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Abstract. We study combinatorial group testing schemes for learning
d-sparse boolean vectors using highly unreliable disjunctive measure-
ments. We consider an adversarial noise model that only limits the num-
ber of false observations, and show that any noise-resilient scheme in
this model can only approximately reconstruct the sparse vector. On
the positive side, we give a general framework for construction of highly
noise-resilient group testing schemes using randomness condensers.
Simple randomized instantiations of this construction give non-adaptive
measurement schemes, with m = O(d log n) measurements, that allow ef-
ficient reconstruction of d-sparse vectors up to O(d) false positives even
in the presence of δm false positives and Ω(m/d) false negatives within
the measurement outcomes, for any constant δ < 1. None of these pa-
rameters can be substantially improved without dramatically affecting
the others. Furthermore, we obtain several explicit (and incomparable)
constructions, in particular one matching the randomized trade-off but
using m = O(d1+o(1) log n) measurements. We also obtain explicit con-
structions that allow fast reconstruction in time poly(m), which would
be sublinear in n for sufficiently sparse vectors.

1 Introduction

Group testing is an area in applied combinatorics that deals with the follow-
ing problem: Suppose that in a large population of individuals, it is suspected
that a small number possess a condition or property that can only be certified
by carrying out a particular test. Moreover suppose that a pooling strategy is
permissible, namely, that it is possible to perform a test on a chosen group of
individuals in parallel, in which case the outcome of the test would be positive if
at least one of the individuals in the group possesses the condition. The trivial
strategy would be to test each individual separately, which takes as many tests
as the population size. The basic question in group testing is: how can we do
better? The idea of group testing is believed to be emerged during the screen-
ing process of draftees in World War II. Since then, a vast amount of tools and
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techniques have been developed in this area, and the problem has found a large
number of applications apart from its original aim (from testing for defective
items, e.g., defective light bulbs or resistors, as a part of industrial quality assur-
ance to DNA sequencing and DNA library screening in molecular biology, and
less obvious applications such as multiaccess communication, data compression,
pattern matching, streaming algorithms, software testing, and compressed sens-
ing, to name a few). We refer the reader to the books by Du and Hwang [1,2]
for a detailed account of the major developments in this area.

More formally, the goal in group testing is to reconstruct a d-sparse1 boolean
vector2 x ∈ �n

2 , for a known integer parameter d > 0, from as few observations
as possible. Each observation is the outcome of a measurement that outputs the
bitwise OR of a prescribed subset of the coordinates in x. Hence, a measure-
ment can be seen as a binary vector in �n

2 which is the characteristic vector
of the subset of the coordinates being combined together. More generally, a set
of m measurements can be seen as an m × n binary matrix (that we call the
measurement matrix ) whose rows define the individual measurements.

In this work we study group testing in presence of highly unreliable measure-
ments that can produce false outcomes. We will mainly focus on situations where
up to a constant fraction of the measurement outcomes can be incorrect. More-
over, we will mainly restrict our attention to non-adaptive measurements; the
case in which the measurement matrix is fully determined before the observa-
tion outcomes are known. Nonadaptive measurements are particularly important
for applications as they allow the tests to be performed independently and in
parallel, which saves significant time and cost.

On the negative side, we show that when the measurements are allowed to be
highly noisy, the original vector x cannot be uniquely reconstructed. Thus in this
case it would be inevitable to resort to approximate reconstructions, i.e., pro-
ducing a sparse vector x̂ that is close to the original vector in Hamming distance.
In particular, our result shows that if a constant fraction of the measurements
can go wrong, the reconstruction might be different from the original vector in
Ω(d) positions, irrespective of the number of measurements. For most applica-
tions this might be an unsatisfactory situation, as even a close estimate of the
set of positives might not reveal whether any particular individual is defective or
not, and in certain scenarios (such as an epidemic disease or industrial quality
assurance) it is unacceptable to miss any affected individuals. This motivates us
to focus on approximate reconstructions with one-sided error. Namely, we will
require that the support of x̂ contains the support of x and be possibly larger by
up to O(d) positions. It can be argued that, for most applications, such a scheme
is as good as exact reconstruction, as it allows one to significantly narrow-down
the set of defectives to up to O(d) candidate positives. In particular, as observed
in [3], one can use a second stage if necessary and individually test the result-
ing set of candidates to identify the exact set of positives, hence resulting in a
so-called trivial two-stage group testing algorithm. Next, we will show that in

1 We define a d-sparse vector as a vector with at most d nonzero coefficients.
2 We use the notation �q for a field (or at times, an alphabet) of size q.
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any scheme that produces no or little false negative in the reconstruction, only
up to O(1/d) fraction of false negatives (i.e., observation of a 0 instead of 1)
in the measurements can be tolerated, while there is no such restriction on the
amount of tolerable false positives. Thus, one-sided approximate reconstruction
breaks down the symmetry between false positives and false negatives in our
error model.

On the positive side, we give a general construction for noise-resilient mea-
surement matrices that guarantees approximate reconstructions up to O(d) false
positives. Our main result is a general reduction from the noise-resilient group
testing problem to construction of well-studied combinatorial objects known as
randomness condensers that play an important role in theoretical computer
science. Different qualities of the underlying condenser correspond to different
qualities of the resulting group testing scheme, as we describe later. Using the
state of the art in derandomization theory, we obtain different instantiations
of our framework with incomparable properties summarized in Table 1. In par-
ticular, the resulting randomized constructions (obtained from optimal lossless
condensers and extractors) can be set to tolerate (with overwhelming probabil-
ity) any constant fraction (< 1) of false positives, an Ω(1/d) fraction of false
negatives, and produce an accurate reconstruction up to O(d) false positives
(where the positive constant behind O(·) can be made arbitrarily small), which
is the best trade-off one can hope for, all using only O(d log n) measurements.
This almost matches the information-theoretic lower bound Ω(d log(n/d)) shown
by simple counting. We will also show explicit (deterministic) constructions that
can approach the optimal trade-off, and finally, those that are equipped with
fully efficient reconstruction algorithms with running time polynomial in the
number of measurements.

Related Work. There is a large body of work in the group testing literature
that is related to the present work; in this short presentation, we are only able

Table 1. A summary of constructions in this paper. The parameters α ∈ [0, 1) and
δ ∈ (0, 1] are arbitrary constants, m is the number of measurements, e0 (resp., e1)
the number of tolerable false positives (resp., negatives) in the measurements, and e′0
is the number of false positives in the reconstruction. The fifth column shows whether
the construction is deterministic (Det) or randomized (Rnd), and the last column shows
the running time of the reconstruction algorithm.

Det/ Rec.
m e0 e1 e′0 Rnd Time

O(d log n) αm Ω(m/d) O(d) Rnd O(mn)
O(d log n) Ω(m) Ω(m/d) δd Rnd O(mn)

O(d1+o(1) log n) αm Ω(m/d) O(d) Det O(mn)
d · quasipoly(log n) Ω(m) Ω(m/d) δd Det O(mn)
d · quasipoly(log n) αm Ω(m/d) O(d) Det poly(m)
poly(d)poly(log n) poly(d)poly(log n) Ω(e0/d) δd Det poly(m)
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to discuss a few with the highest relevance. The exact group testing problem in
the noiseless scenario is handled by what is known as superimposed coding (see
[4,5]) or the closely related concepts of cover-free families or disjunct matrices3.
It is known that, even for the noiseless case, exact reconstruction of d-sparse
signals (when d is not too large) requires at least Ω(d2 log n/ log d) measure-
ments (several proofs of this fact are known, e.g., [6,7,8]). An important class
of superimposed codes is constructed from combinatorial designs, among which
we mention the construction based on MDS codes given by Kautz and Singleton
[9], which, in the group testing notation, achieves O(d2 log2 n) measurements.

Approximate reconstruction of sparse vectors up to a small number of false
positives (that is one focus of this work) has been studied as a major ingredient
of trivial two-stage schemes [3,10,11,12,13,14]. In particular, a generalization of
superimposed codes, known as selectors, was introduced in [12] which, roughly
speaking, allows for identification of the sparse vector up to a prescribed number
of false positives. They gave a non-constructive result showing that there are
such (non-adaptive) schemes that keep the number of false positives at O(d)
using O(d log(n/d)) measurements, matching the optimal “counting bound”. A
probabilistic construction of asymptotically optimal selectors (resp., a related
notion of resolvable matrices) is given in [14] (resp., [13]), and [15,16] give slightly
sub-optimal “explicit” constructions based on certain expander graphs obtained
from dispersers.

To give a concise comparison of the present work with those listed above,
we mention some of the qualities of the group testing schemes that we will aim
to attain: (1) low number of measurements; (2) arbitrarily good degree of ap-
proximation; (3) maximum possible noise tolerance; (4) efficient, deterministic
construction: As typically the sparsity d is very small compared to n, a measure-
ment matrix must be ideally fully explicitly constructible in the sense that each
entry of the matrix should be computable in deterministic time poly(d, log n);
(5) fully efficient reconstruction algorithm: For a similar reason, the length of the
observation vector is typically far smaller than n; thus, it is desirable to have
a reconstruction algorithm that identifies the support of the sparse vector in
time polynomial in the number of measurements (which might be exponentially
smaller than n). While the works that we mentioned focus on few of the criteria
listed above, our approach can potentially attain all at the same time. As we
will see later, using the best known constructions of condensers we will have to
settle to sub-optimal results in one or more of the aspects above. Nevertheless,
the fact that any improvement in the construction of condensers would readily
translate to improved group testing schemes (and also the rapid growth of de-
randomization theory) justifies the significance of the construction given in this
work.

3 A d-superimposed code is a collection of binary vectors with the property that from
the bitwise OR of up to d words in the family one can uniquely identify the comprising
vectors. A d-cover-free family is a collection of subsets of a universe, none of which
is contained in any union of up to d of the other subsets.
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2 Preliminaries

For non-negative integers e0 and e1, we say that an ordered pair of binary vectors
(x, y), each in �n

2 , are (e0, e1)-close (or x is (e0, e1)-close to y) if y can be obtained
from x by flipping at most e0 bits from 0 to 1 and at most e1 bits from 1 to
0. Hence, such x and y will be (e0 + e1)-close in Hamming-distance. Further,
(x, y) are called (e0, e1)-far if they are not (e0, e1)-close. Note that if x and y are
seen as characteristic vectors of subsets X and Y of [n], respectively4, they are
(|Y \X |, |X \Y |)-close. Furthermore, (x, y) are (e0, e1)-close iff (y, x) are (e1, e0)-
close. A group of m non-adaptive measurements for binary vectors of length n
can be seen as an m × n matrix (that we call the measurement matrix ) whose
(i, j)th entry is 1 iff the jth coordinate of the vector is present in the disjunction
defining the ith measurement. For a measurement matrix A, we denote by A[x]
the outcome of the measurements defined by A on a binary vector x, that is, the
bitwise OR of those columns of A chosen by the support of x. As motivated by
our negative results, for the specific setting of the group testing problem that
we are considering in this work, it is necessary to give an asymmetric treatment
that distinguishes between inaccuracies due to false positives and false negatives.
Thus, we will work with a notion of error-tolerating measurement matrices that
directly and conveniently captures this requirement, as given below:

Definition 1. Let m, n, d, e0, e1, e
′
0, e

′
1 be integers. An m×n measurement ma-

trix A is called (e0, e1, e
′
0, e

′
1)-correcting for d-sparse vectors if, for every y ∈ �m

2

there exists z ∈ �n
2 (called a valid decoding of y) such that for every x ∈ �n

2 ,
whenever (x, z) are (e′0, e

′
1)-far, (A[x], y) are (e0, e1)-far. The matrix A is called

fully explicit if each entry of the matrix can be computed in time poly(log n).

Intuitively, the definition states that two measurements are allowed to be
confused only if they are produced from close vectors. In particular, an
(e0, e1, e

′
0, e

′
1)-correcting matrix gives a group testing scheme that reconstructs

the sparse vector up to e′0 false positives and e′1 false negatives even in the
presence of e0 false positives and e1 false negatives in the measurement out-
come. Under this notation, unique (exact) decoding would be possible using an
(e0, e1, 0, 0)-correcting matrix if the amount of measurement errors is bounded
by at most e0 false positives and e1 false negatives. However, when e′0 + e′1 is
positive, decoding may require a bounded amount of ambiguity, namely, up to
e′0 false positives and e′1 false negatives in the decoded sequence. In the combi-
natorics literature, the special case of (0, 0, 0, 0)-correcting matrices is known as
d-superimposed codes or d-separable matrices and is closely related to the notions
of d-cover-free families and d-disjunct matrices (cf. [1] for precise definitions).
Also, (0, 0, e′0, 0)-correcting matrices are related to the notion of selectors in [12]
and resolvable matrices in [13].

The min-entropy of a distribution X with finite support S is given by H∞(X )
:= minx∈S{− logPrX (x)}, where PrX (x) is the probability that X assigns to x.
The statistical distance of two distributions X and Y defined on the same finite
4 We use the shorthand [n] for the set {1, 2, . . . , n}.
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space S is given by 1
2

∑
s∈S |PrX (s) − PrY(s)|, which is half the �1 distance

of the two distributions when regarded as vectors of probabilities over S. Two
distributions X and Y are said to be ε-close if their statistical distance is at
most ε. We will use the shorthand Un for the uniform distribution on �n

2 , and
X ∼ X for a random variable X drawn from a distribution X . A function
C : �n

2 × �t
2 → �

�
2 is a strong k →ε k′ condenser if for every distribution X on

�
n
2 with min-entropy at least k, random variable X ∼ X and a seed Y ∼ Ut,

the distribution of (Y, C(X, Y )) is ε-close to some distribution (Ut,Z) with min-
entropy at least t + k′. The parameters ε, k − k′, and �− k′ are called the error,
the entropy loss and the overhead of the condenser, respectively. A condenser
with zero entropy loss is called lossless, and a condenser with zero overhead is
called a strong (k, ε)-extractor. A condenser is explicit if it is polynomial-time
computable.

3 Negative Results

In coding theory, it is possible to construct codes that can tolerate up to a con-
stant fraction of adversarially chosen errors and still guarantee unique decoding.
Hence it is natural to wonder whether a similar possibility exists in group testing,
namely, whether there is a measurement matrix that is robust against a constant
fraction of adversarial errors and still recovers the measured vector exactly. The
result below shows that this is not possible5:

Lemma 2. Suppose that an m × n measurement matrix A is (e0, e1, e
′
0, e

′
1)-

correcting for d-sparse vectors. Then (max{e0, e1}+1)/(e′0 + e′1 +1) ≤ m/d. ��
The above lemma6 gives a trade-off between the tolerable error in the measure-
ments versus the reconstruction error. In particular, for unique decoding to be
possible one can only guarantee resiliency against up to O(1/d) fraction of errors
in the measurement. On the other hand, tolerance against a constant fraction
of errors would make an ambiguity of order Ω(d) in the decoding inevitable.
Another trade-off is given by the following lemma:

Lemma 3. Suppose that an m × n measurement matrix A is (e0, e1, e
′
0, e

′
1)-

correcting for d-sparse vectors. Then for every ε > 0, either e1 < (e′1 +1)m/(εd)
or e′0 ≥ (1 − ε)(n − d + 1)/(e′1 + 1)2. ��
As mentioned in the introduction, it is an important matter for applications
to bring down the amount of false negatives in the reconstruction as much as
possible, and ideally to zero. The lemma above shows that if one is willing to
keep the number e′1 of false negatives in the reconstruction at the zero level
(or bounded by a constant), only an up to O(1/d) fraction of false negatives in
the measurements can be tolerated (regardless of the number of measurements),

5 We remark that the negative results in this section hold for both adaptive and non-
adaptive measurements.

6 The omitted proofs can be found in the full version of this paper.



68 M. Cheraghchi

unless the number e′0 of false positives in the reconstruction grows to an enormous
amount (namely, Ω(n) when n − d = Ω(n)) which is certainly undesirable.

As shown in [6], exact reconstruction of d-sparse vectors of length n, even
in a noise-free setting, requires at least Ω(d2 log n/ log d) non-adaptive measure-
ments. However, it turns out that there is no such restriction when an approxi-
mate reconstruction is sought for, except for the following bound which can be
shown using simple counting and holds for adaptive noiseless schemes as well:

Lemma 4. Let A be an m×n measurement matrix that is (0, 0, e′0, e
′
1)-correcting

for d-sparse vectors. Then m ≥ d log(n/d)− d− e′0 −O(e′1 log((n− d− e′0)/e′1)),
where the last term is defined to be zero for e′1 = 0. ��
This is similar in spirit to the lower bound obtained in [12] for the size of selec-
tors. According to the lemma, even in the noiseless scenario, any reconstruction
method that returns an approximation of the sparse vector up to e′0 = O(d)
false positives and without false negatives will require Ω(d log(n/d)) measure-
ments. As we will show in the next section, an upper bound of O(d log n) is
in fact attainable even in a highly noisy setting using only non-adaptive mea-
surements. This in particular implies an asymptotically optimal trivial two-stage
group testing scheme.

4 A Noise-Resilient Construction

In this section we introduce our general construction and design measurement
matrices for testing D-sparse vectors7 in �N

2 . The matrices can be seen as ad-
jacency matrices of certain unbalanced bipartite graphs constructed from good
randomness condensers or extractors. The main technique that we use to show
the desired properties is the list-decoding view of randomness condensers, ex-
tractors, and expanders, developed over the recent years starting from the work
of Ta-Shma and Zuckerman on extractor codes [17]. We start by introducing the
terms that we will use in this construction and the analysis.

Definition 5. (mixtures, agreement, and agreement list) Let Σ be a finite set.
A mixture over Σn is an n-tuple S := (S1, . . . , Sn) such that every Si, i ∈ [n],
is a nonempty subset of Σ. The agreement of w := (w1, . . . wn) ∈ Σn with S,
denoted by Agr(w, S), is the quantity 1

n |{i ∈ [n] : wi ∈ Si}|. Moreover, we define
the quantity wgt(S) :=

∑
i∈[n] |Si| and ρ(S) := wgt(S)/(n|Σ|), where the latter

is the expected agreement of a random vector with S. For a code C ⊆ Σn and
α ∈ (0, 1], the α-agreement list of C with respect to S, denoted by LISTC(S, α),
is the set8 LISTC(S, α) := {c ∈ C : Agr(c, S) > α}.
Definition 6. (induced code) Let f : Γ ×Ω → Σ be a function mapping a finite
set Γ × Ω to a finite set Σ. For x ∈ Γ , we use the shorthand f(x) to denote

7 In this section we find it more convenient to use capital letters D, N, . . . instead of
d, n, . . . that we have so far used and keep the small letters for their base-2 logarithms.

8 When α = 1, we consider codewords with full agreement with the mixture.
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the vector y := (yi)i∈Ω, yi := f(x, i), whose coordinates are indexed by the
elements of Ω in a fixed order. The code induced by f , denoted by C(f) is the
set {f(x) : x ∈ Γ}. The induced code has a natural encoding function given by
x 
→ f(x).

Definition 7. (codeword graph) Let C ⊆ Σn, |Σ| = q, be a q-ary code. The
codeword graph of C is a bipartite graph with left vertex set C and right vertex
set n × Σ, such that for every x = (x1, . . . , xn) ∈ C, there is an edge between
x on the left and (1, x1), . . . , (n, xn) on the right. The adjacency matrix of the
codeword graph is an n|Σ| × |C| binary matrix whose (i, j)th entry is 1 iff there
is an edge between the ith right vertex and the jth left vertex.

The following is a straightforward generalization of the result in [17] that is also
shown in [18]:

Theorem 8. Let f : �n
2 ×�t

2 → �
�
2 be a strong k →ε k′ condenser, and C ⊆ Σ2t

be its induced code, where Σ := �
�
2. Then for any mixture S over Σ2t

we have
|LISTC(S, ρ(S)2�−k′

+ ε)| < 2k. ��
Now using the above tools, we are ready to describe our construction of error-
tolerant measurement matrices. We first state a general result without specifying
the parameters of the condenser, and then instantiate the construction with
various choices of the condenser, resulting in matrices with different properties.

Theorem 9. Let f : �n
2 × �t

2 → �
�
2 be a strong k →ε k′ condenser, and C be

its induced code, and define the capital shorthands K := 2k, K ′ := 2k′
, L := 2�,

N := 2n, T := 2t. Suppose that the parameters p, ν, γ > 0 are chosen such
that (p + γ)L/K ′ + ν/γ < 1 − ε, and D := γL. Then the adjacency matrix
of the codeword graph of C (which has M := TL rows and N columns) is a
(pM, (ν/D)M, K − D, 0)-correcting measurement matrix for D-sparse vectors.
Moreover, it allows for a reconstruction algorithm with running time O(MN).

Proof. Let M be the adjacency matrix of the codeword graph of C. It imme-
diately follows from the construction that the number of rows of M (denoted
by M) is equal to TL. Moreover, notice that the Hamming weight of each col-
umn of M is exactly T . Let x ∈ �N

2 and denote by y ∈ �M
2 its encoding, i.e.,

y := M[x], and by ŷ ∈ �M
2 a received word, or a noisy version of y. The encoding

of x can be schematically viewed as follows: The coefficients of x are assigned
to the left vertices of the codeword graph and the encoded bit on each right
vertex is the bitwise OR of the values of its neighbors. The coordinates of x
can be seen in one-to-one correspondence with the codewords of C. Let X ⊆ C
be the set of codewords corresponding to the support of x. The coordinates of
the noisy encoding ŷ are indexed by the elements of [T ]× [L] and thus, ŷ natu-
rally defines a mixture S = (S1, . . . , ST ) over [L]T , where Si contains j iff ŷ at
position (i, j) is 1. Observe that ρ(S) is the relative Hamming weight (denoted
below by δ(·)) of ŷ; thus, we have ρ(S) = δ(ŷ) ≤ δ(y) + p ≤ D/L + p = γ + p,
where the last inequality comes from the fact that the relative weight of each
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column of M is exactly 1/L and that x is D-sparse. Furthermore, from the as-
sumption we know that the number of false negatives in the measurement is at
most νTL/D = νT/γ. Therefore, any codeword in X must have agreement at
least 1− ν/γ with S. This is because S is indeed constructed from a mixture of
the elements in X , modulo false positives (that do not decrease the agreement)
and at most νT/γ false negatives each of which can reduce the agreement by
at most 1/T . Accordingly, we consider a decoder which simply outputs a binary
vector x̂ supported on the coordinates corresponding to those codewords of C
that have agreement larger than 1 − ν/γ with S. Clearly, the running time of
the decoder is linear in the size of the measurement matrix. By the discussion
above, x̂ must include the support of x. Moreover, Theorem 8 applies for our
choice of parameters, implying that x̂ must have weight less than K. ��

Instantiations
Now we instantiate the general result given by Theorem 9 with various choices
of the underlying condenser and compare the obtained parameters.

Applying Optimal Extractors. Radhakrishan and Ta-Shma showed that non-
constructively, for every k, n, ε, there is a strong (k, ε)-extractor with seed length
t = log(n − k) + 2 log(1/ε) + O(1) and output length � = k − 2 log(1/ε) −
O(1), which is the best one can hope for [19]. In particular, they show that a
random function achieves these parameters with probability 1 − o(1). Plugging
this result in Theorem 9, we obtain a non-explicit measurement matrix from a
simple, randomized construction that achieves the desired trade-off with high
probability:

Corollary 10. For every choice of constants p ∈ [0, 1) and ν ∈ [0, ν0), ν0 :=
(
√

5 − 4p − 1)3/8, and positive integers D and N ≥ D, there is an M × N
measurement matrix, where M = O(D log N), that is (pM, (ν/D)M, O(D), 0)-
correcting for D-sparse vectors of length N and allows for a reconstruction al-
gorithm with running time O(MN). ��
This instantiation, in particular, reproduces a result on randomized construction
of approximate group testing schemes with optimal number of measurements in
[14], but with stringent conditions on the noise tolerance of the scheme.

Applying Optimal Lossless Condensers. The probabilistic construction of
Radhakrishan and Ta-Shma can be extended to the case of lossless condensers
and one can show that a random function is with high probability a strong
k →ε k condenser with seed length t = log n+log(1/ε)+O(1) and output length
� = k + log(1/ε) + O(1) [20]. This combined with Theorem 9 gives the following
corollary:

Corollary 11. For positive integers N ≥ D and every constant δ > 0 there is an
M×N measurement matrix, where M = O(D log N), that is (Ω(M), Ω(1/D)M,
δD, 0)-correcting for D-sparse vectors of length N and allows for a reconstruction
algorithm with running time O(MN). ��
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Both results obtained in Corollaries 10 and 11 almost match the lower bound
of Lemma 4 for the number of measurements. However, we note the following
distinction between the two results: Instantiating the general construction of
Theorem 9 with an extractor gives us a sharp control over the fraction of tolerable
errors, and in particular, we can obtain a measurement matrix that is robust
against any constant fraction (bounded from 1) of false positives. However, the
number of false positives in the reconstruction will be bounded by some constant
fraction of the sparsity of the vector that cannot be made arbitrarily close to zero.
On the other hand, a lossless condenser enables us to bring down the number of
false positives in the reconstruction to an arbitrarily small fraction of D (which
is, in light of Lemma 2, the best we can hope for), but on the other hand, does
not give as good a control on the fraction of tolerable errors as in the extractor
case, though we still obtain resilience against the same order of errors.

Applying the Guruswami-Umans-Vadhan’s Extractor. While Corollaries
10 and 11 give probabilistic constructions of noise-resilient measurement matri-
ces, certain applications require a fully explicit matrix that is guaranteed to
work. To that end, we need to instantiate Theorem 9 with an explicit condenser.
First, we use a nearly-optimal explicit extractor due to Guruswami, Umans and
Vadhan, summarized in the following theorem:

Theorem 12. [18] For all positive integers n ≥ k and all ε > 0, there is an
explicit strong (k, ε)-extractor Ext : �n

2 ×�t
2 → �

�
2 with � = k− 2 log(1/ε)−O(1)

and t = log n + O(log k · log(k/ε)). ��
Applying this result in Theorem 9 we obtain a similar trade-off as in Corol-
lary 10, except for a higher number of measurements which would be bounded
by O(2O(log2 log D)D log N) = O(D1+o(1) log N).

Applying the Zig-Zag Lossless Condenser. In [20] an explicit lossless con-
denser with optimal output length is constructed. In particular they show the
following:

Theorem 13. [20] For every k ≤ n ∈ �, ε > 0 there is an explicit k →ε k
condenser9 with seed length O(log3(n/ε)) and output length k + log(1/ε)+ O(1).

Combined with Theorem 9, we obtain a similar result as in Corollary 11, ex-
cept for a higher number of measurements, namely, M = D2log3(log N) = D ·
quasipoly(log N).

Measurements Allowing Sublinear Time Reconstruction. The naive re-
construction algorithm of Theorem 9 works efficiently in linear time in the size
of the measurement matrix. However, as mentioned in the introduction, for very
sparse vectors (i.e., D � N) it might be of practical importance to have a
reconstruction algorithm that runs in sublinear time in N , the length of the
9 Though not explicitly mentioned in [20], these condensers can be considered to be

strong.
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vector, and ideally, polynomial in the number of measurements, which is merely
poly(log N, D) if the number of measurements is optimal.

Observe that the main computational task done by the reconstruction algo-
rithm in Theorem 9 is in fact computation of a suitable agreement list for the
induced code of the underlying condenser. Several explicit constructions of con-
densers are equipped with efficient algorithms for computation of agreement lists
that substantially outperform exhaustive search. Namely, for such constructions
the set LISTC(S, ρ(S)+ε) can be computed in time poly(2t, 2�, 2k, 1/ε), which can
be much smaller than 2n. Here we consider two such constructions that achieve
the most favorable parameters for our application: Trevisan’s extractor10 [21]
and a lossless condenser due to Guruswami et al. [18]. We use the following
improvement of Trevisan’s extractor due to Raz et al.:

Theorem 14. [22] For every n, k, � ∈ �, (� ≤ k ≤ n) and ε > 0, there is
an explicit strong (k, ε)-extractor Tre : �n

2 × �t
2 → �

�
2 with t = O(log2(n/ε) ·

log(1/α)), where α := k/(� − 1) − 1 must be less than 1/2. ��
Using this result in Theorem 9, we obtain a measurement matrix for which the
reconstruction is possible in polynomial time in the number of measurements.
Specifically, we obtain the same parameters as in Corollary 10 using Trevisan’s
extractor except for the number of measurements, M = O(D2log3 log N ) = D ·
quasipoly(log N).

In the world of lossless condensers, Guruswami et al. [18] show the following:

Theorem 15. [18] For all constants α ∈ (0, 1) and every k ≤ n ∈ �, ε > 0 there
is an explicit strong k →ε k condenser with seed length t = (1+1/α) log(nk/ε)+
O(1) and output length � = d + (1 + α)k. Moreover, the condenser has efficient
list recovery. ��
As before, we use this construction in Theorem 9 and obtain the following:

Corollary 16. For positive integers N ≥ D and any constants δ, α > 0 there
is an M × N measurement matrix, where M = O(D3+α+2/α(log N)2+2/α), that
is (Ω(e), Ω(e/D), δD, 0)-correcting for D-sparse vectors of length N , where e :=
(log N)1+1/αD2+1/α. Moreover, the matrix allows for a reconstruction algorithm
with running time poly(M). ��
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random generators. Ta-Shma and Zuckerman [17] show that for any such construc-
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