internal nodes of T , i.e. the ones which are not leaves.
Then T = N (T )∪L (T ), if considered as sets.

As the measure of complexity of a tree T ⊂ T ∗ we consider the number of
subdivisions n(T ) needed to create T from its root. We shall often use the fact that

n(T ) = #(N (T )). (33)

It follows that
#(T ) = Kn(T )+1 (34)

Also, for a complete tree, L (T ) = 1 +(K− 1)n(T ). So, n(T ) is a fair measure
of the complexity of T .

In tree approximation, we assume that to every node I ∈T ∗, we have an error or
energy e(I). We measure the performance of a finite tree T by

E(T ) := ∑
I∈L (T )

e(I). (35)

If we are considering trees corresponding to adaptive partitioning then we would
take e(I) = E( f , I)p

p where E( f , I)p is the local Lp(I) error on the cell I. Sim-
ilarly, if we are doing wavelet approximation in L2 then we would take e(I) :=
∑J⊂I ∑e∈E | f e

I |2 which would be the energy in the wavelet coefficients on all nodes
of the tree below I (this corresponds to the error contributed by not including these
coefficients). We are interested in the best performance of trees of size n(T ) ≤ n
which is given by

σn := inf
n(T )≤n

E(T ). (36)

Using this definition of σn gives the approximation classes A r
q (Lp) for tree approx-

imation in Lp.
What is the cost of tree approximation versus n-term approximation? The main

point of our work with Wolfgang on wavelet tree approximation given in [20] is
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that the cost is almost negligible. Recall that for n-term wavelet approximation in
Lp(Ω), Ω ⊂ IRd , we achieve error O(n−r/d) for a function f if it is in the Besov
space Br

q(Lq(IRd)) with 1/q = r/d + 1/p. These latter spaces are barely embedded
in Lp and are not compactly embedded. We prove in [20] that whenever a Besov
space Br

q(Lτ) is compactly embedded into Lp(Ω) then wavelet tree approximation

gives the same approximation rate O(n−r/d). Said in another way, this Besov space

is embedded into A
r/d
∞ (Lp). Of course, we get such a compact embedding whenever

τ > (r/d + 1/p)−1 because of the Sobolev embedding theorem. Thus, from this
point of view, tree approximation performs almost as well as n-term approximation.

The proof of the above result on the performance of wavelet tree approximation
requires the counting of the new nodes added in order to guarantee the tree structure.
However, the number of these new nodes can be controlled by grouping the nodes
according to the size of the wavelet coefficients and counting each grouping. Finally,
let us remark that in [11] we prove similar theorems on tree approximation for trees
generated by adaptive partitioning. This plays an important role in understanding
which solutions to elliptic partial differential equations can be well approximated
by adaptive finite element methods.

Let us turn to the discussion of finding near best trees. Finding the best tree that
matches σk in (36) is practically infeasible since it would require searching over all
trees T ⊂ T ∗ with n(T ) = k and the number of such trees is exponential in k.
Remarkably, however, it is possible to design practical algorithms that do almost as
well while involving only O(n) computations. The first algorithms of this type were
given in [12]. We shall describe a modification of this approach that gives slightly
better constants in the estimation of performance.

The tree algorithm we shall consider can be implemented in the general setting
of [12]. However, here, we shall limit ourselves to the following setting. We assume
the error functionals are subadditive in the sense that

e(I)≥ ∑
I′∈C (I)

e(I′), (37)

where C (I) is the set of children of I. This property holds for the examples we have
described above.

A naive strategy to generate a good tree for adaptive approximation would be to
mark for subdivision the cells which have largest local errors. However, such a strat-
egy would not generate near optimal trees because it could happen that subdividing
a cell and its successive generations would not reduce at all the global error and so a
better strategy would have been to subdivide some other cell. To obtain near optimal
algorithms, one has to be more clever and penalize successive subdivisions which
do not markedly reduce the error. This is done through certain modified error func-
tionals ẽ(I) whose precise definition we postpone for a moment. The tree algorithm
we propose will grow a given tree IT by including the children of I as new nodes
when ẽ(I) is the largest among all ẽ(I′) ∈Λ(IT ).

In our formulation and analysis of the tree algorithm, the local error functional e
can be any functional defined on the nodes I in T which is subadditive.
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Tree-Algorithm:

• Let T 0 := {X} be the root tree.
• If T k has been defined for some k ≥ 0, then define

I∗ = argmax{ẽ(I) : I ∈L (Tk)}

and T k+1 := T k ∪{C (I∗)}.

As the modified error functional, we employ

ẽ(I) := e(I) for I = X and ẽ(I) :=
(

1
e(I)

+
1

ẽ(I′)

)−1

for I ∈ C (I′). (38)

The purpose of the modified error is to penalize children of cells which are chosen
for subdivision but the resulting refinement does not significantly decrease the total
error. Notice that in such a case the modified error ẽ decreases for the children and
therefore makes them less apt to be chosen in later subdivisions.

The following theorem describes the performance of the tree algorithm.

Theorem 3.1. At each step n of the above tree algorithm the output tree IT = IT n

satisfies

E(T )≤
(

n
n− k

)
σk, (39)

whenever k < n.

The main distinction of the above results from previous ones in [12] is that the
constant on the right hand side of (39) is now completely specified and, in particular,
does not involve the total number of children of a node. Note that the computational
complexity of implementing the tree algorithm with a resulting tree T depends
only on n(T ). Therefore, when applying this algorithm to adaptive partitioning, it
is independent of the spatial dimension d. The proof of the above theorem will be
given in a forthcoming paper with Peter Binev, Wolfgang, and Phillipp Lamby.

3.4 Greedy algorithms

In application domains, there is a desire to have as much approximation power as
possible. This is accomplished by choosing a large dictionary D to increase approx-
imation power. However, their sheer size can cause a stress on computation. Greedy
algorithms are a common approach to keeping computational tasks reasonable when
dealing with large dictionaries. They have a long history in statistics and signal pro-
cessing. A recent survey of the approximation properties of such algorithms is given
in [51] where one can find the main results of this subject.

We shall consider only the problem of approximating a function f from a Hilbert
space H by a finite linear combination f̂ of elements of a given dictionary D =
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(g)g∈D . We have already discussed the case where D is an orthonormal basis. One
of the motivations for utilizing general dictionaries rather than orthonormal systems
is that in many applications, such as signal processing or statistical estimation, it is
not clear which orthonormal system, if any, is best for representing or approximating
f . Thus, dictionaries which are a union of several bases or collections of general
waveforms are preferred. Some well known examples are the use of Gabor sytems,
curvelets, and wavepackets in signal processing and neural networks in learning
theory.

When working with dictionaries D which are not orthonormal bases, the real-
ization of a best n-term approximation is usually out of reach from a computational
point of view since it would require minimizing ‖ f − f̂‖ over all f̂ in an infinite or
huge number of n dimensional subspaces. Greedy algorithms or matching pursuit
aim to build “sub-optimal yet good” n-term approximations through a greedy selec-
tion of elements gk, k = 1,2, · · · , within the dictionary D , and to do so with a more
manageable number of computations.

There exist several versions of these algorithms. The four most commonly used
are the pure greedy, the orthogonal greedy, the relaxed greedy and the stepwise
projection algorithms, which we respectively denote by the acronyms PGA, OGA,
RGA and SPA. All four of these algorithms begin by setting f0 := 0. We then define
recursively the approximant fk based on fk−1 and its residual rk−1 := f − fk−1.

In the PGA and the OGA, we select a member of the dictionary as

gk := argmaxg∈D |〈rk−1,g〉|. (40)

The new approximation is then defined as

fk := fk−1 + 〈rk−1,gk〉gk, (41)

in the PGA, and as
fk = Pk f , (42)

in the OGA, where Pk is the orthogonal projection onto Vk := Span{g1, · · · ,gk}. It
should be noted that when D is an orthonormal basis both algorithms coincide with
the computation of the best k-term approximation.

In the RGA, the new approximation is defined as

fk = αk fk−1 +βkgk, (43)

where (αk,βk) are real numbers and gk is a member of the dictionary. There exist
many possibilities for the choice of (αk,βk,gk), the most greedy being to select them
according to

(αk,βk,gk) := argmin
(α,β ,g)∈IR2×D

‖ f −α fk−1−βg‖. (44)

Other choices specify one or several of these parameters, for example by taking gk

as in (40) or by setting in advance the value of αk and βk, see e.g. [38] and [4]. Note
that the RGA coincides with the PGA when the parameter αk is set to 1.



Nonlinear approximation and its applications 183

In the SPA, the approximation fk is defined by (42) as in the OGA, but the choice
of gk is made so as to minimize over all g∈D the error between f and its orthogonal
projection onto Span{g1, · · · ,gk−1,g}.

Note that, from a computational point of view, the OGA and SPA are more ex-
pensive to implement since at each step they require the evaluation of the orthogonal
projection Pk f (and in the case of SPA a renormalization). Such projection updates
are computed preferrably using Gram-Schmidt orthogonalization (e.g. via the QR
algorithm) or by solving the normal equations

Gkak = bk, (45)

where Gk := (〈gi,g j〉)i, j=1,··· ,k is the Gramian matrix, bk := (〈 f ,gi〉)i=1,··· ,k, and
ak := (α j) j=1,··· ,k is the vector such that fk = ∑k

j=1α jg j.
In order to describe the known results concerning the approximation properties of

these algorithms, we introduce the class L1 := L1(D) consisting of those functions
f which admit an expansion f = ∑g∈D cgg where the coefficient sequence (cg) is
absolutely summable. We define the norm

‖ f‖L1 := inf{∑
g∈D

|cg| : f = ∑
g∈D

cgg} (46)

for this space. This norm may be thought of as an �1 norm on the coefficients in
representation of the function f by elements of the dictionary; it is emphasized that
it is not to be confused with the L1 norm of f . An alternate and closely related way
of defining the L1 norm is by the infimum of numbers V for which f /V is in the
closure of the convex hull of D ∪ (−D). This is known as the “variation” of f as
introduced in [3].

In the case where D is an orthonormal basis, we find that if f ∈L1,

σN( f ) = ( ∑
g/∈Λn( f )

|cg|2)1/2 ≤ (‖ f‖L1 min
g∈Λn( f )

|cg|)1/2 ≤ ‖ f‖L1N−1/2, (47)

which is contained in (23).
For the PGA, it was proved in [29] that f ∈L1 implies that

‖ f − fN‖<∼N−1/6. (48)

This rate was improved to N−
11
62 in [40], but on the other hand it was shown [43]

that for a particular dictionary there exists f ∈L1 such that

‖ f − fN‖>∼ N−0.27. (49)

When compared with (47), we see that the PGA is far from being optimal.
The RGA, OGA and SPA behave somewhat better: it was proved respectively in

[38] for the RGA and SPA, and in [29] for the OGA, that one has

‖ f − fN‖<∼‖ f‖L1N−1/2, (50)

for all f ∈L1.



184 Ronald A. DeVore

For each of these algorithms, it is known that the convergence rate N−1/2 cannot
in general be improved even for functions which admit a very sparse expansion in
the dictionary D (see [29] for such a result with a function being the sum of two
elements of D).

At this point, some remarks are in order regarding the meaning of the condi-
tion f ∈ L1 for some concrete dictionaries. A commonly made statement is that
greedy algorithms break the curse of dimensionality in that the rate N−1/2 is in-
dependent of the dimension d of the variable space for f , and only relies on the
assumption that f ∈L1. This is not exactly true since in practice the condition that
f ∈ L1 becomes more and more stringent as d grows. For instance, in the case
where we work in the Hilbert space H := L2([0,1]d) and when D is a wavelet
basis (ψλ ), it follows from our earlier observations in §3.1 that the smoothness
property which ensures that f ∈ L1 is that f should belong to the Besov space
Bs

1(L1) with s = d/2, which roughly means that f has all its derivatives of order
less or equal to d/2 in L1 (see [25] for the characterization of Besov spaces by the
properties of wavelet coefficients). Another instance is the case where D consists
of sigmoidal functions of the type σ(v · x−w) where σ is a fixed function and v
and w are arbitrary vectors in IRd , respectively real numbers. For such dictionar-
ies, it was proved in [4] that a sufficient condition to have f ∈ L1 is the conver-
gence of

∫
|ω ||F f (ω)|dω where F is the Fourier operator. This integrability con-

dition requires a larger amount of decay on the Fourier transform F f as d grows.
Assuming that f ∈ L1 is therefore more and more restrictive as d grows. Simi-
lar remarks also hold for other dictionaries (hyperbolic wavelets, Gabor functions
etc.).

The above discussion points to a significant weakness in the theory of greedy
algorithms in that there are no viable bounds for the performance of greedy algo-
rithms for general functions f ∈H . This is a severe impediment in some appli-
cation domains (such as learning theory) where there is no a priori knowledge that
would indicate that the target function is in L1. One of the main contributions of the
work with Wolfgang [7] was to provide error bounds for the performance of greedy
algorithms for general functions f ∈H . This was accomplished by developing a
technique based on interpolation of operators that provides convergence rates N−s,
0 < s < 1/2, whenever f belongs to a certain intermediate space between L1 and
the Hilbert space H . Namely, we used the spaces

Bp := [H ,L1]θ ,∞, θ := 2/p−1, 1 < p < 2, (51)

which are the real interpolation spaces between H and L1. We showed that if
f ∈Bp, then the OGA and RGA, when applied to f , provide approximation rates
CN−s with s := θ/2 = 1/p−1/2. Thus, if we set B1 = L1, then these spaces pro-
vide a full range of approximation rates for greedy algorithms. Recall, as discussed
previously, for general dictionaries, greedy algorithms will not provide convergence
rates better than N−1/2 for even the simplest of functions. The results we obtained
were optimal in the sense that they recovered the best possible convergence rate in
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the case where the dictionary is an orthonormal basis. For an arbitrary target func-
tion f ∈H , convergence of the OGA and RGA holds without rate.

4 Image compression

The emergence of wavelets as a good representation system took place in the late
1980’s. One of the most impressive applications of the wavelet system occured in
image processing, especially compression and denoising. There are a lot of stories
to be told here including the method of thresholding wavelet coefficients for de-
noising, first suggested by Donoho and Johnstone [31], as a simple methodology
for effectively solving imaging problems. But we shall restrict our attention to the
problem of understanding the best implementation of wavelets in compression (im-
age encoding).

What is an image? Too often the view is a digitized image. While this matches
what we treat in application, it is not the correct launching point for a theory. En-
gineers usually view images and signals as realizations of a stochastic process. One
can debate the efficacy of this viewpoint versus the deterministic viewpoint I am
going to now advocate.

In [26], we proposed to view images as functions f defined on a continuum
which we shall normalize as the unit square [0,1]2. The digitized images we observe
are then simply samples of f given as averages over small squares (pixels). Thus,
any representation system for functions on [0,1]2 can be used to for images and
computations are made from the samples. We advocated the use of wavelets because
of its multiscale structure and the remainder of our discussion of image processing
will be limited to wavelet decompositions.

Suppose we we wish to compress functions using wavelet decompositions. The
first step is to chose the norm or metric in which we wish to measure distortion. This
is traditionally done using the L2 norm which corresponds to what Engineers use in
their measure of Peak Signal to Noise Ratio (PSNR). However, for the purposes of
this discussion any Lp norm would work equally well. We have already seen that
a near best n term approximation (actually best when p = 2) is gotten by simply
keeping the n largest terms (measured in Lp) of the wavelet decomposition. So this
must be how to do compression. However to convert everything to a binary bitstream
one has to further quantize the coefficients since in general the wavelet coefficients
are real numbers.

Understanding how to quantize is quite easy if one recalls the connection be-
tween n-term approximation and thresholding. Namely, as explained earlier, except
for possible ties in the sizes of wavelet coefficients, choosing the biggest n terms
corresponds to setting a threshold and retaining the wavelet coefficients above this
threshold. Since thresholding takes the view that coefficients below the threshold
size η > 0 should not be retained, it makes perfect sense that quantizing a wavelet
coefficient a should be made by taking the smallest number of binary bits of a so that
the recovery â from these bits satisfies |a− â| ≤ η . This makes a perfectly reason-
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able compression scheme except that in addition one has to send bits to identify the
index of the wavelet coefficient. Here the matter becomes a little more interesting.

Before embarking on the index identification problem, let us remark that the char-
acterization (given in §3.1) of the approximation classes A r

τ (Lp) as Besov spaces
Bs
τ(Lτ) when 1/τ = r +1/p and r = s/2 (because we are in two space dimensions)

gives a very satisfying characterization of which images can be compressed with a
given distortion rate if we measure complexity of the encoding by the number of
terms retained in the wavelet decomposition. This was the story told in [26]. How-
ever, there was rightfully considerable objection to this theory since it was based on
the number of terms n retained and not on the number of bits needed to encode this
information.

A major step in the direction of giving a theory based on the number of bits was
taken in the paper of Cohen, Daubechies, Gulyeruz, and Orchard [21]. It was how-
ever limited to measuring distortion in the L2 norm. With Wolfgang, we wanted to
give a complete theory that would include measuring distortion in any Lp space.
The key step in developing such a theory was to consider the notion of tree approx-
imation and in fact this is where the theory of tree approximation characterizing the
spaces A r

q (Lp, tree) for the wavelet basis (described earlier) was developed. Let us
see how this solves our encoding problem.

To build a compression for functions, we first choose our compression metric Lp.
We then agree on a minimal smoothness ε that we shall assume of the functions in
Lp. This step is necessary so that the encoder is applied to a compact set of functions.
Next, we find the wavelet coefficients of the wavelet decomposition of the image
with respect to the wavelet basis normalized in Lp. We then build a sequence of
trees Tk associated to the image as follows. We consider the set Λk of all wavelet
indices for which the coefficient of the image is in absolute value ≥ 2−k. The nodes
inΛk will not form a tree so we complete them to the smallest tree Tk which contains
Λk. An important point here is that the sets Λk and the tree Tk can be found without
computing and searching over an infinite set of wavelet coefficients because of our
assumption on minimal smoothness in Lp.

Notice that the tree Tk is contained in Tk+1. Therefore Δk := Tk \Tk−1 will tell
us how to obtain Tk once Tk−1 is known. This process is called growing the tree.

We shall send a progressive bitstream to the receiver. After receiving any portion
of this bitstream the receiver will be able to construct an approximation of the image
with higher and higher resolution (in our chosen Lp metric) as more and more bits
are received. The first bits will identify the smallest value of k0 for which Λk0 is
nonempty. Then come the bits to identify Tk0 followed by bits to identify the sign of
the coefficients in Tk0 and one bit of the binary expansion of each of the coefficients.
Later bits come in packets. Each packet tells us how to go from Tk−1 to Tk and how
to increase the resolution of each of the coefficients in hand.

Precisely, in the k-th packet we first send bits that tell how to grow Tk−1 to Tk.
Next, we send a bit for each new coefficient (i.e. those in Δk) to identify its sign,
next comes one bit (the lead bit) of the binary expansion for each new coefficient.
Finally, we send one additional bit for each of the old coefficients that had been
previously sent.
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For the resulting encoder one can prove the following result of [20]:
Performance of image encoder: If the image f ∈ Bs

q(Lτ) for some s > 0 and τ >

(s/2+1/p)−1, then after receiving n bits, these bits can be decoded to give an image
f̂ such that ‖ f − f̂‖Lp ≤Cn−s/2.

There were two key ingredients in proving the above result on the performance of
the encoder. The first of these is to show that tree approximation is as effective as n-
term approximation when approximating functions in Besov classes that compactly
embed into Lp. We have already discussed this issue in our section on tree approxi-
mation. The second new ingredient is to show that any quad tree with m nodes can
be encoded using at most 4m bits. Here, we borrowed the ideas from [21].

5 Remarks on nonlinear approximation in PDE solvers

Certainly, the construction of numerical algorithms based on nonlinear approxima-
tion for solving PDEs has been one of Wolfgang’s major accomplishments. An ex-
tensive description of this development for elliptic PDEs will be presented in the
contribution of Morin, Nochetto and Siebert in this volume. We will restrict our
remarks to some historical comments.

We shall discuss only the model Laplace problem

−Δ(u) = f on Ω , u = 0 on ∂Ω , (52)

where f ∈ H−1 and the solution u is to be captured in the energy norm which in
this case is the H1

0 (Ω) norm. The solution to such equations is well known to gen-
erate singularities of two types. The first is due to singularities in f itself while
the other come from the boundary of the domain, for example corner singularities.
So it is natural to envision nonlinear approximation methods as the basis for effec-
tive numerical solvers. Indeed, it was already shown in [23], that the solutions to
(52) on Lipschitz domains always have higher smoothness in the scale of Besov
spaces corresponding to nonlinear approximation than they do in the scale for linear
approximation. So the theoretical underpinnings were there to advocate nonlinear
methods and they were certainly in vogue beginning with the work of Ivo Babuska
and his collaborators (starting with [1]). Surprisingly, there was no algorithm based
on nonlinear methods which was proven to outperform linear methods save for some
univariate results.

Wolfgang brought Albert and I this problem and explained the bulk chasing
technique of Doerfler [32] which can be used to show convergence (but no rates)
for adaptive finite element methods (with some massaging as provided by Morin,
Nochetto, and Siebert [44]). We thought that the easiest type algorithm to analyze
would be based on wavelet decompositions. One advantage of chosing wavelets is
that (52) can be converted to an infinite matrix operator equation

A ū = f̄ (53)
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where A is bounded and boundedly invertible on �2. Here one employs the wavelet
preconditioning (diagonal rescaling) utilized in the analysis of preconditioning in
[24]. The key property inherited by this matrix is off diagonal decay which can also
be described as a compressibility in that A can be well approximated by finite rank
matrices.

In analogy with the results on image encoding, we wanted to create a Galerkin al-
gorithm for numerically solving (52) based on wavelet tree approximation such that
whenever u is in one of the approximation classes A s then the algorithm produces
an approximant to u (in the energy norm) with near optimal rate distortion. Namely,
if N is the cardinality of the tree T associated to the numerical approximation uT ,
then

‖u−uT ‖H1
0
≤C0‖u‖A sN−s. (54)

In the end we actually did much better since we showed the operational count
needed to compute uT could also be kept proportional to N.

We were quickly able to build the framework for the wavelet numerical algo-
rithm. However, we wrestled for quite some time to derive optimal bounds for the
number of terms in the wavelet decomposition of the approximant. This of course
is necessary for any rate distortion theory. In the end, we went back to our anal-
ogy with image compression where one discards small coefficients in such decom-
positions when seeking optimal compression and noise reduction. This led to our
coarsening algorithm and a subsequent proof of optimal performance of the numer-
ical algorithm. It was an important contribution of Stevenson [48] that it is actually
possible to build adaptively wavelet algorithms without coarsening with the same
optimal rate distortion theory. Heuristically, if one is not too aggressive with the
bulk chasing then the majority of the nodes chosen will in the end survive coarsen-
ing.

Our first paper [16] on adaptive wavelet methods was built on solving finite dis-
crete problems formed by taking appropriate subsections of the matrix A . This ac-
tually turned out to be the wrong view. Wolfgang proposed the idea that we should
retain as long as possible the infinite matrix form (53) and algorithms should be
viewed as solving this infinite dimensional problem. This turned out to be not only
the right conceptual view but also very powerful in algorithm development. This
allowed us to solve non-coercive problems and provide a very robust and elegant
theory in [17].

With Peter Binev, Wolfgang and I wondered why we could not carry our wavelet
theory over to finite element methods based on adaptive triangulations . We quickly
found out that these algorithms had major differences from wavelet algorithms. First
of all, in contrast to having one matrix (53) governing the algorithm, the matrices
changed at each iteration. This made the effect of refining triangles much more
subtle than the growing wavelet trees. Fortunately, we were able to borrow the the-
ory of local error estimators for finite elements developed by Morin, Nochetto, and
Siebert [44]. Another major difficulty was the fact the problem of hanging nodes (or
non-conforming elements). This required us to develop a way to count the additional
refinements necessary to guarantee conforming elements. This was eventually given
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by a nice maximal function type algorithm. Our algorithm for adaptive finite element
methods again had a coarsening step based on the tree algorithm of [12]. Again, Rob
Stevenson was able to show that one can proceed without coarsening. Now there is
a much finer understanding of adaptive finite element algorithms which will be well
presented in the contribution of Morin, Nochetto, and Siebert in this volume.

6 Learning theory

Learning theory is a problem in data fitting. The data is assumed to be generated by
an unknown measure ρ defined on a product space Z := X ×Y . We shall assume
that X is a bounded domain of IRd and Y = IR. The article of Gerard Kerkyacharian,
Mathilde Mougeot, Dominique Picard, and Karine Tribouley in this volume will
give a general exposition of this subject. Here we want to touch on some aspects of
this subject that relate to nonlinear approximation.

We assume that we are given m independent random observations zi = (xi,yi),
i = 1, . . . ,m, identically distributed according to ρ . We are interested in finding the
function fρ which best describes the relation between the yi and the xi. This is the
regression function fρ(x) defined as the conditional expectation of the random vari-
able y at x:

fρ(x) :=
∫

Y

ydρ(y|x) (55)

with ρ(y|x) the conditional probability measure on Y with respect to x. We shall use
z = {z1, . . . ,zm} ⊂ Zm to denote the set of observations.

One of the goals of learning is to provide estimates under minimal restrictions on
the measure ρ since this measure is unknown to us. We shall work under the mild
assumption that this probability measure is supported on an interval [−M,M]

|y| ≤M, (56)

almost surely. It follows in particular that | fρ | ≤M. This property of ρ can usually
be inferred in practical applications.

We denote by ρX the marginal probability measure on X defined by

ρX (S) := ρ(S×Y ). (57)

We shall assume that ρX is a Borel measure on X . We have

dρ(x,y) = dρ(y|x)dρX(x). (58)

It is easy to check that fρ is the minimizer of the risk functional

E ( f ) :=
∫

Z

(y− f (x))2dρ, (59)
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over f ∈ L2(X ,ρX ) where this space consists of all functions from X to Y which are
square integrable with respect to ρX . In fact one has

E ( f ) = E ( fρ)+‖ f − fρ‖2, (60)

where
‖ · ‖ := ‖ · ‖L2(X ,ρX ). (61)

The goal in learning is to find an estimator fz for fρ from the given data z.
The usual way of evaluating the performance of such an estimator is by studying
its convergence either in probability or in expectation, i.e. the rate of decay of the
quantities

Prob{‖ fρ − fz‖ ≥ η}, η > 0 or E(‖ fρ − fz‖2) (62)

as the sample size m increases. Here both the expectation and the probability are
taken with respect to the product measure ρm defined on Zm. Estimations in prob-
ability are to be preferred since they give more information about the success of a
particular algorithm and they automatically yield an estimate in expectation by inte-
grating with respect to η . Much more is known about the performance of algorithms
in expectation. This type of regression problem is referred to as random design or
distribution-free because there are no a priori assumption on ρX . An excellent survey
on distribution free regression theory is provided in the book [35], which includes
most existing approaches as well as the analysis of their rate of convergence in the
expectation sense.

A common approach to regression estimation is to choose an hypothesis (or
model) class H and then to define fz, in analogy to (59), as the minimizer of the
empirical risk

fz := argmin
f∈H

Ez( f ), with Ez( f ) :=
1
m

m

∑
j=1

(y j− f (x j))2. (63)

In other words, fz is the best approximation to (y j)m
j=1 from H in the the empirical

norm

‖g‖2
m :=

1
m

m

∑
j=1
|g(x j)|2. (64)

Typically, H = Hm depends on a finite number n = n(m) of parameters. Of course,
we advocate the use of nonlinear families Hm for the reasons already made abun-
dantly clear in this exposition. In some algorithms, the number n is chosen using
an a priori assumption on fρ . Better algorithms avoid such prior assumptions and
the number n is adapted to the data in the algorithm. This is usually done by what
is called model selection in statistics but this can be sometimes be an expensive
numerical procedure in practical implementations.

Estimates for the decay of the quantities in (62) are usually obtained under certain
assumptions (called priors) on fρ . We emphasize that the algorithms should not
depend on prior assumptions on fρ . Only in the analysis of the algorithms do we
impose such prior assumptions in order to see how well the algorithm performs.
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Priors on fρ are typically expressed by a condition of the type fρ ∈Θ where Θ
is a class of functions that necessarily must be contained in L2(X ,ρX ). If we wish
the error, as measured in (62), to tend to zero as the number m of samples tends to
infinity then we necessarily need thatΘ is a compact subset of L2(X ,ρX ). There are
three common ways to measure the compactness of a set Θ : (i) minimal coverings,
(ii) smoothness conditions on the elements of Θ , (iii) the rate of approximation of
the elements ofΘ by a specific approximation process.

In studying the estimation of the regression function, the question arises at the
outset as to what are the best approximation methods to use in deriving algorithms
for approximating fρ and therefore indirectly in defining prior classes? With no ad-
ditional knowledge of ρ (and thereby fρ ) there is no general answer to this question.
This is in contrast to numerical methods for PDEs where regularity theorems for the
PDEs can lead to the optimal recovery schemes.

However, it is still possible in learning to draw some distinctions between certain
strategies. Suppose that we seek to approximate fρ by the elements from a hypoth-
esis class H = Σn. Here the parameter n measures the complexity associated to the
process. In the case of approximation by elements from linear spaces we will take
the space Σn to be of dimension n. For nonlinear methods, the space Σn is not linear
and now n represents the number of parameters used in the approximation.

If we have two approximation methods corresponding to sequences of approx-
imation spaces (Σn) and (Σ ′n), then the second process would be superior to the
first in terms of rates of approximation if E ′n(g) ≤ CEn(g) for all g and an abso-
lute constant C > 0. For example, approximation using piecewise linear functions
would in this sense be superior to using approximation by piecewise constants. In
our learning context however, there are other considerations since: (i) the rate of
approximation need not translate directly into results about estimating fρ because
of the uncertainty in our observations, (ii) it may be that the superior approximation
method is in fact much more difficult (or impossible) to implement in practice. For
example, a typical nonlinear method may consist of finding an approximation to g
from a family of linear spaces each of dimension N. The larger the family the more
powerful the approximation method. However, too large of a family will generally
make the numerical implementation of this method of approximation impossible.

Suppose that we have chosen the space Σn to be used as our hypothesis class
H in the approximation of fρ from our given data z. How should we define our
approximation? As we have already noted, the most common approach is empirical
risk minimization which gives the function f̂z := f̂z,Σn defined by (63). However,
since we know | fρ | ≤M, the approximation will be improved if we post-truncate f̂z
by M. For this, we define the truncation operator

TM(x) := min(|x|,M)sign(x) (65)

for any real number x and define

fz := fz,H := TM( f̂z,H ). (66)



192 Ronald A. DeVore

There are general results that provide estimates for how well fz approximates fρ .
One such estimate given in [35] (see Theorem 11.3) applies when H is a linear
space of dimension n and gives

E(‖ fρ − fz‖2)<∼
n log(m)

m
+ inf

g∈H
‖ fρ −g‖2. (67)

The second term is the bias and equals our approximation error En( fρ) for approx-
imation using the elements of H . The first term is the variance which bounds the
error due to uncertainty. One can derive rates of convergence in expectation by bal-
ancing both terms (see [35] and [27]) for specific applications.

The deficiency of this approach is that one needs to know the behavior of En( fρ)
in order to choose the best value of n and this requires a priori knowledge of fρ .
There is a general procedure known as model selection which circumvents this dif-
ficulty and tries to automatically choose a good value of n (depending on fρ ) by
introducing a penalty term. Suppose that (Σn)m

n=1 is a family on linear spaces each
of dimension n. For each n = 1,2, . . . ,m, we have the corresponding function fz,Σn

defined by (66) and the empirical error

Ên,z :=
1
m

m

∑
j=1

(y j− fz,Σn(x j))2. (68)

Notice that En,z is a computable quantity which we can view as an estimate for
En( fρ). In complexity regularization, one chooses a value of n by

n∗ := n∗(z) := argmin {En,z +
n logm

m
}. (69)

We now define
f̂z := fz,Σn∗ (70)

as our estimator to fρ . One can then prove (see Chapter 12 of [35]) that whenever
fρ can be approximated to accuracy En( fρ)≤Mn−s for some s > 0, then

E(‖ fρ − fz‖2
L2(X ,ρX ))≤C[

(logm)2

m
]

2s
2s+1 (71)

which save for the logarithm is an optimal rate estimation in expectation. For a
certain range of s, one can also prove similar estimates in probability (see [27]).
Notice that the estimator did not need to have knowledge of s and nevertheless
obtains the optimal performance.

Model selection can also be applied in the setting of nonlinear approximation, i.e.
when the spaces Σn are nonlinear but in this case, one needs to invoke conditions on
the compatibility of the penalty with the complexity of the approximation process
as measured by an entropy restriction. We refer the reader to Chapter 12 of [35] for
a more detailed discussion of this topic
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Let us also note that the penalty approach is not always compatible with the
practical requirement of on-line computations. By on-line computation, we mean
that the estimator for the sample size m can be derived by a simple update of the
estimator for the sample size m− 1. In penalty methods, the optimization problem
needs to be globally re-solved when adding a new sample. However, when there is
additional structure in the approximation process such as the adaptive partitioning,
then there are algorithms that circumvent this difficulty.

With Wolfgang, we wanted to develop algorithms based on nonlinear piecewise
polynomials which are universally optimal and in addition are numerically easy to
implement. Our first paper [9] built such an algorithm based on piecewise constant
approximation. Its implementation is very simple (wavelet like) and can be done on
line with streaming data. We proved theorems which showed the optimality of this
algorithm in terms of the desirable probability estimates.

While proving the results in [9], we were puzzled by the fact that these results
did not carry over nontrivially to general piecewise polynomials. Through a fam-
ily of counterexamples, we found that if we wanted estimators which perform well
in probability then either we must assume something more about the underlying
probability measure ρ or we must find an alternative to empirical risk minimization.
The simplest way out of this dilemma was to use post truncation as described in
(66). Using this type of truncation, we developed in [7] optimal adaptive partition-
ing learning algorithms for arbitrary polynomial degrees and proved their universal
optimality.

6.1 Learning with greedy algorithms

We have already emphasized that keeping the computational task reasonable in
learning algorithms is a significant issue. For this reason, with Wolfgang we studied
the application of greedy algorithms for learning. The main goal of our extension of
the theory of greedy algorithms, as discussed in §3.4 was to apply these to the learn-
ing problem. Indeed, we built an estimator based on the application of the OGA or
RGA to the noisy data (yi) in the Hilbert space defined by the empirical norm

‖ f‖n :=
1
n

n

∑
i=1
| f (xi)|2, (72)

and its associated inner product. At each step k, the algorithm generates an approx-
imation f̂k to the data. Our estimator was then defined by

f̂ := T f̂k∗ (73)

where T is the truncation operator (65) and the value of k∗ is selected by a complex-
ity regularization procedure. Our main result for this estimator was (roughly) that
when the regression function fρ is in Bp (where this space is defined with respect
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to the norm ‖u‖2 := E(|u(x)|2) as in §3.4), the estimator has convergence rate

E(‖ f̂ − fρ‖2)<∼
( n

logn

)− 2s
1+2s

, (74)

again with s := 1/p− 1/2. In the case where fρ ∈L1, we obtain the same result
with p = 1 and s = 1/2. We also show that this estimator is universally consistent.

In order to place these results into the current state of the art of statistical learn-
ing theory, let us first remark that similar convergence rate for the denoising and
the learning problem could be obtained by a more “brute force” approach which
would consist in selecting a proper subset of D by complexity regularization with
techniques such as those in [2] or Chapter 12 of [35]. Following for instance the
general approach of [35], this would typically first require restricting the size of the
dictionary D (usually to be of size O(na) for some a > 1) and then considering all
possible subsets Λ ⊂ D and spaces GΛ := Span{g ∈ Λ}, each of them defining an
estimator

f̂Λ := T
(

Argmin f∈GΛ
‖y− f‖2

n

)
(75)

The estimator f̂ is then defined as the f̂Λ which minimizes

min
Λ⊂D

{‖y− f̂Λ‖2
n +Pen(Λ ,n)} (76)

with Pen(Λ ,n) a complexity penalty term. The penalty term usually restricts the size
of Λ to be at most O(n) but even then the search is over O(nan) subsets. In some
other approaches, the sets GΛ might also be discretized, transforming the subprob-
lem of selecting f̂Λ into a discrete optimization problem.

The main advantage of using the greedy algorithm in place of (76) for construct-
ing the estimator is a dramatic reduction of the computational cost. Indeed, instead
of considering all possible subsets Λ ⊂ D the algorithm only considers the sets
Λk := {g1, · · · ,gk}, k = 1, . . . ,n, generated by the empirical greedy algorithm. This
approach was proposed and analyzed in [41] using a version of the RGA in which

αk +βk = 1 (77)

which implies that the approximation fk at each iteration stays in the convex hull C1

of D . The authors established that if f does not belong to C1, the RGA converges to
its projection onto C1, In turn, the estimator was proved to converge in the sense of
(74) to fρ , with rate (n/ logn)−1/2, if fρ lies in C1, and otherwise to its projection
onto C1. In that sense, this procedure is not universally consistent.

Our main contribution in the work with Wolfgang was to remove requirements of
the type fρ ∈L1 when obtaining convergence rates. In the learning context, there is
indeed typically no advanced information that would guarantee such restrictions on
fρ . The estimators that we construct for learning are now universally consistent and
have provable convergence rates for more general regression functions described
by means of interpolation spaces. One of the main ingredient in our analysis of the
performance of our greedy algorithms in learning is a powerful exponential con-
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centration inequality which was introduced in [41]. Let us mention that a closely
related analysis, which however does not involve interpolation spaces, was devel-
oped in [5, 6].

Let us finally mention that there exist some natural connections between the
greedy algorithms which we have discussed and other numerical techniques for
building a sparse approximation in the dictionnary based on the minimization of
an �1 criterion. In the statistical context, these are the celebrated LASSO [52, 36]
and LARS [33] algorithms. The relation between �1 minimization and greedy se-
lection is particularly transparent in the context of deterministic approximation of a
function f in an orthonormal basis: if we consider the problem of minimizing

‖ f − ∑
g∈D

dgg‖2 + t ∑
g∈D

|dg| (78)

over all choices of sequences (dg), we see that it amounts in minimizing |cg−dg|2 +
t|dg| for each individual g, where cg := 〈 f ,g〉. The solution to this problem is given
by the soft thresholding operator

dg := cg−
t
2

sign(cg) if |cg|>
t
2
, 0 else, (79)

and is therefore very similar to picking the largest coefficients of f .

7 Compressed sensing

Compressed sensing came into vogue during the last few years but its origins lie
in results from approximation and functional analysis dating back to the 1970’s.
The primary early developers were Kashin [39] and Gluskin [34]. Donoho [30] and
Candés and Tao [14] showed the importance of this theory in signal processing and
added substantially to the theory and its numerical implementation, especially how
to do decoding in a practical way.

In discrete compressed sensing, we want to capture a vector (signal) x ∈ IRN with
N large. Of course if we make N measurements we will know x exactly. The problem
is to make comparably fewer measurements and still have enough information to
accurately recover x. Since the subject is intimately intertwined with sparsity and
nonlinear approximation, the problems of compressed sensing immediately peaked
our interest.

The m measurements we are allowed to make about x are of the form of an
inner product of x with prescribed vectors. These measurements are represented by
a vector

y = Φx, (80)

of dimension m < N, where Φ is an m×N measurement matrix (called a CS matrix).
To extract the information that the measurement vector y holds about x, one uses a
decoder Δ which is a mapping from IRm into IRN . The vector x∗ := Δ(y) = Δ(Φx)
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is our approximation to x extracted from the information y. In contrast to Φ , the
operator Δ is allowed to be non-linear.

In recent years, considerable progress has been made in understanding the perfor-
mance of various choices of the measurement matrices Φ and decoders Δ . Although
not exclusively, by far most contributions focus on the ability of such an encoder-
decoder pair (Φ ,Δ) to recover a sparse signal. For example, a typical theorem says
that there are pairs (Φ ,Δ) such that whenever x ∈ Σk, with k ≤ am/ log(N/k), then
x∗ = x.

Our view was that from both a theoretical and a practical perspective, it is highly
desirable to have pairs (Φ ,Δ) that are robust in the sense that they are effective
even when the vector x is not assumed to be sparse. The question arises as to how
we should measure the effectiveness of such an encoder-decoder pair (Φ ,Δ) for
non-sparse vectors. In [18] we have proposed to measure such performance in a
metric ‖ · ‖X by the largest value of k for which

‖x−Δ(Φx)‖X ≤C0σk(x)X , ∀x ∈ IRN , (81)

with C0 a constant independent of k,n,N. We say that a pair (Φ ,Δ) which satisfies
property (81) is instance-optimal of order k with constant C0. It was shown that this
measure of performance heavily depends on the norm employed to measure error.
Let us illustrate this by two contrasting results from [18]:

(i) If ‖ · ‖X is the �1-norm, it is possible to build encoding-decoding pairs (Φ ,Δ)
which are instance-optimal of order k with a suitable constant C0 whenever
m≥ ck log(N/k) provided c and C0 are sufficiently large. Moreover, the decoder
Δ can be taken as

Δ(y) := argmin
Φz=y

‖z‖�1 . (82)

Therefore, in order to obtain the accuracy of k-term approximation, the number
m of non-adaptive measurements need only exceed the amount k of adaptive
measurements by the small factor c log(N/k). We shall speak of the range of k
which satisfy k ≤ am/ log(N/k) as the large range since it is the largest range
of k for which instance-optimality can hold.

(ii) In the case ‖ · ‖X is the �2-norm, if (Φ ,Δ) is any encoding-decoding pair which
is instance-optimal of order k = 1 with a fixed constant C0, then the number
of measurement m is always larger than aN, where a > 0 depends only on C0.
Therefore, the number of non-adaptive measurements has to be very large in
order to compete with even one single adaptive measurement.

The matrices Φ which have the largest range of instance-optimality for �1 are all
given by stochastic constructions. Namely, one creates an appropriate random fam-
ily Φ(ω) of m×N matrices on a probability space (Ω ,ρ) and then shows that with
high probability on the draw, the resulting matrix Φ = Φ(ω) will satisfy instance-
optimality for the large range of k. There are no known deterministic constructions.
The situation is even worse in the sense that given an m×N matrix Φ there is no
simple method for checking its range of instance-optimality.
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While the above results show that instance-optimality is not a viable concept in
�2, it turns out that the situation is not as bleak as it seems. For example, a more
optimistic result was established by Candes, Romberg and Tao in [15]. They show
that if m≥ ck log(N/k), it is possible to build pairs (Φ ,Δ) such that for all x ∈ IRN,

‖x−Δ(Φx)‖�2 ≤C0
σk(x)�1√

k
, (83)

with the decoder again defined by (82). This implies, in particular, that k-sparse sig-
nals are exactly reconstructed and that signals x in the space weak �p with ‖x‖w�p ≤
M for some p < 1 are reconstructed with accuracy C0Mk−s with s = 1/p−1/2. This
bound is of the same order as the best estimate available on max{σk(x)�2 : ‖x‖w�p ≤
M}. Of course, this result still falls short of instance-optimality in �2 as it must.

What intrigued us was that instance-optimality can be attained in �2 if one accepts
a probabilistic statement. A first result in this direction, obtained by Cormode and
Mutukrishnan in [22], shows how to construct random m×N matrices Φ(ω) and a
decoder Δ = Δ(ω), ω ∈Ω , such that for any x ∈ IRN ,

‖x−Δ(Φx)‖�2 ≤C0σk(x)�2 (84)

holds with overwhelming probability (larger than 1−ε(m) where ε(m) tends rapidly
to 0 as m→+∞) as long as k ≤ am/(logN)5/2 with a suitably small. Note that this
result says that given x, the set of ω ∈ Ω for which (84) fails to hold has small
measure. This set of failure will depend on x.

From our viewpoint, instance-optimality in probability is the proper formulation
in �2. Indeed, even in the more favorable setting of �1, we can never put our hands on
matrices Φ which have the large range of instance-optimality. We only know with
high probability on the draw, in certain random constructions, that we can attain
instance-optimality. So the situation in �2 is not that much different from that in �1.

The results in [18] pertaining to instance-optimality in probability asked two
fundamental questions: (i) can we attain instance-optimality for the largest range
of k, i.e. k ≤ an/ log(N/k), and (ii) what are the properties of random families that
are needed to attain this performance. We showed that instance-optimality can be
obtained in the probabilistic setting for the largest range of k, i.e. k ≤ an/ log(N/k)
using quite general constructions of random matrices. Namely, we introduced two
properties for a random matrix Φ which ensure instance-optimality in the above
sense and then showed that these two properties hold for rather general constructions
of random matrices (such as Gaussian and Bernoulli). However, one shortcoming of
the results in [18] is that the decoder used in establishing instance-optimality was
defined by minimizing ‖y−Φx‖�2 over all k-sparse vectors, a task which cannot be
achieved in any reasonable computational time.

This led us to consider other possible decoders which are numerically friendly
and can be coupled with standard constructions of random matrices to obtain an
encoding/decoding pair which is instance-optimal for the largest range of k. There
are two natural classes of decoders.
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The first is based on �1 minimization as described in (82). It was a nontrivial
argument given by Przemek Wojtaczszyk [54] that this decoder gives �2 instance
optimality in probability when coupled with random Gaussian matrices. The key
feature of his proof was the fact that such an m×N Gaussian matrix maps the unit
ball in �N

1 onto a set that contains the ball of radius log(N/m)
m in �m

2 .
The above mapping property fails to hold for general random matrices. For ex-

ample for the Bernouli family, any point that maps into the vector e1 = (1,0, . . . ,0)
must have �N

1 norm ≥
√

n. So some new ideas were needed to prove instance opti-
mality in probability for general random families. This is provided by new mapping
properties which state that the image of the unit �N

1 ball covers a certain clipped �N
2

ball. These remarkable mapping properties were first proved in [42] and rediscov-
ered in [28] where the instance optimality is proved.

The other natural decoders for compressed sensing are greedy algorithms. The
idea to apply greedy algorithms for compressed sensing originated with Gilbert and
Tropp [53] who proposed to use the orthogonal greedy algorithm or orthogonal
matching pursuit (OMP) in order to decode y. Namely, the greedy algorithm is ap-
plied to the dictionary of column vectors of Φ and the input vector y. After k itera-
tions, it identifies a set of Λ of k column indices (those corresponding to the vectors
used to approximate y by the greedy algorithm. Once the set Λ is found, we decode
y by taking the minimizer of ‖y−Φ(z)‖�2 among all z supported on Λ . The latter
step is least squares fitting of the residual and is very fast.

These authors proved the following result for a probabilistic setting for general
random matrices which include the Bernouli and Gaussian families: if m≥ ck logN
with c sufficiently large, then for any k sparse vector x, the OMP algorithm returns
exactly xk = x after k iterations, with probability greater than 1−N−b where b can
be made arbitrarily large by taking c large enough.

Decoders like OMP are of high interest because of their efficiency. The above
result of Gilbert and Tropp remains as the only general statement about OMP in the
probabilistic setting. A significant breakthrough on decoding using greedy pursuit
was given in the paper of Needel and Vershynin [46] (see also their followup [47])
where they showed the advantage of adjoining a batch of coordinates at each itera-
tion rather than just one coordinate as in OMP. They show that such algorithms can
deterministically capture sparse vectors for a slightly smaller range than the largest
range of k.

With Wolfgang, we were interested in whether decoders based on thresholding
could be used as decoders to yield �2 instance-optimality in probability for general
families of random matrices for the large range of k. In [19] we give an algorithm
which does exactly that. This algorithm adds a batch of coordinates at each itera-
tion and then uses a thinning procedure to possibly remove some of them at later
iterations. Conceptually, one thinks in terms of a bucket holding all of the coordi-
nates to be used in the construction of x. In the analysis of such algorithms it is
important to not allow more than a multiple of k coordinates to gather in the bucket.
The thinning is used for this purpose. Thinning is much like the coarsening used in
PDE solvers which we described earlier Our algorithm is similar in nature to the
COSAMP algorithm of Needel and Tropp [45].
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8 Final thoughts

As has been made abundantly clear in this brief survery, Wolfgang Dahmen’s con-
tributions to both the theory of nonlinear approximation and to its application in a
wide range of domains has been pervasive. Fortunately, the story is still going strong
and I am happy to be going along for the ride.
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Univariate subdivision and multi-scale
transforms: The nonlinear case

Nira Dyn and Peter Oswald

1 Introduction

Over the past 25 years, fast multi-scale algorithms such as wavelet-type pyramid
transforms for hierarchical data representation, multi-grid solvers for the numerical
solution of operator equations, and subdivision methods in computer-aided geo-
metric design lead to tremendous successes in data and geometry processing, and in
scientific computing in general. While linear multi-scale analysis is in a mature state
[10, 18, 26, 15, 12, 23], not so much is known in the nonlinear case. Nonlinearity
arises naturally, e.g. in data-adaptive algorithms, in image and geometry processing,
robust de-noising, or due to nonlinear constraints on the analyzed objects themselves
that need to be preserved on all scales.

For illustration, and to guide our further discussions, let us introduce three uni-
variate examples of nonlinear multi-scale transforms that have played a central role
in the development of the emerging theory.

Example 1: (W)ENO multi-scale transforms for piecewise smooth functions.
Adaption of data representations to jump discontinuities is motivated by applica-
tions to hyperbolic PDEs, and serves as simplified model for developing edge-
adaptive algorithms in image analysis. Motivated by his work on essentially non-
oscillatory (ENO) schemes for numerically solving hyperbolic conservation laws,
A. Harten [37, 38, 6] introduced ENO schemes for adaptive multi-scale data rep-
resentation. For simplicity, assume that a piecewise smooth function f ∈ L∞(IR)
is sampled at dyadic points, and represented by data vectors v j ∈ �∞(ZZ) with en-
tries v j

i = f (i2− j) corresponding to uniform grids Γ j of sampling step-size 2− j.
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For smooth f , a very popular way to encode the whole sequence {v j} j≥0 is the
use of the cubic Deslauriers-Dubuc wavelet transform (sometimes called the stan-
dard linear interpolating 4-point scheme, see [20, 21]), where v j is split into v j−1

and the j-th detail sequence d j given by d j = v j−Sv j−1, where the linear operator
S : �∞(ZZ)→ �∞(ZZ) (called prediction or subdivision operator) is given by

(Sv)2i = vi,
(Sv)2i+1 =− 1

16 vi−1 + 9
16 vi + 9

16 vi+1− 1
16 vi+2,

i ∈ ZZ. (1)

Indeed, knowing {v0,d j} j≥1 allows us to recursively reconstruct the original se-
quence {v j} j≥0. Obviously, d j

2i = 0 implies that only odd-indexed entries of d j need
to be stored, and storing v j−1 and d j as floating-point numbers is as expensive as
storing v j. Thus, the transform and its finite realizations

{v j}J
j=0 ←→ {v0,d j}J

j=1, J ≥ 1,

belong to the class of non-expansive 1−1 multi-scale transforms.
The above S has some properties that are characteristic for most of the multi-

scale transforms and are key to their analysis: S is local (i.e., data associated with a
grid point of Γ j are predicted from data associated with finitely many grid points of
Γ j−1 close to it), and r-shift invariant with dilation factor r = 2. The latter property
can be formalized by the operator identity STk = TrkS, where Tk is the shift-operator
given by (Tkv)i = vi+k, i ∈ ZZ. Another property that is central to the subject is the
polynomial reproduction and, closely related, approximation order of S. Detailed
definitions will be given later. For the above S it is well-known that it reproduces
cubic polynomials because the formula for (Sv j−1)2i+1 comes from interpolating
the four data {v j−1

s }s=i−1,...,i+2 at the corresponding sub-grid of Γ j−1 by a cubic
polynomial pi, and evaluating its value at the point (i + 1

2 )2− j+1 of Γ j central to
them. As a result, for smooth f the �p norms of the detail sequences d j decay at a
rate 2−4 j. Thus, if representation is required up to a certain accuracy only then fewer
bits are necessary to encode the detail information.

This savings effect is to some extent lost when jump discontinuities are present.
A remedy is to detect potential jump discontinuities from the data v j−1, and use a
smarter, data-dependent and thus nonlinear, prediction rule. For ENO schemes, one
chooses the “least oscillating” among the interpolating cubic polynomials pi−1, pi,
pi+1 for assigning an appropriate value corresponding to the point (i + 1

2 )2− j+1.
The effect of this modification is illustrated in Fig. 1, the nonlinear scheme obvi-
ously suppresses the spurious oscillations associated with the Gibbs phenomenon
for linear wavelet-type transforms, and reduces the number of large detail entries d j

i
near the jump discontinuity.

Weighted essentially non-oscillatory (WENO) transforms use a convex com-
bination of the three predictions, with weights smoothly depending on the mea-
sured oscillations. Instead of interpreting the entries v j

i as values of f at dyadic
points i2− j, one could equally well interpret them as averages on dyadic intervals
(i2− j,(i+1)2− j). In this case other subdivision operators S would be preferable for
symmetry reasons, and the restriction would be more naturally defined by averaging
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Fig. 1 While the linear Deslauriers-Dubuc subdivision scheme produces overshoots near a jump
(left), the nonlinear ENO scheme avoids artifacts (right) but produces a less smooth limit near the
jump. The coarse grid data points are indicated by circles

v j−1
i = (v j

2i +v j
2i+1)/2 rather than by simple down-sampling. The convergence, limit

smoothness, and stability properties of these schemes have been systematically stud-
ied in [13] within a framework of quasi-linear, data-dependent subdivision which
will be reviewed in below. Functional limits of the sequence {v j} j≥0 are understood
in the usual way as limits of an associated sequence { f j} j≥0, where the function
f j ∈ C(IR) is typically defined as the linear spline interpolant to the data (Γ j,v j).
We note that there exist other families of nonlinear schemes of a similar flavor, such
as monotonicity and convexity preserving schemes, PPH, and power-p schemes, see
e.g. [43, 46, 5, 2].

Example 2: Median-interpolating schemes for robust de-noising. In [22], moti-
vated by applications to heavy-tail, non-Gaussian noise removal, a nonlinear multi-
scale transform with dilation factor r = 3 was introduced where point evalua-
tions and linear averaging operations are systematically replaced by median cal-
culations. More precisely, let us assume that the entries vJ

i of the fine-scale data
vector vJ represent noisy measurements of average values on triadic intervals
IJ
i = (i3−J,(i+1)3−J) of a smooth function f . Then, [22] uses the rule

v j−1
i = med(v j

3i,v
j
3i+1,v

j
3i+2), i ∈ ZZ, j = 1, . . . ,J, (2)

to define coarse-scale representations of the measured data (the median of three
numerical values is defined in the obvious way). Detail sequences d j are formally
defined by d j = v j− Sv j−1, j = 1, . . . ,J, as before but using a new type of nonlin-
ear median-interpolating subdivision operator S. To define it, recall that the values
{v j−1

s }s=i−1,i,i+1 can be interpreted as approximate coarse-scale medians of f on the
three consecutive intervals I j−1

s , s = i−1, i, i + 1. It turns out that there is a unique
quadratic polynomial pi whose median with respect to these three intervals concides
with the given v j−1

s , s = i−1, i, i+1, i.e.,

pi(t) = At2 +Bt +C : v j−1
s = med(pi; I j−1

s ), s = i−1, i, i+1. (3)

Then, for the three subintervals of I j−1
i with respect to the next triadic grid, set

(Sv j−1)s := med(pi; I j
s ), s = 3i,3i+1,3i+2. (4)
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Note that this subdivision scheme is closely related to a linear scheme which one
obtains if one replaces the median conditions in both the interpolation step (3) and
the imputation step (4) by evaluation at the corresponding interval midpoints (for
a monotone continuous function f on an interval I, the median indeed coincides
with the value of f at the midpoint of I). The idea of studying nonlinear subdivision
processes and multi-scale transforms by relating them to close-by linear schemes,
and using perturbation arguments is very fruitful, and has been followed by various
authors [25, 65, 62, 61, 19].

Fig. 2 The rules for the nonlinear median-interpolating subdivision scheme (left), and the linear
midpoint-interpolating scheme (right) are close but not identical

The convergence and smoothness properties of the limits of the median-inter-
polating subdivision process have been studied in a series of papers [22, 52, 64],
for the stability of the associated multi-scale transform, see [36]. The remarkable
paper [64] solves the smoothness problem in the Hölder scale, and is based on
a detailed analysis of associated nonlinear dynamical systems. Various extensions
of the median-interpolating multi-scale transform have been proposed as well: one
can consider higher-order median-interpolation [30], other robust estimators [53] or
nonlinear interpolation conditions [51, 65].

Example 2 is an expansive multi-scale transform. Indeed, an easy calcula-
tion shows that the 3J data per unit interval to be stored for vJ are replaced by
1 + 3 + . . .+ 3J ≈ 3J+1/2 data to be stored for {v0,d j}J

j=1 resulting in an increase
of storage requirements by a factor 3/2. Expansive multi-scale transforms occur
also if linear frame representations are explored, and offer sometimes even some
advantages (e.g., robustness with respect to erasures in the case of frame decompo-
sitions).

Example 3: Normal multi-resolution for efficient geometry compression. While
the previous examples serve scalar data associated with the (appropriately inter-
preted) samples of a function with respect to a uniform grid (a situation which
we call functional setting), in geometry processing there is no fixed or natural
parametrization of a geometric object by a function, and finding an appropriate
parametrization is often part of the processing task. Normal multi-resolution is a
remarkable example of a nonlinear multi-scale transform that has originally been
developed for surface compression [41, 34] and image analysis [39], works directly
on vector data, and cannot be reduced to the scalar case. It serves as an example
for what we call geometric nonlinear multi-scale transforms. To reveal the main
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idea, we describe the scheme for representing a closed smooth curve C embedded
into IR2 for r = 2 following [19, 55]. The scalar-valued data vectors v j ∈ �∞(ZZ)
from the previous examples will be replaced by IR2-valued periodic sequences v j

of length 2 jn0 with n0 ≥ 3, which consist of points v j
i on C . Periodicity means that

v j
i+2 jn0

≡ v j
i for all i ∈ ZZ. The analysis step of the normal multi-resolution scheme

starts with a sufficiently dense sampling v0 of n0 ≥ 3 curve points ordered such that
the polygonal line obtained by connecting consecutive v0

i by straight line segments
is a faithful approximation to C . To construct v j from v j−1, we keep the curve points
from v j−1 by setting v j

2i = v j−1
i for all i ∈ ZZ, and insert new points v j

2i+1 ∈ C by

first predicting “base points” v̂ j
2i+1 using any reasonable interpolating subdivision

operator S, i.e., v̂ j = Sv j−1. The point v j
2i+1 is obtained by intersecting the normal

to the edge vector e j−1
i := v j−1

i+1 −v j−1
i through the base point v̂ j

2i+1 with C . We do
not dwell on implementation aspects such as the subtle issue of which curve point
to select if there are many intersection points. What needs to be stored as entry
d j

i of the detail sequence d j is the signed distance of v j
2i+1 from the base point

v̂ j
2i+1. The reconstruction (or synthesis) step {v0,d j}J

j=1 �−→ vJ is recursively given
by

v j
2i = v j−1

i , v j
2i+1 = (Sv j−1)2i+1 +d j

i n j−1
i , i = 0, . . . ,2 j−1n0,

for j = 1, . . . ,J, where n j−1
i denotes the unit normal vector to the edge vector e j−1

i .
This time, the nonlinearity is hidden in the normal computation for the detail up-
date, and not in the subdivision part as in the previous examples. Fig. 3 illustrates
the construction.

Fig. 3 Illustration of the normal multi-resolution scheme
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Normal multi-resolution offers two obvious advantages. First of all, for smooth
C and appropriate S, choosing the locally geometry-adapted frame consisting of
the edge/normal vector pairs (e j−1

i ,n j−1
i ) results in much smaller detail magnitudes

than using fixed coordinate axes for all i ∈ ZZ, and, more importantly, the detail
sequences contain scalar data. Indeed, the representation of the curve by its fine-
scale sampling vJ requires 2J+1n0 reals while its multi-scale {v0,d j}J

j=1 is given by

2n0 +(1 + . . .+ 2J−1)n0 ≈ 2Jn0 reals. The savings are even more impressive when
the idea is applied to surfaces and piecewise smooth multivariate functions, and
combined with compression by thresholding detail entries d j

i , see the performance
reports in [41, 34, 39]. The papers [19, 55] give the analysis of normal multi-scale
transforms with a linear interpolating subdivision operator S for the case of smooth
curves based on perturbation arguments. The surface case still awaits its theoretical
analysis.

In general, nonlinear multi-scale transforms operate on grid functions Γ j → X ,
where X typically coincides with IRn for some n≥ 1 (or with a manifold embedded
into IRn). The grids Γ j are generated in a systematic way by a certain topology
refinement (data-adapted topology refinement is an area of future research). In the
above examples, Γ j = r− jZZ is created by uniform r-adic refinement for r = 2, resp.
r = 3. In the multivariate case, much more general grid topologies and refinement
rules are possible. The values of the grid functions are collected into vectors v j with
entries indexed by the elements of Γ j. They are related to each other by down-
sampling operations using restriction operators R j,

v j−1 = R jv
j, j ≥ 1, (5)

detail computations

d j = D j(v j,v j−1,S jv
j−1), j ≥ 1, (6)

involving prediction or subdivision operators S j, and up-sampling operations

v j = Pj(v j−1,d j) j ≥ 1, (7)

where at least one of these components involves nonlinear maps. In our univariate
examples, we can use the fact that all Γ j are isomorphic to ZZ, and interpret the
data vectors v j as elements of �∞(ZZ→ X), where X = IR in Example 1 and 2, and
X = IR2 for Example 3. This allows us to work with operators R, S, D, and P that
act on this sequence space, and do not depend on j. For Example 1, the operator
R is given by (Rv)i = v2i, is linear, and corresponds to trivial down-sampling for
r = 2, while S is the ENO-modified nonlinear Deslauriers-Dubuc subdivision op-
erator, D(ṽ,v, v̂) := ṽ− v̂, and P(v,d) = Sv + d. For Example 3, X = IR2, R is as
above, S is the linear Deslauriers-Dubuc subdivision operator, while the nonlinear-
ity is induced through the normal map v→ n(v) that enters the detail computation,
and up-sampling operation:
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D(ṽ,v, v̂)i := (ṽ− v̂)i ·n(v)i, i ∈ ZZ,

P(v,d)2i = (Sv)2i = vi, P(v,d)2i+1 = (Sv)2i+1 +dini, i ∈ ZZ.

Finally, Example 2 is characterized by nonlinear R given by (2), and nonlinear S
given by (3-4), while D and P remain the same as in Example 1.

The theoretical investigation of the properties of a nonlinear transform

vJ ←→ {v0,d1, . . . ,dJ}, J ≥ 1, (8)

requires the study of the limit behavior for J → ∞, and concentrates on answering
the following natural questions:

• Convergence. Given reasonable v0 and d j, j ≥ 1, do the reconstructed v j con-
verge to a reasonable limit object? This can be cast in terms of convergence of
the associated sequence of functions f j to a limit f∞ in some function space.

• Smoothness. To judge the visual appearance of the results of reconstruction (for
instance after a compression step), or in applications to numerical discretiza-
tion schemes for elliptic boundary value problems, the guaranteed smoothness of
these limits f∞ in the Hölder or Sobolev scale is of essential interest.

• Approximation and detail decay. If the limit object f∞ is sufficiently smooth,
can we guarantee that the functions f j that represent the grid data v j converge to
f∞ at a certain prescribed rate typical for this smoothness class and comparable
linear approximation processes? A related question is whether the smoothness
properties of f∞ can be characterized in terms of the detail sequences d j, j ≥ 1,
as is well-known for many linear wavelet transforms.

• Stability. While the stability of the decomposition step

vJ −→ {v0,d1, . . . ,dJ}, J ≥ 1,

(small perturbations in the fine-grid data vJ for J large will not lead to big per-
turbations of the details d j, j ≤ J, or the coarse grid data v0) is often easy to un-
derstand (e.g., for interpolatory transforms when trivial down-sampling is used),
the stability of the multi-scale reconstruction step

{v0,d1, . . . ,dJ} −→ vJ , J ≥ 1,

is a difficult question of extreme importance for introducing compression strate-
gies based on thresholding of detail sequences in a multi-scale decomposition.

Our aim is to survey the existing case studies for nonlinear multi-scale trans-
forms and the emerging approaches to the development of a theory that tries to give
first answers to the above questions. The exposition concentrates on the univariate
case, namely multi-scale processing of data sampled from univariate functions or
from curves. It is split into presenting the basic theory of nonlinear transforms in
the functional setting in section 2 (this covers Example 1 and 2), and an exemplary
discussion of what we call geometric subdivision schemes and multi-scale trans-
forms, for which Example 3 is prototypical, in section 3. Extensions to multivariate
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schemes, schemes that process manifold- or set-valued data, and some other recent
developments will not be reviewed. This way, we hope to be able to expose the
main ideas more clearly, and still provide enough guidance for future research in
this exciting research field.

2 Nonlinear multi-scale transforms: Functional setting

2.1 Basic notation and further examples

Throughout Section 2, we consider local, r-shift invariant, stationary multi-scale
transforms (8), recursively acting on data sequences from �p(ZZ) (1 ≤ p ≤ ∞) ac-
cording to a simplified version of (5), (6), (7), where

v j−1 = Rv j, d j = D(v j−Sv j−1); v j = Sv j−1 +Pd j, j ≥ 1, (9)

with bounded but generally nonlinear operators P,D,R,S : �p(ZZ)→ �p(ZZ). Abusing
a bit conventions in the nonlinear case, we call an operator T : X → Y between two
Banach space X and Y bounded if there is a constant C0 such that ‖T x‖Y ≤C0‖x‖X

for all x ∈ X , and Lipschitz continuity of such a T always means that there exists
a constant C1 such that ‖T x−Ty‖Y ≤C1‖x− y‖X for all x,y ∈ X). For consistency
in (9), the relation (Id−PD)(Id− SR) = 0 needs to hold. Here Id is the identity
operator. That the operators in (9) are independent of the scale index j ≥ 1 makes
the scheme stationary. Example 1 and 2 from Section 1 fit this definition (for them
P = D = Id).

Example 4. Second generation linear and nonlinear wavelet transforms. Here
is the construction of a 2-shift invariant univariate 1−1 multi-scale transform from
[8] based on the lifting scheme [59, 60]. Let v j be split into “even” and “odd” parts

(Rev j)i := v j
2i, (Rov j)i = v j

2i+1, i ∈ ZZ.

Then set
d j := Rov j−Tc,1Rev j, v j−1 := Rev j +Tc,2d j (10)

for decomposition and

Rev j = v j−1−Tc,2d j, Rov j := d j +Tc,1Rev j (11)

for reconstruction. Here,

(Tc,sv)i =
K2

∑
k=−K1

bs;k(vi−K1 , . . . ,vi+K2)vi−k, i ∈ ZZ,

are linear or nonlinear convolution operators generated by finitely many coefficient
functions bs;k : IRK1+K2+1 → IR, k = −K1, . . . ,K2, s = 1,2. This is called “predict
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first” transform in [8], another “update first” transform is obtained by switching the
order of execution of the sub-steps in (10), (11):

v j−1 := Rev j +Tc,2Rov j, d j := Rov j−Tc,1v j−1, (12)

Rov j := d j +Tc,1v j−1, Rev j = v j−1−Tc,2d j, (13)

Concrete examples, e.g., multi-scale transforms, where the nonlinearity is induced
by quantization, or ENO-type schemes working with variable-order interpolating
polynomials near a suspected jump discontinuity, and references can be found in
[8].

Both transforms can be rewritten in our standard form (9), e.g., for the “predict
first” version, one would set R = (Id−Tc,2Tc,1)Re + Tc,2Ro, D = −Tc,1Re + Ro, and
define S and P by

ReS = Id, RoS = Tc,1, ReP =−Tc,2, RoP = Id−Tc,1Tc,2.

General linear bi-orthogonal wavelet transforms [18, 15] with finitely supported
masks have similar representations, with all involved operators being linear. Trans-
forms of the above type are obviously non-expansive 1− 1 transforms, i.e., do not
formally change storage requirements. Note that there is also growing interest in
expansive transforms related to tight affine frames. Lack of space prevents us from
giving further details.

Example 5. Power-p schemes. This multi-scale transform is similar to Example
1 but uses a different prediction rule. I.e., again r = 2, P = D = I, the restriction
operator is given by (Rv)i = v2i, i ∈ ZZ, and the interpolating subdivision operator S
is given by

(Sv)2i = vi, (Sv)2i+1 =
vi + vi+1

2
− 1

8
Hp(Δ 2vi−1,Δ 2vi), i ∈ ZZ, (14)

where the so-called limiter Hp is defined by

Hp(x,y) =

{
x+y

2

(
1−
∣∣∣ x−y

x+y

∣∣∣p
)

, xy > 0,

0, xy≤ 0.
(15)

The parameter p ∈ [1,+∞) is fixed, Δ k := (Δ)k denotes the k-th order forward dif-
ference operator acting on sequence spaces, where (Δv)i = vi+1− vi, i ∈ ZZ.

Power-p schemes have been introduced in the context of generalized ENO-
methods for hyperbolic problems [58], and can be useful for compressing piecewise
smooth data and functions. Earlier, the case p = 2 appeared in [29, 43]. A straight-
forward calculation shows that if v|{i0,...,i1} is a convex (concave, linear) segment
of v, then (Sv)|{2i0,...,2i1} preserves this property if p ∈ [1,2]. The formula is con-
structed such that for Δ 2vi−1 = Δ 2vi the obtained value (Sv)2i+1 is the same as for
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Fig. 4 Limits of power-2 subdivision (on the left), and a comparison with power-4 subdivision and
the cubic Deslauriers-Dubuc scheme near a jump (on the right)

the linear interpolating cubic Deslauriers-Dubuc 4-point scheme discussed in Ex-
ample 1 while at intervals, where the sign of the second differences changes, the
newly inserted value is obtained by linear interpolation from its endpoint values.

Coming back to the notation for the r-shift invariant univariate case, the grids
Γ j = r− jZZ are systematically identified with ZZ, the subdivision operator S :
�p(ZZ)→ �p(ZZ) satisfies STk = TrkS, and the restriction operator R : �p(ZZ)→ �p(ZZ)
satisfies RTkr = TkR. The locality of an r-shift invariant transform is assured by as-
suming that the action of S is given by r multivariate functions φs according to

(Sv)ri+s = φs(vi−L1 , . . . ,vi+L2), s = 0, . . . ,r−1, (16)

where the integers L1,L2 are fixed and independent of i ∈ ZZ, and L = L1 +L2 +1 is
the support length of the subdivision part of the transform. Similarly,

(Rv)i = φ(vri−L3 , . . . ,vri+L4) (17)

for some function φ and fixed integers L3, L4. It is easy to see that due to locality
and r-shift invariance, boundedness (Lipschitz continuity, C1 property, ...) of S on
�p(ZZ) spaces is equivalent to the boundedness (Lipschitz continuity, C1 property,
...) of the coordinate functions φs : IRL→ IR representing S, similarly for R. We will
always silently assume that S0 = R0 = 0, where 0 is the zero sequence given by
0i = 0, i ∈ ZZ.

Sometimes, especially if nonlinear schemes are considered as perturbations of
associated linear schemes, the alternative representation

(Sv)ri+s =
L1

∑
l=−L2

arl+s(vi−L1 , . . . ,vi+L2)vi−l , s = 0, . . . ,r−1,

or, equivalently,
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(Sv) j = ∑
i∈ZZ

a j−ri(v|I[ j/r] )vi, j ∈ ZZ, (18)

is chosen. To shorten the notation, by v|Ii we have denoted the restriction of v to
the finite index set Ii := {i−L1, . . . , i+L2}, i ∈ ZZ. Coefficient functions with index
s �∈ {−rL1, . . . ,r(L2 +1)−1} vanish for all arguments: as(·)≡ 0. Based on (18) we
can now formally write the action of S as an infinite matrix-vector product

Sv = Svv, (19)

where Sv is a bi-infinite, data-dependent matrix operator with entries identified from
(18):

(Sv) j,i := a j−ri(v|I[ j/r] ), j, i ∈ ZZ.

Note that for a linear S, the matrix operator Sv does not depend on v (in which case
we can drop the subscript v, and identify S with its matrix representation), and is
given by the finitely supported sequence a := {al}l∈ZZ called mask of the subdivision
operator. The representation (18)-(19) was introduced in [13], and was the departure
point for a systematic theory of data-dependent, so-called quasi-linear, subdivision
schemes and multi-scale transforms which will be reviewed below. The transition
from (16) to (18) and (19) is not unique, and needs to be done carefully.

Another often used approach is to write S = S0 + T ′, where S0 is an appropri-
ate linear subdivision operator and the remaining nonlinear part T ′ is “small” in a
certain sense, see [19, 51, 2] for this perturbation approach. E.g., the power-p subdi-
vision scheme from Example 5 naturally splits into a linear part S0 (point insertion
by linear interpolation) and nonlinear perturbation T ′ given by the limiter, and de-
pending only on the 2nd order differences Δ 2v. For the median-interpolating scheme
of Example 2, the natural choice for S0 is the linear midpoint interpolation scheme
given by

(S0v)3i+s =

⎧⎨
⎩

2vi−1+8vi−vi+1
9 , s = 0,

vi, s = 1,
−vi−1+8vi+2vi+1

9 , s = 2,

i ∈ ZZ,

and the resulting perturbation operator T ′ = S−S0 given by

(T ′v)3i+s = αs(Δv|{i−1,i})Δ 2vi, s = 0,1,2, i ∈ ZZ,

depends in a specific way on Δv and Δ 2v (e.g., the functions αs are uniformly
bounded, see [52, Section 2.2] for details). To identify the representation (16) from
these formulas, set L1 = L2 = 1.

For the latter scheme, a natural choice for the representation (18), (19) is to set

a3l =

⎧⎨
⎩

2
9 +α0(·),
8
9 −2α0(·),
− 1

9 +α0(·),
a3l+1 =

⎧⎨
⎩
α1(·),
1−2α1(·),
α1(·),

a3l+2 =

⎧⎨
⎩
− 1

9 +α2(·), l = 1,
8
9 −2α2(·), l = 0,
2
9 +α2(·), l =−1.



214 Nira Dyn and Peter Oswald

The non-zero entries of the matrix representation of Sv are contained in the 3× 3
sub-blocks

(Sv)|{3i,3i+1,3i+2}×{i−1,i,i+1} =

⎛
⎝a3(Δv|{i−1,i}) a0(Δv|{i−1,i}) a−3(Δv|{i−1,i})

a4(Δv|{i−1,i}) a1(Δv|{i−1,i}) a−2(Δv|{i−1,i})
a5(Δv|{i−1,i}) a2(Δv|{i−1,i}) a−1(Δv|{i−1,i})

⎞
⎠ ,

i ∈ ZZ. In the general case, (18) results in a similar block-structured matrix operator
Sv with r× (L1 +L2 +1) sub-blocks.

Explicit representations (18), (19) have also been used in the study of (W)ENO
schemes in [13] (for WENO, see also [2, Section 4.2]). Within the framework of
Example 1, formulas for as(·) and Sv follow from

(Sv)2i+1 :=
1

∑
l=−1

c−l(Δv|{i−2,...,i+2})(Slv)2i+l (20)

where S0 is the standard 4-point scheme (1) while the formulas

(Slv)2i+1 =

{
vi−2−5vi−1+10vi+4vi+1

16 , l = 1
−vi−2+9vi−1+9vi−vi+1

16 , l =−1
i ∈ ZZ.

define the linear schemes obtained from predictions using shifted cubic interpolation
polynomials pi±1 (all schemes are considered interpolating, i.e., (Sv)2i = (Slv)2i =
vi, i ∈ ZZ, l =−1,0,1). For WENO, the coefficient functions

cl(·) :=
αl(·)

α−1(·)+α0(·)+α1(·)
, αl(·) :=

(
γl

ε +βl(·)

)2

,

depend on non-negative, smooth functions βl(·) measuring for argument Δv|{i−2,...,i+2}
the degree of oscillation of the prediction polynomial pi+l , and ε,γl > 0 are fixed
constants, l = −1,0,1. The small parameter ε > 0 acts as regularization param-
eter, and avoids division by zero. Obviously, cl(·) ∈ (0,1) and c1(·) + c0(·) +
c1(·) = 1, i.e., the WENO subdivision operator (20) is a convex combination of
the three linear operators Sl , with coefficients smoothly depending on Δv. The
ENO subdivision operator has the same principal structure (20) but a generally
discontinuous dependence of the coefficients cl(·) on Δ(v): For ENO, we set
cl(Δv|{i−2,...,i+2}) = 1 if pi+l is the least oscillating of the three predictor poly-
nomials, i.e., if βl(Δv|{i−2,...,i+2}) is minimal, and assign zeros to the other two
coefficients. For these so-called 6-point (W)ENO schemes, set L1 = 2, L2 = 3 in
(18).

The following subsections represent a summary of the currently available theo-
retical results for the family (9) of nonlinear multi-scale transforms and associated
subdivision processes v j = Sv j−1, j ≥ 1, which is obtained from (9) by formally
setting d j = 0 for j ≥ 1. We survey mainly results from [13, 49, 19, 64, 52, 36, 2],
where proofs and further material can be found. A few results, especially on offset
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invariant S, and extensions to Lp(IR) for 1 ≤ p < ∞, are new and elaborated on in
more detail in a forthcoming paper.

2.2 Polynomial reproduction and derived subdivision schemes

The concept of polynomial reproduction for subdivision operators is fundamental
in the study of multi-scale transforms, therefore we start the exposition with it. For
nonlinear S, there are two slightly different extensions of the familiar definition for
linear subdivision operators. The first definition follows [13], the second [64, 36].
Throughout the section, we denote by IPk the set of algebraic polynomials of degree
< k or, equivalently, of order ≤ k, and by 1 the constant sequence given by 1i := 1,
i ∈ ZZ.

Definition 2.1. Let the r-shift invariant subdivision operator S be represented in the
form (19). Then S has polynomial reproduction of order k≥ 1 if for each v ∈ �p(ZZ)
the associated linear subdivision operator Sv has the following property: For any
polynomial p of degree m, 0 ≤ m < k, there exists a polynomial q of degree < m
such that

Sv(p|ZZ) = (p+q)|r−1ZZ.

In particular, S reproduces constants (i.e., has polynomial reproduction of order k =
1) if

Sv(1) = 1, ∀ v ∈ �p(ZZ).

Definition 2.2. An r-shift invariant subdivision operator S is offset invariant for IPk,
k ≥ 1, if for each v ∈ �p(ZZ), and any polynomial p of degree m, 0 ≤ m < k, there
exists a polynomial q of degree < m such that

S(v+ p|ZZ) = Sv+(p+q)|r−1ZZ.

In particular, S is offset invariant for constants (i.e., the set IP1) if

S(v+α1) = Sv+α1, ∀ α ∈ IR, ∀ v ∈ �p(ZZ).

Note that the formulation of these definitions automatically ensures that polyno-
mial reproduction of order k implies polynomial reproduction of order m (similarly
offset invariance for IPk implies offset invariance for IPm) for all 1 ≤ m < k. For
linear S, both definitions coincide. As Example 1 and 2 demonstrate, for nonlin-
ear schemes the two conditions are different. E.g., since the (W)ENO subdivision
operator (20) is a convex combination of three linear subdivision operators, each
being exact for cubic polynomials, it possesses polynomial reproduction of order
k = 4. On the other hand, although it is obviously offset invariant for IP1 (because
the coefficient functions depend on Δv, and not on v directly), it is not offset in-
variant for any IPk with k > 1 (this assumes that the dependence of the oscillation
indicators βl(·) on v cannot be reduced to a direct dependence on higher order dif-
ferences Δ kv). For the median-interpolating scheme of Example 2, a close look at
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the coefficient representations reveals that offset invariance can hold only for IP1 but
polynomial reproduction of order at least k = 2 holds. For the power-p scheme, both
definitions apply for k = 2.

As all our examples indicate, offset invariance for IPk of a nonlinear scheme is to
be expected to hold for k = 1, sometimes holds with k = 2 but no nonlinear examples
of relevance are known for larger k. However, it is the right concept for the extension
of the notion of derived subdivision operators to the nonlinear setting.

Theorem 2.1. Let S be a local, r-shift invariant subdivision operator. If S is off-
set invariant for IPk for some integer k ≥ 1 then there exist local, r-shift invariant
derived subdivision operators S[m] : �p(ZZ)→ �p(ZZ) such that

ΔmSv = S[m]Δmv, ∀ v ∈ �p(ZZ) (21)

for m = 1,2, . . . ,k. Moreover, if S is written in the form (16) then its derived subdi-
vision operators S[m], m = 1, . . . ,k, inherit such a representation with the same (or

smaller) L1,L2, and with functions φ [k]
s that are obtained from the φs by superposi-

tions involving only linear transformations. In particular, if S (and thus the functions
φs(·)) is bounded (continuous, Lipschitz continuous, C1, . . .) then so is S[k] (and the

functions φ [k]
s ). In particular, if S is bounded then

‖S[m]w‖�p(ZZ) ≤ r−m+1/p‖w‖�p(ZZ) +C‖Δw‖�p(ZZ), (22)

and if S is Lipschitz continuous then

‖S[m]w−S[m]w′‖�p(ZZ) ≤ r−m+1/p‖w−w′‖�p(ZZ) +C‖Δ(w−w′)‖�p(ZZ), (23)

m = 0,1, . . . ,k−1, with constants C independent of w,w′ ∈ �p(ZZ).

The proof extends the standard argument for linear S, see [10, 26]. For k = 1 it
was first given in [64, Theorem 2.5], see also [36, Lemma 2.1-2]. The case k > 1
was suggested in [36, Section 2.1] and can be obtained by induction from k = 1.

Definition 2.2 can be replaced by a recursive one: S is offset invariant for
k ≥ 2 if it is offset invariant for IPk−1, and the scaled version of the associated
(k− 1)-st derived operator S̃[k−1] = rk−1S[k−1] is offset invariant for constants. If
S has polynomial reproduction of order k, then all linear subdivision operators
Sv are offset invariant for IPk, and thus derived subdivision operators (Sv)[m] ex-
ist for all m = 1, . . . ,k and v. Thus, Theorem 2.1 covers this case as well. To
give a concrete example, let us consider Example 5. We already mentioned that
the power-p scheme is offset invariant for IP2 which follows from observing that
Hp((Δ 2(v + q|ZZ))i−1,(Δ 2(v + q|ZZ))i) = Hp((Δ 2v)i−1,(Δ 2v)i) for all v, i ∈ ZZ, and
q ∈ IP2. From (14) we find

(ΔSv)2i =
Δvi

2
− 1

8
Hp(Δ 2vi−1,Δ 2vi), (ΔSv)2i+1 =

Δvi

2
+

1
8

Hp(Δ 2vi−1,Δ 2vi),

and
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(Δ 2Sv)2i = 1
4 Hp(Δ 2vi−1,Δ 2vi),

(Δ 2Sv)2i+1 = Δ2vi
2 − 1

8 (Hp(Δ 2vi−1,Δ 2vi)+Hp(Δ 2vi,Δ 2vi+1)),
i ∈ ZZ.

Thus, the derived subdivision operators S[1] and S[2] are given by

(S[1]w)2i = wi
2 −

1
8 Hp(Δwi−1,Δwi),

(S[1]w)2i+1 = wi
2 + 1

8 Hp(Δwi−1,Δwi),
(S[2]w)2i = 1

4 Hp(wi−1,wi),
(S[2]w)2i+1 = wi

2 −
1
8 (Hp(wi−1,wi)+Hp(wi,wi+1)),

i ∈ ZZ. (24)

2.3 Convergence and smoothness

In the univariate case, Lp-convergence of the reconstruction part

v j = Sv j−1 +Pd j, j ≥ 1, (25)

of a multi-scale transform resp. the subdivision scheme

v j = Sv j−1, j ≥ 1, (26)

associated with it to a limit function, and the smoothness of the latter, can be studied
by associating with v j its linear spline interpolants f j on the grid Γ j = r− jZZ:

f j(x) = (i+1−r jx)v j
i +(r jx− i)v j

i+1), x∈ [r− ji,r− j(i+1)), i∈ ZZ. (27)

Alternatively, we can write f j =∑i v j
i B2(r j ·−i) using linear B-splines (with B2(x)=

1−|x| for |x| ≤ 1, and B2(x) = 0 otherwise), and think of f j as the limit of a linear
subdivision process for B-splines of order 2.

Definition 2.3. The multi-scale reconstruction algorithm (25) is called Lp conver-
gent if, for any v0 ∈ �p(ZZ) and detail sequences d j ∈ �p(ZZ) satisfying

∑
j≥1

r− j/p‖d j‖�p(ZZ) < ∞, (28)

the corresponding sequence of linear interpolants f j converges in Lp(IR) to a limit
function f∞ ∈ Lp(IR).
Similarly, if the subdivision scheme (26) associated with S is called Lp convergent
if f j → f∞ �≡ 0 in Lp(IR) for any v0 �= 0.

In applications to multi-scale solvers for operator equations [15, 12] and geomet-
ric modeling [26], the smoothness characteristics and sometimes also shape proper-
ties of the limits f∞ matter. Smoothness of functions that are limits of approximation
processes (in our case the recursively constructed sequences { f j} of linear splines)
is conveniently measured in the scale of Besov spaces (see [49] for various equiv-
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alent definitions including the standard one based on moduli of smoothness). We
give a definition for a subclass of Besov spaces using an approximation-theoretic
characterization which is convenient for our setup. Let 1≤ p≤ ∞, k = 1,2, . . ., and
0 < s < k−1+1/p. A function f ∈ Lp(IR) belongs to the Besov space Bs

p(IR) if and
only if there exists at least one Lp convergent series representation

f =
∞

∑
j=0

h j,

where the functions h j are splines of order k with knots at the grid pointsΓ j = r− jZZ,
satisfying the constraint

∞

∑
j=0

rsp j‖h j‖p
Lp(IR) < ∞,

if 1≤ p < ∞, and
sup
j≥0

rs j‖h j‖L∞(IR) < ∞,

if p = ∞. Moreover, we can define a norm in Bs
p(IR) by setting

‖ f‖Bs
p(IR) :=

{
inf
(
∑∞

j=0 rsp j‖h j‖p
Lp(IR)

)1/p
, 1≤ p < ∞,

inf sup j≥0 rs j‖h j‖L∞(IR), p = ∞,
(29)

where the infimum is taken with respect to all such representations. For given s,
the choice of k is secondary: Norms for different k are equivalent (for this reason,
we did not show the dependence of the Besov space norm on k). Proofs based on
Jackson-Bernstein inequalities for splines and references can be found in [11, 50,
15]. Note that for the two important subcases p = ∞ and p = 2, the scale Bs

p(IR),
s > 0, coincides with the scale of Hölder-Zygmund classes C s resp. Sobolev spaces
Hs(IR) = W s

2 (IR).
We are now ready to discuss the smoothness of the algorithms (25) and (26).

Definition 2.4. The subdivision scheme (26) associated with S possesses Lp smooth-
ness s > 0 if it is Lp convergent, with limit functions satisfying

f∞ ∈ Bs−
p (IR) :=

⋃
0<t<s

Bt
p(IR), ∀v0 ∈ �p(ZZ).

The maximal such s > 0 is called the Lp smoothness exponent of S, and denoted by
sp(S).

The following theorem is proved in [13, 49] for S of the form (19).

Theorem 2.2. Let S be a local, r-shift invariant, bounded subdivision operator in
�p(ZZ), represented by (19) via a family of linear subdivision operators {Sv, v ∈
�p(ZZ)} which are uniformly bounded,

‖Svw‖�p(ZZ) ≤C‖w‖�p(ZZ), ∀w,v ∈ �p(ZZ),
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and have polynomial reproduction order k for some integer k ≥ 1. Let P be a
bounded operator on �p(ZZ).
i) If

ρp,k({Sv}) := limsup
j→∞

sup
v0∈�p(ZZ)

‖(Sv j−1)[k] . . .(Sv1)[k](Sv0)[k]‖1/ j
�p(ZZ)→�p(ZZ) < r1/p, (30)

then S is Lp convergent. In this case, a lower bound for the Lp smoothness exponent
of S is given by

sp(S)≥min(k,− logr(r
−1/pρp,k({Sv}))) > 0. (31)

ii) If

ρ̃p,k({Sv}) := limsup
j→∞

sup
wl∈�p(ZZ), l=0,..., j−1

‖(Sw j−1)[k] . . .(Sw1)[k](Sw0)[k]‖1/ j
�p(ZZ)→�p(ZZ),

(32)
satisfies ρ̃p,k({Sv}) < r1/p, then the multi-scale reconstruction algorithm (25) is Lp

convergent.
Moreover, if for some s satisfying

0 < s < min(k,− logr(r
−1/pρp,k({Sv})))

the norm

‖{v0,d j} j≥1‖p,s;r :=

⎧⎨
⎩
(
‖v0‖p

�p(ZZ) +∑ j≥1 r j(sp−1)‖d j‖p
�p(ZZ)

)1/p
, 1≤ p < ∞,

sup{‖v0‖�p(ZZ),r
j(s−1/p)‖d j‖�p(ZZ)} j≥1, p = ∞.

is finite, then the limit function f of the multi-scale reconstruction (25) belongs to
Bs

p(IR), and

‖ f‖Bs
p(IR) ≤C‖{v0,d j} j≥1‖p,s,r. (33)

The counterpart of this theorem for S that are offset invariant for IPk and thus
possess derived subdivision operators S[l], l = 1, . . . ,k, is formulated in the next
theorem. In this generality it is new, although partial cases have appeared before,
see, e.g., [2] for p = ∞.

Theorem 2.3. Let S be a local, r-shift invariant, bounded subdivision operator op-
erator on �p(ZZ). Assume that S is offset invariant for IPk for some integer k ≥ 1.
i) If

ρp,k(S) = ρp(S[k]) := limsup
j→∞

‖(S[k]) j‖1/ j
�p(ZZ)→�p(ZZ) < r1/p (34)

then S is Lp convergent, and

sp(S)≥min(k,− logr(r
−1/pρp,k(S))) > 0. (35)
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ii) If, in addition, S is Lipschitz continuous, and P is bounded, then (34) also implies
the Lp convergence of the multi-scale reconstruction (25). Moreover, if for some s
satisfying 0 < s < min(k,− logr(r

−1/pρp,k(S))) we have

‖{v0,d j} j≥1‖p,s;r < ∞,

then the limit function f belongs to Bs
p(IR) and (33) holds.

A couple of comments on the introduced spectral radii, and the range of applica-
bility of the two theorems are in order. First of all, instead of limsup one can write
lim in all three cases. Also, by definition ρ̃p,k({Sv})≥ ρp,k({Sv}). Secondly, by the
definition of derived subdivision operators, both ρp,k({Sv}) and ρp,k(S) = ρp(S[k])
are tied to geometric decay estimates for the norms of the sequences Δ kv j, where
v j = Sv j−1 = S jv0. E.g., by repeatedly applying

Δ kv j = Δ kSv j−1v j−1 = (Sv j−1)[k]Δ kv j−1,

for the subdivision algorithm (19), we have

‖Δ kv j‖�p(ZZ) ≤ ‖(Sv j−1)[k] . . .(Sv1)[k](Sv0)[k]‖�p(ZZ)→�p(ZZ)‖Δ kv0‖�p(ZZ)

≤ Cρ j‖Δ kv0‖�p(ZZ)

for j ≥ 1, whenever ρ > ρp,k({Sv}). The constant C only depends on k and the
chosen ρ .

The same argument goes through for ρp,k(S). However, in this case the infimum
of the set of all ρ for which such a geometric decay holds equals ρp,k(S). To see
this, observe that Δ kv j = (S[k]) jΔ kv0 for all v0, and thus

‖(S[k]) j‖�p(ZZ)→�p(ZZ) = ρp,k; j(S) := sup
‖Δ kv‖�p(ZZ)=1

‖Δ kS jv‖�p(ZZ), (36)

and

ρp,k(S) = limsup
j→∞

ρp,k; j(S)1/ j = inf{ρ : ‖Δ kS jv‖�p(ZZ) ≤Cρρ j‖Δ kv‖�p(ZZ)}. (37)

By definition of derived subdivision operators of S and of the linear operators
{Sv} we have (Sv)[k]Δ kv = Δ kSvv = Δ kSv = S[k]Δ kv, consequently always

ρ̃p,k({Sv})≥ ρp,k({Sv})≥ ρp,k(S), (38)

if the conditions for the existence of these spectral radii are met. (38) holds for
all admissible choices of the family of linear subdivision operators {Sv} represent-
ing S. Since in practice offset invariance for IPk holds often with k ≤ 2 only, part
i) of Theorem 2.2 offers sometimes greater flexibility because it may even apply
for larger k. A concrete example is given by the dyadic median-interpolating sub-
division scheme [52] for which offset invariance for IPk holds for k = 1 only, and
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ρp,1(S) = 1/2, while {Sv} in the representation (19) have polynomial reproduction
of order k = 2 and ρp,2({Sv}) < 1/2. The dyadic median-interpolating subdivision
scheme also provides an instance when the first inequality in (38) is strict, see [52].
A comparison of ρ̃p,k({Sv}) and ρp,k(S) is more subtle since S does not define {Sv}
uniquely. An example of an operator S showing that ρ̃p,k({Sv}) > ρp,k(S) for any ad-
missible choice of the family {Sv} is, to the best of our knowledge, not known. The
additional assumption of Lipschitz stability for part ii) of Theorem 2.2 represents a
mild restriction since most schemes satisfy it (the exception is the ENO scheme).
Moreover, Lipschitz stability of S is necessary for the stability of subdivision and
multi-scale reconstruction algorithms associated with S, a desirable property which
is discussed in the next subsection.

Another useful property of the spectral radii is that

ρp,m(S)≤max(r−m+1/p,ρp,k(S)), m = 1, . . . ,k−1, (39)

and similar inequalities hold for ρp,m({Sv}) and ρ̃p,m({Sv}). For the proof it is
enough to consider m = k− 1, the rest follows by recursion. Set ρ̂ = r−k+1+1/p,
and w = (S[k−1])n−1v in (22). Then

‖(S[k−1])nv‖�p(ZZ) ≤ ρ̂‖(S[k−1])n−1v‖�p(ZZ) +C‖Δ(S[k−1])n−1v‖�p(ZZ)

= ρ̂‖(S[k−1])n−1v‖�p(ZZ) +C‖(S[k])n−1Δv‖�p(ZZ)

≤ ρ̂‖(S[k−1])n−1v‖�p(ZZ) +Cρn‖v‖�p(ZZ),

where ρ = ρp,k(S))+ ε is fixed with arbitrary ε > 0. By recursion,

‖(S[k−1])nv‖�p(ZZ) ≤C‖v‖�p(ZZ)

n

∑
i=0

ρ̂n−iρ i ≤Cn(max(ρ̂,ρ))n‖v‖�p(ZZ).

This shows that ρp,k−1(S)≤max(ρ̂,ρ), and (39) follows if ε → 0.
In applications, to get upper bounds for the above spectral radii, estimates for

the quantities ρp,k; j(S) defined in (36) are used for small values of j. Unfortunately,
as experimental evidence shows, the convergence of ρp,k; j(S)1/ j towards ρp,k(S) is
generally very slow. Alternatively, due to the locality of the subdivision operators
involved, ρp,k(S) can also be characterized as the �p-joint spectral radius of a certain
family of nonlinear maps acting on a certain IRM , where M depends on the dilation
factor r and the support length L of S. For linear subdivision operators S, there is an
extensive literature on this subject, especially for the cases p = 2 and p = ∞. In the
nonlinear case there is much room for further research.

As an illustration, let us consider the power p-scheme (Example 5). As was men-
tioned in subsection 2.1, the associated subdivision operator is offset invariant for
IPk, k = 1,2, with explicit formulas for S[k] given in (24). The limiter Hp(x,y) from
(15) vanishes whenever xy≤ 0 and otherwise satisfies

0 < α(x,y) :=
2Hp(x,y)

x+ y
≤ 1, xy > 0.
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Thus, setting α(x,y) = 0 for xy ≤ 0, and denoting αi := α(wi−1,wi), we easily get
from (24) that

(S[2]w)2i =
αi

8
(wi−1 +wi),

(S[2]w)2i+1 =
1
16

((8−αi−αi+1)wi−αiwi−1−αi+1wi+1).

Taking absolute values, we immediately get

|(S[2]w)2i| ≤
1
4

max{|wi−1|, |wi|), |(S[2]w)2i+1| ≤
1
2

max{|wi−1|, |wi|, |wi+1|},

which, according to (36) for j = 1, gives

ρ∞,2(S)≤ ‖S[2]‖�∞(ZZ)→�∞(ZZ) ≤
1
2

< 1.

Thus, this crude estimate implies uniform convergence, and gives s∞(S)≥ 1 for any
power-p subdivision scheme. In this particular case, this estimate for the Hölder
exponent is sharp: For the initial sequence v0 = (. . . ,0,1,0,1, . . .), the limit f∞ is
the linear spline interpolant to these data on ZZ, and does not belong to C1(IR), and
thus to any Bs

∞(IR) with s > 1. The final result for the Hölder exponent of these
schemes is s∞(S) = 1 which is known for a long time (for p = 2, see [29], for other
p, see, e.g., [2]). We conjecture that

sq(S) =− log2(ρq,2(S))+
1
q

= 1+
1
q
, 1≤ q < ∞, (40)

holds for all power-p schemes but have verified this only in partial situations such
as for the convexity-preserving case p≤ 2, where

‖S[2]w‖�q(ZZ)→�q(ZZ) =
1
2
, 1≤ q≤ ∞,

can be deduced from the already established result for q =∞ and from the case q = 1
by complex interpolation (the upper bound sq(S) ≤ 1 + 1/q follows from the same
linear spline example as used for q = ∞).

However, in most examples of nonlinear S, the trivial upper estimates

ρq,k({Sv})≤ sup
v
‖(Sv)[k]‖�q(ZZ)→�q(ZZ)

resp.
ρq,k(S)≤ ‖S[k]‖�q(ZZ)→�q(ZZ)

for the spectral radii are just too weak (in this regard, the power-p schemes represent
an exception), and one needs to resort to (36) for j > 1 to obtain more rigorous
bounds.



Univariate subdivision and multi-scale transforms: The nonlinear case 223

The computation of exact values for these spectral radii and for the smoothness
exponents sq(S) becomes a subtle issue. In this respect the nonlinear case is much
harder than the case of linear subdivision operators S, where it can be reduced to the
q-joint spectral radius problem for finite families of matrices, or in the special case
of L2-smoothness exponents, to a finite dimensional eigenvalue problem, see, e.g.,
[40, 68]. Finding the smoothness exponents of nonlinear schemes usually means to
enter a detailed study of the nonlinear dynamics hidden in the subdivision scheme.

The only nontrivial case, where such an investigation has led to success is the
paper [64] by Xie and Yu, where

s∞(S) = 1

has been established for the triadic median-interpolating S (Example 2). The same
authors [64, 63] have also propagated a conjecture on smoothness equivalence: For
many nonlinear S, the smoothness exponent sq(S) coincides with the smoothness ex-
ponent of a near-by linear S0. Currently this conjecture is established only in a few
cases, in particular for manifold-valued subdivision schemes [65]. For the power-p
subdivision operator S, the appropriate S0 is equivalent to the linear B-spline subdi-
vision, and is obtained if the limiter term Hp(·) is dropped from the definition. For
median-interpolating schemes, S0 is given by systematically replacing all conditions
of median interpolation by interpolation conditions at the interval midpoints, more
examples can be found in [65].

2.4 Stability

Stability of multi-scale transforms, i.e., the robustness with respect to small per-
turbations, is not a major issue for linear schemes since convergence of a linear
subdivision scheme implies stability. However, for nonlinear schemes it is by no
means obvious, and deserves consideration. In this subsection, we consider only the
case of Lipschitz stability in Lp(IR). We will again deal with the simplified version
(9) of a nonlinear multi-scale transform, and its parts: The reconstruction part (25),
the associated subdivision scheme (26), and the decomposition part

v j−1 = Rv j, d j = D(v j−Sv j−1), j = J,J−1, . . . ,1. (41)

Definition 2.5. The decomposition algorithm (41) is called Lp stable if there is a
constant CD such that

max{‖v0− ṽ0‖�p(ZZ),r
− j/p‖d j− d̃ j‖�p(ZZ)} j=1,...,J ≤CDr−J/p‖vJ− ṽJ‖�p(ZZ)

holds for all vJ , ṽJ ∈ �p(ZZ), and J ≥ 1.
The reconstruction algorithm (25) is called Lp stable if there is a constant CU such
that
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r−J/p‖vJ− ṽJ‖�p(ZZ) ≤CU (‖v0− ṽ0‖�p(ZZ) +
J

∑
j=1

r− j/p‖d j− d̃ j‖�p(ZZ))

holds for all v0, ṽ0 ∈ �p(ZZ), d j, d̃ j ∈ �p(ZZ), j = 1, . . .J, and J ≥ 1.

The subdivision algorithm (26) is called Lp stable if there is a constant CS such
that

r−J/p‖vJ− ṽJ‖�p(ZZ) ≤CS‖v0− ṽ0‖�p(ZZ)

holds for all v0, ṽ0 ∈ �p(ZZ), and J ≥ 1.
For all these definitions it is assumed that the associations

vJ ←→ {v0,d1, . . . ,dJ}
ṽJ ←→ {ṽ0, d̃1, . . . , d̃J}

are given by the corresponding recursions in (9), where in the subdivision case detail
sequences are set to 0.

Defining Lp stability in this form is valuable for realistic algorithms, e.g., for com-
pression based on detail thresholding. The inclusion of the fore-factors r− j/p is
dictated by the interpretation of the sequences v j as representations of an Lp limit
function on the grids Γ j. Indeed, assuming Lp convergence of the reconstruction
algorithm studied in the previous subsection, the stability of (25) implies

‖ f∞− f̃∞‖Lp(ZZ) ≤CU (‖v0− ṽ0‖�p(ZZ) +
∞

∑
j=1

r− j/p‖d j− d̃ j‖�p(ZZ))

for the Lp limits of the associated sequences { f j} j≥0 and { f̃ j} j≥0. Finally, we note
that Lp stability of the decomposition part in a stronger form (e.g., symmetric with
the stability condition for (25)) is probably too much to ask for.

We will briefly deal with the decomposition part, where Lp stability can often be
determined easily. If R is linear then the condition

‖Rn‖�p(ZZ)→�p(ZZ) ≤Cr−n/p, n≥ 1, (42)

together with the Lipschitz continuity of D and S, is a necessary and sufficient con-
dition for the Lp stability of (41). For the nonlinear case the corresponding sufficient
condition on R reads

‖Rnv−Rnṽ‖�p(ZZ) ≤Cr−n/p‖v− ṽ‖�p(ZZ), n≥ 1,

uniformly in v, ṽ, and n≥ 1. Indeed, by rephrasing this inequality we get

r− j/p‖v j− ṽ j‖�p(ZZ) = r− j/p‖RJ− jvJ−RJ− j ṽJ‖�p(ZZ) ≤Cr−J/p‖vJ− ṽJ‖�p(ZZ).

The Lipschitz continuity of D and S yields the stability inequalities for d j, j =
1, . . . ,J, as well.
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With these definitions, trivial down-sampling given by (Rv)i = vri which is typi-
cal for interpolatory multi-scale transforms leads to Lp stability in (41) only if p =∞,
which is logical since point evaluations on Lp functions are not well-defined. On the
other hand, if R is a linear averaging restriction operator given by

(Rv)i = ∑
l∈ZZ

blvri+l ,

where the sequence {bl} is finitely supported, non-negative, and satisfying

∑
i∈ZZ

bri+s = r−1, s = 0, . . . ,r−1,

then (41) is Lp stable for all 1≤ p≤∞. Indeed, since (Rv)i is a convex combination
of entries of v, we get

‖Rv‖p
�p(ZZ) ≤ ∑

i∈ZZ
|∑

l∈ZZ

blvri+l |p ≤ ∑
l∈ZZ

bl ∑
i∈ZZ
|vri+l |p

=
r−1

∑
s=0

(∑
i∈ZZ

bri+s)(∑
i∈ZZ
|vri+s|p) = r−1‖v‖p

�p(ZZ),

and (42) holds with C = 1.
The only example of a decomposition algorithm (41) with a nonlinear R comes

from Example 2 (median-interpolating schemes), where r = 3, and R is defined via
(2). The obvious inequality

|med(a,b,c)−med(a′,b′,c′)| ≤max(|a−a′|, |b−b′|, |c− c′|)

implies L∞ stability of this R. The example of the two sequences

vJ
i =
{

0, i < (3J−1)/2
1, i≥ (3J−1)/2,

ṽJ
i =
{

0, i≤ (3J−1)/2
1, i > (3J−1)/2,

i ∈ ZZ,

shows that ‖v j− ṽ j‖�p(ZZ) = 1 for all j = 0, . . . ,J and 1 ≤ p ≤ ∞. Thus, Lp stability
cannot hold if 1≤ p < ∞.

General results on the Lp stability of the multi-scale reconstruction (25) and of
the subdivision scheme (26) for S with the representation (19) are developed in
[13, 49] for 1 ≤ p ≤ ∞, and more recently for S which is offset invariant and for
p = ∞ in [36] and [2]. We start with formulating the main result of [13, 49] for our
definition of Lp stability (note that these papers deal with the limit case J→ ∞, and
consider both the Lp and Besov space settings).

Theorem 2.4. In addition to the assumptions of Theorem 2.2, assume that the family
{Sv} is Lipschitz continuous as function of v ∈ �p(ZZ):

‖Sv−Sw‖�p(ZZ)→�p(ZZ) ≤C‖v−w‖�p(ZZ) ∀w,v ∈ �p(ZZ). (43)

If ρ̃p,k({Sv}) < 1 then (25) is Lp stable.
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Whether Lp stability holds under the weaker and more natural condition ρ̃p,k({Sv})<
r1/p is an open question. In [13], Lp stability of point-interpolation and cell-average
based WENO subdivision (Example 1) is established using Theorem 2.4.

However, condition (43) limits the applicability of Theorem 2.4, as the natural
assumption of Lipschitz continuity of the original S does not automatically carry
over to the family {Sv}. Indeed, (43) fails to hold for many concrete multi-scale
transforms. Examples 2 and 5 fall into this category. A stability criterion which
circumvents this difficulty and is directly based on S has recently been formulated
in [36, 2] for p = ∞, and has its roots in earlier case studies for some convexity-
preserving schemes such as the power-2 subdivision from Example 5, [45, 5]. We
formulate the result from [36], and extend it to the whole range 1 ≤ p ≤ ∞. For
simplicity, we first state it for k = 1.

Theorem 2.5. Let S be an r-shift invariant, local, offset invariant for IP1, and Lip-
schitz continuous subdivision operator, and let P be bounded and Lipschitz contin-
uous. Then the existence of a ρ , 0 < ρ < 1, and an integer n ≥ 1 such that for any
two sets {v0,d j}, {ṽ0, d̃ j} of multi-scale data we have the inequality

r−n/p‖Δ(vn− ṽn)‖�p(ZZ) ≤ ρ‖Δ(v0− ṽ0)‖�p(ZZ) +C
n

∑
l=1

r−l/p‖dl− d̃l‖�p(ZZ), (44)

implies the Lp stability of the multi-scale reconstruction (25).
If (44) holds in the special case when v0, ṽ0 ∈ �p(ZZ) are arbitrary but d j = d̃ j = 0,
j = 1, . . . ,n, then at least the subdivision scheme (26) is Lp stable.

The statement of this theorem carries over to k > 1 if an estimate of the form

‖Sv−Sw‖�p(ZZ) ≤ r1/p‖v−w‖�p(ZZ) +C‖Δ k(v−w)‖�p(ZZ) (45)

can be established, and if (44) holds with Δ replaced by Δ k, see [36]. Moreover, in
[36] condition (44) is replaced by a spectral radius estimate on the derivatives of the
derived subdivision operators. In the next theorem we formulate this result under
the simplifying condition, that all functions φs in the definition (16) of S possess
uniformly bounded, continuous partial derivatives, and refer to [36] for the exact
conditions of piecewise continuous differentiability under which the statement can
be proved. Denote by DvS[k] the Frechet derivative of S[k] at v ∈ �p(ZZ). Due to our
simplifying assumption, the linear operator family DvS[k] : �p(ZZ)→ �p(ZZ) depends
continuously on v. Now define the spectral radii ρstab

p,k (S) = ρstab
p (S[k]) and ρ̃stab

p,k (S)=
ρ̃stab

p (S[k]) as follows:

ρstab
p (S[k]) := limsup

j→∞
sup

w∈�p(ZZ)
‖DS[k]

(S[k]) j−1w
DS[k]

(S[k]) j−2w
· · ·DS[k]

w ‖1/ j
�p(ZZ)→�p(ZZ), (46)

and

ρ̃stab
p (S[k]) := limsup

j→∞
sup

w0,w1,...,w j−1∈�p(ZZ)
‖DS[k]

w j−1DS[k]
w j−2 · · ·DS[k]

w0‖
1/ j
�p(ZZ)→�p(ZZ). (47)
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Note that in (47) the supremum is taken with respect to an arbitrary collection of wl ,
l = 0, . . . , j−1, while in (46) it is taken with respect to a single w. Set wl = (S[k])lw,
l = 0, . . . , j−1, to see that

ρstab
p,k (S)≤ ρ̃stab

p,k (S).

As demonstrated in [36] for the dyadic median interpolating scheme, this inequality
can be strict. On the other hand, in [33, Lemma 4.2] it was observed that

lim
n→∞

ρ̃stab
p ((S[k])n)1/n = ρ̃stab

p,k (S),

a property that is used there for establishing approximation results.

Theorem 2.6. Let S be an r-shift invariant, local, Lipschitz continuous subdivision
operator, and let P be bounded and Lipschitz continuous. In addition, assume that
S is offset invariant for IPk, and that (45) holds.
i) The multi-scale reconstruction (25) is Lp stable if ρ̃stab

p,k (S) < r1/p, and Lp stability

fails to hold when ρ̃stab
p,k (S) > r1/p.

ii) The subdivision algorithm (26) is Lp stable if ρstab
p,k (S) < r1/p while in the case

ρstab
p,k (S) > r1/p it is not.

For the proof and the generalization to certain classes of piecewise-differentiable
S, we refer to [36, Section 2.3] in the case p = ∞. The extension to 1 ≤ p < ∞ is
straightforward. The L∞ stability of median-interpolating and power-p multi-scale
transforms and subdivision schemes is partially resolved in [36] using Theorem 2.6.
For the power-2 scheme (also called PPH scheme) see [45, 5]. In particular, (25) is
L∞ stable for the power-p case if 1≤ p < 8

3 , and fails to be L∞ stable if p > 4. For the
stability analysis of certain monotonicity- and convexity-preserving interpolating
subdivision schemes introduced in [44, 46], see [35]. More examples of univariate
nonlinear multi-scale transforms, e.g., a triadic version of the power-p scheme or a
non-interpolatory PPH scheme with smooth limit functions, can be found in [14, 3].

2.5 Approximation order and decay of details

In this subsection, we study the Lp convergence of nonlinear multi-scale transforms
from a different angle. In contrast to subsection 2.3, where for given multi-scale data
{v0,d j} j≥1 issues such as Lp convergence and Besov regularity of limit functions
are the main concern, we here infer properties of {v0,d j} j≥1 from properties of f .

In more practical terms, let us interpret the decomposition part (41) of the multi-
scale transform as a process of taking sampling values of a smooth function f with
respect to Γ j, and collecting them into the “sampling” vectors v j. This is, we as-
sume v j = R j f for a certain sequence of sampling operators R j : Lp(IR)→ �p(ZZ)
which also implicitly define R via R j−1 = RR j, j ≥ 1. E.g., for p =∞ and f ∈C(IR)
sampling by function evaluation at Γ j given by v j

i := f (r− ji), i ∈ ZZ, j ≥ 0, is of-
ten used, and compatible with trivial down-sampling R given by (Rv j)i = v j

ri. For
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sampling Lp functions (1≤ p≤ ∞), often

v j
i = (R j f )i :=

∫
IR

f (t)r jφ̃(r jt− i)dt =
∫

IR
f (r− j(x+ i))φ̃(x)dx, i ∈ ZZ, (48)

where φ̃(t) ∈ Lp/(p−1),loc(IR) has compact support and satisfies
∫

IR φ̃(x)dx = 1. If
we insist on compatibility with (41) with a local R then φ̃ needs to be refinable,

φ̃(x) = r∑
l∈ZZ

bl φ̃(rx− l), (49)

with finitely supported coefficient sequence {bl}. The restriction operator R has then
the form discussed in the beginning of subsection 2.4. E.g., taking B-splines of order
m as φ̃ is a common choice, if m = 1 then the sampling is equivalent with taking
averages on dyadic intervals. Note that trivial down-sampling formally results if
φ̃ = δ0 is the delta-function which satisfies (49) with the coefficients b0 = 1, bi = 0,
i �= 0. In the statement below we will silently include locally supported refinable
Radon measures for the generation of sampling operators if p = ∞.

All sampling procedures discussed in the literature are linear. The question of
how to deal with multi-scale transforms with nonlinear R is open. For example, no
natural sampling compatible with the R defined in Example 2 comes to mind. Me-
dian sampling on dyadic intervals as R j is not suitable since R j−1 = RR j is violated,
as simple examples show. In the remainder of this subsection, we therefore discuss
only linear R j. We also assume that the sequence f j of linear splines associated with
v j = R j f converges to f for any f ∈ Lp(IR). For the R j of (48) this assumption is
easy to check.

We discuss the following two questions on the multi-scale transform (9). The first
question is to give sharp estimates for the resulting sequence {v0,d j} j≥1 in terms
of the smoothness class f belongs to. These are usually called direct or Jackson-
type estimates. For f from Besov-Hölder classes this amounts to proving inverse
inequalities to (33). Implicitly, this means to characterize the decay of the detail
sequences d j. The second, related question is the approximation order of the multi-
scale transform which addresses the simpler question of how to relate the sampling
information v j = R j f directly to f , applying only the subdivision scheme, without
having access to the detail sequences dl with l > j. Roughly speaking, we speak of
approximation order s if any f of smoothness s can be reconstructed using S within
error O(hs) from its samples with respect to a grid of step-size h.

Definition 2.6. We say that the multi-scale transform (9) has Lp approximation or-
der s > 0, if for any f ∈ Bs

p(IR) and any j ≥ 0, the reconstruction f∞j ∈ Lp(IR)
from the sampling sequence v j exists, i.e., the linear spline interpolants for the se-
quence v j,Sv j,S2v j, . . . with respect to the grids Γ j,Γ j+1,Γ j+2, . . . converge to f∞j
in Lp(IR), and that f∞j → f in Lp(IR) at rate s:

‖ f − f∞j ‖Lp(IR) = O(r− js), j→ ∞. (50)
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Checking approximation order is closely related to direct estimates via Lp sta-
bility of the multi-scale reconstruction (25). To this end, it is enough to real-
ize that f∞j is the Lp limit of the reconstruction (25) with the “perturbed” data
{v0,d1, . . . ,d j,0,0, . . .}. Suppose a direct estimate of the form

‖{v0,d j} j≥1‖p,s;r ≤C‖ f‖Bs
p(IR), ∀ f ∈ Bs

p(IR), (51)

is established. Then f∞j ∈ Lp(IR) is well-defined, and using Lp stability we have

‖ f − f∞j ‖Lp(IR) ≤ C∑
l> j

r−l/p‖dl‖�p(ZZ)

≤ Cr− js

(
∑
l> j

r(sp−1)l‖dl‖p
�p(ZZ)

)1/p

≤Cr− js‖ f‖Bs
p(IR).

In [33], this reduction is observed for p = ∞. There it is also shown that, under
some minor additional conditions, even stability of the subdivision scheme (26)
is sufficient to prove the reduction. The papers [17, 66] address related issues for
manifold-valued subdivision. Note that the question of approximation order could
also be discussed without reference to the full multi-scale transform (9), just as a
property of sampling operators {R j}, j ≥ 0, on the one hand, and the subdivision
operator S, on the other. Such an approach could be of interest, when a subdivision
scheme is used for reconstruction, and multi-scale decomposition and detail decay
are not important.

Thus, for the rest of this subsection we concentrate on direct estimates. Although
this is a well-studied subject in the linear case [10, 15], very little is known for
nonlinear multi-scale transforms (in particular, no results are known if R is also
nonlinear). Some results in this direction can be found in [49, Section 2.1]. The
following statement covers most of them, and its proof is a straightforward extension
of their proofs.

Theorem 2.7. Let the sampling operators R j be given by (48), where φ̃∈Lp/(p−1),loc(IR)
is refinable. If the operator SR is bounded and offset exact for IPk, i.e.,

SR(v+q|ZZ) = SRv+q|ZZ, ∀ q ∈ IPk, ∀ v ∈ �p(ZZ),

and if
‖d‖�p(ZZ) ≤C‖Pd‖�p(ZZ), ∀ d ∈ �p(ZZ),

then the multi-scale transform satisfies the Jackson-type estimate (51) for all 0 <
s < k.

Note that this result extends to s = k if in Definition 2.6 Bk
p(IR) is replaced by the

Besov space Bk
p,∞(IR), and also applies to point-evaluation sampling if p =∞. Offset

exactness of SR is more restrictive than offset invariance, and does not hold if {R j}
and S are arbitrarily paired. If S is given then special efforts could go into construct-
ing R and φ̃ such that R j = RR j+1 holds, and SR becomes offset exact. If R j is given
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by point evaluation then offset exactness of SR for IPk can be reduced to polynomial
exactness of S for IPk which yields the more familiar bounding statements in [49].

To illustrate the use of Theorem 2.7, consider again Example 5. The power-p
scheme uses trivial down-sampling for R and dilation factor r = 2. This is compat-
ible with defining (R j f )i := f (2− ji), and we are restricted to applying the L∞ case
of the theorem. Since Δ 2q|ZZ = 0 for any linear polynomial q, it is easy to check that
SR is offset exact for IP2. Thus, f ∈ Bs

∞(IR) implies the estimate

‖d j‖�∞(ZZ) ≤C2− js‖ f‖Bs
∞(IR)

for the decay rate of the detail coefficients resp. the estimate

‖ f − f∞j ‖L∞(IR) ≤C2− js‖ f‖Bs
∞(IR)

for the approximation rate for s in the range 0 < s ≤ 2. These estimates cannot be
expected to hold for larger s, since power-p schemes reduce to linear interpolation
near points of inflection.

3 The geometric setting: Case studies

In this section we consider geometric multi-scale transforms and geometry-based
subdivision schemes, again in the univariate case. The prediction operator S appear-
ing in these schemes is also termed as a refinement step, and we present several
new such refinement steps. In contrast to the functional setting, geometric schemes
operate on vector data (vertex points, edges, and normal vectors of polygonal lines)
in a way that prevents us from analyzing them componentwise. So far such nonlin-
ear vector subdivision schemes and multi-scale transforms have been investigated in
case studies only, and tools for their systematic analysis have yet to be developed.

In subsection 3.1, we deal with the issue of convergence of few examples of
curve subdivision schemes, defined by geometry-based refinement steps, and dis-
cuss properties of the limits generated by the schemes. Subsection 3.2 is devoted
to geometric multi-scale transforms for planar curves based on the idea of normal
multiresolution [34, 19, 55] (discussed briefly as the third example in the Intro-
duction). We suggest several new multi-scale transforms, mimicking the original
normal multiresolution scheme, but with the linear S there replaced by a nonlinear
geometry-based refinement rule. These multi-scale transforms have two sources of
nonlinearity, the one is the nonlinearity in the prediction, and the other is the inher-
ent nonlinearity in the definition of the details.
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3.1 Geometry-based subdivision schemes

A geometry-based refinement step depends on all the components of the points in-
volved simultaneously, in contrast to the linear case, where the refinement step is
applied separately to each component. Therefore linear subdivision schemes in the
geometric setting are analyzed by the tools for linear subdivision schemes in the
functional setting. In contrast, the geometry-based subdivision schemes are the non-
linear analogue of linear vector subdivision schemes, with refinement steps defined
by operations of matrices on vectors.

3.1.1 Three types of geometry-based nonlinear 4-point schemes

In this subsection we present three geometry-based 4-point schemes, all related to
the linear 4-point scheme in different ways. The refinement rule of the linear 4-point
scheme is

(SwP)2i = Pi, (SwP)2i+1 =−w(Pi−1 +Pi+2)+(
1
2

+w)(Pi +Pi+1). (52)

In the above, P denotes a control polygon, namely a polygonal line through a se-
quence of points (control points), denoted by {Pi}, and w is a fixed tension parameter
(to avoid discussions about boundary treatment, assume a closed or bi-infinite con-
trol polygon). This refinement rule includes the Deslauriers-Dubuc scheme (1) for
w = 1

16 , and the linear B-spline scheme for w = 0 as special cases.
It is well known that the scheme given by (52) has the following attributes:

• It generates “good” curves when applied to control polygons with edges of com-
parable length.

• It generates curves which become smoother (have greater Hölder exponent of
the first derivative), the closer the tension parameter is to 1

16 .
• Starting from an initial control polygon with edges of significantly different

length, Sw with a tension parameter around 1
16 , may generate curves with arti-

facts.
An artifact is a geometric feature of the generated curve which does not exist
in the initial control polygon, such as an inflection point or a self-intersection
point.

• Sw generates a curve which preserves the shape of an initial control polygon
with edges of significantly different length, only for very small values of w.
(Recall that the control polygon itself corresponds to the generated curve with
zero tension parameter.)

Displacement-safe 4-point schemes. This geometry-based version of the 4-point
scheme is introduced in [48], and adapts the tension parameter w in (52) to the
geometry of the four control points taking part in the definition of an inserted point
(a refined point with an odd index). The failure of the 4-point scheme with a fixed
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Fig. 5 Curves generated by the linear 4-point scheme: (Upper left) the effect of different tension
parameters, (upper right) artifacts in the curve generated with w = 1

16 , (lower left) artifact-free
but visually non-smooth curve generated with w = 0.01. Artifact-free and visually smooth curve
generated in a nonlinear way with adaptive tension parameters (lower right)

tension parameter to generate smooth looking artifact free curves, when the edges
of the initial control polygon are of significantly different length, is demonstrated
in Figure 5. Also shown there is a high quality curve generated by a scheme with
adaptive tension parameter.

To derive the refinement step with adaptive tension parameter, we write the in-
sertion rule in (52) in terms of the edges {e j = Pj+1−Pj} of the control polygon,
and relate the inserted point to the edge e j. The insertion rule can thus be written in
the form,

(SP)2 j+1 = Pe j = Me j +we j(e j−1− e j+1) (53)

with Me j the midpoint of e j, we j the adaptive tension parameter, and Pe j the inserted
point relative to the edge e j. Defining de j = we j(e j−1− e j+1) as the displacement
from Me j , we control its size by choosing we j according to a geometrical criterion.

In [48] there are various geometrical criteria, all of them guaranteeing that the
inserted control point Pe j is different from the boundary points of the edge e j, and
that the length of each of the two edges replacing e j is bounded by the length of e j.
One way to achieve these goals is to choose we j so that

‖de j‖ ≤
1
2
‖e j‖ . (54)

The resulting schemes are termed displacement-safe. In all these schemes the value
of the tension parameter we j is restricted to the interval (0, 1

16 ], such that a tension

parameter close to 1
16 is assigned to regular stencils, namely to stencils of four

points with three edges of almost equal length, while the less regular the stencil is,
the closer to zero is the tension parameter assigned to it.

A natural choice of an adaptive tension parameter in (0, 1
16 ] obeying (54) is

we j = min

{
1

16
,c

‖e j‖
‖e j−1− e j+1‖

}
, with a fixed c ∈ [

1
8
,

1
2
) . (55)
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In (55), the value of c is restricted to the interval [ 1
8 , 1

2 ) to guarantee that we j = 1
16

for stencils with ‖e j−1‖ = ‖e j‖ = ‖e j+1‖. To see this, observe that in this case,
‖e j−1 − e j+1‖ = 2sin θ

2 ‖e j‖, with θ ∈ [0,π] the angle between the two vectors
e j−1,e j+1. Thus we have ‖e j‖/‖e j−1− e j+1‖ = (2sin θ

2 )−1 ≥ 1
2 , and if c ≥ 1

8 then
the minimum in (55) is 1

16 . The choice (55) defines irregular stencils (corresponding
to small we j ) as those with ‖e j‖ much smaller than at least one of ‖e j−1‖,‖e j+1‖,
and such that when these two edges are of comparable length, the angle between
them is not close to zero.

The convergence of this geometric 4-point scheme, and the continuity of the
limits generated, follow from a result in [47]. There it is proved that the 4-point
scheme with a varying tension parameter is convergent, and that the limits generated
are continuous, whenever the tension parameters are restricted to the interval [0, w̃],
with w̃ < 1

8 .
Yet, the result in [47] about C1 limits of the 4-point scheme with a varying tension

parameter does not apply to the geometric 4-point scheme defined by (53) and (55),
since the tension parameters used during this subdivision process are not bounded
away from zero.

Nevertheless, many simulations indicate that the curves generated by this scheme
are C1 (see [48]).

Parametrization-based 4-point schemes. This type of schemes is introduced and
investigated in [24]. The idea for the geometric insertion rule comes from the inser-
tion rule of the linear scheme with w = 1

16 , corresponding to the Deslaurier-Dubuc
4-point scheme. The point (S1/16P)2i+1 is obtained by the evaluation of a cubic
polynomial interpolating the data {(i− k,Pi−k) : k = −1,0,1,2} at the point i + 1

2
(see [20]). From this point of view, the linear scheme corresponds to a uniform
parametrization of the control polygon at each refinement level. This approach fails
when the initial control polygon has edges of significantly different length. Yet the
use of the centripetal parametrization, instead of the uniform parametrization, leads
to a geometric 4-point scheme with artifact-free limit curves, as can be seen in Fig-
ure 6.

The centripetal parametrization, which is known to be effective for interpolation
of control points by a cubic spline curve (see [28]), has the form tcen(P) = {τi},
with

τi = τi−1 +‖Pi−Pi−1‖1/2
2 , (56)

where ‖ · ‖2 is the Euclidean norm, and P = {Pi}.
Let P j be the control polygon at refinement level j, and let {τ j

i } = tcen(P j).
The refinement rule for the geometric 4-point scheme, based on the centripetal
parametrization is:

P j+1
2i = P j

i , P j+1
2i+1 = π j,i

(τ j
i + τ j

i+1

2

)
,

with π j,i the vector of cubic polynomials, satisfying the interpolation conditions



234 Nira Dyn and Peter Oswald

π j,i(τ j
i+k) = P j

i+k, k =−1,0,1,2.

Note that this construction can be done with any parametrization. In fact in [24]
the chordal parametrization (τi+1−τi = ‖Pi+1−Pi‖2) is also investigated, but found
to be inferior to the centripetal parametrization (see Figure 6).

Fig. 6 Comparisons between 4-point schemes based on different parameterizations

The analysis of the schemes in [24] is rather ad-hoc. It is shown there that the
centripetal and chordal schemes are well defined, in the sense that any inserted point
is different from the end points of the edge to which it corresponds, and that both
schemes are convergent to continuous limit curves. Although numerical simulations
indicate that both schemes generate C1 curves, as does the linear 4-point scheme,
there is no proof in [24] of such a property for the geometric schemes.

Another type of information on the limit curves, which is relevant to the absence
or presence of artifacts, is available in [24]. Bounds on the Hausdorff distance, dH

(see (63)), from sections of a limit curve to their corresponding edges in the initial
control polygon are derived. These bounds give a partial qualitative understanding
of the empirical observation that the limit curves corresponding to the centripetal
parametrization are artifact free.

Let C denote a curve generated by the scheme based on the centripetal parametriza-
tion from an initial control polygon P0. Since the scheme is interpolatory, C passes
through the initial control points. Denote by C |e0

i
the section of C with boundary

points as those of e0
i . Then

dH (C |e0
i
,e0

i )≤
5
7
‖e0

i ‖2.

Thus the section of the curve corresponding to a short edge cannot be too far from
its edge. On the other hand the corresponding bound in the linear case has the form

dH (C |e0
i
,e0

i )≤
3

13
max{‖e0

j‖2 , | j− i| ≤ 2},

and a section of the curve can be rather far from its corresponding short edge, if this
edge has a long neighboring edge. In the case of the chordal parametrization the
bound is even worse
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dH (C |e0
i
,e0

i )≤
11
5

max{‖e0
j‖2 , | j− i| ≤ 2}.

Comparisons of the performance of the three 4-point schemes, based on uniform,
chordal and centripetal parametrization, are given in Figure 6.

Circle preserving 4-point scheme. While the first two types of geometric 4-point
schemes were designed to alleviate artifacts in the geometry (position) of the limit
curves, this geometric version of the 4-point scheme was designed to overcome
artifacts in the numerical curvature generated by the linear scheme [57]. The scheme
is circle preserving in the sense that if the initial control points are ordered points
on a circle, then the limit curve is that part of the circle between the first and the last
initial control points.

The insertion rule requires geometric computations, as the inserted point is an
intersection point between a circle and a sphere. The details of the computation of
an inserted point are given in [57] as an algorithm.

Fig. 7 A control polygon and the limit curve generated by the circle preserving variant of the
4-point scheme

Figure 7 from the above paper, demonstrates the limit curve obtained from a
control polygon with slowly varying numerical curvature. The numerical curvature
of the limit curve is varying smoothly.

It is shown in [57] that the scheme is asymptotically equivalent to the linear
4-point scheme, and therefore according to [25] the scheme is convergent and gen-
erates continuous limit curves. Numerical simulations indicate that the scheme gen-
erates C1 limit curves.

The available analysis of the above three types of geometric 4-point schemes, is
limited to showing convergence and continuity of the limit curves. The proof of C1

seems to be much harder due to to the lack of an appropriate parametrization for
the geometrically defined curves. Perhaps the proof should be in terms of geometric
arguments, such as the continuity of the tangents of the curves.

3.1.2 Convexity-preserving schemes in the plane

A shape property of planar control polygons, which is important to preserve in the
curves generated by subdivision, is convexity. Here we present three different sub-
division schemes which are convexity preserving in the geometric setting, namely
they refine convex polygons into convex polygons.
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We first introduce some geometrical notions related to polygonal lines and to
convexity.

• An edge in a polygonal line such that its two neighboring edges are in the same
half-plane, determined by the line through the edge, is termed a “convex edge”.

• An edge in a polygonal line which is on the same line as one of its neighboring
edges is termed a “straight edge”.

• A line through a vertex of a polygonal line, such that the two edges meeting
at the vertex are on the same side of the line, is termed a “convex tangent”. A
“straight tangent” at a vertex is a line through one of the edges emanating from
the vertex.

• A polygonal line consisting of convex and straight edges is termed a “convex
polygon”. It is a “strictly convex polygon” if all its edges are convex. In Figure
8 three examples of strictly convex polygons are given.

Fig. 8 Convex polygons: (left) closed, (middle) open, (right) self- intersecting

Among the three convexity preserving schemes presented here, two are nonlinear
and geometry-based, while one is linear but of Hermite type. It refines control points
and normals at the control points, and is inherently related to nonlinear schemes
generating surfaces by refining control points and normals.

Convexity preserving 4-point scheme with adaptive tension parameter This
scheme is a geometric variant of the 4-point scheme, similar to the displacement-
safe schemes, but with the adaptive tension parameter chosen to preserve convexity.
It is designed and analyzed in [48]. The scheme refines convex (strictly convex)
control polygons into convex (strictly convex) control polygons. We describe the
geometrical construction of the inserted points in terms of notation introduced in
the first part of subsection 3.1.1.

As a first step in the construction, at each control point from which at least one
convex edge emanates, a convex tangent is constructed. At the other control points
a straight tangent is constructed, coinciding with one of the straight edges meeting
at the control point. We denote the tangent at Pi by ti.

In case of a straight edge ei, Pei = Mei .
In case of a convex edge ei, the tangents ti and ti+1 together with ei determine

a triangle, Tei . By construction, the line through ei separates Tei from the edges
ei−1,ei+1. Thus the half-line starting from Mei along the direction ei−1− ei+1 inter-
sects Tei . The point Pei is chosen so that ‖Pei −Mei‖/‖ei−1− ei+1‖ ≤ 1

16 and that
Pei ∈ Tei .
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These two conditions for point insertion guarantee that 0≤ wei ≤ 1
16 and that the

refined control polygon SP obtained from P by the refinement rule

(SP)2i = Pi , (SP)2i+1 = Pei ,

is convex (strictly convex) if the control polygon P is (see [48]).
This construction of refined control polygons, when repeated, generates a se-

quence of convex (strictly convex) polygons from an initial convex (strictly convex)
polygon. It is proved by arguments similar to those cited in subsection 3.1.1 for the
convergence of the displacement-safe schemes, that this sequence converges, and
that the limit is a continuous convex (strictly convex) curve. Moreover, it is shown
that the curve between two consecutive initial control points is either a line segment
when the edge connecting the two points in the initial control polygon is straight, or
otherwise a strictly convex curve.

Note that the subdivision scheme is interpolatory and that the inserted point be-
tween Pi and Pi+1 depends on the points Pi−1,Pi,Pi+1,Pi+2 as in the linear 4-point
scheme.

The convex tangents in this construction can be chosen in different ways. A nat-
ural choice of such a tangent is

ti = Pi+1−Pi−1 = ei + ei−1. (57)

This choice was tested in many numerical experiments, and was found superior to
other choices.

In Figure 9, the performance of this convexity-preserving scheme is compared
on several examples with that of the displacement-safe scheme of subsection 3.1.1
and with that of the linear 4-point scheme.

The convexity-preserving 4-point scheme is extended in [48] to a co-convexity
preserving scheme for general planar polygons.

Convexity preserving 2-point Hermite-type scheme. This convexity preserving
scheme is a two-point interpolatory Hermite-type scheme. It operates on data in
IR2, consisting of control points and unit normals at the control points. It generates
a convex limit curve from an initial convex data, namely a strictly convex control
polygon, with compatible normals (compatible with the convexity).

The scheme is presented briefly in [16], as a first step in the construction of
a nonlinear Hermite-type scheme for the generation of surfaces, interpolating the
initial control points and the unit normals attached to them.

The insertion rule for the point between two consecutive points Pi,Pi+1 is derived
from the quadratic Bézier curve interpolating these two points and the normals at
these points. First the mid control point, Qi, of the quadratic Bézier curve is con-
structed, as the intersection point of the lines through Pi and Pi+1, which are orthog-
onal to the corresponding normals. The parametric midpoint of the Bézier curve
determined by the control points Pi,Qi,Pi+1, is the inserted point. It is given by

(SP)2i+1 =
1
4
(Pi +2Qi +Pi+1). (58)
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Fig. 9 Examples: (left column) the linear 4-point scheme with w = 1/16, (middle column) the
displacement-safe scheme of subsection 3.1.1, (right column) the convexity preserving 4-point
scheme

The normal at the refined point is the normal of the Bézier curve at this point, which
is orthogonal to the direction Pi+1−Pi.

By construction the limit curve is a C1 piecewise quadratic Bézier curve.

Convexity preserving scheme refining lines. This scheme is an extension of the
’dual’ Chaikin scheme for lines, proposed by Sabin in [56]. It is an interpolatory
scheme, which is used and analyzed in [27], as a first step towards the construction
of a convexity preserving interpolatory scheme, operating on convex polyhedra and
generating in the limit smooth convex surfaces. The scheme, although an interpo-
latory scheme refining control points, can be regarded as refining the support lines
of the convex control polygon determined by the control points at each refinement
level.

Given a strictly convex, closed control polygon P , the first step in the construc-
tion of the inserted points, is the assignment of convex tangents {t j} (e.g. as in (57))
to the control points. Now, t j,e j, t j+1 determine a triangle Te j . The refined polygon
SP is strictly convex if the inserted point between Pj and Pj+1 is any point inside
Te j . The rule for assigning convex tangents to the control points of SP is to keep
the convex tangents at the control points of P and to choose convex tangents at the
inserted points.

Denoting by 〈P〉 the closed planar set enclosed by P , and by Q the convex
polygon generated by the convex tangents to the points of P , it is easy to verify
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that
〈P〉 ⊂ 〈SP〉 ⊂ 〈Q〉,

Thus repeated refinements, starting from an initial strictly convex, closed polygon,
generate a sequence of “increasing” closed convex sets (in the sense of inclusion
of sets), which are all contained in the closed convex set 〈Q〉. This is sufficient to
guarantee the convergence of the sequence of strictly convex, closed polygons to
a continuous, closed convex curve. Moreover, it is proved in [27] by geometrical
arguments, that the limit curve is C1.

3.1.3 Ideas for designing new geometry-based schemes

Here we give three geometric constructions of refinement rules. The corresponding
schemes have not been analyzed yet. All the schemes are interpolatory.

Interpolatory 4-point scheme based on circular arc approximation. For the con-
struction of the inserted point between Pi and Pi+1, first two auxiliary points are con-
structed. These points are the mid-points of two circular arcs between Pi and Pi+1,
one on the unique circular arc through Pi,Pi+1,Pi+2 and the other on the unique
circular arc through Pi−1,Pi,Pi+1. The inserted point is the midpoint of the two aux-
iliary points. It is a point on the line through Mei orthogonal to ei. The resulting
scheme is circle preserving by construction.

Interpolatory 2n-point scheme based on the centripetal parametrization. This
is an extension of the second geometric version of the 4-point scheme, presented
in subsection 3.1.1. To determine the inserted point between Pi and Pi+1, one first
parameterize the 2n points Pi+ j, j = −n + 1, . . . ,n according to the centripetal
parametrization (see (56)) to obtain the parameter differences ti+ j+1 − ti+ j, j =
−n + 1, . . . ,n− 1. Then the interpolating polynomial vector of degree 2n− 1 to
the data (ti+ j,Pi+ j), j = −n + 1, . . . ,n, is constructed and evaluated at the point
(ti + ti+1)/2 to yield the inserted point. This family of schemes is a geometric ana-
logue of the Deslauriers-Dubuc family.

Convexity preserving interpolatory scheme based on quadratic Bézier curves.
Given a strictly convex, closed control polygon, a refined strictly convex, closed
control polygon is generated, by first assigning a convex tangent to each control
point, and then computing the intersection points of consecutive convex tangents.
The inserted point between Pi and Pi+1 is the parametric midpoint (58) of the Bézier
quadratic curve, determined by the three control points Pi,Qi,Pi+1, where Qi is the
intersection point of the tangents at Pi and at Pi+1.

The rule for assigning convex tangents to the control points of the refined poly-
gon, is to keep those at the ’old’ control points, and to choose convex tangents at the
inserted control points.

Note that an inserted point depends on four control points; two on each side.



240 Nira Dyn and Peter Oswald

3.2 Geometric multi-scale transforms for planar curves

We present here results on geometric multi-scale transforms for continuous curves
in the plane, all based on the idea of normal multiresolution, which is discussed
briefly in the Introduction. We also suggest new geometric constructions for normal
multiresolution, which have still to be investigated.

3.2.1 The general structure of normal multiresolutions

Here we present again the main features of the normal multiresolution (NM), which
aims at a multi-scale representation of curves in the plane, which can be encoded
efficiently. The presentation is somewhat more general than that in Example 3 in
section 1, to allow geometric prediction operators. In the following we assume that
the curves are continuous.

Given a planar curve, C , it is approximated by a sequence of polygonal lines
{P j} j≥0, where P j = {P j

i } with points P j
i on the curve at refinement level j con-

nected by edges e j
i = P j

i+1−P j
i . As before, let us assume for simplicity that C is

closed, that P j contains n j = 2 jn0 points periodically enumerated by the index
i ∈ ZZ.

To obtain P j+1 from P j, the points {P j
i } are retained and denoted by {P j+1

2i },
i.e., their indices are doubled, and between any two consecutive points P j+1

2i ,P j+1
2(i+1)

a point from the curve segment C j
i between the points P j

i and P j
i+1, is inserted with

the index 2i + 1. The inserted point is obtained by a two-step procedure. First a
prediction step S jP j, with S j an interpolatory prediction/subdivision operator, is
performed which results in the point P̂ j+1

2i+1 = (S jP j)2i+1 near the curve segment C j
i .

The prediction step is followed by a projection step, which determines a point on C
as an intersection of C with the line orthogonal to the edge e j

i through the predicted
point (S jP j)2i+1 (see Figure 3). We denote this projection operator, acting on the
predicted point and mapping it to the curve, by R j. Note that for general S j, the
resulting point P j+1

2i+1 := (R jS jP j)2i+1 is not necessarily on C j
i . Since the projection

operator R j is determined by the geometry of P j and by the points S jP j, it is a
property of the prediction operator S j and of P j which guarantees that the inserted
points are on the correct curve segments. We term a pair {S j,P j} admissible for
NM at level j, if for all i

(R jS jP j)2i+1 ∈ C j
i .

Thus, if the pair {S j,P j} is admissible for NM at level j, then the polygonal line
P j+1 consists of the vertices

P j+1
2i = P j

i , P j+1
2i+1 = (R jS jP j)2i+1 (59)

in a natural ordering along C .
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In the following we assume that the operators S j are chosen in advance, e.g., as
an insertion rule of an interpolatory linear subdivision scheme, or as an insertion
rule of an interpolatory geometric subdivision scheme determined by the geometry
of P j, so that these operators do not have to be encoded. Moreover we assume that
for each j ≥ 0 the pair {S j,P j} is admissible for NM at level j.

Remark: The set of pairs {S j,P j} admissible for NM at level j is nonempty.
To see this consider the linear mid-point interpolatory subdivision scheme, S0 in the
notation of (52), with the refinement rule

(S0P
j)2i = P j

i , (S0P
j)2i+1 =

1
2
(P j

i +P j
i+1), (60)

It is easy to verify that any pair {S0,P j}, with P j a polygonal line consisting
of vertices sampled from the curve, is admissible for NM at any level. We term a
scheme with this property unconditionally admissible for NM.

Defining the signed distances from the predicted points S jP j to their corre-
sponding projected points R jS jP j as details at level j, and denoting them by
d j = {d j

i }, we observe that these details and the lines connecting pairs of corre-
sponding predicted and projected points, are sufficient for computing the points of
P j+1 from P j. Since these lines are determined by the information in P j, it fol-
lows that for the construction of P j+1 from P j only the details at level j have to
be encoded. Thus, the sequence of polygonal lines {P j}J

j=1 can be reconstructed
from the information

P0,d j, . . . ,dJ−1. (61)

The gain in the NM is that instead of encoding differences between points, which
are vectors, we have to encode signed scalars, and to use the geometric information
available at each level for the reconstruction of the next level.

In the following we discuss the case of linear prediction operators.

3.2.2 Normal multiresolutions with linear prediction operators

Denoting by S a linear prediction operator, and considering the stationary case S j =
S, equation (59) becomes

P j+1
2i = P j

i , P j+1
2i+1 = (R jSP j)2i+1. (62)

It is clear that in this NM the nonlinearity/geometry is introduced by the projection
operators R j.

Note that in the stationary case S j = S, with a linear S, the notion admissible for
NM at level j can be replaced by admissible for NM. Moreover for a pair {S,P0}
to start a NM, we need the stronger notion strongly admissible for NM, namely that
this pair and all the pairs {S,P j} with j > 0 are admissible for NM, where P j is
the polygonal line generated by j refinement steps of the NM with S, starting from
P0.
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In [19] NMs with linear subdivision schemes as prediction operators are ana-
lyzed. The case of the mid-point prediction operator, given by (60), is easier to
analyze and the results are better in some respects. The main issues addressed in
[19] are the convergence of the reconstruction and the regularity of the limit, the
rate of decay of the details, and the stability of the reconstruction. The rate of decay
of the details is strongly related to the quality of the approximation of the curve by
the polygonal lines {SP j}. The stability issue is concerned with the effect of small
changes in the information (61), on the reconstructed polygonal lines {P j}J

j=1. The
NM is termed stable if the changes in the reconstructed polygonal lines due to small
changes in the information are controlled. In a stable and converging NM, the polyg-
onal lines (and hence the curve) can be well approximated without the small details,
allowing a further reduction in the amount of encoded information.

Here we cite several results from [19] on the family of linear 4-point schemes
{Sw} with w ∈ [0, 1

16 ], where Sw is given by (52). These schemes constitute the main
example in [19]. As is noted before, the scheme Sw with w = 0 corresponds to the
mid-point scheme (60), and the scheme with w = 1

16 corresponds to the Deslauriers-
Dubuc 4-point scheme (1).

Although the results in [19] are derived in great generality, we limit our presenta-
tion to the above family of schemes. This alleviates the need to introduce the rather
technical terminology, with which the general results are formulated.

To present the results, we first introduce the notion of the regularity exponent of
a continuous curve C with a finite length �(C ). Let (x(s),y(s)), s ∈ [0, �(C )], be a
representation of the curve in terms of the arc-length parametrization. The curve has
Hölder regularity exponent ν = m+μ with m a nonnegative integer and μ ∈ (0,1],
if both functions x(s) and y(s) have a continuous mth derivative which is Hölder
continuous with exponent greater or equal to μ .

As is observed in subsection 3.2.1, the mid-point scheme S0, is unconditionally
admissible for NM, and hence can be used as the prediction operator for NM. It is
shown in [19] that any member of the family of 4-point schemes {Sw} with w ∈
(0, 1

16 ], can also serve as the prediction operator in NMs of smooth curves. More
specifically,

Result 1: Let C have regularity exponent β > 1, and let P be a polygonal line
with vertices sampled from C . Then there exist w ∈ (0, 1

16 ], and a positive integer J,
such that the pair {Sw,PJ} is strongly admissible for NM, where the polygonal line
PJ is generated by J refinement steps of the NM with the mid-point rule, starting
from P ,

Moreover, for any w∗ ∈ (0, 1
16 ] there exists a positive integer J∗ such that the pair

{Sw∗ ,PJ∗} is strongly admissible for NM, where PJ∗ is the polygonal line generated
by J∗ refinement steps of the NM with Sw, starting from PJ .

The advantage of using Sw with w �= 0 in NMs of smooth curves is indicated by
the next two results.

Result 2: Let C have regularity exponent β > 1, let P0 be a polygonal line
consisting of sampled points from C , and let w ∈ (0, 1

16 ]. If the pair {Sw,P0}, is
strongly admissible for NM, then the NM with Sw as a prediction operator, starting
from P0 is stable and convergent.
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Moreover the details of this NM {d j} j≥0 decay according to

‖d j‖∞ = max
i
|d j

i |= O( j2−min(2,β ) j).

In case w = 1
16 and β > 3 the details decay according to

‖d j‖∞ = O( j2−3 j).

Result 3: Let C have regularity exponent β > 0. Then the NM with the mid-point
prediction operator is stable and convergent.

Moreover the details of this NM decay according to

‖d j‖∞ = O(2−min(2,β ) j).

It is easy to conclude from the last two results that if the smoothness of the curve
is not known then the mid-point prediction operator should be used. Otherwise, the
smoothness of the curve indicates which prediction operator to use, when aiming
at small details and at a good approximation of the curve by the NM. Below we
formulate these conclusions.

1. For a curve with regularity exponent β > 3 the details decay much faster with
the predictor S1/16 than with any other Sw with w ∈ [0, 1

16 ).
2. For a curve with regularity exponent β ∈ (2,3] all prediction operators Sw with

w ∈ (0, 1
16 ] are superior to the mid-point prediction, with respect to the rate of

decay of the details.
3. For a curve with regularity exponent β ≤ 2, the details decay much faster with

the mid-point prediction operator than with any Sw with w ∈ (0, 1
16 ].

3.2.3 Normal multiresolutions with nonlinear prediction operators

Here we suggest ideas for improving the NM by using nonlinear prediction opera-
tors. We can take S j in (59) as one of the geometry-based schemes of subsections
3.1.1 and 3.1.3.

Among these geometry-based schemes several have the advantage of being un-
conditionally admissible for NM, the displacement safe 4-point schemes due to con-
dition (54), and the interpolatory 4-point scheme based on circular arc approxima-
tion by the construction of the inserted point. In fact, with the latter prediction op-
erator the NM generates the same polygonal lines {P j} as those generated by the
NM with the mid-point prediction, but the details are different.

We conjecture that for a curve with regularity exponent β > 3, the details in the
NM with the interpolatory 4-point scheme based on circular arc approximation as
prediction operator, decay as O(2−3 j). The conjecture is based on the following
observation.

Observation: Let C be a curve with regularity exponent β > 3, and let the three
points Pi, i = 1,2,3 be on C , such that h = maxi=1,2 ‖Pi+1−Pi‖2 is small enough.
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Then the circular arc through the three points Pi, i = 1,2,3 approximates the section
of the curve between these three points, with error of order O(h3). (Here the error is
measured by the Hausdorff metric, which is defined in the next subsection).

3.2.4 Adaptive approximation based on the NM with mid-point prediction

Here we discuss an algorithm for the adaptive approximation of planar curves, based
on the NM with the mid-point prediction operator. This algorithm is presented and
analyzed in [9]. We cite here quantitative results about the quality of the approxima-
tion, expressed in terms of the number of segments in the approximating polygonal
lines. The results are stated with less details and not in their full generality.

For that we introduce some notation. Let I be a segment in a polygonal line with
vertices sampled from C . The curve segment between the boundary vertices of I is
denoted by CI . The distance between two segments of curves γ,δ of finite length, is
measured by the Hausdorff metric

dH (γ,δ ) = max{H (γ,δ ),H (δ ,γ)}, (63)

with the one-sided Hausdorff distance

H (γ,δ ) = max
P∈γ

min
Q∈δ
‖P−Q‖2.

It is easy to see that dH (CI , I) = H ((CI , I)≥H ((I,CI).
Given an error tolerance ε , the adaptive algorithm refines a polygonal line P

with vertices sampled from C , by inserting a point according to the mid-point pre-
diction between any two vertices corresponding to a segment I of P for which
H ((CI , I) > ε . The point insertion and the computation of the corresponding de-
tail, is according to the NM with the mid-point prediction. The algorithm terminates
with a polygonal line P for which H (CI , I) ≤ ε for all I ∈P . It is easy to note
that the binary tree defined by this algorithm is a subtree of the binary tree generated
by the NM with the mid-point prediction.

Here we cite an important result relating the number of segments in the final
polygonal line obtained by the algorithm, to the error tolerance.

Result: Let C be a curve with finite length, and let ε > 0. Denote by P(ε)
the polygonal line generated by the algorithm with the given error tolerance, and
by |P(ε)| the number of segments in P(ε). Then there exists a constant C(C ),
depending on the curve, such that

|P(ε)| ≤ C(C )
ε

.

Moreover if the curve has finite curvature, then there is a constant, C̃(C ), depending
on C , such that

|P(ε)| ≤ C̃(C )

ε 1
2

.
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The above result indicates that for a curve of finite length the algorithm generates
polygonal lines with error decreasing linearly with the inverse of the number of seg-
ments. The error decreases as the inverse of the square of the number of segments,
for curves with finite curvature.
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Rapid solution of boundary integral equations
by wavelet Galerkin schemes

Helmut Harbrecht and Reinhold Schneider

Abstract The present paper aims at reviewing the research on the wavelet-based
rapid solution of boundary integral equations. When discretizing boundary integral
equations by appropriate wavelet bases the system matrices are quasi-sparse. Dis-
carding the non-relevant matrix entries is called wavelet matrix compression. The
compressed system matrix can be assembled within linear complexity if an expo-
nentially convergent hp-quadrature algorithm is used. Therefore, in combination
with wavelet preconditioning, one arrives at an algorithm that solves a given bound-
ary integral equation within discretization error accuracy, offered by the underlying
Galerkin method, at a computational expense that stays proportional to the number
of unknowns. By numerical results we illustrate and quantify the theoretical find-
ings.

1 Introduction

Many mathematical models concerning for example field calculations, flow simula-
tion, elasticity or visualization are based on operator equations with nonlocal oper-
ators, especially boundary integral operators. Discretizing such problems will then
lead in general to possibly very large linear systems with densely populated matri-
ces. Moreover, the involved operator may have an order different from zero which
means that it acts on different length scales in a different way. This is well known
to entail the linear systems to become more and more ill-conditioned when the level
of resolution increases. Both features pose serious obstructions to the efficient nu-
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merical treatment of such problems to an extent that desirable realistic simulations
are still beyond current computing capacities.

This fact has stimulated enormous efforts to overcome these obstructions. The
resulting significant progress made in recent years resulted in several methods for
the rapid solution of boundary integral equations. These methods reduce the com-
plexity to a nearly optimal rate or even an optimal rate. Denoting the number
of unknowns by NJ , this means the complexity O(NJ logα NJ) for some α ≥ 0.
Prominent examples for such methods are the fast multipole method [42, 91],
the panel clustering [48], adaptive cross approximation [2, 3], or hierarchical
matrices [47, 104]. As observed in the pioneering paper [4] and investigated in
[22, 27, 28, 29, 30, 79, 80, 81, 95], wavelet bases offer a further tool for the rapid so-
lution of boundary integral equations. In fact, a Galerkin discretization with wavelet
bases yields quasi-sparse matrices, i.e., the most matrix entries are negligible and
can be treated as zero. Discarding these non-relevant matrix entries is called matrix
compression. It has been firstly proven in [95] that only O(NJ) significant matrix en-
tries remain. A precise outline of the historical development of the wavelet matrix
compression can be found in Subsection 4.1.

Concerning boundary integral equations, a strong effort has been spent on the
construction of appropriate wavelet bases on surfaces [24, 31, 32, 64, 59, 63, 69, 79,
95, 100]. In order to achieve the optimal complexity of the wavelet Galerkin scheme,
wavelet bases are required that, depending on the order of the underlying opera-
tor, provide sufficiently many vanishing moments. This often rules out orthonormal
wavelets. We report here on the realization of biorthogonal spline wavelets, derived
from the multiresolution developed in [16]. These wavelets are advantageous since
the regularity of the duals is known [105]. Moreover, the duals are compactly sup-
ported which preserves the linear complexity of the fast wavelet transform also for
its inverse. This is an important task in applications, for instance for the coupling of
FEM and BEM, cf. [41, 54, 55]. Additionally, in view of the discretization of oper-
ators of positive order, for instance, the hypersingular operator, globally continuous
wavelets are available [6, 17, 31, 63].

The efficient computation of the relevant matrix coefficients turned out to be
an extremely hard but important task for the successful application of the wavelet
Galerkin scheme [61, 70, 81, 95]. We present a fully discrete Galerkin scheme based
on numerical quadrature. Supposing that the given manifold is piecewise analytic
we can use an hp-quadrature scheme [61, 92, 97] in combination with exponen-
tially convergent quadrature rules. By combining all these ingredients we gain an
algorithm which solves a given boundary integral equation in asymptotically linear
complexity without compromising the accuracy of the underlying Galerkin scheme,
see [22, 61]. This algorithm allows to solve boundary integral equations in reason-
able time on serial computers with up to 10 million unknowns.

Wavelet matrix compression can be viewed as a non-uniform approximation of
the Schwartz kernel with respect to the typical singularity on the diagonal. If the do-
main has corners and edges, the solution itself admits singularities. In this case an
adaptive refinement will reduce the number of unknowns drastically without com-
promising the overall accuracy.
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Adaptive methods for boundary integral equations have been considered by sev-
eral authors, see e.g. [8, 9, 39, 71, 73, 96] and the references therein. However,
convergence can in general only be proven under the so-called saturation assump-
tion. Particularly, we are not aware of any paper concerning the combination of
adaptive BEM with recent fast methods for integral equations like e.g. the fast mul-
tipole method. We emphasize further that, in difference to finite elements methods
for local operators, the residuum to boundary integral equations cannot be computed
exactly which makes the error estimation a quite difficult task.

Adaptive wavelet Galerkin methods for boundary integral equations have been
considered first in [58, 60]. Although this method performs quite well in numerical
experiments, convergence can only proven with the help of the saturation assump-
tion. In [23], based on the adaptive algorithms from [13, 14, 15], a fully discrete
adaptive wavelet Galerkin method has been presented that realizes asymptotically
optimal complexity in the present context of global operators. Asymptotically opti-
mal means here that any target accuracy can be achieved at a computational expense
that stays proportional to the number of degrees of freedom (within the setting deter-
mined by the underlying wavelet basis) that would ideally be necessary for realizing
that target accuracy if full knowledge about the unknown solution were given.

Meanwhile the wavelet Galerkin scheme has successfully been applied to a wide
range of problems. For example, to the coupling of FEM and BEM (see [41, 54, 55]),
to shape optimization (see e.g. [37, 38, 50], to inverse obstacle problems (see
[51, 52]), and to the solution of boundary value problems with stochastic input pa-
rameters (see [62, 82]). The approach can be extended to surfaces which are rep-
resented by panels [53, 67, 94, 102, 103], particularly the illumination in virtual
scenes is addressed in [67]. Moreover, recent progress has been made to employ
wavelet matrix compression for high dimensional boundary integral equations, aris-
ing in particular from finance [88, 89, 90], see also [45, 68] for earlier results in this
direction.

The outline of this survey is as follows. First, we specify the class of prob-
lems under consideration. Then, in Section 3 we provide suitable wavelet bases
on manifolds. We review the historical development until the automatic construc-
tion of wavelets on surfaces that are described by Computer Aided Design. With the
wavelet bases at hand we are able to introduce the fully discrete wavelet Galerkin
scheme in Section 4. We survey on practical issues like setting up the compression
pattern, assembling the system matrix and preconditioning. Especially, we present
numerical results with respect to a nontrivial domain geometry in order to demon-
strate the scheme. Finally, in Subsection 4.9 we present the developments concern-
ing adaptivity, supported again by numerical results.

In the following, in order to avoid the repeated use of generic but unspecified
constants, by C � D we mean that C can be bounded by a multiple of D, indepen-
dently of parameters which C and D may depend on. Obviously, C � D is defined
as D � C, and C ∼ D as C � D and C � D.
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2 Problem formulation and preliminaries

2.1 Boundary integral equations

We consider a boundary integral equation on the closed boundary surface Γ of a
three dimensional domain Ω

(A u)(x) =
∫
Γ

k(x,y)u(y)dσy = f (x), x ∈ Γ . (1)

Here, the boundary integral operator A : Hq(Γ )→ H−q(Γ ) is assumed to be a
bijective operator of order 2q. The properties of the class of kernel functions k(x,y)
which are under consideration will be precisely outlined in Subsection 2.3.

Example 2.1 (Capacity computation). We suppose that the domain Ω ⊂ R
3 de-

scribes a charged condenser. The electric field generated by the condenser’s charge
is described by the exterior Dirichlet problem

Δu = 0 in Ω c, u = 1 on Γ , u = O(‖x‖−1) as ‖x‖→ ∞.

The capacity C(Ω) of the condenser is determined by the Dirichlet energy

C(Ω) =
∫
Ω c
‖∇u‖2dx =−

∫
Γ

∂u
∂n

dσ .

Here, the Neumann data can be computed by the so-called Dirichlet-to-Neumann
map

V
∂u
∂n

=
(

K − 1
2

)
u on Γ (2)

where the single layer operator V : H−1/2(Γ )→ H1/2(Γ ) and the double layer op-
erator K : L2(Γ )→ L2(Γ ) are respectively defined by

(V u)(x) =
∫
Γ

u(y)
4π‖x−y‖dσy, (K u)(x) =

∫
Γ

〈n(y),x−y〉
4π‖x−y‖3 u(y)dσy, x ∈ Γ .

Since K 1 =−1/2 the computation of the Neumann data reduces to the solution
of a Fredholm integral equation of the first kind

V
∂u
∂n

=−1 on Γ .

Example 2.2 (Computation of free surfaces of liquid metals). Exterior electromag-
netic shaping is the determination of the free surface of a droplet Ω of liquid metal
of volume |Ω | that levitates in an electromagnetic field. The magnetic field is gener-
ated by conductors outside the droplet, i.e., the density current vector j is compactly
supported in Ω c and satisfies div j = 0.

The free surface Γ = ∂Ω is the minimizer of the shape optimization problem
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J(Ω) =−
∫
Ω c
‖B‖2dx+C

∫
Γ

1dσ +D
∫
Ω

x3dx→min subject to |Ω |= V0,

where the magnetic field B = B(Ω) satisfies the magneto-static Maxwell equations

curlB = μj in Ω c, divB = 0 in Ω c, 〈B,n〉= 0 on Γ (3)

together with the decay condition B = O(‖x‖−2) as ‖x‖ → ∞. The constants C,D
refer to the surface tension and the gravitational acceleration.

During an optimization procedure the magnetic field in the exterior domain Ω c

has to be computed very often on different geometries. Here, it became rather popu-
lar to exploit boundary integral equations, see e.g. [38, 75, 76, 85]. By the standard
decomposition

B = curlA+∇u, where A(x) =
1

4π

∫
R3

j(y)
‖x−y‖dy

the problem reduces to seeking u∈H1
loc(Ω

c), satisfying the following exterior Neu-
mann problem for the Laplacian

Δu = 0 in Ω c,
∂u
∂n

=−〈curlA,n〉 on Γ , u = O(‖x‖−1) as ‖x‖→ ∞.

This boundary value problem can be efficiently solved by invoking the Neumann-
to-Dirichlet map which follows from the relation (2).

A simulated droplet is depicted in Fig. 15.

2.2 Parametric surface representation

We assume that the boundary Γ ⊂ R
3 is represented by piecewise parametric map-

pings. Let � := [0,1]2 denote the unit square. We subdivide the given manifold into
several patches

Γ =
M⋃

i=1

Γi, Γi = γi(�), i = 1,2, . . . ,M,

such that each γi : �→ Γi defines a diffeomorphism of � onto Γi. The intersection
Γi∩Γi′ , i �= i′, of the patches Γi and Γi′ is supposed to be either /0, a common edge, or
a common vertex.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the
unit square into 4 j squares Cj,k ⊆ �, where k = (k1,k2) with 0 ≤ k1,k2 < 2 j. This
generates 4 jM elements (or elementary domains) Γi, j,k := γi(Cj,k)⊆Γi, i = 1, . . . ,M.
In order to get a regular mesh of Γ , the parametric representation is subjected to the
following matching condition. A bijective, affine mapping Ξ : �→ � exists such
that for all x = γi(s) on the common interface Γi∩Γi′ it holds that γi(s) = (γi′ ◦Ξ)(s).
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In other words, the diffeomorphisms γi and γi′ coincide along the edges except for
orientation.

The canonical inner product in L2(Γ ) is given by

(u,v)L2(Γ ) =
∫
Γ

u(x)v(x)dσx =
M

∑
i=1

∫
�

u
(
γi(s)
)
v
(
γi(s)
)
κi(s)ds

with κi ∼ 1 being the surface measure

κi :=
∥∥∥∥ ∂γi

∂ s1
× ∂γi

∂ s2

∥∥∥∥.

The corresponding Sobolev spaces are indicated by Hs(Γ ). Of course, depending
on the global smoothness of the surface, the range of permitted s ∈ R is limited to
s ∈ (−sΓ ,sΓ ). In case of general Lipschitz domains we have at least sΓ = 1 since
for all 0 ≤ s ≤ 1 the spaces Hs(Γ ) consist of the traces of functions ∈ Hs+1/2(Ω),
cf. [20].

For the construction of wavelets on manifolds the following modified inner prod-
uct is playing a crucial role

〈u,v〉=
M

∑
i=1

(u◦ γi,v◦ γi)L2(�) =
M

∑
i=1

∫
�

u
(
γi(s)
)
v
(
γi(s)
)
ds. (4)

We shall introduce some function spaces associated with this inner product. For
arbitrary s≥ 0 we define the Sobolev spaces Hs,0

〈·,·〉(Γ ) as the closure of all patchwise
C∞-functions on Γ with respect to the norm

‖v‖
Hs,0
〈·,·〉(Γ ) :=

M

∑
i=1

‖v◦ γi‖Hs(�) . (5)

The Sobolev spaces of negative order, that is H−s,0
〈·,·〉 (Γ ), are defined as the duals of

Hs,0
〈·,·〉(Γ ) with respect to the modified inner product (4), equipped by the norm

‖v‖
H−s,0
〈·,·〉 (Γ ) := sup

w∈Hs,0
〈·,·〉(Γ )

〈v,w〉
‖w‖

Hs,0
〈·,·〉(Γ )

. (6)

Since the surface measure is in general discontinuous across the interface of two
neighbouring patches, the Sobolev spaces Hs(Γ ) and Hs,0

〈·,·〉(Γ ) are only isomorphic

in the range s ∈
(
−min{ 1

2 ,sΓ },min{ 1
2 ,sΓ }
)
, see [31] for the details.

In complete analogy, based on (5), (6), we define also the spaces Hs,1
〈·,·〉(Γ ), s ∈R,

which stem from the completion of all globally continuous patchwise C∞-functions
on Γ . According to [31], the Sobolev spaces Hs(Γ ) and Hs,1

〈·,·〉(Γ ) are isomorphic in

the range s ∈
(
−min{ 1

2 ,sΓ },min{ 3
2 ,sΓ }
)
.
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The Sobolev spaces Hs,0
〈·,·〉(Γ ) and Hs,1

〈·,·〉(Γ ) will be needed later on in the anal-
ysis of patchwise smooth wavelet bases in Subsection 3.5 and globally continuous
wavelet functions in Subsection 3.6, respectively.

The surface representation is in contrast to the common approximation of sur-
faces by panels. It has the advantage that the rate of convergence is not limited by
approximation. Technical surfaces generated by tools from Computer Aided Design
(CAD) are often represented in the present form.

The most common geometry representation in CAD is defined by the IGES (Ini-
tial Graphics Exchange Specification) standard. Here, the initial CAD object is a
solid, bounded by a closed surface that is given as a collection of parametric surfaces
which can be trimmed or untrimmed. An untrimmed surface is already a four-sided
patch, parameterized over a rectangle. Whereas, a trimmed surface is just a piece of
a supporting untrimmed surface, described by boundary curves. There are several
representations of the parameterizations including B-splines, NURBS (nonuniform
rational B-Splines), surfaces of revolution, and tabulated cylinders [65].

In [56] an algorithm has been developed to decompose a technical surface, de-
scribed in the IGES format, into a collection of parameterized four-sided patches,
fulfilling all the above requirements. We refer the reader to [56] for the details.
Fig. 16 presents two examples of geometries produced by this algorithm.

2.3 Kernel properties

We can now specify the kernel functions of the boundary integral operator A un-
der consideration. To this end, we denote by ααα = (α1,α2) and βββ = (β1,β2) multi-
indices and define |ααα| := α1 +α2. Moreover, we denote by ki,i′(s, t) the transported
kernel functions, that is

ki,i′(s, t) := k
(
γi(s),γi′(t)

)
κi(s)κi′(t), 1≤ i, i′ ≤M. (7)

Definition 2.1. A kernel k(x,y) is called standard kernel of the order 2q if the partial
derivatives of the transported kernel functions ki,i′(s, t), 1 ≤ i, i′ ≤ M, are bounded
by ∣∣∂αααs ∂βββt ki,i′(s, t)

∣∣≤ cααα,βββ
∥∥γi(s)− γi′(t)

∥∥−(2+2q+|ααα|+|βββ |)

provided that 2+2q+ |ααα|+ |βββ |> 0.

We emphasize that this definition requires patchwise smoothness but not global
smoothness of the geometry. The surface itself needs to be only Lipschitz contin-
uous. Generally, under this assumption, the kernel of a boundary integral operator
A of order 2q is standard of order 2q. Hence, we may assume this property in what
follows.
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3 Wavelet bases on manifolds

3.1 Wavelets and multiresolution analyses

We shall first focus on those aspects of biorthogonal multiresolution analyses which
are useful for our purpose. Let Ω be a domain ⊂ R

n or manifold ⊂ R
n+1. Then, in

general, a biorthogonal multiresolution analysis consists of two nested families of
finite dimensional subspaces

Vj0 ⊂Vj0+1 ⊂ ·· · ⊂Vj ⊂Vj+1 · · · ⊂ · · · ⊂ L2(Ω),

Ṽj0 ⊂ Ṽj0+1 ⊂ ·· · ⊂ Ṽj ⊂ Ṽj+1 · · · ⊂ · · · ⊂ L2(Ω),
(8)

such that dimVj ∼ dimṼj ∼ 2n j and

⋃
j≥ j0

Vj =
⋃
j≥ j0

Ṽj = L2(Ω). (9)

The spaces Vj = spanΦ j, Ṽj = spanΦ̃ j are generated by biorthogonal single-scale
bases

Φ j = [φ j,k]k∈Δ j , Φ̃ j = [φ̃ j,k]k∈Δ j , (Φ j,Φ̃ j)L2(Ω) = I,

where Δ j denotes a suitable index set with cardinality |Δ j| ∼ 2n j. Note that here and
in the sequel the basis Φ j = [φ j,k]k∈Δ j has to be understood as a row vector.

A final requirement is that these bases are uniformly stable, i.e., for any vector
c ∈ �2(Δ j) holds

‖Φ jc‖L2(Ω) ∼ ‖Φ̃ jc‖L2(Ω) ∼ ‖c‖�2(Δ j) (10)

uniformly in j.
If one is going to use the spaces Vj as trial spaces in a Galerkin scheme, then ad-

ditional properties are required. At least the primal single-scale bases are supposed
to satisfy the locality condition

diamsuppφ j,k ∼ 2− j.

Furthermore, it is assumed that the following Jackson and Bernstein type estimates
hold uniformly in j for s < γ , s≤ t ≤ d

inf
v j∈Vj

‖u− v j‖Hs(Ω) � 2 j(s−t)‖u‖Ht (Ω), u ∈ Ht(Ω), (11)

and for s≤ t < γ

‖v j‖Ht (Ω) � 2 j(t−s)‖v j‖Hs(Ω), v j ∈Vj, (12)

where d,γ > 0 are fixed constants given by
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d = sup{s ∈ R : inf
v j∈Vj

‖u− v j‖L2(Ω) ≤ 2− js‖u‖Hs(Ω)},

γ = sup{s ∈ R : Vj ⊂ Hs(Ω)}.

Usually, d is the maximal degree of polynomials which are locally contained in Vj

and is referred to as the order of exactness of the multiresolution analysis {Vj}.
The parameter γ denotes the regularity or smoothness of the functions in the spaces
Vj. Analogous estimates are valid for the dual multiresolution analysis {Ṽj} with
constants d̃ and γ̃ .

Instead of using only a single scale j the idea of wavelet concepts is to keep
track to the increment of information between two adjacent scales j and j +1. The
biorthogonal wavelets

Ψj = [ψ j,k]k∈∇ j , Ψ̃j = [ψ̃ j,k]k∈∇ j , (Ψj,Ψ̃j)L2(Ω) = I,

where ∇ j = Δ j+1 \ Δ j, are the bases of uniquely determined complement spaces
Wj = spanΨj, W̃j = spanΨ̃j, satisfying

Vj+1 = Vj⊕Wj, Vj ∩Wj = {0}, Wj ⊥ Ṽj,

Ṽj+1 = Ṽj⊕W̃j, Ṽj ∩W̃j = {0}, W̃j ⊥Vj.
(13)

We claim that the primal wavelets ψ j,k are also local with respect to the correspond-
ing scale j, that is

diamsuppψ j,k ∼ 2− j, (14)

and we will normalize the wavelets such that ‖ψ j,k‖L2(Ω) ∼ ‖ψ̃ j,k‖L2(Ω) ∼ 1. Fur-
thermore, we suppose that the wavelet bases

Ψ = [Ψj] j≥ j0−1, Ψ̃ = [Ψ̃j] j≥ j0−1, (15)

(Ψj0−1 := Φ j0 , Ψ̃j0−1 := Φ̃ j0 ), are Riesz bases of L2(Ω).
The assumptions that (11) and (12) hold with some constants γ and γ̃ relative to

{Vj}, {Ṽj} provide a convenient device for switching between the norms ‖ · ‖Ht(Ω)
and corresponding sums of weighted wavelet coefficients. Namely, the following
norm equivalences hold

‖v‖2
Hs(Ω) ∼ ∑

j≥ j0−1
∑

k∈∇ j

2 js
∣∣(v, ψ̃ j,k)L2(Ω)

∣∣2, s ∈ (−γ̃,γ),

‖v‖2
Hs(Ω) ∼ ∑

j≥ j0−1
∑

k∈∇ j

2 js
∣∣(v,ψ j,k)L2(Ω)

∣∣2, s ∈ (−γ, γ̃),
(16)

see e.g. [21, 66, 95] for the details. Note that for s = 0 the norm equivalences imply
the Riesz property of the wavelet bases.

From (13) we deduce that the primal wavelets provide vanishing moments or the
cancellation property of order d̃, that is
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∣∣(v,ψ j,k)L2(Γ )
∣∣� 2− j(d̃+n/2)|v|

W d̃,∞(suppψ j,k)
. (17)

Here, |v|
W d̃,∞(Ω)

:= sup|ααα|=d̃, x∈Ω |∂
αααv(x)| denotes the semi-norm in W d̃,∞(Ω). No-

tice that the corresponding cancellation property with parameter d holds with re-
spect to the dual wavelets.

3.2 Refinement relations and stable completions

For the construction of multiresolution bases we are interested in the filter or mask
coefficients associated with the scaling functions and the wavelets. Since boundary
functions have to be introduced, these filter coefficients are not fixed like in the
stationary case. Therefore, we are going to compute the full two-scale relations

Φ j = Φ j+1M j,0, Ψj = Φ j+1M j,1,

Φ̃ j = Φ̃ j+1M̃ j,0, Ψ̃j = Φ̃ j+1M̃ j,1,
(18)

where M j,0,M̃ j,0 ∈R
|Δ j+1|×|Δ j| and M j,1,M̃ j,1 ∈R

|Δ j+1|×|∇ j |. Notice that these ma-
trices will be banded and only the filter coefficients for some specific scaling func-
tions and wavelets have to be modified. That way, the advantages of the stationary
and shift-invariant case are preserved as far as possible.

We proceed as follows. We first construct biorthogonal single-scale bases in re-
finable spaces Vj and Ṽj. The parameters d, d̃,γ and γ̃ are constituted by these single-
scale bases. According to (13) the complementary spaces Wj and W̃j are determined
uniquely. But as we will see there is some freedom in choosing the biorthogonal
wavelet bases that generate these complementary spaces. Each pair of matrices
M j,1,M̃ j,1 satisfying

[M j,0,M j,1]T [M̃ j,0,M̃ j,1] = I

defines wavelets (especially Riesz bases in L2(Ω)) via their two-scale relations (18).
But, for instance, this straightforward construction does not imply fixed and finite
masks of the wavelets. Hence, in order to define suitable wavelet bases, we utilize
the concept of the stable completion [7]. This concept is universal and often em-
ployed in the sequel.

Definition 3.1. Let Ψ̆j = [ψ̆ j,k]k∈∇ j ⊂Vj+1 be a given collection of functions, satis-
fying

Ψ̆j = Φ j+1M̆ j,1, M̆ j,1 ∈ R
|Δ j+1|×|∇ j|,

such that [M j,0,M̆ j,1] is invertible. We define the matrix [G j,0,G j,1] with G j,0 ∈
R
|Δ j+1|×|Δ j | and G j,1 ∈ R

|Δ j+1|×|∇ j| as the inverse of [M j,0,M̆ j,1]T , i.e.

[M j,0,M̆ j,1]T [G j,0,G j,1] = I. (19)
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The collection Ψ̆j is called a stable completion of Φ j if
∥∥[M j,0,M̆ j,1]

∥∥
�2(Δ j+1) ∼

∥∥[G j,0,G j,1]
∥∥

�2(Δ j+1) ∼ 1. (20)

We derive the desired wavelet basis by projecting the stable completion onto Wj,
cf. [26]. In terms of the refinement matrices, the related matrix M j,1 is defined by

M j,1 =
[
I−M j,0M̃T

j,0

]
M̆ j,1 =: M̆ j,1−M j,0L j. (21)

One readily verifies that the matrix L j ∈ R
|Δ j |×|∇ j | satisfies

L j = M̃T
j,0M̆ j,1 =

(
Φ̃ j,Ψ̆j
)

L2(Ω). (22)

Moreover, one concludes from the identity

I = [M j,0,M j,1]T [M̃ j,0,M̃ j,1] =
[

I −L j

0 I

]T
[M j,0,M̆ j,1]T [G j,0,G j,1]

[
I 0

LT
j I

]

the equality
[M̃ j,0,M̃ j,1] = [G j,0 +G j,1LT

j ,G j,1],

i.e. M̃ j,1 = G j,1. Note that a compactly supported stable completion implies com-
pactly supported wavelet bases.

Remark 3.1. The definition of M j,1 implies

Ψj = Φ j+1M j,1 = Φ j+1M̆ j,1−Φ j+1M̆ j,0L j = Ψ̆j−Φ jL j.

Consequently, similarly to [101], the wavelets Ψj are obtained by updating Ψ̆j by
linear combinations of the coarse level generators Φ j.

3.3 Biorthogonal spline multiresolution on the interval

Our approach is based on the biorthogonal spline multiresolution on R that has
been developed by A. Cohen, I. Daubechies and J.-C. Feauveau [16]. These func-
tions have several properties which make them favourite candidates for the wavelet
Galerkin scheme.

– The primal multiresolution consists of cardinal B-splines of the order d as scal-
ing functions. Therefore, we have to deal only with piecewise polynomials which
simplifies the computation of the coefficients in Galerkin matrices. We like to point
out that the primal multiresolution realizes the order of approximation d. The regu-
larity of these ansatz functions is γR = d−1/2.
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– The dual multiresolution is generated by compactly supported scaling func-
tions, realizing the order of approximation d̃ ∈ N (d + d̃ even). According to [105]
their regularity γ̃R is known.

In accordance with [26], based on these scaling functions, we can construct re-

finable spaces V [0,1]
j , Ṽ [0,1]

j which contain all polynomials of degree less than d, d̃,
respectively. The goal is thus to construct a wavelet basis such that only a few bound-
ary wavelets do not coincide with translates and dilates of the Cohen-Daubechies-
Feauveau wavelets [16].

For the treatment of boundary integral equations we focus on piecewise constant
and linear wavelets, i.e., d = 1 and d = 2. On the level j, we consider the inter-
val [0,1] subdivided into 2 j equidistant subintervals. Then, of course, V [0,1]

j is the
space generated by 2 j and 2 j + 1 piecewise constant and linear scaling functions,
respectively. We prefer the Haar basis and the hierarchical basis on the given parti-
tion to define suitable stable completions. In fact, by utilizing these stable comple-
tions the interior wavelets coincide with the Cohen-Daubechies-Feauveau wavelets,
cf. [26, 49].

According to [26] the following statements hold.
– The collectionsΨ [0,1] and Ψ̃ [0,1], given by (15), define biorthogonal Riesz bases

in L2([0,1]).
– The functions of Ψ [0,1] and Ψ̃ [0,1] have d̃ and d vanishing moments, respec-

tively.
– The functions of the collections Ψ [0,1] and Ψ̃ [0,1] have the same regularity as

the biorthogonal spline wavelets in L2(R) [105]. Therefore, the norm equivalences
(16) are valid for γ = γR = d−1/2 and γ̃ = γ̃R.

In view of operators of positive order, e.g. the hypersingular operator, we need
globally continuous wavelet bases. According to [31, 49], for their construction, the
primal and dual scaling functions as well as the stable completion are required to
satisfy the following boundary conditions.

– Only one function each of the collections Φ [0,1]
j and Φ̃ [0,1]

j , respectively, is non-
vanishing at the interval endpoints x = 0 and x = 1. that is

φ [0,1]
j,k (0) =

{
2 j/2, k = 0,

0, k �= 0,
φ̃ [0,1]

j,k (0) =

{
2 j/2c, k = 0,

0, k �= 0,
c �= 0, (23)

and likewise for x = 1 and k = | [0,1]
j |.

– The stable completion Ψ̆ [0,1]
j fulfills zero boundary conditions

ψ̆ [0,1]
j,k (0) = ψ̆ [0,1]

j,k (1) = 0, k ∈ ∇[0,1]
j . (24)

Moreover, there holds the symmetry condition

ψ̆ [0,1]
j,k (x) = ψ̆ [0,1]

j,|∇[0,1]
j |−k

(1− x), k ∈ ∇[0,1]
j . (25)
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Notice that condition (23) can be realized by a suitable change of bases, cf. [31,
49]. The construction of stable completions that satisfy (24), (25), is addressed in
[26, 31, 49]. Notice that in the case of the piecewise linears, the hierarchical basis
satisfies (24) and (25).

3.4 Wavelets on the unit square

In general it suffices to consider two dimensional wavelets for the treatment of
boundary integral equations. Hence, to keep the presentation simple, we confine
ourselves to the two dimensional case. For the higher dimensional case we refer the
reader to [31, 49].

3.4.1 Biorthogonal scaling functions

The canonical definition of (isotropic) biorthogonal multiresolutions on the unit
square � := [0,1]2 is to take tensor products of the univariate constructions. That is,
the collections of scaling functions are given by

Φ�
j = Φ [0,1]

j ⊗Φ [0,1]
j , Φ̃�

j = Φ̃ [0,1]
j ⊗ Φ̃ [0,1]

j , (26)

with the index set Δ�
j = Δ [0,1]

j ×Δ [0,1]
j . Consequently, the associated refinement ma-

trices are
M�

j,0 = M[0,1]
j,0 ⊗M[0,1]

j,0 , M̃�
j,0 = M̃[0,1]

j,0 ⊗M̃[0,1]
j,0 . (27)

As an immediate consequence of the univariate case, the spaces V �
j := spanΦ�

j and

Ṽ �
j := spanΦ̃�

j are nested and dense in L2(�). Clearly, these spaces are also exact

of the order d and d̃, respectively. We emphasize that the complement spaces W�
j

and W̃�
j are uniquely determined by (13). With this in mind, the remainder of this

subsection is dedicated to the construction of biorthogonal wavelet bases Ψ�
j and

Ψ̃�
j with W�

j := spanΨ�
j and W̃ �

j := spanΨ̃�
j .

3.4.2 Tensor product wavelets

Firstly, we introduce the simplest construction, namely tensor product wavelets

Ψ�
j =
[
Φ [0,1]

j ⊗Ψ [0,1]
j ,Ψ [0,1]

j ⊗Φ [0,1]
j ,Ψ [0,1]

j ⊗Ψ [0,1]
j

]
.

The associated refinement matrices are defined via
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M�
j,1 =

⎡
⎢⎣

M[0,1]
j,0 ⊗M[0,1]

j,1

M[0,1]
j,1 ⊗M[0,1]

j,0

M[0,1]
j,1 ⊗M[0,1]

j,1

⎤
⎥⎦ , M̃�

j,1 =

⎡
⎢⎣

M̃[0,1]
j,0 ⊗M̃[0,1]

j,1

M̃[0,1]
j,1 ⊗M̃[0,1]

j,0

M̃[0,1]
j,1 ⊗M̃[0,1]

j,1

⎤
⎥⎦ .

Hence, we differ three types of wavelets on �, see Figs. 1 and 2. The first type is the

tensor product φ [0,1]
j,k ⊗ψ

[0,1]
j,� . The second type is the tensor product of ψ [0,1]

j,k ⊗φ
[0,1]
j,� .

The third type consists of the tensor product of two wavelets ψ [0,1]
j,k ⊗ψ [0,1]

j,� . We

mention that |Δ [0,1]
j | ≈ |∇[0,1]

j | implies nearly identical cardinalities of the three types
of wavelets.

3.4.3 Simplified tensor product wavelets

We consider an extension of the tensor product construction. As we will see it re-
places the third type wavelets by smoother ones. Particularly this simplifies numer-
ical integration, for instance, in the Galerkin scheme.

The idea is to involve a suitable stable completion on the unit square. Based on
the univariate case it can be defined by the collection

Ψ̆�
j =
[
Φ [0,1]

j ⊗Ψ̆ [0,1]
j ,Ψ̆ [0,1]

j ⊗Φ [0,1]
j ,Ψ̆ [0,1]

j ⊗Ψ̆ [0,1]
j

]
.

The refinement matrices M̆�
j,1, G�

j,0 and G�
j,1 are computed by

M̆�
j,1 =

⎡
⎢⎣

M[0,1]
j,0 ⊗M̆[0,1]

j,1

M̆[0,1]
j,1 ⊗M[0,1]

j,0

M̆[0,1]
j,1 ⊗M̆[0,1]

j,1

⎤
⎥⎦ , G�

j,0 = G[0,1]
j,0 ⊗G[0,1]

j,0 , G�
j,1 =

⎡
⎢⎣

G[0,1]
j,0 ⊗G[0,1]

j,1

G[0,1]
j,1 ⊗G[0,1]

j,0

G[0,1]
j,1 ⊗G[0,1]

j,1

⎤
⎥⎦ .

As one readily verifies, the matrix L�
j is given by

L�
j =

⎡
⎢⎢⎣

I(|Δ [0,1]
j |)⊗ L[0,1]

j

L[0,1]
j ⊗ I(|Δ [0,1]

j |)

L[0,1]
j ⊗ L[0,1]

j

⎤
⎥⎥⎦ .

This implies

M�
j,1 = M̆�

j,1−M�
j,0L�

j =

⎡
⎢⎣

M[0,1]
j,0 ⊗M[0,1]

j,1

M[0,1]
j,1 ⊗M[0,1]

j,0

M̆[0,1]
j,1 ⊗M̆[0,1]

j,1 −
(
M[0,1]

j,0 ⊗M[0,1]
j,0

)(
L[0,1]

j ⊗L[0,1]
j

)

⎤
⎥⎦ .

Hence, we differ again three types of wavelets on �. The first and the second type
coincide with the tensor product wavelets, see Figs. 1 and 2. But now the third
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Fig. 1 Interior piecewise constant wavelets with three vanishing moments. The boundary wavelets
are not depicted
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Fig. 2 Interior piecewise linear wavelets with four vanishing moments. The boundary wavelets are
not depicted
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type consists of the tensor product of the stable completion ψ̆�
j,k = ψ̆ [0,1]

j,k ⊗ ψ̆ [0,1]
j,� ,

updated by certain scaling functions φ�
j,k′ = φ [0,1]

j,k′ ⊗ φ [0,1]
j,�′ of the coarse grid j. In

general, the support of this wavelet does not depend on the choice of the stable
completion (except for piecewise constant wavelets, see Fig. 1). But choosing a

stable completion on [0,1] with small supports, the product ψ̆ [0,1]
j,k ⊗ ψ̆ [0,1]

j,� ∈ V �
j+1

has also small support. Since the additional scaling functions belong to V �
j , the

wavelet is smoother than the corresponding tensor product wavelet.

3.4.4 Wavelets optimized with respect to their Supports

Finally, we consider a more advanced construction which yields wavelets with very
small supports. We define the wavelets according to

Ψ�
j =
[
Ψ [0,1]

j ⊗Φ [0,1]
j ,Φ [0,1]

j+1 ⊗Ψ
[0,1]
j

]
,

Ψ̃�
j =
[
Ψ̃ [0,1]

j ⊗ Φ̃ [0,1]
j ,Φ̃ [0,1]

j+1 ⊗Ψ̃
[0,1]
j

]
.

(28)

Lemma 3.1. The collections of wavelets Ψ�
j and Ψ̃�

j introduced by (28) define

biorthogonal wavelet bases with respect to the multiresolution given by Φ�
j and

Φ̃�
j .

Proof. One readily verifies the equations
(
ψ�

j,k, φ̃�
j,k′
)

L2(�) =
(
ψ̃�

j,k,φ�
j,k′
)

L2(�) = 0, k ∈ ∇�
j , k′ ∈ Δ�

j ,

by inserting the definition (28) of the wavelet functions and employing the biorthog-
onality on the interval. Consequently, in order to show the biorthogonality of the
wavelets, we only have to prove that

(
ψ�

j,k, ψ̃
�
j,k′
)

L2(�) = δk,k′ , k,k′ ∈ Δ�
j .

But similar to above this is again an immediate consequence of the biorthogonality
on the interval. In view of the cardinality of the sets Ψ�

j , Ψ̃�
j the biorthogonality

implies the assertion.

The refinement matrices M�
j,1 and M̃�

j,1 are computed by

M�
j,1 =

⎡
⎣ M[0,1]

j,1 ⊗M[0,1]
j,0

I(|Δ [0,1]
j+1 |)⊗M[0,1]

j,1

⎤
⎦ , M̃�

j,1 =

⎡
⎣ M̃[0,1]

j,1 ⊗M̃[0,1]
j,0

I(|Δ [0,1]
j+1 |)⊗M̃[0,1]

j,1

⎤
⎦ .

Thus, we distinguish two types of wavelets on �, cf. Figs. 1 and 2. The first

type is the tensor product ψ [0,1]
j,k ⊗ φ [0,1]

j,� . The second type is the tensor product

φ [0,1]
j+1,k ⊗ψ [0,1]

j,� . This wavelet type owns a very small support in comparison with



266 Helmut Harbrecht and Reinhold Schneider

the previously introduced wavelets, since a scaling function of the fine grid j + 1
appears in the first coordinate. Notice that the number of wavelets of type two is
nearly twice as much as the number of wavelets of type one.

3.5 Patchwise smooth wavelet bases

If the wavelets are not required to be globally continuous, one may employ wavelet
bases that are defined on each patch individually. This strategy reflects the canonical
choice for the piecewise constants. But in the case piecewise bilinear ansatz func-
tions we obtain double nodes along the edges of neighbouring patches which leads
to somewhat more degrees of freedom than in the case of global continuity.

The primal scaling functions and wavelets are given by

φΓi
j,k(x) :=

{
φ�

j,k

(
γ−1

i (x)
)
, x ∈ Γi,

0, else,
ψΓi

j,k(x) :=

{
ψ�

j,k

(
γ−1

i (x)
)
, x ∈ Γi,

0, else.

Setting ΦΓi
j =
[
φΓi

j,k

]
k∈Δ�

j
andΨΓi

j =
[
ψΓi

j,k

]
k∈∇�

j
, the collections of scaling functions

and wavelets on Γ are defined by ΦΓ
j :=
[
ΦΓi

j

]M
i=1 andΨΓ

j :=
[
ΨΓi

j

]M
i=1. Obviously,

the refinement matrices with ΦΓ
j =ΦΓ

j+1MΓ
j,0 andΨΓ

j =ΦΓ
j+1MΓ

j,1 are obtained by

MΓ
j,0 = diag

(
M�

j,0, . . . ,M
�
j,0︸ ︷︷ ︸

M times

)
, MΓ

j,1 = diag
(

M�
j,1, . . . ,M

�
j,1︸ ︷︷ ︸

M times

)
.

Clearly, the spaces VΓ
j := spanΦΓ

j are nested. In addition, we find VΓ
j+1 =VΓ

j ⊕WΓ
j ,

where WΓ
j := spanΨΓ

j . Proceeding analogously on the dual side yields a multireso-
lution on Γ which is biorthogonal with respect to the modified inner product (4).

The subsequent proposition, proven in [31], states that we obtain all important
properties of the univariate case with respect to the modified inner product.

Proposition 3.1. The collection of wavelets ΨΓ and Ψ̃Γ form biorthogonal Riesz
bases in L2

〈·,·〉(Γ ). The primal wavelets satisfy the cancellation property (17) with

parameter d̃ with respect to the modified inner product (4). Moreover, the norm
equivalences (16) hold with γ = γR and γ̃R with respect to the spaces Hs,0

〈·,·〉(Γ ).

Remark 3.2. The cancellation property (17) with parameter d̃ holds also with re-
spect to the canonical inner product, since each wavelet is supported on a sin-
gle patch. Due to the isomorphy of the Sobolev spaces Hs(Γ ) and Hs,0

〈·,·〉(Γ ) for

s ∈
(
−min{ 1

2 ,sΓ },min{ 1
2 ,sΓ }
)
, cf. Subsection 2.2, the norm equivalences with re-

spect to the canonical Sobolev spaces Hs(Γ ) are valid with γ = min{1/2,sΓ ,γR
}

and γ̃ = min{1/2,sΓ , γ̃R
}

. In particular, the waveletsΨΓ and Ψ̃Γ form biorthogonal
Riesz bases in L2(Γ ).
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3.6 Globally continuous wavelet bases

Similar constructions of globally continuous wavelet bases have been presented in
three different papers published at nearly the same time [6, 17, 31]. We summarize
here the construction of composite wavelet bases, as introduced by W. Dahmen
and R. Schneider in [31], which is based on the simplified tensor product wavelets.
To this end, both the underlying scaling functions and the stable completion are
required to satisfy the conditions specified in Subsection 3.3. In what follows we are
going to glue scaling functions and wavelets along the interfaces of neighbouring
patches to gain global continuity.

We introduce first some notation since we need to deal with local indices and
functions defined on the parameter domain � as well as global indices and func-
tions on the surface Γ . To this end, it is convenient to identify the basis functions
with physical grid points of the mesh on the unit square, i.e., we employ a bijective
mapping q j : Δ�

j → � in order to redefine our index sets on the unit square. This
mapping should identify the boundary functions with points on ∂�. Moreover, it
should preserve the symmetry, that is, in view of (25), given any affine mapping
Ξ : �→�, there holds

Φ�
j = Φ�

j ◦Ξ , Ψ̆�
j = Ψ̆�

j ◦Ξ , Φ̃�
j = Φ̃�

j ◦Ξ , Ψ̃�
j = Ψ̃�

j ◦Ξ . (29)

Then, the boundary conditions (23) and (24) imply

φ�
j,k

∣∣∣
∂�
≡ φ̃�

j,k

∣∣∣
∂�
≡ 0, k ∈ Δ�

j ∩�◦,

ψ̆�
j,k

∣∣∣
∂�
≡ 0, k ∈ ∇�

j ∩�◦.

Hence, all functions corresponding to the indices k located in the interior of � sat-
isfy zero boundary conditions. In the case of piecewise bilinears the mapping q j is
simply defined by q j(k) = 2− jk. For the general case we refer to [31].

A given point x ∈ Γ might have several representations

x = γi1(s1) = . . . = γir(x) (sr(x))

if x belongs to different patches Γi1 , . . . ,Γir(x) . Of course, this occurs only if x lies on
an edge or vertex of a patch. We count the number of preimages of a given point
x ∈ Γ by the function

r : Γ → N, r(x) :=
∣∣{i ∈ {1,2, . . . ,M} : x ∈ Γi

}∣∣. (30)

Clearly, one has r(x)≥ 1, where r(x) = 1 holds for all x located in the interior of the
patches Γi. Moreover, r(x) = 2 for all x which belong to an edge and are different
from a vertex.

Next, given two points x,y ∈ Γ , the function

c : Γ ×Γ → N, c(x,y) :=
∣∣{i ∈ {1,2, . . . ,M} : x ∈ Γi∧y ∈ Γi

}∣∣ (31)
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counts the number of patches Γi which contain both points simultaneously.
The index sets on Γ are just given by physical grid points on the surface

ΔΓ
j :=
{
γi(k) : k ∈ Δ�

j , i ∈ {1,2, . . . ,M}
}
, ∇Γ

j := ΔΓ
j+1 \ΔΓ

j . (32)

The gluing of functions at the intersections of the patches is performed as follows.
According to [31], the scaling functions ΦΓ

j :=
[
φΓj,ξξξ
]
ξξξ∈ΔΓ

j
and Φ̃Γ

j :=
[
φ̃Γj,ξξξ
]
ξξξ∈ΔΓ

j

are defined by

φΓj,ξξξ (x) =

{
φ�

j,k

(
γ−1

i (x)
)
, ∃(i,k) : γi(k) = ξξξ ∧x ∈ Γi,

0, elsewhere,

φ̃Γj,ξξξ (x) =

{
1

r(ξξξ ) φ̃
�
j,k

(
γ−1

i (x)
)
, ∃(i,k) : γi(k) = ξξξ ∧x ∈ Γi,

0, elsewhere.

On the primal side, this definition reflects the canonical strategy. On the dual side,
the strategy is the same except for normalization, for a visualization see also Fig. 3.
The normalization factor ensures biorthogonality with respect to the modified inner
product (4), i.e. 〈ΦΓ

j ,Φ̃Γ
j 〉= I.

The scaling functions are refinable Riesz bases of the spaces VΓ
j := spanΦΓ

j and

ṼΓ
j := spanΦ̃Γ

j . The two-scale relations (18), associated with these scaling func-
tions, are given by (cf. [31, 59])

[
MΓ

j,0

]
ξξξ ′,ξξξ =

{[
M�

j,0

]
k′,k, ∃(i,k,k′) : ξξξ = γi(k)∧ξξξ ′ = γi(k′),

0, elsewhere,
(33)

[
M̃Γ

j,0

]
ξξξ ′,ξξξ =

{
c(ξξξ ,ξξξ ′)

r(ξξξ )

[
M̃�

j,0

]
k′,k, ∃(i,k,k′) : ξξξ = γi(k)∧ξξξ ′ = γi(k′),

0, elsewhere.
(34)

In accordance with [31], the stable completion Ψ̆j =
[
ψ̆Γ

j,ξξξ
]
ξξξ∈∇Γj

can be defined

like the primal scaling functions, namely

ψ̆Γ
j,ξξξ (x) =

{
ψ̆�

j,k

(
γ−1

i (x)
)
, ∃(i,k) : γi(k) = ξξξ ∧x ∈ Γi,

0, elsewhere.

The associated refinement matrix is thus determined analogously to MΓ
j,0, that is

[
M̆Γ

j,1

]
ξξξ ′,ξξξ =

{[
M̆�

j,1

]
k′,k, ∃(i,k,k′) : ξξξ = γi(k)∧ξξξ ′ = γi(k′),

0, elsewhere.
(35)

The dual wavelets Ψ̃Γ
j :=
[
ψ̃Γ

j,ξξξ
]
ξξξ∈∇Γj

are derived from their refinement rela-

tion (18), where
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Fig. 3 The primal (left) and the dual (right) generator on a degenerated vertex in the case d = d̃ = 2

[
M̃Γ

j,1

]
ξξξ ′,ξξξ =

{
c(ξξξ ,ξξξ ′)

r(ξξξ )

[
M̃�

j,1

]
k′,k, ∃(i,k,k′) : ξξξ = γi(k)∧ξξξ ′ = γi(k′),

0, elsewhere,
(36)

cf. [31, 49]. Consequently, the matrix LΓ
j :=
(
M̃Γ

j,0

)T M̆Γ
j,1 reads as (see [49, 59] for

the proof)

[
LΓ

j

]
ξξξ ′,ξξξ =

{
c(ξξξ ,ξξξ ′)
r(ξξξ ′)

[
L�

j

]
k′,k, ∃(i,k,k′) : ξξξ = γi(k)∧ξξξ ′ = γi(k′),

0, elsewhere.
(37)

From this the primal waveletsΨΓ
j :=
[
ψΓ

j,ξξξ
]
ξξξ∈∇Γj

are finally given by
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MΓ
j,1 = M̆Γ

j,1−LΓ
j MΓ

j,0. (38)

In all we end up with a black box algorithm for the application of the discrete
wavelet transform. Although the definitions of the refinement matrices seem to be
very technical, the implementation of the discrete wavelet transform is rather canon-
ical as the Algorithms 3.1 and 3.2 confirm. The dual wavelet transform (Algorithm
3.1) employs Eqs. (34) and (36), whereas the wavelet transform (Algorithm 3.2)
is based on the Eqs. (33), (35), and (37) to define the wavelets according to (38).
Notice that the factor c(ξξξ ,ξξξ ′) is implicitly realized by the loop over all patches. A
globally continuous wavelet with two vanishing moments, located on an edge, and
its corresponding dual are depicted in Fig. 17.

Algorithm 3.1 This algorithm computes the two-scale decomposition Φ̃Γ
j+1a( j+1) =

Φ̃Γ
j a( j) +Ψ̃Γ

j b( j), where a( j) =
[
a( j)
ξξξ
]
ξξξ∈ΔΓ

j
and b( j) =

[
b( j)
ξξξ
]
ξξξ∈∇Γj

.

initialization: a( j) := b( j) := 0

for i = 1 to M do begin

for all k ∈ Δ�
j do begin C: compute coefficients of Φ̃Γ

j

for all k′ ∈ Δ�
j+1 do begin

a( j)
γi(k) = a( j)

γi(k) +
[
M̃�

j,0

]
k′,ka( j+1)

γi(k′)
/r
(
γi(k)
)

end, end

for all k ∈ ∇�
j do begin C: compute coefficients of Ψ̃Γ

j

for all k′ ∈ Δ�
j+1 do begin

b( j)
γi(k) = b( j)

γi(k) +
[
M̃�

j,1

]
k′,ka( j+1)

γi(k′)
/r
(
γi(k)
)

end, end, end.

Proposition 3.2. The collection of wavelets ΨΓ and Ψ̃Γ form biorthogonal Riesz
bases in L2

〈·,·〉(Γ ). The primal wavelets satisfy the cancellation property (17) with

parameter d̃ with respect to the modified inner product (4). Moreover, the norm
equivalences (16) hold for γ = γR and γ̃R with respect to the spaces Hs,1

〈·,·〉(Γ ).

Remark 3.3. The norm equivalences with respect to the canonical Sobolev spaces
Hs(Γ ) are valid for γ = min{3/2,sΓ ,γR

}
and γ̃ = min{1/2,sΓ , γ̃R

}
since, accord-

ing to Subsection 2.2, the Sobolev spaces Hs(Γ ) and Hs,1
〈·,·〉(Γ ) are isomorphic for

s ∈
(
−min{ 1

2 ,sΓ },min{ 3
2 ,sΓ }
)
. Considering the canonical inner product, the can-

cellation property is in general not satisfied if the wavelet is supported on several
patches. For such wavelets the cancellation property is true only if the surface mea-
sure is continuous across the interfaces of intersecting patches. However, a slight
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Algorithm 3.2 This algorithm computes the two-scale decomposition ΦΓ
j+1a( j+1) =

ΦΓ
j a( j) +ΨΓ

j b( j), where a( j) =
[
a( j)
ξξξ
]
ξξξ∈ΔΓ

j
and b( j) =

[
b( j)
ξξξ
]
ξξξ∈∇Γj

.

initialization: a( j) := b( j) := 0

for i = 1 to M do begin

for all k ∈ Δ�
j do begin C: compute coefficients of ΦΓ

j

for all k′ ∈ Δ�
j+1 do begin

a( j)
γi(k) = a( j)

γi(k) +
[
M�

j,0

]
k′,ka( j+1)

γi(k′)
/r
(
γi(k′)
)

end, end

for all k ∈ ∇�
j do begin C: compute coefficients of Ψ̆Γ

j

for all k′ ∈ Δ�
j+1 do begin

b( j)
γi(k) = b( j)

γi(k) +
[
M̆�

j,1

]
k′,ka( j+1)

γi(k′)
/r
(
γi(k′)
)

end, end, end

for i = 1 to M do begin

for all k ∈ ∇�
j do begin C: add scaling functions to Ψ̆Γ

j

for all k′ ∈ Δ�
j do begin

b( j)
γi(k) = b( j)

γi(k)−
[
L�

j

]
k′,ka( j)

γi(k′)
/r
(
γi(k′)
)

end, end, end.

modification of the present construction will lead to globally continuous wavelets
with patchwise vanishing moments, see [63] for the details.

4 The wavelet Galerkin scheme

This section is devoted to a fully discrete wavelet Galerkin scheme for boundary
integral equations. After a historical overview on wavelet matrix compression (Sub-
section 4.1) we discretize the given boundary integral equation by the wavelets
constructed in the previous section (Subsection 4.2). Then, in Subsection 4.3 we
introduce the a-priori matrix compression which reduces the relevant matrix coeffi-
cients to an asymptotically linear number. In Subsections 4.4 and 4.5 we point out
the computation of the compressed matrix. Next, in Subsection 4.6 we present an
a-posteriori compression to reduce again the number of matrix coefficients. Sub-
section 4.7 is dedicated to the preconditioning of system matrices which arise from
boundary integral operators of nonzero order. Subsection 4.8 is devoted to numerical
results with respect to a nontrivial geometry. Finally, in Subsection 4.9 we consider
the adaptive wavelet Galerkin scheme, also supported by numerical results.
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4.1 Historical notes

The basic observation in the pioneering paper [4] was that the wavelet approxima-
tion of the kernel function of a singular integral operator contains a vast of small co-
efficients which can be neglected. G. Beylkin, R. Coifman, and V. Rokhlin demon-
strated that the compression error can be controlled in terms of an operator norm. In
principle, there are two different possibilities for defining bivariate wavelets, namely
either wavelets with isotropic support on Γ ×Γ , given by a fixed level � ∈ N, or
tensor products of wavelets on Γ with various levels in the coordinate directions
j = ( j1, j2) ∈ N

2. The second approach reveals exactly the Galerkin matrix with re-
spect to a univariate wavelet basis. It is called the standard representation, whereas
the first one, called nonstandard representation, can be used only in conjunction
with matrix-vector multiplication. The nonstandard representation has many in com-
mon with cluster methods like the fast multipole method and was favoured by the
authors. For fixed accuracy in each level, the authors demonstrated that the com-
pressed nonstandard representation scales log-linear with the size of the matrix. For
linear complexity they referred to well established but rather nontrivial techniques
from harmonic analysis, see e.g. [72].

The paper [4] triggered the collaboration of W. Dahmen, S. Prössdorf and
R. Schneider ([24, 27, 28, 29, 30]). Their first paper [29] develops a framework
of general Petrov-Galerkin methods for pseudo-differential operator equations us-
ing functions in shift-invariant spaces. In the second paper [28] they went through
the arguments from harmonic analysis [18, 19] and proofed the linear complexity of
matrix compression in the standard and nonstandard form under the assumptions of
[4].

In [27, 28], they moreover treated a more complicated question, communicated
by W. Hackbusch, namely how to adopt the compression error to the actually re-
quired accuracy. For a periodic integral equation one can define a compression of
the standard form, taking a log-linear number of relevant entries into account, such
that the solution of the compressed scheme differs from the exact solution at most
by an error bounded by the actual discretization accuracy. Linear complexity has
been concluded for a nearly optimal convergence rate. The analysis is based on the
investigation of consistency and exploits the smoothness of the underlying solution.
However, it does not apply to the nonstandard form. The conclusion drawn from
this result is that, under the perspective of asymptotic accuracy, the standard form is
superior compared to the nonstandard form, contradicting the suggestion from [4].

The estimate for the matrix coefficients which correspond to distant basis func-
tions is based on the Taylor expansion. Compared to the standard scaling functions,
there is an additional decay induced by the vanishing moments of the wavelets.
The decay estimate employed in the early papers was essentially improved in
[30, 79, 80, 95] by using a twofold Taylor expansion, in a similar way as in a sparse
grid approximation. The resulting compression is referred to as the first compres-
sion.

A more detailed investigation is required in case of interactions of wavelets
with overlapping supports. A pseudo-differential operator does not spoil the local
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smoothness of a piecewise polynomial function. In fact, it does not change the sin-
gular support, a well known fact in harmonic analysis. If a fine scale wavelet ψ j,k
is supported on a region where a coarse scale wavelet ψ j′,k′ is smooth, then one can
exploit again vanishing moments when testing A ψ j,k with the locally smooth func-
tion ψ j′,k′ . The related matrix coefficient becomes small, depending on the distance
of the support of the small wavelet to the singular support of the coarse wavelet.
The resulting additional compression is called the second compression [22, 95]. By
this advanced technique it is possible to achieve optimal convergence rates in linear
complexity.

Engineers often prefer the collocation instead of the Galerkin scheme. The col-
location scheme fits into the general framework of Petrov-Galerkin methods. It has
been shown in [95] how the biorthogonal basis, namely the hierarchical basis, to-
gether with a biorthogonal multiresolution analysis can be used for wavelet matrix
compression. Therein, log-linear complexity for the collocation scheme has been
derived. This result has been improved to linear complexity in [86, 87]. Multi-
wavelet bases dual to Dirac distributions have been developed in [10] and applied to
wavelet matrix compression for collocating a second kind Fredholm integral equa-
tion in [11].

4.2 Discretization

In what follows, the collectionΨJ with a capital J denotes the finite wavelet basis in
the space VJ , i.e.,ΨJ :=

⋃J−1
j= j0−1Ψj. Further, NJ := dimVJ ∼ 4J indicates the number

of unknowns.
The variational formulation of the given boundary integral equation (1) reads:

seek u ∈ Hq(Γ ) : (A u,v)L2(Γ ) = ( f ,v)L2(Γ ) for all v ∈ Hq(Γ ). (39)

It is well known, that the variational formulation (39) is equivalent to the boundary
integral equation (1), see e.g. [46, 93] for details.

To gain the Galerkin method we replace the energy space Hq(Γ ) in the vari-
ational formulation (39) by the finite dimensional space VJ of piecewise constant
or bilinear functions, as introduced in the previous section. Then, we arrive at the
problem

seek uJ ∈VJ : (A uJ,vJ)L2(Γ ) = ( f ,vJ)L2(Γ ) for all vJ ∈VJ .

Traditionally this equation is discretized by the single-scale basis of VJ which
yields a densely populated system matrix (see the left plot of Fig. 18). Whereas,
since the kernel function is smooth apart from the diagonal, the discretization by
wavelets with a sufficiently strong cancellation property (17) leads to a quasi-sparse
system matrix (see the right plot of Fig. 18). Most matrix coefficients are negligible
without compromising the order of convergence of the Galerkin scheme. Thus, we
shall employ the wavelet basis in VJ for discretization, making the ansatz uJ =ΨJuJ ,
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and obtain the wavelet Galerkin scheme

AJuJ = fJ , AJ =
(
AΨJ,ΨJ

)
L2(Γ ), fJ =

(
f ,ΨJ
)

L2(Γ ). (40)

Remark 4.1. Replacing in (40) the wavelet basis ΨJ by the single-scale basis ΦJ

yields the traditional single-scale Galerkin scheme Aφ
J uφJ = fφJ , where we have set

Aφ
J :=
(
A ΦJ ,ΦJ

)
L2(Γ ), fφJ :=

(
f ,ΦJ
)

L2(Γ ) and uJ = ΦJuφJ . This scheme is related
to the wavelet Galerkin scheme by

Aψ
J = TJAφ

J TT
J , uψJ = T−T

J uφJ , fψJ = TJfφJ ,

where TJ denotes the wavelet transform. Since the system matrix Aφ
J is densely

populated, the naive solution of a given boundary integral equation in the single-
scale basis costs at least O(N2

J ).

4.3 A-priori compression

The system matrix in wavelet coordinates is quasi-sparse and can be compressed
without compromising the discretization error. In a first compression step, all ma-
trix entries, for which the distance of the supports between the associated trial and
test functions is larger than a level depending cut-off parameter B j, j′ , are set to zero.
The second compression, reflected by the cut-off parameter B′

j, j′ , affects those re-
maining matrix entries, for which the corresponding trial and test functions have
overlapping supports. Both situations are illustrated in Fig. 4. The resulting com-
pression pattern of the matrix is descriptively called finger structure, see Fig. 19.

Fig. 4 The situations affected by the first (left) and the second compression (right)

To formulate the compression rules, we introduce the abbreviation

Ω j,k := convhull(suppψ j,k), Ω s
j,k := singsuppψ j,k. (41)

Notice that the first expression denotes the convex hull of the support of a wavelet
with respect to the Euclidean space R

3. The second expression indicates the singular
support, i.e., that subset of Γ where the wavelet is not smooth.
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Theorem 4.1 (A-priori compression [22]). Let Ω j,k and Ω ′j,k be given as in (41)
and define the compressed system matrix AJ, corresponding to the boundary integral
operator A , by

[AJ]( j,k),( j′,k′) := (42)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, dist(Ω j,k,Ω j′,k′) > B j, j′ and j, j′ ≥ j0,

0, dist(Ω j,k,Ω j′,k′) � 2−min{ j, j′} and

dist(Ω s
j,k,Ω j′,k′) > Bs

j, j′ if j′ > j ≥ j0−1,

dist(Ω j,k,Ω s
j′,k′) > Bs

j, j′ if j > j′ ≥ j0−1,

(A ψ j′,k′ ,ψ j,k)L2(Γ ), otherwise.

Fixing
a > 1, d < δ < d̃ +2q, (43)

the cut-off parameters B j, j′ and Bs
j, j′ are set as follows

B j, j′ = a max

{
2−min{ j, j′},2

2J(δ−q)−( j+ j′)(δ+d̃)
2(d̃+q)

}
,

Bs
j, j′ = amax

{
2−max{ j, j′},2

2J(δ−q)−( j+ j′)δ−max{ j, j′}d̃
d̃+2q

}
.

(44)

Then, the system matrix AJ has only O(NJ) nonzero coefficients. Moreover, the error
estimate

‖u−uJ‖H2q−d(Γ ) � 22J(q−d)‖u‖Hd(Γ ) (45)

holds for the solution uJ of the compressed Galerkin system provided that u and Γ
are sufficiently regular.

The next theorem shows that the over-all complexity of assembling the com-
pressed system matrix with sufficient accuracy can be kept of the order O(NJ), even
when a computational cost of logarithmic order is allowed for each entry. This the-
orem will be used later as the essential ingredient for proving that the quadrature
strategy proposed in Subsection 4.5 scales linearly.

Theorem 4.2 (Complexity [22, 49]). The complexity of computing the compressed
system matrix AJ is O(NJ) if the calculation of its relevant entries (A ψ j′,k′ ,ψ j,k)L2(Γ )

is performed in O
([

J− j+ j′

2

]α)
operations with some α ≥ 0.

4.4 Setting up the compression pattern

Checking the distance criterion (42) for each matrix coefficient, in order to assemble
the compressed matrix, would require O(N2

J ) function calls. To realize linear com-
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plexity, we exploit the underlying tree structure with respect to the supports of the
wavelets, to predict negligible matrix coefficients. We will call a wavelet ψ j+1,son

a son of ψ j,father if Ω j+1,son ⊆ Ω j,father. The following observation is an immediate
consequence of the relations B j, j′ ≥B j+1, j′ ≥ B j+1, j+1′ , and Bs

j, j′ ≥Bs
j+1, j′ if

j > j′.

Lemma 4.1. We consider Ω j+1,son ⊆Ω j,father and Ω j′+1,son ⊆Ω j′,father.

1. If
dist
(
Ω j,father,Ω j′,father′

)
> B j, j′

then there holds

dist
(
Ω j+1,son,Ω j′,father′

)
> B j+1, j′ ,

dist
(
Ω j+1,son,Ω j′+1,son′

)
> B j+1, j+1′ .

2. For j > j′ suppose

dist
(
Ω j,father,Ω s

j′,father′
)

> Bs
j, j′

then we can conclude that

dist
(
Ω j+1,son,Ω s

j′,father′
)

> Bs
j+1, j′

Fig. 5 The compression pattern are computed successively by starting from the coarse grids

With the aid of this lemma we have to check the distance criteria only for coef-
ficients which stem from subdivisions of calculated coefficients on a coarser level,
cf. Fig. 5. Therefore, the resulting procedure of checking the distance criterion is
still of linear complexity.
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4.5 Computation of matrix coefficients

The significant matrix coefficients (A ψ j′,k′ ,ψ j,k)L2(Γ ) retained by the compression
strategy can generally neither be determined analytically nor be computed exactly.
Therefore we have to approximate the matrix coefficients by quadrature rules. This
causes an additional error which has to be controlled with regard to our overall
objective of realizing asymptotically optimal accuracy while preserving efficiency.
Thm. 4.2 describes the maximal allowed computational expenses for the computa-
tion of the individual matrix coefficients so as to realize still overall linear complex-
ity.

The following theorem tells us that sufficient accuracy requires only a level de-
pendent precision of quadrature for computing the retained matrix coefficients.

Theorem 4.3 (Accuracy [22, 49]). Let the error of quadrature for computing the
relevant matrix coefficients (A ψ j′,k′ ,ψ j,k)L2(Γ ) be bounded by the level dependent
threshold

ε j, j′ ∼min

{
2−| j− j′|,2

−4(J− j+ j′
2 ) δ−q

d̃+q

}
22Jq2−2δ (J− j+ j′

2 ) (46)

with δ ∈ (d, d̃ + r) from (43). Then, the Galerkin scheme is stable and converges
with the optimal order (45).

From (46) we conclude that the entries on the coarse grids have to be computed
with the full accuracy while the entries on the finer grids are allowed to have less
accuracy. Unfortunately, the domains of integration are very large on coarser scales.

Fig. 6 Element-based representation of a piecewise bilinear wavelet with four vanishing moments

According to the fact that a wavelet is a linear combination of scaling functions,
the numerical integration can be reduced to interactions of polynomial shape func-
tions on certain elements. This suggests to employ an element-based representation
of the wavelets like illustrated in Fig. 6 in the case of a piecewise bilinear wavelet.
Consequently, we have only to deal with integrals of the form

I�,�′(Γi, j,k,Γi′, j′,k′) :=
∫

Cj,k

∫
Cj′,k′

ki,i′(s, t) p�(s) p�′(t)dt ds (47)
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with p� denoting the polynomial shape functions. This is quite similar to the tradi-
tional Galerkin discretization. The main difference is that in the wavelet approach
the elements may appear on different levels due to the multilevel nature of wavelet
bases.

Difficulties arise if the domains of integration are very close together relatively
to their size. We have to apply numerical integration with some care in order to keep
the number of evaluations of the kernel function at the quadrature nodes moderate
and to fulfill the requirements of Thm. 4.2. The necessary accuracy can be achieved
within the allowed expenses if we employ an exponentially convergent quadrature
method.

In [49, 61, 95] a geometrically graded subdivision of meshes is proposed in com-
bination with varying polynomial degrees of approximation in the integration rules,
cf. Fig. 7. Exponential convergence can be achieved for boundary integral operators
which are analytically standard.

Definition 4.1. We call the kernel k(x,y) an analytically standard kernel of the order
2q if the partial derivatives of the transported kernel functions ki,i′(s, t), 1≤ i, i′ ≤M,
satisfy ∣∣∂αααs ∂βββt ki,i′(s, t)

∣∣≤ (|ααα|+ |βββ |)!
(r
∥∥γi(s)− γi′(t)

∥∥)2+2q+|ααα|+|βββ |

for some r > 0 provided that 2+2q+ |ααα|+ |βββ |> 0.

Generally, the kernels of boundary integral operators are analytically standard
under the assumption that the underlying manifolds are patchwise analytic. It is
shown in [49, 61] that an hp-quadrature scheme, based on tensor product Gauß-
Legendre quadrature rules, leads to a number of quadrature points that satisfies the
assumptions of Thm. 4.2 with α = 4. Since the proofs are rather technical we refer
the reader to [49, 61, 81, 95, 97] for further details.

Fig. 7 Adaptive subdivision of the domains of integration

Since the kernel function has a singularity on the diagonal, we are still confronted
with singular integrals if the domains of integration live on the same level and have
some points in common. This happens if the underlying elements are identical or
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share a common edge or vertex. When we do not deal with weakly singular integral
operators, the operators can be regularized, for instance by integration by parts [74].
So we end up with weakly singular integrals. Such weakly singular integrals can
be treated by the so-called Duffy-trick [36, 92] in order to transform the singular
integrands into analytical ones.

4.6 A-posteriori compression

If the entries of the compressed system matrix AJ have been computed, we may
apply an a-posteriori compression by setting all entries to zero, which are smaller
than a level dependent threshold. That way, a matrix ÂJ is obtained which has less
nonzero entries than the matrix AJ . Clearly, this does not accelerate the calcula-
tion of the matrix coefficients. But the requirement to the memory is reduced if the
system matrix needs to be stored. Especially if the linear system of equations has
to be solved for several right hand sides, like for instance in shape optimization
(cf. [37, 50]) or inverse obstacle problems (cf. [51, 52]), the faster matrix-vector
multiplication pays off. To our experience the a-posteriori compression reduces the
number of nonzero coefficients by a factor 2–5.

Theorem 4.4 (A-posteriori compression [22, 49]). We define the a-posteriori com-
pression by

[
ÂJ
]
( j,k),( j′,k′) =

{
0, if

∣∣[AJ]( j,k),( j′,k′)
∣∣≤ ε j, j′ ,

[AJ]( j,k),( j′,k′), if
∣∣[AJ]( j,k),( j′,k′)

∣∣> ε j, j′ ,

where the level dependent threshold ε j, j′ is chosen as in (46) with δ ∈ (d, d̃ + r)
from (43). Then, the optimal order of convergence (45) of the Galerkin scheme is
not compromised.

4.7 Wavelet preconditioning

The system matrices arising from operators of nonzero order are ill conditioned
since there holds cond�2 AJ ∼ 22J|q|. According to [21, 25, 95], the wavelet approach
offers a simple diagonal preconditioner based on the norm equivalences (16).

The norm equivalences have been stated first in [72] for orthogonal wavelet
bases. At the same time a new multilevel preconditioner, nowadays called the BPX
scheme, has been discussed in the literature [5]. In [77, 78] it has been shown
that this preconditioner leads to uniformly bounded condition numbers. The argu-
ments used there are based on the moduli of smoothness and Besov norms. This ap-
proach was extended in [25] by additional approximation theoretic arguments like
K-functionals to general multilevel bases, including wavelets. These papers inspired
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a new effort in the development of norm equivalences, see e.g. the monograph [12]
and the literature cited therein, and generating systems [43, 44].

In [107] a strengthened Cauchy-Schwarz inequality has been used to show
bounded condition numbers of the BPX. This technique was employed in [95]
to precondition operators of negative order by wavelets. The main result is that
biorthogonal wavelets satisfy the norm equivalence to Sobolev norms in Hs if and
only if−γ̃ < s < γ . As an immediate consequence one has to look for wavelets with
H1/2-regular duals to gain optimal preconditioners for operators of the order−1, for
instance the single layer operator. Wavelets on manifolds with arbitrarily prescribed
smoothness have been developed for this purpose in [32]. However, these wavelets
have never been used since first numerical experiments were completely discour-
aging. On the other hand, the composite wavelet bases from [31] lead to moderate
condition numbers, even for extremely large systems.

Theorem 4.5 (Preconditioning [25, 95]). Let the diagonal matrix Dr
J be defined by

[
Dr

J

]
( j,k),( j′,k′) = 2r jδ j, j′δk,k′ , k ∈ ∇ j, k′ ∈ ∇ j′ , j0−1≤ j, j′ < J. (48)

Then, if γ̃ >−q, the diagonal matrix D2q
J defines an asymptotically optimal precon-

ditioner to AJ, i.e., cond�2(D−q
J AJD−q

J )∼ 1.

It should be stressed that while the above scaling is asymptotically optimal, the
quantitative performance may vary significantly among different scalings with the
same asymptotic behavior. In particular, sinceΨ is, on account of the mapping prop-
erties of A and the norm equivalences (16), also a Riesz basis with respect to the
energy norm, it would be natural to normalize the wavelets in this energy norm
which would suggest the specific scaling

(
A ψ j,k,ψ j,k

)
L2(Γ ) ∼ 22q j. In fact, this

latter diagonal scaling improves and even simplifies the wavelet preconditioning.
As the numerical results in e.g. [57] confirm, this preconditioning works well in

the two dimensional case. However, in three dimensions, the results are not satis-
factory. Fig. 8 refers to the �2-condition numbers of the stiffness matrices arising
from the single layer operator on the unit square, discretized by piecewise bilinears.
Even though the condition numbers with respect to the wavelet bases are bounded,
they are not significantly lower than with respect to the single-scale basis. We men-
tion that the situation becomes even worse for operators which are defined on more
complicated geometries.

A slight modification of the wavelet preconditioner offers a significant improve-
ment. The simple trick is to combine the above preconditioner with the mass matrix
which yields an appropriate operator based preconditioning, cf. [49].

Theorem 4.6. Let Dr
J be defined as in (48) and BJ := (ΨJ ,ΨJ)L2(Γ ) denote the mass

matrix. Then, if γ̃ >−q, the matrix C2q
J = Dq

JBJDq
J defines an asymptotically optimal

preconditioner to AJ, i.e.,

cond�2

((
C2q

J

)−1/2AJ
(
C2q

J

)−1/2
)
∼ 1.
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Fig. 8 �2-condition numbers for the single layer operator on the unit square

This preconditioner decreases the condition numbers impressively, cf. Fig. 8.
Moreover, the condition depends now only on the underlying spaces but not on the
particular wavelet basis. To our experiences the condition reduces about the factor
10 compared to the preconditioner (48). We like to mention that, by employing the
fast wavelet transform, the application of this preconditioner requires only the inver-
sion of a single-scale mass matrix, which is diagonal in case of piecewise constant
and very sparse in case of piecewise bilinear ansatz functions.

4.8 Numerical results

To complement the theoretical results by quantitative numerical studies we consider
as a first example the case of a smooth surface, namely the unit sphere. Here we
expect to encounter the highest obtainable convergence rate.

We solve an interior Dirichlet problem for the Laplacian by the indirect approach
using the single layer potential operator. This gives rise to a Fredholm integral equa-
tion of the first kind for an unknown density ρ ∈ H−1/2(Γ ). Hence, in particular,
preconditioning is an issue. The surface of the sphere is parameterized with the aid
of six patches. As Dirichlet data we choose the restriction of the harmonic function

U(x) =
〈a,x−b〉
‖x−b‖3 , a = [1,2,4]T , b = [1.5,0,0]T �∈Ω (49)

to Γ . Then, U is the unique solution of the Dirichlet problem. We discretize the
given boundary integral equation by piecewise constant wavelets with three van-
ishing moments. For the computation of the potential U we expect the pointwise
convergence rate
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|U(x)−UJ(x)|� ‖ρ−ρJ‖H−2(Γ ) � 2−3J‖ρ‖H1(Γ ), x ∈Ω ,

see e.g. [46, 93, 98, 106].

Fig. 9 A-priori (left) and a-posteriori (right) compression rates in case of the unit sphere

In Fig. 9 the a-priori (left) and a-posteriori (right) compression rates are reported
via the ratio of the number of nonzero entries of the compressed matrix and N2

J . The
dashed lines indicate linear behaviour. We computed the compression rates with
respect to all the three wavelet constructions from Section 3. The best a-priori com-
pression is produced by the wavelets with optimized supports which issues from
their much smaller supports. Whereas, with respect to the a-posteriori compression,
all constructions yield comparable results.

Regarding the computing times, we observe once more that the wavelets with op-
timized supports perform best. The computing time is about half as much as in case
of the tensor product wavelets. The speed-up is still about 10 percent in comparison
with the simplified tensor product wavelets.

Fig. 10 displays the behavior of the approximation error of our scheme (here,
in case of the optimized wavelet basis). We evaluate the approximate potential at
the points [0,0,0]T , [0.25,0.25,0.25]T , and [0.5,0.5,0.5]T and measure its absolute
error when compared with the exact solution. In addition, we evaluate 1681 points,
distributed uniformly in the interior of the sphere, and measure the �∞-norm of the
pointwise absolute errors. We see that the compression does not spoil the optimal
order of convergence which is indicated by the dashed lines.

As a second example we consider a more complicated geometry, namely a
crankshaft of a parallel twin motor (as used in old British motorcycles), cf. Fig. 11.
The surface of this crankshaft is parameterized with the aid of 142 patches. The
problem under consideration is the same as above, in particular, we choose the same
function U (49).

In order to measure the error produced by the method, we calculate the approxi-
mate solution UJ = V ρJ in several points xi located inside the domain, depicted in
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Fig. 10 Absolute errors of the approximate solution in case of the sphere

Fig. 11 The surface mesh and the evaluation points xi of the potential

Fig. 11. The discrete potentials are denoted by

U := [U(xi)], UJ := [(V ρJ)(xi)].

We list in Table 1 the results produced by the wavelet Galerkin scheme. Due to
present edge singularities the solution is not in H1(Γ ) and we thus cannot expect the
full convergence rate. However, the presence of the singularities does not require any
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change of parameters (see (44)). For NJ ≤ 9088 we have also computed the solution
of the uncompressed scheme. The corresponding absolute errors for the traditional
Galerkin method are 1.0 if NJ = 2272 and 2.4 ·10−1 if NJ = 9088. This shows again
that the present compression does not degrade the accuracy of the Galerkin scheme.
Since there is no difference in accuracy at low level compared to the unperturbed
scheme and since we can inspect the convergence history we can expect to have a
reliably accurate solution.

unknowns piecewise constant wavelets ψ(1,3)

J NJ ‖U−UJ‖∞ cpu-time
(in sec.)

a-priori
compression
(nnz in %)

a-posteriori
compression
(nnz in %)

cg-iterations
memory

requirements

1 568 13.7 0 27 20 24 3.2 MB
2 2272 1.0 (14) 0 8.7 6.8 36 11 MB
3 9088 2.4 ·10−1 (4.3) 7 3.2 1.9 54 32 MB
4 36352 1.6 ·10−2 (15) 52 0.93 0.42 77 128 MB
5 145408 5.4 ·10−3 (3.0) 280 0.25 0.097 86 524 MB
6 581632 2.1 ·10−3 (2.5) 1773 0.064 0.024 92 2.1 GB
7 2.3 Mio. 1.9 ·10−4 (9.0) 9588 0.016 0.0059 101 8.3 GB
8 9.3 Mio. 2.7 ·10−5 (7.0) 49189 0.0040 0.0015 110 29 GB

Table 1 Numerical results with respect to the crankshaft

For 9.3 million unknowns, only 0.0040% of the entries have to be computed. Af-
ter the a-posteriori compression even only 0.0015% nonzero entries are used for the
computation of the solution ρJ . In the mean one has thus 375 (a-priori), respectively
138 (a-posteriori) coefficients per unknown. In our wavelet Galerkin scheme we
have allocated about 29 Gigabyte storage for the solution of 9.3 million unknowns.

In general more than 95% of the computing time is consumed by the precompu-
tational steps, namely setting up the matrix pattern and assembling the compressed
Galerkin matrix. Whereas, the iterative solution is quite fast. A precise breakdown
of the computing times can be found in Fig. 12 in terms of a bar diagramme. All
computations were carried out on a single processor of SUN Fire X4600 M2 Server,
equipped with eight 3.0 GHz AMD Opteron DualCore processors and 32 GB RAM
per processor.

4.9 Adaptivity

A simple adaptive refinement strategy for the wavelet Galerkin scheme has been
proposed in [58, 60]. Here, a mesh refinement takes place if the hierarchical incre-
ment is large. However, convergence of such an empirical strategy can be shown
only under the assumption of the so-called saturation assumption. A strictly prov-
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Fig. 12 Distribution of computing times in percent

able and efficient adaptive algorithm, developed in [23], is based on the techniques
of A. Cohen, W. Dahmen, and R. DeVore from [13, 14, 15].

A core ingredient of the adaptive strategy is the approximate application of (in-
finite dimensional) operators that ensures asymptotically optimal complexity in the
following sense. If (in the given discretization framework) the unknown solution u
can be approximated in the energy norm with an optimal choice of N degrees of
freedom at a rate N−s, then the adaptive scheme matches this rate by producing
for any target accuracy ε an approximate solution uε such that ‖u− uε‖Hq(Γ ) ≤ ε
at a computational expense that stays proportionally to ε−1/s as ε tends to zero,
see [13, 14]. Notice that N−s, where s := (d−q)/2, is the best possible rate of con-
vergence, gained in case of uniform refinement if u∈Hd(Γ ). Since the computation
of the relevant matrix coefficients is by far the most expensive step in our algorithm,
we cannot use the approach of [13, 14]. Thus, in [23] the strategy of the best N-term
approximation has been adopted by the notion of tree approximation, as considered
in [1, 15, 33].

The algorithm is based on an iterative method for the continuous equation (1),
expanded with respect to the wavelet basis. To this end we assume the wavelet basis
Ψ to be normalized in the energy space. Then, (1) is equivalent to the well posed
problem of finding u =Ψu such that the infinite dimensional linear system of equa-
tions

Au = f, A = (AΨ ,Ψ)L2(Γ ), f = ( f ,Ψ)L2(Γ ) (50)

holds.
The application of the operator A to a function is then approximated by an appro-

priate (finite dimensional) matrix-vector multiplication. Given a finitely supported
vector v and a target accuracy ε , we choose wavelet trees τ j according to
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∥∥v−v|τ j

∥∥
�2 ≤ 2 jsε, j = 0,1, . . . ,J :=

⌈
log2(‖v‖�2/ε)

s

⌉

and define the layers Δ j := τ j+1 \ τ j. These layers play now the role of the lev-
els in case of the non-adaptive scheme, i.e., the accuracy will be balanced layer-
dependent.

By adopting the compression rules from [99] we can define operators A j, having
only O
(
2 j(1+ j)−6

)
relevant coefficients per row and column while satisfying

‖A−A j‖�2 ≤
2− js

(1+ j)6 .

Then, the approximate matrix-vector multiplication

w :=
J−1

∑
j=0

A jv|Δ j

gives raise to the estimate

‖Av−w‖�2 ≤
J−1

∑
j=0

∥∥∥(A−A j)v|Δ j

∥∥∥
�2
≤

J−1

∑
j=0

2− js

(1+ j)6 2 jsε ≤ ε.

For this error estimate a logarithmic factor (1 + j)−2 would be sufficient but the
larger exponent is required to avoid logarithmic terms in the complexity estimates,
stemming from the quadrature in accordance with Subsection 4.5. By combing this
approximate matrix-vector product with a suitable iterative solver for (50) (cf. [13])
or the adaptive Galerkin type algorithm from [40] we achieve the desired goal of
optimal complexity. We skip further details here and refer the reader to [23].

Fig. 13 The adaptive mesh on the domain Ω and the associated approximate solution σε
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For the numerical illustration we consider a magneto-static problem arising in
thin-film micromagnetics. For a weak external field the magnetic charge σ fulfills
the variational formulation of the Dirichlet screen problem. Its solution amounts to
the inversion of the single layer potential on the sample’s surface Γ , that is

1
4π

∫
Γ

σ(y)
‖x−y‖dy =−〈Hext,x〉 on Γ (51)

with Hext being the applied external field, see [34, 35] for the details concerning the
modeling.

We discretize Eq. (51) by piecewise constant wavelets with three vanishing mo-
ments. We consider the sample’s surface Γ to be the unit square and apply the exter-
nal field Hext := [0.2,0.2]T . The left plot of Fig. 13 shows the mesh that is produced
by the adaptive algorithm. The approximate magnetic charge σε , seen in the left
plot of Fig. 14, exhibits the well known characteristic singularities near the edges
and corners [83, 84].

Fig. 14 Accuracy versus the degrees of freedom

In Fig. 14 we plotted the energy norm of the residuum versus the degrees of
freedom. The curve validates that the discretization error behaves like N−0.5. This
is in fact the best possible rate in the presence of the edge singularities which are of
anisotropic nature. Notice that the best possible rate of convergence, offered by the
present set-up, would be N−0.75 in case of isotropic singularities.
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Fig. 15 A droplet of liquid metal levitating in an electric field

Fig. 16 Automatically produced parameterizations of a hammer and a link
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Fig. 17 A globally continuous wavelet ψ(2,2) located on an edge (left) and its corresponding dual
(right)

Fig. 18 The system matrix with respect to the single-scale basis (left) and the wavelet basis (right)

Fig. 19 The finger structure of the compressed system matrix with respect to a circle (left) and a
sphere (right)
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Learning out of leaders

Gérard Kerkyacharian, Mathilde Mougeot, Dominique Picard and Karine Tribouley

Abstract In this paper we investigate the problem of supervised learning. We are
interested in universal procedures producing exponential bounds. One main purpose
is to link this problem to a general approach on high dimensional linear models in
statistics and to propose some tools resulting from a combination of inspirations:
many of them coming from previous works of Wolfgang Dahmen and coauthors
combined with regression and thresholding techniques. We present different types
of algorithms initiated in Wolfgang Dahmen’s (and coauthors) work and provide a
new algorithm: the LOL procedure. We prove that it has optimal exponential rate of
convergence. We also study the practical behavior of the procedure: our simulation
study confirms its very good properties.
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1 Introduction

In this paper, we are interested in the problem of learning an unknown function
defined on a set X which takes values in a set Y . We assume that X is a compact
domain in R

d and Y is a finite interval in R.
One main purpose is to link this problem to a general approach on high dimen-

sional linear models in statistics and to propose some tools resulting from a com-
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bination of inspirations: many of them coming from previous works of Wolfgang
Dahmen and coauthors combined with regression and thresholding techniques.

Let Z1, . . . ,Zn be an observed n−sample of Z = (X ,Y ) whose distribution is de-
noted by ρ . Our aim is to recover the function f

f (x) = Eρ [Y |X = x].

We measure the error of estimation in the L2(X,ρX ) norm or in the L2(X, ρ̂X ) norm.
Each of them are defined by

‖g‖2
ρX

=
∫

X

g(x)2dρX (x) and ‖g‖2
ρ̂X

=
1
n

n

∑
i=1

g(Xi)2,

ρX being the distribution of X and ρ̂X being the empirical measure calculated on the
data Xi’s. Let f̂ be an estimator of f i.e. a measurable function of Z1, . . . ,Zn taking
its values in the set, say, of bounded functions. Given any η > 0, the quantity

ρ⊗n{z : ‖ f̂ − f‖ρX > η} (1)

measures the confidence we have that the estimator f̂ is accurate to tolerance η .
One main goal in learning theory is to obtain results with almost no assumptions

on the distribution ρ . However, it is known that it is not possible to have fast rates
of convergence without assumptions and a large portion of statistics and learning
theory proceeds under the condition that f belongs to a known set Θ or a family of
such sets. Typical choices of Θ are compact sets determined by some smoothness
condition or by some prescribed rate of decay for a specific approximation process.
Another standard condition is to assume that the function f can be expressed in a
dictionary using only a small number of coefficients (sparsity property).

Given our prior space Θ and the associated class M(Θ) of probability measures
ρ , it has been defined in DeVore et al.[12] the accuracy confidence function of the
procedure f̂ :

ACn(Θ , f̂ ,η) := sup
ρ∈M(Θ)

ρ⊗n{z : ‖ f − f̂‖ρX > η} (2)

for each η > 0. This quantity measures a uniform confidence (over the space M(Θ))
that the estimator f̂ is accurate to the tolerance η . Upper and lower bounds for AC
have been proved in [12]. These lower bounds for AC are our vehicle for proving
expectation lower bounds. In most examples, there exists a phase transition and a
critical value ηn depending on n and Θ such that for any η > ηn, ACn(Θ , f̂ ,η)
decreases exponentially. This critical value ηn (highly linked with the sparsity of Θ
and often directly expressed in terms of the entropy ofΘ ) is essential since it yields,
as a consequence, bounds of type

e(Θ , f̂ )≤Cηq
n (3)

which have been extensively studied in statistics for
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e(Θ , f̂ ) = sup
ρ∈M(Θ)

Eρ⊗n‖ f̂ − f‖q
ρX (4)

where q≥ 1. For instance, when Θ is the Besov space Bs
q(L∞(Rd)), ηn = n−

s
2s+d is

the minimax rate in the sense that there exist two constants 0 < c≤C such that

cn−
s

2s+d ≤ inf
f̂

sup
f∈Bs

q(L∞(Rd))
Eρ⊗n‖ f − f̂‖dx ≤Cn−

s
2s+d ,

where the infimum above is taken over all possible estimate. More stringent condi-
tions on the measure ρ are needed to prove this kind of results. Note here an im-
portant difference with the statistics framework where more often the loss function
is given by ‖g‖2

dx =
∫
X

g(x)2dx replacing the measure ρX by the Lebesgue measure.
For more details see, for instance (and among many others) Ibraguimov and Has-
minski [17], Stone [24], Nemirovski [23] for a slightly more restricted context than
Besov spaces, and Donoho et al. [13].

Concerning upper bounds for ACn(Θ ,η), many much properties have been es-
tablished: see for instance Yang and Barron [28] in statistical context, [10], [12],
Konyagyn and Temlyakov [20] in learning theory. These upper bounds are gener-
ally proved using estimation methods based on empirical mean square minimization.
The estimator is obtained by the following minimization problem

f̂ = Arg min
f∈Hn

n

∑
i=1

(Yi− f (Xi))2 (5)

where Hn is a functional set associated to the method. These estimation rules raise
two important problems. First, they generally require heavy computation times. The
second serious problem lies in the fact that their construction (the choice of Hn) is,
most of the time, highly depending on the knowledge of the prior Θ . There also
exist universal estimates which are generally obtained by adding a selection step
to the estimation process using penalization, cross validation or aggregation (see
for instance Yang and Barron [28], Temlyakov [25], Dalalyan and Tsybakov [11]).
However these rules are up to now prohibitive in terms of computation time.

In Section 2, we present different types of algorithms initiated in Wolfgang Dah-
men’s (and coauthors) work (see [1], [5], [3],[4]). All these algorithms differ from
the other universal constructions in that they rely on fast algorithms, which may
be implemented by simple on-line updates. They have been a source of inspiration
for our estimation method presented in Section 3, with its theoretical performances.
The practical performances of the LOL procedure are investigated in Section 4. The
proofs are given in section 5.
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2 Various learning algorithms in Wolfgang Dahmen’s work

2.1 Greedy learning algorithms

The first of these algorithms is linked with greedy algorithms and detailed in [1].
Basically, we consider a dictionary D included in a Hilbert space H and operate the
following steps:

• Preparation step for the dictionary. We normalize the elements of the dictio-
nary D for the norm L2(X, ρ̂X ). We truncate the dictionary D to Dm i.e. we introduce
a fixed exhaustion of D

D1 ⊂ . . .⊂Dm ⊂D , #(Dm) = m.

Let a≥ 1 be a fixed number chosen once for all. We choose m such that m = [na].
•Algorithm step. We choose a greedy algorithm among those which are detailed

in the sequel. We perform this algorithm for the dictionary Dm to Ỹ = {Y1, . . . ,Yn}
considered as a function. We obtain a sequence of functions ( f̂k)k=0,... defined on X

corresponding to the different steps of the algorithm.
• Final estimation. Let T be the truncation operator at the level t defined by

Tu = Sgn(u)(t ∨ |u|). Choose the index k∗ to minimize a penalized empirical least
square criterion

k∗ := Argmin
k∈N

{‖Ỹ −T f̂k‖2
ρ̂X

+κ
k logn

n
}

where κ is the tuning constant of the method. Define the final estimator of f as
f̂ = T f̂k∗ .

For a complete overview on the various algorithms called ‘greedy algorithms’,
we refer to [26]. Let us detail those used in [1]: OGA, SPA and RGA. They can be
described using the following steps

Set f̂0 := 0. Define recursively f̂k+1, based on f̂k and rk := Ỹ − f̂k.

• In the OGA (Orthogonal Greedy), a member of the dictionary is selected as

gk+1 := Arg max
g ∈Dm

|〈rk,g〉ρ̂X
|

and the recursive steps of estimation are defined by

f̂k+1 := Pk+1Y

where Pk+1 denotes the orthogonal projection on the space spanned by {g1,. . . ,gk+1}.
• In the SPA (Stepwise Greedy), f̂k+1 is still selected using a projector PV as

previously but the space of projection V spanned by a subset of Dm is chosen so that
‖ f −PV f‖n is minimum among all possible V .
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• In the RGA (Ridge Greedy), take α1 = 0 and αk = 1−2/k for k > 1, and

(βk,gk) = Arg min
β∈R,g∈Dm

‖Ỹ −αk fk−1−βg ‖ρ̂X

Then define

f̂k = αk f̂k−1 +βk gk.

To express the results associated to these procedures, we need to define functional
spaces linked to the dictionary. For any N > 0, we denote

‖h‖L1(DN) := inf
αg
‖αg ‖l1

where the infimum is taken over all the vectors αg ∈ R
N such that h = ∑g∈DN

αg g.
Let r > 0 and define the following functional space

L1,r =
{

f , ∀N, ∃h, ‖h‖L1(DN ) ≤C and ‖ f −h‖L1(D) ≤CN−r for some C > 0
}

Then the results obtained in [1] can be summarized in the following theorem:

Theorem 2.1. For any h belonging to the functional space spanned by Dm, we have

∀k > 0, E ‖ f̂ − f‖2
ρX
≤ 8

1
k
‖h‖L1(Dm) +2‖ f −h‖2

ρX
+C k

logn
n

as soon as κ ≥ κ0 where κ0 is only depending on a and on the threshold t and the
positive constant C only depends on κ, t, a.

This theorem has as a consequence that, if the function f belongs to the space L1,r

defined above with r > 1/2a, then there exists C > 0 such that

E ‖ f̂ − f‖2
ρX
≤C(1+‖ f‖L1,r)

(
logn

n

)1/2

.

Although no exponential bounds are produced, refined moments such as (3) are
established.

2.2 Tree thresholding procedures

Two others methods developed in [5] and [3] are linked with an adapted tree par-
tition. In this approach, the set of considered functions (the basic Hilbert space) is
the space of piecewise constant functions or polynomials associated to partitions Λ .
We describe here the procedure associated to piecewise constant functions. These
partitions are chosen in a set of admissible partitions based on a tree structured split-
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ting role. Among all the partitions, the procedure selects using an algorithm much
lighter than would be a systematic penalized least square estimate which makes the
procedure truly implementable.

The procedure follows the following steps:
• Prepare the partition. Here X is [0,1]d and we denote by (D j) the collection of

dyadic sub cubes of X of side length 2− j with D = ∪ jD j. These cubes are naturally
associated with a tree T = T (D) where each node of the tree is identified with a
cube of D . If I ∈D j, its children are the 2d cubes of D j+1 which are included in I.
We denote by C (I) the set of children of I. Of course, each child J has I for parent:
this is denoted by I = P(J). A proper subtree T0 of T is a collection of nodes of
T with the following properties:

• (i) The root node I = X belongs to T0,
• (ii) if I �= X and I ∈T0 then its parent is also in T0.

Given a proper subtree T0, we call outer leaves of T0 the nodes of J ∈T which
are not in T0, but such that their parents are in T0 (J �∈ T0, P(J) ∈ T0). The col-
lection of all outer leaves of a proper subtree T0 forms a partition.

This is the prototypal dyadic partition but the authors can work in a more general
setting. Fix a ≥ 2. We assume that if X is to be refined then its children consist in
a partition of a subsets. Such a refinement strategy also results in a tree called the
master tree. The refinement level of a node is the smallest number of refinements
(starting from the root) to create this node. We denote by T j the proper subtree
consisting of all nodes with level ≤ j, and by Λ j the corresponding partition.
• Approximation on a partition. Given a partition Λ , we are interested into

approximations of the function f with functions of the form ∑I∈Λ αIχI where χI is
the indicator function of the set χ .

The best approximation of the function f in terms of L2(ρX ) in the sense that
‖ f −∑I∈Λ αIχI‖ρX is minimum as a function of the αI’s, is obtained by

PΛ f = ∑
I∈Λ

cIχI where cI =
∫

I f dρX∫
I dρX

.

The convention that the ratio above is zero whenever the denominator is zero is
adopted. Notice that the observation Ỹ can be viewed as a function of X setting
Yi = ” f ”(Xi) for i = 1, . . . ,n and can be approximated using the empirical measure
ρ̂X . The best approximation is then

P̂Λ = ∑
I∈Λ

ĉIχI where ĉI = ∑n
i=1 YiχI(Xi)
∑n

i=1 χI(Xi)

which minimizes the quantity

‖ f −∑
I∈Λ

αIχI‖2
ρ̂X

=
1
n

n

∑
i=1

(Yi−∑
I∈Λ

αIχI(Xi))2.
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Of course, only the last approximation enters an estimation algorithm. The first one
is used to measure the performances of the algorithm.
• Choose adaptively the partition. The algorithm is based on a stepwise refine-

ment of the partition with a decision of subdividing or not at each node of the tree.
More precisely for each node, we compute

εI(Z)2 = ‖Ỹ − ĉI‖2
L2(I,ρ̂X )− ∑

J∈C(I)
‖Ỹ − ĉJ‖2

L2(J,ρ̂X ) = ∑
J∈C(I)

ρ̂X (J) [ĉJ− ĉI ]2 (6)

The following threshold is chosen

τn = κ
√

logn
n

,

where κ is a tuning constant of the procedure. We fix γ > 0 and define j0 as the

largest integer j such that a j ≤ τ−1/γ
n and consider the smallest tree T (Z,n) which

contains the set of nodes

Σ(Z,n) := {I ∈ ∪ j≤ j0Λ j ; εI(Z)≥ τn}.

To this tree is associated the partition Λ(Z,n) and the final estimator is

f̂ = P̂Λ(Z,n) = ∑
I∈Λ(Z,n)

ĉI χI . (7)

To state the results, let us define some functional spaces naturally associated with
the procedure. Recall that T j is the proper subtree consisting of all nodes with level
smaller than j and Λ j is the corresponding partition. We measure the approximation
error by ‖ f −∑I∈Λ j

cIχI‖ρX and denote by A s(M) for some M > 0 the ball

A s(M) =

{
f ∈ L2(ρX ), ‖ f‖A s := sup

j=0,1,...
a− js‖ f − ∑

I∈Λ j

cIχI‖ρX ≤M,

}
.

Let us also define in the same way as in (6)

ε2
I = ‖ f − ĉI‖2

L2(I,ρ̂X )− ∑
J∈C(I)

‖ f − ĉJ‖2
L2(J,ρ̂X ) = ∑

J∈C(I)
ρX (J) [ĉJ− ĉI ]2

and consider the smallest tree T (η) which contains the set of nodes

Σ(η) := {I ∈ ∪ j≤ j0Λ j ; εI ≥ η}.

Corresponding to this tree, we have the partition Λ( f ,η) consisting of the outer
leaves of T ( f ,η). Let s > 0, we denote Bs the set
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Bs =

{
f ∈ L2(ρX ), ‖ f‖p

Bs := sup
η>0

η p #(T ( f ,η)) < ∞

}
.

where p = (s+1/2)−1. It is possible to prove that there exists a constant C depend-
ing on s such that (see [9])

‖ f −PΛ(η) f‖ρX ≤ C ‖ f‖Bs η
2s

1+2s ≤ C‖ f‖Bs (#(T ( f ,η)))−s .

It is easy to see that A s ⊂Bs. The distinction between the two forms of approxima-
tion is that in the first one the partitions are fixed in advance regardless of f whereas
in the second form, the partition can adapt to f .

The results of the procedure are summarized in the following theorems [5].

Theorem 2.2. Let s > 0, choose

j∗ = inf

{
j ∈ N, a j(1+2s) ≥ m

logm

}

where m is the size of the dictionary. Define f̂ = P̂Λ∗(Z,n) where Λ ∗(Z,n) is the
partition associated to the tree

Σ ∗(Z,n) = {I ∈ ∪ j≤ j∗Λ j ; εI(Z)≥ τn}.

If f ∈A s(M) for M > 0 then, for any α > 0, there exists a constant c̃ := c̃(M,α,a)
such that

ρ⊗n

{
‖ f − f̂‖2

ρX
> (c̃+‖ f‖A s)

(
m

logm

)− 2s
1+2s
}
≤Cm−α

and

E‖ f − f̂‖2
ρX
≤ (C +‖ f‖A s)

(
m

logm

)− 2s
1+2s

where C depends only on a and M.

If we now turn to the adaptive procedure described above (7), it is proved in [5] the
following result:

Theorem 2.3. Let α,γ > 0. Let f̂ be the adaptive estimator described in (7) for
some κ ≥ κ0 where κ0 is only depending on γ . Let s > 0,M > 0 and assume that
f ∈A γ(M)∩Bs. Then there exists a constant c̃ > 0 such that

ρ⊗n

{
‖ f − f̂‖2

ρX
> c̃

(
m

logm

)− 2s
1+2s
}
≤Cm−α

and

E‖ f − f̂‖2
ρX
≤ (C +‖ f‖A s)

(
m

logm

)− 2s
1+2s
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where C depends only on a and M.

If we relate these results to our introduction, the conclusion is that in a non
adaptive (for the first one) and adaptive way, the authors obtain nearly exponential
bounds if η is of the order of the critical value ηn described in the introduction.

3 Learning out leaders: LOL

3.1 Gaussian regression model

We assume the following model which is a bit more restrictive than the ‘learning’
model described above. We still observe Z1, . . . ,Zn, for Zi = (Xi,Yi) with now

Yi = f (Xi)+ εi, i = 1 . . .n

where f is the unknown function to be estimated and

1. the X ′i s are i.i.d. random variables on X which is a compact domain of R
d . Let

ρ be the unknown common law of the vector Z = (X ,Y ).
2. the ε ′i s are i.i.d. Gaussian N (0,σ2) random variables independent of the X ′i s

for some unknown positive constant σ2.

In addition, we assume that f is bounded. In view to estimate f , we consider a
dictionary D of size #D = p included in a Hilbert space H as in the previous sections

D = {g1, . . .gp}.

We norm the g�’s in the dictionary with respect to the empirical measure such a way
that

∀� = 1, . . . , p,
1
n

n

∑
i=1

g2
�(Xi) = 1.

Let τn be the coherence of the dictionary, again with respect to the empirical mea-
sure

τn = sup
� �=�′=1,...,p

∣∣∣∣∣
1
n

n

∑
i=1

g�(Xi)g�′(Xi)

∣∣∣∣∣ . (8)

Let us fix once for all δ ∈]0,1[. δ is linked with the precision of our procedure. Let
N be an integer less or equal to δ/τn and suppose that N > 1. A simple consequence
of the definition of the coherence is the following: for any subset D ′ of size m of the
dictionary D , we defined the m×m Gram matrix M(D ′)

M(D ′) =

(
1
n

n

∑
i=1

g�(Xi)g�′(Xi)

)

g�,g�′∈D ′

.
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If the size m = #D ′ of D ′ verifies m≤N then M(D ′) is almost diagonal, in the sense
that: (Restricted Isometry Property)

∀x ∈ R
m, ‖x‖2

l2(m)(1−δ )≤ xtM(D ′)x≤ ‖x‖2
l2(m)(1+δ ).

or equivalently

∀x ∈ R
m, ‖x‖2

l2(m)(1+δ )−1 ≤ xtM(D ′)−1x≤ ‖x‖2
l2(m)(1−δ )−1. (9)

This is due to the fact that

|xtM(D ′)x− xtx| ≤ τn

m

∑
k �=�=1

|xk x� | ≤ Nτn‖x‖2
l2(m)

and this proves in particular that the matrix M(D ′) is invertible.

3.2 LOL procedure

Once τn (or a bound for τn) is evaluated and N is available, this procedure has three
steps: Find N ‘leaders’, Regress on the leaders, Threshold.

1. Find the leaders:
• For some constant T1 > 0, fix a threshold

λn(1) = T1

(
log p

n

)1/2

• Compute the correlations

K� = |1
n

n

∑
i=1

g�(Xi)Yi|

and consider the ordered truncated sequence K(1) ≥ K(2) ≥ . . . ≥ K(N), and the
associated set of indices K = {κ(1),κ(2), . . . ,κ(N)}.
• The final set of the leaders is defined by

B = {g�, � ∈K and K� ≥ λn(1)}

and we denote B the set of their indices (which might be different of K ). It is
clear that by construction, N appears as a bound for the number of leaders i.e.
the cardinal of B.

2. Regress on the leaders
• Consider the pseudo-regression model:

Yi = ∑
�∈B

α�g�(Xi)+ εi
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and define the matrix GB by

(GB)�, i = g� (Xi) for any � ∈B and i ∈ {1, . . . ,n}.

• Let α̂ = (α̂�, � ∈B) be the minimum least square error in this model:

α̂ = Arg min
α=(α�)�∈B

(
n

∑
i=1

(Yi− ∑
�∈B

α�g�(Xi))2

)
= (GBGt

B)−1GB (Y1, . . . ,Yn)t .

3. For some constant T2 > 0, fix a threshold

λn(2) = T2

(
logn

n

)1/2

and threshold the estimated coefficients

α̃� = α̂� I{|α̂�| ≥ λn(2)}.

Define
f̂ (x) := ∑

�∈B

α̃� g�(x).

3.3 Sparsity conditions on the target function f

We assume the following sparsity conditions on the function f . There exist S ≤ N,
a sequence (α�)�=1,...,p and constants M, ct , c0 such that f can be written

f =
p

∑
�=1

α� g� +h

with

p

∑
�=1

|α�| ≤M, (10)

‖h‖2
ρ̂X
≤ c1

S
n

(11)

#{� ∈ {1, . . . , p}, |α�| ≥ λn(2)/2} ≤ S (12)

∑
(�)>N

|α(�)| ≤ ct

√
S
n

(13)

p

∑
�=1

|α�|2 I{|α�| ≤ 2λn(2)} ≤ c0
S
n

(14)
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Recall that (α(�)) is the ordered sequence |α(1)| ≥ |α(2)| ≥ . . . |α(p)|. For S,M > 0,
we denote V (S,M) the space of functions f satisfying the sparsity conditions (10),
(11), (12), (13), (14). An example of such a space occurs when we suppose that all
the coefficients of α are 0 but S coefficients (with S ≤ N) which are of modulus
greater that λn(2)/2.

Another type of assumptions ensuring the conditions above are the following: f
can be written as

f =
p

∑
�=1

α� g�

with

∀λ > 0, #{|α�| ≥ λ} ≤ cλ−
2

1+2s (15)

and

∀k ≥ 0, ∑
�>k

|α(�)| ≤ c′k−τ (16)

for constants b,c,c′ > 0 and 0 < b < 1 and

N = nb, S = n
1

1+2s , τ ≥ s
b(1+2s)

As discussed in [18], Condition (16) reflects a ‘minimal compacity condition’ which
does not really interfere in the entropy calculations of the set (for instance) neither
in the minimax rates of convergence. Condition (15) does drive the rates. It is given
here with a Lorentz type constraint on the α�’s. These conditions are obviously
implied if the sequence α belongs to lr for r = 2

1+2s which then looks very much
like Besov-type conditions.

3.4 Results

The performances of the LOL procedure are summarized in the following theorem.

Theorem 3.1. Let S,M > 0 and fix δ in ]0,1[. Choose a dictionary D such that
#(D) ≤ na for some a > 0. Choose the constants appearing in the thresholds such
that

T1 ≥ O(δ ,a,M) and T2 ≥ O(δ ).

If the coherence satisfies τn ≤ c
√

logn
n then there exist positive constants D, c and

γ , such that

sup
ρ

sup
f∈V (S,M)

ρ⊗{‖ f − f̂‖ρ̂X
> η} ≤

{
c exp(−γnη2) for η ≥ Dηn

√
logn,

1 for η ≤ Dηn
√

logn
(17)
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where

η2
n =

S
n
.

As mentioned in the introduction, these results prove that the behavior of the LOL
estimator is optimal in terms of the critical value ηn as predicted in [12]. It is also
optimal in terms of exponential rates. An elementary consequence of Theorem 3.1
is

Corollary 3.1. Let q > 0. Under the same assumptions as in Theorem 3.1, we get

E‖ f − f̂‖q
ρ̂X
≤ D′ηq

n [logn]
q
2

for some positive constant D′.

3.5 Discussion

As mentioned in the previous section, our procedure finds its inspiration especially
in [1], [5], [3],[4]. In all these papers, the results are obtained under fewer assump-
tions but with no exponential bounds and a cost in implementation a little higher.

Temlyakov[25] provides optimal critical value ηn as well as exponential bounds
with fewer assumptions: there is no coherence restriction and the setting is not the
gaussian regression framework but the learning. Our gain is in the simplicity of
implementation of our procedure.

Fan and Lv [16] also provide a search among leaders. Their results are basically
concerning a linear model in ultra high dimension, with assumptions on the matrix
of the model making it difficult to directly apply to a dictionary.

Our procedure also has to be compared with the various procedures affiliated
to the Lasso or Dantzig selectors: see among many others Tibshirani [27], Candes
and Tao [8], Bickel et al. [2], Bunea et al. [6][7]. The assumptions thereby are also
expressed in terms of Gaussian linear model in high dimension. The restrictions of
coherence types are depending on the papers and may be lighter than ours. The great
advantage of our procedure LOL is to produce very simple algorithm. Moreover our
assumptions are quite elementary and leads to optimal exponential rates. Neverthe-
less, our condition on τn is probably too severe. The practical results do not seem to
reflect such a strict condition as it is shown via the simulation study in the following
section. Last, let us emphasize that it would be interesting to obtain results also with
the theoretical norm ‖.‖ρ as well as the empirical norm. Passing from one norm
to the other is reasonably simple when the estimators are bounded. However, here
bounding the estimators seriously changes their nature at least theoretically.
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3.6 Restricted LOL

Notice that the LOL procedure has two thresholding steps. In view to understand
how the two steps are working separately, we isolate the second one which seems
to be the more critical one. For that, let us suppose that an oracle is selecting N
leaders. The first step of the algorithm becomes useless, but we can still perform the
second and third step of the procedure: projection on the leaders and thresholding.
We call this procedure restricted LOL. Observe that this generally does not provide
a procedure since it depends on the oracle. However, in the specific case where the
cardinal of the dictionary is small enough - less than N-, it is indeed a procedure. So
studying this restricted LOL procedure has also an interest per se. A very interesting
consequence of the following Theorem 3.2 is that we need much less conditions
for restricted LOL. For instance, we do not need the restrictive condition on the

coherence τn ≤ c
√

logn
n and the sparsity conditions become wider: Assumption (10)

is useless and in the case where the size of the dictionary is less than N, (13) is not
necessary. Another interesting remark is that the restricted LOL procedure has the
same optimal exponential bounds.

Theorem 3.2. Let N > 1 and assume that the dictionary D satisfies #(D) ≤ na for
some a > 0. Choose the thresholding constant such that T2 ≥ O(δ ). Let S,M > 0
and assume that f ∈ V (S,M). Suppose that an oracle is able to select N elements
{g�1 , . . . ,g�N} of the dictionary such that the coefficients α� j of f on g� j for j =
1, . . . ,N are the N largest among all the coefficients α�, � = 1, . . . , p. Define the
restricted LOL procedure as:

f̂ ′(x) :=
N

∑
�=1

α̂� I{|α̂�| ≥ λn(2)}g�(x).

Then, there exist positive constants c,γ , such that

sup
ρ

sup
f∈V (S,M)

ρ⊗{‖ f − f̂ ′‖ρ̂X
> η} ≤

{
c exp
(
−γnη2
)

for η ≥ Dηn,
1 for η ≤ Dηn

(18)

for some positive constant D depending on ct ,c0,T2,δ and

η2
n =

S
n
.

In this paper, we give the proof of Theorem 3.2. The proof of Theorem 3.1 as well as
a more detailed study of the procedure in the case of particular dictionaries as well
as in general ultra high dimension linear models are postponed in the companion
paper [19].
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4 Practical performances of the LOL procedure

To study the performance of the LOL method, we now present an experimental
design, results of simulations and a practical example of reconstruction.

4.1 Experimental design

Dictionaries: Five dictionaries (D1, . . . D5) with different coherences are used to
illustrate the performances of the LOL procedure. Each dictionary is composed of
functions of the trigonometric or the Haar bases and is characterized by a given co-
herence. The two first dictionaries are homogenous, composed exclusively of the
trigonometric (D1) or the Haar base (D2). Both are of equal size (p = 512) and are
characterized by a weak coherence, empirically close to zero. The three other dictio-
naries are mixed, composed of an equal part of the trigonometric and the Haar bases.
D3 is the union of the two homogeneous dictionaries: D3 = D1∪D2, p = 1024. D4

and D5 are respectively composed of an half (p = 512) or a quarter (p = 256) of
the two homogeneous dictionaries. Figure 1 shows the empirical distribution of the
absolute values correlations of the functions of the dictionaries. As the coherence
is defined as the maximum value of the correlations distribution, for both homoge-
neous dictionaries, the coherence is almost zero and is equal to τn = 0.637 for the
mixed dictionaries.

Fig. 1 Empirical distribution of the correlations (absolute value) for each dictionary. D1- dashed
line, D2- dashed line (D1, D2 vertically confounded), D3- dotted line, D4- solid line, D5-dashed
dot line. For each dictionary quantiles values are indicated by vertically gray lines using the same
drawing code

As introduced in section 3, the coherence is theoretically defined as the maxi-
mum of the correlations computed between the dictionary functions. As we observe
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in the previous figure, some dictionaries can have the same coherence but with vari-
ous statistical distributions. Practically, we find more appropriate to characterize the
internal relations between the functions of the dictionary as the value of the quan-
tile at 95% of the set of correlations. This quantity, we called “internal coherence”
better takes into account the empirical relations inside each dictionary as the max-
imum value does. For mixed dictionaries, the internal coherence is then equaled to
τD3 = 0.075, τD4 = 0.091 and τD5 = 0.123.

Observations: We considered here a model with a fixed design, Xi,1≤i≤n = i/n.
Given Xi, the observation Yi is defined by Yi = f (Xi)+ εi, where εi are i.i.d with a
normal distribution N(0,σ2

ε ). Each function f , considered as unknown in our pro-
cedure, is defined as a randomly weighted sum of the functions of a dictionary D ,
f (Xi) = ∑p

l=1αlgl(Xi). We are interested in studying sparse functions with a weak
number of non-zero coefficients (αl �= 0). Practically, to simulate a function with S
non-zero components, we draw randomly with a uniform law, S different functions
of the dictionary D , then S non-zero coefficients are randomly chosen as follows:
αl = (−1)b|z| and affected to the previous selected functions g. b is drawn from a
Bernouilli distribution with parameter 0.5 and z is drawn from a normal distribution
N(m,σ2

z ). Practically, we choose m = 2, σ2
z = 4 and a signal over noise ratio equaled

to σ2
ε = 5.

Performances indicators: The practical behavior of LOL procedure is evaluate
using four performances indicators computed, after each run of the algorithm, given
the observations (Yi,Xi)1≤i≤n: the number of non-zero coefficients Ŝ estimated by
LOL (1), the relative l2 reconstruction error E f (2), the relative error for the coeffi-
cients, Eα (3), a flag if the reconstruction is declared successful meaning that E f is
less than 1 percent (4):

Ŝ = �{l ∈ {1 . . . p}, α̃l �= 0}
E f = || f − f̃ ||22/|| f ||2,
Eα = ||α− α̃||22/||α||2

Sparsity and problem indeterminacy: For a fixed n = 512 number of observa-
tions, we varied the normalized measure of sparsity, ρ = S/n from 0.01 to 0.15 in
29 steps. The problem indeterminacy is measured by δ = n/p. In this experimental
study, three cases of indeterminacy are studied: δ = 1.0 (D1, D2,D4), δ = 0.5 (D3)
and δ = 2 (D5).

For each value of ρ , we solved K=500 different random problem instances.

4.2 Algorithm

The LOL procedure works in tree steps: Find N ‘leaders’, Regress on leaders,
Threshold. The selection of the leaders and of the regression coefficients depends
on two thresholds λn(1) and λn(2) previously defined in section 3. Thresholds are
critical values, very often hard to tune.
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Selection of leaders: In the LOL procedure, the first threshold λn(1) is used to
select the candidates to the regression. Considering the set of correlations K�, the
objective is to split the correlations values in two clusters to pick up the regression
candidates in one group. Here, we use the property that the solution is supposed to
be sparse. That means, that some functions of the dictionary are more correlated
to the target Y than some others associated to a weak correlation value, close to
zero. This remark implies that the distribution of correlations (in absolute value)
should be distributed in two clusters: one for the leaders and one for the other func-
tions of the dictionary. The cluster with the high correlations defines the cluster of
leaders. Taking this remark into account, we adaptively compute the frontier be-
tween the clusters by minimizing the deviance of the absolute value correlations for
two classes as described in [22]. For a sparse solution, when the coherence of the
dictionary is weak, this method tends to automatically select the N ‘leaders’, with
N << n. When the coherence of the dictionary is high, the set of selected leaders
can be greater than the number of observations n and then too big to remove the
indeterminacy. In order to avoid this situation, we choose λn(1) in such a way that
N ≤
√

nlog(n)).
Selection of regressors: The same procedure as described above is used to select

adaptively the non zero coefficients of the model. After the regression on the N
leaders, the distribution of the regression coefficients provides two clusters: one
cluster associated to the largest coefficients (in absolute value) corresponding to
the S non zero coefficients and one cluster composed of coefficients closed to zero,
which should not be involved in the model. The frontier between the two clusters,
which defines λn(2), is computed by minimizing the deviance between two classes
of regression coefficients. The sparse coefficients are then defined by the cluster
associated with the strongest coefficients.

Fig. 2 Sparsity estimation using LOL for 5 studied dictionaries function of sparsity rate. D1- ′+′

symbols line, D2-diamond symbols line (D1, D2 confounded), D3- dotted line, D4- solid line,
D5-dashed dot line. The gray line represents the sparsity level S function of ρ
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4.3 Simulation results

Figure 2 presents for the five studied dictionaries the estimation of the sparsity Ŝ
function of ρ (n = 512). Each point of the curve is an averaged value computed
over 500 instances. We observe that the results computed for the two homogeneous
dictionaries D1 and D2 exclusively composed of bases are confounded. In this case,
from a weak sparsity rate of ρ = 1% to a sparsity rate of ρ = 11.5%, Ŝ is equaled
to S. At ρ = 11.5%, a sudden break is observed and the number of non-zero esti-
mated coefficients is under estimated. This break corresponds to the phase transition
already observed by Donoho et al. (see [14], [15] ). Concerning the mixed dictio-
naries, we observe that for low sparsity levels, the results are as good as for the
homogeneous dictionaries. For high sparsity levels, the number of non-zero compo-
nents are more under estimated compared to the homogeneous dictionaries.

It can be point out that the internal coherence of the dictionaries has an influence
on the results. The number of miss detection increases with the internal coherence
and the sparsity measure. For mixed dictionaries with high internal coherence, we
do not observe a sharp phase transition as for dictionaries associated with a weak
coherence.

Fig. 3 Reconstruction error function of sparsity rate. D1- ′+′ symbols line, D2-diamond symbols
line (D1, D2 confounded), D3-dotted line, D4-solid line, D5-dashed dot line

Figure 3 and 4 show the reconstruction error and the relative error l2 for the
coefficients. We observe that for the dictionaries composed of one base, the error is
almost null and increases suddenly just after the phase transition at ρ = 11%.

For a fixed sparsity level ρ , the error increases as the value of the internal coher-
ence of the dictionaries does. In the case where ρ = 2 with non indeterminacy in
the solution, we observe that the reconstruction error curve crosses the other curves,
which is not yet theoretically explained.
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Fig. 4 Quadratic error of the coefficients function of sparsity rate. D1- ′+′ symbols line, D2-
diamond symbols line (D1, D2 confounded), D3-dotted line, D4-solid line, D5-dashed dot line

Figures 5 illustrates the rate of success when the reconstruction error is less than
1% as proposed by Donoho et al. (see [15]). We observe that the rate decreases as
the coherence of the dictionaries increases.

Fig. 5 Successful reconstruction rate. D1- ′+′ symbols line, D2-diamond symbols line, D3 -dotted
line, D4 - solid line, D5 -dashed dot line

4.4 Quality reconstruction

If we consider only the results of the simulations presented above, the advantage to
use a mixed dictionary compared to an homogeneous one is not clear and the inter-



314 G. Kerkyacharian, M. Mougeot, D. Picard and K. Tribouley

nal coherence of a dictionary seems to be a drawback rather than an added value.
However, mixed dictionary can offer a complementarity which is now illustrate.
Figure 6 presents a very simple example to illustrate the benefits of using a mixed
dictionary. The signal is of size p = 512, composed of three area: two waves area at
two different frequencies split by an area where the signal is constant. This signal
does not belong to any previous dictionaries and is not a weighted sum of functions
of any dictionary. This signal is successively compressed then restored with both
homogeneous dictionaries D1 and D2 and then with the mixed dictionary D3.

Fig. 6 Original Signal

Figure 7 shows the reconstruction of the signal, using the LOL procedure, which
automatically selects in the dictionary the best functions and estimates the associ-
ated coefficients. The trigonometric dictionary is used in the first graph. The LOL
procedure automatically select k = 14 non zero coefficients. The reconstruction er-
ror is E f = 14.23%. We observe that the reconstructed errors are at most localized
on the horizontal line. The middle graph presents the results using the Haar dictio-
nary. The LOL procedure automatically select k = 13 non zero coefficients which
is similar to D1. The reconstruction error is similar to the one obtained with the
trigonometric dictionary E f = 15.67%: the reconstructed errors are localized in the
waves in the signal.

The last graph presents the results using the mixed dictionary. The LOL proce-
dure automatically select k = 17 non zero coefficients and the reconstruction error
is quite low: E f = 4.04%. The reconstructed errors seem to be spread out all over
the signal and not localized as for the previous dictionaries.

4.5 Discussion

This practical study shows, that some very good results can be obtained with the
LOL procedure when the sparsity level ρ is lower to 11% and for a indeterminacy
level δ < 1. The performances of the procedure measured by the reconstruction error
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Fig. 7 Comparison of the original (gray dashed color) and the restored signal (solid black line)
using various dictionaries (D1-upper figure; D2-middle figure; D3-lower figure)

increase as the internal coherence of the dictionary decreases to zero. However, we
show that mixed dictionaries, can bring some benefits through the complementarity
of their functions in the reconstruction for specific signals using the LOL procedure.

For weak sparsity levels ρ < 11% , and for an indeterminacy level below δ < 1,
the LOL procedure shows very good performances.
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5 Proofs

5.1 Preliminaries

Let us start with some notation. For any subset of indices C ⊂{1, . . . , p}, VC denotes
the subspace spanned by the functions {g�, �∈C } and PVC

denotes the projection (in
the L2(ρ̂) sense) over VC . For any function ϕ =∑�α� g�, set ᾱC such that Gt

C ᾱ
C :=

PVC
ϕ̄ where ϕ̄ = (ϕ(X1), . . . ,ϕ(Xn))t and define the matrix GC by

((GC )� i)�∈C ,i∈{1,...,n} = (g�(Xi))�∈C ,i∈{1,...,n} .

Since the empirical norm only concerns the values of the function at the points
(Xi)i=1...,n, one can identify ϕ and ϕ̄ (with a slight abuse of notation). Our assump-
tions above and standard calculations prove that

ᾱC = (GC Gt
C )−1GC ϕ̄

if #(C ) ≤ N. As well, set Gt
C α̂

C := PVC
(Ỹ ) = PVC

[ f̄ + ε] where Ỹ := (Y1, . . . ,Yn)t

and ε = (ε1, . . . ,εn)t .
Recall that an oracle providing the addresses of the N largest (in modulus) co-

efficients αl is available. For sake of simplicity, we suppose that their indices are
1, . . . ,N, and denote by ᾱ (resp. α̂) ᾱ{1,...,N} (resp. α̂{1,...,N}). Let us begin with the
following proposition.

Proposition 5.1. If C ⊂ {1, . . . ,N} then

‖∑
�∈C

(α̂�−α�) g�‖ρ̂X
≤

√
(1+δ )δ
(1−δ )

ctηn +

√
1

n(1−δ )
‖PVCε‖l2(n) (19)

Before proving the proposition we need to establish the following lemmas.

Lemma 5.1. ∀ x = (x1, . . . ,xN) ∈ R
N,

(1−δ )‖x‖2
l2(N) ≤ ‖

N

∑
�=1

x� g� ‖2
ρ̂X
≤ (1+δ )‖x‖2

l2(N).

The proof of Lemma 5.1 is elementary and only relies on (9).

Lemma 5.2. If #(C )≤ N then

‖ ∑
�∈C

(αl− ᾱC
� )g�‖2

ρ̂X
≤ #(C) τ2

n

(
∑

�∈C c

|α�|
)2

(20)

Moreover if C is included in {1, . . . ,N} then
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‖ ∑
�∈C

(α�− ᾱ�)g�‖2
ρ̂X
≤ (1−δ )−1

N

∑
�=1

(α�− ᾱ�)2 ≤ c2
t δ (1−δ )−1η2

n (21)

Lemma 5.3. If #(C )≤ N, then, for any u ∈ R
n,

(1+δ )−1 ∑
�∈C

1
n

(
n

∑
i=1

uig�(Xi)

)2

≤ ‖PVC
u‖2

l2(n) ≤ (1−δ )−1 ∑
�∈C

1
n

(
n

∑
i=1

uig�(Xi)

)2

(22)

Proof. (Lemma 5.2) Let us denote M(C ) the Gram matrix

M(C ) =
1
n

GC Gt
C .

‖∑
�∈C

(α�− ᾱC
� ) g�‖2

ρ̂ = ‖∑
�∈C

α� g�−PVC

[
∑
�∈C

α� g� + ∑
�∈C c

α� g�

]
‖2
ρ̂

= ‖PVC

[
∑

�∈C c

α� g�

]
‖2
ρ̂ .

Denote

h̄C =

(
∑

�∈Cc

α� g�(X1), . . . , ∑
l∈Cc

α� g�(Xn)

)
.

Then

PVC

[
∑

�∈C c

α� g�

]
= Gt

C (nM(C ))−1GC h̄C

implying that

‖∑
�∈C

(α�− ᾱC
� ) g�‖2

ρ̂ =
1
n

∥∥Gt
C (nM(C ))−1GC h̄C

∥∥2
l2

=
1
n2 (GC h̄C )t (M(C ))−1(GC h̄C ).

Using Property (9), we deduce

‖∑
�∈C

(α�− ᾱC
� ) g�‖2

ρ̂ ≤ (1−δ )−1 1
n2 (GC h̄C )t (GC h̄C )

= (1−δ )−1 1
n2 ∑

�∈C

(
n

∑
i=1

g�(Xi) ∑
�′ ∈C c

α�′ g�′ (Xi)

)2

≤ (1−δ )−1#(C )

(
τn ∑

�∈C c

|α�|
)2
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which gives (20). (21) is a consequence of (20), property (9) and the definition of
N. '(

Proof. (Lemma 5.3) Since

PVC
u = Gt

C (nM(C ))−1GC u,

we obtain

‖PVC u‖2
l2(n) = (GC u)t (nM(C ))−1 (GC u).

Applying Property (9) and observing that

‖GC u‖2
l2 = (GC u)t (GC u) = ∑

�∈C

(
n

∑
i=1

uig�(Xi)

)2

,

we obtain the announced result. '(

Proof. (Proposition 5.1) Notice that

‖ ∑
�∈C

(α̂�−α�)g� ‖ρ̂ ≤ ‖∑
�∈C

(α̂�− ᾱ�)g� ‖ρ̂ +‖ ∑
�∈C

(ᾱ�−α�) g� ‖ρ̂ .

We bound the second term using Lemma 5.2. For the first one, we have

∑
�∈{1,...,N}

α̂� g� = ∑
�∈{1,...,N}

ᾱ� g� +PVN ε.

Hence

∑
�∈C

(α̂�− ᾱ� )g� = ∑
�∈C

[PVN ε]� g�.

We finish the proof using Lemma 5.3. '(

5.2 Concentration lemma 5.4

The following lemma will give the concentration inequality used in the sequel to
obtain exponential bounds.

Lemma 5.4. Let U be a χ2
k variable. Then

∀u2 ≥ 4
k
n
, P(U ≥ nu2)≤ exp

(
−nu2/8

)
.

Proof. Recall the following result by [21]. If Xt is be a centered gaussian process
such that σ2 := supt EX2

t , then
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∀y > 0, P

(
sup

t
Xt −Esup

t
Xt ≥ y

)
≤ exp− y2

2σ2 . (23)

Let Z1, . . . ,Zk i.i.d. standard Gaussian variables such that

P(U ≥ nu2) = P(
k

∑
i=1

Z2
i ≥ nu2) = P(sup

a∈S1

k

∑
i=1

aiZi ≥ (nu2)1/2)

= P

(
sup
a∈S1

k

∑
i=1

aiZi−E sup
a∈S1

k

∑
i=1

aiZi ≥ (nu2)1/2−E sup
a∈S1

k

∑
i=1

aiZi

)

where S1 = {a ∈ Rk,‖ai‖l2(k) = 1}. Denote

Xa =
k

∑
i=1

aiZi and y = (nu2)1/2−E sup
a∈S1

k

∑
i=1

aiZi.

Notice that
a ∈ S1 ⇒ E(Xa)

2 = 1

as well as

E sup
a∈S1

Xa = E

[
k

∑
i=1

Z2
i

]1/2

≤
[
E

k

∑
i=1

Z2
i

]1/2

= k1/2.

Since u2 ≥ 4 k
n , the announced result is proved as soon as y > (nu2)1/2/2. '(

5.3 Proof of Theorem 3.2

Since f = ∑p
�=1α� g� +h, we get

‖ f − f̂‖ρ̂X
≤ ‖ f −

N

∑
�=1

α� g�‖ρ̂ +‖
N

∑
�=1

α� g�− f̂‖ρ̂X

≤ ‖
p

∑
�=N

α� g�‖ρ̂ +‖h‖ρ̂ +‖
N

∑
�=1

(α�− α̃�) g�‖ρ̂X
.

Using Hypothesis (11), we get ‖h‖ρ̂ ≤
√

c1
S
n . Using the oracle property and Con-

dition (13), we get

‖
p

∑
l=N

αlgl‖ρ̂ ≤ ∑
l≥N

|α(l)| ≤ ct

√
S
n
.

In the case where the dictionary is such that p ≤ N (where we do not need the
oracle), this term is simply zero. Next, we have the following decomposition:
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‖
N

∑
�=1

(α�− α̃�) g�‖ρ̂X
≤ ‖

N

∑
l=1

(αl− α̂l) g� I{|α̂�| ≥ λn(2)}I{|α�| ≥ λn(2)/2}‖ρ̂X

+ ‖
N

∑
�=1

(α�− α̂�) g� I{|α̂�| ≥ λn(2)}I{|α�|< λn(2)/2}‖ρ̂X

+ ‖
N

∑
l=1

α� g� I{|α̂�|< λn(2)} I{|α�| ≥ 2λn(2)}‖ρ̂X

+ ‖
N

∑
�=1

α� g� I{|α̂�|< λn(2)}I{|α�|< 2λn(2)}‖ρ̂X

:= BB+BS +SB+SS.

Using Lemma 5.1 and Hypothesis (14) :

SS2 ≤ (1+δ )
N

∑
�=1

|α�|2 I{|α�|< 2λn(2)} ≤ (1+δ ) c0
S
n
≤ c0(1+δ )η2

n

We obviously have

BB2 ≤ (1+δ )
N

∑
�=1

(αl− α̂�)2
I{|α�| ≥ λn(2)/2}

and using the triangular inequality, we obtain the same bound for SB

SB2 ≤ ‖
N

∑
l=1

α̂� g� I{|α̂�|< λn(2)} I{|α�| ≥ 2λn(2)}‖ρ̂X

+‖
N

∑
l=1

(α�− α̂�) g� I{|α̂�|< λn(2)} I{|α�| ≥ 2λn(2)}‖ρ̂X

≤ (1+δ )
N

∑
�=1

α̂�
2

I{|α̂�|< λn(2) < |α̂�−α�|} I{|α�| ≥ 2λn(2)}

+(1+δ )
N

∑
�=1

(α̂�−α�)2
I{|α̂�|< λn(2)} I{|α�| ≥ 2λn(2)}

≤ 2(1+δ )
N

∑
l=1

(αl− α̂l)2
I{|αl | ≥ 2λn(2)}

≤ 2(1+δ )
N

∑
l=1

(αl− α̂l)2
I{|αl | ≥ λn(2)/2}.

Remember the notations given in the preliminaries. VN is the space spanned by
the functions {g1, . . . ,gN} and ᾱ is such that Gt

Nᾱ := PVN f . We denote f̄ =
( f (X1), . . . , f (Xn)). As well, set Gt

Nα̂ := PVN [ f̄ + ε]. We can write
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[
N

∑
�=1

(αl− α̂�)2
I{|α�| ≥ λn(2)/2}

]1/2

≤
[

N

∑
l=1

(α�− ᾱ�)2
I{|α�| ≥ λn(2)/2}

]1/2

+

[
N

∑
�=1

(ᾱ�− α̂�)2
I{|α�| ≥ λn(2)/2}

]1/2

.

The first term of the RHS can be bounded using Lemma 5.2. Denote by L the set
of indices

L = {� ∈ {1, . . . ,N}, |α�| ≥ λn(2)/2} ,

S the subset of the dictionary S = {g�, � ∈ L } and VS the space spanned by the
functions of S. Using again Lemma 5.1,

N

∑
�=1

(ᾱ�− α̂�)2
I{|α�| ≥ λn(2)/2} ≤ (1−δ )−1‖

N

∑
�=1

I{|α�| ≥ λn(2)/2}(α̂�−ᾱ�)g�‖2
ρ̂

= (1−δ )−1 1
n
‖PVS [GN(α̂−ᾱ)] ‖2

l2(n)

= (1−δ )−1 1
n
‖PVSε‖2

l2(n).

Using this bound, we can summarize the different inequalities by:

SS +SB+BB≤ {c0(1+δ )
1
2 +3ct [(1+δ )(1−δ )−1δ ]

1
2 }ηn

+3[(1+δ )(1−δ )−1]
1
2

1

n1/2
‖PVSε‖l2(n)

as soon as
D≥

√
3{c0(1+δ )

1
2 +3ct [(1+δ )(1−δ )−1δ ]

1
2 }. (24)

Now, applying the technical Lemma 5.4 we can bound this last term by

P(‖PVSε‖2
l2(n) ≥ n[27(1−δ )(1+δ )]−1η2)≤ exp{−c1nη2}

with c1 = [216(1−δ )(1+δ )]−1. The last term to investigate is BS. Notice that

P(BS≥ η2/3)≤ ∑
k≤N

P

(
BS≥ η2 and #{|αl− α̂l | ≥

λn(2)
2
}= k

)

Using Condition (9), observe that

#

{
|αl− α̂l | ≥

λn(2)
2

}
= k =⇒ BS≥ (1−δ )kλn(2)2/4.

Fix z > 0 and introduce K0 = inf{k, kλn(2)2 ≥ zη2}. We get
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P(BS≥ η2/3)≤
K0

∑
k=1

∑
A⊂{1,...,N},#A=k

P

(
‖∑

�∈A

(α�− α̂�)g� ‖2
ρ̂X
≥ η2/3

)

+
N

∑
k=1+K0

∑
A⊂{1,...,N},#A=k

P

(
‖∑

�∈A

(α̂�−α�)g�I{|α�− α̂�| ≥
λn(2)

2
}‖2

ρ̂X
≥ (1−δ )k

λn(2)2

4

)

:= BS1 +BS2.

Applying Proposition 5.1, we have

‖∑
�∈A

(α̂�−α�)g�‖ρ̂X
≤

√
(1+δ )δ
(1−δ )

ctηn +(1−δ )−1/2 1

n1/2
‖PVAε‖l2(#A)

≤ η
2
√

3
+(1−δ )−1/2 1

n1/2
‖PVAε‖l2(#A)

as soon as

D≥ 2
√

3

√
(1+δ )δ
(1−δ )

ct . (25)

We bound BS1 using Lemma 5.4

BS1 ≤
K0

∑
k=1

∑
A⊂{1,...,N},#A=k

P

(
‖PVAε‖l2(k)2 ≥ n

1−δ
12

η2
)

≤ NK0 exp
(
−c2nη2)

with c2 = (1−δ )/96. For BS2, we proceed as above:

‖∑
l∈A

(α̂l−αl)gl‖ρ̂X
≤

√
(1+δ )δ
(1−δ )

ctηn +(1−δ )−1/2 1

n1/2
‖PVAε‖l2(#A)

≤
√

(1−δ )kλ 2
n (2)

8
+(1−δ )−1/2 1

n1/2
‖PVAε‖l2(#A)

as soon as
zD2 ≥ 8(1+δ )δ (1−δ )−2c2

t . (26)

Using again concentration lemma 5.4 (and because (1−δ )kλ 2
n (2)/8≥ 2k/n),

BS2 ≤
N

∑
k=1+K0

Nk exp

(
−(1−δ )nk

λn(2)2

8

)

≤
N

∑
k=1+K0

exp

(
k

[
logN− (1−δ )

T 2
2 logn

8

])
.
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Recall that N ≤ n, take T 2
2 ≥ 16/(1−δ ). We get

BS2 ≤ exp

(
−K0(1−δ )

T 2
2 logn

16

)
.

If we summarize, we obtain

BS≤ NK0 exp
(
−c2nη2)+ exp

(
−K0(1−δ )

T 2
2 logn

16

)

≤ exp

(
−nη2 (1−δ )2T 2

2

76[(1−δ )T 2
2 +16]

)
.

Taking z = (1−δ )2T 2
2

(
76[(1−δ )T 2

2 +16]
)−1

ends the proof for D such that

D2 ≥
[

608(1+δ )δc2
t [(1−δ )T 2

2 +16]
(1−δ )4T 2

2

∨ 3

(
c2

0(1+δ )+9c2
t
(1+δ )δ

1−δ

)
∨12

(1+δ )δ
(1−δ )

c2
t

]
.
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Optimized wavelet preconditioning

Angela Kunoth

Abstract The numerical solution of linear stationary variational problems involving
elliptic partial differential operators usually requires iterative solvers on account of
their problem size. Our guiding principle is to devise theoretically and practically
efficient iterative solution schemes which are optimal in the number of arithmetic
operations, i.e., of linear complexity in the total number of unknowns. For these
algorithms, asymptotically optimal preconditioners are indispensable. This article
collects the main ingredients for multilevel preconditioners based on wavelets for
certain systems of elliptic PDEs with smooth solutions. Specifically, we consider
problems from optimal control with distributed or Dirichlet boundary control con-
strained by elliptic PDEs. Moreover, the wavelet characterization of function space
norms will also be used in modelling the control functional, thereby extending the
range of applicability over conventional methods. The wavelet preconditioners are
optimized for these PDE systems to exhibit small absolute condition numbers and
consequently entail absolute low iteration numbers, as numerical experiments show.

1 Introduction

For variational systems involving linear elliptic partial differential equations (PDEs)
with smooth solutions, standard finite element or finite difference discretizations on
uniform grids lead to the problem to solve a large ill-conditioned system of linear
equations, due to the fact that PDE operators have positive order. Any iterative so-
lution scheme will therefore become prohibitively slow since its speed depends on
the spectral condition number, and the effect becomes even worse when the grid
becomes finer and the number of unknowns increases. But since solutions typically
exhibit a multiscale behaviour, enhancing iterative methods by multilevel ingredi-
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ents have proved to achieve much more efficient solution schemes. Naturally, one
strives for an ‘optimally efficient scheme’, meaning that one can solve the problem
with fine grid accuracy with an amount of arithmetic operations that is proportional
to the number of unknowns on this grid. The first such methods which were proven
to provide an asymptotically optimal iterative scheme were geometric multigrid al-
gorithms [BH]. The basic idea of these schemes is to successively solve smaller
versions of the linear system which can often be interpreted as discretizations with
respect to coarser grids, thereby reducing the spectral condition number of the orig-
inal system matrix and, hence, suggesting the term ‘preconditioner’.

The search for optimal preconditioners was a major topic for numerical elliptic
PDE solvers in the ’80’s. The goal was to better understand the ingredients which
made a preconditioner optimal and, specifically, to find directly applicable versions
which could be interpreted as a change of basis. With the arrival of the hierarchical
basis preconditioner [Y], extending an idea of Babuška from the univariate case, a
simple preconditioner became available. Although it is not optimal — the system
matrix still exhibits a logarithmically growing spectral condition number in the bi-
variate case and exponential growth in three spatial dimensions — its simplicity still
makes it popular up to now [MB]. During this time, a new methodology to derive
preconditioners via space decomposition and subspace corrections was developed
by Jinchao Xu [X1, X2]. The BPX preconditioner proposed first in [BPX] was nu-
merically observed to be optimal; it is based on a weighted hierarchical generator
system. With techniques from Approximation Theory, its optimality was theoreti-
cally established in [DK1, O]. Since then, its range of application has been widened
extensively. For example, for second and fourth order elliptic problems on the sphere
a BPX-type preconditioner has been developed and its optimality proved recently in
[MKB]. The survey article by Jinchao Xu and coauthors in this volume records
extensions of the BPX and of multigrid preconditioners to H(grad), H(curl), and
H(div) systems on adaptive and unstructured grids.

At about the same time, wavelets as a special example of a multiscale basis of
L2(R) with compact support were constructed [Dau]. While initially mainly de-
veloped and used for signal analysis and image compression, wavelets were soon
discovered to also provide optimal preconditioners in the above sense for second
order elliptic boundary value problems [DK1, J]. However, the fact that one cannot
really exploit L2-orthogonality for elliptic boundary value problems together with
the difficulty that the L2-orthogonal Daubechies wavelets are only given implicitly
led to the search for variants which are more practical for numerical PDEs. It was
soon realized that biorthogonal spline-wavelets as developed in [CDF] are better
suited since they allow one to work with piecewise polynomials for the actual dis-
cretization.

The principal and crucial property to prove optimality of a wavelet preconditioner
are norm equivalences between Sobolev norms and sequence norms of weighted
wavelet expansion coefficients. On this basis, optimal conditioning of the resulting
linear system of equations can be achieved by applying the Fast Wavelet Transform
to a single-scale discretization on a uniform grid, together with an application of an
appropriate diagonal matrix.
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Nowadays, the terminology ‘wavelets’ is used in a more general sense that orig-
inally in [Dau]: we rather consider classes of multiscale bases with three main fea-
tures:

(R) Riesz basis property for the underlying function spaces,
(L) locality of the basis functions, and
(CP) cancellation properties.

These will be detailed in Section 3.
After the initial results concerning optimal preconditioning with functions of lo-

cal support in [DK1], research on using wavelets for numerically solving elliptic
PDEs went into different directions. One problem was that the original constructions
in [Dau, CDF] and many others were based on employing the Fourier transform so
that these constructions provide bases only for function spaces on all of R, on the
torus or, by tensorization, on R

n. In contrast, PDEs naturally live on a bounded do-
main Ω ⊂R

n. In order for wavelets to be employed for numerical PDEs, there arose
the need for constructions of wavelets on bounded intervals and domains without,
of course, loosing the crucial properties (R), (L) and (CP). The first such systematic
construction of biorthogonal spline-wavelets on [0,1] and, by tensor products, on
[0,1]n, was provided in [DKU]. Different domain decomposition approaches yield
constructions of biorthogonal wavelets on domains which can be represented as
unions of parametric mappings of [0,1]n [CTU, DS2, DS3, KS], see the article by
Helmut Harbrecht and Reinhold Schneider in this volume and also [U] for details.
Once such bases are available, the absolute value of the condition numbers of (sys-
tems of) elliptic PDEs can be ameliorated significantly by further inexpensive linear
transformations taking into account a setup of the system matrices on the coarsest
grid called operator–based preconditioning [Bu1, Pa].

Aside from optimal preconditioning, the built-in potential of local adaptivity
for wavelets is playing a prominent role when solving stationary PDEs with non–
smooth solutions, on account of the fact that wavelets provide a locally supported
Riesz basis for a whole function space. This issue is extensively addressed in the
article by Rob Stevenson in this volume.

In addition to the material in this volume, there are at least four extensive sur-
veys on wavelet and multiscale methods for more general PDEs addressing, among
other things, the connection between adaptivity and nonlinear approximation and
the evaluation of nonlinearities [Co, D2, D3, D4].

In my article, I want to remain focussed on discretizations for smooth solutions
(for which uniform grids give desired accuracy) since ideally an adaptive scheme
should also perform numerically well for this case. Thus, in order to asses numerical
tests, results for reference schemes on uniform grids should be available.

Another extremely useful application of the Riesz basis property (R) of wavelets
concerns PDE-constrained control problems guided by elliptic boundary value prob-
lems. Here a quadratic optimization functional involving Sobolev norms of the
state and the control of a system is to be minimized, subject to an elliptic PDE in
variational form which couples state and control variables. In wavelet bases, the
numerical evaluation of Sobolev norms even with fractional smoothness indices
amounts to a multiplication with a diagonal basis and can be realized fast [Bu2].
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This allows one to efficiently evaluate natural function space norms as they arise
for PDE–constrained control, or different norms in the control functional more ad-
equate for modelling purposes [Bu1, BK]. Conventional discretizations based on
finite elements have concentrated here on evaluating function space norms with
integer smoothness. Also for linear–quadratic elliptic control problems with non–
smooth solutions, adaptive wavelets provide most efficient solution schemes. Con-
vergence and optimal complexity estimates of respective adaptive wavelet methods
were established in [DK3]. Among such optimization problems, boundary control
problems where the control is exerted through essential boundary conditions, appear
practically most often. Formulating the elliptic PDE as a saddle point problem by
introducing Lagrange multipliers for the boundary conditions allows one to handle
changing boundary controls in a flexible manner. Wavelet approaches for treating
such more involved systems of elliptic PDEs in saddle point form have been inves-
tigated in [K1, K4] and numerically optimized in [Pa].

This paper is of a more introductory nature: its purpose is to collect the basic
ingredients for wavelet preconditioners, apply them to (systems of) linear elliptic
PDEs in variational form and provide some numerical results on their performance.
Specifically, some effort will be spent on the description of nested iterative solution
schemes for systems from PDE-constrained control problems.

The structure of this paper is as follows. First, in Section 2, some well–posed
variational problems are compiled. The simplest example is a linear second order
elliptic boundary value problem for which we derive two forms of an operator equa-
tion, once as a single equation and once as a saddle point system where nonhomo-
geneous boundary conditions are handled by means of Lagrange multipliers. Both
formulations are then used as basic systems for PDE-constrained control problems,
one with control through the right hand side and one involving a Dirichlet bound-
ary control. In Section 3 necessary ingredients and basic properties of wavelets are
assembled. In particular, Section 3.4 collects the essential construction principles
for wavelets on bounded domains which do not rely on Fourier techniques, namely,
multiresolution analyses of function spaces and the concept of stable completions.
In Section 4 we formulate the problem classes introduced in Section 2 in wavelet
coordinates and derive in particular for the control problems the resulting systems of
linear equations arising from the optimality conditions. Section 5 is devoted to the
iterative solution of these systems. We investigate fully iterative schemes on uniform
grids and show that the resulting systems can be solved in the wavelet framework
together with a nested iteration strategy with an amount of arithmetic operations
which is proportional to the total number of unknowns on the finest grid. Numerical
experiments on the performance of the solvers as well as on the modelling issue
round off this contribution.

The following notations are used frequently. The relation a∼ b always stands for
a <∼ b and b <∼ a where the latter inequality means that b can be bounded by some
constant times a uniformly in all parameters on which a and b may depend. Norms
and inner products are indexed by the corresponding function space. Lp(Ω) are for
1 ≤ p ≤ ∞ the usual Lebesgue spaces on a domain Ω ⊂ R

n, and W k
p (Ω) ⊂ Lp(Ω)
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denote for k ∈N the Sobolev spaces of functions whose weak derivatives up to order
k are bounded in Lp(Ω). For p = 2, we abbreviate Hk(Ω) = W k

2 (Ω).

2 Systems of elliptic partial differential equations (PDEs)

We first formulate the classes of variational problems which will be investigated
here in an abstract form.

2.1 Abstract operator systems

Let H be a Hilbert space with norm ‖ · ‖H with normed dual H ′ endowed with
the norm

‖w‖H ′ := sup
v∈H

〈v,w〉
‖v‖H

(1)

where 〈·, ·〉 denotes the dual pairing between H and H ′.
Given F ∈H ′, the goal is to find a solution to the operator equation

L U = F (2)

where L : H →H ′ is a linear operator which is assumed to be a bounded bijec-
tion,

‖L V‖H ′ ∼ ‖V‖H , V ∈H . (3)

The operator equation (2) is well-posed since (3) implies for any given data F ∈H ′

the existence and uniqueness of the solution U ∈H which depends continuously
on the data. Property (3) is also called mapping property of L .

The examples that we consider will be such that H is a product space

H := H1,0×·· ·×Hm,0 , (4)

where each of the Hi,0 ⊆Hi is a Hilbert space or a closed subspace of a Hilbert space
Hi determined, for instance, by homogeneous boundary conditions. The spaces Hi

will be Sobolev spaces living on a bounded domain Ω ⊂ R
n or on (part of) its

boundary. In view of the definition of H , the elements V ∈H will consist of m
components V = (v1, . . . ,vm)T for which we define ‖V‖2

H := ∑m
i=1 ‖vi‖2

Hi
. The dual

space H ′ is then endowed with the norm

‖W‖H ′ := sup
V∈H

〈V,W 〉
‖V‖H

(5)

where 〈V,W 〉 := ∑m
i=1〈vi,wi〉i in terms of the dual pairing 〈·, ·〉i between Hi and H ′i .
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We will formulate four classes of problems which fit into this format. A recurring
theme in the derivation of the system of operator equations (2) is the minimization
of a quadratic functional.

2.2 A scalar elliptic boundary value problem

Denote by ∂Ω := Γ ∪ΓN the boundary of Ω which is assumed to be piecewise
smooth. We consider the scalar second order boundary value problem

−∇ · (a∇y)+ cy = f in Ω ,

y = g on Γ , (6)

(a∇y) ·n = 0 on ΓN ,

where n = n(x) is the outward normal at x ∈ Γ , a = a(x) ∈ R
n×n is symmetric,

uniformly positive definite and bounded on Ω , and c ∈ L∞(Ω). Furthermore, f and
g are some given right hand side and boundary data. With the usual definition of the
bilinear form

a(v,w) :=
∫
Ω

(a∇v ·∇w+ cvw)dx, (7)

the weak formulation of (6) requires in the case g≡ 0 to find y ∈H where

H := H1
0,Γ (Ω) := {v ∈ H1(Ω) : v|Γ = 0}, (8)

or
H := {v ∈ H1(Ω) :

∫
Ω

v(x)dx = 0} when Γ = /0, (9)

such that
a(y,v) = 〈v, f 〉, v ∈H . (10)

Neumann–type boundary conditions on ΓN are implicitly contained in the weak for-
mulation (10), therefore called natural boundary conditions. In contrast, Dirichlet
boundary conditions on Γ have to be posed explicitly, therefore called essential
boundary conditions. The easiest way to achieve this for homogeneous Dirichlet
boundary conditions when g≡ 0 is to include them into the solution space as above
in (8). In the nonhomogeneous case g �≡ 0 on Γ in (6) and Γ �= /0, one can re-
duce this to a problem with homogeneous boundary conditions by homogenization
as follows. Let w ∈ H1(Ω) be such that w ≡ g on Γ . Then ỹ := y−w satisfies
a(ỹ,v) = a(y,v)− a(w,v) = 〈v, f 〉− a(w,v) =: 〈v, f̃ 〉 for all v ∈H defined in (8),
and on Γ one has ỹ = g−w ≡ 0 yielding ỹ ∈H . Therefore, it suffices to consider
the weak form (10) with a perhaps modified right hand side. Another possibility
which allows to treat the case g �≡ 0 explicitly is discussed in the next section.

The crucial properties are that the bilinear form defined in (7) is symmetric, con-
tinuous and elliptic on H ,
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a(v,v)∼ ‖v‖2
H for any v ∈H , (11)

see, e.g., [B]. By Riesz’ representation theorem, the bilinear form defines a linear
operator A : H →H ′ by

〈w,Av〉 := a(v,w), v,w ∈H , (12)

which is under the above assumptions an isomorphism,

cA‖v‖H ≤ ‖Av‖H ′ ≤ CA‖v‖H for any v ∈H . (13)

Relation (13) entails that given any f ∈H ′, there exists a unique y ∈H which
solves the linear operator equation

Ay = f in H ′ (14)

derived from (10). This linear system where the operator defines a bounded bijection
in the sense of (13) is the simplest case of a well-posed variational problem (2). In
the notation from Section 2.1, we have here m = 1 and L = A.

2.3 Saddle point problems involving essential boundary conditions

A particular saddle point problem derived from (6) shall be considered next. Since
it is particularly appropriate to handle essential non–homogeneous Dirichlet bound-
ary conditions, it will also be employed later in the context of boundary control
problems.

Recall, e.g., from [B] that the solution y∈H of (10) is also the unique minimizer
of the minimization problem

inf
v∈H

J (v), J (v) :=
1
2

a(v,v)−〈v, f 〉. (15)

This means that y is a critical point for the first order variational derivative of J ,
i.e., δJ (y;v) = 0. Here δ sJ (v;w1, . . . ,ws) denotes the s–th variation of J at v
in directions w1, . . . ,ws. In particular, for s = 1

δJ (v;w) := lim
t→0

J (v+ tw)−J (v)
t

(16)

is the (Gateaux) derivative of J at v in direction w.
Generalizing (15) to the case of nonhomogeneous Dirichlet boundary conditions

g, we want to minimize J over v ∈ H1(Ω) subject to constraints in form of the
essential boundary conditions v = g on Γ . A standard technique from nonlinear op-
timization is to employ a Lagrange multiplier p to append the constraints to the
optimization functional J defined in (15). Satisfying the constraint is guaranteed
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by taking the supremum over all such Lagrange multipliers before taking the infi-
mum. Thus, minimization subject to a constraint leads to the problem of finding a
saddle point (y, p) of the saddle point problem

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ ))′

J (v)+ 〈v−g,q〉Γ . (17)

The choice of the Lagrange multiplier space and the dual form 〈·, ·〉Γ in (17) can
be explained as follows. The boundary expression v = g actually means taking the
trace of v ∈ H1(Ω) to Γ ⊆ ∂Ω which we explicitly write as γv := v|Γ . Classical
trace theorems from, e.g., [Gr] state that for any v ∈ H1(Ω) one looses ‘ 1

2 order
of smoothness’ when taking traces, therefore yielding γv ∈ H1/2(Γ ). Thus, when
the data g is such that g ∈ H1/2(Γ ), the expression in (17) involving the dual form
〈·, ·〉Γ := 〈·, ·〉H1/2(Γ )×(H1/2(Γ ))′ is well–defined, and so is the selection of the mul-

tiplier space (H1/2(Γ ))′. In case of Dirichlet boundary conditions on the whole
boundary of Ω , i.e., the case Γ ≡ ∂Ω , one can identify (H1/2(Γ ))′ = H−1/2(Γ ).

The above formulation (17) was first investigated in [Ba]. Another standard tech-
nique from optimization to handle minimization problems under constraints is to ap-
pend the constraints to J (v) by means of a penalty parameter ε . For this approach,
however, the system matrix depends on ε . So far, no optimal preconditioners have
been established for this case so that we do not discuss this method here any further.

The method of appending essential boundary conditions by Lagrange multipliers
is particularly appealing in connection with fictitious domain methods which may be
used for problems with changing boundaries such as shape optimization problems.
There one embeds the domain Ω into a larger, simple domain �, and formulates
(17) with respect to H1(�) and dual form on the boundary Γ [K2]. One should
note, however, that in the case that Γ is a proper subset of ∂Ω , there may occur
some ambiguity in the relation between the fictitious domain formulation and the
corresponding strong form (6). In fact, without further assumptions, one cannot es-
tablish that the infimum of (17) with respect to H1(�), when restricted to Ω , is the
same as taking the infimum of (17) with respect to H1(Ω). This is indeed guaran-
teed by using another set of Lagrangian multipliers. We currently investigate this for
a problem from electrical impedance tomography in [KK].

In order to bring out the role of the trace operator, we define in addition to (7) a
second bilinear form on H1(Ω)× (H1/2(Γ ))′ by

b(v,q) :=
∫
Γ
(γv)(s)q(s)ds (18)

so that the saddle point problem (17) may be rewritten as

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ ))′

J (v,q), J (v,q) := J (v)+b(v,q)−〈g,q〉Γ . (19)

Determining the critical points of first order variations of J , now with respect to
both v and q, yields the system of equations that a saddle point (y, p) has to satisfy
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a(y,v)+b(v, p) = 〈v, f 〉, v ∈ H1(Ω),
b(y,q) = 〈g,q〉Γ , q ∈ (H1/2(Γ ))′.

(20)

Defining the linear operator B : H1(Ω)→H1/2(Γ ) and its adjoint B′ : (H1/2(Γ ))′ →
(H1(Ω))′ by 〈Bv,q〉Γ = 〈v,B′q〉Γ := b(v,q), this can be rewritten as a linear operator
equation from H := H1(Ω)× (H1/2(Γ ))′ to H ′ as follows:
Given ( f ,g) ∈H ′, find (y, p) ∈H that solves

(
A B′

B 0

)(
y
p

)
=
(

f
g

)
. (21)

It can be shown in the present context that the Lagrange multiplier can be determined
by p =−n ·a∇y which can be interpreted as stress force on the boundary [Ba].

We briefly discuss the properties of B representing the trace operator. Classical
trace theorems from, e.g., [Gr], state that for any f ∈ Hs(Ω), 1/2 < s < 3/2, one
has

‖ f |Γ ‖Hs−1/2(Γ ) <∼ ‖ f‖Hs(Ω). (22)

Conversely, for every g∈Hs−1/2(Γ ), there exists some f ∈Hs(Ω) such that f |Γ = g
and

‖ f‖Hs(Ω) <∼ ‖g‖Hs−1/2(Γ ). (23)

Note that the range of s extends accordingly if Γ is more regular. Estimate (22)
immediately entails for s = 1 that B : H1(Ω)→ H1/2(Γ ) is continuous. Moreover,
the second property (23) means B is surjective, i.e., rangeB = H1/2(Γ ) and kerB′ =
{0}. This yields that the inf–sup condition

inf
q∈(H1/2(Γ ))′

sup
v∈H1(Ω)

〈Bv,q〉Γ
‖v‖H1(Ω) ‖q‖(H1/2(Γ ))′

>∼ 1 (24)

is satisfied.
In the notation from Section 2.1, the system (21) is a saddle point problem on

H =Y×Q. Thus, we identify Y = H1(Ω) and Q = (H1/2(Γ ))′ and linear operators
A : Y → Y ′ and B : Y → Q′.

The abstract theory of saddle point problems states that existence and uniqueness
of a solution pair (y, p) ∈H of (21) holds if and only if A and B are continuous, A
is invertible on kerB ⊆ Y and the range of B is closed in Q′, see, e.g., [B, BF] and
the article in this volume by Ricardo Nochetto and coauthors. The properties for B
and the continuity for A have been assured above. In addition, we will always deal
here with operators A which are invertible on kerB which cover the standard cases
of the Laplacian (a = I and c≡ 0) and the Helmholtz operator (a = I and c = 1).

Consequently, the operator

L :=
(

A B′

B 0

)
: H →H ′ (25)

is linear bijection, and one has the mapping property
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∥∥∥∥L
(

v
q

)∥∥∥∥
H ′
∼
∥∥∥∥
(

v
q

)∥∥∥∥
H

(26)

for any (v,q) ∈H with constants depending on upper and lower bounds for A,B.
Finally, the operator equation (21) is established as a well-posed variational problem
in the sense of Section 2.1: for given ( f ,g) ∈H ′, there exists a unique solution
(y, p) ∈H = Y ×Q which depends continuously on the data.

2.4 PDE-constrained control problems: Distributed control

An important class of problems where the numerical solution of systems (14) or
(21) is required repeatedly are control problems with PDE-constraints. Using the
notation from Section 2.2, consider as a guiding model the objective to minimize a
quadratic functional of the form

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω
2
‖u‖2

U , (27)

subject to the linear constraints

Ay = f +u in H ′ (28)

where A : H → H ′ is defined as above in (12) satisfying (13), and f ∈ H is given.
The space H is in this subsection defined as in (8) or in (9), and we reserve the
symbol H for a resulting product space later.

In order for a solution y of (28), the state of the system, to be well–defined, the
problem formulation has to ensure that the unknown control u appearing in the right
hand side of (28) is at least in H ′. This can be achieved by choosing the control space
U whose norm appears in (27) such that it is as least as smooth as H ′. The second
ingredient in the optimization functional (27) is a data fidelity term which enforces
a match of the system state y to some prescribed target state y∗, measured in some
norm which is typically weaker than ‖ · ‖H . Thus, we require that the observation
space Z and the control space U are such that the continuous embeddings

‖v‖H ′ <∼ ‖v‖U , v ∈U , ‖v‖Z <∼ ‖v‖H , v ∈ H, (29)

hold. Mostly one has investigated the simplest cases of norms which occur for U =
Z = L2(Ω) and which are covered by these assumptions [Li]. The parameter ω > 0
balances the norms in (27), the data fidelity term and the control.

Since the control appears in all of the right hand side of (28), such control prob-
lems are called distributed control problems. Although their practical value is of a
rather limited nature, distributed control problems help to bring out the basic mech-
anisms. Note that when the observed data is compatible in the sense that y∗ ≡ A−1 f ,
the control problem yields the trivial control u≡ 0 which implies J (y,u)≡ 0.
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Solution schemes for the control problem (27) subject to the constraints (28) can
be based on the system of operator equations derived next by the same variational
principles as employed in the previous section, using a Lagrange multiplier p to
enforce the constraints. Defining the Lagrangian functional

Lagr(y, p,u) := J (y,u)+ 〈p,Ay− f −u〉 (30)

on H×H×H ′, the first order necessary conditions or Karush-Kuhn-Tucker (KKT)
conditions δ Lagr(x) = 0 for x = p,y,u can be derived as

Ay = f +u

A′p = −S(y− y∗) (31)

ωRu = p.

Here the linear operators S and R can be interpreted as Riesz operators defined by
the inner products (·, ·)Z and (·, ·)U . The system (31) may be written in saddle point
form as

L V :=
(

A B′

B 0

)
V :=

⎛
⎝S 0 A′

0 ωR −I
A −I 0

⎞
⎠
⎛
⎝y

u
p

⎞
⎠=

⎛
⎝Sy∗

0
f

⎞
⎠=: F (32)

on H := H×H×H ′. Here we can also allow that Z in (27) is a trace space on
part of the boundary ∂Ω as long as the corresponding condition (29) is satisfied
[K3]. The class of control problems where the control is exerted through Neumann
boundary conditions can also be written in this form since in this case the control
still appears on the right hand side of a single operator equation of a form like (28),
see [DK3]. Well-posedness of the system (32) can now be established by applying
the conditions for saddle point problems stated in Section 2.3.

A few statements on the model of the control problem should be made. While
the PDE constraints (28) that govern the system are fixed, there is in many applica-
tions some ambiguity with respect to the choice of the spaces Z and U . L2 norms
are easily realized in finite element discretizations, although in some applications
smoother norms for the observation ‖ · ‖Z or for the control ‖ · ‖U are desirable.
This is the case, for instance, in temperature cooling processes where also the gra-
dient of the temperature of a material is to be controlled. Once Z and U are fixed,
there is only a single parameter ω to balance the two norms in (27). Modelling the
objective functional is therefore an issue where more flexibility may be advanta-
geous. Specifically in a multiscale setting, one may want to weight contributions on
different scales by multiple parameters.

The wavelet setting which we describe in Section 3 allows for this flexibility. It
is based on formulating the norms in the objective functional in terms of weighted
wavelet coefficient sequences which are equivalent to the norms for Z , U and
which, in addition, support an efficient numerical implementation. Once wavelet
discretizations are introduced, we formulate below control problems with such ob-
jective functionals.
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2.5 PDE-constrained control problems: Dirichlet boundary control

Practically the most relevant control problems are problems with Dirichlet boundary
control. They can be posed using the saddle point formulation from Section 2.3.

We consider as an illustrative guiding model the problem to minimize for some
given data y∗ the quadratic functional

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω
2
‖u‖2

U , (33)

where, adhering to the notation in Section 2.2 the state y and the control u are cou-
pled through the linear second order elliptic boundary value problem

−∇ · (a∇y)+ ky = f in Ω ,
y = u on Γ ,

(a∇y) ·n = 0 on ΓN .
(34)

The appearance of the control u as a Dirichlet boundary condition in (34) is referred
to as a Dirichlet boundary control. In view of the treatment of essential Dirichlet
boundary conditions in the context of saddle point problems derived in Section 2.3,
we write the PDE constraints (34) in the operator form (21) on Y ×Q where Y =
H1(Ω) and Q = (H1/2(Γ ))′.

The model control problem with Dirichlet boundary control then reads as fol-
lows: Minimize for given data y∗ ∈Z and f ∈ Y ′ the quadratic functional

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω
2
‖u‖2

U (35)

subject to (
A B′

B 0

)(
y
p

)
=
(

f
u

)
. (36)

In view of the problem formulation in Section 2.4 and the discussion of the choice
of the observation space Z and the control space, here we require analogously that
Z and U are such that the continuous embeddings

‖v‖Q′ <∼ ‖v‖U , v ∈U , ‖v‖Z <∼ ‖v‖Y , v ∈ Y, (37)

hold. Also the case of observations on part of the boundary ∂Ω can be taken into
account [K4]. It should be mentioned that the simple choice U = L2(Γ ) which is
used in many applications of Dirichlet control problems is not covered here. Indeed,
there may arise the problem of well-posedness as follows. The constraints (34) or, in
weak form (21), guarantee a unique weak solution y ∈Y = H1(Ω) provided that the
boundary term u satisfies u ∈Q′ = H1/2(Γ ). In the framework of control problems,
this smoothness of u therefore has to be required either by the choice of U or by the
choice of Z (such as Z = H1(Ω)) which would assure By ∈ Q′. In the latter case,
we could relax condition (37) on U .



Optimized wavelet preconditioning 337

By variational principles, we can derive as before the first order necessary condi-
tions for a coupled system of saddle point problems. Well-posedness of this system
can again be established by applying the conditions for saddle point problems from
Section 2.3 where the inf-sup condition for the saddle point problem (21) yields
an inf-sup condition for the exterior saddle point problem of interior saddle point
problems [K1].

3 Wavelets

The numerical solution of the afore-mentioned classes of problems hinges on the
availability of appropriate wavelet bases for the function spaces under consideration
which are all specific Hilbert spaces on the domain or on (part of) its boundary.

3.1 Basic properties

For the above classes of problems, we need to have a wavelet basis at our disposal
for each occurring function space. A wavelet basis for a Hilbert space H is here
understood as a collection of functions

ΨH := {ψH,λ : λ ∈ IIH} ⊂ H (38)

which are indexed by elements λ from an infinite index set IIH . Each of the indices
λ comprises different information λ = ( j,k,e) such as the refinement scale or level
of resolution j and a spatial location k = k(λ ) ∈ Z

n. In more than one space dimen-
sions, the basis functions are built from taking tensor products of certain univariate
functions, and in this case the third index e contains information on the type of
wavelet. We will frequently use the symbol |λ | := j to access the resolution level
j. In the univariate case on all of R, ψH,λ is typically generated by means of shifts
and dilates of a single function ψ , i.e., ψλ = ψ j,k = 2 j/2ψ(2 j · −k), j,k ∈ Z, nor-
malized with respect to ‖ · ‖L2 . On bounded domains, the structure of the functions
is essentially the same up to modifications near the boundary.

The three crucial properties that we will assume the wavelet basis to have for the
sequel are the following.

Riesz basis property (R): Every v ∈ H has a unique expansion in terms ofΨH ,

v = ∑
λ∈IIH

vλ ψH,λ =: vTΨH , v := (vλ )λ∈IIH , (39)

and its expansion coefficients satisfy a norm equivalence: for any v = {vλ : λ ∈ IIH}
one has

cH ‖v‖�2(IIH ) ≤ ‖vTΨH‖H ≤ CH ‖v‖�2(IIH ), v ∈ �2(IIH), (40)
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where 0 < cH ≤CH <∞. This means that wavelet expansions induce isomorphisms
between certain function spaces and sequence spaces. We write �2 norms without
subscripts as ‖ · ‖ := ‖ · ‖�2(IIH ) when the index set is clear from the context. If the
precise constants do not matter, we write the norm equivalence (40) shortly as

‖v‖ ∼ ‖vTΨH‖H , v ∈ �2(IIH). (41)

Locality (L): The functions ψH,λ have compact support which decreases with in-
creasing level j = |λ |, i.e.,

diam(suppψH,λ ) ∼ 2−|λ |. (42)

Cancellation property (CP): There exists an integer m̃ = m̃H such that

〈v,ψH,λ 〉 <∼ 2−|λ |(n/2−n/p+m̃)|v|W m̃
p (supp ψH,λ ). (43)

This means that integrating against a wavelet has the effect of taking an m̃th order
difference which annihilates the smooth part of v. This property is for wavelets
defined on Euclidean domains typically realized by constructing ΨH in such a way
that it possesses a dual or biorthogonal basis Ψ̃H ⊂ H ′ such that the multiresolution
spaces S̃ j := span{ψ̃H,λ : |λ | < j} contain all polynomials of order m̃. Here dual
basis means that 〈ψH,λ , ψ̃H,ν〉= δλ ,ν , λ ,ν ∈ IIH .

A few remarks on these properties should be made. In (R), the norm equivalence
(41) is crucial since it means complete control over a function measured in ‖ · ‖H

from above and below by its expansion coefficients: small changes in the coefficients
only cause small changes in the function. Together with the locality (L), this also
means that local changes stay local. This stability is an important feature which is
used for deriving optimal preconditioners. Finally, the cancellation property (CP)
entails that smooth functions have small wavelet coefficients which, on account of
(40) may be neglected in a controllable way. Moreover, (CP) can be used to derive
quasi–sparse representations of a wide class of operators, see the article by Rob
Stevenson in this volume.

By duality arguments one can show that (40) is equivalent to the existence of a
biorthogonal collection which is dual or biorthogonal toΨH ,

Ψ̃H := {ψ̃H,λ : λ ∈ IIH} ⊂ H ′, 〈ψH,λ , ψ̃H,μ〉= δλ ,μ , λ ,μ ∈ IIH , (44)

which is a Riesz basis for H ′, that is, for any ṽ = ṽT Ψ̃H ∈ H ′ one has

C−1
H ‖ṽ‖ ≤ ‖ṽTΨ̃H‖H ′ ≤ c−1

H ‖ṽ‖, (45)

see [D1, D3]. Here and in the sequel the tilde expresses that the collection Ψ̃H is a
dual basis to a primal one for the space identified by the subscript, so that Ψ̃H =ΨH ′ .
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Above in (40), we have already introduced the following shorthand notation
which simplifies the presentation of many terms. We will viewΨH both as in (38) as
a collection of functions as well as a (possibly infinite) column vector containing all
functions always assembled in some fixed unspecified order. For a countable collec-
tion of functionsΘ and some single function σ , the term 〈Θ ,σ〉 is to be understood
as the column vector with entries 〈θ ,σ〉, θ ∈ Θ , and correspondingly 〈σ ,Θ〉 the
row vector. For two collectionsΘ ,Σ , the quantity 〈Θ ,Σ〉 is then a (possibly infinite)
matrix with entries (〈θ ,σ〉)θ∈Θ , σ∈Σ for which 〈Θ ,Σ〉= 〈Σ ,Θ〉T . This also implies
for a (possibly infinite) matrix C that 〈CΘ ,Σ〉= C〈Θ ,Σ〉 and 〈Θ ,CΣ〉= 〈Θ ,Σ〉CT .

In this notation, the biorthogonality or duality conditions (44) can be expressed
shortly as

〈Ψ ,Ψ̃〉= I (46)

with the infinite identity matrix I.
Wavelets with the above properties can actually be obtained in the following way.

In particular, this concerns a scaling depending on the regularity of the space under
consideration. In our case, H will always be a Sobolev space Hs = Hs(Ω) or a
closed subspace of Hs(Ω) determined by homogeneous boundary conditions, or its
dual. For s < 0, Hs is interpreted as above as the dual of H−s.

We typically obtain the wavelet basisΨH for H from an anchor basisΨ = {ψλ :
λ ∈ II = IIH} which is a Riesz basis for L2(Ω), meaning that Ψ is scaled such that
‖ψλ‖L2(Ω) ∼ 1. Moreover, its dual basis Ψ̃ is also a Riesz basis for L2(Ω).Ψ and Ψ̃
are constructed in such a way that rescaled versions of both basesΨ ,Ψ̃ form Riesz
bases for a whole range of (closed subspaces of) Sobolev spaces Hs, for 0 < s < γ, γ̃ ,
respectively. Consequently, one can derive that for each s ∈ (−γ̃,γ) the collection

Ψs := {2−s|λ |ψλ : λ ∈ II}=: D−sΨ (47)

is a Riesz basis for Hs [D1]. This means that there exist positive finite constants
cs,Cs such that

cs ‖v‖ ≤ ‖vTΨs‖Hs ≤ Cs ‖v‖, v ∈ �2(II), (48)

holds for each s ∈ (−γ̃,γ). Such a scaling represented by a diagonal matrix Ds in-
troduced in (47) will play an important role later on. The analogous expression in
terms of the dual basis reads

Ψ̃s := {2s|λ | ψ̃λ : λ ∈ II}= DsΨ̃ , (49)

where Ψ̃s forms a Riesz basis of Hs for s ∈ (−γ, γ̃). This entails the following fact.
For t ∈ (−γ̃,γ) the mapping

Dt : v = vTΨ �→ (Dtv)TΨ = vT DtΨ = ∑
λ∈II

vλ 2t|λ |ψλ (50)

acts as a shift operator between Sobolev scales which means that
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‖Dtv‖Hs ∼ ‖v‖Hs+t ∼ ‖Ds+tv‖, if s, s+ t ∈ (−γ̃,γ). (51)

Concrete constructions of wavelet bases with the above properties for parameters
γ, γ̃ ≤ 3/2 on a bounded Lipschitz domain Ω can be found in [DKU, DSt]. This
suffices for the above mentioned examples where the relevant Sobolev regularity
indices range between −1 and 1.

3.2 Norm equivalences and Riesz maps

As we have seen, the scaling provided by D−s is an important feature to establish
norm equivalences (48) for the range s ∈ (−γ̃,γ) of Sobolev spaces Hs. However,
there are several other norms which are equivalent to ‖ · ‖Hs which may later be
used in the objective functional (27) in the context of control problems. This issue
addresses the mathematical model which we briefly discuss now.

We first consider norm equivalences for the L2 norm. Let as before Ψ be the
anchor wavelet basis for L2 for which the Riesz operator R = RL2 is the (infinite)
Gramian matrix with respect to the inner product (·, ·)L2 defined as

R := (Ψ ,Ψ)L2 = 〈Ψ ,Ψ〉. (52)

ExpandingΨ in terms of Ψ̃ and recalling the duality (46), this yields

I = 〈Ψ ,Ψ̃〉=
〈
〈Ψ ,Ψ〉Ψ̃ ,Ψ̃

〉
= R〈Ψ̃ ,Ψ̃〉 or R−1 = 〈Ψ̃ ,Ψ̃〉. (53)

R may be interpreted as the transformation matrix for the change of basis from Ψ̃
toΨ , that is,Ψ = RΨ̃ . For any w = wTΨ ∈ L2, we now obtain the identities

‖w‖2
L2

= (wTΨ ,wTΨ)L2 = wT 〈Ψ ,Ψ〉w = wT Rw = ‖R1/2w‖2 =: ‖ŵ‖2. (54)

Expanding w with respect to the basis Ψ̂ := R−1/2Ψ = R1/2Ψ̃ , that is, w = ŵTΨ̂ ,
yields ‖w‖L2 = ‖ŵ‖. On the other hand, we obtain from (48) with s = 0

c2
0 ‖w‖2 ≤ ‖w‖2

L2
≤ C2

0 ‖w‖2. (55)

From this we can derive the condition number κ(Ψ) of the wavelet basis in terms
of the extreme eigenvalues of R by defining

κ(Ψ) :=
(

C0

c0

)2

=
λmax(R)
λmin(R)

= κ(R)∼ 1, (56)

where κ(R) also denotes the spectral condition number of R and where the last
relation is assured by the asymptotic estimate (55). However, the absolute constants
will have an impact on numerical results in each individual case.
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For a Hilbert space H denote byΨH a wavelet basis for H satisfying (R), (L), (CP)
with a corresponding dual basis Ψ̃H . The (infinite) Gramian matrix with respect to
the inner product (·, ·)H inducing ‖ · ‖H which is defined by

RH := (ΨH ,ΨH)H (57)

will be also called Riesz operator. The space L2 is covered trivially by R0 = R. For
any function v := vTΨH ∈ H we have then the identity

‖v‖2
H = (v,v)H = (vTΨH ,vTΨH)H = vT (ΨH ,ΨH)H v

= vT RHv = ‖R1/2
H v‖2. (58)

Note that in general RH may not be explicitly computable, in particular, when H is
a fractional Sobolev space.

Again referring to (48), we obtain as in (56) for the more general case

κ(Ψs) :=
(

Cs

cs

)2

=
λmax(RHs)
λmin(RHs)

= κ(RHs)∼ 1 for each s ∈ (−γ̃ ,γ). (59)

Thus, all Riesz operators on the applicable scale of Sobolev spaces are spectrally
equivalent. Moreover, comparing (59) with (56), we get

cs

C0
‖R1/2v‖ ≤ ‖R1/2

Hs v‖ ≤ Cs

c0
‖R1/2v‖. (60)

Of course, in practice, the constants appearing in this equation may be much sharper,
as the bases for Sobolev spaces with different exponents are only obtained by a
diagonal scaling which preserves much of the structure of the original basis for L2.

We summarize these results for further reference.

Proposition 3.1. In the above notation, we have for any v = vTΨs ∈ Hs the norm
equivalences

‖v‖Hs = ‖R1/2
Hs v‖ ∼ ‖R1/2v‖ ∼ ‖v‖ for each s ∈ (−γ̃,γ). (61)

3.3 Representation of operators

A final ingredient concerns the wavelet representation of linear operators in terms of
wavelets. Let H,V be Hilbert spaces with wavelet basesΨH ,ΨV and corresponding
duals Ψ̃H , Ψ̃V , and suppose that L : H→V is a linear operator with dual L ′ : V ′ →
H ′ defined by 〈v,L ′w〉 := 〈L v,w〉 for all v ∈ H, w ∈V .

We shall make frequent use of this representation and its properties.

Remark 3.1. The wavelet representation of L : H → V with respect to the bases
ΨH ,Ψ̃V of H, V ′, respectively, is given by
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L := 〈Ψ̃V ,LΨH〉, L v = (Lv)TΨV . (62)

Thus, the expansion coefficients of L v in the basis that spans the range space of L
are obtained by applying the infinite matrix L = 〈Ψ̃V ,LΨH〉 to the coefficient vector
of v. Moreover, boundedness of L implies boundedness of L in �2, i.e.,

‖L v‖V <∼ ‖v‖H , v ∈ H, implies ‖L‖ := sup
‖v‖�2(IIH )≤1

‖Lv‖�2(IIV ) <∼ 1. (63)

Proof. Any image L v ∈V can naturally be expanded with respect toΨV as L v =
〈L v,Ψ̃V 〉ΨV . Expanding in addition v in the basisΨH , v = vTΨH yields

L v = vT 〈LΨH ,Ψ̃V 〉ΨV = (〈LΨH ,Ψ̃V 〉T v)TΨV = (〈Ψ̃V ,LΨH〉v)TΨV . (64)

As for (63), we can infer from (40) and (62) that

‖Lv‖�2(IIV ) ∼ ‖(Lv)TΨV‖V = ‖Lv‖V <∼ ‖v‖H ∼ ‖v‖�2(IIH ),

which confirms the claim. �

3.4 Multiscale decomposition of function spaces

In this section, the basic construction principles of the biorthogonal wavelets with
properties (R), (L) and (CP) are summarized, see, e.g., [D2]. Their cornerstones are
multiresolution analyses of the function spaces under consideration and the concept
of stable completions. These concepts are free of Fourier techniques and can there-
fore be applied to derive constructions of wavelets on domains or manifolds which
are subsets of R

n.

Multiresolution of L2 (univariate case). Practical constructions of wavelets typi-
cally start out with multiresolution analyses of function spaces. Consider a multires-
olution S of L2 which consists of closed subspaces S j of L2, called trial spaces,
such that they are nested and their union is dense in L2,

S j0 ⊂ S j0+1 ⊂ . . .⊂ S j ⊂ S j+1 ⊂ . . .L2, closL2

( ∞⋃
j= j0

S j

)
= L2. (65)

The index j is the refinement level which appeared already in the elements of the
index set II in (38), starting with some coarsest level j0 ∈ N0. We abbreviate for a
finite subsetΘ ⊂ L2 the linear span ofΘ as

S(Θ) = span{Θ}.

Typically the multiresolution spaces S j have the form
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S j = S(Φ j), Φ j = {φ j,k : k ∈ Δ j}, (66)

for some finite index set Δ j, where the set {Φ j}∞j= j0
is uniformly stable in the sense

that
‖c‖�2(Δ j) ∼ ‖c

TΦ j‖L2 , c = {ck}k∈Δ j ∈ �2(Δ j), (67)

holds uniformly in j. Here we have used again the shorthand notation

cTΦ j = ∑
k∈Δ j

ckφ j,k

and Φ j denotes both the (column) vector containing the functions φ j,k as well as the
set of functions (66).

The collection Φ j is called single scale basis since all its elements live only
on one scale j. In the present context of multiresolution analysis, Φ j is also called
generator basis or shortly generators of the multiresolution. We assume that the φ j,k

are compactly supported with

diam(suppφ j,k)∼ 2− j. (68)

It follows from (67) that they are scaled such that

‖φ j,k‖L2 ∼ 1 (69)

holds. It is known that nestedness (65) together with stability (67) implies the exis-
tence of matrices M j,0 = (m j

r,k)r∈Δ j+1,k∈Δ j such that the two-scale relation

φ j,k = ∑
r∈Δ j+1

m j
r,kφ j+1,r, k ∈ Δ j, (70)

is satisfied. We can essentially simplify the subsequent presentation of the material
by viewing (70) as a matrix–vector equation which then attains the compact form

Φ j = MT
j,0Φ j+1. (71)

Any set of functions satisfying an equation of this form, the refinement or two–scale
relation, will be called refinable.

Denoting by [X ,Y ] the space of bounded linear operators from a normed linear
space X into the normed linear space Y , one has that

M j,0 ∈ [�2(Δ j), �2(Δ j+1)]

is uniformly sparse which means that the number of entries in each row or column
is uniformly bounded. Furthermore, one infers from (67) that

‖M j,0‖= O(1), j ≥ j0, (72)

where the corresponding operator norm is defined as
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‖M j,0‖ := sup
c∈�2(Δ j), ‖c‖�2(Δ j)

=1
‖M j,0c‖�2(Δ j+1).

Since the union of S is dense in L2, a basis for L2 can be assembled from func-
tions which span any complement between two successive spaces S j and S j+1, i.e.,

S(Φ j+1) = S(Φ j)⊕S(Ψj) (73)

where
Ψj = {ψ j,k : k ∈ ∇ j}, ∇ j := Δ j+1 \Δ j. (74)

The functions Ψj are called wavelet functions or shortly wavelets if, among other
conditions detailed below, the union {Φ j ∪Ψj} is still uniformly stable in the sense
of (67). Since (73) implies S(Ψj)⊂ S(Φ j+1), the functions inΨj must also satisfy a
matrix–vector relation of the form

Ψj = MT
j,1Φ j+1 (75)

with a matrix M j,1 of size (#Δ j+1)× (#∇ j). Furthermore, (73) is equivalent to the
fact that the linear operator composed of M j,0 and M j,1,

M j = (M j,0,M j,1), (76)

is invertible as a mapping from �2(Δ j ∪∇ j) onto �2(Δ j+1). One can also show that
the set {Φ j ∪Ψj} is uniformly stable if and only if

‖M j‖,‖M−1
j ‖= O(1), j→ ∞. (77)

The particular cases that will be important for practical purposes are when not only
M j,0 and M j,1 are uniformly sparse but also the inverse of M j. We denote this
inverse by G j and assume that it is split into

G j = M−1
j =
(

G j,0

G j,1

)
. (78)

A special situation occurs when M j is an orthogonal matrix,

G j = M−1
j = MT

j

which corresponds to the case of L2 orthogonal wavelets [Dau]. A systematic con-
struction of more general M j, G j for spline-wavelets can be found in [DKU], see
also [D2] for more examples, including the hierarchical basis.

Thus, the identification of the functionsΨj which span the complement of S(Φ j)
in S(Φ j+1) is equivalent to completing a given refinement matrix M j,0 to an invert-
ible matrix M j in such a way that (77) is satisfied. Any such completion M j,1 is
called stable completion of M j,0. In other words, the problem of the construction of
compactly supported wavelets can equivalently be formulated as an algebraic prob-
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lem of finding the (uniformly) sparse completion of a (uniformly) sparse matrix
M j,0 in such a way that its inverse is also (uniformly) sparse. The fact that inverses
of sparse matrices are usually dense elucidates the difficulties in the constructions.

The concept of stable completions has been introduced in [CDP] for which a spe-
cial case is known as Sweldens’ lifting scheme. Of course, constructions that yield
compactly supported wavelets are particularly suited for computations in numerical
analysis.

Combining the two–scale relations (71) and (75), one can see that M j performs
a change of bases in the space S j+1,

(
Φ j

Ψj

)
=
(

MT
j,0

MT
j,1

)
Φ j+1 = MT

j Φ j+1. (79)

Conversely, applying the inverse of M j to both sides of (79) results in the recon-
struction identity

Φ j+1 = GT
j

(
Φ j

Ψj

)
= GT

j,0Φ j +GT
j,1Ψj. (80)

An example of the structure of the matrices M j and G j is given in Figure 1.

Fig. 1 Nonzero pattern of matrices M j (left) and G j (right) for boundary-adapted B-splines of
order d = 2 as generators and duals of order d̃ = 4

Fixing a finest resolution level J, one can repeat the decomposition (73) so that
SJ = S(ΦJ) can be written in terms of the functions from the coarsest space supplied
with the complement functions from all intermediate levels,

S(ΦJ) = S(Φ j0)⊕
J−1⊕
j= j0

S(Ψj). (81)
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Thus, every function v ∈ S(ΦJ) can be written in its single–scale representation

v = (cJ)TΦJ = ∑
k∈ΔJ

cJ,kφJ,k (82)

as well as in its multi–scale form

v = (c j0)
TΦ j0 +(d j0)

TΨj0 + · · ·+(dJ−1)TΨJ−1 (83)

with respect to the multiscale or wavelet basis

Ψ J := Φ j0 ∪
J−1⋃
j= j0

Ψj =:
J−1⋃

j= j0−1

Ψj (84)

Often the single–scale representation of a function may be easier to compute and
evaluate while the multi–scale representation allows one to separate features of the
underlying function characterized by different length scales. Since therefore both
representations are advantageous, it is useful to determine the transformation be-
tween the two representations, commonly referred to as the Wavelet Transform,

TJ : �2(Δ j)→ �2(Δ j), dJ �→ cJ , (85)

where
dJ := (c j0 ,d j0 , . . . ,dJ−1)T .

The previous relations (79) and (80) indicate that this will involve the matrices M j

and G j. In fact, TJ has the representation

TJ = TJ,J−1 · · ·TJ, j0 , (86)

where each factor has the form

TJ, j :=
(

M j 0
0 I(#ΔJ−#Δ j+1)

)
∈ R

(#ΔJ)×(#ΔJ). (87)

Schematically TJ can be visualized as a pyramid scheme

M j0 ,0 M j0+1,0 MJ−1,0

c j0 −→ c j0+1 −→ c j0+2 −→ ·· · cJ−1 −→ cJ

M j0 ,1 M j0+1,1 MJ−1,1

↗ ↗ ↗ ·· · ↗
d j0 d j0+1 d j0+2 dJ−1

(88)

Accordingly, the inverse transform T−1
J can be written also in product structure (86)

in reverse order involving the matrices G j as follows:

T−1
J = T−1

J, j0
· · ·T−1

J,J−1, (89)
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where each factor has the form

T−1
J, j :=
(

G j 0
0 I(#ΔJ−#Δ j+1)

)
∈ R

(#ΔJ)×(#ΔJ). (90)

The corresponding pyramid scheme is then

GJ−1,0 GJ−2,0 G j0 ,0

cJ −→ cJ−1 −→ cJ−2 −→ ·· · −→ c j0

GJ−1,1 GJ−2,1 G j0 ,1

↘ ↘ ↘ ·· · ↘
dJ−1 dJ−2 dJ−1 d j0

(91)

Remark 3.2. Property (77) and the fact that M j and G j can be applied in (#Δ j+1)
operations uniformly in j entails that the complexity of applying TJ or T−1

J using
the pyramid scheme is of order O(#ΔJ) = O(dim SJ) uniformly in J. For this reason,
TJ is called the Fast Wavelet Transform (FWT). Note that one should not explicitly
assemble TJ or T−1

J . In fact, due to the particular band structure of M j and G j, this
would result in matrices with O(J #ΔJ) entries.

In Table 1 at the end of this section, spectral condition numbers for the Fast Wavelet
Transform for different constructions of biorthogonal wavelets on the interval com-
puted in [Pa] are displayed.

Since ∪ j≥ j0S j is dense in L2, a basis for the whole space L2 is obtained when
letting J→ ∞ in (84),

Ψ :=
∞⋃

j= j0−1

Ψj = {ψ j,k : ( j,k) ∈ II}, Ψj0−1 := Φ j0

II :=
{
{ j0}×Δ j0

}
∪

∞⋃
j= j0

{
{ j}×∇ j

}
.

(92)

The next theorem from [D1] illustrates the relation betweenΨ and TJ .

Theorem 3.1. The multiscale transformations TJ are well–conditioned in the sense

‖TJ‖,‖T−1
J ‖= O(1), J ≥ j0, (93)

if and only if the collection Ψ defined by (92) is a Riesz basis for L2, i.e., every
v ∈ L2 has unique expansions

v =
∞

∑
j= j0−1

〈v,Ψ̃j〉Ψj =
∞

∑
j= j0−1

〈v,Ψj〉Ψ̃j, (94)

where Ψ̃ defined analogously as in (92) is also a Riesz basis for L2 which is
biorthogonal or dual toΨ ,

〈Ψ ,Ψ̃〉= I (95)
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such that
‖v‖L2 ∼ ‖〈Ψ̃ ,v〉‖�2(II) ∼ ‖〈Ψ ,v〉‖�2(II). (96)

We briefly explain next how the functions in Ψ̃ , denoted as wavelets dual to Ψ , or
dual wavelets, can be determined. Assume that there is a second multiresolution S̃
of L2 satisfying (65) where

S̃ j = S(Φ̃ j), Φ̃ j = {φ̃ j,k : k ∈ Δ j} (97)

and {Φ̃ j}∞j= j0
is uniformly stable in j in the sense of (67). Let the functions in Φ̃ j

also have compact support satisfying (68). Furthermore, suppose that the biorthog-
onality conditions

〈Φ j,Φ̃ j〉= I (98)

hold. We will often refer to Φ j as the primal and to Φ̃ j as the dual generators. The
nestedness of the S̃ j and the stability again implies that Φ̃ j is refinable with some
matrix M̃ j,0, similar to (71),

Φ̃ j = M̃T
j,0Φ̃ j+1. (99)

The problem of determining biorthogonal wavelets now consists in finding bases
Ψj,Ψ̃j for the complements of S(Φ j) in S(Φ j+1), and of S(Φ̃ j) in S(Φ̃ j+1), such that

S(Φ j)⊥S(Ψ̃j), S(Φ̃ j)⊥S(Ψj) (100)

and
S(Ψj)⊥S(Ψ̃r), j �= r, (101)

holds. The connection between the concept of stable completions and the dual gen-
erators and wavelets is made by the following result which is a special case from
[CDP].

Proposition 3.2. Suppose that the biorthogonal collections {Φ j}∞j= j0
and {Φ̃ j}∞j= j0

are both uniformly stable and refinable with refinement matrices M j,0, M̃ j,0, i.e.,

Φ j = MT
j,0Φ j+1, Φ̃ j = M̃T

j,0Φ̃ j+1, (102)

and satisfy the duality condition (98). Assume that M̌ j,1 is any stable completion of
M j,0 such that

M̌ j := (M j,0,M̌ j,1) = Ǧ−1
j (103)

satisfies (77).
Then

M j,1 := (I−M j,0M̃T
j,0)M̌ j,1 (104)

is also a stable completion of M j,0, and G j = M−1
j = (M j,0,M j,1)−1 has the form

G j =
(

M̃T
j,0

Ǧ j,1

)
. (105)
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Moreover, the collections of functions

Ψj := MT
j,1Φ j+1, Ψ̃j := Ǧ j,1Φ̃ j+1 (106)

form biorthogonal systems,

〈Ψj,Ψ̃j〉= I, 〈Ψj,Φ̃ j〉= 〈Φ j,Ψ̃j〉= 0, (107)

so that
S(Ψj)⊥S(Ψ̃r), j �= r, S(Φ j)⊥S(Ψ̃j), S(Φ̃ j)⊥S(Ψj). (108)

In particular, the relations (98), (107) imply that the collections

Ψ =
∞⋃

j= j0−1

Ψj, Ψ̃ :=
∞⋃

j= j0−1

Ψ̃j := Φ̃ j0 ∪
∞⋃

j= j0

Ψ̃j (109)

are biorthogonal,
〈Ψ ,Ψ̃〉= I. (110)

Remark 3.3. Note that the properties needed in addition to (110) to ensure (96) are
neither properties of the complements nor of their basesΨ ,Ψ̃ but of the multireso-
lution sequences S and S̃ . These can be phrased as approximation and regularity
properties and appear in Theorem 3.2.

We briefly recall yet another useful point of view. The operators

Pjv := 〈v,Φ̃ j〉Φ j = 〈v,Ψ̃ j〉Ψ j = 〈v,Φ̃ j0〉Φ j0 +
j−1

∑
r= j0

〈v,Ψ̃r〉Ψr

P′jv := 〈v,Φ j〉Φ̃ j = 〈v,Ψ j〉Ψ̃ j = 〈v,Φ j0〉Φ̃ j0 +
j−1

∑
r= j0

〈v,Ψr〉Ψ̃r

(111)

are projectors onto

S(Φ j) = S(Ψ j) and S(Φ̃ j) = S(Ψ̃ j) (112)

respectively, which satisfy

PrPj = Pr, P′rP′j = P′r , r ≤ j. (113)

Remark 3.4. Let {Φ j}∞j= j0
be uniformly stable. The Pj defined by (111) are uni-

formly bounded if and only if {Φ̃ j}∞j= j0
is also uniformly stable. Moreover, the Pj

satisfy (113) if and only if the Φ̃ j are refinable as well. Note that then (98) implies

MT
j,0M̃ j,0 = I. (114)

In terms of the projectors, the uniform stability of the complement bases Ψj, Ψ̃j

means that
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‖(Pj+1−Pj)v‖L2 ∼ ‖〈Ψ̃j,v〉‖�2(∇ j), ‖(P′j+1−P′j)v‖L2 ∼ ‖〈Ψj,v〉‖�2(∇ j), (115)

so that the L2 norm equivalence (96) is equivalent to

‖v‖2
L2
∼

∞

∑
j= j0

‖(Pj−Pj−1)v‖2
L2
∼

∞

∑
j= j0

‖(P′j−P′j−1)v‖2
L2

(116)

for any v ∈ L2, where Pj0−1 = P′j0−1 := 0.

The whole concept derived so far lives from both Φ j and Φ̃ j. It should be pointed
out that in the algorithms one actually does not need Φ̃ j explicitly for computations.

We recall next results that guarantee norm equivalences of the type (40) for
Sobolev spaces.

Multiresolution of Sobolev spaces. Let now S be a multiresolution sequence
consisting of closed subspaces of Hs with the property (65) whose union is dense
in Hs. The following result from [D1] ensures under which conditions norm equiv-
alences hold for the Hs–norm.

Theorem 3.2. Let {Φ j}∞j= j0
and {Φ̃ j}∞j= j0

be uniformly stable, refinable, biorthog-
onal collections and let the Pj : Hs → S(Φ j) be defined by (111).
If the Jackson-type estimate

inf
v j∈S j

‖v− v j‖L2
<∼ 2−s j‖v‖Hs , v ∈ Hs, 0 < s≤ d̄, (117)

and the Bernstein inequality

‖v j‖Hs <∼ 2s j‖v j‖L2 , v j ∈ S j, s < t̄, (118)

hold for

S j =
{

S(Φ j)
S(Φ̃ j)

}
with order d̄ =

{
d
d̃

}
and t̄ =

{
t
t̃

}
, (119)

then for
0 < σ := min{d, t}, 0 < σ̃ := min{d̃, t̃}, (120)

one has

‖v‖2
Hs ∼

∞

∑
j= j0

22s j‖(Pj−Pj−1)v‖2
L2

, s ∈ (−σ̃ ,σ). (121)

Recall that we always write Hs = (H−s)′ for s < 0.
The regularity of S and S̃ is characterized by

t := sup{s : S(Φ j)⊂ Hs, j ≥ j0}, t̃ := sup{s : S(Φ̃ j)⊂ Hs, j ≥ j0} (122)

Recalling the representation (115), we can immediately derive the following fact.

Corollary 3.1. Suppose that the assumptions in Theorem 3.2 hold. Then we have
the norm equivalence
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‖v‖2
Hs ∼

∞

∑
j= j0−1

22s j‖〈Ψ̃j,v〉‖2
�2(∇ j), s ∈ (−σ̃ ,σ). (123)

In particular for s = 0 the Riesz basis property of the Ψ , Ψ̃ relative to L2(96) is
recovered. For many applications it suffices to have (121) or (123) only for certain
s > 0 for which one only needs to require (117) and (118) for {Φ j}∞j= j0

. The Jackson

estimates (117) of order d̃ for S(Φ̃ j) imply the cancellation properties (CP) (43), see,
e.g., [D4].

Remark 3.5. When the wavelets live on Ω ⊂ R
n, (117) means that all polynomials

up to order d̃ are contained in S(Φ̃ j). One also says that S(Φ̃ j) is exact of order d̃.
On account of (95), this implies that the wavelets ψ j,k are orthogonal to polynomials
up to order d̃ or have d̃th order vanishing moments. By Taylor expansion, this in turn
yields (43).

The following generalizations of the discrete norms (116) are useful. Let for
s ∈ R

|||v|||s :=

(
∞

∑
j= j0

22s j‖(Pj−Pj−1)v‖2
L2

)1/2

(124)

which by the relations (115) is also equivalent to

v s :=

(
∞

∑
j= j0−1

22s j‖〈Ψ̃j,v〉‖2
�2(∇ j)

)1/2

. (125)

In this notation, (121) and (123) read

‖v‖Hs ∼ |||v|||s ∼ v s. (126)

In terms of such discrete norms, Jackson and Bernstein estimates hold with con-
stants equal to one.

Lemma 3.1. [K1] Let {Φ j}∞j= j0
and {Φ̃ j}∞j= j0

be uniformly stable, refinable, bior-
thogonal collections and let the Pj be defined by (111). Then the estimates

v−Pjv s′ ≤ 2−( j+1)(s−s′) v s, v ∈ Hs, s′ ≤ s≤ d, (127)

and
v j s ≤ 2 j(s−s′) v j s′ , v j ∈ S(Φ j), s′ ≤ s≤ d, (128)

are valid, and correspondingly for the dual side.

The same results hold for the norm ||| · ||| defined in (124).

Reverse Cauchy–Schwarz Inequalities. The biorthogonality condition (98)
implies together with direct and inverse estimates the following reverse Cauchy–
Schwarz inequalities for finite–dimensional spaces [DK2]. This is one essential in-
gredient in proving a sufficient condition for satisfying the LBB condition in Section
4.2.
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Lemma 3.2. Let the assumptions in Theorem 3.2 be valid such that the norm equiv-
alence (121) holds for (−σ̃ ,σ) with σ , σ̃ defined in (120). Then for any v ∈ S(Φ j)
there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃ j) such that

‖v‖Hs ‖ṽ∗‖H−s <∼ 〈v, ṽ
∗〉 (129)

for any 0≤ s < min(σ , σ̃).

The proof of this result given in [DK2] for s = 1/2 in terms of the projectors Pj

defined in (111) and corresponding duals P′j immediately carries over to more gen-
eral s. Recalling the representation (112) in terms of wavelets, the reverse Cauchy
inequality (129) attains the following sharp form.

Lemma 3.3. [K1] Let the assumptions of Lemma 3.1 hold. Then for every v∈ S(Φ j)
there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃ j) such that

v s ṽ∗ −s = 〈v, ṽ∗〉 (130)

for any 0≤ s≤min(σ , σ̃).

Proof. Every v ∈ S(Φ j) can be written as

v =
j−1

∑
r= j0−1

2sr ∑
k∈∇r

vr,kψr,k.

Setting now

ṽ∗ :=
j−1

∑
r= j0−1

2−sr ∑
k∈∇r

vr,kψ̃r,k

with the same coefficients v j,k, the definition of · s yields by biorthogonality (110)

v s ṽ∗ −s =
j−1

∑
r= j0−1

∑
k∈∇r

|v j,k|2.

Combining this with the observation

〈v, ṽ∗〉 =
j−1

∑
r= j0−1

∑
k∈∇r

|v j,k|2

confirms (130). �

Remark 3.6. The previous proof reveals that the identity (130) is also true for ele-
ments from infinite–dimensional spaces Hs and (Hs)′ for whichΨ and Ψ̃ are Riesz
bases.

Biorthogonal wavelets on R. The construction of biorthogonal spline-wavelets on
R from [CDF] for L2 = L2(R) employs the multiresolution framework introduced
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at the beginning of this section. There the φ j,k are generated through the dilates and
translates of a single function φ ∈ L2,

φ j,k = 2 j/2φ(2 j ·−k). (131)

This corresponds to the idea of a uniform virtual underlying grid, explaining the
terminology uniform refinements. B–Splines on uniform grids are known to satisfy
refinement relations (70) in addition to being compactly supported and having L2–
stable integer translates. For computations, they have the additional advantage that
they can be expressed as piecewise polynomials. In the context of variational for-
mulations for second order boundary value problems, a well–used example are the
nodal finite elements φ j,k generated by the cardinal B–Spline of order two, i.e., the
piecewise linear continuous function commonly called the ‘hat function’. For car-
dinal B–Splines as generators, a whole class of dual generators φ̃ j,k (of arbitrary
smoothness at the expense of larger supports) can be constructed which are also
generated by one single function φ̃ through translates and dilates. By Fourier tech-
niques, one can construct from φ , φ̃ then a pair of biorthogonal wavelets ψ , ψ̃ whose
dilates and translates built as in (131) constitute Riesz bases for L2(R).

By taking tensor products of these functions, of course, one can generate bior-
thogonal wavelet bases for L2(Rn).

Biorthogonal wavelets on domains. Some constructions that exist by now have
as a core ingredient tensor products of one-dimensional wavelets on an interval
derived from the biorthogonal wavelets from [CDF] on R. On finite intervals in R,
the corresponding constructions are usually based on keeping the elements ofΦ j,Φ̃ j

supported inside the interval while modifying those translates overlapping the end
points of the interval so as to preserve a desired degree of polynomial exactness.
A general detailed construction satisfying all these requirements has been proposed
in [DKU]. Here just the main ideas for constructing a biorthogonal pair Φ j,Φ̃ j and
corresponding wavelets satisfying the above requirements are sketched, where we
apply the techniques derived at the beginning of this section.

We start out with those functions from two collections of biorthogonal genera-
tors ΦR

j ,Φ̃R

j for some fixed j ≥ j0 living on the whole real line whose support has
nonempty intersection with the interval (0,1). In order to treat the boundary effects
separately, we assumed that the coarsest resolution level j0 is large enough so that,
in view of (68), functions overlapping one end of the interval vanish at the other.
One then leaves as many functions from the collection ΦR

j ,Φ̃R

j living in the interior
of the interval untouched and modifies only those near the interval ends. Note that
keeping just the restrictions to the interval of those translates overlapping the end
points would destroy stability (and also the cardinality of the primal and dual basis
functions living on (0,1) since their supports do not have the same size). Therefore,
modifications at the end points are necessary; also, just discarding them from the
collections (66), (97) would produce an error near the end points. The basic idea is
essentially the same for all constructions of orthogonal and biorthogonal wavelets
on R adapted to an interval. Namely, one takes fixed linear combinations of all func-
tions in ΦR

j ,Φ̃R

j living near the ends of the interval in such a way that monomials
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up to the exactness order are reproduced there and such that the generator bases
have the same cardinality. Because of the boundary modifications, the collections of
generators are there no longer biorthogonal. However, one can show in the case of
cardinal B–Splines as primal generators (which is a widely used class for numerical
analysis) that biorthogonalization is indeed possible. This yields collections denoted

by Φ(0,1)
j ,Φ̃(0,1)

j which then satisfy (98) on (0,1) and all assumptions required in
Proposition 3.2.

For the construction of corresponding wavelets, first an initial stable completion
M̌ j,1 is computed by applying Gaussian eliminations to factor M j,0 and then to find
a uniformly stable inverse of M̌ j. Here we exploit that for cardinal B–Splines as
generators the refinement matrices M j,0 are totally positive. Thus, they can be stably
decomposed by Gaussian elimination without pivoting. Application of Proposition

3.2 then gives the corresponding biorthogonal waveletsΨ (0,1)
j ,Ψ̃ (0,1)

j on (0,1) which
satisfy the requirements in Corollary 3.1. It turns out that these wavelets coincide in
the interior of the interval again with those on all of R from [CDF]. An example of
the primal wavelets for d = 2 generated by piecewise linear continuous functions is
displayed in Figure 2 on the left.

After constructing these basic versions, one can then perform local transforma-
tions near the ends of the interval in order to improve the condition or L2 stability
constants, see [Bu1, Pa] for corresponding results and numerical examples.

We display spectral condition numbers for the FWT for two different construc-
tions of biorthogonal wavelets on the interval in Table 1. The first column denotes
the finest level on which the spectral condition numbers of the FWT are computed.
The next column contains the numbers for the construction of biorthogonal spline-
wavelets on the interval from [DKU] for the case d = 2, d̃ = 4 while the last column
displays the condition numbers for a scaled version derived in [Bu1]. We observe
that the absolute numbers stay constant and low even for high levels j. We will see
later in Section 4.1 how the transformation TJ is used for preconditioning.

j κ2(TDKU) κ2(TB)

4 4.743e+00 4.640e+00

5 6.221e+00 6.024e+00

6 8.154e+00 6.860e+00

7 9.473e+00 7.396e+00

8 1.023e+01 7.707e+00

9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j κ2(TDKU) κ2(TB)

11 1.097e+01 8.011e+00

12 1.103e+01 8.034e+00

13 1.106e+01 8.046e+00

14 1.107e+01 8.051e+00

15 1.108e+01 8.054e+00

16 1.108e+01 8.056e+00

Table 1 Computed spectral condition numbers for the Fast Wavelet Transform on [0,1] for differ-
ent constructions of biorthogonal wavelets on the interval [Pa]
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Along these lines, also biorthogonal generators and wavelets with homogeneous

(Dirichlet) boundary conditions can be constructed. Since the Φ(0,1)
j are locally near

the boundary monomials which all vanish at 0,1 except for one, removing the one

from Φ(0,1)
j which corresponds to the constant function produces a collection of

generators with homogeneous boundary conditions at 0,1. In order for the moment
conditions (43) still to hold for the Ψj, the dual generators have to have comple-
mentary boundary conditions. A corresponding construction has been carried out
in [DS1] and implemented in [Bu1]. Homogeneous boundary conditions of higher
order can be generated accordingly.

By taking tensor products of the wavelets on (0,1), in this manner biorthogonal
wavelets for Sobolev spaces on (0,1)n with or without homogeneous boundary con-
ditions are obtained. This construction can be further extended to any other domain
or manifold which is the image of a regular parametric mapping of the unit cube.
Some results on the construction of wavelets on manifolds are summarized in [D3].
There are essentially two approaches. The first idea is based on domain decom-
position and consists in ‘glueing’ generators across interelement boundaries, see,
e.g., [CTU, DS2]. These approaches all have in common that the norm equivalences
(123) for Hs = Hs(Γ ) can be shown to hold only for the range−1/2 < s < 3/2, due
to the fact that duality arguments apply only for this range because of the nature of
a modified inner product to which biorthogonality refers. The other approach which
overcomes the above limitations on the ranges for which the norm equivalences hold
has been developed in [DS3] based on previous characterizations of function spaces
as Cartesian products from [CF]. The construction in [DS3] has been optimized and
implemented to construct biorthogonal wavelet bases on the sphere in [KS], see the
right graphic in Figure 2. More on such constructions for boundary integral opera-
tors can be found in the article by Helmut Harbrecht and Reinhold Schneider in this
volume.

Fig. 2 Primal wavelets for d = 2 on [0,1] (left) and on a sphere as constructed in [KS] (right)

Of course, there are also different attempts to construct wavelet bases with the
above properties without using tensor products. A construction of biorthogonal
spline-wavelets on triangles introduced by [Stv] has been implemented in two spa-
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tial dimensions with an application to the numerical solution of a linear second order
elliptic boundary value problem in [Kr].

4 Problems in wavelet coordinates

4.1 Elliptic boundary value problems

We now derive a representation of the elliptic boundary value problem from Section
2.2 in terms of (infinite) wavelet coordinates.

Let for H given by (8) or (9) ΨH be a wavelet basis with corresponding dual
Ψ̃H which satisfies the properties (R), (L) and (CP) from Section 3.1. Following the
recipe from Section 3.3, expanding y = yTΨH , f = fTΨ̃H and recalling (12), the
wavelet representation of the elliptic boundary value problem (14) is given by

Ay = f (132)

where
A := a(ΨH ,ΨH ), f := 〈ΨH , f 〉. (133)

Then the mapping property (13) and the Riesz basis property (R) yield the following
fact.

Proposition 4.1. The infinite matrix A is a boundedly invertible mapping from �2 =
�2(IIH ) into itself, and there exists finite positive constants cA ≤CA such that

cA‖v‖ ≤ ‖Av‖ ≤CA‖v‖, v ∈ �2(IIH ). (134)

Proof. For any v∈H with coefficient vector v∈ �2, we have by the lower estimates
in (40), (13) and the upper inequality in (45), respectively,

‖v‖ ≤ c−1
H ‖v‖H ≤ c−1

H c−1
A ‖Av‖H ′ = c−1

H c−1
A ‖(Av)TΨ̃H ‖H ′ ≤ c−2

H c−1
A ‖Av‖

where we have used the wavelet representation (62) for A. Likewise, the converse
estimate

‖Av‖ ≤CH ‖Av‖H ′ ≤CH CA‖v‖H ≤C2
H CA‖v‖

follows by the lower inequality in (45) and the upper estimates in (13) and (40).
The constants appearing in (134) are therefore identified as cA := c2

H cA and CA :=
c2
H CA. �

In the present situation where A is defined via the elliptic bilinear form a(·, ·),
Proposition 4.1 entails the following result with respect to preconditioning. Let for
II = IIH the symbol Λ denote any finite subset of the index set II. For the corre-
sponding set of waveletsΨΛ := {ψλ : λ ∈Λ} denote by SΛ := spanΨΛ the respec-
tive finite-dimensional subspace of H . For the wavelet representation of A in terms
ofΨΛ ,
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AΛ := a(ΨΛ ,ΨΛ ), (135)

we obtain the following result.

Proposition 4.2. If a(·, ·) is H -elliptic according to (11), the finite matrix AΛ is
symmetric positive definite and its spectral condition number is bounded uniformly
in Λ , i.e.,

κ2(AΛ ) ≤ CA

cA
, (136)

where cA,CA are the constants from (134).

Proof. Clearly, since AΛ is just a finite section of A, we have ‖AΛ‖ ≤ ‖A‖. On
the other hand, by assumption, a(·, ·) is H -elliptic which entails that a(·, ·) is also
elliptic on every finite subspace SΛ ⊂H . Thus, we infer ‖A−1

Λ ‖ ≤ ‖A−1‖, and we
have

cA‖vΛ‖ ≤ ‖AΛvΛ‖ ≤CA‖vΛ‖, vΛ ∈ SΛ . (137)

Together with the definition κ2(AΛ ) := ‖AΛ‖‖A−1
Λ ‖ we obtain the claimed esti-

mate. �

In other words, representations of A with respect to properly scaled wavelet bases
for H entail well-conditioned system matrices AΛ independent of Λ . This in turn
means that the convergence speed of an iterative solver applied to the corresponding
finite system

AΛyΛ = fΛ (138)

does not deteriorate as |Λ | → ∞.
In summary, ellipticity implies stability of the Galerkin discretizations for any set

Λ ⊂ II. This is not automatically the case for any finite versions of the saddle point
problems, as we will see in Section 4.2.

Fast wavelet transform. We briefly summarize how in the situation of uniform
refinements, i.e., when S(ΦJ) = S(Ψ J), the Fast Wavelet Transformation (FWT) TJ

can be used for preconditioning linear elliptic operators, together with a a diagonal
scaling induced by the norm equivalence (123) [DK1]. We recall the notation from
Section 3.4 where the wavelet basis is in fact the (unscaled) anchor basis from Sec-
tion 3.1. Thus, the norm equivalence (40) using the scaled wavelet basis ΨH is the
same as (123) in the anchor basis. Recall that the norm equivalence (123) implies
that every v ∈ Hs can be expanded uniquely in terms of the Ψ and its expansion
coefficients v satisfy

‖v‖Hs ∼ ‖Dsv‖�2

where Ds is a diagonal matrix with entries Ds
( j,k),( j′,k′) = 2s jδ j, j′δk,k′ . For H ⊂

H1(Ω), the case s = 1 is relevant.
In a stable Galerkin scheme for (10) with respect to S(Ψ J) = S(ΨΛ ), we have

therefore already identified the diagonal (scaling) matrix DJ consisting of the finite
portion of the matrix D = D1 for which j0− 1 ≤ j ≤ J− 1. The representation of
A with respect to the (unscaled) wavelet basis Ψ J can be expressed in terms of the
Fast Wavelet Transform TJ , that is,
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〈Ψ J ,AΨ J〉 = TT
J 〈ΦJ ,AΦJ〉TJ , (139)

where ΦJ is the single–scale basis for S(Ψ J). Thus, we first set up the operator
equation as in finite element settings in terms of the single–scale basis ΦJ . Applying
the Fast Wavelet Transform TJ together with DJ yields that the operator

AJ := D−1
J TT

J 〈ΦJ ,AΦJ〉TJ D−1
J (140)

has uniformly bounded condition numbers independent of J. This can be seen by
combining the properties of A according to (13) with the norm equivalences (40)
and (45).

It is known that the boundary adaptations of the generators and wavelets aggra-
vate the absolute values of the condition numbers. Nevertheless, these constants can
be substantially reduced by an operator-adapted transformation which takes into
account only the coarsest discretization level and, thus, is inexpensive [Bu1]. Nu-
merical tests confirm that the absolute constants can further be improved by taking
instead of D−1

J the inverse of the diagonal of 〈Ψ J ,AΨ J〉 for the scaling in (140)
[Bu1, Pa].

In Table 2 we display the condition numbers for discretizations using the weak
form of the elliptic operator −Δ + id on (0,1)n in up to three dimensions using
boundary adapted biorthogonal spline-wavelets in the case d = 2, d̃ = 4 with such a
scaling and additional shifts of small eigenvalues which is an inexpensive operation
[Bu1].

j n = 1 n = 2 n = 3

3 22.3 9.6 18.3

4 23.9 11.8 37.1

5 25.0 14.3 39.8

6 25.7 16.0 40.9

8 26.6 18.4

10 27.1

12 27.3

Table 2 Optimized spectral condition numbers of the operator A using tensor products of
biorthogonal wavelets on the interval for space dimensions n = 1,2,3 [Bu1]

4.2 Saddle point problems

As in the previous situation, we derive a representation of the saddle point problem
introduced in Section 2.3 in terms of (infinite) wavelet coordinates.

Let for H =Y ×Q with Y = H1(Ω), Q = (H1/2(Γ ))′ two collections of wavelet
bases ΨY , ΨQ be available, each satisfying (R), (L) and (CP), with respective duals



Optimized wavelet preconditioning 359

Ψ̃Y , Ψ̃Q. Like before, we expand y = yTΨY and p = pTΨQ and test with the elements
fromΨY ,ΨQ. Then (21) attains the form

L
(

y
p

)
:=
(

A BT

B 0

)(
y
p

)
=
(

f
g

)
, (141)

where
A := 〈ΨY ,AΨY 〉 f := 〈ΨY , f 〉,
B := 〈ΨQ,BΨY 〉, g := 〈ΨQ,g〉.

(142)

In view of the above assertions, the operator L is an �2–automorphism, i.e., for every
(v,q) ∈ �2(II) = �2(IIY × IIQ) we have

cL

∥∥∥∥
(

v
q

)∥∥∥∥ ≤
∥∥∥∥L
(

v
q

)∥∥∥∥ ≤ CL

∥∥∥∥
(

v
q

)∥∥∥∥ (143)

with constants cL,CL only depending on cL ,CL from (26) and the constants in the
norm equivalences (40) and (45).

For saddle point problems with an operator L satisfying (143), finite sections
are in general not uniformly stable in the sense of (137). In fact, for discretizations
on uniform grids, the validity of the corresponding mapping property relies on a
suitable stability condition, see,e.g., [BF] or the article by Ricardo Nochetto and
coauthors in this volume. Corresponding results derived in [DK2] are as follows.

The bilinear form a(·, ·) defined in (7) is for c > 0 elliptic on all of Y = H1(Ω)
and, hence, also on any finite–dimensional subspace of Y . Let there be two multires-
olution analyses Y of H1(Ω) and Q of Q where the discrete spaces are Yj ⊂H1(Ω)
and QΛ =: Q� ⊂ (H1/2(Γ ))′. With the notation from Section 3.4 and in addition
superscripts referring to the domain on which the functions live, these spaces are
represented by

Yj = S(ΦΩ
j ) = S(Ψ j,Ω ), Ỹj = S(Φ̃Ω

j ) = S(Ψ̃ j,Ω ),

Q� = S(ΦΓ
� ) = S(Ψ �,Γ ), Q̃� = S(Φ̃Γ

� ) = S(Ψ̃ �,Γ ).
(144)

Here the indices j and � refer to mesh sizes on the domain and the boundary,

hΩ ∼ 2− j and hΓ ∼ 2−�.

The discrete inf–sup condition, the LBB condition, for the pair Yj,Q� requires that
there exists a constant β1 > 0 independent of j and � such that

inf
q∈Q�

sup
v∈Yj

b(v,q)
‖v‖H1(Ω) ‖q‖(H1/2(Γ ))′

≥ β1 > 0 (145)

holds. We have investigated in [DK2] the general case in arbitrary spatial dimen-
sions where the Q� are not trace spaces of Yj. Employing the reverse Cauchy-
Schwarz inequalities from Section 3.4, one can show that (145) is satisfied provided
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that hΓ (hΩ )−1 = 2 j−� ≥ cΩ > 1. This is similar to the condition which was known
for bivariate polygons and particular finite elements [Ba]. Although the theoreti-
cal estimates are quite pessimistic, numerical experiments for a circular boundary
within a square show that the spectral condition numbers of BBT are still well-
behaved even when this sufficient condition is violated.

It should be mentioned that the obstructions caused by the LBB condition can be
avoided by means of stabilization techniques proposed, where, however, the loca-
tion of the boundary of Ω relative to the mesh is somewhat constrained. A related
approach which systematically avoids restrictions of the LBB type is based on least
squares techniques [DKS].

It is particularly noteworthy that adaptive schemes based on wavelets can be
designed in such a way that the LBB condition is automatically enforced. This was
first observed in [DDU]. More on this subject can be found in [D4].

In order to get an impression of the value of the constants for the condition num-
bers for A in (136) and the corresponding ones for the saddle point operator on
uniform grids (143), an example with Ω = (0,1)2 and Γ chosen as one face of its
boundary was implemented and investigated in [Pa]. In Table 3, the spectral condi-
tion numbers of A and L with respect to two different constructions of wavelets for
the case d = 2 and d̃ = 4 are displayed. We see next to the first column in which
the refinement level j is listed the spectral condition numbers of A with the wavelet
construction from [DKU] denoted by ADKU and with the modification introduced in
[Bu1] and a further transformation [Pa] denoted by AB. The last columns contain
the respective numbers for the saddle point matrix L where κ2(L) :=

√
κ(LT L).

We observe that the spectral condition numbers stay uniformly bounded and small
as j increases.

j κ2(ADKU) κ2(AB) κ2(LDKU) κ2(LB)

3 5.195e+02 1.898e+01 1.581e+02 4.147e+01

4 6.271e+02 1.066e+02 1.903e+02 1.050e+02

5 6.522e+02 1.423e+02 1.997e+02 1.399e+02

6 6.830e+02 1.820e+02 2.112e+02 1.806e+02

7 7.037e+02 2.162e+02 2.318e+02 2.145e+02

8 7.205e+02 2.457e+02 2.530e+02 2.431e+02

9 7.336e+02 2.679e+02 2.706e+02 2.652e+02

Table 3 Spectral condition numbers of the operators A and L on Ω = (0,1)2 for different con-
structions of biorthogonal wavelets on the interval [Pa]
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4.3 Control problems: Distributed control

After these preparations, we can now discuss appropriate wavelet formulations for
PDE-constrained control problems with distributed control as introduced in Section
2.4. Let for V ∈ {H,Z ,U }ΨV denote a wavelet basis with the properties (R), (L),
(CP) for V with dual basis Ψ̃V .

Let Z ,U satisfy the embedding (29). In terms of wavelet bases, the correspond-
ing canonical injections correspond in view of (47) to a multiplication by a diagonal
matrix. That is, let DZ ,DH be such that

ΨZ = DZΨH , Ψ̃H = DHΨU . (146)

Since Z possibly induces a weaker and U a stronger topology, the diagonal ma-
trices DZ ,DH are such that their entries are nondecreasing in scale, and there is a
finite constant C such that

‖D−1
Z ‖,‖D

−1
H ‖ ≤C. (147)

For instance, for H = Hα ,Z = Hβ , or for H ′ = H−α , U = H−β , 0 ≤ β ≤ α ,
DZ ,DH have entries (DZ )λ ,λ = (DH)λ ,λ = (Dα−β )λ ,λ = 2(α−β )|λ |.

We expand y inΨH and u in a wavelet basisΨU for U ⊂ H ′,

u = uTΨU = (D−1
H u)TΨH ′ . (148)

Following the derivation in Section 4.1, the linear constraints (28) attain the form

Ay = f+D−1
H u (149)

where
A := a(ΨH ,ΨH), f := 〈ΨH , f 〉. (150)

Recall that A has been assumed to be symmetric. The objective functional (33)
is stated in terms of the norms ‖ · ‖Z and ‖ · ‖U . For an exact representation of
these norms, corresponding Riesz operators RZ and RU defined analogously to
(57) would come into play which may not be explicitly computable if Z ,U are
fractional Sobolev spaces. On the other hand, as mentioned before, such a cost func-
tional in many cases serves the purpose of yielding unique solutions while there is
some ambiguity in its exact formulation. Hence, in search for a formulation which
best supports numerical realizations, it is often sufficient to employ norms which
are equivalent to ‖ · ‖Z and ‖ · ‖U . In view of the discussion in Section 3.2, we can
work for the norms ‖·‖Z , ‖·‖U only with the diagonal scaling matrices Ds induced
by the regularity of Z ,U , or we can in addition include the Riesz map R defined in
(52). In the numerical studies in [Bu1], a somewhat better quality of the solution is
observed when R is included. In order to keep track of the appearance of the Riesz
maps in the linear systems derived below, we choose here the latter variant.

Moreover, we expand the given observation function y∗ ∈Z as

y∗ = 〈y∗,Ψ̃Z 〉ΨZ =: (D−1
Z y∗)TΨZ = yT

∗ΨH . (151)



362 Angela Kunoth

The way the vector y∗ is defined here for notational convenience may by itself actu-
ally have infinite norm in �2. However, its occurrence will always include premulti-
plication by D−1

Z which is therefore always well–defined. In view of (61), we obtain
the relations

‖y− y∗‖Z ∼ ‖R1/2D−1
Z (y−y∗)‖ ∼ ‖D−1

Z (y−y∗‖. (152)

Note that here R = 〈Ψ ,Ψ〉 (and not R−1) comes into play since y,y∗ have been
expanded in a scaled version of the primal wavelet basisΨ . Hence, equivalent norms
for ‖ · ‖Z may involve R. As for describing equivalent norms for ‖ · ‖U , recall that
u is expanded in the basis ΨU for U ⊂ H ′. Consequently, R−1 is the natural matrix
to take into account when considering equivalent norms, i.e., we choose here

‖u‖U ∼ ‖R−1/2u‖. (153)

Finally, we formulate the following control problem in (infinite) wavelet coordi-
nates.
(DCP) For given data D−1

Z y∗ ∈ �2(IIZ ), f ∈ �2(IIH), and weight parameter ω > 0,
minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y−y∗)‖2 + ω
2 ‖R−1/2u‖2 (154)

over (y,u) ∈ �2(IIH)× �2(IIH) subject to the linear constraints

Ay = f+D−1
H u. (155)

Remark 4.1. Problem (DCP) can be viewed as (discretized yet still infinite–dimen-
sional) representation of the linear–quadratic control problem (27) together with
(28) in wavelet coordinates in the following sense. The functional J̌(y,u) defined in
(154) is equivalent to the functional J (y,u) from (27) in the sense that there exist
constants 0 < cJ ≤CJ < ∞ such that

cJ J̌(y,u) ≤ J (y,u) ≤ CJ J̌(y,u) (156)

holds for any y = yTΨH ∈H, given y∗= (D−1
Z y∗)TΨZ ∈Z and any u = uTΨU ∈U .

Moreover, in the case of compatible data y∗ = A−1 f yielding J (y,u) ≡ 0, the re-
spective minimizers coincide, and y∗ = A−1f yields J̌(y,u) ≡ 0. In this sense the
new functional (154) captures the essential features of the model minimization func-
tional.

Once problem (DCP) is posed, we can apply variational principles to derive nec-
essary and sufficient conditions for a unique solution. All control problems con-
sidered here are in fact simple in this regard, as we have to minimize a quadratic
functional subject to linear constraints, for which the first order necessary condi-
tions are also sufficient. In principle, there are two ways to derive the optimality
conditions for (DCP). We have encountered in Section 2.4 already the technique via
the Lagrangian.
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We define for (DCP) the Lagrangian introducing the Lagrange multiplier, adjoint
variable or adjoint state p as

Lagr(y,p,u) := J̌(y,u)+ 〈p,Ay− f−D−1
H u〉. (157)

Then the KKT conditions δ Lagr(w) = 0 for w = p,y,u are, respectively,

Ay = f+D−1
H u, (158a)

AT p =−D−1
Z RD−1

Z (y−y∗) (158b)

ωR−1u = D−1
H p. (158c)

The first system resulting from the variation with respect to the Lagrange multiplier
always recovers the original constraints (155) and will be referred to as the primal
system or the state equation. Accordingly, we call (158b) the adjoint or dual system,
or the costate equation. The third equation (158c) is sometimes denoted as the de-
sign equation. Although A is symmetric, we continue to write AT for the operator
of the adjoint system to distinguish it from the primal system.

The coupled system (158) is to be solved later. However, in order to derive con-
vergent iterations and deduce complexity estimates, a different formulation will
be advantageous. It is based on the fact that A is according to Proposition 4.1 a
boundedly invertible mapping on �2. Thus, we can formally invert (149) to obtain
y = A−1f+A−1D−1

H u. Substitution into (154) yields a functional depending only on
u,

J(u) := 1
2 ‖R1/2D−1

Z

(
A−1D−1

H u− (y∗ −A−1f)
)
‖2 + ω

2 ‖R−1/2u‖2. (159)

Employing the abbreviations

Z := R1/2D−1
Z A−1D−1

H , (160a)

G :=−R1/2D−1
Z (A−1f−y∗), (160b)

the functional simplifies to

J(u) = 1
2‖Zu−G‖2 + ω

2 ‖R−1/2u‖2. (161)

Proposition 4.3. [K3] The functional J is twice differentiable with first and second
variation

δJ(u) = (ZT Z+ωR−1)u−ZT G, δ 2J(u) = ZT Z+ωR−1. (162)

In particular, J is convex so that a unique minimizer exists.

Setting
Q := ZT Z+ωR−1, g := ZT G, (163)

the unique minimizer u of (161) is given by solving
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δJ(u) = 0 (164)

or, equivalently, the system
Qu = g. (165)

By definition (163), Q is a symmetric positive definite (infinite) matrix. Hence, fi-
nite versions of (165) could be solved by gradient or conjugate gradient iterative
schemes. As the convergence speed of any such iteration depends on the spectral
condition number of Q, it is important to note that the following result.

Proposition 4.4. The (infinite) matrix Q is uniformly bounded on �2, i.e., there exist
constants 0 < cQ ≤CQ < ∞ such that

cQ ‖v‖ ≤ ‖Qv‖ ≤CQ ‖v‖, v ∈ �2. (166)

The proof follows from (13) and (147) [DK3]. Of course, in order to make such
iterative schemes for (165) practically feasible, the explicit inversion of A in the
definition of Q has to be avoided and replaced by an iterative solver in turn. This is
where the system (158) will come into play. In particular, the third equation (158c)
has the following interpretation which will turn out to be very useful later.

Proposition 4.5. If we solve for a given control vector u successively (155) for y
and (158b) for p, then the residual for (165) attains the form

Qu−g = ωR−1u−D−1
U p. (167)

Proof. Solving consecutively (155) and (158b) and recalling the definitions of Z, g
(160a), (163) we obtain

D−1
H p =−D−1

H (A−T D−1
Z RD−1

Z (y−y∗))

=−ZT R1/2D−1
Z (A−1f+A−1D−1

H u−y∗)

= ZT G−ZT R1/2D−1
Z A−1D−1

H u

= g−ZT Zu.

Hence, the residual Qu−g attains the form

Qu−g = (ZT Z+ωR−1)u−g = ωR−1u−D−1
H p,

where we have used the definition of Q from (163). �

Having derived the optimality conditions (158), the next issue is their efficient
numerical solution. In view of the fact that the system (158) still involves infinite
matrices and vectors, this also raises the question how to derive computable finite
versions. By now we have investigated two scenarios.

The first version with respect to uniform discretizations is based on choosing
finite–dimensional subspaces of the function spaces under consideration. The sec-
ond version which deals with adaptive discretizations is actually based on the infi-



Optimized wavelet preconditioning 365

nite system (158). In both scenarios, a fully iterative numerical scheme for the solu-
tion of (158) can be designed along the following lines. The basic iteration scheme
is a gradient or conjugate gradient iteration for (165) as an outer iteration where
each application of Q is in turn realized by solving the primal and the dual system
(155) and (158b) also by a gradient or conjugate gradient method as inner iterations.

For uniform discretizations for which we wanted to test numerically the role of
equivalent norms and the influence of Riesz maps in the cost functional (154), we
have used in [BK] as central iterative scheme the conjugate gradient (CG) method.
Since the interior systems are only solved up to discretization error accuracy, the
whole procedure may therefore be viewed as an inexact conjugate gradient (CG)
method. We stress already at this point that the iteration numbers of such a method
do not depend on the discretization level as finite versions of all involved operators
are also uniformly well–conditioned in the sense of (166). In each step of the outer
iteration, the error will be reduced by a fixed factor ρ . Combined with a nested
iteration strategy, it will be shown that this yields an asymptotically optimal method
in the amount of arithmetic operations.

Starting from the infinite coupled system (158), we have investigated in [DK3]
adaptive schemes which, given any prescribed accuracy ε > 0, solve (158) such that
the error for y,u,p is controlled by ε . There we have used for a simpler analysis a
gradient scheme as basic iterative scheme.

4.4 Control problems: Dirichlet boundary control

Having derived a representation in wavelet coordinates for both the saddle point
problem from Section 2.3 and the PDE-constrained control problem in the previous
section, an appropriate representation of the control problem with Dirichlet bound-
ary control introduced in Section 2.5 is straightforward. In order not to be overbur-
dened with notation, we specifically choose the control space on the boundary as
U := Q(= (H1/2(Γ ))′). For the more general situation covered by (37), a diago-
nal matrix with nondecreasing entries like in (146) would come into play to switch
between U and Q. Thus, the exact wavelet representation of the constraints (36) is
given by the system (141), where we exchange the given Dirichlet boundary term
g by u in the present situation to express the dependence on the control in the right
hand side, i.e.,

L
(

y
p

)
:=
(

A BT

B 0

)(
y
p

)
=
(

f
u

)
. (168)

The derivation of a representer of the initial objective functional (35) is under the
embedding condition (37) ‖v‖Z <∼ ‖v‖Y for v ∈ Y now the same as in the previous
section, where all reference to the space H is to be exchanged by reference to Y . We
end up with the following minimization problem in wavelet coordinates for the case
of Dirichlet boundary control.
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(DCP) For given data D−1
Z y∗ ∈ �2(IIZ ), f ∈ �2(IIY ), and weight parameter ω > 0,

minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y−y∗)‖2 + ω
2 ‖R−1/2u‖2 (169)

over (y,u) ∈ �2(IIY )× �2(IIY ) subject to the linear constraints (168),

L
(

y
p

)
=
(

f
u

)
.

The corresponding Karush-Kuhn-Tucker conditions can be derived by the same
variational principles as in the previous section by defining a Lagrangian in terms of
the functional J̌(y,u) and appending the constraints (149) with the help of additional
Lagrange multipliers (z,μ)T , see [K3]. We obtain in this case a system of coupled
saddle point problems

L
(

y
p

)
=
(

f
u

)
(170a)

LT
(

z
μ

)
=
(
−ωD−1

Z RD−1
Z (y−y∗)

0

)
(170b)

u = μ. (170c)

Again, the first system appearing here, the primal system, are just the constraints
(149) while (46) will be referred to as the dual or adjoint system. The specific form
of the right hand side of the dual system emerges from the particular formulation
of the minimization functional (169). The (here trivial) equation (170c) stems from
measuring u just in �2, representing measuring the control in its natural trace norm.
Instead of replacing μ by u in (46) and trying to solve the resulting equations, (170c)
will be essential to devise an inexact gradient scheme. In fact, since L in (149) is an
invertible operator, we can rewrite J̌(y,u) by formally inverting (149) as a functional
of u, that is, J(u) := J̌(y(u),u) as above. The following result will be very useful
for the design of the outer–inner iterative solvers

Proposition 4.6. The first variation of J satisfies

δJ(u) = u−μ, (171)

where (u,μ) are part of the solution of (170). Moreover, J is convex so that a unique
minimizer exists.

Hence, equation (170c) is just δJ(u) = 0. For a unified treatment below of both
control problems considered in these notes, it will be useful to rewrite (170c) like in
(165) as a condensed equation for the control u alone. We formally invert (168) and
(170b) and obtain

Qu = g (172)

with the abbreviations
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Q := ZT Z+ωI, g := ZT (y∗ −T�L−1I�f) (173)

and

Z := T�L−1I�, I� :=
(

0
I

)
, T� := (T 0). (174)

Proposition 4.7. The vector u as part of the solution vector (y,p,z,μ,u) of (170)
coincides with the unique solution u of the condensed equations (172).

5 Iterative solution

Each of the four problem classes discussed above lead to the problem to finally solve
a system

δJ(q) = 0 (175)

or, equivalently, a linear system
Mq = b, (176)

where M : �2 → �2 is a (possibly infinite) symmetric positive definite matrix satis-
fying

cM‖v‖ ≤ ‖Mv‖ ≤CM‖v‖, v ∈ �2, (177)

for some constants 0 < cM ≤ CM < ∞ and where b ∈ �2 is some given right hand
side.

A simple gradient method for solving (175) is

qk+1 := qk−α δJ(qk), k = 0,1,2, . . . (178)

with some initial guess q0. In all of the previously considered situations, it has been
asserted that there exists a fixed parameter α , depending on bounds for the second
variation of J, such that (178) converges and reduces the error in each step by at
least a fixed factor ρ < 1, i.e.,

‖q−qk+1‖ ≤ ρ‖q−qk‖, k = 0,1,2, . . . , (179)

where ρ is determined by
ρ := ‖I−αM‖< 1.

Hence, the scheme (178) is a convergent iteration for the possibly infinite system
(176). Next we will need to discuss how to reduce the infinite systems to computable
finite versions.
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5.1 Finite systems on uniform grids

We consider finite-dimensional trial spaces with respect to uniform discretizations.
For each of the Hilbert spaces H, this means in the wavelet setting to pick the index
set of all indices up to some highest refinement level J, i.e.,

IIJ,H := {λ ∈ IIH : |λ | ≤ J} ⊂ IIH

satisfying NJ,H := #IIJ,H < ∞. The representation of operators is then built as in
Section 3.3 with respect to this truncated index set which corresponds to deleting all
rows and columns that refer to indices λ such that |λ |> J, and correspondingly for
functions. There is by construction also a coarsest level of resolution denoted by j0.

Computationally the representation of operators according to (62) is in the case
of uniform grids always realized as follows. First, the operator is set up in terms
of the generator basis on the finest level J. This generator basis simply consists of
tensor products of B-Splines, or linear combinations of these near the boundaries.
The representation of an operator in the wavelet basis is then achieved by applying
the Fast Wavelet Transform (FWT) which needs O(NJ,H) arithmetic operations and
is therefore asymptotically optimal, see, e.g., [D2, DKU, K1] and Section 3.4.

In order not to overburden the notation, let in this subsection the resulting system
for N = NJ,H unknowns again be denoted by

Mq = b, (180)

where now M : R
N → R

N is a symmetric positive definite matrix satisfying (177)
on R

N . It will be convenient to abbreviate the residual using an approximation q̃ to
q for (180) as

RESD(q̃) := Mq̃−b. (181)

We will employ a basic conjugate gradient method that iteratively computes an ap-
proximate solution qK to (180) with given initial vector q0 and given tolerance ε > 0
such that

‖MqK−b‖= ‖RESD(qK)‖ ≤ ε, (182)

where K denotes the number of iterations used. Later we specify ε depending on
the discretization for which (180) is set up. The following scheme CG contains a
routine APP(ηk,M,dk) which in view of the problem classes discussed above is to
have the property that it approximately computes the product Mdk up to a tolerance
ηk = ηk(ε) depending on ε , i.e., the output k of APP(ηk,M,dk) satisfies

‖mk−Mdk‖ ≤ ηk. (183)

For the cases where M = A, this is simply the matrix-vector multiplication Mdk.
For the situations where M may involve the solution of an additional system, this
multiplication will be only approximative.
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CG [ε,q0,M,b]→ qK

(I) SET d0 := b−Mq0 AND r0 :=−d0. LET k = 0.
(II) WHILE ‖rk‖> ε

mk := APP(ηk(ε),M,dk)

αk :=
(rk)T rk

(dk)T mk
qk+1 := qk +αkdk

rk+1 := rk +αkmk βk :=
(rk+1)T rk+1

(rk)T rk
dk+1 := −rk+1 +βkdk

k := k +1

(184)

(III) SET K := k−1.

Let us briefly discuss in the case M = A that the final iterate qK indeed satis-
fies (182). From the newly computed iterate qk+1 = qk +αkdk it follows by apply-
ing M on both sides that Mqk+1− b = Mqk − b +αkMdk which is the same as
RESD(qk+1) = RESD(qk)+αkMdk. By the initialization for rk used above, this in
turn is the updating term for rk, hence, rk = RESD(qk). After the stopping criterion
based on rk is met, the final iterate qK observes (182).

The routine CG computes the residual up to the stopping criterion ε . From the
residual, we can in view of (177) estimate the error in the solution as

‖q−qK‖= ‖M−1(b−MqK)‖ ≤ ‖M−1‖‖RESD(qK)‖ ≤ ε
cM

, (185)

that is, it may deviate from the norm of the residual from a factor proportional to the
smallest eigenvalue of M.

Distributed control. Let us now apply the solution scheme to the situation
from Section 4.3 where Q now involves the inversion of finite-dimensional systems
(158a) and (158b). The material in the remainder of this subsection is essentially
contained in [BK].

We begin with a specification of the approximate computation of the right hand
side b which also contains applications of A−1.

RHS[ζ ,A, f,y∗]→ bζ

(I) CG [ cA
2C

cA
C2C2

0
ζ ,0,A, f]→ b1

(II) CG [ cA
2Cζ ,0,AT ,−D−1

Z RD−1
Z (b1−y∗)]→ b2

(III) bζ := D−1
H b2.

The tolerances used within the two conjugate gradient methods depend on the con-
stants cA,C,C0 from (13), (147) and (55), respectively. Since the additional factor
cA(CC0)−2 in the stopping criterion in step (I) in comparison to step (II) is in gen-
eral smaller than one, this means that the primal system needs to be solved more
accurately than the adjoint system in step (II).
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Proposition 5.1. The result bζ of RHS[ζ ,A, f,y∗] satisfies

‖bζ −b‖ ≤ ζ . (186)

Proof. Recalling the definition (163) of b, step (III) and step (II) yield

‖bζ −b‖ ≤ ‖D−1
H ‖‖b2−DHb‖

≤C‖A−T‖‖AT b2−D−1
Z RD−1

Z (A−1f−b1 +b1−y∗)‖

≤ C
cA

( cA

2C
ζ +‖D−1

Z RD−1
Z (A−1f−b1)‖

)
.

(187)

Employing the upper bounds for D−1
Z and R, we arrive at

‖bζ −b‖ ≤ C
cA

( cA

2C
ζ +C2C2

0 ‖A−1‖‖f−Ab1‖
)

≤ C
cA

(
cA

2C
ζ +

C2C2
0

cA

cA

2C
cA

C2C2
0

ζ
)

= ζ .

(188)

�

Accordingly, an approximation mη to the matrix-vector product Qd is the output
of the following routine APP.

APP[η ,Q,d]→mη

(I) CG [ cA
3C

cA
C2C2

0
η ,0,A, f+D−1

H d]→ yη

(II) CG [ cA
3Cη ,0,AT ,−D−1

Z RD−1
Z (yη −y∗)]→ pη

(III) mη := gη/3 +ωR−1d−D−1
H pη .

The choice of the tolerances for the interior application of CG in steps (I) and
(II) will become clear from the following result.

Proposition 5.2. The result mη of APP[η ,Q,d] satisfies

‖mη −Qd‖ ≤ η . (189)

Proof. Denote by yd the exact solution of (158a) with d in place of u on the right
hand side, and by pd the exact solution of (158b) with yd on the right hand side.
Then we deduce from step (III) and (167) combined with (55) and (147)

‖mη −Qd‖= ‖gη/3−g+ωR−1d−D−1
U pη − (Qd−g)‖

≤ 1
3
η +‖ωR−1d−D−1

U pη − (ωR−1d−D−1
U pd)‖

≤ 1
3
η +C‖pd−pη‖.

(190)

Denote by p̂ the exact solution of (158b) with yη on the right hand side. Then we
have pd− p̂ =−A−T D−1

Z RD−1
Z (yd−yη). It follows by (13), (55) and (147) that
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‖pd− p̂‖ ≤ C2C2
0

cA
‖yd−yη‖ ≤

1
3C

η , (191)

where the last estimate follows by the choice of the threshold in step (I). Finally, the
combination(190) and (191) together with (186) and the stopping criterion in step
(II) readily confirms that

‖mη −Qd‖ ≤ 1
3
η +C (‖pd− p̂‖+‖p̂−pη‖)

≤ 1
3
η +C

(
1

3C
η +

1
3C

η
)

= η .

�

The effect of perturbed applications of M in CG and more general Krylov sub-
space schemes with respect to convergence has been investigated in a numerical
linear algebra context for a given linear system (180) in several papers. Here we
have chosen the ηi to be proportional to the outer accuracy ε incorporating a safety
factor accounting for the values of βi and ‖ri‖.

Finally, we can formulate a full nested iteration strategy for finite systems (158)
on uniform grids which employs outer and inner CG routines as follows. The
scheme starts at the coarsest level of resolution j0 with some initial guess u j0

0 and
successively solves (165) with respect to each level j until the norm of the current
residual is below the discretization error on that level.

In wavelet coordinates, ‖ · ‖ corresponds to the energy norm. If we employ on
the primal side for approximation linear combinations of B–splines of order d, the
discretization error is for smooth solutions expected to be proportional to 2−(d−1) j.
Then the refinement level is successively increased until on the finest level J a pre-
scribed tolerance proportional to the discretization error 2−(d−1)J is met. In the fol-
lowing, superscripts on vectors denote the refinement level on which this term is
computed. The given data y j

∗, f j are supposed to be accessible on all levels. On the
coarsest level, the solution of (165) is computed exactly up to double precision by
QR decomposition. Subsequently, the results from level j are prolongated onto the
next higher level j + 1. Using wavelets, this is accomplished by simply adding ze-
ros: wavelet coordinates have the character of differences so that this prolongation
corresponds to the exact representation in higher resolution wavelet coordinates.
The resulting Nested–Iteration–Incomplete–Conjugate–Gradient Algorithm is the
following.

NIICG[J]→ uJ

(I) INITIALIZATION FOR COARSEST LEVEL j := j0

(1) COMPUTE RIGHT HAND SIDE g j0 = (ZT G) j0 BY QR DECOMPOSITION

USING (160).
(2) COMPUTE SOLUTION u j0 OF (165) BY QR DECOMPOSITION.

(II) WHILE j < J
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(1) PROLONGATE u j → u j+1
0 BY ADDING ZEROS, SET j := j +1.

(2) COMPUTE RIGHT HAND SIDE USING RHS [2−(d−1) j,A, f j,y j
∗]→ g j .

(3) COMPUTE SOLUTION OF (165) USING CG [2−(d−1) j,u j
0,Q,g j]→ u j .

Recall that step (II.3) requires multiple calls of APP[η ,Q,d], which in turn invokes
both CG [. . . ,A, . . .] as well as CG [. . . ,AT , . . .] in each application.

On account of (13) and (166), finite versions of the system matrices A and Q have
uniformly bounded condition numbers, entailing that each CG routine employed
in the process reduces the error by a fixed rate ρ < 1 in each iteration step. Let
NJ ∼ 2nJ be the total number of unknowns (for yJ ,uJ and pJ) on the highest level
J. Employing the CG method only on the highest level, one needs O(J) = O(logε)
iterations to achieve the prescribed discretization error accuracy εJ = 2−(d−1)J . As
each application of A and Q requires O(NJ) operations, the solution of (165) by CG
only on the finest level requires O(J NJ) arithmetic operations.

Proposition 5.3. If the residual (167) is computed up to discretization error pro-
portional to 2−(d−1) j on each level j and the corresponding solutions are taken as
initial guesses for the next higher level, NIICG is an asymptotically optimal method
in the sense that it provides the solution uJ up to discretization error on level J in
an overall amount of O(NJ) arithmetic operations.

Proof. In the above notation, nested iteration allows one to get rid of the factor J
in the total amount of operations. Starting with the exact solution on the coarsest
level j0, in view of the uniformly bounded condition numbers of A and Q, one
needs only a fixed amount of iterations to reduce the error up to discretization error
accuracy ε j = 2−(d−1) j on each subsequent level j, taking the solution from the
previous level as initial guess. Thus, on each level, one needs O(Nj) operations to
realize discretization error accuracy. Since the spaces are nested and the number of
unknowns on each level grows like Nj ∼ 2n j, by a geometric series argument the
total number of arithmetic operations stays proportional to O(NJ). �

5.2 Numerical examples

5.2.1 Distributed control problem

As an illustration of the issue which norms to choose in the control functional, we
consider the following example of a one-dimensional distributed control problem
with the Helmholtz operator in (6) (a = I, c = 1) and homogeneous Dirichlet bound-
ary condition. A non–constant right hand side f (x) := 1 + 2.3exp(−15|x−0.5|) is
chosen, and the target state is set to a constant y∗ ≡ 1. We first investigate the role
the different norms ‖ · ‖Z and ‖ · ‖U in (27), which is encoded in the diagonal ma-
trices DZ ,DH from (146), have on the solution. We see in Figure 3 for the choice
U = L2(0,1) and Z = Hs(0,1) for different values of s varying between 0 and 1
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Fig. 3 Distributed control problem for elliptic PDE with Dirichlet boundary conditions, a peak as
right hand side f , y∗ ≡ 1, ω = 0, U = L2(0,1) and varying Z = Hs(0,1). Left: state y, right:
control u

the solution y (left) and the corresponding control u (right) for fixed weight ω = 1.
As s is increased, a stronger tendency of y towards the prescribed state y∗ ≡ 1 can be
observed which is, however, deterred from reaching this state by the homogeneous
boundary conditions. Extensive studies of this type can be found in [Bu1, BK].

An example displaying the performance of the proposed fully iterative scheme
NIICG is shown in Table 4 for n = 2 and in Table 5 for n = 3.

j ‖r j
K‖ #O #E #A #R ‖R(yJ)−y j‖ ‖yJ−P(y j)‖ ‖R(uJ)−u j‖ ‖uJ−P(u j)‖

3 6.86e-03 1.48e-02 1.27e-04 4.38e-04

4 1.79e-05 5 12 5 8 2.29e-03 7.84e-03 4.77e-05 3.55e-04

5 1.98e-05 5 14 6 9 6.59e-04 3.94e-03 1.03e-05 2.68e-04

6 4.92e-06 7 13 5 9 1.74e-04 1.96e-03 2.86e-06 1.94e-04

7 3.35e-06 7 12 5 9 4.55e-05 9.73e-04 9.65e-07 1.35e-04

8 2.42e-06 7 11 5 10 1.25e-05 4.74e-04 7.59e-07 8.88e-05

9 1.20e-06 8 11 5 10 4.55e-06 2.12e-04 4.33e-07 5.14e-05

10 4.68e-07 9 10 5 9 3.02e-06 3.02e-06 2.91e-07 2.91e-07

Table 4 Iteration history for a two-dimensional distributed control problem with Neumann bound-
ary conditions, ω = 1, Z = H1(Ω), U = (H0.5(Ω))′

j ‖r j
K‖ #O #E #A #R ‖R(yJ)−y j‖ ‖yJ−P(y j)‖ ‖R(uJ)−u j‖ ‖uJ−P(u j)‖

3 1.41e-04 2.92e-04 1.13e-05 2.36e-05

4 6.09e-06 10 9 1 49 1.27e-04 1.78e-04 3.46e-06 3.79e-06

5 3.25e-06 10 7 1 58 1.11e-05 6.14e-05 9.47e-07 9.53e-07

6 1.71e-06 7 6 1 57 1.00e-05 2.86e-05 5.03e-07 5.03e-07

7 8.80e-07 6 6 1 53 9.19e-06 9.19e-06 3.72e-07 3.72e-07

Table 5 Iteration history for a three-dimensional distributed control problem with Neumann
boundary conditions, ω = 1, Z = H1(Ω), U = (H1(Ω))′

This is an example of a control problem for the Helmholtz operator with Neu-
mann boundary conditions. The stopping criterion for the outer iteration (relative to
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‖ · ‖ which corresponds to the energy norm) on level j is chosen to be proportional
to 2− j. The second column displays the final value of the residual of the outer CG
scheme on this level, i.e., ‖r j

K‖ = ‖RESD(u j
K)‖. The next three columns show the

number of outer CG iterations (#O) for Q according to the APP scheme followed by
the maximum number of inner iterations for the primal system (#E), the adjoint sys-
tem (#A) and the design equation (#R). We see very well the effect of the uniformly
bounded condition numbers of all involved operators. The last columns display dif-
ferent versions of the actual error in the state y and the control u when compared
to the fine grid solution (R denotes restriction of the fine grid solution to the actual
grid, and P denotes prolongation). Here we can see the slight effect of the constants
appearing in (185). Nevertheless the error is very well controlled by the residual.

More results for up to three spatial dimensions can be found in [Bu1, BK]. All
numbers were obtained on a 3.2GHz Pentium IV computer (family 15, model 4,
stepping 1, with 1MB L2 Cache).

5.2.2 Dirichlet boundary control

For the system of saddle point problems (170) arising from the control problem
with Dirichlet boundary control in Section 2.5, also a fully iterative algorithm NI-
ICG can be designed along the above lines with yet another level of inner iteration.
Again the design equation (170c) for u serves as the equation for which a basic it-
erative scheme (178) can be posed. Of course, the CG method for A then has to be
replaced by a convergent iterative scheme for saddle point operators L like Uzawa’s
algorithm. Also the discretization has to be chosen such that the LBB condition
is satisfied, see Section 4.2. Details can be found in [K3]. Alternatively, since L
has a uniformly bounded condition number, the CG scheme can, in principle, also
be applied to LT L. The performance of wavelet schemes on uniform grids for such
systems of saddle point problems arising from optimal control has been investigated
systematically in [Pa].

For illustration of the choice of different norms for the Dirichlet boundary control
problem, consider the following example. We control the system through the (green)
control boundary Γ in Figure 4 while a prescribed state y∗ ≡ 1 on the (red) observa-
tion boundaryΓy opposite the control boundary is to be achieved. The right hand side
is chosen as constant f ≡ 1, and ω = 1. Each layer in Figure 4 corresponds to the
state y for different values of s when the observation term is measured in Hs(Γy), that
is, the objective functional (35) contains a term ‖y− y∗‖2

Hs(Γy)
for increasing s from

bottom to top. We see that as the smoothness index s for the observation increases,
the state moves towards the target state at the observation boundary. In compari-
son, in Figure 5 the weight parameter ω balancing the two terms in the functional
is modified. We observe that the effect on the solution of varying s corresponds to
a similar behaviour of varying the weight. However, as ω directly influences the
conditioning of the system of saddle point operators, a solution scheme with fixed
ω and varying s can be considered numerically more stable.
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Fig. 4 State y of the Dirichlet boundary control problem using the objective functional J (y,u) =
1
2‖y− y∗‖2

Hs(Γy)
+ 1

2‖u‖2
H1/2(Γ )

for control boundary Γ (green) and observation boundary Γy (red)

for different values of the Sobolev smoothness index s on resolution level J = 5 [Pa]

Fig. 5 State y of the Dirichlet boundary control problem using the objective functional J (y,u) =
1
2‖y− y∗‖2

Hs(Γy)
+ ω

2 ‖u‖2
H1/2(Γ )

for control boundary Γ (green) and observation boundary Γy (red)

for different values of the weight parameter ω [Pa]

Finally, we display in Table 6 some numerical results for an elliptic control prob-
lem with Dirichlet boundary control in two spatial dimensions. Among the various
iteration schemes tested, the best results with a minimal amount of iteration numbers
(here: at most 2) were obtained for an inexact gradient iteration on u and Uzawa–
type schemes with conjugate directions for each of the saddle point problems to-
gether with nested iteration.
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j ‖r j‖ ‖y−yJ‖ k j
#Int-It

k j

4 1.6105e-02 7.7490e-00 0 –

5 1.6105e-02 7.7506e-00 0 –

6 6.3219e-03 1.7544e-02 2 1

7 5.8100e-03 3.3873e-02 0 –

8 1.6378e-03 3.4958e-03 2 1

9 1.8247e-03 7.4741e-03 0 –

10 4.3880e-04 9.2663e-04 2 1

11 4.6181e-04 1.8486e-03 0 –

Table 6 Dirichlet boundary control problem in two spatial dimensions with yΓy ≡ 1, f ≡ 1, ω = 1,
s = t = 0.5. The table shows the number of iterations k j needed to reduce the Z -error of r j by a
factor of 0.5 after prolongation of all final vectors from the previous level [Pa]
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Multiresolution schemes for conservation laws

Siegfried Müller

Abstract The concept of fully adaptive multiresolution finite volume schemes has
been developed and investigated during the past decade. By now it has been suc-
cessfully employed in numerous applications arising in engineering. In the present
work a review on the methodology is given that aims to summarize the underlying
concepts and to give an outlook on future developments.

1 Introduction

Nowadays scientific computing has become an indispensable tool in engineering.
For instance, numerical simulations of fluid flow can help to shorten the develop-
ment cycle of new airplanes. In the near future, it might be even possible to perform
real-time simulations of flying airplanes, to determine aerodynamical loads for the
entire flight regime, to numerically predict the performance and the flight quality of
an airplane before the maiden flight, as well as to do the certification before the air-
plane construction on the basis of numerical data. These are the challenging goals of
the new Center for Computer Applications in Aerospace Science and Engineering
(C2A2S2E) funded in 2007 at the DLR Braunschweig.

Typically the numerical simulation of such real-world applications requires
meshes with several millions of cells. This poses enormous challenges to comput-
ing resources and data management strategies. Improved hardware or purely data
oriented strategies such as parallel computing are not sufficient to overcome the
arising difficulties. In the long run, they have to be complemented by mathemati-
cal concepts that aim at minimizing the size of the resulting discrete problems and,
thus, to keep the computational complexity tractable. One promising approach in
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this direction is based on local grid adaptation which aims to adjust the resolution
of the discretization to the local regularity of the underlying solution.

This paper summarizes some recent work on grid adaptation in the context of
hyperbolic conservation laws that arise, for instance, from the balance equations de-
rived in continuum mechanics and modeling fluid flow. Currently, several different
adaptive concepts for conservation laws are being discussed and investigated in the
literature. A standard approach is based on error indicators, for instance gradient-
based indicators [10, 8] or local residuals [43, 66, 67]. In practice, these approaches
turned out to be very efficient. However, the error indicator is highly case depen-
dent, i.e., it needs a lot of parameter tuning to avoid excessive mesh growth or
missing refinement of important flow features. In particular, it does not estimate
the local discretization error and, hence, it provides no reliable error control. Here
a-posteriori error estimators offer an alternative that aims at the equidistribution of
the error, cf. [48]. These rely on L1-error-estimates. In particular, they are based on
Kruzkov’s entropy condition [49] and Kuznetsov’s a-priori estimates [50] that are
only available for scalar multidimensional conservation laws. If only a functional of
the solution is of interest rather than the solution in the entire flow field, then another
approach is of interest based on the solution of an adjoint problem [5, 42, 70, 69].
Here grid adaptation is tuned with respect to the efficient and accurate computation
of a target quantity, e.g. drag or lift. Since this approach requires to store to some
extent the time history of the evolution, this certainly poses a considerable challenge
to computational resources in case of 3D unsteady problems.

In recent years, the new concept of multiscale-based grid adaptation has been de-
veloped and applied to complex multidimensional flow problems. The main distinc-
tion from previous work lies in the fact that we employ multiresolution techniques.
The starting point is a proposal by Harten [38] to transform the arrays of cell aver-
ages associated with any given finite volume discretization of the underlying conser-
vation laws into a different format that reveals insight into the local behavior of the
solution. The cell averages on a given highest level of resolution (reference mesh)
are represented as cell averages on some coarse level where the fine scale informa-
tion is encoded in arrays of detail coefficients of ascending resolution. This requires
a hierarchy of meshes.

In Harten’s original approach [39, 40, 12], the multiscale analysis is used to con-
trol a hybrid flux computation which can save CPU time for the flux evaluation.
However, the overall computational complexity is not reduced but still stays pro-
portional to the number of cells on the uniformly fine reference mesh which in 3D
calculations is prohibitive. Alternatively to this strategy, threshold techniques are
applied to the multiresolution decomposition in [54, 25], where detail coefficients
below a threshold value are discarded. By means of the remaining significant details,
a locally refined mesh is determined whose complexity is significantly reduced in
comparison to the underlying reference mesh. Thus a principal objective is to ex-
tract the inherent complexity of the problem by placing as few degrees of freedom
as possible while the features of the solution are still captured within a given toler-
ance. A central mathematical problem is to show that the essential information to
be propagated in time is still kept with sufficient accuracy when working on locally
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coarser meshes. This has been proven for scalar onedimensional conservation laws
in [25, 44].

The fully adaptive concept has turned out to be highly efficient and reliable. So
far, it has been applied with great success to different applications, e.g., 2D/3D–
steady and unsteady computations of compressible fluids around airfoils modeled
by the Euler and Navier–Stokes equations, respectively, on block–structured curvi-
linear grid patches [15], backward–facing step on 2D triangulations [26] and simu-
lation of a flame ball modeled by reaction–diffusion equations on 3D Cartesian grids
[63]. These applications have been performed for compressible single-phase fluids.
More recently, this concept has been extended to two-phase fluid flow of compress-
ible gases, and applied to the investigation of non–stationary shock–bubble interac-
tions on 2D Cartesian grids for the Euler equations [1, 55]. By now, there are several
groups working on this subject: Postel et al. [28], Schneider et al. [61, 62], Bürger
et al. [20, 19] and Domingues et al. [30].

The aim of the present work is to give an overview on the concept of multiscale-
based grid adaptation. For this purpose, we first summarize the basic ingredients of
the grid adaptation concept starting with the underlying equations and their dis-
cretization using finite volume schemes, see Section 2. This is followed by the
multiscale analysis of the discrete cell averages resulting from the finite volume
discretization, see Section 3, and the construction of locally refined grids using data
compression techniques, see Section 4. Applying the multiscale analysis to the orig-
inal finite volume discretization on the uniform grid we obtain multiscale evolution
equations, see Section 5. The crucial point is then to perform the time evolution
on the adaptive grid where the accuracy of the uniform discretization is maintained
but the computational complexity is proportional only to the number of cells of the
adaptive grid, see Section 5.5. For this purpose, the computation of the local flux
balances and sources has to be performed judiciously, see Section 5.2, and the adap-
tive grid has to be predicted appropriately from the data of the previous time step,
see Section 5.3. The resulting adaptive multiresolution scheme is further acceler-
ated using multilevel time stepping strategies, see Section 5.4. In order to confirm
that the multiresolution grid adaptation concept can deal with challenging applica-
tions in engineering, we present in Section 6 numerical simulations of two vortices
generated at an airplane wing and moving in the wake of the airplane. The com-
putations have been performed with the adaptive, parallel Quadflow solver [15]. In
Section 7, we conclude with some remarks on future trends of adaptive multireso-
lution schemes.

2 Governing equations and finite volume schemes

The fluid equations are determined by the balance equations

∂
∂ t

∫
V

u dV +
∮
∂V

f(u) ·n dS =
∫

V
s(u) dV , (1)
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where u is the array of the mean conserved quantities, e.g., density of mass, mo-
mentum, specific total energy, f is the array of the corresponding convective and
diffusive fluxes, and s denotes a source term that may occur, for instance, in turbu-
lence modeling. For simplicity of representation, we will always assume that V is
time-independent. In principle, the concepts presented below can easily be extended
to moving boundaries, cf. [15, 52].

The balance equations (1) are approximated by a finite volume scheme. For this
purpose the finite fluid domain Ω ⊂ Rd is split into a finite set of subdomains,
the cells Vi, such that all Vi are disjoint and their union covers Ω . According to
our simplifying assumption, the grid does not move in time. Furthermore let N(i)
be the set of cells that have a common edge with the cell i, and for j ∈ N(i) let
Γi j := ∂Vi ∩ ∂Vj be the interface between the cells i and j and ni j the outer normal
of Γi j corresponding to the cell i. In time we use a global time step τn for all cells
that might change due to the Courant-Friedrich-Levy (CFL) condition, i.e., tn+1 =
tn + τn+1, t0 = 0. For the time discretization in (1) we confine to an explicit time
discretization of the approximated cell averages vn

i ≈ |Vi|−1 ∫
Vi

u(tn,x)dx that can
be written in the form

vn+1
i = vn

i −
τn+1

i

|Vi|
(Bn

i + |Vi|Sn
i ). (2)

By this discrete evolution equation the approximated cell averages of the conserved
variables are updated on the new time step. Here the fluxes and the source terms are
approximated by

Bn
i := ∑

j∈N(i)
|Γi j|F(vn

i j,v
n
ji,ni j), Sn

i := S(vn
i ), (3)

where the numerical flux function F(u,w,n) is an approximation for the flux
f (u,n) := f · n in outer normal direction ni j on the edge Γi j. The numerical flux
is assumed to be consistent, i.e., F(u,u,n) = f (u,n). For simplicity of presentation
we neglect the fact that, due to higher order reconstruction, F usually depends on
an enlarged stencil of cell averages. Moreover, to preserve a constant flow field we
assume that the geometric consistency condition∑ j∈N(i) |Γi j|ni j = 0 holds. This con-
dition is easy to satisfy in case of planar faces. However, for more general discretiza-
tions, e.g. curvilinear grid patches [51], it imposes a constraint on the approximation
of the normal vector ni j.

We want to remark that the finite volume discretization (2) is just a simplified
prototype. More advanced discretizations can be considered where (i) the time dis-
cretization is replaced by some implicit scheme, cf. [15, 56, 57], or a Runge-Kutta
scheme, cf. [63], (ii) the time stepsize is changing locally for each cell, cf. [15, 56],
and (iii) the source term approximation is based on some higher order approxima-
tion.
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3 Multiscale analysis

A finite volume discretization typically works on an array of cell averages. In order
to realize a certain target accuracy at the expense of a possibly low number of de-
grees of freedom, viz. a possibly low computational effort, one should keep the size
of the cells large wherever the data exhibit little variation, reflecting a high regularity
of the searched solution components. Our analysis of the local regularity behavior of
the data is based on the concept of biorthogonal wavelets [21]. This approach may
be seen as a natural generalization of Harten’s discrete framework [41]. The core
ingredients are (i) a hierarchy of nested grids, (ii) biorthogonal wavelets and (iii) the
multiscale decomposition. In what follows we will only summarize the basic ideas.
For the realization and implementation see [54].

Grid hierarchy. Let Ωl := {Vλ}λ∈Il be a sequence of different meshes corre-
sponding to different resolution levels l ∈ N0, where the mesh size decreases with
increasing refinement level. The grid hierarchy is assumed to be nested. This implies
that each cell λ ∈ Il on level l is the union of cells μ ∈M0

λ ⊂ Il+1 on the next higher
refinement level l +1, i.e.,

Vλ =
⋃

μ∈M0
λ⊂Il+1

Vμ , λ ∈ Il , (4)

where M0
λ ⊂ Il+1 is the refinement set. A simple example is shown in Figure 1 for a

dyadic grid refinement of Cartesian meshes. Note that the framework presented here
is not restricted to this simple configuration but can also be applied to unstructured
grids and irregular grid refinements, cf. [54].

Fig. 1 Sequence of nested grids

Example. In the sequel, the concept will be illustrated for 1D dyadic grid re-
finements on the real axis. Then a nested grid hierarchy is determined by Gl :=
{Vl,k}k∈Il , l ∈ N0, Il = Z. These meshes are composed of the intervals Vl,k =
[xl,k,xl,k+1] determined by the grid points xl,k = 2−l k, k ∈ Il , with interval length
hl = 2−l . Due to the subdivision Vl,k = Vl+1,2k ∪Vl+1,2k+1 the refinement set is de-
termined by M0

l,k = {2k,2k +1}. Here the index λ is identified by (l,k).
Box function and cell averages. With each cell Vλ in the partitions Ωl we asso-

ciate the so–called box function

φ̃λ (x) :=
1
|Vλ |

χ
Vλ

(x) =
{

1/|Vλ | , x ∈Vλ
0 , x �∈Vλ

, λ ∈ Il (5)
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defined as the L1–normalized characteristic function of Vλ . By |V | we denote the
volume of a cell V . Then the averages of a scalar, integrable function u ∈ L1(Ω) can
be interpreted as an inner product, i.e.,

ûλ := 〈u, φ̃λ 〉Ω with 〈u,v〉Ω :=
∫
Ω

uvdx. (6)

Obviously, the nestedness of the grids as well as the linearity of integration imply
the two–scale relations

φ̃λ = ∑
μ∈M0

λ⊂Il

ml,0
μ,λ φ̃μ and ûλ = ∑

μ∈M0
λ⊂Il

ml,0
μ,λ ûμ , λ ∈ Il−1, (7)

where the mask coefficients turn out to be ml,0
μ,λ := |Vμ |/|Vλ | for each cell μ ∈M0

λ
in the refinement set.

Example. In case of the 1D dyadic grid refinement the box function is just
φ̃l,k(x) := 2−l for x ∈Vl,k and zero elsewhere, see Figure 2 (left). The corresponding

mask coefficients are ml,0
r,k := |Vl+1,r|/|Vl,k| = 0.5 for r ∈ M0

l,k ⊂ Il+1, k ∈ Il . For a
general grid hierarchy the mask coefficients may depend on the level and the posi-
tion.

Wavelets and details. In order to detect singularities of the solution we consider
the difference of the cell averages corresponding to different resolution levels. For
this purpose we introduce the wavelet functions ψ̃λ as linear combinations of the
box functions, i.e.,

ψ̃λ := ∑
μ∈M1

λ⊂Il+1

ml,1
μ,λ φ̃μ , λ ∈ Jl , (8)

with mask coefficients ml,1
μ,λ that only depend on the grids. Here the wavelet func-

tions Ψ̃l := (ψ̃λ )λ∈Jl
build an appropriate completion of the basis system Φ̃l :=

(φ̃λ )λ∈Il . By this we mean (i) they are locally supported, (ii) provide vanishing mo-
ments of a certain order and (iii) there exists a biorthogonal system Φl and Ψl of
primal functions satisfying two-scale relations similar to (7) and (8). The last re-
quirement is typically the hardest to satisfy. It is closely related to the Riesz basis
property of the infinite collection Φ̃0∪

⋃∞
l=0Ψ̃l of L2(Ω). For details we refer to the

concept of stable completions, see [21].
Aside from these stability aspects, the biorthogonal framework allows for an ef-

ficient change of basis. While the relations (7) and (8) provide expressions of the
coarse scale box functions and detail functions as linear combinations of fine scale
box functions, the mask coefficients in the analogous two-scale relations for the dual
system Φl ,Ψl give rise to the reverse change of basis between Φ̃l ∪Ψ̃l and Φ̃l+1, i.e.,

φ̃λ = ∑
μ∈G0

λ⊂Il

gl,0
μ,λ φ̃μ + ∑

μ∈G1
λ⊂Jl

gl,1
μ,λ ψ̃μ , λ ∈ Il+1, (9)
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where we rewrite the basis function φ̃λ on level l + 1 by the scaling functions φ̃μ
and the wavelet functions ψ̃μ on the next coarser scale l. Here again the mask coef-

ficients gl,0
μ,λ and gl,1

μ,λ depend only on the grid geometry.
Biorthogonality also yields a data representation in terms of the primal system

Ψ . The expansion coefficients dλ with respect to the basisΨ are obtained by testing
u with the elements from Ψ̃ , i.e.,

dλ := 〈u, ψ̃λ 〉Ω = ∑
μ∈M1

λ

ml,1
μ,λ ûμ , λ ∈ Jl . (10)

These are referred to as the detail coefficients. Their two-scale format follows from
the functional counterpart of (8).

Note that the dual system Ψ̃ is used to expand the cell averages which are func-
tionals of the solution u whose propagation in time gives rise to the finite volume
scheme. The primal basis itself will actually never be used to represent the solution
u. Instead, the enhanced accuracy of the approximate cell averages can be used for
higher order reconstructions commonly used in finite volume schemes.

Example. In case of the 1D dyadic grid refinement, the L1-normalized Haar
wavelet ψ̃H

l,k := (φ̃l+1,2k + φ̃l+1,2k+1)/2 can be used, see Figure 2 (middle). The cor-

responding mask coefficients are ml,1
r,k := 0.5 for r ∈M1

l,k ≡M0
l,k ⊂ Il+1, k ∈ Il . For a

general grid hierarchy the mask coefficients may depend on the level and the posi-
tion.

Fig. 2 Box function φ̃0,0 (left), Haar wavelet ψ̃H
0,0 (middle), and modified Haar wavelet ψ̃0,0 with

s = 2 (right)

Cancellation Property. It can be shown that the details become small with in-
creasing refinement level when the underlying function is smooth

|dλ | ≤C 2−l M ‖u(M)‖L∞(Vλ ) (11)

in the support of the wavelet ψ̃λ . More precisely, the details decay at a rate of at least
2−l M , provided that the function u is sufficiently differentiable and the wavelets have
vanishing moments of order M, i.e.,

〈p, ψ̃λ 〉Ω = 0 (12)

for all polynomials p of degree less than M. Here we assume that the grid hierarchy
is quasi-uniform in the sense that the diameters of the cells on each level l are
proportional to 2−l .
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If coefficient and function norms behave essentially the same, as asserted by the
Riesz basis property, (11) suggests to neglect all sufficiently small details in order to
compress the original data. In fact, the higher M the more details may be discarded
in smooth regions.

Example. The Haar wavelet has only one vanishing moment as can be easily
checked from its definition. Then (10) implies that the corresponding details vanish
when the function u is locally constant.

Higher vanishing moments. In order to realize a better compression by exploit-
ing a higher order smoothness we have to raise the order of vanishing polynomial
moments. The basic idea is first to construct the box wavelets ψ̃H

λ , λ ∈ Il , cf. [37, 54],
and then to modify the box wavelet by some coarse grid box functions φ̃μ , μ ∈ Il ,
leading to the ansatz

ψ̃λ := ψ̃H
λ + ∑

μ∈Lλ

lλμ φ̃μ , (13)

with parameters lλμ that are still to be determined. Here the stencil Lλ ⊂ Il denotes
a finite number of cells Vμ in the local neighborhood of the cell Vλ . Then the pa-
rameters lλμ are chosen such that (12) holds for all polynomials p of degree less than

M. This will lead to a linear system of equations for the coefficients lλμ . In higher
dimensions, the cardinality of the stencil Lλ is typically chosen larger than the num-
ber of conditions imposed by (12). Then the under-determined system can be solved
using the Moore-Penrose inverse.

Fig. 3 Primal scaling function φ0,0 (left) and primal wavelet ψ0,0 (right) corresponding to the
modified Haar wavelet ψ̃0,0 with s = 2

Example. Modified Haar wavelets with higher vanishing moments M = 2s + 1
can be obtained according to the above procedure where we choose Ll,k = {k−
s, . . . ,k+s}. In this particular case, the resulting linear system has a unique solution.
Furthermore, there exists a primal system of scaling and wavelet functions that is
biorthogonal to the dual system of the box function and the modified Haar wavelet.
For s = 2 the modified Haar wavelet and the corresponding primal functions are
shown in Figures 2 (right) and 3, respectively. The biorthogonal system coincides
with the system derived from the pair 1Φ̃ , 1,ÑΨ̃ and 1Φ , 1,ÑΨ corresponding to the
B-spline function 1Φ̃ = χ

[0,1]
of order 1 with Ñ = M = 2s+1 as constructed in [24].

Note that for our purposes the dual and the primal functions are normalized with
respect to L1 and L∞, respectively, instead of L2 in [24].

Multiscale Transformation. In order to exploit the above compression potential,
the idea is to transform the array of cell averages uL := (ûλ )λ∈IL corresponding to a
finest uniform discretization level into a sequence of coarse grid data u0 := (ûλ )λ∈I0
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Fig. 4 Two-scale Transformation Fig. 5 Multiscale transformation

and details dl := (dλ )λ∈Jl
, l = 0, . . . ,L−1, representing the successive update from

a coarser resolution to a higher resolution.
In summary, according to (7) and (10), the change of basis provides two–scale

relations for the coefficients inherited from the two–scale relations of the box func-
tions and the wavelet functions

ûλ = ∑
μ∈M0

λ⊂Il+1

ml,0
μ,λ ûμ , λ ∈ Il , dλ = ∑

μ∈M1
λ⊂Il+1

ml,1
μ,λ ûμ , λ ∈ Jl ,

(14)
and, conversely,

ûλ = ∑
μ∈G0

λ⊂Il

gl,0
μ,λ ûμ + ∑

μ∈G1
λ⊂Jl

gl,1
μ,λ dμ , λ ∈ Il+1, (15)

which reflects the typical cascadic format of a wavelet transform. The two-scale
relations are illustrated for the 1D case in Figure 4.

A successive application of the relations (14), see Figure 5, decomposes the array
ûL into coarse scale averages and higher level fluctuations. We refer to this trans-
formation as the multiscale transformation. It is inverted by the inverse multiscale
transformation (15).

4 Multiscale-based spatial grid adaptation

To determine a locally refined grid we employ the above multiscale decomposition.
The basic idea is to perform data compression on the vector of detail coefficients
using hard thresholding as suggested by the cancellation property. This will signifi-
cantly reduce the complexity of the data. Based on the thresholded array we then
perform local grid adaptation where we refine a cell whenever there exists a signifi-
cant detail, i.e. a detail coefficient with absolute value above the given threshold.
The main steps in this procedure are summarized in the following:

Step 1: Multiscale analysis. Let vn
L be the cell averages representing the dis-

cretized flow field at some fixed time step tn on a given locally refined grid with
highest level of resolution l = L. This sequence is encoded in arrays of detail coeffi-
cients dn

l , l = 0, . . . ,L−1 of ascending resolution, see Figure 5, and cell averages on
some coarsest level l = 0. For this purpose the multiscale transformation (14) needs
to be performed locally which is possible due to the locality of the mask coefficients.
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Step 2: Thresholding. In order to compress the original data we discard all detail
coefficients dλ whose absolute values fall below a level-dependent threshold value
εl = 2l−Lε . Let

Dn
L,ε :=
{
λ ; |dn

λ |> εl , λ ∈ Il , l ∈ {0, . . . ,L−1}
}

be the set of significant details. The ideal strategy would be to determine the thresh-
old value ε such that the discretization error of the reference scheme, i.e., difference
between exact solution and reference scheme, and the perturbation error, i.e., the
difference between the reference scheme and the adaptive scheme, are balanced. For
a detailed treatment of this issue we refer to [25].

Step 3: Prediction and grading. Since the flow field evolves in time, grid adap-
tation is performed after each evolution step to provide the adaptive grid at the new
time step. In order to guarantee the adaptive scheme to be reliable in the sense that
no significant future feature of the solution is missed, we have to predict all signifi-
cant details at the new time step n+1 by means of the details at the old time step n.
Let D̃n+1

L,ε be the prediction set satisfying the reliability condition

Dn
L,ε ∪Dn+1

L,ε ⊂ D̃n+1
L,ε . (16)

Basically there are two prediction strategies (i.e. ways of choosing D̃n+1
L,ε ) discussed

in the literature, see [40, 25]. Moreover, in order to perform the grid adaptation
process, this set is additionally inflated somewhat such that the grid refinement his-
tory, i.e., the parent-child relations of subdivided cells, corresponds to a graded tree.
Then the set of significant details can be interpreted as a graph where all details are
connected by an edge in the graph.

Step 4: Grid adaptation. By means of the set D̃n+1
L,ε a locally refined grid is deter-

mined along the following lines. We check for the transformed flow data represented
on D̃n+1

L,ε proceeding levelwise from coarse to fine whether the detail associated with
any cell marked by the prediction set is significant or not. If it is, we refine the
respective cell. We finally obtain the locally refined grid with hanging nodes repre-
sented by the index set G̃n+1

L,ε . The flow data on the new grid can be computed from
the detail coefficients in the same loop where we locally apply the inverse multiscale
transformation (15).

Fig. 6 Grid adaptation: refinement tree (left) and corresponding adaptive grid (right)
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5 Adaptive multiresolution finite volume schemes

The rationale behind our design of adaptive multiresolution finite volume schemes
(MR-FVS) is to accelerate a given finite volume scheme (reference scheme) on a
uniformly refined mesh (reference mesh) by computing actually only on a locally
refined adapted subgrid, while preserving (up to a fixed constant multiple) the ac-
curacy of the discretization on the full uniform grid. We shall briefly indicate now
how to realize this strategy with the aid of the ingredients discussed in the previous
section.

5.1 From the reference scheme to an adaptive scheme

The conceptual starting point is to rewrite the evolution equations (2) for the cell
averages vλ , λ ∈ IL, of the reference scheme in terms of evolution equations for
the multiscale coefficients. For this purpose we apply the multiscale transformation
(14) to the set of evolution equations (2). Then we discard all equations that do not
correspond to the prediction set D̃n+1

L,ε of significant details. Finally we apply locally
the inverse multiscale transformation (15) and obtain the evolution equations for the
cell averages on the adaptive grid G̃n+1

L,ε which is obtained from D̃n+1
L,ε as explained

before:
vn+1
λ = vn

λ −λλ (Bn
λ + |Vλ |S

n
λ ), (17)

for all λ ∈ G̃n+1
L,ε where λλ := Δ tn+1/|Vλ |. Here the flux balances B

n
λ , the numerical

fluxes F
n
λ and the source terms S

n
λ are recursively defined from fine to coarse scale

via

B
n
λ = ∑

Γ l
λ ,μ⊂∂Vλ

|Γ l
λ ,μ |F

l,n
λ ,μ , (18)

F
l,n
λ ,μ = ∑

Γ l+1
μ ,ν ⊂Γ l

λ ,μ

|Γ l+1
μ,ν |F

l+1,n
μ,ν = . . . = ∑

Γ L
μ ,ν⊂Γ l

λ ,μ

|Γ L
μ,ν |F(vn

L,μν ,v
n
L,νμ ,nL,μν), (19)

S
n
λ = ∑

Vμ⊂Vλ ,μ∈Il+1

|Vμ |
|Vλ |

S
n
μ = . . . = ∑

Vμ⊂Vλ ,μ∈IL

|Vμ |
|Vλ |

S(vn
μ). (20)

We refer to (19) and (20) as exact flux and source reconstruction, respectively. Since
in (20) we have to compute all sources on the finest scale, there is no complexity
reduction, i.e., we still have the complexity #IL of the reference mesh. In order to
gain efficiency we therefore have to replace the exact flux and source reconstruction
by some approximation such that the overall accuracy is maintained. The local flux
and source computation and the choice of the prediction set D̃n+1

L,ε will be discussed
in detail in Section 5.2 and 5.3, respectively.

The complete adaptive scheme consists now of the following three steps:
Step 1. (Refinement) Determine the prediction set D̃n+1

L,ε from the data of the old
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time step tn and project the data of the old time step onto the pre-refined grid G̃n+1
L,ε

of the new time step, i.e.,

{vn
λ}λ∈Gn →{vn

λ}λ∈G̃n+1 .

Step 2. (Evolution) Evolve the cell averages associated to the pre-refined grid G̃n+1
L,ε

according to (17), where the numerical fluxes and sources are not necessarily deter-
mined by (19) and (20), respectively, i.e.,

{vn
λ}λ∈G̃n+1

L,ε
→{vn+1

λ }λ∈G̃n+1
L,ε

.

Step 3. (Coarsening) Compress the data of the new time step by thresholding the
corresponding detail coefficients and project the data to the (somewhat coarsened
new) adaptive grid Gn+1

L,ε , i.e.,

{vn+1
λ }λ∈G̃n+1

L,ε
→{vn+1

λ }λ∈Gn+1
L,ε

.

5.2 Approximate flux and source approximation strategies

As already mentioned above, the adaptive MR-FVS with exact flux and source re-
construction (19) and (20) will have the same complexity as the reference scheme
performed on the reference mesh. If there is no inhomogeneity, i.e., s ≡ 0, then
the complexity of the resulting algorithm might be significantly reduced from the
cardinality of the reference mesh to the cardinality of the refined mesh. To see
this we note that, due to the nestedness of the grid hierarchy and the conservation
property of the numerical fluxes, the coarse-scale flux balances are only computed
by the fine-scale fluxes corresponding to the edges of the coarse cells, see (19).
Those in turn, have to be determined by the fine scale data. However, the internal
fluxes are canceled and, hence, the overall complexity is reduced. For instance, for
a d-dimensional Cartesian grid hierarchy we would have to compute 2d 2(L−l)(d−1)

fluxes corresponding to all fine-scale interfaces μ ∈ IL with ∂Vμ ⊂ ∂Vλ where λ ∈ Il ,
l ≤ L, due to the subdivision of the cell faces. Note that in both cases missing data
on the finest scale have to be determined by locally applying the inverse two-scale
transformation. This is illustrated in Figure 7. On the other hand, the coarse scale
sources can be computed similarly with the aid of the recursive formulae (20). Here,
however, we have to compute all sources on the finest scale which at the first glance
prevents the desired complexity reduction.

Hence the adaptive scheme with both exact flux and source reconstruction is
useless for practical purposes. However, in the reliability analysis one may perform
the adaptive scheme with some approximate flux and source reconstruction to be
considered as a further perturbation of the “exact” adaptive scheme.
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Fig. 7 Exact (left) versus local (right) flux and source computation

In order to retain efficiency we therefore have to replace the exact flux and source
reconstruction by some approximation such that the overall accuracy is maintained.
A naive approach would be to use the local data provided by the adaptive grid, i.e.,

F
l,n
λ ,μ = F(vn

l,λμ ,vn
l,μλ ,nl,λμ), S

n
λ = S(vn

λ ) (21)

for λ ,μ ∈ Il .
So far, this approach is applied in Quadflow. Obviously, the complexity of the

resulting adaptive MR-FVS is reduced to the cardinality of the adaptive grid. Unfor-
tunately, this approach may suffer from serious loss in accuracy in comparison with
the reference scheme.

Recently, in [44] a new approach was suggested using an approximate flux and
source reconstruction strategy that are discussed along the following lines:

Step 1. Determine for each cell Vλ , λ ∈ G̃n+1
L,ε , a higher order reconstruction poly-

nomial RN
λ of degree N using only local data corresponding to the adaptive grid.

Step 2. Approximate the boundary and volume integrals in (19) and (20) by some
appropriate quadrature rules.
Step 3. Compute fluxes and source terms in quadrature nodes by determining point-
values or cell averages on level L of the local reconstruction polynomial RN

λ , respec-
tively.

This concept has been analyzed in detail for the 1D case, cf. [44]. In particular, it
was proven that the accuracy of the reference scheme can be maintained when using
the prediction strategy in [25] and appropriately tuning the parameters such as the
reconstruction order and the quadrature rules. Computations verify the analytical
results. Therefore the new approach seems to be superior to the naive approach with
respect to accuracy and efficiency.
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5.3 Prediction strategies

The accuracy of the adaptive scheme crucially relies on the grid refinement process.
In our case it is triggered by the details. In order to guarantee that all significant
flow features are always adequately resolved, we have to pre-refine the grid before
performing the time evolution. For this purpose, we have to predict all details D̃n+1

L,ε
on the new time step that may become significant due to the evolution by means
of the details Dn

L,ε on the old time step. We consider the prediction set D̃n+1
L,ε to

be reliable, if the reliability condition (16) is satisfied in each time step where, of
course, Dn+1

L,ε is not known yet. Then no significant future feature of the solution is
missed on the old and the new time step, respectively.

Harten’s strategy. A first strategy was proposed by Harten in [40]. The basic
idea of his heuristic approach is based on two characteristic features of hyperbolic
conservation laws: (i) details in a local neighborhood Nq

λ := {μ ∈ Il ; ‖μ−λ‖∞ ≤ q}
of a significant detail λ ∈ Il may also become significant within one time step, i.e.,

λ ∈ Dn
L,ε ⇒ D̃n+1

L,ε = D̃n+1
L,ε ∪Nq

λ , (22)

due to the finite speed of propagation, and (ii) gradients may become steeper causing
significant details on a higher refinement level due to the developing of discontinu-
ities, i.e.,

λ ∈ Dn
L,ε ⇒ D̃n+1

L,ε = D̃n+1
L,ε ∪M0

λ , (23)

where M0
λ ⊂ Il+1 is the refinement set of cell Vλ , λ ∈ Il . Note that the choice of

q in (22) depends on the CFL number. If the CFL number is less than 1, that is
reasonable for explicit time discretizations, we may choose q = 1. However, in case
of an implicit time discretization higher CFL numbers might be admissible. In this
case an information could move by more than one cell and we have to adjust q
accordingly. In general, the range of influence of an information within one time
step depends on the configuration at hand. If the flow field is weakly instationary,
cf. [69], or even stationary, cf. [15], then an information will not move by as many
cells as is indicated by the CFL number, cf. [27]. This also holds in case of small
parabolic perturbations due to viscosity terms, cf. [11].

So far Harten’s approach could not be rigorously verified to satisfy (16). Never-
theless, it is frequently used in applications and turned out to give good results.

Strategy by Cohen et al.. A slight modification of Harten’s prediction strategy
has been shown to lead to a reliable prediction strategy in the sense of (16). This
was rigorously proven for a certain class of explicit finite volume schemes applied to
one–dimensional scalar conservation laws without source terms on uniform dyadic
grids as base hierarchies, using exact flux reconstruction, cf. [25]. Recently, the
proof has been extended for conservation laws with source term using approximate
flux and source reconstruction, cf. [44]. In the following we briefly summarize the
strategy. For simplicity of representation, we first introduce the convention dλ := vλ
for λ ∈ I−1, where we identify I−1 with I0 but replace the level l = 0 by l = −1.
Then the prediction set can be determined in three steps:
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Step 1: First of all, we determine the influence set Dλ that contains all coeffi-
cients dn+1

μ on the new time step which are influenced by a coefficient dn
λ on the old

time step. For this purpose, we first have to compute the range of influence Σλ of the
coefficient dn

λ and the domain of dependence Σ̃μ of the coefficient dn+1
μ . In the range

of influence we collect the indices of all averages vn
ν , ν ∈ IL, that are influenced by

the detail dn
λ whereas the domain of dependence contains the indices of all averages

vn+1
ν , ν ∈ IL, that are needed to compute the coefficient dn+1

μ . Note that the index
sets Σ̃μ ⊂ IL and Σλ ⊂ IL correspond to data on the reference mesh but for differ-
ent time steps, n + 1 and n, respectively. By the evolution process (17) with exact
reconstruction (19) and (20), the domain of dependence has to be extended taking
into account the stencil Sλ ⊂ Il of the numerical flux F and source S associated to
the cell λ ∈ Il , i.e., Σ̃−μ :=

⋃
λ∈Σ̃μ Sλ . Then the influence set is determined by

Dλ = {μ ; Σ̃−μ ∩Σλ �= /0}.

Step 2: The prediction strategy has to take into account that the coefficients dn
λ

may not only cause a perturbation in the neighborhood of the cell Vλ , λ ∈ Il , because
of the time evolution but may also influence coefficients dn+1

μ , μ ∈ Il′ , on higher
scales, i.e., l′ ≥ l +1. Since the additional higher levels inflate the influence set, we
would like to bound the number of higher levels to a minimum number. For this
purpose, we fix some σ > 1 and assign to each coefficient corresponding to λ ∈Dn

a unique index ν = ν(λ ) such that

2ν(λ )σ εl < |dn
λ | ≤ 2(ν(λ )+1)σ εl , λ ∈ Il , l ∈ {0, . . . ,L−1},

2ν(λ )σ ε0 < |vn
λ | ≤ 2(ν(λ )+1)σ ε0, λ ∈ I0.

This process is referred to as nesting of details. The parameter σ is linked to the
smoothness of the primal wavelet functions, cf. [25]. Since the index ν(λ ) becomes
smaller the larger σ is, it is convenient to choose σ as large as possible.

Step 3: Finally, we determine the prediction set from the influence set Dλ and
the nesting of coefficients

D̃n+1
L,ε := Dn

L,ε ∪
⋃

λ∈Dn
L,ε∪I−1

{μ ; μ ∈ Dλ\I−1 and l′ ≤ l +ν(λ )}. (24)

Note that opposite to Harten’s original prediction strategy, a significant detail might
affect cells not only at one higher level but up to ν(λ ) additional scales.

5.4 Multilevel time stepping

For instationary problems, the time step is typically restricted for stability reasons
by some CFL condition. This holds true even for implicit time discretizations due to
nonlinear stability criteria, e.g., total variation diminishing (TVD) property. There-
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fore the time stepsize has to be bounded by the smallest cell in the grid. Hence τ is
determined by the CFL condition on the highest refinement level L, i.e., τ = τL. For
reasons of simplicity, we neglect the time index n here. However, for cells on the
coarser scales l = 0, . . . ,L− 1 we may use τl = 2L−l τL to locally satisfy the CFL
condition.

In [56] a local time stepping strategy has been incorporated into the adaptive
multiresolution finite volume scheme as presented in previous sections. This stra-
tegy has been extended to multidimensional problems in [53, 52]. Here ideas similar
to the predictor-corrector scheme [58] and the adaptive mesh refinement (AMR)
technique [10, 9] are used. The differences between classical approaches and the
multilevel strategy are discussed in [56] in detail.

Time evolution. The basic idea is to evolve each cell on level l with the level-
dependent time discretization τl = 2L−l τL, l = 0, . . . ,L. Obviously, after having per-
formed 2l time steps with τl , all cell averages correspond to the same integration
time, i.e., the cells are synchronized. Therefore one macro time step with τ0 = 2L τL

consists of 2L intermediate time steps with step size τL. Obviously, at time tn+i2−L

all cells on levels l = li, . . . ,L are synchronized. Here li denotes the smallest syn-
chronization level that is determined by

li := min{l ; 0≤ l ≤ L, i mod2L−l = 0}, i = 0, . . . ,2L−1.

Then the time evolution for the intermediate time steps i = 0, . . . ,2L− 1, takes the
form

vn+(i+1)2−L

λ = vn+i2−L

λ −λλ (Bn+i2−L

λ + |Vλ |S
n+i2−L

λ ), (25)

for any cell λ ∈ G̃L,ε of the current locally adapted grid. Similar to (18) the nume-
rical flux balance is determined by

Bn+i2−L

λ = ∑
Γ l
λ ,μ⊂∂Vλ

|Γ l
λ ,μ |F

l,n+i2−L

λ ,μ .

However, the numerical flux computation is performed differently. Here the basic
idea is (i) to update the fluxes on the synchronized levels li ≤ l ≤ L, whereas (ii)
for all other interfaces we do not update the numerical flux but use the same value
as in the previous intermediate time step. In detail, we proceed as follows: (i) if the
neighbor cell Vμ is living on the same level l, then we apply the flux computation
strategy as in case of global time stepping, where we either use the exact strategy
(19), the naive strategy (21), or the reconstruction strategy according to Section 5.2,
respectively. Alternatively, the neighboring cell could live on the finer level l + 1
due to grid refinement. Then there exist hanging nodes at the interface Γ l

λ ,μ . and we
compute the numerical flux by the fluxes on the finer scale, i.e.,

F
l,n+i2−L

λ ,μ = ∑
Γ l+1
μ ,ν ⊂Γ l

λ ,μ

|Γ l+1
μ,ν |F

l+1,n+i2−L

μ,ν . (26)
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Fig. 8 Synchronized time evolution on space-time grid, horizontal axis: 1D space, vertical axis:
time

This is motivated by (19) and immediately implies the conservation property of the
scheme. Note that the refinement level of two adjacent cells differs by at most one,
i.e., there is at most one hanging node at one edge. This can be ensured by a grading
process of the adaptive grid, cf. Section 4. (ii) For all other interfaces in the adaptive
grid we use the flux of the previous intermediate time step, i.e.,

F
l,n+i2−L

λ ,μ = |Γ l
μ,ν |F

n+(i−1)2−L

λ . (27)

To ensure that the fluxes at an interface with hanging nodes have already been
computed when determining the corresponding flux on the coarser level, we perform
in each intermediate time step the time evolution first for the cells on the highest
level and then successively for the coarser levels. This procedure is similar to the
predictor-corrector method in [58].

The source terms are updated accordingly, where we either apply the naive stra-
tegy (21) or the reconstruction strategy, cf. Section 5.2, respectively, on the synchro-
nized levels li ≤ l ≤ L or use the source term from the previous intermediate time
step for the non-synchronized levels l < li, i.e.,

Sn+i2−L

λ = Sn+(i−1)2−L

λ . (28)

Note that for the lower levels 0, . . . , li−1 we do not compute new fluxes or source
terms. This makes the local time stepping version of the adaptive multiresolution
concept more efficient then the standard approach using a global time stepsize. How-
ever, book-keeping of the interfaces with hanging nodes is time consuming and the
algorithms become hard to read and to implement, cf. [56, 27]. In practice, it is more
convenient to perform the time evolution (25) for all cells of the adaptive grid for all
intermediate time steps. Then all data are synchronized at any time. Of course, there
is a small overhead to perform (25) for non-synchronized level l < li. However, this
is negligible in comparison to the time needed to evaluate the original numerical
fluxes that typically requires the solution of some Riemann problem. Then only few
changes are needed to embed the multilevel time stepping into an existing code.

In Figure 8 the time evolution algorithm is schematically illustrated in the one-
dimensional case: In a global time stepping, i.e., using Δ t = τL for all cells, each
vertical line section appearing in Fig. 8 (left) represents a flux evaluation and each
horizontal line (dashed or solid) represents a cell update of the cell average due to
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the fluxes. In the multilevel time stepping a flux evaluation is only performed at
vertical line sections that emanate from a point where at least one solid horizontal
line section is attached. If a vertical line section emanates from a point, where two
dashed horizontal sections are attached, then we do not recompute the flux, but
keep the flux value from the preceeding vertical line section. Hence fluxes are only
computed for the vertical edges in Fig. 8 (right).

Intermediate grid adaptation. Finally, we have to comment on the grid adap-
tation step. The ultimate goal is to provide an approximation after one macro time
step with τ0 = 2LτL as good as having performed 2L time steps with the reference
scheme on the reference mesh using the time step size τL. Therefore we have to
make sure that the solution is adequately resolved at each intermediate time step.

For the original adaptive multiresolution scheme this is ensured by the prediction
step of the grid adaption, see Section 5.3. The prediction of the details ensures that
a significant information can only move by at most one cell on the finest level,
e.g. controlled by parameter q in (22) typically set to 1. However, by employing the
same strategy for the local time stepping this information could move up to one cell
on the coarsest mesh or 2L cells on the finest mesh, respectively. This would result
in a completely underresolution of discontinuities on the new time step. To account
for this we have to modify the prediction set D̃n+1

L,ε such that the modified reliability
condition

2L⋃
i=0

Dn+i2−L

L,ε ⊂ D̃n+1
L,ε , (29)

holds where the sets Dn+i2−L

L,ε correspond to the significant details of the solution at
the intermediate times tn+i2−L = tn + iτL, i = 0, . . . ,2L.

Obviously, using q = 2L would ensure that all effects are properly resolved on the
new time step after having performed the macro time step. However, the efficiency
degrades tremendously. A very efficient and reliable alternative was suggested in
[56]. The idea is to perform additional grid adaptation steps according to Section 4
before each even intermediate time step, i.e., i = 0,2, . . . ,2L−2. However, we do not
apply the adaptation process for the whole computational domain, but only for the
cells on the levels l = li, . . . ,L, i.e., level li is considered to be the coarsest scale in the
multiscale analysis. Note, that only for this range of scales new fluxes and sources

have to be recomputed. This process provides us with the sets Gn+(i+1)2−L

L,ε for which
we perform the evolution step (25). For the odd intermediate time steps we use the

same grid as in the previous step, i.e., Gn+i2−L

L,ε = Gn+(i−1)2−L

L,ε , i = 1,3, . . . ,2L− 1.
Hence, it is possible to track, for instance, the shock position on the intermediate
time steps instead of a-priori refining the whole range of influence, see Fig. 8 (right).
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5.5 Error analysis

The performance of the adaptive MR-FVS crucially depends on the threshold pa-
rameter ε . With decreasing value the adaptive grid becomes richer and, finally, if
ε tends to zero, we obtain the uniform reference mesh, i.e., the adaptive scheme
coincides with the reference scheme. On the other hand, the adaptive grid becomes
coarser with increasing threshold value, i.e., the computation becomes faster but
provides a less accurate solution. An ideal choice would maintain the accuracy of
the reference scheme at reduced computational cost. For a detailed analysis we refer
to [25, 44] and explain only the main ideas here.

In order to estimate the error, we introduce the averages ûn
L of the exact solu-

tion, the averages vn
L determined by the reference FVS and the averages vn

L of the
adaptive scheme prolongated to the reference mesh by means of the inverse mul-
tiscale transformation where non-significant details are simply set to zero. Ideally
one would like to choose the threshold ε so as to guarantee that ‖ûn

L− vn
L‖ ≤ tol

where tol is a given target accuracy and ‖·‖ denotes the standard weighted l1-norm.
Since vn

L can be regarded as a perturbation of vn
L, this is only possible if L is chosen

so as to ensure that the reference scheme is sufficiently accurate, i.e. one also has
‖ûn

L−vn
L‖ ≤ tol. Again ideally, a possibly low number of refinement levels L should

be determined during the computation such that the error meets the desired toler-
ance ‖ûn

L− vn
L‖ ≤ tol. Since no explicit error estimator is available for the adaptive

scheme, we try to assess the error by splitting the error into two parts corresponding
to the discretization error τn

L := ûn
L− vn

L of the reference FVS and the perturbation
error en

L := vn
L−vn

L. We now assume that there is an a priori error estimate of the dis-
cretization error, i.e., τn

L ∼ hαL where hL denotes the spatial step size and α the con-
vergence order. Then, ideally we would determine the number of refinement levels
L such that hαL ∼ tol. In order to preserve the accuracy of the reference FVS, we may
now admit a perturbation error which is proportional to the discretization error, i.e.,
‖en

L‖ ∼ ‖τn
L‖. From this, one can derive a suitable level L = L(tol,α) and ε = ε(L).

Therefore it remains to verify that the perturbation error can be controlled. To
this end, note that in each time step we introduce an error due to the thresholding
procedure. Obviously, this error accumulates in each step, i.e., the best we can hope
for is an estimate of the form ‖en

L‖ ≤ C nε. However, the threshold error may be
amplified in addition by the evolution step. In order to control the cumulative per-
turbation error, we have to prove that the constant C is independent of L, n, τ and
ε . For a simplified model problem this was rigorously done in [25] for homoge-
neous problems and exact reconstruction and, recently, in [44] for inhomogeneous
problems using approximate flux and source reconstruction.

6 Numerical results

Finally, we would like to demonstrate that the multiscale-based grid adaptation con-
cept has been developed beyond pure academic investigations and can be applied
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to real-world problems. For this purpose, we present the results of 3D simulations
that have been recently performed with the new solver Quadflow for a challenging
problem arising in aerodynamics.

6.1 The solver Quadflow

The above multiscale-based grid adaptation concept has been integrated into the new
adaptive and parallel solver Quadflow [14, 15]. This solver has been developed for
more than one decade within the collaborative research center SFB 401 Modulation
of Flow and Fluid-Structure Interaction at Airplane Wings, cf. [3, 65]. In order to
exploit synergy effects, it has been designed as an integrated tool where each of the
core ingredients, namely, (i) the flow solver concept based on a finite volume dis-
cretization [13], (ii) the grid adaptation concept based on wavelet techniques [54],
and (iii) the grid generator based on B-spline mappings [51] is adapted to the needs
of the others. In particular, the three tools are not just treated as independent black
boxes communicating via interfaces. Instead, they are highly intertwined on a con-
ceptual level mainly linking (i) the multiresolution-based grid adaption that reliably
detects and resolves all physical relevant effects, and (ii) the B-spline grid generator
which reduces grid changes to just moving a few control points whose number is,
in particular, independent of any local grid refinement. The mathematical concepts
have been complemented recently by parallelization techniques that are indispens-
able for further reducing the computational time to an affordable order of magnitude
when dealing with realistic 3D computations for complex geometries, cf. [18, 4].

6.2 Application

The efficiency of an airport is strongly influenced by the takeoff and landing fre-
quency that is determined by the system of vortices generated at the wing tips. These
vortices continue to exist for a long period of time in the wake of an airplane, see
Figure 9. It is possible to detect wake vortices as far as 100 wing spans behind the
airplane, which are a hazard to following airplanes. In the SFB 401, the research
aimed to induce instabilities into the system of vortices to accelerate their collapse.
The effects of different measures, e.g. additional flaps installed at each airfoil, taken
in order to destabilize the vortices have been examined in a water tunnel. A model
of a wing was mounted in a water tunnel and the velocity components in the area
behind the wing were measured using particle image velocimetry It was possible to
conduct measurements over a length of 4 wing spans. The experimental analysis of
a system of vortices far behind the wing poses great difficulties due to the size of the
measuring system. Numerical simulations are not subject to such severe constraints
and therefore Quadflow is used to examine the behavior of vortices far behind the
wing. To minimize the computational effort, the grid adaptation adjusts the refine-
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ment of the grid with the goal to resolve all important flow phenomena, while using
as few cells as possible.

Fig. 9 System of wing tip vortices in the wake of an airplane. (Courtesy of Institute of Aeronautics
and Astronautics, RWTH Aachen)

In the present study instationary, quasi incompressible, inviscid fluid flow de-
scribed by the Euler equations is considered. An assessment is presented to validate
the ability of Quadflow to simulate the behavior of the wake of an airplane. A veloc-
ity field based on the experimental measurements is prescribed as boundary condi-
tion in the inflow plane. Here the measured velocity fields at the wing tip and at the
flap, respectively, have been used to generate two different Lamb-Oseen vortices.
These vortices are used to specify the circumferential part of the velocity distribu-
tion vΘ (r). The circumferential velocity distribution of one Lamb-Oseen vortex is
computed by

vΘ (r) =
Γ

2πr

(
1− e

−
(

r
d0

)2)
. (30)

The radius r is the distance from the center of a boundary face in the inflow plane to
the vortex core. The two parameters of the Lamb-Oseen vortices, circulation Γ and
core radius d0 are chosen in such a way that the models fit to the measured velocity
field of the wing tip vortex and the flap vortex as close as possible, respectively.
As observed in the experiment, both vortices are rotating in the same direction. The
circumferential part of the velocity distribution at the inflow boundary is computed
by the superposition of the velocity distribution of both vortices. The axial velocity
component in the inflow direction is set to the constant inflow velocity of the water
tunnel.

Instead of water, which is used as fluid in the experiment to visualize the vor-
tices, the computation relies on air as fluid. This is justified because of the low
Mach number Ma = 0.05 and, hence, compressibility effects are negligible. The
inflow velocity in the x-direction, u∞, is computed to fulfill the condition that the
Reynolds number in the computational test case is the same as in the experiment.
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The experimental conditions are a flow velocity uw = 1.1ms−1 and a Reynolds
number Rew = 1.9×105. From the condition Reair = Rew the inflow velocity in the
x-direction has been determined as u∞ = 16.21ms−1. For purpose of consistency,
the circumferential velocity vθ has also been multiplied by the factor u∞/uw. The
velocity of the initial solution is set to parallel, uniform flow u0 = u∞, v0 = w0 = 0.0.

The computation1 has been performed on 32 Intel Xeon E5450 processors run-
ning at 3 GHz clock speed. The CPU time spent was about 214 hours. The com-
putational domain matches the experimental setup which extents l = 6m in the x-
direction, b = 1.5m in the y-direction and h = 1.1m in the z-direction. The bound-
aries parallel to the x-direction have been modeled as symmetry walls. This domain
is discretized by a coarse grid with 40 cells in flow direction, 14 cells in y-direction
and 10 cells in the z-direction. The maximum number of refinement levels has been
set to L = 6. With this setting, both vortices can be resolved on the finest level by
about 80 points in the y-z-plane.

Fig. 10 Initial computational grid

Since Quadflow solves the compressible Euler equations, a preconditioner for
low Mach numbers was applied in a dual-time framework acting only on the dual
time-derivatives. It has been used for the purposes of numerical discretization and
iterative solution, cf. [59]. The spatial discretization of the convective fluxes is based
on the AUSMDV(P) flux vector splitting method [32]. For time integration the im-
plicit midpoint rule is applied. In each time step the unsteady residual of the Newton
iterations is reduced by about three orders of magnitude. The physical time step is
uniformly set to Δ t = 5×10−5 s which corresponds to a maximum CFL number of
about CFLmax = 28.0 in the domain. Grid adaptation is performed after each time
step. After every 100th time step the load balancing is repeated.

1 The computations have been performed by Gero Schieffer. They have been made possible by the
parallelization concept of space-filling curves embedded in the multiscale library by Silvia-Sorana
Mogosan and Kolja Brix.



Multiresolution schemes for conservation laws 401

Fig. 11 Slices of the computational grid after 6046 time steps at seven different positions and the
distribution of λ2 =−100

When the computation starts, the vortices have to be resolved properly on a suf-
ficiently refined grid. For this purpose, the grid on the inflow plane is pre-refined
to the maximum level, see Figure 10. Due to this procedure the first grid contains
384000 cells. When the information at the inlet has crossed the first cell layer, the
pre-adaptation of the cells at the inlet is no longer needed and then the grid is only
adapted according to the adaptation criterion based on the multiscale analysis. For
the multiscale analysis we use modified box wavelets with M = 2 vanishing mo-
ments, see Section 3. The threshold value is set to ε = 2.5×10−4. For the prediction
step we apply Harten’s original strategy summarized in Section 5.3.

Fig. 12 Slices of the computational grid at two different positions in x-direction, the grid color is
consistent with the value of λ2. Left Figure: Slice of the computational grid at x = 0.0m. Right
Figure: Slice of the computational grid at x = 3.0m
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After 6046 time steps, which corresponds to a computed real time of t = 0.3023s,
the grid contains 3.04× 106 cells in total. This is about 0.2 % of the uniformly re-
fined reference mesh, i.e., by grid adaptation the computational complexity is re-
duced by a factor of about 500. Figure 11 shows seven cross sections of the mesh,
which are equally spaced in x-direction with distances Δx = 1.0m. In addition,
the isosurface of the λ2-criterion is presented with the value λ2 = −100. The λ2-
criterion has been proposed by Jeong et al. [45] to detect vortices. A negative value
of λ2 identifies a vortex, whereas the smallest of these negative values marks the core
of the vortex. As can be seen from Figure 11, the vortices are transported through
the computational domain. The locally adapted grid exhibits high levels of refine-
ment only in the vicinity of the vortices. A more detailed view of the grid for the
cross sections at x = 0.0m and x = 3.0m is presented in Figure 12.

From the engineering point of view, the interaction of the two vortices is of spe-
cial interest. The central question is whether the strong wing tip vortex can be desta-
bilized by the flap vortex. For this purpose, the computation has to be continued.
This is subject of current research. Nevertheless, the computations performed so far
verify that the presented concepts are sustainable and necessary in order to investi-
gate this challenging problem.

7 Conclusion and trends

Adaptive multiresolution schemes have turned out be very efficient in numerous ap-
plications. In particular, the adaptation process is only controlled by the threshold
parameter. The choice of this parameter seems to be very robust with respect to vary-
ing configurations and applications. Ideally, it depends on the discretization error of
the reference finite volume scheme. This was confirmed by rigorous mathematical
estimates for scalar model problems.

Originally, the multiresolution-based grid adaptation technique was kept separate
from the treatment of discrete evolution equations. However, the multiresolution
analysis offers a much higher potential when applying it directly to the (discrete)
evolution equations. Therefore we would like to conclude with some comments on
the future development of adaptive multiresolution schemes that is beyond mere
grid adaptation.

Trend 1: Adaptive mesh refinement and multiresolution analysis. In order to
optimize computational resources, AMR techniques have become a standard way to
optimize computational resources. These techniques have been originally developed
in the 1980’s by Berger et al. [10, 8, 7]. Typically, the refinement process is triggered
by gradients [60] or higher order interpolation [2]. Recent investigations by [31]
show that using a discrete multiresolution analysis instead leads to a much more
efficient refinement criteria. In particular, in areas of partial smoothness such as
rarefaction waves. It turned out that only minimal changes in the existing AMR
code were necessary to embed the multiresolution-based refinement criterion.
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In principle, it would be possible to embed the multiresolution-based grid adap-
tation concept to any AMR code as a black box, where the data have to be trans-
ferred between the two tools. This has been realized in the Quadflow solver [14, 15].
However, this requires some computational overhead in terms of memory and CPU
time. In particular, the multiresolution-based grid adaptation technique is kept sep-
arate from the treatment of discrete evolution equations and therefore we could not
employ the much higher potential of the multiresolution analysis when applying it
directly to the discrete evolution.

Trend 2: Implicit time discretization. In Section 5, adaptive multiresolution fi-
nite volume schemes have been derived only for explicit time discretizations. We
may proceed similarly in case of an implicit time discretization, cf. [15]. These are
of interest when dealing with stationary flow problems, weakly instationary prob-
lems or models that exhibit some stiffness due to relaxation processes, e.g. chemical
reactions, or dissipation, e.g. diffusion, viscosity and heat conduction, resulting in
anisotropic flow structures such as boundary layers. For these types of problems an
explicit time discretization would lead to very small time steps in order to meet the
CFL condition. Although the derivation is straight-forward, several new questions
arise:

(i) In each time step the implicit time discretization results in a nonlinear system
of discrete evolution equations. Typically this system is solved by Newton-Krylov
methods. For steady state problems, only one Newton step is performed, because
the time plays only the role of a relaxation parameter and there is no need to be
accurate in each time step. However, for instationary problems several Newton steps
are needed to maintain the accuracy in each time step. In recent work by Steiner et
al. [69, 68], it was possible to design a break condition for the Newton methods that
relies on the threshold value of the multiscale method.

To improve the efficiency of the solution of the nonlinear system one might em-
ploy the multilevel structure of the underlying grid hierarchy in the multiscale ana-
lysis similar to adaptive multigrid techniques such as Brandt’s so-called multilevel
adaptive technique (MLAT), cf. [16, 17], that is an adaptive generalization of the
full approximation scheme (FAS). The efficiency of these methods crucially relies
on the proper choice of problem-dependent transfer and relaxation operators. First
investigations in [56] and [57] for unsteady state and steady state flow problems,
respectively, show that opposite to classical adaptive multigrid schemes we may
employ the multiresolution analysis using biorthogonal wavelets to define the re-
striction and prolongation operators. Since the underlying problem is nonlinear, the
FAS [16] is used for the coarse grid correction. Further investigations are needed
to fully employ the high potential of the multiresolution analysis when applying it
directly to the discrete evolution equations arising from the finite volume discretiza-
tion rather than just using it as a data compression tool for the set of discrete cell
data.

(ii) By the implicit time discretization, the data in all cells are coupled and, hence,
an information could propagate throughout the entire computational domain in one
time step. Since the prediction strategy in Section 5.3 relies on the fact that the
information propagates at most by one cell, the prediction has to be adjusted. Typ-



404 Siegfried Müller

ically, for convection-dominated problems such as compressible fluid flow at high
Reynolds numbers the influence of a local perturbation decays rapidly in space and
stays more or less local. In [11], a heuristic approach has been developed for vis-
cous problems where the parameter q in Harten’s strategy has been coupled with the
viscosity parameter. However, a rigorous mathematical justification of its reliability
in the sense of the condition (16) is still missing.

Trend 3: Time step adaptation. The crux of adaptive multiresolution schemes
is the multiresolution analysis of data corresponding to an arbitrary but fixed time.
Therefore the local time variation is not directly accessible from the analysis of the
spatial variation. In recent years, there have been several attempts to develop time
adaptive scheme where the time step is controlled. This is not to be confused with
multilevel time stepping as presented in Section 5.4.

A possible strategy has been investigated by Ferm and Lotstedt [36] based on
time step control strategies for ODEs. Here a Runge-Kutta-Fehlberg method is ap-
plied to the semi-discretized flow equations by which the local spatial and temporal
errors are estimated. These errors determine the local stepsize in time and space.
Later on, this idea was also embedded in fully adaptive multiresolution finite volume
schemes, cf. [30]. Alternatively, Kröner and Ohlberger [48] based their space-time
adaptivity upon Kuznetsov-type a-posteriori L1-error-estimates for scalar conserva-
tion laws.

More recently, explicit and implicit finite volume solvers on adaptively refined
meshes have been coupled with adjoint techniques to control the time stepsizes for
the solution of weakly instationary compressible inviscid flow problems like trans-
onic flight. These can be considered perturbations of stationary flows. While time
accuracy is still needed to study phenomena like aero-elastic interactions, large time
steps may be possible when the perturbations have passed. Here the time step control
is based on a space-time-splitting of the adjoint error representation, cf. [33, 5, 6].
In [68, 69] the multiscale-based grid adaptation was combined with these adjoint
techniques to solve efficiently instationary problems. The advantage of this space
adaptive method is that it also provides an efficient break condition for the Newton
iteration in the implicit time integration.

Trend 4: Parallelization. Although multiscale-based grid adaptation leads to a
significant reduction of the computational complexity (CPU time and memory) in
comparison to computations on uniform meshes, this is not sufficient to perform 3D
computations for complex geometries efficiently. In addition, we need paralleliza-
tion techniques in order to further reduce the computational time to an affordable
order of magnitude. On a distributed memory architecture, the performance of a par-
allelized code crucially depends on the load-balancing and the interprocessor com-
munication. Since the underlying adaptive grids are unstructured due to hanging
nodes, this task cannot be considered trivial. For this purpose, graph partitioning
methods are frequently employed using the Metis software [47, 46]. An alterna-
tive approach is based on space-filling curves, cf. [71]. Here the basic idea is to
map level-dependent multiindices identifying the cells in a dyadic grid hierarchy of
nested grids to a onedimensional line. The interval is then split into different parts
each containing the same number of entries. In the context of adaptive multiresolu-
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tion schemes both the graph-partitioning and the space-filling curve approach have
been used, cf. [61, 62] and [18, 4], respectively.

Nowadays more and more powerful parallel hardware architectures based on
clusters of shared memory machines are being developed. Therefore the above con-
cepts have to be reconsidered. In order to fully employ the power of the machines,
a redesign of algorithms and data structures seems to be indispensable taking into
account issues such as caching and threading.

Trend 5: Turbulence Modeling. The potential of the multiresolution analysis
is not only restricted to pure data analysis but can be used, for instance, to model
turbulent flow. The inherent problem of simulating turbulent flows comes from the
number of degrees of freedom needed to resolve turbulent structures. This number
is proportional to Re9/4 and becomes dramatically large with increasing Reynolds
number Re, e.g. in aerodynamics Re ∼ 106, that makes a direct numerical simula-
tion (DNS) impossible in many applications. In general, the interest is not in the
fully resolved turbulent flow field but in some macroscopic quantities such as lift
and drag coefficients. At the macroscale the quantities can be resolved. However,
they are influenced by the non-resolved fluctuations. Typically, the influence of
the fluctuations is described using some algebraic models, the Reynolds-averaged
Navier-Stokes equations (RANS) or large eddy simulations (LES). Alternatively,
the coherent vortex simulation (CVS) developed by Farge et al. [35, 64, 34] for
incompressible flows has been designed to compute this problem with a reduced
number of degrees of freedom. This methodology is based on the wavelet represen-
tation of the vorticity. The basic idea is to extract the coherent vortex structures from
the noise which will then be modeled to compute the flow evolution.

Up to now, it is not apriorily known whether the choice of degrees of freedom
corresponding to the resolved macroscale is sufficient to capture adequately the in-
fluence of the small scales on the macroscale. Using multiresolution techniques in
combination with recent quantitative estimates for the action of the nonlinearity on
different scales of the flow field, cf. [22, 23], seem to offer a promising possibility
to investigate more rigorously the effect of the fluctuations on the coarse scales. In
particular, it will be interesting to adjust the local scale of resolution adaptively at
run time instead of fixing it before starting the computation. Work in this regard is
done in [29].
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Abstract This is a survey on the theory of adaptive finite element methods (AFEM),
which are fundamental in modern computational science and engineering. We
present a self-contained and up-to-date discussion of AFEM for linear second order
elliptic partial differential equations (PDEs) and dimension d > 1, with emphasis
on the differences and advantages of AFEM over standard FEM. The material is
organized in chapters with problems that extend and complement the theory. We
start with the functional framework, inf-sup theory, and Petrov-Galerkin method,
which are the basis of FEM. We next address four topics of essence in the theory
of AFEM that cannot be found in one single article: mesh refinement by bisection,
piecewise polynomial approximation in graded meshes, a posteriori error analysis,
and convergence and optimal decay rates of AFEM. The first topic is of geometric
and combinatorial nature, and describes bisection as a rather simple and efficient
technique to create conforming graded meshes with optimal complexity. The sec-
ond topic explores the potentials of FEM to compensate singular behavior with local
resolution and so reach optimal error decay. This theory, although insightful, is in-
sufficient to deal with PDEs since it relies on knowing the exact solution. The third
topic provides the missing link, namely a posteriori error estimators, which hinge
exclusively on accessible data: we restrict ourselves to the simplest residual-type es-
timators and present a complete discussion of upper and lower bounds, along with
the concept of oscillation and its critical role. The fourth topic refers to the conver-
gence of adaptive loops and its comparison with quasi-uniform refinement. We first
show, under rather modest assumptions on the problem class and AFEM, conver-
gence in the natural norm associated to the variational formulation. We next restrict
the problem class to coercive symmetric bilinear forms, and show that AFEM is
a contraction for a suitable error notion involving the induced energy norm. This
property is then instrumental to prove optimal cardinality of AFEM for a class of
singular functions, for which the standard FEM is suboptimal.

Ricardo H. Nochetto
Department of Mathematics and Institute of Physical Science and Technology, University of Mary-
land, College Park, MD 20742, USA, e-mail: rhn@math.umd.edu. Partially supported by NSF
grant DMS-0807811.

Kunibert G. Siebert
Fakultät für Mathematik, Universität Duisburg-Essen, Forsthausweg 2, D-47057 Duisburg, Ger-
many, e-mail: kg.siebert@uni-due.de

Andreas Veeser
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1 Introduction

Adaptive finite element methods are a fundamental numerical instrument in sci-
ence and engineering to approximate partial differential equations. In the 1980s and
1990s a great deal of effort was devoted to the design of a posteriori error estima-
tors, following the pioneering work of Babuška. These are computable quantities,
depending on the discrete solution(s) and data, that can be used to assess the approx-
imation quality and improve it adaptively. Despite their practical success, adaptive
processes have been shown to converge, and to exhibit optimal complexity, only
recently and for linear elliptic PDE.

This survey presents an up-to-date discussion of adaptive finite element methods
encompassing its design and basic properties, convergence, and optimality.

1.1 Classical vs adaptive approximation in 1d

We start with a simple motivation in 1d for the use of adaptive procedures, due to
DeVore [28]. Given Ω = (0,1), a partition TN = {xi}N

n=0 of Ω

0 = x0 < x1 < · · ·< xn < · · ·< xN = 1

and a continuous function u : Ω → R, we consider the problem of interpolating u
by a piecewise constant function UN over TN . To quantify the difference between
u and UN we resort to the maximum norm and study two cases depending on the
regularity of u.

Case 1: W 1
∞-Regularity. Suppose that u is Lipschitz in [0,1]. We consider the ap-

proximation
UN(x) := u(xn−1) for all xn−1 ≤ x < xn.

Since

|u(x)−UN(x)|= |u(x)−u(xn−1)|=
∣∣∣
∫ x

xn−1

u′(t)dt
∣∣∣≤ hn‖u′‖L∞(xn−1,xn)

we conclude that

‖u−UN‖L∞(Ω) ≤
1
N
‖u′‖L∞(Ω), (1)

provided the local mesh-size hn is about constant (quasi-uniform mesh), and so pro-
portional to N−1 (the reciprocal of the number of degrees of freedom). Note that
the same integrability is used on both sides of (1). A natural question arises: Is it
possible to achieve the same asymptotic decay rate N−1 with weaker regularity de-
mands?

Case 2: W 1
1 -Regularity. To answer this question, we suppose ‖u′‖L1(Ω) = 1 and

consider the non-decreasing function
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φ(x) :=
∫ x

0
|u′(t)|dt

which satisfies φ(0) = 0 and φ(1) = 1. Let TN = {xi}N
n=0 be the partition given by

∫ xn

xn−1

|u′(t)|dt = φ(xn)−φ(xn−1) =
1
N

.

Then, for x ∈ [xn−1,xn],

|u(x)−u(xn−1)|=
∣∣∣
∫ x

xn−1

u′(t)dt
∣∣∣≤
∫ x

xn−1

|u′(t)|dt ≤
∫ xn

xn−1

|u′(t)|dt =
1
N

,

whence

‖u−UN‖L∞(Ω) ≤
1
N
‖u′‖L1(Ω). (2)

We thus conclude that we could achieve the same rate of convergence N−1 for
rougher functions with just ‖u′‖L1(Ω) < ∞. The following comments are in order
for Case 2.

Remark 1.1 (Equidistribution). The optimal mesh TN equidistributes the max-error.
This mesh is graded instead of uniform but, in contrast to a uniform mesh, such a
partition may not be adequate for another function with the same basic regularity as
u. It is instructive to consider the singular function u(x) = xγ with γ = 0.1 and error
tolerance 10−2 to quantify the above computations: if N1 and N2 are the number of
degrees of freedom with uniform and graded partitions, we obtain N1/N2 = 1018.

Remark 1.2 (Nonlinear Approximation). The regularity of u in (2) is measured in
W 1

1 (Ω) instead of W 1
∞(Ω) and, consequently, the fractional γ regularity measured in

L∞(Ω) increases to one full derivative when expressed in L1(Ω). This exchange of
integrability between left and right-hand side of (2), and gain of differentiability, is
at the heart of the matter and the very reason why suitably graded meshes achieve
optimal asymptotic error decay for singular functions. By those we mean functions
which are not in the usual linear Sobolev scale, say W 1

∞(Ω) in this example, but
rather in a nonlinear scale [28]. We will get back to this issue in Chap. 5.

1.2 Outline

The function UN may be the result of a minimization process. If we wish to minimize
the norm ‖u−v‖L2(Ω) within the space VN of piecewise constant functions over TN ,
then it is easy to see that the solution UN satisfies the orthogonality relation

UN ∈ VN : 〈u−UN , v〉 = 0 for all v ∈ VN (3)

and is given by the explicit local expression
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UN(x) =
1
hn

∫ xn

xn−1

u for all xn−1 < x < xn.

The previous comments apply to this UN as well even though UN coincides with u
at an unknown point in each interval [xn−1,xn].

The latter example is closer than the former to the type of approximation issues
discussed in this survey. A brief summary along with an outline of this survey fol-
lows:

PDE: The function u is not directly accessible but rather it is the solution of an
elliptic PDE. Its approximation properties are intimately related to its regular-
ity. In Chap. 2 we review briefly Sobolev spaces and the variational formulation
of elliptic PDE, a present a full discussion of the inf-sup theory. We show the
connection between approximability and regularity in Chap. 5, when we assess
constructive approximation and use this later in Chap. 9 to derive rates of con-
vergence.

FEM: To approximate u we need a numerical method which is sufficiently flex-
ible to handle both geometry and accuracy (local mesh refinement); the method
of choice for elliptic PDEs is the finite element method. We present its basic
theory in Chap. 3, with emphasis on piecewise linear elements. We discuss the
refinement of simplicial meshes in any dimension by bisection in Chap. 4, and
address its complexity. This allows us to shed light on the geometric aspects of
FEM that make them so flexible and useful in practice. The complexity analysis
of bisection turns out to be crucial to construct optimal approximations in graded
meshes in Chap. 5 and to derive convergence rates in Chap. 9 for AFEM.

Approximation: We briefly recall polynomial interpolation theory in Chap. 5 as
well as the principle of error equidistribution. The latter is a concept that leads
to optimal graded meshes and suggests that FEM might be able to approximate
singular functions with optimal rate. We conclude Chap. 5 with the construction
of optimal meshes via bisection for functions in a certain regularity class relevant
to elliptic PDE. We emphasize the energy norm.

A Posteriori Error Estimation: To extract the local errors incurred by FEM, and
thus be able to equidistribute them, we present residual-type a posteriori error es-
timators in Chap. 6. These are computable quantities in terms of the discrete
solution and data which encode the correct information about the error distribu-
tion. They are the simplest but not the most accurate ones. Therefore, we also
present alternative estimators, which are equivalent to the residual estimators.
The discussion of Chap. 6 includes the appearence of an oscillation term and a
proof that it cannot be avoided for the estimator to be practical. We show both
upper and lower bounds between the energy error and the residual estimator. The
former is essential for convergence and the latter for optimality.

Adaptivity: This refers to the use and study of loops to the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (4)
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to iteratively improve the approximation of the solution of a PDE while keeping
an optimal distribution of computational resources (degrees of freedom). The de-
sign of each module, along with some key properties, is discussed in Chap. 7 and
8. We emphasize the standard AFEM employed in practice which employs the
estimator exclusively to make refinement decisions and never uses coarsening.

Convergence: This issue has been largely open until recently. In Chap. 7 we
present a basic convergence theory for most linear elliptic PDEs, including sad-
dle point problems, under rather modest assumptions and valid for all existing
marking strategies. The final result is rather general but does not, and cannot,
provide a convergence rate.

Optimality: We restrict ourselves to a model problem, which is symmetric and
coercive, to investigate the convergence rate of AFEM. In Chap. 8 we derive a
contraction property of AFEM for the so-called quasi-error, which is a scaled
sum of the energy error and the estimator. In Chap. 9 we prove that AFEM con-
verges with optimal rate as dictated by approximation theory even though the
adaptive loop (4) does not use any regularity information but just the estimator.
This analysis leads to approximation classes adequate for FEM, and so to the
geometric restrictions caused by conforming grids, which are not the usual ones
in nonlinear approximation theory.

2 Linear boundary value problems

In this section we examine the variational formulation of elliptic partial differential
equations (PDE). We start with a brief review of Sobolev spaces and their properties
and continue with several boundary value problems with main emphasis on a model
problem that plays a relevant role in the subsequent analysis. Then we present the
so-called inf-sup theory that characterizes existence and uniqueness of variational
problems, and conclude by reviewing the applications in light of the inf-sup theory.

2.1 Sobolev spaces

The variational formulation of elliptic PDEs is based on Sobolev spaces. More-
over, approximability and regularity of functions are intimately related concepts.
Therefore we briefly review definitions, basic concepts and properties of Lp-based
Sobolev spaces for 1 ≤ p ≤ ∞ and dimension d ≥ 1. For convenience we restrict
ourselves to bounded domains Ω ⊂ R

d with Lipschitz boundary.

Definition 2.1 (Sobolev Space). Given k ∈ N and 1≤ p≤ ∞, we define

W k
p (Ω) := {v : Ω → R | Dαv ∈ Lp(Ω) for all |α| ≤ k}
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where Dαv = ∂α1
x1 · · ·∂

αd
xd v stands for the weak derivative of order α . The corre-

sponding norm and seminorm are for 1≤ p < ∞

‖v‖W k
p (Ω) :=

(
∑
|α|≤k

‖Dαv‖p
Lp(Ω)

)1/p

, |v|W k
p (Ω) :=

(
∑
|α|=k

‖Dαv‖p
Lp(Ω)

)1/p

,

and for p = ∞

‖v‖W∞
p (Ω) := sup

|α|≤k
‖Dαv‖L∞(Ω), |v|W∞

p (Ω) := sup
|α|=k

‖Dαv‖L∞(Ω).

For p = 2 the spaces W k
2 (Ω) are Hilbert spaces and we denote them by Hk(Ω) =

W k
2 (Ω). The scalar product inducing the norm ‖ · ‖Hk(Ω) = ‖ · ‖W k

2 (Ω) is given by

〈u, v〉Hk(Ω) = ∑
|α|≤k

∫
Ω

DαuDαv for all u,v ∈ Hk(Ω).

We let Hk
0(Ω) be the completion of C∞

0 (Ω) within Hk(Ω). The space Hk
0(Ω) is a

strict subspace Hk(Ω) because 1 ∈ Hk(Ω)\Hk
0(Ω).

There is a natural scaling of the seminorm in W k
p (Ω). Consider for h > 0 the

change of variables x̂ = x/h for all x ∈ Ω , which transforms the domain Ω into Ω̂
and functions v defined over Ω into functions v̂ defined over Ω̂ . Then

|v̂|W k
p (Ω̂) = hk−d/p |v|W k

p (Ω).

This motivates the following definition, which turns out to be instrumental.

Definition 2.2 (Sobolev Number). The Sobolev number of W k
p (Ω) is defined by

sob(W k
p ) := k−d/p. (5)

2.1.1 Properties of Sobolev Spaces

We summarize now, but not prove, several important properties of Sobolev spaces
which play a key role later. We refer to [35, 38, 39] for details.

Embedding Theorem. Let m > k≥ 0 and assume sob(W m
p ) > sob(W k

q ). Then the
embedding

W m
p (Ω) ↪→W k

q (Ω)

is compact.
The assumption on the Sobolev number cannot be relaxed. To see this, consider
Ω to be the unit ball of R

d for d ≥ 2 and set v(x) = log log |x|2 for x ∈ Ω \ {0}.
Then there holds v ∈W 1

d (Ω) and v �∈ L∞(Ω), but
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sob(W 1
d ) = 1−d/d = 0 = 0−d/∞ = sob(L∞).

Therefore, equality cannot be expected in the embedding theorem.

Density. The space C∞(Ω) is dense in W k
p (Ω), i. e.,

W k
p (Ω) = C∞(Ω)

‖·‖V
.

Poincaré Inequality. The following inequality holds

∥∥∥v−|Ω |−1
∫
Ω

v
∥∥∥

L2(Ω)
≤C(Ω)‖∇v‖L2(Ω) for all v ∈W 1

2 (Ω) (6)

with a constant C(Ω) depending on the shape of Ω . The best constant within the
class of convex domains is

C(Ω) =
1
π

diam(Ω);

see [60, 11].

Poincaré-Friedrichs Inequality. There is a constant Cd > 0 depending only on
the dimension such that [38, p. 158]

‖v‖L2(Ω) ≤Cd |Ω |1/d‖∇v‖L2(Ω) for all v ∈ H1
0 (Ω). (7)

Trace Theorem. Functions in H1(Ω) have ‘boundary values’ in L2(Ω), called
trace, in that there exists a unique linear operator T : H1(Ω)→ L2(∂Ω) such that

‖T v‖L2(∂Ω) ≤ c(Ω)‖v‖H1(Ω) for all v ∈ H1(Ω),

T v = v for all v ∈C0(Ω)∩H1(Ω).

Since T v = v for continuous functions we write v for T v. For a simplex we give
an explicit construction of the constant c(Ω) in Sect. 6.2. The image of T is a
strict subspace of L2(∂Ω), the so-called H1/2(∂Ω). The definition of H1

0 (Ω) can
be reconciled with that of traces because

H1
0 (Ω) =

{
v ∈ H1(Ω) | v = 0 on ∂Ω}.

The operator T is also well defined on W 1
p (Ω) for 1≤ p≤ ∞.

Green’s Formula. Given functions v,w ∈ H1(Ω), the following fundamental
Green’s formula ∫

Ω
∂iwv =−

∫
Ω

w∂iv+
∫
∂Ω

wvni (8)

holds for any i = 1, . . . ,d, where nnn(x) = [n1(x), . . . ,nd(x)]T is the outer unit nor-
mal of ∂Ω at x. Equivalently, if v ∈ H1(Ω) and www ∈ H1(Ω ;Rd) then there holds
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∫
Ω

divwwwv =−
∫
Ω

www ·∇v+
∫
∂Ω

vwww ·nnn. (9)

Green’s formula is a direct consequence of Gauß’ Divergence Theorem
∫
Ω

divwww =
∫
∂Ω

www ·nnn for all www ∈W 1
1 (Ω ;Rd).

2.2 Variational formulation

We consider elliptic PDEs that can be formulated as the following variational prob-
lem: Let (V,〈·, ·〉V) be an Hilbert space with induced norm ‖ · ‖V and denote by V

∗

its dual space equipped with the norm

‖ f‖V∗ = sup
v∈V

〈 f , v〉
‖v‖V

for all f ∈ V
∗.

Consider a continuous bilinear form B : V×V→ R and f ∈ V
∗. Then we seek a

solution u ∈ V of

u ∈ V : B[u, v] = 〈 f , v〉 for all v ∈ V. (10)

We first look at several examples that are relevant for the rest of the presentation.

2.2.1 Model Problem

The model problem of this survey is the following 2nd order elliptic PDE

−div(AAA(x)∇u) = f in Ω , (11a)

u = 0 on ∂Ω , (11b)

where f ∈ L2(Ω) and AAA ∈ L∞(Ω ;Rd×d) is uniformly symmetric positive definite
(SPD) over Ω , i. e., there exists constants 0 < α1 ≤ α2 such that

α1|ξξξ |2 ≤ ξξξ T AAA(x)ξξξ ≤ α2|ξξξ |2 for all x ∈Ω ,ξξξ ∈ R
d . (12)

For the variational formulation of (11) we let V = H1
0 (Ω) and denote its dual by

V
∗ = H−1(Ω). Since H1

0 (Ω) is the subspace of H1(Ω) of functions with vanishing
trace, asking for u ∈ V accounts for the homogeneous Dirichlet boundary values in
(11b).

We next multiply (11a) with a test function v ∈H1
0 (Ω), integrate over Ω and use

Green’s formula (9), provided www = −AAA∇u ∈ H1(Ω ;Rd), to derive the variational
formulation
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u ∈ V :
∫
Ω
∇v ·AAA(x)∇u =

∫
Ω

f v for all v ∈ V, (13)

because the boundary term is zero thanks to v = 0 on ∂Ω . However, problem (13)
makes sense with much less regularity of the flux www. Setting

B[w, v] :=
∫
Ω
∇v ·AAA(x)∇w for all v,w ∈ H1

0 (Ω),

〈 f , v〉 :=
∫
Ω

f v for all v ∈ H1
0 (Ω),

(13) formally reads as (10). In Sect. 2.5.1 we analyze further B and 〈 f , ·〉.

2.2.2 Other Boundary Value Problems

We next introduce several elliptic boundary value problems that also fit within the
present theory.

General 2nd Order Elliptic Operator. Let AAA ∈ L∞(Ω ;Rd×d) be uniformly SPD
as above, bbb ∈ L∞(Ω ;Rd), c ∈ L∞(Ω), and f ∈ L2(Ω). We now consider the general
2nd order elliptic equation

−div(AAA(x)∇u)+bbb(x) ·∇u+ c(x)u = f in Ω ,

u = 0 on ∂Ω .

The variational formulation utilizes V = H1
0 (Ω), as in Sect. 2.2.1. We again multiply

the PDE with a test function v ∈H1
0 (Ω), integrate over Ω , and use Green’s formula

(9) provided AAA(x)∇u ∈ H1(Ω ;Rd). This gives the bilinear form

B[w, v] :=
∫
Ω
∇v ·AAA(x)∇w+ vbbb ·∇w+ cvw for all v,w ∈ H1

0 (Ω)

and 〈 f , v〉 =
∫
Ω f v in (10). We examine B further in Sect. 2.5.2.

The Biharmonic Equation. The vertical displacement u of the mid-surface Ω ⊂
R

2 of a clamped plate under a vertical acting force f ∈ L2(Ω) can be modeled by
the biharmonic equation

Δ 2u = f in Ω , (14a)

u = ∂nnn u = 0 on ∂Ω , (14b)

where ∂nnn u = ∇u ·nnn is the normal derivative of u on ∂Ω .
For the variational formulation we let V = H2

0 (Ω), and note that

H2
0 (Ω) =

{
v ∈ H2(Ω) | v = ∂nnn v = 0 on ∂Ω

}
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also accounts for the boundary values (14b). Here, we use Green’s formula (9) twice
to deduce for all u ∈ H4(Ω) and v ∈ H2(Ω)

∫
Ω
Δ 2uv =

∫
Ω
ΔuΔv+

∫
∂Ω

∂nnnΔu v+
∫
∂Ω

Δu ∂nnn v.

Multiplying (14a) with v∈H2
0 (Ω), integrating over Ω , and using the above formula

(without boundary terms), we derive the bilinear form of (10)

B[w, v] :=
∫
Ω
ΔvΔw for all v,w ∈ V,

and set 〈 f , v〉 :=
∫
Ω f v for v ∈ V.

The 3d Eddy Current Equations. Given constant material parameters μ ,κ > 0
and fff ∈ L2(Ω ;R3) we next consider the 3d eddy current equations

curl(μ curluuu)+κuuu = fff in Ω , (15a)

u∧nnn = 0 on ∂Ω , (15b)

with the curl operator

curlvvv := ∇∧ vvv =
[
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

]

and the vector product ∧ in R
3.

The variational formulation is based on the Sobolev space

H(curl;Ω) :=
{

vvv ∈ L2(Ω ;R3) | curlvvv ∈ L2(Ω ;R3)
}

equipped with the norm ‖vvv‖2
H(curl;Ω) := ‖vvv‖2

L2(Ω ;R3) + ‖curlvvv‖2
L2(Ω ;R3). This is a

Hilbert space and is larger than H1(Ω ;R3). The weak formulation of (15) utilizes
the subspace of functions with vanishing tangential trace on ∂Ω

V := H0(curl;Ω) =
{

vvv ∈ H(curl;Ω) | vvv∧nnn = 0 on ∂Ω
}

= C∞
0 (Ω ;R3)

‖·‖H(curl;Ω)
,

which thereby incorporates the boundary values of (15b). This space is a closed and
proper subspace of H(curl;Ω).

From Green’s formula (8) with proper choices of vvv and www it is easy to derive the
following formula for all vvv,www ∈ H(curl;Ω)

∫
Ω

curlwww · vvv =
∫
Ω

www · curlvvv+
∫
∂Ω

www · (vvv∧nnn).

Multiplying (15a) with a test function vvv∈H0(curl;Ω), integrating over Ω and using
the above formula with www = μ curluuu ∈H(curl;Ω), we end up with the bilinear form
and right hand side of (10)
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B[www, vvv] :=
∫
Ω
μ curlvvv · curlwww+κ vvv ·www for all vvv,www ∈ V,

〈 fff , vvv〉 :=
∫
Ω

fff · vvv for all vvv ∈ V.

The Stokes System. Given an external force fff ∈ L2(Ω ;Rd), let the velocity-
pressure pair (uuu, p) satisfy the momemtum and incompressibility equations with
no-slip boundary condition:

−Δuuu+∇p = fff in Ω ,

divuuu = 0 in Ω ,

uuu = 0 on ∂Ω .

For the variational formulation we consider two Hilbert spaces V = H1
0 (Ω ;Rd) and

Q = L2
0(Ω), where L2

0(Ω) is the space of L2 functions with zero mean value. The
space H1

0 (Ω ;Rd) takes care of the no-slip boundary values of the velocity. Pro-
ceeding as in Sect. 2.2.1, this time using component-wise integration by parts for∫
Ω viΔwi and assuming www ∈H2(Ω ;Rd), we obtain the bilinear form a : V×V→R

a[www,vvv] :=
∫
Ω
∇vvv : ∇www =

d

∑
i=1

∫
Ω
∇vi ·∇wi for all vvv,www ∈ V.

Likewise, integration by parts of
∫
Ω vvv∇q yields the bilinear form b : Q×V→ R

b[q,vvv] :=−
∫
Ω

q divvvv for all q ∈Q, vvv ∈ V.

The variational formulation then reads: find (uuu, p) ∈ V×Q such that

a[uuu,vvv]+b[p,vvv] = 〈 fff , vvv〉 for all vvv ∈ V,

b[q,uuu] = 0 for all q ∈Q.

We will see in Sect. 2.4.2 how this problem can be formulated in the form (10).

2.3 The inf-sup theory

In this subsection we present a functional analytic theory, the so-called inf-sup the-
ory, that characterizes existence, uniqueness, and continuous dependence on data of
the variational problem (10).

Throughout this section we let (V,〈·,·〉V) and (W,〈·,·〉W) be a pair of Hilbert
spaces with induced norms ‖ ·‖V and ‖ ·‖W. We denote by V

∗ and W
∗ their respec-

tive dual spaces equipped with norms
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‖ f‖V∗ = sup
v∈V

〈 f , v〉
‖v‖V

and ‖g‖W∗ = sup
v∈W

〈g, v〉
‖v‖W

.

We write L(V;W) for the space of all linear and continuous operators from V into
W with operator norm

‖B‖L(V;W) = sup
v∈V

‖Bv‖W

‖v‖V

.

The following result relates a continuous bilinear form B : V×W→ R with an
operator B ∈ L(V;W).

Theorem 2.1 (Banach-Nečas). Let B : V×W→ R be a continuous bilinear form
with norm

‖B‖ := sup
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

. (16)

Then there exists a unique linear operator B ∈ L(V,W) such that

〈Bv, w〉
W

= B[v, w] for all v ∈ V, w ∈W

with operator norm
‖B‖L(V;W) = ‖B‖.

Moreover, the bilinear form B satisfies

there exists α > 0 such that α‖v‖V ≤ sup
w∈W

B[v, w]
‖w‖W

for all v ∈ V, (17a)

for every 0 �= w ∈W there exists v ∈ V such that B[v, w] �= 0, (17b)

if and only if B : V→W is an isomorphism with

‖B−1‖L(W,V) ≤ α−1. (18)

Proof. 1 Existence of B. For fixed v∈V, the mapping B[v, ·] belongs to W
∗ by lin-

earity of B in the second component and continuity of B. Applying the Riesz Rep-
resentation Theorem (see for instance [16, (2.4.2) Theorem], [38, Theorem 5.7]),
we deduce the existence of an element Bv ∈W such that

〈Bv, w〉
W

= B[v, w] for all w ∈W.

Linearity of B in the first argument and continuity of B imply B ∈ L(V;W). In
view of (16), we get

‖B‖L(V;W) = sup
v∈V

‖Bv‖W

‖v‖V

= sup
v∈V

sup
w∈W

〈Bv, w〉
‖v‖V‖w‖W

= sup
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= ‖B‖.

2 Closed Range of B. The inf-sup condition (17a) implies
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α ‖v‖V ≤ sup
w∈W

〈Bv, w〉
‖w‖W

= ‖Bv‖W for all v ∈ V, (19)

whence B is injective. To prove that the range B(V) of B is closed in W, we let
wk = Bvk be a sequence such that wk → w ∈W as k→ ∞. We need to show that
w ∈ B(V). Invoking (19), we have

α ‖vk− v j‖V ≤ ‖B(vk− v j)‖W = ‖wk−w j‖W→ 0

as k, j→∞. Thus {vk}∞k=0 is a Cauchy sequence in V and so it converges vk→ v∈V

as k→ ∞. Continuity of B yields

Bv = lim
k→∞

Bvk = w ∈ B(V),

which shows that B(V) is closed.
3 Surjectivity of B. We argue by contradiction, i. e., assume B(V) �= W. Since B(V)

is closed we can decompose W = B(V)⊕B(V)⊥, where B(V)⊥ is the orthogonal
complement of B(V) in W (see for instance [16, (2.3.5) Proposition], [38, Theorem
5.6]). By assumption B(V)⊥ is non-trivial, i. e., there exists 0 �= w0 ∈ B(V)⊥. This
is equivalent to

w0 �= 0 and 〈w, w0〉 = 0 for all w ∈ B(V),

or
w0 �= 0 and 0 = 〈Bv, w0〉 = B[v, w0] for all v ∈ V.

This in turn contradicts (17b) and shows that B(V) = W. Therefore, we conclude
that B is an isomorphism from V onto W.

4 Property (18). We rewrite (19) as follows:

α ‖B−1w‖V ≤ ‖w‖W for all w ∈W,

which is (18) in disguise.
5 Property (18) implies (17a) and (17b). Compute

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= inf
v∈V

sup
w∈W

〈Bv, w〉
‖v‖V‖w‖W

= inf
v∈V

‖Bv‖W

‖v‖V

= inf
w∈W

‖w‖W

‖B−1w‖V

=
1

supw∈W

‖B−1w‖V
‖w‖W

=
1

‖B−1‖ ≥ α

which shows (17a). Property (17b) is a consequence of B being an isomorphism:
there exists 0 �= v ∈ V such that Bv = w and

B[v, w] = 〈Bv, w〉 = ‖w‖2
W
�= 0.

This concludes the theorem. '(



422 R. H. Nochetto, K. G. Siebert, and A. Veeser

We are now in the position to characterize properties of the bilinear form B in
(10) that imply that the variational problem (10) is well-posed. This result from 1962
is due to Nečas [56, Theorem 3.3].

Theorem 2.2 (Nečas Theorem). Let B : V×W→R be a continuous bilinear form.
Then the variational problem

u ∈ V : B[u, v] = 〈 f , v〉 for all v ∈W, (20)

admits a unique solution u ∈V for all f ∈W
∗, which depends continuously on f , if

and only if the bilinear form B satisfies one of the equivalent inf-sup conditions:

(1) There exists α > 0 such that

sup
w∈W

B[v, w]
‖w‖W

≥ α‖v‖V for some α > 0; (21a)

for every 0 �= w ∈W there exists v ∈ V such that B[v, w] �= 0. (21b)

(2) There holds

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

> 0, inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

> 0. (22)

(3) There exists α > 0 such that

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

= α. (23)

In addition, the solution u of (20) satisfies the stability estimate

‖u‖V ≤ α−1‖ f‖W∗ . (24)

Proof. 1 Denote by J : W→W
∗ the isometric Riesz isomorphism between W and

W
∗; see [16, (2.4.2) Theorem], [38, Theorem 5.7]. Let B ∈ L(V;W) be the linear

operator corresponding to B introduced in Theorem 2.1. Then (20) is equivalent to

u ∈ V : Bu = J−1 f in W.

Assume that (21) is satisfied. Then, according to Theorem 2.1, the operator B is
invertible. For any f ∈W

∗ the unique solution u ∈ V is given by u = B−1J−1 f and
u depends continuously on f with

‖u‖V ≤ ‖B−1‖L(W;V)‖J−1 f‖W = ‖B−1‖L(W;V)‖ f‖W∗ ≤ α−1‖ f‖W∗ .

Conversely, if (20) admits a unique solution u for any f ∈W
∗, then B has to be

invertible, which implies (21) by Theorem 2.1.
2 To show the equivalence of the inf-sup conditions (21), (22), and (23) we rewrite

Step 5 of the proof of Theorem 2.1:



Theory of adaptive finite element methods: An introduction 423

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= ‖B−1‖−1
L(W;V).

Furthermore,

inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

= inf
w∈W

sup
v∈V

〈Bv, w〉W
‖v‖V‖w‖W

= inf
w∈W

sup
v∈V

〈v, B∗w〉V
‖v‖V‖w‖W

= ‖B−∗‖−1
L(V;W),

where B∗ : W→ V is the adjoint operator of B and B−∗ : V→W is its inverse.
Recalling that ‖B∗‖L(W;V) = ‖B‖L(V;W) and ‖B−∗‖L(V;W) = ‖B−1‖L(W;V) we deduce
the desired expression

inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

= ‖B−1‖−1
L(W;V).

and conclude the proof. '(

The equality in (23) might seem at first surprising but is just a consequence of
‖B−∗‖L(V;W) = ‖B−1‖L(W;V). In general, (21) is simpler to verify than (23) and α of
(23) is the largest possible α in (21a). Moreover, the above proof readily gives the
following result.

Corollary 2.1 (Well Posedness vs. Inf-Sup). Assume that the variational problem
(20) admits a unique solution u ∈ V for all f ∈W

∗ so that

‖u‖V ≤C‖ f‖W∗ .

Then B satisfies the inf-sup condition (23) with α ≥C−1.

Proof. Since (20) admits a unique solution u for all f , we conclude that the operator
B ∈ L(V;W) of Theorem 2.1 is invertible and the solution operator B−1 ∈ L(W;V)
is bounded with norm ‖B−1‖L(W;W) ≤C, thanks to ‖u‖V ≤C‖ f‖W∗ . On the other

hand, Step 2 in the proof of Theorem 2.2 shows that ‖B−1‖−1
L(W;V) is the optimal

inf-sup constant α for B, which yields α ≥C−1. '(

2.4 Two special problem classes

We next study two special cases included in the inf-sup theory. The first class are
problems with coercive bilinear form and the second one comprises problems of
saddle point type.
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2.4.1 Coercive Bilinear Forms

An existence and uniqueness result for coercive bilinear forms was established by
Lax and Milgram eight years prior to the result by Nečas [45]. Coercivity of B is a
sufficient condition for existence and uniqueness but it is not necessary.

Corollary 2.2 (Lax-Milgram Theorem). Let B : V×V→ R be a continuous bi-
linear form that is coercive, namely there exists α > 0 such that

B[v, v]≥ α‖v‖2
V

for all v ∈ V. (25)

Then (10) has a unique solution that satisfies (24).

Proof. Since (25) implies supw∈V B[v, w]≥B[v, v]≥α‖v‖2
V

for all 0 �= v∈V, both
(21a) and (21b) follow immediately, whence Theorem 2.2 implies the assertion. '(

If the bilinear form B is also symmetric, i. e.,

B[v, w] = B[w, v] for all v,w ∈ V,

then B is a scalar product on V. The norm induced by B is the so-called energy
norm

|||v|||Ω := B[v, v]1/2.

Coercivity and continuity of B in turn imply that |||·|||Ω is equivalent to the natural
norm ‖ · ‖V in V since

α‖v‖2
V
≤ |||v|||2Ω ≤ ‖B‖‖v‖2

V
for all v ∈ V. (26)

Moreover, it is rather easy to show that for symmetric and coercive B the solution
u of (10) is the unique minimizer of the quadratic energy

J[v] :=
1
2
B[v, v]−〈 f , v〉 for all v ∈ V,

i. e., u = argminv∈V
J[v]. The energy norm and the quadratic energy play a relevant

role in both Chap. 8 and Chap. 9.

2.4.2 Saddle Point Problems

Given a pair of Hilbert spaces (V,Q), we consider two continuous bilinear forms
a : V×V → R and b : Q×V→ R. If f ∈ V

∗ and g ∈ Q
∗, then we seek a pair

(u, p) ∈ V×Q solving the saddle point problem

a[u,v]+b[p,v] = 〈 f , v〉 for all v ∈ V, (27a)

b[q,u] = 〈g, q〉 for all q ∈Q. (27b)
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Problem (27) is a variational problem which can of course be stated in the form
(10). In doing so we define the product space W := V×Q, which is a Hilbert space
with scalar product

〈(v,q), (w,r)〉W := 〈v, w〉V + 〈q, r〉Q for all (v,q),(w,r) ∈W

and induced norm ‖(v,q)‖W := (‖v‖2
V

+‖q‖2
Q
)1/2. From the bilinear forms a and b

we define the bilinear form B : W×W→ R by

B[(v,q), (w,r)] := a[v,w]+b[q,w]+b[r,v] for all (v,q),(w,r) ∈W.

Then, (27) is equivalent to the problem

(u, p) ∈W : B[(u, p), (v,q)] = 〈 f , v〉+ 〈g, q〉 for all (v,q) ∈W. (28)

To see this, test (28) first with (v,0), which gives (27a), and then utilizing (0,q)
yields (27b). Obviously, a solution (u, p) to (27) is a solution to (28) and vice versa.

Therefore, the saddle point problem (27) is well-posed if and only if B satisfies
the inf-sup condition (23). Since B is defined via the bilinear forms a and b and
due to the degenerate structure of (27) it is not that simple to show (23). However
it is a direct consequence of the inf-sup theorem for saddle point problems given by
Brezzi in 1974 [17].

Theorem 2.3 (Brezzi Theorem). The saddle point problem (27) has a unique so-
lution (u, p) ∈ V×Q for all data ( f ,g) ∈ V

∗ ×Q
∗, that depends continuously on

data, if and only if there exist constants α,β > 0 such that

inf
v∈V0

sup
w∈V0

a[v,w]
‖v‖V‖w‖V

= inf
w∈V0

sup
v∈V0

a[v,w]
‖v‖V‖w‖V

= α > 0, (29a)

inf
q∈Q

sup
v∈V

b[q,v]
‖q‖Q‖v‖V

= β > 0, (29b)

where
V0 := {v ∈ V | b[q,v] = 0 for all q ∈Q}.

In addition, there exists γ = γ(α,β ,‖a‖) such that the solution (u, p) is bounded by

(
‖u‖2

V
+‖p‖2

Q

)1/2 ≤ γ
(
‖ f‖2

V∗ +‖g‖2
Q∗
)1/2

. (30)

Proof. 1 Continuity of b implies that the subspace V0 of V is closed. We therefore
can decompose V = V0⊕V⊥ where V⊥ is the orthogonal complement of V0 in V;
see [16, (2.3.5) Proposition], [38, Theorem 5.6]. Both V0 and V⊥ are Hilbert spaces.

2 The inf-sup condition (29b) is (21a) for B = b. On the other hand, by definition of
V0, for every v ∈V⊥ there exists a q∈Q with b[q,v] �= 0, which is (21b). Hence, the
equivalence of (21) and (23) implies that the operators B : Q→V⊥ and B∗ : V⊥→Q

defined by



426 R. H. Nochetto, K. G. Siebert, and A. Veeser

〈Bq, v〉V = 〈B∗v, q〉Q = b[q,v] for all q ∈Q,v ∈ V⊥,

are isomorphisms.
3 We write the solution u = u0 + u⊥ with u0 ∈ V0 and u⊥ ∈ V⊥ to be determined

as follows. Since B∗ is an isomorphism, the problem

u⊥ ∈ V⊥ : b[q,u⊥] = 〈B∗v, q〉Q = 〈g, q〉 for all q ∈Q (31)

is well-posed for all g ∈Q
∗, and selects u⊥ uniquely. We next consider

u0 ∈ V0 : a[u0,v] = 〈 f , v〉 −a[u⊥,v] for all v ∈ V0. (32)

This problem admits a unique solution u0 thanks to (29b), which is (23) with B = a.
4 Upon setting

〈F, v〉 := 〈 f , v〉 −a[u,v] for all v ∈ V

we see that F ∈ V
∗
⊥ because 〈F, v〉 = 0 for all v ∈ V0 by (32). Since B is an isomor-

phism, there is a unique solution of

p ∈Q : b[p,v] = 〈Bp, v〉V = 〈F, v〉 for all v ∈ V⊥. (33)

This construction yields the desired pair (u, p) and shows that problems (31),
(32), and (33) are well-posed if and only if b satisfies (29b) and a fulfills (29a).

5 We conclude by estimating (u, p). In view of (29b), u⊥ is bounded by

‖u⊥‖V ≤ β−1‖g‖Q∗

which, in conjunction with (29a), implies for u0

‖u0‖V ≤ α−1(‖ f‖V∗ +‖a‖‖u⊥‖V

)
≤ α−1‖ f‖V∗ +‖a‖(αβ )−1‖g‖Q∗ .

Hence,

‖u‖V ≤ ‖u0‖V +‖u⊥‖V ≤ α−1‖ f‖V∗ +
(
1+α−1‖a‖

)
β−1‖g‖Q∗ .

Finally, using ‖F‖V
∗
⊥

= ‖F‖V∗ ≤ ‖ f‖V∗ +‖a‖‖u‖V, (29b) gives the bound for p

‖p‖Q ≤ β−1‖F‖V∗ ≤ β−1(1+α−1‖a‖
) (
‖ f‖V∗ +β−1‖a‖‖g‖Q∗

)
.

Adding the two estimates gives the stability bound (30) with γ = γ(α,β ,‖a‖). '(

Remark 2.1 (Optimal constant). A better bound of the stability constant γ in terms
of α,β and ‖a‖ is available. Setting

κ :=
‖a‖
β

, κ11 :=
1+κ2

α2 , κ22 := κ2κ11 +
1
β 2 , κ12 := κκ11,

Xu and Zikatanov have derived the bound [79]
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γ ≤ κ12 +max(κ11,κ22).

For establishing this improved bound one has to make better use of the orthogonal
decomposition V = V0⊕V⊥ when estimating u = u0 + u⊥ and one has to resort to
a result of Kato for non-trivial idempotent operators [42].

Combining the Brezzi theorem with Corollary 2.1 we infer the inf-sup condition
for the bilinear form B in (28).

Corollary 2.3 (Inf-Sup of B). Let the bilinear form B : W→W be defined by
(28).

Then there holds

inf
(v,q)∈W

sup
(w,r)∈W

B[(v,q), (w,r)]
‖(v,q)‖W‖(w,r)‖W

= inf
(w,r)∈W

sup
(v,q)∈W

B[(v,q), (w,r)]
‖(v,q)‖W‖(w,r)‖W

≥ γ−1,

where γ is the stability constant from Theorem 2.3.

Assume that a : V×V→ R is symmetric and let (u, p) be the solution to (27).
Then u is the unique minimizer of the energy J[v] := 1

2 a[v,v]−〈 f , v〉 under the con-
straint b[·,u] = g in Q

∗. In view of this, p is the corresponding Lagrange multiplier
and the pair (u, p) is the unique saddle point of the Lagrangian

L[v,q] := J[v]+b[q,v]−〈g, q〉 for all v ∈ V,q ∈Q.

The Brezzi theorem also applies to non-symmetric a, in which case the pair (u, p)
is no longer a saddle point.

2.5 Applications

We now review the examples introduced in Sect. 2.2 in light of the inf-sup theory.

2.5.1 Model Problem

Since AAA is symmetric, the variational formulation of the model problem in Sect. 2.2.1
leads to the symmetric bilinear form B : H1

0 (Ω)×H1
0 (Ω)→ R defined by

B[w, v] :=
∫
Ω
∇v ·AAA(x)∇w, for all v,w ∈ H1

0 (Ω).

We have to decide which norm to use on H1
0 (Ω). The Poincaré-Friedrichs in-

equality (7) implies the equivalence of ‖ · ‖H1(Ω) and |·|H1(Ω) on H1
0 (Ω) because

|v|H1(Ω) ≤ ‖v‖H1(Ω) ≤
(
1+C2

d |Ω |
2/d )1/2 |v|H1(Ω) for all v ∈ H1

0 (Ω). (34)
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On the other hand, assumption (12) on the eigenvalues of AAA directly leads to

α1 |v|2H1(Ω) ≤B[v, v]≤ α2 |v|2H1(Ω) for all v ∈ H1
0 (Ω).

Therefore, |·|H1
0 (Ω) is a convenient norm on V = H1

0 (Ω) for the model problem, for

which B is coercive with constant α = α1 and continuous with norm ‖B‖= α2.
To apply the Lax-Milgram theorem it remains to show that f ∈ L2(Ω) implies

f ∈ V
∗ = H−1(Ω), in the sense that v �→

∫
Ω f v belongs to H1−1(Ω). Recalling

‖ f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈 f , v〉
|v|H1(Ω)

.

and using the Poincaré-Friedrichs inequality (7) once more we estimate

|〈 f , v〉|=
∣∣∣
∫
Ω

f v
∣∣∣≤ ‖ f‖L2(Ω)‖v‖L2(Ω) ≤Cd |Ω |1/d ‖ f‖L2(Ω) |v|H1(Ω) ,

and therefore ‖ f‖H−1(Ω) ≤ Cd |Ω |1/d ‖ f‖L2(Ω). In view of Corollary 2.2, we have
the stability bound

|u|H1(Ω) ≤
Cd |Ω |1/d

α1/2
1

‖ f‖L2(Ω).

Since B is symmetric and coercive, it defines a scalar product in H1
0 (Ω). Con-

sequently, an even more convenient choice of norm on V is the energy norm
|||·|||Ω = B[·, ·]1/2. In this case we have α = ‖B‖= 1 and

‖ f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈 f , v〉
|||v|||Ω

≤ Cd |Ω |1/d

α1/2
1

‖ f‖L2(Ω)

whence we obtain the same stability estimate as above.

2.5.2 Other Boundary Value Problems

We now review the examples from Sect. 2.2.2.

General 2nd Order Elliptic Operator. We take V = H1
0 (Ω) and the bilinear form

B[w, v] :=
∫
Ω
∇v ·AAA(x)∇w+ vbbb ·∇w+ cvw for all v,w ∈ H1

0 (Ω).

A straightforward estimate shows continuity of B with respect to the norm ‖·‖H1(Ω)

|B[w, v]| ≤ ‖B‖ ‖v‖H1(Ω) ‖w‖H1(Ω) for all v,w ∈ H1(Ω)

with operator norm ‖B‖ ≤ α2 +‖bbb‖L∞(Ω ;Rd) +‖c‖L∞(Ω).
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Assume now that divbbb is bounded and c− 1
2 divbbb ≥ 0 in Ω . In light of Green’s

formula (9) we get the identity
∫
Ω

vbbb ·∇w =−
∫
Ω
∇v ·bbbw−

∫
Ω

divbbbvw for all v,w ∈ H1
0 (Ω),

whence
∫
Ω vbbb ·∇v =− 1

2

∫
Ω divbbbv2. If C =Cd |Ω |1/d is the Poincarè-Friedrichs con-

stant for Ω , then we deduce as in Sect. 2.2.1 for any v ∈ H1
0 (Ω)

B[v, v]≥ α1 |v|2H1(Ω) +
∫
Ω

(
c− 1

2 divbbb
)
v2 ≥ α1 |v|2H1(Ω) ≥

α1

1+C2 ‖v‖
2
H1(Ω),

thanks to the norm equivalence (34). Using ‖ · ‖H1(Ω) as norm on V we have

‖ f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈 f , v〉
‖v‖H1(Ω)

≤ ‖ f‖L2(Ω).

Assuming only c≥ 0 the bilinear form B is no longer coercive. Nevertheless, for
any bounded bbb and c≥ 0 it can be shown that B satisfies the inf-sup condition (23)
but the proof is not elementary; see for instance [9].

The Biharmonic Equation. For the variational formulation of the biharmonic
equation we use the Hilbert space V = H2

0 (Ω) and claim that ‖Δ · ‖L2(Ω) is a norm

on H2
0 (Ω) that is equivalent to ‖ · ‖H2(Ω). From Green’s formula we deduce for

v ∈C∞
0 (Ω)

|v|2H2(Ω) =
d

∑
i, j=1

∫
Ω

(
∂ 2

i jv
)2 =−

d

∑
i, j=1

∫
Ω
∂iv∂ 3

i j jv =
d

∑
i, j=1

∫
Ω
∂ 2

ii v∂ 2
j jv = ‖Δv‖2

L2(Ω).

Using density we thus conclude |v|H2(Ω) = ‖Δv‖L2(Ω) for all v ∈ H2
0 (Ω). For those

functions v the Poincaré-Friedrichs inequality (7) implies |v|H1(Ω) ≤ c(Ω) |v|H2(Ω)
which, in conjunction with the norm equivalence (34), yields

‖Δv‖L2(Ω) ≤ ‖v‖2,Ω ≤C(Ω) |v|H2(Ω) = C(Ω)‖Δv‖L2(Ω). (35)

The bilinear form B given by

B[w, v] =
∫
Ω
ΔvΔw

is symmetric and the energy norm |||·|||Ω coincides with the norm ‖Δ ·‖L2(Ω). There-

fore, B is continuous and coercive on H2
0 (Ω) with constants ‖B‖= α = 1.

We denote by H−2(Ω) the dual space of H2
0 (Ω). The norm equivalence (35)

implies ‖ f‖H−2(Ω) ≤C(Ω)‖ f‖L2(Ω) for f ∈ L2(Ω).

The 3d Eddy Current Equations. We take V = H0(curl;Ω) along with the sym-
metric bilinear form
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B[www, vvv] :=
∫
Ω
μ curlvvv · curlwww+κ vvv ·www for all vvv,www ∈ V

and subordinate energy norm

|||vvv|||2Ω = ‖μ1/2 curlvvv‖2
L2(Ω ;R3) +‖κ1/2vvv‖2

L2(Ω ;R3).

Since μ ,κ > 0, this norm and the corresponding H(curl;Ω) norm (i.e. μ = κ = 1)
are equivalent. Accordingly, B is continuous and coercive with respect to |||·|||Ω
with ‖B‖= α = 1.

Furthermore, any fff ∈ L2(Ω ;R3) belongs to the dual space V
∗ = (H0(curl;Ω))∗

and ‖ fff‖V∗ ≤ κ−1/2‖ fff‖L2(Ω ;R3).

The Stokes System. We use the Hilbert spaces V = H1
0 (Ω ;Rd) equipped with

the norm |·|H1
0 (Ω ;Rd) and Q = L2

0(Ω) equipped with ‖ · ‖L2(Ω). With this choice,

‖ · ‖V is the energy norm associated with the bilinear form a[www,vvv] =
∫
Ω ∇vvv : ∇www.

Therefore, a is continuous and coercive on V with ‖a‖ = α = 1. This implies the
inf-sup condition (29a).

Using integration by parts one can show ‖divvvv‖L2(Ω) ≤ |vvv|H1
0 (Ω ;Rd) , whence the

bilinear form b[q,vvv] =−
∫
Ω divvvvq is continuous with norm ‖b‖= 1. In addition, for

any q ∈ L2
0(Ω) there exists a www ∈ H1

0 (Ω ;Rd) such that

−divwww = q in Ω and |www|H1(Ω ;Rd) ≤C(Ω)‖q‖L2(Ω).

This non-trivial result goes back to Nečas [19] and a proof can for instance be found
in [36, Theorem III.3.1]. This implies

sup
vvv∈H1

0 (Ω ;Rd)

b[q,vvv]
|vvv|H1(Ω ;Rd)

≥ b[q,www]
|www|H1(Ω ;Rd)

=
‖q‖2

L2(Ω)

|www|H1(Ω ;Rd)
≥C(Ω)−1‖q‖L2(Ω).

Therefore, (29b) holds with β ≥ C(Ω)−1 and Theorem 2.3 applies for all fff ∈
L2(Ω ;Rd) and gives existence, uniqueness and stability of the solution (uuu, p) ∈
V×Q of the Stokes system.

2.6 Problems

Problem 2.1. LetΩ = (0,1) and u∈W 1
p (Ω) with 1 < p≤∞. Prove that the function

u is (p−1)/p-Hölder continuous, namely

|u(x)−u(y)| ≤ |x− y|(p−1)/p‖u′‖Lp(Ω) for all x,y ∈Ω .

If p = 1, then u ∈W 1
1 (Ω) is uniformly continuous in Ω because of the absolute

continuity of the integral.
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Problem 2.2. Find the weak gradient of v(x) = log log(|x|/2) in the unit ball Ω ,
and show that v ∈W 1

d (Ω) for d ≥ 2. This shows that functions in W 1
d (Ω), and in

particular in H1(Ω), may not be continuous, and even bounded, in dimension d ≥ 2.

Problem 2.3. Prove the following simplified version of the Poincaré-Friedrichs in-
equality (7): let Ω be contained in the strip {x ∈ R

d | 0 < xd < h}; then

‖v‖L2(Ω) � h‖∇v‖L2(Ω) for all v ∈ H1
0 (Ω).

To this end, take v ∈C∞
0 (Ω), write for 0 < s < h

v2(x,s) = v2(x,0)+2
∫ s

0
∂dv · v, (36)

integrate, and use Cauchy-Schwarz inequality to prove (7). Next use a density argu-
ment, based on the definition of H1

0 (Ω), to extend the inequality to H1
0 (Ω).

Problem 2.4. Let Ωh = {(x′,xd) | |x| < h,xd > 0} be the upper half ball in R
d of

radius h > 0 centered at the origin. Let Γh be the flat part of ∂Ωh.

(a) Let ζ ≥ 0 be a C∞
0 cut-off function in the unit ball that equals 1 in the ball of

radius 1/2. Use the identity (36) for vζ , followed by a density argument, to
derive the trace inequality

‖v‖2
L2(Γ1/2) � ‖v‖2

L2(Ω1) +‖∇v‖2
L2(Ω1) for all v ∈ H1(Ω1).

(b) Use a scaling argument to Ωh to deduce the scaled trace inequality

‖v‖2
L2(Γh/2) � h−1‖v‖2

L2(Ωh) +h‖∇v‖2
L2(Ωh) for all v ∈ H1(Ωh).

Problem 2.5. Show that divqqq ∈ H−1(Ω) for qqq ∈ L2(Ω ;Rd). Compute the corre-
sponding H−1-norm.

Problem 2.6. (a) Find a variational formulation which amounts to solving

−Δu = f in Ω , ∂νu+ pu = g on ∂Ω ,

where f ∈ L2(Ω), g ∈ L2(∂Ω), 0 < p1 ≤ p≤ p2 on ∂Ω . Show that the bilinear
form is coercive in H1(Ω).

(b) Suppose that p = ε−1 → ∞ and denote the corresponding solution by uε . Deter-
mine the boundary value problem satisfied by u0 = limε↓0 uε .

(c) Derive an error estimate for ‖u0−uε‖H1(Ω).

Problem 2.7. Let AAA be uniformly SPD and c ∈ L∞(Ω) satisfy c ≥ 0. Consider the
quadratic functional

I[v] =
1
2

∫
Ω
∇v ·AAA(x)∇v+ c(x)v2−〈 f , v〉 for all v ∈ H1

0 (Ω),
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where f ∈ H−1(Ω). Show that u ∈ H1
0 (Ω) is a minimizer of I[v] if and only if u

satisfies the Euler-Lagrange equation

B[u, v] =
∫
Ω
∇v ·AAA∇u+ cuv = 〈 f , v〉 for all v ∈ H1

0 (Ω).

Problem 2.8. Consider the model problem with Neumann boundary condition

−div(AAA∇u) = f in Ω , nnn ·AAA∇u = g on ∂Ω

(a) Derive the variational formulation in V = H1(Ω) and show that the bilinear form
B is continuous and symmetric but not coercive.

(b) Let V be the subspace of H1(Ω) of functions with vanishing mean value. Show
that B is coercive.

(c) Derive a compatibility condition between f and g for existence of a weak solu-
tion.

Problem 2.9. Consider the space V = H(div;Ω)= {qqq∈L2(Ω ;Rd)|divqqq∈L2(Ω)},
and the bilinear form

B[ppp, qqq] =
∫
Ω

div pppdivqqq+ ppp ·qqq for all ppp,qqq ∈ V.

(a) Show that V is a Hilbert space and that B is symmetric, continuous and coercive
in H(div;Ω).

(b) Determine the strong form of the PDE and implicit boundary condition corre-
sponding to the variational formulation

ppp ∈ V : B[ppp, qqq] = 〈f, qqq〉 for all qqq ∈ V.

Problem 2.10. Let σσσ := −AAA∇u be the flux of the model problem, which can be
written equivalently as

AAA−1σσσ +∇u = 0, divσσσ =− f .

(a) Let V = H(div;Ω) and Q = L2
0(Ω). Multiply the first equation by τττ ∈ V and

integrate by parts using Green’s formula (9). Multiply the second equation by
v∈Q. Write the resulting variational formulation in the form (27) and show that
(29) is satisfied.

(b) Apply Theorem 2.3 to deduce existence, uniqueness, and stability.

3 The Petrov-Galerkin method and finite element bases

The numerical approximation of boundary value problems is typically an effective
way, and often the only one available, to extract quantitive information about their
solutions. In this chapter we introduce the finite element method (FEM) which,
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due to its geometric flexibility, practical implementation, and powerful and elegant
theory, is one of the most successful discretization methods for this task.

Roughly speaking, a finite element method consists in computing the Petrov-
Galerkin solution with respect to a finite-dimensional space and that space is con-
structed from local function spaces (finite elements), which are glued together by
some continuity condition.

We first analyze Petrov-Galerkin approximations and then review Lagrange el-
ements, the most basic and common finite element spaces; for other finite element
spaces, we refer to the standard finite element literature, e.g. [15, 16, 18, 25, 51].

3.1 Petrov-Galerkin solutions

The solution of a boundary value problem cannot be computed, since the solution is
characterized by an infinite number of (linearly-independent) conditions. To over-
come this principal obstacle, we replace the boundary value problem by its Petrov-
Galerkin discretization.

3.1.1 Definition, Existence and Uniqueness

To obtain a computable approximation to a solution to the variational problem (10)
we simply restrict the continuous spaces V,W in (10) to finite dimensional sub-
spaces of equal dimension N < ∞. As we shall see, this leads to a linear system in
R

N×N which can be solved by standard methods.

Definition 3.1 (Discrete Solution). For N ∈ N let VN ⊂ V and WN ⊂W be sub-
spaces of equal dimension N. Then a solution UN to

UN ∈ VN : B[UN , W ] = 〈 f , W 〉 for all W ∈WN (37)

is called Petrov-Galerkin Solution.

Remark 3.1. For V �= W the test functions W ∈WN in (37) are different from the
ansatz functions V ∈ VN which results in the naming Petrov-Galerkin discretiza-
tion. If the continuous spaces V = W are equal, then we will choose also the same
discrete space VN = WN . In this case, (37) is called Galerkin discretization and, if
additionally B is symmetric and coercive, it is called Ritz-Galerkin discretization.
In any case, the discrete spaces are subsets of the continuous ones, and thus all dis-
crete functions belong to the continuous function spaces. For this reason, the method
is called a conforming discretization of (10).

For any conforming discretization, the bilinear form B is well defined and con-
tinuous on the discrete pair VN ×WN . The continuity constant is bounded by ‖B‖.
This can easily be seen, since all discrete functions V ∈VN and W ∈WN are admis-
sible in (16). In the same vain, for a coercive form B : V×V→ R we are allowed
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to use any discrete function V ∈ VN in (25) yielding

B[V, V ]≥ cB‖V‖2
V

for all V ∈ VN .

Therefore coercivity of B is inherited for conforming discretizations from the con-
tinuous space to the discrete one with the same coercivity constant cB > 0. This in
turn implies the existence and uniqueness of the Galerkin solution UN ∈ VN .

Recalling the theorem of Lax-Milgram, stated as Corollary 2.2, we know that a
coercive form B satisfies the inf-sup condition (23). Since coercivity is inherited to
subspaces we can conclude in this case the discrete counterpart of (23), namely

inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

= inf
W∈WN

sup
V∈VN

B[V, W ]
‖V‖V‖W‖W

= βN (38)

with a constant βN ≥ cB .
For general B, the continuous inf-sup (23) does not imply the discrete one. In

order to state a simple as possible criterion for the existence and uniqueness or
a discrete solution, we consider the discrete operators BN ∈ L(VN ;W∗

N) and B∗N ∈
L(WN ;V∗N), defined in the same way as B and B∗ in Sect. 2.3 by

〈BNV, W 〉 = 〈B∗NW, V 〉 = B[V, W ] for all V ∈ VN ,W ∈WN .

The discrete problem (37) is well-posed if and only if the operator BN is an isomor-
phism from VN to W

∗
N . Since we deal with finite dimensional spaces, a necessary

condition for BN being invertible is dimVN = dimW
∗
N = dimWN , which we assume

in the definition of the Petrov-Galerkin solution. Hence a neccessary and sufficient
condition for invertibility of BN is injectivity of BN , which can be characterized by

for every 0 �= V ∈ VN there exists W ∈WN such that B[V, W ] �= 0. (39)

As a direct consequence we can characterize the existence and uniqueness of the
discrete solution.

Theorem 3.1 (Existence and Uniqueness of the Petrov-Galerkin Solution). Let
VN ⊂ V and WN ⊂W be subspaces of equal dimension.

Then for any f ∈W
∗
N there exists a unique Petrov-Galerkin solution UN ∈ VN,

i. e.,
UN ∈ VN : B[UN , W ] = 〈 f , W 〉 for all W ∈WN ,

if and only if (39) is satisfied.

Proof. As for the continuous problem (10) the existence and uniqueness of a dis-
crete solution UN for any f ∈W

∗
N is equivalent to the invertibility of the operator

BN : VN →W
∗
N . The latter is equivalent to (39). '(

Proposition 3.1. Let VN ⊂ V and WN ⊂W be subspaces of equal dimension.
Then the following statements are equivalent:

(1) The discrete inf-sup condition (38) holds for some βN > 0;



Theory of adaptive finite element methods: An introduction 435

(2) inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

> 0;

(3) inf
W∈WN

sup
V∈VN

B[V, W ]
‖V‖V‖W‖W

> 0;

(4) condition (39) is satisfied;
(5) for every 0 �= W ∈WN there exists V ∈ VN such that B[V, W ] �= 0.

Proof. Obviously, (1) implies (2) and (3). The inf-sup condition (2) implies (4) and
(3) yields (5). Statement (4) is equivalent to invertibility of BN ∈ L(VN ,W∗

N) and
in the same way (5) is equivalent to invertibility of B∗N ∈ L(WN ,V∗N), whence (4)
and (5) are equivalent. Recalling Theorem 3.1, statement (4) is equivalent to exis-
tence and uniqueness of a discrete solution for any f ∈W

∗
N . Applying Theorem 2.2

with V,W replaced by VN ,WN the latter is equivalent with the inf-sup condition on
VN ,WN , i. e., (4) is equivalent to (1). '(

This proposition allows for different conditions that imply existence and unique-
ness of a discrete solution. Conditions (2)–(5) of Proposition 3.1 seem to be more
convenient than (1) since we do not have to specify the discrete inf-sup constant βN .
However, the value of this constant is critical, as we shall see from the following
section.

3.1.2 Stability and Quasi-Best Approximation

In this section we investigate the stability and approximation properties of Petrov-
Galerkin solutions. In doing so, we explore properties that are uniform in the dimen-
sion N of the discrete spaces.

We start with the stability properties.

Corollary 3.1 (Stability of the Discrete Solution). If (38) holds, then the Petrov-
Galerkin solution UN satisfies

‖UN‖V ≤
1
βN
‖ f‖W∗ . (40)

Proof. Use the same arguments as in the proof of Theorem 2.2 for the stability
estimate of the true solution. '(

We next relate the Petrov-Galerkin solution to the best possible approximation to
the true solution u in VN and show that UN is up to a constant as close to u as the
best approximation. For coercive forms this is Cea’s Lemma [22]. For general B
this follows from the theories of Babuška [8, 9] and Brezzi [17].

The key for the best approximation property of the Petrov-Galerkin solution is
the following relationship, which holds for all conforming discretizations and is
usually referred to as Galerkin orthogonality:

B[u−UN , W ] = 0 for all W ∈WN . (41)
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If V = W, B symmetric and coercive, then this means that the error u−UN is
orthogonal to VN = WN in the energy norm |||·|||Ω . To prove (41), simply observe
that we are allowed to use any W ∈WN as a test function in the definition of the
continuous solution (10), which gives

B[u, W ] = 〈 f , W 〉 for all W ∈WN .

Then recalling the definition of the Petrov-Galerkin solution and taking the differ-
ence yields (41).

Theorem 3.2 (Quasi-Best-Approximation Property). Let B : V×V→R be con-
tinuous and assume (38) is satisfied. Let u be the solution to (10) and let UN ∈ VN

be the Petrov-Galerkin solution.
Then the error u−UN satisfies the bound

‖u−UN‖V ≤
‖B‖
βN

min
V∈VN

‖u−V‖V.

Proof. We give a simplified proof, which follows Babuška [8, 9] and yields the
constant 1+ ‖B‖

βN
. The asserted constant is due to Xu and Zikatanov [79].

Combining (38), (41), and the continuity of B, we derive for all V ∈ VN

βN‖UN−V‖V ≤ sup
W∈WN

B[UN−V, W ]
‖W‖W

= sup
W∈WN

B[u−V, W ]
‖W‖W

≤ ‖B‖‖u−V‖V,

whence

‖UN−V‖V ≤
‖B‖
βN
‖u−V‖V.

Using the triangle inequality yields

‖u−UN‖V ≤ ‖u−V‖V +‖V −UN‖V ≤
(

1+
‖B‖
βN

)
‖u−V‖V

for all V ∈ VN . It just remains to minimize in VN . '(

The last two results reveal the critical role of the discrete inf-sup constant βN .
If a sequence of spaces {(VN ,WN)}N≥1 approximates the pair (V,W) with deteri-
orating βN → 0 as N → ∞, then the sequence of discrete solutions {UN}N≥1 is not
guaranteed to be uniformly bounded. Furthermore, the discrete solutions in general
approximate the true solution with a reduce rate as compared to the best approxima-
tion within VN . For these reasons a lower bound for the discrete inf-sup constants
becomes highly desirable.

Definition 3.2 (Stable Discretization). We call a sequence {(VN ,WN)}N≥1 of dis-
crete spaces with inf-sup constants {βN}N≥1 stable if and only if there exists β > 0
such that

inf
N≥1

βN ≥ β > 0.
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In contrast to the continuous inf-sup condition where one has to prove

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

> 0 and inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

> 0

it suffices in the discrete setting to show one

inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

≥ β or inf
W∈WN

sup
V∈VN

B[V, W ]
‖V‖V‖W‖W

≥ β

in order to furnish a uniform lower bound for the discrete inf-sup constant βN ≥ β .
This simplification stems from the assumption dimVN = dimWN <∞. Allowing for
infinite dimensional spaces VN and WN gives rise to both inf-sup conditions as in
the continuous case.

3.1.3 Computation

In view of Theorem 3.2, the quality of the Petrov-Galerkin solution depends in par-
ticular on the approximation properties of the discrete spaces. Before embarking on
the construction of suitable spaces, it is useful to see how a Petrov-Galerkin solution
can be computed. This will reveal that the real task is the construction of a suitable
basis and it will give hints towards what affects the cost of a Petrov-Galerkin solu-
tion.

Let φ1, . . . ,φN and ψ1, . . . ,ψN be bases of VN and WN , respectively. Writing

UN =
N

∑
j=1

α jφ j,

K = (ki j)i, j=1,...,N with ki j = B[φ j, ψi],
F = (F1, . . . ,FN) with Fi = 〈 f , ψi〉

the definition of the Petrov-Galerkin solution (37) is equivalent to the linear system

α ∈ R
N : Kα = F. (42)

Its solution can be computed by various methods from numerical linear algebra. The
method of choice as well as the cost is affected by the properties of the matrix. Of
course these properties depend on the bilinear form B[·, ·] and on the chosen bases
φ1, . . . ,φN and ψ1, . . . ,ψN .

For example, in the case of the model problem of Sect. 2.2.1, VN = WN and
φi = ψi for i = 1, . . . ,N, the matrix K is symmetric positive definite, irrespective of
the choice of φ1, . . . ,φN . The linear system (42) gets trivial if we take φ1, . . . ,φN to be
the eigenvectors of K. However, finding the eigenvectors of K is a nonlinear problem
and typically more expensive than solving linear systems. On the other hand, taking



438 R. H. Nochetto, K. G. Siebert, and A. Veeser

the easily available polynomials for φ1, . . . ,φN will lead to full and ill-conditioned
matrices in general.

Finite element bases provide a compromise between these two extremes. The
basis functions can be relatively easily constructed and are locally supported. The
latter leads to sparse matrices for bilinear forms associated with boundary value
problems.

3.2 Finite element spaces

The choice, or better the construction, of suitable finite element spaces in the Petrov-
Galerkin discretization is the subject of this section. We shall discuss here only the
spaces of Lagrange elements, emphasizing the case of polynomial degree n = 1.
These spaces are appropriate for our model problem of Sect. 2.2.1.

3.2.1 Simplices and Triangulations

As already mentioned, a key property of finite element bases is that there are locally
supported. This is achieved with the help of a decomposition of the domain of the
boundary value problem. Here we consider triangulations, which are build from
simplices.

Definition 3.3 (Simplex and Subsimplices). Let d ∈ N. A subset T of R
d is an

n-simplex in R
d if there exist n+1 points z0, . . . ,zn ∈ R

d such that

T = conv hull{z0, . . . ,zn}=

{
n

∑
i=1

λizi | λi ≥ 0 for i = 0, . . . ,d,
n

∑
i=0

λi = 1

}

and z1− z0, . . . ,zn− z0 are linearly independent vectors in R
d . By convention, we

refer to points as 0-simplices. A subset T ′ of T is a (proper) k-subsimplex of T if T ′

is a k-simplex such that

T ′ = conv hull{z′0, . . . ,z′k} ⊂ ∂T

with k < n and z′0, . . . ,z
′
k ∈ {z0, . . . ,zd}.

The 0-subsimplices are the vertices of a simplex. Moreover, 1-subsimplices
are edges and 2-subsimplices of 3-simplices are faces. We shall refer to (n− 1)-
subsimplices of n-simplices as sides.

Two d-simplices in R
d are always affine equivalent, meaning that one can be

mapped onto the other by an affine bijection. This fact is useful for implementation
and also for the theory that follows. The following lemma fixes a reference sim-
plex and controls the affine bijection in terms of geometric quantities of the generic
simplex.
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Lemma 3.1 (Reference and Generic Simplex). Let the reference simplex in R
d

be defined as
T̂ = conv hull{0,e1, . . . ,ed} ,

where e1, . . . ,ed denotes the canonical basis in R
d. For any d-simplex T in R

d, there
exists a bijective affine map

FT : T̂ → T, x̂ �→ AT x̂+bT

where AT ∈ R
d×d and bT ∈ R

d. If we define

hT := sup{|x− y| | x,y ∈ T},
hT := sup{2r | Br ⊂ T is a ball of radius r},
hT := |T |1/d ,

there holds

‖AT‖ ≤ hT , ‖A−1
T ‖ ≤

Cd

hT
, |detAT |=

hd
T

d!
. (43)

Proof. See Problem 3.4.

All three quantities in (43) measure somehow the size of the given simplex. In
view of

hT ≤ hT ≤ hT

they are equivalent up to the following quantity.

Definition 3.4 (Shape Coefficient). The shape coefficient of a d-simplex T in R
d

is the ratio of the diameter and the inball diameter of T ,

σT :=
hT

hT
.

Of course this notion becomes useful when it refers to many simplices. This
brings us to the notion of triangulation.

Definition 3.5 (Triangulation). Let Ω ⊂ R
d be a bounded, polyhedral domain. A

finite set T of d-simplices in R
d with

Ω =
⋃

T∈T

T and |Ω |= ∑
T∈T

|T | (44)

is a triangulation of Ω . We denote the set of all vertices of T by VT and the set of
all sides by ST . The shape coefficient of a triangulation T is the quantity σT :=
maxT∈T σT . A triangulation T is conforming if it satisfies the following property:
if any two simplices T1,T2 ∈T have a nonempty intersection S = T1∩T2 �= /0, then
S is a k-subsimplex of both T1 and T2 with k ∈ {0, . . . ,d}.

A sequence of triangulations {Tk}k≥0 is shape regular if supT∈Tk
σT ≤ C. It

is called quasi-uniform if there exists a constant C such that, for all k, there holds
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maxT∈Tk
hT ≤C minT∈Tk

hT . In both cases we assume tacitly that the constant C is
of moderate size.

The first condition in (44) ensures that T is a covering of the closure of Ω , while
the second requires that there is no overlapping. Notice that the latter is required not
in a set-theoretic but in a measure-theoretic manner. Conformity will turn out to
be a very useful property when constructing bases that are regular across simplex
boundaries.

3.2.2 Lagrange Elements

The purpose of this section is to show that the following finite-dimensional space is
appropriate for our model problem in Sect. 2.2.1:

V(T ) := {v ∈C(Ω) | v|T ∈ Pn(T ) for all T ∈T and v|∂Ω = 0}

where T is a conforming triangulation of Ω ⊂ R
d and Pn(T ) stands for the

space of polynomials with degree ≤ n over T . More precisely, we will show that
V(T ) ⊂ H1

0 (Ω) possesses a basis which is locally supported and easy to imple-
ment, and conclude with approximation properties of V(T ). In what follows, this
will be called the standard discretization of the model problem.

Lemma 3.2 (H1
0 -Conformity). If T is a conforming triangulation of a bounded,

polyhedral Lipschitz domain Ω ⊂ R
d, then V(T )⊂ H1

0 (Ω).

Proof. Let v ∈ V(T ). We start by checking that v has a weak derivative. For any
test function η ∈C∞

0 (Ω) and i ∈ {1, . . . ,d} there holds

∫
Ω

v∂iη = ∑
T∈T

∫
T

v∂iη = ∑
T∈T

∫
T
(∂iv)η + ∑

T∈T
∑

S⊂∂T

∫
S

vηnT,i,

where nT,i is the i-th coordinate of the exterior normal to ∂T . The second sum on
the right hand side vansishes for the following reasons: if S ⊂ ∂Ω , then there holds
η|S = 0; otherwise there exists a unique simplex T ′ ∈ T such that S = T ∩T ′ and
nT ′,i = −nT,i. Consequently, w ∈ L∞(Ω) given by w|T = ∂iv|T for all T ∈ T is the
i-th weak derivate of v. In particular, we have v ∈ H1(Ω). In view of the characteri-
zation

H1
0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}

and the definition of V(T ), we conclude that v ∈ H1
0 (Ω). '(

Next, we construct a suitable basis of

Sn,0(T ) := {v ∈C(Ω) | ∀T ∈T v|T ∈ Pn(T )},

which yields immediately one for V(T ). We first consider the case n = 1 and, in
view of the piecewise structure, start with the following result on P1(T ).
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Lemma 3.3 (Local P1-Basis). Let T = conv hull {z0, . . . ,zd} be a d-simplex in R
d.

The barycentric coordinates λ0, . . . ,λd : T → R on T defined by

T + x =
d

∑
i=0

λi(x)zi, and
d

∑
i=0

λi(x) = 1, (45)

are a basis of P1(T ) such that

λi(z j) = δi j for all i, j ∈ {0, . . . ,d}. (46)

For each p ∈ P1(T ), there holds the representation formula

p =
d

∑
i=0

p(zi)λi. (47)

Proof. We first check that the barycentric coordinates λ0, . . . ,λd are well-defined.
To this end, fix x ∈ T for a moment and observe that (45) for λi = λi(x) can be
rewritten as ⎡

⎢⎢⎣
| |

z0 · · · zd

| |
1 · · · 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

λ0

λ1
...
λd

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

x1

x2
...
1

⎤
⎥⎥⎥⎦ .

If we choose FT in Lemma 3.1 such that FT (0) = z0, FT (ei) = F(zi) for i = 1, . . . ,d,
we easily see that the above matrix has the same determinant as AT , which is differ-
ent from 0.

Consequently, the functions λ0, . . . ,λd are well-defined and, varying x, we see
that λi ∈ P1(T ) for i = 0, . . . ,d. Property (46) is now readily verified and ensures
that the (d +1) functions λ0, . . . ,λd are linearly independent. From the definition of
P1(T ) it is immediate that dimP1(T ) = d + 1, whence λ0, . . . ,λd has to be a basis.
Writing p = ∑d

i=0αiλi for p ∈ P1(T ), and using (46), yields (47) and finishes the
proof. '(

Property (46) means that λ0, . . . ,λd is the basis in P1(T ) that is dual to the basis
N1(T ) = {N1, . . . ,Nd} of P1(T )∗ given by p �→ p(zi) for i = 0, . . . ,d. By the Riesz
representation theorem in L2(T ), we can associate a function λ ∗i ∈ P1(T ) to each
functional Ni such that

∫
T
λiλ ∗j = δi j for all i, j ∈ {0, . . . ,d}. (48)

A simple computation using [25, Exercise 4.1.1] reveals that

λ ∗i =
(1+d)2

|T | λi−
1+d
|T | ∑j �=i

λ j for all i ∈ {1, . . . ,d}.

Since N1(T ) is a basis of P1(T )∗, the triple
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(T,P1(T ),N1(T ))

is a finite element; for the definition of a finite element see, e.g., [16, Ch. 3]. The
elements of N1(T ) are its nodal variables and λ0, . . . ,λd its nodal basis.

Theorem 3.3 (Courant Basis). A function v ∈ S1,0(T ) is characterized by its val-
ues at the nodes N1(T ) := VT . The functions φz, z ∈N1(T ), defined by

φz ∈ S1,0(T ) and φz(y) = δyz for all y ∈N1(T )

are a basis of S1,0(T ) such that, for every v ∈ S1,0(T ),

v = ∑
z∈N1(T )

v(z)φz.

In particular, {φz}z∈N1(T )∩Ω is a basis of S1,0(Ω)∩H1
0 (Ω).

Fig. 1 Courant basis function φz for an interior vertex z ∈N1(T )

Proof. Let T1,T2 ∈ T be two distinct simplices such that T1 ∩ T2 �= /0; then S :=
T1∩T2 is a k-subsimplex with 0≤ k < d because T is conforming. Let wi ∈ P1(Ti),
for i = 1,2, be two affine functions with the same nodal values w1(z) = w2(z) at
all vertices z ∈ S. We assert that w1 = w2 on S. Since this is obvious for k = 0,
we consider k > 0, recall that S is isomorphic to the reference simplex T̂k in R

k

and apply Lemma 3.3 to deduce w1 = w2 on S. This shows that any continuous
piecewise affine function v ∈ S1,0(T ) can be built by pasting together local affine
functions with the restriction of having the same nodal values, or equivalently to
coincide at all vertices z ∈N1(T ). Moreover, v is characterized by its nodal values
{v(z)}z∈N1(T ).

Therefore, the functions φz are well-defined for all z ∈N1(T ). In addition, for
all v ∈ S1,0(T ) the function ∑z∈N1(T ) v(z)φz equals v at the nodes, whence they co-
incide everywhere and S1,0(T ) = span {φz}z∈N1(T ). Since {φz}z∈N1(T ) are linearly
independent, they form a basis of S1,0(T ).

Finally, to prove that {φz}z∈N1(T )∩Ω is a basis of S1,0(Ω)∩H1
0 (Ω) we observe

that if v ∈ S1,0(Ω) vanishes at the vertices of a side S ∈S contained in ∂Ω then
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v vanishes in S, again as a consequence of Lemma 3.3. Therefore, v ∈ S1,0(Ω)∩
H1

0 (Ω) if and only if the nodal values v(z) = 0 for all z ∈N1(T )∩∂Ω . '(

Remark 3.2 (Representation of Courant Basis). The proof of Theorem 3.3 shows
that the global basis functions are given in terms of local basis functions. More
precisely, if λT

z denotes the barycentric coordinate of T ∈ T associated with the
vertex z ∈ T , there holds

φz =

{
λT

z if z ∈ T,

0 otherwise

for any node z ∈N .

We thus now have a basis of V(T ) = S1,0(T )∩H1
0 (Ω) that can be implemented

relatively easily. Its basis functions are locally supported and the corresponding ma-
trix in (42) is sparse in the case of our model problem in Sect. 2.2.1; see Problem
3.7.

Remark 3.3 (Dual of Courant Basis). Let vz ∈ N be the valence of z for each node
z ∈N1(T ), namely the number of elements T ∈ T containing z as a vertex. The
discontinuous piecewise linear functions φ ∗z ∈ S1,−1(T ) defined by

φ ∗z =
1
vz
∑
T+z

(λT
z )∗ χT for all z ∈N1(T ), (49)

with χT being the characteristic function of T , are (global) dual functions to the
Courant basis {φz}z∈N in that they satisfy

∫
Ω
φzφ ∗y = δyz for all y,z ∈N1(T ). (50)

We briefly comment on the generalization to arbritray polynomial degree n ∈ N.
Given a d-simplex T = conv hull {z0, . . . ,zd} and identifying nodal variables and
nodes, we set

Nn(T ) :=

{
zα =

d+1

∑
i=0

αi

n
zi | α ∈ N

d+1
0 ,

d+1

∑
i=0

αi = n

}
(51)

The number of elements in Nn(T ) coincides with the number of coefficients of
polynomial in Pn(T ). This is necessary for the existence of the corresponding nodal
basis. The construction, see e.g. [16, Chapt. 3], reveals that also the location of
the nodes plays some role. The latter implies also that restricting Nn(T ) to a k-
subsimplex and transforming to T̂k yields Nn(T̂k). Consequently, the following the-
orem can be proven in the same way as Theorem 3.3.

Theorem 3.4 (Lagrange Basis). A function v ∈ Sn,0(T ) is characterized by its val-
ues at the nodes Nn(T ) := ∪T∈T Nn(T ). The functions φz, z ∈ Nn(T ), defined
by
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φz ∈ Sn,0(T ) and φz(y) = δyz for all y ∈Nn(T )

are a basis of Sn,0(T ) such that, for every v ∈ Sn,0(T ),

v = ∑
z∈Nn(T )

v(z)φz.

In particular, (φz)z∈Nn(T )∩Ω is a basis of Sn,0(Ω)∩H1
0 (Ω).

Remark 3.4 (Dual of Lagrange Basis). The construction of local and global piece-
wise linear dual functions extends to any polynomial degree n≥ 1; see Problem 3.9
for k = 2. Consequently, there exist discontinuous functions φ ∗z ∈ Sn,−1(T ) such
that suppφ ∗z = suppφz and

∫
Ω
φzφ ∗y = δyz for all y,z ∈Nn(T ). (52)

Remark 3.5 (Barycentric Coordinates). For linear finite elements the basis functions
on a single element T are the barycentric coordinates on T . The barycentric coor-
dinates play also an important role for higher degree. First we observe that any
point zα ∈ Nn(T ) is determined from the barycentric coordinates 1

n (α1, . . . ,αd).
Secondly, using the (d +1) barycentric coordinates as a local coordinate system on
T is a rather convenient choice for the explicit construction of a local basis on T ;
compare with Problem 3.8 as well as [63, Sect. 1.4.1] for a more detailed descrip-
tion. This is one reason that local basis functions are defined in the finite element
toolbox ALBERTA in terms of the barycentric coordinates [63, Sect. 3.5].

3.2.3 Looking Ahead

We close this section with a few comments about fundamental issues of finite ele-
ments that will be addressed later in this survey.

Mesh Construction. The formalism above relies on a conforming mesh T . Its
practical construction is a rather delicate matter, especially if it will be succes-
sively refined as part of an adaptive loop. We study mesh refinement by bisection
in Chap. 4 in any dimension and assess the complexity of such process. This
study involves basic geometry and graph theory as well as combinatorics.

Piecewise Polynomial Interpolation. As established in Theorem 3.2, the perfor-
mance of the FEM hinges on the quality of piecewise polynomial approximation.
We discuss this topic in Chap. 5, where we construct a quasi interpolation opera-
tor to approximate rough functions and introduce the concept of mesh optimality;
Remark 3.4 will be crucial in this respect. We present an algorithm that builds
quasi-optimal meshes by thresholding for a rather large class of rough functions.
This hints at the potentials of FEM to approximate singular solutions.

A Posteriori Error Analysis. Thresholding assumes to have full access to the
function in question, which is not realistic when dealing with PDE. The missing
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item is the design of a posteriori error estimators that extract the desired infor-
mation from the discrete solution rather than the exact one. We present residual
estimators in Chap. 6 and discuss their basic properties. They are instrumental.

Adaptivity. The fact that we learn about the approximation quality via a poste-
riori error estimators rather than directly from the function being approximated
makes the study of AFEM quite different from classical approximation theory.
This interplay between discrete and continuum will permeate the subsequent dis-
cussion in Chap. 7–Chap. 9.

In this survey, particularly when studying a posteriori error estimators and adap-
tivity, we assume that we have the exact Petrov-Galerkin solution U at hand. In
doing this we ignore two important aspects of a practical finite element method: nu-
merical integration and inexact solution of the resulting linear system. We close this
chapter with two remarks concerning these issues.

Remark 3.6 (Numerical Integration). In contrast to the a priori error analysis of
quadrature [25, Chapter 4.1], its treatment within an a posteriori context is a del-
icate matter, especially if one is not willing to assume regularity a priori and accept
asymptotic results as the mesh size goes to zero. This seems to be largely open.

Remark 3.7 (Multilevel Solvers). For a hierarchy of quasi-uniform meshes, V-cycle
multigrid and BPX-preconditioned conjugate gradient methods can approximate the
Ritz-Galerkin solution U of our model problem (13) to a desired accuracy with a
number of operations proportional to #T [15, 16]. This, however, entails some re-
strictions on the coefficient matrix AAA. Much less is known for graded meshes such
as those generated by an adaptive method. For graded bisection meshes, we quote
the results of Wu and Chen [77] for the V-cycle multigrid for d = 2,n = 1, and the
recent results of Chen et al. [23, 78] for multigrid methods and multilevel precon-
ditioners for d ≥ 2,n ≥ 1: they both show linear complexity in terms of #T . The
latter exploits the geometric properties of bisection grids explained in Chap. 4.

3.3 Problems

Problem 3.1. Prove Cea’s Lemma: Let B : V×V be a continuous and coercive
form. Let u be the true solution and UN ∈VN be the Galerkin solution. Then UN is a
quasi-best approximation to u in VN , i. e.,

‖u−UN‖V ≤
‖B‖
cB

min
V∈VN

‖u−V‖V.

If, in addition, B is symmetric, then UN is the best approximation to u in VN with
respect to the energy norm |||·|||Ω , i. e.,

|||u−UN |||Ω = min
V∈VN

|||u−V |||Ω
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and the error in the V-norm can be estimated by

‖u−UN‖V ≤

√
‖B‖
cB

min
V∈VN

‖u−V‖V.

Problem 3.2. Let {VN ,WN}N∈N be a sequence of nested subspaces of V,W of equal
dimension N, i. e.,

VM ⊂ VN and WM ⊂WN for all M ≤ N,

such that ⋃
N∈N

VN

‖·‖V
= V and

⋃
N∈N

WN

‖·‖W
= W.

Suppose that, for every f ∈W
∗, the sequence of discrete Petrov-Galerkin solutions

{UN}N defined by

UN ∈ VN : B[UN , W ] = 〈 f , W 〉 for all W ∈WN

satisfies
lim

N→∞
‖u−UN‖V = 0.

Show that there holds

inf
N∈N

inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

> 0.

Problem 3.3. Verify that the matrix K in (42) is symmetric positive definite for the
model problem of Sect. 2.2.1, VN = WN and φi = ψi for i = 1, . . . ,N, irrespective of
the choice of φ1, . . . ,φN .

Problem 3.4. Prove Lemma 3.1. Start by expressing AT and bT in terms of the ver-
tices of T .

Problem 3.5. Prove Lemma 3.2 for a not necessarily conforming triangulation.

Problem 3.6. Given a d-simplex T = conv hull {z0, . . . ,zd} in R
d , construct a basis

λ̄0, . . . , λ̄d of P1(T ) such that

λ̄i(z̄ j) = δi j for all i, j ∈ {1, . . . ,d},

where z̄ j denotes the barycenter of the face opposite to the vertex z j. Does this local
basis also lead to a global one in S1,0(T )?

Problem 3.7. Determine the support of a basis function φz, z ∈N , in Theorem 3.3.
Show that, with this basis, the matrix K in (42) is sparse for the model problem in
Sect. 2.2.1.

Problem 3.8. Express the nodal basis of (T,P2(T ),N2(T )) in terms of barycentric
coordinates.



Theory of adaptive finite element methods: An introduction 447

Problem 3.9. Derive expressions for the dual functions of the quadratic local La-
grange basis of P2(T ) for each element T ∈ T . Construct a global discontinuous dual
basis φ ∗z ∈ S2,−1(T ) of the global Lagrange basis φz ∈ S2,0(T ) for all z ∈N2(T ).

4 Mesh refinement by bisection

In this section we discuss refinement of a given initial triangulation consisting of
d simplices using bisection, i. e., any selected simplex is divided into two sub-
elements of same size. Refinement by bisection in 2d can be traced back to Sewell
in the early 1970s [66]. In the mid of the 1980s Rivara introduced the longest edge
bisection [61] and Mitchell formulated a recursive algorithm for the newest vertex
bisection [49, 50]. In the beginning of the 1990s Bänsch was the first to present a
generalization of the newest vertex bisection to 3d [10]. A similar approach was
published by Liu and Joe [46] and later on by Arnold et al. [2]. A recursive vari-
ant of the algorithm by Bänsch was derived by Kossaczký [44]. He formulated the
bisection rule for tetrahedra using a local order of their vertices and their element
type. This concept is very convenient for implementation. In addition, it can be gen-
eralized to any space dimension which was done independently by Maubach [47]
and Traxler [72].

Asking for conformity of locally refined meshes has the unalterable consequence
that refinement propagates, i. e., besides the selected elements additional simplices
have to be refined in order to maintain conformity. Although practical experience
clearly suggests that local refinement stays local, the first theoretical foundation
was given by Binev, Dahmen, and DeVore [13] in 2d in 2004. We summarize in this
chapter the generalization to any space dimension by Stevenson [70].

4.1 Subdivision of a single simplex

We first describe how a single d-simplex is bisected, along with the concepts of
vertex order and type. We then turn to recurrent bisection of a given initial element
and the problem of shape regularity.

Bisection Rule based on Vertex Order and Type. We identify a simplex T with
the set of its ordered vertices and its type t by

T = {z0, . . . ,zd}t , t ∈ {0, . . . ,d−1}.

Given such a d-simplex T we use the following bisection rule to split it in a unique
fashion and to impose both vertex order and type to its children. The edge z0zd

connecting the first and last vertex of T is the refinement edge of T and its midpoint
z̄ = z0+zd

2 becomes the new vertex. Connecting the new vertex z̄ with the vertices of
T other than z0,zd determines the common side S = {z̄,z1, . . . ,zd−1} shared by the
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two children T1,T2 of T . The bisection rule dictates the following vertex order and
type for T1,T2

T1 := {z0, z̄,z1, . . . ,zt︸ ︷︷ ︸
→

,zt+1, . . . ,zd−1︸ ︷︷ ︸
→

}(t+1)modd ,

T2 := {zd , z̄,z1, . . . ,zt︸ ︷︷ ︸
→

,zd−1, . . . ,zt+1︸ ︷︷ ︸
←

}(t+1)modd ,
(53)

with the convention that arrows point in the direction of increasing indices and
{z1, . . . ,z0}= /0, {zd , . . . ,zd−1}= /0.

In 2d the bisection rule does not depend on the element type and we get for
T = {z0,z1,z2} the two children

T1 = {z0, z̄,z1} and T2 = {z2, z̄,z1}.

As depicted in Fig. 2, the refinement edge of the two children is opposite to the

Fig. 2 Refinement of a single triangle T = {z0,z1,z2} and its reflected triangle TR = {z2,z1,z0}

new vertex z̄, whence this procedure coincides with the newest vertex bisection for
d = 2. For d ≥ 3 the bisection of an element does depend on its type, and, as we
shall see below, this is important for preserving shape regularity. For instance, in 3d
the children of T = {z0,z1,z2,z3}t are (see Fig. 3)

t = 0 : T1 = {z0, z̄,z1,z2}1 and T2 = {z3, z̄,z2,z1}1,

t = 1 : T1 = {z0, z̄,z1,z2}2 and T2 = {z3, z̄,z1,z2}2,

t = 2 : T1 = {z0, z̄,z1,z2}0 and T2 = {z3, z̄,z1,z2}0.

Note that the vertex labeling of T1 is type-independent, whereas that of T2 is the
same for type 1 and 2. To account for this fact the vertices z1 and z2 of T are tagged
(3,2,2) and (2,3,3) in Fig. 3. The type of T then dictates which component of the
triple is used to label the vertex.

Any different labeling of an element’s vertices does not change its geometric
shape but applying the above bisection rule it does change the shape and vertex
order of its two children. This holds true for any relabeling except one. An element
with this special relabeling of vertices is called reflected element. We state next its
precise definition.

Definition 4.1 (Reflected Element). Given an element T = {z0, · · · ,zd}t , the re-
flected element is given by
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Fig. 3 Refinement of a single tetrahedron T of type t. The child T1 in the middle has the same
node ordering regardless of type. In contrast, for the child T2 on the right a triple is appended to
two nodes. The local vertex index is given for these nodes by the t-th component of the triple

TR := {zd ,z1, . . . ,zt︸ ︷︷ ︸
→

,zd−1, . . . ,zt+1︸ ︷︷ ︸
←

,z0}t .

Fig. 2 depicts for 2d T = {z0,z1,z2} and TR = {z2,z1,z0}. It shows that the chil-
dren of T and TR are the same. This property extends to d ≥ 3; compare with Prob-
lem 4.2. Any other relabeling of vertices leads to different shapes of the children, in
fact as many as 1

2 (d +1)!

Recurrent Bisection and Binary Tree. We next turn towards the recurrent bisection
of a given initial simplex T0 = {z0, . . . ,zd}t0 . We let {T1,T2} = BISECT(T ) be a
function that implements the above bisection rule and outputs the two children of
T . The input of BISECT can be T0 or any element of the output from a previous
application of BISECT.

This procedure of recurrent bisection of T0 is associated with an infinite binary
tree F(T0). The nodes T ∈ F(T0) correspond to simplices generated by repeated
application of BISECT. The two successors of a node T are the two children
{T1,T2} = BISECT(T ). Note that F(T0) strongly depends on the vertex order of
T0 and its type t0. Once this is set for T0 the associated binary tree is completely
determined by the bisection rule. Recalling that the children of an element and its
reflected element are the same this gives in total d(d+1)!

2 different binary trees that
can be associated with T0 by the bisection procedure.

The binary tree F(T0) holds full information about the shape, ordering of ver-
tices, type, etc. of any element T that can be generated by recurrent bisection of
T0. Important in this context is the distance of T to T0 within F(T0), which we call
generation.

Definition 4.2 (Generation). The generation g(T ) of a node/element T ∈ F(T0) is
the number of its ancestors in the tree, or, equivalently, the number of bisections
needed to create T from T0.

Using the notion of generation, some information about T can uniquely be deduced
from g(T ). For instance, for an element T ∈ F(T0), its type is (g(T ) + t0)modd,
and, in view of the definition hT = |T |1/d , its size is
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hT = 2−g(T )/dhT0 . (54)

Shape Regularity. We next analyse the shape coefficients of descendants of a given
simplex T0. A uniform bound on the shape coefficients σT for all T ∈ F(T0) plays a
crucial role in the interpolation estimates derived in Sect. 5.1. When turning towards
shape regularity the dependence of the bisection rule on the element type for d ≥
3 becomes indispensable. The fact that the type t increases by 1 and the vertex
ordering changes with t implies that after d recurrent bisections of T all its edges
are bisected; compare with Problem 4.1.

We first consider a so-called Kuhn-simplex, i. e., a simplex with (ordered) vertices

zπ0 = 0, zπi :=
i

∑
j=1

eπ( j) for all i = 1, . . . ,d,

where π is a permutation of {1, . . . ,d}. Note, that zπd = (1, . . . ,1)T for any permu-
tation π . Therefore, the refinement edge zπ0 ,zπd of any Kuhn-simplex is always the
longest edge. If T0 is a type 0 Kuhn-simplex, recurrent bisection always cuts the
longest edge. This is the key property for obtaining uniform bound on the shape
coefficients [47, 72].

Theorem 4.1 (Shape Regularity for a Kuhn-Simplex). All 2g descendants of gen-
eration g of a Kuhn-simplex Tπ = {zπ0 , . . . ,zπd}0 are mutually congruent with at most
d different shapes. Moreover, the descendants of generation d are congruent to T0

up to a scaling with factor 1
2 .

In two dimensions, all descendants of a Kuhn-triangle belong to one similarity class;
see Figure 4. Using an affine transformation we conclude from Theorem 4.1 shape

Fig. 4 Recurrent bisection of a Kuhn-triangle generates only one similarity class

regularity for all descendants of an arbitrary simplex.

Corollary 4.1 (Shape Regularity). Let T0 = {z0, . . . ,zd}t be an arbitrary d-simplex.
Then all descendants of T generated by bisection are shape regular, i. e.,

sup
T∈F(T0)

σT = sup
T∈F(T0)

hT

hT
≤C(T0) < ∞.

Proof. Consider first a simplex T0 of type 0 and let T̂0 := {ẑ0, . . . , ẑd}0 be the a
Kuhn-simplex of type 0. From Lemma 3.1 we know that there exists a bijective
affine mapping F : T̂0 → T0.
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Recurrent refinement by bisection implies that for any T ∈ F(T0) there exists a
unique T̂ ∈ F(T̂0) such that T = F(T̂ ). Since all descendants of T̂0 belong to at most
d similarity classes, this implies that the minimal angle of all descendants of T0 is
uniformly bounded from below by a constant solely depending on the shape of T0.

The same is valid for a simplex T0 of type t ∈ {1, . . . ,d− 1} because its 2d−t

descendants of generation d− t are all of type 0. '(

Note, that for a general d-simplex, the number of similarity classes for the descen-
dants is larger than for a Kuhn d-simplex. This number is 4 for d = 2; compare
Figures 4 and 5.

Fig. 5 Bisection produces at most 4 similarity classes for any initial triangle

4.2 Mesh refinement by bisection

After discussing the refinement of a single simplex, we next turn to the refinement of
a given initial conforming triangulation T0 by bisection. For recurrent refinement of
a single element T0 we are free to choose any order of its vertices and element type.
The requirement to produce conforming refinements of T0 results in restrictions on
local vertex order and type of the elements in T0. We first introduce the binary forest
associated to triangulations generated by bisection and then elaborate on conformity
and basic properties of the refined triangulations.

Master Forest and Forest. We recall that recurrent bisection of an element T0 ∈T0

is uniquely associated with an infinite binary tree F(T0); see Sect. 4.1. In the same
way we can identify all possible refinements of T0 with a master forest of binary
trees.

Definition 4.3 (Forest and Refinement). Let T0 be an initial conforming triangu-
lation. Then

F = F(T0) :=
⋃

T0∈T0

F(T0).

is the associated master forest of binary trees. For a node T ∈ F so that T ∈ F(T0)
with T0 ∈T0, the generation g(T ) is the generation of T within F(T0).

A subset F ⊂ F is called forest iff

(1) T0 ⊂F ;
(2) all nodes of F \T0 have a predecessor;
(3) all nodes of F have either two successors or none.
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A forest F is called finite, if maxT∈F g(T ) < ∞. The nodes with no successors are
called leaves of F .

Any finite forest F is uniquely associated with a triangulation T = T (F ) of Ω
by defining T to be the set of all leaves in F . Given two finite forests F ,F∗ ∈ F

with associated triangulations T ,T∗ we call T∗ refinement of T iff F ⊂F∗ and
we denote this by T ≤T∗ or, equivalently, T∗ ≥T .

Note that the definition of a finite forest F implies that the leaf nodes cover Ω ,
whence the associated triangulation T (F ) is a partition of Ω . In general, this tri-
angulation is not conforming and it is a priori not clear that conforming refinements
of T0 exist.

Conforming Refinements. We next wonder about the properties of T0 that allow
for conforming refinements. This brings us to the notion of neighboring elements.

Definition 4.4 (Neighboring Elements). Two elements T1,T2 ∈T are called neigh-
boring elements if they share a common side, namely a full (d−1)-simplex.

In 2d new vertices are always midpoints of edges. Generating the descendants of
generation 2 for all elements of a given conforming triangulation T bisects all edges
of T exactly once and all midpoints of the edges are vertices of the grandchildren.
This implies conformity for d = 2. For d > 2 the situation is completely different.

Assume d = 3 and let T1,T2 ∈ T be two neighboring elements with common
side S = T1∩T2. Denote by E1,E2 their respective refinement edges and assume that
they belong to S. The 3d bisection of T1 leads to a 2d bisection of S with E1 being
the refinement edge of S induced by T1. The same holds true for T2. If E1 �= E2 the
new edges in S created by refinement of T1 and T2 are not identical but do intersect.
This leads to a non-conformity that cannot be cured by any further bisection of S.
The same holds true for d > 3 upon replacing the newly created edge by the newly
created (d−2)-simplex inside the common side. This yields for d ≥ 3 a necessary
condition for constructing a conforming refinement:

Whenever the refinement edges of two neighboring elements are
both on the common side they have to coincide.

For d = 3 this condition has been shown to also be sufficient for obtaining conform-
ing refinements. It is also known that for any initial conforming triangulation T0

there exists a local labeling of the vertices satisfying this condition [10, 46, 2].
For d > 3 the above condition is not known to be sufficient. In addition, for

proving the complexity result in Sect. 4.5 we need stronger assumptions on the
distribution of refinement edges on T0. For the general case d ≥ 2, we therefore
formulate an assumption on the labeling of T0 given by Stevenson that ensures
conformity of any uniform refinement of T0. This condition relies on the notion of
reflected neighbor.

Definition 4.5 (Reflected Neighbors). Two neighboring elements T = {z0, . . . ,zd}t

and T ′ = {z′0, . . . ,z′d}t are called reflected neighbors iff the ordered vertices of T or
TR coincide exactly with those of T ′ at all but one position.
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We are now in the position to pose the assumptions on the initial triangulation T0.

Assumption 11.1 (Admissibility of the Initial Grid). Let T0 be a conforming tri-
angulation that fulfills

(1) all elements are of the same type t ∈ {0, . . . ,d−1};
(2) all neighboring elements T = {z0, . . . ,zd}t and T ′ = {z′0, . . . ,z′d}t with common

side S are matching neighbors in the following sense: if z0zd ⊂ S or z′0z′d ⊂ S then
T and T ′ are reflected neighbors; otherwise the pair of neighboring children of
T and T ′ are reflected neighbors.

For instance, the set of the d! Kuhn-simplices of type 0 is a conforming triangulation
of the unit cube in R

d satisfying Assumption 11.1; see Problem 4.3. We also refer
to Fig. 6 and Problem 4.4 to explore this concept for d = 2.

Fig. 6 Matching neighbors in 2d and their descendants of generation 1 and 2. The elements in
the left and middle picture are reflected neighbors. The elements in the rightmost picture are not
reflected neighbours, but the pair of their neighboring children are

Uniform Refinements. We next state the following important implication of this
structural assumption on T0. The proof is a combination of [72, Sect. 4] and [70,
Theorem 4.3].

Theorem 4.2 (Uniform Refinement). Let T0 be a conforming triangulation and
for g ∈ N0 denote by

Tg := {T ∈ F(T0) | g(T ) = g}

the uniform refinement of T0 with elements of generation exactly g.
If Assumption 11.1 is satisfied, then Tg is conforming for any g∈N0. In addition,

if all elements in T0 are of the same type, then condition (2) is necessary for Tg to
be conforming for all g.

To interpret Theorem 4.2 we introduce the following useful definition.

Definition 4.6 (Compatible Bisection). We say that two elements T,T ′ ∈ F are
compatibly divisible if they have the same refinement edge. If all elements sharing
an edge are compatibly divisible, then they form a bisection patch.

Using this notion, Theorem 4.2 states that two elements T,T ′ ∈ F of the same gen-
eration sharing a common edge are either compatibly divisible, or the refinement of
T does not affect T ′ and vice versa. In the latter case any common edge is neither
the refinement edge of T nor of T ′.
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Let d = 2 and T = {z0,z1,z2}t and T ′ = {z′0,z′1,z′2}t be neighboring elements
with common side S. If z0zd = z′0z′d then T and T ′ are compatibly divisible and thus
form a bisection patch: they can be refined without affecting any other element. If
z1,z′1 ∈ S, then the pair of neighboring children of T and T ′ are compatibly divisible
and thus form a bisection patch; compare with Fig. 6 and Problem 4.4.

Remark 4.1 (Discussion of Assumption 11.1). Assumption 11.1, given by Stevenson
[70], is weaker than the condition required by Maubach [47] and Traxler [72]: they
asked that all neighboring elements are reflected neighbors. It is an important open
question whether for any conforming triangulation T0 there exists a suitable labeling
of the element’s vertices such that Assumption 11.1 is satisfied.

For dimension d = 2 such a result has been shown by Mitchell [49, Theorem 2.9]
as well as Binev et al. [13, Lemma 2.1]. Both proofs are based on graph theory
and they are not constructive. It can be shown that the problem of finding a suitable
labeling of the vertices, the so-called perfect matching, is NP-complete.

For dimension d > 2 this is an open problem. In 3d Kossaczký has constructed a
conforming refinement of any given coarse grid into an initial grid T0 that satisfies
Assumption 11.1. This construction has been generalized by Stevenson to any space
dimension. [70, Appendix A].

As mentioned above, the conditions of Bänsch [10], Liu and Joe [46], and Arnold
et al. [2] on the initial tetrahedral mesh can be satisfied for any given conform-
ing triangulation. But then it can only be shown that uniform refinements Tg with
gmodd = 0 are conforming [2, 10, 46]. The property that any uniform refinement
Tg for g ∈ N0 is conforming is the key tool for the complexity proof in Sect. 4.5.

We next define the class of conforming refinements of T0 to be

T = {T = T (F ) |F ⊂ F is finite and T (F ) is conforming}.

Then Theorem 4.2 has two direct consequences.

(a) The class T contains an infinite number of conforming refinements of T0.
(b) There exists a function REFINE(T ,M ) that, given a conforming triangulation

T ∈ T and a subset M ⊂T of marked elements, bisects all simplices in M at
least once, and outputs the smallest conforming refinement T∗ ∈ T of T with
T∗ ∩M = /0.

Before constructing such function REFINE we analyze some basic properties of
triangulations.

4.3 Basic properties of triangulations

In this section we analyze basic properties of refinement by bisection, namely uni-
form shape regularity, convergence of mesh-size functions, and the cardinality of an
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overlay of two triangulations. The results can be easily derived using the structure
of the master forest F.

Uniform Shape Regularity. A direct consequence of Corollary 4.1 is that refine-
ment by bisection only produces elements T with shape coefficient σT uniformly
bounded by a constant solely depending on T0; recall Definition 3.4.

Lemma 4.1. All elements in F are uniformly shape regular, i. e.,

sup
T∈F

σT = sup
T∈F

hT

hT
≤C(T0) < ∞.

For any conforming mesh T ∈ T, the discrete neighborhood of T ∈T is given by

NT (T ) := {T ′ ∈T | T ′ ∩T �= /0}.

Lemma 4.1 implies that the cardinality of this patch is bounded uniformly and the
measure of all its elements is comparable

max
T∈T

#NT (T )≤C(T0), max
T ′∈NT (T )

|T |
|T ′| ≤C(T0), (55)

with C(T0) only depending on T0. This is usually called local quasi-uniformity.

Convergence of Mesh-Size Functions. Let {Tk}k≥0⊂T be any sequence of nested
refinements, i. e., Tk ≤ Tk+1 for k ≥ 0. This sequence is accompanied by the se-
quence of mesh-size functions {hk}k≥0, defined as hk ∈ L∞(Ω) with

hk|T = hT = |T |1/d for all T ∈Tk.

If the sequence is produced by uniform refinement then we easily obtain from (54)

lim
k→∞
‖hk‖L∞(Ω) = 0. (56)

However, this may not hold when the sequence Tk is generated adaptively, i. e., we
allow for local refinement. Therefore we have to generalize it appropriately. For a
first generalization of (56), we observe that the skeleton Γk :=

⋃{∂T ∩Ω : T ∈Tk}
of Tk has d-dimensional Lebesgue measure zero. We may thus interpret hk as a
piecewise constant function in L∞(Ω). Moreover, the limiting skeletonΓ∞ :=∪k≥0Γk

has also d-dimensional Lebesgue measure zero. Since, for every x ∈ Ω \Γ∞, the
sequence hk(x) is monotonically decreasing and bounded from below by 0,

h∞(x) := lim
k→∞

hk(x) (57)

is well-defined for x ∈ Ω \Γ∞ and defines a function in L∞(Ω). As the next lemma
shows, the pointwise convergence in (57) holds actually in L∞(Ω). Another gener-
alization of (56), where the limit function is 0, will be provided in Corollary 7.1 in
Chap. 7.
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Lemma 4.2 (Uniform Convergence of Mesh-Size Functions). For any sequence
{Tk}k≥0 ⊂ T of nested refinements the corresponding sequence {hk}k≥0 of mesh-
size functions converges uniformly in Ω \Γ∞ to h∞, i. e.,

lim
k→∞
‖hk−h∞‖L∞(Ω) = 0.

Proof. 1 Denote by Fk = F (Tk) the corresponding forest of Tk. From Tk ≤Tk+1

we conclude Fk ⊂Fk+1 and thus the forest

F∞ :=
⋃
k≥0

Fk

is well defined. Note that in general F∞ is infinite.
2 For arbitrary ε > 0, let g = g(ε) ∈ N be the smallest number such that

g≥ log(εd/M)/ log( 1
2 )

with M = max{|T | | T ∈ T0}. Obviously, F̂ := {T ∈ F∞ | g(T ) ≤ g} is a finite
forest and T (F̂ ) is a triangulation of Ω . Since F̂ ⊂F∞ is finite there exists k =
k(ε)≥ 0 with F̂ ⊂Fk.

3 Let T ∈ Tk be any leaf node of Fk and let T ∈ F (T0) for some T0 ∈ T0. To
estimate hk−h∞ on T , we distinguish the following two cases:

Case 1: g(T ) < g. This implies that T is a leaf node of F∞ and thus hk|T = h∞|T
or, equivalently, (hk−h∞)|T = 0.

Case 2: g(T ) ≥ g. Hence, T is generated by at least g bisections of T0. By (54),
the monotonicity of the mesh-size functions, and the choice of g, we obtain

0≤ (hk−h∞)|T ≤ hk|T = hT ≤ 2−g(T )/dhT0 ≤ 2−g/dM1/d ≤ ε.

Combining the two cases we end up with 0 ≤ (hk− h∞)|T ≤ ε for all T ∈ Tk.
Since ε is arbitrary and 0 ≤ h�− h∞ ≤ hk− h∞ in Ω for all � ≥ k, this finishes the
proof. '(

Overlay of Triangulations. Let T1,T2 ∈ T be conforming triangulations with cor-
responding finite forests F1 and F2. Then F1 ∪F2 is also a finite forest and we
call the unique triangulation

T1⊕T2 := T (F1∪F2) (58)

the overlay of T1 and T2. The name overlay is motivated by printing 2d triangula-
tions T1 and T2 at the same position on two slides. The overlay is then the triangu-
lation that can be seen when putting one slide on top of the other. It turns out that
the overlay is the smallest conforming triangulation with T1,T2 ≤ T1⊕T2 and its
cardinality can be estimated by the ones of T1 and T2.

Lemma 4.3 (Overlay of Meshes). For T1,T2 ∈ T the overlay T := T1⊕T2 is the
smallest common refinement of T1 and T2 and satisfies
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#T ≤ #T1 +#T2−#T0.

Proof. Argue by contradiction and assume that T contains a non-conforming ver-
tex z. That is, there exist T1,T2 ∈ T such that z is a vertex of T1 and z ∈ T2 is not a
vertex of T2. Without loss of generality let T1 ∈ T1. Since T1 is conforming, there
exists a T ′ ∈ T1, T ′ ⊂ T2 such that z is a vertex of T ′. Hence, T ′ is a descendant of
T2 in F1 and thus T2 cannot be a leaf node of F (T ), i.e., T2 /∈ T , a contradiction.
Since the overlay only contains elements from T1 or T2 and is conforming, it is the
smallest conforming refinement.

For T ∈T0 and i = 1,2 we denote by Fi(T )⊂F (T ) the binary trees with root
T corresponding to Ti and let Ti(T ) be the triangulation given by the leaf nodes of
Fi(T ). Since T (T ) ⊂ T1(T )∪T2(T ), we infer that #T (T )≤ #T1(T )+ #T2(T ).
We now show that #T (T )≤ #T1(T )+#T2(T )−1 by distinguishing two cases.

Case 1: T1(T )∩T2(T ) �= /0. Then there exists T ′ ∈T1(T )∩T2(T ), and so T ′ ∈
T (T ). By counting T ′ only once in #(T1(T )∪T2(T )) we get #T (T )≤ #T1(T )+
#T2(T )−1.

Case 2: T1(T )∩T2(T ) = /0. Then there exists T ′ ∈T1(T ) (resp., T ′ ∈T2(T )) so
that T ′ �∈T (T ), for otherwise T ′ ∈T2(T ) (resp., T ′ ∈T1(T )), thereby contradicting
the assumption. We obtain again #T (T )≤ #T1(T )+#T2(T )−1.

Finally, since Ti =
⋃

T∈T0
Ti(T ), the assertion follows by adding over the ele-

ments in T0. '(

4.4 Refinement algorithms

We discuss two refinement algorithms based on the bisection rule introduced in
Sect. 4.1. Given a conforming triangulation T and a subset of marked elements
M both variants output the smallest conforming refinement T∗ of T such that all
elements of M are bisected, i. e., T∗ ∩M = /0.

Iterative Refinement. The basic idea is to first bisect all marked elements in T
leading to a non-conforming grid T∗. In order to restore conformity, we identify all
elements T ∈T containing a so-called irregular (or hanging) node z ∈ T , namely a
vertex z∈VT∗ which is not a vertex of T . These elements are then also scheduled for
refinement. This procedure has to be iterated until all irregular nodes are removed
and this step is called completion. The core of iterative refinement is a routine that
bisects all marked elements in a possibly non-conforming triangulation:

REFINE MARKED(T ,M )
for all T ∈M do
{T0,T1}= BISECT(T );
T := T \{T}∪{T0,T1};

end for
return(T )
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The refinement of a given conforming grid T with a subset of marked elements
M into a new conforming refinement is then executed by

REFINE(T ,M )
while M �= /0 do

T := REFINE MARKED(T ,M );
M := {T ∈T | T contains an irregular node};

end while
return(T )

We let T∗ be the output of REFINE MARKED(T ,M ) on its first call. Since
non-conforming situations can only be cured by refining all elements containing
an irregular node, the above algorithm outputs the smallest conforming refine-
ment of T∗ if the while-loop terminates. We let g be the maximal generation of
any element in T∗. By Theorem 4.2 the uniform refinement Tg is conforming,
and by construction it satisfies T∗ ≤ Tg. Since REFINE(T ,M ) only refines el-
ements to remove non-conforming situations, any intermediate grid T produced by
REFINE MARKED(T ,M ) satisfies T ≤ Tg and this implies that the while loop
in the above algorithm terminates.

We point out that this algorithm works without any assumption on the ordering
of vertices in T0 in 2d and with the less restrictive assumptions in [2, 10, 46] in 3d.
This follows from the fact that Tg with gmodd = 0 is conforming and thus one can
choose a suitable Tg ≥T∗; compare with Remark 4.1.

The above implementation of iterative refinement is not efficient since there are
too many loops in the completion step. We observe that the bisection of a single
element T enforces the bisection of all elements at its refinement edge. Some of
these elements may also be marked for refinement and will directly be refined. Other
elements have to be refined in the completion step. The algorithm can be speeded
up by directly scheduling those elements for refinement.

This motivates the simultaneous bisection of all elements meeting at the refine-
ment edge. This variant is discussed next.

Recursive Refinement. Let T be a given conforming grid and let T ∈ T be an
element with refinement edge E. We define the refinement patch of T to be

R(T ;T ) := {T ′ ∈T | E ⊂ T ′}.

As mentioned above, a bisection of T enforces a refinement of all elements in
R(T ;T ) for regaining conformity. We could avoid non-conforming situations by
a simultaneous refinement of the whole refinement patch. This is only possible if all
elements in R(T ;T ) are compatibly divisible, i. e., E is the refinement edge of all
T ′ ∈ R(T ;T ) and R(T ;T ) is a bisection patch. This is called the atomic refinement
operation and is depicted in Fig. 7 for d = 2 (top) and d = 3 (bottom).

If there are elements in R(T ;T ) that are not compatibly divisible with T , the
basic idea is to recursively refine these elements first. This builds up the new refine-
ment patch around E that in the end allows for the atomic refinement operation.
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Fig. 7 Atomic refinement operation in 2d (top) and 3d (bottom): The common edge is the refine-
ment edge for all elements

In 2d, there is one neighbor sharing the refinement edge E in case E is interior.
Either this neighbor is compatibly divisible, or the neighboring child is compatibly
divisible after bisection of the neighbor. If E lies on the boundary, instead, bisection
can be executed directly. Fig. 8 illustrates a situation that requires recursion.

Fig. 8 Recursive refinement in 2d: Triangles A and B are initially marked for refinement

In higher dimension there is in general a whole bunch of elements in R(T ;T ).
Since R(T ;T )⊂ NT (T ), (55) implies that the cardinality of R(T ;T ) is uniformly
bounded depending only on T0. Here it may happen that several elements have to be
refined before we can perform the atomic refinement operation. It may also happen
that an element inside the refinement patch has to be refined several times but the
number of bisections is bounded by d−1; see Lemma 4.4 below. This lemma also
allows for an elegant formulation of the recursive algorithm.

Lemma 4.4. Let T0 be a conforming triangulation satisfying Assumption 11.1 and
let T ∈ T be a conforming refinement.

Then any T ∈T is of locally highest generation in R(T ;T ), i. e.,

g(T ) = max{g(T ′) | T ′ ∈ R(T ;T )}

and T ′ ∈ R(T ;T ) is compatibly divisible with T if and only if g(T ′) = g(T ).
Furthermore, min{g(T ′) | T ′ ∈ R(T ;T )} ≥ g(T )−d +1 and a non-compatibly

divisible neighboring element of T has generation g(T )−1.
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Proof. Denote by E the refinement edge of T and set g := g(T ). The uniform re-
finement Tg+1 of T0 contains the midpoint z̄ of E as a vertex and is a conforming
refinement of T . For any T ′ ∈ R(T ;T ) the new vertex z̄ is an irregular node on
T ′, whence T ′ �∈ Tg+1. Since Tg+1 is a conforming refinement of T we know that
descendants of T ′ belong to Tg+1 and thus g(T ′)≤ g for all T ′ ∈ R(T ;T ).

If T ′ is compatibly divisible with T , then z̄ is the new vertex of the two children,
which belong to Tg+1; hence, g(T ′) = g. If T ′ is not compatibly divisible with T ,
then z̄ is the new vertex of descendants of one child of T ′, whence g(T ′) < g.

The refinement rule (53) implies that after d recurrent bisections all edges of the
original simplex are bisected (see Problem 4.1). Consequently, any T ′ ∈ R(T ;T )
has descendants of generation at most g(T ′)+ d that have z̄ as a vertex and belong
to Tg+1. This yields g(T ′)≥ g−d +1.

If T ′ is a non-compatibly divisible neighbor of T , then the refinement rule (53)
implies that the refinement edge of one child T ′′ of T ′ is contained in the common
side of T and T ′. Since Tg+1 is conforming this implies that T and T ′′ are compati-
bly divisible, and thus g(T ′) = g−1. '(

For T ∈ T the recursive refinement of a single element T ∈T now reads:

REFINE RECURSIVE(T ,T )
do forever

get refinement patch R(T ,T );
access T ′ ∈ R(T ,T ) with g(T ′) = min{g(T ′′) | T ′′ ∈ R(T ;T )};
if g(T ′) < g(T ) then

T := REFINE RECURSIVE(T ,T ′);
else

break;
end if

end do

get refinement patch R(T ,T );
for all T ′ ∈ R(T ,T ) do
{T ′0 ,T ′1}= BISECT(T ′);
T := T \{T ′}∪{T ′0 ,T ′1};

end for
return(T )

Lemma 4.4 implies that only elements T ′ with g(T ′) < g(T ) are not compatibly
divisible with T . Hence, recursion is only applied to elements with g(T ′) < g(T )
and thus the maximal depth of recursion is g(T ) and recursion terminates. Recursive
refinement of an element T ′ may affect other elements of R(T ;T ) with same gener-
ation g(T ′). When the do-loop aborts, all elements in the refinement patch R(T ;T )
are compatibly divisible, and the atomic refinement operation is executed in the for-
loop: all elements T ′ ∈ R(T ;T ) are refined, removed from R(T ;T ), and replaced
by the respective children sharing the refinement edge of T . Those children are all
of generation ≤ g(T )+1. Since #R(T ;T )≤C(T0), all elements in R(T ;T ) are of
the same generation g(T ) after a finite number of iterations. Observe that, except for
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T , elements in R(T ;T ) are only refined to avoid a non-conforming situation. This
in summary yields the following result.

Lemma 4.5 (Recursive Refinement). Let T0 be a conforming triangulation satis-
fying Assumption 11.1 and let T ∈ T be any conforming refinement.

Then, for any T ∈ T a call of REFINE RECURSIVE(T ,T ) terminates and
outputs the smallest conforming refinement T∗ of T where T is bisected. All newly
created elements T ′ ∈T∗ \T satisfy g(T ′)≤ g(T )+1.

Remark 4.2. Assumption 11.1 is a sufficient condition for recursion to terminate
but it is not necessary. Such a characterization of recursive bisection is not known.
Obviously, termination of the recursion for all elements of T0 is necessary. Practical
experience shows that in 2d this is also sufficient, whereas this is not true in 3d.

We next formulate the algorithm for refining a given conforming grid T with
marked elements M into a new conforming triangulation:

REFINE(T ,M )
for all T ∈M ∩T do

T := REFINE RECURSIVE(T ,T );
end
return(T )

Let T be an element of the input set of marked elements M . Then it may happen
that there is an element T∗ ∈M scheduled prior to T for refinement and so that
the refinement of T∗ enforces the refinement of T , for instance T ∈ R(T ;T∗). In the
bisection step T is replaced by its two children in T and thus T �∈M ∩T . This
avoids to refine T twice. In addition, since REFINE RECURSIVE(T ,T ) outputs
the smallest refinement such that T is bisected, REFINE(T ,M ) outputs the small-
est conforming refinement T∗ of T with T∗ ∩M = /0.

Remark 4.3 (Iterative vs Recursive Refinement). The iterative and recursive variant
of REFINE produce the same output mesh whenever they both terminate. Proposi-
tion 4.1 in Sect. 4.5 makes use of the recursive refinement algorithm but is also valid
for the iterative variant.

We concluded successful termination of both variants from the fact that the out-
put grid T∗ satisfies T∗ ≤ Tg with g sufficiently large. Therefore, the used argu-
ments do not imply that local refinement stays local. This property is an implication
of Theorem 4.3 below.

On a first glance, the iterative variant seems to be easier to implement. But it turns
out that handling non-conforming situations can become rather knotty, especially
for d ≥ 3. The implementation of the recursive variant avoids any non-conforming
situation by performing the atomic refinement operation, which, as a consequence,
simplifies the implementation drastically. The drawback of recursive refinement are
stronger assumptions on the distribution of refinement edges on the initial grid.
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4.5 Complexity of refinement by bisection

In this section we analyze the cardinality of conforming triangulations produced
by adaptive iterations of the form (4). Assuming that a function REFINE(T ,M )
outputs the smallest conforming refinement of T with all elements in M bisected,
we study a sequence of conforming refinements T0≤T1≤ ·· · ≤Tk ≤ . . . generated
by an iteration of the form

for k ≥ 0 do
determine a suitable subset Mk ⊂Tk;
Tk+1 := REFINE(Tk,Mk);

end

The main result is the following theorem.

Theorem 4.3 (Complexity of Refinement by Bisection). Let T0 be a conforming
triangulation satisfying Assumption 11.1.

Then there exists a constant Λ > 0 solely depending on T0, such that for any
K ≥ 0 the conforming triangulation TK produced by the above iteration verifies

#TK−#T0 ≤Λ
K−1

∑
k=0

#Mk.

The proof of this theorem is split into several steps. Before embarking on it we
want to remark that an estimate of the form

#Tk+1−#Tk ≤Λ #Mk (59)

would imply Theorem 4.3 by summing up over k = 0, . . . ,K−1. But such a bound
does not hold for refinement by bisection. To see this, consider the initial grid T0

Fig. 9 An example showing that the depth of recursion in is only bounded by the generation of the
selected element. Initial triangulation in the leftmost picture and grids TK for K = 2,4,6. Recursion
has depth K for the refinement of the elements marked with bullets

depicted as the leftmost picture in Fig. 9. For all elements the boundary edge is
selected as refinement edge and this choice satisfies Assumption 11.1. Pick up any
even K ∈ N and let
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Mk := {T ∈Tk | 0 ∈ T} for k = 0, . . . ,K−1

and
MK := {T ∈TK | g(T ) = K and 0 �∈ T}.

In Fig. 9 we show the grids TK for K = 2,4,6 and the two elements in MK

are indicated by a bullet. For k ≤ K we only refine marked elements, whence
#Tk+1−#Tk = #Mk = 2 for k = 0 . . . ,K−1. When refining TK into TK+1 we have
to recursively refine elements of generation K−1,K−2, . . . ,0 for both elements in
MK . From this it is easy to verify that #TK+1−#TK = 4K +2. Since #MK = 2 and
K is an arbitrary even number it is obvious that (59) can not hold. On the other hand,

K

∑
k=0

#Tk+1−#Tk = (4K +2)+
K−1

∑
k=0

2 = 6K +2≤ 3(2K +2) = 3
K

∑
k=0

#Mk.

This shows that Theorem 4.3 holds true for this example.
The proof of the theorem can be heuristically motivated as follows. Consider

the set M :=
⋃K−1

k=0 Mk used to generate the sequence T0 ≤ T1 ≤ ·· · ≤ TK =: T .
Suppose that each element T∗ ∈M is assigned a fixed amount C1 of money to spend
on refined elements in T , i. e., on T ∈ T \T0. Assume further that λ (T,T∗) is the
portion of money spent by T∗ on T . Then it must hold

∑
T∈T \T0

λ (T,T∗)≤C1 for all T∗ ∈M . (60a)

In addition, we suppose that the investment of all elements in M is fair in the sense
that each T ∈T \T0 gets at least a fixed amount C2, whence

∑
T∗∈M

λ (T,T∗)≥C2 for all T ∈T \T0. (60b)

Therefore, summing up (60b) and using the upper bound (60a) we readily obtain

C2(#T −#T0)≤ ∑
T∈T \T0

∑
T∗∈M

λ (T,T∗) = ∑
T∗∈M

∑
T∈T \T0

λ (T,T∗)≤C1 #M ,

which proves the theorem for T and M . In the remainder of this section we de-
sign such an allocation function λ : T ×M → R

+ in several steps and prove that
recurrent refinement by bisection yields (60) provided T0 satisfies Assumption 11.1.

In view of (54), measure and diameter of an element are related to its generation:

D12−g(T ) ≤ |T | and diam(T )≤ D22−g(T )/d for all T ∈ F, (61)

with D1 = min{|T0| | T0 ∈T0} and D2 ≈max{|T0| | T0 ∈T0}. The constant hidden
in ≈ solely depends on the shape regularity of F (and thus on T0).

Suppose now that T ′ is generated by REFINE RECURSIVE(T ,T ). The con-
stant D2 enables us to relate the distance of T ′ to T with its generation g(T ′), where
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dist(T,T ′) = inf
x∈T,x′∈T ′

∣∣x− x′
∣∣ .

Proposition 4.1 (Distance and Generation). Let T ∈ T, T ∈ T and assume that
T ′ is created by REFINE RECURSIVE(T ,T ). Then there holds

dist(T,T ′)≤ D2 21/d
g(T )

∑
g=g(T ′)

2−g/d < D2
21/d

1−2−1/d
2−g(T ′)/d .

Proof. We prove dist(T,T ′)≤ D2 21/d ∑g(T )
g=g(T ′) 2−g/d by induction over the genera-

tion of T . The rightmost inequality is a direct consequence of the geometric sum.
1 If g(T ) = 0, then the refinement patch R(T ;T ) is compatibly divisible thanks to

Lemma 4.4. Consequently REFINE RECURSIVE(T ,T ) only creates elements T ′

with dist(T,T ′) = 0 and the assertion follows trivially.
2 Let now g(T ) > 0 and assume that the assertion holds for any T ′′ ∈ T with

0 ≤ g(T ′′) < g(T ). We only need to consider dist(T,T ′) > 0, whence T ′ is created
by a recursive call REFINE RECURSIVE(T ,T ′′) for an element T ′′ ∈ R(T ;T )
that is not compatibly divisible with T ; thus g(T ′′) < g(T ) by Lemma 4.4. The
induction hypothesis yields

dist(T ′′,T ′)≤ D2 21/d
g(T ′′)

∑
g=g(T ′)

2−g/d .

Since T ′′ ∈ R(T ,T ), and so T ′′ contains the refinement edge of T , we realize that
dist(T ′′,T ) = 0. Combining the last estimate with (61), we deduce

dist(T,T ′)≤ dist(T ′′,T ′)+diam(T ′′)≤ D2 21/d
g(T ′′)

∑
g=g(T ′)

2−g/d +D2 2−g(T ′′)/d

= D2 21/d
g(T ′′)+1

∑
g=g(T ′)

2−g/d ≤ D2 21/d
g(T )

∑
g=g(T ′)

2−g/d ,

where we have used g(T ′′) < g(T ) in the last step. This finishes the proof. '(

We next construct the allocation function λ . The construction is based on two
sequences {a(�)}∞�=−1,{b(�)}∞�=0 ⊂ R

+ of positive numbers satisfying

∑
�≥−1

a(�) = A < ∞, ∑
�≥0

2−�/d b(�) = B < ∞, inf
�≥1

b(�)a(�) = c∗ > 0,

and b(0)≥ 1. Valid instances are a(�) = (�+2)−2 and b(�) = 2�/(d+1).
With these settings we are prepared to define λ : T ×M → R

+ by

λ (T,T∗) :=

{
a(g(T∗)−g(T )), dist(T,T∗) < D3 B2−g(T )/d and g(T )≤ g(T∗)+1

0, else,
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where D3 := D2
(
1 + 21/d(1− 2−1/d)−1

)
. Therefore, the investment of money by

T∗ ∈ M is restricted to cells T that are sufficiently close and are of generation
g(T ) ≤ g(T∗)+ 1. Only elements of such generation can be created during refine-
ment of T∗ according to Lemma 4.4.

The following lemma shows that the total amount of money spend by this allo-
cation function per marked element is bounded.

Lemma 4.6 (Upper Bound). There exists a constant C1 > 0 only depending on T0

such that λ satisfies (60a), i. e.,

∑
T∈T \T0

λ (T,T∗)≤C1 for all T∗ ∈M .

Proof. 1 Given T∗ ∈M we set g∗= g(T∗) and we let 0≤ g≤ g∗+1 be a generation
of interest in the definition of λ . We claim that for such g the cardinality of the set

T (T∗,g) = {T ∈T | dist(T,T∗) < D3 B2−g/d and g(T ) = g}

is uniformly bounded, i. e., #T (T∗,g)≤C with C solely depending on D1,D2,D3,B.
From (61) we learn that diam(T∗) ≤ D22−g∗/d ≤ 2D22−(g∗+1)/d ≤ 2D22−g/d

as well as diam(T ) ≤ D22−g/d for any T ∈ T (T∗,g). Hence, all elements of
the set T (T∗,g) lie inside a ball centered at the barycenter of T∗ with radius
(D3B+3D2)2−g/d . Again relying on (61) we thus conclude

#T (T∗,g)D12−g ≤ ∑
T∈T (T∗,g)

|T | ≤ c(d)(D3B+3D2)d2−g,

whence #T (T∗,g)≤ c(d)D−1
1 (D3B+3D2)d =: C.

2 Accounting only for non-zero contributions λ (T,T∗) we deduce

∑
T∈T \T0

λ (T,T∗) =
g∗+1

∑
g=0

∑
T∈T (T∗,g)

a(g∗ −g)≤C
∞

∑
�=−1

a(�) = CA =: C1,

which is the desired upper bound. '(

The definition of λ also implies that each refined element receives a fixed amount
of money.

Lemma 4.7 (Lower Bound). There exists a constant C2 > 0 only depending on T0

such that λ satisfies (60b), i. e.,

∑
T∗∈M

λ (T,T∗)≥C2 for all T ∈T \T0.

Proof. 1 Fix an arbitrary T0 ∈T \T0. Then there is an iteration count 1≤ k0 ≤ K
such that T0 ∈ Tk0 and T0 /∈ Tk0−1. Therefore there exists an T1 ∈Mk0−1 ⊂M
such that T0 is generated during REFINE RECURSIVE(Tk0−1,T1). Iterating this
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process we construct a sequence {Tj}J
j=1 ⊂M with corresponding iteration counts

{k j}J
j=1 such that Tj is created by REFINE RECURSIVE(Tk j−1,Tj+1). The se-

quence is finite since the iteration counts are strictly decreasing and thus kJ = 0 for
some J > 0, or equivalently TJ ∈T0.

Since Tj is created during refinement of Tj+1 we infer from Lemma 4.5 that

g(Tj+1)≥ g(Tj)−1.

Accordingly, g(Tj+1) can decrease the previous value of g(Tj) at most by 1. Since
g(TJ) = 0 there exists a smallest value s such that g(Ts) = g(T0)− 1. Note that for
j = 1, . . . ,s we have λ (T0,Tj) > 0 if dist(T0,Tj)≤ D3Bg−g(T0)/d .
2 We next estimate the distance dist(T0,Tj). For 1≤ j ≤ s and �≥ 0 we define the

set
T (T0, �, j) := {T ∈ {T0, . . . ,Tj−1} | g(T ) = g(T0)+ �}

and denote by m(�, j) its cardinality. The triangle inequality combined with an in-
duction argument yields

dist(T0,Tj)≤ dist(T0,T1)+diam(T1)+dist(T1,Tj)

≤
j

∑
i=1

dist(Ti−1,Ti)+
j−1

∑
i=1

diam(Ti).

We apply Proposition 4.1 for the terms of the first sum and (61) for the terms of the
second sum to obtain

dist(T0,Tj) < D2
21/d

1−2−1/d

j

∑
i=1

2−g(Ti−1)/d +D2

j−1

∑
i=1

2−g(Ti)/d

= D2

(
1+

21/d

1−2−1/d

)
j−1

∑
i=0

2−g(Ti)/d

= D3

∞

∑
�=0

m(�, j)2−(g(T0)+�)/d

= D32−g(T0)/d
∞

∑
�=0

m(�, j)2−�/d.

For establishing the lower bound we distinguish two cases depending on the size of
m(�,s). This is done next.

3 Case 1: m(�,s)≤ b(�) for all �≥ 0. From this we conclude

dist(T0,Ts) < D32−g(T0)/d
∞

∑
�=0

b(�)2−�/d = D3B2−g(T0)/d

and the definition of λ then readily implies
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∑
T∗∈M

λ (T0,T∗)≥ λ (T0,Ts) = a(g(Ts)−g(T0)) = a(−1) > 0.

4 Case 2: There exists � ≥ 0 such that m(�,s) > b(�). For each of these �’s there
exists a smallest j = j(�) such that m(�, j(�)) > b(�). We let �∗ be the index � that
gives rise to the smallest j(�), and set j∗ = j(�∗). Consequently

m(�, j∗ −1)≤ b(�) for all �≥ 0 and m(�∗, j∗) > b(�∗).

As in Case 1 we see dist(T0,Ti) < D3B2−g(T0)/d for all i≤ j∗ −1, or equivalently

dist(T0,Ti) < D3B2−g(T0)/d for all Ti ∈T (T0, �, j∗).

We next show that the elements in T (T0, �
∗, j∗) spend enough money on T0. We

first consider �∗ = 0 and note that T0 ∈ T (T0,0, j∗). Since m(0, j∗) > b(0) ≥ 1 we
discover j∗ ≥ 2. Hence, there is an Ti ∈T (T0,0, j∗)∩M , which yields the estimate

∑
T∗∈M

λ (T0,T∗)≥ λ (T0,Ti) = a(g(Ti)−g(T0)) = a(0) > 0.

For �∗> 0 we see that T0 �∈T (T0, �
∗, j∗), whence T (T0, �

∗, j∗)⊂M . In addition,
λ (T0,Ti) = a(�∗) for all Ti ∈T (T0, �

∗, j∗). From this we conclude

∑
T∗∈M

λ (T0,T∗)≥ ∑
T∗∈T (T0,�∗, j∗)

λ (T0,T∗) = m(�∗, j∗)a(�∗)

> b(�∗)a(�∗)≥ inf
�≥1

b(�)a(�) = c∗ > 0.

5 In summary we have proved the assertion since for any T0 ∈T \T0

∑
T∗∈M

λ (T0,T∗)≥min{a(−1),a(0),c∗}=: C2 > 0. '(

Lemmas 4.6 and 4.7 show that the allocation function λ satisfies (60), which
implies Theorem 4.3.

Remark 4.4 (Several Bisections). In practice, one often likes to bisect selected ele-
ments several times, for instance each marked element is scheduled for b≥ 1 bisec-
tions. This can be done by assigning the number b(T ) = b of bisections that have to
be executed for each marked element T . If T is bisected then we assign (b(T )−1)
as the number of pending bisections to its children and the set of marked elements
is M := {T ∈T | b(T ) > 0}.

To show the complexity estimate when REFINE performs b > 1 bisections, the
set Mk is to be understood as a sequence of single bisections recorded in sets
{Mk( j)}b

j=1, which belong to intermediate triangulations between Tk and Tk+1

with #Mk( j)≤ 2 j−1#Mk, j = 1, . . . ,b. Then we also obtain Theorem 4.3 because
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b

∑
j=1

#Mk( j)≤
b

∑
j=1

2 j−1#Mk = (2b−1)#Mk.

Remark 4.5 (Optimal Constant). Trying to trace the value of the constant Λ one
realizes that Λ becomes rather large since it depends via C1 and C2 on the constants
A,B,c∗. Experiments suggest that Λ ≈ 14 in 2d and Λ ≈ 180 in 3d when T0 is
the initial triangulation of the d-dimension cube (0,1)d build from the d! Kuhn-
simplices of type 0. According to Problem 4.3, T0 satisfies Assumption 11.1.

There is an interesting connection to a result by Atalay and Mount that can be
formulated as follows [3]: there exists a constant Cd ≤ 3dd! such that the smallest
conforming refinement T∗ ∈T of any non-conforming refinement T of T0 satisfies

#T∗ ≤Cd#T .

For 2d the optimal constant is shown to be C2 = 14 and the constant C3 = 162
for d = 3 is quite close to the constant observed in experiments. The agreement
between theory and experiments for 2d is quite exiting, but nevertheless the estimate
by Atalay and Mount cannot be used to show Theorem 4.3.

4.6 Problems

Problem 4.1. Show that after d recurrent bisections of a simplex T all edges of T
are bisected exactly once. To this end, let first T = {z0, . . . ,zd}0 be of type 0 and
show by induction that any sub-simplex T ′ of T with generation t = g < d has the
structure

T ′ =
{

zk0
, z̄t , z̄t−1 , . . . , z̄1 ,zk1

,zk2
, . . . ,zkd−t

}
t
,

where z̄i are the new vertices of the bisection step i, i = 1, . . . , t, and k0, . . . ,kd−t

are consecutive natural numbers, for instance 0,1,2, . . . ,d− 1 or d,d− 1, . . . ,1 for
t = 1. Then generalize the claim to a simplex T of type t ∈ {0, . . . ,d−1}.

Problem 4.2. Show that the output of BISECT(T ) and BISECT(TR) is the same,
i. e., the children of T and its reflected element TR are identical.

Problem 4.3. Show that the set of the d! Kuhn-simplices of type 0 is a conforming
triangulation of the unit cube (0,1)d ⊂ R

d satisfying Assumption 11.1.

Problem 4.4. Let d = 2 and T = {z0,z1,z2}t ,T ′ = {z′0,z′1,z′2}t be neighboring ele-
ments with common side S = T ∩T ′. Show that

(a) T and T ′ are reflected neighbors if and only if z0z2 = z′0z′2 or z1 = z′1.
(b) If T and T ′ are reflected neighbors, then so are their neighboring children.
(c) If z1 = z′2 and z2 = z′1, then T and T ′ are not reflected neighbors but their neigh-

boring children are.
(d) If S = z0z2 = z′0z′2 or z1,z′1 ∈ S, then T and T ′ are matching neighbors.
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5 Piecewise polynomial approximation

The numerical solution of a boundary value problem may be seen as a special ap-
proximation problem where the target function is not given explicitly but implicitly.
Theorem 3.2 shows that the error of a Petrov-Galerkin solution of a stable discretiza-
tion is dictated by the best approximation from the discrete space. In this chapter
we investigate approximation properties of continuous piecewise polynomials, the
standard discretization for the model problem in Sect. 2.2.1. We do not strive for
completeness but rather want to provide some background and motivation for the
successive chapters. To this end, we depart from classical finite element approxima-
tion and end up with a result on nonlinear or adaptive approximation.

For more information about nonlinear and constructive approximation, we refer
to the survey [28] and the book [29].

5.1 Quasi-interpolation

We start with a brief discussion on piecewise polynomial interpolation of rough
functions, namely those without point values as we expect H1-functions to be. This
leads to the concept of quasi-interpolation and to a priori error estimates for the
standard discretization of our model problem in Sect. 2.2.1.

Using the Lagrange basis {φz}z∈Nn(T ) ⊂ Sn,0(T ) from Theorem 3.4 we have for
any v ∈ Sn,0(T ) the representation v = ∑z∈Nn(T ) v(z)φz. This may suggest to use
for given v the Lagrange interpolant

IT v(x) := ∑
z∈Nn(T )

v(z)φz(x). (62)

However, this operator requires that point values of v are well-defined. If v∈W s
p(Ω),

this entails the condition sob(W s
p) > 0, which in turn requires regularity beyond the

trial space H1
0 (Ω) when d ≥ 2.

Quasi-interpolants, like those in Clément [26] or Scott-Zhang [65], replace v(z)
in (62) by a suitable local average and so are well-defined also for rough functions,
e.g. from H1

0 (Ω). For any conforming refinement T ≥ T0 of T0, the averaging
process extends beyond nodes and so brings up the discrete neigborhood

NT (T ) := {T ′ ∈T | T ′ ∩T �= /0}

for each element T ∈T along with the uniform properties (55), namely,

max
T∈T

#NT (T )≤C(T0), max
T ′∈NT (T )

|T |
|T ′| ≤C(T0),

where C(T0) depends only on the shape coefficient of T0. We shall make use of the
following estimate of the local interpolation error; see [16, 65].
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Proposition 5.1 (Local Error Estimate for Quasi-Interpolant). Let s be the reg-
ularity index with 0≤ s≤ n+1, and 1≤ p≤ ∞ be the integrability index.
(a) There exists an operator IT : L1(Ω)→ Sn,0(T ) such that for all T ∈T we have

‖Dt(v− IT v)‖Lq(T ) � h
sob(W s

p)−sob(Wt
q)

T ‖Dsv‖Lp(NT (T )) (63)

where 0≤ t ≤ s, 1≤ q≤ ∞ are such that sob(W s
p) > sob(Wt

q). The hidden constant
depends on the shape coefficient of T0 and d.
(b) There exists an operator IT : W 1

1 (Ω)→ Sn,0(T ) satisfying (63) for s ≥ 1 and,
in addition, if v ∈W 1

1 (Ω) has a vanishing trace on ∂Ω , then so does IT v.
Both operators are invariant in Sn,0(T ), namely IT V = V for all V ∈ Sn,0(T ).

Proof. We sketch the proof; see [16, 65] for details. Recall that {φz}z∈Nn(T ) is the
global Lagrange basis of Sn,0(T ) and {φ ∗z }z∈Nn(T ) is the global dual basis and,
according to Remark 3.4, suppφ ∗z = suppφz for all z ∈ Nn(T ). We thus define
IT : L1(Ω)→ Sn,0(T ) to be

IT v = ∑
z∈Nn(T )

〈v, φ ∗z 〉φz,

and observe that by construction this operator is invariant in Sn,0(T ), namely,

IT P = P for all P ∈ Sn,0(T ).

In particular, the averaging process giving rise to the values of IT v for each element
T ∈ T takes place in the neighborhood NT (T ), whence we also deduce the local
invariance

IT P|T = P for all P ∈ Pn(NT (T ))

as well as the local stability estimate

‖IT v‖Lq(T ) � ‖v‖Lq(NT (T )).

We thus may write

v− IT v|T = (v−P)− IT (v−P)|T for all T ∈T ,

where P ∈ Ps−1 is arbitrary. It suffices now to prove (63) in the reference element
T̂ and scale back and forth via Lemma 3.1; the definition (5) of Sobolev number
accounts precisely for this scaling. We keep the notation T for T̂ , apply the inverse
estimate for Pn-polynomials ‖Dt(IT v)‖Lq(T ) � ‖IT v‖Lq(T ) to v−P instead of v, and
use the above local stability estimate, to infer that

‖Dt(v− IT v)‖Lq(T ) � ‖v−P‖Wt
q(NT (T )) � ‖v−P‖W s

p(NT (T )).

The last inequality is a consequence W s
p(NT (T ))⊂Wt

q(NT (T )) because sob(W s
p) >

sob(Wt
q). Estimate (63) now follows from the Bramble-Hilbert lemma [16, Lemma

4.3.8], [25, Theorem 3.1.1]
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inf
P∈Ps−1(NT (T ))

‖v−P‖W s
p(NT (T )) � ‖Dsv‖Lp(NT (T )). (64)

This proves (a). To show (b) we modify the averaging process for boundary nodes
and define a set of dual functions with respect to an L2-scalar product over (d−1)-
subsimplices contained on ∂Ω ; see again [16, 65] for details. This retains the in-
variance property of IT on Sn,0(T ) and guarantees that IT v has a zero trace if
v ∈W 1

1 (Ω) does. Hence, the same argument as above applies and (63) follows. '(

Remark 5.1 (Sobolev Numbers). We cannot expect (63) to be valid if sob(W s
p) =

sob(Wt
q) since this may not imply W s

p(Ω) ⊂ Wt
q(Ω); recall the counterexample

W s
p(Ω) =W 1

d (Ω) and Wt
q(Ω) = L∞(Ω) of Sect. 2.1.1. However, equality of Sobolev

numbers is allowed in (63) as long as the space embedding is valid.

Remark 5.2 (Fractional Regularity). We observe that (63) does not require the reg-
ularity indices t and s to be integer. The proof follows the same lines but replaces
the polynomial degree s−1 by the greatest integer smaller that s; the generalization
of (64) can be taken from [33].

Remark 5.3 (Local Error Estimate for Lagrange Interpolant). Let the regularity in-
dex s and integrability index 1 ≤ p ≤ ∞ satisfy s− d/p > 0. This implies that
sob(W s

p) > sob(L∞), whence W s
p(Ω)⊂C(Ω) and the Lagrange interpolation opera-

tor IT : W s
p(Ω)→ Sn,0(T ) is well defined and satisfies the fully local error estimate

‖Dt(v− IT v)‖Lq(T ) � h
sob(W s

p)−sob(Wt
q)

T ‖Dsv‖Lp(T ), (65)

provided 0≤ t ≤ s, 1≤ q≤ ∞ are such that sob(W s
p) > sob(Wt

q). We point out that
NT (T ) in (63) is now replaced by T in (65). We also remark that if v vanishes on ∂Ω
so does IT v. The proof of (65) proceeds along the same lines as that of Proposition
5.1 except that the nodal evaluation does not extend beyond the element T ∈T and
the inverse and stability estimates over the reference element are replaced by

‖DtIT v‖Lq(T̂ ) � ‖IT v‖Lq(T̂ ) � ‖v‖L∞(T̂ ) � ‖v‖W s
p(T̂ ).

Remark 5.4 (Boundary values). The procedure described at the end of the proof of
Proposition 5.1 can be used to interpolate functions with boundary values different
from zero while retaining invariance over the finite element space. We refer to [16,
65] for details.

Remark 5.5 (Localized Estimate). Suppose that v ∈W 1
1 (Ω) happens to be a piece-

wise polynomial of degree ≤ n on a subdomain Ω∗ of Ω . Let ω be a connected
component of Ω\Ω∗ and let the quasi-interpolant IT v preserve the boundary values
of v on ∂ω , as indicated in Remark 5.4. If we repeat this construction for each con-
nected component ω of Ω\Ω∗ and define IT v = v in Ω∗, then IT v ∈ Sn,0(T ) and
we deduce the localized estimate for all 1≤ p≤ ∞

∑
T⊂ω

h−2
T ‖v− IT v‖p

Lp(T ) +h−2+2/p
T ‖v− IT v‖p

Lp(∂T ) � ‖∇v‖p
Lp(ω). (66)
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This property will be crucial in Chap. 9 to prove quasi-optimality of AFEM.

The local interpolation error estimate in Proposition 5.1 implies a global one. The
latter will be discussed as an upper bound for the error of the finite element solution
in the next section.

5.2 A priori error analysis

Combining Theorem 3.2 with Proposition 5.1 we derive a so-called a priori er-
ror estimate, which bounds the error of the finite element solution in terms of the
mesh-size function and regularity of the exact solution beyond H1(Ω). We present a
slightly more general variant than usual. This will help in the successive discussion
on error reduction.

Theorem 5.1 (A Priori Error Estimate). Let 1 ≤ s ≤ n + 1,1 ≤ p ≤ 2, and let
the solution u of the model problem (13) satisfy u ∈W s

p(Ω) with r := sob(W s
p)−

sob(H1) > 0. Let U ∈ V(T ) = Sn,0(T )∩H1
0 (Ω) be the corresponding discrete

solution. If h : Ω → R denotes the piecewise constant mesh density function, then

‖∇(u−U)‖L2(Ω) � α2

α1
‖hrDsu‖Lp(Ω). (67)

The hidden constant depends on shape coefficient of T0 and the dimension d.

Proof. Theorem 3.2 and Proposition 5.1 yield

‖∇(u−U)‖2
L2(Ω) � α2

α1
‖∇(u− IT u)‖2

L2(Ω) � α2

α1
∑

T∈T

h2r
T ‖Dsu‖2

Lp(NT (T )).

In order to sum up the right-hand side we need to accumulate in �p rather than �2.
We recall the elementary property of series ∑n an ≤ (∑n aq

n)1/q for 0 < q ≤ 1. We
take q = p/2 and apply this property, in conjunction with (55), to arrive at

|u− IT u|2H1(Ω) �
(
∑

T∈T

hrp
T ‖Dsu‖p

Lp(NT (T ))

) 2
p

�
(∫

Ω
h(x)rp |Dsu(x)|p dx

) 2
p

.

This is the asserted estimate (67). '(

Notice that in Theorem 5.1 the exploitable number of derivatives of the exact
solution is limited by the polynomial degree

1≤ s≤ 1+n.

Moreover, decreasing the mesh-size function reduces the upper bound (67). The
reduction rate is dictated by the difference of the Sobolev numbers
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r = sob(W s
p)− sob(H1),

and is thus sensitive to the integrability of the relevant derivatives in both left and
right-hand sides of (67). The best rate is obtained for integrability index p = 2,
which coincides with the integrability of the error notion.

Relying solely on decreasing of the mesh-size function, and thus ignoring the
local distribution of the derivative Dsu of the exact solution u, leads to uniform
refinement or quasi-uniform meshes. The specialization of Theorem 5.1 to this case
reads as follows:

Corollary 5.1 (Quasi-Uniform Meshes). Let 1 ≤ s ≤ n + 1, and let the solution u
of the model problem (13) satisfy u∈Hs(Ω). Let TN be a quasi-uniform partition of
Ω with N interior nodes and let UN ∈V(TN) be the discrete solution corresponding
to the model problem (13). Then

‖∇(u−UN)‖L2(Ω) � α2

α1
|u|Hs(Ω)N

−(s−1)/d . (68)

Proof. Quasi-uniformity of TN implies

max
T∈TN

hd
T ≤ max

T∈TN

h
d
T � min

T∈TN
hT

d ≤ 1
N ∑

T∈TN

hd
T =

|Ω |
N

Since r = (s−d/2)− (1−d/2) = s−1, the assertion follows (67). '(

A simple consequence of (68), under full regularity u ∈Hn+1(Ω) is the maximal
decay rate in terms of degrees of freedom

‖∇(u−UN)‖L2(Ω) � α2

α1
|u|Hn+1(Ω)N

−n/d . (69)

One may wonder whether (68) is sharp whenever s < n+1. The following example
addresses this question.

Example 5.1 (Corner Singularity). We consider the Dirichlet problem for−Δu = f ,
for which α1 = α2 = 1, with exact solution (in polar coordinates)

u(r,θ) = r
2
3 sin(2θ/3)− r2/4,

on an L-shaped domain Ω ; this function satisfies u ∈ Hs(Ω) for s < 5/3. Recall
that even though s is fractional, the error estimates are still valid; see Remark 5.2. In
particular, (68) can be derived by space interpolation between H1(Ω) and Hn+1(Ω).
In Figure 5.1 we depict the sequence of uniform meshes, for which N ≈ h−2, h being
the mesh-size. In Table 1 we report the order of convergence for polynomial degrees
n = 1,2,3. The asymptotic rate is about h2/3, or equivalently N−1/3, regardless of n
and is consistent with the estimate (68). This indicates that (68) is sharp.

The question arises whether the rate N−1/3 in Example 5.1 is just a consequence
of uniform refinement or unavoidable. It is important to realize that u �∈ Hs(Ω) for
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Fig. 10 Sequence of uniform meshes for L-shaped domain Ω

h linear (n = 1) quadratic (n = 2) cubic (n = 3)
1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

Table 1 The asymptotic rate of convergence is about h2/3, or equivalently N−1/3, irrespective of
the polynomial degree n as predicted by (68)

s ≥ 5/3 and thus (68) is not applicable. However, the problem is not that second
order derivatives of u do not exist but rather that they are not square-integrable. In
particular, it is true that u∈W 2

p (Ω) if 1≤ p < 3/2. We therefore may apply Theorem
5.1 with, e.g., n = 1, s = 2, and p ∈ [1,3/2) and then ask whether the structure of
(67) can be exploited, e.g., by compensating the local behavior of Dsu with the local
mesh-size h. If u is assumed to be known, this enterprise naturally leads to meshes
adapted to u that may be graded. We discuss this possibility in Sect. 5.3 and propose
a condition that should be satisfied by these meshes.

5.3 Principle of error equidistribution

For the model problem and its standard discretization, Theorem 3.2 and the consid-
erations at the end of Sect. 5.2 suggest the optimization problem:

Given a function u ∈ H1(Ω) and an integer N > 0 find conditions for a
shape regular mesh T to minimize the error |u− IT u|H1(Ω) subject to
the constraint that the number of degrees of freedom does not exceed N.

In the framework of Chap. 4 this becomes a discrete optimization problem. Here we
consider a simplified setting and, similar to Babuška and Rheinboldt [5], invoke a
continuous model:

• The dimension is d = 2 and the regularity of u∈C2(Ω)∩W 2
p (Ω) with 1 < p≤ 2;

• There exists a C1 function h : Ω → R, a mesh density function, with the prop-
erty that h(x) is equivalent to hT for all T ∈ T with equivalence constants only
depending on shape regularity (thus on the shape coefficient of T0);
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• The number of degrees of freedom and local mesh-size are related through the
relation

N =
∫
Ω

dx
h(x)2 .

• The mesh T is sufficiently fine so that D2u is essentially constant within each
element T ∈T ;

• The error is given by the formula

(∫
Ω

h(x)2(p−1) |D2u(x)|p dx

) 2
p

.

A few comments about this model are in order. The first condition is motivated by
the subsequent discussion and avoids dealing with Besov spaces with integrability
index p < 1; in particular, all corner singularities for d = 2 are of the form u(x)≈ |x|γ
and satisfy u ∈ C2(Ω)∩W 2

p (Ω) for some p > 1. The second assumption is quite
realistic since shape regularity is sufficient for the existence of a C∞ mesh density
with the property Dth≈ h1−t ; see Nochetto et al. [57]. The third condition is based
on the heuristics that the number of elements per unit of area is about h(x)−2. The
fourth assumption can be rephrased as follows:

∫
T |D2u|p ≈ h2

T |D2u(xT )|p where xT

is the barycenter of T ∈ T . Finally, the fifth assumption replaces the error by an
upper bound. In fact, if IT is the Lagrange interpolation operator, we can use the
local interpolation estimates (65) to write

|u− IT u|H1(T ) � h
sob(W 2

p )−sob(H1)
T |u|W 2

p (T ) � h
2− 2

p
T |u|W 2

p (T ) for all T ∈T

and then argue as in the proof of Theorem 5.1 to derive the upper bound

‖∇(u−U)|2L2(Ω) �
(∫

Ω
h(x)2(p−1) |D2u(x)|p dx

) 2
p

.

Since we would like to minimize the error for a given number of degrees of
freedom N, we propose the Lagrangian

L [h,λ ] =
∫
Ω

(
h(x)2(p−1) |D2u(x)|p− λ

h(x)2

)
dx,

with Lagrange multiplier λ ∈R. A stationary point of L satisfies (see Problem 5.2)

h(x)2(p−1)+2 |D2u(x)|p = constant,

and thus requires a variable mesh-size h(x) that compensates the local behavior of
D2u(x). This relation can be interpreted as follows: since the error ET associated
with element T ∈T satisfies

ET = h2(p−1)
T

∫
T
|D2u|p ≈ h2(p−1)+2

T |D2u(xT )|p,
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we infer that the element error is equidistributed.
Summarizing (and ignoring the asymptotic aspects of the above continuous

model), a candidate for the sought condition is

ET ≈Λ (constant) for all T ∈T .

Meshes satisfying this property have been constructed by Babuška et al [4] for cor-
ner singularities and d = 2; see also [39]. Problem 5.4 explores this matter and
proposes a specific mesh grading towards the origin. However, what the above ar-
gument does not address is whether such meshes exist in general and whether they
can be actually constructed upon bisecting the initial mesh T0, namely that T ∈ T.

5.4 Adaptive approximation

The purpose of this concluding section is to show that the maximum decay rate
N−n/d in (69) can be reached under weaker regularity assumption when using suit-
ably adapted meshes. Following the work of Binev et al. [14], we use an adaptive
algorithm that is based on the knowledge of the element errors and on bisection.

The algorithm can be motivated with the above equidistribution principle in the
following manner. Let δ > 0 be a given tolerance and the polynomial degree n = 1.
If the element error is equidistributed, that is ET ≈ δ 2, and the global error decays
with maximum rate N−1/2, then

δ 4N ≈ ∑
T∈TN

E2
T = |u− IT u|2H1(Ω) � N−1

that is N � δ−2. With this in mind, we impose ET ≤ δ 2 as a common threshold to
stop refining and expect N � δ−2.

The following algorithm implements this idea.

Algorithm (Thresholding). Given a tolerance δ > 0 and a conforming mesh T0,
THRESHOLD finds a conforming refinement T ≥T0 of T0 by bisection such that
ET ≤ δ 2 for all T ∈T : let T = T0 and

THRESHOLD(T ,δ )
while M := {T ∈T |ET > δ 2} �= /0

T := REFINE(T ,M )
end while
return(T )

We now discuss the situation mentioned above. Assume

u ∈W 2
p (Ω), p > 1, d = 2, (70)

which implies that u is uniformly continuous in Ω and we can take IT to be the
Lagrange interpolation operator. Since p > 1 we have r = 2(1−1/p) > 0, according
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to (65), and
ET � hr

T ‖D2u‖Lp(T ). (71)

Therefore, THRESHOLD terminates because hT decreases monotonically to 0 with
bisection. The quality of the resulting mesh is assessed next.

Theorem 5.2 (Thresholding). If u ∈H1
0 (Ω) verifies (70), then the output T ∈ T of

THRESHOLD satisfies

|u− IT u|H1(Ω) ≤ δ 2(#T )1/2, #T −#T0 � δ−2 |Ω |1−1/p‖D2u‖Lp(Ω).

Proof. Let k ≥ 1 be the number of iterations of THRESHOLD before termination.
Let M = M0∪·· ·∪Mk−1 be the set of marked elements. We organize the elements
in M by size in such a way that allows for a counting argument. Let P j be the set
of elements T of M with size

2−( j+1) ≤ |T |< 2− j ⇒ 2−( j+1)/2 ≤ hT < h− j/2
T .

We proceed in several steps.
1 We first observe that all T ’s in P j are disjoint. This is because if T1, T2 ∈P j

and T̊1 ∩ T̊2 �= /0, then one of them is contained in the other, say T1 ⊂ T2, due to the
bisection procedure. Thus

|T1| ≤
1
2
|T2|

contradicting the definition of P j. This implies

2−( j+1) #P j ≤ |Ω | ⇒ #P j ≤ |Ω |2 j+1. (72)

2 In light of (71), we have for T ∈P j

δ 2 ≤ ET � 2−( j/2)r‖D2u‖Lp(T ).

Therefore

δ 2p #P j � 2−( j/2)rp ∑
T∈P j

‖D2u‖p
Lp(T ) ≤ 2−( j/2)rp ‖D2u‖p

Lp(Ω)

whence
#P j � δ−2p 2−( j/2)rp ‖D2u‖p

Lp(Ω). (73)

3 The two bounds for #P in (72) and (73) are complementary. The first is good for
j small whereas the second is suitable for j large (think of δ � 1). The crossover
takes place for j0 such that

2 j0+1|Ω |= δ−2p 2− j0(rp/2)‖D2u‖p
Lp(Ω) ⇒ 2 j0 ≈ δ−2 ‖D

2u‖Lp(Ω)

|Ω |1/p
.
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4 We now compute

#M =∑
j

#P j � ∑
j≤ j0

2 j|Ω |+δ−2p ‖D2u‖p
Lp(Ω) ∑

j> j0

(2−rp/2) j.

Since

∑
j≤ j0

2 j ≈ 2 j0 , ∑
j> j0

(2−rp/2) j � 2−(rp/2) j0 = 2−(p−1) j0

we can write

#M �
(
δ−2 +δ−2pδ 2(p−1)) |Ω |1−1/p ‖D2u‖Lp(Ω) ≈ δ−2 |Ω |1−1/p ‖D2u‖Lp(Ω).

We finally apply Theorem 4.3 to arrive at

#T −#T0 � #M � δ−2 |Ω |1−1/p ‖D2u‖Lp(Ω).

5 It remains to estimate the energy error. We have, upon termination of THRESH-
OLD, that ET ≤ δ 2 for all T ∈T . Then

|u− IT u|2H1(Ω) = ∑
T∈T

E2
T ≤ δ 4 #T .

This concludes the Theorem. '(

By relating the threshold value δ and the number of refinements N, we obtain a
result about the convergence rate.

Corollary 5.2 (Convergence Rate). Let u ∈H1
0 (Ω) satisfy (70). Then for N > #T0

integer there exists T ∈ T such that

|u− IT u|H1(Ω) � |Ω |1−1/p ‖D2u‖Lp(Ω)N
−1/2, #T −#T0 � N.

Proof. Choose δ 2 = |Ω |1−1/p ‖D2u‖Lp(Ω)N
−1 in Theorem 5.2. Then, there exists

T ∈ T such that #T −#T0 � N and

|u− IT u|H1(Ω) � |Ω |1−1/p ‖D2u‖Lp(Ω)N
−1(N +#T0

)1/2

� |Ω |1−1/p ‖D2u‖Lp(Ω)N
−1/2

because N > #T0. This finishes the Corollary. '(

Remark 5.6 (Piecewise smoothness). The global regularity (70) can be weakened to
piecewise W 2

p regularity over the initial mesh T0, namely W 2
p (Ω ;T0), and global

H1
0 (Ω). This is because W 2

p (T ) ↪→C0(T ) for all T ∈ T0, whence IT can be taken
to be the Lagrange interpolation operator.

Remark 5.7 (Case p < 1). Consider either polynomial degree n > 1 and d = 2 or
n ≥ 1 for d > 2. The Sobolev number corresponding to a space with regularity of
order n+1 is
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n+1− d
p

= sob(H1) = 1− d
2

⇒ p =
d

n+d/2
.

For d = 2 this implies p < 1. Spaces based on Lp(Ω), p < 1, are unusual in finite
element theory but not in approximation theory [71, 30, 28]. The argument of The-
orem 5.2 works provided we replace (71) by a modulus of regularity; in fact, Dn+1u
would not be locally integrable and so would fail to be a distribution. This requires
two ingredients:

• The construction of a quasi-interpolation operator IT : Lp(Ω)→ Sn,0(T ) for
p < 1 with optimal approximation properties; such operator IT is inevitably non-
linear. We refer to [30, 28, 58], as well as [37] where the following key property
is proven: IT (v+P) = IT (v)+P for all P ∈ Sn,0(T ) and v ∈ Lp(Ω).

• Besov regularity properties of the solution u of an elliptic boundary value prob-
lem; we refer to [27] for such an endeavor for 2d Lipschitz domains and the
Laplace operator. For the model problem with discontinuous coefficients as well
as for d > 2 this issue seems to be open in general.

Applying Corollary 5.2 to Example 5.1, we see that the maximum decay rate
N−1/2 for polynomial degree n = 1 and dimension d = 2, as well as N−n/d for
n ≥ 1,d ≥ 2 when taking Remark 5.7 into account, can be reestablished by judi-
cious mesh grading. Of course the thresholding algorithm cannot be applied directly
within the finite element method because the exact solution u is typically unknown.
In fact, we are only able to replace the element energy error by computable element
error indicators, and thus gain access to u indirectly. This is the topic of a posteriori
error analysis and is addressed in Chap. 6.

5.5 Problems

Problem 5.1. Let T be a shape regular and quasi-uniform triangulation of Ω ⊂R
d .

Let VT be the space of (possibly discontinuous) finite elements of degree ≤ n.
Given u ∈ L2(Ω), the L2-projection UT ∈ VT is defined by

∫
Ω

(u−UT )V = 0 for all V ∈ VT .

Show

(a) ‖u−UT ‖L2(Ω) � hn+1 |u|Hn+1(Ω)

(b) ‖u−UT ‖H−m(Ω) � hn+1+m |u|Hn+1(Ω)

for 0 ≤ m ≤ n + 1 and h being the maximal mesh size of T . The estimate in (b)
ensures superconvergence.

Problem 5.2. Let h(x) a smooth function locally equivalent to the mesh-size. Prove
that a stationary point of the Lagrangian
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L [h,λ ] =
∫
Ω

(
h(x)2(p−1) |D2u(x)|p− λ

h(x)2

)
dx

satisfies the optimality condition

h2(p−1)+2 |D2u|p = constant.

Problem 5.3. Consider the solution u of the model problem in Sect. 2.2.1 with cor-
ner singularity:

u(r,θ) = rγ φ(θ) 0 < γ < 1

in polar coordinates (r,θ). Show that u ∈W 2
p (Ω)\H2(Ω) for 1≤ p < 2/(2− γ).

Problem 5.4. Use the Principle of Equidistribution to determine the grading of an
mesh for a corner singularity

u(r,θ) = rγ φ(θ) (0 < γ < 1).

In fact, show that

hT =Λ dist(T,0)1−γ/2 (Λ = constant).

Count the number of elements using the expression N ≈
∫
Ω

dx
h(x)2 and derive an op-

timal bound |u− ITN u|H1(Ω) � N−1/2 for polynomial degree n = 1.

Problem 5.5. Consider the function u of Problem 5.3.
(a) Examine the construction of an graded mesh via the Thresholding Algorithm.
(b) Repeat the proof of Theorem 5.2 replacing the W 2

p regularity by the correspond-
ing local H2 regularity of u depending on the distance to the origin.

6 A posteriori error analysis

Suppose, as it is generically the case, that the solution of a boundary value prob-
lem is unknown. Then we may use a numerical method to compute an approximate
solution. Of course, it is useful to have information about the error of such an ap-
proximation. Moreover, if the error is still to big, one would like to know how to
modify the discretization so as to reduce the error effectively.

The results of the preceding chapters provide little such information, because
they involve the exact solution and/or are of asymptotic nature. However, so-called
a posteriori error estimators extract such information from the given problem and
the approximate solution, without invoking the exact solution. Starting with the pio-
neering work [5] of Babuška and Rheinboldt , a great deal of work has been devoted
to their derivation. We refer to [1, 6, 76] for an overview of the state-of-the-art.

This chapter is an introduction to a posteriori error estimators, providing the es-
sentials for the following chapters about adaptive algorithms. To this end, we shall



Theory of adaptive finite element methods: An introduction 481

mainly restrict ourselves to the model problem of Sect. 2.2.1 and we will drop the
index N or T , since it will be kept fixed during the whole chapter.

6.1 Error and residual

Let u be the exact solution of (10) and U be a corresponding Petrov-Galerkin solu-
tion as in (37). We want to obtain information about the error function u−U , which
is typically unknown. The so-called residual R = R(U, f ) ∈W ∗ given by

〈R, w〉 := 〈 f , w〉 −B[U, w] for all w ∈W

depends only on data and the approximate solution U and is related to the error
function by

〈R, w〉 = B[u−U, w] for all w ∈W. (74)

If the error notion of interest is ‖u−U‖V, the following lemma determines a dual-
norm of R that is equivalent to the error.

Lemma 6.1 (Abstract A posteriori Error Estimate). There holds

α‖u−U‖V ≤ ‖R‖W∗ ≤ ‖B‖‖u−U‖V, (75)

where 0 < α ≤ ‖B‖ are the inf-sup and continuity constants of B from (21a) and
(16).

Proof. The inf-sup condition (21a) and (74) imply

α‖u−U‖V ≤ sup
‖w‖W=1

B[u−U, w] = ‖R‖W∗ ,

while (74) and (16) imply

‖R‖W∗ = sup
‖w‖W=1

B[u−U, w]≤ ‖B‖‖u−U‖V. '(

In view of the result, we are left with (approximately) evaluting ‖R‖W∗ at an ac-
ceptable cost. Notice that, while the quasi-best approximation property (3.2) relies
on the stability of the discretization, Lemma 6.1 relies on the well-posedness of the
continuous problem (10). It is thus a first, discretization-independent step. Here it
was rather straight-forward, it can get more involved depending on problem and
error notion.

There are various techniques for evaluting ‖R‖W∗ . This second step depends on
the discretization. In what follows, we present the most basic and common approach,
standard residual estimation, in the case of our model problem of Sect. 2.2.1 and its
standard discretization of Sect. 3.2.2.

Before embarking on it, it is instructive to analyze the structure of the residual
for the model problem, where W

∗ = H−1(Ω), U is piecewise polynomial function
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over a triangulation T , and the residual is the distribution

R = f +div(AAA∇U) ∈ H−1(Ω).

To this end, we suppose f ∈ L2(Ω). This allows us to write 〈R,w〉 as integrals over
each T ∈T and integration by parts yields the representation:

〈R, w〉 =
∫
Ω

f w−∇U ·AAA∇w = ∑
T∈T

∫
T

f w−∇U ·AAA∇w

= ∑
T∈T

∫
T

rw+ ∑
S∈S̊

∫
S

jw,
(76)

with

r = f +div(AAA∇U) in any simplex T ∈T ,

j = [[AAA∇U ]] = nnn+ ·AAA∇U|T+ +nnn− ·AAA∇U|T− on any internal side S ∈ S̊

and nnn+, nnn− are unit normals pointing towards T +, T− ∈ T . We see that the dis-
tribution R consists of a regular part r, called interior or element residual, and a
singular part j, called jump or interelement residual. The regular part is absolutely
continuous w.r.t. the d-dimensional Lebesgue measure and is related to the strong
form of the PDE. The singular part is supported on the skeleton Γ =

⋃
S∈S̊ S of T

and is absolutely continuous w.r.t. the (d−1)-dimensional Hausdorff measure.
We point out that this structure is not special to the model problem and its dis-

cretization but rather arises from the weak formulation of the PDE and the piecewise
construction of finite element spaces.

6.2 Global upper bound

As already mentioned, we provide an a posteriori analysis for the model problem
in Sect. 2.2.1 using standard residual estimation. This approach provides an upper
bound ‖R‖W∗ with the help of suitably weighted Lebesgue norms (which are con-
sidered to be computable). We will see below that the weights are crucial for the
sharpness of the derived bound.

In what follows, we shall write ’�’ instead of � C, where the constant C is
bounded in terms of the shape coefficent σT of the triangulation T and the di-
mension d. The presentation here is a simplified version of [74], which has been
influenced by [5, 20, 54] and provides in particular constants that are explicit in
terms of local Poincaré constants.
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6.2.1 Tools

For bounding ‖R‖W∗ we need two tools: a trace inequality that will help to bound
the singular part with the jump residual and a Poincaré-type inequality that will take
care of the lower order norms arising in the trace inequality and from the regular
part with the element residual. We start by deriving the trace inequality.

Lemma 6.2 (Trace Identity). Let T be a d-simplex, S a side of T , and z the vertex
opposite to S. Defining the vector field qqqS by

qqqS(x) := x− z

the following equality holds

1
|S|

∫
S

v =
1
|T |

∫
T

v+
1

d|T |

∫
T

qqqS ·∇v for all v ∈W 1
1 (T ).

Proof. We start with properties of the vector field qqqS. Let S′ be an arbitrary side of
T and fix some y ∈ S′. We then see qqqS(x) ·nnnT = qqqS(y) ·nnnT +(x−y) ·nnnT = qqqS(y) ·nnnT

for any x ∈ S′ since x− y is a tangent vector to S′. Therefore, on each side of T , the
associated normal flux qqqS · nnnT is constant. In particular, we see qqqS · nnnT vanishes on
∂T \S by choosing y = z for sides emanating from z. Moreover, divqqqS = d. Thus, if
v ∈C1(T ), the Divergence Theorem yields

∫
T

qqqS ·∇v =−d
∫

T
v+(qqqS ·nnnT )|S

∫
S

v.

Take v = 1 to show (qqqS · nnnT )|S = d|T |/|S| and extend the result to v ∈W 1
1 (T ) by

density. '(

The following corollary is a ready-to-use form for our purposes.

Corollary 6.1 (Scaled Trace Inequality). For any side S⊂ T the following inequal-
ity holds

‖v‖L2(S) � h−1/2
S ‖v‖L2(T ) +h1/2

S ‖∇v‖L2(T ) for all v ∈ H1(T ) (77)

where hS =: |S|1/(d−1).

Proof. Problem 6.2. '(

We next present the Poincaré-type inequality. Let

ωz = ∪T+zT

be the star (or patch) around a vertex z ∈ V of T . We define

hz := |ωz|1/d
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and notice that this quantity is, up to the shape coefficient of T , equivalent to the
diameter of ωz, to hT if T ⊂ ωz and to hS if S⊂ ωz.

Lemma 6.3 (Local Poincaré-Type Inequality). For any v ∈ H1
0 (Ω) and z ∈ V

there exists cz ∈ R such that

‖v− cz‖L2(ωz) � hz‖∇v‖L2(ωz). (78)

If z ∈ ∂Ω is a boundary vertex, then we can take cz = 0.

Proof. 1 In fact, for any z ∈ V the value

c̄z =
1
|ωz|

∫
ωz

v

is an optimal choice and (78) can be shown with cz = c̄z as (64).
2 If z ∈ ∂Ω , then we observe that there exists a side S⊂ ∂ωz∩∂Ω such that v = 0

on S. We therefore can write

v = v− 1
|S|

∫
S

v = (v− c̄z)−
1
|S|

∫
S
(v− c̄z)

and thus, using Corollary 6.1 and Step 1 for the second term,

‖v‖L2(ωz) � ‖v− c̄z‖L2(ωz) +hz‖∇v‖L2(ωz) � hz‖∇v‖L2(ωz),

which establishes the supplement for boundary vertices. '(

6.2.2 Derivation of the Upper Bound

We now pass to the proper derivation of the upper bound. The following properties
of the Courant basis {φz}z∈V from Theorem 3.3 are instrumental:

• It provides a discrete partition of unity:

∑
z∈N

φz = 1 in Ω . (79)

• Each function φz is contained in Sn,0(T ) and so the residual is orthogonal to the
interior contributions of the partition of unity:

〈R, φz〉 = 0 for all z ∈ V̊ := V ∩Ω . (80)

The second property corresponds to the Galerkin orthogonality. Notice that the first
property involve all vertices, while in the second one the boundary vertices are ex-
cluded. For this reason, the supplement on boundary vertices in Lemma 78 is im-
portant.
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For any w ∈ H1
0 (Ω) we start by applying (79) and then (80) with cz from

Lemma 6.3 for w to write

〈R, w〉 = ∑
z∈V

〈R, wφz〉 = ∑
z∈V

〈R, (w− cz)φz〉,

where cz = 0 whenever z ∈ ∂Ω . In view of representation (76), we can write

|〈R, (w− cz)φz〉| ≤
∫
ωz

|r||w− cz|φz +
∫
γz

| j||w− cz|φz

where γz is the skeleton of ωz, i.e. the union of all sides emanating from z. We
examine each term on the right hand side seperately. Invoking ‖φz‖L∞(ωz) ≤ 1 and
(78), we obtain
∫
ωz

|r||w− cz|φz ≤ ‖rφ 1/2
z ‖L2(ωz)‖w− cz‖L2(ωz) � hz‖rφ 1/2

z ‖L2(ωz)‖∇w‖L2(ωz).

Likewise, employing (77) and (78), we get
∫
γz

| j||w− cz|φz ≤ ‖ jφ 1/2
z ‖L2(γz)‖w− cz‖L2(γz) � h1/2

z ‖ jφ 1/2
z ‖L2(γz)‖∇w‖L2(ωz).

Therefore,

|〈R, wφz〉|�
(

hz‖rφ 1/2
z ‖L2(ωz) +h1/2

z ‖ jφ 1/2
z ‖L2(γz)

)
‖∇w‖L2(ωz).

Summing over z ∈ V and using Cauchy-Schwarz in R
#T gives

|〈R, w〉|�
(
∑

z∈V

h2
z‖rφ

1/2
z ‖2

L2(ωz)
+hz‖ jφ 1/2

z ‖2
L2(γz)

)1/2(
∑

z∈V

‖∇w‖2
L2(ωz)

)1/2

.

Denote by h : Ω → R
+ the mesh-size function given by h(x) := |S|1/k if x belongs

to the interior of the k-subsimplex S of T with k ∈ {1, . . . ,d}. Then for all x ∈ ωz

we have hz � h(x). Therefore employing (79) once more and recalling that Γ is the
union of all interior sides of T , we proceed by

∑
z∈V

h2
z‖rφ

1/2
z ‖2

L2(ωz)
+hz‖ jφ 1/2

z ‖2
L2(γz)

� ∑
z∈V

‖hrφ 1/2
z ‖2

L2(Ω) +‖h
1/2 jφ 1/2

z ‖2
L2(Γ )

= ‖hr‖2
L2(Ω) +‖h1/2 j‖2

L2(Γ ).

We next resort to the finite overlapping property of stars, namely

∑
z∈V

χωz(x)≤ d +1

to deduce
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∑
z∈V

‖∇w‖2
L2(ωz)

� ‖∇w‖2
L2(Ω).

Thus, introducing the element indicators

E 2(U,T ) := h2
T‖r‖2

L2(T ) +hT‖ j‖2
L2(∂T\∂Ω) (81)

and the error estimator

E 2(U,T ) = ∑
T∈T

E 2(U,T ), (82)

we have derived
‖R‖W∗ � E (U,T ).

Combing this with the abstract a posteriori bound in Lemma 6.1, we obtain the main
result of this section.

Theorem 6.1 (Upper Bound). Let u and U be exact and Galerkin solution of the
model problem and its standard discretization. Then there holds the following global
upper bound:

‖∇(u−U)‖L2(Ω) ≤
C
α1

E (U,T ) (83)

where α1 is the global smallest eigenvalue of AAA(x) and C depends only on the shape
coefficient σT and on the dimension d.

6.2.3 Sharpness of Weighted Lebesgue Norms

The indicators E (U,T ), T ∈ T , consists of weighted L2-norms. The weights hT

and h1/2
T arise from the local Poincaré inequalities (78), which in turn rely on the or-

thogonality (80) of the residual. If we do not exploit orthogonality and use a global
Poincaré-type inequality instead of the local ones, the resulting weights are 1 and

h−1/2
T and the corresponding upper bound has a lower asymptotic decay rate. We

wonder whether the ensuing weights hT and h1/2
T are accurate and explore this is-

sue for the first weight hT of the element residual. The following discussion is a
elaborated version of [62, Remark 3.1].

First we notice that the local counterpart of ‖R‖H−1(Ω) is ‖R‖H−1(T ) and observe

‖R‖H−1(T ) = sup
‖∇w‖L2(T )≤1

〈R, w〉 = sup
‖∇w‖L2(T )≤1

∫
T

rw = ‖r‖H−1(T ) (84)

thanks to the representation (76). This suggests to compare the weighted norm
hT‖r‖L2(T ) in the indicator with the local negative norm ‖r‖H−1(T ). Mimicking the
local part in the argument of Sect. 6.2.2, we derive

∫
T

rw≤ ‖r‖L2(T )‖w‖L2(T ) � hT‖r‖L2(T )‖∇w‖L2(T )
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with the help of the Poincaré-Friedrichs inequality (7). Consequently there holds

‖r‖H−1(T ) � hT‖r‖L2(T ). (85)

Since L2(Ω) is a proper subspace of H−1(Ω) the inverse inequality cannot hold for
arbitrary r. Consequently, hT‖r‖L2(T ) may overestimates ‖r‖H−1(T ). On the other
hand, if r ∈ R is constant and η denotes a non-negative function with properties

|T |�
∫

T
η , suppη = T, ‖∇η‖L∞(T ) � h−1

T (86)

(postpone the question of existence until (90) below), we deduce

‖r‖2
L2(T ) �

∫
T

r(rη)≤ ‖r‖H−1(T )‖∇(rη)‖L2(T )

≤ ‖r‖H−1(T )‖r‖L2(T )‖∇η‖L∞(T ) � h−1
T ‖r‖H−1(T )‖r‖L2(T ).

whence
hT‖r‖L2(T ) � ‖r‖H−1(T ). (87)

This shows that overestimation in (85) is caused by oscillation of r at a scale finer
than the mesh-size. The estimate (87) is also valid for r ∈ Pl(T ), but the constant
deteriorates with the degree l; see Problem 6.6.

To conclude this discussion, we observe that hT‖r‖L2(T ) can be easily approxi-
mated with the help of numerical integration, while this is not true for ‖r‖H−1(T ).
We therefore may say the weights are asymptotically acurate and that the possible
overestimation of the weighted Lebesgue norms in (81) is the price for (almost)
computability. This view is consistent with the fact that the indicators associated
with the approximation of the Dirichlet boundary values in [62], which do not to
invoke weighted Lebesgue norms, are overestimation-free.

6.3 Lower bounds

The discussion in Sect. 6.2.3 suggests that hT‖r‖L2(T ) bounds ‘asymptotically’
‖R‖H−1(T ) from below. This is the main step towards a local lower bound for the
error. Such local lower bounds are the subject of this section. They do not contradict
the global nature of the boundary value problem and their significance goes beyond
a verification of the sharpness of the global upper bound (83).

For the sake of presentation, we present the case with polynomial degree n = 1
and leave the general case as problems to the reader.



488 R. H. Nochetto, K. G. Siebert, and A. Veeser

6.3.1 Interior Residual

Let us start with a lower bound in terms of the interior residual and first check that
hT‖r‖L2(T ) bounds asymptotically ‖R‖H−1(T ) from below. To this end, we introduce
the oscillation of the interior residual in T by

hT‖r− rT‖L2(T ),

where rT denotes the mean value of r in T . Replacing r in (85) by r− rT and in (87)
by rT as well as recalling (84), we derive

hT‖r‖L2(T ) ≤ hT‖rT‖L2(T ) +hT‖r− rT‖L2(T )

� ‖rT‖H−1(T ) +hT‖r− rT‖L2(T )

� ‖r‖H−1(T ) +‖r− rT‖H−1(T ) +hT‖r− rT‖L2(T )

� ‖R‖H−1(T ) +hT‖r− rT‖L2(T ).

(88)

This is the desired statement because the oscillation hT‖r− rT‖L2(T ) is expected to
convergence faster than hT‖r‖L2(T ) under refinement. In the case n = 1 at hand there

holds r = f and, for example, there is one additional order if f ∈ H1(Ω).
Since

‖R‖H−1(T ) = sup
w∈H1

0 (T )

〈R, w〉
‖∇w‖L2(T )

= sup
w∈H1

0 (T )

B[u−U, w]
‖∇w‖L2(T )

≤ α2 ‖∇(u−U)‖L2(T ),

we have derived the following local lower bound

hT‖r‖L2(T ) � α2 ‖∇(u−U)‖L2(T ) +hT‖r− rT‖L2(T ), (89)

which also holds with rT chosen from Pl(T ) at the price of a larger constant hidden
in �.

Finally we comment on the choice of the cut-off function ηT ∈W 1
∞(T ) with (86).

For example, we may take

ηT = (d +1)d+1 ∏
z∈V ∩T

λz, (90)

where λz, z ∈ V ∩ T , are the barycentric coordinates of T ; see Lemma 3.3. This
choice is due to Verfürth [75, 76]. Another choice, due to Dörfler [32], can be de-
fined as follows: refine T such that there appears an interior node and take the cor-
responding Courant basis function on the virtual triangulation of T ; see Fig. 11 for
the 2-dimensional case.

The Dörfler cut-off function has the additional property that it is an element of
a refined finite element space. This is not important here but useful when prov-
ing lower bounds for the differences of two discrete solutions. Such estimates are
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Fig. 11 Virtual refinement of a triangle for the Dörfler cut-off function

therefore called discrete lower bound whereas the bound for the true error is called
continuous lower bound.

6.3.2 Jump Residual

We next strive for a local lower bound for the error in terms of the jump residual

h1/2
S ‖ j‖L2(S), S ∈ S̊ , and use Sect. 6.3.1 on the interior residual as guideline.

We first notice that j = [[AAA∇U ]] is not necessary constant on an interior side S∈ S̊
due to the presence of A. We therefore introduce the oscillation of the jump residual
in S:

h1/2
S ‖ j− jS‖L2(S),

where jS stands for the mean value of j on S. Notice that the important question
about the order of this oscillation is not obvious because, in contrast to the oscillation
of the element residual, the approximate solution U is involved. We postpone a
corresponding discussion to Remark 6.1.

To choose a counterpart of ηT , let ωS denote the patch composed of the two
elements of T sharing S; see Fig. 12 for the 2-dimensional case. Obviously ωS has
a nonempty interior. Let ηS ∈W 1

∞(ωS) be a cut-off function with the properties

|S|�
∫

S
ηS, suppηS = ωS, ‖ηS‖L∞(ωS) = 1, ‖∇ηS‖L∞(ωS) � h−1

S . (91)

Following Verfürth [75, 76] we may take ηS given by

ηS|T = dd ∏
z∈V ∩S

λT
z , (92)

where T ⊂ ωS and λT
z , z ∈ V ∩T , are the barycentric coordinates of T . Also here

Dörfler [32] proposed an alternative which is obtained as follows: refine ωS such
that there appears an interior node of S and take the corresponding Courant basis
function on the virtual triangualtion of ωS; see Fig. 12 for the 2-dimensional case.

After these preparations we are ready to derive a counterpart of (88). In view of
the properties of ηS, we have
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Fig. 12 Patch ωS of triangles associated to interior side (left) and its refinement for Dörfler cut-off
function (right)

‖ jS‖2
L2(S) �

∫
S

jS( jSηS) =
∫

S
jψS +
∫

S
( jS− j)ψS (93)

with ψS = jSηS. We rewrite the first term on the right hand side with the represen-
tation formula (76) as follows:

∫
S

jψS =−
∫
ωS

rψS + 〈R, ψS〉,

where, in contrast to Sect. 6.3.1, the jump residual couples with the element residual.
Hence

∣∣∣∣
∫
ωS

jψS

∣∣∣∣≤ ‖r‖L2(ωS)‖ψS‖L2(ωS) +‖R‖H−1(ωS)‖∇ψS‖L2(ωS).

In view of |ωS|� hS|S| and (91), we have

‖ψS‖L2(ωS) ≤ ‖ jS‖L2(ωS)‖ηS‖L∞(ωS) � h1/2
S ‖ jS‖L2(S)

and
‖∇ψS‖L2(ωS) ≤ ‖ jS‖L2(ωS)‖∇ηS‖L∞(ωS) � h−1/2

S ‖ jS‖L2(S).

We infer that
∣∣∣∣
∫
ωS

jψS

∣∣∣∣�
(

h1/2
S ‖r‖L2(ωS) +h−1/2

S ‖R‖H−1(ωS)

)
‖ jS‖L2(S).

In addition
∣∣∣∣
∫

S
( jS− j)ψS

∣∣∣∣≤ ‖ jS− j‖L2(S)‖ψS‖L2(S) � ‖ jS− j‖L2(S)‖ jS‖L2(S).

Inserting these estimates into (93) yields

‖ jS‖2
L2(S) �
(

h1/2
S ‖r‖L2(ωS) +h−1/2

S ‖R‖H−1(ωS) +‖ jS− j‖L2(S)

)
‖ jS‖L2(S)

whence, using (89) and ‖R‖H−1(T ) ≤ ‖R‖H−1(ωS) for T ⊂ ωS,
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h1/2
S ‖ j‖L2(S) � ‖R‖H−1(ωS) +‖h(r− r)‖L2(ωS) +‖h1/2( j− j)‖L2(S), (94)

where h denotes the mesh-size function from Sect. 6.2.2 and r and j are given by

r|T = rT for all T ∈T and j|S = jS for all S ∈ S̊ .

Since

‖R‖H−1(ωS) ≤ α2 ‖∇(u−U)‖L2(ωS),

we obtain the local lower bound in terms of the jump residual:

h1/2
S ‖ j‖L2(S) � α2‖∇(u−U)‖L2(ωS) +‖h(r− r)‖L2(ωS) +‖h1/2( j− j)‖L2(S). (95)

Also this estimate holds with j piecewise polynomial of degree l; see Problem 6.11.

6.3.3 Local Lower Bound

We combine the two results on interior and jump residual and discuss its signifi-
cance. To this end, we associate with each simplex T ∈T the patch

ωT :=
⋃

S⊂∂T\∂Ω
ωS,

see Fig. 13 for the 2-dimensional case, and define the oscillation in ωT by

osc(U,ωT ) = ‖h(r− r)‖L2(ωT ) +‖h1/2( j− j)‖L2(∂T\∂Ω). (96)

Recall that the higher order nature of hT‖r−rT‖L2(T ) in (88) is crucial. We therefore
compare the convergence order of (96) with that of the local error.

Fig. 13 Patch associated to a triangle in the local lower bound

Remark 6.1 (On Asymptotics of Oscillation). For simplicity, we consider only poly-
nomial degree n = 1, maximum convergence rates and suppose that AAA and f are
smooth. One then expects that the local error vanishes like
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‖∇(u−U)‖2
L2(T ) = O(hd+2

T )

and interior and jump residual oscillations like

‖h(r− r)‖2
L2(ωT ) +‖h

1/2( j− j)‖2
L2(∂T\∂Ω) = O(hd+4

T ).

We already argued about the higher order of the interior residual after (88). Regard-
ing the jump residual, the fact that ∇U is piecewise constant entails the identity

j− jS = [[(AAA−AAAS)∇U ]] = (AAA−AAAS)AAA−1 j on an interior S ∈ S̊ ,

which reveals the additional order for sufficiently smooth AAA.
The oscillation osc(U,ωT ) is therefore expected to be a higher order term for

hT ↓ 0. However, as we shall see from the example in Remark 6.4 below, it may
dominate on relatively coarse triangulations.

Similar arguments may be used to determine an appropriate polynomial degree
of jS and rT in the case of general n. We do not insist on this and anticipate that
in Chaps. 8 and 9 rT will be the L2(T )-best approximation in P2n−2(T ) and jS
the L2(S)-best approximation in P2n−1(S). This choices ensure, also for piecewise
smooth A and f , that the oscillation is of higher order.

Since (89) and (95) hold also for piecewise polynomial r and j, we have the
following result for single indicators.

Theorem 6.2 (Local Lower Bound). Let u and U be exact and Galerkin solution
of the model problem and its standard discretization. Then, up to oscillation, each
indicator is bounded by the local error:

E (U,T ) � α2 ‖∇(u−U)‖L2(ωT ) +osc(U,ωT ) for all T ∈T , (97)

where α2 is the largest eigenvalue of AAA(x) in ωT and the hidden constant depends
only on the shape coefficients of the simplices in ωT , the dimension d and the poly-
nomial degrees for r and j.

Proof. Simply add the generalizations of (89) and (95) for all interior sides S ∈ S̊
with S⊂ ∂T . '(

It is worthwhile to observe that in proving the local lower bound we have used the
following the abstract notion of local continuity of the bilinear form B. Let V, W be
normed spaces over Ω that are equipped with integral norms. If ω is a subdomain
of Ω , then

B[v, w]≤CB‖v‖V(ω)‖w‖W for all w with w = 0 in Ω \ω, (98)

where ‖ · ‖V(ω) stands for the restriction of ‖ · ‖V to ω . Obviously, the continuity
constant ‖B‖ satisfies ‖B‖ ≤ CB and therefore local continuity is stronger than
global continuity. Property (98) readily implies an abstract local counterpart of the
lower bound in Lemma 6.1.
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We conclude this section with a remark about the importance of the fact that the
lower bound in Theorem 6.2 is local and a remark about a simplifying setting in
following chapters.

Remark 6.2 (Local Lower Bound and Marking). If osc(U,ωT )�‖∇(u−U)‖L2(ωT ),
as we expect asymptotically, then (97) translates into

E (U,T ) � α2 ‖∇(u−U)‖L2(ωT ).

This means that an element T with relatively large error indicator contains a large
portion of the error. To improve the solution U effectively, such T must be split giv-
ing rise to a procedure that tries to equidistribute errors. This is consistent with the
discussion of adaptive approximation in 1d of Sect. 1.1 and constructive approxi-
mation of Chap. 5.

Remark 6.3 (Oscillation vs Data Oscillation). The quantity (96) measures oscilla-
tions of both interior residual r and jump residual j beyond the local mesh scale.
Note that if U is piecewise affine and AAA(x) is piecewise constant, then

r = f +div(AAA∇U) = f and j = [[AAA∇U ]]S = jS.

Consequently
osc(U,ωT ) = ‖h( f − f )‖L2(ωT )

becomes data oscillation, which is independent of the discrete solution U . Other-
wise, for variable AAA, osc depends on the discrete solution U . This additional de-
pendence creates a nonlinear interaction in the adaptive algorithm and so leads to
difficulties in characterizing an appropriate approximation class for adaptive meth-
ods, see Chap. 9.

6.3.4 Global Lower Bound and Equivalence

We derive a global lower bound from Theorem 6.2 and summarize the achievements
of global nature in this chapter.

To formulate the global lower bound, we introduce the global oscillation

osc(U,T ) = ‖h(r− r)‖L2(Ω) +‖h1/2( j− j)‖L2(Γ ), (99)

recalling that Γ is the interior skeleton of T . By summing (97) over all T ∈T and
taking into account (55), which entails a finite overlapping of the patches ωT , we
obtain the following global result.

Corollary 6.2 (Global Lower Bound). Let u and U be exact and Ritz-Galerkin
solutions of the model problem and its standard discretization. Then there holds the
following global lower bound:

E (U,T ) � α2‖∇(u−U)‖L2(Ω) +osc(U,T ) (100)
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where α2 is the largest global eigenvalues of AAA and the hidden constant depends on
the shape coefficient of T , the dimension d, and the polynomial degrees for r and
j.

As already alluded to in Sect. 6.2.3, the presence of osc(U,T ) in the lower bound
is the price to pay for having a simple and computable estimator E (U,T ). In the
following remark, we present an example that shows that osc(U,T ) cannot be re-
moved from (100).

Remark 6.4 (Necessity of oscillation). Let ε = 2−K for K integer and extend the
function 1

2 x(ε − |x|) defined on (−ε,ε) to a 2ε-periodic C1 function uε on Ω =
(−1,1). Moreover, let the forcing function be fε = −u′′, which is 2ε-periodic and
piecewise constant with values ±1 that change at multiples of ε; see Fig. 14. Let

Fig. 14 An strongly oscillating forcing function

T be a uniform mesh with mesh-size h = 2−k, with k� K. We consider piecewise
linear finite elements V(Tε) and corresponding Galerkin solution Uε ∈V(Tε). It is
easy to verify that fε is L2-orthogonal to both the space of piecewise constants and
linears over Tε , whence Uε = f̄ε = 0 and

‖u′ε −U ′ε‖L2(Ω) = ‖u′ε‖L2(Ω) =
ε√
6

=
2−K
√

6

� 2−k = h = ‖h fε‖L2(Ω) = osc(Uε ,T ) = E (Uε ,T ).

Therefore, the ratio ‖u′ε −U ′ε‖L2(Ω)/E (Uε ,T ) can be made arbitrarily small by in-
creasing K/k, and osc(Uε ,T ) accounts for the discrepancy. On the other hand, mea-
suring the oscillation in H−1(Ω), as suggested in [13, 69],

‖ fε − f̄ε‖H−1(Ω) = ‖ fε‖H−1(Ω) = ‖u′ε‖L2(Ω) ≈ ε,

would avoid overestimation but brings us back to the question how to (approxi-
mately) evaluate the H−1(Ω)-norm at acceptable cost.

This 1d example can be extended via a checkerboard pattern to any dimension.

We see that osc(U,T ) may be dominant in early stages of the adaptive itera-
tion (4). Therefore, it cannot be ignored in an optimality analysis without fineness
assumptions on the initial mesh T0; compare with Example 9.1.
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We conclude by combing the two global bounds in Theorem 6.1 and Corollary
6.2.

Theorem 6.3 (Asymptotic Equivalence). Let u and U be exact and Galerkin solu-
tions of the model problem and its standard discretization. Then the error estimator
(82) is asymptotically equivalent to the error:

1
α2

(
E (U,T )−osc(U,T )

)
� ‖∇(u−U)‖L2(Ω) � 1

α1
E (U,T ) (101)

where 0 < α1 ≤ α2 are the smallest and largest global eigenvalues of AAA and the
hidden constants depend only on the shape coefficient of T , the dimension d and
the polynomial degrees for r and j.

We thus have derived a computable quantity that may be used to stop the adaptive
iteration (4) and, in view of the local lower bound in Sect. 6.3.3, the indicators may
be used to provide the problem-specific information for local refinement.

6.4 Problems

Problem 6.1. The gap in (75) is dictated by ‖B‖/α . Determine this quantity for the
model problem in Sect. 2.2.1 and

(a) ‖v‖V = |v|1,Ω ,

(b) ‖v‖V =
(∫

Ω ∇v ·A∇v
)1/2

.

Problem 6.2. Prove the scaled trace inequality (Corollary 6.1)

‖v‖L2(S) � h−1/2
S ‖v‖L2(T ) +h1/2

S ‖∇v‖L2(T ) for all v ∈ H1(T ).

Problem 6.3. Show that, up to oscillation terms, the jump residual

ηT (U,T ) =
(
∑

S∈S

‖h1/2 j‖2
L2(S)

)1/2

bounds ‖R‖H−1(Ω), which entails that the estimator E (U,T ) is dominated by
ηT (U,T ). To this end, revise the proof of the upper bound for ‖R‖H−1(Ω), use

cz =
1∫

ωz
φz

∫
ωz

rφz.

and rewrite
∫
ωz

r (w− cz)φz by exploiting this weighted L2-orthogonality.

Problem 6.4. Considering the model problem with its standard discretization, de-
rive the upper a posteriori error bound without using the discrete partition of unity.
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To this end use (76) and combine the scaled trace inequality (77) with the local
interpolation error estimate (63). Derive as an intermediate step the upper bound:

|〈R, w〉| ≤ ∑
T∈T

E (U,T )‖∇w‖L2(N(T )),

with N(T ) from (55). Discuss the differences of the two derivations.
This form of the upper bound is useful in Chap. 7.

Problem 6.5. Verify that a suitable multiple of the Verfürth cut-off function (90)
satisfies the properties (86). To this end, recall Lemma 3.1. Repeat for the Dörfler
cut-off function.

Problem 6.6. (Try this problem after Problem 6.5.) Show that the choice (90) for
ηT verifies, for all p ∈ Pl(T ),

∫
T

p2 �
∫

T
p2ηT , ‖∇(pηT )‖L2(T ) � h−1

T ‖p‖L2(T )

with constants depending on l and the shape coefficient of T . To this end, recall the
equivalence of norms in finite-dimensional spaces. Derive the estimate

hT ‖r‖L2(T ) � ‖r‖H−1(T )

for r ∈ Pl(T ).

Problem 6.7. Consider the model problem and its discretization for d = 2 and n = 1.
Let U1 be the solution over a triangulation T1 and U2 the solution over T2, where T2

has been obtained by applying at least 3 bisections to every triangle of T1. Moreover,
suppose that f is piecewise constant over T1. Show

‖∇(U2−U1)‖L2(Ω) ≥ ‖h1 f‖L2(Ω),

where h1 is the mesh-size function of T1.

Problem 6.8. Verify that a suitable multiple of the Verfürth cut-off function (92)
satisfies the properties (91). Repeat for the Dörfler cut-off function.

Problem 6.9. Let S be a side of a simplex T . Show that for each q ∈ Pl(S) there
exists a p ∈ Pl(T ) such that

p = q on S and ‖p‖L2(T ) � h1/2
T ‖q‖L2(S).

Problem 6.10. Let S be a side of a simplex T . Show that the choice (92) for ηS

verifies, for all q ∈ Pk(S ) and all p ∈ Pl(T ),
∫

S
q2 �
∫

S
q2ηS, ‖∇(pηS)‖L2(T ) � h−1

T ‖p‖L2(T )

with constants depending on l and the shape coefficient of T .
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Problem 6.11. Derive the estimate (95), where r and j are piecewise polynomials
of degree l1 and l2.

Problem 6.12. Generalize Remark 6.1 to polynomial degree n≥ 2.

Problem 6.13. Supposing (98), formulate and prove an abstract local lower bound
in the spirit of Lemma 6.1.

Problem 6.14. Derive a posteriori error bounds for the energy norm

|||v|||Ω =
(∫

Ω
∇v ·AAA∇v

)1/2

and compare with Theorem 6.3.

7 Adaptivity: Convergence

The purpose of this chapter is to prove that the standard adaptive finite element
method characterized by the iteration

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (102)

generates a sequence of discrete solutions converging to the exact one. This will be
established under assumptions that are quite weak or even minimal. In particular,
we will not suppose any regularity of the exact solution that goes beyond the natural
one in the variational formulation. We therefore can expect only a plain conver-
gence result that does not give any convergence rate in terms of degrees of freedom.
The assumptions on the general variational problem allow for various examples that
are of quite different from the model problem in Sect. 2.2.1. Examples are left as
problems to the reader.

The presentation is based on the basic convergence result by Morin et al. [55]
and the modifications by Siebert [67].

7.1 The adaptive algorithm

Given a continuous bilinear form B : V×W→ R and an element f ∈W
∗ we con-

sider the variational problem

u ∈ V : B[u, w] = 〈 f , w〉 for all w ∈W (103)

introduced in Chap. 2. We assume that B satisfies the inf-sup condition (21).
For the adaptive approximation of the solution u we consider a loop of the form

(102). To be more precise, starting with an initial conforming triangulation T0 of the
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underlying domain Ω and a refinement procedure REFINE as described in Sect. 4.4
we execute an iteration of the following main steps:

(1) Uk := SOLVE
(
V(Tk),W(Tk)

)
;

(2) {Ek(Uk,T )}T∈Tk
:= ESTIMATE

(
Uk,Tk
)
;

(3) Mk := MARK
(
{Ek(Uk,T )}T∈Tk

, Tk
)
;

(4) Tk+1 := REFINE
(
Tk, Mk

)
, increment k and go to Step (1).

(104)

In practice, a stopping test is used after Step (2) for terminating the iteration; here we
shall ignore it for notational convenience. Besides the initial grid T0 and the module
REFINE from Sect. 4.4, the realization of these steps requires the following objects
and modules:

• For any grid T ∈ T, there are finite element spaces V(T ) and W(T ) and the
module SOLVE outputs the corresponding Petrov-Galerkin approximation UT

to u.
• A module ESTIMATE that, given a grid T ∈ T and the corresponding discrete

solution UT , outputs the a posteriori error estimator {ET (UT ,T )}T∈T , where
the so-called indicator ET (UT ,T )≥ 0 is associated with the element T ∈T .

• A strategy in the module MARK that, based upon the a posteriori error indica-
tors {ET (UT ,T )}T∈T , collects elements of T in M , which serves as input for
REFINE.

Obviously, the modules SOLVE and ESTIMATE do strongly depend on the vari-
ational problem, i. e., on data B and f ; compare with Sects. 3.1.3 and 6. For con-
venience of notation we have suppressed this dependence. The refinement module
REFINE is problem independent and the same applies in general to the module
MARK. We list the most popular marking strategies for (104):

(a) Maximum Strategy: For given parameter θ ∈ [0,1] we let

M =
{

T ∈T | ET (UT ,T )≥ θET ,max
}

with ET ,max = max
T∈T

ET (UT ,T ).

(b) Equidistribution Strategy: For given parameter θ ∈ [0,1] we let

M =
{

T ∈T | ET (Uk,T )≥ θET (UT ,T )/
√

#T
}

.

(c) Dörfler’s Strategy: For given parameter θ ∈ (0,1] we let M ⊂T such that

ET (UT ,M )≥ θET (UT ,T ).

For efficiency reasons one wants to mark as few elements as possible. This can
be achieved by selecting the elements holding the largest indicators, whence

min
T∈M

ET (UT ,T )≥ max
T∈T \M

ET (UT ,T ).
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The objective of this chapter is to prove that, under quite weak assumptions on
the modules SOLVE, ESTIMATE, and MARK, the sequence {Uk}k≥0 of discrete
solutions converges to u, i. e.,

lim
k→∞
‖Uk−u‖V = 0. (105)

This is a priori not clear, since the estimator only provides a global upper bound for
the error. All the techniques used in Chap. 5 are based on completely local interpo-
lation estimates and therefore cannot be used when working with an estimator. Then
again, as long as Uk �= u the estimator is non-zero. This should lead to convergence
provided that the indicators {Ek(Uk,T )}T∈Tk

pick up some local error information
and the selection of elements in MARK accounts for that.

For convenience of notation we replace in what follows the argument Tk by a
subscript k, for instance we set Vk := V(Tk).

7.2 Density and convergence

Plain convergence for a sequence of uniformly refined grids is a simple consequence
of density. To see this, we set Mk = Tk in each iteration of (104). Then (61) implies

hmax(Tk) := max{hT | T ∈Tk} ≤ D2 2−k b/d → 0 as k→ ∞,

if elements in Mk are scheduled for b≥ 1 bisections. Furthermore, let V
s ⊂ V be a

dense subspace and Ik : V
s → Vk be an interpolation operator with

‖Ikv− v‖V ≤C hs
max(Tk)‖v‖Vs for all v ∈ V

s (106)

for s > 0. In case of the model problem with V = H1
0 (Ω) we could take for instance

Vk to be conforming Lagrange finite elements over Tk, and Ik the Lagrange inter-
polant, which satisfies (106) with s = 1 on V

2 = H2(Ω)∩H1
0 (Ω); compare with

Remark 5.3. For any v ∈ V and v̄ ∈ V
s we then derive

‖Ikv̄− v‖V ≤ ‖Ikv̄− v̄‖V +‖v̄− v‖V ≤C hs
max(Tk)‖v̄‖Vs +‖v̄− v‖V.

For given v and ε we first can choose v̄ ∈V
s such that ‖v− v̄‖V ≤ ε/2 by density of

V
s in V. Then (106) implies C hs

max(Tk)‖v̄‖Vs ≤ ε/2 provided k is sufficiently large,
whence ‖Ikv̄− v‖V ≤ ε . Therefore,

lim
k→∞

min
Vk∈Vk

‖Vk− v‖V = 0 for all v ∈ V

or, equivalently,

V =
⋃
k≥0

Vk. (107)
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This density property already implies convergence if the sequence {Vk,Wk}k≥0 is
stable, i. e., it satisfies a uniform inf-sup condition. Recalling the quasi-best approx-
imation property of the Petrov-Galerkin solution Uk established in Theorem 3.2,
stability of the discretization yields

‖Uk−u‖V ≤
‖B‖
β

min
Vk∈Vk

‖Vk−u‖V→ 0 as k→ ∞, (108)

thanks to density (107). Note, that this convergence result holds true irrespective of
any regularity property of u beyond V.

Assume now that the sequence {Tk}k≥0 is adaptively generated. We observe that
(107) still holds whenever

lim
k→∞

hmax(Tk) = 0, (109)

whence (108) is also true. But (109) does not hold in general for an adaptively
generated sequence of meshes, as was already observed by Babuška and Vogelius
[7]. Recalling the definition of the mesh-size function

hk ∈ L∞(Ω) : hk |T = |T |1/d , T ∈Tk

in Sect. 4.3 and its L∞ limit h∞ ∈ L∞(Ω) of Lemma 4.2, Eq. (109) is equivalent to
h∞ ≡ 0 in Ω . If h∞ �≡ 0, then there exists an x ∈Ω \Γ∞ with h∞(x) > 0. This implies
that there is an element T + x and an iteration counter K = K(x) such that T ∈ Tk

for all k ≥ K.
This motivates to split the triangulations Tk into two classes of elements

T +
k :=
⋂
�≥k

Tk = {T ∈Tk | T ∈T� ∀�≥ k}, and T 0
k := Tk \T +

k . (110)

The set T +
k contains all elements that are not refined after iteration k and we observe

that the sequence
{
T +

k

}
k≥0 is nested, i. e., T +

� ⊂ T +
k for all k ≥ �. The set T 0

k
contains all elements that are refined at least once more in a forthcoming step of the
adaptive procedure. Since the sequence {T +

k }k≥0 is nested the set

T + :=
⋃
k≥0

T +
k

is well-defined and we conclude

h∞ ≡ 0 if and only if T + = /0.

If T + �= /0 then the finite element spaces cannot be dense in V since inside T ∈
T + we can only approximate discrete functions. Therefore, taking into accout the
arguments at the beginning of the section, we have that (107) is equivalent to h∞≡ 0.

On the other hand, when using adaptivity we do not aim at approximating all
functions in V but rather one single function, namely the solution u to (103). A
necessary condition for being able to approximate u is
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lim
k→∞

min
Vk∈Vk

‖u−Vk‖V = 0.

Assuming that the finite element spaces are nested, the space

V∞ :=
⋃
k≥0

Vk

is well-defined and we can approximate u by discrete functions if and only if u∈V∞.
We realize that V∞ is defined via the adaptively generated spaces Vk. Therefore,
u ∈ V∞ hinges on properties of the modules SOLVE, ESTIMATE, MARK, and
REFINE. In addition, if V∞ is a proper subspace of V and u ∈ V∞ then u is locally
a discrete function. This implies, that the adaptive method must only decide not
to refine an element any more if u locally belongs to the finite element space, for
instance u is affine in some part of the domain in case of Courant elements.

But this is not the generic case. If u is not locally discrete, then the decisions
of the adaptive method have to yield T + = /0, and if so, convergence is a direct
consequence of density as for uniform refinement. We aim at a convergence result
for adaptive finite elements that just relies on this density argument in this case. In
doing this we shall use a local density property of the finite element spaces in the
region {h∞ ≡ 0} and properties of the adaptive method in its complement.

7.3 Properties of the problem and the modules

In this section we state structural assumptions on the Hilbert spaces V and W and
the modules SOLVE, ESTIMATE, and MARK. For notational convenience we use
‘a � b’ for ‘a≤Cb’ whenever the constant C only depends on T0 and data of (103)
like B and f .

7.3.1 Properties of Hilbert spaces

We assume that V is a subspace of L2(Ω ;Rm) with some m ∈ N and that ‖ · ‖V

is an L2-type integral norm implying the following properties: The square of the
norm ‖·‖V(Ω) is set-additive, i. e., for any subset ω ⊂ Ω that is decomposed into
ω = ω1∪ω2 with |ω1∩ω2|= 0 there holds

‖v‖2
V(ω) = ‖v‖2

V(ω1) +‖v‖2
V(ω2) for all v ∈ V(ω). (111)

In addition, we ask ‖ · ‖V to be absolutely continuous with respect to the Lebesgue
measure, this is, for any v ∈ V holds

‖v‖V(ω)→ 0 as |ω | → 0.

Finally we require W to have the same properties.
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7.3.2 Properties of SOLVE

For any grid T ∈ T we assume the existence of a pair of finite element spaces
{V(T ),W(T )} and suppose the following properties:

(1) They are conforming

V(T )⊂ V, W(T )⊂W for all T ∈ T (112a)

and nested

V(T )⊂ V(T∗), W(T )⊂W(T ∗) for all T ≤T∗ ∈ T. (112b)

(2) The finite element spaces are a stable discretization, i. e., there exists β > 0 such
that for all T ∈ T

dimV(T ) = dimW(T ) and inf
V∈V(T )
‖V‖

V
=1

sup
W∈W(T )
‖W‖

W
=1

B[V, W ]≥ β . (112c)

(3) Let W
s ⊂W be a dense sub-space with norm ‖ · ‖Ws such that ‖ · ‖2

Ws is set-
additive and let IT ∈ L(Ws,W(T )) be a continuous, linear interpolation oper-
ator such that

‖w− IT w‖W(T ) � hs
T‖w‖Ws(T ) for all T ∈T and w ∈W

s (112d)

with s > 0.
(4) We suppose that SOLVE

(
V(T ), W(T )

)
outputs the exact Petrov-Galerkin ap-

proximation of u, i. e.,

UT ∈ V(T ) : B[UT , W ] = 〈 f , W 〉 for all w ∈W(T ). (112e)

This entails exact integration and linear algebra; see Remarks 3.6 and 3.7.

Note, that for non-adaptive realizations of (104), condition (112c) is necessary for
the well-posedness of (112e) and convergence irrespective of f ∈W

∗; compare with
Problem 3.2. Although phrasing the interpolation estimate (112d) as a condition on
the choice of the finite element space, the construction of any finite element space
is based on such a local approximation property.

7.3.3 Properties of ESTIMATE

Given a grid T ∈T and the Petrov-Galerkin approximation UT ∈VT of (112e) we
suppose that we can compute a posteriori error indicators {ET (UT ,T )}T∈T by

{ET (UT ,T )}T∈T = ESTIMATE(UT , T )

with the following properties:
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(1) The estimator provides the following upper bound for the residual RT ∈W
∗ of

UT :

|〈RT , w〉|� ∑
T∈T

ET (UT ,T )‖w‖W(NT (T )) for all w ∈W. (113a)

(2) The estimator is efficient in that it satisfies the continuous local lower bound

ET (UT ,T ) � ‖UT −u‖V(NT (T )) +oscT (UT ,T ) for all T ∈T , (113b)

where the oscillation indicator oscT (UT ,T ) satisfies

oscT (UT ,T ) � hq
T

(
‖UT ‖V(NT (T )) +‖D‖L2(NT (T ))

)
. (113c)

Hereafter, q > 0 and D ∈ L2(Ω) is given by data of (103).

The upper bound as stated in (113a) is usually an intermediate step when deriving
a posteriori error estimates; compare with Problem 6.4. It allows us to extract local
information about the residual. This is not possible when directly using the global
upper bound ‖UT −u‖V(Ω) � ET (UT ,T ).

7.3.4 Properties of MARK

The last module for the adaptive algorithm is a function

M = MARK
(
{ET (UT ,T )}T∈T , T

)

that, given a mesh T ∈T and indicators {ET (UT ,T )}T∈T , selects elements subject
to refinement. Given a fixed function g : R

+
0 → R

+
0 that is continuous at 0 with

g(0) = 0, we ask that the set M of marked elements has the property

max{ET (UT ,T ) | T ∈T \M } ≤ g
(

max{ET (UT ,T ) | T ∈M }
)
. (114)

Marking criterion (114) implies that all indicators in T are controlled by the maxi-
mal indicator in M . Marking strategies that pick up the elements holding the largest
indicator, as those from Sect. 7.1, satisfy (114) with g(s) = s.

7.4 Convergence

In this section we show that the realization of (104) generates a sequence of Petrov-
Galerkin solutions that converges to the true solution in V under the above assump-
tions.
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Theorem 7.1 (Convergence). Let u be the exact solution of (103) and suppose that
(21) holds. Let the finite element spaces and the functions SOLVE, ESTIMATE,
and MARK satisfy (112), (113), and (114), respectively.

Then the sequence of Galerkin approximations {Uk}k≥0 generated by iteration
(104) satisfies

lim
k→∞
‖Uk−u‖V = 0 and lim

k→∞
Ek(Uk,Tk) = 0.

In particular, any prescribed tolerance TOL > 0 for the estimator is reached in a
finite number of steps. In other words: there is an iteration k∗ with

‖Uk∗ −u‖V � Ek∗(Uk∗ ,Tk∗)≤ TOL.

We split the proof in several steps.

7.4.1 Two limits

In this paragraph we give another generalization of (56) for a sequence of adaptively
generated triangulations. In combination with the interpolation estimate (112d) this
result yields a local density property of adaptively generated finite element spaces.
Additionally we show that for any realization of (104) the Petrov-Galerkin solutions
are a Cauchy-sequence in V.

The uniform convergence hk → h∞ shown in Lemma 4.2 helps to locate the set
{h∞ ≡ 0} in terms of the splitting Tk = T 0

k ∪T +
k introduced in (110). According

to T 0
k and T +

k we decompose the domain Ω into

Ω̄ = Ω(T +
k )∪Ω(T 0

k ) =: Ω+
k ∪Ω

0
k ,

where for any sub-triangulation T ′
k ⊂Tk we let

Ω(T ′
k ) :=
⋃
{T : T ∈T ′

k }

be the part ofΩ covered by T ′
k . A direct consequence of Lemma 4.2 is the following

result.

Corollary 7.1 ({h∞ ≡ 0}). Denote by χ0
k the characteristic function of Ω 0

k .
Then the definition of T 0

k implies

lim
k→∞

∥∥hk χ0
k

∥∥
L∞(Ω) = lim

k→∞
‖hk‖L∞(Ω0

k ) = 0.

Proof. The definition of T 0
k implies that all elements in T 0

k are refined at least

once. Hence, h∞ ≤ 2−
1
d hk in Ω 0

k , yielding
(
1− 2−1/d

)
hk ≤ hk− h∞ in Ω 0

k . This in
turn implies with γ = 1−21/d > 0

∥∥hk χ0
k

∥∥
L∞(Ω) ≤ γ−1

∥∥(hk−h∞)χ0
k

∥∥
L∞(Ω) ≤ γ−1‖hk−h∞‖L∞(Ω)→ 0

for k→ ∞ thanks to Lemma 4.2. '(
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Remark 7.1 (Local Density). We employ set-additivity of ‖ ·‖2
Ws combined with the

local approximation property (112d) to deduce for any sub-triangulation T ′
k ⊂ Tk

and any w̄ ∈W
s the local interpolation estimate

‖w̄− Ikw̄‖W(Ω(T ′
k )) � ‖hs

k‖L∞(Ω(T ′
k ))‖w̄‖Ws(Ω(T ′

k )). (115)

Using this estimate for T ′
k = T 0

k the above corollary implies

‖Ikw̄− w̄‖
V(Ω0

k ) � ‖hs
k‖L∞(Ω0

k )‖w̄‖Ws(Ω) for all w̄ ∈W
s.

For any pair w∈W and w̄∈W
s we then argue as in Sect. 7.2 for uniform refinement

but restricted to subdomain Ω(T 0
k ) to conclude the ‘local density’

lim
k→∞

min
Wk∈Wk

‖w−Wk‖V(Ω0
k ) = 0 for all w ∈W. (116)

We use the interpolation estimate (115) in Proposition 7.1 below.

We next turn to the sequence {Uk}k≥0 of approximate solutions. For characteriz-
ing the limit of this sequence we need the spaces

V∞ :=
⋃
k≥0

Vk and W∞ :=
⋃
k≥0

Wk.

Lemma 7.1 (Convergence of Petrov-Galerkin Approximations). Assume that the
sequence {(Vk,Wk)}k≥0 satisfies (112c) and (112b).

Then the sequence {Uk}k≥0 of approximate solutions converges in V to the solu-
tion u∞ with respect to the pair (V∞,W∞), which is characterized by

u∞ ∈ V∞ : B[u∞, w] = f (w) for all w ∈W∞. (117)

Proof. 1 Let us first prove that the pair (V∞,W∞) satisfies the inf-sup condition

inf
v∈V∞
‖v‖

V
=1

sup
w∈W∞
‖w‖

W
=1

B[v, w]≥ β , inf
w∈W∞
‖w‖

W
=1

sup
v∈V∞
‖v‖

V
=1

B[v, w]≥ β (118)

with β > 0 from (112c).
To this end, fix first any v∈V∞ \{0} and choose a sequence {Vk}k≥0 of functions

Vk ∈ Vk such that Vk → v in V as k→ ∞. Moreover, with the help of (112c) choose
a sequence {Wk}k≥0 of functions Wk ∈Wk such that

‖Wk‖W = 1 and B[Vk, Wk]≥ β‖Vk‖V. (119)

Thanks to (112a), the sequence {Wk}k≥0 is in W. Since the latter is reflexive, there
exists a subsequence

{
Wk j

}
j≥0 and a function w ∈W such that Wk j ⇀ w weakly

in W as j → ∞. Since W∞ is closed and convex as well as ‖ · ‖W weakly lower
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semicontinuous, we have w ∈W∞ and ‖w‖W ≤ lim j→∞ ‖Wk j‖W = 1. Combing this
with (112c) yields

B[v, w]≥ β‖v‖V ≥ β‖v‖V‖w‖W.

In view of the first inequality, w �= 0 and the first part of (118) is proved.
Proposition 3.1 states that (112c) is equivalent to

inf
W∈W(T )
‖W‖

W
=1

sup
V∈V(T )
‖V‖

V
=1

B[V, W ]≥ β . (120)

In the same way, but using (120) instead of (112c), we show that for any w ∈W∞
there exists v ∈ V∞ \{0} such that B[v, w]≥ β‖v‖V‖w‖W. This shows (118).

2 The spaces V∞ ⊂ V and W∞ ⊂W are closed and thus Hilbert spaces. The bi-
linear form B is continuous on V∞×W∞ and satisfies the inf-sup condition (118).
Therefore, by Theorem 2.2 there exits a unique u∞ ∈ V∞ with (117).

3 By construction, Vk ⊂V∞, which implies that the Petrov-Galerkin solution Uk is
a ‖ · ‖V-quasi-optimal choice in Vk with respect to u∞, i. e., there holds

‖u∞−Uk‖V ≤
‖B‖
β

min
V∈Vk

‖u∞−V‖V;

compare with Theorem 3.2. Besides that,
⋃

k≥0 Vk is dense in V∞ and therefore

lim
k→∞
‖Uk−u∞‖V = 0. '(

In case of coercive B the proof is much simpler since coercivity is inherited
from V to V∞ and Step 1 of the proof is trivial. Existence of u∞ is then a direct
consequence of Corollary 2.2 (Lax-Milgram theorem). For symmetric and coercive
B the above result has already been shown by Babuška and Vogelius [7].

Lemma 7.1 yields convergence of Uk → u∞ in V as k → ∞ irrespective of the
decisions in the module MARK. We are going to prove below that the residual R∞
of U∞ satisfies R∞ = 0 in W

∗. The latter is equivalent to u∞ = u and thus shows
Theorem 7.1. This, of course, hinges on the properties of ESTIMATE and MARK.

7.4.2 Auxiliary results

Next we prove two auxiliary results, namely boundedness of the estimator and
convergence of the indicators. Before embarking on this, we observe that the set-
additivity of ‖ · ‖2

V
allows us to sum over overlapping patches, if the overlap is fi-

nite; compare also with the proof of Theorem 5.1. To be more precise: Local quasi-
uniformity of Tk (55) implies #Nk(T ) � 1 for all T ∈ Tk. Thus set-additivity (111)
of ‖ · ‖2

V
gives for any subset T ′

k ⊂Tk and any v ∈ V

∑
T∈T ′

k

‖v‖2
V(Nk(T )) = ∑

T∈T ′
k

∑
T ′∈Nk(T )

‖v‖2
V(T ′) � ∑

T∈T ∗
k

‖v‖2
V(T ) = ‖v‖2

V(Ω∗k ) (121)
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with T ∗
k = {T ′ ∈Tk | T ′ ∈Nk(T ), T ⊂T ′

k } and Ω ∗k :=Ω(T ∗
k ). The same argument

applies to ‖ · ‖2
W

, ‖ · ‖2
Ws , and ‖ · ‖2

L2(Ω).
In the next results we use the stability estimate

ET (UT ,T ) � ‖UT ‖V(NT (T )) +‖D̃‖L2(NT (T )) for all T ∈T , (122)

where D̃ = D̃(u,D) ∈ L2(Ω) with D from (113b). This bound can be derived as
follows. Combining the lower bound (113b) and the triangle inequality we infer

ET (UT ,T ) � ‖UT −u‖V(NT (T )) +oscT (UT ,T )

� ‖UT ‖V(NT (T )) +‖u‖V(NT (T )) +‖D‖L2(NT (T )),

where the constant in � also depends on ‖hq
0‖L∞(Ω) via (113c). Since ‖·‖V(Ω) is an

L2-type norm, the stability of the indicators (122) is a direct consequence of (113b)
with D̃ = D̃(u,D) ∈ L2(Ω).

Lemma 7.2 (Stability). Let the finite element spaces and the error the indicators
satisfy (112c) respectively (122).

Then the estimators Ek(Uk,Tk) are uniformly bounded, i. e.,

Ek(Uk,Tk) � 1 for all k ≥ 0.

Proof. Using (121) and the stability of the indicators (122) we derive for all k ≥ 0

E 2
k (Uk,Tk) � ∑

T∈Tk

‖Uk‖2
V(Nk(T )) +‖D̃‖2

L2(Nk(T )) � ‖Uk‖2
V(Ω) +‖D̃‖

2
L2(Ω).

The uniform estimate ‖Uk‖V(Ω) ≤ β−1‖ f‖V∗ implies the claim. '(

We next investigate the maximal indicator in the set of marked elements. In ad-
dition to convergence of the discrete solutions and mesh-size functions we exploit
stability of the indicators, and properties of REFINE.

Lemma 7.3 (Marking). Suppose that the finite element spaces fulfill (112) and the
estimator (113b) and (113c).

Then the maximal indicator of the marked elements vanishes in the limit:

lim
k→∞

max{Ek(Uk,T ) | T ∈Mk}= 0.

Proof. Let Tk ∈Mk such that Ek(Uk,Tk) = max{Ek(Uk,T ) | T ∈M }. All elements
in Mk are refined and therefore Tk ∈T 0

k . Local quasi-uniformity (55) of Tk implies

|Nk(Tk)|� |Tk| ≤ ‖hd
k‖L∞(Tk) ≤ ‖h

d
k‖L∞(Ω0

k )→ 0 (123)

as k→ ∞ by Corollary 7.1.
As shown above (113b) and (113c) imply the stability (122), whence we can

proceed by the triangle inequality to estimate the maximal indicator by
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Ek(Uk,Tk) � ‖Uk−u∞‖V(Ω) +‖u∞‖V(Nk(Tk)) +‖D̃‖L2(Nk(Tk)).

The first term on the right hand side converges to 0 as k→ ∞, thanks to Lemma 7.1
and the other terms vanish in the limit too, by continuity of ‖·‖V(Ω) and ‖ · ‖L2(Ω)
with respect to the Lebesgue measure |·| and (123).

7.4.3 Convergence of the residuals

In this section we establish the weak convergence Rk ⇀ 0 in W
∗. In doing this, we

distinguish two regions in Ω : in Ω 0
k we use local density of the finite element spaces

Wk in W, and in Ω+
k we rely on properties of estimator and marking.

Proposition 7.1 (Weak Convergence of the Residuals). Assume that (112), (113),
and (114) are satisfied.

Then the sequence of discrete solutions {Uk}k≥0 generated by iteration (104)
verifies

lim
k→∞
〈Rk, w〉 = 0 for all w ∈W

s.

Proof. 1 For k ≥ � the inclusion T +
� ⊂ T +

k ⊂ Tk holds. Therefore, the sub-
triangulation Tk \T +

� of Tk covers the sub-domain Ω 0
� , i. e., Ω 0

� = Ω(Tk \T +
� ).

We notice that any refinement of Tk does not affect any element in T +
� . Therefore,

defining
T ∗

k = {T ′ | T ′ ∈ Nk(T ), T ∈Tk \T +
� }.

we also see that for k ≥ �

Ω ∗k = Ω(T ∗
k ) =
⋃
{T ′ : T ′ ∈ N�(T ), T ∈T 0

� }. (124)

2 Let w ∈W
s with ‖w‖Ws(Ω) = 1 be arbitrarily chosen. Since Uk is the Petrov-

Galerkin solution we can employ Galerkin orthogonality (41) in combination with
the upper bound (113a) to split for k ≥ �

|〈Rk, w〉|= |〈Rk, w− Ikw〉|
� ∑

T∈Tk\T +
�

Ek(Uk,T )‖w− Ikw‖V(Nk(T )) + ∑
T∈T +

�

Ek(Uk,T )‖w− Ikw‖V(Nk(T ))

� Ek(Uk,Tk \T +
� )‖w− Ikw‖V(Ω∗k ) +Ek(Uk,T

+
� )‖w− Ikw‖V(Ω),

by the Cauchy-Schwarz inequality and (121) for ‖ · ‖2
V

. In view of Lemma 7.2 we
bound Ek(Uk,Tk \T +

� ) ≤ Ek(Uk,Tk) � 1. We next use (115) with T ′
k = T ∗

k to
obtain ‖w− Ikw‖W(Ω∗k ) � ‖hs

k‖L∞(Ω∗k ), recalling ‖w‖Ws(Ω) = 1. From (124) we see

that for any T ′ ∈T ∗
k we find T ∈T 0

� with T ′ ⊂ N�(T ). Local quasi-uniformity (55)
of T� and monotonicity of the mesh-size functions therefore imply

‖hk‖L∞(Ω∗k ) � ‖hk‖L∞(Ω0
� ) ≤ ‖h�‖L∞(Ω0

� ).
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In summary this yields

‖w− Ikw‖V(Ω∗� ) � ‖hs
�‖L∞(Ω0

� ) and ‖w− Ikw‖V(Ω) � 1,

which entails the existence of constants 0≤C1,C2 < ∞, such that

|〈Rk, w〉| ≤C1‖hs
�‖L∞(Ω0

� ) +C2Ek(Uk,T
+

� ) for all k ≥ �. (125)

3 For any given ε > 0, convergence of the mesh-size function ‖h�‖L∞(Ω0
� )→ 0 for

�→ ∞, proven in Corollary 7.1, and s > 0 allows us to first choose �≥ 0 such that

‖hs
�‖L∞(Ω0

� ) ≤
ε

2C1
.

Employing the marking rule (114), we conclude

lim
k→∞

max{Ek(Uk,T ) | T ∈Tk \Mk} ≤ lim
k→∞

g
(

max{Ek(Uk,T ) | T ∈Mk}
)

= 0

by Lemma 7.3 and continuity of g in 0 with g(0) = 0. Since T +
� ∩Mk = /0, this

especially implies max{Ek(Uk,T ) | T ∈ T +
� } → 0, whence we can next choose

K ≥ � such that

Ek(Uk,T )≤ ε
2C2

(#T +
� )−1/2 for all T ∈T +

� and all k ≥ K,

yielding C2Ek(Uk,T
+

� )≤ ε/2 for those k. In summary, estimate (125) then implies
|〈Rk, w〉| ≤ ε for k ≥ K. Since ε is arbitrary this finishes the proof. '(

7.4.4 Proof of convergence

Collecting the auxillary results, we are in the position to prove the main result.

Proof of Theorem 7.1. 1 We first show convergence Uk → u in V. For any w ∈W
s

we deduce

〈R∞, w〉 = 〈R∞−Rk, w〉+ 〈Rk, w〉 = B[u∞−Uk, w]+ 〈Rk, w〉
≤ ‖B‖‖u∞−Uk‖V(Ω)‖w‖V(Ω) + 〈Rk, w〉 → 0

as k → ∞ by Lemma 7.1 and Proposition 7.1, whence 〈R∞, w〉 = 0 for all w ∈
W

s. This implies R∞ = 0 in W
∗ since W

s is dense in W. The continuous inf-sup
condition (21) yields

α‖u∞−u‖V ≤ sup
‖w‖W=1

B[u∞−u, w] = sup
‖w‖W=1

〈R∞, w〉 = 0,

which shows u = u∞. Convergence of the Galerkin approximations finally implies
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lim
k→∞

Uk = u∞ = u in V.

2 After proving Uk → u we next turn to the convergence of the estimators. Just like
in the proof of Proposition 7.1 we split for k ≥ �

E 2
k (Uk,Tk) = E 2

k (Uk,Tk \T +
� )+E 2

k (Uk,T
+

� )

and we estimate the first term with the help of the local lower bound (113b), (113c)
by

E 2
k (Uk,Tk \T +

� ) � ∑
T∈Tk\T +

�

‖Uk−u‖2
V(Nk(T )) +h2q

T

(
‖Uk‖2

V(Nk(T )) +‖D‖
2
L2(Nk(T ))

)

� ‖Uk−u‖2
V

+
∥∥h2q

k

∥∥
L∞(Ω0

� )

(
β−2‖ f‖2

V∗ +‖D‖2
L2(Ω)

)
,

where we have used (121) for ‖·‖V(Ω) and ‖ · ‖L2(Ω) as well as ‖Uk‖V ≤ β−1‖ f‖W∗

in the second step. Using once again monotonicity of the mesh-size functions we
deduce for some constants C1,C2

E 2
k (Uk,Tk)≤C1

∥∥h2q
�

∥∥
L∞(Ω0

� ) +C2‖Uk−u‖2
V(Ω) +E 2

k (Uk,T
+

� ).

By Corollary 7.1 we can make the first term small by choosing � sufficiently large.
In the proof of Proposition 7.1 we already have shown Ek(Uk,T

+
� )→ 0 for fixed �

and k→ ∞. Step 1 implies ‖Uk−u‖V(Ω) → 0 as k→ ∞ which allows to make the
last two terms small by choosing k large after fixing �. This proves Ek(Uk,Tk)→ 0
as k→ ∞ and finishes the proof. '(

Remark 7.2 (Lower Bound). For convergence Uk → u we have only utilized the sta-
bility (122) of the indicators, which is much weaker than efficiency (113b) because
it allows for overestimation. Since most of the estimators for linear problems are
shown to be reliable and efficient, we directly asked for efficiency of the estimator.
For nonlinear problems this might be different and just asking for (122) may provide
access for proving convergence for a larger problem class.

All convergence results but [21, 67] rely on a discrete local lower bound. For the
model problem there is no difference in deriving the continuous or the discrete lower
bound; compare with Sect. 6.3. In general, the derivation of a discrete lower bound
is much more involved than its continuous counterpart. For instance, in Problem 7.2
below the discrete lower bound is not known and in Problem 7.3 it is only known
for the lowest order elements. In respect thereof a convergence proof without lower
bound enlarges the problem class where it applies to.

Yet, only asking for (122) yields convergence Uk → u but the progress without
convergence Ek(Uk,Tk)→ 0 is not observable in the adaptive iteration. Therefore,
a convergence result for non-efficient estimators is of little practical use.

Remark 7.3 (Characterization of Convergent Marking). The results in [55] and [67]
also give a characterization of convergent marking. In our setting
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lim
k→∞

max{Ek(Uk,T ) | T ∈Mk}= 0 =⇒ lim
k→∞

Ek(Uk,T ) = 0 for all T ∈T +

(126)
is necessary and sufficient for convergence of (104). To see this, the hypothesis
of (126) we have shown in Lemma 7.3 and the conclusion of (126) is obviously
necessary for Ek(Uk,Tk)→ 0. If limk→∞ osck(Uk,T ) = 0 for all T ∈ T + then it is
also necessary for ‖Uk− u‖V → 0 by the lower bound (113b), for instance in the
model problem when AAA and f are piecewise constant over T0. Condition (114) on
marking we only have used in Step 3 of the proof to Proposition 7.1 and there it can
be replaced by (126), whence (126) is also sufficient.

On the one hand, this assumption is not ‘a posteriori’ in that it can not be checked
at iteration k of the adaptive loop and thus seems of little practical use. On the
other hand, being a characterization of convergent marking it may be used to treat
marking strategies that are based on extrapolation techniques involving indicators
from previous iterations [5], or that are based on some optimization procedure [41].

Similarly, the condition on marking can be generalized to marking procedures
where a given tolerance of the adaptive method enters the selection of elements, for
instance the original equidistribution strategy for parabolic problems in [34]. Such
methods then in turn only aim at convergence into tolerance. For details we refer to
[67, Sect. 5].

7.5 Problems

Problem 7.1. Consider the general 2nd order elliptic problem from Sect. 2.2.2,
where AAA piecewise Lipschitz over T0 with smallest eigenvalue strictly bounded
away from 0 and c−1/2divbbb≥ 0. Therefore, the corresponding bilinear form B is
coercive on V = H1

0 (Ω); compare with Sect.2.5.2.
Show that a discretization with H1

0 conforming Lagrange elements of order n≥ 1
introduced in Sect. 3.2.2 and the residual estimator from Sect. 6.2 satisfy the as-
sumptions (112) and (113). This implies convergence of the adaptive iteration (104)
for the general 2nd order elliptic equation with any of the marking strategies from
Sect. 7.3.4.

Problem 7.2. Consider the biharmonic equation in 2d from Sect. 2.2.2 which leads
to a variational problem in V = H2

0 (Ω) with a continuous and coercive bilinear form.
Show that the discretization with the Argyris triangle defined in [25, Theo-

rems 2.2.11 and 2.2.13] of Ciarlet’s book satisfies (112). In addition verify that the
estimator derived by Verfürth in [76, Section 3.7] fulfills (113). This implies con-
vergence of the adaptive iteration (104) for the biharmonic equation with any of the
marking strategies from Sect. 7.3.4.

Problem 7.3. Consider the 3d Eddy Current Equations from Sect. 2.2.2 which leads
to a variational problem in V = H0(curl;Ω) with a continuous and coercive bilinear
form.
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Show that the discretization with Nédélec finite elements of order n ∈ N com-
ply with (112); compare with [51, Sect. 5.5]. Consider the estimator derived by
Schöberl [64, Corollary 2] that has been shown to be efficient by Beck et al. [12,
Theorem 3.3]. Show that it fulfills (113). This implies convergence of the adaptive
iteration (104) for the 3d Eddy Current Equations with any of the marking strategies
from Sect. 7.3.4.

Problem 7.4. Consider the Stokes problem from Sect. 2.2.2 that leads to a varia-
tional problem in V = H1

0 (Ω ;Rd)× L2
0(Ω) with a non-coercive bilinear form B

that satisfies the inf-sup condition (23).
For the discretization with the Taylor-Hood element of order n ≥ 2, this means

we approximate the velocity with continuous piecewise polynomials of degree n and
the pressure with continuous piecewise polynomials of degree n−1, Otto has shown
(112c) in [59]. Prove that the Taylor-Hood element satisfies the other requirements
of (112). Finally show that the estimator by Verfürth for the Stokes system [75]
complies with (113). This implies convergence of the adaptive iteration (104) for
the Stokes problem with any of the marking strategies from Sect. 7.3.4.

8 Adaptivity: Contraction property

This chapter discusses the contraction property of AFEM for the model problem of
Sect. 2.2.1, namely

−div(AAA(x)∇u) = f in Ω , u = 0 on ∂Ω . (127)

The variational formulation of (127) from Sect. 2.5.1 reads with V = W = H1(Ω)

u ∈ V : B[u, v] :=
∫
Ω
∇v ·AAA(x)∇u =

∫
Ω

f v =: 〈 f , v〉 for all v ∈ V.

We revisit the modules of the basic adaptive loop (4), i. e.,

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

Similar to Chap. 7, the outcome of each iteration with counter k ≥ 1 is a sequence
{Tk,Vk,Uk}∞k=0 of conforming bisection refinements Tk of T0, spaces of conform-
ing finite element spaces Vk = Wk = Sn,0(Tk)∩H1

0 (Ω), i. e., C0 continuous piece-
wise polynomials of degree ≤ n for both ansatz and test spaces, and Ritz-Galerkin
solutions Uk ∈ Vk.

Since error monotonicity is closely related to a minimization principle, we can-
not in general expect a contraction property for problems governed by an inf-sup
condition. We thus restrict ourselves to the special class of coercive and symmet-
ric problems of the form (127). The first contribution in dimension d > 1 is due
to Dörfler [32], who introduced a crucial marking, the so-called Dörfler marking
of Sect. 7.1, and proved strict energy error reduction for the Laplacian provided
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the initial mesh T0 satisfies a fineness assumption. The Dörfler marking will play
an essential role in the present discussion, which does not seem to extend to other
marking strategies such as those in Sect. 7.1. Morin, Nochetto, and Siebert [52, 53]
showed that such strict energy error reduction does not hold in general even for
(127). By introducing the concept of data oscillation and the interior node property,
they proved convergence of the AFEM without restrictions on T0. The latter result,
however, is valid only for AAA in (127) piecewise constant on T0. Inspired by the work
of Chen and Feng [24], Mekchay and Nochetto [48] proved a contraction property
for the total error, namely the sum of the energy error plus oscillation, for general
second order elliptic operators such as those in Sect. 2.5.2. For non-symmetric B
this requires a sufficient fineness of the initial grid T0. The total error will reappear
in the study of convergence rates in Chap. 9.

Diening and Kreuzer proved a similar contraction property for the p-Laplacian
replacing the energy norm by the so-called quasi-norm [31]. They were able to
avoid marking for oscillation by using the fact that oscillation is dominated by the
estimator. Most results for nonlinear problems utilize the equivalence of the energy
error and error in the associated (nonlinear) energy; compare with Problem 8.3. This
equivalence was first used by Veeser in a convergence analysis for the p-Laplacian
[73] and later on by Siebert and Veeser for the obstacle problem [68].

The result of Diening and Kreuzer inspired the work by Cascón et al. [21], who
proved a contraction property for the quasi-error:

|||u−Uk|||2Ω + γE 2
k (Uk,Tk),

where γ > 0 is a suitable scaling constant. This approach hinges solely on a strict re-
duction of the mesh-size within refined elements, the upper a posteriori error bound,
an orthogonality property natural for (127) in nested approximation spaces, and
Dörfler marking. This appears to be the simplest approach currently available and is
presented next.

8.1 The modules of AFEM for the model problem

We assumeΩ is triangulated by some initial grid T0. We suppose that AAA is uniformly
SPD so that (127) is coercive and in addition we ask AAA to be piecewise Lipschitz
over T0. We next describe the modules of the adaptive algorithm.

Module SOLVE. For any T ∈ T we set V(T ) = Sn,0(T )∩H1
0 (Ω) and suppose

that
UT = SOLVE

(
V(T )
)

outputs the exact Ritz-Galerkin approximation in V(T ), namely,

UT ∈ V(T ) : B[UT , V ] = 〈 f , V 〉 for all V ∈ V(T ).
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This entails exact integration and linear algebra; see Remarks 3.6 and 3.7.

Module ESTIMATE. Given a grid T ∈ T and the Ritz-Galerkin approximation
UT ∈ V(T ) the output

{ET (UT ,T )}T∈T = ESTIMATE
(
UT ,T
)

are the indicators of the residual estimator derived in Chap. 6. We recall that for a
generic function V ∈ V(T ) the element and jump residuals are defined by

r(V )|T = f +div(AAA∇V ) = f for all T ∈T ,

j(V )|S = [[AAA∇V ]]S for all S ∈ S̊

and the element indicator evaluated in V is then

E 2
T (V,T ) = h2

T ‖r(V )‖2
L2(T ) +hT ‖ j(V )‖2

L2(∂T∩Ω) for all T ∈T .

Module MARK. For any T ∈ T and indicators {ET (UT ,T )}T∈T the module
MARK selects elements for refinement using Dörfler Marking, i. e., using a fixed
parameter θ ∈ (0,1] the output

M = MARK
(
{ET (UT ,T )}T∈T ,T

)

satisfies
ET (UT ,M )≥ θ ET (UT ,T ).

Dörfler Marking guarantees that the total estimator is controlled up the constant
θ−1 by the estimator on the marked elements. This is a crucial property in our
arguments. The choice of M does not have to be minimal at this stage, that is, the
marked elements T ∈M do not necessarily must be those with largest indicators.
However, minimality of M will be crucial to derive rates of convergence in Chap. 9.

Module REFINE. We fix the number b∈N of bisections and consider the module
REFINE from Sect. 4.4 to refine all marked elements b times. Then for any T ∈ T

the output
T∗ = REFINE

(
T , M
)

satisfies T∗ ∈ T. Furthermore, if RT→T∗ is the set of refined elements of T , then
M ⊂RT→T∗ and hT∗ ≤ 2−b/dhT inside all elements of RT→T∗ .

8.2 Properties of the modules of AFEM

We next summarize some basic properties of the adaptive algorithm that emanate
from the symmetry of the differential operator and features of the modules. In do-
ing this, any explicit constant or hidden constant in � must, apart from explicitly
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stated other dependencies, only depend on the uniform shape-regularity of T, the
dimension d, the polynomial degree n, and the (global) eigenvalues of AAA, but not on
a specific grid T ∈ T. Further on, u will always be the weak solution of (127).

Lemma 8.1 (Nesting of Spaces). Any sequence {Vk = V(Tk)}k≥0 of discrete spaces
generated by the basic adaptive loop (4) is nested, this is,

Vk ⊂ Vk+1 for all k ≥ 0.

Proof. See Problem 8.1. '(

The following property relies on the fact that B is coercive and symmetric, and
so induces a scalar product in V equivalent to the H1

0 -scalar product.

Lemma 8.2 (Pythagoras). Let T ,T∗ ∈ T such that T ≤ T∗. The respective Ritz-
Galerkin solutions U ∈ V(T ) and U∗ ∈ V(T∗) satisfy the following orthogonality
property in the energy norm |||·|||Ω

|||u−U |||2Ω = |||u−U∗|||2Ω + |||U∗ −U |||2Ω . (128)

Proof. See Problem 8.2. '(

A by-product of (128) is the monotonicity property

|||U∗ −U |||Ω ≤ |||u−U |||Ω . (129)

A perturbation of (128) is still valid for the general 2nd order elliptic operators
of Sect. 2.5.2, as shown in [48], but not for non-coercive problems. Even for (127),
property (128) is valid exclusively for the energy norm. This restricts the subsequent
analysis to the energy norm, or equivalent norms, but does not extend to other, per-
haps more practical, norms such as the maximum norm. This is an open problem.

We now continue the discussion of oscillation of Sect. 6.3.3. In view of (96), we
denote by oscT (V,T ) the element oscillation for any V ∈ V

oscT (V,T ) = ‖h(r(V )− r(V ))‖L2(T ) +‖h1/2( j(V )− j(V ))‖L2(∂T∩Ω),

where r(V ) = P2n−2r(V ) and j(V ) = P2n−1 j(V ) stand for L2-projections of the resid-
uals r(V ) and j(V ) onto the polynomials P2n−2(T ) and P2n−1(S) defined on the ele-
ment T or side S⊂ ∂T , respectively. For variable AAA, oscT (V,T ) depends on the dis-
crete function V ∈V, and its study is more involved than for piecewise constant AAA. In
the latter case, oscT (V,T ) becomes data oscillation oscT (V,T ) = ‖h( f − f̄ )‖L2(T );
compare with Remark 6.3.

We now rewrite the a posteriori error estimates of Theorem 6.3 in the energy
norm.

Lemma 8.3 (A Posteriori Error Estimates). There exist constants 0 < C2 ≤ C1,
such that for any T ∈ T and the corresponding Ritz-Galerkin solution U ∈ V(T )
there holds
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|||u−U |||2Ω ≤C1 E 2
T (U,T ) (130a)

C2 E 2
T (U,T )≤ |||u−U |||2Ω +osc2

T (U,T ). (130b)

The constants C1 and C2 depend on the smallest and largest global eigenvalues of AAA.
This dependence can be improved if the a posteriori analysis is carried out directly
in the energy norm instead of the H1

0 -norm; see Problem 6.14. The definitions of
r(V ) and j(V ), as well as the lower bound (130b), are immaterial for deriving a
contraction property. However, they will be important for proving convergence rates
in Chap. 9.

Lemma 8.4 (Lipschitz Property). For any T ∈ T and T ∈T , there holds

|ET (V,T )−ET (W,T )|� ηT (AAA,T )‖∇(V −W )‖L2(ωT ) for all V,W ∈ V(T ).

By ωT we again denote the union of elements sharing a side with T , divAAA ∈ R
d is

the divergence of AAA computed by rows, and

ηT (AAA,T ) := hT‖divAAA‖L∞(T ) +‖AAA‖L∞(ωT ).

Proof. Recalling the definition of the indicators, the triangle inequality yields

|ET (V,T )−ET (W,T )| ≤ hT‖r(V )− r(W )‖L2(T ) +h1/2
T ‖ j(V )− j(W )‖L2(∂T ).

We set E := V −W ∈ V(T ), and observe that

r(V )− r(W ) = div(AAA∇E) = divAAA ·∇E +AAA : D2E,

where D2E is the Hessian of E. Since E is a polynomial of degree≤ n in T , applying
the inverse estimate ‖D2E‖L2(T ) � h−1

T ‖∇E‖L2(T ), we deduce

hT‖r(V )− r(W )‖L2(T ) � ηT (AAA,T )‖∇E‖L2(T ).

On the other hand, for any S ⊂ ∂T applying the inverse estimate of Problem 8.4
gives

‖ j(V )− j(W )‖L2(S) = ‖ j(E)‖L2(S) = ‖ [[A∇E]] ‖L2(S) � h−1/2
T ‖∇E‖L2(ωT )

where the hidden constant is proportional to ηT (AAA,T ). This finishes the proof. '(

One serious difficulty in dealing with AFEM is that one has access to the energy
error |||u−U |||Ω only through the estimator ET (U,T ). The latter, however, fails to
exhibit a monotonicity property such as (129) because it depends on the discrete
solution U ∈ V(T ) that changes with the mesh. We account for this change in the
next lemma, which is a direct consequence of Lemma 8.4.

Lemma 8.5 (Estimator Reduction). Let T ∈ T be given with a subset M ⊂T of
marked elements and let T∗ = REFINE

(
T ,M
)
.
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There exists a constant Λ > 0, such that all V ∈ V(T ), V∗ ∈ V∗(T∗) and any
δ > 0 we have

E 2
T∗(V∗,T∗)≤ (1+δ )

(
E 2

T (V,T )−λ E 2
T (V,M )

)
+(1+δ−1)Λ η2

T (AAA,T ) |||V∗ −V |||2Ω ,

where λ = 1−2−b/d and

ηT (AAA,T ) := max
T∈T

ηT (AAA,T ).

Proof. We proceed in several steps.
1 Global Estimate. We first observe that V ∈ V(T∗) since the spaces are nested.

We next invoke Lemma 8.4 for T ∈T∗ and V,V∗ ∈ V(T∗) to get

ET∗(V∗,T )≤ ET∗(V,T )+C ηT∗(AAA,T )‖V∗ −V‖H1(ωT ).

Given δ > 0, we apply Young’s inequality (a+b)2 ≤ (1+δ )a2 +(1+δ−1)b2 and
add over T ∈T∗ to arrive at

E 2
T∗(V∗,T∗)≤ (1+δ )E 2

T∗(V,T∗)+Λ (1+δ−1)η2
T (AAA,T ) |||V∗ −V |||2Ω . (131)

Here, Λ = (d +1)C/α1 results from the finite overlapping property of sets ωT and
the relation between norms

α1 ‖∇v‖2
L2(Ω) ≤ |||v|||

2
Ω for all v ∈ V.

In addition we have used the monotonicity property ηT∗(AAA,T∗)≤ ηT (AAA,T ).
2 Accounting for M . We next decompose E 2

T∗(V,T∗) over elements T ∈T , and
distinguish whether or not T ∈M . If T ∈M , then T is bisected at least b times and
so T can be written as the union of elements T ′ ∈T∗ We denote this set of elements
T∗(T ) and observe hT ′ ≤ 2−b/d hT for all T ′ ∈T∗(T ). Therefore

∑
T ′∈T∗(T )

h2
T ′ ‖r(V )‖2

L2(T ′) ≤ 2−(2b)/d h2
T‖r(V )‖2

L2(T )

and

∑
T ′∈T∗(T )

hT ′ ‖ j(V )‖2
L2(∂T ′∩Ω) ≤ 2−b/d hT ‖ j(V )‖2

L2(∂T∩Ω).

This implies
E 2

T∗(V,T )≤ 2−b/d E 2
T (V,T ) for all T ∈M .

For the remaining elements T ∈ T \M we only know that mesh-size does not
increased because T ≤T∗, whence

E 2
T∗(V,T )≤ E 2

T (V,T ) for all T ∈T \M .



518 R. H. Nochetto, K. G. Siebert, and A. Veeser

3 Assembling. Combining the two estimates we see that

E 2
T∗(V,T∗)≤ 2−b/d E 2

T (V,M )+E 2
T (V,T \M )

= E 2
T (V,T )−

(
1−2−b/d)E 2

T (V,M ).

Recalling the definition of λ = 1−2−b/d and replacing E 2
T∗(V,T∗) in (131) by the

right hand side of this estimate yields the assertion. '(

8.3 Contraction property of AFEM

Recall that AFEM stands for the iteration loop (104) for the model problem. A key
question to ask is what is (are) the quantity(ies) that AFEM may contract. In view of
(129), an obvious candidate is the energy error |||u−Uk|||Ω . We show next that this
may not be the case unless REFINE enforces several levels of refinement.

Fig. 15 Grids T0, T1, and T2 of the interior node example

Example 8.1 (Interior Node). Let Ω = (0,1)2, AAA = I, f = 1, and consider the se-
quence of meshes depicted in Fig. 15. If φ0 denotes the basis function associated
with the only interior node of T0, then

U0 = U1 =
1

12
φ0, U2 �= U1.

The mesh T1 ≥ T0 is produced by a standard 2-step bisection (b = 2) in 2d. Since
U0 = U1 we conclude that the energy error does not change

|||u−U0|||Ω = |||u−U1|||Ω

between consecutive steps of AFEM. This is no longer the case provided an interior
node in each marked element is created, because then U2 �= U1 and so |||u−U2|||Ω <
|||u−U1|||Ω (see (128)).

This example appeared first in [52, 53], and was used to justify the interior node
property: T∗ must have one node in each side and interior of every T ∈M . This
property entails a minimal number of bisections that increases with the dimension



Theory of adaptive finite element methods: An introduction 519

d. The following heuristics explains why this property, closely related to a local dis-
crete lower bound (see Problem (6.7)), is no longer needed in the present approach.

Heuristics. According to (128), the energy error is monotone, but the previous
example shows that strict inequality may fail. However, in case Uk+1 = Uk, the esti-
mator reduction in Lemma 8.5 for V∗ = Uk+1 and V = Uk reveals a strict estimator
reduction. We could thus expect that a suitable combination of them, the so-called
quasi error

|||u−Uk|||2Ω + γ E 2
k (Uk,Tk),

may be contractive. This heuristics illustrates a distinct aspect of AFEM theory, the
interplay between continuous quantities such the energy error |||u−Uk|||Ω and dis-
crete ones such as the estimator Ek(Uk,Tk): no one alone has the requisite properties
to yield a contraction between consecutive adaptive steps.

Theorem 8.1 (Contraction Property). Let θ ∈ (0,1] be the Dörfler Marking pa-
rameter, and {Tk,Vk,Uk}∞k=0 be a sequence of conforming meshes, finite element
spaces and discrete solutions created by AFEM for the model problem (127).

Then there exist constants γ > 0 and 0 < α < 1, additionally depending on the
number b of bisections and θ , such that for all k ≥ 0

|||u−Uk+1|||2Ω + γ E 2
k+1(Uk+1,Tk+1)≤ α2

(
|||u−Uk|||2Ω + γ E 2

k (Uk,Tk)
)
.

Proof. We split the proof into four steps. For convenience, we use the notation

ek = |||u−Uk|||Ω , Ek = |||Uk+1−Uk|||Ω , Ek = Ek(Uk,Tk), Ek(Mk) = Ek(Uk,Mk).

1 The error orthogonality (128) reads

e2
k+1 = e2

k−E2
k . (132)

Employing Lemma 8.5 with T = Tk, T∗ = Tk+1, V = Uk and V∗ = Uk+1 gives

E 2
k+1 ≤ (1+δ )

(
E 2

k −λ E 2
k (Mk)
)
+(1+δ−1)Λ0 E2

k , (133)

where Λ0 = Λη2
T0

(AAA,T0) ≥ Λη2
Tk

(AAA,Tk). After multiplying (133) by γ > 0, to be
determined later, we add (132) and (133) to obtain

e2
k+1 + γ E 2

k+1 ≤ e2
k +
(
γ (1+δ−1)Λ0−1

)
E2

k + γ (1+δ )
(
E 2

k −λ E 2
k (Mk)
)
.

2 We now choose the parameters δ ,γ , the former so that

(1+δ )
(
1−λθ 2)= 1− λθ 2

2
,

and the latter to verify
γ (1+δ−1)Λ0 = 1.

Note that this choice of γ yields
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e2
k+1 + γ E 2

k+1 ≤ e2
k + γ (1+δ )

(
E 2

k −λ E 2
k (Mk)
)
.

3 We next employ Dörfler Marking, namely Ek(Mk)≥ θEk, to deduce

e2
k+1 + γ E 2

k+1 ≤ e2
k + γ(1+δ )(1−λθ 2)E 2

k

which, in conjunction with the choice of δ , gives

e2
k+1 + γ E 2

k+1 ≤ e2
k + γ
(

1− λθ 2

2

)
E 2

k = e2
k−

γλθ 2

4
E 2

k + γ
(

1− λθ 2

4

)
E 2

k .

4 Finally, the upper bound (130a), namely e2
k ≤C1 E 2

k , implies that

e2
k+1 + γ E 2

k+1 ≤
(

1− γλθ 2

4C1

)
e2

k + γ
(

1− λθ 2

4

)
E 2

k .

This in turn leads to
e2

k+1 + γ E 2
k+1 ≤ α2(e2

k + γ E 2
k

)
,

with

α2 := max

{
1− γλθ 2

4C1
,1− λθ 2

4

}
,

and proves the theorem because α2 < 1. '(

Remark 8.1 (Ingredients). This proof hinges on the following basic ingredients:
Dörfler marking; symmetry of B and nesting of spaces, which imply the Pythagoras
identity (Lemma 8.2); the a posteriori upper bound (Lemma 8.3); and the estimator
reduction property (Lemma 8.5). It does not use the lower bound (130b) and does
not require marking by oscillation, as previous proofs do [24, 48, 52, 53, 54]. The
marking is driven by Ek exclusively, as it happens in all practical AFEM.

8.4 Example: Discontinuous coefficients

We invoke the formulas derived by Kellogg [43] to construct an exact solution of an
elliptic problem with piecewise constant coefficients and vanishing right-hand side
f . We now write these formulas in the particular case Ω = (−1,1)2, AAA = a1III in the
first and third quadrants, and AAA = a2III in the second and fourth quadrants. An exact
weak solution u for f ≡ 0 is given in polar coordinates by u(r,θ) = rγ μ(θ), where

μ(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos((π/2−σ)γ) · cos((θ −π/2+ρ)γ) if 0≤ θ ≤ π/2,

cos(ργ) · cos((θ −π +σ)γ) if π/2≤ θ ≤ π,

cos(σγ) · cos((θ −π−ρ)γ) if π ≤ θ < 3π/2,

cos((π/2−ρ)γ) · cos((θ −3π/2−σ)γ) if 3π/2≤ θ ≤ 2π,
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Fig. 16 Discontinuous coefficients in checkerboard pattern: Graph of the discrete solution, which
is u≈ r0.1, and underlying strongly graded grid. Notice the steep gradient of u at the origin

and the numbers γ , ρ , σ satisfy the nonlinear relations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R := a1/a2 =− tan((π/2−σ)γ) · cot(ργ),
1/R =− tan(ργ) · cot(σγ),
R =− tan(σγ) · cot((π/2−ρ)γ),
0 < γ < 2,

max{0,πγ−π}< 2γρ < min{πγ,π},
max{0,π−πγ}<−2γσ < min{π,2π−πγ}.

(134)

Since we want to test the algorithm AFEM in a worst case scenario, we choose
γ = 0.1, which produces a very singular solution u that is barely in H1; in fact
u ∈ Hs(Ω) for s < 1.1 but still piecewise in W 2

p (Ω) for some 1 < p < 20
19 (see

Figure 16). We then solve (134) for R, ρ , and σ using Newton’s method to obtain
within computing precision

R = a1/a2
∼= 161.4476387975881, ρ = π/4, σ ∼=−14.92256510455152,

and finally choose a1 = R and a2 = 1. A smaller γ would lead to a larger ratio R, but
in principle γ may be as close to 0 as desired.

We realize from Fig. 17 that AFEM attains optimal decay rate for the energy
norm. As we have seen in Sect. 5.4, this is consistent with adaptive approximation
for functions piecewise in W 2

p (Ω), but nonobvious for AFEM which does not have
direct access to u. We also notice from Fig. 18 that a graded mesh with mesh-size of
order 10−10 at the origin is achieved with about 2×103 elements. To reach a similar
resolution with a uniform mesh we would need N ≈ 1020 elements! This example
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Fig. 17 Quasi-optimality of AFEM for discontinuous coefficients: estimate and true error. The
optimal decay for piecewise linear elements in 2d is indicated by the green line with slope −1/2

clearly reveals the advantages and potentials of adaptivity within the FEM even with
modest computational resources.

What is missing is an explanation of the recovery of optimal error decay N−1/2

through mesh grading. This is the subject of Chap. 9, where we have to deal with
the interplay between continuous and discrete quantities as already alluded to in the
heuristics.

8.5 Problems

Problem 8.1 (Nesting of Spaces). If T1,T2 ∈ T satisfy T1 ≤ T2, that is T2 is a
refinement by bisection of T1, then the corresponding (Lagrange) finite element
spaces are nested, i. e., V(T1)⊂ V(T2).

Problem 8.2 (Pythagoras). Let V1 ⊂V2 ⊂V = H1
0 (Ω) be nested, conforming and

closed subspaces. Let u∈V be the weak solution to (127), U1 ∈V1 and U2 ∈V2 the
respective Ritz-Galerkin approximations to u. Prove the orthogonality property

|||u−U1|||2Ω = |||u−U2|||2Ω + |||U2−U1|||2Ω . (135)

Problem 8.3 (Error in Energy). Let V1 ⊂ V2 ⊂ V and U1,U2,u be as in Prob-
lem 8.2. Recalling Problem 2.7, we know that u,U1,U2 are the unique minimizer of
the quadratic energy

I[v] := 1
2B[v, v]−〈 f , v〉

in V,V1,V2 respectively. Show that (135) is equivalent to the identity

I[U1]− I[u] = (I[U2]− I[u])+(I[U1]− I[U2]).

To this end prove
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Fig. 18 Discontinuous coefficients in checkerboard pattern: Final grid (full grid with < 2000
nodes) (top left), zooms to (−10−3,10−3)2 (top right), (−10−6,10−6)2 (bottom left), and
(−10−9,10−9)2 (bottom right). The grid is highly graded towards the origin. For a similar res-
olution, a uniform grid would require N ≈ 1020 elements

I[Ui]− I[u] = 1
2 |||Ui−u|||2Ω and I[U1]− I[U2] = 1

2 |||U1−U2|||2Ω .

Problem 8.4. Let S∈ S̊ be a side of T ∈T , and let AAA∈W 1
∞(T ). Prove the following

inverse estimate by a scaling argument to the reference element

‖AAA∇V‖S � h−1/2
S ‖∇V‖T for all V ∈ V(T ),

where the hidden constant depends on the shape coefficient of T , the dimension d,
and ‖AAA‖L∞(S).

Problem 8.5. Let K be either a d or a (d − 1)-simplex. For � ∈ N denote by
Pp

m : Lp(K,R�)→ Pm(K,R�) the operator of best Lp-approximation in K. Then for
all v ∈ L∞(K,R�), V ∈ Pn(K,R�) and m≥ n, there holds

‖vV −P2
m(vV )‖L2(K) ≤ ‖v−P∞

m−nv‖L∞(K)‖V‖L2(K).
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Problem 8.6. Let AAA ∈W 1
∞(T ) for all T ∈ T . Prove the quasi-local Lipschitz prop-

erty

|oscT (V,T )−oscT (W,T )|� oscT (AAA,T )‖V −W‖H1(ωT ) for all V,W ∈ V,

where oscT (AAA,T ) = hT ‖divAAA−P∞
n−1(divAAA)‖L∞(T ) +‖AAA−P∞

n AAA‖L∞(ωT ). Proceed as
in the proof of Lemma 8.4 and use Problem 8.5.

Problem 8.7. Let T ,T∗ ∈ T, with T ≤ T∗. Use Problem 8.6 to prove that, for all
V ∈ V(T ) and V∗ ∈ V(T∗), there is a constant Λ1 > 0 such that

osc2
T (V,T ∩T∗)≤ 2osc2

T∗(V∗,T ∩T∗)+Λ1 oscT0(AAA,T0)2 |||V −V∗|||2Ω .

9 Adaptivity: Convergence rates

We have already realized in Chap. 5 that we can a priori accommodate the degrees of
freedom in such a way that the finite element approximation retains optimal energy
error decay for a class of singular functions. This presumes knowledge of the exact
solution u. At the same time, we have seen numerical evidence in Sect. 8.4 that the
AFEM of Chap. 8, achieves such a performance without direct access to the regu-
larity of u. Practical experience strongly suggests that this is even true for a much
larger class of problems and adaptive methods. The challenge ahead is to reconcile
these two distinct aspects of AFEM. In doing this we have to restrict ourselves to
the setting of Chap. 8. The mathematical foundation to justify the observed optimal
error decay of adaptive methods in case of non-symmetric or non-coercive bilinear
forms and other marking strategies is completely open.

One key to connect the two worlds for the simplest scenario, the Laplacian and
f piecewise constant, is due to Stevenson [69]: any marking strategy that reduces
the energy error relative to the current value must contain a substantial bulk of
ET (U,T ), and so it can be related to Dörfler Marking. This allows us to compare
AFEM with an optimal mesh choice and to conclude optimal error decay.

The objective of this section is to study the model problem (127) for general data
f and AAA and the AFEM from Chap. 8. In what follows it is important to use an error
notion that is strictly reduced by the adaptive method. In this section we closely
follow Cascón et al. [21] by utilizing the quasi-error as contracting quantity. This
approach allows us to include variable data f and AAA and thus improves upon and
extends Stevenson [69].

As in Chap. 8, u will always be the weak solution of (127) and, except when
stated otherwise, any constant explicit or hidden constant in � may depend on
the uniform shape-regularity of T, the dimension d, the polynomial degree n, the
(global) eigenvalues of AAA, and the oscillation oscT0(AAA,T0) of AAA on the initial mesh
T0, but not on a specific grid T ∈ T.
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9.1 Approximation class

Since AFEM selects elements for refinement based on information provided ex-
clusively by the error indicators {ET (U,T )}T∈T , it is natural that the measure of
regularity and ensuing decay rate is closely related to the indicators. We explore this
connection now.

The Total Error. We first introduce the concept of total error [48]

|||u−U |||2Ω +osc2
T (U,T ),

and next assert that it is equivalent to the quasi error, for the Galerkin function
U ∈ V(T ). In fact, in view of the upper and lower a posteriori error bounds (130a)
and (130b), and

osc2
T (U,T )≤ E 2

T (U,T )

we have

C2 E 2
T (U,T )≤ |||u−U |||2Ω +osc2

T (U,T )

≤ |||u−U |||2Ω +E 2
T (U,T )≤ (1+C1)E 2

T (U,T ),

whence
E 2

T (U,T )≈ |||u−U |||2Ω +osc2
T . (136)

We thus realize that the decay rate of AFEM must be characterized by the total error.
Moreover, on invoking the upper bound once again, we also see that the total error
is equivalent to the quasi error

|||u−U |||2Ω +osc2
T (U,T )≈ |||u−U |||2Ω +E 2

T (U,T ).

This is the quantity being strictly reduced by AFEM (Theorem 8.1). Finally, the total
error satisfies the following Cea’s type-lemma. In fact, if AAA is piecewise constant,
then this is Cea’s Lemma stated in Problem 3.1.

Lemma 9.1 (Quasi-Optimality of Total Error). There exists a constant Λ2, such
that for any T ∈ T and the corresponding Ritz–Galerkin solution U ∈V(T ) holds

|||u−U |||2Ω +osc2
T (U,T )≤Λ2 inf

V∈V(T )

(
|||u−V |||2Ω +osc2

T (V,T )
)
.

Proof. For ε > 0 choose Vε ∈ V(T ), with

|||u−Vε |||2Ω +osc2
T (Vε ,T )≤ (1+ ε) inf

V∈V(T )

(
|||u−V |||2Ω +osc2

T (V,T )
)
.

Applying Problem 8.7 with T∗ = T , V = U , and V∗ = Vε yields

osc2
T (U,T )≤ 2 osc2

T (Vε ,T )+C3 |||U−Vε |||2Ω ,
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with
C3 :=Λ1 oscT0(AAA,T0)2.

Since U ∈V(T ) is the Galerkin solution, U−Vε ∈V(T ) is orthogonal to u−U in
the energy norm, whence |||u−U |||2Ω + |||U−Vε |||2Ω = |||u−Vε |||2Ω and

|||u−U |||2Ω +osc2
T (U,T )≤

(
1+C3
)
|||u−Vε |||2Ω +2 osc2

T (Vε ,T )

≤ (1+ ε)Λ2 inf
V∈V(T )

(
|||u−U |||2Ω +osc2

T (V,T )
)
,

with Λ2 = max
{

2,1+C3
}

, and the assertion follows from ε → 0. '(

We next give a definition of an appropriate approximation class As that hinges on
the concept of total error. We first let TN ⊂ T be the set of all possible conforming
refinements of T0 with at most N elements more than T0, i. e.,

TN = {T ∈ T | #T −#T0 ≤ N}.

The quality of the best approximation in TN with respect to the total error is char-
acterized by

σ(N;u, f ,AAA) := inf
T ∈TN

inf
V∈V(T )

(
|||u−V |||2Ω +osc2

T (V,T )
)1/2

,

and the approximation class As for s > 0 is defined by

As :=
{

(v, f ,AAA) | |v, f ,AAA|s := sup
N>0

(
Nsσ(N;v, f ,AAA)

)
< ∞
}
.

Thanks to Lemma 9.1, the solution u with data ( f ,AAA) satisfies

σ(N;u, f ,AAA)≈ inf
T ∈TN

{
ET (U,T ) |U = SOLVE(V(T ))

}
. (137)

We point out the upper bound s≤ n/d for polynomial degree n≥ 1; this can be seen
with full regularity and uniform refinement (see (69)). Note that if (v, f ,AAA) ∈ As

then for all ε > 0 there exist Tε ≥ T0 conforming and Vε ∈ V(Tε) such that (see
Problem 9.1)

|||v−Vε |||2Ω +osc2
Tε ≤ ε2 and #Tε −#T0 ≤ |v, f ,AAA|1/s

s ε−1/s. (138)

For the subsequent discussion we recall Lemma 4.3: the overlay T1⊕T2 ∈ T of
two meshes T1,T2 ∈ T is the smallest common refinement of T1 and T2 and

#T1⊕T2 ≤ #T1 +#T2−#T0. (139)

We first investigate the class As for piecewise constant coefficient matrix AAA with
respect to T0. In this simplified scenario, the oscillation oscT (U,T ) reduces to
data oscillation (see Remark 6.3):
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oscT = ‖hT ( f −P2n−2 f )‖L2(Ω).

We then have the following characterization of As in terms of the standard approxi-
mation classes [13, 14, 69]:

As :=
{

v ∈ V | |v|As
:= sup

N>0

(
Ns inf

T ∈TN
inf

V∈V(T )
|||v−V |||Ω

)
< ∞
}
,

¯As :=
{

g ∈ L2(Ω) | |g| ¯As
:= sup

N>0

(
Ns inf

T ∈TN
‖hT (g−P2n−2 g)‖L2(Ω)

)
< ∞
}
.

Lemma 9.2 (Equivalence of Classes). Let AAA be piecewise constant over T0. Then
(u, f ,AAA) ∈ As if and only if (u, f ) ∈As× ¯As and

|u, f ,AAA|s ≈ |u|As
+ | f | ¯As

. (140)

Proof. It is obvious that (u, f ,AAA)∈As implies (u, f )∈As× ¯As as well as the bound
|u|As

+ | f | ¯As
� |u, f ,AAA|s.

In order to prove the reverse inequality, let (u, f ) ∈ As× ¯As. Then there exist
T1,T2 ∈ TN so that |||u−U |||Ω ≤ |u|As

N−s where U ∈ V(T1) is the best approxi-
mation and ‖hT2( f −P2

2n−2 f )‖L2(Ω) ≤ | f | ¯As
N−s.

The overlay T = T1⊕T2 ∈ T2N according to (139), and

|||u−U |||2Ω +osc2
T ≤ |||u−U |||2Ω +osc2

T2
≤ 2s( |u|2As

+ | f |2 ¯As

)
(2N)−s.

This yields (u, f ,AAA) ∈ As together with the bound |u, f ,AAA|s � |u|As
+ | f | ¯As

. '(

We next turn to the special case of linear finite elements.

Corollary 9.1 (Membership in A1/2). Let d = 2, polynomial degree n = 1, f ∈
L2(Ω), and AAA piecewise constant with respect to T0. If u ∈W 2

p (Ω ;T0) for some
p > 1, then (u, f ,AAA) ∈ A1/2 and

|u, f ,AAA|1/2 � ‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω)

Proof. We start with the data oscillation oscT , and realize that

oscT = ‖hT ( f −P0 f )‖L2(Ω) ≤ hmax(T )‖ f‖L2(Ω) � (#T )−1/2‖ f‖L2(Ω),

for any uniform refinement T ∈ T. This implies f ∈ ¯A1/2 with | f | ¯A1/2
� ‖ f‖L2(Ω).

For u ∈W 2
p (Ω ;T0) we learn from Corollary 5.2 and Remark 5.6 that u ∈ A1/2

and |u|A1/2
� ‖D2u‖L2(Ω ;T0). The assertion then follows from Lemma 9.2. '(

Example 9.1 (Pre-asymptotics). Corollary 9.1 shows that oscillation decays at least
with rate 1/2 for f ∈ L2(Ω). Since the decay rate of the total error is s ≤ 1/2,
oscillation can be ignored asymptotically. However, Remark 6.4 shows that oscil-
lation may dominate the total error, or equivalently the class As may fail to de-
scribe the behavior of |||u−Uk|||Ω , in the early stages of adaptivity. In fact, we
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recall that osck(Uk,Tk) = ‖hk( f − P0 f )‖L2(Ω), the discrete solution Uk = 0, and

|||u−Uk|||Ω ≈ 2−K is constant for as many steps k ≤ K as desired. In contrast,
Ek(Uk,Tk) = osck(Uk,Tk) = ‖hk f‖L2(Ω) reduces strictly for k ≤ K but overesti-
mates |||u−Uk|||Ω . The fact that the preasymptotic regime k ≤ K for the energy er-
ror could be made arbitrarily long would be problematic if we focus exclusively on
|||u−Uk|||Ω . In practice, this effect is typically less dramatic because f is not orthog-

Fig. 19 Decay of the energy error (left) and the estimator (right) for the smooth solution uS of
(141) with frequencies κ = 5,10, and 15. The energy error exhibits a frequency-dependent plateau
in the preasymptotic regime and later an optimal decay. This behavior is allowed by As

onal to V(Tk). Figure 19 displays the behavior of AFEM for the smooth solution
u = uS given by

uS(x,y) = 10−2a−1
i (x2 + y2)sin2(κπx)sin2(κπy), 1≤ i≤ 4. (141)

of the problem in Sect. 8.4 with discontinuous coefficients {ai}4
i=1 in checkerboard

pattern and frequencies κ = 5,10, and 15. We can see that the error exhibits a
frequency-dependent plateau in the preasymptotic regime and later an optimal de-
cay. In contrast, the estimator decays always with the optimal rate. Since all deci-
sions of the AFEM are based on the estimator, this behavior has to be expected and
is consistent with our notion of approximation class As, which can be characterized
just by the estimator according to (137).

We next turn to the nonlinear interaction encoded in oscT (U,T ) via the prod-
uct AAA∇U . It is this interaction which makes the class As a non-standard object in
approximation theory that deserves further scrutiny.

Lemma 9.3 (Decay Rate of Oscillation). Let AAA be piecewise Lipschitz with respect
to T0, f ∈ L2(Ω), and polynomial degree n = 1. If U ∈ V(T ) is the Ritz-Galerkin
solution, then oscillation oscT (U,T ) has at least a decay rate of order −1/d

inf
T ∈TN

oscT (U,T ) �
(
‖ f‖L2(Ω) +‖AAA‖W 1

∞(Ω ;T0)

)
N−1/d .
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Proof. Let T ∈ TN be a uniform refinement of T0 with #T ≈ N. By applying
Problem 8.6 with V = U and W = 0, we obtain

oscT (U,T ) � hT‖ f −P2
0 f‖L2(T ) +oscT (AAA,T )‖U‖H1(ωT )

with hT‖ f −P2
0 f‖L2(T ) ≤ hT‖ f‖L2(T ) and

oscT (AAA,T ) = h‖divAAA−P∞
0 (divAAA)‖L∞(T ) +‖AAA−P∞

1 AAA‖L∞(ωT ) � hT‖AAA‖W 1
∞(ωT ;T0).

Uniform refinement yields the relation hT ≈ N−1/d for all T ∈T , whence

osc2
T (U,T ) = ∑

T∈T

osc2
T (U,T ) �

(
‖ f‖2

L2(Ω) +‖AAA‖2
W 1
∞(Ω ;T0)

)
N−2/d ,

because ‖U‖H1(Ω) ≤ α−1
1 ‖ f‖L2(Ω) according to (40). '(

Remark 9.1 (Asymptotic Order of Oscillation). Let’s assume the following piece-
wise regularity of data ( f ,AAA) with respect to a conforming refinement T∗ of T0:

f ∈ H1(Ω ;T∗), AAA ∈W 2
∞(Ω ;T∗).

The proof of Lemma 9.3, in conjunction with Proposition 5.1(a), shows that for
n = 1

inf
T ∈TN :T ≥T∗

oscT (U,T ) �
(
‖ f‖H1(Ω ;T∗) +‖AAA‖W 2

∞(Ω ;T∗)

)
N2/d ,

and the rate in Lemma 9.3 can be improved. Since the energy error decay is never
better than N−1/d , according to (69), we realize that oscillation is of higher order
than the energy error asymptotically as N ↑ ∞; compare with Remark 6.1.

Corollary 9.2 (Membership in A1/2). Let d = 2, polynomial degree n = 1, AAA ∈
W 1
∞(Ω ;T0), and f ∈ L2(Ω). If u ∈W 2

p (Ω ;T0) for some p > 1, then (u, f ,AAA) ∈A1/2
and

|u, f ,AAA|1/2 � ‖D2u‖Lp(Ω ;T0) +‖AAA‖W 1
∞(Ω ;T0) +‖ f‖L2(Ω).

Proof. Repeat the proof of Corollary 9.1 with the help of Lemma 9.3. '(

A complete characterization of As for general d and n is still missing. It is impor-
tant to realize that the nonlinear interaction between data AAA and U must be accounted
for, thereby leading to a new concept of approximation class As, which generalizes
those in [13, 14, 69]. It is worth mentioning that a near characterization of the stan-
dard approximation class As in terms of Besov spaces for d = 2 can be found in
[13, 14, 37]: u ∈As implies that u ∈ B2s+1

p (Lp(Ω)) for p = 2
2s+1 [13, Theorem 9.3];

u ∈ B2s+1
p (Lp(Ω)) for p > 2

2s+1 implies that u ∈ As [13, Theorem 9.1]. Note that
p < 1 for s > 1/2; see Remark 5.7.
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9.2 Cardinality of Mk

To assess the performance of AFEM in terms of degrees of freedom #Tk, we need to
impose further restrictions on the modules of AFEM beyond those of Sect. 8.1. We
recall that C2 ≤C1 are the constants in (130a) and (130b) and C3 =Λ1 osc2

T0
(AAA,T0)

is the constant in Problem 8.7 and Lemma 9.1.

Assumption 11.2 (Assumptions for Optimal Decay Rate). We assume the follow-
ing additional properties of the marking procedure MARK and the initial grid T0:

(a) The marking parameter θ of Dörfler Marking satisfies θ ∈ (0,θ ∗) with

θ 2
∗ =

C2

1+C1(1+C3)
;

(b) MARK outputs a set M with minimal cardinality;

(c) The initial triangulation T0 satisfies Assumption 11.1.

A few comments are now in order.

• Threshold θ∗ < 1: We first point out that, according to (130a) and (130b), the
ratio C2/C1 ≤ 1 is a quality measure of the estimator ET (U,T ): the closer to 1
the better! It is thus natural to be cautious in marking if the reliability constant C1

and efficiency constant C2 are very disparate. The additional factor C3 accounts
for the effect of a function dependent oscillation (see Problem 8.7), and is zero if
the oscillation just depends on data f because then oscT0(AAA,T0) = 0.

• Minimal Mk: According to Remark 6.2 about the significance of the local lower
a posteriori error estimate for relatively small oscillation, it is natural to mark
elements with largest error indicators. This leads to a minimal set Mk and turns
out to be crucial to link AFEM with optimal meshes and approximation classes.

• Initial Triangulation: The initial labeling of the element’s vertices on T0 stated in
Assumption 11.1 of Sect.4.2 is rather restrictive for dimension d > 2 but guaran-
tees the complexity estimate of Theorem 4.3 for our module REFINE. Any other
refinement ensuing the same complexity estimate can replace REFINE together
with the assumption on T0.

We stress that we cannot expect local upper bounds between the continuous solu-
tion u and discrete solution U due to the global nature of the underlying PDE: the er-
ror in a region may be dictated by pollution effects arising somewhere else. The fol-
lowing crucial result shows, however, that this is a matter of scale: if T∗ ≥T , then
what determines the error between Galerkin solutions U ∈V(T ) and U∗ ∈V(T∗) is
the refined set RT→T∗ , namely the region of Ω where the scale of resolution differs
from T to T∗. This is not, of course, in contradiction with the previous statement
because one needs an infinitely fine scale to reach the exact solution u.

Lemma 9.4 (Localized Upper Bound). Let T ,T∗ ∈ T satisfy T∗ ≥ T and define
R := RT→T∗ to be the set of refined elements in T . If U ∈V(T ) and U∗ ∈V(T∗)
are the corresponding Galerkin solutions, then
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|||U∗ −U |||2Ω ≤C1 E 2
T (U,R).

where C1 > 0 is the same constant as in (130a).

Proof. Problem 9.2. '(

The following result reveals the importance of Dörfler’s marking in the present
context. The original result, established by Stevenson [69], referred to the energy
error alone. We follow [21] in this analysis.

Lemma 9.5 (Optimal Marking). Let the marking parameter θ satisfy Assump-
tion 11.2(a) and set μ := 1

2 (1− θ2

θ2∗
) > 0. For T∗ ≥T let the corresponding Galerkin

solution U ∈ V(T ) and U∗ ∈ V(T∗) satisfy

|||u−U∗|||2Ω +osc2
T∗(U∗,T∗)≤ μ

(
|||u−U |||2Ω +osc2

T (U,T )
)
. (142)

Then the set R = RT→T∗ of refined elements of T satisfies the Dörfler property

ET (U,R)≥ θ ET (U,T ). (143)

Proof. We split the proof into four steps.
1 In view of the global lower bound (130b)

C2 E 2
T (U,T )≤ |||u−U |||2Ω +osc2

T (U,T )

and (142), we can write

(1−2μ)C2 E 2
T (U,T )≤ (1−2μ)

(
|||u−U |||2Ω +osc2

T (U,T )
)

≤
(
|||u−U |||2Ω −2 |||u−U∗|||2Ω

)
+
(

osc2
T (U,T )−2osc2

T∗(U∗,T∗)
)
.

2 Combining the orthogonality relation (128)

|||u−U |||2Ω −|||u−U∗|||2Ω = |||U−U∗|||2Ω .

with the localized upper bound Lemma 9.4 yields

|||u−U |||2Ω −2 |||u−U∗|||2Ω ≤C1 E 2
T (U,R).

3 To deal with oscillation we decompose the elements of T into two disjoint sets:
R and T \R. In the former case, we have

osc2
T (U,R)−2osc2

T∗(U∗,R)≤ osc2
T (U,R)≤ E 2

T (U,R),

because oscT (U,T ) ≤ ET (U,T ) for all T ∈ T . On the other hand, we use that
T \R = T ∩T∗ and apply Problem 8.7 in conjunction with Lemma 9.4 to arrive
at

osc2
T (U,T \R)−2osc2

T∗(U∗,T \R)≤C3 |||U−U∗|||2Ω ≤C1C3E
2
T (U,R).
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Adding these two estimates gives

osc2
T (U,T )−2osc2

T∗(U∗,T∗)≤ (1+C1C3)E 2
T (U,R).

4 Returning to 1 we realize that

(1−2μ)C2 E 2
T (U,T )≤

(
1+C1(1+C3)

)
E 2

T (U,R),

which is (143) in disguise. In fact, recalling that θ 2
∗ = C2/

(
1 +C1(1 +C3)

)
then

θ 2 = (1−2μ)θ 2
∗ < θ 2

∗ as asserted. '(

We are now ready to explore the cardinality of Mk. To this end, we must relate
AFEM with the approximation class As. This might appear like an undoable task.
However, the key to unravel this connection is given by Lemma 9.5.

Lemma 9.6 (Cardinality of Mk). Let Assumptions 11.2(a) and 11.2(b) be satisfied.
If (u, f ,AAA) ∈ As then

#Mk � |u, f ,AAA|1/s
s
(
|||u−Uk|||Ω +osck(Uk,Tk)

)−1/s
for all k ≥ 0. (144)

Proof. We split the proof into three steps.
1 We set ε2 := μΛ−1

2

(
|||u−Uk|||2Ω + osc2

k(Uk,Tk)
)

with μ = 1
2

(
1− θ2

θ2∗

)
> 0 as in

Lemma 9.5 and Λ2 given Lemma 9.1. Since (u, f ,AAA) ∈ As, in view of (138) there
exists Tε ∈ T and Uε ∈ V(Tε) such that

|||u−Uε |||2Ω +osc2
ε(Uε ,Tε)≤ ε2 and #Tε −#T0 � |u, f ,AAA|1/2

s ε−1/s.

Since Tε may be totally unrelated to Tk we introduce the overlay

T∗ = Tk⊕Tε .

2 We claim that the total error over T∗ reduces by a factor μ relative to that one
over Tk. In fact, since T∗ ≥Tε and so V(T∗)⊃V(Tε), we use Lemma 9.1 to obtain

|||u−U∗|||2Ω +osc2
T∗(U∗,T∗)≤Λ2

(
|||u−Uε |||2Ω +osc2

ε(Uε ,Tε)
)

≤Λ2ε2 = μ
(
|||u−Uk|||2Ω +osc2

k(Uk,Tk)
)
.

Upon applying Lemma 9.5 we conclude that the set R = RTk→T∗ of refined ele-
ments satisfies a Dörfler marking (143) with parameter θ < θ∗.

3 According to Assumption 11.2(b) MARK selects a minimal set Mk satisfying
this property. Therefore, we deduce

#Mk ≤ #R ≤ #T∗ −#Tk ≤ #Tε −#T0 � |u, f ,AAA|1/s
s ε−1/s,

where we have employed Lemma 4.3 for the overlay. Now recalling the definition
of ε we end up with the asserted estimate (144). '(
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Remark 9.2 (Blow-up). The constant hidden in (144) blows up as θ ↑ θ∗ because
μ ↓ 0.

9.3 Quasi-optimal convergence rates

We are ready to prove the main result of this section, which combines Theorem 8.1
and Lemma 9.6.

Theorem 9.1 (Quasi-Optimality). Let Assumption 11.2 be satisfied. If (u, f ,AAA) ∈
As then AFEM gives rise to a sequence {Tk,Vk,Uk}∞k=0 such that

|||u−Uk|||Ω +osck(Uk,Tk) � |u, f ,AAA|s (#Tk−#T0)−s for all k ≥ 1.

Proof. 1 Since no confusion arises, we use the notation osc j = osc j(Uj,T j) and
E j = E j(Uj,T j). In light of Assumption 11.2(c) and (144) we have

#Tk−#T0 �
k−1

∑
j=0

#M j � |u, f ,AAA|1/s
s

k−1

∑
j=0

(∣∣∣∣∣∣u−Uj
∣∣∣∣∣∣2
Ω +osc2

j

)−1/(2s)
.

2 Let γ > 0 be the scaling factor in the (contraction) Theorem 8.1. The lower bound
(130b) along with osc j ≤ E j implies

∣∣∣∣∣∣u−Uj
∣∣∣∣∣∣2
Ω + γ osc2

j ≤
∣∣∣∣∣∣u−Uj

∣∣∣∣∣∣2
Ω + γ E 2

j ≤
(

1+
γ

C2

)(∣∣∣∣∣∣u−Uj
∣∣∣∣∣∣2
Ω +osc2

j

)
.

3 Theorem 8.1 yields for 0≤ j < k

|||u−Uk|||2Ω + γ E 2
k ≤ α2(k− j) (∣∣∣∣∣∣u−Uj

∣∣∣∣∣∣2
Ω + γ E 2

j

)
,

whence

#Tk−#T0 � |u, f ,AAA|1/s
s
(
|||u−Uk|||2Ω + γ E 2

k

)−1/(2s)
k−1

∑
j=0

α(k− j)/s.

Since ∑k−1
j=0α

(k− j)/s =∑k
j=1α j/s < ∑∞

j=1α j/s <∞ because α < 1, the assertion fol-
lows immediately. '(

Corollary 9.3 (Estimator Decay). Let Assumption 11.2 be satisfied. If (u, f ,AAA) ∈
As then the estimator Ek(Uk,Tk) satisfies

Ek(Uk,Tk) � |u, f ,AAA|1/s
s (#Tk−#T0)−s.

Proof. Use (136) and Theorem 9.1. '(
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Corollary 9.4 (W 2
p -Regularity). Let d = 2, the polynomial degree n = 1, f ∈L2(Ω),

and let AAA be piecewise constant over T0. If u ∈W 2
p (Ω ;T0) for p > 1, then AFEM

gives rise to a sequence {Tk,Vk,Uk}∞k=0 satisfying osck = ‖hk( f −P0 f )‖L2(Ω) and

|||u−Uk|||Ω +osck �
(
‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω)

)
(#Tk−#T0)−1/2

for all k ≥ 1.

Proof. Combine Corollary 9.1 with Theorem 9.1. '(

Corollary 9.5 (W 2
p -Regularity). Besides the assumptions of Corollary 9.4, let AAA be

piecewise Lipschitz over the initial grid T0. Then AFEM gives rise to a sequence
{Tk,Vk,Uk}∞k=0 satisfying for all k ≥ 1

|||u−Uk|||Ω +osck(Uk,Tk)

�
(
‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω) +‖AAA‖W 1

∞(Ω ;T0)

)
(#Tk−#T0)−1/2.

Proof. Combine Corollary 9.2 with Theorem 9.1. '(

So far we have assumed that the module SOLVE gives the exact Galerkin solu-
tion Uk and in doing this we have ignored the effects of numerical integration and
inexact solution of the linear system; recall Remarks 3.6 and 3.7. The two issues
above are important for AFEM to be fully practical. If one could control a posteriori
the errors due to inexactness of SOLVE, then it would still be possible to prove a
contraction property, as in Chap. 8, and examine the number of operations of AFEM
in terms of #Tk for a desired accuracy, following the steps of Sect. 9.2 and Sect. 9.3.
We refer to Stevenson [69], who explores this endeavor for problem (127) with AAA
piecewise constant.

9.4 Marking vs optimality

We conclude with a brief discussion of processes that optimize more than one quan-
tity at once and the critical role of marking, i. e., we consider adaptive algorithms
that mark in each iteration for different error contributions separately. For instance,
in earlier work on adaptivity error indicator and oscillation are treated independently
[52, 53, 48]. Furthermore, when dealing with systems one is easily tempted to mark
separately for the different components; compare for instance with [40]. It is worth
observing that Binev et al. [13], Stevenson [69] and also Cascón et al. [21] avoided
to use separate marking in their algorithms when proving optimal error decay. When
dealing with the Poisson problem, oscillation becomes data oscillation and allows
one to first approximate data sufficiently well and then reduce the energy error. This
is done in different ways in [13] and [69]. However, for variable AAA the oscillation
depends on the discrete solution, as discussed in Sect. 9.1, and the above splitting
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does not apply. Nonetheless marking solely for the estimator gives an optimal decay
rate according to Sect. 9.3.

The design of adaptive algorithms that rely on separate marking is extremely
delicate when aiming for optimal decay rates. To shed light on this issue we first
present some numerical experiments based on separate marking, and next analyze
the effect of separate marking in a simplified setting.

9.4.1 Separate Marking

The procedure ESTIMATE of Morin, Nochetto and Siebert, used in previous con-
vergence proofs [52, 53, 48], calculates both the error and oscillation indicators
{Ek(Uk,T ),osck(Uk,T )}T∈Tk

(see Remarks 6.1 and 9.1), and the procedure MARK
uses Dörfler marking for both the estimator and oscillation. More precisely, the rou-
tine MARK is of the form: given parameters 0 < θest,θosc < 1,

mark any subset Mk ⊂Tk such that Ek(Uk,Mk)≥ θestEk(Uk,Tk); (145a)

if necessary enlarge Mk to satisfy osck(Uk,Mk)≥ θosc osck(Uk,Tk). (145b)

Since oscillation is generically of higher order than the estimator, the issue at stake is
whether elements added by oscillation, even though immaterial relative to the error,
could ruin the optimal cardinality observed in experiments. If Ek(Uk,Tk) has large
indicators in a small area, then Dörfler marking for the estimator (145a) could select
a set Mk with a small number of elements relative to Tk. However, if osck(Uk,Tk)
were globally distributed in Tk, then separate marking would require additional
marking of a large percentage of all elements to satisfy (145b); i.e., #Mk could be
large relative to #Tk.

To explore this idea computationally, we consider a simple modification of the
Example of Sect. 8.4 with exact solution that we denote hereafter by uR. Let uS

be the smooth solution of (141), which is of comparable magnitude with uR, while
the corresponding f =−divAAA∇uS exhibits an increasing amount of data oscillation
away from the origin. Let u = uR +uS be the modified exact solution and let f be the
corresponding forcing function. Procedure MARK takes the usual value of θest = 0.5
[32, 52, 53, 63], and procedure REFINE subdivides all elements in Mk by using
two bisections.

The behavior of separate marking for several values of θosc is depicted in Fig-
ure 20. We can visualize its sensitivity with respect to parameter θosc. For values of
θosc ≤ 0.4 the rate of convergence appears to be quasi-optimal. However, beyond
this threshold the curves for both the error and the estimator flatten out, thereby in-
dicating a lack of optimality. The threshold value θosc = 0.4, even though consistent
with practice, is tricky to find in general since it is problem-dependent. Therefore,
marking by oscillation (145b) is questionable.
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Fig. 20 Decay of the error (left) and the estimator (right) vs. degrees of freedom for θest = 0.5
and values θosc = 0.0,0.2,0.4,0.6, and 0.8. For values of θosc ≤ 0.4 the rate of convergence is
quasi-optimal, but for θosc > 0.4 the curves flatten out, thereby indicating lack of optimality

9.4.2 Analysis of Separate Marking

In order to gain mathematical insight on the key issues related to separate mark-
ing, we examine the adaptive approximation of two given functions in an idealized
scenario. We show that separate marking, similar to (145), may lead to suboptimal
meshes in general. However, a suitable choice of marking parameters may restore
optimality. The numerical experiments of Sect. 9.4.1 confirm this theoretical insight
in a realistic environment.

For the discussion, we assume that we have two functions ui, i = 1,2, and have
access to their local approximation error

eT (ui;T ) = |ui− IT ui|i;T ∀T ∈T

and global error e2
T (ui) =∑T∈T e2

T (ui;T ); hereafter | · |i are unspecified norms, and
IT is a local interpolation operator over T ∈ T. We define the total error to be

e2
T := e2

T (u1)+ e2
T (u2)

and are interested in its asymptotic decay. If T = Tk, then we denote ek = eTk
.

To explore the use of (145), we examine the effect of separate marking for ek(ui)
on a sequence of meshes T i for i = 1,2. We put ourselves in an idealized, but
plausible, situation governed by the following three simplifying assumptions:

Independence: T 1
k and T 2

k are generated from T0 and are independent
of each other;

(146a)

Marking: Separate Dörfler marking with parameters θi ∈ (0,1) implies
that ek(ui)≈ αk

i on T i
k , with αi ∈ (0,1); (146b)

Approximability: ek(ui)≈ (#T i
k −#T0)−si , with s1 ≤ s2 maximal. (146c)
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We are interested in the decay of the total error ek on the overlay Tk := T 1
k ⊕T 2

k .
This scenario is a simplification of the more realistic approximation of u1 and u2

with separate Dörfler marking on the same sequence of grids Tk but avoids the
complicated interaction of the two marking procedures.

Lemma 9.7 (Separate Marking). Let assumptions (146) be satisfied. Then the de-
cay of the total error ek on the overlay Tk = T 1

k ⊕T 2
k for separate marking is

always suboptimal except when α1 and α2 satisfy

α2 ≤ α1 ≤ αs1/s2
2 .

Proof. 1 Assumption (146b) on the average reduction rate implies for the total
error that

ek ≈ ek(u1)+ ek(u2)≈max{ek(u1),ek(u2)} ≈max{αk
1 ,αk

2}. (147)

Combining (146b) and (146c) yields αk
i ≈ (#T i

k −#T0)−si , whence

#T 1
k −#T0 ≈ α−k/s1

1 = β kα−k/s2
2 ≈ β k(#T 2

k −#T0), (148)

with β = α−1/s1
1 α1/s2

2 . In view of Lemma 4.3, this gives for the overlay Tk

#Tk−#T0 ≈
{

#T 1
k −#T0, β ≥ 1,

#T 2
k −#T0, β < 1.

(149)

The optimal decay of total error ek corresponds to ek ≈ (#Tk − #T0)−s1 because
s1 ≤ s2. In analyzing the relation of ek to the number of elements #Tk in the overlay
Tk, we distinguish three cases and employ (147), (148), and (149).

2 Case: α1 < α2. We note that α1 < α2 and s1 ≤ s2 yields β ≥ 1. We thus deduce

ek ≈max{αk
1 ,αk

2}= αk
2 = (α2/α1)

kαk
1

≈ (α2/α1)
k (#T 1

k −#T0)−s1 ≈ (α2/α1)
k (#Tk−#T0)−s1 .

Since α2/α1 > 1, the approximation of ek on Tk is suboptimal.
3 Case: α1 ≥ α2 and β < 1. We obtain

ek ≈max{αk
1 ,αk

2}= αk
1 ≈ (#T 1

k −#T0)−s1

≈ β−ks1(#T 2
k −#T0)−s1 ≈ β−ks1(#Tk−#T0)−s1 ,

whence the approximation of the total error on Tk is again suboptimal.
4 Case: α1 ≥ α2 and β ≥ 1. We infer that

ek ≈max{αk
1 ,αk

2}= αk
1 ≈ (#T 1

k −#T0)−s1 ≈ (#Tk−#T0)−s1
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and that Tk exhibits optimal cardinality. This exceptional case corresponds to the
assertion and concludes the proof. '(

We learn from Lemma 9.7 that separate marking requires a critical choice of
parameters θi to retain optimal error decay with respect to the total error ek. In
light of Lemma 9.7, we could identify the AFEM estimator Ek with the error ek(u1)
and the AFEM oscillation osck with the error ek(u2). We observe that osck ≤ Ek

combined with (146b) implies that α2 ≤ α1 and that osck is generically of higher
order than Ek, thereby yielding s1 < s2.

We wonder whether or not the optimality condition α1 ≤ αs1/s2
2 is valid. Note

that αs1/s2
2 increases as the gap between s1 and s2 increases. Since the oscillation

reduction estimate of [52] reveals that α2 increases as θosc decreases, we see that
separate marking may be optimal for a wide range of marking parameters θest,θosc;
this is confirmed by the numerical experiments in Sect. 9.4.1 even though it is un-
clear whether Ek and osck satisfy (146). However, choosing marking parameters
θest,θosc is rather tricky in practice because neither the explicit dependence of aver-
age reduction rates α1,α2 on θest,θosc nor the optimal exponents s1,s2 are known.
In contrast to [52, 53, 48], the standard AFEM of Chap. 8 marks solely according to
the estimator Ek(Uk,Tk) and thus avoids separate marking.

9.5 Problems

Problem 9.1. Show that (v, f ,AAA)∈As if and only there exists a constantΛ > 0 such
that for all ε > 0 there exist Tε ≥T0 conforming and Vε ∈ V(Tε) such that

|||v−Vε |||2Ω +osc2
Tε ≤ ε2 and #Tε −#T0 ≤Λ 1/s ε−1/s;

in this case |v, f ,AAA|s≤Λ . Hint: Let Tε be minimal for |||v−Vε |||2Ω +osc2
Tε
≤ ε2. This

means that for all T ∈ T such that #T = #Tε −1 we have |||v−Vε |||2Ω +osc2
Tε

> ε .

Problem 9.2. Prove Lemma 9.4: if T ,T∗ ∈T satisfy T∗ ≥T , R := RT→T∗ is the
refined set to go from T to T∗, and U ∈V, U∗ ∈V∗ are the corresponding Galerkin
solutions, then

|||U∗ −U |||2Ω ≤C1 E 2
T (U,R).

To this end, write the equation fulfilled by U∗ −U ∈ V∗ and use as a test function
the local quasi-interpolant IT (U∗ −U) of U∗ −U introduced in Proposition 5.1(b)
and compare with Remark 5.5.

Problem 9.3. Trace the dependence as θ → θ∗ and s→ 0 in Lemma 9.6 and Theo-
rem 9.1.

Problem 9.4. Let d = 2 and n = 1. Let f be piecewise W 1
1 over the initial mesh T0,

namely f ∈W 1
1 (Ω ;T0). Show that
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inf
T ∈TN

‖hT ( f −P0 f )‖L2(Ω) � ‖ f‖W 1
1 (Ω ;T0)N

−1.

This shows the same decay rate of data oscillation as in Remark 9.1 but with weaker
regularity.
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7. Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional
boundary value problems. Numer. Math. 44, 75–102 (1984)
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11. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen
22(4), 751–756 (2003)

12. Beck, R., Hiptmair, R., Hoppe, R.H., Wohlmuth, B.: Residual based a posteriori error estima-
tors for eddy current computation. Math. Model. Numer. Anal. 34(1), 159–182 (2000)

13. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates.
Numer. Math. 97, 219–268 (2004)

14. Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive meth-
ods. Serdica Math. J. 28(4), 391–416 (2002). Dedicated to the memory of Vassil Popov on the
occasion of his 60th birthday

15. Braess, D.: Finite Elements. Theory, fast solvers, and applications in solid mechanics, 2nd
edition. Cambridge University Press (2001)

16. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer Texts
in Applied Mathematics 15 (2008)

17. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising
from lagrange multipliers. R.A.I.R.O. Anal. Numer. R2, T 129–151 (1974)

18. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Compu-
tational Mathematics 15 (1991)

19. Carroll, R., Duff, G., Friberg, J., Gobert, J., Grisvard, P., Nečas, J., Seeley, R.: Equations
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44. Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J.
Comput. Appl. Math. 55, 275–288 (1994)

45. Lax, P., Milgram, A.: Parabolic equations. Ann. Math. Stud. 33, 167–190 (1954)
46. Liu, A., Joe, B.: Quality local refinement of tetrahedral meshes based on bisection. SIAM J.

Sci. Comput. 16, 1269–1291 (1995)
47. Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection.

SIAM J. Sci. Comput. 16, 210–227 (1995)



Theory of adaptive finite element methods: An introduction 541

48. Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general
second order linear elliptic PDEs. SIAM J. Numer. Anal. 43(5), 1803–1827 (2005)

49. Mitchell, W.F.: Unified multilevel adaptive finite element methods for elliptic problems. Ph.D.
thesis, Department of Computer Science, University of Illinois, Urbana (1988)

50. Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM
Trans. Math. Softw. 15, 326–347 (1989)

51. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Sci-
entific Computation. Oxford University Press. xiv, 450 p. (2003)

52. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM.
SIAM J. Numer. Anal. 38, 466–488 (2000)

53. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods.
SIAM Review 44, 631–658 (2002)

54. Morin, P., Nochetto, R.H., Siebert, K.G.: Local problems on stars: A posteriori error estima-
tors, convergence, and performance. Math. Comp. 72, 1067–1097 (2003)

55. Morin, P., Siebert, K.G., Veeser, A.: A basic convergence result for conforming adaptive finite
elements. Math. Models Methods Appl. 18 (2008) 18, 707–737 (2008)
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Adaptive wavelet methods for solving operator
equations: An overview

Rob Stevenson

Abstract In [Math. Comp, 70 (2001), 27–75] and [Found. Comput. Math., 2(3)
(2002), 203–245], Cohen, Dahmen and DeVore introduced adaptive wavelet meth-
ods for solving operator equations. These papers meant a break-through in the field,
because their adaptive methods were not only proven to converge, but also with a
rate better than that of their non-adaptive counterparts in cases where the latter meth-
ods converge with a reduced rate due a lacking regularity of the solution. Until then,
adaptive methods were usually assumed to converge via a saturation assumption. An
exception was given by the work of Dörfler in [SIAM J. Numer. Anal., 33 (1996),
1106–1124], where an adaptive finite element method was proven to converge, with
no rate though.

This work contains a complete analysis of the methods from the aforementioned
two papers of Cohen, Dahmen and DeVore. Furthermore, we give an overview over
the subsequent developments in the field of adaptive wavelet methods. This includes
a precise analysis of the near-sparsity of an operator in wavelet coordinates needed
to obtain optimal computational complexity; the avoidance of coarsening; quan-
titative improvements of the algorithms; their generalization to frames; and their
application with tensor product wavelet bases which give dimension independent
rates.

1 Introduction

1.1 Non-adaptive methods

In this survey, we discuss optimally converging adaptive wavelet methods for solv-
ing well-posed linear operator equations
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Bu = f .

Such methods were introduced by Cohen, Dahmen and DeVore in[CDD01, CDD02].
For wavelet methods in general for solving operator equations, we refer to [Dah97,
Coh03, Urb09].

We assume that B is a boundedly invertible linear operator between X and
Y ′, where X and Y are Hilbert spaces. As typical examples, we have in mind
linear partial differential or singular integral equations, in which case X and Y
are Sobolev spaces or, for non-scalar equations, products of such spaces. We assume
that we have Riesz bases ΨX = {ψX

λ : λ ∈ ∇} and ΨY = {ψY
λ : λ ∈ ∇} for X

and Y available, which are of wavelet type. In most applications, X and Y and
ΨX andΨY will be equal.

The adaptive wavelet methodology has been extended to non-linear problems,
see [CDD03a, DSX00a, CDD03b, CU05, BDS07, BU08]. Such problems, however,
will not be discussed in this paper.

A standard non-adaptive numerical (wavelet) method for solving Bu = f consists
of selecting aΛ from a fixed sequenceΛ0 ⊂Λ1 ⊂ ·· · with ∪iΛi =∇, and computing
a (quasi-) best approximation uΛ to u from span{ψX

λ : λ ∈Λ}. The standard choice
for Λi is the set of all wavelet indices λ with “level” up to i, so that span{ψX

λ : λ ∈
Λi} is equal to the span of all “scaling functions” on level i. The counterpart of this
wavelet method in a finite element setting is the computation of the finite element
approximation with respect to an i times uniformly refined initial mesh.

Associated to X andΨX , there exists a parameter

smax > 0

such that for a suitable choice of (Λi)i, for all u ∈X that are sufficiently smooth

‖u−uΛi‖X � (#Λi)−smax ,

where this rate smax cannot be improved by imposing additional smoothness condi-
tions or by another selection of (Λi)i.

For completeness, here and in the remainder of this work, with C � D we will
mean that C can be bounded by a multiple of D, independently of parameters on
which C and D may depend. Obviously, C � D is defined as D � C, and C � D as
C � D and C � D.

Remark 1.1. There exist u ∈X for which a rate better than smax can be realized.
Indeed, if u happens to have a finite representation in ΨX , or if it is exceptionally
close to such a function, then with a suitable choice of (Λi)i any rate can be realized.
Since such cases are exceptional, we may ignore them in the further considerations.

Typically, the parameter smax is a function of the order of the wavelet basisΨX ,
the order of smoothness that is measured in the (Sobolev) space X , and the dimen-
sion of the underlying domain.
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Example 1.1. Let X = Hm(Ω) where Ω is a bounded domain in R
n, and let ΨX

be a standard wavelet basis of order d > m. Then

smax =
d−m

n
,

and with Λi being the set of all wavelet indices λ with levels up to i, this rate smax is
realized for u ∈ Hd(Ω). More generally, for s ∈ (0,smax] and u ∈ Hsn+m(Ω), a rate
s is realized. This result is sharp in the sense that for ε > 0, there exists no choice
(Λi)i such that the rate s is realized for all u ∈ Hsn+m−ε(Ω).

1.2 Adaptive methods

Even for smooth right-hand sides f , in many applications the smoothness conditions
on u to realize the optimal rate smax with the standard choice of (Λi)i are not fulfilled.
Typical examples are boundary value problems on non-smooth domains, where cor-
ners, edges etc. induce singularities in the solution. For simple model examples, the
precise knowledge of these singularities enables one to select a sequence (Λi)i such
that the optimal rate smax is retrieved, assuming f is sufficiently smooth. Such a se-
quence (Λi)i involves local refinements towards the boundary, i.e., the addition of
extra wavelets with supports near the boundary. For more general problems, how-
ever, such an a priori selection of (Λi)i is not feasible.

The topic of this work are adaptive (wavelet) methods. With these methods, the
expansion of Λi to Λi+1 is made based on information provided by uΛi . In this way,
the sequences (Λi)i and (uΛi)i depend (non-linearly) on u.

The method from [CDD01] is similar to an adaptive finite element method in
the sense that information from an a posteriori error estimator is used to guide the
expansion of Λi to Λi+1 such that the error is reduced, at the expense of a (quasi-)
minimal increase in the cardinality.

The idea behind the method from [CDD02] is the application of some iterative
method to construct (Λi)i such that (uΛi)i converges (linearly) to u. Here a (quasi-)
optimal balance between support sizes and accuracy is realized by, after each fixed
number of iterations, removing small coefficients from the current approximation, a
process known as coarsening.

The key to the development of adaptive wavelet methods is the fact that for a large
class of operators B, its bi-infinite stiffness or system matrix with respect to suitable
wavelet bases is close to a sparse matrix. Here suitable means that the wavelets are
sufficiently smooth and have sufficiently many vanishing moments. Thanks to this
near-sparsity, given an approximation ũ ∈ �0 to u, its generally infinitely supported
residual can be accurately approximated at relatively low cost. This fact allows to
run an iterative scheme to the bi-infinite matrix vector equation, in which residuals
are computed approximately, essentially being the scheme from [CDD02], or to use
the approximate residual as an a posteriori error estimator as in the scheme proposed
in [CDD01].
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1.3 Best N-term approximation and approximation classes

As a benchmark for these adaptive methods, we consider a (quasi-) best possible
choice of (Λi)i depending on u, where we assume to have full knowledge of this
function, and thus of its expansion in the wavelet basisΨX . Given u = u,ΨX :=
∑λ∈∇uλψX

λ and an approximation v = v,ΨX , because ΨX is a Riesz basis, it
holds that

‖u− v‖X � ‖u−v‖, (1)

where ‖·‖ is the norm on �2 = �2(∇) := {v :∇→R :∑λ∈∇ |vλ |2 <∞}. The subspace
of finitely supported v ∈ �2 will be denoted as �0. As a consequence of (1), given a
budget N ∈ N, a (quasi-) best choice for an approximation v = v,ΨX ∈X with
#suppv≤N is to take v to be a best N-term approximation to u, i.e., a vector with at
most N non-zero coefficients that has �2-distance to u not larger than any vector with
support length ≤ N. Obviously, such a best N-term approximation to u, denoted as
uN , coincides with u on those N positions where u has its N largest coefficients in
modulus, and is zero elsewhere. Note that uN is not necessarily unique.

All u whose best N-term approximations converge with rate s > 0 are collected
in the approximation class

A s(= A s
∞) := {u ∈ �2 : ‖u‖A s := sup

ε>0
ε× [min{N ∈ N0 : ‖u−uN‖�2 ≤ ε}]s < ∞}.

(2)
Indeed, one may verify that ‖u‖A s � supN∈N0

(N + 1)s‖u− uN‖, being the com-
monly used definition of the (quasi-) norm on A s. Given u ∈ A s and ε > 0, the
smallest N such that ‖u−uN‖ ≤ ε satisfies

N ≤ ε−1/s‖u‖1/s
A s , (3)

which bound is generally sharp. Since for ε < ‖u‖, the value of N in the definition
of ‖u‖A s is positive, furthermore note that

‖u‖A s ≥ sup
0<ε<‖u‖

ε = ‖u‖.

As discussed in Remark 1.1, for s > smax, the class A s, although not empty, is
not relevant. For any s ∈ (0,smax], the class A s is much larger than the class of
(representations of) functions that can be approximated with rate s for any fixed
choice of (Λi)i.

Example 1.2. In the situation of Example 1.1, with wavelets that are sufficiently
smooth, for s ∈ (0, d−m

n ) and with τ := ( 1
2 + s)−1, (representations of) all func-

tions in the Besov space Bsn+t
τ (Lτ(Ω)) are contained in A s. Coarsely speaking,

Bsn+t
τ (Lτ(Ω)) is the space of all functions having sn + t orders of smoothness in

Lτ(Ω), which space, since τ < 2, is thus (much) larger than Hsn+t(Ω) with an in-
creasing difference with growing s. For details about the relation between approxi-
mation classes and Besov spaces we refer to [DeV98, Coh03]. For several boundary
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value problems, assuming a sufficiently smooth right-hand side f , it has been proved
that the solution u has a much higher regularity in this scale of Besov spaces than in
the scale of Sobolev spaces (Hsn+m(Ω))s, see [DD97, Dah99].

In view of the definition of A s, in particular (3), we will call an adaptive wavelet
method to be (quasi-) optimal if

whenever u has a representation u = u,ΨX with u ∈ A s for some
s∈ (0,smax], then given a tolerance ε > 0, it produces an approximation

v ∈ �0 with ‖u− v‖ ≤ ε and #suppv � ε−1/s‖u‖1/s
A s , at the cost of a

number of arithmetic operations that can be bounded by some absolute
multiple of the same expression.

1.4 Structure of the paper

The remainder of this work is organized as follows: In Sect. 2, we reformulate well-
posed operator equations as bi-infinite matrix vector equations, and give some typi-
cal examples of such operator equations.

In Sect. 3 and 4, we define the adaptive wavelet schemes from [CDD02] and
[CDD01], respectively, and prove their (quasi-) optimality. Note that we reverse the
order in which these schemes were proposed.

The analysis from Sect. 3 and 4 applies under the assumption that the operator
B in wavelet coordinates can be sufficiently well approximated by sparse matrices
that are computable in linear complexity. In Sect. 5, we verify this assumption for a
class of partial differential operators.

In Sect. 6, we discuss the generalization of the adaptive wavelet approach to the
case that instead of Riesz bases we only have frames available. Our motivation will
be that on general non-product domains, the construction of (wavelet) frames is
easier than that of (wavelet) Riesz bases.

Finally, in Sect. 7, the application of tensor product wavelet bases is discussed.
Approximation using such bases does not suffer from the so-called curse of dimen-
sionality. An application of those bases is given by the (quasi-) optimal simultane-
ously space-time adaptive solution of parabolic initial boundary value problems.

1.5 Some properties of the (quasi-) norms ‖ · ‖A s

We end this section by recalling two known properties of the ‖ · ‖A s-norm (cf. e.g.
[DeV98]) that will be used in Sect. 3 and 4. In order to keep the presentation in these
sections self-contained, we include their proofs.

Lemma 1.1. For v ∈A s and w ∈ �0,

‖w‖A s ≤ 2max(‖v‖A s ,(#suppw)s‖v−w‖).
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Proof. For ε ∈ (0,2‖v−w‖], the approximation of w by itself shows that the ex-
pression εNs in the definition of ‖w‖A s is bounded by 2‖v−w‖(#suppw)s.

For ε ≥ 2‖v−w‖, let N be the smallest integer such that ‖v− vN‖ ≤ ε
2 . Then

‖w−vN‖ ≤ ε and εNs = 2 ε
2 Ns ≤ 2‖v‖A s . '(

Lemma 1.2. For s > 0 and with τ := ( 1
2 + s)−1,

‖v‖A s � sup
η>0

η×#{λ ∈ ∇ : |vλ |> η}1/τ , (v ∈A s). (4)

Proof. Let us denote the expression at the right-hand side of (4) as |||v|||A s . Let N
be the smallest integer such that the entries of v−vN are in modulus not larger than
η . Then N ≤ (|||v|||A sη−1)τ , and

‖v−vN‖ ≤
∞

∑
k=0

2−kη
√

#{λ ∈ ∇ : |vλ | ∈ (2−(k+1)η ,2−kη ]}

≤
∞

∑
k=0

2−kη(|||v|||A s 2k+1η−1)τ/2 � η1−τ/2|||v|||τ/2
A s ,

and so ‖v‖A s � supη>0η1−τ/2|||v|||τ/2
A s × ((|||v|||A sη−1)τ)s = |||v|||A s .

To show the other direction, first we note that

‖v−vN‖ ≤ N−s‖v‖A s (v ∈A s,N ≥ 1). (5)

Indeed, if ‖v−vN‖= ‖v−vN−1‖, then vN = vN−1 = v and (5) is valid. Otherwise,
i.e., when ‖v−vN‖< ‖v−vN−1‖, by putting ε := ‖v−vN‖, the definition of ‖·‖A s

shows (5).
With (γN(v))N∈N denoting a non-decreasing re-arrangement of v in modulus,

secondly we note that

sup
N∈N

N1/τ |γN(v)|� ‖v‖A s (v ∈A s). (6)

Indeed, |γ1(v)| ≤ ‖v‖ ≤ ‖v‖A s . For 1≤ k < N,

(N− k)|γN(v)|2 ≤ ∑
k< j≤N

|γ j(v)|2 ≤ ‖v−vk‖2 ≤ k−2s‖v‖2
A s ,

or |γN(v)| ≤min1≤k<N
k−s

(N−k)
1
2
‖v‖A s � N−1/τ‖v‖A s .

Now given N ∈ N0, let η := γN+1(v), then #{λ ∈ ∇ : |vλ |> η}= N. From η �
(N +1)−1/τ‖v‖A s , we arrive at |||v|||A s � supN(N +1)−1/τ‖v‖A s ×N1/τ ≤ ‖v‖A s .

'(
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2 Well-posed linear operator equations

2.1 Reformulation as a bi-infinite matrix vector equation

Let X ,Y be separable (infinite dimensional) Hilbert spaces over R (the complex
case does not impose additional difficulties apart from requiring somewhat more
complicated notations). Let us assume that we have available a Riesz basis ΨX =
{ψX

λ : λ ∈ ∇} for X , meaning that the analysis operator

FX : X ′ → �2 : g �→ [g(ψX
λ )]λ∈∇,

is boundedly invertible. By identifying �2 with its dual, its adjoint F ′
X , known as

the synthesis operator, and defined by g(F ′
X c) = 〈FX g,c〉�2×�2 (g ∈X ′,c ∈ �2),

reads as
F ′

X : �2 →X : c �→ c,ΨX := ∑
λ∈∇

cλψX
λ .

Similarly, let ΨY = {ψY
λ : λ ∈ ∇} be a Riesz basis for Y , with analysis operator

FY and adjoint F ′
Y . For both ΨX and ΨY , we have suitable wavelet bases in

mind. Note that w.l.o.g. we could assume that the index set ∇ is the same for ΨX

andΨY .
Now given an f ∈ Y ′, and a boundedly invertible B ∈L (X ,Y ′), we are inter-

ested in solving the linear operator equation of finding u ∈X such that

Bu = f .

Writing u = sX u, and applying FY to both sides of the equation, we infer that the
problem can equivalently be written as the bi-infinite matrix vector problem

Bu = f, (7)

where f := FY f = [ f (ψY
λ )]λ∈∇ ∈ �2, and the “stiffness” or system matrix

B := FY BF ′
X = [(BψX

μ )(ψY
λ )]λ ,μ∈∇ ∈L (�2, �2)

is boundedly invertible. With 〈·, ·〉 := 〈·, ·〉�2×�2 , for any v, w ∈ �2,

〈Bv,w〉= 〈FY BF ′
X v,w〉= (Bv)(w), (8)

where v = F ′
X v and w = F ′

Y w.
With the Riesz constants

ΛΨX := ‖FX ‖X ′→�2
= sup

0 �=g∈X

‖FX g‖�2

‖g‖X ′
,

λΨX := ‖(FX )−1‖−1
�2→X ′ = inf

0 �=g∈X

‖FX g‖�2

‖g‖X ′
,
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and ΛY and λY defined analogously, and with ‖ · ‖ := ‖ · ‖�2→�2 , obviously it holds
that

‖B‖ ≤ ‖B‖X→Y ′ΛΨX ΛY , (9)

‖B−1‖ ≤ ‖B
−1‖Y ′→X

λΨX λY
. (10)

Remark 2.1. Although not strictly necessary for the remainder of this paper, we
make a few comments about dual bases. The collection

ΨX ′
= (F ′

X FX )−1ΨX

is the Riesz basis for X ′ that is dual toΨX . Indeed, since the corresponding anal-
ysis operator FX ′ reads as (F ′

X )−1, it is boundedly invertible, and so ΨX ′
is a

Riesz basis for X ′. It holds that F ′
X ′FX = I, which, sinceΨX ′

is a basis, implies

that ψX ′
λ (ψX

μ ) = δλμ .

Given a ∇̃⊂ ∇, Q∇̃ : X →X : v �→ ∑λ∈∇̃ ψ
X ′
λ (v)ψX

λ is the biorthogonal pro-

jector onto span{ψX
λ : λ ∈ ∇̃}, i.e., Q2

∇̃ = Q∇̃ and ψX ′
λ vanishes on Im(Id−Q∇̃)

for all λ ∈ ∇̃. We have ‖Q∇̃‖X→X ≤ΛΨX /λΨX , and so

‖v−Q∇̃v‖X ≤ (1+ΛΨX /λΨX ) inf
w∈span{ψX

λ :λ∈∇̃}
‖v−w‖X .

The dual projector Q′∇̃ : X ′ →X ′, that reads as Q′∇̃(g) = ∑λ∈∇̃ g(ψX
λ )ψX ′

λ , has
analogous properties.

If we identify X ′ with X using the Riesz map, then if, using this identifica-
tion,ΨX andΨX ′

are equal, then Q∇̃, being equal to its adjoint, is the orthogonal
projector onto span{ψX

λ : λ ∈ ∇̃}.
Obviously, similar observations can be made for the collectionsΨY and its dual

ΨY ′
.

2.2 Some model examples

We give some examples of partial differential equations or singular integral equa-
tions that are of the form Bu = f with B ∈L (X ,Y ′) boundedly invertible. More
examples can be found in [CDD02, DK05].

2.2.1 Second order elliptic boundary value problems

The variational formulation of a second order elliptic boundary value problem on a
domain Ω ⊂R

n with homogeneous Dirichlet boundary conditions reads as Bu = f ,
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where
(Bu)(v) :=

∫
Ω

A∇u ·∇v+(b ·∇u)v+ cuvdx.

If A ∈ L∞(Ω)n×n, b ∈ L∞(Ω)n, c ∈ L∞(Ω), c ≥ 0 (a.e.), ∇ · b = 0 (a.e.) and, for
some δ > 0, A ≥ δ > 0 (a.e.), then (Bv)(v) ≥ δ |v|2

H1(Ω) � ‖v‖2
H1(Ω) (v ∈ H1

0 (Ω)),

i.e., B is coercive. The Lax-Milgram lemma now shows that with X := H1
0 (Ω),

B : X →X ′ is boundedly invertible.

Remark 2.2. If ∂Ω ∈C2 or Ω is convex, and the coefficients of the differential op-
erator satisfy some mild smoothness conditions, then B : H2(Ω)∩H1

0 (Ω)→ L2(Ω)
is boundedly invertible, e.g., see [Hac92] + references cited there. Since the same
is valid for the adjoint B′, defined by (B′v)(u) = (Bu)(v), we also have that B :
L2(Ω)→ (H2(Ω)∩H1

0 (Ω))′ is boundedly invertible. In view of the possibility to
take X �= Y , we infer that the adaptive wavelet method can be used also to realize
the best possible convergence rate in L2(Ω).

2.2.2 Boundary integral equations

For Ω being some domain in R
3, let Γ := ∂Ω . The Laplace equation on Ω or on

R
3\Ω , with either Dirichlet or Neumann boundary conditions can be reformulated

as a boundary integral equation of type (Bu)(v) :=
∫
Γ Lu(x)v(x)dsx = f (v) (v∈X ),

where either

Lu(x) :=
∫
Γ

u(y)
4π|x− y|dsy, X := H−

1
2 (Γ ), (11)

or

Lu(x) :=±1
2

u(x)+
∫
Γ

(x− y),nyv(y)
4π|x− y|3 dsy, X := L2(Γ ), (12)

or

Lu(x) :=−∂nx

∫
Γ

(x− y),nyv(y)
4π|x− y|3 dsy, X := H

1
2 (Γ )/R. (13)

In all three cases, B : X →X ′ is known to be boundedly invertible.

2.2.3 Stokes equations

The variational formulation of the Stokes equations on a domain Ω ⊂ R
n with ho-

mogeneous Dirichlet boundary conditions reads as

(B(�u, p))(�v,q) :=
∫
Ω
∇�u : ∇�vdx+

∫
Ω

pdiv�vdx+
∫
Ω

qdiv�udx = �f (�v)
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(�v ∈ H1
0 (Ω)n, q ∈ L2,0(Ω)). With X := H1

0 (Ω)n×L2,0(Ω), it is well-known that
B : X →X ′ is boundedly invertible.

2.2.4 Parabolic evolution equations

For some domain Ω ⊂ R
n and T > 0, we consider the parabolic problem

⎧⎨
⎩

(∂tu+∇x ·A∇xu+b ·∇xu+ cu)(t,x) = g(t,x) (t ∈ (0,T ), x ∈Ω),
u(t,x) = 0 (t ∈ (0,T ), x ∈ ∂Ω),
u(0,x) = h(x) (x ∈Ω),

where A ∈ L∞((0,T )×Ω)n×n, b ∈ L∞((0,T )×Ω)n, c ∈ L∞((0,T )×Ω), and, for
some δ > 0, A≥ δ > 0 (a.e.). With

X := L2(0,T )⊗H1
0 (Ω)∩H1(0,T )⊗H−1(Ω)

i.e., X is an intersection of Bochner spaces, and

Y := (L2(0,T )⊗H1
0 (Ω))×L2(Ω),

and assuming that g ∈ L2((0,T );H1
0 (Ω))′ and h ∈ L2(Ω), a variational formulation

of this problem reads as: Find u ∈X such that

(Bu)(v1,v2) :=
∫ T

0

∫
Ω

(∂tu)v1 +A∇xu ·∇xv1 +(b ·∇xu)v1 + cuv1 dxdt +
∫
Ω

u(0, ·)v2 dx

=
∫ T

0

∫
Ω

gv1dxdt +
∫
Ω

hv2 dx ((v1,v2) ∈ Y ).

The operator B : X → Y ′ is boundedly invertible (cf. [SS09], [DL92, Ch.XVIII,
§3], [Wlo82, Ch.IV,§26]).

3 Adaptive wavelet schemes I: Inexact Richardson iteration

3.1 Richardson iteration

Throughout this section, until Sect. 3.4, we will assume that there exists an α ∈ R

such that
‖Id−αB‖< 1, (14)

i.e., we will assume that a properly damped Richardson iteration

u(i+1) = u(i) +α(f−Bu(i))
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applied to (7) converges linearly.

Lemma 3.1. In addition to being boundedly invertible, let B satisfy B = B, > 0.
Then for α ∈ (0,2/‖B‖),

‖Id−αB‖= max(α‖B‖−1,1−α‖B−1‖−1) < 1,

with minimum κ(B)−1
κ(B)+1 when α = 2/(‖B‖+‖B−1‖−1), where κ(B) := ‖B‖‖B−1‖.

Proof. Since B = B,, ‖Id−αB‖= maxλ∈σ(Id−αB) |λ |= maxμ∈σ(B) |1−αμ |, and
from B > 0, we have σ(B) ⊂ [‖B−1‖−1,‖B‖]. Elementary calculations now com-
plete the proof. '(

If, apart from being boundedly invertible between X and Y ′, B is symmet-
ric, i.e., X = Y and (Bv)(w) = (Bw)(v) (v,w ∈ X ), and positive definite, i.e.,
(Bv)(v) > 0 (v ∈X ), then, because of (8), so is B and Lemma 3.1 applies. The
example from Sect.2.2.1 when b = 0, as well as the example from Sect. 2.2.2 in the
cases (11) and (13) fall into this category.

If X = Y and B is bounded and coercive, i.e., for some δ > 0, (Bv)(v)≥ δ‖v‖2
X

(v ∈X ), then (8) and the next lemma show that the properly damped Richardson
iteration is again convergent. An application is given by the example from Sect.2.2.1
for general b ∈ L∞(Ω)n with ∇ ·b = 0 (a.e.).

Lemma 3.2. If, in addition to B being bounded, BS := 1
2 (B + B,) > 0 and has a

bounded inverse, then for α ∈ (0,1/(‖BS‖+‖B−1
S ‖−1)] with α < 2/(‖B−1

S ‖‖B‖),

‖Id−αB‖ ≤
√

1−2α‖B−1
S ‖−1 +α2‖B‖2 < 1.

Proof. As shown in Lemma 3.1, for α ∈ (0,1/(‖BS‖+‖B−1
S ‖−1)], ‖Id−2αBs‖ ≤

1−2α‖B−1
S ‖−1. This shows that

‖Id−αB‖2 = ‖(Id−αB)(Id−αB,)‖
= ‖Id−2αBS +α2BB,‖ ≤ 1−2α‖B−1

S ‖
−1 +α2‖B‖2 < 1,

when α < 2/(‖B−1
S ‖‖B‖).

'(

3.2 Practical scheme

Of course the Richardson iteration cannot performed exactly. Generally the right-
hand side f is infinitely supported, and although B is close to being sparse, generally
so is any column of B. The idea proposed in [CDD02] is to apply Richardson it-
eration with inexact evaluations of the matrix-vector product and of the right-hand
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side f. It is easily seen that with a proper decay of the tolerances for these inexact
evaluations as the iteration proceeds, the perturbed iteration is still linearly conver-
gent. The issues at stake are whether the support lengths of the iterands are, up to a
constant multiple, equal to the generally best possible bounds on the lengths of the
best N-term approximations that give rise to the same error, and whether the com-
putational costs to produce such iterands are bounded by the same expressions. To
ensure these properties, i.e., to ensure (quasi-) optimality of the algorithm, assump-
tions are needed on the cost of the inexact application of B and that of the inexact
evaluation of the right-hand side as a function of the prescribed tolerance.

Definition 3.1. For s̄ > 0, B will be called to be s̄-admissible when we have available
an approximate matrix times vector routine

APPLY[w,ε]→ zε

that, for any ε > 0 and w ∈ �0, yields a zε ∈ �0 with

‖Bw− zε‖ ≤ ε,

and, for any s ∈ (0, s̄],
#suppzε � ε−1/s‖w‖1/s

A s , (15)

where the number of operations used by the call APPLY[w,ε] is bounded by some
absolute multiple of

ε−1/s‖w‖1/s
A s +#suppw+1. (16)

As we will see, in order to guarantee optimality of the inexact Richardson iter-
ation, as well as of the alternative Adaptive Wavelet-Galerkin Method discussed in
Sect. 4, it will be needed that s̄ not less than that s for which the solution u happens
to be in A s. That is, with the best possible rate smax as introduced in Sect. 1.1, it
will be sufficient, and generally necessary, when

s̄≥ smax, (17)

an issue that was somewhat ignored in the early publications on adaptive wavelet
methods. In Sect. 5, we will see that for partial differential operators with suffi-
ciently smooth coefficients and for wavelets that are sufficiently smooth and have
sufficiently many vanishing moments (or, more generally, cancellation properties)
indeed (17) is valid. We include pointers to the literature where it is shown that the
same holds for classes of singular integral operators,

In view of the definition of A s, a consequence of (15) is that B, restricted to �0,
is a bounded mapping from A s to A s for s ∈ (0, s̄]. As shown in [CDD01, Prop.
3.8], we even have:

Proposition 3.1. Let B be s̄-admissible. Then for s∈ (0, s̄], B : A s→A s is bounded,
and for zε := APPLY[w,ε], we have ‖zε‖A s � ‖w‖A s , uniformly in ε .
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Proof. For s∈ (0, s̄], w∈A s and ε > 0, let N ∈N be such that ‖B‖‖w−wN‖≤ ε/2,

and let zε/2 := APPLY[wN ,ε/2]. Then #suppzε/2 � ε−1/s‖wN‖1/s
A s ≤ ε−1/s‖w‖1/s

A s ,
and ‖Bw− zε/2‖ ≤ ε , showing the first statement.

Lemma 1.1 and (15) show that ‖zε‖A s � max(‖Bw‖A s ,‖w‖A s) � ‖w‖A s . '(

The requirement (16) basically means that the cost of producing zε is propor-
tional to its length plus that of w.

Concerning the inexact evaluation of the right-hand side, throughout this paper
we assume availability of the following routine:

RHS[ε]→ fε :
% Input: ε > 0.
% Output: fε ∈ �0 with

‖f− fε‖ ≤ ε and #supp fε � min{N : ‖f− fN‖ ≤ ε},

% taking a number of operations that is bounded by some absolute multiple of
% #supp fε +1.

A realization of RHS generally has to depend on the right-hand side f at hand,
that, however, in contrast to the solution u, is known to the user. Noting that for
∇̃⊂ ∇,

‖f− f|∇̃‖� ‖ f − ∑
λ∈∇̃

f (ψY
λ )ψY ′

λ ‖Y ′ � inf
f̃∈span{ψY ′

λ :λ∈∇̃}
‖ f − f̃‖Y ′

(cf. Remark 2.1), we see that for sufficiently smooth f , RHS is realized by col-
lecting, or more precisely, by approximating using suitable quadrature, the wavelet
coefficients of f up to some suitable level.

Corollary 3.1. Let B be s̄-admissible. If, for some s ∈ (0, s̄], u ∈ A s, then fε :=
RHS[ε] satisfies #supp fε � ε−1/s‖u‖1/s

A s , where the number of operations used by
the call RHS[ε] is bounded by some absolute multiple of

ε−1/s‖u‖1/s
A s +1.

Proof. By the assumptions and Proposition 3.1, we have f ∈ A s, with ‖f‖A s �
‖u‖A s . Now the proof is completed by the definition of A s and the assumptions
made on RHS. '(

Remark 3.1. Recalling that smax is the approximation order of ΨX in X , let s̃max

denote the approximation order ofΨY ′
in Y ′.

The property, shown in Corollary 3.1, that for any u ∈ A s with s ≤ s̄, it holds
that f ∈ A s can only be expected when s̃max ≥ min(s̄,smax). This means that s̄-
admissibility of B with s̄≥ smax requires that s̃max ≥ smax.

In the scalar model situation of X = Y = Hm(Ω) for some domain Ω ⊂ R
n,

and ΨX , ΨX ′
being wavelet collections of order d, d̃, normalized in Hm(Ω) or

(Hm(Ω))′, respectively, it holds that smax = d−m
n and s̃max = d̃+m

n . In this case,
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s̃max≥ smax means that d̃≥ d−2m. For differential- and integral operators, in Sect. 5
we will see that the condition d̃ > d−2m suffices to demonstrate s̄-admissibility of
B for s̄≥ smax.

Remark 3.2. The properties that ‖f− fε‖ ≤ ε and, when u ∈ A s, that #supp fε �
ε−1/s‖u‖1/s

A s , with the cost of producing it being bounded by some absolute multiple

of ε−1/s‖u‖1/s
A s + 1 is all that will be needed about fε := RHS[ε]. Our assumptions

on RHS together with Corollary 3.1 show that these properties hold when B is s̄-
admissible for some s̄≥ smax. The assumption, formulated in the description of the
RHS routine, that we can realize quasi-best N-term approximations for f in linear
complexity is actually stronger than what is needed when s̃max > smax.

Besides APPLY and RHS, the inexact Richardson iteration requires another sub-
routine:

COARSE[w,ε]→ wε :
% Input: w ∈ �0 and ε > 0.
% Output: wε ∈ �0 with

‖w−wε‖ ≤ ε and #suppwε � min{N : ‖w−wN‖ ≤ ε}, (18)

% taking a number of operations that is bounded by an absolute multiple of

#suppw+max
(

log(ε−1‖w‖),1
)
.

An implementation of a routine COARSE with these properties will be given in
Sect. 3.3.

The routine COARSE will be applied after each fixed number of (inexact)
Richardson steps. The idea is to remove small coefficients from the iterands, that,
because they are small, little contribute to the approximation, but, because their pos-
sibly large number, may hamper an optimal balance between accuracy and support
length. Although obviously an application of COARSE generally increases the er-
ror, the following proposition ([Coh03, Th. 4.9.1]) shows that indeed it creates the
aforementioned optimal balance.

Proposition 3.2. Let ζ > 1 and s > 0. Then for any ε > 0, v ∈A s and w ∈ �0 with

‖v−w‖ ≤ ε,

for wζε := COARSE[ζε,w] we have that

#suppwζε � ε−1/s‖v‖1/s
A s , ‖wζε‖A s � ‖v‖A s ,

and ‖v−wζε‖ ≤ (1+ζ )ε .

Proof. The smallest N ∈ N0 with ‖v−vN‖ ≤ (ζ −1)ε satisfies
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N ≤ ((ζ −1)ε)−1/s‖v‖1/s
A s .

From ‖w−vN‖ ≤ ‖w−v‖+‖v−vN‖ ≤ ε+(ζ −1)ε = ζε and (18), it follows that

#suppwζε � N � ε−1/s‖v‖1/s
A s .

The second and last statement follow from Lemma 1.1 and an application of the
triangle inequality, respectively. '(

We are ready to give the inexact Richardson iteration:

Rich[ε,ε0]→ uε :
% Input: ε > 0 and ε0 ≥ ‖u‖.
% Parameters: θ < 1/2, K ∈ N and ρ < 1 such that ‖Id−αB‖ ≤ ρ and 2ρK < θ .

i := 0, u(0) := 0
while εi > ε do

i := i+1
εi := 2ρKεi−1/θ
v(i,0) := u(i−1)

for j = 1, . . . ,K do

v(i, j) := v(i, j−1) +α(RHS[ρ
jεi−1

2αK ]−APPLY[v(i, j−1),
ρ jεi−1
2αK ])

enddo
u(i) := COARSE[(1−θ)εi,v(i,K)]

enddo
uε := u(i)

Theorem 3.1 ([CDD02]). Let ε0 ≥ ‖u‖, and ε > 0, then uε := Rich[ε,ε0] satisfies

‖u−uε‖ ≤ ε . If for some s > 0, u ∈A s, then #suppuε � ε−1/s‖u‖1/s
A s . If, addition-

ally, B is s̄-admissible, s≤ s̄ and ε < ε0 � ‖u‖, then the number of operations used

by the call Rich[ε,ε0] is bounded by an absolute multiple of ε−1/s‖u‖1/s
A s . In other

words, if s̄≥ smax, then the inexact Richardson iteration is (quasi-) optimal.

Proof. For the first statement, it suffices to show that ‖u−u(i)‖ ≤ εi. For i = 0, this
is clearly valid. Now for some i ≥ 1, let ‖u− u(i−1)‖ ≤ εi−1. For 1 ≤ j ≤ K, for

some δ j with ‖δ j‖ ≤ ρ jεi−1
K , we have

u−v(i, j) = (Id−αB)(u−v(i, j−1))+δ j,

and so

u−v(i,K) = (Id−αB)K(u−u(i−1))+
K

∑
j=1

(Id−αB)K− jδ j.

From ‖Id−αB‖ ≤ ρ , we infer that

‖u−v(i,K)‖ ≤ ρKεi−1 +
K

∑
j=1

ρK− j ρ jεi−1

K
= 2ρKεi−1 = θεi, (19)
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and conclude that

‖u−u(i)‖ ≤ θεi +(1−θ)εi = εi

as required.
Now for some s > 0, let u ∈ A s. From (19) and the definition of u(i), Proposi-

tion 3.2 shows that

#suppu(i) � ε−1/s
i ‖u‖1/s

A s , ‖u(i)‖A s � ‖u‖A s ,

which bounds, as we emphasize here, hold uniformly in i. Since εi � εi−1, the first
bound shows the second statement of the theorem.

Now let B is s̄-admissible for some s̄ ≥ s. Since K is fixed, Proposition 3.1
shows that ‖v(i, j)‖A s � ‖u‖A s , uniformly in i and j. The properties from Defini-

tion 3.1, together with Corollary 3.1 show that #suppv(i, j) � ε−1/s
i ‖u‖1/s

A s and that
the cost of computing it from the previous iterand is bounded by an absolute mul-

tiple of ε−1/s
i ‖u‖1/s

A s . For the latter, we have used that by assumption on ε0, 1 �
ε−1/s

0 ‖u‖1/s ≤ ε−1/s
i ‖u‖1/s

A s . Since the cost of the call COARSE[(1−θ)εi,v(i,K)] is
bounded by an absolute multiple of #suppv(i,K) +max(log(((1−θ)εi)−1‖v(i,K)‖,1)
� ε−1/s

i ‖u‖1/s
A s , the proof is completed by using the linear decrease of εi as function

of i. '(

Remark 3.3. Although for any s ∈ (0, s̄], APPLY[·,ε] : A s →A s is bounded, even
uniformly in ε , there is no guarantee that by a repeated application the ‖ · ‖A s

(quasi-) norm of the iterands does not grow beyond any bound. This was the reason
to add coarsening to this inexact Richardson iteration. Numerical experiments have
shown that indeed generally COARSE is needed to ensure optimality of the inexact
Richardson iteration.

3.3 The routines COARSE and APPLY

The obvious implementation of COARSE[w,ε]→ wε would be to order the ele-
ments of w by non-increasing modulus, and then to define wε as the smallest pos-
sible head of w such that the discarded tail has norm not larger than ε . Unfortu-
nately, with M := #suppw, this ordering requires O(M logM) operations, so that
linear complexity cannot be realized. This is the reason that in [CDD01, CDD02]
on many places the suboptimal complexity of the sorting was taken into account
separately. Later, this problem was solved independently by Barinka and Metselaar
in [Bar05, Met02], who proposed to apply an approximate “bucket” sorting:

BUCKETSORT[w,ε]→ (w[p])1≤p≤P :
% Input: w ∈ �0, ε > 0.
% Output: A distribution of the (largest) elements of w over P “buckets”.
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• Let P be the smallest positive integer with 2−P/2‖w‖∞
√

#suppw≤ ε .
• Store the indices of w in one of the P buckets, depending on the modulus of the

corresponding coefficient to be in
(

1√
2
‖w‖∞,‖w‖∞

]
(first bucket),(

1
2‖w‖∞, 1√

2
‖w‖∞
]
, . . . , or

(
2−P/2‖w‖∞,2−(P−1)/2‖w‖∞

]
, and discard them

otherwise.
Let w[p] denote the restriction of w to indices in bucket p.

The number of buckets P is max(1,-2log2(‖w‖∞
√

#suppw/ε).). This number
is chosen so that ‖w−∑P

p=1 w[p]‖ ≤ ε . This means that for the task of finding a
(quasi) minimal Λ such that ‖w−w|Λ‖ ≤ ε , these coefficients can be discarded
anyway. This suggest the following coarsening routine:

COARSE[w,ε]→ wε :
% Input: w ∈ �0, ε > 0.

(w[p])1≤p≤P := BUCKETSORT[w,ε]
Build wε by extracting indices from the buckets, starting with the first bucket and
when it got empty continuing with the second one and so on, and within each
bucket in arbitrary order, until ‖w−wε‖ ≤ ε .

Note that for small ε , the number of buckets can be larger than #suppw. Although
then necessarily some buckets are empty, the computational cost of the call cannot
be bounded on some absolute multiple of #suppw alone. This cost, however, can be
bounded on some absolute multiple of #suppw plus the number of buckets. Further,
since squared coefficients within one bucket differ at most a factor 2, #suppwε is at
most twice as large as the length of the shortest approximation to w within tolerance
ε . We conclude that the above implementation realizes all properties of COARSE
that were mentioned in its description in the previous section (if necessary, consult
[GHS07, Remark 2.3]).

To define a valid APPLY routine, we have to assume that B can be sufficiently
well approximated by computable sparse matrices. We will assume to have available
sequences (e j) j∈N0 ,(c j) j∈N0 ⊂ R, (B( j)) j∈N0 ⊂L (�2, �2), such that

• ‖B−B( j)‖ ≤ e j, lim j→∞ e j = 0,
• the number of non-zeros in each column of B( j), as well as the number of opera-

tions needed to compute them, is bounded by c j,
• B(0) = 0 (and thus ‖B‖ ≤ e0), c0 = 0 and sup j∈N0

c j+1/c j < ∞.

So the faster e j decays as function of c j, the closer is B to a computable sparse
matrix. This motivates the following definition:

Definition 3.2. For s∗ > 0, B will be called to be s∗-computable when for any s < s∗,
sup j e jcs

j < ∞.

By specifying an approximate matrix-vector multiplication routine APPLY, next
we will show that an s∗-computable matrix B is s̄-admissible for any s̄ < s∗.
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In the APPLY routine proposed in [DSS08] and recalled below, for some P suf-
ficiently large w is split into ∑P

p=1 w[p] plus its tail w−∑P
p=1 w[p], after which for

1 ≤ p ≤ P, Bw[p] is approximated by B( jp)w[p], where (usually) jp grows with de-
creasing p. On the tail w−∑P

p=1 w[p], and possibly also on some w[p] with p close to
P, B is simply approximated by the zero operator. So the basic idea is to approximate
columns of B that correspond to large entries in the input vector w more accurately
that those that correspond to entries that are small. This means that APPLY is an
adaptive routine, which depends non-linearly on the input w.

A difference with the corresponding original routine proposed in [CDD01] is that
instead of the splitting of w into buckets, each of them containing all entries of w
with modulus in a certain range, there w was chopped into parts with prescribed
lengths. Secondly, and more importantly, instead of taking as in [CDD01] an a pri-
ori distribution of the accuracies of the approximations of B over the parts, which
distribution was chosen to yield an error below the prescribed tolerance in a worst
case scenario, to enhance its quantitative performance, the current implementation
is based on a minimization of the cost for yielding an error below the tolerance using
a posteriori information.

APPLY[w,ε]→ zε :
% Input: w ∈ �0 and ε > 0.

1. [(w[p])p] := BUCKETSORT[w,ε/(2e0)]

2. Compute the smallest � ∈ N0 with

δ := e0‖w−
�

∑
p=1

w[p]‖ ≤ ε/2.

3. Determine j ∈N
�
0 such that ∑�

p=1 ejp‖w[p]‖ ≤ ε−δ and cjp � cj̃p
(p = 1, . . . , �),

where j̃ ∈ N
�
0 is the solution of

�

∑
p=1

cj̃p
#suppw[p]→min!,

�

∑
p=1

ej̃p
‖w[p]‖ ≤ ε−δ . (20)

4. Compute

zε :=
�

∑
p=1

B(jp)w[p].

In practice, the cost of solving the exact solution (i.e., j = j̃) of the small opti-
mization problem in 3 is neglectable. By using that � = O(| logε|) (see the proof of
Theorem 3.2) below), and by deriving some a priori bounds for ‖j̃‖∞, we expect it
to be possible to prove that these cost are indeed always neglectable compared to
the other cost of the algorithm. Instead of doing so, however, we show how to find
analytically a near optimum in 2 common situations: If for some constants C and D,
c j = C2 j/s∗ and e j = D2− j, so that B is s∗-computable, then
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j̃p = log2

⎛
⎝( ‖w[p]‖

#suppw[p]

) s∗
s∗+1 ∑�

q=1 ‖w[q]‖
1

s∗+1 (#suppw[q])
s∗

1+s∗

(ε−δ )/D

⎞
⎠

is the solution of (20) when minimization is performed over R
�. If for some con-

stants C, D and ω > 0, c j = C j/ω and e j = D2− j, so that B is even ∞-computable,
then

j̃p = log2

(‖w[p]‖∑�
q=1 #suppw[q]

#suppw[p](ε−δ )/D

)

is the solution of (20) when minimization is performed over R
�. Assuming these

j̃p are non-negative, by rounding them up to the nearest value in N0 one obtains a
valid j.

Theorem 3.2. zε := APPLY[w,ε] satisfies ‖Bw− zε‖ ≤ ε . If B is s∗-computable,
then for any s < s∗,

#suppzε � ε−1/s‖w‖1/s
A s , (21)

where the number of operations required by the call is bounded by some absolute
multiple of

ε−1/s‖w‖1/s
A s +#suppw+1. (22)

In other words, B is s̄-admissible for any s̄ < s∗.

Proof. The estimates ‖B‖‖w−∑�
p=1 w[p]‖≤ δ and ∑�

p=1 ‖B−B(jp)‖‖w[p]‖≤ ε−δ
show the first statement.

Let s ∈ (0,s∗) and select s < s1 < s2 < s∗.
As we have seen, the cost of the call BUCKETSORT[w,ε/(2e0)] is bounded

by an absolute multiple of #suppw plus the number of buckets, the latter being not
larger than max(1,-2log2(‖w‖∞

√
#suppw/(ε/(2e0)).), so that the cost of the call

is bounded by an absolute multiple of #suppw+1+ ε−1/s‖w‖1/s
A s .

With τ := ( 1
2 + s)−1, Lemma 1.2 shows that

#suppw[p] ≤ #{λ ∈ ∇ : |wλ |> 2−p/2‖w‖∞}� 2pτ/2‖w‖−τ∞ ‖w‖τA s ,

so that

‖w[p]‖� 2−p/2‖w‖∞
√

#suppw[p] � 2−psτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s .

The proof will be completed once we have shown that there exists some j ∈ N
�
0

with ∑�
p=1 ejp‖w[p]‖ ≤ ε−δ and ∑�

p=1 cjp#suppw[p] � ε−1/s‖w‖1/s
A s . For � = 0 there

is nothing to prove, so we assume that � > 0.
First, we derive an upper bound for � determined in step 2 of APPLY. By defini-

tion of �, we have

ε/2 < e0‖w−
�−1

∑
p=1

w[p]‖= e0

√
∞

∑
p=�

‖w[p]‖2 � e02−�sτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s ,
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or
2�τ/2‖w‖−τ∞ ‖w‖τA s � ε−1/s‖w‖1/s

A s . (23)

Here we used the notation w[p] also to denote the restriction of w to indices in
buckets beyond those that were generated by the call BUCKETSORT[w,ε/(2e0)].

Next, let J ≥ � be defined as the smallest integer such that

�

∑
p=1

2−(J−p)s1τ/2‖w[p]‖ ≤ ε−δ . (24)

In case that J > �, from s1 > s we have

ε/2≤ ε−δ <
�

∑
p=1

2−(J−1−p)s1τ/2‖w[p]‖

<
�

∑
p=1

2−(J−1−p)s1τ/22−psτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s

synthesis � 2−(J−1−�)s1τ/22−�sτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s

≤ 2−(J−1)sτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s ,

or
2Jτ/2‖w‖−τ∞ ‖w‖τA s � ε−1/s‖w‖1/s

A s . (25)

From (23) we see that the upper bound on J given by (25) is also valid when J = �.
Now we select jp as to be the smallest integer such that ejp ≤ 2−(J−p)s1τ/2.

Then (24) shows that indeed ∑�
p=1 ejp‖w[p]‖ ≤ ε − δ . Because of sup j e jc

s2
j < ∞

and sup j c j+1/c j < ∞, we have cjp � cjp−1 � e−1/s2
jp−1 < 2(J−p)(s1/s2)(τ/2). From (25),

we conclude that

�

∑
p=1

cjp #suppw[p] �
�

∑
p=1

2(J−p)(s1/s2)τ/22pτ/2‖w‖−τ∞ ‖w‖τA s

� 2(J−�)(s1/s2)τ/22�τ/2‖w‖−τ∞ ‖w‖τA s

� 2Jτ/2‖w‖−τ∞ ‖w‖τA s � ε−1/s‖w‖1/s
A s ,

which completes the proof. '(

3.4 Non-coercive B

If B is non-coercive, then the Richardson iteration may not converge, and so the
inexact Richardson iteration does not apply. A general applicable remedy is to apply
the inexact Richardson iteration to the normal equations
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B,Bu = B,f.

Clearly, the operator B,B is symmetric, positive definite, and boundedly invertible
with ‖B,B‖ = ‖B‖2 and ‖(B,B)−1‖ = ‖B−1‖2. In order to conclude that the in-
exact Richardson iteration applied to the normal equations is (quasi-) optimal, what
is left to show is that for some s̄ ≥ smax, B,B is s̄-admissible, and that we have a
valid routine for approximating the right-hand side B,f in the sense of Remark 3.2.
Proposition 3.3 from [CDD02, Sect. 7] given below shows that both conditions are
fulfilled when B and B, are s̄-admissible for some s̄≥ smax.

Concerning the latter, from Theorem 3.2, recall that B is s̄-admissible for some
s̄ ≥ smax when it is s∗-computable for some s∗ > smax. The results demonstrating
s∗-computability of B, that will be given in Sect. 5, are symmetric in the sense that
they also show s∗-computability of B, for the same value of s∗.

Proposition 3.3. (a). If B and B, are s̄-admissible, then so is B,B. With the APPLY
routines for B and B, denoted as APPLYB and APPLYBT , respectively, and with
e0 being an upper bound for ‖B‖, a valid APPLY for B,B is given by

[w,ε] �→ zε := APPLYB, [APPLYB[w,ε/(2e0)],ε/2].

(b). For ε > 0, gε := APPLYB, [RHS[ε/(2e0)],ε/2] satisfies ‖B,f− gε‖ ≤ ε .
If B and B, are s̄-admissible, then whenever for some s ∈ (0, s̄], u ∈ A s, it holds

that #suppgε � ε−1/s‖u‖1/s
A s , with the cost of producing it being bounded by some

absolute multiple of ε−1/s‖u‖1/s
A s +1.

Proof. (a).

‖B,Bw−zε‖≤‖B,(Bw−APPLYB[w,ε/(2e0)])‖+ε/2≤‖B‖ε/(2e0)+ε/2≤ ε.

Let s ∈ (0, s̄]. Putting tε := APPLYB[w,ε/(2e0)], from B being s̄-admissible, we
know that

#supp tε � ε−1/s‖w‖1/s
A s ,

and that the cost of producing it is bounded by some absolute multiple of

ε−1/s‖w‖1/s
A s +#suppw+1.

Moreover, Proposition 3.1 shows that ‖tε‖A s � ‖w‖A s , uniformly in ε (and in w).
From B, being s̄-admissible, we know that

#suppzε � ε−1/s‖tε‖1/s
A s � ε−1/s‖w‖1/s

A s ,

and that the cost of producing it from tε is bounded by a constant multiple of

ε−1/s‖tε‖1/s
A s + #supp tε + 1 � ε−1/s‖w‖1/s

A s + 1. We conclude that indeed B,B is
s̄-admissible.

The proof of (b) is similar to that of (a). '(
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3.5 Alternatives for the Richardson iteration

As already appears from Lemma 3.1, the quantitative performance of the approxi-
mate Richardson scheme will depend on the spectral condition number of the matrix
being inverted. In this respect, the approach, for non-coercive B, of applying the in-
exact Richardson iteration to the normal equations, which gives rise to a squared
condition number, might not always be the best possible choice.

For (symmetric) saddle point problems, as the Stokes equations from Sect. 2.2.3,
as alternatives, in [CDD02] it was proposed to apply the inexact Richardson iteration
to the reformulation introduced in [BP88] of the saddle point problem as a symmet-
ric positive definite system, or to the Schur complement system (if necessary after
first switching to the augmented Lagrangian formulation). In the latter case, each it-
eration requires the application of the Schur complement operator, and so in particu-
lar, the solution of an elliptic system. Necessarily, these systems can only be solved
approximately, in which case the resulting scheme is known as the inexact Uzawa
iteration. With the inner elliptic problems being solved with an adaptive wavelet
method, (quasi-) optimality of the overall scheme in the sense of Theorem 3.1 was
demonstrated in [DDU02].

Also in cases where the Richardson scheme applies directly to Bu = f, one may
think of applying a more advanced iterative method. For symmetric and positive
definite B, in [CU05, DFR+07b] it was shown that an approximate Steepest De-
scent method, with appropriate tolerances for the inexact matrix-vector and right-
hand side evaluations, is (quasi-) optimal. Since the asymptotic convergence rate of
the optimally damped Richardson iteration is equal to that of the Steepest Descent
method, the main advantage of the latter scheme lies in the fact that it frees the user
of the task of providing accurate estimates of the extremal eigenvalues of B.

For B being only coercive, instead of the Steepest Descent method, the Minimal
Residual method (see e.g. [Saa03]) might be applied. We envisage that (quasi-) op-
timality of an approximate Minimal Residual method can be proven along the same
lines as for the Steepest Descent method. Since for B being only coercive it is even
less obvious how to choose the damping parameter in the Richardson scheme, the
advantage of the approximate Minimal Residual method is likely even bigger.

Even more advanced schemes than the Steepest Descent or Minimal Residual
method are Krylov subspace methods, like the Conjugate Gradient method for sym-
metric positive definite systems. Clearly, in the infinite dimensional setting, these
schemes can only be applied with inexact evaluations of the residuals. Numerical
results are reported in [BK08]. With a suitable choice of the tolerances for these
inexact evaluations, the approximate Conjugate Gradient method has been shown
to converge ([vS04]). Yet, as far as we know, in the infinite dimensional setting it
has not been proven that there exists a choice of the tolerances such that the result-
ing scheme is not only convergent but also (quasi-) optimal. Indeed, recall that the
tolerances determine the support lengths of the iterands (except immediately after
coarsening), and with that the cost of the algorithm. So in view of this observation,
it is not necessarily true that a faster converging iteration gives rise, when applied
approximately, to a quantitatively better performing adaptive wavelet scheme.
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In the next section, we will study the Adaptive Wavelet-Galerkin Method pro-
posed in [CDD01] and later modified in [GHS07]. As we will see, unlike the meth-
ods we discussed so far, this scheme can not be viewed as an inexact evaluation of
some convergent iterative scheme applied to the bi-infinite matrix vector problem.

4 Adaptive wavelet schemes II: The Adaptive wavelet-Galerkin
method

Throughout this section we will assume that B is symmetric and positive definite,
i.e., B = B, > 0. On �2(∇), we define

||| · ||| := 〈B·, ·〉 1
2 .

Remark 4.1. If B is not symmetric and positive definite, then the scheme presented
here can be applied to the normal equations B,Bu = B,f, meaning that in the fol-
lowing everywhere B should be read as B,B and f as B,f.

For anyΛ ⊂∇, with �2(Λ) we will mean the subspace of v∈ �2(∇) with supports
in Λ . The trivial embedding of �2(Λ) into �2(∇) will be denoted by IΛ , and its
adjoint with respect to 〈·, ·〉, i.e., the operator that replaces coefficients outside Λ by
zeros, will be denoted by PΛ . We set

BΛ := PΛBIΛ .

Using that B is symmetric and positive definite, one verifies that for any Λ ⊆ ∇,

‖B−1
Λ ‖

− 1
2 ‖ · ‖ ≤ ||| · ||| ≤ ‖BΛ‖

1
2 ‖ · ‖ on �2(Λ),

‖B−1
Λ ‖

− 1
2 ||| · ||| ≤‖BΛ · ‖ ≤ ‖BΛ‖

1
2 ||| · ||| on �2(Λ),

as well as ‖BΛ‖ ≤ ‖B‖ and ‖B−1
Λ ‖ ≤ ‖B−1‖, which properties will be used often in

the following.

4.1 The adaptive wavelet-Galerkin method (AWGM) in a idealized
setting

The solution uΛ ∈ �2(Λ) of BΛuΛ = PΛ f is known as the Galerkin approximation
to u from �2(Λ). With respect to ||| · |||, it is the best approximation to u from this
subspace.

The idea of the AWGM is to loop over the following 2 steps: Given Λ ⊂ ∇,
compute the Galerkin approximation uΛ . Enlarge Λ to a set Λ̃ ⊂ ∇ such that for
some constant ρ < 1, |||u−uΛ̃ ||| ≤ ρ|||u−uΛ |||. This loop is similar to the one that
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underlies the Adaptive Finite Element Method (AFEM), where the enlargement ofΛ
corresponds to mesh-refinement. The AFEM is discussed by R. Nochetto in another
chapter of this book.

In the AFEM, a refinement that guarantees error reduction is obtained by com-
puting an a posteriori error estimator, being the square root of the sum of local error
indicators associated to the elements, and by refining those elements that carry the
largest error indicators and whose joint sum can be bounded from below on a con-
stant multiple of the total squared a posteriori error estimator (this is known as the
so-called bulk criterion). The AWGM works according to the same principle, with
the role of the a posteriori error estimator being played by the residual f−BuΛ ,
where for the moment we ignore the fact that this residual cannot be computed ex-
actly.

The next lemma, being [CDD01, Lemma 4.1], shows convergence of the AWGM.
Although in this lemma w can be a general function in �2(Λ), we have in mind it to
be (an approximation to) the Galerkin approximation uΛ .

Lemma 4.1. Let μ ∈ (0,1], w ∈ �2(Λ) and Λ ⊂ Λ̃ ⊂ ∇ such that

‖PΛ̃ (f−Bw)‖ ≥ μ‖f−Bw‖. (26)

Then, for uΛ̃ ∈ �2(Λ̃) being the solution of BΛ̃uΛ̃ = PΛ̃ f, we have

|||u−uΛ̃ ||| ≤ [1−μ2κ(B)−1] 12 |||u−w|||.

Proof. We have

|||uΛ̃ −w||| ≥ ‖B‖− 1
2 ‖B(uΛ̃ −w)‖ ≥ ‖B‖− 1

2 ‖PΛ̃ (f−Bw)‖

≥ ‖B‖− 1
2 μ‖f−Bw‖ ≥ μκ(B)−

1
2 |||u−w|||.

The proof of is completed by using the Galerkin orthogonality

|||u−w|||2 = |||u−uΛ̃ |||
2 + |||uΛ̃ −w|||2. '(

In Lemma 4.1, Λ̃ is some enlargement ofΛ such that the bulk criterion (26) is sat-
isfied. The natural approach is to construct Λ̃ by gathering the indices of the largest
elements in modulus of the residual. In [CDD01], the corresponding practical algo-
rithm –i.e., with the inexact solution of the arising Galerkin systems and the inexact
evaluation of the residuals using the APPLY and RHS routines– was shown to be
(quasi-) optimal by the addition of a recurrent application of COARSE, similar to
the inexact Richardson iteration from Sect. 3.

In the next lemma, being [GHS07, Lemma 2.1], it is shown that when μ is taken
to be sufficiently small, then the cardinality of the expansion Λ̃\Λ can be controlled.
This lemma will be the key to show that the algorithm from [CDD01] without a
recurrent coarsening of the iterands is already (quasi-) optimal (coarsening will still
be used to find the large entries from the approximate residuals). Later, basically the
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same technique was used to show that the standard adaptive finite element method,
so without coarsening, is (quasi-) optimal, see [Ste07].

Lemma 4.2. If, in the situation of Lemma 4.1, μ < κ(B)−
1
2 and Λ̃ ⊃Λ is the small-

est set satisfying (26), then

#(Λ̃\Λ)≤min{N : |||u−uN ||| ≤ [1−μ2κ(B)]
1
2 |||u−w|||}. (27)

Proof. For an N as in the right-hand side of (27), let Λ̆ := Λ
⋃

suppuN . Then, for
the solution of BΛ̆uΛ̆ = PΛ̆ f, we have |||u−uΛ̆ ||| ≤ |||u−uN |||, and so by Galerkin
orthogonality

|||uΛ̆ −w||| ≥ μκ(B)
1
2 |||u−w|||,

giving

‖PΛ̆ (f−Bw)‖= ‖BΛ̆ (uΛ̆ −w)‖ ≥ ‖B−1‖− 1
2 |||uΛ̆ −w|||

≥ ‖B−1‖− 1
2 μκ(B)

1
2 |||u−w||| ≥ μ‖f−Bw‖.

By our assumption on Λ̃ , we conclude that #(Λ̃\Λ)≤ #(Λ̆\Λ)≤ N. '(

Lemmas 4.1 and 4.2 suggest the following routine:

exact-AWGM:
% Parameter: μ ∈ (0,κ(B)−

1
2 ).

Λ0 := /0, uΛ0 := 0,
for i = 1,2, . . . do

find the smallest Λi+1 ⊃Λi with ‖PΛi+1(f−BuΛi)‖ ≥ μ‖f−BuΛi‖
solve BΛi+1 uΛi+1 = PΛi+1f

enddo

Proposition 4.1. For (uΛi)i produced by exact-AWGM, we have

|||u−uΛi ||| ≤ [1−μ2κ(B)−1]i/2|||u|||,

and if for some s > 0, u ∈A s, then

#suppuΛi � ‖u−uΛi−1‖
−1/s‖u‖1/s

A s .

Proof. For 0 ≤ k ≤ i, Lemma 4.1 shows that |||u− uΛi ||| ≤ ρ i−k|||u− uΛk ||| where

ρ := [1−μ2κ(B)−1
] 1

2 , which in particular shows the first statement.

Assuming that u ∈ A s for some s > 0, with σ := [1− μ2κ(B)]
1
2 , Lemma 4.2

shows that
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#(ΛΛΛ k\ΛΛΛ k−1)≤min{N : |||u−uN ||| ≤ σ |||u−uΛk−1 |||}

≤min{N : ‖u−uN‖ ≤ ‖B‖−
1
2σ |||u−uΛk−1 |||}

≤ [‖B‖− 1
2σ |||u−uΛk−1 |||]

−1/s‖u‖1/s
A s ,

by ||| · ||| ≤ ‖B‖ 1
2 ‖ · ‖ and the definition of ‖ · ‖A s .

By combining both estimates, for i ∈ N we have

#suppuΛi ≤ #ΛΛΛ i =
i

∑
k=1

#(ΛΛΛ k\ΛΛΛ k−1)≤ ‖B‖1/2sσ−1/s‖u‖1/s
A s

i

∑
k=1

|||u−uΛk−1 |||
−1/s

≤ ‖B‖1/2sσ−1/s‖u‖1/s
A s |||u−uΛi−1 |||

−1/s
i

∑
k=1

(ρ i−k)1/s

≤ κ(B)1/2s σ−1/s

1−ρ1/s
‖u−uΛi−1‖

−1/s‖u‖1/s
A s , (28)

by ‖ · ‖ ≤ ‖B−1‖ 1
2 ||| · |||. '(

In view of the definition of A s, note that the bound on #suppuΛi derived in
Proposition 4.1 is, up to some constant multiple, the generally best possible one.
That is, not taking into account the computational cost, the routine exact-AWGM
is (quasi-) optimal.

4.2 Practical scheme

In this subsection, we turn exact-AWGM into a practical scheme by

• computing residuals only approximately,
• allowing that for the enlargement Λi+1 of Λi, which satisfies the “bulk criterion”,

#(Λi+1\Λi) is only minimal up to some constant multiple,
• solving the arising Galerkin problems only approximately.

The following proposition extends Lemmas 4.1 and 4.2 to this setting.

Proposition 4.2. Let δ ∈ (0,α), γ > 0 be constants such that μ := α+δ
1−δ < κ(B)−

1
2

and γ < (1−δ )(α−δ )
1+δ κ(B)−1. Given Λ ⊂∇ and w ∈ �2(Λ), let r ∈ �2(∇) be such that

‖f−Bw− r‖ ≤ δ‖r‖. (29)

Let Λ ⊂ Λ̃ ⊂ ∇ be such that
‖PΛ̃ r‖ ≥ α‖r‖ (30)

and such that, up to some absolute multiple, #(Λ̃\Λ) is minimal among all such Λ̃ .
Let w̃ ∈ �2(Λ̃) be an approximation to uΛ̃ such that
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‖PΛ̃ f−BΛ̃ w̃‖ ≤ γ‖r‖. (31)

Then it holds that1

|||u− w̃||| ≤ ρ|||u−w|||, (32)

where ρ :=
[
1−
(α−δ

1+δ
)2κ(B)−1 + γ2

(1−δ )2 κ(B)
] 1

2 < 1, and

#(Λ̃\Λ) � min{N : |||u−uN ||| ≤ [1−μ2κ(B)]
1
2 |||u−w|||}.

Proof. From ‖f−Bw‖ ≤ (1+δ )‖r‖ and ‖PΛ̃ r‖ ≤ ‖PΛ̃ (f−Bw)‖+δ‖r‖, we have
‖PΛ̃ (f−Bw)‖ ≥ (α−δ )‖r‖ ≥ α−δ

1+δ ‖f−Bw‖, so that Lemma 4.1 shows that

|||u−uΛ̃ ||| ≤ [1− (α−δ1+δ )2κ(B)−1]
1
2 |||u−w|||. (33)

We have

|||uΛ̃ − w̃||| ≤ ‖B−1‖ 1
2 ‖PΛ̃ f−BΛ̃ w̃‖ ≤ ‖B−1‖ 1

2 γ‖r‖

≤ ‖B−1‖ 1
2 γ

1−δ ‖f−Bw‖ ≤ γ
1−δ κ(B)

1
2 |||u−w|||.

The last two displayed formulas together with |||u−w̃|||2 = |||u−uΛ̃ |||2 + |||uΛ̃−w̃|||2
show (32). The condition on γ shows that ρ < 1.

Let Λ ⊂ Λ̂ ⊂ ∇ be the smallest set with

‖PΛ̂ (f−Bw)‖ ≥ μ‖f−Bw‖.

Then

μ‖r‖ ≤ μ‖f−Bw‖+μδ‖r‖ ≤ ‖PΛ̂ (f−Bw)‖+μδ‖r‖ ≤ ‖PΛ̂ r‖+(1+μ)δ‖r‖

or ‖PΛ̂ r‖ ≥ (μ− (1+μ)δ )‖r‖= α‖r‖. We conclude that

#(Λ̃\Λ) � #(Λ̂\Λ)≤min{N : |||u−uN ||| ≤ [1−μ2κ(B)]
1
2 |||u−w|||},

where the last inequality follows from Lemma 4.2 using that μ < κ(B)−
1
2 . '(

The selection of a Λ̃ as in (30) will be performed by a call of the following
routine.

EXPAND[Λ ,r,α]→ Λ̃ :
% Input: Λ ⊂ ∇, #Λ < ∞, r ∈ �0, α ∈ [0,1].

r̄ := COARSE[r|∇\Λ ,
√

1−α2‖r‖]
Λ̃ :=Λ ∪ supp r̄

1 Under the milder condition γ < 1
3 (α−δ )κ(B)−

1
2 , a more complicated proof ([Gan06, Proposi-

tion 3.2.2] or [GHS07, Theorem 2.7]) shows (32) for another ρ < 1.
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Proposition 4.3. Λ̃ := EXPAND[Λ ,r,α] satisfies Λ̃ ⊃Λ , ‖PΛ̃ r‖ ≥ α‖r‖, and

#(Λ̃\Λ) � min{#(Λ̆\Λ) : ‖PΛ̆ r‖ ≥ α‖r‖,Λ ⊂ Λ̆ ⊂ ∇}.

The number of operations used by the call EXPAND[Λ ,r,α] is bounded by some
absolute multiple of #Λ +#suppr+1.

Proof. We have ‖r−PΛ̃ r‖ = ‖r|∇\Λ − r̄‖ ≤
√

1−α2‖r‖, which is equivalent to
‖PΛ̃ r‖ ≥ α‖r‖. The properties of COARSE imply the statement about the work as
well as that

#(Λ̃\Λ) = #supp r̄ � min{#Λ̄ : Λ̄ ⊂ ∇\Λ , ‖r|∇\Λ −PΛ̄ (r|∇\Λ )‖ ≤
√

1−α2‖r‖}
= min{#Λ̄ : Λ̄ ⊂ ∇\Λ , ‖PΛ∪Λ̄r‖ ≥ α‖r‖},

which completes the proof. '(

The arising Galerkin systems will be solved approximately by the application
of an iterative scheme. Since the (approximate) solution of the previous Galerkin
system will be used as the starting vector, a uniformly bounded number of iterations
will suffice. Each iteration requires the application of BΛ . Although this matrix is
close to being sparse, generally its number of non-zero entries is not of the order of
#Λ . Therefore, the iterative scheme will be executed only approximately. Below we
consider the simplest option of applying an inexact Richardson iteration.

GALERKIN[Λ , w̄Λ ,δ ,ε]→ wΛ :
% Input: δ ,ε > 0, Λ ⊂ ∇, #∇ < ∞, w̄Λ ∈ �2(Λ) with ‖PΛ f−BΛ w̄Λ‖ ≤ δ .
% Parameters: ρ,α,e0 ∈ R, K ∈ N such that ‖Id−αB‖ ≤ ρ < 1, 2ρK ≤ ε/δ ,
% and ‖B‖ ≤ e0.

v(0) := w̄Λ
for i = 1, . . . ,K, do

v(i) := v(i−1) +αPΛ (RHS[ ρ iδ
2αKe0

]−APPLY[v(i−1), ρ iδ
2αKe0

])
enddo
wΛ := v(K)

The following proposition is essentially [CDD01, Prop. 6.7].

Proposition 4.4. wΛ := GALERKIN[Λ , w̄Λ ,δ ,ε] satisfies ‖PΛ f−BΛwΛ‖≤ ε . Let
B be s̄-admissible, and for some s ∈ (0, s̄], u ∈A s. Then the cost of the call can be
bounded on some absolute multiple of

η(δ/ε)(δ−1/s‖u‖1/s
A s +δ−1/s‖w̄Λ‖1/s

A s +#Λ +1),

where η : (0,∞)→ [1,∞) is some non-decreasing function.

Proof. For some δ1, . . . ,δK ∈ �2(Λ) with ‖δi‖ ≤ ρ iδ
Ke0

,
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‖PΛ f−BΛv(K)‖= ‖(Id−αBΛ )K(PΛ f−BΛv(0))+BΛ

K

∑
i=1

(Id−αBΛ )K−iδi‖

≤ ρKδ + e0

K

∑
i=1

ρK−i ρ iδ
Ke0

≤ ε

(cf. proof of Theorem 3.1). The statement about the cost follows from the s̄-
admissibility of B and the assumptions on RHS, in particular (16), Corollary 3.1
and Proposition 3.1, as well as from the fact that K < ∞ depending on δ/ε . '(

Remark 4.2. The above implementation of GALERKIN can be improved. Instead
of computing PΛRHS[η ] for a decreasing sequence of η’s, it is better to compute
once an approximation f̄Λ ∈ �2(Λ) with ‖PΛ f− f̄Λ‖ ≤ η for the final accuracy η
(actually, then an even less accurate approximation suffices). Further, instead of ap-
proximating the application of BΛ by using the APPLY routine and by afterwards
restricting the result to Λ , obviously it is better not to compute any entry with in-
dex outside Λ . Also with these improvements, the routine remains quantitatively
demanding because of the relatively expensive adaptive approximate matrix vector
applications.

A more efficient Galerkin routine can be constructed using a defect correction
principle. Let B̃Λ be a fixed sparse matrix with ‖Id−BΛ B̃−1

Λ ‖ ≤ ε/δ . Existence of
such a matrix follows by assuming s∗-computability of B. Then

wΛ := w̄Λ + B̃−1
Λ (PΛ f−BΛ w̄Λ )

satisfies

‖PΛ f−BΛwΛ‖= ‖(Id−BΛ B̃−1
Λ )(PΛ f−BΛ w̄Λ )‖ ≤ ε

δ δ = ε.

By taking B̃Λ to be somewhat more accurate, say with ‖Id−BΛ B̃−1
Λ ‖ ≤ ε/(2δ ),

room is left to compute the initial defect PΛ f−BΛ w̄Λ approximately, and to ap-
proximate the application of B̃−1

Λ . The first task requires single calls of RHS and
APPLY, and for the second task a few iterations of a fast iterative method can be
applied, e.g., the conjugate residual method. Details can be found in [GHS07].

We are ready to formulate the practical AWGM. It works according to the princi-
ples outlined in Proposition 4.2. The tasks (30) and (31) are realized by calls of the
routines EXPAND and GALERKIN, respectively. The first task (29) amounts to
finding an approximation of the residual of the current iterand with a relative error
not larger than δ . This will be implemented by initially approximating this residual
with an absolute tolerance equal to some multiple θ of the norm of the previous
residual. If this tolerance turns out to be too large, in the sense that it is not less than
δ times the norm of the so computed residual, in an inner loop it is halved until the
criterion is met.

In view of obtaining a quantitatively efficient implementation, one would like to
choose this θ not too small, but sufficiently small such that “usually” one residual
computation suffices. It can, however, never be excluded that by sheer chance at an
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early stage the (favourable) situation is encountered that the current iterand u(i) is
equal or exceptionally close to the solution u . Then the algorithm will continue
halving the tolerance until the norm of the computed residual plus tolerance is not
larger than the target ε , showing that the true residual is not larger than ε . Since
in this case there is no point in expanding the index set or computing the Galerkin
solution more accurately, this behaviour of the algorithm is desired.

AWGM[ε,ε−1]→ uε :
% Input: ε,ε−1 > 0.
% Parameters: α,δ ,γ,θ such that δ ∈ (0,α), α+δ

1−δ < κ(B)−
1
2 , θ > 0 and

% γ ∈
(
0, (1−δ )(α−δ )

1+δ κ(B)−1
)
.

i := 0, u(i) := 0, Λi := /0
do ζ := θεi−1

do ζ := ζ/2, r(i) := RHS[ζ/2]−APPLY[u(i),ζ/2]
if εi := ‖r(i)‖+ζ ≤ ε then uε := u(i) stop endif

until ζ ≤ δ‖r(i)‖
Λi+1 := EXPAND[Λi,r(i),α]
u(i+1) := GALERKIN[Λi+1,u(i),εi,γ‖r(i)‖]
i := i+1

enddo

Theorem 4.1 ([GHS07]). Let ε−1,ε > 0, then for uε := AWGM[ε,ε−1] we have

that ‖f−Buε‖ ≤ ε . If for some s > 0, u ∈A s, then #suppuε � ε−1/s‖u‖1/s
A s . If, ad-

ditionally, B is s̄-admissible, s≤ s̄ and ε � ε−1 � ‖f‖, then the number of operations

used by the call AWGM[ε,ε0] is bounded by an absolute multiple of ε−1/s‖u‖1/s
A s .

In other words, if s̄≥ smax, then this AWGM is (quasi-) optimal.

Proof. By definition of εi, we have

‖f−Bu(i)‖ ≤ εi, (34)

so that εi is a valid parameter for the later call GALERKIN[Λi+1,u(i),εi,γ‖r(i)‖].
Since ζ is halved in each iteration, if the inner loop does not terminate because

of ζ ≤ δ‖r(i)‖, then at some point it will terminate because of εi ≤ ε .
If the inner loop terminates because of ζ ≤ δ‖r(i)‖, then, because of δ < 1,

εi � ‖r(i)‖� ‖f−Bu(i)‖ (35)

and ‖f−Bu(i)− r(i)‖ ≤ ζ ≤ δ‖r(i)‖. Since after the subsequent calls of EXPAND
and GALERKIN, ‖PΛi+1r(i)‖ ≥ α‖r(i)‖ and ‖PΛi+1 f(i)−BΛi+1 u(i+1)‖ ≤ γ‖r(i)‖, an
application of Proposition 4.2 shows that, with ρ < 1 from that proposition,

|||u−u(i+1)||| ≤ ρ|||u−u(i)||| (36)

and
#(Λi+1\Λi) � min{N : |||u−uN ||| ≤ [1−μ2κ(B)]

1
2 |||u−u(i)|||}. (37)
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Because εi = ‖r(i)‖+ ζ ≤ ‖f−Bu(i)‖+ 2ζ ≤ ‖f−Bu(i)‖+ 2θεi−1, from (35)
and (36), we conclude that eventually the inner loop, and thus the algorithm, will
terminate because of εi ≤ ε . By (34), this proves the first statement of the theorem.

Fully analogous to the proof of Proposition 4.1, from (36) and (37) we conclude
that if for some s > 0, u ∈A s, then

#suppu(i+1) ≤ #Λi+1 � ‖u−u(i)‖−1/s‖u‖1/s
A s . (38)

With K denoting the value of i at termination, i.e., uε = u(K), if K = 0 then
#suppuε = 0, and the second statement of the theorem is obviously true. If K > 0,
then this second statement follows from ε < εK−1 � ‖u−u(K−1)‖ and (38). Together
with Lemma 1.1, the same arguments also show that

‖u(i)‖A s � ‖u‖A s . (39)

Now let B be s̄-admissible for some s̄ ≥ s, and let ε � ε−1 � ‖f‖. By definition
of s̄-admissibility and Corollary 3.1, with Ci denoting the cost of the evaluation of
r(i) := RHS[ζ/2]−APPLY[u(i),ζ/2], we have

#suppr(i) � Ci � (ζ/2)−1/s‖u‖1/s
A s +1+(ζ/2)−1/s‖u(i)‖1/s

A s +#suppu(i) +1

� ζ−1/s‖u‖1/s
A s + ε−1/s

i−1 ‖u‖
1/s
A s , (40)

by (39) and, for i > 1, by (38), (35) and εi−1 � ε0 � ‖f‖ � ‖u‖A s (and thus 1 �
ε−1/s

i−1 ‖u‖
1/s
A s ), and, for i = 0, by #suppu(0) = 0 and ε−1 � ‖f‖� ‖u‖A s .

To proceed, we claim that for 0≤ i < K, at termination of the inner loop, ζ � εi.
Indeed, if the inner loop terminates at the first evaluation of the until-clause,
then ζ = θεi−1 � εi, the latter for i = 0 being valid by assumption. Otherwise, at
the previous evaluation of the until-clause, we had ‖f−Bu(i)‖ ≤ ‖r(i)‖+ ζ <
(δ−1 + 1)ζ . Since this ζ is twice the final one, (35) shows that the latter satisfies
ζ � εi.

From the above claim, (40) and the successive halvings of ζ starting from ζ =
θεi−1, we conclude that for 0≤ i < K, at termination of the inner loop

#suppr(i) � C̄i � ε−1/s
i ‖u‖1/s

A s ,

where C̄i denotes the total cost of the inner loop that produced this r(i).
Propositions 4.3 and 4.4 show that the cost of subsequent calls of EXPAND

and GALERKIN is bounded by an absolute multiple of #Λi + ε−1/s
i ‖u‖1/s

A s �
ε−1/s

i ‖u‖1/s
A s and, since εi � γ‖r(i)‖, of #Λi+1 � ε−1/s

i ‖u‖1/s
A s , respectively.

From εi � ρ i− jε j (i≤ j), being a consequence of (36) and (35), and, when K > 0,
εK−1 > ε , we may conclude that the total cost of the call AWGM[ε,ε0] is bounded

by an absolute multiple of ε−1/s‖u‖1/s
A s , once we have shown that the cost of the

final run of the inner loop can be bounded an absolute multiple of this expression.
For this goal, it suffices to show that at termination of this last inner loop, ζ � ε .
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If this inner loop terminates by the first evaluation of the if-clause, then
ζ = θεK−1 � ε , for K = 0 by assumption. Otherwise, the previous value of ζ ,
being twice the final one, satisfies both ‖r(i)‖+ ζ > ε and ζ ≥ δ‖r(i)‖, and so
(1+δ−1)ζ > ε , with which the proof is completed. '(

4.3 Discussion

As we have seen, both the adaptive inexact Richardson scheme Rich from Sect. 3
and the Adaptive Wavelet Galerkin Method AWGM discussed in the present sec-
tion are (quasi-) optimal. Practical experiments, see [GHS07] and [DHS07, Sect. 4],
show that the AWGM is quantitatively more efficient. One reason could be the need
for coarsening in Rich. Indeed, without coarsening generally this algorithm turns
out not to be (quasi-) optimal. This means that in between two coarsening steps,
the error as function of the support size does not decay with the optimal rate. As
a consequence, in each coarsening step many previously computed coefficients are
thrown away. Another possible explanation is that in both algorithms, the expansion
of the current wavelet index set via an approximate residual computation is the most
costly part. In view of this, given such an index set, it seems most efficient to com-
pute a (near) best approximation from the span of the corresponding wavelets, being
the Galerkin approach.

Apart from the aforementioned references, practical experiments with (variants
of) the AWGM can be found in [BBC+01, Bar01, BK06, BK08]. Numerical re-
sults with (variants of) the adaptive inexact Richardson scheme applied to the Schur
complement of the Stokes equations (Uzawa scheme) can be found in [DUV02].

5 The approximation of operators in wavelet coordinates by
computable sparse matrices

From the main theorems 3.1 and 4.1, recall that the inexact Richardson iteration
Rich and the Adaptive Wavelet Galerkin Method AWGM applied to Bu = f are
(quasi-) optimal under the condition that B is s̄-admissible (cf. Definition 3.1) for
some s̄ ≥ smax. Consequently, if either of the adaptive wavelet schemes is applied
to the normal equations, both B and B, have to be s̄-admissible for some s̄≥ smax.
With B being a boundedly invertible operator between X and Y ′, recall that smax

is the generally best possible approximation rate from spanΨX of a function in
X . Furthermore, from Theorem 3.2, recall that if B is s∗-computable (cf. Defini-
tion 3.2), then it is s̄-admissible for any s̄ < s∗. In view of these results, our task is
therefore to show s∗-computability of B and possibly B, for some s∗ > smax.

The question whether B (and B,) is s∗-computable for some s∗ > smax depends
on the operator B and the wavelets at hand. So far, apart from the boundedly in-
vertibility of B, we only assumed thatΨX andΨY are Riesz bases for X and Y ,
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respectively. In this section, we study the issue of s∗-computability for B resulting
from a scalar PDE or a system of PDE’s on a domain Ω ⊂ R

n, and for ΨX and
ΨY being collections of commonly applied, locally supported, piecewise smooth
wavelets. In Section 7, we comment on the case of ΨX and ΨY being collections
of tensor product wavelets.

Also for classes for singular integral operators and suitable wavelets s∗-compu-
tability with s∗ > smax is valid. We refer to [Ste04, GS06b, DHS07] and on the
chapter “Rapid Solution of Boundary Integral Equations” by H. Harbrecht and R.
Schneider in this book.

5.1 Near-sparsity of partial differential operators in wavelet
coordinates

This subsection is devoted to the question how well the representation B of a partial
differential operator with respect to wavelet bases can be approximated by sparse
matrices. We will not be concerned with the question how to compute, or more
generally, how to approximate the entries of these sparse matrices, and at which cost.
These issues will be postponed to the next subsections. Our current task motivates
the following definition.

Definition 5.1. For s∗ > 0, B ∈L (�2, �2) will be called to be s∗-compressible when
we have available sequences (e j) j∈N0 ,(c j) j∈N0 ⊂ R, (B( j)) j∈N0 ⊂L (�2, �2), such
that

• ‖B−B( j)‖ ≤ e j, lim j→∞ e j = 0,
• the number of non-zero entries in each column of B( j) is bounded by c j,
• B(0) = 0 (and thus ‖B‖ ≤ e0), c0 = 0 and sup j∈N0

c j+1/c j < ∞.

and such that for any s < s∗, sup j e jcs
j < ∞.

So compared to the definition of s∗-computability (Definition 3.2), the only differ-
ence is that we do not require that number of operations needed to compute the
non-zero entries in each column of B( j) is bounded by c j.

For some αl ∈ N
n
0 (l ∈ {1,2}), we consider the representation as a bi-infinite

matrix of a bounded linear operator E : H |α1|
0 (Ω)→ (H |α2|

0 (Ω))′ defined by

(Eu1)(u2) =
∫
Ω

g∂α1u1∂α2 u2 (ul ∈ H |αl |
0 (Ω)),

with respect to wavelet collections

Ψ (l) = {ψ(l)
λ : λ ∈ ∇} ⊂ H |αl |

0 (Ω).

We will assume that the coefficient g is sufficiently smooth.
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In this paper, we do not discuss the construction of wavelet bases on domains,
but refer to the numerous papers written on that topic. Some references are included
at the end of this subsection. Following standard conventions, |λ | ∈ N0 will denote

the level of the wavelet ψ(l)
λ . Here thinking of the wavelets being normalized in

L2(Ω) and constructed using dyadic dilations, for s ≥ 0 up to some upper bound

determined by the smoothness of the wavelets, it holds that ‖ψ(l)
λ ‖Hs(Ω) � 2s|λ |. In

view of this, we investigate the approximation of

E :=
[
2−|μ||α1|−|λ ||α2|(Aψ(1)

μ )(ψ(2)
λ )
]
λ ,μ∈∇

by sparse matrices.
The representation of a scalar PDE will result into a sum of such matrices (where,

because of the eventual normalization of the wavelets in higher order Sobolev
norms, matrices corresponding to lower order terms will be multiplied from left
and right by diag[2−|λ |s]λ∈∇ or diag[2−|λ |t ]λ∈∇ for some s, t ≥ 0 with s+ t > 0) and
the representation of a system of PDE’s will consist of blocks, each of them being a
sum of such matrices.

We will assume that the wavelets are local, locally finite and piecewise smooth,
where for an easy treatment of the quadrature issue, we assume that the wavelets
from both collections are piecewise smooth with respect to the same partitions,
moreover which are nested as function of the level (for the general case, see

[SW08]): We assume that for all k ∈ N0, there exists a collection {Ω (ν)
k : ν ∈ Ok}

of disjoint, uniformly shape regular, open subdomains, with Ω = ∪ν∈Ok
Ω (ν)

k ,

diam(Ω (ν)
k ) � 2−k and Ω (ν)

k being the union of some Ω (ν̃)
k+1. These subdomains will

be such that suppψ(l)
λ (l ∈ {1,2}), which is assumed to be connected, is the union of

a uniformly bounded number of Ω (ν)
|λ | (locality), and such that each Ω (ν)

k has non-

empty intersection with the supports of a uniformly bounded number of ψ(l)
λ with

|λ |= k (locally finiteness). Typical examples of the Ω (ν)
k are n-cubes or n-simplices,

or smooth images of such. We assume that ψ(l)
λ |Ω (ν)

|λ |
is smooth with, for any γ ∈N

n
0,

sup
x∈Ω (ν)

|λ |

|∂ γψ(l)
λ (x)|� 2|λ |(

n
2 +|γ|) (41)

(piecewise smoothness), the latter being a consequence of the smoothness of the

function ψ(l)
λ |Ω (ν)

|λ |
, the normalization of the wavelets in L2(Ω) and their construction

using dyadic dilations. Note that the singular support of ψ(l)
λ is part of the skeleton

∪ν∈Ok
∂Ω (ν)

|λ | .
We will also need that the wavelets satisfy some global smoothness conditions:

For some
N0∪{−1} + rl ≥ |αl |−1,
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we assume that
‖ψ(l)

λ ‖Wt
∞(Ω) � 2|λ |(

n
2 +t) (t ∈ [0,rl +1]). (42)

For rl >−1, this estimate follows from (41) when ψ(l)
λ ∈Crl (Ω).

We assume that the wavelets have cancellation properties of order d̃l ∈N0, mean-
ing that

∣∣∫
Ω

uψ(l)
λ
∣∣� 2−|λ |t‖u‖

Wt
∞(suppψ(l)

λ )
‖ψ(l)

λ ‖L1(Ω) (t ∈ [0, d̃l ],u ∈Wt
∞(Ω)). (43)

Actually, with some constructions, here suppψ(l)
λ should read as a neighbourhood

of suppψ(l)
λ with diameter 2−|λ |. For convenience we ignore this fact, but our results

extend trivially to this situation.
Finally, for any γ ≤ αl , γ �= αl , we assume the homogeneous Dirichlet boundary

conditions
∂ γψ(l)

λ = 0 at ∂Ω , (44)

actually being a consequence of our earlier assumption thatΨ (l) ⊂ H |αl |
0 (Ω).

We split
E = E(r) +E(s),

where E(r)
λ ,μ = Eλ ,μ when either |λ |> |μ | and suppψ(2)

λ ⊂ Ω̄ (ν)
|μ| for some ν ∈ O|μ|

or |λ | < |μ | and suppψ(1)
μ ⊂ Ω̄ (ν)

|λ | for some ν ∈ O|λ |, and E(r)
λ ,μ is zero otherwise.

So E(r) contains the regular entries of E, i.e., the non-zero entries for which the
the interior of the support of the wavelet on the higher level does not intersect the
singular support of the wavelet on the lower level. The remaining singular entries
are gathered in E(s). As we will see, the size of the singular entries decays less fast
as function of the difference in the levels of the indices than with the regular entries,
but this will be compensated by a smaller increase of their number.

We write E(r) = (E(r)
�,k)�,k∈N0 , where E(r)

�,k = (E(r)
λ ,μ)|λ |=�,|μ|=k and similarly E(s) =

(E(s)
�,k)�,k∈N0 .

Proposition 5.1. The number of non-zero entries in each row of E(r)
�,k (E(s)

�,k) or

each column of E(r)
k,� (E(s)

k,�) is bounded by an absolute multiple of 2max(k−�,0)n

(2max(k−�,0)(n−1)).
With

ρr := d̃2 + |α2|, ρs := 1
2 +min(d̃2 + |α2|,r1 +1−|α1|),

for |λ |> |μ |, we have

|E(s)
λ ,μ |� ‖g‖Wρs−1/2

∞ (Ω)
2−(
∣∣|λ |−|μ|∣∣)( n−1

2 +ρs), |E(r)
λ ,μ |� ‖g‖Wρr

∞ (Ω)2
−(
∣∣|λ |−|μ|∣∣)( n

2 +ρr)
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The same statement is valid for |λ | < |μ | when (α1,α2,r1, d̃2) is replaced by
(α2,α1,r2, d̃1) in the definitions of ρr and ρs.

Proof. The first statement follows by the localness and locally finiteness of both
wavelet collections, and concerning E(s), by their piecewise smoothness.

When r1 +1≤ |α1|+ |α2|, select a γ ≤α2 with |α1 +γ|= r1 +1 and so |α2−γ|=
|α1|+ |α2|− (r1 + 1). Using (44) for the case that suppψ(2)

λ ∩ suppψ(1)
μ ∩∂Ω �= /0,

integration by parts, vol(suppψ(2)
λ ) � 2−|λ |n and (42) show that

|Eλ ,μ |= 2−|μ||α1|−|λ ||α2||
∫

suppψ(2)
λ

(−1)|γ|∂ γ(g∂α1ψ(1)
μ )∂α2−γψ(2)

λ |

� 2−|μ||α1|−|λ ||α2|‖g‖
W

r1+1−|α1 |∞ (Ω)
2−|λ |n2|μ|(

n
2 +r1+1)2|λ |(

n
2 +|α1|+|α2|−(r1+1))

= ‖g‖
W

r1+1−|α1|∞ (Ω)
2−(|λ |−|μ|)( n

2 +r1+1−|α1|).

For r1 + 1 > |α1|+ |α2| by additionally using that the ψ(2)
λ have d̃2 vanishing

moments ((43)) and taking into account that ψ(1)
μ ∈W r1+1

∞ (Ω) ((42)), we have

|Eλ ,μ |= 2−|μ||α1|−|λ ||α2||
∫

suppψ(2)
λ

(−1)|α2|∂α2(g∂α1ψ(1)
μ )ψ(2)

λ |

� 2−|μ||α1|−|λ ||α2|2−|λ |min(d̃2,r1+1−|α1|−|α2|)

×‖∂α2(g∂α1ψ(1)
μ )‖

W
min(d̃2 ,r1+1−|α1|−|α2|)∞ (suppψ(2)

λ )
‖ψ(2)

λ ‖L1(Ω)

� 2−|μ||α1|−|λ ||α2|2−|λ |min(d̃2,r1+1−|α1|−|α2|)

×‖g‖
W

min(d̃2+|α2|,r1+1−|α1|)∞ (Ω)
2|μ|(

n
2 +min(d̃2+|α1|+|α2|,r1+1)2−|λ |

n
2

� ‖g‖
W

min(d̃2+|α2|,r1+1−|α1 |)∞ (Ω)
2−(|λ |−|μ|)( n

2 +min(d̃2+|α2|,r1+1−|α1|)),

which completes the proof of the first estimate.

Finally, when suppψ(2)
λ ⊂ Ω̄ (ν)

|μ| for some ν ∈O|μ|, by estimating E(r)
λ ,μ as above,

but now applying (41) for sufficiently large γ instead of (42), we obtain the second
estimate. '(

In the next proposition, we construct sparse approximation for matrices like E(r)

or E(s).

Proposition 5.2. Let C = (C�,k)�,k∈N0 with C�,k = (Cλ ,μ)|λ |=�,|μ|=k be such that for
some q ∈ N0 and ρ > 0, the number of non-zero entries in each row of C�,k or
column of Ck,� is bounded by an absolute multiple of 2max(k−�,0)q and

|Cλ ,μ |� 2−
∣∣|λ |−|μ|∣∣( q

2 +ρ).

Then with C( j) constructed from C by dropping Cλ ,μ when
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∣∣|λ |− |μ |∣∣> j/ρ,

we have
‖C−C( j)‖� 2− j,

where the number of non-zero entries per row and column of C( j) is bounded by
some absolute multiple of

max(2q j/ρ , j/ρ).

Proof. By two applications of the Schur lemma, we have

‖C�,k‖2 ≤ max
|λ |=�

∑
|μ|=k

|Cλ ,μ | ·max
|μ|=k

∑
|λ |=�

|Cλ ,μ |� 4−(�−m)ρ ,

‖C−C( j)‖2 ≤max
�

∑
{k:|�−k|> j/ρ}

‖C�,k‖ ·max
k

∑
{�:|�−k|> j/ρ}

‖C�,k‖� 4− j. '(

So the result of the last proposition shows that C and C, are s∗-compressible
with

s∗ = ρ/q

(or s∗ = ∞ when q = 0). We exemplify our findings concerning s∗-compressibility
in the model case of an (elliptic) scalar PDE of order 2m:

Example 5.1. For some bounded domain Ω ⊂ R
n, with n ≥ 2, and m ∈ N, let B :

Hm
0 (Ω)→ Hm

0 (Ω)′ be defined as

(Bu)(v) =
∫
Ω

∑
|α|,|β |≤m

aα,β ∂αu∂β v,

with coefficients such that B is boundedly invertible and that are sufficiently smooth.
Let ΨX =ΨY = {ψλ : λ ∈ ∇} ⊂ Hm

0 (Ω) be a dyadic wavelet collection, nor-
malized in L2(Ω), such that for some N + d > m, d̃ ∈ N0, N0∪{−1} + r ≥ m−1,

a). infvi∈span{ψλ :|λ |≤i} ‖u−vi‖Hm(Ω) � 2−(d−m)i‖u‖Hd(Ω) (u∈Hd(Ω)∩Hm
0 (Ω)),

b). the wavelets are local, locally finite and piecewise smooth (and thus satisfy
(41)),

c). the wavelets are in Cr(Ω) (and thus satisfy (42) with rl = r),
d). the wavelets have cancellation properties of order d̃ ((43)),
e). {2−|λ |mψλ : λ ∈ ∇} is a Riesz basis for Hm

0 (Ω).

The representation of B with respect to the wavelet basis from e) reads as

B := ∑
|α|,|β |≤m

[
2−(|λ |+|μ|)m

∫
Ω

aα,β ∂αψμ∂βψλ
]
λ ,μ∈∇.

Due to the scaling factor 2−(|λ |+|μ|)m, one may verify that it suffices to analyze the
s∗-compressibilty of the highest order terms. By applying Propositions 5.1 and 5.2
to those terms, we infer that B and B, are s∗-compressible with
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s∗ = min
( d̃ +m

n
,

1
2 +min(d̃ +m,r +1−m)

n−1

)
.

As a consequence of the dyadic construction, we have that #{λ ∈∇ : |λ | ≤ i}� 2ni,
which together with a) shows that

smax =
d−m

n
.

We conclude that s∗ > smax when d̃ > d−2m and
r+ 3

2−m
n−1 > d−m

n (the third condition
d̃ +m≥ r +1−m follows already from the first one using that always r ≤ d−2).

On (0,1)n, or on a smooth image of that, biorthogonal spline wavelets can be
constructed that satisfy a)-e) for arbitrary d̃ ≥ d with d + d̃ even and r = d − 2
([DS98]). Because of r = d−2, the conditions for s∗ > smax read as d̃ > d−2m and
d−m

n > 1
2 .

For general domains, these wavelets can be applied in combination with non-
overlapping domain decomposition techniques. The existing techniques fall into 2
categories: With the technique based on extension operators proposed in [DS99b],
all above conditions can be satisfied. The condition number of the resulting basis,
however, turns out to increase rapidly with d. The other technique amounts to a
continuous gluing of multiresolution analyses over the interfaces between patches,
see [DS99a, CTU99]. As a result, wavelets with supports that extend to more than
one patches are only continuous, and thus for d > 2 not in Cd−2, resulting in a
reduced value of s∗. For problems of order 2m = 2, this limitation can be overcome
with a construction of wavelets that have patchwise vanishing moments, see [HS06].

5.2 The approximate computation of the significant entries

For a non-constant coefficient g, generally the entries of E(r) and E(s) have to be
approximated by suitable quadrature. In this subsection, we show that such approxi-
mations can be made that keep the error on the same level, while taking in each row
and column on average O(1) operations per entry. This means these matrices are
s∗-computable for the same value of s∗ as they were shown to be s∗-compressible.
The key observation is that this restriction on the work does allow to spend quite
some operations, up to the number of entries in the row or column, to the approx-
imation of the few largest entries with indices that have equal level, as long as the
work per entry decays sufficiently fast as function of the difference in the levels of
the indices. For simplicity, we exclude the special, although easy case that q = 0 in
Proposition 5.2. Since with E(s) the role of q is played by n−1, we thus assume that
n > 1.

Proposition 5.3. Let C and C( j) be as in Proposition 5.2 assuming that q > 0. Sup-
pose that for some constants ξ ,ω > 0, ξ �=ω , for any λ ,μ ∈∇ one can compute an
approximation C̃λ ,μ to Cλ ,μ in O(N) operations with
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|Cλ ,μ − C̃λ ,μ |� N−ω2−
∣∣|λ |−|μ|∣∣( q

2 +ξq). (45)

Now for some σ ∈ (1,ξ/ω) when ξ > ω , and σ ∈ (ξ/ω ,1) when ξ < ω , and
θ ≤min(1,σ), build C̃( j) by approximating each non-zero entry of C( j) as above by
taking

N = Nj,λ ,μ � max
(

1,2q jθ/ρ−
∣∣|λ |−|μ|∣∣σq)

operations. Then the work for computing each row or column of C̃( j) is bounded by
some absolute multiple of 2q j/ρ , and

‖C( j)− C̃( j)‖�
{

2−q jωθ/ρ when ξ > ω ,

2−q j(ξ+(θ−σ)ω)/ρ when ξ < ω .
(46)

In particular, taking θ = min(1,σ), we have ‖C( j)− C̃( j)‖� 2−q j min(ω,ξ )/ρ .

Proof. The work per row or column is bounded by an absolute multiple of

j/ρ

∑
i=0

2iq max
(
1,2q jθ/ρ−iσq)

� 2q j/ρ +2q jθ/ρ
j/ρ

∑
i=0

2iq(1−σ)

� 2q j/ρ +2q jθ/ρ max(1,2q j(1−σ)/ρ) � 2q j/ρ ,

because of θ ≤min(1,σ).
Taking into account the selection of Nj,λ ,μ , two applications of the Schur lemma

show that

‖C( j)
�,m− (C̃( j)

λ ,μ)|λ |=�,|μ|=m‖2 � 2|�−m|q(2q jθ/ρ−|�−m|σq)−2ω2−|�−m|(q+2ξq)

= 2−2q jθω/ρ2−|�−m|2q(ξ−σω),

‖C( j)− C̃( j)‖� ∑
0≤i≤ j/ρ

2−q jθω/ρ2−iq(ξ−σω),

which shows (46). '(

Comparing Propositions (5.2) and (5.3), we see that in order to prove our earlier
claim that C = E(r) or C = E(s) are s∗-computable for the same value of s∗ as they
were shown to be s∗-computable, it suffices to have available a family of quadrature
formulas satisfying (45) with

min(ω ,ξ )≥ ρ and max(ω ,ξ ) > ρ.

Below, under some mild additional assumption ((48)), we verify this by showing
that for any a,b > 0, we can construct a family of approximations (Ẽλ ,μ,N)N∈N,

where Ẽλ ,μ,N requires O(N) evaluations of g∂α1ψ(1)
μ ∂α2ψ(2)

λ , such that for some
t ∈ N,

|Eλ ,μ − Ẽλ ,μ,N |� N−a2−
∣∣λ |−|μ|∣∣( n

2 +b)‖g‖Wt
∞(Ω). (47)
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This means that (45) is valid with ω = a and ξ = b/n or ξ = (b + 1
2 )/(n− 1) for

q = n or q = n−1, respectively.
Without loss of generality let us assume that

|λ | ≥ |μ |.

Suppose that for any k ∈ N0 and ν ∈ O
(ν)
k , there exists a sufficiently smooth trans-

formation of coordinates κ , with derivatives bounded uniformly in k and ν , such
that for some e ∈ N, and all |λ |= k,

ψ(2)
λ ◦κ|

κ−1(Ω (ν)
k )
∈ Pe−1. (48)

In the following, for notational convenience, without loss of generality we take κ =
id.

To approximate an integral
∫
Ω (ν)

k
f , for any p∈N we consider internal, uniformly

stable, composite quadrature rules Q
Ω (ν)

k ,N
( f ) of fixed order (i.e, the degree of poly-

nomial exactness plus one) p, and variable rank N. The rank N of a composite
quadrature formula denotes the number of subdomains on which the elementary
quadrature formula is applied. Since the order p of Q

Ω (ν)
k ,N

is fixed, the number of

abscissae in the composite rule Q
Ω (ν)

k ,N
is O(N). For such rules, the following error

estimate is valid

|
∫
Ω (ν)

k

f −Q
Ω (ν)

k ,N
( f )|� vol(Ω (ν)

k )N−p/n diam(Ω (ν)
k )p‖ f‖

W p
∞ (Ω (ν)

k )
(49)

(e.g., see [GS06a, §2]).
To find an upper bound for the quadrature error when these rules are applied

with integrand 2−|μ||α1|−|λ ||α2|g∂α1ψ(1)
μ ∂α2ψ(2)

μ , we have to bound the expression

(∂ρg)(∂σ∂α1ψ(1)
μ )(∂ τ∂α2ψ(2)

λ ) for all multi-indices with |ρ + σ + τ| ≤ p. Since

g is assumed to be sufficiently smooth, |λ | ≥ |μ | and ∂ τ∂α2ψ(2)
λ vanishes when

|τ +α2| ≥ e, by invoking (41) we see that the worst case occurs when ρ = 0 and
|τ +α2|= z := min(e−1, p+ |α2|), and thus when |σ |= p− z+ |α2|, yielding

2−|μ||α1|−|λ ||α2|‖g∂α1ψ(1)
μ ∂α2ψ(2)

λ ‖W p
∞ (Ω (ν)

k )
�

2(|μ|+|λ |) n
2 2|μ|(p−z+|α2|)2|λ |(z−|α2|)‖g‖

W p
∞ (Ω (ν)

k )
.

By substituting this result into (49), using that diam(Ω (ν)
k ) � 2−|λ | and vol(Ω (ν)

k ) �

2−|λ |n, by taking p satisfying

p≥max(na,b−|α2|+ e−1)
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and by summing over the uniformly bounded number ofΩ (ν)
k that make up suppψ(2)

λ
we end up with (47).

This completes the proof of our claim made at the beginning of this subsection
that that C = E(r) or C = E(s) are s∗-computable for the same value of s∗ as they
were shown to be s∗-computable.

Remark 5.1. The estimate for the quadrature error obtained by summing the error

estimates for the quadrature errors over those ν with Ω (ν)
� ⊂ suppψ(2)

λ can be or-

ders of magnitude too pessimistic. The point is that it has not been used that ψ(2)
λ

is a wavelet and thus is oscillating, which causes cancellation of errors, in particu-

lar when ψ(1)
μ is smooth on the interior of suppψ(2)

λ , i.e, when it concerns a regu-
lar entry. For that case, much sharper estimates can be found in [SW08], see also
[BBD+02].

5.3 Trees

Although, as we demonstrated, it can be done whilst retaining optimal computa-
tional complexity, the approximate computation using quadrature of the required
entries of the stiffness matrix that may involve wavelets on largely different levels is
a rather delicate process. Such computations can be avoided by restricting to wavelet
approximations where the underlying index sets form a tree. In this subsection, we
briefly indicate the main ingredients of this approach.

We restrict ourselves to the case thatΨ =ΨX =ΨY = {ψλ : λ ∈∇} is a Riesz
basis for X = Y . Apart from wavelets, here we will need scaling functions. A set
Φk ⊂X is called a collection of scaling functions on level k when span{ψλ : |λ | ≤
k} = spanΦk. We assume that the Φk are (uniformly) local and locally finite (cf.
definitions in Subsec. 5.1), and that each wavelet ψλ is a linear combination of a
uniformly bounded number of scaling functions on level |λ | (and that suppψλ is
connected).

We equip the index set ∇ with a tree structure by assigning to each λ ∈ ∇ with
|λ | > 0 a parent μ with |μ | = |λ |− 1 and suppψλ ∩ suppψμ �= /0. By our assump-
tions, the number of children of any parent is uniformly bounded. We call Λ ⊂ ∇ a
tree, when all λ ∈ ∇ with |λ |= 0 are in Λ (the “roots”), and when whenever λ ∈ ∇
with |λ |> 0 is in Λ then so is its parent.

Analogously to (2), we define approximation classes A s, and corresponding
(quasi-) norms ‖ · ‖A s , where we now consider only best N-term approximations
uN to u ∈ �2 whose supports, apart from having a length not larger than N, form a
tree. For X being a Sobolev space, it has been shown that the resulting classes are
only slightly smaller than those one obtains with unconstrained best N-term approx-
imation, see [CDDD01] for details.

The reason to consider tree approximation is that any w ∈ �0 whose support
forms a tree, can be expressed as a linear combination of K scaling functions, where
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K � #suppw and where the supports of any two scaling functions in this expan-
sion can only intersect when their difference in levels is not larger than 1. More-
over, this scaling function representation can be found in O(#suppw) operations,
see [DSX00b].

As an application, now let B ∈ L (�2, �2) be s∗-compressible, let the support
of w ∈ �0 form a tree, and let ε > 0 be given. Then as shown in [DHS07], using
the near best N-term tree approximation algorithm from [BD04], trees Λ j ⊂ ·· · ⊂
Λ2 ⊂ Λ1 ⊂ suppw can be found such that, with w[p] := w|Λp\Λp+1

(Λ j+1 := /0) and

suitable jp ∈ N0, zε := ∑ j
p=1 B( jp)w[p] satisfies ‖Bw− zε‖ ≤ ε and, for any s <

s∗, #suppzε � ε−1/s‖zε‖−1/s
A s , where the cost of determining suppzε is bounded by

some absolute multiple of ε−1/s‖zε‖−1/s
A s + #suppw + 1. What is more, taking the

construction of the sparse matrices B( j) into account, for both partial differential and
singular integral operators, suppzε forms a tree.

Instead of approximating the required entries of the involved matrices B( jp), this
opens another possibility to approximate Bw. Since ‖Bw− zε‖ ≤ ε is shown by
estimating ‖Bw− zε‖ ≤ ∑ j

p=1 ‖B− B( jp)‖‖w[p]‖, and by bounding ‖B− B( jp)‖
by summing over upper bounds for the entries of B that were dropped in the
definition of B( jp), one infers that also ‖Bw− (Bw)|suppzε ‖ ≤ ε as well as that
‖Bw− (Bw)|Λ̄‖ ≤ ε , where Λ̄ := suppw∪ suppzε is a tree.

Now with Φ̄ denoting the collection of the single scale functions with spanΦ̄ =
{ψλ : λ ∈ Λ̄} and TΛ̄ the corresponding basis transformation from multiscale to
single scale representation, we have B|Λ̄×Λ̄ = T,Λ̄ B(Φ̄ ,Φ̄)TΛ̄ , thus with B(Φ̄ ,Φ̄)
being the single-scale representation of B|Λ̄×Λ̄ . Since (Bw)|Λ̄ = T,Λ̄ B(Φ̄ ,Φ̄)TΛ̄w,
in order to construct a valid APPLY, what is left is to approximate the multiplica-

tion with B(Φ̄ ,Φ̄) in O(ε−1/s‖zε‖−1/s
A s +#suppw+1) operations, while keeping the

error on the level of a multiple of ε . For partial differential operators, the advantage
is that non-zeros entries of B(Φ̄ ,Φ̄) only involve pairs of scaling functions on equal
or consecutive levels. For singular integral operators, to approximate the multipli-
cation with B(Φ̄ ,Φ̄) one may think of the application of panel clustering ([HN89])
or multipole expansions ([GR87]).

Finally, whereas for the optimal adaptive solution of linear operator equations,
the restriction to tree approximations is not really necessary, for such a solution
of nonlinear operator equations it seems indispensable (see [CDD03a]). Indeed,
note that for a nonlinear operator of the form f (v)(x) = g(v(x)), the evaluation of
f (w,Ψ)(x) already requires a number of operations of the order of the number of
wavelets in the expansion that are non-zero in x. If suppw is a tree, however, then
after transformation to the locally finite single scale representation, any of such a
point evaluations can be done in O(1) operations.
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6 Adaptive frame methods

6.1 Introduction

A drawback of wavelet methods for solving operator equations is the rather com-
plicated construction of wavelet bases on non-product domains. As was already
mentioned at the end of Sect. 5.1, the usual construction is via a non-overlapping
decomposition of the n-dimensional domain or manifold into subdomains, each of
them being a smooth parametric image of the n-dimensional unit cube. Loosely
speaking, wavelets or scaling functions constructed on this n-cube are lifted to the
subdomains, after which those functions that do not vanish at an interface between
subdomains are either continuously connected to functions from neighbouring sub-
domains or are smoothly extended into these subdomains. Apart from the fact that
these constructions are not that easy to implement, another disadvantage is that the
condition numbers of the resulting bases are quite somewhat larger than that of the
corresponding bases on the n-cube.

As an alternative, for X being a Sobolev space, in [Ste03] it was suggested to
use an overlapping domain decomposition, and to define ΨX simply as the union
of the wavelet bases on the subdomains. By a proper choice of the bases on these
subdomains, the span of ΨX will be dense in X , but due to the overlap regions,
it cannot be a basis for X . Instead it will be a frame for X . In [DFR07a], such a
frame was called an aggregated wavelet frame.

6.2 Frames

Let X be a separable Hilbert space. A collectionΨ = {ψλ : λ ∈ ∇} ⊂X is called
a frame for X when the analysis operator

F : X ′ → �2 : g �→ [g(ψλ )]λ∈∇,

is a boundedly invertible mapping between X ′ and its range ranF . From Sect. 2,
recall that its adjoint, known as the synthesis operator, reads as

F ′ : �2 →X : c �→ c,Ψ .

We set the frame constants

ΛΨ := ‖F‖X ′→�2
, λΨ := inf

0 �=g∈X ′

‖Fg‖�2

‖g‖X
.

The composition F ′F : X ′ →X is boundedly invertible with ‖F ′F‖X ′→X =
Λ 2
Ψ and ‖(F ′F )−1‖X→X ′ = λ−2

Ψ .
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The collection Ψ̃ := (F ′F )−1Ψ is a frame for X ′, known as the canonical
dual frame, with analysis operator F̃ := F (F ′F )−1 and frame constants λ−1

Ψ and
Λ−1
Ψ . From F ′F̃ = I, one infers that any v ∈X has a representation v = v,Ψ with

Λ−1
Ψ ≤‖v‖�2/‖v‖X ≤ λ−1

Ψ , actually a property that is equivalent toΨ being a frame
with frame constants ΛΨ and λΨ . Note that generally a representation of v ∈X in
frame coordinates is not unique (unlessΨ is a Riesz basis).

We have �2 = ranF ⊕⊥ kerF ′ and Q := F̃F ′ is the orthogonal projector onto
ranF . The frameΨ is a Riesz basis for X if and only if kerF ′ = 0 or equivalently
ranF = �2.

Many examples of frames can be given. Besides aggregated wavelet frames, here
we only mention curvelets ([CD04]) and shearlets ([LLKW05]).

For a given f ∈X ′ and a boundedly invertible B ∈L (X ,X ′), let us consider
the problem of finding u ∈X such that

Bu = f . (50)

Writing u = F ′u for some u ∈ �2, this u solves

Bu = f, (51)

where
B := FBF ′, f := F f .

Obviously, we have ‖B‖ ≤ Λ 2
Ψ‖B‖X→X ′ . With respect to the decomposition

�2 = ranF ⊕⊥ kerF ′, B is of the form
[B0 0

0 0

]
. From F̃B−1F̃ ′B = BF̃B−1F̃ ′ =

Q, we conclude that B0 = B|ranF : ranF → ranF is boundedly invertible with
‖B−1

0 ‖ ≤ λ−2
Ψ ‖B−1‖X ′→X . Finally, we note that for v,w ∈ ranF ,

〈B0v,w〉= 〈Bv,w〉= 〈FBF ′v,w〉= (Bv)(w), (52)

where v = F ′v and w = F ′w, or equivalently because v,w ∈ ranF , v = F̃ v and
w = F̃w.

6.3 The adaptive solution of an operator equation in frame
coordinates

In case the operator B in (50) is symmetric and positive definite, one may think of
applying the adaptive wavelet Galerkin approach discussed in Sect. 4 onto Bu = f
from (51). Since, however, for a “true” frame, B has a non-trivial kernel, for Λ � ∇
the generalized condition number of B|Λ×Λ , i.e., the quotient of its largest and its
smallest non-negative eigenvalue, can be arbitrarily large. This makes this approach
unfeasible.
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Therefore, we return to the damped Richardson iteration discussed in Sect. 3.1.
Denoting its ith iterand as u(i), and with u some solution of Bu = f, we have

u−u(i) = (I−αB)(u−u(i−1)),

which, due to the non-trivial kernel of B, shows no convergence. By applying Q,
however, we obtain

Q(u−u(i)) = (I−αB0)Q(u−u(i−1)).

If B is symmetric and positive definite or only coercive, then in view of (52),
analogously to the analysis from Sect. 4, we infer that by a proper choice of α ,
‖I−αB0‖< 1. Since u−F ′u(i) = F ′Q(u−u(i)), we conclude linear convergence
of F ′u(i) to u in X . For non-coercive B, the iteration can be applied to the normal
equations.

When applying the damped Richardson iteration with an inexact evaluation of
the matrix-vector multiplication and that of the right-hand side f, then, with a proper
choice of decaying tolerances, for the resulting iteration a linear decrease of the
projected error Q(u−u(i)) can still be shown. These inexact evaluations, however,
generally produce error components that are in kerF ′. Since kerF ′ = kerB, these
error components will not be changed by subsequent Richardson steps. Although
these error components do not affect the projected error, generally they do affect the
A s-norms of the iterands, and with that, the cost of the applications of the APPLY
routine.

In spite of this, in [Ste03] it was proved that the algorithm Rich, as given in
Sect. 3.2 but with a modified choice of the tolerances (see [Ste03] for details), is
again (quasi-) optimal in the sense of Theorem 3.1: Given an ε > 0, it produces an
uε with ‖Q(u− uε)‖ ≤ ε . If for some s > 0, Bu = f has some solution u ∈ A s,

then #suppuε � ε−1/s‖u‖1/s
A s . If, additionally, for some s̄ > s, B is s̄-admissible and

Q : A s̄→A s̄ is bounded, then the number of operations used by the call is bounded

by an absolute multiple of ε−1/s‖u‖1/s
A s . In order words, if s̄ > smax, with smax defined

similarly as in the basis case (see Sect. 1.1), then this inexact Richardson iteration
is (quasi-) optimal.

The additional condition that Q : A s̄ →A s̄ is bounded is satisfied when Q is s̄-
admissable (cf. Definition 3.1 and Proposition 3.1), which in turn is satisfied when,
for some s∗ > s̄, Q is s∗-compressible (cf. Definitions 3.2, 5.1 and Theorem 3.2, and
realize that the question about cost of computing entries of Q is not relevant, since
Q does not enter the algorithm, but its boundedness in A s is only needed for the
proof of optimality).

Unfortunately, although we expect it to hold more generally, in the aggregated
wavelet frame case so far the s∗-compressibility of Q was proved (in [Ste03, §4.3])
only in the case that the wavelets on each subdomain are L2-orthogonal and that,
before aggregation, they were multiplied by a smooth function that is positive on
the subdomain and that vanishes outside the subdomain. Numerical results reported
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in [DFR+07b] indicate (quasi-) optimality in other cases. In [DFR07a], the bound-
edness of Q : A s̄ →A s̄ was shown for time-frequency localized Gabor frames.

Sufficient for s̄-admissability of B is that it is s∗-computable for some s∗ > s̄. For
aggregated wavelet frames, a proof of s∗-compressiblity of B can follows the same
lines as in Sect. 5.1 for the basis case. In the aggregated wavelet frame case, the
approximate computation using quadrature of the significant entries of B is a harder
task. Indeed, wavelets from different subdomains whose supports overlap will be
piecewise smooth with respect to different underlying partitions. Nevertheless, in
[SW08], for partial differential operators with smooth coefficients, s∗-computability
for an s∗ > smax was demonstrated.

Thinking of a symmetric and positive definite B, the selection of a suitable damp-
ing parameter α for the Richardson iteration requires estimating the smallest non-
negative eigenvalue of B. Other than in the Riesz basis case where B has no zero
eigenvalues, in the true frame case it is difficult to estimate this eigenvalue numer-
ically. In [DFR+07b], it was shown that an approximate steepest descent iteration,
which does not require information about the spectrum of B, is (quasi-) optimal
under the same conditions as the approximate Richardson iteration.

6.4 An adaptive Schwarz method for aggregated wavelet frames

Let B ∈ L (X ,X ′) be symmetric and positive definite, where X is a Sobolev
space with positive smoothness index on a domain Ω . Let Ψ be an aggregated
wavelet frame being the union of wavelet bases Ψ1, . . . ,Ψm on overlapping subdo-
mains Ω1, . . . ,Ωm, respectively. Each of these bases is a Riesz basis of the corre-
sponding Sobolev space on the subdomain, with homogeneous Dirichlet boundary
conditions on the internal boundary.

The partition of the domain into overlapping subdomains, or that of the frame
into the different Riesz systems, suggest the application of a Schwarz method to
solve Bu = f, being the representation of the operator equation Bu = f in frame
coordinates. An multiplicative adaptive Schwarz method was studied in [SW09].

Let B = (Bk�)1≤k,�≤m and v = (vk)1≤k≤m denote the corresponding partitions of
the system matrix B and any vector of frame coordinates, respectively. Then the
(exact) multiplicative Schwarz algorithm reads as follows:

for i = 1,2, . . . do
for k = 1 to m do

solve Bkku(i)
k = fk−∑k−1

�=1 Bk�u
(i)
� −∑m

�=k+1 Bk�u
(i−1)
�

enddo
enddo

Using the general theory of Schwarz methods (e.g. see [Xu92]), one shows that
F ′u(i) = u(i),Ψ converges linearly to u in X .

The idea behind an inexact, adaptive variant is to find an approximation to u(i)
k by

the application of an adaptive wavelet method on subdomain Ωk (either of inexact
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Richardson type or an adaptive wavelet Galerkin method). By a suitable choice of
decaying tolerances, the resulting method will still be linearly convergent.

For each k, the sequence (u(i)
k )i of approximate solutions of the subdomain prob-

lems on Ωk converges to some uk, that depends on the choice of the initial vectors

(u(0)
� )1≤�≤m. With u being some representation of u, i.e., u,Ψ = u, it is not clear that

the splitting u = uk +(u−uk) is smoothness preserving, in the sense that if u∈A s,
then uk ∈A s with ‖uk‖A s � ‖u‖A s . From our considerations about the cost of the
APPLY routine that is part of the adaptive wavelet method, it is however clear that
such a smoothness preservation would be needed to conclude (quasi-) optimality of
the resulting method. Actually, numerical experiments indicated that generally this
splitting is not smoothness preserving.

In order to solve this problem, again consider the system

Bkku(i)
k = fk−

k−1

∑
�=1

Bk�u
(i)
� −

m

∑
�=k+1

Bk�u
(i−1)
� .

Note that if, before solving, coefficients from (u(i)
� )1≤�≤k−1 and (u(i−1)

� )k+1≤�≤m that
correspond to wavelets that are fully supported in Ωk are modified, in particular,

are deleted, then this will not change the approximation u(i),Ψ = ∑k
�=1 u(i),

� Ψ� +

∑m
�=k+1 u(i−1),

� Ψ� after this solution process, although the vectors (u(i)
� )1≤�≤k and

(u(i−1)
� )k+1≤�≤m generally do change. For this process, but then with an inexact

adaptive solving, it was shown that if the sizes of the overlap regions are suffi-
ciently large compared to the maximal diameter of the support of any wavelet, then
the aforementioned splitting is smoothness preserving. Using this result, the overall
method was shown to be (quasi-) optimal assuming that B is s̄-admissable for some
s̄ ≥ smax (cf. the discussion in Sect. 6.3). The boundedness of Q : A s̄ →A s̄ is not
required.

Note that the method with the deletion of the coefficients that correspond to
wavelets associated to other subdomains, but that are fully supported in the cur-
rent subdomain is actually closer to the original Schwarz method from [Sch90] than
the method we described first. Indeed, what is left after this deletion process is es-
sentially only boundary data for the problem on the current subdomain. The method
with deletion is also cheaper to implement since it requires the computation of less
entries in the system matrix corresponding to pairs of wavelets associated to differ-
ent subdomains. Recall that the quadrature problem to approximate those entries is
more demanding.

Numerical results reported in [SW09] show that quantitatively this multiplicative
adaptive Schwarz method is much more efficient that the adaptive steepest descent
method described in Sect. 6.3.
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7 Adaptive methods based on tensor product wavelet bases

7.1 Tensor product wavelets

Let Ω be a product domain, i.e., Ω = Ω1×·· ·×Ωn, then for t ≥ 0,

Ht(Ω)= Ht(Ω1)⊗L2(Ω2)⊗·· ·⊗L2(Ωn)∩·· ·∩L2(Ω1)⊗·· ·⊗L2(Ωn−1)⊗Ht(Ωn)

For t �∈ N0 + 1
2 , the same holds true with Ht(Ω) reading as Ht

0(Ω) and Ht(Ωi) as
Ht

0(Ω). Similar statements involving boundary conditions of lower order, or with
boundary conditions on a part of the boundary (of product type) are also valid
([DS09a]).

Now for 1 ≤ i ≤ n, let Ψ (i) = {ψ(i)
λ : λ ∈ ∇i} ⊂ Ht(Ωi) be a Riesz basis for

L2(Ωi) that, when normalized in Ht(Ωi), is a Riesz basis for Ht(Ωi). Wavelet bases
are known to have this property for a range of t. Then using above characterization
of Ht(Ω), it can be shown (cf. [GO95]) that the tensor product wavelet basis

ΨΨΨ :=Ψ (1)⊗·· ·⊗Ψ (n) = {ψψψλλλ := ψ(1)
λ1
⊗·· ·ψ(n)

λn
: λλλ ∈ ∇∇∇ := ∇(1)×·· ·×∇(n)}

is a Riesz basis for Ht(Ω).
Note that the widths of the support of a tensor product wavelet measured in the

coordinate directions can differ to an arbitrarily large extend. Furthermore, other
than with a (standard) wavelet basis, there exists no multiresolution analysis on Ω
such that (biorthogonal) complement spaces are spanned by a subset ofΨΨΨ .

In spite of these differences, tensor product wavelet bases can be applied in adap-
tive wavelet algorithms. In order to show that these algorithms give (quasi-) optimal
results, what is needed to verify is that the representation of the operator under
consideration in tensor product wavelet coordinates can be sufficiently well approx-
imated by computable sparse matrices in relation to the best possible convergence
rate that can be expected. That is, what is needed to check is whether s∗ > smax, with
smax being defined in Sect. 1.1 and s∗ from Definition 3.2 in Sect. 3.3.

7.2 Non-adaptive approximation

Let Ωi be a domain of dimension ni and Ψ (i) be a wavelet basis of order di > t,
cf. Example 1.1. Then it is well-known that a sufficiently smooth function on Ω
can be approximated in Ht(Ω) from the sequence of spaces (span{ψψψλλλ : ∑n

i=1 |λi| ≤
�})� with rate smax = maxi

di−t
ni

, up to some log-factors (the error bound reads as

N
−maxi

di−t
ni (logN)q for some q > 0 with N being the number of unknowns). This

type of approximation is known as sparse-grid or hyperbolic cross approxima-
tion (see [Zen91, DKT98, BG04]). For t > 0, the aforementioned log-factors can
even be removed by considering slightly modified approximation spaces, known
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as optimized sparse-grid spaces ([GK00]). In particular, from now on thinking of
n1 = . . . = nn = 1 and d1 = . . . = dn =: d > t, a sufficiently smooth function on
an n-rectangle is approximated in Ht for t > 0 by optimized sparse grids with rate
smax = d− t. That is, the so-called “curse of dimensionality” – the fact that with
standard wavelet (or finite element) approximation the rate is inversely proportional
with the space dimension – is completely removed.

7.3 Best N-term approximation and regularity

Sparse grid approximation is non-adaptive, and the aforementioned high conver-
gence rate requires a smoothness of the function being approximated that the solu-
tion of an operator equation may not possess. Indeed, in [DS09a] it was shown that
for the Poisson problem on the n-rectangle with homogeneous Dirichlet boundary
conditions and a smooth right-hand side, the optimized sparse grid convergence rate
in H1 is 1

2 + 1
n , instead of smax = d− 1 that would be obtained when the solution

was sufficiently smooth. Only if the right-hand side vanishes to a sufficiently high
order at the non-smooth parts of the boundary, the best possible rate is obtained.

The requirements to approximate a function on the n-rectangle with a certain rate
s≤ smax = d− t with best N-term approximation from the tensor product basis, i.e.,
the requirements for the function to be in A s, are (much) milder than the require-
ments to obtain this rate with (optimized) sparse grid approximation. For s < smax, a
characterization of A s in terms of intersections of tensor products of Besov spaces
was given in [Nit06]. Following earlier work in [Nit05], for t ∈ N in [DS09a] it
was shown that if a function u on the n-rectangle has partial derivatives up to order
nd in certain weighted L2 spaces, with weights that vanish at the boundary, then
u ∈ A d−t . What is more, additionally it was shown that the solution of an elliptic
boundary value problem of order 2t on the n-rectangle with smooth coefficients,
homogeneous Dirichlet boundary conditions and a smooth right-hand side satisfies
these regularity conditions.

Here we emphasize that for sufficiently large n and d, a rate d− t cannot be re-
alized with best N-term standard wavelet approximation. Indeed, with wavelets of
order d̂, in n space dimensions the best possible rate is d̂−t

n . A (near) characterization

of A
d̂−t

n can be given in terms of certain Besov spaces. It is known, however, that
for n ≥ 3, the solution of an elliptic boundary value problem has limited smooth-
ness in this scale of Besov spaces. In other words, one cannot simply choose the
rate at one’s convenience by increasing the order d̂. In any case in three dimensions,
with finite elements of order d̂ one can realize the best possible rate d̂−t

3 by includ-
ing anisotropic refinements towards the boundary ([Ape99]). The tensor product
wavelet approach has the unique additional feature that the rate smax does not dete-
riorate with an increasing space dimension.
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7.4 s∗-computability

In order to conclude that the adaptive tensor product wavelet method converges at
the same rate as the sequence of best N-term approximations with respect to the ten-
sor product basis in linear complexity, it is needed that s∗ > smax = d−t. For bound-
ary value problems with homogeneous Dirichlet boundary conditions and smooth
coefficients and piecewise smooth, sufficiently globally smooth univariate wavelets
with sufficiently many vanishing moments, this has been verified in [SS08]. Think-
ing of the arbitrarily stretched supports of the tensor product wavelets, one might
consider it as counterintuitive that an operator is better compressible in a tensor
product wavelet basis than it is in a standard wavelet basis. The key is that the sizes
of the entries decay exponentially as function of the sum of the absolute differences
in levels of the tensor product wavelets involved. Compressiblity of integrodifferen-
tial operators has been investigated in [Rei08].

7.5 Truly sparse stiffness matrices

Recently, in [DS09b] a univariate wavelet basis of cubic Hermite splines was con-
structed that has the property that any second order boundary value problem with
constant coefficients and homogeneous Dirichlet boundary conditions on the n-cube
with respect to the n-fold tensor product basis is truly sparse. As a consequence, the
application of an adaptive wavelet method simplifies enormously. Indeed, the ap-
plication of the stiffness matrix to any finitely supported vector can be performed
exactly in linear complexity. Also with non-constant, smooth coefficients, the appli-
cation of this basis in the adaptive wavelet Galerkin method is advantageous. For the
approximate residual computation, being the most time consuming part of the algo-
rithm, entries outside the nonzero pattern of a constant coefficient operator, except
those that correspond to wavelets on a few coarsest levels, are an order of magnitude
smaller than those inside this pattern, and so can be discarded.

7.6 Problems in space high dimension

We have seen that the sequence of approximations produced by an adaptive tensor
product wavelet method converges with the same rate as the sequence of best N-
term approximations with respect to the tensor product basis. This does not exclude
the possibility that the quotient of the error produced by the adaptive method and
that of the best N-term approximation of the same length grows with increasing
n. Actually, generally in any case any available upper bound for this quotient will
grow exponentially as function of n. A reason is that various estimates to bound
the error for the adaptive method depend critically on the condition number of the
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n-fold tensor product basis. If and only if the univariate wavelets are chosen to be
L2-orthogonal, this condition number is bounded uniformly in n, whereas it grows
exponentially in n otherwise.

In [DSS08], the n-fold tensor product of the univariate piecewise polynomial
L2-orthogonal wavelet basis from [DGH96] is applied to solve constant coefficient
elliptic boundary value problems on the n-rectangle. For this case, it was shown that
even the factor that the adaptive method might lose compared to the best N-term
approximations is bounded by an absolute constant. Experiments for the Poisson
problem on the n-cube with right-hand side 1 show, however, that the best N-term
approximations themselves still suffer from another, although much milder curse
of dimensionality. Although for any dimension n, the rate of approximation in H1

is d− 1, the number of unknowns needed to achieve a relative error below some
given tolerance grows exponentially with n. Apparently, the constant C in the error
bound CNd−1 grows exponentially with n. In view of the result from [NW08] saying
that the approximation of a general infinitely differentiable multivariate function is
intractable, this exponential growth of the constant is not surprising.

Likely, to approximate a function in high space dimensions, with the current
hardware think of dimensions higher than say 8-10, one should exploit more
information about the function than only that it is the solution of a boundary
value problem with some general smooth right-hand side. As demonstrated in
[Gra04, BM02, HK07], a class of functions that can be accurately approximated
in high space dimensions are the solutions of boundary value problems with right-
hand sides that can be well approximated by a small number of separable functions.

7.7 Non-product domains

The application of tensor product wavelet bases is not restricted to Sobolev spaces
Ht(Ω) with t ≥ 0 where Ω is product domain. Indeed, recall that the commonly
applied approaches to construct wavelet bases on a non-product domain start with
writing this domain as a non-overlapping union of subdomains, each of them being
a smooth parametric image of the n-cube. With the approach based on extension
operators, wavelet bases on the n-cube are lifted to the subdomains, after which
those that do not vanish at an interface between subdomains are smoothly extended
into neighbouring subdomains. This approach can be applied verbatim to tensor
product wavelet bases on the n-cube.

Using a non-overlapping domain decomposition, one may also think of con-
structing an aggregated frame based on tensor product wavelet bases on the subdo-
mains. In the general case, however, where the underlying partitions in the overlap
regions are not aligned, the compressibility of the resulting system matrix will be
too low.
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7.8 Other, non-elliptic problems

We considered well-posed linear operator equations of the form B : X →X ′, where
X = Ht(Ω) or Ht

0(Ω) and Ω is a product domain. In this case, Ht(Ω) is an in-
tersection of tensor product of Sobolev spaces. Well-posed operator equations B :
X → Y ′, where X and Y are of this type arise more generally. We mention here
the “unfolding” of elliptic n-scale homogenization problems (cf. [AB96, HS05]) as
well as the higher dimensional partial differential equations for the mean field, two-
point correlation and possibly higher order moments of the random solution of an
elliptic PDE with stochastic input data (cf. e.g. [ST03, HSS08, vPS06]).

Another example is given by the space-time variational formulation of the
parabolic initial boundary value problem presented in Sect. 2.2.4. In this case X =
L2(0,T )⊗H1

0 (Ω)∩H1(0,T )⊗H−1(Ω) and Y = (L2(0,T )⊗H1
0 (Ω))×L2(Ω).

A classical approach to the numerical solution of the parabolic initial boundary
value problem is the Method of Lines, which reduces the problem by spatial semidis-
cretization to a system of coupled ordinary differential equations to be solved nu-
merically in (0,T ). Conversely, in Rothe’s Method the problem is reduced by time
semidiscretization to a sequence of coupled spatial, elliptic problems to be solved.
Both these approaches, and the more recently proposed discontinuous Galerkin
method are essentially time marching methods. The ultimate aim of adaptive meth-
ods is to achieve an approximate solution with an error below a prescribed tolerance
at the expense of, up to an absolute multiple, minimal amount of computer time and
storage. Due to the character of time stepping this seems hard to realize and, unlike
for elliptic problems, so far no optimality results seem to be known.

In [SS09], the aforementioned spaces X and Y were equipped with tensor prod-
uct wavelet bases. The resulting system matrix was proven to be sufficiently com-
pressible and so the adaptive wavelet method applied to the simultaneously space-
time variational formulation converges with the rate as that of the best N-term ap-
proximations. While keeping discrete solutions on all time levels is prohibitive for
time marching methods, thanks to the use of tensor product bases, with the method
in [SS09] there is no penalty in complexity because of the additional time dimen-
sion.
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Optimal multilevel methods for H(grad),
H(curl), and H(div) systems on graded
and unstructured grids

Jinchao Xu, Long Chen, and Ricardo H. Nochetto

We give an overview of multilevel methods, such as V-cycle multigrid and BPX
preconditioner, for solving various partial differential equations (including H(grad),
HHH(curl) and HHH(div) systems) on quasi-uniform meshes and extend them to graded
meshes and completely unstructured grids. We first discuss the classical multigrid
theory on the basis of the method of subspace correction of Xu and a key identity
of Xu and Zikatanov. We next extend the classical multilevel methods in H(grad)
to graded bisection grids upon employing the decomposition of bisection grids of
Chen, Nochetto, and Xu. We finally discuss a class of multilevel preconditioners
developed by Hiptmair and Xu for problems discretized on unstructured grids and
extend them to HHH(curl) and HHH(div) systems over graded bisection grids.

1 Introduction

How to effectively solve the large scale algebraic systems arising from the dis-
cretization of partial differential equations is a fundamental problem in scientific
and engineering computing. In this paper, we give an overview of a special class of
methods for solving such systems: multilevel iterative methods based on the method
of subspace corrections [18, 91] and the method of auxiliary spaces [92, 52].
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The method of subspace corrections proves to be a very useful general framework
for the design and analysis of various iterative methods. We give a rather detailed
description of this method in Section §2 and apply it to additive and multiplicative
multilevel methods. Of special interest is the sharp convergence identity of Xu and
Zikatanov [94], which we also prove.

Most of the multilevel methods are dictated by the underlying mesh structure. In
this paper, roughly speaking, we consider the following three types of grids:

• Quasi-uniform (and structured) grids with a hierarchy of nested sub-grids.
• Graded grids obtained by bisection with a hierarchy of nested sub-grids.
• Unstructured grids without a hierarchy of sub-grids.

Multilevel methods on quasi-uniform grids

The theoretical and algorithmic development of most traditional multilevel meth-
ods are devoted to quasi-uniform structured grids; see Brandt [21], Hackbusch [44],
Xu [91, 16], and Yserentant [96]. In Section §3, using the method of subspace cor-
rection framework [18, 91], we discuss the classical V-cycle multigrid method and
the BPX preconditioner. We also include a recent result by Xu and Zhu [93] that
demonstrates that the conjugate gradient method with classical V-cycle multigrid
or BPX-preconditioner as preconditioners provides a robust method with respect to
jump discontinuities of coefficients.

Multilevel methods on graded bisection grids

Multilevel algorithms for graded grids generated by adaptive finite element methods
(AFEM) is one main topic to be discussed in this paper. AFEM are now widely used
in scientific and engineering computation to optimize the relation between accuracy
and computational labor (degrees of freedom). We refer to the survey to [63] for an
introduction to the theory of AFEM.

Of all possible refinement strategies, we are interested in bisection, the most
popular and effective procedure for refinement in any dimension; see [63] and the
references therein. Our goal is to design optimal multilevel solvers and analyze them
within the framework of highly graded meshes created by bisection, from now on
called bisection meshes.

In Section §4, we present multilevel methods and analysis for H(grad) based on
the novel decomposition of bisection grids of Chen, Nochetto, and Xu [27], which
is conceptually simple and dimension and polynomial degree independent. Roughly
speaking, for any triangulation TN constructed from T0 by bisection, we can write

TN = T0 +B, B = (b1,b2, · · · ,bN),

where B denotes a sequence of N elementary bisections bi. Each such bi is restricted
to a local region and the corresponding local grid is quasi-uniform. This decom-
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position serves as a general bridge to transfer results from quasi-uniform grids to
graded bisection grids. We exploit this flexibility to design and analyze local multi-
grid methods for the H(curl) and H(div) systems in three dimensions in Section §5;
we explicitly follow Chen, Nochetto, and Xu [28], which in turn build on Hiptmair
and Xu [52].

Multilevel methods on unstructured grids

In practical applications, finite element grids are often unstructured, namely, they
have no natural geometric hierarchy that can be extracted from the mesh data struc-
ture and used for designing optimal multilevel algorithms. For such problems we
turn to algebraic multigrid methods (AMG). What makes AMG attractive in practice
is that they generate coarse-level equations without using any (or much) geometric
information or re-discretization on the coarse levels. Despite the lack of rigorous
theoretical justification, AMG methods are very successful in practice for various
Poisson-like equations; see [73, 81] and reference therein.

Even though we do not describe AMG in any detail, in Section §6 we present a
technique developed by Hiptmair and Xu [52] for quasi-uniform meshes that con-
verts the solution of both H(curl) and H(div) systems into that of a number of
Poisson-like equations, which can be efficiently solved by AMG.

2 The method of subspace corrections

Most partial differential equations, after discretization, are reduced to solve some
linear algebraic equations in the form

Au = f , (1)

where A ∈ R
N×N is a sparse matrix and f ∈ R

N . How to solve (1) efficiently re-
mains a basic question in numerical PDEs (and in all scientific computing). The
Gaussian elimination still remains the most commonly used method in practice. It is
a black-box as it can be applied to any problem in principle. But it is expensive: for
a general N×N matrix, it required O(N3) operations. For a sparse matrix, it may
require less operations but still too expensive for large scale problems. Multigrid
methods, on the other hand, are examples of problem-oriented algorithms, which,
for some problems, only require O(N| logN|σ ),σ > 0, operations. In this section,
we will give some general and basic results that will be used in later sections to con-
struct efficient iterative methods (such as multigrid methods) for discretized partial
differential equations.

Following [91], we shall use notation x � y to stand for x≤Cy. We also use x � y
to mean x � y and y � x.
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2.1 Iterative methods

2.1.1 Basic iterative method

In general, a basic linear iterative method for Au = f can be written in the following
form:

uk+1 = uk +B( f −Auk),

starting from an initial guess u0 ∈V . It can be interpreted as a result of the following
three steps:

1. form the residual r = f −Auk;
2. solve the residual equation Ae = r approximately by ê = Br with B≈ A−1;
3. correct the solution uk+1 = uk + ê.

Here B is called iterator. As simple examples, if A = (ai j)∈R
N×N and A = D+L+

U , we may take B = D−1 to obtain the Jacobi method and B = (D+L)−1 to obtain
the Gauss-Seidel method.

The art of constructing efficient iterative methods lies on the design of B which
captures the essential information of A−1 and its action is easily computable. In this
context the notion of “efficient” implies two essential requirements:

1. One iteration requires a computational effort proportional to the number of un-
knowns.

2. The rate of convergence is well below 1 and independent with the number of
unknowns.

2.1.2 Preconditioned Krylov space methods

The approximate inverse B, when it is SPD, can be used as a preconditioner for
Conjugate Gradient (CG) method. The resulting method, known as preconditioned
conjugate gradient method (PCG), admits the following error estimate:

‖u−uk‖A

‖u−u0‖A
≤ 2

(√
κ(BA)−1√
κ(BA)+1

)k

(k ≥ 1),
(
κ(BA) =

λmax(BA)
λmin(BA)

)
.

Here B is called preconditioner. A good preconditioner should have the properties
that the action of B is easy to compute and that κ(BA) is significantly smaller than
κ(A).

An interesting fact is that the linear iterative method using iterator B may not be
convergent at all whereas B can always be a preconditioner. For example, the Jacobi
method is not convergent for all SPD systems, but B = D−1 can always be used as a
preconditioner which is often known as the diagonal preconditioner.
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2.1.3 Convergence analysis

Let ek = u−uk. The error equation of the basic iterative method is

ek+1 = (I−BA)ek = (I−BA)ke0.

Thus the basic iterative method converges if and only if the spectral radius of the
error operator I−BA is less than one, i.e., ρ(I−BA) < 1.

Given an iterator B, we define the iteration operator ΦBu = u+B( f −Au) and in-
troduce a symmetric scheme ΦB =ΦBtΦB. The convergence of the iteration scheme
ΦB and its symmetrization ΦB is connected by the following inequality:

ρ(I−BA)≤
√
ρ(I−BA),

and the equality holds if B = Bt . Hence we shall focus on the analysis of the sym-
metric scheme.

By definition, we have the following formula for the error operator I−BA

I−BA = (I−BtA)(I−BA), and thus B = Bt(B−t +B−1−A)B. (2)

Since B is symmetric, I − BA is symmetric with respect to the inner product
(u,v)A := (Au,v). Indeed, let (·)∗ be the adjoint operator with respect to (·, ·)A, it
is easy to show

I−BA = (I−BA)∗(I−BA). (3)

Consequently, I−BA is SPD with respect to (·, ·)A and λmax(BA) < 1. Therefore

ρ(I−BA) = max{|1−λmin(BA)|, |1−λmax(BA)|}= 1−λmin(BA). (4)

A more quantitative information on λmin(BA) is given in the following lemma.

Lemma 2.1 (Least Eigenvalue). When B is symmetric and nonsingular,

λmin(BA) = inf
u∈V \{0}

(ABAu,u)
(Au,u)

= inf
u∈V \{0}

(Au,u)
(B−1u,u)

=

(
sup

u∈V \{0}

(B−1u,u)
(Au,u)

)−1

.

Proof. The first two identities comes from the fact BA is symmetric with respect to
(·, ·)A and (·, ·)B−1 . The third identity comes from

λ−1
min(BA) = λmax((BA)−1) = sup

u∈V \{0}

((BA)−1u,u)A

(u,u)A
= sup

u∈V \{0}

(B−1u,u)
(Au,u)

.

This completes the proof. �
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2.2 Space decomposition and method of subspace correction

In the spirit of dividing and conquering, we shall decompose the space V as the sum-
mation of subspaces. Then the original problem (1) can be split into sub-problems
with smaller sizes which are relatively easier to solve.

Let Vi ⊂ V , i = 0, . . . ,J, be subspaces of V . If V = ∑J
i=0 Vi, then {Vi}J

i=0 is
called a space decomposition of V , and we can write u = ∑J

i=0 ui. Since ∑J
i=0 Vi is

not necessarily a direct sum, decompositions of u are in general not unique.
Throughout this paper, we use the following operators, for i = 0,1, . . . ,J:

• Qi : V �→ Vi the projection with the inner product (·, ·);
• Ii : Vi �→ V the natural inclusion which is often called prolongation;

• Pi : V �→ Vi the projection with the inner product (·, ·)A;

• Ai : Vi �→ Vi the restriction of A to the subspace Vi;

• Ri : Vi �→ Vi an approximation of A−1
i (often known as smoother).

It is easy to verify the relation QiA = AiPi and Qi = It
i . The operator It

i is often called
restriction. If Ri = A−1

I , then we have an exact local solver and RiQiA = Pi.
For a given residual r ∈ V , we let ri = It

i r denote the restriction of the residual to
the subspace and solve the residual equation in the subspaces

Aiei = ri by êi = Riri.

Subspace corrections êi are assembled to give a correction in the space V and there-
fore is called the method of subspace correction. There are two basic ways to as-
semble subspace corrections.

Parallel Subspace Correction (PSC)

This method performs the correction on each subspace in parallel. In operator form,
it reads

uk+1 = uk +B( f −Auk), (5)

where

B =
J

∑
i=0

IiRiI
t
i . (6)

The subspace correction is êi = IiRiIt
i ( f − Auk), and the correction in V is ê =

∑J
i=0 êi.

Successive subspace correction (SSC)

This method performs the correction in a successive way. In operator form, it reads
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v0 = uk, vi+1 = vi + IiRiI
t
i ( f −Avi), i = 0, . . . ,J, uk+1 = vJ+1. (7)

We have the following error formulae for PSC and SSC:

• Parallel Subspace Correction (PSC):

u−uk+1 =

[
I−
( J

∑
i=0

IiRiI
t
i

)
A

]
(u−uk);

• Successive Subspace Correction (SSC):

u−uk+1 =

[
J

∏
i=0

(I− IiRiI
t
i A)

]
(u−uk).

Thus PSC is also called additive method while SSC is called multiplicative method.
In the notation ∏J

i=0 ai, we assume there is a build-in ordering from i = 0 to J, i.e.,
∏J

i=0 ai = a0a1 . . .aJ .
As a trivial example, we consider the space decomposition R

J = ∑J
i=1 span{ei}.

In this case, if we use exact (one dimensional) subspace solvers, the resulting SSC
is just the Gauss-Seidel method and the PSC is just the Jacobi method. More com-
plicated examples, including multigrid methods and multilevel preconditioners, will
be discussed later on.

PSC or SSC can be also understood as Jacobi or Gauss-Seidel methods for a
bigger equation in the product space [43, 94], respectively. The analysis of classical
iterative methods can then be applied to more advanced PSC or SSC methods.

Given a decomposition V = ∑J
i=0 Vi, we can construct a product space Ṽ =

V0×V1× ...×VJ, with an inner product (ũ, ṽ)
Ṽ

=∑J
i=0(ui,vi). We will reformulate

the linear operator equation Au = f to an equation posed on Ṽ : Ãũ = f̃ .
Let us introduce the operator R : Ṽ → V by Rũ = ∑J

i=0 ui. Because of the de-
composition V = ∑J

i=0 Vi, R is surjective. In generalR is not injective but it will
be in the quotient space V = Ṽ /ker(R). We define R∗ : V �→ Ṽ , the adjoint of R
with respect to (·, ·)A, to be

(R∗u, ṽ)Ṽ := (u,Rṽ)A =
J

∑
i=0

(u,vi)A =
J

∑
i=0

(QiAu,vi), for all ṽ = (vi)J
i=0 ∈ Ṽ .

Therefore
R∗ = (Q0A,Q1A, · · · ,QJA)t .

Similarly, the transpose Rt : V �→ Ṽ of R with respect to (·, ·) is

Rt = (Q0,Q1, · · · ,QJ)t .

Since R is surjective, we conclude that Rt is injective. Let Ã = R∗R and f̃ = Rt f .
If ũ is a solution of Ãũ = f̃ , it is straightforward to verify that then u = Rũ is the
solution of Au = f .
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SSC as Gauss-Seidel Method

The new formulation of the problem is used to characterize SSC for solving Au = f
as a Gauss-Seidel method for Ãũ = f̃ . In the sequel, we consider the SSC applied to
the space decomposition V =∑J

k=0 V j with Ri = A−1
i , namely we solve the problem

posed on the subspaces exactly.
Let Ã = D̃ + L̃ + Ũ and B̃ = (D̃ + L̃)−1. Then SSC for Au = f with exact local

solvers Ri = A−1
i is equivalent to the Gauss-Seidel method for solving Ãũ = f̃ :

ũk+1 = ũk + B̃( f̃ − Ãũk). (8)

The verification of the equivalence is as follows. We first compute the entries for
Ã = (ãi j)(J+1)×(J+1). By definition,

ãi j = QiAIj = AiPiI j : V j �→ Vi.

In particular ãii = Ai : Vi �→ Vi is SPD on Vi.
We can write the standard Gauss-Seidel method using iterator B̃ = (D̃+ L̃)−1 as

ũk+1 = ũk + D̃−1( f̃ − L̃ũk+1− (D̃+Ũ)ũk).

The component-wise formula is

uk+1
i = uk

i +A−1
i ( fi−

i−1

∑
j=0

ãi ju
k+1
j −

J

∑
j=i

ãi ju
k
j)

= uk
i +A−1

i Qi( f −A
i−1

∑
j=0

uk+1
j −A

J

∑
j=i

uk
j).

Let

vi =
i−1

∑
j=0

uk+1
j +

J

∑
j=i

uk
j.

Noting that vi− vi−1 = uk+1
i −uk

i , we then get

vi = vi−1 +A−1
i Qi( f −Avi−1),

which is the correction on Vi.
Similarly one can easily verify that PSC using exact local solvers Ri = A−1

i is
equivalent to the Jacobi method for solving the large system Ãũ = f̃ .
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2.3 Sharp convergence identities

The analysis of additive multilevel operator relies on the following identity which is
well known in the literature [87, 91, 42, 94]. For completeness, we include a concise
proof taken from [94].

Theorem 2.1 (Identity for PSC). If Ri is SPD on Vi for i = 0, . . . ,J, then B defined
by (6) is also SPD on V . Furthermore

(B−1v,v) = inf
∑J

i=0 vi=v

J

∑
i=0

(R−1
i vi,vi), (9)

and
λmin(BA)−1 = sup

‖v‖A=1
inf

∑J
i=0 vi=v

(R−1
i vi,vi). (10)

Proof. Note that B is symmetric, and

(Bv,v) = (
J

∑
i=0

IiRiI
t
i v,v) =

J

∑
i=0

(RiQiv,Qiv),

whence B is invertible and thus SPD. We now prove (9) by constructing a decom-
position achieving the infimum. Let v∗i = RiQiB−1v, i = 0, . . . ,J. By definition of B,
we get a special decomposition ∑i v∗i = v, and

inf
∑vi=v

J

∑
i=0

(R−1
i vi,vi) = inf

∑wi=0

J

∑
i=0

(R−1
i (v∗i +wi),v∗i +wi)

=
J

∑
i=0

(R−1
i v∗i ,v

∗
i )+ inf

∑wi=0

[ J

∑
i=0

2(R−1
i v∗i ,wi)+

J

∑
i=0

(R−1
i wi,wi)

]

Since
J

∑
i=0

(R−1
i v∗i ,ui) =

J

∑
i=0

(B−1v,ui) = (B−1v,
J

∑
i=0

ui)

for all (ui)J
i=0 ∈ V , we deduce

inf
∑vi=v

J

∑
i=0

(R−1
i vi,vi) = (B−1v,

J

∑
i=0

v∗i )

+ inf
∑wi=0

[
2(B−1v,

J

∑
i=0

wi)+
J

∑
i=0

(R−1
i wi,wi)

]
= (B−1v,v).

The proof of the equality (10) is a simple consequence of Lemma 2.1. �

As for additive methods, we now present an identity developed by Xu and
Zikatanov [94] for multiplicative methods. For simplicity, we focus on the case Ri =
A−1

i , i = 0, . . . ,J, i.e., the subspace solvers are exact. In this case I− IiRiIt
i A = I−Pi.
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Theorem 2.2 (X-Z Identity for SSC). The following identity is valid

∥∥∥
J

∏
i=0

(I−Pi)
∥∥∥2

A
= 1− 1

1+ c0
, (11)

with

c0 = sup
‖v‖A=1

inf
∑J

i=0 vi=v

J

∑
i=0

∥∥∥Pi

J

∑
j=i+1

v j

∥∥∥2
A
. (12)

Proof. Recall that SSC for solving Au = f with exact local solvers Ri = A−1
i is

equivalent to the Gauss-Seidel method for solving Ãũ = f̃ using iterator B̃ = (D̃ +
L̃)−1. Let B be the symmetrization of B̃ from (2). Direct computation yields

B
−1 = Ã+ L̃D̃−1Ũ . (13)

On the quotient space V = Ṽ/ker(R), Ã is SPD and thus defines an inner pro-
duce (·, ·)Ã. Using Lemma 2.1 and (13), we have

‖Ĩ− B̃Ã‖2
Ã = ‖Ĩ−BÃ‖Ã = 1−

[
sup

ṽ∈V \{0}

(B−1
ṽ, ṽ)Ṽ

(Ãṽ, ṽ)Ṽ

]−1

= 1−
[

1+ sup
ṽ∈V \{0}

(D̃−1Ũ ṽ,Ũ ṽ)
(Ãṽ, ṽ)

]−1

.

To finish the proof, we verify that

sup
ṽ∈V ,ṽ �=0

(D̃−1Ũ ṽ,Ũ ṽ)
(Ãṽ, ṽ)

= sup
v∈V ,‖v‖A=1

inf
∑vi=v

J

∑
i=0
‖Pi

J

∑
j=i+1

v j‖2
A.

For any ṽ ∈ V , and corresponding v = Rṽ, we have

(Ãṽ, ṽ)Ṽ = (R∗Rṽ, ṽ)Ṽ = (Rṽ,Rṽ)A = (v,v)A,

and

(D̃−1Ũ ṽ,Ũ ṽ)Ṽ =
J

∑
i=0

(A−1
i

J

∑
j=i+1

AiPiv j,
J

∑
j=i+1

AiPiv j)

because QiA = AiPi and ∑J
j=i+1 Q jAv j = AiPi∑J

j=i+1 v j. Consequently,

(D̃−1Ũ ṽ,Ũ ṽ)Ṽ =
J

∑
i=0

(
J

∑
j=i+1

Piv j,Ai

J

∑
j=i+1

Piv j) =
J

∑
i=0
‖

J

∑
j=i+1

Piv j‖2
A.

Since ṽ ∈ V , we should use the quotient norm (which gives the inf) to finish the
proof. �
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For SSC method with general smoothers, we present the following sharp estimate
of Xu and Zikatanov [94] (see also [30]). We refer to [94, 30] for a proof.

Theorem 2.3 (X-Z General Identity for SSC). The SSC is convergent if each sub-
space solver Ti = RiQiA is convergent. Furthermore

∥∥∥∥∥
J

∏
i=1

(I−Ti)

∥∥∥∥∥
2

A

= 1− 1
K

, K = 1+ sup
‖v‖=1

inf
∑i vi=v

J

∑
i=1

‖T ∗i wi‖2
T−1

i
(14)

where wi = ∑J
j=i vi−T−1

i vi and T i := T ∗i +Ti−T ∗i Ti.

3 Multilevel methods on quasi-uniform grids

In this section, we apply PSC and SSC to the finite element discretization of second
order elliptic equations. We use theory developed in the previous section to give a
convergence analysis of multilevel iteration methods.

3.1 Finite element methods

For simplicity we illustrate the technique by considering the linear finite element
method for the Poisson equation.

−Δu = f in Ω , and u = 0 on ∂Ω , (15)

where Ω ⊂ R
d is a polyhedral domain.

3.1.1 Weak formulation

The weak formulation of (15) reads: given an f ∈ H−1(Ω) find u ∈ H1
0 (Ω) so that

a(u,v) = 〈 f ,v〉 for allv ∈ H1
0 (Ω), (16)

where
a(u,v) = (∇u,∇v) =

∫
Ω
∇u ·∇vdx,

and 〈·, ·〉 is the duality pair between H−1(Ω) and H1
0 (Ω).

By the Poincaré inequality, a(·, ·) defines an inner product on H1
0 (Ω). Thus by the

Riesz representation theorem, for any f ∈H−1(Ω), there exists a unique u∈H1
0 (Ω)

such that (16) holds. Furthermore, we have the following regularity result. There
exists α ∈ (0,1] which depends on the smoothness of ∂Ω such that
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‖u‖1+α � ‖ f‖α−1. (17)

This inequality is valid if Ω is convex or ∂Ω is C1,1.

3.1.2 Triangulation and properties

Let Ω be a polyhedral domain in R
d . A triangulation T (also called mesh or grid)

of Ω is a partition of Ω into a set of d-simplexes.
We impose two conditions on a triangulation T which are important in finite

element construction. First, a triangulation T is called conforming or compatible if
the intersection of any two simplexes τ and τ ′ in T is either empty or a common
lower dimensional simplex.

The second important condition is shape regularity. A set of triangulations T is
called shape regular if there exists a constant σ1 such that

max
τ∈T

diam(τ)d

|τ| ≤ σ1, for all T ∈ T, (18)

where diam(τ) is the diameter of τ and |τ| is the measure of τ in R
d . For shape

regular triangulations, diam(τ) � hτ := |τ|1/d which will be used to represent the
size of τ .

Furthermore, a shape regular class of triangulations T is called quasi-uniform if
there exists a constant σ2 such that

maxτ∈T hτ
minτ∈T hτ

≤ σ2, for all T ∈ T.

For a quasi-uniform triangulation T , we simply call h = maxτ∈T hτ the mesh size
and denote T by Th.

3.1.3 Finite element approximation

The standard finite element method is to solve problem (16) in a piecewise poly-
nomial finite dimensional subspace. For simplicity we consider the piecewise linear
finite element space Vh ⊂ H1

0 (Ω) on quasi-uniform triangulations Th of Ω :

Vh := {v ∈ H1
0 (Ω) : v|τ ∈P1(τ) for all τ ∈T }.

We now solve (16) in the finite element space Vh: find uh ∈ Vh such that

a(uh,vh) = 〈 f ,vh〉, for all vh ∈ Vh. (19)

The existence and uniqueness of the solution to (19) follows again from the Riesz
representation theorem since Vh ⊂H1

0 (Ω). By approximation and regularity theory,



Multilevel methods for H(grad), H(curl), and H(div) systems 611

we can easily get an error estimate on quasi-uniform grids

‖u−uh‖1 � hα‖u‖1+α � hα‖ f‖α−1,

where α > 0 is determined by the regularity result (17). Thus uh converges to u
when h→ 0. When the solution u is rough, e.g., α� 1, the convergence rate can be
improved using adaptive grids [12, 79, 23, 63]. We will assume Vh is given, and the
main objective of this paper is to discuss how to compute uh efficiently. We focus
on quasi-uniform grids in this section and on graded grids in the next section.

In this application, the SPD operator A is (Au,v) = (∇u,∇v) and ‖·‖A is | · |1. For
quasi-uniform mesh Th, let Ah be the restriction of A on the finite element space Vh

over Th. We then end up with a linear operator equation Ah : Vh �→ Vh that is

Ahuh = fh. (20)

It is easy to see Ah is a self-adjoint operator in the Hilbert space Vh using L2 inner
product. To simplify notation in the sequel, we remove the subscript h when it is
clear from the context and leads to no confusion.

It can be easily shown that κ(Ah) � h−2 and the convergence rate of classical iter-
ation methods, including Richardson, Jacobi, and Gauss-Seidel methods, for solving
(19) is like

ρ ≤ 1−Ch2.

Thus when h→ 0, we observe slow convergence of those classical iterative methods.
We will construct efficient iterative methods using multilevel space decompositions.

3.2 Multilevel space decomposition and multigrid method

We first present a multilevel space decomposition. Let us assume that we have an ini-
tial quasi-uniform triangulation T0 and a nested sequence of triangulations {Tk}J

k=0
where Tk is obtained by the uniform refinement of Tk−1 for k > 0. We then get a
nested sequence (in the sense of trees [63]) of quasi-uniform triangulations

T0 ≤T1 ≤ ·· · ≤TJ = Th.

Note that hk, the mesh size of Tk, satisfies hk � γ2k for some γ ∈ (0,1), and thus
J � | logh|. Let Vk denote the corresponding linear finite element space of H1

0 (Ω)
based on Tk. We thus get a sequence of multilevel nested spaces

V0 ⊂ V1...⊂ VJ = V ,

and a macro space decomposition

V =
J

∑
k=0

Vk. (21)
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There is redundant overlapping in this multilevel decomposition, so the sum is
not direct. The subspace solvers need only to take care of the “non-overlapping”
components of the error (high frequencies in Vk). For each subspace problem Akek =
rk posed on Vk, we use a simple Richardson method

Rk = h2
kIk,

where Ik : Vk → Vk is the identity and hk ≈ λmax(Ak).
Let Nk be the dimension of Vk, i.e., the number of interior vertices of Tk. The

standard nodal basis in Vk will be denoted by φ(k,i), i = 1, · · · ,Nk. By our charac-
terization of Richardson method, it is PSC method on the micro decomposition
Vk = ∑Nk

i=1 V(k,i) with V(k,i) = span{φ(k,i)}. In summary we choose the space de-
composition:

V =
J

∑
k=0

Vk =
J

∑
k=0

Nk

∑
i=1

V(k,i). (22)

If we apply PSC to the decomposition (22) with R(k,i) = h2
kI(K,i), we obtain

I(k,i)R(k,i)I
t
(k,i)u = h2−d(u,φ(k,i))φ(k,i). The resulting operator B, according to (6), is

the so-called BPX preconditioner [19]

Bu =
J

∑
k=0

Nk

∑
i=1

h2−d
k (u,φ(k,i))φ(k,i). (23)

If we apply SSC to the decomposition (22) with exact subspace solvers Ri = A−1
i ,

we obtain a V-cycle multigrid method with Gauss-Seidel smoothers.

3.3 Stable decomposition and optimality of BPX preconditioner

For the optimality of the BPX preconditioner, we are to prove that the condition
number κ(BA) is uniformly bounded and thus PCG using BPX preconditioner con-
verges in a fixed number of steps for a given tolerance regardless of the mesh size.

The estimate λmin(BA) � 1 follows from the stability of the subspace decompo-
sition. The first result is on the macro decomposition V = ∑J

k=0 Vk.

Lemma 3.1 (Stability of Macro Decomposition). For any v ∈ V , there exists a
decomposition v = ∑J

k=0 vk with vk ∈ Vk,k = 0, . . . ,J such that

J

∑
k=0

h−2
k ‖vk‖2 � |v|21. (24)

Proof. Following the chronological development, we present two proofs. The first
one uses full regularity and the second one minimal regularity.
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1 Full regularity H2: We assume α = 1 in (17), which holds for convex polygons or
polyhedrons. Recall that Pk : V →Vk is the projection onto Vk with the inner product
(u,v)A = (∇u,∇v), and let P−1 = 0. We prove that the following decomposition

v =
J

∑
k=0

(Pk−Pk−1)v (25)

satisfies (24). The full regularity assumption leads to the L2 error estimate of Pk via
a standard duality argument:

‖(I−Pk)v‖� hk|(I−Pk)v|1, for all v ∈ H1
0 (Ω). (26)

Since Vk−1 ⊂ Vk, we have Pk−1Pk = Pk−1 and

Pk−Pk−1 = (I−Pk−1)(Pk−Pk−1). (27)

In view of (26) and (27), we have

J

∑
k=0

h−2
k ‖(Pk−Pk−1)v‖2 =

J

∑
k=0

h−2
k ‖(I−Pk−1)(Pk−Pk−1)v‖2

�
J

∑
k=0

|(Pk−Pk−1)v|21,Ω = |v|21,Ω .

In the last step, we have used the fact (Pk−Pk−1)v is the orthogonal decomposition
in the A-inner product.

2 Minimal regularity H1: We relax the H2-regularity upon using the decomposition

v =
J

∑
k=0

(Qk−Qk−1)v, (28)

where Qk : V → Vk is the L2-projection onto Vk. A simple proof of nearly optimal
stability of (28) proceeds as follows. Invoking approximability and H1-stability of
the L2-projection Qk on quasi-uniform grids, we infer that

‖(Qk−Qk−1)u‖= ‖(I−Qk−1)Qku‖� hk|Qku|1 � hk|u|1.

Therefore
J

∑
k=0

h2
k‖(Qk−Qk−1)u‖2 � J|u|21 � | logh||u|21.

The factor | logh| in the estimate can be removed by a more careful analysis based
on the theory of Besov spaces and interpolation spaces. The following crucial in-
equality can be found, for example, in [91, 31, 64, 15, 65]:
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J

∑
k=0

h2
k‖(Qk−Qk−1)u‖2 � |u|21. (29)

This completes the proof. �

We next state the stability of the micro decomposition. For a finite element space
V with nodal basis {φi}N

i=1, let Qφi be the L2-projection to the one dimensional
subspace spanned by φi. We have the following norm equivalence which says the
nodal decomposition is stable in L2. The proof is classical in the finite element
analysis and thus omitted here.

Lemma 3.2 (Stability of Micro Decomposition). For any u ∈ V over a quasi-
uniform mesh T , we have the norm equivalence

‖u‖2
�

N

∑
i=1
‖Qφi u‖2.

Theorem 3.1 (Stable Space Decomposition). For any v ∈ V , there exists a decom-
position of v of the form

v =
J

∑
k=0

Nk

∑
i=1

v(k,i), v(k,i) ∈ V(k,i), i = 1, . . . ,Nk,k = 0, . . . ,J,

such that
J

∑
k=0

Nk

∑
i=1

h−2
k ‖v(k,i)‖2 � |v|21.

Consequently λmin(BA) � 1 for the BPX preconditioner B defined in (23).

Proof. In light of Lemma 2.1, it suffices to combine Lemmas 3.1 and 3.2, and use
(23). �

To estimate λmax(BA), we first present a strengthened Cauchy-Schwarz (SCS)
inequality for the macro decomposition.

Lemma 3.3 (Strengthened Cauchy-Schwarz Inequality (SCS)). For any ui ∈
Vi,v j ∈ V j, j ≥ i, we have

(ui,v j)A � γ j−i|ui|1h−1
j ‖v j‖0,

where γ < 1 is a constant such that hi � γ2i.

Proof. Let us first prove the inequality on one element τ ∈Ti. Using integration by
parts, Cauchy-Schwarz inequality, trace theorem, and inverse inequality, we have

∫
τ
∇ui ·∇v j dx =

∫
∂τ

∂ui

∂n
v j ds � ‖∇ui‖0,∂τ‖v j‖0,∂τ � h−1/2

i ‖∇ui‖0,τh−1/2
j ‖v j‖0,τ

� (
h j

hi
)1/2|ui|1,τh−1

j ‖v j‖0,τ ≈ γ j−i|ui|1,τh−1
j ‖v j‖0,τ .
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Adding over τ ∈Ti, and using Cauchy-Schwarz again, yields

(∇ui,∇v j) = ∑
τ∈Ti

(∇ui,∇v j)τ � γ j−ih−1
j ∑

τ∈Ti

|ui|1,τ‖v j‖0,τ

� γ j−ih−1
j

(
∑
τ∈Ti

|ui|21,τ
)1/2( ∑

τ∈Ti

‖v j‖2
0,τ
)1/2 = γ j−i|ui|1h−1

j ‖v j‖0,

which is the asserted estimate. �

Before we prove the main consequence of SCS, we need an elementary estimate.

Lemma 3.4 (Auxiliary Estimate). Given γ < 1, we have

n

∑
i, j=1

γ | j−i|xiy j ≤
2

1− γ

( n

∑
i=1

x2
i

)1/2( n

∑
i=1

y2
i

)1/2
∀(xi)n

i=1,(yi)n
i=1 ∈ R

n.

Proof. Let Γ ∈R
n×n be the matrix Γ = (γ | j−i|)n

i, j=1. The spectral radius ρ(Γ ) of Γ
satisfies

ρ(Γ )≤ ‖Γ ‖1 = max
1≤ j≤n

n

∑
i=1

γ | j−i| ≤ 2
1− γ

.

Consequently, utilizing the Cauchy-Schwarz inequality yields

n

∑
i, j=1

γ | j−i|xiy j = (Γ x,y)≤ ρ(Γ )‖x‖2‖y‖2 ∀x = (xi)n
i=1,y = (yi)n

i=1 ∈ R
n,

which is the desired estimate. �

Theorem 3.2 (Largest Eigenvalue of BA). For any v ∈ V , we have

(Av,v) � inf
∑J

k=0 vk=v

J

∑
k=0

h−2
k ‖vk‖2.

Consequently λmax(BA) � 1 for the BPX preconditioner B defined in (23).

Proof. For v ∈ V , let v = ∑J
k=0 vk,vk ∈ Vk, k = 0, . . . ,J, be an arbitrary decomposi-

tion. By the SCS inequality of Lemma 3.3, we have

(∇v,∇v) = 2
J

∑
k=0

J

∑
j=k+1

(∇vk,∇v j)+
J

∑
k=0

(∇vk,∇vk) �
J

∑
k=0

J

∑
j=k

γ j−k|vk|1h−1
j ‖v j‖.

Combining Lemma 3.4 with the inverse estimate |vk|1 � h−1
k ‖vk‖, we obtain

(∇v,∇v) � (
J

∑
k=0

|vk|21)1/2(
J

∑
k=0

h−2
k ‖vk‖2)1/2 �

J

∑
k=0

h−2
k ‖vk‖2.

which is the assertion. �
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We finally prove the optimality of the BPX preconditioner.

Corollary 3.1 (Optimality of BPX Preconditioner). For the preconditioner B de-
fined in (23), we have

κ(BA) � 1

Proof. Simply combine Theorems 3.1 and 3.2. �

3.4 Uniform convergence of V-cycle multigrid

In this section, we prove the uniform convergence of V-cycle multigrid, namely SSC
applied to the decomposition (22) with exact subspace solvers.

Lemma 3.5 (Nodal Decomposition). Let T be a quasi-uniform triangulation with
N nodal basis φi. For the nodal decomposition

v =
N

∑
i=1

vi, vi = v(xi)φi,

we have
N

∑
i=1

∣∣Pi

N

∑
j>i

v j
∣∣2
1 � h−2‖v‖2.

Proof. For every 1 ≤ i ≤ N, we define the index set Li := { j ∈ N : i < j ≤
N,suppφ j∩suppφi �= /0} andΩi =∪ j∈Li suppφ j. Since T is shape-regular, the num-
bers of integers in each Li is uniformly bounded. So we have

N

∑
i=1

∣∣Pi

N

∑
j>i

v j
∣∣2
1,Ω =

N

∑
i=1

∣∣Pi ∑
j∈Li

v j
∣∣2
1,Ω �

N

∑
i=1
∑
j∈Li

|v j|21,Ωi
�

N

∑
i=1
|vi|21,Ωi

�
N

∑
i=1

h−2
i ‖vi‖2

0,Ωi
,

where we have used an inverse inequality in the last step. Since T is quasi-uniform,
and the nodal basis decomposition is stable in the L2 inner product (Lemma 3.2),
i.e. ∑N

i=1 ‖vi‖2
0,Ωi
≈ ‖v‖2

0,Ω , we deduce

N

∑
i=1

∣∣Pi

N

∑
j>i

v j
∣∣2
1,Ω � h−2‖v‖2

0,Ω ,

which is the desired estimate. �.

Lemma 3.6 (H1 vs L2 Stability). The following inequality holds for all v ∈ V

J

∑
k=0

|(Pk−Qk)v|21,Ω �
J

∑
k=0

h−2
k ‖(Qk−Qk−1)v‖2. (30)
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Proof. We first use the definition of Pk, together with (I −Qk)v = ∑J
j=k+1(Q j −

Q j−1)v, to write

J

∑
k=0

|(Pk−Qk)v|21 =
J

∑
k=0

((Pk−Qk)v,(I−Qk)v)A

=
J

∑
k=0

J

∑
j=k+1

((Pk−Qk)v,(Q j−Q j−1)v)A.

Applying now Lemma 3.3 yields

J

∑
k=0

|(Pk−Qk)v|21 �
(

J

∑
k=1

|(Pk−Qk)v|21

)1/2( J

∑
k=0

h−2
k ‖(Qk−Qk−1)v‖2

)1/2

.

The desired result then follows. �

Theorem 3.3 (Optimality of V-cycle Multigrid). The V -cycle multigrid method,
using SSC applied to the decomposition (22) with exact subspace solvers Ri = A−1

i ,
converges uniformly.

Proof. We use the telescopic multilevel decomposition

v =
J

∑
k=0

vk, vk = (Qk−Qk−1)v,

along with the nodal decomposition

vk =
Nk

∑
i=1

v(k,i), v(k,i) = vk(xi)φ(k,i),

for each level k. By the X-Z identity of Theorem 2.2, it suffices to prove the inequal-
ity

J

∑
k=0

Nk

∑
i=1
|P(k,i) ∑

(l, j)>(k,i)
v(l, j)|21 � |v|21, (31)

where the inner sum is understood in lexicographical order. We first simplify the left
hand side of (31) upon writing

∑
(l, j)>(k,i)

v(l, j) =
Nk

∑
j>i

v(k, j) +∑
l>k

vl =
Nk

∑
j>i

v(k, j) + (v−Qkv).

We apply Lemma 3.5 and the stable decomposition (29) to get

J

∑
k=0

Nk

∑
i=1
|P(k,i)∑

j>i
v(k, j)|21 �

J

∑
k=0

h−2
k ‖vk‖2 � |v|21.
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We now estimate the remaining terms |P0(v−Q0)v|2 and ∑J
k=1 |P(k,i)(v−Qkv)|21,Ω .

For any function u ∈ V ,

Nk

∑
i=1
|P(k,i)u|21 =

Nk

∑
i=1
|P(k,i)Pku|21,Ω(k,i)

≤
Nk

∑
i=1
|Pku|21,Ω(k,i)

� |Pku|21.

Thus, by (30) and (29), we get

|P0(v−Q0)v|2 +
J

∑
k=1

|Pk(v−Qkv)|21

�
J

∑
k=0

|(Pk−Qk)v|21 �
J

∑
k=0

h−2
k ‖Qk−Qk−1)v‖2 � |v|21.

This completes the proof. �

The proof of Theorem 3.3 hinges on Theorem 2.2 (X-Z identity), which in turn
requires exact solvers Ri = A−1

i and makes Pi = A−1
i QiA the key operator to appear

in (11). If the smoothers Ri are not exact, namely Ri �= A−1
i , then the key operator

becomes Ti = RiQiA and Theorem 2.2 must be replaced by Theorem 2.3. We refer
to [30] for details.

3.5 Systems with strongly discontinuous coefficients

Elliptic problems with strongly discontinuous coefficients arise often in practical ap-
plications and are notoriously difficult to solve for iterative methods such as multi-
grid and domain decomposition. We are interested in the performance of these meth-
ods with respect to jumps. Consider the following model problem

⎧⎨
⎩
−∇ · (ω∇u) = f in Ω ,

u = gD on ΓD,

−ω ∂u
∂n = gN on ΓN

(32)

where Ω ∈ R
d(d = 1, 2 or 3) is a polygonal or polyhedral domain with Dirich-

let boundary ΓD and Neumann boundary ΓN . We assume that the coefficient func-
tion ω = ω(x) is positive and piecewise constant with respect to given subdomains
Ωm (m = 1, · · · ,M) with Ω = ∪M

m=1Ωm, i.e., ω |Ωm = ωm and

J (ω)≡ ωmax

ωmin
/ 1.

These subdomains Ωm are matched by the initial grid T0.
The question is how to make multigrid and domain decomposition methods con-

verge (nearly) uniformly, not only with respect to the mesh size, but also with respect
to the jump J (ω). There has been a lot of interest in the development of iterative
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methods with robust convergence rates with respect to the size of both jumps and
mesh; see [17, 25, 77, 85, 86, 95] and the references cited therein. Domain decom-
position (DD) methods have been developed for this purpose with special coarse
spaces [95]. We refer to the monograph [82] and the survey [24] for a summary on
DD methods. However, in general, the convergence rates of multigrid and domain
decomposition methods are known to deteriorate with respect to J (ω), especially
in three dimensions.

The BPX and overlapping domain decomposition preconditioners are proven to
be robust for some special cases: interface has no cross points [20, 66]; every sub-
domain touches part of the Dirichlet boundary [93]; and quasi-monotone coeffi-
cients [33, 34]. If the number of levels is fixed, multigrid converges uniformly with
the convergence rate ρk ≤ 1−δ k where δ ∈ (0,1) is a constant and k is the number
of levels. In general, the worst convergence rate is 1−Ch and, for BPX precondi-
tioned system, supω κ(BA)≥Ch−1 (see [66, 90]).

An interesting open problem is how to make multigrid method work uniformly
with respect to jumps without introducing “expensive” coarse spaces. Recently, Xu
and Zhu [93] proved that BPX and multigrid V -cycle lead to a nearly uniform con-
vergent preconditioned conjugate gradient method (see [97] for a similar result on
DD preconditioners). We now report this result.

Theorem 3.4 (Nearly Optimal PCG). For BPX and multigrid V-cycle precondi-
tioners (without using any special coarse spaces), PCG converges uniformly with
respect to jumps in the sense that there exist c0,c1 and m0 so that

‖u−uk‖A ≤ 2(c0/h−1)m0(1− c1/| logh|)k−m0‖u−u0‖A (k ≥ m0), (33)

where m0 is a fixed number depending only on the distribution of the coefficients.

This result is motivated by [41, 84] where PCG with diagonal scaling or over-
lapping DD is considered, and the following convergence result is proved by using
pure algebraic methods:

‖u−uk‖A ≤C(h,J (ω))(1− ch)k−m0‖u−u0‖A.

Unfortunately, this estimate deteriorates severely with respect to mesh size. The
improved estimate (33) implies that after m0 steps, the convergent rate of the PCG is
nearly uniform with respect to the mesh size and uniform with respect to jumps. The
first m0 steps are necessary for PCG to deal with small eigenvalues created by the
jumps. To account for the effect of a finite cluster of eigenvalues in the convergence
rate of PCG, the following estimate from [45] will be instrumental. Suppose that
we can split the spectrum σ(BA) of BA into two sets σ0(BA) and σ1(BA), where σ0

consists of all “bad” eigenvalues and the remaining eigenvalues in σ1 are bounded
above and below.

Theorem 3.5 (CG for Clusters of Eigenvalues). If σ(BA) = σ0(BA)∪σ1(BA) is
such that σ0(BA) contains m eigenvalues and λ ∈ [a,b] for each λ ∈ σ1(BA), then
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‖u−uk‖A ≤ 2(κ(BA)−1)m

(√
b/a−1√
b/a+1

)k−m

‖u−u0‖A.

Proof of Theorem 3.4. We introduce the weighted L2 and H1 inner products and
corresponding norms

(u,v)0,ω =
∫
Ω

uvω dx =
M

∑
m=1

ωm(u,v)Ωm , ‖u‖0,ω = (u,u)1/2
ω ,

(u,v)1,ω =
∫
Ω
∇u ·∇vω dx =

M

∑
m=1

ωm(u,v)1,Ωm , ‖u‖1,ω = (u,u)1/2
1,ω .

The SPD operator A and corresponding inner product of finite element discretization
of (32) is (Au,v) = (u,v)1,ω . Let Vh be the linear finite element space based on a
shape regular triangulation Th. The weighted L2-projection to Vh with respect to
(·, ·)0,ω will be denoted by Qω

h .
We now introduce the following auxiliary subspace:

Ṽh =
{

v ∈ Vh :
∫
Ωm

vdx = 0, |∂Ωm ∩ΓD|= 0

}
.

Note that this subspace satisfies dim(Ṽh) = n−m0 where m0 < M is a fixed number,
and more importantly,

‖v‖0,ω � |v|1,ω for all v ∈ Ṽh.

As a consequence, we obtain the approximation and stability of the weighted L2-
projection Qω

h (see [20, 93, 97]),

‖(I−Qω
h )v‖0,ω � h |logh|

1
2 |v|1,ω , |Qω

h v|1,ω � |logh|
1
2 |v|1,ω , for all v ∈ Ṽh.

Using the arguments in Lemma 3.1-step 2, we can prove that the decomposition
using weighted L2 projection is almost stable, i.e.,

J

∑
k=0

h−2
k ‖(Q

ω
k −Qω

k−1)u‖2 � | logh|2|u|21,ω . (34)

Repeating the argument of Theorem 3.1, we obtain the estimate λmin(BA)�| logh|−2.
On the other hand, the strengthened Cauchy Schwarz inequality (SCS) of Lemma

3.3 is valid for weighted inner products because its proof can be carried out element-
wise when ω is piecewise constant. Consequently Theorem 3.2 holds for weighted
L2-norm and implies λmax(BA) � 1. We thus infer that the condition number of BA
restricted to Ṽh is nearly uniformly bounded, namely κ(BA) � | logh|2.

To estimate the convergent rate of PCG in the space Vh, we introduce the mth
effective condition number by κm+1(A) = λmax(A)/λm+1(A), where λm+1(A) is
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the (m + 1)th minimal eigenvalue of A. By the Courant “minmax” principle (see
e.g., [40])

λm+1(A) = max
S,dim(S)=m

min
0 �=v∈S⊥

(Av,v)0,ω
(v,v)0,ω

.

In particular, the fact dim(Ṽh) = n−m0, together with the nearly stable decomposi-
tion (34), implies that λm0+1(BA)≥ | logh|−2.

The asserted estimate finally follows from Theorem 3.5 �.
Results such as Theorem 3.5 provide convincing evidence of a general rule of

thumb: an iterative method, whenever possible, should be used together with certain
preconditioned Krylov space (such as conjugate gradient) method.

4 Multilevel methods on graded grids

Adaptive methods are now widely used in scientific and engineering computation
to optimize the relation between accuracy and computational labor (degrees of free-
dom). Let V0 ⊆ V1 ⊆ ·· · ⊆ VJ = V be nested finite element spaces obtained by
local mesh refinement. A standard multilevel method contains a smoothing step on
the spaces V j, j = 0, . . . ,J. For graded grids obtained by adaptive procedure, it is
possible that V j results from V j−1 by just adding few, say one, basis function. Thus
smoothing on both V j and V j−1 leads to a lot of redundancy. If we let N be the num-
ber of unknowns in the finest space V , then the complexity of smoothing can be
as bad as O(N2) [62]. To achieve optimal complexity O(N), the smoothing in each
space V j must be restricted to the new unknowns and their neighbors. Such methods
are referred to as adaptive multilevel methods or local multilevel methods.

Of all possible refinement strategies, we are interested in bisection, the most
popular and effective procedure for refinement in any dimension [6, 9, 56, 59, 68, 69,
70, 71, 72, 74, 80, 83]. We refer to [31] for the optimality of BPX preconditioner for
regular refinement (one triangle is divided into four similar triangles) in 2-D and [1]
for similar results in 3-D (one tetrahedron is divided into eight tetrahedrons).

We still consider the finite element approximation of Poisson equation (15); see
Section §3.1 for the problem setting. The additional difficulty is that the mesh is no
longer quasi-uniform. We present a decomposition of bisection grids and transfer
results from quasi-uniform grids to bisection grids. As an example, we present a
stable decomposition of finite element spaces and SCS inequality. The optimality of
BPX preconditioner and uniform convergence of multigrid can then be established
upon applying the general theory of Section §3; we refer to [27].
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4.1 Bisection methods

In this section, we introduce bisection methods for simplicial grids and present a
novel decomposition of conforming triangulations obtained by bisection methods.

Given a simplex τ , we assign one of its edges as the refinement edge of τ . Starting
from an initial triangulation T0, a bisection method consists of the following rules:

R1. assign refinement edges for each element τ ∈T0;
R2. divide a simplex with a refinement edge into two simplexes;
R3. assign refinement edges to the two children of a bisected simplex.

We now give a mathematical description. Let τ be a simplex that bisects into
simplexes τ1 and τ2. R2 can be described by a mapping bτ : {τ} → {τ1,τ2}. If we
denote a simplex τ with a refinement edge e by a pair (τ,e), then R2 and R3 can
be described by a mapping {(τ,e)} → {(τ1,e1),(τ2,e2)}. The pair (τ,e) is called
a labeled simplex and the set (T ,L) := {(τ,e) : τ ∈ T } is called a labeled trian-
gulation. Then R1 can be described by a mapping T0 → (T0,L) and called initial
labeling. The first rule is an essential ingredient of bisection methods. Once the ini-
tial labeling is done, the subsequent grids inherit labels according to R2-R3 such
that the bisection process can proceed. We refer to [63, Section 4] for details.

For a labeled triangulation (T ,L), and a bisection

bτ : {(τ,e)}→ {(τ1,e1),(τ2,e2)}

for τ ∈T , we define a formal addition

T +bτ := (T ,L)\{(τ,e)}∪{(τ1,e1),(τ2,e2)}.

For a sequence of bisections B = (bτ1 ,bτ2 , · · · ,bτN ), we define

T +B := ((T +bτ1)+bτ2)+ · · ·+bτN ,

whenever the addition is well defined (i.e. τi should exists in the previous labeled tri-
angulation). These additions are a convenient mathematical description of bisection
on triangulations.

Given a labeled initial grid T0 of Ω and a bisection method, we define

F(T0) = {T : there exists a bisection sequence B such that T = T0 +B},
T(T0) = {T ∈ F(T0) : T is conforming}.

Therefore F(T0) contains all triangulations obtained from T0 using the bisection
method, and is unique once the rules R1-3 have been set. But a triangulation T ∈
F(T0) could be non-conforming and thus we define T(T0) as a subset of F(T0)
containing only conforming triangulations.

We also define the sequence of uniformly refined meshes {T k}∞k=0 by:

T 0 = T0, and T k = T k−1 +{bτ : τ ∈T k−1}, for k ≥ 1.
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This means that T k is obtained by bisecting all elements in T k−1 only once. Note
that T k ∈ F(T0) but not necessarily in the set T(T0).

We consider bisection methods which satisfy the following two assumptions:

(B1) Shape Regularity: F(T0) is shape regular.

(B2) Conformity of Uniform Refinement: T k ∈ T(T0), i.e., T k is conforming
for all k ≥ 0.

All existing bisection methods share the same rule R2 described now. Given a
simplex τ with refinement edge e, the two children of τ are defined by bisect-
ing e and connecting the midpoint of e to the other vertices of τ . More precisely,
let {x1,x2, · · · ,xd+1} be vertices of τ and let e = x1x2 be the refinement edge. Let
xm denote the midpoint of e. The children of τ are two simplexes τ1 with vertices
{x1,xm,x3, · · · ,xd+1} and τ2 with {x2,xm,x3, · · · ,xd+1}; we refer to [63, Section 4]
for a through discussion of the notion of vertex type order and type. There is another
class of refinement method, called regular refinement, which divide one simplex into
2d children; see [8, 58].

All existing bisection methods differ in R1 and R3. For the so-called longest edge
bisection [68, 70, 71, 72, 69], the refinement edge of a simplex is always assigned
as the longest edge of this simplex. It is also used in R1 to assign the longest edge
for each element in the initial triangulation. This method is simple, but (B1) is only
proved for two dimensional triangulations [72] and (B2) only holds for special cases.

Regarding R3, the newest vertex bisection method for two dimensional triangula-
tions assigns the edge opposite to the newest vertex of each child as their refinement
edge. Sewell [76] showed that all the descendants of a triangle in T0 fall into four
similarity classes and hence (B1) holds. Note that (B2) may not hold for an arbitrary
rule R1, namely the refinement edge for elements in the initial triangulation cannot
be selected freely. Mitchell [60] came up with a rule R1 for which (B2) holds. He
proved the existence of such initial labeling scheme (so-called compatible initial
labeling), and Biedl, Bose, Demaine, and Lubiw [11] gave an optimal O(N) algo-
rithm to find a compatible initial labeling for a triangulation with N elements. In
summary, in two dimensions, newest vertex bisection with compatible initial label-
ing is a bisection method which satisfies (B1) and (B2).

There are several bisection methods proposed in three and higher dimensions
which generalize the newest vertex bisection in two dimensions [9, 56, 67, 6, 59, 80].
We shall not give detailed description of these bisection methods since the descrip-
tion of rules R1 and R3 is very technical for three and higher dimensions; we refer
to [63, Section 4]. In these methods, (B1) is relatively easy to prove by showing all
descendants of a simplex in T0 fall into similarity classes. As in the two dimensional
case, (B2) requires special initial labeling, i.e., R1. We refer to Kossaczký [56] for
the discussion of such rule in three dimensions and Stevenson [80] for the gener-
alization to d-dimensions. However the algorithms proposed in [56, 80] to enforce
such initial labeling consist of modifying the initial triangulation by further refine-
ment of each element, which deteriorates the shape regularity. Although (B2) im-
poses a severe restriction on the initial labeling, we emphasize that it is also used to
prove the optimal complexity of adaptive finite element methods [23, 63].
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4.2 Compatible bisections

The set of vertices of the triangulation T will be denoted by N (T ) and the set of
all edges will be denoted by E (T ). For a vertex x ∈N (T ) or an edge e ∈ E (T ),
we define the first ring of x or e to be

Rx = {τ ∈T |x ∈ τ}, Re = {τ ∈T |e⊂ τ},

and the local patch of x or e as ωx = ∪τ∈Rxτ, and ωe = ∪τ∈Reτ. Note that ωx and
ωe are subsets of Ω , while Rx and Re are subsets of T which can be thought of as
triangulations of ωx and ωe, respectively. The cardinality of a set S will be denoted
by #S.

Given a labeled triangulation (T ,L), an edge e ∈ E (T ) is called a compatible
edge if e is the refinement edge of τ for all τ ∈Re. For a compatible edge, the ring
Re is called a compatible ring, and the patch ωe is called a compatible patch. Let x
be the midpoint of e and Rx be the ring of x in T + {bτ : τ ∈Re}. A compatible
bisection is a mapping be : Re →Rx. We then define the addition

T +be := T +{bτ : τ ∈Re}= T \Re∪Rx.

For a compatible bisection sequence B, the addition T +B is defined as before.
Note that if T is conforming, then T + be is conforming for a compatible bi-

section be, whence compatible bisections preserve the conformity of triangulations.
Hence, compatible bisection is a fundamental concept both in theory and practice.

In two dimensions, a compatible bisection be has only two possible configura-
tions; see Fig. 1. One is bisecting an interior compatible edge, in which case the
patch ωe is a quadrilateral. Another case is bisecting a boundary edge, which is
always compatible, and ωe is a triangle. In three dimensions, the configuration of
compatible bisections depends on the initial labeling; see Fig. 2 for a simple case.

Fig. 1 Two compatible bisections for d = 2. Left: interior edge; right: boundary edge. The edge
with boldface is the compatible refinement edge, and the dash-line represents the bisection

The bisection of paired triangles was first introduced by Mitchell [60, 61]. The
idea was generalized by Kossaczký [56] to three dimensions, and Maubach [59]
and Stevenson [80] to any dimension. In the aforementioned references, efficient re-
cursive completion procedures of bisection methods are introduced based on com-
patible bisections. We use them to characterize the conforming mesh obtained by
bisection methods.
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Fig. 2 A compatible bisection for d = 3: the edge e (in bold) is the refinement edge all elements in
the patch ωe. Connecting e to the other vertices bisects each element of the compatible ring Re and
keeps the mesh conforming without spreading refinement outside ωe. This is an atomic operation

4.3 Decomposition of bisection grids

We now present a decomposition of meshes in T(T0) using compatible bisections.
This is due to Chen, Nochetto, and Xu [27] and will be instrumental later.

Theorem 4.1 (Decomposition of Bisection Grids). Let T0 be a conforming trian-
gulation. Suppose the bisection method satisfies assumptions (B2), i.e., for all k≥ 0
all uniform refinements T k of T0 are conforming. Then for any T ∈ T(T0), there
exists a compatible bisection sequence B = (b1,b2, · · · ,bN) with N = #N (T )−
#N (T0) such that

T = T0 +B. (35)

We use the example in Figure 3 to illustrate the decomposition of a bisection
grid. In Figure 3 (a), we display the initial triangulation T0 which uses the longest
edge as the refinement edge for each triangle. We display the fine grid T ∈T(T0) in
Figure 3 (f). In Figure 3 (b)-(e), we give several intermediate triangulations during
the refinement process: each triangulation is obtained by performing several com-
patible bisections on the previous one. Each compatible patch is indicated by a gray
region and the new vertices introduced by bisections are marked by black dots. In
these figures, we denoted by Ti := T0 +(b1,b2, · · · ,bi) for 1≤ i≤ 19.

To prove Theorem 4.1, we introduce the generation of elements and vertices. The
generation of each element in the initial grid T0 is defined to be 0, and the generation
of a child is 1 plus that of the father. The generation of an element τ ∈ T ∈ F(T0)
is denoted by gτ and coincides with the number of bisections needed to create τ
from T0. Consequently, the uniformly refined mesh T k can be characterized as the
triangulation in F(T0) with all elements of T k of the same generation k. Vice versa,
an element τ with generation k can only exist in T k.

Let N(T0) =∪{N (T ) : T ∈ F(T0)} denote the set of all possible vertices. For
any vertex p ∈ N(T0), the generation of p is defined as the minimal integer k such
that p ∈N (T k) and is denoted by gp. For convenience of notation, we regard g as



626 Jinchao Xu, Long Chen, and Ricardo H. Nochetto

Fig. 3 Decomposition of a bisection grid for d = 2: Each frame displays a mesh Ti+k = Ti +
{bi+1, · · · ,bi+k} obtained from Ti by a sequence of compatible bisections {b j}i+k

j=i+1 using the
longest edge. The order of bisections is irrelevant within each frame, but matters otherwise

either a piecewise linear function on T defined as g(p) = gp for p ∈N (T ) or a
piecewise constant defined as g(τ) = gτ for τ ∈T .

The following properties about the generation of elements or vertices for uni-
formly refined mesh T k are a consequence of the definition above:

τ ∈T k if and only if gτ = k; (36)

p ∈N (T k) if and only if gp ≤ k; (37)

for τ ∈T k, max
q∈N (τ)

gq = k = gτ . (38)

Lemma 4.1. Let T0 be a conforming triangulation. Let the bisection method satisfy
assumption (B2). For any T ∈ T(T0), let p ∈ N (T ) be a vertex with maximal
generation in the sense that gp = maxq∈N (T ) gq. Then

gτ = gp for all τ ∈Rp (39)

and
Rp = Rk,p, (40)

where k = gp and Rk,p is the first ring of p in the uniformly refined mesh T k.
Equivalently, all elements in Rp have the same generation gp.



Multilevel methods for H(grad), H(curl), and H(div) systems 627

Proof. We prove (39) by showing gp ≤ gτ and gτ ≤ gp. Since T is conforming, p
is a vertex of each element τ ∈Rp. This implies that p∈N (T gτ ) and thus gτ ≥ gp

by (37). On the other hand, from (38), we have

gτ = max
q∈N (τ)

gq ≤ max
q∈N (T )

gq = gp, for all τ ∈Rp.

Now we prove (40). By (36), Rk,p is made of all elements with generation k
containing p. By (39), we conclude Rp ⊆Rk,p. On the other hand, p cannot belong
to the domain of Ω\ωp, because of the topology of ωp, whence Rk,p\Rp = ∅. This
proves (40). �

Now we are in the position to prove Theorem 4.1.

Proof of Theorem 4.1. We prove the result by the induction on N = #N (T )−
#N (T0). Nothing needs to be proved for N = 0. Assume that (35) holds for N.

Let T ∈ T(T0) with #N (T )−#N (T0) = N +1. Let p ∈N (T ) be a vertex
with maximal generation, i.e., gp = maxq∈N (T ) gq. Then by Lemma 4.1, we know
that Rp = Rk,p for k = gp. Now by assumption (B2), Rk,p is created by a compatible
bisection, say

be : Re →Rk,p,

with e ∈ E (Tk−1). Since the compatible bisection giving rise to p is unique within
F(T0), it must thus be be. This means that if we undo the bisection operation, then
we still have a conforming mesh T ′, or equivalently T = T ′+ be. We can now
apply the induction assumption to T ′ ∈ T(T0) with #N (T ′)− #N (T0) = N to
finish the proof. �

4.4 Generation of compatible bisections

For a compatible bisection bi ∈B, we use the same subscript i to denote related
quantities such as:

• ei: the refinement edge;

• pi: the midpoint of ei;

• ω̃i = ωpi ∪ωpli
∪ωpri

;

• Ti = T0 +{b1, · · · ,bi};

• ωi: the patch of pi i.e. ωpi ;

• pli , pri : two end points of ei;

• hi: the local mesh size of ωi;

• Ri: the first ring of pi in Ti.

We understand h ∈ L∞(Ω) as a piecewise constant mesh-size function, i.e., hτ =
diam(τ) in each simplex τ ∈T .

Lemma 4.2. If bi ∈B is a compatible bisection, then all elements of Ri have the
same generation gi.

Proof. Let pi ∈ N (T0) be the vertex associated with bi. Let Tk be the coarsest
uniformly refined mesh containing pi, so k = gpi . In view of assumption (B2), pi
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arises from uniform refinement of T k−1. Since the bisection giving rise to pi is
unique within F(T0), we realize that all elements in Rei are bisected and have gen-
eration k− 1 because they belong to T k−1. This implies that all elements of Rpi

have generation k, as asserted. �

This lemma allows us to introduce the concept of generation of compatible bi-
sections. For a compatible bisection bi : Rei →Rpi , we define gi = g(τ),τ ∈Rpi .
Throughout this paper we always assume h(τ) � 1 for τ ∈T0. We have the follow-
ing important relation between generation and mesh size

hi � γ gi , with γ =
(1

2

)1/d
∈ (0,1). (41)

Beside this relation, we give now two more important properties on the genera-
tion of compatible bisections. The first property says that different bisections with
the same generation have weakly disjoint local patches.

Lemma 4.3. Let TN ∈ T(T0) be TN = T0 +B, where B is a compatible bisection
sequence B = (b1, · · · ,bN). For any i �= j and g j = gi, we have

◦
ωi ∩

◦
ω j= ∅. (42)

Proof. Since gi = g j = g, both bisection patches Ri and R j belong to the uniformly
refined mesh T q. If (42) were not true, then there would exists τ ∈Ri∩R j ⊂ T q

containing distinct refinement edges ei and e j because i �= j. This contradicts rules
R2 and R3 which assign a unique refinement edge to each element. �

A simple consequence of (42) is that, for all u ∈ L2(Ω) and k ≥ 1,

∑
gi=k

‖u‖2
ωi
≤ ‖u‖2

Ω , (43)

∑
gi=k

‖u‖2
ω̃i

� ‖u‖2
Ω . (44)

The second property is on the ordering of generations. For a given bisection se-
quence B, we define bi < b j if i < j, which means bisection bi is performed before
b j. The generation sequence (g1, · · · ,gN), however, is not necessary monotone in-
creasing; there could exist bi < b j but gi > g j. This happens for bisections driven
by a posteriori error estimators in practice. Adaptive algorithms usually refine ele-
ments around a singularity region first, thereby creating many elements with large
generations, and later they refine coarse elements away from the singularity. This
mixture of generations is the main difficulty for the analysis of multilevel meth-
ods on adaptive grids. We now prove the following quasi-monotonicity property of
generations restricted to a fixed bisection patch.

Lemma 4.4. Let TN ∈ T(T0) be TN = T0 +B, where B is a compatible bisection

sequence B = (b1, · · · ,bN). For any j > i and
◦
ω̃ j ∩

◦
ω̃ i �= ∅, we have
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g j ≥ gi−g0, (45)

where g0 > 0 is an integer depending only the shape regularity of T0.

Proof. Since
◦
ω̃ j ∩

◦
ω̃ i �= ∅, there must be elements τ j ∈Rp j ∪Rpl j

∪Rpr j
and τi ∈

Rpi ∪Rpli
∪Rpri

such that
◦
τ j ∩

◦
τi �= ∅. Since we consider triangulations in T(T0),

the intersection τ j ∩ τi is still a simplex. When b j is performed, only τ j exists in the
current mesh. Thus τ j = τ j ∩ τi ⊆ τi and gτ j ≥ gτi .

Shape regularity implies the existence of a constant g0 only depending on T0

such that
g j +g0/2≥ gτ j ≥ gτi ≥ gi−g0/2,

and (45) follows. �

4.5 Node-oriented coarsening algorithm

A key practical issue is to find a decomposition of a bisection grid. We present a
node-oriented coarsening algorithm recently developed by Chen and Zhang [29].

A crucial observation is that the inverse of a compatible bisection can be thought
as a coarsening process. It is restricted to a compatible star and thus no conformity
issue arises; See Figure 1. For a triangulation T ∈ T(T0), a vertex p is called a
good-for-coarsening vertex, or a good vertex in short, if there exist a compatible
bisection be such that p is the middle point of e. The set of all good vertices in the
grid T will be denoted by G(T ). By the decomposition of bisection grids (Theorem
4.1), the existence of good vertices is evident. Moreover, for bisection grids in 2-D,
we have the following characterization of good vertices due to Chen and Zhang [29].

Theorem 4.2 (Coarsening). Let T0 be a conforming triangulation. Suppose the bi-
section method satisfies assumptions (B2), i.e., for all k ≥ 0 all uniform refinements
T k of T0 are conforming. Then for any T ∈ T(T0) and T �= T0, the set of good
vertices G(T ) is not empty. Furthermore x ∈ G(T ) if and only if

1. it is not a vertex of the initial grid T0;
2. it is the newest vertex of all elements in the ring of Rp.
3. #Rp = 4 for an interior vertex x or #Rp = 2 for a boundary vertex p.

Remark 4.1. The assumption that T0 is compatible labeled could be further relaxed
by using the longest edge of each triangle as its refinement edge for the initial trian-
gulation T0; see Kossaczký [56].

The coarsening algorithm is simply read as the following:

ALGORITHM COARSEN (T )
Find all good nodes G(T ) of T .
For each good node p ∈ G(T )
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Replace the star Rp by b−1
e (Rp).

END
Chen and Zhang [29] prove that one can finally obtain the initial grid back

by applying the coarsening algorithm coarsen repeatedly. It is possible that
coarsen(T) applied to the current grid T gives a coarse grid which is not in
the adaptive history. Indeed our coarsening algorithm may remove vertices added in
several different stages of the adaptive procedure.

For details on the implementation of this coarsening algorithm and the applica-
tion to multilevel preconditioners and multigrid methods, we refer to [29] and [26].

4.6 Space decomposition on bisection grids

We give a space decomposition for Lagrange finite element spaces on bisection
grids. Given a conforming triangulation T of the domain Ω ⊂ R

d and an integer
m≥ 1, the mth order finite element space on T is defined as follows:

V (Pm,T ) := {v ∈ H1(Ω) : v|τ ∈Pm(τ) for all τ ∈T }.

We restrict ourselves to bisection grids in T(T0) satisfying (B1) and (B2). There-
fore by Theorem 4.1, for any TN ∈ T(T0), there exists a compatible bisection se-
quence B = (b1, · · · ,bN) such that

TN = T0 +B.

We give a decomposition of the finite element space V := V (Pm,TN) using
this decomposition of TN . If Ti is the triangulation T0 + (b1, · · · ,bi), let φi,p ∈
V (P1,Ti) denote the linear nodal basis at a vertex p ∈N (Ti). Motivated by the
stable three-point wavelet constructed by Stevenson [78], we define the sub-spaces

V0 = V (P1,T0), and Vi = span{φi,pi ,φi,pli
,φi,pri

}. (46)

Since the basis functions of Vi, i = 0, . . . ,N, are piecewise linear polynomials on
TN , we know Vi ⊆ V . Let {φp, p ∈ Λ} be a basis of V (Pm,TN) such that v =
∑p∈Λ v(p)φp for all v∈V (Pm,TN), whereΛ is the index set of basis. For example,
for quadratic element spaces, Λ consists of vertices and middle points of edges. We
define Vp = span{φp} and end up with the following space decomposition:

V = ∑
p∈Λ

Vp +
N

∑
i=0

Vi. (47)

Since dimVi = 3, we have a three-point local smoother and the total computational
cost for subspace correction methods based on (47) is CN. This is optimal and the
constant in front of N is relatively small. In addition, the three-point local smoother
simplifies the implementation of multilevel methods especially in dimensions higher



Multilevel methods for H(grad), H(curl), and H(div) systems 631

than 3. For example, we only need to maintain an ordered vertex array with two
parent vertices and do not need tree structure to maintain a hierarchical structure of
meshes. The following result is due to Chen, Nochetto, and Xu [27].

Theorem 4.3 (Space Decomposition over Graded Meshes). For any v ∈ V , there
exist vp, p ∈Λ ,vi ∈ Vi, i = 0, · · · ,N such that v = ∑p∈Λ vp +∑N

i=0 vi and

∑
p∈Λ

h−2
p ‖vp‖2 +

N

∑
i=0

h−2
i ‖vi‖2 � ‖v‖2

A. (48)

The idea of the proof is to use Scott-Zhang quasi-interpolation operator [75]

IT : H1(Ω) �→ V (P1,T )

for a conforming triangulation T ; see also Oswald [65]. For any p ∈N (T ) and
p is an interior point, we choose a τp ⊂ Rp. Let {λτp,i, i = 1, · · · ,d + 1} be the
barycentric coordinates of τ which span P1(τp). We construct the L2-dual basis
Θ(τp) = {θτp,i : i = 1, · · · ,d + 1} of {λτp,i : i = 1, · · · ,d + 1}. Suppose θp ∈Θ(τp)
is the dual basis such that

∫
τp
θpvdx = v(p), for all v ∈P1(τp). We then define

IT v = ∑
p∈N (T )

(∫
τp

θpv dx
)
φp.

For boundary vertex p, we simply define IT v(p)= 0 to reflect the vanishing bound-
ary condition of v. By definition, IT preserves piecewise linear functions and sat-
isfies the following estimate and stability [75, 65]

|IT v|1 +‖h−1(v−IT v)‖� |v|1, (49)

hd−2
i |IT v(pi)|2 � h−2

i ‖v‖τpi
, (50)

where hi is the size of τpi .
Given v ∈ V (Pm,T ), we define u = IT v and a decomposition v = u+(v−u),

where IT : V (Pm,T )→ V (P1,T ). We first give a multilevel decomposition
of u using quasi-interpolation. For a vertex p, we denote by τp the simplex used
to define the nodal value at p. The following construction of a sequence of quasi-
interpolations will update τp carefully.

Let I0 be a quasi-interpolation operator defined V (P1,T ) → V0. Suppose
Ii−1 is defined on V (P1,Ti−1). After the compatible bisection bi, we define the
nodal values at the new added vertex pi using a simplex introduced by the bisec-
tion, i.e. τpi ⊂ ωi. For other vertices p, let τp ∈ Ti−1 be the simplex used to define
(Ii−1u)(p), we define (Iiu)(p) according to the following two cases:

1. if τp ⊂ ωp(Ti) we keep the nodal value, i.e., (Iiu)(p) = (Ii−1u)(p);
2. otherwise we choose a new τp ⊂ ωp(Ti)∩ωp(Ti−1) to define (Iiu)(p).

In either case, we ensure that the simplex τp ⊂ ωp(Ti).
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An important property of the bisection is that bi only changes the local patches
of two end points of the refinement edge ei going from Ti−1 to Ti. The construction
in the second case is thus well defined. By construction (Ii−Ii−1)u(p) = 0 for
p∈N (Ti), p �= pi, pli or pri , which implies (Ii−Ii−1)u∈Vi. Furthermore a close
look reveals that if (Ii−Ii−1)u(p) �= 0, then the elements τp used to define Ii(p)
or Ii−1(p) are inside the patch ωi; see Figure 4.

Fig. 4 Update of nodal values Iiu to yield Ii−1u: the element τ chosen to perform the averaging
that gives (Iiu)(p) must belong to ωp(Ti). This implies (Ii−Ii−1)u(p) �= 0 possibly for p =
pi, pli , pri and = 0 otherwise

In this way, we obtain a sequence of quasi-interpolation operators

Ii : V (P1,TN)→ V (P1,Ti), i = 0 : N.

We define vi = (Ii−Ii−1)u∈Vi for i = 1 : N. In general INu �= u since the simplex
used to define nodal values of INu may not be in the finest mesh TN but in TN−1.
Nevertheless, the difference v−INu is of high frequency in the finest mesh.

Let v−INu = ∑p∈Λ vp be the basis decomposition. We then obtain a decompo-
sition

v = ∑
p∈Λ

vp +
N

∑
i=0

vi, vi ∈ Vi, (51)

where for convenience we define I−1 := 0.
To prove that the decomposition (51) is stable we first study ∑p∈Λ vp. Let τp be

the simplex used to define INu(p) for p ∈N (TN). By construction, although τp

may not be a simplex in the triangulation TN , it is still in the patch ωp(TN). Then
by (49)

∑
p∈Λ

h−2
p ‖vp‖2 � ‖h−1(v−QNv)‖2 � |v|21. (52)
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We next prove that the decomposition INu =∑N
i=0(Ii−Ii−1)u is stable. For this

purpose, we need the auxiliary decomposition on the uniform refinement. We choose
minimal L such that V ⊆ V L. By Lemma 3.1, we have a stable decomposition
u = ∑L

k=0 v̄k, with v̄k = (Qk−Qk−1)u,k = 0, · · · ,L.
We apply the slicing operator Ii−Ii−1 to this decomposition. When k≤ gi−1,

v̄k is piecewise linear in ωei , (Ii−Ii−1)v̄k = 0 since Ii preserves piecewise linear
functions. So the slicing operator detects frequencies higher than or equal to the
generation of bisection, namely

vi = (Ii−Ii−1)
L

∑
l=gi

v̄l . (53)

By construction of vi and the stability of quasi-interpolation, we conclude

‖vi‖2
ω̃i

� h2+d
i

[
vi(pi)2 + vi(pli)

2 + vi(pri)
2
]

�
∥∥∥

L

∑
l=gi

v̄l

∥∥∥2
ωi

.

In the last step, the domain is changed to ωi since the simplexes used to define
nonzero values of vi(pi),vi(plir) or vi(plir) are inside ωi.

Note that for different bisections with the same generation, their local patches
are weakly disjoint (Lemma 4.3): for any i �= j and g j = gi, we have

◦
ωi ∩

◦
ω j= ∅. (54)

Consequently

∑
gi=k

‖vi‖2 = ∑
gi=k

‖vi‖2
ω̃i

� ∑
gi=k

∥∥∥
L

∑
l=gi

v̄l

∥∥∥2
ωi

�
∥∥∥

L

∑
l=gi

v̄l

∥∥∥2
Ω

=
L

∑
l=k

‖v̄l‖2.

In the last step, we use the fact v̄k are L2-orthogonal decomposition.
The following elementary result will be useful and can be found in [32].

Lemma 4.5 (Discrete Hardy Inequality). If the sequences {ak}L
k=0,{bk}L

k=0 satisfy

bk ≤
L

∑
l=k

al , for all k ≥ 0

and are non-negative, then for any s ∈ (0,1), we have

L

∑
k=0

s−kbk ≤
1

1− s

L

∑
k=0

s−kak.

Proof. Since
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L

∑
k=0

s−kbk ≤
L

∑
k=0

L

∑
l=k

s−kal =
L

∑
l=0

l

∑
k=0

s−kal =
L

∑
l=0

s−lal

l

∑
k=0

sl−k,

and s < 1, the geometric series is bounded by 1/(1− s) and concludes the proof. �

Applying Lemma 4.5 to ak = ‖v̄k‖2 and bk = ∑gi=k ‖vi‖2, we obtain

L

∑
k=0

h̄−2
k ∑

gi=k

‖vi‖2 �
L

∑
k=0

h̄−2
k ‖v̄k‖2,

and thus from the stable decomposition corresponding to uniform refinement, we
conclude

N

∑
i=0

h−2
i ‖vi‖2 =

L

∑
k=0

h̄−2
k ∑

gi=k

‖vi‖2 �
L

∑
k=0

h̄−2
k ‖v̄k‖2 � |IT v|21 � |v|21. (55)

4.7 Strengthened Cauchy-Schwarz inequality

In this section we establish the SCS inequality for the space decomposition ∑N
i=0 Vi.

Theorem 4.4. For any ui,vi ∈ Vi, i = 0, · · · ,N, we have

∣∣∣
N

∑
i=0

N

∑
j=i+1

(ui,v j)A

∣∣∣�
(

N

∑
i=0
‖ui‖2

A

)1/2( N

∑
i=0

h−2
i ‖vi‖2

)1/2

. (56)

Proof. The proof consists of several careful summations using the concept of gen-
eration to relate with uniform refinements. The proof is divided into four steps.

1 For a fixed index i ∈ [1,N], we denote by

n(i) = { j > i : ω̃ j ∩ ω̃i �= ∅} and wi
k = ∑

j∈n(i),g j=k

v j.

Shape regularity implies that wi
k ∈V k+g0 and k = g j ≥ gi−g0 (Lemma 4.4). For any

τ ∈ ω̃i, we apply the SCS inequality of Lemma 3.3 over τ to ui and wi
k and obtain

(ui,w
i
k)A,τ � γk+g0−gi‖ui‖A,τ h̄−1

k+g0
‖wi

k‖τ � γk−gi‖ui‖A,τ h̄−1
k ‖w

i
k‖τ .

Then
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(ui,w
i
k)A,ω̃i = ∑

τ⊂ω̃i

(ui,w
i
k)A,τ

� γk−gi ∑
τ⊂ω̃i

‖ui‖A,τ h̄−1
k ‖w

i
k‖τ

� γk−gi‖ui‖A,ω̃i h̄
−1
k

(
∑
τ⊂ω̃i

‖wi
k‖2

τ

)1/2
.

Since v j’s with the same generation g j = k have supports with finite overlap, we
infer that ‖wi

k‖2
τ � ∑ j∈n(i),g j=k ‖v j‖2

τ ≤ ∑g j=k ‖v j‖2
τ and

(ui,w
i
k)A,ω̃i � γk−gi‖ui‖A,ω̃i h̄

−1
k

(
∑

g j=k

‖v j‖2
0,ω̃i

)1/2
.

2 We fix ui and consider

|(ui,
N

∑
j=i+1

v j)A|= |(ui, ∑
j∈n(i)

v j)A,ω̃i |= |(ui,
L

∑
k=(gi−g0)+

∑
j∈n(i),g j=k

v j)A,ω̃i |,

because w j
k = 0 for k < gi − g0 (Lemma 4.4). Since k ≥ 0, this is equivalent to

k ≥ (gi−g0)+ := max{gi−g0,0}, whence

|(ui,
N

∑
j=i+1

v j)A|�
L

∑
k=(gi−g0)+

|(ui,w
i
k)A,ω̃i |

�
L

∑
k=(gi−g0)+

γk−gi‖ui‖A,ω̃i h̄−1
k

(
∑

g j=k

‖v j‖2
0,ω̃i

)1/2
.

3 We now sum over i but keeping the generation gi = l ≥ 0 fixed:

∑
gi=l

|(ui,
N

∑
j=i+1

v j)A|�
L

∑
k=(l−g0)+

γk−l

{
∑

gi=l

[
‖ui‖A,ω̃i

(
h̄−2

k ∑
g j=k

‖v j‖2
ω̃i

)1/2
]}

�
L

∑
k=(l−g0)+

γk−l

(
∑

gi=l

‖ui‖2
A,ω̃i

)1/2 (
h̄−2

k ∑
gi=l

∑
g j=k

‖v j‖2
ω̃i

)1/2

.

In view of the finite overlap of patches ω̃i for generation gi = l (see (44)), we deduce

∑
gi=l

|(ui,
N

∑
j=i+1

v j)A|�
L

∑
k=(l−g0)+

γk−l

(
∑

gi=l

‖ui‖2
A,ω̃i

)1/2 (
h̄−2

k ∑
g j=k

‖v j‖2

)1/2

.

4 . We finally sum over all generations 0≤ l ≤ L to get
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L

∑
l=0
∑

gi=l

|(ui,
N

∑
j=i+1

v j)A|�
L

∑
l=0

L

∑
k=(l−g0)+

γk−l

(
∑

gi=l

‖ui‖2
A,ω̃i

)1/2 (
h̄−2

k ∑
g j=k

‖v j‖2

)1/2

�
(

L

∑
l=0
∑

gi=l

‖ui‖2
A,ω̃i

)1/2( L

∑
k=0

h̄−2
k ∑

g j=k

‖v j‖2

)1/2

.

where we have applied Lemma 3.4. Therefore, since ∑N
i=0 =∑L

l=0∑gi=l and h̄k = h j

for k = g j, we end up with the desired estimate (56). �

4.8 BPX preconditioner and multigrid on graded bisection grids

Proceeding as in Section §3, with quasi-uniform grids created by uniform refine-
ment, we can obtain the optimality of BPX preconditioner and optimal convergent
rate of V-cycle multigrid. We state the results below and refer to [27] for proofs.

Theorem 4.5 (Optimality of BPX on Graded Bisection Grids). For the BPX pre-
conditioner based on the space decomposition (47)

Bu = ∑
p∈Λ

h2−d
p (u,φp)φp +

N

∑
i=1

h2−d
i [(u,φpi)φpi +(u,φpli

)φpli
+(u,φpri

)φpri
],

we have
κ(BA) � 1.

A V-cycle type multigrid method can be obtained by applying SSC to the space
decomposition (47). A symmetric V-cycle loop is like

1. pre-smoothing (forward Gauss-Seidel) in the finest space V (Pm,TN);
2. multilevel smoothing in linear finite element spaces Vi for i = N to 1;
3. exact solver in the coarsest linear finite element spaces V0;
4. multilevel smoothing in linear finite element spaces Vi for i = 1 to N;
5. post-smoothing (backward Gauss-Seidel) in the finest space V (Pm,TN).

Theorem 4.6 (Uniform Convergence of V-cycle Multigrid on Graded Bisection
Grids). The above V-cycle multigrid, namely SSC based on the space decomposition
(47), is uniformly convergent.

5 Multilevel methods for H(curl) and H(div) systems

In this section, we design and analyze multigrid methods for solving finite element
discretization of HHH(curl) and HHH(div) systems
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curl×curl×uuu+uuu = fff , in Ω , (57)

−graddivuuu+uuu = fff , in Ω , (58)

with homogeneous Neumann boundary condition. Here Ω ⊂ R
3 is a simply con-

nected and bounded polyhedron. We study edge elements for (57) and face elements
for (58) over shape regular tetrahedra triangulations T of Ω .

Standard multigrid methods developed for H1 problem, i.e.,

−Δu+u =−divgradu+u = f

cannot be transferred to the HHH(curl) and HHH(div) systems directly. The reason is that
for vector fields, the operators curl×curl and−graddiv are only part of the Laplace
operator because

−ΔΔΔ := curl×curl−graddiv .

Therefore in the divergence free space, the operator curl×curl+III behaves like
−ΔΔΔ + III, while in the kernel space of the curl operator, the space of gradients, it
is like III. Similarly, the operator −graddiv+III behaves like −Δ + I on gradients and
I on curls. Efficient solvers should account for the different behavior of curl and
div in their kernel and orthogonal complement. In particular, the smoother in the
kernel space is critical. We note that for the grad operator, the kernel space is a
one dimensional (constant) space, while for the curl and div operators, the kernel
space is infinite dimensional. The decomposition of spaces used in multigrid meth-
ods should satisfy certain properties (see [57] and [98]). One approach is to perform
a smoothing in the kernel space which can be expressed explicitly using properties
of exact sequences between finite element spaces of H1,HHH(curl) and HHH(div) sys-
tems. This is used by Hiptmair to obtain the first results for multigrid of HHH(div) [47]
and HHH(curl) [49] systems in three dimensions. See also Hiptmair and Toselli [51]
for a unified and simplified treatment. Another important approach taken by Arnold,
Falk and Winther in [3, 4] is to perform the smoothing on patches of vertices which
contain a basis of the kernel space of curl and div operator. In [3, 4], the analysis
hinges on the following two assumptions:

• Ω is a bounded and convex polyhedron in R
3;

• T is a shape regular and quasi-uniform mesh of Ω .

The first assumption is used in duality arguments which require full regularity of the
elliptic equations, whereas the second one is used to prove certain approximation
properties. We regard both items as regularity assumptions, first on the solutions of
the elliptic equation and second on the underlying mesh.

In practice, most problems are posed on non-convex domains and thus solutions
exhibit singularities. Finite element approximations based on quasi-uniform grids
cannot deliver optimal rates due to lack of regularity. Mesh refinements restore opti-
mal convergence rates in terms of degree of freedoms, but make the above regularity
assumptions inadequate for studying adaptive finite element methods for HHH(curl)
and HHH(div) systems.
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We will design multilevel methods for these systems on graded grids obtained by
bisection. In the analysis, we relax the regularity assumptions used in the previous
work [47, 49, 3, 4] by using two new techniques developed recently in [52] and [27].
More precisely, we employ

• Discrete regular decompositions of finite element spaces [52] to relax the regu-
larity assumption on the solution;

• Decomposition of bisection grids and corresponding space decompositions [27],
already discussed in section §4, to relax the regularity assumption on the grids.

We should mention that a local multigrid method similar to ours for HHH(curl) system
on adaptive grids has been independently developed by Hiptmair and Zheng [53].
We follow closely our recent work [28] to present a unified treatment for both
HHH(curl) and HHH(div) systems.

To focus on the two aforementioned issues, we consider the simplest scenario,
that is we do not include Dirichlet type boundary conditions for (57) or (58) nor vari-
able coefficients. We note that results in [4] hold uniformly for variable coefficients
and results in this paper extend to this case as well.

5.1 Preliminaries

5.1.1 Sobolev spaces and finite element spaces

Let Ω ⊂ R
3 be a bounded domain which is homeomorphic to a ball. We define the

following Sobolev spaces

H(grad;Ω) = {v ∈ L2(Ω) : gradv ∈ LLL2(Ω)}= H1(Ω),

HHH(curl;Ω) = {vvv ∈ (L2(Ω))3 : curlvvv ∈ (L2(Ω))3},
HHH(div;Ω) = {vvv ∈ (L2(Ω))3 : divvvv ∈ (L2(Ω))3}.

We use a generic notation HHH(D ,Ω) to refer to H(grad;Ω),HHH(curl;Ω) or HHH(div;Ω),
where D = grad,curl or div represents differential operators according to the con-
text. Since curlvvv and divvvv are special combinations of components of gradvvv, in
general HHH1(Ω)⊂ HHH(D ,Ω).

Let (·, ·) denote the inner product for L2(Ω) or [L2(Ω)]3. As subspaces of
[L2(Ω)]3, H(grad;Ω), HHH(curl;Ω), and HHH(div;Ω) are endowed with (·, ·) as their
default inner product. We assign new inner products using differential operator D
to these spaces:

H(grad;Ω) : (u,v)Ag := (u,v)+(gradu,gradv),
HHH(curl;Ω) : (uuu,vvv)Ac := (uuu,vvv)+(curluuu,curlvvv),
HHH(div;Ω) : (uuu,vvv)Ad := (uuu,vvv)+(divuuu,divvvv).

The corresponding norm are denoted by ‖ · ‖Ag , ‖ · ‖Ac and ‖ · ‖Ad , respectively.
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These inner products introduce corresponding symmetric positive definite oper-
ators (with respect to the default (·, ·) inner product).

Ag : H(grad;Ω)→ H(grad;Ω)∗ (Ag u,v) := (u,v)Ag ,

Ac : HHH(curl;Ω)→ H(curl;Ω)∗ (Ac u,v) := (u,v)Ac ,

Ad : HHH(div;Ω)→ H(div;Ω)∗ (Ad u,v) := (u,v)Ad .

We focus on the HHH(curl) and HHH(div) systems, namely,

Acuuu = curl×curlu+u = fff , (59)

Aduuu =−graddivu+u = fff , (60)

with homogeneous Neumann boundary condition. We build on the study of the H1

problem, Agu = f , in previous sections.
Given a shape regular triangulation T of Ω and integer k ≥ 1, we define the

following finite element spaces:

V (grad,Pk,T ) := {v ∈ H(grad;Ω) : v|τ ∈Pk(τ), ∀τ ∈T },
V (curl,P−

k ,T ) := {vvv ∈ HHH(curl;Ω) : vvv|τ ∈P3
k−1(τ)+P3

k−1(τ)× xxx, ∀τ ∈T },
V (curl,Pk,T ) := {vvv ∈ HHH(curl;Ω) : vvv|τ ∈P3

k (τ), ∀τ ∈T },
V (div,P−

k ,T ) := {vvv ∈ HHH(div;Ω) : vvv|τ ∈P3
k−1(τ)+Pk−1(τ)xxx, ∀τ ∈T }

V (div,Pk,T ) := {vvv ∈ HHH(div;Ω) : vvv|τ ∈P3
k (τ), ∀τ ∈T }

V (L2,Pk−1,T ) := {v ∈ L2(Ω) : v|τ ∈Pk−1(τ), ∀τ ∈T }.

As in [5], the notation P−
k indicates that the polynomial space is a proper subspace

of Pk. When we do not refer to a specific finite element space, we use the generic
notation V (D ,T ). In particular, we simply denote by V = V (grad,P1,T ) the
continuous piecewise linear finite element space.

The degrees of freedom of these finite element spaces, and their unisolvency, are
not easy to sketch here. We refer to [2, 5, 48, 50] for a unified presentation using
differential forms.

Since V (D ,T )⊂HHH(D ;Ω), the operator equations (59) or (60) can be restricted
to the finite element spaces V (curl,T ) or V (div,T ). Existence and uniqueness of
the ensuing discrete problems follow from the Riesz representation theorem. Our
task is to develop fast solvers for these linear algebraic systems over graded bisec-
tion grids as well as unstructured grids T .

5.1.2 Exact sequences and commutative diagram

The following exact sequence, called de Rham differential complex, plays an im-
portant role in the error analysis of finite element approximations as well as the
iteration methods for solving the algebraic systems:
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R ↪→ H1(Ω)
grad−→ HHH(curl;Ω) curl−→ HHH(div;Ω) div−→ L2(Ω). (61)

For a differential operator D , we denote by D− the previous one in the exact se-
quence: if D = curl, then D−= grad, and if D = div, then D−= curl. The following
crucial properties of (61) are valid:

ker(grad) = R, ker(curl) = img(grad), ker(div) = img(curl). (62)

We now state two results, Theorem 5.1 for D = curl and Theorem 5.2 for D = div,
which make this precise. We refer to Girault-Raviart [39] for Theorem 5.1.

Theorem 5.1 (Irrotational Fields). Let Ω be a bounded, simply connected Lips-
chitz domain in R

3 and suppose uuu ∈ [[[L2(Ω)]3. Then curluuu = 0 in Ω if and only if
there exists a scalar potential φ ∈ H1(Ω) such that uuu = gradφ and

‖φ‖1 � ‖u‖. (63)

To verify that ker(div) = img(curl), we first present a result in R
3.

Lemma 5.1. Let N(div;R3) = {vvv∈H(div;R3) : divv = 0} be the kernel of operator
div. Then for any uuu ∈ N(div;R3) there exists φφφ ∈ [H1

loc(R
3)]3 such that

curlφφφ = uuu, divφφφ = 0, ‖φφφ‖1,loc,R3 � ‖uuu‖0,R3 . (64)

Proof. In terms of Fourier transform, the conditions u = curlφ and divφ = 0 become

û = 2πi ξ × φ̂ = 2πi(ξ2φ̂3−ξ3φ̂2,ξ3φ̂1−ξ1φ̂3,ξ1φ̂2−ξ2φ̂1),

ξ · φ̂ =
3

∑
j=1

ξ jφ̂ j = 0,

respectively. We observe that the first relation implies

ξ · û =
3

∑
j=1

ξ j û j = 0,

or equivalently divu = 0. Computing û×ξ and using the first two relations gives φ̂
uniquely as follows:

φ̂ =
1

2πi|ξ |2 û×ξ =
1

2πi|ξ |2 (ξ3û2−ξ2û3,ξ1û3−ξ3û1,ξ2û1−ξ1û2).

The desirable φ is the inverse Fourier transform of φ̂ . In addition, we have

|ξ jφi| ≤
3

∑
i=1
|ûi|.

Parseval’s identity shows that φφφ ∈ HHH1
loc(R

3). �
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Theorem 5.2 (Solenoidal Fields). Let Ω be a simply connected bounded domain.
For any function uuu ∈ HHH(div;Ω) such that divuuu = 0, there exists a vector field φφφ ∈
[[[H1(Ω)]3 such that uuu = curlφ and divφ = 0 in Ω and

‖φφφ‖H1(Ω) � ‖uuu‖L2(Ω).

Proof. We first construct an extension of uuu to N(div;R3). Let O be a smooth domain
containing Ω . We let p ∈ H1(O\Ω)/R satisfy

−Δ p = 0 in O\Ω ,

∂ p
∂n

= uuu ·nnn on ∂Ω ,
∂ p
∂n

= 0 on ∂O.

This solution exists since 〈uuu ·nnn,1〉∂Ω =
∫
Ω divuuudx = 0. We define ũuu ∈ LLL2(R3) by

ũ =

⎧⎪⎨
⎪⎩

uuu in Ω ,

grad p in O\Ω ,

0 in R
3\O.

Since div ũuu = 0 in Ω and O\Ω and the normal component of ũuu is continuous across
the common boundary ∂Ω , we conclude ũ ∈ HHH(div;R3) and div ũ = 0.

We then apply Lemma 5.1 to get a φφφ satisfying (64). Since

‖ũ‖L2(R3) = ‖ũ‖H(div;R3) � ‖u‖H(div;Ω) = ‖u‖L2(Ω),

restricting φφφ to Ω leads to a desirable φφφ . �

Exact Sequences (ES). The discrete counterpart of the de Rham differential com-
plex (61) is also valid for the finite element spaces V (D ,T ):

R ↪→ V (grad,T )
grad−→ V (curl,T ) curl−→ V (div,T ) div−→ V (L2,T ). (65)

The starting finite element space V (grad,T ) and the ending space V (L2,T ) are
continuous and discontinuous complete polynomial spaces, respectively. For the two
spaces in the middle, each one has two types. Therefore we have 4 exact sequences
in R

3 and these are all possible exact sequences in R
3 [5]. For completeness we list

these exact sequences below:

R ↪→ V (grad,Pk,T )
grad−→ V (curl,Pk−1,T ) curl−→ V (div,Pk−2,T ) div−→ V (L2,Pk−3,T )

R ↪→ V (grad,Pk,T )
grad−→ V (curl,Pk−1,T ) curl−→ V (div,P−

k−1,T ) div−→ V (L2,Pk−2,T )

R ↪→ V (grad,Pk,T )
grad−→ V (curl,P−

k ,T ) curl−→ V (div,Pk−1,T ) div−→ V (L2,Pk−2,T )

R ↪→ V (grad,Pk,T )
grad−→ V (curl,P−

k ,T ) curl−→ V (div,P−
k ,T ) div−→ V (L2,Pk−1,T ).

There exist a sequence of interpolation operators
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ΠD : HHH(D ,Ω)∩dom(ΠD )→ V (D ,T )

to connect the Sobolev spaces HHH(D ,Ω) with corresponding finite element spaces
V (D ,T ). These operators enjoy the following commutative diagram:

R −−−−−→ C∞(Ω)
grad−−−−−→ C∞(Ω) curl−−−−−→ C∞(Ω) div−−−−−→ C∞(Ω)

⏐⏐C Πgrad

⏐⏐C Π curl

⏐⏐C Πdiv

⏐⏐C ΠL2

⏐⏐C
R −−−−−→ V (grad,T )

grad−−−−−→ V (curl,T ) curl−−−−−→ V (div,T ) div−−−−−→ V (L2,T ),

where for simplicity, we replace HHH(D ,Ω)∩dom(ΠD ) by its subspace C∞(Ω).
The sequence in the bottom should be one of the 4 exact sequences in (ES). The

operator ΠD , of course, also depends on the specific choice of V (D ,T ). Operator
ΠD is the identity restricted to V (D ,T ), namely

ΠDvvv = vvv, for all vvv ∈ V (D ,T ). (66)

We refer to [5, 48, 50] for the construction of such canonical interpolation operators.
Here we list properties used later and refer to [50, Section 3.6 and Lemma 4.6] for
proofs.

Lemma 5.2 (Operator Π curl). The interpolation operator Π curl is bounded on V =
{vvv ∈HHH1(Ω) : curlvvv ∈ V (div,T )} and, with constants only depending on the shape
regularity of T , it satisfies

‖h−1(I−Π curl)vvv‖� ‖vvv‖1, for all vvv ∈V. (67)

Lemma 5.3 (OperatorΠ div). The interpolation operatorΠ div is bounded on HHH1(Ω)
and, with constants only depending on the shape regularity of T , it satisfies

‖h−1(I−Π div)vvv‖� ‖vvv‖1, for all vvv ∈ HHH1(Ω). (68)

5.1.3 Regular decomposition

The Helmholtz (or Hodge) decomposition states that a vector field can be written
as the sum of a gradient plus a curl. This decomposition is orthogonal in L2(Ω) but
requires regularity of Ω to be useful to us. Upon sacrificing L2 orthogonality, we
can decompose the space HHH(D ,Ω) into a regular part HHH1(Ω) plus the kernel of D .

Theorem 5.3 (Regular Decomposition of HHH(curl;Ω)). For any vvv ∈ HHH(curl;Ω),
there exists φφφ ∈ [[[H1(Ω)]3 and u ∈ H1(Ω) such that

vvv = φφφ +gradu.

This decomposition is stable in the sense that

‖φφφ‖1 +‖u‖1 � ‖vvv‖Ac .
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Proof. For vvv ∈ HHH(curl;Ω), let uuu = curlvvv ∈ [L2(Ω)]3. Since divcurlvvv = 0, we can
apply Theorem 5.2 to obtain φφφ ∈ [[[H1(Ω)]3 such that

curlφφφ = uuu = curlvvv, in Ω ,

and
‖φφφ‖1 � ‖uuu‖ ≤ ‖v‖Ac .

Since curl(vvv−φφφ) = 0, by Theorem 5.1, there exists u ∈ H(grad;Ω) such that

gradu = vvv−φφφ ,

and
‖u‖1 � ‖vvv‖+‖φφφ‖� ‖vvv‖Ac .

This completes the proof. �

The following lemma concerns the regular inversion of div operator.

Lemma 5.4 (Regular Inverse of div). For any vvv ∈ HHH(div;Ω), there exists φφφ ∈
[[[H1(Ω)]3 such that

divφφφ = divvvv, ‖φφφ‖1 � ‖divvvv‖.

Proof. Given v∈HHH(div;Ω), let f be the zero extension of divvvv to a smooth domain
O ⊂ R

3 containing Ω ; obviously f ∈ L2(O). We then solve the Poisson equation

−Δu = f in O, u|∂O = 0.

If φφφ =−gradu, then divφφφ =−Δu = divvvv in L2(O). Since u∈H2(O) and ‖u‖2,O �
‖ f‖0,O because O is smooth, we deduce that φφφ ∈ [H1(Ω)]3 and

‖φφφ‖1,Ω ≤ ‖φφφ‖1,O ≤ ‖gradu‖2,O � ‖ f‖0,O = ‖divvvv‖0,Ω ,

which proves the assertion. �

Similar results can even be established for functions with appropriate traces on the
boundary ∂Ω . We refer to [35, 7] for specific constructions.

Theorem 5.4 (Regular Decomposition of HHH(div;Ω)). For any vvv ∈ HHH(div;Ω),
there exist φφφ ,uuu ∈ [[[H1(Ω)]3 such that

vvv = φφφ + curluuu.

This decomposition is stable in the sense that

‖φφφ‖1 +‖uuu‖1 � ‖vvv‖Ad .

Proof. We first apply Lemma 5.4 to vvv to find φφφ ∈ [[[H1(Ω)]3 such that

divφφφ = divvvv, ‖φφφ‖1 � ‖divvvv‖.
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Now since div(vvv−φφφ) = 0, we apply Theorem 5.2 to find uuu ∈ [[[H1(Ω)]3 such that

curluuu = vvv−φφφ , ‖uuu‖1 � ‖vvv−φφφ‖ ≤ ‖vvv‖+‖φφφ‖� ‖vvv‖Ad .

This is the asserted estimate. �

5.1.4 Discrete regular decomposition

We now present discrete regular decompositions for finite element spaces V (curl,T )
and V (div,T ), Theorem 5.5 and 5.6, following Hiptmair and Xu [52].

Theorem 5.5 (Discrete Regular Decomposition of V (curl,T ) ). Let V (grad,Th)
and V (curl,Th) be a pair in the four exact sequences. For any vvv ∈ V (curl,Th),
there exist ṽvv ∈ V (curl,Th),φφφ ∈ V 3, and u ∈ V (grad,Th) such that

vvv = ṽvv+Π curlφφφ +gradu, (69)

‖h−1ṽvv‖+‖φφφ‖1 +‖u‖1 � ‖vvv‖Ac . (70)

Proof. For vvv ∈ HHH(curl;Ω), we apply the regular decomposition of Theorem 5.3 to
obtain vvv =ΨΨΨ +gradU with

ΨΨΨ ∈ [[[H1(Ω)]3,U ∈ H1(Ω), ‖ΨΨΨ‖1 +‖U‖1 � ‖vvv‖Ac .

We then split ΨΨΨ as ΨΨΨ = (I−IT )ΨΨΨ +ITΨΨΨ , where IT : [H1(Ω)]3 → V 3 is the
vector version of the Scott-Zhang quasi-interpolation operator.

Since curlΨΨΨ = curlvvv ∈ V (div,Th), by Lemma 5.2, Π curlΨΨΨ is well defined. We
apply the interpolation operator Π curl to the decomposition

vvv = (I−IT )ΨΨΨ +ITΨΨΨ +gradU,

and use (66) to obtain the discrete decomposition

vvv = Π curl(I−IT )ΨΨΨ +Π curlITΨΨΨ +gradΠ gradU.

This implies (69) with

ṽvv = Π curl(I−IT )ΨΨΨ ∈ V (curl,Th),

φφφ = ITΨΨΨ ∈ V 3, and

u = Π gradU− 1
Ω

∫
Ω
Π gradU dx ∈ V (grad,Th).

We then prove this decomposition satisfies (70). First, by (67) and (49), we get

‖h−1ṽvv‖ ≤ ‖h−1(I−Π curl)(I−IT )ΨΨΨ‖+‖h−1(I−IT )ΨΨΨ‖
� ‖(I−IT )ΨΨΨ‖1 +‖ΨΨΨ‖1 � ‖ΨΨΨ‖1 � ‖vvv‖Ac .
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Second, by the stability of IT we obtain

‖φφφ‖1 = ‖ITΨΨΨ‖1 � ‖ΨΨΨ‖1 � ‖vvv‖Ac ,

and by that of Π grad we have

‖u‖1 � ‖U‖1 � ‖vvv‖Ac .

This finishes the proof. �

The following regular decomposition is taken from Hiptmair and Xu [52]; see
also Cascón, Nochetto, and Siebert [22].

Theorem 5.6 (Discrete Regular Decomposition of V (div,T )). Let V (curl,Th)
and V (div,Th) be a pair in the four exact sequences. For any vvv ∈ V (div,Th), there
exist ṽvv ∈ V (div,Th),φφφ ∈ V 3, and uuu ∈ V (curl,Th) such that

vvv = ṽvv+Π divφφφ + curluuu, (71)

‖h−1ṽvv‖+‖φφφ‖1 +‖uuu‖Ac � ‖vvv‖Ad . (72)

Proof. The proof is similar to that of Theorem 5.5 but a bit trickier. We first obtain

vvv =ΨΨΨ + curlUUU , ‖ΨΨΨ‖1 +‖UUU‖1 � ‖vvv‖Ad .

But we cannot apply the interpolation operator Π div directly and use the commuta-
tive diagram relation Π div curlUUU = curlΠ curlUUU because UUU ∈ [[[H1(Ω)]3 only and the
interpolation Π curl is not well defined on [[[H1(Ω)]3.

To overcome this difficulty, we further split v as follows:

vvv = (I−Π div)ΨΨΨ +Π div(I−IT )ΨΨΨ +Π divITΨΨΨ + curlUUU . (73)

Invoking the commutative diagram property divΠ divΨ = ΠL2
divΨ , and the fact

divΨΨΨ = divvvv ∈ V (L2,T ), we have div(I−Π div)ΨΨΨ = 0. Applying the regular in-
version of curl operator (Lemma 5.3), there exists QQQ ∈ HHH1(Ω) such that curlQQQ =
(I−Π div)ΨΨΨ .

If ŨUU =UUU +QQQ, then ŨUU ∈HHH1(Ω) and curlŨUU ∈V (div,Th). By Lemma 5.2, Π curlŨUU
is well defined. The decomposition (73) thus becomes

vvv = Π div(I−IT )ΨΨΨ +Π divITΨΨΨ + curlŨUU .

We then applyΠ div operator to both sides and use propertyΠ div curlŨ = curlΠ curlŨ
to obtain

vvv = Π div(I−IT )ΨΨΨ +Π divITΨΨΨ + curlΠ curlŨUU ,

which implies (71).
The stability (72) of this decomposition is similar to that of Theorem 5.5. �
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5.2 Space decomposition and multigrid methods

In this section, we first recall the space decomposition of V (grad,T ) discussed in
Section §4, following [27], and then present space decompositions for V (curl,T )
and V (div,T ). On the basis of these space decompositions, we develop multigrid
methods for solving HHH(curl) and HHH(div) systems. We consider bisection grids TN

which admits a decomposition TN = T0 +B.
Let {φp : p ∈P}, {φe : e ∈ E }, and {φ f : f ∈F} be “nodal” basis functions.

Namely V (grad,T ) = span{φp : p ∈ P},V (curl,T ) = span{φe : e ∈ E }, and
V (div,T ) = span{φ f : f ∈F}, where P (nodes), E (edges), and F (faces) are
the degrees of freedom of the three spaces under consideration.

If Vp = span{φp}, Ve = span{φe}, and V f = span{φ f } denote one dimensional
subspaces, we then have the standard basis decompositions:

V (grad,T ) = ∑
p∈P

Vp, V (curl,T ) = ∑
e∈E

Ve, V (div,T ) = ∑
f∈F

V f .

Moreover, if v =∑p∈P vp, vvv =∑e∈E vvve and vvv =∑ f∈F vvv f , then mesh shape regularity
implies

∑
p∈P

‖h−1vp‖2 � ‖h−1v‖2,

∑
e∈E

‖h−1vvve‖2 � ‖h−1vvv‖2,

∑
f∈F

‖h−1vvv f ‖2 � ‖h−1vvv‖2.

(74)

Let Ti = T0 + (b1, · · · ,bi) be the i-th mesh and φi,pi ∈ V (Ti;P1) denote the
linear nodal basis associated with vertex pi ∈N (Ti). We define the sub-spaces

V0 = V (T0;P1), Vi = span{φi,pi ,φi,pli
,φi,pri

}, pi ∈N (Ti), (75)

where recall that pli and pri are two end points of the edge and pi is the middle point
of that edge.

Space decompositions. We now present space decompositions of V (curl,T ) and
V (div,T ) in the same vein of that for V (grad,T ) of Section §4.6:

V (grad,T ) = ∑
p∈P

Vp +
N

∑
i=1

Vi. (76)

If Ri is the ring of vertex pi, which consists of all simplexes of Ti containing the
vertex pi, we define Vi(D ,Ri) as follows:

Vi(curl,Ri) = Π curl
i V 3

i +gradVi. (77)

Vi(div,Ri) = Π div
i V 3

i + curlVi. (78)
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If V 3
i ⊂ V (D ,T ), then the interpolation operator ΠD

i is the identity and we can
ignore it. The macro space decompositions of V (D ,T ) are as follows:

V (curl,T ) = ∑
e∈E

Ve + ∑
p∈P

gradVp +
N

∑
i=0

Vi(curl,Ri), (79)

V (div,T ) = ∑
F∈F

V f + ∑
e∈E

curlVe +
N

∑
i=0

Vi(div,Ri). (80)

Here for the convenience of notation, we include the coarsest space by defining
R0 = T0 and V0(D ,R0) = V (D ,T0).

We will apply the Successive Subspace Correction (SSC) method to the space
decompositions (79) and (80). The common feature is to apply smoothing in the
finest space first and then the multilevel iteration to Vi(D ,Ri). For completeness,
we also list the algorithm for H(grad) problem.

H(grad) Problem
u← u+Bgrad( f −Agu).

The operation of Bgrad consists of two steps:

1. Smoothing in the finest space: u← u+Sgrad( f −Agu)
2. SSC for H(grad) system on ∑i Vi:

u← u+RiQi( f −Agu), i = 0 : N.

HHH(curl) System
uuu← uuu+BBBcurl( fff −AAAcuuu).

The operation of BBBcurl consists of three steps:

1. Smoothing in the finest space: uuu← uuu+SSScurl( fff −AAAcuuu)
2. Smoothing in the kernel space for the finest space ∑p Vp:

uuu← uuu+gradSgrad( fff −AAAcuuu),

3. SSC for HHH(curl) system on ∑i Vi(curl,Ri):

uuu← uuu+RRRiQQQi( fff −AAAcuuu), i = 0 : N.

HHH(div) System

uuu← uuu+BBBdiv( fff −AAAduuu).

The operation of BBBdiv consists of three steps:

1. Smoothing in the finest space: uuu← uuu+SSSdiv( fff −AAAduuu)
2. Smoothing in the kernel space for the finest space ∑e Ve:

uuu← uuu+ curlSSScurl( fff −AAAduuu).
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3. SSC for HHH(div) system on ∑i Vi(curl,Ri):

uuu← uuu+RRRiQQQi( fff −AAAduuu), i = 0 : N.

5.3 Stable decomposition

We now prove that the multilevel space decompositions (79) and (80) are stable. Our
approach is based on the stable decomposition for V (grad;T ) discussed in Section
§4 (Theorem 4.3): for any v ∈ V (grad,T ), there exist vp ∈ Vp,vi ∈ Vi such that

v = ∑
p∈P

vp +
N

∑
i=0

vi, (81)

∑
p∈P

‖h−1vp‖2 +
N

∑
i=0
‖h−1

i vi‖2 � ‖v‖2
Ag . (82)

We first use the stable decomposition (81) and the discrete regular decomposi-
tion to give a space decomposition for V (curl,T ).We next employ the results of
V (curl,T ) to give a stable decomposition of V (div,T ).

Theorem 5.7 (Stable Decomposition of V (curl;T )). Let TN = T0 +B be a bi-
section grid. For every vvv ∈ V (curl,TN), there exist ṽvve ∈ Ve, ũp ∈ Vp and wi =
Π curl

i φφφ i +gradui ∈ Vi(curl,Ri) for all e ∈ E , p ∈P, i = 1 : N, such that

vvv = ∑
e∈E

ṽvve + ∑
p∈P

grad ũp +
N

∑
i=0

wi, (83)

∑
e∈E

‖h−1ṽvve‖2 + ∑
p∈P

‖h−1ũp‖2 +
N

∑
i=0

(
‖h−1φφφ i‖2 +‖h−1ui‖2

)
� ‖vvv‖2

Ac . (84)

Proof. 1 We first consider the case V 3 ⊂ V (curl,TN) which excludes only the
lowest order space V (curl,P−

1 ,TN).
For any vvv ∈ V (curl,TN), we can apply Theorem 5.5 to obtain a discrete regular

decomposition ṽvv ∈ V (curl,TN),φφφ ∈ V 3 and u ∈ V (grad,TN) such that

vvv = ṽvv+φφφ +gradu

‖h−1ṽvv‖2 +‖φφφ‖2
1 +‖u‖2

1 � ‖vvv‖2
1.

For TN , we can choose φφφ so that φφφ =∑N
i=0 φφφ i using the quasi-interpolation operator

IT adapted to bisection grids; see Section §4.6 for the construction of IT .
We apply the basis and multilevel decompositions of H1 finite element spaces to

obtain the desirable decomposition
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ṽvv = ∑
e∈E

ṽvve, φφφ =
N

∑
i=0

φφφ i, u = ∑
p∈P

ũp +
N

∑
i=0

ui.

The stability (84) of the decomposition results from the following inequalities:

1. ∑
e∈E

‖h−1ṽvve‖2 � ‖h−1ṽvv‖2 by (74);

2.
N

∑
i=0
‖h−1φφφ i‖2 � ‖φφφ‖2

1 by the stable decomposition (55);

3. ∑
p∈P

‖h−1ũp‖2 +
N

∑
i=0
‖h−1ui‖2 � ‖u‖2

1 by the stable decomposition (82).

2 Now we consider the case V 3
� V (curl,TN), i.e., the space V (curl,P−

1 ,TN).
By Theorem 5.5, we have the discrete regular decomposition

vvv = ṽvv+Π curlφφφ +gradu. (85)

The key is a multilevel decomposition of the middle term. If φφφ = ∑N
i=0 φφφ i is the

stable decomposition of φφφ , then

Π curlφφφ =
N

∑
i=0

Π curl
i φφφ i +Π curl

N

∑
i=0

(φφφ i−Π curl
i φφφ i), (86)

because V (curl,Ri)⊂V (curl,TN) and Π curl
i =Π curlΠ curl

i . We now show curl(φφφ i−
Π curl

i φφφ i) = 0. For any face f ∈F (Ri), using integration by parts and the definition
of Π curl

i , we conclude
∫

f
curl(φφφ i−Π curl

i φφφ i) ·nnndS =
∫
∂ f

(φφφ i−Π curl
i φφφ i) · ttt ds = 0.

Since curl(φφφ i−Π curl
i φφφ i) is piecewise constant, we deduce curl(φφφ i−Π curl

i φφφ i) = 0.
From the exact sequence

V (grad,P2,Ri)→ V (curl,P1,Ri)→ V (div,P−
1 ,Ri),

there exists qi ∈ V (grad,P2,Ri) such that φφφ i −Π curl
i φφφ i = gradqi and ‖qi‖ �

‖gradqi‖. Let q = ∑qi and
∫
Ω qdx = 0. Using the commutative diagram, we have

Π curl
N

∑
i=0

(φφφ i−Π curl
i φφφ i) = Π curl grad

N

∑
i=0

qi = gradΠ gradq,

where Π grad : V (grad,P2,TN)→ V (grad,P1,TN). Let û = u+Π gradq. Then û ∈
V (grad,P1,TN) and the decomposition (85) becomes

vvv = ṽvv+∑
i
Π curl

i φφφ i +grad û. (87)
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We then apply the decomposition (81) to û as in the previous case, i.e.

û = ∑
p∈P

ũp +
N

∑
i=0

ui,

to obtain the desired decomposition (83).
To prove the stability (84) of the decomposition, it suffices to prove

‖gradq‖� ‖vvv‖Ac , (88)

which can be obtained from the Strengthened Cauchy Schwarz inequality

‖gradq‖2 = (
N

∑
i=0

gradqi,
N

∑
i=0

gradq j)≤
N

∑
i=0
‖gradqi‖2 +2

N

∑
i=0

N

∑
j>i
|(gradqi,gradq j)|

�
N

∑
i=0
‖gradqi‖2 =

N

∑
i=0
‖φφφ i−Π curl

i φφφ i‖2 �
N

∑
i=0
‖h−1φφφ i‖2 � ‖φφφ‖2

1 � ‖vvv‖2
Ac

.

This completes the proof. �

We conclude with a similar result for V (div,T ). Its proof follows along the
same lines as those of Theorem 5.7. We refer to [28] for details.

Theorem 5.8 (Stable Decomposition of H(div;Ω)). Let TN = T0 + B be a bi-
section grid. For every vvv ∈ V (div,TN) with V 3 ⊂ V (curl,TN), there exist ṽvv f ∈
V f , ũuue ∈ Ve and wwwi ∈ Vi(div,Ri) for all f ∈F ,e ∈ E , i = 0 : N, such that

vvv = ∑
f∈F

ṽvv f + ∑
e∈E

curl ũuue +
N

∑
i=0

wwwi, (89)

and

∑
F∈F

‖h−1vvv f ‖2 + ∑
e∈E

‖h−1ũuue‖2 +
N

∑
i=0

(
‖h−1φφφ i‖2 +‖h−1uuui‖2

)
� ‖vvv‖2

Ad . (90)

A remaining important ingredient, the SCS inequality for the space decompo-
sitions (79) and (80), can be established as well. Consequently, we have uniform
convergence of multigrid methods for HHH(curl) or HHH(div) systems. We state the re-
sult below and refer to [28] for details.

Theorem 5.9. The multigrid methods (c.f. algorithms in §5.2) for HHH(curl) or HHH(div)
systems based on the space decompositions (79) or (80)), respectively, are uniformly
convergent.
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6 The auxiliary space method and HX preconditioner for
unstructured grids

In previous sections, we study multilevel methods formulated over a hierarchy of
quasi-uniform or graded meshes. The geometric structure of these meshes is essen-
tial for both the design and analysis of such methods. Unfortunately, many grids in
practice are not hierarchical.

We use the term unstructured grids to refer those grids that do not possess much
geometric or topological structure. The design and analysis of efficient multilevel
solvers for unstructured grids is a topic of great theoretical and practical interest.
In this section, we discuss a special class of optimal preconditioners developed by
Hiptmair and Xu [52] that can be effectively applied to unstructured grids. This type
of preconditioners have been developed in the theoretical framework of the auxiliary
space method.

6.1 The auxiliary space method

The method of subspace correction consists of solving a system of equations in a
vector space by solving on appropriately chosen subspaces of the original space.
Such subspaces are, however, not always available. The auxiliary space method (Xu
1996 [92]) is for designing preconditioners using auxiliary spaces which are not
necessarily subspaces of the original subspace.

To solve the equation a(u,v) = ( f ,v) in a Hilbert space V , we consider

V = V ×W1×·· ·×WJ , (91)

where W1, . . . ,WJ , J ∈N are auxiliary (Hilbert) spaces endowed with inner products
a j(·, ·), j = 1, . . . ,J.

A distinctive feature of the auxiliary space method is the presence of V in (91),
but as a component of V . The space V is equipped with an inner product d(·, ·)
different from a(·, ·). The operator D : V �→ V induced by d(·, ·) on V leads to the
smoother S = D−1. For each W j we need Π j : W j �→ V which gives

Π := Id×Π1×·· ·×ΠJ : V �→ V , (92)

with properties

‖Π jw j‖A ≤ c ja(w j,w j)1/2 , for all w j ∈W j, j = 1, · · · ,J , (93)

‖v‖A ≤ csd(v,v)1/2 , for all v ∈ V , (94)

and for every v ∈ V , there exist v0 ∈ V and w j ∈W j such that v = v0 +∑J
j=1Π jw j

and
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d(v0,v0)1/2 +
J

∑
j=1

a j(w j,w j)1/2 ≤ c0‖v‖A . (95)

Let Āi, for i = 1, · · · ,J, be operators induced by (·, ·)Ai . Then the auxiliary space
preconditioner is given by

B = S +
J

∑
j=1

Π jĀ
−1
j Π ∗j . (96)

The estimate of the condition number κ(BA) is given below.

Theorem 6.1. Let Π = Id×Π1× ·· ·×ΠJ : V̄ = V ×W1× ·· ·×WJ �→ V satisfy
properties (93), (94), and (95). Then the auxiliary space preconditioner B given in
(96) admits the following estimate:

κ(BA)≤ c2
0(c

2
s + c2

1 + · · ·+ c2
J) . (97)

Proof. 1 We first prove (BAu,u)A ≤ (c2
s + c1 + · · ·+ c2

J)(u,u)A and consequently
λmax(BA)≤ (c2

s + c1 + · · ·+ c2
J). By definition of B, we have:

(BAu,u)A = (SAu,u)A +
J

∑
j=1

(Π jĀ
−1
j Π ∗j Au,u)A.

We use Cauchy-Schwarz inequality and (94) to control the first term as

(SAu,u)A ≤ (SAu,SAu)1/2
A (u,u)1/2

A ≤ csd(SAu,SAu)1/2(u,u)1/2
A

= cs(SAu,Au)1/2(u,u)1/2
A = cs(SAu,u)1/2

A (u,u)1/2
A ,

which leads to (SAu,u)A ≤ c2
s (u,u)A.

Similarly we use Cauchy-Schwarz inequality and (93) to control the term as

(Π jĀ
−1
j Π ∗j Au,u)A ≤ (Π jĀ

−1
j Π ∗j Au, Π jĀ

−1
j Π ∗j Au)1/2

A (u,u)1/2
A

≤ c j(Ā−1
j Π ∗j Au, Ā−1

j Π ∗j Au)1/2
Ā j

(u,u)1/2
A

= c j(Ā−1
j Π ∗j Au, Π ∗j Au)1/2(u,u)1/2

A

= c j(Π jĀ
−1
j Π ∗j Au, u)1/2

A (u,u)1/2
A ,

which leads to (Π jĀ
−1
j Π ∗j Au,u)A ≤ c2

j(u,u)A.

2 We then prove there exists u ∈ V such that (u,u)A ≤ c2
0(BAu,u)A and conse-

quently λmin(BA)≥ c−2
0 .

We choose u = v0 +∑J
j=1Π jw j satisfying (95). Then
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(Π jw j,u)A = (Π jw j,Au) = (w j,Π ∗j Au) = (w j, Ā−1
j Π ∗j Au)Ā j

≤ ‖w j‖Ā j
(Ā−1

j Π ∗j Au, Ā−1
j Π ∗j Au)1/2

Ā j
= ‖w j‖Ā j

(BAu,u)1/2
A .

Similarly (v0,u)A ≤ ‖v0‖D(BAu,u)1/2
A . Therefore

(u,u)A = (v0 +
J

∑
j=1

w j,u)A ≤ (‖v0‖D +
J

∑
j=1
‖w j‖Ā j

)(BAu,u)1/2
A

≤ c0(u,u)1/2
A (BAu,u)1/2

A ,

which leads to the desired result. �

6.2 HX preconditioner

We present an auxiliary space preconditioner for H(curl) and H(div) systems de-
veloped in Hiptmair and Xu [52] (see also R. Beck [10] for a special case). The basic
idea is to apply an auxiliary space preconditioner framework in [92], to the discrete
regular decompositions of V (curl,T ) or V (div,T ). The resulting preconditioner
for the H(curl) systems is

Bcurl = Scurl +Π curlBBBgrad(Π curl)t +grad Bgrad(grad)t . (98)

The implementation makes use of the input data: the HHH(curl) stiffness matrix
A, the coordinates of the grid points, along with the discrete gradient grad (for the
lowest order Nédélec element case, it is simply the “vertex”-to-“edge” mapping with
entries 1 or−1). Based on the coordinates, one can easily construct the interpolation
operator Π curl

h . Then the “Auxiliary space Maxwell solver” consists of the following
three components:

1. The smoother Scurl of A (it could be the standard Jacobi or symmetric Gauss-
Seidel methods).

2. An algebraic multigrid (AMG) solver Bgrad for gradt Agrad
3. An (vector) AMG solver BBBgrad for

(
Π curl
)T

AΠ curl.

Similarly

Bdiv = Sdiv +Π divBBBgrad(Π div
h )t + curl Bcurl(curl)t

= Sdiv +Π divBBBgrad(Π div)t + curl Scurl(curl)t + curlΠ curlBBBgrad(Π curl)t(curl)t .

This preconditioner consists of 4 Poisson solvers Bgrad for HHH(curl) (and 6 for
HHH(div)) as well as 1 simple relaxation method (Scurl) such as point Jacobi for
HHH(curl) (and 2 relaxation methods for HHH(div)).

The point here is that we can use well-developed AMG for H1 systems for the
Poisson solver Bgrad to obtain robust AMG methods for HHH(curl) and HHH(div) sys-
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tems. These classes of preconditioners are in some way a “grey-box” AMG as it
makes use of information on geometric grids (and associated interpolation opera-
tors). But the overhead is minimal and it requires very little programming effort. It
has been proved in [52] that it is optimal and efficient for problems on unstructured
grids.

To interpret Bcurl as an auxiliary space preconditioner, we choose V =V (curl,T )
and W1 = W2 = V (grad,T ). The inner product for the smoother is induced by the
diagonal matrix of Acurl and the inner product Ā1, Ā2 is induced by (BBBgrad)−1. The
operator Π1 : W1 → V is the interpolation Π curl and Π2 = grad : W1 → V .

Theorem 6.2. Suppose Bgrad is an SPD matrix such that ((Bgrad)−1u,u) � (u,u)1.
Then the preconditioner Bcurl defined by (98) admits the estimate

κ(BcurlAcurl) � 1.

Proof. In view of Theorem 97, it suffices to verify properties (93), (94), and (95).
The property (94) is an easy consequence of Cauchy-Schwarz inequality and

shape regularity of the mesh. We use the stability of the operator Π1 = Π curl and
Π2 = grad discussed in Section 5.1 and inequality (u,u)1 � ((Bgrad)−1u,u) to get
(94). To get (95), we can use the discrete regular decomposition in Section 5.1.4 and
the inequality ((Bgrad)−1u,u) � (u,u)1. This completes the proof.

We state a similar result for Bdiv below and leave the proof to readers.

Theorem 6.3. Suppose Bgrad is an SPD matrix such that ((Bgrad)−1u,u) � (u,u)1.
Then the preconditioner

Bdiv = Sdiv +Π divBBBgrad(Π div)t + curl Scurl(curl)t + curlΠ curlBBBgrad(Π curl)t(curl)t

admits the estimate
κ(BdivAdiv) � 1.

For HHH(curl) systems, the preconditioners have been included and tested in
LLNL’s hypre package [36, 37, 38] based on its parallel algebraic multigrid solver
“BoomerAMG” [46]. It is a parallel implementation, almost a ‘black-box” as it re-
quires only discrete gradient matrix plus vertex coordinates, it can handle compli-
cated geometries and coefficient jumps, scales with the problem size and on large
parallel machines, supports simplified magnetostatics mode, and can utilize Poisson
matrices, when available. Extensive numerical experiments demonstrate that this
preconditioner is also efficient and robust for more general equations (see Hiptmair
and Xu [52], and Kolev and Vassilevski [54, 55]) such as

curl(μ(x)curlu)+σ(x)u = f (99)

where μ and σ may be discontinuous, degenerate, and exhibit large variations.
For this type of general equations, we may not expect that the simple Poisson

solvers are sufficient to handle possible variations of μ and σ . Let us argue roughly
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what the right equations are to replace the Poisson equations. Let us assume our
problems has sufficient regularity (e.g., Ω is convex). We then have

‖graduuu‖2
� ‖curluuu‖2 +‖divuuu‖2.

If uuu(= curlw) ∈ N(curl)⊥, then ‖graduuu‖= ‖curluuu‖. Roughly, we get the following
equivalence:

(μ curluuu,curluuu)+(σuuu,uuu) � (μ graduuu,graduuu)+(σuuu,uuu),

which corresponds to the following operator:

LLL1uuu≡−div(μ(x)graduuu)+σ(x)uuu. (100)

On the other hand, if uuu,vvv ∈ N(curl), uuu = grad p and vvv = gradq,

(μ curluuu,curlvvv)+(σuuu,vvv) = (σ grad p,gradq)

which corresponds to the following operator:

L2uuu≡−div(σ(x)grad p). (101)

We obtain the following preconditioner for the general equation (99):

Bcurl = Scurl +Π curlBBBgrad
1 (Π curl)t +grad Bgrad

2 (grad)t

where is BBBgrad
1 is a preconditioner for the operator in the equation (100) and Bgrad

2 is
a preconditioner for the operator in the equation (101).

The HHH(div) systems arise naturally from numerous problems of practical impor-
tance, such as stabilized mixed formulations of the Stokes problem, least squares
methods for H(grad) systems, and mixed methods for H(grad) systems, see [3, 88].
Motivated by [13], we have recently designed a compatible gauge AMG algorithm
for HHH(div) systems in [14], and the numerical experiments demonstrate the effi-
ciency and robustness of this algorithm.
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