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Preface

The Symposium on Fundamentals of Computation Theory was established in
1977 for researchers interested in all aspects of theoretical computer science,
in particular in algorithms, complexity, and formal and logical methods. It is a
biennial conference, which has previously been held in Poznań (1977), Wendisch-
Rietz (1979), Szeged (1981), Borgholm (1983), Cottbus (1985), Kazan (1987),
Szeged (1989), Gosen-Berlin (1991), Szeged (1993), Dresden (1995), Kraków
(1997), Iaşi (1999), Riga (2001), Malmö (2003), Lübeck (2005) and Budapest
(2007).

The 17th International Symposium on Fundamentals of Computation Theory
(FCT 2009) was held in Wroclaw, September 2–4, 2009, and was organized jointly
by the Institute of Mathematics and Computer Science of Wroc�law University of
Technology and the Institute of Computer Science, University of Wroc�law. The
conference was held at Wroc�law University of Technology.

The suggested topics of FCT 2009 included, but were not limited to:

Algorithms: algorithm design and optimization; combinatorics and analysis of
algorithms; computational complexity; approximation, randomized, and
heuristic methods; parallel and distributed computing; circuits and Boolean
functions; online algorithms; machine learning and artificial intelligence;
computational geometry; computational algebra

Formal methods: automata and formal languages; computability and nonstan-
dard computing models; algebraic and categorical methods; logics and model
checking; principles of programming languages; program analysis and trans-
formation; specification, refinement and verification; type systems; concur-
rency theory; database theory, semi-structured data and finite model theory;
models of reactive, hybrid and stochastic systems

Emerging fields: security and cryptography; ad hoc and mobile systems; quan-
tum computation; computational biology; high-performance computing; al-
gorithmic game theory

The Program Committee invited lectures from Martin Dietzfelbinger (Ilme-
nau), Thomas A. Henzinger (Lausanne), and Moti Yung (New York) and, from
the 67 submissions, selected 29 papers for presentation at the conference and
inclusion in the proceedings. This volume contains the texts or the abstracts of
the invited lectures and the texts of the accepted papers.

We would like to thank the members of the Program Committee for the eval-
uation of the submissions and their subreferees for their excellent cooperation
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in this work. We are grateful to the contributors to the conference, in par-
ticular to the invited speakers for their willingness to present interesting new
developments.

September 2009 Miros�law Kuty�lowski
Witold Charatonik

Maciej Gȩbala



In Memoriam Prof. Dr. math. Ingo Wegener
(1950–2008)

Ingo Wegener passed away on November 26, 2008, at the age of 57. This is a
great loss for theoretical computer science in Europe, far beyond the field of
complexity theory and efficient algorithms, which was his scientific home.

Ingo Wegener studied mathematics in Bielefeld until 1976, when he received
his “Diplom.” He earned his PhD in 1978, and obtained his “Habilitation” in
1981. For a while he was an associate professor in Frankfurt, until he was ap-
pointed professor at the University of Dortmund in 1987, for the field of “Efficient
Algorithms and Complexity.” This position he held until his death.

In the course of his career of more than 30 years, Ingo Wegener made sub-
stantial contributions to several, rather different, research fields. He started with
contributions to search problems, documented in his first book. The second stage
can be characterized by “The Complexity of Boolean Functions” (the title of his
important monograph of 1987). Ingo Wegener made important contributions
to the area of binary decision diagrams, a central method for representing and
manipulating Boolean functions, again leading up to a monograph of the sub-
ject that made the state of the art in the field easily accessible. Starting in the
late 1990s, he initiated the study of metaheuristics like evolutionary algorithms,
genetic algorithms, and simulated annealing with the methods of complexity the-
ory and algorithm analysis, leading to a deeper understanding of the behavior
of such strategies.

Apart from his own scientific contributions Ingo Wegener also was a gifted
and devoted teacher, and an excellent science organizer.

The commemorative talk will pay tribute to Ingo Wegener as a great re-
searcher, a devoted academic teacher, and a dear colleague, who is missed by
many.

Martin Dietzfelbinger
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How to Guard the Guards Themselves

Moti Yung

Google Inc. and Department of Computer Science, Columbia University
moti@cs.columbia.edu

Abstract. The first 20 years of modern cryptography dealt with var-
ious cryptosystems, their modeling and their security, while assuming
the availability of secure keys. Theses keys were the guards of security
and based on their unavailability to the adversary, security was proved.
In the last decade or so, however, as cryptography has been employed
in practice, the realization that keys (the guards of security) needs to
be guarded as well was realized and cryptosystems and algorithms have
to be designed to take this into consideration. I will review some major
directions in this research area.

Keywords: Public Key cryptography, Cryptographic Keys, Physical Se-
curity, Key Evolving Cryptosystems, Threshold cryptosystems, Proac-
tive Cryptosystems, Attacks, Leakage, Countermeasures.

Protecting Keys: Why and How?
As cryptography has been embedded in software or in devices, it has been real-
ized that the keys of cryptosystems cannot always be assumed to be secure. In
fact, the state of security of systems and software is much that attacks on the
computing environments is more likely than cryptanalysis of the mathematics
behind the cryptosystem.

In addition, models such as kleptography and side channel attacks have re-
alized that there are new ways to view attacks on cryptosystems: either active
attack by the manufacturer, or attacks by observing physical signals coming from
key dependent computations.

These issues has given rise to a revision in cryptosystem design. Designs that
attempt to provide the functionality of the system but, in addition, take care of
better protecting the keys have been considered.

There are various ways to protect keys. Threshold system distribute the cryp-
tosystem (i.e., the key) among various processor and requires all or a quorum of
the processors to be available at the time of performing the cryptographic oper-
ation. The adversary in this case needs to break into a large number (threshold)
of processors in order to break the system and learn the keys; learning less than
the threshold does not break the system. Proactive systems, in turn, add the
time dimension to the “space dimension” protection of threshold cryptosystem.
An attacker has to break into a large number of processors within a given time
interval, after which the system refreshes the distributed key representation and
the old key fragments are not anymore of help in recovering the key (unless

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M. Yung

enough of them (i.e., above the threshold number) have been captured already
within a single time interval between refreshing).

The above systems requires redundancy, i.e. additional processors. What if we
want a single device cryptosystem and we may assume that the adversary gets to
learn the key on the device. The first answer is that in this case there is nothing
to do. But, it is not necessarily true. System can have a public key that lasts a
long time, but its secret key can evolve over time. An adversary getting a key at
one period of time cannot break the system in some other periods. For example in
a “forward secure” signature scheme when the adversary gets the secret signing
key at one period, it cannot compute prior time keys (since the key is evolving
by applying a one-way transformation at the end of each period). Thus, the
adversary may have keys for the current period and for the future ones (and
can forge signatures coming from these periods), but cannot forge signatures of
past periods. Additional notions of key evolving schemes exists (“key insulated”
systems and “intrusion-resilient” systems) that protect the device even better
(i.e., past and future periods are protected) by allowing it to interact (only when
the key evolves) with some other (base) device. This base device is only useful
for updates and cannot have any other function.

Another direction in protecting systems against attacks on keys, is to assume
that part of the key is learn-able by the adversary and still to protect the system.
Such systems can be robust against leakage of some properties of the keys (like
as in side-channel physical leaking). The ideas of exposure-resilient (i.e., partial
memory leakage) and leakage-resilient (i.e., aganist computation leakage) and
formal models to capture leakage in computing architectures, are some of the
ideas that have been investigated and are currently considered against memory
and computation leakages of computing systems.

Conclusion:
The above mechanisms and techniques developed in designing them, represent
various basic an d promising directions, and, in my assessment, demonstrate one
important issue which is described by the following situation: There is a system
problem and keys or part of them are leaked or may be revealed; while there are
many methods in systems security to deal with it, one has also to look at the
design itself (i.e. the cryptographic method) and attempt to revise it, taking into
account the new exposure (new adversary).

More generally: Security is about an adversary which is outside the system
and thus is a fundamental problem (it is not going to be solved by adding
resources, for example– the adversary is still there outside the control of the
system). Thus, it is imperative that any adversary argument against a designed
cryptosystem has to also be considered (as a feedback loop) by the designer of the
mechanism itself, and this feedback constitutes an “adversary-designer game.”
This game is fundamental in security research (both defining new adversaries
and new solutions), and should always be kept in mind. Thus, an adversary that
attacks the core (guards) of a system gives rise to the old question: who will
guard the guards themselves? Who, what and how to do it, is indeed very much
a relevant question in this context of basic security research.



Alternating Weighted Automata�

Krishnendu Chatterjee1, Laurent Doyen2,��, and Thomas A. Henzinger3

1 Institute of Science and Technology, Austria
2 Université Libre de Bruxelles (ULB), Belgium

3 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. Weighted automata are finite automata with numerical
weights on transitions. Nondeterministic weighted automata define quan-
titative languages L that assign to each word w a real number L(w) com-
puted as the maximal value of all runs over w, and the value of a run r
is a function of the sequence of weights that appear along r. There are
several natural functions to consider such as Sup, LimSup, LimInf, limit
average, and discounted sum of transition weights.

We introduce alternating weighted automata in which the transitions
of the runs are chosen by two players in a turn-based fashion. Each word
is assigned the maximal value of a run that the first player can enforce
regardless of the choices made by the second player. We survey the re-
sults about closure properties, expressiveness, and decision problems for
nondeterministic weighted automata, and we extend these results to al-
ternating weighted automata.

For quantitative languages L1 and L2, we consider the pointwise op-
erations max(L1, L2), min(L1, L2), 1 − L1, and the sum L1 + L2. We
establish the closure properties of all classes of alternating weighted au-
tomata with respect to these four operations.

We next compare the expressive power of the various classes of alter-
nating and nondeterministic weighted automata over infinite words. In
particular, for limit average and discounted sum, we show that alterna-
tion brings more expressive power than nondeterminism.

Finally, we present decidability results and open questions for the quan-
titative extension of the classical decision problems in automata theory:
emptiness, universality, language inclusion, and language equivalence.

1 Introduction

A classical language is a set of infinite words over a finite alphabet Σ, or equiv-
alently a function L : Σω → {0, 1}. Either a word w belongs to the language

� This research was supported in part by the Swiss National Science Foundation
under the Indo-Swiss Joint Research Programme, by the European Network of Ex-
cellence on Embedded Systems Design (ArtistDesign), by the European Combest,
Quasimodo, and Gasics projects, by the PAI program Moves funded by the Belgian
Federal Government, and by the CFV (Federated Center in Verification) funded by
the F.R.S.-FNRS.

�� Postdoctoral researcher of the F.R.S.-FNRS.

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 3–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and then L(w) = 1, or w does not belong to the language and then L(w) = 0.
Languages are natural models of computation for reactive programs: each exe-
cution of a program is an infinite sequence of events (or a word), and the set of
all executions (or the language) defines the possible behaviors of the program.
Finite automata can be used to define languages, and questions about the cor-
rectness of programs can be reduced to decision problems on automata, such as
emptiness and language inclusion [14,7].

A quantitative language is a function L : Σω → R, generalizing the classical
languages (called boolean languages in this paper). A natural interpretation of
the value L(w) of a word w is the cost incurred by a program to produce the
execution w, for example in terms of energy or memory consumption. Values can
also be used to quantify the reliability or the quality of executions, rather than
simply classifying them as good or bad. Hence, quantitative languages provide
a more accurate model of program computation.

To define quantitative languages, we use weighted automata, i.e., finite au-
tomata with numerical weights on transitions. To compute the value of a word in
a weighted automaton, we need to fix a mode of branching and a value function.
In this paper, we consider four modes of branching (alternating, universal, non-
deterministic, and deterministic) and five value functions (Sup, LimSup, LimInf,
limit average, and discounted sum). In an alternating weighted automaton, the
value of an input word is determined by two players playing in rounds, starting
in the initial state of the automaton. If the current state is q and the next input
letter is σ, the first player (called the maximizer) chooses one transition (q, σ, s)
where s is a set of states in which the second player (called the minimizer) then
chooses a state q′. The next round starts in q′ and the game proceeds for infinitely
many rounds, constructing an infinite weighted path whose value is computed
as the value function of its weights. The value of the input word is the maximal
value of such a path that the maximizer can enforce no matter what choices
the minimizer makes. When the choices available to the maximizer are trivial
(i.e., in every state q and for every input letter σ, there is exactly one transition
(q, σ, s)), the weighted automaton is universal, and when the choices available
to the minimizer are trivial (i.e., for every transition (q, σ, s), the set s is a sin-
gleton), the weighted automaton is nondeterministic. A deterministic weighted
automaton is both universal and nondeterministic. Note that for weighted au-
tomata with weights in {0, 1}, these definitions coincide with the classical finite
automata theory [2,10], and in particular the LimSup- and LimInf-automata can
then be viewed as Büchi and coBüchi automata respectively.

We survey the results about closure properties, expressiveness, and decision
problems for nondeterministic weighted automata [3,4], and we extend these
results to alternating weighted automata. For closure properties, we consider
a natural generalization of the classical operations of union, intersection, and
complement of boolean languages. We define the maximum, minimum, and
sum of two quantitative languages L1 and L2 as the quantitative language
that assigns max(L1(w), L2(w)), min(L1(w), L2(w)), and L1(w)+L2(w) to each
word w. The numerical complement Lc of a quantitative language L is defined by
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Lc(w) = 1−L(w) for all words w.1 We give the closure properties of all classes of
weighted automata with respect to these four quantitative operations, extend-
ing the results of [4]. For expressiveness, we compare the sets of quantitative
languages definable by the various classes of weighted automata, and we give a
complete picture of their relationships. For decision problems, we consider a
quantitative generalization of the classical questions of emptiness, universality,
language inclusion, and language equivalence. The quantitative emptiness and
universality problems ask, given a weighted automaton A (defining quantita-
tive language LA) and a rational number ν, if LA(w) ≥ ν for some (resp., all)
words w. The quantitative language-inclusion and language-equivalence prob-
lems ask, given two weighted automata A and B, if LA(w) ≤ LB(w) (resp.,
LA(w) = LB(w)) for all words w. For nondeterministic weighted automata,
the quantitative emptiness problem is decidable in polynomial time for ev-
ery value function, and the quantitative universality, language-inclusion, and
language-equivalence problems are PSPACE-complete for all modes of branching
of Sup-, LimSup-, and LimInf-automata [3]. We extend these results to alternat-
ing weighted automata. The main open question remains the decidability of the
universality problem for limit-average and discounted-sum automata.

2 Definitions

While weighted automata have been studied extensively over finite words [12,9],
we focus on weighted automata over infinite words.

Value functions. We consider the following value functions Val : Qω → R to
define quantitative languages. Given an infinite sequence v = v0v1 . . . of rational
numbers, define

– Sup(v) = sup{vn | n ≥ 0};
– LimSup(v) = lim sup

n→∞
vn = lim

n→∞
sup{vi | i ≥ n};

– LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

– LimAvg(v) = lim inf
n→∞

1
n

·
n−1∑
i=0

vi;

– for 0 < λ < 1, Discλ(v) =
∞∑

i=0

λi · vi.

Alternating weighted automata. An alternating weighted automaton over a
finite alphabet Σ is a tuple A = 〈Q, qI , Σ, δ, γ〉, where

– Q is a finite set of states, and qI ∈ Q is the initial state;
– δ ⊆ Q×Σ × (2Q \ {∅}) is a finite set of labeled transitions;
– γ : Q×Σ ×Q → Q is a weight function.

1 One can define Lc(w) = k − L(w) for any constant k without changing the results
of this paper.
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We require that A is total, that is for all q ∈ Q and σ ∈ Σ, there exists
(q, σ, s) ∈ δ for at least one nonempty set s ⊆ Q. An automaton A is universal
if for all q ∈ Q and σ ∈ Σ, there exists (q, σ, s) ∈ δ for exactly one s ⊆ Q;
it is nondeterministic if for all (q, σ, s) ∈ δ, the set s is a singleton; and it is
deterministic if it is both universal and nondeterministic.

The set of transitions (q, σ, si) ∈ δ from a state q over σ can be described
by a boolean formula over Q, namely ϕ(q, σ) =

∨
(q,σ,si)∈δ

∧
qj∈si

qj . For exam-
ple, the formula ϕ(q, σ) = (q1 ∧ q2) ∨ (q3 ∧ q4) corresponds to the transitions
(q, σ, {q1, q2}) and (q, σ, {q3, q4}). In a game interpretation of alternation, two
players (the maximizer and the minimizer) are constructing a path in the au-
tomaton A while reading the input word. If the current state is q and the next
input symbol is σ, then the maximizer (also called the nondeterministic player)
chooses a set of states si such that (q, σ, si) ∈ δ (i.e., such that the formula ϕ(q, σ)
is satisfied when true is assigned to every state q ∈ si), and the minimizer (also
called the universal player) then chooses a state q′ ∈ si. Thus in the formula
ϕ(q, σ), disjunctions correspond to nondeterministic choices, and conjunctions
correspond to universal choices. The outcome of the game is an infinite weighted
path in the automaton, and the value of the input word is the maximal value of
such a path that the maximizer can enforce regardless of the choices of the min-
imizer. We obtain the dual of an alternating weighted automaton by exchanging
disjunctions and conjunctions in the boolean formulas of the transition relations.

Formally, a run of A over an infinite word w = σ0σ1 . . . is a weighted Q-
labelled tree (T, λ, γ′) where T ⊆ N∗ is a nonempty prefix-closed set of nodes
(i.e., x · c ∈ T implies x ∈ T for all x ∈ N∗ and c ∈ N), λ : T → Q and
γ′ : {(x, x · c) | x · c ∈ T } → Q are labelings of the tree such that: (i) λ(ε) = qI
(where ε is the empty sequence) and (ii) if x ∈ T and λ(x) = q, then there exists
a set s = {q1, . . . , qk} ⊆ Q such that (q, σ|x|, s) ∈ δ and for all 1 ≤ c ≤ k, we
have x · c ∈ T and λ(x · c) = qc. Moreover, γ′(x, x · c) = γ(q, σ|x|, qc).

A path in a run ρ = (T, λ, γ′) is a set π ⊆ T such that ε ∈ π and for all x ∈ π,
there exists a unique c ∈ N such that x · c ∈ π. We denote by RunA(w) the set
of all runs of A over w, and by Path(ρ) the set of all paths in a run ρ. We define
γρ(π) = v0v1 . . . such that for all i ≥ 0, vi = γ′(x, x′) where x, x′ are the unique
nodes of π with |x′| = |x| + 1 = i+ 1.

Given a value function Val : Qω → R, we say that the alternating Val-
automaton A defines the quantitative language LA : Σω → R such that for
all w ∈ Σω:

LA(w) = sup
ρ∈RunA(w)

inf
π∈Path(ρ)

Val(γρ(π)).

The alternating {0, 1}-automata are the special case of alternating weighted
automata where all transition weights are either 0 or 1. In the case of Sup,
LimSup, and LimInf, the {0, 1}-automata define boolean languages L : Σω →
{0, 1} that are traditionally viewed as sets of words {w ∈ Σω | L(w) = 1}. Note
that the LimSup- and LimInf- {0, 1}-automata are the classical Büchi and coBüchi
automata respectively. A word is in the boolean language of an alternating Büchi
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(resp. coBüchi) automaton if there exists a run over that word all of whose paths
contain infinitely many 1-weighted edges (resp. finitely many 0-weighted edges).

Composition. Given two quantitative languages L and L′ over Σ, and a ratio-
nal number c, we denote by max(L,L′) (resp. min(L,L′), L+L′, c+L, and cL) the
quantitative language that assigns max{L(w), L′(w)} (resp. min{L(w), L′(w)},
L(w)+L′(w), c+L(w), and c ·L(w)) to each word w ∈ Σω. We say that c+L is
the shift by c of L and that cL is the scale by c of L. The language 1−L is called
the complement of L. The max, min and complement operators for quantitative
languages are natural generalizations of respectively the union, intersection and
complement operators for boolean languages.

Reducibility. A class C of alternating weighted automata is reducible to a class
C′ of alternating weighted automata if for every A ∈ C there exists A′ ∈ C′ such
that LA = LA′ , i.e. LA(w) = LA′(w) for all words w ∈ Σω. In particular, a class
of weighted automata can be determinized if it is reducible to its deterministic
counterpart. Two classes of weighted automata have the same expressiveness if
they are reducible to each other.

Decision problems. We present quantitative generalizations of the classical
decision problems in automata theory. Given two quantitative languages L1, L2,
we write L1 � L2 if L1(w) ≤ L2(w) for all words w ∈ Σω.

Given a weighted automaton A and a rational number ν ∈ Q, the quanti-
tative emptiness problem asks whether there exists a word w ∈ Σω such that
LA(w) ≥ ν, and the quantitative universality problem asks whether LA(w) ≥ ν
for all words w ∈ Σω. Given two weighted automata A and B, the quantita-
tive language-inclusion problem asks whether LA � LB, and the quantitative
language-equivalence problem asks whether LA = LB. All results presented in
this paper also hold for the decision problems defined above with inequalities
replaced by strict inequalities.

Notation. We use acronyms to denote classes of weighted automata. The first
letter can be A(lternating), N(ondeterministic), U(niversal), or D(eterministic).
For X ∈ {A,N,U} and Y ∈ {D,N,U} (with X �= Y), we use the notation X

Y to
denote the classes of automata for which the X and Y versions have the same ex-
pressiveness. Note that if the expressiveness of alternating and deterministic au-
tomata coincide for some class (i.e., X=A and Y=D), then the expressiveness of
the four modes of branching is the same. The second part of the acronyms is one
of the following: BW(Büchi), CW(coBüchi), Sup, Lsup(LimSup), Linf(LimInf),
Lavg(LimAvg), or Disc.

3 Closure Properties

We present the closure properties of alternating weighted automata with respect
to the pointwise operations max, min, complement and sum.
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We say that a class C of weighted automata is closed under a binary operator
op(·, ·) (resp. a unary operator op′(·)) if for all A1, A2 ∈ C, there exists A12 ∈ C
such that LA12 = op(LA1 , LA2) (resp. LA12 = op′(LA1)). All closure properties
that presented in this paper are constructive: when C is closed under an operator,
we can always construct the automaton A12 ∈ C given A1, A2 ∈ C. We say
that the cost of the closure property of C under a binary operator op is at
most O(f(n1,m1, n2,m2)) if for all automata A1, A2 ∈ C with ni states and
mi transitions (for i = 1, 2 respectively), we construct an automaton A12 ∈ C
such that LA12 = op(LA1 , LA2) with at most O(f(n1,m1, n2,m2)) states. We
define analogously the cost of closure properties under unary operators. For all
reductions presented, the size of the largest weight in A12 is linear in the size p of
the largest weight in A1, A2 (however, the time needed to compute the weights
is quadratic in p, as we need addition, multiplication, or comparison, which are
quadratic operations over the rationals).

Note that every class of weighted automata is closed under shift by c and
under scale by |c| for all c ∈ Q. For discounted-sum automata, we can define
the shift by c by making a copy of the initial states and adding c to the weights
of all its outgoing transitions. For the other automata, it suffices to add c to
all weights of an automaton to obtain the automaton for the shift by c of its
language. Analogously, scaling by factor |c| the weights of an automaton gives
the scale by |c| of its language. As a consequence, all closure properties also hold
if the complement of a quantitative language L was defined as k − L for any
constant k.

Theorem 1. The closure properties of alternating weighted automata are shown
in Table 1.

For example, according to Theorem 1, every class of alternating and nondeter-
ministic weighted automata is closed under max, and every class of alternating
and universal weighted automata is closed under min, all with cost O(n1 + n2).
This follows from the definition of alternating automata since the maximum
and minimum of two quantitative languages can be obtained by an initial (ei-
ther nondeterministic or universal) choice between the corresponding alternating
automata.

The closure properties of nondeterministic weighted automata are established
in [4]. The results for universal weighted automata are essentially obtained by
duality since (i) if we interpret a universal automaton as a nondeterministic one,
and if we replace each weight v by 1 − v, then we obtain the complement of its
quantitative language, and (ii) the maximum of two quantitative languages is
the complement of the minimum of their complement.

For complementation, the positive closure results for LimSup- and LimInf-
automata are obtained as a direct extension of the complementation results for
NBW and UCW [10], and for Disc-automata by dualizing the automaton and
replacing every weight v by 1−λ−v (where λ is the discount factor). The negative
results for Sup-, LimSup-, and LimInf-automata follow from a similar result in
the case of {0, 1}-automata. We give the essential argument for showing that
alternating LimAvg-automata are not closed under complement.
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Table 1. Closure properties. The cost is given for the positive results, and the negative
results are marked by ×. For example, given two alternating Sup-automata with n1 and
n2 states, respectively, there is an alternating Sup-automaton with O(n1 + n2) states
that defines the max of their quantitative language; and there exist two universal
LimAvg-automata such that the max of the their quantitative language cannot be
defined by a universal LimAvg-automaton.

max min complement sum

al
te

rn
at

in
g ASup O(n1 + n2) O(n1 + n2) × O(n1 · m1 · n2 · m2)

ALsup O(n1 + n2) O(n1 + n2) O(m · n2) O(n1 · m1 · n2 · m2)
ALinf O(n1 + n2) O(n1 + n2) O(m · n2) O(n1 · m1 · n2 · m2)
ALavg O(n1 + n2) O(n1 + n2) × ×
ADisc O(n1 + n2) O(n1 + n2) O(n) O(n1 · n2)

u
n
iv

er
sa

l

USup O(n1 · m1 · n2 · m2) O(n1 + n2) × O(n1 · m1 · n2 · m2)
ULsup O(n1 · n2) O(n1 + n2) × O(n1 · n2 · 2m1·m2)
ULinf O(n1 · n2 · (m1 + m2)) O(n1 + n2) O(m · 2n log n) O(n1 · m1 · n2 · m2)
ULavg × O(n1 + n2) × ×
UDisc × O(n1 + n2) × O(n1 · n2)

n
on

d
et

er
m

. NSup O(n1 + n2) O(n1 · m1 · n2 · m2) × O(n1 · m1 · n2 · m2)
NLsup O(n1 + n2) O(n1 · n2 · (m1 + m2)) O(m · 2n log n) O(n1 · m1 · n2 · m2)
NLinf O(n1 + n2) O(n1 · n2) × O(n1 · n2 · 2m1·m2)
NLavg O(n1 + n2) × × ×
NDisc O(n1 + n2) × × O(n1 · n2)

d
et

er
m

in
is

ti
c DSup O(n1 · n2) O(n1 · m1 · n2 · m2) × O(n1 · m1 · n2 · m2)

DLsup O(n1 · n2) O(n1 · n2) × O(n1 · n2 · 2m1·m2)
DLinf O((m1 + m2) · 2n1+n2) O((m1 + m2) · 2n1+n2) × O(n1 · n2 · 2m1·m2)
DLavg × × × ×
DDisc × × O(n) O(n1 · n2)

Consider the alphabet Σ = {a, b} and the language La that assigns to every
word w ∈ Σω the limit-average number of the a’s in w. Formally, for an infinite
word w, let wj be its prefix of length j and let wa

j and wb
j denote the number of

a’s and b’s in wj , respectively. Then for w ∈ Σω we have

La(w) = lim inf
n→∞

1
n

· wa
n.

Let us denote by L̂b the language (1−La) and assume towards contradiction
that there exists an ALavg A with set Q of states for the language L̂b. Let
β be the maximum absolute value of the weights in A. Since L̂b(aω) = 0 and
L̂b(bω) = 1, we must have LA(aω) = 0 and LA(bω) = 1. By memoryless determi-
nacy of perfect-information limit-average games [5], it follows that the following
assertions hold: (a) it is possible to fix choices of the minimizer in the automaton
on the letter a such that in the resulting non-deterministic automaton the sum
of weights of all a-cycles C is at most 0; and (b) it is possible to fix choices of
the minimizer in the automaton on the letter b such that in the resulting non-
deterministic automaton the sum of weights of all b-cycles C is at most |C|. We
fix the choices for the minimizer as above and consider a word w that consists of
sequences of a’s and b’s of increasing length such that every sequence of a and b
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is of length at least 10 · |Q| · β and the long-run average number of b’s oscillates
between 0 and 1, i.e.

lim inf
n→∞

1
n

· wb
n = 0; lim sup

n→∞

1
n

· wb
n = 1.

Any run on a sequence of a’s consists of a prefix of length at most Q (with sum
of weights at most |Q| ·β), and then nested a-cycles where the sum of weights is
at most 0. Similarly, any run on a sequence of b’s consists of a prefix of length
at most Q (with sum of weights at most |Q| ·β), and then nested b-cycles where
the sum of weights is at most the length of the nested cycles. It is then easy to
show that LA(w) ≤ 1

10 while L̂b(w) = 1. Hence, we have a contradiction and the
result follows.

Finally, every class of alternating weighted automata is closed under sum,
except for LimAvg. Below, we give the proof that alternating LimAvg automata
are not closed under sum. Consider the languages La and Lb over alphabet
Σ = {a, b} that assigns to each word w the long-run average number of a’s
and b’s in w respectively. Let L+ = La + Lb. Assume that L+ is defined by
an ALavg A with set of states Q (we assume w.l.o.g that every state in Q is
reachable). From every state q ∈ Q, the value of the words aω and bω in A is 1
since L+(wq · aω) = L+(wq · bω) = 1 for all finite words wq ∈ Σ∗. Therefore, by
memoryless determinacy of perfect-information limit-average games [5], we can
fix a memoryless strategy for the maximizer (in the restriction of A to transitions
over a’s) such that all paths in the resulting graph have value at least 1. Hence,
every cycle in this graph has average weight at least 1. The same result holds for
the restriction of A to transitions over b’s. Now, we can easily construct an input
word w = an1bm1an2bm2 . . . such that La(w) = Lb(w) = 0, but the maximizer
has a strategy (essentially to use the memoryless strategies for aω and bω) such
that for all strategies of the minimizer, the outcome path has value arbitrarily
close to 1, yielding a contradiction as then LA(w) = 1 while L+(w) = 0.

4 Expressive Power

The expressive power of nondeterministic weighted automata has been studied
in detail in [3]. We present these results and extend them to alternating and uni-
versal weighted automata. Note that for each value function, the deterministic
automata are reducible to the other modes of branching, and all modes of branch-
ing are reducible to alternating automata (as a straightforward consequence of
the definition).

Theorem 2. The relative expressive power of alternating weighted automata is
as follows: a class C of alternating weighted automata can be reduced to a class C′

if and only if there exists a path from C to C′ in the directed graph of Figure 1.

Note that Theorem 2 also holds if transition weights are irrational numbers. For
Sup-automata, the alternating and deterministic automata have the same expres-
sive power, thus we denote this class by A

DSup. For LimInf- and LimSup-automata,
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ADisc ALavg

NDisc UDisc NLavg ULavg
A

NLsup
A

ULinf

DDisc DLavg

N

DLinf
U

DLsup
A

NBW
A

UCW

A

DSup

U

DBW
N

DCW

quantitative

boolean

Fig. 1. Reducibility relation. A class C of automata can be reduced to C′ iff C →∗ C′.

the relative expressive power is the same as for {0, 1}-automata, and the proofs
are based on generalization of the constructions for the boolean case [10].

For LimAvg- and Disc-automata, the main result is that nondeterministic au-
tomata cannot be determinized [3]. From that and the fact that ALavg and
ADisc are closed under max and min while NLavg and NDisc are not closed
under min, and ULavg and UDisc are not closed under max, it follows that the
alternating automata are reducible neither to nondeterministic automata, nor
to universal automata.

When comparing different classes of weighted automata, the most surprising
result is probably the fact that the class of DBW (which defines a strict subclass
of the ω-regular languages) are not reducible to NLavg, and similarly DCW are
not reducible to ULavg.

Finally, note that Disc-automata are incomparable with the other classes of
weighted automata. This follows from the property that the value of a path
in a Disc-automaton is essentially determined by a finite prefix, in the sense
that the values of two paths can be arbitrarily close if they have sufficiently
long common prefixes. In other words, the quantitative language defined by a
discounted-sum automaton is a continuous function in the Cantor topology. In
contrast, for the other classes of weighted automata, the value of an infinite path
depends essentially on its tail and is independent of finite prefixes.

5 Decision Problems

We study the complexity of the quantitative emptiness, universality, language-
inclusion, and language-equivalence problems for alternating weighted automata.

Theorem 3. Table 2 summarizes the known complexity results for the quanti-
tative decision problems of alternating weighted automata.
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Table 2. Complexity results for the quantitative decision problems. The decidability
of the problems marked by ? is, to the best of our knowledge, open.

emptiness universality inclusion equivalence

al
te

rn
at

in
g ASup PSPACE-complete PSPACE-complete PSPACE-complete PSPACE-complete

ALsup PSPACE-complete PSPACE-complete PSPACE-complete PSPACE-complete
ALinf PSPACE-complete PSPACE-complete PSPACE-complete PSPACE-complete
ALavg ? ? ? ?
ADisc co-r.e. co-r.e. co-r.e. co-r.e.

u
n
iv

er
sa

l

USup PSPACE-complete PTIME PSPACE-complete PSPACE-complete
ULsup PSPACE-complete PTIME PSPACE-complete PSPACE-complete
ULinf PSPACE-complete PTIME PSPACE-complete PSPACE-complete
ULavg ? PTIME ? ?
UDisc co-r.e. PTIME co-r.e. co-r.e.

n
on

d
et

er
m

. NSup PTIME PSPACE-complete PSPACE-complete PSPACE-complete
NLsup PTIME PSPACE-complete PSPACE-complete PSPACE-complete
NLinf PTIME PSPACE-complete PSPACE-complete PSPACE-complete
NLavg PTIME ? ? ?
NDisc PTIME co-r.e. co-r.e. co-r.e.

d
et

er
m

in
is

ti
c DSup PTIME PTIME PTIME PTIME

DLsup PTIME PTIME PTIME PTIME
DLinf PTIME PTIME PTIME PTIME
DLavg PTIME PTIME PTIME PTIME
DDisc PTIME PTIME PTIME PTIME

The quantitative emptiness problem for nondeterministic weighted automata
can be solved by a reduction to the problem of finding the maximal value of an
infinite path in a graph. This is decidable because pure memoryless strategies
for resolving nondeterminism exist for all quantitative objectives that we con-
sider [6,8,1]. By duality, we get the same results for the quantitative universality
problem of universal weighted automata.

The universality problem is known to be PSPACE-complete for finite au-
tomata and for NBW [11,13]. This result extends easily to nondeterministic
Sup- and LimSup-automata and to the related problems of quantitative language
inclusion and equivalence. The results about expressive power and the duality
between LimSup and LimInf, and between nondeterministic and universal modes
of branching allow to derive the PSPACE-completeness results of Table 2.

The main open question about decision problems remains the decidability
of quantitative universality for LimAvg- and Disc-automata. For Disc-automata,
a partial answer is known since the quantitative universality problem is co-
recursively enumerable [3].
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Abstract. In this paper we consider methods for dynamically storing
a set of different objects (“modules”) in a physical array. Each module
requires one free contiguous subinterval in order to be placed. Items
are inserted or removed, resulting in a fragmented layout that makes
it harder to insert further modules. It is possible to relocate modules,
one at a time, to another free subinterval that is contiguous and does
not overlap with the current location of the module. These constraints
clearly distinguish our problem from classical memory allocation. We
present a number of algorithmic results, including a bound of Θ(n2) on
physical sorting if there is a sufficiently large free space and sum up
NP-hardness results for arbitrary initial layouts. For online scenarios in
which modules arrive one at a time, we present a method that requires
O(1) moves per insertion or deletion and amortized cost O(mi lg m̂) per
insertion or deletion, where mi is the module’s size, m̂ is the size of the
largest module and costs for moves are linear in the size of a module.

1 Introduction

Maintaining a set of objects is one of the basic problems in computer science. As
even a first-year student knows, allocating memory and arranging objects (e.g.,
sorting or garbage collection) should not be done by moving the objects, but
merely by rearranging pointers.

The situation changes when the objects to be sorted or placed cannot be
rearranged in a virtual manner, but require actual physical moves; this is the
case in a densely packed warehouse, truck or other depots, where items have to
be added or removed. Similarly, allocating space in a fragmented array is much
harder when one contiguous interval is required for each object: Even when there
is sufficient overall free space, placing a single item may require rearranging
the other items in order to create sufficient connected free space. This scenario
occurs for the application that initiated our research: Maintaining modules on
a Field Programmable Gate Array (FPGA); reconfigurable chips that consist of
a two-dimensional array of processing units. Each unit can perform one basic
operation depending on its configuration, which can be changed during runtime.
A module is a configuration for a set of processing units wired together to fulfill
a certain task. As a lot of FPGAs allow only whole columns to be reconfigured,

� Supported by DFG grant FE 407/8-3, project “ReCoNodes”.

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 14–25, 2009.
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MkMjMi Ml

Fig. 1. A module corresponds to a set of columns on an FPGA. Each module occupies
a contiguous block of array cells. Module Mi is shifted and module Mj is flipped. The
move of module Mk is forbidden, because the current and the target position overlap.
If these kind of moves would be allowed connecting the total free space could always
be done by shifting all modules to one side.

we allow the modules to occupy only whole columns on the FPGA (and deal
with a one-dimensional problem). Moreover, because the layout of the modules
(i.e., configurations and interconnections of the processing units) is fixed, we
have to allocate connected free space for a module on the FPGA. In operation,
different modules are loaded onto the FPGA, executed for some time and are
removed when their task is fulfilled, causing fragmentation on the FPGA. When
fragmentation becomes too high (i.e., we cannot place modules, although there
is sufficent free space, but no sufficent amount of connected free space), the
execution of new task has to be delayed until other tasks are finished and the
corresponding modules are removed from the FPGA. To reduce the delay, we
may reduce fragmentation by moving modules. Moving a module means to stop
its operation, copy the module to an unoccupied space, restart the module in the
new place, and declare the formerly occupied space of the module as free space;
see Figure 1. Thus, it is important that the current and the target position of
the module are not overlapping (i.e., they do not share a column). This setting
gives rise to two approaches: We may either use simple placing strategies such
as first fit and compact the whole FPGA when necessary (as discussed in [1]), or
use more elaborated strategies that organize the free space and avoid the need
for complete defragmentations.

Related Work. There is a large body of work on storage allocation; e.g., [2]
for an overview and [3, 4] for competitive analysis of some algorithms. Many
storage allocation algorithms also have analogues in bin packing [5]. The salient
feature of most traditional memory-allocation and bin-packing heuristics is that
once an item is allocated, it cannot be moved, unlike the model is this paper.
There is also a tremendous amount of work on classical sorting (see, e.g., [6]).

Physical allocation, where elements can be placed and then moved, has re-
ceived less attention. Itai, Konheim, and Rodeh consider maintaining n unit-size
objects sorted in an O(n) sized array by appropriately maintaining a linear num-
ber of gaps interspersed between the elements at an amortized cost of O(lg2 n)
per insert, and the problem is deamortized in [7]. The packed memory array
Bender, Demaine, and Farach-Colton [8] and Bender and Hu [9] investigate a
similar problem in the context of external-memory and cache-oblivious algo-
rithms. Bender, Farach-Colton, and Mosteiro [10] show that probabilistically a
modified insertion sort runs in O(n lg n) by leaving appropriate gaps between
elements. In these papers, elements have unit size and there is a fixed order that
needs to be maintained dynamically, unlike the problem in this paper.
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A different problem is described by [11], who consider densely packed physical
storage systems for the U.S. Navy, based on the classical 15-puzzle, where items
can be moved to an adjacent empty cell. How should one arrange and maintain
the set of free cells, and how can objects be retrieved as quickly as possible?

Finally, if the sequence of modules (i.e., their size, processing time, and arrival
time) is fully known, then the problem can be stated as a strip packing problem
(without rotation) with release times for rectangles with widths and heights
corresponding to the module’s size and time, respectively. There is a (1 + ε)-
approximation for (classical) offline strip packing [12]. For the case with release
times, Augustine et al. [13] give a O(lg n) approximation and a 3-approximation
for heights bounded by one. For approaches from the FPGA community see [1]
and the references cited in this paper.

This Paper. Dealing with arrangements of physical objects or data that require
contiguous memory allocation and nonoverlapping moves gives rise to a variety
of problems that are quite different from virtual storage management:

– Starting configuration vs. full management. We may be forced to start from
an arbitrary configuration, or be able to control the placement of objects.

– Physical sorting. Even when we know that it is possible to achieve connected
free space, we may not want to get an arbitrary arrangement of objects, but
may be asked to achieve one in which the objects are sorted by size.

– Low-cost insertion. We may be interested in requiring only a small number
of moves per insertion, either on average, or in the worst case.

– Objective functions. Depending on the application scenario, the important
aspects may differ: We may want to minimize the moves for relocating ob-
jects, or the total mass that is moved. Alternatively, we may perform only
very few moves (or none at all), at the expense of causing waiting time for
the objects that cannot be placed; this can be modeled as minimizing the
makespan of the corresponding schedule.

Main Results. Our main results are as follows:

– We demonstrate that sorting the modules by size may require Ω(n2) moves.
– We show that keeping the modules in sorted order is sufficient to maintain

connected free space and to achieve an optimal makespan, requiring O(n)
moves per insertion or deletion.

– We give an alternative strategy that guarantees connected free space; in most
steps, this requires O(1) moves for insertion, but may be forced to switch to
sorted order in O(n2) moves for high densities.

– We present an online method that needsO(1) moves per insertion or deletion.
– We perform a number of experiments to compare the strategies.
– For the sake of completeness, we briefly cite and sketch that it is strongly

NP-hard to find an optimal defragmentation sequence when we are forced to
start with an arbitrary initial configuration, that (unless P is equal to NP) it
is impossible to approximate the maximal achievable free space within any
constant, and prove that achieving connected space is always possible for
low module density.



Maintaining Arrays of Contiguous Objects 17

The rest of this paper is organized as follows. In Section 2, we introduce the
problem and notation. Section 3 discusses aspects of complexity for a (possi-
bly bad) given starting configuration. Section 4 focuses on sorting. Section 5
introduces two insertion strategies that always guarantee that free space can be
made connected. Moreover, we present strategies that achieve low (amortized or
worst-case) cost per insertion. Some concluding thoughts are given in Section 6.

2 Preliminaries

Motivated by our FPGA application, we model the problem as follows: Let A be
an array (e.g., a memory or FPGA columns) that consists of |A| cells. A module
Mi of size mi occupies a subarray of size mi in A (i.e., mi consecutive cells). We
call a subarray of maximal size where no module is placed a free space. The ith
free space (numbered from left to right) is denoted by Fi and its size by fi.

A module located in a subarray, As, can be moved to another subarray, At,
if At is of the same size as As and all cells in At are empty (particularly, both
subarrays do not have a cell in common). Moves are distinguished into shifts
and flips: If there is at least one module located between As and At we call the
move a flip, otherwise a shift; see Fig. 1. Following the two approaches mentioned
in the introduction, we are mainly interested in the following problems.

Offline Defragmentation: We start with a given configuration of modules in
an array A and look for a sequence of moves such that there is a free space of
maximum size. We state the problem formally:

Given: An array A, and a set of modules, M1,M2, ...,Mn, placed in A.

Task: Move the modules such that there is a free space of maximum size.

Online Storage Allocation: This problem arises from inserting a sequence
of modules, M1,M2, . . . ,Mn, which arrive in an online fashion, the next module
arrives after the previous one has been inserted. After insertion, a module stays
for some period of time in the array before it is removed; the duration is not
known when placing an object. If an arriving module cannot be placed (because
there is no sufficient connected free space), it has to wait until the array is
compacted or other modules are removed. The modules in the array can be
moved as described above to create free space for further insertions.

Our goals are twofold: On the one hand we want to minimize the makespan
(i.e., the time until the last module is removed from the array) and, on the other
hand, we want to minimize the costs for the moves. Moves are charged using
a function, c(mi), which is linear in mi. For example, we can simply count the
number of moves using c1(mi) := 1, or we count the moved mass (i.e., we sum
up the sizes of the moved modules) with c2(mi) := mi. Formally:

Given: An empty array, A, a sequence of modules, M1,M2, ...,Mn, arriving one
after the other.

Task: Place the modules in A such that (1) the makespan and (2) the total costs
for all moves performed during the insertions is minimized.
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3 Offline Defragmentation

In this section, we assume that we are given an array that already contains n
modules. Our task is to compact the array; that is, move the modules such that
we end up with one connected free space. Note that a practical motivation in
the context of dynamic FPGA reconfiguation as well as some heuristics were
already given in our paper [1]. As they lay the basis of some of the ideas in the
following sections and for the sake of completeness, we briefly cite and sketch
the corresponding complexity results.

Theorem 1. Rearranging an array with modules M1, . . . ,Mn and free spaces
F1, . . . , Fk such that there is a free space of maximum size is strongly NP-
complete. Moreover, there is no deterministic polynomial-time approximation
algorithm within any polynomial approximation factor (unless P=NP).

The proof is based on a reduction of 3-PARTITION, see Figure 2. The sizes
of the first 3k modules correspond to the input of a 3-PARTITION instance,
the size of the free spaces, B, is the bound from the 3-PARTITION instance.
We can achieve a free space of maximum size, if and only if we can move the
first 3k modules to the free spaces, which corresponds to a solution for the 3-
PARTITION instance. The inapproximability argument uses a chain of immobile
modules of increasing size that can be moved once a 3-PARTITION has been
found, see [1].

This hardness depends on a number of immobile modules, i.e., on relatively
small free space. If we define for an array A of length |A| the density to be
δ = 1

|A|
∑n

i=1mi, it is not hard to see that if

δ ≤ 1
2
− 1

2|A| · max
i=1,...,n

{mi} or (1)

max
i=1,...,n

{mi} ≤ max
j=1,...,k

{fj} . (2)

is fulfilled, the total free space can always be connected with 2n steps by Algo-
rithm 1 which shifts all modules to the right in the first loop and all modules to
the left in the second loop. Starting at the right and left end, respectively.

Theorem 2. Algorithm 1 connects the total free space with at most 2n moves
and uses O(n) computing time.

In the following, we use the idea of Algorithm 1 for maintenance strategies that
can accommodate any module for which there is sufficient total free space.

......

M4k+1M4kM3k+3M3k+2M3M2M1 M3k+1M3k

kB kB + 1B

Fig. 2. Reducing 3-Partition to the MDP
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Input: An array A with n modules M1, . . . , Mn (numbered from left to right)
such that Eq. (1) or Eq. (2) is fulfilled.

Output: A placement of M1, . . . , Mn such that there is only one free space.
for i = n to 1 do1

Shift the Mi to the right as far as possible.2

for i = 1 to n do3

Shift Mi to the left as far as possible.4

Algorithm 1. LeftRightShift

4 Sorting

In the next section, we present some strategies that are based on sorting the set
of modules by their size. But more than that, sorting is always an important task.
Thus, in this section we focus on the sorting problem for modules solely. Note
that we cannot apply classical sorting algorithms such as Quicksort or Selection
Sort, because they assume that every object is of the same size. We state an
algorithm that is similar to Insertion Sort and show that it can be applied to
our setting. It sorts n modules in an array with O(n2) steps. Moreover we show
that this is best possible up to a constant factor. More precisely, we deal with the
following problem: Given an array, A, with modules M1, . . . ,Mn and free spaces
F1, . . . , Fk. Sort the modules according to their size such that there is only one
free space in A. It is necessary to be able to move every module. Therefore we
assume in this section that Eq. (2) is fulfilled in the initial placement. Note that
if Eq. (2) is not fulfilled, there are instances for which it is NP-hard to decide
whether it can be sorted or not; this follows from a similar construction as in
Section 3.

4.1 Sorting n Modules with O(n2) Steps

To sort a given configuration, we first apply Algorithm 1, performing O(n)
moves.1 Afterwards, there is only one free space at the right end of A and all
modules are lying side by side in A. We number the modules in the resulting
position from left to right from 1 to n. The algorithm maintains a list I of un-
sorted modules. As long as I is not empty, we proceed as follows: We flip the
largest unsorted module, Mk, to the right end of the free space and shift all
unsorted modules that were placed on the right side of Mk to the left. Note that
afterwards there is again only one free space in A.

Theorem 3. Let A be an array with modulesM1, . . . ,Mn, free spaces F1, . . . , Fk,
and let Eq. (2) be satisfied. Then Algorithm 2 sorts the array with O(n2) steps.

Proof. The while loop is executed at most n times. In every iteration there is at
most one flip and n shifts. This yields an upper bound of n2 on the total number
of moves.
1 A short proof of correctness for this procedure can be found in [1].
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Input: An array A such that Eq. (2) is satisfied.
Output: The modules M1, . . . , Mn side by side in sorted order and one free

space at the left end of A.
Apply Algorithm 11

I := {1, . . . , n}2

while I �= ∅ do3

k = argmaxi∈I{mi}4

flip Mk to the right end of the free space5

I = I \ {k}6

for i = k + 1, . . . , n and i ∈ I do7

shift Mi to the left as far as possible8

Algorithm 2. SortArray

For correctness, we prove the following invariant: At the end of an iteration of
the while loop, all Mj, j /∈ I, lie side by side at the right end of A in increasing
order (from left to right) and all Mj, j ∈ I, lie side by side at the left end of A.
We call the first sequence of modules sorted and the other one non-sorted.

Now, assume that we are at the beginning of the jth iteration of the while loop.
Let k be the index of the current maximum in I. By the induction hypothesis
and by Eq. (2), the module Mk can be flipped to the only free space. This step
increases the number of sorted elements lying side by side at the right end of
A. Since in every step the module of maximum is chosen, the increasing order
in the sequence of sorted modules is preserved. Furthermore, this step creates
a free space of size mk that divides the sequence of non-sorted modules into
two (possible empty) subsequences. By the numbering of the modules, the left
subsequence contains only indexes smaller than k. This ensures that in the second
while loop only modules from the right subsequence are shifted. Again, since Mk

is chosen to be of maximum size all shifts are well defined. At the end of the
iteration, the non-sorted modules lie side by side and so do the sorted ones. �

4.2 A Lower Bound of Ω(n2)

We show that Algorithm 2 needs the minimum number of steps (up to a constant
factor) to sort nmodules. In particular, we prove that any algorithm needs Ω(n2)
steps to sort the following example. The example consists of an even number of
modules, M1, . . . ,Mn, with size mi = k if i is odd and mi = k + 1 if i is even
for a k ≥ 2. There is only one free space of size k+ 1 in this initial placement at
the left end of A, see Fig. 3.

Lemma 1. The following holds for any sequence of shifts and flips applied to
the instance shown in Fig. 3:

(i) There are never two free spaces, each of size greater than or equal to k.
(ii) There might be more than one free space but there is always exactly one
having either size k or size k + 1.
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. . .k + 1 k k + 1k k + 1kk + 1

M3M2 M4 Mn−1 MnM1

Fig. 3. Sorting an array is in Ω(n2)

Proof. (i) is obvious because otherwise the sum of the sizes of the free spaces
would exceed the total free space. (ii) follows because in the last step either a
module of size k or k + 1 was moved leaving a free of size k or k + 1, resp. �

Lemma 2. Let ALG be an algorithm that uses a minimum number of steps to
sort the above instance. Then the following holds:

(i) There is never more than one free space in A.
(ii) A module of size k will only be shifted (and never be flipped).

Proof. Consider a step that created more than one free space. This is possible
only if a module, Mi, of size k was moved (i.e., there is one free space of size k).
By Lemma 1, all other free spaces have sizes less than k. Thus, only a module,
Mj, of size k can be moved in the next step. Since we care only about the order
of the sizes of the modules not about their numbering the same arrangement
can be obtained by moving Mj to the current place of Mi and omitting the flip
of Mi (i.e., the number of steps in ALG can be decreased); a contradiction.

From (i) we know that there is always one free space of size k + 1 during the
execution of ALG. Flipping a small module to this free space creates at least
two free spaces. Hence, a small module will only be shifted. �

Theorem 4. Any algorithm that sorts the modules in the example from Fig. 3
needs at least Ω(n2) steps.

Proof. Let ALG be an algorithm that needs the minimum number of steps.
W.l.o.g. we assume that at the end the large modules are on the left side of the
small ones. We consider the array in its initial configuration and, in particular,
a module, Mi, of size k. There are i−1

2 small modules, the same number of large
modules and one free space of size k+1 to the left of Mi. Because small modules
are only shifted in ALG the number of small modules on the left side of Mi will
not change but the number of large ones will finally increase to n

2 . Since a shift
moves Mi at most a distance of k + 1 to the right, Mi has to be shifted at least
once for every large module that is moved to Mi’s left. Taking the free space
into account this implies that Mi has to be shifted at least n

2 − ( i−1
2 + 1) times,

for any odd i between 1 and n. Hence, for i = 2j − 1 we get a lower bound of∑n
2
j=1

n
2 −j = 1

8n
2− 1

4n on the number of shifts in ALG. Additionally, every large
module has to be flipped at least once, because it has a small one to its left in
the initial configuration. This gives a lower bound of 1

8n
2 − 1

4n+ 1
2n = 1

8n
2 + 1

4n
on the total number of steps in ALG and therefore a lower bound on the number
of steps for any algorithm. �
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5 Strategies for Online Storage Allocation

Now, we consider the online storage allocation problem, i.e., we assume that
we have the opportunity to start with an empty array and are able to control
the placement of modules. We consider strategies that handle the insertion and
deletion of a sequence of modules. AlwaysSorted achieves an optimal makespan,
possibly at the expense of requiring up to O(n2) moves per insertion; the algo-
rithm ClassSort that is designed to require very few moves, but at the cost of
larger makespan. Additionally, we present a simple local heuristic, LocalShift.

AlwaysSorted. This algorithm inserts the modules such that they are sorted
according to their size; that is, the module sizes decrease from left to right. Note
that the sorted order ensures that if a module, Mi, is removed from the array
all modules lying on the right side of Mi (these are at most as large as Mi)
can be shifted mi units to the left. Now the algorithm works as follows: Before a
module, Mj , is inserted, we shift all modules to the left as far as possible starting
at the left side of the array. Next we search for the position that Mj should have
in the array to keep the sorted order. We shift all modules lying on the right
side of the position mj units to the right if possible; after that Mj is inserted.

Theorem 5. AlwaysSorted achieves the optimal makespan. The algorithm per-
forms O(n) moves per insertion in the worst case.

Proof. All modules are shifted to the left as far as possible before the next
module is inserted. After that, there is only one free space at the right side of
A. If this free space is at least as large as the next module, the insertion is
performed, meaning that a module has to wait if and only if the total free space
is smaller than the module size; no algorithm can do better. �

DelayedSort. The idea is to reduce the number of moves by delaying the sorting
until it is really necessary: We maintain a large free space on the left or the right
side (alternatingly). First, we check if we can insert the current module Mi, i.e.,
if mi ≤

∑
fj . Now, if we can insert Mi maintaining maxmi ≤ max fj we insert

Mi using First-Fit. Otherwise, we check if Mi can be inserted—maintaining the
above condition—after compacting the array using by shifting all modules to the
side where we currently keep the large free space, beginning with the module
next to the free space. If maintaining the condition is not possible, we sort the
array using Alg. 2 and insert the module into the single free space left after
sorting. Note that this strategy also achieves the optimal makespan.

ClassSort. For this strategy we assume that the size of the largest module at
most half the size of the array. We round the size of a module, Mi, to the next
larger power of 2; we denote the rounded size by m′

i.
We organize the array in a = �lg |A|

2 � classes, C0, C1, . . . , Ca. Class Ci has
level i and stores modules of rounded size 2i. In addition, each class reserves 0,
1, or 2 (initially 1) buffers for further insertions. A buffer of level i is a free space
of size 2i. We store the classes sorted by their level in decreasing order.
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The numbers of buffers in the classes provide a sequence, S = sa, . . . , s0,
with si ∈ {0, 1, 2}. We consider this sequence as a redundant binary number;
see Brodal [14]. Redundant binary numbers use a third digit to allow additional
freedom in the representation of the counter value. More precisely, the binary
number d	d	−1 . . .d0 with di ∈ {0, 1, 2} represents the value

∑	
i=0 di2i. Thus,

for example, 410 can be represented as 1002, 0122, or 0202. A redundant binary
number is regular, if and only if between two 2’s there is one 0, and between two
0’s there is one 2. The advantage of regular redundant binary numbers is that
we can add or subtract values of 2k taking care of only O(1) carries, while usual
binary numbers with � digits and 11 . . . 12 + 12 = 100 . . .02 cause � carries.

Inserting and deleting modules benefits from this advantage: The reorganiza-
tion of the array on insertions and deletions corresponds to subtracting or adding,
respectively, an appropriate value 2k to the regular redundant binary numbers
that represents the sequence S. In details: If a module, Mj, with m′

j = 2i ar-
rives, we store the module in a buffer of the corresponding class Ci.2 If there is
no buffer available in Ci, we have a carry in the counter value; that is, we split
one buffer of level i+1 to two buffers of level i; corresponding, for example, to a
transition of . . . 20 . . . to . . . 12 . . . in the counter. Then, we subtract 2i and get
. . . 11 . . .. Now, the counter may be irregular; thus, we have to change another
digit. The regularity guarantees that we change only O(1) digits [14]. Similarly,
deleting a module with m′

j = 2i corresponds to adding 2i to S.

Theorem 6. ClassSort performs O(1) moves per insertion or deletion in the
worst case. Let m̂ be the size of the largest module in the array, c a linear
function and c(mi) the cost of moving a module of size mi. Then the amortized
cost for inserting or deleting a module of size mi is O(mi lg m̂).

Proof. The number of moves is clear. Now, observe a class, Ci. A module of size
2i is moved, if the counter of the next smaller class, Ci−1, switches from 0 to 2
(for the insertion case). Because of the regular structure of the counter, we have
to insert at least modules with a total weight of 2i−1 before we have to move
a module of size 2i again. We charge the cost for this move to theses modules.
On the other hand, we charge every module at most once for every class. As we
have lg m̂) classes, the stated bound follows. The same argument holds for the
case of deletion. Note that we move modules only, if the free space inside a class
is not located on the right side of the class (for insertion) or on the left side (for
deletion). Thus, alternatingly inserting and deleting a module of the same size
does not result in a large number of moves, because we just imaginarily split
and merge free spaces. �

LocalShift. We define the distance between two blocks (modules or free spaces)
as the number of blocks that lie between these two blocks. For a free space Fi

we call the set of blocks that are at most at a distance k ∈ N from Fi the
k-neighborhood of Fi. The algorithm LocalShift works as follows: If possible
2 Initially, the array is empty. Thus, we create the classes C1, . . . , Ci if they do not

already exist, reserving one free space of size 2k for every class Ck.
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Fig. 4. Experiments with exponential distribution for size and duration

we use BestFit to insert the next module Mj. Otherwise, we look at the k-
neighborhood of any free space (from left to right). If shifting the modules from
the k-neighborhood, lying on the left side of Fi, to the left as far as possible
(starting a the left side) and the modules lying on the right side to the right as
far as possible (starting at the right side) would create a free space that is at
least as large as Mj we actually perform these shifts and insert Mj . If no such
free space can be created, Mj has to wait until at least one modules is removed
from the array. This algorithm performs at most 2k moves per insertion.

6 Comparison and Conclusion

To test our strategies, we generated a number of random input sequences and an-
alyzed the performance of our strategies as well as the simple FirstFit and Best-
Fit approaches in an array of size 210. A sequence consists of 100,000 modules,
each module has a randomly chosen size and duration time. For each sequence,
size and time are shuffled using several probability distributions. We analyzed
three objectives: the time to complete the whole sequence (the makespan), the
number of moved modules (c(mi) = 1) and the moved mass (c(mi) = mi). Our
experiments (see Fig. 4 for an example) showed that LocalShift performs very
well, as it constitutes a compromise between a moderate number moves and a
low makespan. Both makespan and moves turn out to be nearly optimal.

The more complex strategy ClassSort performed only slightly worse than Lo-
calShift concerning moves, but disappoints in its resulting makespan. In contrast,
both types of sorting-related strategies have—of course—a good makespan, but
need a lot of moves. Unsurprisingly, FirstFit and BestFit need the fewest moves
(as they perform moves only on inserting a module, but never move a previously
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placed module). Their makespan turned out to be clearly better than ClassSort,
but worse than LocalShift and the sorting strategies.

A comparison of the sorting strategies, AlwaysSorted and DelayedSort, showed
that delaying the sorting of the array until it is really necessary pays off for the
number of moves, but not if we count the moved mass, this is because the shift
from maintaining one large free space to sorting (caused by not enough free space
to accompany the largest item) results in a sequence with several moves of the
heaviest items, which is not the case for AlwaysSorted.

We have introduced the systematic study of dynamic storage allocation for
contiguous objects. There are still a number of open questions, such as the
worst-case number of moves required to achieve connected free space or cheaper
certificates for guaranteeing that connected free space can be achieved.
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Abstract. The problem of publishing personal data without giving up
privacy is becoming increasingly important. An interesting formalization
recently proposed is the k-anonymity. This approach requires that the
rows in a table are clustered in sets of size at least k and that all the rows
in a cluster are related to the same tuple, after the suppression of some
records. The problem has been shown to be NP-hard when the values are
over a ternary alphabet, k = 3 and the rows length is unbounded. In this
paper we give a lower bound on the approximation of two restrictions
of the problem, when the records values are over a binary alphabet and
k = 3, and when the records have length at most 8 and k = 4, showing
that these restrictions of the problem are APX-hard.

1 Introduction

In many research fields, for example in epidemic analysis, the analysis of large
amounts of personal data is essential. However, a relevant issue in the manage-
ment of such data is the protection of individual privacy. One approach to deal
with such problem is the k-anonymity model, introduced in [7,8,6]. The input
of the k-anonymity approach is a table, where the rows of the table represent
records belonging to different individuals. Then some of the entries in the table
are suppressed so that for each record r in the resulting table, there exist at
least k − 1 other records identical to r. It follows that the resulting data is not
sufficient to identify each individual. A different version of the problem employs
the generalization of entry value [1]. However, in this paper we will focus only
on the suppression model.

A simple parsimonious principle leads to the optimization problem where
the number of entries in the table to be suppressed and generalized has to be
minimized. The k-anonymity problem is known to be NP-hard for rows of un-
bounded length with values over ternary alphabet and k = 3 [1]. Moreover,
a polynomial-time O(k)-approximation algorithm on arbitrary input alphabet,
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as well as some other approximation algorithms for some restricted cases, are
known [1]. Recently, approximation algorithms with factor O(log k) have been
proposed [5], even for generalized versions of the problem [4].

In this paper, we further investigate the approximation and computational
complexity of the k-anonymity problem, settling the APX-hardness for two in-
teresting restrictions of the problem: (i) when the matrix entries are over a
binary alphabet and k = 3, or (ii) when the matrix has 8 columns and k = 4.
We notice that these are the first inapproximability results for the k-anonymity
problem. More precisely, in this paper we first design an L-reduction [3] from the
Minimum Vertex Cover problem to 3-anonymity problem over binary alphabet.
Then, we design a second L-reduction from the Minimum Vertex Cover problem
to 4-anonymity problem when the rows are of length 8. Those two restrictions
are of particular interests as some data can be inherently binary (e.g. gender)
and publicly revealed data tend to have only a few columns, therefore solving
such restriction could help for most practical cases.

The rest of the paper is organized as follows. In Section 2 we introduce some
preliminary definitions, in Section 3 we show that the 3-anonymity is APX-hard,
even when the matrix is restricted to binary data, while in Section 4 we show
that the 4-anonymity problem is APX-hard, even when the rows have length
bounded by 8.

2 Preliminary Definitions

In this section we introduce preliminary definitions that will be used in the rest
of the paper. A graph G = (V,E) is cubic when each vertex in V has degree three.
Given an alphabet Σ, a row r is a vector of elements taken from the set Σ, and
the j-th element of r is denoted by r[j]. Let r1, r2 be two equal-length rows.
Then H(r1, r2) is the Hamming distance of r1 and r2, i.e. |{i : r1[i] �= r2[i]}|. Let
R be a set of l rows, then a clustering of R is a partition P = (P1, . . . , Pt) of R.

Given a clustering P = (P1, . . . , Pt) of R, we define the cost of a set Pi,
denoted by c(Pi), as |Pi||{j : ∃r1, r2 ∈ Pi, r1[j] �= r2[j]}|, that is the number of
entries of the rows in Pi that must be deleted in order to make all such rows
identical. The cost of P , denoted by c(P ), is defined as

∑
Pi∈P c(Pi).

We are now able to formally define the k-Anonymity Problem (k-AP) as
follows: given set R of rows over an alphabet Σ, compute a clustering P =
(P1, . . . , Pt) of R, with |Pi| ≥ k for each set Pi, so that c(P ) is minimum.

Notice that, given a clustering P = (P1, . . . , Pt) of R, |Pi|maxr1,r2∈Pi{H(r1,
r2)} is a lower bound for c(Pi), since all the positions for which r1 and r2
differ will be deleted in each row of Pi. We will study two restrictions of the k-
anonymity problem. In the first restriction, denoted by 3-ABP, the rows are over
a binary alphabet Σ = {0b, 1b} and k = 3. In the second restriction, denoted by
4-AP(8), k = 4 and the rows are over an arbitrary alphabet and have length 8.

In the rest of the paper we present two different reductions from the Minimum
Vertex Cover on Cubic Graphs (MVCC) problem, which is known to be APX-
hard [2]. Consider a cubic graph G = (V,E), where |V | = n and |E| = m, the



28 P. Bonizzoni, G. Della Vedova, and R. Dondi

MVCC problem asks for a subset V ′ ⊆ V of minimum cardinality, such that for
each edge (vi, vj) ∈ E, at least one of vi or vj belongs to V ′.

3 APX-Hardness of 3-ABP

In this section we will show that 3-ABP is APX-hard via an L-reduction from
Minimum Vertex Cover on Cubic Graphs (MVCC). Let G = (V,E) be an in-
stance of MVCC, the reduction builds an instance R of 3-ABP associating with
each vertex vi ∈ V a set of rows Ri and with each e = (vi, vj) ∈ E a row ri,j .
Actually, starting from the cubic graph G, the reduction builds an intermediate
multigraph, denoted as gadget graph VG, – an example of a gadget graph ob-
tainable through our reduction is represented in Fig. 1. The reduction associates
with each vertex vi of G a vertex gadget V Gi containing a core vertex gadget
CV Gi and some other vertices and edges called respectively jolly vertices and
jolly edges. More precisely, the vertex-set of a core vertex gadget CV Gi consists
of the seven vertices ci,1, ci,2, ci,3, ci,4, ci,5, ci,6, ci,7. The vertices ci,1, ci,2 and ci,3
of CV Gi are called docking vertices. The edge-set of CV Gi consists of nine edges
between vertices of CV Gi (see Fig. 1). Such a set of edges is defined as the set
of core edges of V Gi. The vertex-set of a vertex gadget consists of the seven
vertices of CV Gi and of three more vertices Ji,1, Ji,2, Ji,3, called jolly vertices
of V Gi. The edge-set of V Gi consists of the edge-set of CV Gi and of three set
of four parallel edges (see Fig. 1). More precisely, for each docking vertex ci,z
adjacent to a jolly vertex Ji,z, we define a set EJ

i,z of four parallel edges between
ci,z and Ji,z . The set of edges EJ

i =
⋃

z∈{1,2,3}E
J
i,z is called the set of jolly edges

of V Gi.
Each edge (vi, vj) of G is encoded by an edge gadget EGij consisting of a

single edge that connects a docking vertex of V Gi with one of V Gj , so that in
the resulting graph each docking vertex is an endpoint of exactly one edge gadget
(this can be achieved trivially as the original graph is cubic.) The resulting graph,
denoted by VG, is called gadget graph. An edge gadget is said to be incident on a
vertex gadget V Gi if it is incident on a docking vertex of V Gi. In our reduction
we will associate a row with each edge of the graph gadget. Therefore 3-ABP
is equivalent to partitioning the edge set of the gadget graph into sets of at
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Fig. 1. Gadgets for vi, vj , (vi, vj)
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least three edges. Hence in what follows we may use edges of VG to denote the
corresponding rows. Before giving some details, we present an overview of the
reduction.

First, the input set R of rows is defined, so that each row corresponds to
an edge of the gadget graph. Then, it is shown that, starting from a general
solution, we can restrict ourselves to a canonical solution, where there exist two
possible partitions of the rows of a vertex gadget (and possibly some rows of an
edge gadget). Such partitions are denoted as type a and type b solution. Finally,
the rows of a vertex gadget that belongs to a type b (type a resp.) solution are
related to vertices in the cover (not in the cover, respectively) of the graph G.

We are now able to introduce our reduction. All the rows in R are the juxta-
position of n+ 2 blocks, where the i-th block, for 1 ≤ i ≤ n, is associated with
vertex vi ∈ V , the (n+ 1)-th block is called jolly block, and the (n+ 2)-th block
is called edge block. The first n blocks are called vertex blocks, and each vertex
block has size 21. The jolly block has size 6n, and the edge block has size 3n.

The rows associated with edges of the gadget graph VG are obtained by in-
troducing the following notions.

Let ci,j be a vertex of CV Gi, 1 ≤ i ≤ n, 1 ≤ j ≤ 7 , and let r be a row, the
vertex encoding v-enci,j of ci,j applied to r is defined as follows:

– v-enci,j(r) assigns value 1b to the positions 3j − 2, 3j − 1 and 3j of the i-th
block of row r.

Let V Gi be a vertex gadget, 1 ≤ i ≤ n, and let r be a row, the gadget encoding
g-enci of V Gi applied to r is defined as follows:

– g-enci(r) assigns value 1b to the positions 3i− 2, 3i− 1 and 3i of the edge
block of row r.

Finally, let Ji,x be a jolly vertex of V Gi, 1 ≤ i ≤ n, 1 ≤ x ≤ 3, and let r be a
row, the jolly encoding j-enci,x of Ji,x applied to r is defined as follows:

– j-enci,x(r) assigns value 1b to the positions 6(i− 1) + x, 6(i− 1) + x+ 1 of
the jolly block of row r.

We define the rows associated with the edges of VG according to the types of
those edges. Let ci,x, ci,y ∈ CV Gi and let (ci,x, ci,y) be a core edge, then the row
ri,x,y associated with (ci,x, ci,y) is obtained as follows:

ri,x,y = g-enci
(
v-enci,y

(
v-enci,x

(
030n

)))
.

Consider a docking vertex ci,x ∈ CV Gi and a jolly vertex Ji,x of CV Gi

adjacent to ci,x. Each row associated with a jolly edge (ci,x, Ji,x) is called jolly
row and the set of the 4 jolly rows incident to vertex ci,x is called jolly row set
of ci,x. Assume that ci,x is adjacent to vertices ci,y, ci,z of CV Gi, then each jolly
row ri,x,y,z associated with (ci,x, Ji,x) is obtained as follows:

ri,x,y,z = j-enci,x
(
g-enci

(
v-enci,z

(
v-enci,y

(
v-enci,x

(
030n

)))))
.
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Let Eij be an edge gadget connecting V Gi and V Gj in docking vertices ci,x
and cj,y respectively. The row ri,j,x,y associated with Eij is obtained as follows:

ri,j,x,y = g-encj
(
g-enci

(
v-encj,y

(
v-enci,x

(
030n

))))
.

For example consider the row ri,1,4 associated with the core edge (ci,1, ci,4).
Observe that v-enci,1 sets to 1 the first three positions of the i-th block of ri,1,4,
while v-enci,4 sets to 1 the positions 10, 11, 12 of the i-th block of ri,1,4. Finally,
g-enci sets to 1 the positions 3i−2, 3i−1 and 3i of the edge block of ri,1,4. Edge
(ci,1, ci,4) is associated with the following row ri,1,4:

000 . . .000︸ ︷︷ ︸
block 0

. . . 111 000 000 111 000 . . .︸ ︷︷ ︸
block i

. . . 000 . . .000︸ ︷︷ ︸
jolly block

000 . . .111 . . .000︸ ︷︷ ︸
edge block

.

Observe that by construction only jolly rows may have a 1b in a position of
the jolly block. It is immediate to notice that clustering together three or more
jolly rows associated with parallel edges has cost 0.

We recall that in what follows we may use edges of VG to denote the corre-
sponding rows.

The cost of a solution S is specified by introducing the notion of virtual cost
of a single row r of R. Let S be a solution of 3-ABP, and let C be the cluster of
S to which r belongs. Let r be a non-jolly row, we define the virtual cost of r in
the solution S, denoted as virtS(r), as the cost of C divided by the number of
non-jolly rows in C. Otherwise, if r is a jolly row, then virtS(r) = 0. Given the
above notion, observe that the cost c(C) of set C is equal to

∑
r∈C virtS(r) and

that for a solution S, the cost c(S) of set S is equal to
∑

r∈R virtS(r).
In the following we will consider only canonical solutions of 3-ABP, that is

solutions where the rows for each vertex gadget V Gi and edge gadgets eventually
incident on V Gi are clustered into type a and type b solutions constructed as
follows.

The type a solution defines the partition of the rows for vertex gadget V Gi

and consists of six clusters: three clusters of rows of CV Gi, each one is made of
the three edges incident on vertex v, where v is one of the three vertices ci,4, ci,5
and ci,7, and three more clusters, each one consisting of the jolly rows associated
with one of the three docking vertices of V Gi.

The type b solution defines the partition of the rows for a vertex gadget V Gi

and some edge gadgets incident on V Gi. It consists of four clusters containing
rows of CV Gi. One of them consists of the three edges incident on ci,6. The
remaining three clusters are associated with the three docking vertices of V Gi.
For each docking vertex ci,x, the cluster associated with ci,x consists of the two
core edges of CV Gi that are incident on ci,x, together with either the edge gadget
incident on ci,x or one jolly edge incident in ci,x. Finally, there are three more
clusters, each one consisting of all remaining jolly edges associated with parallel
edges incident on one of the three docking vertices of V Gi. Notice that in a type
b solution each cluster associated with a docking vertex may contain an edge
gadget or not, the only requirement is that at least one of the clusters contains
an edge gadget.
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Proposition 1. Let S be a canonical solution, and let V Gi, V Gj be two vertex
gadgets such that the rows of V Gi are clustered in type a solution in S and rows
of V Gj are clustered in a type b solution in S. Then each edge gadget has a
virtual cost of 12 in S, the rows of V Gi have a total virtual cost of 81, while the
rows of V Gj have a total cost of 99.

In the following we state two basic results that will be used to show the L-
reduction from MVCC to 3-ABP:

1. each solution S of 3-ABP can be modified in polynomial time into a canonical
solution S′ whose cost is at most that of S (Lemma 10);

2. the graph G has a vertex cover of size p iff the 3-ABP problem has a canonical
solution of cost 99 · p+ 81 · (n− p) + 12m, where 81 is the total virtual cost
of the rows of a type a solution, while 99 is the total virtual cost of the rows
of a vertex gadget in a type b solution (Theorem 12).

First, we introduce a basic property of the 3-ABP problem.

Proposition 2. Given a solution S of 3-ABP, we can compute in polynomial
time a solution S′, such that c(S′) ≤ c(S) and each cluster of S′ has size at
most 5.

Due to Proposition 2, in what follows we assume that a solution S contains
clusters of size at least 3 and at most 5. We will first introduce some basic
Lemmas that will help in excluding some possible solutions.

Lemma 3. Let S be a solution of 3-ABP and let C be a cluster of S consisting
of rows of CV Gi. Then virtS(r) ≥ 9 for each row r of C, and virtS(r) ≥ 12 if
the rows in C are not all incident on a common vertex of CV Gi.

Lemma 4. Let S be a solution of 3-ABP and let C be a cluster of S consisting
of rows of V Gi, such that C contains at least one jolly row of V Gi and at least
one row of CV Gi, then the virtual cost of each non-jolly row in C is at least 12.

Lemma 5. Let S be a solution of 3-ABP with a cluster C containing a row of
V Gi. Then the virtual cost of each non-jolly row of C is at least 9.

Proof. Notice that if C contains a jolly row, by construction, by Lemma 3 and
by Lemma 4, the lemma holds. Hence assume that C contains no jolly row. If
a cluster C of S does not consist of three non-jolly rows of V Gi incident on a
common vertex, by construction of V Gi, each non-jolly row of C has a virtual
cost of at least 12. Hence, in any arbitrary solution each non-jolly row of C has
a virtual cost of at least 9. �

An immediate consequence of Lemma 5 and of the construction of V Gi, is that
a type a solution is the optimal solution for the rows associated with edges of
V Gi.

Lemma 6. Let S be a solution of 3-ABP with a cluster C containing more than
one edge gadget. Then
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1. if exactly two edge gadgets EG1 and EG2 are in C, then virtS(EG1),
virtS(EG2) ≥ 21; if the edge gadgets are not incident on a common ver-
tex gadget, then virtS(EG1), virtS(EG2) ≥ 27, and if C contains a row r
of a vertex gadget, such that that r is not adjacent to both EG1 and EG2,
then virtS(EG1), virtS(EG2), virtS(r) ≥ 30;

2. if exactly three edge gadgets EG1, EG2, EG3 are in C, then virtS(EG1),
virtS(EG2), virtS(EG3) ≥ 27, and if there is no pair of edge gadgets in
{EG1, EG2, EG3} incident on a common vertex gadget, then virtS(EG1),
virtS(EG2), virtS(EG3) ≥ 36;

3. if more than three edge gadgets are in C, then the virtual cost of each edge
gadget in S is at least 36.

Lemma 7. Let S be a solution of 3-ABP with a cluster C containing an edge
gadget EGij incident on vertex gadgets V Gi and V Gj , two rows rx, ry adjacent
to EGij, where rx belongs to V Gi and ry belongs to V Gj. Then c(C) ≥ 18|C|.

Lemma 8. Let S be a solution of 3-ABP with a cluster C containing an edge
gadget EGij and a jolly row ji. Then virtS(EGij) ≥ 18.

Proof. Observe that by by construction H(EGij , ji) ≥ 14. Defining the virtual
cost of the rows in C, the virtual cost of ji is split among the set s(j) rows of C
which are not jolly rows. Moreover, by Prop. 2, we can assume that |s(j)| ≤ 4. If
|s(j)| = 4, then there is at least one row r in s(j) such that there exist at least 3
positions where EGij and ji have the same value, while r has a different value.
Hence, before it is redefined, the virtual cost is at least 17 for each row in C.
Since the virtual cost of ji is split among 4 rows and 17

4 > 4, the lemma follows.
If |s(j)| ≤ 3, then a virtual cost of at least 14

3 is added to the rows of s(j) and
the lemma holds. �

By construction of the gadget graph VG, it follows Lemma 9.

Lemma 9. Let S be a solution containing a cluster C with at least an edge
gadget EGij. Then virtS(Eij) ≥ 12.

Now, we will show our key transformation of a generic solution into a canonical
solution without increasing its cost.

Lemma 10. Let S be a solution, then we can compute in polynomial time a
canonical solution Sc such that c(Sc) ≤ c(S).

The proof of the stated result is based on the fact that, whenever a solution S
is not a canonical one, it can be transformed into a canonical one by applying
Alg. 1. In the following we only sketch the correctness proof of Alg. 1 that is
largely based on the previous Lemmas. Let us denote by S1 and S2 respectively,
the solution before and after applying Alg. 1. Observe that by construction all
the edge gadgets in the solution S2 computed by Alg. 1 are clustered in a type
b solution.

Iteratively, Alg. 1 first examines a sequence C1, · · · , Cl of clusters of S1 con-
taining some unmarked edge gadgets. Given a cluster C examined at step i, the
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Algorithm 1. ComputeCanonical(S)
Data: a solution S1 consisting of the set {C1, · · · , Ck} of clusters
foreach set Ci do1

Let E(Ci) be the set of edge gadgets in Ci;2

unmark all edge gadgets in E(Ci);3

Define solution S2 = ∅;4

while there is a cluster C in {C1, · · · , Ck} with an unmarked edge gadget do5

Let V (C) be the smallest possible set of vertex gadgets such that each6

unmarked edge gadget in C has at least one endpoint in V (C);
/* |C| ≤ 5, hence we can compute V (C) in polynomial time. We

assume that if a cluster C contains only an edge gadget EGi,j

and rows of vertex gadget V Gi, then V (C) = {V Gi} . */

Add to solution S2 a type b solution for all vertex gadgets in V (C) and all7

unmarked edge gadgets E′ incident on such vertices;
// E′ ⊇ Eu(C), with Eu(C) the set of unmarked edge gadgets of

E(C)
Mark the edge gadgets in E′;8

Add to S2 a type a solution for each vertex gadget that has not been assigned a9

type b solution in the iteration (line 6 – 10);
return S210

algorithm imposes a type b solution on a set V (C) (built at line 7 of Alg. 1) of
vertex gadgets and on a set E′ of edge gadgets so that Eu(C) ⊆ E′ (see line 7
of Alg. 1) that have not been previously marked as assigned to a type b solution.
This fact implies that the virtual cost of rows associated with vertex gadgets in
V (C) (actually, only with the core vertex gadgets in V (C)) and edge gadgets in
E′ is modified in solution S2 w.r.t. the virtual cost in solution S1. Notice that
by Lemma 9, each edge gadget EGij in E′ −Eu(Ci), has virtual cost of at least
12 in solution S1, and virtual cost 12 in solution S2. Hence the virtual cost of
each EGij in E′−Eu(Ci) is optimal in S2. Now, we consider the rows associated
with core vertex gadgets in V (C) and edge gadgets in Eu(C). For simplicity’s
sake, let us denote by virtS(V (C)) the sum of the virtual cost of the set of rows
associated with core vertex gadgets in V (C) in a solution S and similarly, let us
denote by virtS(Eu(C)) the sum of the virtual cost of the set of rows associated
with unmarked edge gadgets in Eu(C).

Observe that, by construction, Eu(C1), . . . , Eu(Ck) produced at lines 5 – 8
of Alg. 1 are pairwise disjoint. Moreover, notice that for a row r added at line
9 of Alg. 1, virtS2(r) ≤ virtS1(r), since a type a solution is always optimal for
a vertex gadgets, while only the rows clustered in a type b solution of S2 can
be suboptimal. Consequently, it is immediate to conclude that the correctness
of the Alg. 1 relies on proving that at an arbitrary step i the following Claim
holds. Moreover, let us recall that the cost of a solution is the sum of the virtual
cost of rows in the solution.

Claim 11. Let Ci be a cluster of solution S1, then virtS2(V (Ci))−virtS1(V (Ci))
≤ virtS1(E

u(Ci)) − virtS2(E
u(Ci)).
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(Sketch of the proof ). Recall that we can assume that |Ci| ≤ 5. First, notice
that, by Proposition 1, virtS2(V (Ci))− virtS1(V (Ci)) ≤ 18|V (Ci)| and that the
cost of each edge gadget in a canonical solution is equal to 12.

We distinguish several cases depending on the size of Eu(Ci) and the size of
the set V (Ci) defined at line 6 of Alg. 1.

First, we have to consider the case when Eu(Ci) > 1. This case is considered
in Lemma 6, where lower bounds on the virtual costs of the edge gadgets of
Eu(Ci) in S1 are presented. Similarly, the case when Eu(Ci) = 1, is considered
in Lemma 7 and in Lemma 8. �

Theorem 12. Let G = (V,E) be an instance of MVCC. Then G has a cover of
size p if and only if the corresponding instance R of 3-ABP has a (canonical)
solution S of cost 99p+ 81(n− p) + 12m.

Proof. Let us show that if G has a vertex cover V ′ of size p, then R has a solution
S of cost 99p + 81(n − p) + 12m. Since V ′ is a vertex cover then it is possible
to construct a canonical solution S for R consisting of a type b solution for all
vertex gadgets associated with vertices in V ′ and a type a solution for all other
vertex gadgets. Indeed each edge gadget can be clustered in a type b solution
of a vertex gadget to which the edge is incident, choosing arbitrarily whenever
there is more than one possibility. Finally, for each docking vertex, its jolly rows
that are not used in some type b solution are clustered together. The cost derives
immediately by previous observations.

Let us consider now a solution S of 3-ABP over instance R with cost 99p+
81(n − p) + 12m. By Lemma 10 we can assume that S is canonical solution,
therefore R has a set C′ of p vertex gadgets that are associated with a type b
solution. By construction, each edge gadget must be in a type b solution, for
otherwise S is a not canonical solution. Hence the set of vertices of G associated
with vertex gadgets in C′ is a vertex cover of G of size p. �

Since the cost of a canonical solution of 3-ABP and the size of a vertex cover of
the graph G are linearly related, it follows that the reduction is an L-reduction,
thus completing the proof of APX-hardness.

4 APX-Hardness of 4-AP(8)

In this section we prove that 4-AP(8) is APX-hard via an L-reduction from Min-
imum Vertex Cover on Cubic Graphs (MVCC). Given a cubic graph G = (V,E),
with V = {v1, . . . , vn} and E = {e1, . . . , em}, we will construct an instance R
of 4-AP(8) consisting of a set Ri of 5 rows for each vertex vi ∈ V , an edge row
r(i, j) for each edge e = (vi, vj) ∈ E and a set F of 4 rows. The 8 columns are di-
vided in 4 blocks of two columns each. For each vertex vi, all the rows in Ri have
associated a block called edge block, denoted as b(Ri), so that b(Ri) �= b(Rj)
for each vj adjacent to vi in G. The latter property can be easily enforced in
polynomial time as the graph is cubic.

The entires of the rows in Ri = {ri,1, . . . , ri,5}, are over the alphabet Σ(Ri) =
{ai,1, . . . , ai,5, ai}. The entries of the columns corresponding to the edge block
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b(Ri), as well as to the odd columns are set to ai for all the rows in Ri. The
entries of the even columns not in b(Ri) of each row ri,h are set to ai,h.

For each edge e = (vi, vj), we define a row r(i, j) (called edge row) of R. Row
r(i, j) has value ai (equal to the values of the rows in Ri) in the two columns
corresponding to the edge block b(Ri), value aj (equal to the values of the rows
in Rj) in the two columns corresponding to the edge block b(Rj), and value ti,j
in all other columns. Given a set of rows Ri, we denote by E(Ri) the set of
rows r(i, j), r(i, l), r(i, h), associated with edges of G incident in vi. Finally, we
introduce in the instance R of 4-AP(8) a set of 4 rows F = {f1, f2, f3, f4}, over
alphabet Σ(F ) = {u1 . . . , u4}. Each row fi is called a free row and all its entries
have value ui.

W.l.o.g. we can assume that there exists only one cluster Fc, called the filler
cluster, whose cost is equal to 8|Fc|. The free rows must belong to Fc, as each
free row has Hamming distance 8 with all other rows of R; at the same time
if there exists two clusters Fc, F ′

c exist, whose cost is equal to 8|Fc| and 8|F ′
c|

respectively, then we can merge them without increasing the cost of the solution.
Notice that, by construction, Σ(Ri)∩Σ(Rj) = ∅, hence two rows have Hamming
distance smaller than 8 only if they both belong to Ri ∪E(Ri) for some i. This
observation immediately imply the following proposition.

Proposition 13. Let S be a solution of 4-AP(8), and let C be a cluster of S,
where each row in C has cost strictly less than 8. Then C ⊆ Ri ∪ E(Ri).

Since in Ri∪E(Ri) there are 8 rows, there can be at most two sets having rows in
Ri ∪ E(Ri) and satisfying the statement of Proposition 13. Consider a solution
S and a set of rows Ri. We will say that S is a black solution for Ri if in S
there is a cluster containing 4 rows of Ri and a cluster containing one row of Ri

and the three rows of E(Ri). We will say that S is a red solution for Ri if in S
there is a cluster consisting of all 5 elements of Ri. By an abuse of language we
will say respectively that Ri is black (resp. red) in S. Given an instance R of
4-AP(8), a solution where each set Ri is either black or red is called a normal
solution. Notice that a normal solution consists of a filler cluster and a red or
black solution for each Ri. The main technical step in our reduction consists
of proving Lemma 17, that is that starting from a solution S, it is possible to
compute in polynomial time a normal solution S′ with cost not larger than that
of S.

Next we show that moving the rows of Ri that are in the filler cluster to
another existing cluster that contains some rows of Ri (if possible) or to a new
cluster, does not increase the cost of the solution.

Lemma 14. In each feasible solution S of 4-AP(8), at least three even positions
not in the edge block are deleted from a row of Ri.

Lemma 15. Let S be a solution of 4-AP(8). Then we can compute in polynomial
time a solution S′ with cost not larger than that of S and such that in S′ there
exist at most two sets containing rows of Ri.

Hence, in what follows we assume that in any solution there are at most two
sets containing rows of a set Ri.
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Lemma 16. Let S be a solution S of 4-AP(8). Then it is possible to compute
in polynomial time a solution S′, whose cost is not larger than that of S, such
that the filler cluster Fc of S′ contains all free rows and some (possibly zero)
edge rows. Moreover in S′ there are at most two clusters containing rows of Ri.

Now we are ready to prove Lemma 17.

Lemma 17. Let S be a solution S of 4-AP(8). Then it is possible to compute
in polynomial time a normal solution S′ with cost not larger than that of S.

Proof. Consider a generic set of rows Ri. By Lemma 16 all rows of Ri are not
in the filler cluster. This fact implies that, if Ri is neither red or black in S, the
rows of Ri can be partitioned in S in the following two ways: (i) a cluster C1
contains three rows of Ri and a row of E(Ri), while C2 contains two rows of Ri

and two rows of E(Ri), or (ii) a cluster C of S contains all rows of Ri and some
rows of E(Ri).

In the first case, replace C1 and C2 with two clusters C′
1, C′

2 where C′
1 consists

of 4 rows of Ri and C′
2 consists of a row of Ri and all rows of E(Ri) (it is

immediate to notice that C′
1, C

′
2 have cost 12 and 24 respectively, while C1 and

C2 have both cost 24). In the second case move all rows in C ∩ E(Ri) to the
filler cluster. Let x be |C ∩ E(Ri)|, then the cost of C in S is 6 · (5 + x), while
the cost of those rows in the new solution is equal to 3 · 5 + 8 · x. Since x ≤ 3,
the cost of the new solution is strictly smaller than that of S. �

Notice that, given a normal solution S, each set Ri red in S has a cost of 15,
each set Ri black in S has a cost of 36 (distribuited as a cost of 12 to the rows
of Ri and a cost of 24 to the 3 edge rows in the black solution of Ri), and the
filler cluster Fc has cost 8|Fc|. Now, it is easy to see that Lemma 18 holds.

Lemma 18. Let S be a normal solution with k red sets Ri. Then S has cost
12(|V | − k) + 15k + 8|E| + 32.

Now, we can show that the sets of rows Ri that are red in a normal solution S
corresponds to a cover of the graph G.

Lemma 19. Let S be a normal solution of 4-AP(8) of cost 12(|V | − k) + 15k+
8|E| + 32. Then it can be computed in polynomial time a vertex cover of G of
size k.

Proof. Since S is a normal solution of 4-AP(8) of cost 12(|V | − k) + 15k+ 8|E|,
then all the sets Ri must be associated with either a red or a black solution.
Furthermore, since all the edge rows have a cost of 8 in S, then, it follows that
there must exist k sets Ri associated with a red solution, and |V | − k associated
with a black solution.

Notice that, given two black sets Ri and Rj , there cannot be an edge between
two vertices vi and vj of G associated with Ri and Rj , by definition of black
solution. Hence, vertices associated with black sets of S form an independent
set of G, which in turn implies that the vertices associated with red sets are a
vertex cover of G. �
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Theorem 20. The 4-AP(8) problem is APX-hard.

Proof. Let C be a vertex cover of graph G. Then, it is easy to see that a normal
solution of cost at most 12|V |+3|C|+8|E|+32 can be computed in polynomial
time by defining a black solution for each set Ri associated with a vertex vi ∈
V \ C, a red solution for each set Ri associated with a vertex vi ∈ C, and
assigning all the remaining rows to the filler cluster Fc.

On the other side, by Lemma 19, starting from a normal solution of 4-AP(8)
having size 12(|V | − k) + 15k+ 8|E|+ 32, we can compute in polynomial time a
cover of size k for G.

Since the cost of a canonical solution of 4-AP(8) and the size of a vertex
cover of the graph G are linearly related, the reduction is an L-reduction, thus
completing the proof of APX-hardness. �
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Abstract. The n-ary first and second recursion theorems formalize two
distinct, yet similar, notions of self-reference. Roughly, the n-ary first
recursion theorem says that, for any n algorithmic tasks (of an appro-
priate type), there exist n partial computable functions that use their
own graphs in the manner prescribed by those tasks; the n-ary second
recursion theorem says that, for any n algorithmic tasks (of an appropri-
ate type), there exist n programs that use their own source code in the
manner prescribed by those tasks.

Results include the following. The constructive 1-ary form of the first
recursion theorem is independent of either 1-ary form of the second recur-
sion theorem. The constructive 1-ary form of the first recursion theorem
does not imply the constructive 2-ary form; however , the constructive
2-ary form does imply the constructive n-ary form, for each n ≥ 1. For
each n ≥ 1, the not-necessarily-constructive n-ary form of the second
recursion theorem does not imply the presence of the (n + 1)-ary form.

1 Introduction

The n-ary first and second recursion theorems [1, Ch. 11]1 formalize two distinct,
yet similar, notions of self-reference. (Henceforth, we shall refer to these simply as
the first and second recursion theorems.) In a sense, the first recursion theorem
asserts the existence of partial computable functions that refer to their own
graphs ; the second recursion theorem asserts the existence of programs that
refer to their own source code. Formally, each theorem asserts the existence of
solutions to systems of a certain type of equation. We discuss each theorem in
detail in the sections that follow.
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1 In [1], what is called the second recursion theorem in Chapter 11 proper (i.e., The-

orem IV) is a strictly weaker pseudo-fixpoint variant of Kleene’s original formula-
tion [2, Theorems 5.1 and 5.3]. The correct formulation can be found in [1, page 214,
problem 11-4] and in Section 1.3 herein.
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(a)
let rec fib0 = function 0 -> 0 | x -> fib1(x-1)

and fib1 = function 0 -> 1 | x -> fib0(x-1) + fib1(x-1)

(b)
Θ0(α0, α1)(x) =

{
0, if x = 0;
α1(x − 1), otherwise.

Θ1(α0, α1)(x) =
{

1, if x = 0;
α0(x − 1) + α1(x − 1), otherwise.

Fig. 1. (a) A system of recursive equations in Ocaml. The functions assigned to fib0

and fib1 are the minimal fixpoint of (Θ0, Θ1), where the computable operators Θ0, Θ1 :
P2 → P are as in (b).

1.1 The First Recursion Theorem

Many programming languages allow one to define functions using recursive equa-
tions , or systems thereof. Each programming language has its own syntactic nu-
ances; however, a system of n such equations typically has the following form.
The left-hand-side of each equation contains one of n function variables; the
right-hand-side of each equation contains an expression involving some subset of
those n variables. For the programming language Ocaml [3], an example is given
in Figure 1(a).

The functions defined by such a system of equations constitute some solution
of that system. Depending upon the semantics of the programming language,
however, there may exist systems of equations for which there are no solutions,
and there may exist systems of equations for which there are multiple solutions.

The first recursion theorem asserts that, for a very natural class of equations,
there will always exist a solution to a system of equations drawn from that class;
in fact, there will exist a solution that is, in some sense, simplest among all pos-
sible solutions. The first recursion theorem applies to those systems of equations
that can be expressed using computable operators ; the simplest solutions of such
systems are called minimal fixpoints . We discuss each of these topics below.

Let N be the set of natural numbers, {0, 1, 2, ...}. Let lowercase Roman letters,
with or without decorations (e.g., a, b0, c′), range over elements of N, unless
stated otherwise. Let P be the set of all partial functions mapping N to N. Let
lowercase Greek letters, with or without decorations (e.g., α, β0, γ′), range over
elements of P , unless stated otherwise. Let (Fi)i∈N be any canonical enumeration
of the finite functions [1,4]. For each n, each α0, ..., αn−1, and each β0, ..., βn−1,
(α0, ..., αn−1) ⊆ (β0, ..., βn−1) def⇔ [α0 ⊆ β0 ∧ · · · ∧ αn−1 ⊆ βn−1].

Intuitively, a computable operator is a mapping Θ : Pn → P (n ≥ 1) for
which there exists an algorithm for listing the graph of the partial function
Θ(α0, ..., αn−1) from listings of the graphs of the partial functions α0, ..., αn−1;
moreover, the content of the resulting graph does not depend upon the enumer-
ation order chosen for each of α0, ..., αn−1 [1, §9.8].2 Uppercase Greek letters,
2 Rogers [1] calls the computable operators, recursive operators.
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with or without decorations (e.g., Θ, Ψ0, Ω′), range over computable operators,
unless stated otherwise.

Computable operators have the following monotonicity and continuity prop-
erties [1, page 147]. For each n, and each Θ : Pn → P , (a) and (b) below.

(a) Monotonicity: For each α0, ..., αn−1 and β0, ..., βn−1, if (α0, ..., αn−1) ⊆
(β0, ..., βn−1), then Θ(α0, ..., αn−1) ⊆ Θ(β0, ..., βn−1).

(b) Continuity: For each α0, ..., αn−1, and each (x, y) ∈ Θ(α0, ..., αn−1), there
exist i0, ..., in−1 such that (Fi0 , ..., Fin−1) ⊆ (α0, ..., αn−1) and (x, y) ∈
Θ(Fi0 , ..., Fin−1).

For each n, each α0, ..., αn−1, and each Θ0, ..., Θn−1 : Pn → P , (α0, ..., αn−1)
is a fixpoint of (Θ0, ..., Θn−1) def⇔

α0 = Θ0(α0, ..., αn−1);
...

αn−1 = Θn−1(α0, ..., αn−1).
(1)

Intuitively, an α0, ..., αn−1 as in (1) can be thought of as a collection of functions
that refer to themselves . What each αi does with the information obtained from
this self/other-reference is determined by Θi.

For each n, each α0, ..., αn−1, and each Θ0, ..., Θn−1 : Pn → P , (α0, ..., αn−1)
is the minimal fixpoint of (Θ0, ..., Θn−1) def⇔ (a) and (b) below.3

(a) (α0, ..., αn−1) is a fixpoint of (Θ0, ..., Θn−1).
(b) For each β0, ..., βn−1, if (β0, ..., βn−1) is a fixpoint of (Θ0, ..., Θn−1), then

(α0, ..., αn−1) ⊆ (β0, ..., βn−1).

Condition (b) gives the sense in which a minimal fixpoint represents the simplest
possible solution to a system of recursive equations: any other solution is more
complicated in that there are more pairs in the graphs of its functions.

For each n, the n-ary form of the first recursion theorem says that, for each
Θ0, ..., Θn−1 : Pn → P , (Θ0, ..., Θn−1) has a minimal fixpoint (α0, ..., αn−1), and,
moreover, each of α0, ..., αn−1 is partial computable. Thus, if a system of equa-
tions can be written in the form of (1), for some Θ0, ..., Θn−1, then that system
has a simplest possible solution, namely, the minimal fixpoint of (Θ0, ..., Θn−1).
The example given in Figure 1(a) can be written in this way, using the com-
putable operators Θ0 and Θ1 of Figure 1(b).

For obvious reasons, the first recursion theorem is also called the minimal
fixpoint theorem.

1.2 The First Recursion Theorem in Programming Systems

From a programming languages standpoint, one should care, not only that a
minimal fixpoint solution exists for any given system of equations, but also that
3 It is straightforward to show that such a fixpoint must be unique; hence, we are

justified in calling it the minimal fixpoint.
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there exist programs witnessing that minimal fixpoint. This idea is formalized
in the following paragraphs.

Let PC be the set of all partial computable functions mapping N to N. An
effective programming system (eps) [1,4] is an onto numbering (ψq)q∈N of PC
such that λq, x ψq(x) is partial computable. An eps may be thought of as an
abstraction of the notion of programming language, in the following sense. If one
were to take the programs in some programming language for PC, and number
those programs, e.g., length-lexicographically, then the function which sends q
to the semantics of the qth program would be an eps.

For each n ≥ 1, we say that the not-necessarily-constructive n-ary form of the
minimal fixpoint theorem (n-mfp) holds in eps (ψq)q∈N

def⇔ for each Θ0, ..., Θn−1 :
Pn → P , there exist e0, ..., en−1 such that

(ψe0 , ..., ψen−1) is the minimal fixpoint of (Θ0, ..., Θn−1). (2)

Thus, e0, ..., en−1 witness the minimal fixpoint of (Θ0, ..., Θn−1) in (ψq)q∈N.
Intuitively, e0, ..., en−1 is a collection of programs that have limited knowledge

of one another. More specifically, each ei can refer to only the extensional (syn-
onym: denotational) characteristics of e0, ..., en−1, i.e., their I/O behavior [5].

As it turns out, n-mfp is ubiquitous.

Proposition 1. For each n ≥ 1, and each eps (ψq)q∈N, n-mfp holds in (ψq)q∈N.

Proof of Proposition. Let n and (ψq)q∈N be as stated. Let Θ0, ..., Θn−1 : Pn → P
be fixed. By the first recursion theorem, (Θ0, ..., Θn−1) has a minimal fixpoint
(α0, ..., αn−1), and each of α0, ..., αn−1 is partial computable. Thus, since (ψq)q∈N

is an onto map of PC, there exist e0, ..., en−1 such that ψe0 = α0 ∧ · · · ∧ ψen−1 =
αn−1. � (Proposition 1)

One problem with n-mfp is that it lacks constructivity. That is, n-mfp merely
requires that the witnessing programs, e0, ..., en−1, exist . However, it would
seem reasonable to expect that one could construct e0, ..., en−1 from (codes for)
Θ0, ..., Θn−1.

For each n, let a numbering (Ωj)j∈N of the computable operators of type
Pn → P be effective def⇔ the predicate λi, j, i0, ..., in−1 [Fi ⊆ Ωj(Fi0 , ..., Fin−1)] is
partial computable.4 Let 〈·, ·〉 be any fixed pairing function.5 For each x, 〈x〉 def= x,
and, for each x0, ..., xn−1, where n > 2, 〈x0, ..., xn−1〉 def=

〈
x0, 〈x1, ..., xn−1〉

〉
.

For each n ≥ 1, we say that the constructive n-ary form of the minimal fix-
point theorem (n-MFP) holds in eps (ψq)q∈N

def⇔ there exist computable functions
μ0, ..., μn−1 : Nn → N, and an effective numbering (Ωj)j∈N of the computable
operators of type Pn → P such that, for each j = (j0, ..., jn−1), (2) holds with
ei = μi(j) and Θi = Ωji , for each i < n, i.e.,

(ψμ0(j), ..., ψμn−1(j)) is the minimal fixpoint of (Ωj0 , ..., Ωjn−1). (3)

4 Rogers’ proof of the fundamental operator theorem [1, Theorem 9-XXIII] shows that
such numberings exist.

5 A pairing function is computable, 1-1, onto, and of type N2 → N [1, page 64].



42 J. Case and S.E. Moelius III

(Note that capital letters are used to distinguish the constructive forms of the
first recursion theorem, e.g., n-MFP, from the not-necessarily-constructive forms,
e.g., n-mfp.) Intuitively, each j = (j0, ..., jn−1) names a system of equations, i.e.,

α0 = Ωj0(α0, ..., αn−1);
...

αn−1 = Ωjn−1(α0, ..., αn−1).

(4)

The functions μ0, ..., μn−1 find the simplest possible solution of that system, in
the sense of (3).

Unlike n-mfp, there do exist epses in which n-MFP does not hold, for each
n ≥ 1. (See Theorem 10 below, for example.) This leads one to ask: what can
be said of those epses in which n-MFP holds? What can be said of those epses
in which n-MFP does not hold? We revisit these questions in Section 2.

1.3 The Second Recursion Theorem

While the first recursion theorem is about partial computable functions that refer
to their own graphs , the second recursion theorem is about programs that refer
to their own source code. Formally: for each n ≥ 1, the n-ary form of the second
recursion theorem (n-krt)6 holds in eps (ψq)q∈N

def⇔ for each α0, ..., αn−1 ∈ PC,
there exist e0, ..., en−1 such that

ψe0 = α0(〈e0, ..., en−1, ·〉);
...

ψen−1 = αn−1(〈e0, ..., en−1, ·〉).
(5)

The above can be interpreted as follows. Each ei constructs copies of e0, ..., en−1
— including ei, itself. Then, ei performs its associated task, αi, using these
self/other-copies.

These self/other-copies provide ei complete, low-level knowledge of
e0, ..., en−1. As such, ei is able to reflect upon the intensional (synonym: conno-
tational) characteristics of e0, ..., en−1, e.g., their sizes, runtimes, memory usage,
etc. Of course, by simulating e0, ..., en−1, it is possible for ei to reflect upon their
extensional characteristics as well [5].

The proof of Theorem 5 in [8] (Theorem 2 below) features a nice application
of 2-krt. We give some highlights of the proof below. Let (ϕp)p∈N be any standard
numbering of PC.7 For each p ∈ N, let Wp be the domain of ϕp. Thus, (Wp)p∈N

is a (standard) numbering of the computably enumerable (ce) sets [1].
6 The ‘k’ in n-krt is for “Kleene”. The 1-ary forms of the two recursion theorems are

due to him. The generalized n-ary first recursion theorem is due to Manna, et al. [6,
pages 30 and 31]. The 2-ary form of the second recursion theorem follows essentially
from Smullyan’s [7, page 75, Theorem 5]. The generalized n-ary second recursion
theorem appears to be a folk theorem.

7 Any standard numbering is acceptable. As such, n-krt holds in such a numbering, for
each n ≥ 1. (See the discussion surrounding Theorem 5 below.)
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Theorem 2 (Case [8, Theorem 5]). There is no algorithm to extend a com-
putable partial order to ce total order, in the following sense. There is no com-
putable function f : N → N such that, for each x and y, if

– ϕx is a characteristic function for a finite set A,8

– ϕy is a characteristic function for a set R ⊆ A×A, and
– the transitive closure of R is a partial order on A,

then Wf(x,y) is a total order on A which includes the transitive closure of R.9

The proof of Theorem 2 begins by supposing that such an f exists. Two pro-
grams, e0 and e1, are then obtained via an application of 2-krt. Intuitively, e0
plays the role of x in Theorem 2, while e1 plays the role of y. Each program: (1)
constructs copies of both itself and the other , (2) computes f(e0, e1) using these
self/other-copies, and then (3) begins listing Wf(e0,e1). By reacting to the pairs
so listed, e0 and e1 are able to cause f to fail to meet its specification, thereby
obtaining a contradiction.

Another interesting application of 2-krt appears in the proof of
[10, Theorem 3].

Like n-mfp (Section 1.2), there is no constructivity in the definition of n-krt.
Unlike n-mfp, however, there do exist epses in which n-krt does not hold, for
each n ≥ 1.10

Nearly every mainstream programming language supports recursive equa-
tions of the form of (1). In this sense, the first recursion theorem is explicitly
built-in to such programming languages. No mainstream programming language
seems to have the second recursion theorem so explicitly built-in, however. We
recommend that such programming languages be developed since they would
have applications, e.g., for self-modeling in artificial intelligence, as suggested
by [14,15,16,17].11

1.4 Constructive Forms of the Second Recursion Theorem

The second recursion theorem has constructive forms similar to those presented
for the first recursion theorem in Section 1.2 (i.e., n-MFP). For each n ≥ 1, the
n-ary form of the relatively constructive second recursion theorem (n-RelKRT)
holds in eps (ψq)q∈N

def⇔ there exist computable functions r0, ..., rn−1 : Nn → N,
and an eps (ξp)p∈N such that, for each p = (p0, ..., pn−1), (5) holds with ei = ri(p)
and αi = ξpi , for each i < n, i.e.,

8 A characteristic function for a set A is a (total) function g : N → {0, 1} such that
(∀x)[g(x) = 1 ⇔ x ∈ A].

9 The action of f in Theorem 2 can be seen as a form of topological sort [9].
10 This follows from Riccardi’s [2, Theorem 3.9] (also [11, Theorem 2.9]) and the exis-

tence of Friedberg numberings [12,13], for example.
11 We would also like to understand mathematically the usefulness and possible profun-

dity of perfect n-ary self/other-modeling and self/other-knowledge; hence, a future
project is to insightfully characterize, for each n ≥ 1, the epses in which n-krt holds.
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ψr0(p) = ξp0

(
〈r0(p), ..., rn−1(p), ·〉

)
;

...
ψrn−1(p) = ξpn−1

(
〈r0(p), ..., rn−1(p), ·〉

)
.

(6)

In (6), (ψq)q∈N is an eps for representing self-referential programs (e.g., r0(p),
..., rn−1(p)), while (ξp)p∈N is an eps for representing programs for tasks (e.g.,
p0, ..., pn−1).

The 1-ary form of RelKRT was introduced in [18]. Therein, it was shown that
1-krt and 1-RelKRT are equivalent , in the following sense.

Theorem 3 (Case, Moelius [18, Theorem 2]). For each eps (ψq)q∈N, 1-krt
holds in (ψq)q∈N ⇔ 1-RelKRT holds in (ψq)q∈N.

Thus, for any eps containing self-referential programs, there exists some effective
numbering of all algorithmic tasks from which those self-referential programs can
be found constructively.

A special case of RelKRT that has been considered frequently in the literature
(e.g., in [2,11,5]) is the following. For each n ≥ 1, the constructive n-ary form
of the second recursion theorem (n-KRT) holds in eps (ψq)q∈N

def⇔ there exist
computable functions r0, ..., rn−1 : Nn → N such that, for each q = (q0, ..., qn−1),
(6) holds with (ψq)q∈N = (ξp)p∈N, i.e.,

ψr0(q) = ψq0

(
〈r0(q), ..., rn−1(q), ·〉

)
;

...
ψrn−1(q) = ψqn−1

(
〈r0(q), ..., rn−1(q), ·〉

)
.

(7)

KRT is a special case of RelKRT in that the eps for representing self-referential
programs (i.e., (ψq)q∈N), and the eps for representing programs for tasks (i.e.,
(ξp)p∈N), are the same.

In his thesis, Riccardi showed the following.

Theorem 4 (Riccardi [2, Theorem 3.15], [11, Theorem 2.13]). There
exists an eps (ψq)q∈N such that (∀n ≥ 1)[n-krt holds in (ψq)q∈N], but 1-KRT
does not hold in (ψq)q∈N.

In addition to the above, Riccardi’s thesis featured another remarkable result.
An eps (ψq)q∈N is acceptable def⇔ every other eps can be compiled into (ψq)q∈N,
i.e., (∀ eps (ξp)p∈N)(∃ computable t : N → N)(∀p)[ψt(p) = ξp] [1,4,2,11,5].

Theorem 5 (Riccardi [2, Theorem 3.6], [11, Theorem 2.6]). For each
eps (ψq)q∈N, (ψq)q∈N is acceptable ⇔ 2-KRT holds in (ψq)q∈N.

It can be shown that, if (ψq)q∈N is an acceptable eps, then (ψq)q∈N has the
following desirable properties.

(a) (ψq)q∈N has an implementation of every control structure.12

(b) For each n ≥ 1, n-MFP holds in (ψq)q∈N.

12 See [2,11] for an explanation of this result.
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(c) For each n ≥ 1, n-KRT holds in (ψq)q∈N.
(d) For each n ≥ 1, n-RelKRT holds in (ψq)q∈N.13

These observations and Riccardi’s Theorem 5 above imply the following.

Corollary 6 (of Theorem 5). For each eps (ψq)q∈N, 2-KRT holds in (ψq)q∈N

⇔ (∀n ≥ 1)[n-KRT holds in (ψq)q∈N].

Thus, having the ability to find just two self-referential programs constructively
for any two programs for tasks implies having the ability to find n self-referential
programs constructively for any n programs for tasks, provided that the two
varieties of program reside in the same eps.

What if one were allowed to program the tasks in some other eps? That is,
if one were to replace 2-KRT by 2-RelKRT in Theorem 5, would the result still
hold? We answer this question in the affirmative in Section 2.

1.5 Organization

In Sections 2 and 3, we explore the relationships among the forms of the recursion
theorems mentioned above. In Section 2, we focus, primarily, on the constructive
forms of the two recursion theorems; in Section 3 we focus on the second recursion
theorem. Due to space constraints, nearly all proofs are omitted. Complete proofs
of all theorems can be found in [19].

For the remainder, we focus exclusively on effective numberings of PC (i.e.,
epses). However, it is worth mentioning that the two recursion theorems also
have applications to effective numberings of subsets of the computable functions.
See, for example, [20,21,22].

2 Constructive Forms of the Recursion Theorems

In this section, we explore the relationships among the constructive forms of the
two recursion theorems (i.e., MFP, RelKRT, and KRT). Our main results of this
section (summarized in Figure 2) are:

– 2-MFP entails acceptability (Theorem 7).
– 2-RelKRT entails acceptability (Theorem 9).
– 1-KRT does not entail 1-MFP (Theorem 10).
– 1-MFP entails neither 1-krt (Theorem 11) nor 2-MFP (Corollary 12).

Theorem 7 and its corollary are our first main results.

13 In fact, (d) follows from (c).
Since acceptability yields all of the properties considered herein, we must restrict

attention to non-acceptable epses in order to understand the interrelatedness of these
properties. epses corresponding to standard, general purpose programming languages
(e.g., Lisp, C++, or Ocaml) are acceptable. However, independence proofs (e.g., in
set theory and herein) often require the construction of pathological models.
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2-MFP −−−−−−→ 1-MFP
�

2-KRT −→ 1-KRT −→ 1-krt
� �

2-RelKRT −−−−−−−→ 1-RelKRT

Fig. 2. A summary of the main results of Section 2. Arrows indicate entailment rela-
tionships. The reflexive-transitive closure of the above diagram represents all of the
entailment relationships that hold among the forms of the recursion theorem appearing
therein.

Theorem 7. For each eps (ψq)q∈N, if 2-MFP holds in (ψq)q∈N, then (ψq)q∈N is
acceptable.

Corollary 8 (of Theorem 7). For each eps (ψq)q∈N, 2-MFP holds in (ψq)q∈N

⇔ (∀n ≥ 1)[n-MFP holds in (ψq)q∈N].

Thus, having the ability to find a minimal fixpoint solution constructively for
any two recursive equations implies having the ability to find a minimal fixpoint
solution constructively for any number of recursive equations.

Proof of Theorem 7. Let (ψq)q∈N be as stated. Let μ0, μ1 : N2 → N and (Ωj)j∈N

witness 2-MFP in (ψq)q∈N. Let (ϕp)p∈N be any acceptable eps. Let j0 be such
that, for each α0 and α1,

Ωj0(α0, α1) =
{
ϕα1(0), if α1(0) converges;
∅, otherwise. (8)

Let t : N → N be such that, for each p,

t(p) = μ0(j0, j1), where j1 is first found such that Ωj1(∅, ∅)(0) = p. (9)

Clearly, t is computable. To complete the proof, it then suffices to show that,
for each p, ψt(p) = ϕp. Let p be fixed. Let j1 be that which is selected in the
computation of t(p). Thus, Ωj1(∅, ∅)(0) = p. Let (α0, α1) be the minimal fixpoint
of (Ωj0 , Ωj1). Note that

(0, p) ∈ Ωj1(∅, ∅) {by the choice of j1}
⊆ Ωj1(α0, α1) {by the monotonicity of Ωj1}
= α1 {because (α0, α1) is a fixpoint of (Ωj0 , Ωj1)}.

(10)

Thus,
ψt(p) = ψμ0(j0,j1) {by (9) and the choice of j1}

= α0 {by the choices of μ and α0}
= Ωj0(α0, α1) {because (α0, α1) is a fixpoint of (Ωj0 , Ωj1)}
= ϕp {by (8) and (10)}.

� (Theorem 7)
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Theorem 9 just below says that 2-RelKRT entails acceptability. Recall that Ric-
cardi’s Theorem 5 above said: having the ability to find just two self-referential
programs constructively for any two programs for tasks implies having the ability
to find n self-referential programs constructively for any n programs for tasks,
provided that the two varieties of program reside in the same eps. Theorem 9
says that Riccardi’s result still holds even if the two varieties of program are al-
lowed to reside in distinct epses. The proof of Theorem 9 is similar to Riccardi’s
proof of Theorem 5 (see [2, Theorem 3.6] or [11, Theorem 2.6]).

Theorem 9. For each eps (ψq)q∈N, if 2-RelKRT holds in (ψq)q∈N, then (ψq)q∈N

is acceptable.

Theorem 10 just below says that 1-KRT does not entail 1-MFP. This result was a
surprise to us. MFP provides its witnessing programs access to only their exten-
sional characteristics. krt, on the other hand, provides its witnessing programs
access to both their intensional and extensional characteristics. (See the discus-
sions following (2) in Section 1.2, and (5) in Section 1.3). Thus, we had expected
an entailment relationship to hold between n-krt and n-MFP, and, thus, between
n-KRT and n-MFP. As Theorem 10 asserts, however, this is not the case. Un-
derstanding why is the subject of future research.14 The proof of Theorem 10 is
a finite-injury priority argument [1, page 166].

Theorem 10. There exists an eps (ψq)q∈N such that 1-KRT holds in (ψq)q∈N,
but 1-MFP does not hold in (ψq)q∈N.

Theorem 11 just below says that 1-MFP does not entail 1-krt.

Theorem 11. There exists an eps (ψq)q∈N such that 1-MFP holds in (ψq)q∈N,
but 1-krt does not hold in (ψq)q∈N.

Corollary 12 just below says that 1-MFP does not entail 2-MFP. Recall that
Corollary 8 above said: 2-MFP entails n-MFP, for each n ≥ 1. Corollary 12 says,
essentially, that this collapse which occurs upward of n = 2 does not extend
below n = 2.

Corollary 12 (of Theorems 7 and 11). There exists an eps (ψq)q∈N such
that 1-MFP holds in (ψq)q∈N, but 2-MFP does not hold in (ψq)q∈N.

We have not investigated whether n-krt entails 1-MFP, for n ≥ 2. However, we
conjecture: there exists an eps (ψq)q∈N such that (∀n ≥ 1)[n-krt holds in (ψq)q∈N],
but 1-MFP does not hold in (ψq)q∈N. We also think it would be interesting to
explore properties complementary to 1-MFP, in the spirit of [23].

3 The Second Recursion Theorem

In this section, we explore the relationships among various forms of the second
recursion theorem (i.e., KRT and krt). Our main results of this section (summa-
rized in Figure 3) are:
14 Perhaps this has something to do with minimal versus non-minimal fixpoints.
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1-KRT −→ 1-krt ←− 2-krt ←− 3-krt ←− · · ·

Fig. 3. A summary of the main results of Section 3. Arrows indicate entailment rela-
tionships. The reflexive-transitive closure of the above diagram represents all of the
entailment relationships that hold among the forms of the recursion theorem appearing
therein.

– For each n ≥ 1, n-krt does not entail (n+ 1)-krt (Theorem 13).
– 1-KRT does not entail 2-krt (Theorem 14).

Theorem 13 just below says that, for each n ≥ 1, n-krt does not entail (n +
1)-krt. Thus, the existence of self-referential programs for any n algorithmic tasks
does not imply the existence of self-referential programs for any n+1 algorithmic
tasks. The proof of Theorem 13 is a finite-injury priority argument.

Theorem 13. For each n ≥ 1, there exists an eps (ψq)q∈N such that n-krt holds
in (ψq)q∈N, but (n+ 1)-krt does not hold in (ψq)q∈N.

Theorem 14 just below says that 1-KRT does not entail 2-krt. Thus, having the
ability to find one self-referential program constructively for any one algorith-
mic task does not imply having the ability to find two self-referential programs
— constructively or otherwise — for any two algorithmic tasks. The proof of
Theorem 14 is a finite-injury priority argument.

Theorem 14. There exists an eps (ψq)q∈N such that 1-KRT holds in (ψq)q∈N,
but 2-krt does not hold in (ψq)q∈N.
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Abstract. A simple model of multi-hop communication in ad-hoc net-
works is considered. Similar models are often adopted for studying energy
efficiency and load balancing of different routing protocols. We address
an orthogonal question never considered by the networking community:
whether, regardless of specific protocols, two networks may be considered
as equivalent from the viewpoint of the communication service they pro-
vide. In particular, we consider equivalent two networks with identical
maximum and minimum inhibiting flow, and prove that this notion of
equivalence coincides with a standard trace-based notion of equivalence
borrowed from the theory of concurrency. We finally study the com-
putational complexity of the proposed equivalence and discuss possible
alternatives.

1 Introduction

In recent years, much attention has been devoted to research in the area of ad
hoc networking. Many complex theoretical problems are at stake and a variety of
efficient routing protocols have been studied for exchanging information across
a network without using centralized control [25,24,6].

Ad hoc networks are typically wireless, and multi-hop communication is
adopted because of limited wireless transmission range. Moreover, they usually
exhibit dynamic behaviour in that their topology may vary over time as a result
of mobility or resource consumption. In particular, a crucial kind of resource in
most sensor network applications is energy [3,4].

In this paper we study the dynamics of ad hoc communication in a rather
simple, and yet significant network model. Dynamics is meant in the sense of
change of state and is induced by energy consumption. Similar models have been
adopted for studying energy efficiency and load balancing of different routing
protocols [10,18]. Here we address an orthogonal question which has not received
attention in the literature on computer networks as yet: whether, regardless
of specific protocols, two networks may be considered as equivalent from the
viewpoint of the communication service they provide.

In our framework, a network is a (possibly cyclic) oriented graph equipped
with a function associating with each node a non-negative integer representing
depletable charge. We are interested in networks as channels for transmitting
information. Thus, we consider communication channels, i.e. networks with a
chosen pair of nodes called source and target. At a given time a number of
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c© Springer-Verlag Berlin Heidelberg 2009



Depletable Channels: Dynamics and Behaviour 51

(η) ◦ �� 5 �� ◦ (θ)
2

��������

◦ �� 5

��������

�������� ◦
4

��������

(ζ)
2

��������

��
◦ �� 5

��������

�������� ◦
4

��������

(ξ)

1

��

���
��

��
��

�

1
��������

◦ �� 5

����������
��������

��������

���
��

��
��

� ◦
3

��

��������

3

����������

Fig. 1. Four channels

atomic items are fed to the source and instantly flow to the target. Charges
may change as result of information passing through the net. Each item passing
through a node consumes one unit of the node’s charge, thus leaving the channel
in a state of lower energy.

In drawing channels, we let n stand for a node of charge n. Circles (◦) are
used to denote nodes whose charge is large enough to be irrelevant. Source and
target are drawn respectively as the leftmost and rightmost node in the picture.
Four channels are depicted in Figure 1. When three items are transmitted along
channel θ, node charges may change as shown below.

0
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◦ �� 2

��������

�������� ◦
3
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In particular, this result is obtained by routing two items along the northern
path, ◦ 5 2 ◦, and one along the southern, ◦ 5 4 ◦. In this new state the channel
is still capable of transmitting two more items, after which the channel is dead,
i.e. any transmission from source to target is inhibited by some exhausted node.
Different routings of three items are also possible in θ: for example, letting them
all pass south. On the other hand, not all of them may choose the northern path,
as its capacity is limited to 2 by the upper node. For the same reason θ can only
transmit up to five items, which is the value of its minimum cut. Indeed, all four
channels in the picture support a maximum flow of 5; but are they all equivalent?

In our model, where fault tolerance is not at stake, we may intuitively agree
that η and θ are indistinguishable in the source-to-target communication service
they provide. For example, we could view η as the specification of a communica-
tion service and θ as a possible implementation. However, would ζ implement η
correctly? We argue that the two channels may behave differently: while η and
θ are always alive after any transmission of four items, not so for ζ, where the
4-valued flow sending two items along the path ◦ 5 2 4 ◦ and two along ◦ 5 4 ◦
yields a dead channel. Similarly, channel ξ may be killed by a flow of just four
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items. Then again: can ζ and ξ be considered as different implementations of
the same communication service?

The present paper moves a first step towards a formal study of energy-sensitive
network behaviour. We study a natural notion of network equivalence which
equates η with θ of Figure 1, but not with ζ and ξ. In particular, we shall equate
two nets with identical maximum flow and minimum inhibiting flow (i.e., the
minimum number of items whose transmission leads to a dead channel). Such
an equivalence has a well known corresponding notion in the theory of concur-
rency, i.e. it corresponds to (complete) trace equivalence [1] built up over the
labeled transition system arising from all the possible transmissions a channel
can be engaged in. More refined notions of behavioural equivalence are stud-
ied in concurrency; most notably bisimulation [19,16]. We show that, in spite
of its simplicity, our model exhibits a variety of natural notions of behavioural
equivalences, whose richness is comparable with that of process calculi. In par-
ticular, we shall reveal in Section 5 that, although trace equivalent, ζ and ξ in
Figure 1 do exhibit different behaviour and can in fact be distinguished in terms
of bisimulation.

We believe that a theory of behavioural equivalence relating different network
topologies and charge distributions may provide guidance in solving optimization
problems and a better understanding of protocol properties, such as invariance
with respect to sameness of behaviour.

The paper is structured as follows. First, we present our model of energy-
sensitive network channels in Section 2, by describing a simple graph-based
model and the associated dynamic behaviours expressed in terms of labeled
transitions from a channel to another one. Then, in Section 3, we define a
notion of channel equivalence by means of intrinsic features of channels; we
then relate such an equivalence to a standard trace-based equivalence built
up over the transitions previously defined. This is the main result of the pa-
per. Section 4 tackles complexity issues and shows that trace equivalence is a
computationally hard problem, even when restricting to acyclic networks. Sec-
tion 5 relates trace equivalence with bisimulation. Section 6 discusses related
work and draws conclusions. Because of limited space, proofs do not include
full details; full proofs can be found in the on-line technical report available at
http://www.dsi.uniroma1.it/~gorla/papers/CGS-nets-full.pdf

2 The Model

An oriented graph (V,E) consists of a set V of vertices (or nodes) and a set
E ⊆ V × V of ordered pairs of vertices, called edges. A walk is a sequence
u1 . . .un of nodes such that (ui, ui+1) is an edge, for all i < n. We call network
a finite oriented graph equipped with a function η associating with each node a
non-negative integer representing depletable charge. We write just η to denote a
network (V,E, η) when its underlying graph, called topology, is understood.

We study networks as means to transmit information. Once fixed a source node,
written s, and a target node, written t, we call the network a communication
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channel (channel for short). A path in a channel is a (possibly cyclic) directed walk
from s to t. The set of paths of a channel η is denoted by P (η).

Paths are often defined in the literature as acyclic walks, and path-oriented
definitions of flow associate numerical values separately to paths and cycles
[2, Section 3.5]. In our framework, this would amount to allowing spontaneous
flow, not originating in the source and depleting the network by cycling in it
without ever reaching the target. Since we are interested in modeling information
traveling the net as result of a communication act by s, we restrict our attention
to flows from s to t. Formally: let rvp denote the number of times in which
a node v is repeated in a path p (zero if v �∈ p); A flow for η is a function
φ : P (η) → N such that φ(v) ≤ η(v), for every v ∈ V , where φ(v) denotes the
amount of v’s charge consumed by φ, that is φ(v) =

∑
p∈P (η) rvp · φ(p). The

value of φ is
∑

p∈P (η) φ(p). We denote by max η the value of the maximum flow
for η. We call η a dead channel if max η = 0.

To capture the notion of channel dynamics, we introduce a labeled transition
relation −→ over channels of identical topology, where (V,E, η) n−→ (V,E, θ) is
defined to hold when there exists a flow φ of value n in η such that θ (v) =
η (v) − φ (v) for all nodes v. The flow φ is said to witness the transition. A
transition η n−→ θ, and likewise any witness of it, is said to inhibit η if θ is dead.
We denote by min η the smallest value of an inhibiting flow in η.

To conclude, we now give two simple properties of the labeled transition sys-
tem just defined, namely composition and decomposition of transitions.

Proposition 1. If η n−→ θ
m−→ ζ are transitions, so is also η n+m−−−→ ζ.

Proof. Let φ and ψ witness the two transitions above. It is easy to check that
the function assigning φ(p) + ψ(p) to each path p of η is indeed a flow of value
n+m. �

Proposition 2. If η n+m−−−→ ζ is a transition, so are η n−→ θ
m−→ ζ, for some θ.

Proof. It is sufficient to show it for m = 1; the general result follows from
Proposition 1. Let φ witness the n + 1 transition and let p be a path with
φ(p) ≥ 1. The function assigning φ(q) to all paths q �= p and φ(p) − 1 to p is
clearly a flow witnessing a transition η n−→ θ, while θ 1−→ ζ is obtained by the flow
assigning 1 to p and 0 to all other paths. �

3 Behavioural Equivalence

Two channels may be indistinguishable in the service they provide; such are η and
θ of Figure 1. This statement can be made precise by equipping our model with a
notion of channel behaviour, so that channels exhibiting identical behaviour may
be considered as different implementations of the same communication service.
To that effect, we first identify the observations an external user is allowed to
make on a channel. This establishes the level of abstraction at which channels
may be distinguished.
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The very first attempt one can do in this direction is to equate all channels
with the same maximum flow. In this way, we would equate two channels by only
considering an intrinsic (or structural) property of the equated channels, without
looking at their dynamic behaviour that arises from the transitions defined for
our model. However, it is possible to bridge the structural view put forward
by the maximum flow and the dynamic behaviour arising from the transitions.
Indeed, as a first theoretical result of this paper, we prove that this structural
property of the channel has a well-known counterpart in concurrency theory:
it corresponds to what is usually called general trace equivalence for labeled
transition systems [1]. By straightforwardly adapting the standard definitions to
our framework, a general trace for a channel η is a sequence 〈n1 . . .nk〉 such that
there exist transitions η0

n1−→ η1 . . .
nk−−→ ηk where η0 = η.

Lemma 1. For every η and n ≤ max η, there exists η′ such that η n−→ η′.

Theorem 1. Two channels have identical maximum flow if and only if they
have identical sets of general traces.

Proof. (If) By contradiction: assume, e.g., that max η < max ζ = n. Then, there
exists ζ′ such that ζ n−→ ζ′. However, there exists no η′ such that η n−→ η′;
contradiction.

(Only if) Let max η = max ζ and let 〈n1 . . .nk〉 be a general trace of η. By
Proposition 1, η n−→ η′, for some η′ and n = n1+. . .+nk. Since n ≤ max η = max ζ ,
by Lemma 1 ζ n−→ ζ′, for some ζ′. By Proposition 2, we conclude that 〈n1 . . .nk〉
is a general trace of ζ. �
In this way, we would equate all the channels in Figure 1: they all have a maxi-
mum flow of value 5. In particular, every net η with n = max η is equivalent to
the net

◦ → n → ◦
However, as noticed in the introduction, ζ and ξ can be distinguished from η
and θ by observing death. Since users do notice when channels are dead, we seek
a more refined notion of equivalence capable of distinguishing ζ and ξ from η
and θ.

To this aim, we can also consider the smallest value of an inhibiting flow,
viz. min η. We can now equate two channels that have the same maximum and
minimum inhibiting flow value. In this way, channels η and θ of Figure 1 would
be equated (since max η = max θ = min η = min θ = 5), channels ζ and ξ would
be equated (since max ζ = max ξ = 5 and min ζ = min ξ = 4), but the last two
ones would not be equivalent to the first two ones, as desired.

Also in this case, this refined notion of equivalence has a well-known counter-
part in concurrency theory: it corresponds to what is usually called (complete)
trace equivalence [1]. A complete trace (or, simply, a trace) for a channel η is a
sequence 〈n1 . . .nk〉 such that there exist transitions η0

n1−→ η1 . . .
nk−−→ ηk where

η0 = η and ηk is dead. We denote by tr (η) the set of complete traces of a chan-
nel η. Two channels are complete trace equivalent (or, simply, trace equivalent)
if they have identical sets of complete traces.
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To prove this characterization (that is the main theoretical result of our pa-
per), we use some classical definitions and results from the theory of network
flows (e.g., residual net and augmenting path); we refer the reader to [2,8] or to
our on-line full version of this paper for all the details. A cut of a channel is a
subset S of the vertices such that s ∈ S and t �∈ S. We denote by S→ the set of
edges (u, v) such that u ∈ S and v �∈ S. We write u

p� v to specify that the first
and last nodes of a walk p are u and v respectively; u � v denotes such a walk
when the name p is not relevant. If p is a walk of the form u � v � v′ � w, we
denote by v

p� v′ the portion of p from v to v′. Given a node u and a set K of
edges, we write u � K to mean that every path u � t includes at least one edge
of K.

Lemma 2. Let η be a channel and φ an inhibiting flow of value n < max η;
then, there exists an inhibiting flow of value n+ 1.

Proof. To prove this result, we find it useful to work in a framework where values
are associated with edges and flows are expressed by assigning a flow to every
edge (and not to every path). Graphs where vertices are weighted can be easily
transformed in graphs where edges are weighted by applying a well-known node
splitting technique [2, Section 2.4]. Moreover, the edge-oriented presentation of
flows is less abstract than the path-oriented one, in that there may be more
path-oriented flows corresponding to one edge-oriented [2, Theorem 3.5].

Since φ inhibits η, we have that φ saturates at least one cut of η, i.e. φ(e) =
η(e), for every e ∈ S→; let us consider all such cuts and let S be a maximal cut
(w.r.t. to ‘⊆’). Since the value of φ is smaller than max η, by standard results [2]
there exists an augmenting path for η after φ.

We now prove that there exists an augmenting path p′ that crosses S exactly
once, where an augmenting path crosses a cut if it includes at least one edge
(u, v) such that, within η, it holds that u � S→ and v � S→. It is easy to show
that every augmenting path crosses S at least once. Let us fix one of them, say
p, and let (u, v) be the first edge in p that crosses S. There must be a path
v

q� t in η after φ, otherwise S would not be maximal. Indeed, we can prove the
following

Technical lemma: Let η be a channel and φ a flow that saturates one of its cuts
S. Assume that there exists a v �∈ S and a non-empty K ⊆ E such that v � K
and all the edges in K are saturated by φ. Then, there exists a cut of η greater
than S still saturated by φ.

Hence, we have that p′ � s
p� u,v

q� t is an augmenting path with exactly
one edge crossing S, viz. (u, v).

Let φ′ be the flow obtained by updating φ with p′ as follows:

φ′(u, v) �

⎧⎨
⎩
φ(u, v) + 1 if (u, v) ∈ p′
φ(u, v) − 1 if (v, u) ∈ p′
φ(u, v) otherwise

It can be proved [8] that φ′ is a flow for η of value n + 1; if we prove that
φ′ inhibits the channel, we have done. To this aim, it suffices to prove that it
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saturates S. If it was not the case, p′ would include (v, u), for some (u, v) ∈ S→.
Since u ∈ S, u � S→; hence, (v, u) cannot be the edge of p′ that crosses S. Then,
it can either be v � S→ or v � S→; however, both these possibilities lead to a
contradiction:

v � S→: since s � S→, v � S→ implies that there must be an edge crossing S
before (v, u) in p′; since t � S→, u � S→ implies that there must be an edge
crossing S after (v, u) in p′; since p′ has only one edge crossing S, this case
is not possible.

v � S→: in this case, by the technical lemma, we could exhibit a cut saturated
by φ greater than S. �

Theorem 2. Two channels are trace equivalent if and only if they have identical
maximum and minimum inhibiting flow.

Proof. (If) Let 〈n1 . . .nk〉 ∈ tr (η); because of Proposition 1, there exists an
inhibiting transition for η with value n = n1 + . . . + nk. If n ∈ {min η,max η},
by hypothesis we have that there exists an inhibiting transition for θ with value
n; otherwise, we can start from a minimum inhibiting flow and use Lemma 2 for
n − min η times to obtain an inhibiting flow for θ with value n. In both cases,
by Proposition 2 we have that 〈n1 . . .nk〉 ∈ tr (θ), as desired.

(Only if) Let us consider the traces 〈min η〉 and 〈max η〉, both belonging to tr (η);
by hypothesis, they also belong to tr (θ). If by contradiction were max θ > max η

(it cannot be ‘<’ because 〈max η〉 ∈ tr (θ)), we would have that 〈max θ〉 ∈ tr (θ)
but 〈max θ〉 �∈ tr (η), in contradiction with tr (η) = tr (θ). If min θ < min η, the
proof is similar. Thus, max θ = max η and min θ = min η, as desired. �
Notice that every channel is trace equivalent to a channel, that we call canonical,
with a very simple topology (in particular, it has no cycles). Let us define the
channel γm,n as:
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It is easy to check that min γm,n = m and max γm,n = n. Thus, γm,n can be
considered the standard representative of the trace-equivalence class of all the
nets with minimum inhibiting flow m and maximum flow n.
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4 Complexity Issues

Theorem 2 characterizes trace equivalence in terms of maximum flow and mini-
mum inhibiting flow. It is well-known that there exist polynomial time algorithms
for finding the maximum flow in a net. We are left with studying the complexity
of the following problem, that we call minimum inhibiting flow (MIF, for short):

MIF: Given a network η, find the value of the minimum inhibiting flow
for η.

MIF can be turned into a decisional problem:

DMIF: Given a network η and an integer k, is there an inhibiting flow
for η with value at most k?

Theorem 3. MIF is NP-complete.

Proof. Clearly, DMIF is in NP; by standard techniques, we can exploit this fact
to also prove that MIF is in NP.

To show that MIF is NP-hard, we reduce the problem of finding a maximal
matching of a given cardinality in a bipartite graph to DMIF. We recall that a
maximal matching in a graph (V,E) is a set of edges F ⊆ E such that:

– ∀e, e′ ∈ F it holds that e ∩ e′ = ∅;
– ∀e ∈ E∃e′ ∈ F such that e ∩ e′ �= ∅.

Let G = (V1, V2, E) be a bipartite undirected graph. We consider the channel
(V ′, E′, η), where

– V ′ = V1 ∪ V2 ∪ {s, t}, for {s, t} ∩ (V1 ∪ V2) = ∅;
– E′ = {(u, v) : {u, v} ∈ E ∧ u ∈ V1 ∧ v ∈ V2}∪

⋃
u∈V1

{(s, u)}∪
⋃

u∈V2
{(u, t)};

– η(v) = 1 for every v ∈ V1 ∪ V2.

It is easy to show that G has a maximal matching of cardinality k if and only if
η has an inhibiting flow of value k. �

We observe that, in the reduction just shown, we need to consider acyclic unitary
networks only, i.e. networks in which depletable charge of each node is 1. This
implies that MIF is an intractable problem even in this restricted case.

It is now worth noting that in concurrency theory complexity measures are
usually expressed in terms of the size of the labeled transition system (LTS,
for short) resulting from all the labeled transitions of a given process (in our
case, a channel). This is because the definitions and characterizations of process
equivalences are usually given on the LTSs of the equated processes, and not
on the processes themselves. Even for simple models like CCS, trace equivalence
is exponential in the size of the LTS [23], while other equivalences (like, e.g.,
bisimilarity [19,16]) are polynomial [12]. However, if expressed in terms of the
size of the process, all these equivalences become (at least) exponential, since
the number of states of a LTS is exponential in the size of its originating process.
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Thanks to Theorem 2, we could have directly checked equivalences on the
LTSs resulting from the equated channels. However, also in our case we would
have an exponential blow up of the number of states. For example, consider the
channel:
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It has 2n+ 2 vertices and it produces a LTS with 2n states: there are 2n paths
along which a unitary flow can be sent.

We have instead defined our behavioural equivalence by relying on proper-
ties of the equated channels, and not of their LTSs. Nevertheless, as we have
just shown, trace equivalence seems not verifiable in polynomial time (w.r.t. the
size of the equated channels); this should not be surprising. On one hand, this
agrees with the usual hardness of trace equivalence in concurrency theory men-
tioned above; on the other hand, this stimulates future work on more efficiently
verifiable, but still properly discriminating, equivalences.

5 Beyond Trace Equivalence

To conclude our presentation of trace equivalence, let us pinpoint some of its lim-
itations; such issues are standard in concurrency theory and scales to our model
too. The main issue is that trace equivalence is not preserved by transitions.
Indeed, consider the nets η and the canonical net γ2,2n, for any n > 1:

n
��						

n


������ n

��������

��������
n

��						

◦

��������

�������� ◦
n

��						
n



������ n

��������

��������

n

��						

1
��

		�
��

��
��

��
��

�

· · ·
��
1



������

◦
��						

��















������ ◦
1

��						

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ 2n− 1

Clearly, they are trace equivalent. Then, consider the unitary transition of η
that inhibits its norther cycle by taking n times such a cycle; it turns η into
the channel η′ having 0 on every node of its northern cycle. There is no unitary
transition of γ2,2n that leads to a channel that is trace equivalent to η′. Indeed,
if the unitary flow passes through the bottom vertex, the resulting channel has a
maximum flow of 2n− 1 (whereas max η′ = n); if the flow passes through (some
of) the top 2n− 1 vertices, the resulting channel has a minimum inhibiting flow
greater than 1 (whereas min η′ = 1).

In concurrency theory, a classical notion of equivalence that is more finely
grained than those based on traces relies on the notion of bisimulation. In our
framework, this a symmetric relation � on channels such that η� θ and η n−→ η′
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imply θ
n−→ θ′, for some θ′ such that η′ � θ′. Two channels η and θ are called

bisimulation equivalent if they are related by a bisimulation. In view of Theo-
rem 2, it follows immediately from the definition that bisimulation equivalence is
included in trace equivalence. Moreover, by what we have just said, the inclusion
is strict: the channels η and γ2,2n depicted above are not bisimulation equiva-
lent. Another example is given by channels ζ and ξ of Figure 1: after sending
two items along ◦ 5 2 4 ◦ in ζ we have a net with maximum flow at 2; on the
contrary, every 2-valued flow in ξ yields a channel with maximum flow greater
than 2.

A challenging issue for future work is finding a characterization of bisimulation
equivalence in terms of structural properties of channels, in the same spirit as
the characterizations we have provided for trace equivalence in this paper.

6 Conclusions and Related Work

We presented a simple model of communication networks, called channels. The
communication infrastructure is modeled by a graph connecting a sender s with
a receiver t. Nodes have a depletable charge. Labeled transitions are used to
describe the dynamics of channels, where states of the LTS are channels of iden-
tical topology and labels are the number of information units transmitted in a
communication from s to t via a legal network flow. We equated channels by
means of intrinsic channel properties (that is, their maximum flow and min-
imum inhibiting flow) and studied their complexity. Finally, we showed that
such equivalence coincides with a natural notion of equivalence borrowed from
concurrency theory.

There are several research lines that can be pursued to develop the frame-
work presented in this paper. First of all, we assume that source and target are
fixed during a channel evolution. More realistic models include scenarios where
only the target is fixed (e.g., sensor networks) or where both source and tar-
get can be any node of the net. Moreover, our model assumes that the network
topology does never change during the computation. This is clearly a simplifying
assumption and makes our model unsuited for MANETs. It would be challeng-
ing to introduce in the model such advanced features and study the resulting
equivalences.

Related work. In the last years, network scenarios have been modeled and stud-
ied by means of process algebraic techniques. In such papers, the authors usu-
ally first give a syntax for writing nets, featuring some distinguishing issues of
the modeled applications; then, they give an operational semantics and a be-
havioural equivalence to reason over nets; finally, the theory is used in some
concrete application, e.g. to verify the correctness of some network protocol or
to equate different networks with the same behaviour. According to the kind
of network modeled, we mention: [11,13,22], where mobile ad hoc networks are
considered; [15,17,14], where wireless systems are considered; [5], where peer-to-
peer overlay networks are considered. Our approach clearly follows this research



60 P. Cenciarelli, D. Gorla, and I. Salvo

line. However, we do not have a process syntax and just write networks via their
physical topology, assuming that some suitable software is hardcoded into every
node of the net to properly implement some routing strategy. A somehow simi-
lar approach has been followed by some of the authors in a previous paper [7],
where the framework was based on (hyper)graph rewriting. There, apart from
functional equivalence, other network measures (e.g., robustness) were related
to bisimulation in the model.

It is worth saying that our MIF problem somehow resembles the Network
Inhibition Problem (NIP) [20]. There, every edge of a flow net is equipped with
a destruction cost; the problem is to find a flow that leaves the net in the worst
possible condition (i.e., with the minimum max flow) and whose cost is smaller
than a given quantity. In loc. cit., it is proved that NIP is NP-complete for several
class of graphs, but polynomially approximable for most of them (e.g., planar or
grid).

A related paper is [21], where a network model (somehow similar to ours) is
used to study the complexity of finding optimal flow subnetworks. A challenging
issue for future research is the understanding of how the two approaches relate
to each other.

To conclude, we have proposed a usage of formal models different from those
usually exploited in the network community. There, formal models are often
used [9] for model checking and simulations to study, e.g., correctness of network
protocols, optimal schedulings, network measures or power consumption.

Acknowledgements. Thanks to Flavio Chierichetti for his valuable support in
the proof of Theorem 3.
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Abstract. We study combinatorial group testing schemes for learning
d-sparse boolean vectors using highly unreliable disjunctive measure-
ments. We consider an adversarial noise model that only limits the num-
ber of false observations, and show that any noise-resilient scheme in
this model can only approximately reconstruct the sparse vector. On
the positive side, we give a general framework for construction of highly
noise-resilient group testing schemes using randomness condensers.
Simple randomized instantiations of this construction give non-adaptive
measurement schemes, with m = O(d log n) measurements, that allow ef-
ficient reconstruction of d-sparse vectors up to O(d) false positives even
in the presence of δm false positives and Ω(m/d) false negatives within
the measurement outcomes, for any constant δ < 1. None of these pa-
rameters can be substantially improved without dramatically affecting
the others. Furthermore, we obtain several explicit (and incomparable)
constructions, in particular one matching the randomized trade-off but
using m = O(d1+o(1) log n) measurements. We also obtain explicit con-
structions that allow fast reconstruction in time poly(m), which would
be sublinear in n for sufficiently sparse vectors.

1 Introduction

Group testing is an area in applied combinatorics that deals with the follow-
ing problem: Suppose that in a large population of individuals, it is suspected
that a small number possess a condition or property that can only be certified
by carrying out a particular test. Moreover suppose that a pooling strategy is
permissible, namely, that it is possible to perform a test on a chosen group of
individuals in parallel, in which case the outcome of the test would be positive if
at least one of the individuals in the group possesses the condition. The trivial
strategy would be to test each individual separately, which takes as many tests
as the population size. The basic question in group testing is: how can we do
better? The idea of group testing is believed to be emerged during the screen-
ing process of draftees in World War II. Since then, a vast amount of tools and
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techniques have been developed in this area, and the problem has found a large
number of applications apart from its original aim (from testing for defective
items, e.g., defective light bulbs or resistors, as a part of industrial quality assur-
ance to DNA sequencing and DNA library screening in molecular biology, and
less obvious applications such as multiaccess communication, data compression,
pattern matching, streaming algorithms, software testing, and compressed sens-
ing, to name a few). We refer the reader to the books by Du and Hwang [1,2]
for a detailed account of the major developments in this area.

More formally, the goal in group testing is to reconstruct a d-sparse1 boolean
vector2 x ∈ �n

2 , for a known integer parameter d > 0, from as few observations
as possible. Each observation is the outcome of a measurement that outputs the
bitwise OR of a prescribed subset of the coordinates in x. Hence, a measure-
ment can be seen as a binary vector in �n

2 which is the characteristic vector
of the subset of the coordinates being combined together. More generally, a set
of m measurements can be seen as an m × n binary matrix (that we call the
measurement matrix ) whose rows define the individual measurements.

In this work we study group testing in presence of highly unreliable measure-
ments that can produce false outcomes. We will mainly focus on situations where
up to a constant fraction of the measurement outcomes can be incorrect. More-
over, we will mainly restrict our attention to non-adaptive measurements; the
case in which the measurement matrix is fully determined before the observa-
tion outcomes are known. Nonadaptive measurements are particularly important
for applications as they allow the tests to be performed independently and in
parallel, which saves significant time and cost.

On the negative side, we show that when the measurements are allowed to be
highly noisy, the original vector x cannot be uniquely reconstructed. Thus in this
case it would be inevitable to resort to approximate reconstructions, i.e., pro-
ducing a sparse vector x̂ that is close to the original vector in Hamming distance.
In particular, our result shows that if a constant fraction of the measurements
can go wrong, the reconstruction might be different from the original vector in
Ω(d) positions, irrespective of the number of measurements. For most applica-
tions this might be an unsatisfactory situation, as even a close estimate of the
set of positives might not reveal whether any particular individual is defective or
not, and in certain scenarios (such as an epidemic disease or industrial quality
assurance) it is unacceptable to miss any affected individuals. This motivates us
to focus on approximate reconstructions with one-sided error. Namely, we will
require that the support of x̂ contains the support of x and be possibly larger by
up to O(d) positions. It can be argued that, for most applications, such a scheme
is as good as exact reconstruction, as it allows one to significantly narrow-down
the set of defectives to up to O(d) candidate positives. In particular, as observed
in [3], one can use a second stage if necessary and individually test the result-
ing set of candidates to identify the exact set of positives, hence resulting in a
so-called trivial two-stage group testing algorithm. Next, we will show that in

1 We define a d-sparse vector as a vector with at most d nonzero coefficients.
2 We use the notation �q for a field (or at times, an alphabet) of size q.
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any scheme that produces no or little false negative in the reconstruction, only
up to O(1/d) fraction of false negatives (i.e., observation of a 0 instead of 1)
in the measurements can be tolerated, while there is no such restriction on the
amount of tolerable false positives. Thus, one-sided approximate reconstruction
breaks down the symmetry between false positives and false negatives in our
error model.

On the positive side, we give a general construction for noise-resilient mea-
surement matrices that guarantees approximate reconstructions up to O(d) false
positives. Our main result is a general reduction from the noise-resilient group
testing problem to construction of well-studied combinatorial objects known as
randomness condensers that play an important role in theoretical computer
science. Different qualities of the underlying condenser correspond to different
qualities of the resulting group testing scheme, as we describe later. Using the
state of the art in derandomization theory, we obtain different instantiations
of our framework with incomparable properties summarized in Table 1. In par-
ticular, the resulting randomized constructions (obtained from optimal lossless
condensers and extractors) can be set to tolerate (with overwhelming probabil-
ity) any constant fraction (< 1) of false positives, an Ω(1/d) fraction of false
negatives, and produce an accurate reconstruction up to O(d) false positives
(where the positive constant behind O(·) can be made arbitrarily small), which
is the best trade-off one can hope for, all using only O(d log n) measurements.
This almost matches the information-theoretic lower bound Ω(d log(n/d)) shown
by simple counting. We will also show explicit (deterministic) constructions that
can approach the optimal trade-off, and finally, those that are equipped with
fully efficient reconstruction algorithms with running time polynomial in the
number of measurements.

Related Work. There is a large body of work in the group testing literature
that is related to the present work; in this short presentation, we are only able

Table 1. A summary of constructions in this paper. The parameters α ∈ [0, 1) and
δ ∈ (0, 1] are arbitrary constants, m is the number of measurements, e0 (resp., e1)
the number of tolerable false positives (resp., negatives) in the measurements, and e′0
is the number of false positives in the reconstruction. The fifth column shows whether
the construction is deterministic (Det) or randomized (Rnd), and the last column shows
the running time of the reconstruction algorithm.

Det/ Rec.
m e0 e1 e′0 Rnd Time

O(d log n) αm Ω(m/d) O(d) Rnd O(mn)
O(d log n) Ω(m) Ω(m/d) δd Rnd O(mn)

O(d1+o(1) log n) αm Ω(m/d) O(d) Det O(mn)
d · quasipoly(log n) Ω(m) Ω(m/d) δd Det O(mn)
d · quasipoly(log n) αm Ω(m/d) O(d) Det poly(m)
poly(d)poly(log n) poly(d)poly(log n) Ω(e0/d) δd Det poly(m)
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to discuss a few with the highest relevance. The exact group testing problem in
the noiseless scenario is handled by what is known as superimposed coding (see
[4,5]) or the closely related concepts of cover-free families or disjunct matrices3.
It is known that, even for the noiseless case, exact reconstruction of d-sparse
signals (when d is not too large) requires at least Ω(d2 logn/ log d) measure-
ments (several proofs of this fact are known, e.g., [6,7,8]). An important class
of superimposed codes is constructed from combinatorial designs, among which
we mention the construction based on MDS codes given by Kautz and Singleton
[9], which, in the group testing notation, achieves O(d2 log2 n) measurements.

Approximate reconstruction of sparse vectors up to a small number of false
positives (that is one focus of this work) has been studied as a major ingredient
of trivial two-stage schemes [3,10,11,12,13,14]. In particular, a generalization of
superimposed codes, known as selectors, was introduced in [12] which, roughly
speaking, allows for identification of the sparse vector up to a prescribed number
of false positives. They gave a non-constructive result showing that there are
such (non-adaptive) schemes that keep the number of false positives at O(d)
using O(d log(n/d)) measurements, matching the optimal “counting bound”. A
probabilistic construction of asymptotically optimal selectors (resp., a related
notion of resolvable matrices) is given in [14] (resp., [13]), and [15,16] give slightly
sub-optimal “explicit” constructions based on certain expander graphs obtained
from dispersers.

To give a concise comparison of the present work with those listed above,
we mention some of the qualities of the group testing schemes that we will aim
to attain: (1) low number of measurements; (2) arbitrarily good degree of ap-
proximation; (3) maximum possible noise tolerance; (4) efficient, deterministic
construction: As typically the sparsity d is very small compared to n, a measure-
ment matrix must be ideally fully explicitly constructible in the sense that each
entry of the matrix should be computable in deterministic time poly(d, log n);
(5) fully efficient reconstruction algorithm: For a similar reason, the length of the
observation vector is typically far smaller than n; thus, it is desirable to have
a reconstruction algorithm that identifies the support of the sparse vector in
time polynomial in the number of measurements (which might be exponentially
smaller than n). While the works that we mentioned focus on few of the criteria
listed above, our approach can potentially attain all at the same time. As we
will see later, using the best known constructions of condensers we will have to
settle to sub-optimal results in one or more of the aspects above. Nevertheless,
the fact that any improvement in the construction of condensers would readily
translate to improved group testing schemes (and also the rapid growth of de-
randomization theory) justifies the significance of the construction given in this
work.

3 A d-superimposed code is a collection of binary vectors with the property that from
the bitwise OR of up to d words in the family one can uniquely identify the comprising
vectors. A d-cover-free family is a collection of subsets of a universe, none of which
is contained in any union of up to d of the other subsets.
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2 Preliminaries

For non-negative integers e0 and e1, we say that an ordered pair of binary vectors
(x, y), each in �n

2 , are (e0, e1)-close (or x is (e0, e1)-close to y) if y can be obtained
from x by flipping at most e0 bits from 0 to 1 and at most e1 bits from 1 to
0. Hence, such x and y will be (e0 + e1)-close in Hamming-distance. Further,
(x, y) are called (e0, e1)-far if they are not (e0, e1)-close. Note that if x and y are
seen as characteristic vectors of subsets X and Y of [n], respectively4, they are
(|Y \X |, |X \Y |)-close. Furthermore, (x, y) are (e0, e1)-close iff (y, x) are (e1, e0)-
close. A group of m non-adaptive measurements for binary vectors of length n
can be seen as an m × n matrix (that we call the measurement matrix ) whose
(i, j)th entry is 1 iff the jth coordinate of the vector is present in the disjunction
defining the ith measurement. For a measurement matrix A, we denote by A[x]
the outcome of the measurements defined by A on a binary vector x, that is, the
bitwise OR of those columns of A chosen by the support of x. As motivated by
our negative results, for the specific setting of the group testing problem that
we are considering in this work, it is necessary to give an asymmetric treatment
that distinguishes between inaccuracies due to false positives and false negatives.
Thus, we will work with a notion of error-tolerating measurement matrices that
directly and conveniently captures this requirement, as given below:

Definition 1. Let m,n, d, e0, e1, e′0, e
′
1 be integers. An m×n measurement ma-

trix A is called (e0, e1, e′0, e′1)-correcting for d-sparse vectors if, for every y ∈ �m
2

there exists z ∈ �n
2 (called a valid decoding of y) such that for every x ∈ �n

2 ,
whenever (x, z) are (e′0, e

′
1)-far, (A[x], y) are (e0, e1)-far. The matrix A is called

fully explicit if each entry of the matrix can be computed in time poly(logn).

Intuitively, the definition states that two measurements are allowed to be
confused only if they are produced from close vectors. In particular, an
(e0, e1, e′0, e

′
1)-correcting matrix gives a group testing scheme that reconstructs

the sparse vector up to e′0 false positives and e′1 false negatives even in the
presence of e0 false positives and e1 false negatives in the measurement out-
come. Under this notation, unique (exact) decoding would be possible using an
(e0, e1, 0, 0)-correcting matrix if the amount of measurement errors is bounded
by at most e0 false positives and e1 false negatives. However, when e′0 + e′1 is
positive, decoding may require a bounded amount of ambiguity, namely, up to
e′0 false positives and e′1 false negatives in the decoded sequence. In the combi-
natorics literature, the special case of (0, 0, 0, 0)-correcting matrices is known as
d-superimposed codes or d-separable matrices and is closely related to the notions
of d-cover-free families and d-disjunct matrices (cf. [1] for precise definitions).
Also, (0, 0, e′0, 0)-correcting matrices are related to the notion of selectors in [12]
and resolvable matrices in [13].

The min-entropy of a distribution X with finite support S is given by H∞(X )
:= minx∈S{− logPrX (x)}, where PrX (x) is the probability that X assigns to x.
The statistical distance of two distributions X and Y defined on the same finite
4 We use the shorthand [n] for the set {1, 2, . . . , n}.
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space S is given by 1
2

∑
s∈S |PrX (s) − PrY(s)|, which is half the �1 distance

of the two distributions when regarded as vectors of probabilities over S. Two
distributions X and Y are said to be ε-close if their statistical distance is at
most ε. We will use the shorthand Un for the uniform distribution on �n

2 , and
X ∼ X for a random variable X drawn from a distribution X . A function
C : �n

2 × �t
2 → �

	
2 is a strong k →ε k

′ condenser if for every distribution X on
�

n
2 with min-entropy at least k, random variable X ∼ X and a seed Y ∼ Ut,

the distribution of (Y,C(X,Y )) is ε-close to some distribution (Ut,Z) with min-
entropy at least t+ k′. The parameters ε, k− k′, and �− k′ are called the error,
the entropy loss and the overhead of the condenser, respectively. A condenser
with zero entropy loss is called lossless, and a condenser with zero overhead is
called a strong (k, ε)-extractor. A condenser is explicit if it is polynomial-time
computable.

3 Negative Results

In coding theory, it is possible to construct codes that can tolerate up to a con-
stant fraction of adversarially chosen errors and still guarantee unique decoding.
Hence it is natural to wonder whether a similar possibility exists in group testing,
namely, whether there is a measurement matrix that is robust against a constant
fraction of adversarial errors and still recovers the measured vector exactly. The
result below shows that this is not possible5:

Lemma 2. Suppose that an m × n measurement matrix A is (e0, e1, e′0, e′1)-
correcting for d-sparse vectors. Then (max{e0, e1}+1)/(e′0 + e′1 +1) ≤ m/d. �

The above lemma6 gives a trade-off between the tolerable error in the measure-
ments versus the reconstruction error. In particular, for unique decoding to be
possible one can only guarantee resiliency against up to O(1/d) fraction of errors
in the measurement. On the other hand, tolerance against a constant fraction
of errors would make an ambiguity of order Ω(d) in the decoding inevitable.
Another trade-off is given by the following lemma:

Lemma 3. Suppose that an m × n measurement matrix A is (e0, e1, e′0, e
′
1)-

correcting for d-sparse vectors. Then for every ε > 0, either e1 < (e′1 +1)m/(εd)
or e′0 ≥ (1 − ε)(n− d+ 1)/(e′1 + 1)2. �

As mentioned in the introduction, it is an important matter for applications
to bring down the amount of false negatives in the reconstruction as much as
possible, and ideally to zero. The lemma above shows that if one is willing to
keep the number e′1 of false negatives in the reconstruction at the zero level
(or bounded by a constant), only an up to O(1/d) fraction of false negatives in
the measurements can be tolerated (regardless of the number of measurements),

5 We remark that the negative results in this section hold for both adaptive and non-
adaptive measurements.

6 The omitted proofs can be found in the full version of this paper.
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unless the number e′0 of false positives in the reconstruction grows to an enormous
amount (namely, Ω(n) when n− d = Ω(n)) which is certainly undesirable.

As shown in [6], exact reconstruction of d-sparse vectors of length n, even
in a noise-free setting, requires at least Ω(d2 log n/ log d) non-adaptive measure-
ments. However, it turns out that there is no such restriction when an approxi-
mate reconstruction is sought for, except for the following bound which can be
shown using simple counting and holds for adaptive noiseless schemes as well:

Lemma 4. Let A be an m×n measurement matrix that is (0, 0, e′0, e
′
1)-correcting

for d-sparse vectors. Then m ≥ d log(n/d)− d− e′0 −O(e′1 log((n− d− e′0)/e′1)),
where the last term is defined to be zero for e′1 = 0. �

This is similar in spirit to the lower bound obtained in [12] for the size of selec-
tors. According to the lemma, even in the noiseless scenario, any reconstruction
method that returns an approximation of the sparse vector up to e′0 = O(d)
false positives and without false negatives will require Ω(d log(n/d)) measure-
ments. As we will show in the next section, an upper bound of O(d log n) is
in fact attainable even in a highly noisy setting using only non-adaptive mea-
surements. This in particular implies an asymptotically optimal trivial two-stage
group testing scheme.

4 A Noise-Resilient Construction

In this section we introduce our general construction and design measurement
matrices for testing D-sparse vectors7 in �N

2 . The matrices can be seen as ad-
jacency matrices of certain unbalanced bipartite graphs constructed from good
randomness condensers or extractors. The main technique that we use to show
the desired properties is the list-decoding view of randomness condensers, ex-
tractors, and expanders, developed over the recent years starting from the work
of Ta-Shma and Zuckerman on extractor codes [17]. We start by introducing the
terms that we will use in this construction and the analysis.

Definition 5. (mixtures, agreement, and agreement list) Let Σ be a finite set.
A mixture over Σn is an n-tuple S := (S1, . . . , Sn) such that every Si, i ∈ [n],
is a nonempty subset of Σ. The agreement of w := (w1, . . .wn) ∈ Σn with S,
denoted by Agr(w, S), is the quantity 1

n |{i ∈ [n] : wi ∈ Si}|. Moreover, we define
the quantity wgt(S) :=

∑
i∈[n] |Si| and ρ(S) := wgt(S)/(n|Σ|), where the latter

is the expected agreement of a random vector with S. For a code C ⊆ Σn and
α ∈ (0, 1], the α-agreement list of C with respect to S, denoted by LISTC(S, α),
is the set8 LISTC(S, α) := {c ∈ C : Agr(c, S) > α}.

Definition 6. (induced code) Let f : Γ ×Ω → Σ be a function mapping a finite
set Γ × Ω to a finite set Σ. For x ∈ Γ , we use the shorthand f(x) to denote

7 In this section we find it more convenient to use capital letters D, N, . . . instead of
d, n, . . . that we have so far used and keep the small letters for their base-2 logarithms.

8 When α = 1, we consider codewords with full agreement with the mixture.
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the vector y := (yi)i∈Ω, yi := f(x, i), whose coordinates are indexed by the
elements of Ω in a fixed order. The code induced by f , denoted by C(f) is the
set {f(x) : x ∈ Γ}. The induced code has a natural encoding function given by
x �→ f(x).

Definition 7. (codeword graph) Let C ⊆ Σn, |Σ| = q, be a q-ary code. The
codeword graph of C is a bipartite graph with left vertex set C and right vertex
set n × Σ, such that for every x = (x1, . . . , xn) ∈ C, there is an edge between
x on the left and (1, x1), . . . , (n, xn) on the right. The adjacency matrix of the
codeword graph is an n|Σ| × |C| binary matrix whose (i, j)th entry is 1 iff there
is an edge between the ith right vertex and the jth left vertex.

The following is a straightforward generalization of the result in [17] that is also
shown in [18]:

Theorem 8. Let f : �n
2 ×�t

2 → �
	
2 be a strong k →ε k

′ condenser, and C ⊆ Σ2t

be its induced code, where Σ := �
	
2. Then for any mixture S over Σ2t

we have
|LISTC(S, ρ(S)2	−k′

+ ε)| < 2k. �

Now using the above tools, we are ready to describe our construction of error-
tolerant measurement matrices. We first state a general result without specifying
the parameters of the condenser, and then instantiate the construction with
various choices of the condenser, resulting in matrices with different properties.

Theorem 9. Let f : �n
2 × �t

2 → �
	
2 be a strong k →ε k

′ condenser, and C be
its induced code, and define the capital shorthands K := 2k, K ′ := 2k′

, L := 2	,
N := 2n, T := 2t. Suppose that the parameters p, ν, γ > 0 are chosen such
that (p + γ)L/K ′ + ν/γ < 1 − ε, and D := γL. Then the adjacency matrix
of the codeword graph of C (which has M := TL rows and N columns) is a
(pM, (ν/D)M,K − D, 0)-correcting measurement matrix for D-sparse vectors.
Moreover, it allows for a reconstruction algorithm with running time O(MN).

Proof. Let M be the adjacency matrix of the codeword graph of C. It imme-
diately follows from the construction that the number of rows of M (denoted
by M) is equal to TL. Moreover, notice that the Hamming weight of each col-
umn of M is exactly T . Let x ∈ �N

2 and denote by y ∈ �M
2 its encoding, i.e.,

y := M[x], and by ŷ ∈ �M
2 a received word, or a noisy version of y. The encoding

of x can be schematically viewed as follows: The coefficients of x are assigned
to the left vertices of the codeword graph and the encoded bit on each right
vertex is the bitwise OR of the values of its neighbors. The coordinates of x
can be seen in one-to-one correspondence with the codewords of C. Let X ⊆ C
be the set of codewords corresponding to the support of x. The coordinates of
the noisy encoding ŷ are indexed by the elements of [T ] × [L] and thus, ŷ natu-
rally defines a mixture S = (S1, . . . , ST ) over [L]T , where Si contains j iff ŷ at
position (i, j) is 1. Observe that ρ(S) is the relative Hamming weight (denoted
below by δ(·)) of ŷ; thus, we have ρ(S) = δ(ŷ) ≤ δ(y) + p ≤ D/L + p = γ + p,
where the last inequality comes from the fact that the relative weight of each



70 M. Cheraghchi

column of M is exactly 1/L and that x is D-sparse. Furthermore, from the as-
sumption we know that the number of false negatives in the measurement is at
most νTL/D = νT/γ. Therefore, any codeword in X must have agreement at
least 1 − ν/γ with S. This is because S is indeed constructed from a mixture of
the elements in X , modulo false positives (that do not decrease the agreement)
and at most νT/γ false negatives each of which can reduce the agreement by
at most 1/T . Accordingly, we consider a decoder which simply outputs a binary
vector x̂ supported on the coordinates corresponding to those codewords of C
that have agreement larger than 1 − ν/γ with S. Clearly, the running time of
the decoder is linear in the size of the measurement matrix. By the discussion
above, x̂ must include the support of x. Moreover, Theorem 8 applies for our
choice of parameters, implying that x̂ must have weight less than K. �

Instantiations
Now we instantiate the general result given by Theorem 9 with various choices
of the underlying condenser and compare the obtained parameters.

Applying Optimal Extractors. Radhakrishan and Ta-Shma showed that non-
constructively, for every k, n, ε, there is a strong (k, ε)-extractor with seed length
t = log(n − k) + 2 log(1/ε) + O(1) and output length � = k − 2 log(1/ε) −
O(1), which is the best one can hope for [19]. In particular, they show that a
random function achieves these parameters with probability 1 − o(1). Plugging
this result in Theorem 9, we obtain a non-explicit measurement matrix from a
simple, randomized construction that achieves the desired trade-off with high
probability:

Corollary 10. For every choice of constants p ∈ [0, 1) and ν ∈ [0, ν0), ν0 :=
(
√

5 − 4p − 1)3/8, and positive integers D and N ≥ D, there is an M × N
measurement matrix, where M = O(D logN), that is (pM, (ν/D)M,O(D), 0)-
correcting for D-sparse vectors of length N and allows for a reconstruction al-
gorithm with running time O(MN). �

This instantiation, in particular, reproduces a result on randomized construction
of approximate group testing schemes with optimal number of measurements in
[14], but with stringent conditions on the noise tolerance of the scheme.

Applying Optimal Lossless Condensers. The probabilistic construction of
Radhakrishan and Ta-Shma can be extended to the case of lossless condensers
and one can show that a random function is with high probability a strong
k →ε k condenser with seed length t = logn+log(1/ε)+O(1) and output length
� = k+ log(1/ε) +O(1) [20]. This combined with Theorem 9 gives the following
corollary:

Corollary 11. For positive integers N ≥ D and every constant δ > 0 there is an
M×N measurement matrix, where M = O(D logN), that is (Ω(M), Ω(1/D)M,
δD, 0)-correcting for D-sparse vectors of length N and allows for a reconstruction
algorithm with running time O(MN). �
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Both results obtained in Corollaries 10 and 11 almost match the lower bound
of Lemma 4 for the number of measurements. However, we note the following
distinction between the two results: Instantiating the general construction of
Theorem 9 with an extractor gives us a sharp control over the fraction of tolerable
errors, and in particular, we can obtain a measurement matrix that is robust
against any constant fraction (bounded from 1) of false positives. However, the
number of false positives in the reconstruction will be bounded by some constant
fraction of the sparsity of the vector that cannot be made arbitrarily close to zero.
On the other hand, a lossless condenser enables us to bring down the number of
false positives in the reconstruction to an arbitrarily small fraction of D (which
is, in light of Lemma 2, the best we can hope for), but on the other hand, does
not give as good a control on the fraction of tolerable errors as in the extractor
case, though we still obtain resilience against the same order of errors.

Applying the Guruswami-Umans-Vadhan’s Extractor. While Corollaries
10 and 11 give probabilistic constructions of noise-resilient measurement matri-
ces, certain applications require a fully explicit matrix that is guaranteed to
work. To that end, we need to instantiate Theorem 9 with an explicit condenser.
First, we use a nearly-optimal explicit extractor due to Guruswami, Umans and
Vadhan, summarized in the following theorem:

Theorem 12. [18] For all positive integers n ≥ k and all ε > 0, there is an
explicit strong (k, ε)-extractor Ext : �n

2 ×�t
2 → �

	
2 with � = k− 2 log(1/ε)−O(1)

and t = logn+O(log k · log(k/ε)). �

Applying this result in Theorem 9 we obtain a similar trade-off as in Corol-
lary 10, except for a higher number of measurements which would be bounded
by O(2O(log2 log D)D logN) = O(D1+o(1) logN).

Applying the Zig-Zag Lossless Condenser. In [20] an explicit lossless con-
denser with optimal output length is constructed. In particular they show the
following:

Theorem 13. [20] For every k ≤ n ∈ �, ε > 0 there is an explicit k →ε k
condenser9 with seed length O(log3(n/ε)) and output length k+ log(1/ε)+O(1).

Combined with Theorem 9, we obtain a similar result as in Corollary 11, ex-
cept for a higher number of measurements, namely, M = D2log3(log N) = D ·
quasipoly(logN).

Measurements Allowing Sublinear Time Reconstruction. The naive re-
construction algorithm of Theorem 9 works efficiently in linear time in the size
of the measurement matrix. However, as mentioned in the introduction, for very
sparse vectors (i.e., D � N) it might be of practical importance to have a
reconstruction algorithm that runs in sublinear time in N , the length of the
9 Though not explicitly mentioned in [20], these condensers can be considered to be

strong.
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vector, and ideally, polynomial in the number of measurements, which is merely
poly(logN,D) if the number of measurements is optimal.

Observe that the main computational task done by the reconstruction algo-
rithm in Theorem 9 is in fact computation of a suitable agreement list for the
induced code of the underlying condenser. Several explicit constructions of con-
densers are equipped with efficient algorithms for computation of agreement lists
that substantially outperform exhaustive search. Namely, for such constructions
the set LISTC(S, ρ(S)+ε) can be computed in time poly(2t, 2	, 2k, 1/ε), which can
be much smaller than 2n. Here we consider two such constructions that achieve
the most favorable parameters for our application: Trevisan’s extractor10 [21]
and a lossless condenser due to Guruswami et al. [18]. We use the following
improvement of Trevisan’s extractor due to Raz et al.:

Theorem 14. [22] For every n, k, � ∈ �, (� ≤ k ≤ n) and ε > 0, there is
an explicit strong (k, ε)-extractor Tre : �n

2 × �
t
2 → �

	
2 with t = O(log2(n/ε) ·

log(1/α)), where α := k/(�− 1) − 1 must be less than 1/2. �

Using this result in Theorem 9, we obtain a measurement matrix for which the
reconstruction is possible in polynomial time in the number of measurements.
Specifically, we obtain the same parameters as in Corollary 10 using Trevisan’s
extractor except for the number of measurements, M = O(D2log3 log N ) = D ·
quasipoly(logN).

In the world of lossless condensers, Guruswami et al. [18] show the following:

Theorem 15. [18] For all constants α ∈ (0, 1) and every k ≤ n ∈ �, ε > 0 there
is an explicit strong k →ε k condenser with seed length t = (1+1/α) log(nk/ε)+
O(1) and output length � = d+ (1 + α)k. Moreover, the condenser has efficient
list recovery. �

As before, we use this construction in Theorem 9 and obtain the following:

Corollary 16. For positive integers N ≥ D and any constants δ, α > 0 there
is an M ×N measurement matrix, where M = O(D3+α+2/α(logN)2+2/α), that
is (Ω(e), Ω(e/D), δD, 0)-correcting for D-sparse vectors of length N , where e :=
(logN)1+1/αD2+1/α. Moreover, the matrix allows for a reconstruction algorithm
with running time poly(M). �
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Abstract. We study the empire colouring problem (as defined by Percy
Heawood in 1890) for maps whose dual planar graph is a tree, with
empires formed by exactly r countries. We prove that, for each fixed
r > 1, with probability approaching one as the size of the graph grows
to infinity, the minimum number of colours for which a feasible solution
exists takes one of seven possible values.

1 Introduction

Assume that the n vertices of a graphG can be partitioned into blocks B1, B2, . . .
of size r > 1, so that Bi contains vertices labelled (i−1)r+1, (i−1)r+2, . . . , ir.
The r-empire chromatic number of G is the minimum number of colours χr(G)
needed to colour the vertices of G in such a way that all vertices in a same
block receive the same colour, but pairs of blocks connected by at least one
edge of G are coloured differently. Let Tn denote a random n-vertex labelled
tree (as defined, say, in [3]). Building on previous work by two of us [11], in this
paper we prove that with probability approaching one as n tends to infinity (or
asymptotically almost surely (a.a.s.) as we will say from now on) χr(Tn) takes one
of seven possible values, for fixed r > 1. This significantly improves the results
in [11], where it was proved that there exists a positive integer sr = O(r/ log r)
such that

sr < χr(Tn) ≤ 2r a.a.s.

The proof of our results relies on a martingale argument and on tight estimates
on the first two moments of a random variable counting the number of r-empire
colourings of Tn using at most s colours. The key ingredient in the argument is
a new martingale construction on the set of n-vertex labelled trees which may
be of independent interest.

The reader at this point may question the reasons for studying this type of
colourings. Our interest in the problem comes from its relationship with other
important colouring problems. First of all its decision version reduces easily to
the classical vertex colouring problem, but it is not clear to what extent the two
are equivalent. Secondly, if G is planar, the blocks represent groups of countries
belonging to the same “empire” and a colouring in the sense described above

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 74–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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corresponds to a map colouring that gives all countries in the same empire the
same colour and different colours to adjacent empires. This r-empire colouring
problem was defined by Heawood [4] in the same paper in which he refuted a
previous “proof” of the famous Four Colour Theorem (note that the 1-empire
colouring problem is just planar graph colouring). It has been proved that 6r
colours are always sufficient, and in some cases necessary to solve this problem
[6], however not much is known about the distribution of the values of χr(G)
over the set of all planar graphs on n vertices. Our work is a first step in this
direction, and it indicates that, at least for trees, the worst-case predictions are
very pessimistic: 2r colours are necessary and sufficient to colour all trees [11,
Theorem 1], but, in fact, χr(Tn) = O(r/ log r) a.a.s. Finally, the empire colouring
problem is also related to the problem of colouring graphs of given thickness [5]
(a graph has thickness t if t is the minimum integer such that its edges can
be partitioned into at least t planar graphs). The problem is unsolved even in
the worst-case sense. It is known that the chromatic number of any graph of
thickness two must be between eight and twelve but the exact solution of this
problem is not known.

The rest of the paper is organized as follows. In Section 2 we outline our results
and proof strategy. In Section 3 we list a number of key properties of Tn and its
r-empire colourings. Section 4 is devoted to the definition of a martingale on the
set of n-vertex labelled trees. In Section 5 we prove that χr(Tn) is concentrated
in an interval of size six a.a.s. Finally, in Section 6 we give tight estimates on
the actual location of this interval.

2 Results and Proof Methods

Let Z be a random variable defined on some combinatorial structure G. If G can
be defined in some “orderly” way (formalised by the notion of filter discussed
in Section 4) the difference Z − EZ can be estimated by associating a sequence
of random variables X0, X1, . . .Xt called a Doob martingale (see Section 4) to
Z in such a way that X0 = EZ and Xt = Z and no Xi is “too far” from X0.
More specifically, if the martingale differences Xi −Xi−1 are small one can get
upper bounds on the probability that Z is far from EZ which become smaller
and smaller as the size of the structures considered becomes large. In this way
(deterministic) information about EZ can be used to make a.a.s. statements
about Z.

This approach has been applied successfully to various problems including the
occupancy [7], the analysis of quicksort [10], and, in a less direct way, the vertex
colouring of the random graph Gn,p [15]. We briefly outline the proof strategy
used in the last paper as it is particularly relevant to our problem. To obtain
information about the range of variability of χ(Gn,p) the authors proved that (a)
any subgraph of Gn,p with less than some z = z(n, p) vertices is relatively sparse
and, therefore, easy to colour with just three colours and that (b) if k is such
that a large enough proportion of the graphs considered is k-colourable then
the set of vertices that fail to be coloured is small (in particular it’s o(z)). We
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will adopt a similar approach here. We will start by proving that any subgraph
induced by a small collection of blocks in Tn (and any subgraph obtained from it
by removing any number of blocks) has small minimum degree (this is Lemma 2
in Section 3). Then we will provide an orderly definition of the class of labelled
n-vertex trees and, using a suitably defined Doob martingale on such structures,
prove that at least n− 3r

√
(n− 1) logω(n) of the vertices of Tn can be coloured

with sr +1 colours with probability at least 1− 1/ω(n) (see Lemma 4 in Section
5). These two results are sufficient to prove the following theorem.

Theorem 1. For fixed r > 1 the r-empire chromatic number of Tn is a.a.s.
concentrated over six consecutive integers.

One problem with the martingale approach outlined above is that it does not
give precise information on the location of these concentration intervals. To get
that, one often needs to rely on additional results. Using asymptotic information
about the first two moments of the number of r-empire colourings with s colour
classes obtained in [11] (see Section 3) we will be able to prove the following
result.

Theorem 2. For every fixed integer r > 1, χr(Tn) satisfies

sr ≤ χr(Tn) ≤ sr + 6.

Furthermore if r > 2(sr−1)2

2sr−3 log sr then sr + 1 ≤ χr(Tn) ≤ sr + 6.

Table 1 gives the range for χr(Tn) for the first few values of r. Note that by
[11, Theorem 1] χr(Tn) ≤ 2r for every fixed positive r. Thus Theorem 2 im-
proves the results in [11] for r ≥ 6. Also, we found that r = 43 is the small-
est value of r for which the concentration range has length seven: χ43(Tn) ∈
{16, 17, 18, 19, 20, 21, 22}.

Table 1. The concentration intervals of χr(Tn) for r ≤ 12

r 2 3,4 5,6,7 8,9 10,11,12
χr(Tn) 3,4,5,6,7,8 4,5,6,7,8,9 5,6,7,8,9,10 6,7,8,9,10,11 7,8,9,10,11,12

The observant reader will have noticed that, although Theorem 1 and Theo-
rem 2 prove that χr(Tn) a.a.s. belongs to a set of values of small fixed size, they
are weaker than analogous statements [1,2,9] proved in the past for other models
of random graphs. We speculate that this may be due to the particular features
of the problem at hand. The precise information on the moments of the relevant
random variables helps arguing that six consecutive values suffice most of the
times. However the main weakness seems to be in the fact that the martingale
defined in Section 4, in a sense, builds the tree one edge at a time, whereas the
r-empire colourings put joint constraints on blocks of vertices.
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3 Relevant Properties of Random Trees

To make our concentration argument go through we need asymptotic information
about the number of r-empire colourings of Tn using a specific number of colours
and we need to prove that certain “small” induced subgraphs of Tn are sparse.
Results in [11] address the first issue. A colouring is balanced if its colour classes
have the same size. Let Wr,s(Tn) be the number of balanced r-empire colourings
of Tn using s colours. For each integer r ≥ 2, and s ≥ 2 let cs,r = s

1
r −1(s − 1)

and an = n−
s−1
2 (cs,r)n. The following result was proved in [11].

Theorem 3. For each integer r ≥ 2, s ≥ 2, and k ≥ 1, there exists a positive
real number Cs,r,k, independent of n, such that

EWr,s(Tn)k ∼ Cs,r,k × (an)k.

The next two results, also from [11], follow from Theorem 3 and, respectively,
Markov’s and Chebyshev’s inequalities.

Theorem 4. For each fixed r > 1 there exists a positive integer sr such that
Wr,s(Tn) = 0 a.a.s. for s ≤ sr.

Theorem 5. For each fixed r > 1, Wr,s(Tn) > 0 with probability at least
br,s(n) > 0 for s > sr. Furthermore there exist positive constants br,s such
that br,s(n) → br,s as n tends to infinity.

We move now to the density properties of small subgraphs of Tn. In what follows
a set of vertices U in a tree T spans an edge e of T if e ⊆ U . We start by arguing
that the vertices of Tn belonging to any given small collection H of blocks in Tn

don’t span too many edges.

Lemma 1. For any δ > 0, let integers h and m be such that h < n3/5−δ and
m < rh. The probability that the vertices in a given collection of h blocks in Tn

spans m specific edges is at most(
1 +

2
n

)rh−1−m ( e
n

)m

.

Remark. Note that the result does not exclude the possibility that other edges
may belong to the graph induced by the vertices in the given blocks. In the proof
we will use f ∈ E(H) to signify that the vertices in the collection H spans edge
f (and possibly others). On the other hand E(H) = {f} will denote the fact
that f is the only edge spanned by the vertices in (the blocks of) H .

Proof. The probability of interest can be estimated by counting the number of
labelled trees on n vertices for which a particular collection H of h blocks spans
m particular edges. Using inclusion-exclusion we have

Pr[f1, . . . , fm ∈ E(H)] =
rh−1−m∑

k=0

(
rh− 1 −m

k

)
×(−1)k Pr[|H | = h ∧ E(H) = {f1, . . . , fm, g1, . . . , gk}]. (1)
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We next argue that, in fact, the right-hand side of (1) is asymptotic to Pr[E(H) =
{f1, . . . , fm}] as the addition of more edges makes the event less and less likely.
First note that we have

Pr[f1, . . . , fm ∈ E(H)] ≤

≤
rh−1−m∑

k=0

(
rh− 1 −m

k

)
Pr[E(H) = {f1, . . . , fm, g1, . . . , gk}].

From now on call T (k) the kth term in the sum above. By an old result of Moon
[12, Theorem 2] we have that

Pr[E(H) = {f1, . . . , fm, g1, . . . , gk}] = n−m−k
rh−m−k∏

i=1

|Ci|

(where C1, . . . , Crh−m−k are the components formed on the vertices of H by the
edges f1, . . . , fm, g1, . . . , gk). We claim that, for each integer k ∈ {0, . . . , rh−2−
m}, assuming w.l.o.g. that edge gk+1 connects components Cj1 and Cj2 , we have

T (k + 1) =
rh− 1 −m− k

(k + 1)n

(
|Cj1 | + |Cj2 |
|Cj1 | · |Cj2 |

)
T (k). (2)

To believe this claim note that the addition of gk+1 reduces the number of
components by one because two components (possibly two isolated vertices) of
the forest on m+ k edges spanning H , say Cj1 and Cj2 , get connected.

Since 1 ≤ |Ci| ≤ rh and |Cj1 | + |Cj2 | ≤ rh, implies

|Cj1 | + |Cj2 |
|Cj1 | · |Cj2 |

≤ 2,

equation (2) leads to a recurrence providing an upper bound on T (k+1) in terms
of T (k). Solving it with initial condition T (0) = n−m

∏rh−m
i=1 |Ci| gives

T (k) ≤
(

2
n

)k (
rh− 1 −m

k

)
n−m

rh−m∏
i=1

|Ci|.

Thus, by the binomial theorem,

Pr[f1, . . . , fm ∈ E(H)] ≤
(

1 +
2
n

)rh−1−m

n−m
rh−m∏
i=1

|Ci|.

The result follows from the inequality

rh−m∏
i=1

xi ≤
(

rh

rh−m

)rh−m

,

which is true of any set of positive integers x1, . . . , xrh−m adding to rh. �
The following is the relatively simple consequence of Lemma 1 that will be used
in the proof of Theorem 1.
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Lemma 2. For any δ > 0, any collection of less than n3/5−δ blocks in Tn has
average degree less than five a.a.s.

Proof. In this proofH denotes a collection of blocks in V (Tn) and |H | the number
of blocks in H . We will prove that the probability of

BAD ≡ ∃H |H | < n
3
5−δ ∧ |E(H)| ≥ 5

2
|H |

tends to zero as n tends to infinity. Let M =
(
rh
2

)
. By a simple union bound,

Pr[BAD] ≤
�n

3
5−δ	∑

h=2

(
n/r

h

) rh−1∑
m=
5h/2�

(
M

m

)
Pr[f1, . . . , fm ∈ E(H)]

(here fj are edges connecting two vertices belonging to some blocks of H). By
Lemma 1

Pr[f1, . . . , fm ∈ E(H)] ≤ (1 + o(1))
( e
n

)m

.

Hence

Pr[BAD] ≤ (1 + o(1))
�n3/5−δ	∑

h=2

(
n/r

h

) rh−1∑
m=
5h/2�

(
M

m

)( e
n

)m

≤ (1 + o(1))
�n3/5−δ	∑

h=2

(ne
rh

)h rh−1∑
m=
5h/2�

(
Me2

mn

)m

≤ (1 + o(1))
�n3/5−δ	∑

h=2

(ne
rh

)h rh−1∑
m=
5h/2�

(
r2he2

5n

)m

where the last inequality holds because M ≤ (rh)2/2 and m > 5h/2. Now, the
argument of the inner sum is less than one for sufficiently large n. Therefore

Pr[BAD] ≤ (1 + o(1))
�n3/5−δ	∑

h=2

(ne
rh

)h

rh

(
r2he2

5n

) 5h
2

= (1 + o(1))
�n3/5−δ	∑

h=2

rh

[(
r4e6

55/2

)(
h

n

)3/2
]h

≤ (1 + o(1))
�n3/5−δ	∑

h=2

rh

[(
r4e6

55/2

)(
1
n

) 3
5+ 3δ

2
]h

.

Thus, there exists C > 0 (depending on r and δ but independent of n) such that

Pr[BAD] ≤ (1 + o(1))rn
6
5−2δ

[(
r4e6

55/2

)(
1
n

) 3
5+ 3δ

2
]2

≤ Cn−δ. �
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4 Martingales

In this section we describe our martingale construction over the set of all labelled
trees on n vertices. We start by recalling few relevant definitions and results
(the interested reader may consult [8, Section 6.7] or [14, Chapter 4] for a more
extensive treatment of the topic). A σ-field (Ω,F) is a set Ω, along with a family
F of subsets that contains the empty set and is closed under complementation
and countable unions.

Definition 1. Given the σ-field (Ω, 2Ω), a filter is a sequence F0 ⊆ F1 ⊆ . . . ⊆
Fn−1 ⊆ Fn = 2Ω such that

1. F0 = {∅, Ω},
2. (Ω,Fi) is a σ-field.

One way to define a filter is to form each Fi by means of a partition (P i
j )j∈Ji of

Ω: Fi is then the collection of all sets that may be defined as unions of blocks
in the partition. Note that the partition defining Fi+1 is a refinement of the one
defining Fi. Filters are used in the definition of martingale which we state for
completeness.

Definition 2. Let (Ω,F ,Pr) be a probability space with a filter (Fi)i≥0. Sup-
pose that X0, X1, . . . are random variables such that, for each i ≥ 0, Xi is Fi-
measurable. The sequence X0, . . . , Xn is a martingale provided that, for all i ≥ 0,

E(Xi+1 | Fi) = Xi.

Doob martingales (see for instance [8]) give a simple way to construct a martin-
gale from any given random variable Z. The following result, known as Azuma’s
inequality (see, for instance, [14, Theorem 4.16]), gives bounds on the probability
that |Z − EZ| is large using a Doob martingale.

Theorem 6. Let (Ω,F) be a σ-field and F0 ⊆ F1 ⊆ . . . ⊆ Fn a filter. Let the
random variable Z be Fn-measurable, and let X0, X1, . . . , Xn be the martingale
obtained by setting Xi = E(Z | Fi). Suppose that for each i = 1, . . . , n there is a
constant ci such that

|Xi −Xi−1| ≤ ci. (3)

Then, for any t > 0,

Pr[Z − EZ < −t] ≤ exp

{
−2t2/

n∑
i=1

(ci)2
}
,

Pr[Z − EZ > t] ≤ exp

{
−2t2/

n∑
i=1

(ci)2
}

.
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Martingales on random trees. It is well-known (see for instance [13]) that a
bijection maps each n-vertex tree T labelled over the set {1, . . . , n} to a unique
sequence of n− 2 numbers in the same set, referred to as its Prüfer code. Given
a sequences (c1, . . . , cn−2), the first n−2 edges of the corresponding tree are the
sets {ci, �i}, where �i is the smallest element of {1, . . . , n} \ {�1, . . . , �i−1} that
does not occur in (ci, . . . , cn−2). The last edge of T will always connect vertex
labelled n with the single element of {1, . . . , n− 1} \ {�1, . . . , �n−2}. Conversely
the code of T can be retrieved by peeling off the vertices of T picking the leaf
with the smallest label each time and setting ci as the parent of the leaf removed
at step i in this process. We denote by C(T ) the Prüfer code of T (in fact it
is handy to work with sequences of the form (c1, . . . , cn−2, n)). Prüfer codes are
very handy because they define a very simple encoding of random trees into
sequences of positive integers. For our purposes, however, we also need to define
another, related sequence. Let L(T ) = (u1, . . . , un−1) be the permutation of the
set {1, . . . , n− 1} corresponding to the order in which leaves are peeled off T to
get C(T ). Note that the pairs (ui, ci), for i ∈ {1, . . . , n− 1} define the edges of
T . Thus if n = 8 and C(T ) = (3, 1, 2, 6, 6, 1, 8) then L(T ) = (4, 3, 5, 2, 7, 6, 1).

Given L(T ), denote by SL the set of Prüfer codes whose corresponding trees
share the same sequence L = L(T ) = (u1, . . . , un−1), and define a filter on
(SL, 2SL) by generating Si, for i ∈ {0, . . . , n − 1}, from a partition (P i

j )j∈Ji

of SL such that P i
j contains all Prüfer codes in SL sharing the same prefix

(cj1, c
j
2, . . . , c

j
i ) (here we assume that codes are ordered lexicographically). If

Z = Z(Tn) is a random variable defined on the random tree Tn, we may bound
the difference Z−EZ using the Doob martingale associated with the filter (Si)i≥0
defined over SL(Tn), provided we have some means of estimating the martingale
differences in (3). This is possible because of the following result which trans-
lates small differences in Z on rather similar trees to small differences between
consecutive elements of the martingale sequence.

Lemma 3. Let Z be a random variable defined on Tn and let X0, X1, . . . be the
Doob martingale defined on Z. Then, for each i > 0

|Xi −Xi−1| ≤ |Z(T ) − Z(T ′)|

where T and T ′ are two labelled trees on n vertices such that C(T ) ∈ SL(T ′) and
the Prüfer codes C(T ) a C(T ′) only differ at position i.

Proof (Sketch). The proof is similar to that of [15, Theorem 5]. The relevant
measure-preserving mapping in this case relates a (tree with) Prüfer code start-
ing with the prefix (c1, c2, . . . , ci−1, ci) to one starting with (c1, c2, . . . , ci−1, c

′
i)

provided the codes coincide at positions i+1, i+ 2, . . .. Also notice that, given a
sequence (c1, c2, . . . , ci) of numbers in {1, . . . , n}, all trees T with C(T ) ∈ SL(T ′)
and such that all Prüfer codes share the same prefix (c1, c2, . . . , ci) are assigned
the same probability nn−2−i. �
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5 Concentration

To be able to prove Theorem 1 we still need to argue that most vertices of Tn

can be coloured with sr + 1 colours.
In the following result we use the fact, which follows directly from Theorem 5,

that sr + 1 is in fact the smallest integer s∗ for which Pr[χr(Tn) ≤ s∗] ≥ 1/ω(n)
for any function tending to infinity arbitrarily slowly. Note that s∗ cannot be
less than sr + 1 as Pr[χr(Tn) ≤ sr] is exponentially small by Theorem 4.

Lemma 4. Let n be a positive integer and ω(n) a function of n which tends
to infinity as n grows. With probability greater than 1 − 1/ω(n) all but at most
3r
√

(n− 1) logω(n) of the vertices of Tn can be coloured using sr + 1 colours.

Proof. Let Ysr+1(Tn) be the minimal size of a set of vertices U in Tn such that
Tn \ U is sr + 1 colourable. Let T and T ′ be two instances of Tn belonging to
the same SL whose Prüfer codes differ in one position. Then

|Ysr+1(T ) − Ysr+1(T ′)| ≤ 3r

(as the symmetric difference of E(T ) and E(T ′) spans 3r vertices). Thus by
Theorem 6,

Pr[Ysr+1 − EYsr+1 ≥ α
√
n− 1] ≤ exp

{
−2α2/9r2

}
, (4)

Pr[Ysr+1 − EYsr+1 ≤ −α
√
n− 1] ≤ exp

{
−2α2/9r2

}
. (5)

Now, choose α = 3r
√

logω(n) so that exp
{
−2α2/9r2

}
= 1/ω(n). It follows

from (4) that EYsr+1 < α
√
n− 1. Thus, using (5), we have

Pr[Ysr+1 ≥ 2α
√
n− 1] < 1/ω(n). �

Proof of Theorem 1. By Lemma 4 a.a.s. all vertices of Tn outside some set U ,
|U | < 3r

√
(n− 1) logω(n), can be coloured with sr + 1 colours. Note that any

empire of Tn is either in U or its intersection with U is empty. We will prove that
χr(Tn) ≤ sr + 6 a.a.s. To see this note that the set of blocks spanned by U has
size less than n3/5−δ, for any δ < 1/10. Hence, by Lemma 2, it is 5-colourable.
The colouring of Tn can be completed using at most sr + 1 new colours. �

6 Location, Location, Location

The results so far are interesting in that they improve (at least for r > 6) the
results in [11]. However they have one significant weakness. They do not provide
any information on the actual location of the concentration interval. Theorem 2
addresses this issue. It can be derived using the concentration result proved in
the last section, and using information about the first two moments of Wr,s(Tn).

Proof of Theorem 2. Let

us =
2(s− 1)2

2s− 3
log s cs =

6s3

6s2 − 3s+ 2
log(s+ 1).
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Theorem 3 implies that, for each integer s > 1, χr(Tn) > s a.a.s. if r > us,
and χr(Tn) ≤ s with some positive probability for r < cs−1. Note that for
cs−1 < us < cs, for all positive integers s. Thus if s is the smallest integer such
that r < cs two possibilities arise:

1. us < r < cs, or
2. cs−1 ≤ r ≤ us.

In the first case we know by Theorem 4 that χr(Tn) > sr a.a.s. and, by Theorem
1, χr(Tn) ≤ sr +6 a.a.s. In the second one we cannot exclude the possibility that
χr(Tn) = sr. �
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Abstract. Suppose that we are given a set of n elements d of which
are “defective”. A group test can check for any subset, called a pool,
whether it contains a defective. It is well known that d defectives can be
found by using O(d log n) pools. This nearly optimal number of pools can
be achieved in 2 stages, where tests within a stage are done in parallel.
But then d must be known in advance. Here we explore group testing
strategies that use a nearly optimal number of pools and a few stages
although d is not known to the searcher. One easily sees that O(log d)
stages are sufficient for a strategy with O(d log n) pools. Here we prove
a lower bound of Ω(log d/ log log d) stages and a more general pools vs.
stages tradeoff. As opposed to this, we devise a randomized strategy
that finds d defectives using O(d log(n/d)) pools in 3 stages, with any
desired probability 1 − ε. Open questions concern the optimal constant
factors and practical implications. A related problem motivated by, e.g.,
biological network analysis is to learn hidden vertex covers of a small size
k in unknown graphs by edge group tests. (Does a given subset of vertices
contain an edge?) We give a 1-stage strategy using O(k3 log n) pools, with
any FPT algorithm for vertex cover enumeration as a decoder.

1 Background and Contributions

The group testing problem is to find d elements called positive (or synonymously,
defective) elements in a set X of size n by queries of the following type. The
searcher can choose arbitrary subsets Q ⊂ X called pools, and ask whether
Q contains at least one defective. Group testing has several applications, most
notably in biological and chemical testing.

Throughout this paper, log means log2 if no other base is mentioned. Non-
defective elements are called negative. A positive pool is a pool containing some
defective, thus responding Yes to a group test. A negative pool is a pool without
defectives, thus responding No to a group test.

By the information-theoretic lower bound, at least log
(
n
d

)
≈ d log(n/d) pools

are needed to find d defectives even if the number d is known in advance, and
it is an easy exercise to devise an adaptive query strategy using O(d log(n/d))
pools. Here, a strategy is called adaptive if queries are asked sequentially, that
is, every pool can be prepared based on the outcomes of all earlier queries. For

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 84–95, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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many applications however, the time consumption of adaptive strategies is hardly
acceptable, and strategies that work in a few stages are strongly preferred: The
pools for every stage must be prepared in advance, depending on the outcomes
of earlier stages, and then they are queried in parallel.

It is well known that 1-stage strategies need Ω(d2 logn/ log d) pools, and
O(d2 logn) pools are sufficient. The currently best factor is 4.28; see [7] and the
references there. The first 2-stage strategy using a number of pools within a con-
stant factor of optimum, more precisely 7.54 d log(n/d), was developed in [10] and
later improved to essentially 4 d log(n/d) [13] and finally 1.9 d log(n/d), or even
1.44 d log(n/d) for large enough d [7]. These strategies use stage 1 to find O(d)
candidate elements including all defectives, which are then tested individually
in stage 2.

The 2-stage strategies still require the knowledge of an upper bound d on
the number of defectives, and they guarantee an almost optimal query com-
plexity only relative to this d which can be much larger than the true num-
ber of defectives in the particular case. As opposed to this, adaptive strategies
with O(d log(n/d)) pools do not need any prior knowledge of d. Beginning with
[3,11,12], substantial work has been done to minimize the constant factor in
O(d log(n/d)), called the competitive ratio. The currently best results are in [16].
Our problem with unknown d was also raised in [14], and several batching strate-
gies have been proposed and studied experimentally. To our best knowledge, the
present paper is the first to establish rigorous results for this question:

Can we take the best of two worlds and perform group testing without prior
knowledge of d in a few stages, using a number of pools close to the information-
theoretic lower bound? This question is not only of theoretical interest. If the
number d of defectives varies a lot between the problem instances, then the
conservative policy of assuming some “large enough” d systematically requires
unnecessarily many tests, while a strategy with underestimated d even fails to
find all defectives.

It is fairly obvious that a 1-stage strategy cannot do better than n individual
tests. On the bright side,O(log d) stages are sufficient to accommodate a strategy
with O(d log(n/d)) pools: Simply double the assumed d in every other stage, and
apply the best 2-stage strategy repeatedly, including a check if all defectives have
been found. In this paper we prove that any deterministic strategy that insists
on O(d log n) pools needs s = Ω(log d/ log log d) stages in the worst case. This
clearly separates the complexity of the cases with known and unknown d. By
the same proof technique we show tradeoff lower bounds for pools and stages.
In particular, the number of pools in deterministic strategies with constantly
many stages cannot be limited to any function f(d) logn. Whereas the proof
idea is a standard “version space” argument counting the number of consistent
hypotheses, the details of the adversary strategy and counting process are not
obvious. We explore a hypergraph representation of the query results. There
remains a log log d gap between our current bounds. We conjecture that our
proof can be refined to give a matching Ω(log d) lower bound.
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The next result shows the power of randomization: We propose a Las Vegas
strategy that uses O(d log n) pools in only 3 stages and succeeds with any pre-
scribed constant probability, arbitrarily close to 1. Obviously, the only thing we
need is a good upper bound on d, because then we can apply any known 2-stage
strategy with O(d log n) pools, using our bound instead of the unknown actual
d. And such an estimate for d is obtained by O(log n) randomized pools in stage
1. Once more, the principal idea is simple (we use pools of exponentially growing
size and guess d based on the query outcomes), but the practical challenge is
to achieve low constant factors in the total query number O(d log n). Similarly,
by using O(d2 log n) pools we need only 2 stages, with arbitrarily high constant
probability. Note that we can always recognize in the last stage whether all de-
fectives have been found (and d was not underestimated), by one extra query
to the complement of the candidate set. In the unlikely negative case we can
simply repeat the strategy with a somewhat larger bound d, hence we even-
tually find all defectives in a constant expected number of stages and within
the same asymptotic query complexity. An open question is whether O(d log n)
randomized pools in 2 stages are sufficient.

Related to this discussion, one may wonder if determining the exact number
of defectives by group tests is perhaps easier than actually identifying the de-
fectives. Note that in applications like environmental testing we may only be
interested in the amount of contamination of samples, rather than in individual
items. However, our lower-bound proof yields as a byproduct that the complexity
is the same.

In related work [8] we studied query strategies and the computational com-
plexity of learning Boolean functions depending on only a few unknown relevant
variables. Group testing is the special case where the Boolean function is already
known to be the disjunction of the relevant variables.

One modern application of group testing is the reconstruction of biological
networks, e.g., protein interaction networks, by experiments that signal the pres-
ence of at least one interaction in a “pool” of proteins. If a group test is available
that signals interaction of one fixed protein called a bait, with a pool of other
proteins, the problem of finding all interaction partners of a bait is just the group
testing problem. Since the degrees d of vertices in interaction networks are very
different and tests are time-consuming, we arrive at exactly the problem setting
considered in this paper.

Instead of learning a whole graph, i.e., the neighbors of every vertex, we may
want to learn only a small set of vertices that is incident to all edges, that is,
a small vertex cover. In interaction networks they can be expected to play a
major role, as a small vertex cover represents, e.g., a small group of proteins
involved in all interactions [15]. Suppose that an edge group test is available that
tells, for a pool Q of vertices, whether some vertices in Q are joined by an edge.
This assumption is also known as the complex model of group testing. Then we
encounter the problem of learning a hidden vertex cover: Given a graph with a
known vertex set but an unknown edge set, and a number k, identify a vertex
cover of size at most k (or all of them), by using a possibly small number of edge
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group tests. Learning hidden structures in graphs has been intensively studied
for many structures and query models, we refer to [1,2,4] for recent results and
a survey. Learning a hidden star [1] is a related but quite different problem.

Note that the vertex cover problem is NP-complete already for “known”
graphs, on the other hand, it is a classical example of a fixed-parameter tractable
(FPT) problem: It can be solved in O(bkp(n)) time, with some constant base b
and some fixed polynomial p. In a sense we extend the classical FPT result and
show that hidden vertex covers can be learned efficiently and nonadaptively if k
is small.

Organization of the paper: In Section 2 we derive a lower bound tradoff for
stages vs. pools in deterministic group testing strategies when d is not given
to the searcher. Section 3 presents a randomized strategy for estimating the
number of defectives, leading to, e.g., a randomized competitive 3-stage group
testing strategy. In Section 4 we give our FPT-style result for learning hidden
vertex covers. Section 5 discusses potentially interesting questions for further
research. In order to emphasize the main ideas and also due to space limitations
we have omitted technicalities in several proofs, but in principle the proofs are
complete.

2 A Lower Bound for Adaptivity in Competitive
Deterministic Group Testing

In this section we give an adversarial answer strategy that forces a certain min-
imum number stages upon a searcher who wants to keep the number of pools
restricted. Consider a set X of elements, containing an unknown subset of de-
fectives.

Definition 1. Given a set P of pools, the response vector t assigns every pos-
itive (negative) pool the value 1 (0). Let P+ and P− be the set of positive and
negative pools, respectively. The response hypergraph RH(P, t) has the vertex
set V := X \

⋃
Q∈P− Q, and every Q ∈ P+ is turned into a hyperedge Q ∩ V of

RH(P, t).

Intuitively that means: The response vector just describes the outcome of a
group testing experiment on the set P of pools. The vertices of RH(P, t) are
all elements that appear in no negative pool. The hyperedges of RH(P, t) are
the positive pools restricted to these vertices, that is, all elements recognized as
negative are removed.

A hitting set of a hypergraph is a set of vertices that intersects every hy-
peredge. Note that a superset of a hitting set is a hitting set, too. From the
definitions it follows immediately:

Lemma 1. Given a response vector t, the family of possible sets of defectives,
i.e. those consistent with t, is exactly the family of hitting sets of RH(P, t). �
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Before we state our adversary strategy in detail, we outline its structure. Con-
sider any deterministic group testing strategy that works in stages. The main
idea of our adversary strategy is to answer the queries in every stage in such a
way that RH(P, t) has some hitting set that is much smaller than the vertex set.
This leaves the searcher uncertain about the status (positive or negative) of all
the other vertices in RH(P, t). Note that an adversary working against a deter-
ministic searcher can hide defectives after having seen the pools. The second idea
is a standard technical trick used in many lower-bound proofs to simplify the
analysis: The adversary may cautiously reveal some extra information. Specifi-
cally, our adversary tells the searcher a subset of defectives that forms already
a hitting set of RH(P, t). The effect is that all hyperedges of RH(P, t) are now
“explained” by the revealed defectives, thus RH(P, t) does not contain any fur-
ther useful information for the searcher. Hence the searcher can even totally
forget the hypergraph, and the searcher’s knowledge is represented by two sets:
the already known defectives, and the elements whose status is yet unknown;
each of the latter elements can be (independently!) positive or negative. We will
play with the cardinalities of these two sets and make the searcher’s life as hard
as possible. Specifically:

Let f be any monotone increasing function and d the true number of defec-
tives. Suppose that the searcher is aiming for at most f(d) log n queries in total.
Let us consider the moment prior to any stage. Suppose that k defectives are
already known and u elements are yet undecided. As we might have d = k, the
searcher can prepare a set P of at most f(k) logn pools for the next stage. (Ac-
tually, the number of pools already used up in earlier stages must be subtracted,
which makes the limit even lower, but our analysis does not take advantage of
this fact.) These queries in P can generate at most 2f(k) log n = nf(k) different
response vectors. The adversary chooses some number h ≤ u and announces that
h or more further elements are also defective. In particular, there exist

(
u
h

)
possi-

ble sets of exactly h further defectives. By the pigeonhole principle, some family
T of at least

(
u
h

)
/nf(k) of these candidate sets generate the same (consistent)

response vector t. Now the adversary answers with just this response vector t.
Let Y denote the union of all sets in T .

Lemma 2. Y is entirely in the vertex set of RH(P, t).

Proof. Assume that some q ∈ Y is in some pool Q which is negative in t, that
means, t(Q) = 0. By the definition of Y , element q also belongs to some Z ⊆ Y
such that response vector t is generated if Z is the actual set of defectives. This
contradicts Q ∩ Z = ∅. �

Define y = |Y |. Finally, the adversary actually names a set H of h new defectives
in Y , in compliance with t. By Lemma 1, H is a hitting set in RH(P, t). Since
arbitrary supersets of H are hitting sets, too, and Y is included in RH(P, t) by
Lemma 2, it follows that H plus any of the y−h elements of Y \H build a hitting
set of RH(P, t). Using Lemma 1 again, we conclude that the y − h elements of
Y \H may still be defective or not, independently of each other.
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Since Y must contain at least
(
u
h

)
/nf(k) different subsets of size h, we get the

following chain of inequalities:

yh

h!
>

(
y

h

)
≥
(
u
h

)
nf(k) >

(u− h)h

h!nf(k) .

Multiplication with h! and taking the h-th root yields y > (u− h)/nf(k)/h.
In summary, after the stage the searcher knows k + h defectives, and at least

y − h > (u − h)/nf(k)/h − h elements are undecided. Thus we update k, u by
k := k + h and u := y − h. This concludes the discussion of any one stage.

In the following, s denotes the number of stages the adversary wants to en-
force, ki and ui indicates the value of k and u, respectively, before stage i, and
hi is the value of h in stage i. The adversary will choose the hi in such a way
that u is still positive after s stages. Her choice of numbers hi > f(ki) is solely
based on f(ki).

Remember that the function f is fixed; this allows us to neglect some minor
terms in the expression for the updated u, without affecting the asymptotics: For
each d and δ > 0 there exists N such that, for n > N , at least (1 − δ)u/nf(k)/h

elements are undecided after the considered stage. This can be seen as follows:
Since k ≤ d holds at any time, the largest possible f(k) depends on d only.
Furthermore, since our adversary will always choose values h > f(k) depending
on the f(k) only, the ratios h/u become arbitrarily small when we start at large
enough n. Since δ can be made arbitrarily small, we will suppress it for simplicity,
and assume that at least u/nf(k)/h elements are undecided after the considered
stage.

Let k1 = 1, that is, one defective is revealed in the beginning. We let our
adversary choose the hi such that

∑
i f(ki)/hi ≤ 1. Since u1 = n − 1 and

ui+1 ≥ ui/n
f(ki)/hi , we have that after any number i of stages, ui is still positive,

as desired.
Specifically, let hi := sf(ki) in stage i = 1, . . . , s, that is, f(ki)/hi = 1/s and

ki+1 = ki + hi = ki + sf(ki). Now we can formulate a somewhat technical but
general result:

Theorem 1. Let f be any monotone increasing function with f(d) ≥ d for all
d. Any deterministic group testing strategy that uses, for arbitrary combinations
d, n, at most f(d) logn pools for finding a previously unknown number d of de-
fectives out of n elements, needs at least s stages in the worst case, where s
is defined as the minimum number with the following property: If the operator
k := k+ sf(k) is iterated s times starting from k = 1, then k ≥ d is reached. �

We illustrate the use of Theorem 1 for the most important cases. Due to the
information-theoretic lower bound, the smallest meaningful function f to look
at is f(d) = d.

Corollary 1. Any deterministic group testing strategy that uses, for arbitrary
combinations d, n, only O(d log n) pools for finding a previously unknown number
d of defectives out of n elements needs Ω(log d/ log log d) stages in the worst case.
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Proof. With the previous denotations, f(k) = k yields ki+1 = (s + 1)ki, hence
d = ks+1 = (s+ 1)s, and s > log d/ log log d. �

We remark that raising the number of pools by a constant factor a does not
help very much: Since f(k) = ak, our adversary chooses k := (as+ 1)k and still
achieves s = Θ(log d/ log log d), although with a smaller constant factor. Next,
for comparison with the setting where d is known, it is interesting to consider
f(d) = d2, because this number of pools would allow a 1-stage strategy if d
were known beforehand (see Section 1). However, our adversary strategy for
unknown d essentially squares k in every iteration, leading to s = Ω(log log d).
Finally, consider an arbitrary but fixed function f that may be rapidly growing.

Corollary 2. Let f be any monotone increasing function. No deterministic
group testing strategy that uses at most f(d) logn pools for finding a previously
unknown number d of defectives out of n elements can succeed in constantly
many stages.

Proof. It suffices to notice in Theorem 1 that the number s of iterations needed
to reach k ≥ d depends on d. �

This contrasts sharply to our result in the next section where we give randomized
strategies with constantly many stages, based on a randomized estimate of d.
A simple but interesting observation in this context is that finding the exact
number of defectives is not easier than solving the whole group testing problem:

Theorem 2. Any group testing strategy that exactly determines the previously
unknown number of defectives must also identify the set of defectives.

Proof. Assume that a searcher has applied any group testing strategy to some
set of elements containing d defectives, and after that the searcher knows d.
Let P be the set of pools ever used, and t the response vector. By Lemma 1,
the possible sets of defectives are exactly the hitting sets of RH(P, t). Hence,
by assumption, all hitting sets of RH(P, t) have the same cardinality. This is
possible only if RH(P, t) has only the trivial hitting set consisting of all vertices.
Using Lemma 1 again, it follows that the searcher knows the defectives. �

3 Randomized Competitive Group Testing in Only
Three Stages

In this section we show that the number d of defectives in a set of n elements can
be “conservatively” estimated by O(log n) randomized nonadaptive group tests,
i.e., the estimate is smaller than d with an arbitrarily small prescribed failure
probability, but d is overestimated only by a constant expected factor. Thus, the
estimate can be further used in any group testing strategy that needs an upper
bound on d.

Let b > 1 be a fixed positive real number. We prepare a sequence of pools
indexed by integers i as follows. We put every element independently with prob-
ability 1 − (1 − 1/n)bi

in the ith pool. The ith pool is negative with probability
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qi := (1 − 1/n)dbi

, since this is the probability that all d defectives are outside
the pool. The test outcomes of all pools are independent, as we have chosen the
elements of the pools independently. Also note that, regardless of the unknown
value of d, our sequence qi is doubly exponential: Every number is the bth power
of the previous number and the bth root of the next number. This is a nice
invariant that enables a “uniform” analysis for all possible values of d.

Let e denote Euler’s number and k :=  logb n!. We have q0 = (1−1/n)n ≈ 1/e
if d = n, and qk ≈ (1 − 1/n)n ≈ 1/e if d = 1. That means, q0 is “away from” 0
even if d = n, and qk is “away from” 1 even if d = 1. Now let i range from some
constant negative index to k plus some positive constant. Then group testing on
this sequence of pools yields, with high probability, some negative pools in the
beginning even if d = n, and some positive pools in the end even if d = 1. Notice
that we prepare roughly logb n = logn/ log b pools.

In the following, a “hat” on a variable symbol means an estimate of the
value (obtained by any proposed algorithm). We want d̂ ≥ d subject to a small
acceptable failure probability, but also a small ratio d̂/d > 1. An estimate d̂ <
d would make the subsequent stages of a group testing strategy fail, while a
generous d̂ would cause unnecessarily many group tests.

We propose a simple algorithm to estimate d from the test outcomes. It uses
another positive integer parameter s that we discuss later. The subsequent lem-
mas are meant with respect to this algorithm. Here it is:

Let i be the largest index of a negative pool; we will refer to i as
the main index. Then let q̂i−s := 1/2 and estimate d accordingly,
by d̂ := −1/(bi−s log(1 − 1/n)).

Remember that b > 1 is some fixed base. We choose s large enough to make
1/2bs

“small”, see the details below. With these presumptions we get:

Lemma 3. The probability of d̂ < d is O(1/2bs

log b).

Proof. The event d̂ < d is equivalent to the event that the algorithm returns
a main index i with qi−s < 1/2. In this case, i is one of the indices with qi <

1/2bs+j

, j ≥ 0. Hence the probability of this failure is bounded by
∑

j≥0 1/2bs+j

.
Since 1/2bs

is already small due to the choice of s, and every term is the bth power
of the previous one, the sequence then decreases rapidly: After every logb 2 =
1/ log b indices it is reduced to the square. Thus we get a failure probability as
claimed, with a small hidden constant. �

In order to express the expected competitive ratio we define a function F with
argument b > 1 by:

F (b) := max
0≤θ<1

∞∑
i=−∞

b−i+θ

2bi−θ

∞∏
k=1

(
1 − 1

2bi−θ+k

)
.

Although the expression for F (b) looks complicated, it is not hard to prove
that F (b) is monotone in b, and to get good simple bounds for F (b). However,
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here we do not further analyze F , as this affects only the constant factors in our
final result below. Some numerical values may illustrate the behaviour of F :

#pools 1 logn 2 logn 4 logn 8 logn 16 logn 32 logn
b 2.000 1.414 1.190 1.091 1.045 1.022
F (b) 1.466 0.830 0.549 0.397 0.307 0.247

Lemma 4. The expectation of d̂/d is at most F (b) · bs.

Proof. We (arbitrarily) shift indices such that 1/2b−1
> q0 ≥ 1/2b0 and define θ

such that 0 ≤ θ < 1 and q0 = 1/2b−θ

. If the main index is i, the algorithm yields
q̂i−s = 1/2 whereas qi−s := 1/2bi−s−θ

, hence d̂/d = b−i+θ · bs. From qi = 1/2bi−θ

and the definition of main index, the assertion follows. �

Altogether we have shown the following result:

Theorem 3. For any b > 1 and any positive integer s, there is a randomized 1-
stage group testing strategy with about logn/ log b pools that provides an estimate
d̂ for the number d of defectives in a set of n elements, such that d̂ < d holds
only with probability O(1/2bs

log b), and d̂/d < F (b) · bs in expectation. �

Corollary 3. Let us be given a set of n elements d of which are defective, where
the number d is not known in advance.

(i) For any ε > 0, there is a randomized group testing strategy that finds all de-
fectives in 2 stages using an expected number of O(d2 logn) pools, and succeeds
with probability at least 1 − ε.
(ii) For any ε > 0, there is a randomized group testing strategy that finds all de-
fectives in 3 stages using an expected number of O(d log(n/d)) pools, and succeeds
with probability at least 1 − ε.

Proof. By Theorem 3 we get in stage 1 some d̂ that exceeds d with the desired
proability 1 − ε, keeping the expected d̂/d constant at the same time. Then
we apply one of the established 2-stage group testing stategies for a maximum
number d̂ of defectives and obtain (ii). For (i) we show similarly that the expected
(d̂/d)2 remains constant, and apply a 1-stage group testing stategy for at most
d̂ defectives. �

Since the probability of d̂ decreases rapidly as the value grows, large deviations
from the expected number of pools are very unlikely. On the other hand, note
that d̂/d is not necessarily close to 1. The best choice of the method parameters
b, s that minimize, e.g., the hidden factor in O(d log(n/d)) depends on ε and the
largest relevant d. This needs to be further explored. We did some numerical
experiments adopting the 1.44 d log(n/d) bound for 2-stage group testing [7].
With bases 1.2 < b < 1.5 we get factors from 3 + 1/d log b to 6 + 1/d log b, for ε
from 0.1 down to 0.02.
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4 Learning Hidden Vertex Covers by Edge Group Tests

In this section we consider the problem of learning all minimal vertex covers
of size at most k from edge group tests. Note that, in general, this does not
uniquely determine the graph, because there may exist minimal vertex covers
with more than k vertices.

Definition 2. A set of pools is (2, k)-disjunct if, for any k+2 vertices w1, . . . , wk

and u, v, there exists a pool that includes u, v and excludes w1, . . . , wk.

There exist (2, k)-disjunct matrices with O(k3 logn) pools. The simplest random-
ized construction is to put every vertex in a pool independently with probability
2/k. Bounds on the size of a more general type of disjunct matrices can be found
in [5].

Let V C(n, k) denote the time for enumerating the minimal vertex covers of
size at most k in a (known!) graph of n vertices. The time depends on the state-
of-the-art of FPT vertex cover algorithms, which is beyond the scope of this
work. However, we have V C(n, k) = O(bkp(n)) where b < 2 is some fixed base
and p some fixed polynomial, see [9] for more details. If only one vertex cover is
sought, one can apply faster algorithms such as [6].

Theorem 4. We can learn all (minimal) vertex covers of size at most k in
one stage using O(k3 logn) edge group tests and O(V C(n, k)) time for auxiliary
computations.

Proof. We take a set of pools that forms a (2, k)-disjunct matrix. Consider any
pair of vertices {u, v}. Clearly, if {u, v} belongs to some negative pool then uv is
a non-edge. The other case is that {u, v} belongs to positive pools only. Assume
that u, v /∈ C for some vertex cover C with |C| ≤ k. Due to (2, k)-disjunctness,
some pool includes u, v and excludes C. This pool must be positive, as it contains
u, v. But the pool must be negative, as every edge intersects C. This contradiction
shows that every vertex cover C with |C| ≤ k contains u or v. Hence, for the
purpose of learning these small vertex covers, we may simply assume that uv
is an edge if {u, v} appears in positive pools only. This might be wrong in the
unknown graph, but the family of vertex covers of size at most k is preserved.

This reasoning also yields the following parameterized decoding algorithm
that actually generates the family of vertex covers of size at most k from the
test outcomes: Construct an auxiliary graph where uv is an edge if and only if
{u, v} belongs to positive pools only. This can be done in O(k3n2 logn) time,
which is dominated by the time for the final step: Compute the minimal vertex
covers of size at most k in this graph. �

On the other hand, the trivial information-theoretic lower bound gives:

Proposition 1. Any strategy (which may even be adaptive) for learning hidden
vertex covers of size at most k needs Θ(k log(n/k)) edge group tests. �
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An obvious question is what is the best exponent of k in the query number
O(kO(1) logn), depending on the number of stages. In Theorem 4 we did not use
prior knowledge of the size of a smallest vertex cover. If our k is too small, we
just obtain an empty result which is correct. However, if we want some vertex
cover, we have to determine the minimum size k of a vertex cover first. Here, an
O(log k)-stage deterministic strategy or a randomized 1-stage method similar to
Section 3 should work. Note that the complements of vertex covers in a graph are
exactly the independent sets, which in turn corresponds to negative pools. Hence
we could again use a randomized sequence of pools of exponentially growing size
and estimate k based on the largest negative pool. Working out the details is
left for further research.

5 Discussion

More research is needed on the practical side: Our current lower bounds do not
say too much about realistic problem sizes, but we conjecture that they can
be further raised. An obvious weakness in the analysis in Section 2 is that the
searcher is allowed to use the maximum number of pools in every new stage,
not counting the pools used up earlier. Asymptotically this is negligible, but for
moderate d our adversary gives away some power by this simplification. One may
also think of more sophisticated adversary strategies that exploit more structure
of the response hypergraphs.

In Section 3 we have, for the sake of simplicity, estimated d based on the
largest negative pool only. Combining the responses of all pools around the main
index by some averaging rule may yield even better and more robust estimates.
One idea is to use the sth largest negative pool for the estimation, rather than
the index of the largest negative pool minus s. In fact, extensive simulations
done in Matlab suggest that this improves the competitive ratio for any given
failure probability consistetly by about 20%. An obvious plan is to analyze and
understand this rule also in theory and to figure out the hidden constants we
can achieve in Corollary 3. Moreover, a 2-stage estimator where stage 1 roughly
determines the magnitude of d such that stage 2 can focus on the range of the
most likely d may save many pools. Yet another idea comes up: We studied
the problem of estimating the unknown d ≤ n independently, and then we just
applied the result to competitive group testing. For this purpose however, we
may restrict d straightaway to O(n/ logn) (since otherwise trivial individual
testing is anyhow better), and thus further reduce the total number of pools in
Corollary 3.

Similar questions arise for learning hidden vertex covers. Finally, an ambitious
application is the use of such strategies for unravelling biological interaction
networks by edge group tests in a massively parallel way. Efficiency on realistic
graphs may be tested by simulations on public interaction databases.
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Abstract. In this paper we define four combinatorial queries on par-
tial words, asking if a factor of a partial word is a k-repetition, k-free,
overlap-free, and primitive, respectively. We show how a given partial
word can be preprocessed efficiently in order to answer each of these
queries in constant time. Also, we define an update operation for partial
words: add a new symbol at the rightmost end of a given partial word;
further, we show that the data structures obtained during the prepro-
cessing mentioned above can be updated efficiently in order to still be
able to answer all the combinatorial queries, for the updated word, in
constant time.

1 Introduction

Partial words, a canonical extension of the classical words, are sequences that,
besides regular symbols, may have a number of unknown symbols, called holes
or wild cards. The study of the combinatorial properties of partial words was
initiated by Berstel and Boasson in their paper [1], having as motivation an in-
triguing practical problem, namely gene comparison, related to the central topics
of Combinatorics on Words. Until now, several such combinatorial properties of
the partial words have been investigated: periodicity, conjugacy, freeness and
primitivity (see [3,4,5,6,7,13,14,16,17]). Part of these studies consisted in finding
efficient algorithms for testing if a word verifies or not a given combinatorial
property ([6,8,16]). We refer to [2] for an extensive survey on partial words.

Motivated by the fact that, usually, we are not interested only in the prop-
erties of a given word, but also in the properties of its factors, we consider the
following problem: given a partial word as input, construct data structures (us-
ing efficient algorithms) that enable us to answer in constant time combinatorial
queries regarding the factors of that word (is a given factor a repetition?, is a
given factor primitive?, etc.). Further, we move our attention to infinite partial
words, or, from the computational point of view, arbitrarily long words. Such
words were defined and studied in recent papers ([7,13,14,16]). The most natu-
ral way to construct such words is, in our opinion, to add symbols to previously
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constructed words. Thus, we define an update operation for partial words: add a
new symbol at a word’s rightmost end. After such an operation is performed, we
investigate how the data structures constructed during the preprocessing phase
can be brought up to date, in order to still be able to answer in constant time
the previously defined queries.

We emphasize from the beginning the main difference between the problems
approached in this paper and the algorithmic problems on partial words, studied
so far ([2,6,8,16]): here we are interested in how can we construct data structures
that allow us to answer, in constant time, various combinatorial queries regarding
every factor of a partial word, and, also, that can be easily updated when the
word is updated; on the other hand, the problems approached so far in this
line of research consisted in testing combinatorial properties of the entire input
word. Also, in a sense, the problems discussed here are dynamic versions of
some algorithmic problems approached in the literature, since in this setting
there exists an interaction (modeled by queries and updates) between the data
structures constructed by the algorithms and the environment.

The structure of the paper is the following: first we provide some basic def-
initions for partial words; then, we define the data structures used throughout
the paper, and propose several algorithms for their manipulation. Further, we
define the combinatorial queries for partial words and show how we can perform
the desired preprocessing in order to answer these queries. Finally, we define
the update operation and show how the data structures defined in the previous
section can be enhanced, such that the answer to any query can still be given
constant time.

2 Basic Definitions

A partial word of length n over the alphabet A is a partial function u :{1,. . ., n} ◦→
A. For i ∈ {1, . . . , n}, if u(i) is defined we say that i belongs to the domain of u
(denoted by i ∈ D(u)), otherwise we say that i belongs to the set of holes of u
(denoted by i ∈ H(u)). For convenience, finite partial words are seen as words
over the extended alphabet A ∪ {"}: a partial word u of length n is depicted
as u = a1 . . . an, where ai = u(i), for i ∈ D(u), and ai = ", otherwise. In this
way, one can easily define the catenation, respectively the equality, of partial
words, as the catenation, respectively the equality, of the corresponding words
over A∪{"} (see [2] for details); we denote by λ the empty partial word (i.e., the
partial word of length 0). If u and v are two partial words of equal length, then
u is said to be contained in v, u ⊂ v, if all the elements of D(u) are contained in
D(v) and u(i) = v(i) for all i ∈ D(u). Two partial words u and v are compatible,
u ↑ v, if there exists a partial word w such that u ⊂ w and v ⊂ w. We say that
the partial word u is a factor of the partial word w if there exist partial words
x and y such that w = xuy. If w = a1 . . . an, we denote by w[i..j] the factor
ai . . . aj of w, and by w[i] the symbol ai.

Let w ∈ (A ∪ {"})∗ be a partial word. w is said to be a k-repetition if w =
x1 . . .xk and there exists a non-empty partial word u such that xi ⊂ u for all
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i ∈ {1, . . . , k}. w is said to be primitive if it is not a k-repetition, for any k > 1.
w is said to be k-free if it does not contain a k-repetition. A word of the form
x1y1x2y2x3 for which there exist two partial words x and y, with |x| > 0, such
that xi ⊂ x, for i ∈ {1, 2, 3}, and yj ⊂ y, for j ∈ {1, 2}, is called overlap; w is
said to be overlap-free if it does not contain an overlap. The reader interested in
more definitions and results on partial words is referred to [2].

3 Data Structures

From the very beginning, note that the time bounds we prove in the following
hold on the unit-cost RAM model. In this paper we will deal extensively with
the following (static) data structures problem:

Problem 1. Given an array T with n elements (labeled T [1], . . . , T [n]) from a
totally ordered set (with order relation ≤), and a natural constant L, prepro-
cess this array in order to answer queries “find minposT (i, i + L − 1)”, where
minposT (i, i + L − 1) =argmink∈{i,...,i+L−1} T [k] (i.e. minposT (i, i+ L − 1) re-
turns the position of the smallest value in the interval of T starting on position i
and having length L: T [i], T [i+ 1], . . . , T [i+L− 1]); in case of multiple possible
answers, we assume that minpos returns the rightmost (greatest) position where
the smallest value in the interval is found.

For this problem, we search solutions that have a time efficient preprocessing
phase (i.e., construction of data structures which help us answer queries), and
require only constant time to answer every possible query. We propose here two
such solutions, and show that they have similar time complexity. However, we
present both of them since they can be extended to solve differently a dynamic
version of Problem 1 (Problem 3, which we approach later): we show that the
extension of the first solution performs well in the worst case, while the extension
of the second one has a better performance in terms of amortized time complexity
(see [9] for a basic discussion on this type of complexity measure).

The first solution is based on the Range Minimum Query problem [10,11,12]:

Problem 2. (Range Minimum Query, RMQ) Given an array T with n elements
from a totally ordered set (with order relation ≤), preprocess this array in or-
der to be able to answer queries “find minposT (i, j)”, where minposT (i, j) =
argmink∈{i,...,j} T [k]; in case of multiple possible answers, we assume that minpos
returns the rightmost position where the smallest value in the interval is found.

It is not hard to see that this problem is a generalization of Problem 1; several
solutions of this problem are presented in [10]. The most efficient of them ([12])
requires O(n) preprocessing time, O(n) space to store the data structures con-
structed, and O(1) time to answer each query. We can apply this solution of
Problem 2 directly to obtain a solution for Problem 1 (with the same time and
space complexity bounds).

The second solution that we propose for Problem 1 makes use of the linear
data structure called deque (double ended queue), described in [15]. The deque
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is a linear list where both the insertion (push) and deletion (pop) operation can
be executed at any of the list’s ends (called in the following back and front).

The main idea in this approach (called the deque-based approach in the fol-
lowing) is to insert one by one, in increasing order, the numbers {1, 2, . . . , n} in
the back end of a deque DT , using the following algorithm:
– At the insertion of the number i in the back end of the deque DT , we pop
from the back end of the deque all the numbers k that verify T [k] ≥ T [i]; also,
we pop from the front of the deque all the numbers k such that k ≤ i− L.

It is not hard to verify the following properties of the deque constructed above.
First, if the first value of DT is less or equal to i − L then, when i is inserted
in the deque, we will pop this value from the front end of the deque; in this
way, DT contains only numbers in the interval [i−L+ 1..i]. Also, if i and k are
elements of DT , such that k is closer to the front of the deque than i, then k < i
and T [k] < T [i]; this ensures that the element k placed at the front end of the
deque verifies T [k] < T [j], for all other elements j of DT . Finally, after i was
inserted DT contains all the elements k from the interval [i−L+1..i] that verify
T [k] < T [i]. To conclude, after i was inserted, the element in front of the deque
is minposT (i− L+ 1, i).

We briefly analyze the execution of the procedure described above. First we
insert the numbers 1, . . . , L in the deque, doing the necessary pop operations, as
described above. At this point the element situated in the front end of the deque
is minposT (1, L). Further, we continue to insert the numbers from L + 1 to n,
and, at each step, we make the necessary pops. It is not hard to see that using
this algorithm one can compute and store in an array A, of length n − L + 1,
the values A[i] = minposT (i, i+ L− 1); basically A[i] is the element situated in
the front of the deque DT after the number i+L− 1 was inserted in the deque.

Once the array A is computed, we can answer a query minposT (i, i+ L− 1)
in O(1) time by returning the value A[i]. Also, note that every i, 1 ≤ i ≤ n, is
inserted once in the deque and popped at most once, thus the overall complexity
of the preprocessing of the array T is O(n). But this is, also, the total time
needed to perform n insertions in the deque, therefore the amortized complexity
of an insertion operation is O(1) (although a single insertion may require, in the
worst case, L pops from the deque, thus an execution time linear in L).

In the following, we are interested in a dynamic version of Problem 1:

Problem 3. We consider the following update operation for an array T : insert a
number M at the end of the array T . Preprocess T and define an algorithmic
method to update the data structures constructed during the preprocessing (if
necessary, construct additional data structures), such that we can still answer
minpos queries, defined in Problem 1, for an array obtained from T after an
arbitrary sequence of update operations was applied to it.

Again, we propose two solutions for this problem, based on the two solutions
proposed for Problem 1, respectively.

The first approach is inspired by one of the solutions of Problem 2 presented
in [10]. We describe how the first update is performed, as any other update can
be performed similarly. First, we preprocess the array T as in the RMQ-based
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solution of Problem 1, discussed previously. At the beginning of this update we
memorize in a variable Nr the length n of the array before any update operation
was performed. Further, the algorithm works as described below:

– We define the array Mn+1 with log2(L) elements:
Mn+1[k] = minposT (n+ 1 − 2k + 1, n+ 1), for all k such that 1 ≤ k ≤ log2(L).
These values are computed, in O(log2 L) time, using the formula:

Mn+1[k] =
{

minposT (n− 2k + 2, n), if T [minposT (n− 2k + 2, n)] < T [n+ 1],
n+ 1, otherwise.

– We also set: Mn+1[0] = n+ 1.
It is clear that this update algorithm is performed in O(log2 L) time plus the

time needed to add a new element to the array T and the time needed to store the
array Mn+1. Once the new elements of M are computed we can answer queries
minposT (i, j) in constant time for all i and j, such that i ≤ j and j − i ≤ L,
using the following strategy: if i = j we return j; if i < j and j ≤ Nr we obtain
the value minposT (i, j) using the data structures constructed in the solution for
the not-updated array T ; if i < j and j > Nr we set k =  log2(j − i+ 1)! and:

minposT (i, j) =
{

minposT (i, i+ 2k − 1), if T [Mi+2k−1[k]] < T [Mj[k]],
Mj [k], if T [Mi+2k−1[k]] ≥ T [Mj[k]]

In this relation we obtain minposT (i, i + 2k − 1) from the data structures con-
structed during the preprocessing of T , before the update was performed.

Further updates can be made similarly, because after the completion of the
t-th update we have stored data structures (the ones produced by the prepro-
cessing of the initial array T , and the arrays Mk constructed, and stored, at
each update) that allow us to return in constant time the answer to queries
minposT (j− 2k +1, j), for all j ≤ n+ t. We only have to know where to look for
the result: either in the data structures produced initially, or in the data struc-
tures produced during the updates; but this can be easily clarified: when we
need to answer a query minposT (i, j) we check if j ≤ Nr, and in this case search
for the answer in the data structures produced during the initial preprocessing
phase, or, otherwise, we search the answer in the newly constructed arrays. As
a final remark, we store the arrays MNr+t, for t ≥ 1, as the rows of a matrix,
and each time we compute a new array, we add it, as a new row, to this matrix.

It is not hard to see that this approach works in a more general setting, derived
from Problem 2. Namely, we can apply a similar strategy to update an array T
in order to be able to answer at minpos queries for intervals of any length, not
only for all the intervals of length less or equal to L.

The second approach, more efficient in terms of amortized complexity, relays
on the deque-based solution of Problem 1. The basic idea is that an update of
the array T leads to the insertion of a new element in the deque constructed for
this array during the initial preprocessing. This insertion is handled in the same
way as in the preprocessing phase, since, basically, the algorithm presented for
Problem 1 treats every element of the array T as an element that was newly
inserted in that array, and updates the deque according to the value of this
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element. As explained before, the amortized cost of an insertion in the deque is
O(1), thus an update requires O(1) amortized time (but up to O(L) time in the
worst case) plus the time needed to add a new element in the array T and a new
element, A[n+ 2 − L], in the array A (recall that A[i] = minposT (i, i+ L− 1)).
After this update was done, we can still answer queries minposT (i, i+L− 1) in
constant time, for all i ∈ {1, . . . , n+ 2 − L}.

In the following we address the problem of adding a new element to an array:
it is clear that this operation can be done in linear time, in the worst case,
by creating a new array which contains the elements stored in the initial array
and the value to be added; however, such an insertion can be done in constant
amortized time (see [9] for details). In the case of adding columns to matrices,
things are just a little bit more complicated. Assume that we have a matrix B
with n rows and m columns, and we want to perform the following update: add
a new column to this matrix. We will store the elements of B using 1+m arrays:
Col and Bi, with i ∈ {1, . . . ,m}. Bi stores the elements of the i-th column of
the matrix, while Col[i] stores the memory address where the array Bi is placed;
when adding the column Bm+1 we simply have to add its address in the Col
array, and the time complexity of this operation is O(1) amortized and O(m) in
the worst case. Accessing an element of the matrix B[i][j] can still be done in
O(1) time: we select the array Bj , using the array Col, and return Bj [i]. Note
also that a similar method can be applied when we want to add rows to a matrix.
When we deal with upper (lower) triangular matrices we only need to store the
columns (respectively, rows) of that matrix, thus we can apply the same strategy
to store and update such matrices.

Finally, we consider another type of update: we add both a new row and a
new column to a matrix B, with r rows and c columns. Such matrices will be
stored using 2 + c + r arrays (Col, Row, Bi, for i ∈ {1, . . . , r}, and Bj , for
j ∈ {1, . . . , c}) and two values, C and R. The value C stores the number of
columns and R the number of rows of B, before any update was performed on
this matrix. These values remain unaffected by the updates. Initially, Bi stores
the elements B[i][1], B[i][2], . . ., B[i][c], for i ∈ {1, . . . , r}, while Bj is empty,
for j ∈ {1, . . . , c}; Row[i] stores the address of Bi and Col[j] stores the memory
address of Bj . We assume that t, t ≥ 0, updates were applied to B, and this
matrix has, now, n = R+ t rows and m = C + t columns. If we update again B,
and add a new row and a new column, we proceed as follows: we create the arrays
Bn+1 (consisting of the elements B[n + 1][1], B[n + 1][2], . . . , B[n + 1][m + 1])
and Bm+1 (consisting in the elements B[1][m + 1], . . . , B[n][m + 1]), add the
address of Bn+1 in the array Row and the address of Bm+1 in the array Col;
these operations require, clearly, O(n + m) time. Accessing an element of the
matrix B[i][j] can still be done in O(1) time: if j ≤ C + max(i−R, 0) we select
the array Bi, using the array Row, and return Bi[j]; otherwise we select the
array Bj , using the array Col, and return Bj [i].

We stress that the methods to store matrices, proposed here, do not change,
conceptually, the way we work with the elements of a matrix at all: we just
memorize them in a manner that allows us fast updating, as well as fast access.
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Therefore, for simplicity, we will see the i-th row/column of a matrix with n
columns/rows as an array with n elements, although these elements are not
stored on consecutive memory locations.

4 Queries

We address the following problem regarding partial words:

Problem 4. Given a partial word w, with n symbols (labeled w[1], . . . , w[n]), over
the alphabet V , preprocess this partial word in order to answer the queries:

– “is w[i..j] a k-repetition?”, denoted rep(i, j, k), where i, j, k∈{1, . . . , n}, i<j.
– “is w[i..j] k-free?”, denoted free(i, j, k), where i, j, k ∈ {1, . . . , n}, i < j.
– “is w[i..j] overlap-free?”, denoted o-free(i, j), where i, j ∈ {1, . . . , n}, i < j.
– “is w[i..j] primitive?”, denoted prim(i, j), where i, j ∈ {1, . . . , n}, i < j.

In the following we propose a solution of this problem which has a time efficient
preprocessing phase and requires constant time to answer every possible query.

First we will compute two matrices A and T , which are useful in order to be
able to answer efficiently the four types of queries listed above. The matrix A,
with n rows and  n/2! columns, is defined as follows (for i ∈ {1, . . . , n}, and
l ∈ {1, . . . ,  n/2!}):

A[i][l] =

⎧⎨
⎩

max{k | k ≤ i, i− k is divisible by l, and w[k] �= "},
if there exists k ≤ i such that i− k is divisible by l, w[k] �=";

i−  (i− 1)/l!l, otherwise.

Basically, A[i][l] equals k, if all the symbols w[k + l], . . ., w[i] are equal to
" and w[k] �= ", or, if such a value k does not exist, A[i][l] equals the leftmost
position t of the word where a symbol " is found and i− t is divisible by l. This
matrix can be computed by dynamic programming, in time O(n2):

A[i][l] =
{
i, if w[i] �= " or i ≤ l
A[i− l][l], otherwise

The matrix T , with n rows and  n/2! columns, is defined by:

T [i][l] = max{m | m ≤  i/l! + 1, for which there exists a ∈ V such that
w[i− jl] ⊂ a, ∀j ∈ {0, . . . ,m− 1}},

The elements of this matrix can be computed by dynamic programming, in
time O(n2), using the relation:

T [i][l] =

⎧⎨
⎩

1, if i ≤ l,
T [i− l][l] + 1, if i > l and w[i] ↑ w[A[i − l][l]],
(i−A[i− l][l])/l, otherwise.

In the following, we denote by T[][l] the array consisting of the l-th column of T .
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Remark 1. For some i, j and k, such that 1 ≤ i ≤ j ≤ n and l = j−i+1 ≤  n/2!,
we have k ≤ T [minposT [][l](i, j)][l] if and only if the factor w[i − (k − 1)l..j] of
w is a k-repetition. Indeed, we have T [x][l] ≥ k, for all x ∈ {i, i + 1, . . . , j}, if
and only if there exists ax ∈ V such that w[x − tl] ⊂ ax, for all t ∈ {0, . . . , k}
and x ∈ {i, i+ 1, . . . , j}. This is equivalent to the fact that all the words w[i −
tl..j− tl], for all t ∈ {0, . . . , k}, are contained in the word aiai+1 . . .aj , therefore
w[i− (k − 1)l..j] is a k-repetition.

Remark 1 gives a hint on how we can preprocess the partial word w in order
to be able to answer efficiently queries “is w[i..j] a k-repetition?”, for all i, j, k∈
{1, . . . , n}, i<j:

Algorithm REP
1. Construct the matrix T for the word w, as described above.
2. Solve Problem 1 for each of the arrays T [][l] and intervals of length l, with

l ∈ {1, . . . ,  n/2!}.
q. The answer to a query rep(i, j, k) is obtained as follows: if j−i+1 is divisible

by k, we compute l = (j − i+ 1)/k; if T [minposT [][l](j − l+ 1, j)][l] ≥ k then
the answer to the given query is yes; otherwise the answer is no.

Both step 1 and step 2 of the above algorithm take O(n2) time, since each
array T [][l] can be preprocessed in time O(n) (to be able to answer minpos
queries for this array in constant time), and there are  n/2! such arrays. Thus
the total preprocessing time is O(n2), and this enables us to answer rep queries
(as described in step q) in constant time.

We now focus on how we can preprocess w in order to answer efficiently free
queries.

For that, we define the matrix H , with n rows and columns, as follows:

H [i][j] =

⎧⎪⎪⎨
⎪⎪⎩
k, where k is the greatest natural number such that w[i..j]

contains a k-repetition, given that i < j
1, if i = j
0, if i > j

We compute the elements of H by dynamic programming:

H [i][j]=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(H [i][j − 1], H [i+ 1][j]), if i < j and
if w[i..j] is not a (max(H [i][j − 1], H [i+ 1][j]) + 1)-repetition.

max(H [i][j − 1], H [i+ 1][j]) + 1, if i < j and
if w[i..j] is a (max(H [i][j − 1], H [i+ 1][j]) + 1)-repetition.

1, if i = j.
0, if i > j.

Note that H can be computed in time O(n2), if we already performed the
preprocessing steps 1 and 2 of Algorithm REP, and we are able to answer in
constant time rep queries.

Now we can describe the preprocessing that permits us to answer efficiently
queries “is w[i..j] k-free?”, for i, j, k∈{1, . . . , n}, i<j:
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Algorithm FREE
1. Preprocess the partial word w as described in Algorithm REP.
2. Construct the matrix H for the partial word w, as described above.
q. The answer to a query free(i, j, k) is obtained as follows: if H [i][j] ≥ k then

the answer is no, otherwise the answer is yes.

The total time needed for the preprocessing done in the first two steps of this
algorithm is O(n2), as we explained above. We can answer free queries in O(1)
time, as described in step q.

Further, we approach the o-free queries. We compute the matrix O with n
rows and n columns, defined by: O[i][j] = 1 if w[i..j] contains an overlap, and
O[i][j] = 0 otherwise. The values stored in this matrix are computed in time
O(n2), by dynamic programming:

O[i][j] = 1 if and only if O[i][j−1] = 1 or O[i+1][j] = 1 or (rep(i, j−1, 2) =yes
and w[ (j − i)/2!] ↑ w[j] and w[i] ↑ w[j]), for i, j ∈ {1, . . . , n} with j − i ≥ 2

The preprocessing we use to answer efficiently queries “is w[i..j] overlap-free?”,
for i, j∈{1, . . . , n}, i<j, is described in the following:

Algorithm O-FREE
1. Preprocess the partial word w as described in Algorithm REP.
2. Construct the matrix O for the partial word w, as described above.
q. The answer to a query o-free(i, j) is obtained as follows: if O[i][j] = 0 then

the answer is yes, otherwise the answer is no.

The overall time needed for the preprocessing done in the first two steps of
this algorithm is O(n2); also, we will be able to answer o-free queries in O(1)
time, as described in step q.

The last type of queries we discuss in this paper are the primitivity queries
prim. In this case we will use the matrix Pr with n rows and columns, where:

Pr[i][j] =
{

1, if w[i..j] is primitive
0, otherwise

To compute the value Pr[i][j] we go through all the positive divisors d of
(j − i+ 1) and check if w[i..j] is a d-repetition using rep queries. If there exists
at least one number d such that w[i..j] is a d-repetition we set Pr[i][j] = 0;
otherwise, we set Pr[i][j] = 1. A brute force implementation of this algorithm
achieves a time complexity of O(n2√n). However, the number of divisors we need
to analyze in order to compute all the values of Pr is (

∑n
i=1 σ(i)), where σ(i) is

the number of positive divisors of i. But
∑n

i=1 σ(i) =
∑n

i=1 n/i! ≤
∑n

i=1 n/i,
since we can count for every i how many numbers it divides (that is  n/i!).
This means that

∑n
i=1σ(i)∈O(n log2 n), because ((

∑n
i=1

1
i )/(log2n)) converges to a

positive constant.
Therefore, the first step in the computation of the elements of the matrix Pr

is to keep, in an array, the lists of divisors for every l ∈ {1, . . . , n}. This data
structure will take O(n log2 n) space and can be computed in O(n log2 n) using a
sieve method: we go through all the numbers i from 1 to n and add i to the lists
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of divisors of the numbers i, 2i, ...,  n/i!i. Then, we act as we described above,
but searching the divisors of the length of a given factor in the newly computed
array, and obtain the overall complexity O(n2 log2 n) for the computation of the
elements of the matrix Pr.

The preprocessing algorithm that enables us to answer in constant time queries
“is w[i..j] primitive?”, for i, j∈{1, . . . , n}, i<j, is the following:

Algorithm PRIMITIVE
1. Preprocess the partial word w as described in Algorithm REP.
2. Construct the matrix Pr, as described above.
q. The answer to a query prim(i, j) is obtained as follows: if Pr[i][j] = 0 then

the answer is no, otherwise the answer is yes.

The overall time needed for the preprocessing done in the first two steps of
this algorithm is O(n2 log2 n) and the time needed to answer a query is, clearly,
O(1).

5 Updates

In this section we propose a solution for the dynamic version of Problem 4:

Problem 5. Consider the following update operation for a partial word w: add
a symbol a ∈ V ∪ {"} at the rightmost end of w, to obtain wa. Preprocess
w and define a method to update the data structures constructed during the
preprocessing in order to answer in constant time rep, free, o-free and prim
queries, for a word obtained after several update operations were applied to w.

We describe how to solve Problem 5 when exactly one update is applied to a
given partial word. If the word is updated more than once we simply iterate this
method. Assume that we are given the partial word w, of length n, for which
we compute the matrices A, T,H,O and Pr, as described in Section 4. Also, we
memorize the value Nr = n, which remains unchanged by further updates.

Now, assume that we add to the partial word w the symbol a ∈ V ∪ {"} and
obtain the word w′ = wa; we have w′[n + 1] = a. First we update the matrices
A and T , by adding to each of them a new column and a new row, defined by:

−For the matrix A and 0 < l ≤  n/2!:

A[n+ 1][l] =
{
n+ 1, if w′[n+ 1] �= "
A[n+ 1 − l][l], otherwise.

−For the matrix T and 0 < l ≤  n/2!:

T [n+ 1][l] =
{
T [n+ 1 − l][l] + 1, if w′[n+ 1] ↑ w[A[n + 1 − l][l]],
(n+ 1 −A[n+ 1 − l][l])/l, otherwise.

T [i][ (n+ 1)/2!] and A[i][ (n+ 1)/2!], for i ≤ n, are computed using the recur-
rence relations defined in the previous section.
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As we have explained in Section 3, we can add the new rows and columns
to the matrices T and A in time O(n), and the computation of the newly in-
serted elements requires also O(n) time. Now we only have to construct ad-
ditional data structures in order to still be able to answer in constant time
queries minposT [][l](i, j), for the new matrix T and i, j ∈ {1, . . . , n + 1}, l ∈
{1, . . . ,  (n+ 1)/2!} and j − i+ 1 = l. But the update of T consisted in adding
to each of the arrays T [][l] a new element and, if n is odd, a new column
T [][ (n + 1)/2!]; for the columns T [][l] we can apply the solution RMQ-based
of Problem 3, with update time O(log2 l) and query time O(1), and for the
column T [][ (n+ 1)/2!] we run one of the efficient algorithms solving Problem
1. Thus, we can still answer in constant time any minposT [][l] query for all the
columns T [][l], l ∈ {1, . . . ,  (n + 1)/2!}. Alternatively, as described in Section
3 this update can be done in amortized time O(1) for each column, using the
deque data structure, and still need only a constant time to answer queries. To
conclude, the time needed to update the structures T and A, and to compute
some additional structures for answering in constant time minpos queries, is ei-
ther O(n log2 n) time, in the RMQ-based approach, or O(n) amortized time, in
the deque-based approach. The time needed to complete an update, in the sec-
ond approach, is upper bounded by O(n2), by the general considerations made
in Section 3. However, a more careful analysis (which we do not present here due
to space constraints), taking into account the particular definition of the matrix
T , shows that a more exact upper bound of the time needed to complete such
an update is, as in the first approach, O(n log2 n).

Any further update is performed in the same manner, with the same time
complexity: we compute and add new rows and columns to A and T , and we
process the new T in order to answer in constant time minpos queries.

When updating the matrices H and O we use the same relations as in the
previous sections to compute and add to each of them a new column: H [i][n+1],
for i ≤ n + 1, and, respectively, O[i][n + 1], for i ≤ n + 1 (we do not need to
actually compute a new row for any of these matrices, since the elements H [i][j]
and O[i][j], with i > j, are all null). Note that we update H and O only after
A, T , and the structures required to answer minpos queries for T were updated;
thus the time needed to update O and H is O(n log2 n), or O(n) amortized time.

Finally, we describe how the first update of the matrix Pr is done. First, we
update the list of all the divisors of the numbers 1, . . . , n by adding n + 1 and
its divisors to that list (this can be done in O(

√
n) time). The total number

of divisors in this list is now O((n+1)log2(n+1)) = O(n log2 n). Adding a new
symbol a to w creates n + 1 new factors: w′ = w′[1..n + 1] = wa, w′[2..n + 1],
. . .w′[n+ 1..n+ 1]; we apply the same method as in the former section to verify
which of these words are primitive, and store the results as a new column of Pr:
Pr[i][n + 1], with i ∈ {1, . . . , n + 1}. The overall complexity of this update is,
by the same arguments presented in the previous Section, O(n log2 n); again, we
update Pr only after A, T , and the structures required to answer minpos queries
for T were updated.
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Once all the structures are updated, we can answer queries exactly as we de-
scribed in the previous section, at the step q of each of the algorithms discussed.

6 Conclusions and Future Work

We have proved the following theorem:

Theorem 1. A given partial word w, of length n, can be processed in time
O(n2), respectively O(n2 log2 n), in order to be able to answer rep, free, o-free
and, respectively, prim queries, in time O(1). If update operations, in which a
new symbol is added to the rightmost end of w, are applied, the data structures
constructed in the processing above can be updated in at most O(n log2 n) time
(or O(n) amortized time), respectively at most O(n log2 n) time, per update, and
still answer rep, free, o-free and, respectively, prim queries, in time O(1).

We stress out that the time bounds obtained here are not trivial: a preprocessing
phase consisting in the direct application of algorithms which test the discussed
combinatorial properties (such as those presented in [6,16]) for each factor of the
initial word, in order to be able to answer the combinatorial queries we defined,
would be, clearly, less efficient. This result may become useful in solving other
problems on partial words. For example, it can be directly applied to identify and
count efficiently all the k-repetitions/ k-free/ overlap-free/ primitive factors of a
given word. It seems an interesting problem to count efficiently all the distinct
k-repetitions/ k-free/ overlap-free/ primitive factors in a partial word (i.e., all
the distinct full words compatible with such factors of the partial word), and
we think that the algorithms we proposed here can be applied as initial steps in
solving these problems efficiently.

Of course, the algorithms we presented may be directly applied to solve the
same problems for full words; however, we believe that in the case of full words
more efficient algorithms can be developed, using specific data structures (such as
suffix trees or suffix arrays). Nevertheless, we are interested in lowering the time
bounds showed for the preprocessing phases here, while keeping the condition
that each query should be answered in constant time. Another way to continue
our work is to see how the complexity of the preprocessing time decreases in the
case of algorithms which answer queries in non-constant (yet small, for example
logarithmic) time. Finally, we are interested in analyzing new update operations
(for example, replacing, in a partial word, a given hole of that word with a
specific symbol), and new types of queries.
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Abstract. The Longest Haplotype Reconstruction (LHR) problem has
been introduced in Computational Biology for the reconstruction of the
haplotypes of an individual, starting from a matrix of incomplete haplo-
type fragments. In this paper, we reconsider the LHR problem, proving
that it is NP-hard even in the restricted case when the input matrix
is error-free. Then, we investigate the approximation complexity of the
problem, showing that it cannot be approximated within factor 2logδ nm

for any constant δ < 1, unless NP ⊆ DTIME[2poly log nm]. Finally, we
give a fixed-parameter algorithm, where the parameter is the size of the
reconstructed haplotypes.

1 Introduction

The human genome is usually considered as a string or a vector over alphabet
{A,C,G, T }. It has been observed that a large part of the human genome (more
than 99%) is identical in any two individuals, and variability is observed in few
sites, called Single Nucleotide Polymorphisms (SNPs). The SNPs of an individual
constitute the haplotype of that individual. It is particularly relevant to study
the haplotype of an individual, as it distinguishes each individual among the
population and can be used for drug-design and medical applications.

A SNPs is formally defined as a position of the genome where a variation of
a single nucleotide is observed in at least 5% of the population. Each variant is
called an allele. Usually, it is observed the presence of two possible alleles, de-
noted as 0 and 1, for each position of the genome. Furthermore, diploid organisms
like humans have two copies of each chromosome, hence, in a given interval, the
genome is associated with two haplotypes, usually described as strings or vectors
over alphabet {0, 1}.

The reconstruction of haplotypes has been deeply studied in Computational
Biology and several versions of the problem have been proposed [4]. The general
problem, starting from the draft version of the SNPs produced by sequencing
techniques, aims to reconstruct the two haplotypes of each individual.

Here we focus on a combinatorial problem which is a variant of the Single
Individual Haplotyping Problem (SIH). The SIH problem aims to reconstruct the
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haplotypes of an individual, starting from small pieces (a few hundreds of bases
long), called fragments, of the genome. The fragments come from both copies of
the chromosome, but current technologies are not able to tell which copy of the
chromosome the fragments belong to. Furthermore, the presence of errors and
missing data in the fragments makes harder the problem of reconstructing the
haplotypes from the given set of fragments.

In [11,7], several versions of the SIH problem were introduced. In the formu-
lations proposed, a fragment of SNPs sites is described as a vector over alphabet
{0, 1, -}, where 0, 1 denote the two distinct alleles of an SNP site, and - repre-
sents a missing value. The instance of different versions of the problem consists
of an n×m matrix M , where each entry M [i, j] ∈ {0, 1, -}. The i-th row of M
corresponds to the i-th fragment, while the j-th column of M corresponds to the
j-th SNP. A position where M [i, j] = - is called a hole. A conflict occurs at a
given SNP site (column) j iff there exists two fragments (rows) i1, i2 in M , so
that M [i1, j] �= M [i2, j] and both M [i1, j],M [i2, j] are different from -. A gap
in a row j of M is a maximal run of holes delimited on both sides by non-hole
entries.

In this paper, we consider a version of the SIH problem introduced in [11],
the Longest Haplotype Reconstruction Problem (LHR). Starting from a matrix
M of fragments, the goal is to reconstruct two haplotypes, so that the sum of the
lengths of the two resulting haplotypes is maximized. The LHR problem admits
a polynomial time algorithm when the input matrix M is gapless [11,5], while it
is APX-hard when each fragment contains at most one gap [5]. We investigate
several aspects of the LHR problem, introducing a slightly different formulation
of the problem. First, in Section 3 we show that the problem is NP-hard even
when the input matrix is error-free. This case is particularly interesting, since all
the other versions of the SIH problem introduced in [11,7] are trivially in P when
the input matrix is error-free. The result implies that the original version of the
LHR problem is not in NPO. Furthermore, we investigate both the parameter-
ized complexity and the approximation complexity of the problem. In Section 4
we investigate the approximation complexity of the problem, by showing that the
problem cannot be approximated within factor 2logδ nm for any constant δ < 1,
unless NP ⊆ DTIME[2poly log nm]. Then, we give a fixed-parameter algorithm
where the parameter is the size of the solution, that is the sum of the lengths
of the resulting haplotypes. Due to space constraints, some of the proofs are
omitted.

2 Preliminary Definitions

A fragment is a vector over alphabet {0, 1, -}. The aligned fragments are rep-
resented as a matrix M , consisting of n rows (the fragments) and m columns
(the SNPs). We denote by M [i, j] the value at row i, column j of matrix M .
Given a matrix M we denote by Mi the submatrix of M composed by the first i
rows of M , with 1 ≤ i ≤ n. Two rows (fragments) i1, i2 of M are compatible iff
M [i1, j] �= M [i2, j] implies M [i1, j] = - or M [i2, j] = -, otherwise i1, i2 conflict.
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A matrix M is compatible iff all the rows of M are compatible. A matrix M is
error-free iff there exists a partition of the rows of M in two sets R1 and R2,
such that each of R1,R2 does not contain conflicting rows.

Given a set of compatible rows R ofM , we define the haplotype hR induced by
R as the haplotype obtained by defining position j equal to α, with α ∈ {0, 1},
if there exists at least one row i of R so that M [i, j] = α, and value - otherwise.
Notice that, since R is compatible, for each column j of M , M [i1, j] �= - and
M [i2, j] �= - imply M [i1, j] = M [i2, j], for i1, i2 ∈ R.

If M [i, j] �= -, then we say that the i-th row of M covers the j-th column,
otherwise it does not cover the j-th column. Similarly, given a setR of compatible
rows of M , the induced haplotype hR covers the j-th column if its j-th position
(column) is different from -. The size of row i, denoted as s(i), is the number of
columns covered by i; similarly, the length or the size of haplotype hR, denoted
as s(hR) is the number of columns covered by hM ′ . Given a set R of compatible
rows of M , then R covers the j-th column if the corresponding haplotype hR

covers the j-th column. Given a set R of compatible rows of M , we denote by
c(R) the length s(hR) of the haplotype induced by R.

We are now ready to give the formal definition of the LHR problem.

Problem 1 (LHR). (Longest Haplotype Reconstruction)
Input: a matrix M of fragments;
Output: two compatible subsets of rows R1, R2 of M , with R1 ∩R2 = ∅, so that
c(R1) + c(R2) is maximized.

It is easy to see that Problem 1 is in NPO, as hRi , i ∈ {1, 2}, can be recon-
structed from Ri in polynomial time. Notice that the definition of the LHR
problem introduced in [11], denoted as LHR-1, is slightly different. The output
of the LHR-1 problem consists of an error-free matrix M ′ obtained by remov-
ing rows from M , so that the rows of M ′ can be partitioned in compatible sets
R1, R2 and c(R1) + c(R2) is maximized. In Section 3, we will show that the
LHR problem is NP-hard even when the input matrix is error-free. This implies
that the LHR-1 problem is not in NPO, as, given an error-free matrix M ′, it is
NP-hard to partition M ′ into compatible sets R1, R2, so that c(R1) + c(R2) is
maximized.

3 Error-Free Matrices

In this section we consider the case when input matrix M is error-free. This
restriction of the LHR problem is denoted by LHR-EF. In what follows, we
will show that the LHR-EF problem is instead NP-hard. We prove the result
by reducing the Maximum Not-All-Equal 3-Satisfiability problem (MaxNAES),
which is known to be NP-hard [13], to LHR-EF.

Problem 2 (MaxNAES). (Maximum Not-All-Equal 3-Satisfiability)
Input: a set U of variables, a collection C of clauses of at most three literals,
where a literal is a variable or a negated variable in U ;
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Output: a truth assignment for U such that each clause in a largest cardinality
subset C′ ⊆ C contains at least one true literal and at least one false literal.

Let I = (U,C) be an instance of MaxNAES, with p = |U | and q = |C|. An
assignment A not equally satisfies a clause c ∈ C, iff A assigns value true to
a literal of c and value false to a literal of c. We build a matrix M , instance
of LHR-EF, as follows. Matrix M consists of 2p rows and p + q columns. Row
2i− 1 is associated with the literal xi, while row 2i is associated with literal x̄i,
1 ≤ i ≤ p.

Assume that literal xi appears in clauses ci,1, . . . , ci,y and that literal x̄i

appears in clauses cj,1, . . . , cj,z . Row 2i − 1 of M is defined as follows: (1)
M [2i − 1, i] = 1; (2) M [2i − 1, p + h] = 1, for each h ∈ {i1, . . . , iy}; (3) in
any other column l, M [2i − 1, l] = -. Row 2i of M is defined as follows: (1)
M [2i, i] = 0; (2) M [2i, p + h] = 1, for each h ∈ {j1, . . . , jz}; (3) in any other
column l, M [2i, l] = -. It is easy to see that the following lemma holds.

Lemma 1. Matrix M is error-free.

Theorem 1. LHR-EF problem is NP-hard.

Proof. First, we show that, given a solution of size at least k for the MaxNAES
problem over instance I, we can compute in polynomial time a solution of size
at least 2p+ q+ k for the LHR-EF problem over the corresponding instance M .
Consider an assignment A that not equally satisfies a set of clauses C′ ⊆ C, we
compute in polynomial time a corresponding solution S of LHR-EF as follows.
S consists of two compatible sets of rows R1 and R2. For each variable xi set to
true in A, we assign the corresponding row 2i − 1 to the set R1, and for each
variable xi set to false in A we assign the corresponding row 2i to the set R1.
The remaining rows are assigned to the set R2. By the property of assignment
A and by construction, exactly one of the rows 2i − 1, 2i, with 1 ≤ i ≤ p, is
assigned to the set Rj , j ∈ {1, 2}. Hence both R1 and R2 are compatible sets of
rows. By construction each column h, with 1 ≤ h ≤ p, of M is covered by a row
of R1 and by a row of R2. Now, consider a column j of M and the corresponding
cj , with p + 1 ≤ j ≤ p + q. By construction, at least one of the sets R1 or R2
covers column j, as the corresponding clause cj contains a true literal (in this
case column j is covered by R1) or a false literal (in this case column j is covered
by R2). Furthermore, each clause cj not equally satisfied in C′ contains both a
true and a false literal, hence column j is covered by both R1 and R2. Hence
there exist at least 2p+ q + k columns covered by R1 and R2.

Now we show that, given a solution S of size at least 2p+q+k for the LHR-EF
problem over instance M , we can compute in polynomial time a solution of size
k for the MaxNAES problem over the corresponding instance I. Assume that S
consists of two compatible sets R1, R2 of rows of M , with R1 ∩R2 = ∅. For each
i, 1 ≤ i ≤ p, exactly one of the rows 2i− 1 and 2i, belongs to the set Rj , with
j ∈ {1, 2}. Indeed, by construction row 2i− 1 conflicts with exactly one row of
M (row 2i) and row 2i conflicts with exactly one row of M (row 2i− 1). Now,
consider the set R1 and define the assignment A as follows: if row 2i− 1 belongs
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to R1, assign value true to variable xi, otherwise assign value false to variable
xi. We claim that if column p+ j is covered by both R1 and R2, then clause cj
is not equally satisfied. Indeed, if the p+ j-th column is covered by a row i of R1
and a row l of R2, then by construction in cj there exists a true literal xi that
corresponds to row i and there exists a false literal xl that corresponds to row l.
Since both R1 and R2 cover the first p columns of M , and as the h-th column,
with p+ 1 ≤ h ≤ p+ q, is covered by at least one of R1 and R2, it follows that
A not equal satisfies at least k clauses. �

4 Hardness of Approximation

In this section we show that the LHR problem cannot be approximated within
factor 2logδ nm for any constant δ < 1, unless NP ⊆ DTIME[2poly log nm], where
n and m are the number of rows and columns of M respectively. First, we prove
the inapproximability result for the Single LHR problem (S-LHR), a variant of
the LHR problem introduced in [5]. Then, the inapproximability result for the S-
LHR problem is extended to the LHR problem, via an L-reduction from S-LHR
to LHR. For details on the L-reduction, see [3].

The S-LHR problem is defined as follows: given a matrix M , the goal is to
find a subset R of compatible rows of M , so that the number of columns covered
by R is maximized. The S-LHR problem is known to be APX-hard [5]. Here, we
consider a restricted version of the S-LHR problem, called Dense Single Longest
Haplotype Reconstruction problem (DS-LHR). An instance of DS-LHR consists
of a matrix M , where for each pair of rows i1, i2 of M , there exists a column j in
M , so thatM [i1, j],M [i2, j] �= -. In what follows, we prove the inapproximability
results of the DS-LHR problem by applying the self improvement technique
[8,9,10]. As DS-LHR is a restricted case of S-LHR, the inapproximability result
holds also for S-LHR. Via an L-reduction from Maximum Independent Set on
cubic graphs, which is known to be APX-hard [2], we can show the following
result.

Lemma 2. The DS-LHR problem is APX-hard.

Now, let M1 and M2 be two instances of the DS-LHR problem. In what follows,
we define the product M1 ×M2 between M1 and M2. The product M1 ×M2 is a
matrix, denoted by M1,2, consisting of |M1||M2| rows and 2|M1||M2| columns.

First, we describe the structure of the matrix M1,2 (see Fig.1), then we define
the values of the entries of M1,2. The rows of M1,2 are first grouped in |M1|
groups each of size |M2|, where the i-th group, denoted as S(i), is associated
with the i-th row of M1, 1 ≤ i ≤ |M1|. The j-th row of group S(i), 1 ≤ i ≤ |M1|,
1 ≤ j ≤ |M2|, is associated with the j-th row of M2. It follows that a row r of
M1,2 is associated with a pair of coordinates, (ra, rb), with 1 ≤ ra ≤ |M1| and
1 ≤ rb ≤ |M2|. Row r = (ra, rb) is the rb-th row of group S(ra).

The rows of M1,2 have length 2|M1||M2|. The submatrix induced by the first
|M1||M2| columns ofM1,2 is denoted as the M1-submatrix ofM1,2, or simply the
M1-submatrix, the submatrix induced by the last |M1||M2| columns of M1,2 is
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denoted as the M2-submatrix of M1,2, or simply the M2-submatrix. In the M1-
submatrix, the columns are grouped in |M2| blocks each of size |M1|, where the
i-th block is denoted as G1(i). Conversely, in the M2-submatrix, the columns are
grouped in |M1| blocks each of size |M2|, where the i-th block is denoted asG2(i).
As for the case of rows, a column c ofM1,2 is associated with a pair of coordinates
(ca, cb). A column c = (ca, cb), with 1 ≤ ca ≤ |M2| and 1 ≤ cb ≤ |M1|, of the
M1-submatrix is the cb-th column of block G1(ca). A column c = (ca, cb) of the
M2-submatrix, with 1 ≤ ca ≤ |M1| and 1 ≤ cb ≤ |M2|, is the cb-th column of
block G2(ca).

j−th row

1,2M

i−th block S(i)

M  − submatrix1 M  − submatrix2

1 2
h−th block G  (h) k−th block G  (k)

{

{ {

Fig. 1. The structure of matrix M1,2

Now, we can define the values of the entries of matrix M1,2. Let i be a row of
matrix M1,2, with i = h|M2| + p, 0 ≤ h < |M1| and 1 ≤ p ≤ |M2| (that is i is
the p-th row of group S(h+ 1) in M1,2).

Consider the entry M1,2[i, j] of the M1-submatrix, with j = k|M2| + q, 0 ≤
k < |M2| and 1 ≤ q ≤ |M1|, (that is j is the q-th columns of block G1(k + 1) in
M1,2):

– M1,2[i, j] = M1[h+ 1, q], if position M2[p, k + 1] �= -;
– else (that is M2[p, k + 1] = -), M1,2[i, j] = -.

Consider the entry M1,2[i, j] of the M2-submatrix, with j = |M1||M2| +
k|M2| + q, 0 ≤ k < |M1| and 1 ≤ q ≤ |M2|, (that is j is the q-th columns
of block G2(k + 1) in M1,2):

– M1,2[i, j] = M2[p, q], if M1[h+ 1, k + 1] �= -;
– else (that is position M1[h+ 1, k + 1] = -), M1,2[i, j] = -.

Given a row l of M1,2, let h be a block (either a block G1(h) or a block G2(h))
of matrix M1,2, we denote by M1,2[l]|h the restriction of row l to the columns of
block h.



The Longest Haplotype Reconstruction Problem Revisited 115

Property 1. Let l be a row of M1,2 having coordinates (i, j), let h be a block of
the M1-submatrix, let k be a block of the M2-submatrix:

– either M1,2[l]|h = (-)|M1| (when M2[j, h] = -) or M1,2[l]|h is equal to row i
of M1 (when M2[j, h] �= -);

– either M1,2[l]|k = (-)|M2| (when M1[i, k] = -) or M1,2[l]|k is equal to row j
of M2 (when M1[i, k] �= -).

The result in Lemma 3 are fundamental to show that M1,2 is an instance of
DS-LHR.

Lemma 3. Let M1 and M2 be two instances of DS-LHR and let i = (ra,i, rb,i)
and j = (ra,j , rb,j) be two rows of M1,2. Then:

1. there exists a column l of M1 where M1[ra,i, l] = αi and M1[ra,j , l] = αj,
with αi, αj �= -, iff there exists a column l′ of the M1-submatrix of M1,2
where M1,2[i, l′] = αi and M1,2[j, l′] = αj;

2. there exists a column l of M2 where M2[rb,i, l] = βi and M2[rb,j , l] = βj, with
βi, βj �= -, iff there exists a column l′ of the M2-submatrix of M1,2 where
M1,2[i, l′] = βi and M1,2[j, l′] = βj.

Proof. We will show that the result holds for the M1-submatrix. The result for
the M2-submatrix follows similarly. Since M2 is an instance of the DS-LHR
problem, it follows that there exists a column l of M2 where rows M2[rb,i, l],
M2[rb,j , l] �= -. By Property 1, the restrictions M1,2[i]|l, M1,2[j]|l are equal
to rows ra,i and ra,j of M1 respectively. Since M1 is an instance of the DS-
LHR problem, it follows that there exists a column h of matrix M1, so that
M1[ra,i, h] = αi, M1[ra,j , h] = αj , with αi, αj �= -. Hence, let l′ be the h-th col-
umn of block G1(l) of the M1-submatrix, then M1,2[i, l′] = αi, M1,2[j, l′] = αj .

Let i = (ra,i, rb,i), j = (ra,j , rb,j) be two rows of M1,2, so that M1,2[i, l′] = αi,
M1,2[j, l′] = αj , where αi, αj �= - and l′ is the l-th column of the block G1(h) of
the M1-submatrix. Since rows i and j have a value different from - in the l-th col-
umn of the block G1(h), it follows by construction that M2[rb,i, h],M2[rb,j , h] �=
-. But then, by Property 1, M1,2[i]|h, M1,2[j]|h are equal to rows ra,i, ra,j of M1
respectively. Hence, M1[ra,i, l] = αi, M1[ra,j , l] = αj . �

From Lemma 3 and from the properties of DS-LHR problem, follow Lemma 4
and Lemma 5.

Lemma 4. Let M1 and M2 be two instances of DS-LHR, then M1×M2 = M1,2
is an instance of DS-LHR.

Lemma 5. Let M1 and M2 be two instances of DS-LHR. Rows i = (ra,i, rb,i)
and j = (ra,j , rb,j) of M1,2 are compatible if and only if rows ra,i and ra,j of M1
are compatible and rows rb,i and rb,j of M2 are compatible.

Now, we investigate the relation between solutions of the DS-LHR problem over
instancesM1 andM2, and a solution of the DS-LHR problem over instanceM1,2.
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Lemma 6. Let M1 and M2 be two instances of DS-LHR and M1 ×M2 = M1,2.
Let S1, S2 be solutions of DS-LHR over instances M1 and M2 respectively, we
can compute in polynomial time a solution S′ of DS-LHR over instance M1,2 so
that c(S′) = 2c(S1)c(S2).

Lemma 7. Let M1 and M2 be two instances of DS-LHR and M1 ×M2 = M1,2.
Let S′ be a solution of DS-LHR over instance M1,2, we can compute in polyno-
mial time solutions S1, S2 of DS-LHR over instances M1, M2 respectively, so
that c(S′) ≤ 2c(S1)c(S2).

Proof. Let S′ be a solution of the DS-LHR problem over instance M1,2. Two
rows ri = (ra,i, rb,i), rj = (ra,j , rb,j) of S′ must be compatible. By Lemma 5, it
follows that the rows ra,i, ra,j of M1 are compatible and that the rows rb,i, rb,j
of M2 are compatible.

Given solution S′, define S1 = {ra,i : (ra,i, rb,j) ∈ S′}, S2 = {rb,j : (ra,i, rb,j) ∈
S′}. By construction two rows ra,i, ra,j , with ra,i, ra,j ∈ S1, are compatible, and
two rows rb,w, rb,v with rb,w , rb,v ∈ S2 are compatible.

In what follows we will show that c(S′) ≤ 2c(S1)c(S2). First, consider the
columns of the M1-submatrix of M1,2. Define H as a subset of blocks of the M1-
submatrix, where h ∈ H iff S′ covers at least one column of h. By Proposition 1,
for each row i = (ra,i, rb,i) ofM1,2 and for each h ∈ H , M1,2[i]|h is either equal to
row ra,i of M1 or to (-)|M1|. Denote by c(S′, h) the number of columns of block
h covered by S′. Let hmax be a block of H , so that c(S′, hmax) ≥ c(S′, h), for
each h ∈ H . By Property 1 the rows of S′ restricted to block hmax are a subset
of the rows in S1. It follows that S′ covers at most |H |c(S′, hmax) columns of
the M1-submatrix, and that |H |c(S′, hmax) ≤ |H |c(S1).

Now, consider the columns of the M2-submatrix. Define H ′ as the set of blocks
of the M2-submatrix, where h′ ∈ H ′ iff S′ covers at least one column of h′. Let
h′max be a block of H , so that c(S′, h′max) ≥ c(S′, h), for each h ∈ H ′. It follows
that S′ covers at most |H ′|c(S′, h′max) columns of the M2-submatrix, and that
|H ′|c(S′, h′max) ≤ |H ′|c(S2).

Now, it holds c(S′) ≤ |H |c(S′, hmax) + |H ′|c(S′, h′max). By construction, for
each block h ∈ H , there exists a row i = (ra,i, rb,i) ∈ S′ having a value different
from - in block h. Hence, by construction, M2[rb,i, h] �= -, and since rb,i ∈ S2,
it follows that c(S2) ≥ |H |. Similarly c(S1) ≥ |H ′|. It follows that c(S′) ≤
|H |c(S′, hmax) + |H ′|c(S′, h′max) ≤ |H |c(S1) + |H ′|c(S2) ≤ 2c(S1)c(S2). �

Next, given an instance M of DS-LHR inductively define the instance Mk of
DS-LHR as follows: M1 = M and Mk = M ×Mk−1. We can prove by induction
that Mk is an instance of DS-LHR. Indeed, obviously M1 is an instance of DS-
LHR. Assume that Mk−1 is an instance of DS-LHR. By Lemma 4 it follows that
also Mk = M ×Mk−1 is an instance of DS-LHR. As a consequence of Lemma
6 and Lemma 7, the following results hold.

Lemma 8. Let M , Mk, with k ≥ 1, be instances of DS-LHR. Let Opt(M) be
the optimum of the DS-LHR problem over instance M and let Opt(Mk) be the
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optimum of the DS-LHR problem over instance Mk, then it holds Opt(Mk) =
2k−1Opt(M)k.

Lemma 9. Let M , Mk be an instance of DS-LHR. Given a solution S over
instance Mk of the DS-LHR problem, we can compute in polynomial time a
solution S′ of the DS-LHR problem over instance M so that c(S′) ≤ 2k−1c(S)k.

Now, we are ready to state the main result of this section. Recall that n and m
denote the number of columns and rows respectively of the input matrix M .

Theorem 2. For any constant δ < 1, DS-LHR cannot approximated within
factor 2logδ nm, unless NP ⊆ DTIME[2poly log nm].

Proof. Suppose that the DS-LHR problem can be approximated within factor
2logδ nm, for some constant δ, in polynomial time. For any fixed value ε, define

k =

(
logδ(nm)
log(1 + ε)

)1/(1−δ)

.

Let M be an instance of DS-LHR, we can compute in polynomial time an
instance Mk having nk rows and 2k−1mk columns. We have assumed that DS-
LHR can be approximated within factor 2logδ nm in time O(|Mk|)d, for some
constant d, where O(|Mk|)d = O(nk2k−1mk)d. It follows that O(nk2k−1mk)d =
O((2nm)kd) = O(2kd log 2nm) = O(2poly log nm). By Lemma 9, we can compute
in polynomial time an approximate solution of DS-LHR over instance M with
approximation factor (2logδ(mn)k

)1/k ≤ 1 + ε, which implies we have designed a
PTAS for the DS-LHR problem. �

We have proved that DS-LHR, and hence S-LHR, is not approximable within
factor 2logδ nm for any constant δ < 1, unless NP ⊆ DTIME[2poly log nm]. We
use the L-reduction from S-LHR to LHR presented in [5] to extend the inap-
proximability result to the LHR problem. The L-reduction considers an input
matrix M of the S-LHR problem, so that M does not contain duplicated rows.
Then the L-reduction builds a matrix M ′, instance of the LHR problem, dupli-
cating each row of M . It is easy to see that there exists a solution of S-LHR of
size h iff there exists a solution of LHR of size 2h. Hence we have described an
L-reduction with constant α = 2 and β = 1

2 , and the inapproximability result
for the S-LHR problem can be extended to LHR.

Theorem 3. For any constant δ < 1, LHR cannot approximated within factor
2logδ nm, unless NP ⊆ DTIME[2poly log nm].

5 A Fixed-Parameter Algorithm

In this section we present a fixed-parameter algorithm for the LHR problem,
where the parameter is the size of the solution, that is the number of columns
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covered by two haplotypes hR1 , hR2 induced by the disjoint subsets R1, R2 of
rows of matrix M . The size of the solution is denoted in the sequel by k. For an
introduction to parametrized complexity, see [6,12].

First, let l be a row ofM that covers the maximum number of SNPs (columns).
We can assume that s(l) < k, otherwise we can return l as a solution to the LHR
problem. Hence, we can assume that s(i) < k, for each row i, 1 ≤ i ≤ n.

The algorithm is based on the color-coding technique [1]. First, we recall the
basic definition of perfect hash functions.

Definition 1. Let S be a set, a family F of functions from S to {1, . . . , k} is
perfect if for any subset S′ ⊆ S consisting of k elements, there exists an injective
function f ∈ F from S′ to {1, . . . , k}.

Consider a family Fc of perfect hash functions, Fc : {1, . . . ,m} → {1, . . . , k},
that associates a label in {1, . . . , k} with each column of the matrix M . Since Fc

is perfect, there exists an injective function f ∈ Fc that assigns to each column
covered by hR1 and hR2 a distinct label in {1 . . . , k}.

Fix a function f ∈ Fc. Given a column j, we denote by λ(j) the label in
{1, . . . , k} associated by f with j. Given a row i of M , we denote by l(i) the set
of labels associated with the columns covered by i. The haplotype hR1 consists
of k1 covered positions and the haplotype hR2 consists of k2 covered positions,
with k1, k2 ≤ k, k1 + k2 = k. Notice that the set of columns covered by hR1

and hR2 are not necessarily disjoint. Define Li ⊆ {1, . . . , k}, with i ∈ {1, 2}, as
the set of labels associated by function f with the ki columns of M covered by
haplotype hRi . Observe that there exist at most 2k possible subsets Li, with
i ∈ {1, 2}, hence there are at most 22k pairs of subsets (L1, L2).

Fix a pair of sets of labels L1 and L2. For each set of labels Li, with i ∈ {1, 2},
define the agreement vector bi of Li, as a binary vector of size ki, so that the j-th
component of bi, denoted as bi[j], represents the value of the column labeled by
j ∈ Li in the haplotype hRi , i ∈ {1, 2}. Since each agreement vector bi has size
ki ≤ k, it follows that there exist at most 2k possible vectors bi, with i ∈ {1, 2},
which implies that there exist at most 22k pairs of agreement vectors (b1, b2).

Given a pair of agreement vectors (b1, b2), we say that a row r of M agrees
with the agreement vector bj , j ∈ {1, 2}, iff M [r, h] = bj [λ(h)], for each column
h in s(r). It is easy to see that the following lemma holds.

Lemma 10. Let ra and rb be two rows of M that agree with the same agreement
vector bi, i ∈ {1, 2}, then ra and rb are compatible.

Fix a pair of vectors (b1, b2), define LHb1,b2,L1,L2 [j;L′
1, L

′
2], where 1 ≤ j ≤ n,

L′
i ⊆ Li, i ∈ {1, 2}, as follows: LHb1,b2,L1,L2 [j;L′

1, L
′
2] is equal to 1, iff there

exists a solution for the matrix Mj (that is the submatrix of M consisting of the
first j rows), where the haplotype hRi covers a set of columns labeled by the set
L′

i, i ∈ {1, 2}, else is equal to 0.
Now, we define the recurrence to compute LHb1,b2,L1,L2 [j;L′

1, L
′
2], for fixed

sets of labels L1, L2 and fixed agreement vectors b1, b2.
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LHb1,b2,L1,L2 [j;L
′
1, L

′
2] = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LHb1,b2,L1,L2 [j − 1;L′
1, L

′
2]

LHb1,b2,L1,L2 [j − 1;L′
1 − Pj , L

′
2]

if Pj ⊆ L′
1, Pj ⊆ l(j), and j agrees with b1

LHb1,b2,L1,L2 [j − 1;L′
1, L

′
2 − Pj ]

if Pj ⊆ L′
2, Pj ⊆ l(j), and j agrees with b2

(1)
Notice that the following conditions holds:

– LHb1,b2,L1,L2 [j; ∅, ∅] = 1, for each 1 ≤ j ≤ n;
– LHb1,b2,L1,L2 [1;L′

1, L
′
2] = 0, for each L′

1 ⊆ L1, L′
2 ⊆ L2, with L′

1, L
′
2 �= ∅;

– LHb1,b2,L1,L2 [1;L′
1, ∅] = 1 for each L′

1 ⊆ L1 such that L′
1 ⊆ l(1) and l(1)

agrees with b1, else LHb1,b2,L1,L2 [1;L′
1, ∅] = 0;

– LHb1,b2,L1,L2 [1; ∅, L′
2] = 1 for each L′

2 ⊆ L2 such that L′
2 ⊆ l(1) and l(1)

agrees with b2, else LHb1,b2,L1,L2 [1; ∅, L′
2, ] = 0.

First, we show the correctness of Recurrence 1 in Lemma 11 and Lemma 12,
then we discuss the time complexity of the algorithm.

Lemma 11. Let Mj be a submatrix of M and let R1, R2 be two disjoint com-
patible sets of rows of Mj, such that Ri, i ∈ {1, 2}, covers columns labeled by set
L′

i, i ∈ {1, 2}. Then, LHb1,b2,L1,L2 [j;L′
1, L

′
2] = 1.

Proof. Let hR1 and hR2 be the haplotypes induced by the sets R1 and R2 re-
spectively. First notice that, by hypothesis, a row l that belongs to Rx, with
x ∈ {1, 2}, must agree with vector bx. Assume that we have already com-
puted the values LHb1,b2,L1,L2 [j − 1;L′′

1 , L
′′
2 ], for each L′′

1 ⊆ L1 and L′′
2 ⊆ L′

2.
By induction hypothesis, if there exist two disjoint sets R′

1, R
′
2 of rows of

Mj−1 that cover the sets of columns labeled by L′′
1 and L′′

2 respectively, then
LHb1,b2,L1,L2 [j−1;L′′

1 , L
′′
2 ] = 1. Assume that row j covers a set of columns labeled

by Pj and assume w.l.o.g. that j ∈ R1. It follows that the disjoint subsets R1\{j},
R2 of rows ofMj−1, cover columns labeled by sets L′′

1 , L′
2 respectively, with L′′

1 =
L′

1 \ {Pj}. Then, by induction hypothesis, LHb1,b2,L1,L2 [j − 1;L′′
1 , L

′
2] = 1, and

since row j and the rows in R1\{j} agrees with b1, LHb1,b2,L1,L2 [j;L′
1, L

′
2] = 1 by

the second case of Recurrence 1. The case when j ∈ R2 is similar. If j /∈ R1, R2,
then R1 and R2 are both compatible sets of rows of Mj−1, with R1 ∩ R2 = ∅,
hence by induction LHb1,b2,L1,L2 [j − 1;L′

1, L
′
2] = 1. �

Lemma 12. Let Mj be a submatrix of M and let L′
1 ⊆ L1, L′

2 ⊆ L2 be two
subsets of labels so that LHb1,b2,L1,L2 [j;L′

1, L
′
2] = 1. Then, there exist two disjoint

compatible sets R1 and R2 of rows of Mj that cover columns labeled by sets L′
1

and L′
2 respectively.

Lemma 13. Given a labeling function f : M → {1, . . . , k}, two sets L1 ⊆
{1, . . . , k}, L2 ⊆ {1, . . . , k} of labels, and two binary agreement vectors b1, b2 as-
sociated with L1, L2 respectively, Recurrence 1 computes LHb1,b2,L1,L2 [j;L′

1, L
′
2],

for each L′
1 ⊆ L1 and L′

2 ⊆ L2, in time O(n23k).

Proof. Consider Recurrence (1) and assume that we have already computed
value LHb1,b2,L1,L2 [i;L

′′
1 , L

′′
2 ], for each i < j, L′′

1 ⊆ L′
1 and L′′

2 ⊆ L′
2. In order to
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compute value LHb1,b2,L1,L2 [j;L′
1, L

′
2], for each choice of set Pj ⊆ l(j), we must

look for a constant number of values. Since each fragment covers at most k − 1
columns and l(j) ⊆ {1, . . . , k}, there exist at most 2k possible subsets Pj ⊆ l(j),
hence we have to consider at most O(2k) cases for each row j. As the number of
entries in LHb1,b2,L1,L2 [i;L′′

1 , L
′′
2 ] is n22k, the time complexity to compute value

LHb1,b2,L1,L2 [j;L
′
1, L

′
2] is O(n23k). �

The number of possible sets Lx, with x ∈ {1, 2}, is O(2k), hence there exist at
most O(22k) pairs of sets (L1, L2). There exist at most O(2k) binary agreement
vectors bx associated with set Lx, with x ∈ {1, 2}, hence there exist at most
O(22k) pairs of agreement vectors (b1, b2). Since a perfect family of hash functions
of size O(log n2O(k)) can be constructed in O(2O(k)n logn) time [1], the overall
time complexity of the algorithm is O(n log n2O(k)).
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Abstract. Earliest query answering (eqa) is an objective of stream-
ing algorithms for XML query answering, that aim for close to opti-
mal memory management. In this paper, we show that eqa is infeasible
even for a small fragment of XPath unless P=NP. We then present an
eqa algorithm for queries and schemas defined by deterministic nested
word automata (dnwas) and distinguish a large class of dnwas for which
streaming query answering is feasible in polynomial space and time.

1 Introduction

Streaming algorithms process input streams in an incremental manner, and write
their output to some external output collection. The data content on the input
stream may be huge, so that only fragments of bounded size can be memorized
in main memory at every time point. Furthermore, the input stream is usually
restricted to a single reading pass (see [1,2] for more general models).

Streaming algorithms for XML input data streams that contain XML docu-
ments, i.e., linearizations of unranked trees or equivalently nested words. In this
paper, we are mainly interested in streaming query answering for node selection
queries in XML documents, which return collections of tuples of nodes. Such
queries may be defined in the W3C standard language XPath 2.0, whose core
has the same expressiveness as first-order logic for unranked trees, or by tree
automata. The domain of queries can be restricted by schemas defined by the
W3C standard XML Schema or again by tree automata.

For illustration, let us simplify XML documents into words with alphabet
{a, b}, and consider the monadic query Q0 that selects all b positions succeeded
by aa in words of {a, b}∗. This query can be defined by the first-order formula
labb(x)∧ laba(x+1)∧ laba(x+2) with one free variable x. Its answer set on word
t0 = abbaabaaba is Q0(t0) = {3, 6}. A streaming algorithm for query Q0 reads
some word t ∈ {a, b}∗ from the input stream and computes Q0(t) incrementally.
The first answer candidate encountered is letter b at position 2. Whether it will
be selected or not depends on the continuation of the stream, and thus position
2 must be stored by all streaming algorithms. We call such answer candidates
alive. The next event is letter b at position 3. Good streaming algorithms reject
candidate 2 now and discard it from memory. In turn, position 3 becomes alive
and must be stored. It can be safely selected from position 5 on, written to the
external output collection, and discarded from internal memory.

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 121–132, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We need a notion of streamability that accounts for both space and time. We
call a class E of query definitions streamable, if there exists a polynomial p and
an algorithm mapping query definitions e ∈ E to streaming algorithms Ae in
time p(|e|), such that Ae computes the answer set of query Qe for all trees t on
the input stream, with space and time per step bounded by p(|e|) independently
of t. Bar-Yossef et al. [3] showed for a class of XPath queries, that the maximal
number of simultaneous alive answer candidates (for all positions of the input
stream) is indeed a lower space bound for every streaming query answering
algorithm. This number is called the concurrency concurQ(t) of a query Q for
an unranked tree t. Classes of queries with unbounded concurrency are thus not
streamable. Few positive streamability results exist. Boolean queries (returning
true or false) defined by tree automata with languages of trees of bounded depth
are streamable [4,5]. Simply compute all runs in parallel on the fly with a stack of
bounded depth. Benedikt et. al. [6] showed P-time streamability for the fragment
of Boolean Core XPath 1.0 queries in shallow trees, that never look forwards.
Heuristics are proposed to approximate earliest rejection. Streamability results
for monadic queries are lacking so far.

Earliest query answering (eqa) is the objective of many recent approaches
that hint for streaming algorithms with polynomial time and space [3,7,8,9,10].
The strategy is to memorize alive answer candidates only, in order to reach close
to optimal memory management. eqa trades space for time: all eqa algorithms
need to decide at every step, whether the current answer candidates are safe
for selection or rejection (otherwise they are alive). We call these two decision
problems sufficiency for selection resp. rejection. Benedikt et al [6] noticed
(Theorem 1) that rejection sufficiency for Boolean XPath queries that never
look forwards is pspace-hard.

As a first contribution, we present hardness results for selection suffi-

ciency. For arbitrary classes of query definitions, we show how to reduce se-

lection sufficiency to a language inclusion problem. As a corollary, we
obtain coNP-hardness of selection sufficiency for a small fragment of For-
ward XPath filters with only child and descendant axis (without schemas) by
reduction to universality of Boolean queries [11]. Thus, the P-time streaming
algorithms in [7,12] cannot be earliest, except if P=NP. This result shows that [7]
does not fully reach its progressiveness objective, and furthermore it contradicts
Theorem 3 of [12] on optimal memory management (without proof). As a counter
example, consider the Forward XPath expression //a[not[child::c] and [child::b]],
which queries for a-nodes without c-children but with a b-child. Both algorithms
will keep a-nodes in memory even when encountering a c-child (and remove them
only after closing the last child).

As a second contribution, we provide an eqa algorithm for n-ary queries de-
fined by deterministic nested word automata (dnwas) [13,14]. Our result relies
on new automata constructions deciding selection and rejection sufficiency

in an incremental manner. Without determinism, we show that selection

sufficiency for Boolean nwas is exptime-complete by reduction to univer-

sality of tree automata [15]. Let Qe be queries with fixed arity n ≥ 0 that are
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defined by a pair of dnwas e = (A,B) which recognizes the canonical language
and the domain (aka schema) of the query respectively, and let t ∈ L(B) be a
tree satisfying the schema on the input stream. Our eqa algorithm for e com-
putes Qe(t) with the following costs, where d = depth(t) is the depth of the tree
and c = concurQe(t) the concurrency of the query on the tree:

– polynomial precomputation time in O(|A|3 · |B|3);
– polynomial space for all steps in O(c · d · |A| · |B|);
– polynomial time for all steps in O(c · |A|2 · |B|2).

As a corollary, a subclass E of queries defined by dnwas is streamable, if depth
and concurrency are bounded by some polynomial p such that d = depth(t) ≤
p(|B|) and c = concurQe(t) ≤ p(|A| · |B|) for all e = (A,B) ∈ E and t ∈ L(B).

Related work. Preliminary versions of this paper were presented at the work-
shops Plan-X’08 and AutoMathA’09. Independently, we showed in [16] how to
decide bounded concurrency for queries defined by dnwas in P-time, by reduc-
tion to bounded valuedness of recognizable tree relations.

Schemas defined by dnwas subsume extended deterministic DTDs with re-
strained competition [17] modulo a P-time transformation. Kumar, Madhusu-
dan and Viswanathan [10] investigate eqa by dnwas, but for a restricted class
of monadic queries which always allow for immediate node selection at open-
ing time. Similarly, Benedikt and Jeffrey [9] consider immediate node selection
at opening and closing time, for XPath filters on depth-bounded documents.
Madhusudan and Viswanathan [18] propose a streaming algorithm for monadic
queries defined by nwas. They impose a serious restriction on their automata so
that the sufficiency becomes trivially decidable in P-time.

nwas are equivalent modulo P-time to pushdown forest automata [19,8,20].
Berlea’s [8] P-time eqa algorithm for queries defined by a variant of pushdown
forest automata is very different to ours in that no determinism is assumed.
This works out, since he assumes infinite signatures so that universality and
sufficiency become trivially decidable, in contrast to a finite signature, where
sufficiency becomes exptime-hard. With infinite signature, however, schemas
can no more be expressed, closure under complement fails, and MSO is no more
captured (in contrast to what is stated in Section 3.1 of [8]). Thus, while eqa

becomes much simpler, it looses much of its interest.
Bar-Yossef et. al. [3] proposed a streaming algorithm with optimal memory

management for monadic queries in shallow trees defined in a fragment of For-
ward XPath queries. Unfortunately, this algorithm is incorrect since it doesn’t
try to decide rejection sufficiency. Whether this problem might be solvable
by adding further restrictions is open.

Outline. In Sec. 2, we show how to define queries for unranked trees. In Sec. 3
we recall nested word automata. In Sec. 4, we present hardness results for suf-

ficiency problems. In Sec. 5, we show how to decide sufficiency for queries
defined by dnwas incrementally, in order to obtain an eqa algorithm in Sec. 6.

All proofs can be found online in the extended version.
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2 Queries and Schemas in Unranked Trees

The set TΣ of unranked trees over a finite set Σ is the least set that contains all
pairs a(t1, . . . , tm) consisting of a letter a ∈ Σ and an hedge (t1, . . . , tm) ∈ Tm

Σ

werem ≥ 0. Nodes of trees and hedges are words over natural numbers defined by
nod(a(t1, . . . , tm)) = {ε} ∪ nod((t1, . . . , tm)) and nod((t1, . . . , tm)) = ∪m

i=1{i·π |
π ∈ nod(ti)}. We denote the label of node π ∈ nod(t) by labt(π) ∈ Σ. The empty
word ε is the root of all trees (but of no hedge). The word π·i ∈ nod(t) is the
ith child of π. Let childt ⊆ nod(t)2 be the father-child relation and labt

a = {π |
labt(π) = a} the labeling relation for a ∈ Σ.

Linearizations of unranked trees in preorder are called nested words in [14,13].
We write nw(t) for the nested word of t. For instance, if t = a(b, c(d), f) then
nw(t) = (op, a)·(op, b)·(cl, b)·(op, c)·(op, d)·(cl, d)·(cl, c)·(op, f)·(cl, f)·(cl, a).
In XML syntax, an opening tag (op, a) is written as < a > and a closing tag
(cl, a) is written as < /a>. We ignore data values throughout this paper. We
consider streaming algorithms receiving nested words nw(t) on the input stream.
The positions of nw(t) can be identified with the following set of events:

eve(t) = {start} ∪ ({op, cl} × nod(t))

If labt(π) = a then event (op, π) specifies an occurrence of opening tag <a> in
an XML stream, and event (cl, π) the corresponding occurence of closing tag
</a>. Fig. 1(c) illustrates a nested word with edges of relating corresponding
events, established by some parser in parallel preprocessing. Let ≺t be the total
order on eve(t), i.e., the order of the tags in the XML stream, and for every
e except start let pr(e) be the immediate predecessor of e in that order. For
hedges, events are defined by: eve(h) = {start} ∪ ({op, cl} × nod(h)).

A schema is a tree language S ⊆ TΣ . An n-ary query is a function Q with
schema S is a function Q with domain dom(Q) = S that selects a set of n-tuples
of nodes Q(t) ⊆ nod(t)n for every tree t ∈ S. Boolean queries are queries of arity
n = 0. The canonical language of an n-ary query Q is a set of annotated trees
LQ ⊆ TΣ×Bn, where B = {0, 1} are the Booleans. For all trees t ∈ dom(Q) and
tuples ν ∈ nod(t)n, we define an annotated tree t′ = t ∗ ν in TΣ×Bn that has the
same structure as t, i.e., nod(t′) = nod(t), while annotating the node labels of t
by bit vectors, such that labt′(π) = (labt(π), β) for all nodes π ∈ nod(t), where
β = (b1, . . . , bn), ν = (π1, . . . , πn) and bi = 1 ⇔ π = πi for all 1 ≤ i ≤ n. The
canonical language of an n-ary query Q is the set of all annotated trees for Q,
i.e.: LQ = {t ∗ ν | ν ∈ q(t)}. For Boolean queries, LQ ⊆ dom(Q).

Queries Q(A,B) in unranked trees can be defined by a pair (A,B) of automata
with languages L(A) = LQ and L(B) = dom(Q(A,B)). If L(B) = TΣ then we
write QA for Q(A,B).

3 Nested Word Automata

In the present paper, we consider nwas [13] as automata operating directly on
unranked trees (as proposed in [20] and similarly to pushdown forest automata
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[19,8]) whereas they usually operate on linearizations of unranked trees nw(t) or
slightly more general nested words.

An nwa A = (Σ,Γ, stat , init ,fin, rul) consists of a finite signature Σ of node
labels, a finite set stat with subsets init ,fin ⊆ stat of initial and final states, a
finite set Γ of stack symbols, and a set rul ⊆ {op, cl} ×Σ × Γ × stat2 of rules.
We denote rules as:

p0
α a:γ−−−→ p1

where α ∈ {op, cl}, p0, p1 ∈ stat , a ∈ Σ, γ ∈ Γ . Whenever necessary, we will
upper index components of A, as for instance, writing rulA instead of rul .

An nwa traverses the sequence of events of a given tree t, while annotating
all events of t by states and all nodes of t by stack symbols. Let p0 be the state
of the previous event processed, and (α, π) be the current event. The automaton
chooses some rule with action α and label a = labt(π) whose left hand side is
p0. If α = op then it annotates node π with stack symbol γ. If α = cl then the
rule matches only, if the stack symbol annotated at opening time to π is equal
to the stack symbol γ of the rule. For matching rules, the automaton annotates
state p1 on the right hand side to the current event.

More formally, a run of an nwa on a tree t is a function r with two types
r : eve(t) → stat and r : nod(t) → Γ which maps events to states and nodes to
stack symbols, such that r(start) ∈ init and the following rule belongs to rul
for all π ∈ nod(t) with a = labt(π), and actions α ∈ {op, cl}.

r(pr (α, π))
α a:r(π)−−−−−→ r((α, π))

An example of a run of an nwa on the tree a(a, a(a, a(b), b))) is given in Fig. 1.
It tests whether this tree satisfies the Boolean XPath query [//a[child::b]], or
equivalently the first-order formula ∃x(laba(x)∧∃y(child(x, y)∧ labb(y))). When
opening an a-node in its initial state 0, this nwa guesses whether it matches the
a-position of the XPath expression (state 1) or not (state 0). From state 1, it
waits while traversing a sequence of states (2∗1)∗, until some b-child is opened,
before concluding success in state 3. The information of being a child of the
a-node opened in state 1 is annotated by stack symbol y, and passed over from
the left to the right.

A run r of A on a tree t is successful if r((cl, ε)) ∈ finA. The set of all
possible runs of the nwa A on the tree t is denoted runsA(t) and the subset
of all successful runs by runs succA(t). The recognized language L(A) is the set
of all trees t ∈ TΣ that permit a successful run by A, i.e., L(A) = {t ∈ TΣ |
runs succA(t) �= ∅}. For a hedge (t1, . . . , tk), a run is successful if r(start) ∈
initA and r((cl, k)) ∈ finA.

An nwa is deterministic or a dnwa , if it has a single initial state, no two op
rules for the same letter use the same state on the left, and no two cl rules for
the same letter use the same stack symbol and the same state on the left. The
unique run of a dnwa A on a tree t can be computed in a streaming manner, if
it exists. The input is the nested word nw(t) of some t that is enriched by the
nesting relation by parallel preprocessing with a SAX parser, and the output is
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(b) Successful run of A on tree t
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(c) Successful run of A on nested word of t

Fig. 1. An nwa checking the Boolean XPath filter [//a[child::b]] by successful runs

the sequence of states that A assigns to the events of t. In order to do so, A has
to be stored, and at every time point the current state and the stack of symbols
that are annotated to the nodes on the path from the root to the current node.
The maximal memory needed at any time point is O(|A| + depth(t) + 1).

4 Complexity of Earliest Query Answering

We present the decision problems of eqa algorithms for n-ary node selection
queries and establish lower complexity bounds.

We have to define sufficient events for tuple selection. For every η ∈ eve(t) −
{start}, let the tree prefix t�η be the fragment of t which contains all nodes of
t opened before or at event η. Note that t�(cl,π) contains all proper descendants
of π in t, while t�(op,π) does not. For two trees t, t′ ∈ TΣ and η ∈ eve(t) we define
equalη(t, t′) by η ∈ eve(t) ∩ eve(t′) and t�η = t′�η, i.e., t and t′ have the same
prefix until η.

Definition 1. (Sufficient events for selection) Let Q be an n-ary query over Σ
and t ∈ dom(Q) a tree. We relate tuples ν ∈ nod(t)n to events η ∈ eve(t) that
are sufficient for their selection:

(ν, η) ∈ selQ(t) ⇔ (ν ∈ nod(t�η)n ∧ ∀t′ ∈ dom(Q). equalη(t, t′) ⇒ ν ∈ Q(t′))

Note that (ν, η) ∈ selQ(t) implies ν ∈ Q(t). Furthermore, successors of sufficient
events are sufficient. Consider for instance the monadic query Q1 with schema
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T{a,b,c} defined by the XPath expression //a[child::c]/child::b, or equivalently by
the first-order formula labb(x)∧∃y (laba(y)∧child(y, x)∧∃z(child(y, z)∧labc(z)))
with one free variable x. On tree t = b(a, a(a, b, c)), the earliest time point to se-
lect node 2·2 is event (op, 2·3) when the c-child is opened, i.e., ((2·2), (op, 2·3)) ∈
selQ1(t). For query Q2 defined by the same XPath expression, but with a more
restrictive schema, requiring that all inner a-nodes have at least one c-child, we
can select node 2·2 at opening time, i.e., ((2·2), (op, 2·2)) ∈ selQ2(t).

For optimal memory management, it is equally important to discard rejected
answer candidates in an earliest manner, i.e., candidates that will never be se-
lected in any possible future. Going one step further, one might also want to re-
move rejected partial candidates, for which no completion will ever be selected in
any future. Partial candidates ν are elements of nod�(t�η)n = (nod(t�η)'{(})n,
the symbol ( denoting components where no selection occurred so far. Comple-
tions compl(ν, t, η) are complete candidates obtained by replacing (-components
of ν by nodes of t opened after η.

Definition 2. (Sufficient events for rejection) We call a candidate ν rejected
at event η, or equivalently η sufficient for failing ν, if no completion of ν can be
selected in the future:

(ν, η) ∈ rejQ(t) ⇔
{
ν ∈ nod�(t�η)n ∧ ∀t′ ∈ dom(Q).
equalη(t, t′) ⇒ ∀ν′ ∈ compl(ν, t′, η). ν′ /∈ Q(t′)

We call a candidate ν alive at event η, if η is not sufficient for selection or
rejection of ν, i.e., (ν, η) /∈ selQ(t) ∪ rej Q(t). eqa algorithms store only alive
candidates. The maximal number of alive candidates at a same event, except for
(n, is called concurrency [3], and written concurQ(t). For sake of clarity, we
treat rejection sufficiency only in the extended version of the paper.

sufficiency has to be decided for all candidates by all eqa algorithms at
every event. selection sufficiency for a class of query definitions E is the
problem that receives as input a definition e ∈ E of a query Qe with arity n, a
tree t ∈ TΣ , an event η ∈ eve(t), and a tuple ν ∈ nod(t)n, and sends as out-
put the truth value of (ν, η) ∈ selQ(t). We provide hardness results selection

sufficiency for some query classes E.
First, we consider Boolean queries defined by XPath filters F in the following

fragment. All trees satisfy the label constraint ∗, while only trees a(. . .) satisfy
the label constraint a. A filter [child::� F ] is satisfied by all trees with a subtree
at a child position of the root that satisfies � and F . A filter [//� F ] is satisfied by
trees having a subtree satisfying � and F . We freely omit filter [true] in examples.

F ::= [child::� F ] | [//� F ] | [F1 and F2] | [not F ] | [true] for � ∈ Σ ∪ {∗}

Proposition 1. sufficiency for Boolean queries defined in the above fragment
of XPath is coNP-hard, even without schema assumptions.

As a consequence, every eqa algorithm for a larger fragment of xpath cannot
be in polynomial time, except if P=NP.

Second, we study this problem for queries defined by automata. For non-
deterministic ones, sufficiency remains hard, even with Boolean queries.
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Proposition 2. sufficiency for Boolean nwa queries is exptime-hard.

However, when restricted to deterministic nwas, the problem becomes tractable.

Theorem 1. sufficiency for n-ary dnwa queries is in polynomial time.

This justifies the use of dnwas in the following, and shows that sufficiency is
exptime-complete for nwas (by using nwa determinization).

5 Inferring Safe States

For dnwa queries, we propose a method for deciding sufficiency at each event
of a tree. Our solution is based on a new dnwa construction. Given a dnwa A for
the query, we build a dnwa E(A) that accepts the same language, and contains
enough information in its states to decide for selection sufficiency at each event
immediately. For clarity, sufficiency for rejection is presented in the full version
of the paper, and schemas are discussed at the end of Section 6.

We define a partial run r of an nwa A on a tree t like a run, except that it
operates only on a prefix t�η for some event η ∈ eve(t). We write p runsA(t) for
the set of all partial runs of A on t. Let A be a dnwa over Σ × Bn defining a
query QA, t ∈ TΣ , η ∈ eve(t), and ν ∈ nod(t)n. We call a state p ∈ statA safe
for selection of ν at event η if the existence of a partial run r of A on t that
maps η to p implies (ν, η) ∈ selQA(t). In other terms, these are the states that
ensure sufficiency for selection when they are reached.

safe selA(ν,η)(t) = {p | (∃r ∈ p runsA(t ∗ ν) ∧ r(η) = p) ⇒ (ν, η) ∈ selQA(t)}

a

h

p0
γ

p2

p1

The remainder of this section describes how these states
can be computed by a new dnwa E(A), which permits to
decide sufficiency. Here we need some auxiliary definitions.
Let runsA

p0→p1
(h) be the set of runs of an nwaA on a hedge

h that start in state p0 and end in state p1. The operator
ev clA(h, p0, a, γ) evaluates hedge h from state p0 and subsequently applies a
closing rule with label a and state γ:

ev clA(h, p0, a, γ) = {p2 | ∃r ∈ runsA
p0→p1

(h). p1
cl a:γ−−−−→ p2 ∈ rulA}

We consider continuations through hedges in Hsel = T ∗
Σ×{0}n . The operator

univ selA(a, γ, P ) computes all states, from where all hedges in Hsel can be
evaluated and closed wrt a and γ into a state of P ⊆ statA:

univ selA(a, γ, P ) = {p0 | ∀h ∈ Hsel . ev clA(h, p0, a, γ) ∩ P �= ∅}

Given A, t, and ν, we can compute inductively the safe states Ssel(η) =
safe selA(ν,η)(t) for all events η ∈ eve(t). First, for the closing event of the root,
the set of safe states for selection are the final states: Ssel ((cl, ε)) = finA. Sec-
ond, at each node π, the safe states for opening events can be computed from
those of the corresponding closing event:

Ssel ((op, π)) = univ selA(a, γ, Ssel((cl, π)))
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p0
op a:γ1−−−−→ p1 ∈ rulA

S1 = univ selA(a, γ1,S0)

(p0,S0)
op a:(γ1,S0)−−−−−−−−→ (p1,S1) ∈ rulE(A)

p0
cl a:γ0−−−−→ p1 ∈ rulA

S0,S1 ⊆ statA

(p0,S0)
cl a:(γ0,S1)−−−−−−−−→ (p1,S1) ∈ rulE(A)

initE(A) =(initA, finA) finE(A) ={(p, finA) | p ∈ finA}

Fig. 2. Construction of E(A) from A

where a = labt(π) and γ = rA(π). Third, the safe states for the opening event of
π are equal to those for the closing events of children of π, i.e., Ssel((op, π)) =
Ssel((cl, π·i)).

These propagation rules allow to infer safe selA(ν,η)(t) for all events η. This can
be done by running the nwa E(A) defined in Fig. 2, which adds safe states to
each state of A. The signature of E(A) is Σ × Bn as for A. The state sets may
be exponentially large, since statE(A) = statA × 2statA

and ΓE(A) = ΓA × 2statA

.
Stack symbols are used to pass safe states from parents to all their children.

Proposition 3. Let A be a dnwa on Σ × Bn that defines a query, and t ∗ ν ∈
TΣ×Bn. Then E(A) is a dnwa that accepts the same language as A. Furthermore,
if rA (resp. rE(A)) is the unique run of A (resp. E(A)) on t ∗ ν then rE(A)(η) =
(rA(η), safe selA(ν,η)(t)) for all η ∈ eve(η) − {start}.

A detailed proof is in the long version of the paper.1 Running automaton E(A) for
a candidate permits to test sufficiency for selection at the event when it happens.
At most one run has to be processed per candidate, thanks to determinism.

6 EQA Algorithm for dNWAs

We present an eqa algorithm for queries defined by dnwas A which runs in
polynomial time per step. The idea is to run the earliest automaton E(A) of
Section 5 on the input stream in order to decide selection sufficiency for all
answer candidates at all time points, without constructing E(A) explicitly, since
it may be of exponential size compared to A. Recall that deciding rejection

sufficiency is needed for all eqa algorithms too, even though not discussed in
this extended abstract.

Running E(A) on the Fly. Given a dnwa A over Σ × Bn and a tree t ∗ ν over
the same signature, we want to compute a run of E(A) on t ∗ ν in polynomial
time in the size of A. The application of closing rules of E(A) is easy, since it
only has to look for a rule of A. Applying opening rules of E(A) is a little more
tedious, since we have to compute the set univ sel(a, γ, P ) while given a ∈ Σ,
γ ∈ ΓA, and P ⊆ statA.
1 Note that for sake of clarity, this construction does not hold for earliest selection

of () at the start event, for Boolean queries. However, this case can be processed
easily by considering every possible label of the root.
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a ∈ Σ × {0}n p1
op a:γ−−−−→ p3 ∈ rulA p4

cl a:γ−−−−→ p2 ∈ rulA

accHsel (p1, p2) :- accHsel (p3, p4).

p ∈ statA

accHsel (p, p).
p1, p2, p3 ∈ statA

accHsel (p1, p2) :- accHsel (p1, p3),accHsel (p3, p2).

Fig. 3. Inference rules for the definition of accA
Hsel

When assuming the completeness of A beside of determinism (which can be
ensured in polynomial time), these sets can be computed by reduction to infor-
mation on accessibility through hedges for A. Given a set H ⊆ T ∗

Σ×Bn of hedges,
and states p1, p2 ∈ statA, we define the following accessibility predicate:

accA
H(p1, p2) ⇔ ∃h ∈ H. runsA

p1→p2
(h) �= ∅

We compute it for Hsel = T ∗
Σ×{0}n , with the Datalog program in Fig. 3.

Proposition 4. The collection of values accA
Hsel

(p1, p2) can be computed in time
O(|Σ| · |A|3) for every dnwa A.

To explain the computation of univ selA, we introduce befCloseA(a, γ, P ), the
set of states that lead to a state of P after closing a with γ:

befCloseA(a, γ, P ) = {p0 | ∃p1 ∈ P. p0
cl a:γ−−−−→ p1 ∈ rulA}

Lemma 1. For complete dnwas A, the safe states univ selA(a, γ, P ) are:

{p | accA
Hsel

(p, p0) ⇒ p0 ∈ befCloseA(a, γ, P )}

Generic Algorithm. Our algorithm will be obtained by instantiating the skeleton
in Fig. 4 of a generic eqa algorithm, which is parametrized by a class E of query
definitions. The static input of the algorithm is a query definition e ∈ E, and
its dynamic input on the stream is a nested word nw(t). We assume that the
nested word is parsed by some parallel preprocessor. Our algorithm can thus
process the stream of events of t while knowning their matching relation. It
then adds the tuples of Q(t) to the external output collection incrementally at
the earliest possible event. The main idea is to generate all candidate tuples,
test their aliveness repeatedly, output selected candidates and remove rejected
candidates.

Instantiation for dnwas . Now suppose that the query is defined by a dnwa

A. For every candidate ν we maintain its current state (p,S) ∈ statE(A) and
a sequence Υ ∈ (ΓE(A))∗ that we call stack, whose length is the depth of the
current node of t. Sufficiency for selection (ν, η) ∈ selQ(t) holds iff p ∈ S.

Updating the current set of candidates at event η means to apply a rule of
E(A) to the current state (p,S) ∈ E(A), and for opening events to create all
new candidates, where the current node is used. More precisely, for generating
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f u n answer (e , t ) % e ∈ E , t ∈ dom(Qe)
l e t Q = Qe

l e t cand idates = se t . new(∅)
i n

f o r η i n eve(t) i n streaming−order do
cand idate s . update (η )
f o r ν i n cand idates do

i f (ν ,η ) ∈ s e l Q ( t )
then add−output (ν )

cand idates . remove (ν )
e l s e i f (ν ,η ) ∈ r e j Q ( t )

then cand idates . remove (ν )

Fig. 4. Generic eqa algorithm for a class E of query definitions

these candidates, we can restrict to the ones generated by continuations of the
runs of old candidates. Thus, the number of candidates to process at an event is
bounded by c+ i, where c = concurQ(t) is the concurrency of the query Q, and
i = immediateQ(t) is the number of new candidates that immediately get safe
for selection or rejection. We have seen already how to apply rules of E(A) in
polynomial time in the size of A. The node state of the rule is pushed to stack
Υ for opening events, and popped from Υ for closing events.

Theorem 2. For every dnwa A recognizing a canonical language over Σ×Bn,
and tree t ∈ TΣ, the time needed to process one event is in O((c+i)·|Σ|·|A|2) and
the space in O(c · d · |A|), where d = depth(t) is the depth of t, c = concurQA(t)
and i = immediateQA(t).

Adding Schemas. With respect to sufficiency checking, we can integrate the
schema into the query. Validation of the document with respect to the schema
is an independent task, that we run in parallel. Given an n-ary query Q and a
schema S, define a query QS

sel with domain TΣ:

QS
sel(t) = Q(t) if t ∈ S, and nod(t)n otherwise

It is easy to check that selQ = selQS
sel

so that we can test sufficiency for selection
as before. The overall costs of the resulting eqa algorithm with schemas have
already been reported in the introduction.

Conclusion. We distinguished a large class of streamable query-schema defini-
tions defined by dnwas. This class was obtained by designing an eqa algorithm
in a first step and bounding the concurrency of the query and the depth of trees
in a second. We have shown that eqa is infeasible for nondeterministic nwas
if n ≥ 1, as well as for Forward XPath with child and descendant axis. In sub-
sequent work [21], we have shown that these classes are indeed not streamable,
and distinguished schema restricted fragments of Forward XPath, that can be
proven to be streamable by P-time compilation into dnwas. This proves that
the notion of determinism of dnwas is essential for streamability. An open ques-
tion is whether we can extend our eqa algorithm to deterministic pushdown
automata.
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2009. LNCS, vol. 5457, pp. 350–361. Springer, Heidelberg (2009)

17. Martens, W., Neven, F., Schwentick, T.: Which XML schemas admit 1-pass pre-
order typing? In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp.
68–82. Springer, Heidelberg (2004)

18. Madhusudan, P., Viswanathan, M.: Query automata for nested words (2009)
19. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: Arvind,

V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 134–146. Springer,
Heidelberg (1998)

20. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Information Process-
ing Letters 109, 13–17 (2008)

21. Gauwin, O., Niehren, J.: Streamable fragments of Forward XPath (2009)



Multiway In-Place Merging�

Viliam Geffert and Jozef Gajdoš
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Abstract. We present an algorithm for asymptotically efficient k-way
merging. Given an array A containing sorted subsequences A1, . . . , Ak of
respective lengths n1, . . . , nk, where

∑k
i=1 ni = n, our algorithm merges

A1, . . . , Ak in-place, into a single sorted sequence, performing �lg k�·n +
o(n) element comparisons and 3 ·n + o(n) element moves. That is, our
algorithm runs in linear time, with the number of moves independent
of k, the number of input sequences.

Keywords: In-place algorithms, merging, sorting.

1 Introduction

We study the computational complexity of the multiway in-place merging. Given
an array A consisting of k sorted subsequences A1, . . . , Ak of respective lengths
n1, . . . , nk, where

∑k
i=1 ni = n, the multiway in-place merging problem is to

rearrange the elements of A to a single sorted sequence. Here k denotes a fixed
constant parameter. We assume that only one extra storage location (in addition
to the array A) is available for storing elements aside. To store array indices,
counters, etc., only O(1) integer variables, of O(lg n) bits each, are available.1

So far, the problem has been studied for k = 2 only [3]. In the worst case, this
algorithm uses n+o(n) comparisons, 3n+o(n) element moves and O(1) auxiliary
locations. Thus, by repeated application of this algorithm, we could carry out
multiway merging in linear time, for arbitrary k ≥ 2. However, implemented
this way, the k-way merging would perform �lg k�·n+ o(n) element comparisons
and 3·�lg k�·n + o(n) element moves. We show that the number of moves does
not depend on k. Namely, using the algorithm of [3] as our starting point, we
show that multiway in-place merging is possible with �lg k�·n+O((n·lgn)2/3) ≤
�lg k�·n+ o(n) comparisons and 3·n+O((n·lg n)2/3) ≤ 3·n+ o(n) moves. Thus,
the number of moves does not grow in k, the number of merged sequences. This
should be compared with the respective lower bounds: Any comparison based
k-way in-place merging algorithm must perform at least lg k ·n− k·lg n−O(1)
comparisons and  3/2·n! moves.

� This work was supported by the Slovak Grant Agency for Science (VEGA) under
contract 1/0035/09.

1 Throughout the paper, lg x denotes the binary logarithm of x.

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 133–144, 2009.
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2 Comparisons in a Simple Multiway Merging

To explain how elements are compared, we first solve a simpler task. Assume that
we are given an array A, consisting of k sorted subsequences A1, . . . , Ak that are
to be merged into a single sorted sequence. The lengths of these subsequences
are n1, . . . , nk, respectively, with

∑k
i=1 ni = n. Assume also that we are given

an extra array B of the same size n, which will be used as an output zone.
During the computation, we use auxiliary index variables i1, . . . , ik and oc,

where ij points to the smallest element of Aj not yet processed. This element
will be called the current input element of the j-th sequence, or simply the j-th
input element. The index oc points to the leftmost empty position in the array B.

Then the straightforward implementation of the merge routine proceeds as
follows. Find the smallest element not yet processed, among elements at the
positions i1, . . . , ik, and move this element to the output zone in B. After that,
update the necessary index variables and repeat the process until all the elements
have been merged. Implemented this way, we would use (k−1)·n comparisons
and n element moves in total.

The number of comparisons can be reduced by implementing a selection tree
of depth �lg k� above the k current input elements. Initially, to build a selection
tree, k−1 comparisons are required. Then the smallest element can be moved to
the output. After this, the following element in the same subsequence is inserted
in the tree and the selection tree is updated, with only �lg k� comparisons. To
avoid element moves, only pointers to elements are stored in the selection tree.
(For more details concerning this data structure, see [4,5].) Now we have k−1
comparisons for the first element, but only �lg k� comparisons per each other
element. This gives (k−1) + �lg k�·(n−1) ≤ �lg k�·n+O(1) comparisons.

3 Comparisons in a Blockwise Merging

Here we describe one of the cardinal tricks used in our algorithm. As an addi-
tional assumption, now A1, . . . , Ak are divided into blocks of equal size s (this
value will be determined later) and, before the merging starts, these blocks are
mixed up quite arbitrarily. Because of this permutation, we no longer know the
original membership of blocks in the sequences A1, . . . , Ak. Still, the relative
order of elements inside individual blocks is preserved. Moreover, we assume
that n1, . . . , nk, the respective lengths of input sequences, are positive integer
multiples of s, and hence, before mixing the blocks up, there was always a block
boundary between the last element of Ai and the first element of Ai+1, for each i.

Before passing further, we define the following relative order of blocks in the
array A. Let X be a block with the leftmost and the rightmost elements denoted
by xL and xR, respectively, which will be represented in the form X = 〈xL, xR〉.
Similarly, let Y = 〈yL, yR〉 be an another block. We say that the block X is
smaller than or equal to Y , if xL < yL, or xL = yL and xR ≤ yR.

Now the modified algorithm proceeds as follows. First, using the above block
ordering, find the smallest k blocks in A. These blocks become the k current input
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blocks, their leftmost elements the k current input elements. The j-th current
input block is denoted by Xj , and the j-th current input element by xj . Positions
of x1, . . . , xk are kept in index variables i1, . . . , ik. Above these elements, we build
a selection tree. All remaining blocks are called common blocks.

After that, the merging process proceeds in the same way as described in
Sect. 2: Using the selection tree, determine ij, the position of the smallest input
element not yet processed, and move this element to the output zone in the
array B. Then the element on the right of xj , within the same block Xj , becomes
a new j-th current input element and the selection tree is updated. This can be
repeated until one of the current input blocks becomes empty.

When this happens, i.e., each time the element xj , just moved to the output
zone, was the rightmost element in the corresponding input block Xj , the block
Xj is “discarded” and the smallest (according to our relative block ordering)
common block not yet processed becomes the new j-th current input block.
The leftmost element in this block becomes the new j-th current input element.
Since the blocks are mixed in the array A, we need to scan sequentially all blocks
(not yet processed only) to determine which one of them is the smallest. This
consumes O((n/s)2) additional comparisons: there are at most n/s blocks and
such search is activated only if one of the input blocks has been discarded as
empty, i.e., at most n/s times.

Despite the fact that, before merging, the blocks are mixed up and their
origin in the sequences A1, . . . , Ak is ignored, it can be shown that the elements
are transported to the output zone in sorted order. The number of element
comparisons is bounded by �lg k�·n+O((n/s)2), under assumption that we can
distinguish discarded blocks from those not yet processed, at no extra cost.

4 In-Place Merging, Simplified Case

Now we shall convert the above merging algorithm into a procedure working
“almost” in-place: The subsequences A1, . . . , Ak are again of respective lengths
n1, . . . , nk that are positive integer multiples of s, but we no longer have a
separate array B of size n. Instead, we have some extra k·s elements positioned
at the very end of the array A. These elements are greater than any of the
elements in A1, . . . , Ak. During the computation, they can be mixed with other
elements, but their original contents cannot be destroyed. We shall call them
buffer elements. We also have one extra location to put a single element aside.

The sorted output is formed within the same arrayA, in the locations occupied
by A1, . . . , Ak. Therefore, the moves are performed in a different way, based on
the idea of internal buffering [7,3]. Nevertheless, the comparisons are performed
in the same way as described in Sect. 3.

4.1 Initialization

Divide the array A into blocks of equal size s. Since the lengths of all sequences
A1, . . . , Ak are integer multiples of s, there is always a block boundary between
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the last element of Ai and the first element of Ai+1, for each i. Similarly, the
buffer elements, positioned at the very end, form the last k blocks.

Initially, the last k blocks become free blocks, their starting positions are
stored in a free block stack of height k. After that, the position of one free block
is picked out of the stack and this block is used as a so-called escape block. We
also maintain a current escape position ec, which is initially the position of the
leftmost element in the escape block. We create a hole here by putting the buffer
element at this position aside.

Now, find the smallest k blocks (not necessarily equal to leftmost blocks in
A1, . . . , Ak) in the area occupied by A1, . . . , Ak, according to the relative block
ordering of Sect. 3. This is done with O(k2) ≤ O(1) comparisons, by the use
of some k cursors (index variables) moving along in A, since the sequences
A1, . . . , Ak are sorted. These blocks will initially become the k current input
blocks X1, . . . , Xk. For each j, the first element xj in Xj becomes a j-th current
input element, its position is kept in the index variable ij . Above the k input
elements, we build a selection tree of depth �lg k�, using k−1 ≤ O(1) comparisons.

The leftmost block of the array A becomes an output block and a position
oc = 1 pointing there becomes a current output position. The initial output
position may coincide with a position of some current input element. Observe
that ec mod s = oc mod s, which is an invariant we shall keep in the course of
the entire computation. All other blocks are called common blocks.

In general, the algorithm maintains current positions of the following blocks:
free blocks, the number of which ranges between 0 and k, their leftmost positions
are stored in the free block stack; exactly k input blocks, the current input
positions inside these blocks are stored in i1, . . . , ik; one output block with the
current output position oc inside this block; and one escape block with the
current escape position ec inside. The values oc and ec are synchronized modulo s.
Usually, all these blocks are disjoint and the merging proceeds as described in
Sect. 4.2. However, after the initiation, the output block may overlay one of the
input blocks, if the leftmost block in A1 has been selected as an input block. If
this happens, we start in a special mode of Sect. 4.8.

4.2 Standard Situation

During the computation, the k·s buffer elements can be found at the following
locations: to the left of the j-th input element xj in the j-th input block Xj ,
for j ∈ {1, . . . , k}, to the right of ec in the escape block, with the hole at the
position ec, and also in free blocks, consisting of buffer elements only.

The elements merged already, from all the input blocks, form a contiguous
output zone at the very beginning of A, ending at the position oc−1. Hence, the
next element to be output will go to the position oc in the output block.

All elements not merged yet are scattered in blocks between the output zone
and the end of the array A. The permutation of these blocks is allowed. Thus, the
origin of the blocks in the subsequences A1, . . . , Ak cannot be recovered. How-
ever, the elements keep their relative positions within each block. So optional free
blocks, input blocks, escape block, and common blocks can reside anywhere in
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this area. The output block spans across the current output position oc, so its left
part belongs to the output zone. As the output grows to the right, the elements
lying to the right of oc are moved from the output block to the corresponding
positions in the escape block, to the right of ec. Since oc mod s = ec mod s, the
relative positions of escaping elements are preserved within the blocks.

Now we are ready for merging. Using the selection tree, we determine xj , the
smallest element among the k current input elements in the blocks X1, . . . , Xk,
and move this element to the output zone as follows:

Step A. The element at the position oc in the output block escapes to the hole
at the position ec.

Step B. The smallest input element xj not yet processed is moved from the
position ij to its final position at oc.

Step C. A new hole is created at the position ec+1 by moving its buffer element
to the place released by the smallest input element just moved. After that, all
necessary index variables are incremented and the selection tree is updated.

This gives 3 moves and �lg k� comparisons per each element transported to its
final location. Now there are various special cases to consider.

4.3 Escape Block Becomes Full

If the rightmost element of the output block is moved to the last position of the
escape block, the new hole cannot be created at the position ec+1 in Step C.
Instead, one free block at the top of the stack becomes the new escape block
and a new hole is created at the beginning of this block. This is accomplished by
removing its starting position from the free block stack and assigning it to ec.

The subsequent move of the buffer element from the new position of ec to
the place released by the smallest input element does not increase the number
of moves; it replaces the move in Step C. It should be pointed out that, at this
moment, there must exist at least one free block.

4.4 Current Input Block Becomes Empty

We check next whether the smallest element xj , just moved to the output zone,
was the last element in the input block Xj . If so, we have an entire block con-
sisting of buffer elements, with hole at the end after Step B. This hole is filled
in the standard way, described in Step C, but the old input block Xj becomes a
free block and its position is saved in the stack.

Next, we find a new j-th input block Xj , and assign a new value to ij . Since
the blocks are mixed, we scan sequentially the remaining common blocks and
determine the smallest one, according to the block ordering introduced in Sect. 3.
This block should become the new j-th input block. Even though this smallest
block is not necessarily picked from the j-th input sequence Aj , the elements
are still transported to the output zone in sorted order. (Due to a size limit, the
argument is omitted.)
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Free blocks, as well as all remaining current input blocks, are ignored in this
scanning. Moreover, the elements to the left of ec in the escape block (if not
empty) together with the elements to the right of oc in the output block are
viewed as a single logical block. If this logical block should be processed next,
the program control jumps to the mode described in Sect. 4.5. If the escape
block is empty, both ec and oc point to the beginning of their respective blocks.
Then the escape block is skipped and the output block is handled as a common
block, so we may even find out that the new input block is located at the same
position as the output block. This special mode is explained in Sect. 4.8.

The search for new input blocks costs O((n/s)2) additional comparisons: there
are O(n/s) blocks in total and such search is activated only if one of the input
blocks is exhausted, i.e., at most O(n/s) times.

4.5 One of the Input Blocks Overlays the Escape Block

If the common block that should be processed next is the logical block composed
of the left part of the escape block and the right part of the output block, then
both the new current input block Xj and the escape block are located within
the same physical block. Here xj is always positioned to the left of ec and the
buffer elements are both to the left of xj and to the right of ec.

Once the position of xj is initiated, all actions are performed in the stan-
dard way described in Sect. 4.2. This special case returns automatically to the
standard mode as soon as ec reaches a block boundary.

4.6 Output Block Overlays the Escape Block or a Free Block

Next we check whether the output zone, crossing a block boundary, does not
bump into any “special” block. This may happen only if ec points to the be-
ginning of the escape block that is empty, since the positions of oc and ec are
synchronized. Let us first consider that the output block overlays the escape
block, i.e., they are both located within the same physical block. The element
movement corresponds now to a more efficient scheme, without Step A:

Step B’. The smallest input element xj not yet processed is moved to the hole
at the position oc = ec.

Step C’. A new hole is created at the position oc+1 = ec+1 by moving its buffer
element to the place released by xj . Then all necessary index variables are
incremented and the selection tree is updated.

This mode is terminated as soon as oc and ec reach a block boundary. We also
need a slightly modified version of the routine described in Sect. 4.4. If one of
the input blocks becomes empty, it becomes free as usual, but the combined
output/escape block is skipped in the search for the next input block.

If the output zone crosses a block boundary and oc is equal to some f	, the
leftmost position of a block stored in the free block stack, the new output block
and the corresponding free block are overlaid. Since ec points to the beginning
of an empty escape block, we can swap the free block with the escape block by
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swapping the pointers stored in f	 and ec. Second, one move suffices to transport
the hole from one block to another. This element move is for free, because the
next s transports will require only 2s moves, instead of 3s. The program control
is switched to the mode in which the output and escape blocks are overlaid.

4.7 Output Block Overlays a Current Input Block

If oc points to someXj after crossing a block boundary, the output block overlays
the j-th input blockXj. Again, this can happen only if ec points to the beginning
of an empty escape block. There are now two cases to consider.

First, if the j-th current input element xj is the leftmost element of Xj , the
program control is switched to the mode to be described in Sect. 4.8.

Second, if xj is not the leftmost element of Xj , we dispose of the empty
escape block as free, create a hole at oc by moving a single buffer element from
the position oc to ec, and overlay the output block by a new escape block, by
assigning the value of oc to ec. The additional transportation of the hole is for
free, because we can charge it as (nonexistent) Step A for the next element that
will be transported to the output. In this special mode, three blocks are overlaid,
namely, the output, escape, and the current input block Xj . The buffer elements
are between the hole at ec = oc and the current input element xj . The elements
are moved according to Step B’ and Step C’ of Sect. 4.6. However:

(1) If the rightmost input element of this combined block has been transported
to the output, the input block Xj separates from the output/escape block, since
we search for the next input block. But here, unlike in Sect. 4.4, no block is
disposed as free. The program control switches to the mode of Sect. 4.6.

(2) If this block becomes full, i.e., for some h �= j, an element xh from an-
other input block Xh is moved to the output and, after Step B’, the position oc

“bumps” into xj , we change one free block into a new escape block. That is, we
take f	, a starting position of one block from the stack, set ec := f	 +(oc mod s),
and move one buffer element from the position ec to ih in Xh. This replaces
Step C’ for the element xh. Then we follow the instructions of Sect. 4.8.

4.8 Output Zone Bumps into a Current Input Element

The program jumps to this mode from Sects. 4.1, 4.4, and 4.7. In any case, we
have an empty escape block, with ec mod s = oc mod s. Moreover, the output
block and some input block Xj are overlaid, with oc pointing to xj . As long as
the elements to be output are selected in Xj , we need no actual transportation,
just the positions of oc and ij are moved to the right. To keep ec synchronized
with oc, we move the hole along the escape block in parallel.

(1) If oc and ij reach the block boundary, we search for the next input block
to be processed. Thus, unless something “exceptional” happens, the program
returns to the standard mode. (The possible exceptions are those discussed in
Sects. 4.6, 4.7, and 4.9.) The single move placing the hole back to the beginning
of the escape block substitutes Step C for the last element merged.
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(2) If the element to be transported to the output zone is an element xh from
another input block Xh, for some h �= j, some rearrangements are necessary.
First, move xj from the position oc to ec. Second, transport xh to oc. Finally,
create a new hole at ec+1 by moving its buffer element to the place released
by xh. The result is that the current input block Xj , overlaid by the output
block, jumps and overlays the escape block. This transported one element to the
output, with three moves. The control is switched to the mode of Sect. 4.5.

4.9 Common Blocks Are Exhausted

If one of the current input blocks becomes empty, but there is no common block
to become a new input block, the above procedure is stopped. At this point, the
output zone is followed by a residual zone of size n′, starting at the position oc

and consisting of the right part of the output block, k−1 unmerged input blocks,
at most k free blocks, and one escape block. Thus, n′ ≤ (2k+1)·s.

The residual zone can be sorted, e.g., by the use of Heapsort, performing
O(k·s·lg(k·s)) ≤ O(s·lg s) comparisons and moves. Since the buffer elements are
greater than any other element, we are done, the entire array A is sorted.

4.10 Summary

Summing up the costs paid for maintaining the selection tree, transporting the
elements to the output zone, searching for smallest input blocks, and for sorting
the residual zone, it is easy to see that the above algorithm uses �lg k� ·n +
O((n/s)2) +O(s·lg s) element comparisons and 3·n+O(s·lg s) moves.

5 In-Place Merging

Now we are ready for the general case. Namely, the lengths of A1, . . . , Ak are not
necessarily multiples of s. Moreover, there are no k · s buffer elements available.
Recall that these two assumptions were used in our simplified version described
in Sect. 4. Our task is to prepare conditions so that our simplified algorithm can
be used as a subroutine to carry out the merging process. (See also Fig. 1.)

5.1 Initial Calculations

First, we partition A into blocks of equal size s, the last block having a size
s′ ∈ {0, . . . , s−1}. A block will be called a guarded block, if a boundary between
some sequences Ai and Ai+1 is located inside, or if a sequence boundary coincides
with the left or the right boundary of this block. The first and the last blocks of A
are also guarded. Initially, a guarded block may contain some largest elements
in Ai, called tail elements, together with some smallest elements in Ai+1, called
head elements . If an entire short sequence falls within a single block, all elements
of that sequence are head elements. Clearly, the initial number of guarded blocks
is at most 2·k. The leftmost positions of all guarded blocks are easily computable
in O(1) time from the values of n1, . . . , nk and s.
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Fig. 1. Rearranging elements in the guarded area

5.2 Allocation of Buffer Elements

To allocate buffer elements, we use a procedure similar to the one described in
Sect. 2. This time the selection tree is built above last elements of A1, . . . , Ak.
Using this tree, we can determine the largest element, which becomes a new
buffer element. However, this buffer element is not moved, only the corresponding
index variable, pointing to it, is decremented so that the next element to the
left becomes a part of the selection tree and the tree is updated. This process is
repeated until we allocate sufficiently many buffer elements and, moreover, the
number of remaining tail elements is divisible by s.

Let tot be the total number of all elements in guarded blocks, h the total
number of head elements, t the total number of tail elements, and b the total
number of buffer elements. Initially, b = 0. We also use a constant number of
indexes per each sequence Ai to keep track of the boundaries between the head,
common, tail, and buffer elements in Ai. Each time a new buffer element is
allocated by the use of the selection tree, there are the following possibilities:

Case 1. If the new buffer element was a tail element, we set b := b + 1 and
t := t − 1. Clearly, b + h = (bo + ho) + 1, and hence also (b + h) mod s =
((bo + ho) + 1) mod s, where bo, to, and ho denote the “old” number of buffer,
tail, and head elements, before the selection of the new buffer element.

Case 2. If we cross the left block boundary of the guarded block, the next block
to the left becomes another new guarded block and all its elements become tail
elements. The situation changes as follows: tot := tot + s, b := b + 1, and
t := t + s− 1. Note that also here (b + h) mod s = ((bo + ho) + 1) mod s.

Case 3. If the zone of buffer elements growing at the end of some sequence Ai

bumps into the head elements at the beginning of Ai, the rightmost head element
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of Ai can be selected as a new buffer element. That is, b := b+1 and h := h−1.
(This also happens if some sequence Ai falls entirely within a single guarded
block.) This gives (b + h) mod s = (bo + ho) mod s. However, this can happen
at most k · s times, because the initial number of head elements is h ≤ k · s and
this number never increases. If all elements of an entire sequence Ai have become
buffer elements, we simply attach these elements to buffer elements of Ai−1.

First, we repeat this process k·s+s′ times, so there are enough buffer elements
(namely, k·s+ s′) for the merging process.

Second, to ensure that the sequence boundaries match the block boundaries,
we keep on allocating new buffer elements in the same way as described above,
until (b+h) mod s = s′. This can be accomplished by using at most k·s+(s−1)
additional iterations: Normally, in each iteration, the value b+h is incremented
by 1. The only exception is Case 3, which can happen at most k ·s times. There-
fore, the total number of allocated buffer elements is bounded by 2·k·s+2·(s−1),
using (k−1) + �lg k�·(2·k·s+ 2·(s−1)− 1) ≤ O(k·s·lg k) comparisons.

Recall that we started with at most 2 ·k guarded blocks, thus containing
tot ≤ 2 ·k · s elements. After 2 ·k · s + 2 · (s−1) iterations, needed to satisfy
the two conditions mentioned above, the value of tot can increase by at most
2·k ·s+ 2·(s−1): the number of elements in guarded blocks increases in Case 2
only. If, in a given step, we add a new guarded block, the next s−1 elements
selected from the same sequence are tail elements (Case 1), in which case tot

does not change. The final number of all elements in guarded blocks is therefore
bounded by 4·k·s+ 2·(s−1), and hence the number of guarded blocks by 4·k+ 2.

Thus, with a constant number of index variables, we can keep pointers to the
starting positions of all guarded blocks. This allows us to view all guarded blocks
as if they formed a single continuous “guarded area” containing tot = h+t+b

elements. All blocks forming the guarded area are of size s, except for the block
of size s′ < s placed at the very end of the array A. Therefore tot mod s = s′,
which together with (b + h) mod s = s′ implies that t mod s = 0. (In other
words, the final number of tail elements is an integer multiple of s.)

5.3 Rearranging the Guarded Area

Now we sort the guarded area in-place, using, e.g., Heapsort, performing O(tot ·
lg(tot)) ≤ O(k·s · lg(k·s)) ≤ O(s·lg s) comparisons and moves. After sorting, the
order of elements in the guarded area is: h + t head and tail elements (possibly
mixed) followed by b buffer elements (the largest elements of A). Since the head
and tail elements might be mixed, the status of some of them can change. From
this point forward, the first h elements of the guarded area will become the (new)
head elements, and the next t elements the (new) tail elements. The boundaries
between the new head, new tail, and buffer elements within the guarded area
are easily determined from h, t, and b. (From now on, we will refer to the new
head and new tail elements simply as the head and tail elements.) It should be
pointed out that these manipulations in the guarded area do not increase k, the
number of input sequences to be merged.

After sorting, we perform a cyclic shift r = (s−h) mod s positions to the
right of all elements within the guarded area, so that the boundary between the
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head and tail elements matches a block boundary. The boundary between the
tail and buffer elements will match a block boundary automatically, because t is
an integer multiple of s. Observe that the first guarded block now starts with r
buffer elements followed by the smallest s−r sorted head elements. This rotation
does not require any element comparisons, only O(k · s) moves.

5.4 Finishing Touch

We are ready for merging. The very last block of size s′ < s, containing buffer
elements only, becomes a dead block. This block is excluded from the subsequent
merging. The very first block, containing r buffer and s − r head elements,
becomes the first input block and its leftmost head element becomes its current
input element. The guarded blocks containing buffer elements only become free
blocks, their starting positions are stored in the free block stack. (See Sect. 4.1.)
All remaining blocks in A (the guarded area included) become common blocks. In
addition to the first input block (just obtained), we now determine the remaining
k − 1 input blocks, using a sequential scanning of common blocks described in
Sect. 4.4. This consumes O(k · n/s) additional comparisons.

At this point, we can use the simpler version of our algorithm, described in
Sect. 4, to merge elements of the array A. This requires �lg k�·n+O((n/s)2) +
O(s·lg s) element comparisons and 3·n+O(s·lg s) moves. (However, the height
of the free block stack is 2k+2, instead of k used in Sect. 4.) After this merging,
the array A is in sorted order with the exception of a continuous area of buffer
elements at the end (including the dead block). Since the buffer elements are the
largest elements of A, we can complete the task by sorting the buffer elements in-
place using, e.g., Heapsort. This consumes O(k·s·lg(k·s)) ≤ O(s·lg s) comparisons
and moves [6,8,9]. Alternatively, we could also use an algorithm sorting in-place
with O(s·lg s) comparisons but only O(s) moves [2].

5.5 Summary

By fixing the block size to s = �n2/3/ lg1/3 n�, and by summing up the costs paid
for the selection of the buffer elements, sorting and rotating the guarded area,
sequential scanning for the initial input blocks, merging the elements using the
simpler version of Sect. 4, and the final sorting of the buffer elements, we get
that the total number of comparisons and moves is bounded, respectively, by

Ck(n) ≤ O(k · s · lg k) +O(k·s · lg(k·s)) +O(k · n/s) +[
�lg k�·n+O((n/s)2) +O(s·lg s)

]
+O(k·s · lg(k·s))

≤ �lg k�·n+O((n·lg n)2/3) ≤ �lg k�·n+ o(n) ,
Mk(n) ≤ O(k·s · lg(k·s)) +O(k · s) + [3·n+O(s·lg s)] +O(k·s · lg(k·s))

≤ 3·n+O((n·lgn)2/3) ≤ 3·n+ o(n) .

Theorem 1. An array A consisting of k sorted subsequences A1, . . . , Ak of re-
spective lengths n1, . . . , nk, where

∑k
i=1 ni = n, can be merged in-place perform-

ing �lg k�·n+ o(n) element comparisons and 3·n+ o(n) element moves.



144 V. Geffert and J. Gajdoš

6 Conclusion

In this paper we have shown that multiway in-place merging can be accom-
plished with an almost optimal number of element comparisons and moves.
The presented algorithm performs �lg k� ·n + o(n) element comparisons and
3 ·n + o(n) element moves. That is, the number of moves is independent of k,
the number of input sequences to be merged. The corresponding lower bounds
are lg k ·n− k·lg n−O(1) for the number of comparisons and  3/2·n! for the
number of moves carried out by any in-place comparison based merging algo-
rithm. Thus, if k is a power of 2, the best possible number of comparisons is
lg k ·n± o(n). For arbitrary k (not necessarily a power of 2), the existence of an
in-place algorithm matching the lower bound is an open problem.

Note that our algorithm does not merge stably. First, the buffer elements can
be mixed up and the original order of equal buffer elements cannot be recovered.
Second, several blocks can contain equal elements. Since common blocks can
also be mixed up arbitrarily, the original order of such homogeneous blocks is
forgotten. Whether there exists an asymptotically optimal stable multiway in-
place merging algorithm, with the number of moves independent of the number
of input sequences, is left as another open problem.

So far, the problem of stable merging has not been sufficiently resolved even for
k = 2. The best known 2-way stable in-place merging algorithms were published
in [3,1]: Both of them use n1 ·(t+1)+n2/2t +o(n) ≤ n+o(n) comparisons, where
n1 ≤ n2 and t =  lg(n2/n1)!, which is asymptotically optimal. However, in [3],
the number of moves is 12n1 +5n2 + o(n), while in [1] it is 7n1 +6n2 + o(n). We
are convinced that the number of moves can be significantly improved.
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Abstract. In the context of geographic routing, Papadimitriou and
Ratajczak conjectured that every 3-connected planar graph has a greedy
embedding (possibly planar and convex) in the Euclidean plane. Re-
cently, greedy embedding conjecture has been resolved, though the con-
struction do not result in a drawing that is planar and convex. In this
work we consider the planar convex greedy embedding conjecture and
make some progress. We show that in planar convex greedy embedding
of a graph, weight of the maximum weight spanning tree (T ) and weight
of the minimum weight spanning tree (MST) satisfies wt(T )/wt(MST) ≤
(|V | − 1)1−δ, for some 0 < δ ≤ 1. In order to present this result we
define a notion of weak greedy embedding. For β ≥ 1 a β–weak greedy
embedding of a graph is a planar embedding such that local optima is
bounded by β. We also show that any three connected planar graph has
a β–weak greedy planar convex embedding in the Euclidean plane with
β ∈ [1, 2

√
2 · d(G)], where d(G) is the ratio of maximum and minimum

distance between pair of vertices in the embedding of G, and this bound
is tight.

1 Introduction

1.1 Greedy Embedding Conjecture

An embedding of an undirected graph G = (V,E) in a metric space (X, d) is
a mapping x : V (G) → X . In this work we will be concerned with a special
case when X is the plane (IR2) endowed with the Euclidean (i.e. l2) metric. The
function x then maps each edge of the graph G to the line-segments joining the
images of its end points. We say that embedding is planar when no two such
line-segments (edges) intersect at any point other than their end points. Let
d (u, v) denote the Euclidean distance between two points u and v.

Definition 1. Greedy embedding ([1]): A greedy embedding x of a graph
G = (V,E) into a metric space (X, d) is a function x : V (G) → X with the
following property: for every pair of non-adjacent vertices s, t ∈ V (G) there
exists a vertex u ∈ V (G) adjacent to s such that d (x (u) , x (t)) < d (x (s) , x (t)).
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This notion of greedy embedding was defined by Papadimitriou and Ratajczak
in [1]. They have presented graphs which do not admit a greedy embedding in
the Euclidean plane, and conjectured following:

Conjecture 1 (Greedy embedding conjecture). Every 3-connected planar graph
has a greedy embedding in the Euclidean plane.

A convex embedding of a planar graph is a “planar embedding” with a property
that all faces, including the external faces are “convex”. Additionally, Papadim-
itriou and Ratajczak stated the following stronger form of the conjecture:

Conjecture 2 (Convex greedy embedding conjecture). Every 3-connected planar
graph has a greedy convex embedding in the Euclidean plane.

Note that every 3-connected planar graph has a convex embedding in the Eu-
clidean plane (using Tutte’s rubber band algorithm [2,3]). In [1] it was shown
that Kr,5r+1 admits no greedy embedding for r > 0. Which imply that both
hypotheses of the conjecture are necessary: there exist graphs that are planar
but not 3-connected (K2,11), or 3-connected but not planar (K3,16), that does
not admits any greedy embedding. Also, they show that high connectivity alone
does not guarantee a greedy embedding. Papadimitriou and Ratajczak in [1] also
provided examples of graphs which have a greedy embedding (e.g., Hamiltonian
graphs). Note that if H ⊆ G is a spanning subgraph of G, i.e. V (H) = V (G)
then every greedy embedding of H is also a greedy embedding of G. Hence, the
conjecture extends to any graph having a 3-connected planar spanning subgraph.

1.2 Known Results

Recently, greedy embedding conjecture (conjecture-1) has been proved in [4]. In
[4] authors construct a greedy embedding into the Euclidean plane for all circuit
graphs – which is a generalization of 3-connected planar graphs. Similar result
was independently discovered by Angelini, Frati and Grilli [5].

Theorem 1 ([4]). Any 3-connected graph G without having a K3,3 minor ad-
mits a greedy embedding into the Euclidean plane.

Convex greedy embedding conjecture (conjecture-2) has been proved for the case
of all planar triangulations [6] (existentially, using probabilistic methods). Note
that the Delaunay triangulation of any set of points in the plane is known to be
greedy [7], and a variant of greedy algorithm (greedy-compass algorithm) of [8]
works for all planar triangulations.

Surely convex greedy embedding conjecture implies conjecture-1, however not
otherwise. The greedy embedding algorithm presented in [4,5] does not neces-
sarily produce a convex greedy embedding, and in fact the embedding may not
even be a planar one [9]. In this work we consider the convex greedy embedding
conjecture (conjecture-2).

An alternative way to view the greedy embedding is to consider following path
finding algorithm on a graph G = (V,E) given embedding x. The algorithm in
every step recursively selects a vertex that is closer to destination than current
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vertex. To simplify notation we write d (s, t) in place of d (x(s), x(t)), when em-
bedding x is given. Clearly, if x is a greedy embedding of G then for any choice
of s, t ∈ V , we have a distance decreasing path s = v0, v1, . . . , vm = t, such that
for i = 1, . . . ,m, d (x (vi) , x (vm)) < d (x (vi−1) , x (vm)). Thus given G and x, a
greedy path finding algorithm succeeds for every pair of vertices in G iff x is a
greedy embedding of G.

This simple greedy path finding strategy has many useful applications in prac-
tice. Ad hoc networks and sensor nets has no universally known system of ad-
dresses like IP addresses, and due to resource limitations it is prohibitive to
store and maintain large forwarding tables at each node in such networks. To
overcome these limitations, geometric routing uses geographic coordinates of the
nodes as addresses for routing purposes [10]. Simplest of such strategy can be
greedy forwarding strategy as described above. However, this simple strategy
sometimes fails to deliver a packet because of the phenomenon of “voids” (nodes
with no neighbor closer to the destination). In other words the embedding of
network graph, provided by the assigned coordinates is not a greedy embedding
in such cases. To address these concerns, Rao et al. [11] proposed a scheme to
assign coordinates using a distributed variant of Tutte embedding [2]. On the
basis of extensive experimentation they showed that this approach makes greedy
routing much more reliable.

1.3 Our Contribution

In this work we show that given a 3-connected planar graph G = (V,E), an
embedding x : V → IR2 of G is a planar convex greedy embedding if and
only if, in the embedding x, weight of the maximum weight spanning tree
(wt(T )) and weight of the minimum weight spanning tree (wt(MST)) satisfies
wt(T )/wt(MST) ≤ (|V | − 1)1−δ, for some 0 < δ ≤ 1.

In order to obtain this result we consider a weaker notion of greedy embedding.
Weak1 greedy embedding allows path finding algorithm to proceed as long as local
optima is bounded by a factor. Formally,

Definition 2 (Weak greedy embedding). Let β ≥ 1. A β–weak greedy em-
bedding x of a graph G = (V,E) is a planar embedding of G with the following
property: for every pair of non-adjacent vertices s, t ∈ V (G) there exists a vertex
u ∈ V (G) adjacent to s such that d (x (u) , x (t)) < β · d (x (s) , x (t)).

Surely if G admits a 1-weak greedy embedding then it is greedily embeddable.
We show that every 3-connected planar graph has a β-weak greedy convex em-
bedding in IR2 with β ∈ [1, 2

√
2 ·d(G)], where d(G) is the ratio of maximum and

minimum distance between pair of vertices in the embedding of G.
Rest of the paper is organized as follows. In section-2 we define β-weak greedy

convex embedding and provide a brief outline of the results. Subsequently, in
section-3 we derive various results on the β-weak greedy convex embedding and

1 Not to be confused with the weaker version of the conjecture. Here weakness is w.r.t.
greedy criteria, and not convexity of embedding.
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show that every 3-connected planar graph has a β-weak greedy convex embed-
ding in IR2 with β ∈ [1, 2

√
2 · d(G)]. Finally, in section-4 we derive the new

condition on the weight of the minimum weight spanning tree and maximum
weight spanning tree that must be satisfied in the greedy convex embedding for
every 3-connected planar graphs. Section-5 contains some concluding remarks.
We will use standard graph theoretic terminology from [12].

2 Weak Greedy Embedding of 3-Connected Planar
Graphs

In this section we define β-weak greedy convex embedding, and provide an out-
line of the proof. In rest of the section x : V (G) → IR2 be a planar convex
embedding of G = (V,E) which produces a one-to-one mapping from V to IR2.
We shall specifically consider Tutte embedding ([2,3]). Since x is fixed, given
a graph G, we will not differentiate between v ∈ V (G) and its planar convex
embedding under x viz. x(v).

First let us consider following recursive procedure for β–weak greedy path
finding given in Algorithm-1. If β is chosen as the minimum value such that
∀t ∈ V −{s} at least one branch of this recursive procedure returns success then
we will call that value of β = βs optimal for vertex s. Given (s, βs) for a vertex
t ∈ V − {s} there can be more than one βs–weak greedy path from s to t. Let
H(s, βs) ⊆ G be a subgraph of G induced by all vertices and edges of βs–weak
greedy st–paths for all possible terminal vertex t ∈ V −{s}. Let T (s, βs) be any
spanning tree of H(s, βs). Surely, T (s, βs) has unique βs–weak greedy st–paths
for all possible terminal vertex t ∈ V − {s} from s. We will call Ts = T (s, βs)
optimal weak greedy tree w.r.t vertex s. Define βmax = maxs∈V {βs}. We note
that procedure WEAK − GREEDY (s, t, βmax) with parameter βmax succeeds to
find at least one βmax–weak greedy st–paths for all possible vertex pairs s, t ∈
V . In following our objective will be to obtain a bound on βmax for any 3-
connected planar graph G under embedding x. To obtain this bound we will use
the properties of weak greedy trees.

Algorithm WEAK − GREEDY (s, t, β)
if s = t then

return success.
else

B
Δ= {v : (s, v) ∈ E and d(v, t) < β · d(s, t)}.

if B = ∅ then
return failure.

else
∀v ∈ B: WEAK − GREEDY (v, t, β).

end

end

Algorithm 1. β–weak greedy path finding
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What follows is a brief description of how we obtain the stated results. In the
planar convex embedding of G, let weight of an edge e = uv be its length i.e.
wt(e) = d(u, v). Define wt(T (s, βs)) =

∑
e∈E(T (s,βs)) wt(e). We obtain a lower

and upper bound on the weight of T (s, βs). On the other hand we also obtain a
upper bound on the weight of any spanning tree T of G in its embedding wt(T ),
and a lower bound on the weight of any minimum spanning tree MST of G,
wt(MST). Surely wt(MST) ≤ wt(Ts) ≤ wt(T ), and from this we derive an upper
and a lower bound on βmax. Let dmax(G) = maxu,v∈V d(u, v) be the diameter
of G, and let minimum edge length in embedding of G be dmin(G). In following
(in Section-3.1) we derive that, wt(T ) ≤

√
2 · (|V | − 1) · dmax(G). Subsequently

(in Section-3.2), we show that, dmax(G) ≤ wt(MST) ≤ 2.5 · d2
max(G). Finally (in

Section-3.3), we derive upper and lower bounds on the the weight of T (s, βs) as:

dmin(G) · (βmax − 1) · (|V | − 1) ≤ wt(Ts) ≤ 2 · dmax(G) ·
(
β
|V |−1
max − 1
βmax − 1

)

Using the fact that wt(MST) ≤ wt(Ts) ≤ wt(T ), we than show using the
bounds described above - that any three connected planar graph has a β-
weak greedy convex embedding in IR2 with β ∈ [1, 2

√
2 · d(G)], where d(G) =

dmax(G)/dmin(G). Our main result states that given a 3-connected planar graph
G = (V,E), an embedding x : V → IR2 of G is a planar convex greedy embedding
if and only if, in the embedding x, weight of the maximum weight spanning tree
(wt(T )) and weight of the minimum weight spanning tree (wt(MST)) satisfies
wt(T )/wt(MST) ≤ (|V | − 1)1−δ, for some 0 < δ ≤ 1. To establish one side of this
implication we use the bounds on the weight of T (s, βs) and the upper bound
on the weight of the MST.

3 Bounding the Weight of Trees

In following we first describe upper bound on the weight of any spanning tree T
of G in its planar convex embedding. In order to obtain this bound we use some
ideas from [13].

3.1 Upper Bound on the Weight of Spanning Tree

Given a graph G = (V,E) and its planar convex embedding, let dmax(G) =
maxu,v∈V d(u, v) be the diameter of G and let T be any spanning tree of G. For
i = 1, . . . , |V | − 1 let ei be ith edge of T (for a fixed indexing of edges). Let Di

be the open disk with center ci such that ci is the mid point of ei = uv, and Di

having diameter d(u, v). We will call Di a diametral circle of ei. Let D̄i be the
smallest disk (closed) that contains Di. Define D = ∪ei∈E(T )D̄i. Following can
be found in [14]:

Lemma 1 (Lemma-3 from [14]). D is contained into a closed disk D′ having
its center coinciding with D and having diameter at most

√
2 · dmax(G).
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Using Lemma-1 we can now obtain a bound on wt(T ). Let Circ(Di) denote the
circumference of circle Di, i.e. Circ(Di) = π · wt(ei).

Lemma 2. wt(T ) ≤
√

2 · (|V | − 1) · dmax(G)

Proof. Clearly, wt(T ) =
∑

ei∈E(T ) wt(ei) = 1/π ·
∑

ei∈E(T ) Circ(Di). Let D′ be a
closed disk in which D = ∪ei∈E(T )D̄i is contained, where D̄i is the smallest disk
(closed) that containsDi. Using Lemma-1, and noting spanning tree T has (|V |−
1) edges, wt(T ) ≤ 1/π · (|V | − 1) · Circ(D′) ≤ 1/π · (|V | − 1) ·

(
π
√

2 · dmax(G)
)
≤√

2 · (|V | − 1) · dmax(G). �

3.2 Bound on the Weight of Minimum Weight Spanning Tree

In the planar convex embedding of G let MST be a minimum weight spanning
tree of G and let wt(MST) be its weight. In this section we obtain an upper and a
lower bound on wt(MST). Let V ⊂ IR2 be the point set given (as images of vertex
set) by the embedding. Let E be the set of all line-segments uv corresponding to
the all distinct pair of end-points u, v ∈ V . Also, let EMST be a spanning tree of
V whose edges are subset of E such that weight wt(EMST) is minimum (EMST
is a Euclidean minimum spanning tree of the point set V ). Surely, wt(EMST) ≤
wt(MST): convex embedding produces a straight-line embedding of G, and hence
the line segments corresponding to the edges of G in embedding are also subset
of E . Let u and v be vertices having distance dmax(G). Any EMST would connect
u and v. Hence we have:

Lemma 3. wt(MST) ≥ wt(EMST) ≥ dmax(G).

We will also require upper bound on the weight of minimum spanning tree for
which we have:

Lemma 4. In planar convex embedding of G, wt(MST) ≤ 5/2 · d2
max(G).

Proof. Recall, using Lemma-1 we have that D is contained into a closed disk
D′ having its center coinciding with D and having diameter at most

√
2 ·

dmax(G). Let Area(D) denote the area of circle D, i.e. Area(D) = π · (d/2)2,
where D is a circle having diameter d. Now, wt(MST) =

∑
ei∈E(MST) wt(ei) =

1/π ·
∑

ei∈E(MST) Circ(Di). Now by Lemma-1, all the points that we would like
to count in

∑
ei∈E(MST) Circ(Di) are contained in Area(D′). Except that some

of the points that appear on the circumference of more than one circles, must
be counted multiple times. In order to bound that we shall use following result
from [14].

Lemma 5 (Lemma-2 from [14]). For any point p ∈ IR2, p is contained in at
most five diametral circles drawn on the edges of the MST of a point set V ⊂ IR2.

Using Lemma-1, and using the Lemma-5, we have:

wt(MST) ≤ 1
π

· 5 · Area(D′) ≤ 1
π

· 5 · π
(√

2 · dmax(G)
2

)2

=
5
2
· d2

max(G). �
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3.3 Bound on the Weight of Weak Greedy Trees

Given a graph G = (V,E) and its planar convex embedding, let Ts = T (s, βs)
be an optimal weak greedy tree w.r.t a vertex s ∈ V . Let t be any leaf vertex of
Ts, and consider the βs–weak greedy st–path.

Definition 3 (Increasing and decreasing sequence). For a βs–weak greedy
st–path Pst = {s = u0, u1, . . . , uk = t}, an ordered vertex sequence {ui0 , . . . , uir}
of Pst is an increasing sequence of length r if d(ui0 , t) ≤ . . . ≤ d(uir , t) holds.
Similarly, an ordered sequence of vertices {ui0 , . . . , uir} of Pst is a decreasing
sequence of length r if d(ui0 , t) ≥ . . . ≥ d(uir , t) holds. Usually, we will refer
any maximal (by property of monotonically non-decreasing or non-increasing)
sequence of vertices as increasing or decreasing sequence.

It is straightforward to observe that if an st–path is βs–weak greedy for βs > 1,
then it has a monotonically non-decreasing sequence of vertices. However, every
st–path must have a trailing monotonically decreasing sequence that reaches t.
We will call an increasing sequence {ui0 , . . . , uir} of Pst a β-increasing sequence
of length r if it is maximal and for j = 1, . . . , r, d(uij , t) ≤ βd(uij−1 , t) holds (with
equality for at least one j). We will denote it as inc(r, d, β), where d indicates
d(ui0 , t). Proof of following lemmas (Lemma-6, Lemma-7, and Lemma-8) has
been omitted due to space limitation, and detailed proof can be found in [15].

Lemma 6. Let inc(k, d, β) = {ui0 , . . . , uik
} be a β-increasing sequence of length

k from a βs–weak greedy st–path such that d(ui0 , t) = d. Then d(βk − 1) ≤
wt(inc(k, d, β)) ≤ d(βk − 1) (β + 1/β − 1). Where wt(inc(k, d, β)) is the sum of
the weight of the edges of inc(k, d, β).

Like inc(r, d, β), for γ > 1 by dec(r, d, γ) we will denote a decreasing sequence
{ui0 , . . . , uir} of Pst as a γ-decreasing sequence of length r if it is maximal and
for j = 1, . . . , r, d(uij−1 , t) ≤ γd(uij , t) holds (with equality for at least one j),
where d indicates d(ui0 , t) = d.

Lemma 7. Let dec(k, d, γ) = {ui0 , . . . , uik
} be a γ-decreasing sequence of length

k such that d(ui0 , t) = d. Then d(1 − 1/γ) ≤ wt(dec(k, d, γ)) ≤ dk(1 + 1/γ).

Now, for a path Pst such that t is a leaf vertex of the tree Ts, Pst can be written
as inc(r0, d0, β)◦dec(r1, d1, γ)◦. . .◦ inc(rl−1, dl−1, β)◦dec(rl, dl, γ) (where ◦ denotes
sequential composition), such that d0 = d(s, t), rl �= 0, and for each i = 1, . . . , l
we have di ≤ βri−1di−1 when i is odd and di ≥ di−1/γ

ri−1 when i is even. In
other words, Pst is a combination of increasing and decreasing sequences with
at least one increasing sequence and a trailing decreasing sequence. Also every
sequence starts at a distance from t, where the immediate previous sequence
ends.

Lemma 8. Let P (k, β) be a k length β–weak greedy st–path such that t is a leaf
vertex of the tree Ts. Then

dmin(G) · k · (β − 1) ≤ wt(P (k, β)) ≤ 2 · dmax(G) ·
(
βk − 1
β − 1

)
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Finally we bound the weight of β-weak greedy spanning tree Ts.

Lemma 9

dmin(G) · (βmax − 1) · (|V | − 1) ≤ wt(Ts) ≤ 2 · dmax(G) ·
(
β
|V |−1
max − 1
βmax − 1

)

Proof. Assume that Ts has l many leaf nodes. Then weight of the tree is wt(Ts) =∑l
i=1 wt(P (ki, β)). Where

∑l
i=1 ki = |V |−1. In order to obtain the upper bound

we observe that wt(P (ki, β)) is maximized with any one of ki = |V | − 1. Hence
using upper bound on wt(P (k, β)) from Lemma-8 we have: wt(Ts) ≤ 2 ·dmax(G) ·
(β|V |−1

max − 1)/(βmax − 1). On the other hand, for the lower bound we have l =
|V | − 1 and 1 ≤ i ≤ |V | − 1 : ki = 1. Using lower bound on wt(P (k, β)) from
Lemma-8 we have: wt(Ts) ≥ dmin(G) · (βmax − 1) · (|V | − 1) �

3.4 Bound on βmax

As stated in the beginning of this section, we now compare the bound on the
weight of any spanning tree T of G with that of Ts as derived in Lemma-2,
Lemma-3 and Lemma-9 to obtain an upper and lower bound on βmax.

Theorem 2. Let G = (V,E) be any three connected planar graph. Then G has
a β-weak greedy convex embedding in IR2 with β ∈ [1, 2

√
2 · d(G)]. Also, this

bound is achieved by Tutte embedding.

Proof. Let Ts be any β-weak greedy spanning tree of G with respect to vertex
s ∈ V . Let T be any spanning tree of G, and let MST be any minimum weight
spanning tree of G. Then using wt(Ts) ≥ wt(MST), Lemma-3, and upper bound
on the wt(Ts) from Lemma-9 we obtain:

2 · dmax(G) ·
(
β
|V |−1
max − 1
βmax − 1

)
≥ wt(Ts) ≥ wt(MST) ≥ wt(EMST) ≥ dmax(G)

Which implies: (
β
|V |−1
max − 1
βmax − 1

)
≥ 1

2
(1)

And this holds for any βmax > 1 when |V | ≥ 3. On the other hand using
wt(Ts) ≤ wt(T ), Lemma-2, and lower bound on the wt(Ts) from Lemma-9:

dmin(G) · (βmax − 1) · (|V | − 1) ≤ wt(Ts) ≤ wt(T ) ≤
√

2 · (|V | − 1) · dmax(G)

Now using d(G) = dmax(G)/dmin(G) we have:

βmax ≤
√

2 · dmax(G)
dmin(G)

+ 1 ≤
√

2 · d(G) + 1 ≤ 2
√

2 · d(G) (2)
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Finally, to show that this bound is tight consider Tutte embedding of a cube
(see figure-1(a)) with all edges assigned with same weights. It can be seen that
in this embedding β ≤ 1. On the other hand, when we reduce the weight on the
edges BF and DH (see figure-1(b)) we obtain an embedding in which there is
no greedy path between pair B and D, while there is a β-weak greedy path with
β approaching d(G)/2. �

A

B C

D

E

F G

H

(a)

A

B

C

D

E

F G

H

(b)

Fig. 1. Illustration of Tutte embedding of a cube: (a) Equal edge weights, (b) Unequal
edge weights

If we consider Tutte embedding of a 3–connected planar graph G with arbitrary
weights on the edges, then it is not difficult to see that above bound on β depends
entirely on the choice of the edge weights in the Tutte embedding.

4 Characterizing Convex Greedy Embedding

Theorem 3. For sufficiently large |V | for a 3-connected planar graph G =
(V,E) if embedding x : V → IR2 of G is such that the maximum weight spanning
tree (T ) and minimum weight spanning tree (MST) satisfies, wt(T )/wt(MST) ≤
(|V | − 1)1−δ, for some 0 < δ ≤ 1, then embedding x is a convex greedy embedding
of G.

Proof. Observe that we have following relations, wt(MST) ≤ wt(Ts) ≤ wt(T ).
Since wt(MST) > 0, using lower bound on wt(Ts) from Lemma-9 and using upper
bound on wt(MST) from Lemma-4 we obtain:

2 · dmin(G) · (βmax − 1) · (|V | − 1)
5 · d2

max(G)
≤ wt(T )

wt(MST)

And hence, βmax ≤
(

5 · dmax(G) · d(G)
2 · (|V | − 1)

)
·
(

wt(T )
wt(MST)

)
+ 1

Now if weight of the maximum and minimum spanning tree in the planar convex
embedding of G is such that wt(T )/wt(MST) ≤ (|V | − 1)1−δ for some 0 < δ ≤ 1,
then for sufficiently large |V |, βmax → 1 from above (note that βmax > 1 by
Equation-1). �
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In following we show the more interesting direction:

Theorem 4. Given a 3-connected planar graph G = (V,E), if embedding x :
V → IR2 of G is a convex greedy embedding then in embedding x the maximum
weight spanning tree (T ) and minimum weight spanning tree (MST) satisfies:
wt(T )/wt(MST) ≤ (|V | − 1)1−δ, for some 0 < δ ≤ 1.

Proof. For a 3-connected planar graphG = (V,E), let an embedding x : V → IR2

of G be a convex greedy embedding. Let us also assume that wt(T )/wt(MST) ≥
(|V | − 1). W.l.o.g. let wt(MST) = 1. Since T is a spanning tree it has (|V | − 1)
edges, and hence has at least one edge e ∈ T of weight wt(e) ≥ 1. Given that x is
a convex planar embedding of a 3-connected planar graph G, we have that each
edge belongs to exactly two faces of the graph (in fact a graph is 3-connected
and planar if and only if each edge is in exactly two non-separating induced
cycles [16]). So we consider two cases: (Case - 1) e is on two internal faces F
and F ′, and (Case - 2) e is on the boundary face. We need few definitions [17].
For a graph G, a thread is a path P of G such that any degree 2 vertex x of
G is not an end vertex of P . A sequence S = (G0, {xiPiyi : i = 1, . . . , k}) is an
ear-decomposition of G if:

1. G0 is a subdivision of K4,
2. xiPiyi is a path with end-vertices xi and yi such that Gi = Gi−1 ∪ Pi is

a subgraph of G, and Gi−1 ∩ Pi = {xi, yi}, but xi, yi do not belong to a
common thread of Gi−1 for i = 1, . . . , k, and

3. Gk = G.

We will need following result from [17]:

Lemma 10 ([17]). Let G be a 3–connected graph, e = uv ∈ E(G). Let C1 and
C2 be non-separating cycles of G such that C1 ∩C2 = uev. Then there exists an
ear-decomposition of G such that C1 ∪C2 ⊂ G0.

Case - 1: In this case e = uv is on two internal faces F1 and F2. Consider a vertex
u′ from face F1 and another vertex v′ from face F2. First consider K4, which has
four faces, and exactly one planar convex embedding. However, vertices u, v, u′, v′

must be spanned by the MST using exactly 3 edges. If e is chosen in the MST
then other edges are of length 0, as wt(e) ≥ 1 and wt(MST) = 1. If e is not
selected in MST - then it can be easily seen that either wt(MST) > 1, or the
drawing is not planar - a contradiction. In specific this can be seen as follows
(see Figure-2): consider that uu′,u′v and u′v′ is selected in MST - then we have
uu′ + u′v ≥ uv (where, uv is an edge in the external face uvu′) and this implies
either uu′ + u′v + u′v′ > uv ≥ 1, or u′v′ = 0. Now, let G be a 3-connected
planar graph that is distinct from K4. Then there exists an ear-decomposition
of G such that e = uv and faces F1 and F2 are such that F1 ∪ F2 ⊂ G0, where
G0 is a subdivision of K4, by Lemma-10. We can contract edges of F1 ∪F2 while
keeping edge e to obtain a K4. In this process we never increase the weight of
the MST, and hence obtain the contradiction as above.
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Fig. 2. Illustration to the proof of Case - 1 for K4

Case - 2: In this case e = uv is on the boundary face. Since minimal external face
must be a triangle there exists another vertex u′ on the external face. Consider
another internal vertex v′. Again vertices u, v, u′, v′ must be spanned by the MST
using at least 3 edges. If e is chosen in the MST then other edges are of length
0, as wt(e) ≥ 1 and wt(MST) = 1. On the other hand if e is not selected in MST
- then wt(MST) > 1 if embedding is convex, a contradiction. �

5 Concluding Remarks

With Theorem-3 and Theorem-4, and the example presented above (Figure-1)
we can ask following question: For every 3–connected planar graph G, is it possi-
ble to choose edge weights in the Tutte embedding such that we obtain a greedy
convex embedding? We believe that answer to this question will help in mak-
ing progress towards resolving original convex greedy embedding conjecture of
Papadimitriou and Ratajczak [1].

We would like to clarify that though the β–weak greedy path finding algorithm
presented above is stateless, it is not a practical routing algorithm - as number
of messages will be large even for constant values of β, when β > 1, and the
routing procedure also forms cycles. The purpose of defining β–weak greedy path
finding procedure was to derive the main results of this paper.
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Abstract. Ordering constraints are analogous to instances of the sat-
isfiability problem in conjunctive normalform, but instead of a boolean
assignment we consider a linear ordering of the variables in question. A
clause becomes true given a linear ordering iff the relative ordering of its
variables obeys the constraint considered.

The naturally arising satisfiability problems are NP-complete for many
types of constraints. We look at random ordering constraints. Previous
work of the author shows that there is a sharp unsatisfiability thresh-
old for certain types of constraints. The value of the threshold however
is essentially undetermined. We pursue the problem to approximate the
precise value of the threshold. We show that random instances of the be-
tweenness constraint (definition see Subsection 1.1) are satisfiable with
high probability iff the number of randomly picked clauses is < 0.9 · n,
where n is the number of variables considered. This improves the previ-
ous bound which is < 0.82 · n random clauses.

Keywords: Algorithms, logic, random structures, probabilistic analysis.

1 Introduction

1.1 Result

Let V always be a set of n variables. A 3-clause over V is an ordered 3-tuple
(x, y, z) consisting of three different variables. Thus we have n(n− 1)(n− 2) =
(n)3 clauses altogether. A formula, also called ordering constraint is a set of
clauses. Given a linear ordering of all n variables a clause evaluates to true if
its variables satisfy a given constraint with respect to the ordering. A formula
becomes true when all its clauses are true. This is the satisfiability problem the
present paper deals with.

The clause (x, y, z) interpreted as a betweenness constraint is true iff y is
between x and z, that is we have x < y < z or z < y < x with respect to the
ordering considered. The corresponding satisfiability problem is NP-complete
[20].

We consider random ordering constraints interpreted as betweenness con-
straints. The random instance F (V,m) or the corresponding probability space is
obtained by picking a sequence (or set) of exactly m clauses without repetition

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 157–168, 2009.
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with uniform probability. Thus F (V,m) is analogous to the well known random
graph G(n,m). More closely related to F (V,m) are random 3-SAT formulas, see
for example [4] [3] [10] [19]. The present paper is a successor to [14].

As common in the theory of random structures this paper deals with prop-
erties holding with high probability, that is 1 − o(1) when n becomes large and
m = m(n) is a given function. An additional piece of notation: A sequence of
events En in some probability spaces holds with uniformly positive probability
(abbreviated as wupp) if there is a constant ε > 0 such that Prob[En] > ε for
all sufficiently large n.

The probability space F (V, p) is obtained by picking each clause independently
with probability p. We call it the binomial space. For p = a/n2 the expected
number of clauses is an. Moreover, the number of clauses is asymptotically equal
to an with high probability. Techniques as detailed on pages 34/35 of [5] show
that the spaces F (n,m) and F (n, p) with pn3 = m = O(n) are for most questions
of interest equivalent. This applies in particular to the satisfiability problems
treated here as they are monotone problems. Following common usage we omit
the technical details to show this each time.

The initial inspiration for the paper [14] came from some experiments (per-
formed only for n ≤ 300 for running time reasons.) These experiments show that
the random betweenness constraint becomes unsatisfiable for an random clauses
when a is between 1.5 and 1.6. Results obtained in the cited paper collects

Fact 1. For the random betweenness instance F (V,m) with m = an the follow-
ing events have high probability:

(a) For a ≤ C the instance is satisfiable where C < 0.82.
(b) For a > 4 · ln 2 ≈ 2.77 the instance is unsatisfiable.
(c) There exist numbers C = C(n), 0.8 ≤ C ≤ 2.77, such that for each constant
ε > 0 we have unsatisfiability for a ≥ (C + ε) and satisfiability for a ≤ (C − ε).

Fact 1 (c) means that we have a sharp threshold for unsatisfiability, but we do
not know the threshold value precisely. This is typical when the techniques form
[12] are used. Given Fact 1 (a) it seems to be non-trivial to show that F (V,m) is
satisfiable with high probability for any m substantially larger than 0.82n. We
make some progress and prove

Theorem 2. For m = rn with constant r ≤ 0.9 the random betweenness in-
stance F (V,m) is satisfiable wupp.

Theorem 2 together with Fact 1 (c) implies a high probability result.

Corollary 3. The random betweenness constraint with m = rn and r < 0.9 is
satisfiable with high probability.

There are two different techniques to show that random structures are solvable
(for example colourable in case of graphs or satisfiable in case of k-SAT in-
stances:) On the one hand it has been successful to analyze heuristic algorithms
and show that they find a solution to a random instance. On the other hand,
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and more recently non-constructive methods have been shown to be success-
ful. In [2] it is shown that random k-SAT instances are satisfiable based on the
second moment of the number of solutions and general probability estimates.
Our proof consists of a first non-constructive part based on the second moment
and a second constructive part. It may be the first time that a combination of
these techniques is used to show the existence of a solution. See also [1] for the
relationship of constructive and non-constructive proofs.

1.2 More Remarks the Literature

Ordering constraints differ from traditional constraints like k-SAT or more gen-
eral kinds of constraints in that the underlying assignment must be an ordering
of all variables. This means on the one hand that each variable can receive one
out of n values, its position in the ordering. On the other hand each of the n
values can only be used once. Altogether we have n! >> 2n many assignments
as opposed to only 2n in the case of satisfiability.

Beyond random k-SAT there is a considerable body of work on random con-
straints with finite domain from which the values for each variable are taken.
Only a small selection of the literature, in part due to Michael Molloy is [17],
[18], [16]. The paper [17] points out that the investigation of thresholds is not
only of structural interest, but has also algorithmic relevance: Random instances
at thresholds often have some algorithmic hardness which makes them attractive
as test cases for algorithms.

As far as we know systematic experimental studies of random ordering con-
straints have not been made. Our preliminary experiments indicate that in-
stances closer to the threshold become harder. This shows that our study is
relevant from the algorithmic point of view. Results – of a different flavour how-
ever – on the relationship between thresholds (phase transitions) and algorithmic
hardness can be found in the recent [1].

Ordering constraints tend to occur in knowledge representation formalisms. In
[15] for example the cyclic ordering constraint occurs. In [8] a weighted version
of an extended betweenness constraint is used to describe some biological si-
tuation. From the point of view of worst case complexity ordering constraints are
investigated in [13]. A recent breakthrough is [6]. We find [7] and [9] considering
optimization versions of ordering constraints.

2 Outline of the Proof of Theorem 2

We need 2-clauses. A 2-clause simply is a pair of distinct variables x < y, and
we have n(n− 1) = (n)2 2-clauses altogether. Given an ordering of the variables
the 2-clause is satisfied iff x is smaller than y. A boolean assignment of the set of
variables V is an assignment a : V → {0, 1} such that n/2 variables receive the
value 1 and n/2 the value 0. Thus, in our case boolean assignments are balanced.
A clause (x, y, z) is satisfied in the boolean sense by a iff it does not evaluate to
(0, 1, 0) or to (1, 0, 1). Thus we have six out of 8 different possibilities to satisfy
a clause in the boolean sense. A formula is satisfied in the boolean sense by a iff
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each clause is satisfied by a. A boolean assignment is equivalent to a partition of
V into two sets V0 and V1 each with n/2 variables: V0 the set of variables set to 0
and V1 the set of variables set to 1. Let A = y1 < y2 < y3 < . . . < yn. It induces
the partition Vl = {y1, . . . , yn/2} and Vu is the upper half of the ordering. These
notations directly imply

Proposition 4. If the betweenness constraint F is satisfied by the ordering A
then F is satisfied by the boolean assignment equivalent to the partition Vl and Vu.

The following reduction allows to shrink a given betweenness constraint.

Definition 5. Let F be a betweenness constraint and let V0, V1 be a partition
of V into two disjoint sets of n/2 variables each. If F is satisfied by the boolean
assignment equivalent to V0 and V1 we say that the constraints F0 = FV0 over
V0 and F1 = FV1 over V1 are defined. Their definition is as follows.

Let (x, y, z) be a clause from F with at least two variables from V0. It induces
clauses as follows in F0 :

– (x, y, z) ∈ (V0, V0, V0)(= V0 × V0 × V0) implies (x, y, z) ∈ F0
– (x, y, z) ∈ (V0, V0, V1) implies x < y ∈ F0
– (x, y, z) ∈ (V1, V0, V0) implies y > z ∈ F0.

Let (x, y, z) be a clause from F with at least two variables from V1. It induces
clauses as follows in F1 : (x, y, z) ∈ (V1, V1, V1) implies (x, y, z) ∈ F1,
(x, y, z) ∈ (V1, V1, V0) implies x > y ∈ F1 , and
(x, y, z) ∈ (V0, V1, V1) implies y < z ∈ F1.

F in the preceding definition has no clauses from (V0, V1, V0) and (V1, V0, V1) as
it is satisfied by the boolean assignment associated to V0 and V1. The simple
relationship between F and F0 and F1 is made clear by

Proposition 6. Let F, V0, and V1 be such that F0 and F1 are defined. F is
satisfied by a linear ordering with V0 < V1 iff F0 and F1 are both satisfiable.

We consider the random instance F = F (V,m). Given a boolean assignment a
we define indicator random variables Xa and Ya : Xa(F ) = 1 if F is satisfied
in the boolean sense by a. X =

∑
a Xa is the number of satisfying boolean

assignments. Ya(F ) = 1 iff F is satisfied by an ordering A which induces the
same partition as a. (That is Vl = V0 and Vu = V1.) We let Y =

∑
a Ya. The

following remark follows from Proposition 4.

Remark 7
(a) Ya ≤ Xa.
(b) Prob[F is satisf. as betweenness constraint ] = Prob[Y ≥ 1] ≤ Prob[X ≥ 1]

We have n! orderings as possible solutions for a given betweenness constraint F.
It is natural to consider the random variable which gives the number of satisfying
orderings. However, in part due to the large number of n! >> 2n solution can-
didates this random variable seems not easy to deal with. The random variable
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Y seems to be useful because it counts orderings associated to the same boolean
assignment only once. It thus has to do only with 2n candidates. The proof of
the next proposition uses analytical techniques introduced in [2]. It is presented
in the Appendix.

Proposition 8. For the random instance F (V,m) with m = rn, r ≤ 1 we have:
(a) E[X ] ≥ (3/2)n(1−ε) for any constant ε > 0.
(b) E[X2] ≤ C · (E[X ])2 for an appropriate constant C.

As X is a random variable which is ≥ 0 and has finite variance we can use the
Paley-Zygmund inequality: For any 0 ≤ Θ ≤ 1

Prob[X ≥ ΘE[X ]] ≥ (1 −Θ)2(E[X ])2 / E[X2]. (1)

With Proposition 8 as E[X ] ≥ 1 we directly get (but do not really need)

Corollary 9. The event X ≥ 1 holds wupp.

Given a boolean assignment a, we consider the random instance Fa(V,m) which
is F (V,m) conditioned on the event Xa = 1. Thus Fa(V,m) consists of m clauses
each satisfying the boolean assignment a. We have (3/4)(n)3 clauses satisfying
a. The probability of a given instance of m such clauses is 1/((3/4)(n)3)m (in
case of sequences of clauses without repetition – a mere formality.) In the next
section we prove the main

Lemma 10. Let a be an arbitrary boolean assignment. We consider the random
instance Fa(V,m) with m = rn, r ≤ 0.9 . Then the event Ya = 1 holds wupp.

While Proposition 8 holds for r > 0.9, at present we cannot prove Lemma 10
much beyond r = 0.9. At this point the reader may wonder why we cannot derive
Theorem 2 directly with Corollary 9 and the preceding Lemma. This however
is not clear. The underlying probability spaces are not as closely related as it
seems. In particular an instance from F (V,m) with X ≥ 1 may not be very
random any more. It thus may not have much to do with a random instance
Fa(V,m) to which the Lemma refers. Instead we only use the second moment of
X in the

Proof of Theorem 2. For a suitable constant ε > 0 and any boolean assignment
a we have with Lemma 10

E[Ya] = Prob[Xa = 1] · Prob [Ya = 1|Xa = 1] ≥ Prob[Xa = 1] · ε. (2)

The second estimate above is Lemma 10. The first equation follows from the
formula of total probability as Prob [Ya = 1 |Xa = 0 ] = 0 (Remark 7 (a).)
Then we get EY ≥ ε · EX → ∞ ( with Prop. 8 (a). )

Furthermore we have

E[Y 2] ≤
∑
(a,b)

Prob[Xa = 1 and Xb = 1] = E[X2] ≤ C(EX)2 ≤ (C/ε2)(EY )2

using Remark 7 (a) for the first estimate and Proposition 8 (b) to bound E[X2].
Now, Theorem 2 follows with Equation (1). �
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3 Proof of Lemma 10

For F = Fa(V,m), we have Ya(F ) = 1 iff both formulas F0 and F1 as in Definition
5 are satisfiable (Proposition 6, V0 = a−1(0) and V1 = a−1(1)). In F the number
of clauses from each of the 6 admissable possibilities among (Vi, Vk, Vj) with
i, j, k = 0, 1 is concentrated at its expectation, that is asymptotically (1/6)m
with high probability. With high probability 2 clauses which overlap in 2 vari-
ables do not occur as m is linear in n. Therefore F0 and F1 have (1/6)m many
3-clauses and (2/6)m many 2-clauses each over n/2 variables. Moreover, F0 and
F1 are stochastically independent (given their respective number of clauses which
is concentrated). Thus F0 and F1 are two independent random formulas with
asymptotically (1/3)rn 3-clauses and (2/3)rn 2-clauses over n variables (scaling
to n variables instead of n/2.)

We switch to the binomial space because the subsequent probability calcu-
lations appear slightly easier. The random instance F = F (n, p, q) is obtained
by throwing each 3-clause randomly with p and each 2-clause with q. Following
the remark in the Introduction instead of F0 and F1 we consider the random
instance F (n, c/n2, d/n) with

c = (1/3) · r and d = (2/3) · r, and r = 0.9

which are fixed for the rest of this section. We show that F (n, c/n2, d/n) is
satisfiable wupp and Lemma 10 follows from the independence of F0 and F1 and
Proposition 6.

Definition 11. The directed (multi-)graph GF associated to F has as vertices
the variables of F . Its edges are given by: The clause C = (x, y, z) ∈ F induces
the edges (x, y), (y, z) and (x, z) each marked with C. The clause x < y ∈ F
induces the edge (x, y).

Clearly, if GF is cycle free then F is satisfiable (by any topological ordering of
GF .) To reduce a formula F we apply

Algorithm 12. Input: A formula F.
V1 := the set of those variables which occur exactly once in a 3-clause of F
and nowhere else.
V2 := those variables x which occur only at the position x < −. This means
that all 2-clauses with x are of the form x < y and we have no 3-clauses with x.
Here the case that x does not occur at all is included.
V3 := the variables x which occur only and at least once as − < x
The result F ′ of the algorithm is obtained by deleting all variables from V1 ∪
V2 ∪ V3 and clauses containing them from F.

The algorithm is correct in the sense of

Lemma 13. If F ′ is satisfiable then F is satisfiable.

We iterate Algorithm 12 and therefore need
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Definition 14. (a) For a given formula F we let Fk := the formula obtained
after k iterations of Algorithm 12.

(b) The w2,k and w3,k for k ≥ 0 are defined inductively by

w2,0 = w3,0 = 0,
w2,k+1 = exp (−d(1 − w2,k)) · exp

(
−3c(1 − w3,k)2

)
,

w3,k+1 = exp (−d(1 − w2,k)) · w2,k+1.

In F (n, c/n2, d/n) we have that the variable x, conditioned on the event that
the 2-clause x < y is present, is deleted with probability (1 − d/n)n · (1 −
c/n2)3(n−1)(n−2) by Algorithm 12. This is w2,1, asymptotically. Conditioned
on the 3-clause (x, y, z) we have (1 − d/n)2n · (1 − c/n2)3(n−1)(n−2)−1 which is
w3,1(1+o(1)). We will see that wi,k ≤ the deletion probability of x after the k’th
iteration conditioned on the event that x is in a i-clause before the k’th interation
(i = 2, 3.)

A Maple calculation shows that the wi,k both seem to go firmly to 1 when k
gets large. For our proof we stay in the finite realm and observe that for r = 0.9

w2,1 = 0.2313..., w3,1 = 0.1224... and we need w2,50, w3,50 > 0.9. (3)

For the notation GFk
in the subsequent Lemma recall Definition 11 and

Definition 14 (a).

Lemma 15. Let k = 50, S = 3 · lnn, and F = F (n, c/n2, d/n), and
w := 1 − w3,50 < 0.1.

(a) The expected number of simple paths of length = S in GFk
is o(1).

(b) The expected number of cycles of length 2 ≤ s ≤ S in GFk
is

<

(
S∑

s=2

1
s
· (3cw + d)s

)
+ o(1) <

S∑
s=2

(
0.7
s

)s

+ o(1)

Proof of Lemma 10. The probability to have a cycle of length ≥ S is o(1) by (a)
of Lemma 15. The probability to have a cycle of length ≤ S in GFk

is bounded
above by the expectation, which is

<

S∑
s=2

(0.7)s

s
+ o(1) < (0.7)2/2 ·

∑
s≥0

(0.7)s + o(1).

The geometric series shows that this is asymptotically bounded above by a con-
stant < 1. Applying the remark after Definition 11 for the induction basis and
Lemma 13 inductively we see that F (n, c/n2, d/n) is satisfiable wupp. Then
Lemma 10 follows with the remark at the end of the second paragraph of this
section. �
Proof of Lemma 15 (a). Consider a possible simple path of length S,
(x0, x1, x2, . . .xS−1, xS) with t edges induced by 3-clauses, that is labelled with
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their respective 3-clause. W.l.o.g. we can restrict attention to paths which do not
use 2 edges induced by one clause because in this case we have the clause (x, y, z)
and the piece (. . . , x, y, z, . . .) in the path. We substitute it with (. . . , x, z, . . .).
Let y1, . . . yt be the additional variables of the 3-clauses inducing edges of the
path. The number of such paths altogether is < nS+1 · (3n)t. The probability for
this path to be present in the random F is (3c/n2)t(d/n)S−t. The Binomial The-
orem shows that the expected number of paths of length S is < n(3c + d)S =
n(0.9 + 0.6)S = n(1.5)S . We analyze the effect of k = 50 iterations of Algo-
rithm 12 based on the well-known fact that sparse random structures are locally
(hyper-)tree-like. The technique is in principle presented in [19].

For definiteness consider the variable y = y1. Except of those clauses present
because the path is in F – on which we condition – the distribution of the number
of 2-clauses y < − and y > − follows the binomial distribution with parameters n
or n−1 and d/n. For 3-clauses with y we have parameters approximately 3n2−1
and c/n2. The probability that we get > logn variables neighbouring y is very
small, O(1/nΩ(log log n)). The probability that one of the random neighbours of y
is already present in the path is O(log n/n). Therefore the probability that there
exists a neighbour of y already present in the path is O((log n)2/n). In case a
neighbour of a variable is already present in the part seen, that is generated, we
speak of an overlap.

We consider the next generation of neighbours of y – conditional on the event
that the preceding two exceptions do not occur for the first generation. For
each neighbour of the first generation the number of new neighbours can be
approximated very well by the binomial distributions as before. We explore the
random formula for up to distance k from y in this way. The probability that
an overlap occurs at some point is O((log n)2(k+1)/n) given that the number
of neighbours each time is ≤ logn. We condition on the high probability event
that no overlap occurs and that we have always only ≤ logn neighbours in
the neighbourhood of y up to distance k. In this case the neighbourhood is a
(hyper-)tree whose neighbour distributions are very well approximated by the
binomial distributions above. (We omit a further formalization, in particular the
precise conditionings at this point.)

We analyze what Algorithm 12 does to such a random (hyper-)tree. The
probability that a variable in depth k − 1 is deleted in the first iteration is
asymptotically w2,1 if it is reached by a 2-clause from the previous generation. If
it is a 3-clause we get w3,1. For variables in depth k− 2 and the second iteration
we get at least w2,2 and w3,2. Finally for y itself we get at least w3,k > 0.9 That
is the 3-clause with y of the path is present in Fk only with probability w < 0.1.

As the path is of length S = O(log n) we get that all neighbourhoods of
the y’s are disjoint trees with (approximately) the same binomial neighbour
distribution as before – unless we have an overlap which happens with probability
O(poly(logn)/n).
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Case 1. No overlap at all. Assuming that the yi are all distinct and the neigh-
bourhoods of the yi are disjoint we get for the expectation

n ·
S∑

t=0

(
S

t

)
(3cw)tdS−t = n(3cw + d)S .

This can be bounded as ≤ n(0.1 + 0.6)S . As ln(0.7) < −(1/3) and S = 3 lnn we
get a bound of 1/nε.

Case 2. One overlap. One overlap causes one or two neighbourhoods not to be
disjoint trees. We assume conservatively that the respective variables yi are not
deleted. For the expectation in this case we get

n
S∑

t=1

(
S

t

)
(3c)2(3cw)t−2dS−t · poly(log n)

n
.

This can be bounded by poly(logn)(1/w)2(3cw + d)S = o(1).

Case 3. Two overlaps. This case is treated similarly.

Case 4. Three or more overlaps. In this case we assume conservatively that no
deletion occurs. We get for the expectation, recall 3c+ d = 1.5,

n ·
S∑

t=3

(
S

t

)
(3c)t · dS−t · poly(log n)

n3 ≤ n · (1.5)S · poly(logn)
n3 .

As ln(1.5) · 3 < 1.3 we get o(1) in this case, too.

We also need to consider the possibility that the y’s themselves are not dis-
tinct. We can analyze this as the overlaps above. Similarly for overlaps among
the y’s themselves and the neighbourhoods of the y’s. �
Proof of Lemma 15 (b). For cycles of length 2 ≤ s ≤ S without any overlap
among the y’s (notation as above) or their neighbourhoods we get with the
Binomial Theorem an expectation of at most (see [21] , [11] or [14] for similar
calculations) 1 / s·(3cw+d)s. With exactly one overlap anywhere we get a bound
of (1/w)2(3cw + d)s · (poly(log n) / n) = O(1/n1−ε). For two or more overlaps
we get poly(log n) / n2 · (3c + d)S = O(1/n0.7). As S = O(log n) the O−terms
remain o(1) even after the sum over s is computed and the proof ends. �

4 Conclusion

Concerning our constant r = 0.9 : The contribution is that the bound of r < 0.82
from [14] can be beaten – by more advanced techniques. Our proof does not work
for r ≥ 0.95 : The wi,k remain too small. An analytical proof that the wi,k → 1
for large k would improve our proof.

Acknowledgement. Special thanks to Anja Lau for help with the calculus.
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A Appendix, Proof of Proposition 8

Proof of (a). Stirling: EX=
√

2/(πn) (2 · (3/4)r)n
> (3/2)n(1−ε) (as r ≤ 1). �

Proof of (b). Given 2 assignments a, b with overlap 2l = αn, that is we have 2l
variables which have the same truth value under both a and b, the probability
that a random clause is satisfied by both a and b is = (3 / 4) · (1 − α · (1 − α)).
This can be seen by elementary consideration and implies that

E [X2] =
∑
(a,b)

Prob[Xa = 1 and Xb = 1] =

=
(
n

n/2

)
·

n/2∑
l=0

(
n/2
l

)2

·
(

3
4
·
(

1 − l

n/2
·
(

1 − l

n/2

)))m

. (4)

With φ(α) := (3/4 · (1 − α · (1 − α)))r we get for the sum of (4) as m = rn

Sn :=
n/2∑
l=0

(
n/2
l

)2

·
(
φ

(
l

n/2

))n

. (5)

We apply the next Lemma with q := 2, t := n/2, z := l to Sn.

Lemma 16 (Laplace Lemma [2]). Let φ(α) be a positive, twice-differentiable
function on [0, 1] and let q ≥ 1 be a fixed integer. Let t = n/q and let

Sn :=
t∑

z=0

(
t

z

)q

φ(z/t)n and g(α) :=
φ(α)

αα(1 − α)1−α

where g(α) is defined on [0, 1] and 00 := 1.
If there exists αmax ∈ (0, 1) such that g(αmax) =: gmax > g(α) for all α �= αmax

and g′′(αmax) < 0, then there is a constant C = C(q, gmax, g
′′(αmax), αmax) > 0

such that for all sufficiently large n we have Sn < C · n−(q−1)/2 · (gmax)n.

We get from (5) and the Laplace Lemma that Sn ≤ C · (1/
√
n) · (gmax)n. From

Stirling’s formula and (4) we get

E[X2] ≤ 2n ·
√

2
πn

· C · 1√
n

· (gmax)n = D · 1
n

· (2 · gmax)n.

Below we show that gmax = 2 · (3/4)2r (see Equation (6)) and the claim holds
because EX =

√
2/(πn) · 2n · (3/4)rn (cf. proof of (a).)



168 A. Goerdt

We check that the Laplace Lemma is applicable. For the function φ(α) (defini-
tion before Equation (5)) we have for α ∈ [0, 1] that φ(α) ≥ 0. And φ(α) is twice
differentiable and symmetric around α = 1/2. For α = 1/2 we have its minimum
on [0, 1] which is φ(1/2) = (3/4)2r. (Elementary calculus for the proof.)

We come to

g(α) =
φ(α)

αα(1 − α)1−α
=

(3/4 · (1 − α · (1 − α)))r

αα(1 − α)1−α
.

It turns out that g(α) is maximized at

gmax = g(1/2) = 2 · (3/4)2r. (6)

First, g′(α) =(
3
4

)r

(1 − α+ α2)r−1︸ ︷︷ ︸
=((α−1)2+α)r−1>0

1
αα(1 − α)1−α︸ ︷︷ ︸

>0︸ ︷︷ ︸
>0

·
[
r(2α − 1) − (1 − α+ α2) ln

(
α

1 − α

)]
︸ ︷︷ ︸

=:h(α)

and g′(1/2) = 0, as h(1/2) = 0. Moreover,

g′′(1/2) = 1/3 · 9r
(
2−4 r+4r − 24 · 16−r

)
which is easily seen to be < 0 even for r < 3/2.

We consider α ∈ (0, 1/2), r ∈ (0, 3/2). We have

h′(α) = 2r − (2α− 1)︸ ︷︷ ︸
<0

· ln
(

α

1 − α

)
︸ ︷︷ ︸

<0︸ ︷︷ ︸
<2r<3

− (1 − α+ α2) ·
(

1
α

+
1

1 − α

)
︸ ︷︷ ︸

=:k(α)

.

We can rewrite k(α) = 1/α + 1/(1 − α) − 1 and

k′(α) = − 1
α2 +

1
(1 − α)2

=
2α− 1

α2 · (1 − α)2
< 0

⇒ k(α) strictly monotonously decreasing in (0, 1/2).
k(1/2) = 3 ⇒ k(α) > 3, ∀ α ∈ (0, 1/2)

⇒ h′(α) < 0, ∀ α ∈ (0, 1/2), 0 < r < 3/2
⇒ h(α) is strictly monotonously decreasing in (0, 1/2).

h(1/2) = 0 ⇒ h(α) > 0, ∀ α ∈ (0, 1/2)
⇒ g′(α) > 0, ∀ α ∈ (0, 1/2)
⇒ g(α) strictly monotonously increasing in (0, 1/2). �
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Abstract. Entanglement is a complexity measure for directed graphs
that was used to show that the variable hierarchy of the propositional
modal μ-calculus is strict. While graphs of entanglement zero and one
are indeed very simple, some graphs of entanglement two already contain
interesting nesting of cycles. This motivates our study of the class of
graphs of entanglement two, as these are both simple in a sense and
already complex enough for modelling certain structured systems.

Undirected graphs of entanglement two were already studied by Belkhir
and Santocanale and a structural decomposition for such graphs was
given. We study the general case of directed graphs of entanglement two
and prove that they can be decomposed as well, in a way similar to
the known decompositions for tree-width, DAG-width and Kelly-width.
Moreover, we show that all graphs of entanglement two have both DAG-
width and Kelly-width three. Since there exist both graphs with DAG-
width three and graphs with Kelly-width three, but with arbitrary high
entanglement, this confirms that graphs of entanglement two are a very
basic class of graphs with cycles intertwined in an interesting way.

1 Introduction

In recent years, several parameters have been proposed to measure the struc-
tural complexity of directed graphs in a similar way as tree-width measures the
complexity of undirected ones. While tree-width indicates how closely a graph
resembles a tree, the intuition behind complexity measures for directed graphs
is that acyclic graphs are simple, and that we can measure the complexity of
a graph by the extent to which its cycles are intertwined, or entangled. It has
turned out that there are several different ways to make this intuition precise, and
several methods to obtain such complexity measures. The two main methodolo-
gies are appropriate decompositions of the graph, similar to tree decompositions,
and graph searching games, also called robber-and-cops games, where a number
of cops try to catch a fugitive on the graph. The movements of the fugitive are
restricted by the edges of the graph, and the number of cops that are necessary
to catch the fugitive determine the complexity of the graph.

DAG-width, introduced in [1,2] is defined by DAG-decompositions. A DAG-
decomposition of width k of a graph G is given by a directed acyclic graph
(DAG) D and a map that associates with every node of the DAG a set of
at most k vertices of G, covering the entire graph G in such a way that for

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 169–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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every d ∈ D, the edges of G leaving a node strictly below d are guarded by
vertices in d. DAG-width can also be characterised by a variant of a graph
searching game (the directed cops and visible robber game), but with the
somewhat unsatisfactory restriction that the cops are only allowed to use
robber-monotone strategies, i.e. a move of the cops must never enlarge the
portion of the graph in which the robber can move. It has recently been
proved [3] that this restriction is necessary. Indeed, there exist families of
graphs on which the difference between the DAG-width and the number of
cops that can catch the robber with a non-monotone strategy is unbounded.

Kelly-width, see [4], is a similar measure that can either be defined by a some-
what refined notion of decomposition, called Kelly-decompositions, or by a
graph searching game in which the robber is invisible for the cops, and inert,
i.e. he can move only when a cop is about to land on his current position.
Again, the correspondence between decompositions and games only holds
with the restriction to monotone strategies [3].

Entanglement, introduced in [5], has been motivated by applications concern-
ing the modal μ-calculus and parity games. It is defined by the entanglement
game, in which the movements of both cops and robber are more restricted
than in other graph searching games. In each move the cops either stay where
they are or place one of them on the current position of the robber. The rob-
ber then moves, along an edge, to a new vertex that must not be occupied
by a cop. If no such vertex exists, the robber is caught. Here, strategies need
not be monotone.

Entanglement is in a sense more delicate than tree-width, DAG-width, or
Kelly-width [4]. There exist graphs with tree-width two and arbitrary large en-
tanglement, as well as graphs with DAG-width two and unbounded entangle-
ment. There exist a number of other measures for directed graphs, including
directed tree-width [6], pathwidth, cycle rank [7], D-width [8]. For surveys over
different measures, we refer to [9,10].

The strengths of the entanglement measure are the close connection with
modal logics and bisimulation invariant properties, and the natural game-theo-
retic characterisation. Entanglement has been a crucial ingredient in the proof
that the variable hierarchy of the modal μ-calculus is strict [11]. Further, it
has been proved that parity games can be efficiently solved on game graphs
with bounded entanglement1. The entanglement does not increase when we take
bisimulation quotients, and as a consequence of this observation it has been
proved that winning regions of parity games are definable in least fixed point
logic on graphs of bounded entanglement [12].

The main weakness of the entanglement measure (at the current state of the
art) is that it does not come with a natural notion of decomposition, such as
the ones for tree-width, DAG-width, or Kelly-width. Decompositions are crucial
for algorithmic applications, since they allow to break the structure into smaller
parts and process these in a systematic way. A structural characterisation of

1 An analogous result also holds for bounded DAG-width and bounded Kelly-width.
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entanglement has been given in [11] in terms of the minimal feedback of the finite
unravellings of the graph to a tree with back-edges. However, while this produces
a game-free definition of entanglement, it does not give a decomposition.

In this paper we study graphs of entanglement two. While graphs of entan-
glement zero and one are indeed very simple, graphs of entanglement two may
already have an arbitrary nesting of cycles, and they are rich enough to model
interesting classes of structured systems. We provide structural characterisa-
tions of this class, and find appropriate decompositions, similar to the ones for
tree-width, DAG-width, and Kelly-width. Moreover, we show that all graphs of
entanglement two have both DAG-width and Kelly-width three. Since there ex-
ist both graphs with DAG-width three and graphs with Kelly-width three, but
with arbitrary high entanglement, this confirms that graphs of entanglement two
are a very basic class of graphs with cycles intertwined in an interesting way.

For lack of space, this conference paper does not contain proofs of all results.
For the full version, see [13].

2 Entanglement

In this paper, a graph is always meant to be finite and directed. To deal with
undirected graphs, we view undirected edges {u, v} as pairs (u, v) and (v, u) of
directed edges, so undirected graphs are directed graphs with a symmetric edge
relation. For a graph G = (V,E) and V ′ ⊆ V , we write G[V ′] to denote the
subgraph of G induced by the vertex set V ′. For a vertex a ∈ V , we write G \ a
for G[V \ {a}]. Further, let vE = {w ∈ V : (v, w) ∈ E}.

Entanglement is defined by way of the entanglement game EGk(G), played by
a robber against k cops on a directed graph G. Initially, all cops are outside the
graph and the robber selects an arbitrary starting vertex v0 of G. The players
move in turn. In each move the cops either stay where they are, or place one of
them on the current position of the robber. The robber must then move from
her current position v, along an edge, to a successor w ∈ vE that is not occupied
by a cop. If no such position exists, the robber is caught, and the cops have won.
Notice that the robber has to leave her current position no matter whether or
not a cop has occupied that position. The robber wins if she is never caught, i.e.
if the play lasts forever.

Definition 1. The entanglement ent(G) of a graph G is the minimal number k
such that k cops have a winning strategy in the entanglement game EGk(G).

The entanglement game is, in essence, a reachability game: the cops try to reach
a state of the game at which the robber is captured. It is well known that such
games are determined via memoryless strategies, i.e. one of the two players has
a winning strategy that depends only on the current position, not on the history
of the play. We can thus restrict our attention to memoryless strategies.

For a formal definition of strategies in an entanglement game EGk(G) on a
graph G = (V,E), we describe a play by a sequence π ∈ S≤ω, where S = V ×
P≤k(V ). Here P≤k(V ) is the set of subsets of V of size at most k, and (v, P ) ∈ S
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denotes a position where the robber is on v and the cops occupy the vertices
in P . For brevity, we suppress the information about whose turn to move it is.
A (memoryless) strategy of the robber in EGk(G) can be described by a partial
function ρ : S ∪ {ε} → V with the property that ρ(v, P ) ∈ vE \ P . Here ρ(ε)
describes the choice of the initial vertex by the robber. Similarly, a (memoryless)
strategy of the cops is described by a partial function σ : S → V ∪ {�,⊥}
describing which cop moves to the current vertex occupied by the robber:

– if σ(v, P ) =⊥ then the cops stay where they are, and the next position is
(v, P ) (but now it is the robber’s turn);

– if σ(v, P ) = � then it must be the case that |P | < k and the next position
is (v, P ∪ {v}) (a cop from outside comes to vertex v);

– otherwise σ(v, P ) = u ∈ P (the cop from vertex u goes to v), and the next
position is (v, (P \ {u}) ∪ {v}).

A strategy ρ of the robber and a strategy σ of the cops define a unique
play π = (v0, P0)(v1, P1)(v2, P2) . . . that is consistent with ρ and σ. It starts in
position (v0, P0) = (ε, ∅) meaning that the cops and the robber are outside of the
graph. After the initial move of the robber the position is (v1, P1) = (ρ(ε), ∅).
For every n > 0 the vertex v2n+1 occupied by the robber after her (n + 1)-st
move is determined by ρ(v2n, P2n), and the set P2n occupied by the cops after
their nth move is determined by σ(v2n−1, P2n−1). Finally, we have P2n+1 = P2n

and v2n = v2n−1. A play ends, and is won by the cops, if, for some n, there is
no position w ∈ v2nE \ P2n. Infinite plays are won by the robber.

A strategy of the robber (or the cops) is winning if the robber (cops) wins
every play consistent with it. As reachability games are determined in memory-
less strategies, there is either a winning strategy for the robber or for the cops
in every entanglement game.

It is easy to characterise the graphs of entanglement zero and one [5].

Proposition 2. Let G be any finite directed graph.

(1) ent(G) = 0 if, and only if, G is acyclic.
(2) ent(G) = 1 if, and only if, G is not acyclic, and in every strongly connected

component there is a node whose removal makes the component acyclic.

As a consequence, for k = 0 and k = 1, the problem whether a given graph has
entanglement k is Nlogspace-complete.

However, already the graphs of entanglement two provide a quite rich and
challenging class. For the case of undirected graphs, a characterisation of entan-
glement two has been given by Belkhir and Santocanale [14]. It says that every
undirected graph G = (V,E) of entanglement at most two can be obtained from
a forest T by adding, for every edge {a, b} of the forest, new vertices va,b

1 , . . . , va,b
m

with edges {a, va,b
i } and {b, va,b

i } for every i, and possibly deleting the edge {a, b}.
However, the real interest of entanglement is about directed graphs rather

than undirected ones. We generalise the result of Belkhir and Santocanale to
directed graphs of entanglement two, and we present two structural characteri-
sations and a kind of a tree decomposition of members of this class.
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3 Graphs of Entanglement Two

To motivate and give intuition for the class of graphs of entanglement two, we
introduce a class F of graphs (V,E, F ) where F ⊆ V is a set of marked vertices.
The class F is defined inductively, as follows:

(1) The graph consisting of one marked vertex and without edges is in F .
(2) F is closed under removing edges, i.e. if (V,E, F ) ∈ F and E′ ⊆ E then

(V,E′, F ) ∈ F .
(3) For G1,G2 ∈ F with marked vertices F1 and F2, the disjoint union of G1 and

G2 with marked F1 ∪ F2 is in F .
(4) For G1 = (V1, E1, F1),G2 = (V2, E2, F2) ∈ F , their marked sequential com-

position G is in F , where G = (V1 ∪ V2, E1 ∪E2 ∪ F1 × V2, F1 ∪ F2).
(5) For G = (V,E, F ) ∈ F , the graph G′ with added marked loop is in F , where

for a new vertex v,

G′ = (V ∪ {v}, E ∪ (F × {v}) ∪ ({v} × V ), {v}).

Notice that the rules (2)–(4) add no cycles and do not increase the entan-
glement. New cycles are created only in item (5), but only between the marked
vertices and a new node, which is the only one marked afterwards.

All graphs in the class F have entanglement two. Before we explain the mean-
ing of the marked vertices F (in Section 4), let us describe a few sub-classes of
F and possible uses for graphs of entanglement two.

A sub-class of F are trees with edges directed to the root and, additionally, any
set of back-edges going downwards. More formally, such trees can be described
as structures T = (T,ET ∪ Eback) where (T,ET ) is a tree with edges directed
to the root and for any back-edge (w, v) ∈ Eback it must be the case that w
is reachable from v in (T,ET ). Such graphs have entanglement at most two. A
winning strategy for the cops is to chase the robber with one cop until she goes
along a back-edge (w, v). Then she is blocked by this cop in the subtree rooted
at w. Now the second cop chases the robber until she takes another back-edge,
and so on, until she is caught at a leaf.

Another class of graphs included in F are control-flow graphs for structured
programs (that do not use goto). Control flow of such programs can be modelled
by using sequential and parallel composition (corresponding to items (3) and (4)
in the definition of F), and loops with single entry and exit point, which are a
special case of item (5) in the definition of F .

Consider for example the graph presented in Figure 1. Removing v0 from this
graph leaves only two non-trivial strongly connected components, namely the
v1-loop and the v2-loop, and one trivial component consisting of a single ver-
tex.2 The loops can be decomposed as well by removing v1 and v2, respectively,
and finally the v3-loop and the v4-loop can be decomposed. This decomposition
induces a strategy for the cops, who first place one of them on v0 and then chase
2 We consider only non-trivial strongly connected components, i.e. not single vertices

without self-loops.
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v0

v1

v2

v3v4

Fig. 1. Example graph of entanglement two

the robber on v1 with the other cop. If the robber enters the v1-loop, the cop
from v0 is used to chase him on v3 and v4 and so the robber is caught. If the
robber does not enter the v1-loop, the cop from v1 chases him on v2 and catches.

As one of our main results, we show in Theorem 11 that a decomposition,
generalising the above example, can be found for each graph of entanglement
two. As a consequence, we prove in Theorem 12 that graphs of entanglement
two can be characterised in a way similar to the above definition of the class F .
More precisely, a graph has entanglement at most two if, and only if, each of its
strongly connected components belongs to a class F ′, which is defined similarly
to the class F , but with item (5) changed as follows.

(5′) For G = (V,E, F ) ∈ F ′, the graph G′ with added loop is in F ′, where

G′ = (V ∪ {v}, E ∪ (F × {v}) ∪ ({v} × V ), {v} ∪ F ′),

and F ′ is any subset of the previously marked vertices F such that G[F ′] is
acyclic and no vertices in F ′ are reachable from V \ F ′.

A consequence of our proofs, stated in Proposition 13, is that graphs of en-
tanglement two have both DAG-width and Kelly-width at most 3. This confirms
that graphs of entanglement two are simple according to all known graph mea-
sures, and strengthens our motivation to study them as the most basic class of
graphs where cycles are already nested in interesting ways.

4 Entanglement of Graphs with Exit Vertices

In this section, we introduce a technical notion: the entanglement of a graph with
exit vertices, which is crucial for subsequent proofs. To provide intuition for this
notion, consider the graph in Figure 1 with the vertex v0 removed. This graph
contains two non-trivial strongly connected components: the v1-loop and the v2-
loop. The v2-loop has entanglement one, so it is clearly simpler than the entire
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graph. On the other hand, the v1-loop has entanglement two. Nevertheless, we
claim that also the v1-loop is in a sense simpler than the entire graph, despite
having the same entanglement. Indeed, observe that not only can two cops catch
the robber on the v1-loop, but they can do it in such a way that the only vertex
through which the robber can exit this loop, v1, remains blocked during the
whole play after the robber visits it. This leads to the notion we study here.

In the rest of this section, we focus on strongly connected subgraphs of a
graph. Let G be a graph and G′ a strongly connected subgraph of G. The set
Ex(G,G′) of exit vertices of G′ in G is the set of all v ∈ G′ for which there is a
vertex u ∈ G \ G′ with (v, u) ∈ E (we write v ∈ G if G = (V,E) and v ∈ V ).

To study subgraphs that contain exit vertices in a way that is independent of
the bigger graph in the context, we say that G∗ is a graph with exit vertices when
G∗ = (V,E, F ), where (V,E) is a graph and F is any subset of V representing
the exits. The following notion is used while decomposing a graph G.

Definition 3. Let G be a graph and let v ∈ G. A v-component of G is a graph
C = (C,E, F ) with exit vertices such that (C,E) is a strongly connected compo-
nent of G \ v and F = Ex(G, C).

In a strongly connected graph G, for a vertex v, let ≤v be the topological order
on the set of strongly connected components of G \ v, i.e.

C ≤v C′ ⇐⇒ there is a path from C to C′ in G \ v.

The entanglement game with exit vertices EG∗
k(G) is played on a graph G =

(V,E, F ) with exit vertices in the same way as the entanglement game, but
with an additional winning condition for the robber: she wins a play when she
succeeds in reaching an exit vertex after the last cop has entered G from outside.
More formally, the robber wins a play if it reaches a position (v, P ) such that
v ∈ F and |P | = k. (This includes the case when the robber already sits on an
exit vertex at the time when the last cop comes to that vertex.) In the context
of subgraphs inside a larger graph this new winning condition means that the
robber can leave the subgraph and get back to the bigger graph.

We define a variant of the entanglement game to mark the vertex from which a
play starts. For v ∈ G, the game EG∗

k(G, v) is played in the same way as EG∗
k(G),

except that the robber does not choose a vertex to start on, but starts on v.

Definition 4. A graph with exit vertices G is k-complex if the robber has a
winning strategy (which we call a robber G-strategy) in the entanglement game
with exit vertices EG∗

k+1(G). If the cops have a winning strategy in EG∗
k+1(G)

(called a cops G-strategy), then G is k-simple.

First, let us show that existence of a vertex v with only k-simple components
gives a bound on entanglement. The strategy for the cops is to place a cop on v
and to play in each v-component C according to their C-strategy.

Proposition 5. If there is a vertex v in a graph G such that all v-components
are k-simple, then ent(G) ≤ k + 1.
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In the rest of this section, we prove that the converse holds for the case k = 1.
This will lead to Theorem 7 and form the basis of a structural characterisation
of graphs of entanglement two in Section 5. First, we need that for strongly
connected components the choice of the starting vertex is irrelevant.

Lemma 6. Let G be a strongly connected k-complex graph with exit vertices.
Then the robber wins EG∗

k+1(G, v) for all v ∈ G.

To prove the converse of Proposition 5, we need to consider various configurations
of complex components. We will show that the existence of certain combinations
of 1-complex components implies that the graph has entanglement greater than
two. This will be used to show that every graph of entanglement two contains a
vertex so that after its removal all components are 1-simple.

Theorem 7. On a strongly connected graph G = (V,E), two cops have a win-
ning strategy in the game EG2(G) if and only if there exists a vertex a ∈ G such
that every a-component is 1-simple.

Proof idea. Proposition 5 shows one direction. For the other one, assume that for
every v ∈ V there is a 1-complex v-component, but the cops can win EG2(G). We
construct a sequence of vertices ai and corresponding 1-complex ai-components
Ci that are maximal with respect to ≤ai such that the intersection of all compo-
nents is not empty. Every new vertex ai is taken from the intersection of already
constructed components. If, at a stage of construction, the components do not
intersect, we have to consider various cases how the components are combined
with each other:
– two components that are incomparable with respect to ≤v,
– complex components that do not intersect and contain their respective defin-

ing vertices,
– disjoint complex components, one of which is maximal,
– two intersecting components, one of which contains the defining vertex of

the other,
– and finally multiple pairwise non-intersecting components.

Every such case leads to a winning strategy of the robber in EG2(G), which
contradicts the assumption. Because we always take new vertices ai from the
intersection of the already constructed components and ai �∈ Ci, the intersec-
tion becomes smaller in every construction step and the construction finitely
stops. Then we get a case when the robber has a winning strategy, which again
contradicts the assumption.

It is clear that the entanglement of a graph is bounded by the entanglement
of its strongly connected components, so we have the following corollary.

Corollary 8. Let G be a graph. In EG2(G), the cops have a winning strategy if
and only if in every strongly connected component C of G, there exists a vertex
a ∈ C, such that every a-component of C is 1-simple.

The above fails for graphs of entanglement three or greater.

Theorem 9. For every k > 2 there is a graph Gk of entanglement k in that, for
every vertex a, there is a (k − 1)-complex a-component.



Directed Graphs of Entanglement Two 177

5 Decompositions for Entanglement Two

The proof of Theorem 7 shows the structure of a strongly connected graph G
of entanglement two. It has a vertex a0 such that the graph G \ a0 can be
decomposed into 1-simple a0-components. We can divide them into two classes:
leaf components, from which one cop expels the robber, and inner components,
where one cop does not win, but blocks all exit vertices making the other cop free
from guarding the simple component. It turns out that every inner component C0
again has a vertex a1 such that C0 decomposes in 1-simple a1-components and so
on. We shall show that a1 is the vertex where the second cop stays (blocking all
exit vertices of C0) when the first cop leaves a0. Let us define the decomposition
for graphs of entanglement two.

Definition 10. An entanglement two decomposition of a strongly connected
graph G = (VG, EG) is a triple (T , F, g), where T is a nontrivial directed tree
T = (T,E) with root r and edges directed away from the root, and F and g are
functions F : T → 2VG and g : T → VG with the following properties:

(1) F (r) = VG,
(2) g(v) ∈ F (v) for all v ∈ T ,
(3) if (v, w1) ∈ E and (v, w2) ∈ E, then F (w1) ∩ F (w2) = ∅, for w1 �= w2,
(4) for (v, w) ∈ E, G[F (w)] is a strongly connected component of G[F (v)]\ g(v),
(5) the subgraph of G induced by the vertex set

(
F (v) \ g(v)

)
\
(⋃

w∈vE F (w)
)

is acyclic for all v ∈ T ,
(6) no vertex in Ex(G,G[F (v)]) is reachable from G[

⋃
w∈vE F (w)] in G \ g(v),

for all v ∈ T .

We shall call tree vertices and (abusing the notation) their F -images bags and
g-images decomposition points.

From the above definition follows that if (v, w) ∈ E then F (w) � F (v) and that if
v ∈ T is a leaf in T then G[F (v)]\g(v) is acyclic. Observe further that successors
vE = {w1, . . . , wm} of each bag v are partially ordered in the following sense:
{w1, . . . , wm} form a DAG D such that, for all wi, wj ∈ vE, wj is reachable from
wi in D if and only if F (wj) is reachable from F (wi) in G[F (v)] \ g(v).

Look again at the class of trees with back-edges defined in Section 3. The
decomposition of a tree with back-edges T = (T,ET , Eback) can be given as
(T ′, E′

T , F, idT ′) where T ′ is T without leaves, E′
T = {(v, w) | (w, v) ∈ ET and v

is not a leaf in T }, and if v ∈ T ′ then F (v) is the subtree rooted at v and
g(v) = v. One can verify that (T ′, E′

T , F, idT ′) is indeed a decomposition of T .
Having defined the decomposition for entanglement two, we are ready to state

our two main results characterising directed graphs of entanglement two. An
entanglement two decomposition of a graph G gives raise to a winning strategy
for the cops in EG2(G). Conversely, if two cops win EG2(G) then we can use the
characterisation from Theorem 7 to give an entanglement two decomposition.

Theorem 11. A strongly connected graph G = (V,E) has entanglement at most
two if and only if G has an entanglement two decomposition.
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Fig. 2. A typical graph of entanglement two and its entanglement two decomposi-
tion. Lines without arrows denote edges in both directions. On the upper picture, the
components (images of function F ) are shown as squares (only up to level 4), block-
ing vertices (images of function g) are shown as filled circles. On the picture below,
the decomposition tree of the graph is given. The bags are labelled with images from
functions F and g.
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This theorem allows us to complete the characterisation of directed graphs of
entanglement two given in Section 3. But first observe, that there is a connec-
tion between the entanglement two decomposition and the characterisations of
undirected graphs of entanglement two given by Belkhir and Santocanale [14].

For an entanglement two decomposition of an undirected graph G = (V,E),
consider a connected component, which is an undirected tree T = (VT , ET ) with
additional vertices (as described in Section 2). Choose an arbitrary leaf v ∈ VT

as a root. We get a decomposition tree after orienting all edges from ET (if an
edge was deleted, restore it before orienting) away from the root and deleting
all leaves other than v. We define the functions F and g as follows: F (v) is VT

and g(v) is v. In general, if, for a bag w, the functions F and g on w are already
defined, let C be a strongly connected component of G[F (w)] \ g(w). Choose a
vertex u in C with an edge between w and u and set F (u) = C and g(u) = u.

Recall the definition of the class F ′ in Section 3 for the following theorem.

Theorem 12. A strongly connected directed graph G has entanglement at most
two if and only if G ∈ F ′.

From Theorem 11 it follows that, in time O(n3) where n is the size of the input
graph G, one can not only decide whether G has entanglement at most two, but
also compute an entanglement two decomposition of G. The algorithm proceeds
by first looking for a vertex a0 such that all a0-components are 1-simple by linear
search. The existence of a0 is guaranteed by Theorem 7. Then the a0-components
are computed. In every component the algorithm finds a vertex a1 that blocks
all blocking vertices of that component. If there is no such a1, the algorithm
returns “robber wins”. Otherwise the procedure continues with the vertex a1
instead of a0 until there is no ai-component for some i (i.e. the ai−1-component
is of entanglement one). In this case the algorithm returns “Cops win” and the
computed decomposition.

6 DAG-Width and Kelly-Width for Entanglement Two

Entanglement two decomposition of a graph leads to winning strategies for three
cops in games that correspond to DAG Game and Kelly Game. The DAG Game,
described in [1,2], differs from the entanglement game only in these ways:

(1) The robber is infinitely fast (i.e. she can make moves along cop free paths
rather than only along edges).

(2) The cops are not restricted to go to the vertex where the robber is.
(3) The robber can stay idle if no cop comes on the vertex she occupies.

DAG-width is the least number of cops needed to capture the robber in a
monotone way, i.e. the set of vertices reachable for the robber must be mono-
tonically decreasing.

The Kelly Game is played as the DAG Game, but the robber is invisible, i.e.
the cops do not know where the robber is, and inert, i.e. the robber can move
only if a cop is about to occupy the vertex where she is. Kelly-width is the least
number of cops needed to capture the robber in a monotone way.
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Fig. 3. A graph of entanglement 2 and both DAG-width and Kelly-width 3

Proposition 13. For any graph G, if ent(G) ≤ 2, then both the DAG-width and
the Kelly-width of G are at most 3.

Proposition 13 gives the best possible upper bound for the number of cops needed
to capture the robber in the same graph in the DAG Game and Kelly Game.
Note that the third cop in the DAG Game and the Kelly Game is used to force
the robber to move. Figure 3 shows a graph of entanglement two and both
DAG-width and Kelly-width three, which is easy to verify.
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Abstract. Given a set P of natural numbers, we consider infinite games
where the winning condition is a regular ω-language parametrized by P .
In this context, an ω-word, representing a play, has letters consisting
of three components: The first is a bit indicating membership of the
current position in P , and the other two components are the letters
contributed by the two players. Extending recent work of Rabinovich
we study here predicates P where the structure (N, +1, P ) belongs to
the pushdown hierarchy (or “Caucal hierarchy”). For such a predicate
P where (N, +1, P ) occurs in the k-th level of the hierarchy, we provide
an effective determinacy result and show that winning strategies can be
implemented by deterministic level-k pushdown automata.

1 Introduction

The starting point of this work is the Theorem of Büchi and Landweber [1]. This
theorem gives a positive solution to “Church’s Problem” on “regular” infinite
games. In the simplest setting, we are dealing with a game where two players 1
and 2 choose bits in alternation, first player 1, then player 2, at each moment
i ∈ N. We call X(i) the i-th bit chosen by player 1 and Y (i) the i-th bit of player
2. A sequence X(0), Y (0), X(1), Y (1), . . . is a play of the game, and it defines
(via the concept of characteristic function) two sets X,Y ⊆ N. The winning
condition of the game is a regular ω-language, presented in this paper by a
monadic second-order formula ϕ(X,Y ) over the structure (N,+1). When a play
(X,Y ) satisfies this formula over the structure (N,+1) then player 2 wins the
play, otherwise player 1 wins. In a standard way one now introduces the notion
of strategy and winning strategy for the two players.

The Büchi-Landweber Theorem states that given a monadic second-order for-
mula ϕ(X,Y ) as winning condition, the game associated with ϕ is determined
(i.e., one of the two players has a winning strategy), one can decide who is
the winner, and one can construct from ϕ a corresponding finite-state winning
strategy (i.e., a strategy executable by a finite automaton with output).
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In the present paper we study a generalized setting in which a fixed set P ⊆ N
is added as a “parameter”. So one works in monadic second-order logic over a
structure (N,+1, P ) rather than (N,+1).

There are (at least) two motivations for this model: First, the resulting game
can be viewed as an interaction between three agents. In addition to a standard
scenario where a “controller” plays against a possibly hostile “environment”
which is completely free in its choices, the predicate P represents now a “game
context” that has dynamic behavior over time but is fixed and predictable. So
one may call the games studied here two-person games with context. Secondly,
the adjunction of a predicate P to the setting of the Büchi-Landweber Theorem
gives a very natural step beyond the regular games, where new phenomena arise.

In [12,13], Rabinovich showed that for recursive P , an analogue of the Büchi-
Landweber Theorem holds if the monadic second-order theory of (N,+1, P ) is
decidable. In this case, determinacy holds again, the winner can be computed,
and a recursive winning strategy (rather than a finite-state winning strategy)
can be constructed from the winning condition.

The first aim of this paper is to develop a new presentation of Rabinovich’s
result which rests more on automata theoretic concepts than [12,13]. While in
that paper other sources are invoked for central details, we give a self-contained
outline, using only standard facts.

Then we refine the claim on recursiveness of strategies in parametrized games,
by providing – for a large class of sets P – a tight connection between the “com-
plexity” of P and the complexity of winning strategies. Here we refer to those
sets P such that the structure (N,+1, P ) belongs to the “Caucal hierarchy” (of
[6]). It is known that in this case the monadic second-order theory of (N,+1, P )
is indeed decidable. A large class of interesting sets P is covered by the hierar-
chy, among them the powers kn of a fixed number k, the powers nk for fixed
exponent k, and the set of factorial numbers n!. We show, using recent work
of Carayol and Slaats [4], that for a set P such that (N,+1, P ) belongs to the
k-level of the hierarchy (short: “P is of level k”), a winning strategy (for the
respective winner) can be guaranteed that also belongs to the k-th level. More
precisely, we use the characterization of the levels of the Caucal hierarchy in
terms of higher-order pushdown automata and show that for sets P of level k,
winning strategies exist that are executable by deterministic level-k pushdown
automata. This gives a substantial improvement over the general property of a
strategy to be recursive (computable).

The last section offers a discussion and some open questions; e.g. on those
predicates P where (N,+1, P ) does not belong to the Caucal hierarchy but
nevertheless the monadic second-order theory of this structure is decidable (for
the latter class see e.g. [5,14]).

2 Parametrized Regular Games and Their Solution

We use standard terminology as introduced, e.g., in [9]. By a regular game we
mean an infinite two-player game in the sense of Gale and Stewart [8] where the
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winning condition is given by a regular ω-language. Both players, called 1 and 2,
pick in each move an element from a finite alphabet; for notational simplicity we
assume here that the alphabet is {0, 1} for each of the players. (All definitions
and results of this paper extend in a straightforward way to the case of arbitrary
finite alphabets.) A play is a sequence X(0), Y (0), X(1), Y (1), . . . where X(i)
is supplied by player 1 and Y (i) by player 2. As formalism to express winning
conditions we use formulas ϕ(X,Y ) of monadic second-order logic (MSO-logic)
over (N,+1); it is known that MSO-logic allows to define precisely the regular ω-
languages. So we speak of a regular game. (We use here freely the correspondence
between a set P of natural numbers and its characteristic bit sequence χP .) When
a set P (and a corresponding constant again denoted P ) is added, we refer to
the structure (N,+1, P ), denote the winning condition sometimes as ϕ(P,X, Y ),
and speak of a regular P -game. A play of this game may be viewed as an ω word
over the alphabet {0, 1}3:

Predicate 0 1 1 0 1 . . . = P
Player 1 0 1 0 1 1 . . . = X
Player 2 1 0 1 0 1 . . . = Y

The aim of this section is a new shape of proof for the following result of Rabi-
novich [12,13].
Theorem 1. Regular P -games are determined, and if the MSO-theory of the
structure (N,+1, P ) is decidable then the winner can be computed and a recursive
winning strategy can be constructed from the winning condition.

For the proof we use three fundamental results summarized in the following
proposition (for details and definitions see [9]):
Proposition 1. (Known Facts)

(a) Each MSO-formula can be transformed into an equivalent (deterministic)
parity automaton.

(b) The MSO theory of (N,+1, P ) is decidable iff the following decision problem
AutP is decidable.
AutP : Given a parity (or Büchi) automaton A, does A accept χP ?

(c) Parity games (even over infinite game arenas) are determined, and the win-
ner has a positional winning strategy.

Proof (of Theorem 1). We present here a detailed sketch (a full account appears
in [10]).

Step 1. Given ϕ(P,X, Y ) with fixed interpretation of P , we start with a parity
automaton Aϕ, say with state set Q and n = |Q|, that is equivalent to ϕ(Z,X, Y )
(i.e. it has arbitrary ω-words over {0, 1}3 as inputs). First we transform Aϕ into a
game arena. This just means to split a transition from state p via a triple (b, c, d)
of bits into a state q into two transitions: The first takes the “context bit” b and
the choice c of player 1 into account and leads from state p to an intermediate
state (p, b, c). In this state the bit d supplied by player 2 is processed, and state
q is reached. In the states p, Player 1 moves (first in the role of the “context
player”, then by his own bit) and in the states (p, b, c) player 2 moves. We obtain
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a finite game arena Gϕ. The parity acceptance condition of the automaton is
turned into a winning condition over Gϕ; the coloring of vertices is inherited
from the coloring of the states of the automaton.

Step 2. In a second step we transformGϕ into an infinite game arena which takes
into account the fixed choice of the set P . For this we parametrize the vertices
p and (p, b, c) by natural numbers, calling the new vertices (p)i, respectively
(p, b, c)i. The initial vertex is now (q0)0. From (p)i we have an edge to (p, b, c)i

iff in Gϕ there is an edge from p to (p, b, c) and the bit b indicates correctly
whether i ∈ P or not (being 1 in the first and 0 in the second case). From
(p, b, c)i we have an edge to (q)i+1 iff in Gϕ there is an edge from (p, b, c) to q.
The color of (p)i is that of p, similarly for (p, b, c)i. Call the resulting game graph
G′

ϕ. Now we have:
Player 2 wins the regular P -game defined by ϕ iff Player 2 wins the
parity game over G′

ϕ from its initial vertex.

Note that the game graph G′
ϕ is acyclic and structured into slices S0, S1, . . .,

each of which contains only a bounded number of vertices. For k = 2i, the slice
Sk contains up to n (= |Q|) vertices (p)i, and for k = 2i+1, the slice Sk contains
up to 2n vertices (p, b, c)i (note that b is fixed for given i). In order to have the
same time scale in the characteristic sequence χP and the sequence of slices,
we group the slices into a sequence of pairs (S0, S1), (S2, S3), . . . and code this
sequence – and hence G′

ϕ – by an ω-word over an appropriate alphabet Σ. Let
us denote by αϕ the ω-word coding G′

ϕ.
Finally, we note that the transformation of this step can be implemented by

a finite automaton, uniformly in P :

Lemma 1. Given a finite game arena Gϕ, there is a finite-state transducer (in
the format of a Mealy automaton) which transforms the characteristic sequence
of a set P into the corresponding sequence αϕ.

Step 3. By the memoryless determinacy of parity games, one of the two players
has a memoryless winning strategy in G′

ϕ. From this we obtain the determinacy
claim of the Theorem. We now deal with the effectiveness claims and by sym-
metry focus on player 2 alone. A memoryless strategy for player 2 is a function
that maps each vertex (p, b, c)i to some state (q)i+1, i.e. for each i we apply a
map from a set with at most 2n elements to a set with at most n elements.
Let Γ be the finite set of these maps. A memoryless strategy of player 2 is thus
coded by an ω-word γ = γ(0)γ(1) . . . over Γ where γ(i) is the map applied at
moment i by player 2. It is a straightforward exercise to set up a deterministic
parity automaton Tϕ that runs on input words over Σ × Γ and checks for an
ω-word αϕ ◦γ := (αϕ(0), γ(0)), (αϕ(1), γ(1)), . . . whether γ represents a winning
strategy in the parity game coded by αϕ.

Step 4. Invoking the transducer of Lemma 1 of Step 2, we can transform Tϕ

into an automaton T ′
ϕ that runs over the input alphabet {0, 1} × Γ rather than

Σ × Γ . On an input χP ◦ γ, T ′
ϕ computes, using the transducer, the sequence

αϕ from χP and on αϕ ◦ γ simultaneously simulates Tϕ. We call T ′
ϕ a “winning
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strategy tester” for ϕ. Now we have: T ′
ϕ accepts χP ◦γ iff γ represents a winning

strategy of player 2 in the P -game with winning condition ϕ.

Step 5. The strategy tester of Step 4 will now be transformed into a nondeter-
ministic “winning strategy guesser” Sϕ that runs over the input alphabet {0, 1}
only. On the input word χP , this automaton guesses a sequence γ ∈ Γω and
on χP ◦ γ works like T ′

ϕ. It is obtained in the format of a nondeterministic par-
ity automaton. For convenience we assume it converted into a nondeterministic
Büchi automaton Bϕ.

Proposition 2. The Büchi automaton Bϕ accepts the characteristic sequence of
a set P iff player 2 has a winning strategy in the regular P -game with winning
condition ϕ.

This shows the first effectiveness claim of the Theorem: If the MSO-theory of
(N,+1, P ) is decidable, one can decide whether player 2 wins the regular P -game
with winning condition ϕ. It just suffices to apply item (b) of Proposition 1 (of
known facts) above.

Step 6. Finally, given that player 2 wins the regular P -game with winning
condition ϕ, we have to construct a recursive strategy for him. In view of Step
5 it suffices to construct effectively an accepting run of Bϕ from the assumption
that such a run exists. (We use here the fact that the strategy can be extracted
from an accepting run of the Büchi automaton.) In terms of MSO-logic, this
amounts to the proof of a Selection Lemma: Assume that the MSO-theory of
(N,+1, P ) is decidable. If (N,+1) |= ∃Zψ(P,Z) then a satisfying recursive set
Z can be constructed (i.e. a procedure that decides for each i whether i ∈ Z).

We give a proof, following an argument of Siefkes [16], in automata theoretic
terminology. It involves the well-known merging relation that was already used
by McNaughton [11] in his proof of determinization of Büchi automata.

Let B be a Büchi automaton with state set S. We call two words B-equivalent
(short u ∼B v) if for each pair s, s′ of states, B can reach s′ from s via u iff this
is the case for v.

Denote by P [i, j] the segment χP (i) . . .χP (j) of the characteristic sequence
of P . Call two positions i, j mergable if there is a k > i, j such that P [i, k] ∼B
P [j, k]. This is an equivalence relation over N of finite index. We can compute a
representative for each merge-equivalence class. For this, one uses the MSO-
theory of (N,+1, P ) repeatedly as “oracle”, also in order to determine that
enough representatives, say n1, . . . , nm, have been computed. (Just observe that
i and j merge iff (N,+1, P ) satisfies the sentence expressing ∃zP [i, z] ∼B P [j, z].
We know that all representatives occur up to position k by checking truth of the
sentence expressing “∀x > k∃y ≤ k : x, y merge”.)

Again using the MSO-theory of (N,+1, P ) as oracle, we pick a representative
n from n1, . . . , nm with the following property: There is a B-run ρacc on χP that
visits a certain fixed final state qf at infinitely many times k that merge with n.
(It is clear how to express this property of n.) Note that such qf and n can be
found by a finite search process, due to the finite index of the merging relation
and the assumption that an accepting run exists.
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Using qf and n, we construct effectively a run ρ of B on χP visiting qf infinitely
often, thus accepting χP . We start out by looking for a position p0 which merges
with n and such that qf is reachable from the initial state q0 of B via P [0, p0−1]
using a finite run ρ0. Such p0 exists by assumption on n. The run ρ0 will be
an initial segment of the desired accepting run ρ. For some k0 > n, p0 we know
P [n, k0] ∼B P [p0, k0]. Hence ρ0 can be extended such that at position k0 the
same state as that of ρacc is reached. We can now pick p1 > k0 such that p1
merges again with n and such that qf is reachable from q0 via P [0, p1 − 1], by
a finite run which is an extension of ρ0. Call this finite run ρ1. Continuing in
this way by successive finite extensions each of which is computable and ends
by a final state, we construct the accepting run ρ as desired. By the choice of
n1, . . . , nm, the number n ∈ {n1, . . . , nm}, and the state qf , we can check for the
merge equivalence between n and candidate numbers c by an effective procedure;
note that for sufficiently high k we always find that P [c, k] ∼B P [ni, k] for some
i. So the sequence of numbers p0, p1, . . . is computable if P is recursive. For
arbitrary P the sequence is recursive in P .

On the other hand, it is to be noted that the construction of this strategy (which
is recursive in P ) involves an unbounded number of queries to the MSO- theory of
(N,+1, P ). These queries are needed for the computation of the above-mentioned
paramaters n1, . . . , nm, n, qf . For the original specification ϕ let pϕ be the cor-
responding tuple (n1, . . . , nm, n, qf ) of parameters. The function F : ϕ �→ pϕ

captures the complexity of the synthesis problem for the set P ; this function (or
rather its graph considered as a set S) is Turing-reducible to the MSO-theory of
(N,+1, P ). We do not know whether this reducibility relation can be sharpened
to tt-reducibility (truth-table reducibility; see [15]). It is known that in general
the MSO-theory of (N,+1, P ) is tt-reducible (but not btt-reducible) to the sec-
ond jump P ′′ of P ([17]). So for the set S coding the construction of winning
strategies we have

S ≤T MSO-theory of (N,+1, P ) ≤tt P
′′.

3 Background on Higher-Order Pushdown Automata

In the next two sections we consider sets P such that the structure (N,+1, P )
belongs to the Caucal hierarchy. Caucal introduced in [6] a large class of infinite
graphs which can be generated starting from finite trees and graphs applying
MSO-interpretations and unfoldings in alternation. The resulting hierarchy is
a very rich collection of models each of them having a decidable MSO-theory.
In [3] Carayol and Wöhrle showed that the graphs of the Caucal hierarchy co-
incide with the transition graphs of higher-order pushdown automata. We will
develop here a representation of the parameter sets P by higher-order pushdown
automata. For this we define a new type of deterministic higher-order pushdown
automaton that produces an infinite 0-1-sequence (and hence a set P ) as output.

We start with some background definitions, in three stages: We introduce
higher-order pushdown systems, higher-order pushdown generators (of sets P ),
and higher-order pushdown games.
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A level-1 stack over a finite alphabet Γ can be seen as a word of Γ ∗; the
empty stack (written [ ]1) corresponds just to ε. A level-(k+1) stack for k ≥ 1
is a non-empty sequence of level-k stacks. The empty stack of level k + 1 is the
level-(k+1) stack containing only the empty stack of level k and is written [ ]k+1.
The set of all stacks of some level is written Stacks1(Γ ) := Γ ∗ for level 1 and
Stacksk+1(Γ ) := (Stacksk(Γ ))+ for level k ≥ 1.

We define the following partial functions on higher-order stacks called op-
erations. On level 1 we have as operations for each symbol x ∈ Γ the op-
erations pushx and popx. They are respectively defined on level-1 stacks by
pushx([s0, . . . , sn]1) = [s0, . . . , sn, x]1) and popx([s0, . . . , sn, x]1) = [s0, . . . , sn]1.

For each level k+1 ≥ 2, we consider the level-(k+1) operation copyk which
adds a copy of the top-most level-k stack on top of the existing level-k-stacks.
We also allow the symmetric operation copyk which removes the top-most level-
k stack if it is equal to its predecessor level-k-stack. Formally, these operations
are defined on level-(k+1) stacks by copyk([s0, . . . , sn]k+1) = [s0, . . . , sn, sn]k+1
and copyk([s0, . . . , sn, sn]k+1) = [s0, . . . , sn]k+1. In addition, for each level k,
we define a level-k operation written T[ ]k allowing to test emptiness at level k.
Formally T[ ]k(s) is equal to s if s = [ ]k and is undefined otherwise.

An operation ψ of level k is extended to stacks of level � > k using the def-
inition ψ([s0, . . . , sn]	) = [s0, . . . , ψ(sn)]	. We now define inductively Ops1 =
{pushx, popx |x ∈ Γ}∪{T[ ]1} and Opsk+1 =Opsk ∪{copyk, copyk, T[ ]k+1}. More-
over, we denote by Ops∗k the monoid for the compositions of partial functions
generated by Opsk.

Definition 1. A higher-order pushdown system A of level k (k-HOPDS for short)
is defined as a tuple (Q,Σ, Γ,Δ) where Q is the finite set of states, Σ is the
input alphabet, Γ is the stack symbol alphabet and Δ ⊆ Q×Σ×Opsk ×Q is the
transition relation.

A configuration is a pair (p, s) ∈ Q × Stacksk(Γ ). We write (p, s) α→ (q, s′) if
there exists a transition (p, α, ρ, q) ∈ Δ such that s′ = ρ(s).

Now we introduce a notion of regularity for sets of higher-order pushdown
stacks which relies on the construction of the stacks by operations. We need
“regular” sets of stacks for a new type of tests in deterministic higher-order
pushdown automata. This format will be appropriate for the generation of 0-1-
sequences (i.e., predicates P ⊆ N).

The notion of regularity for (symmetric) operations was introduced indepen-
dently in [2] and [7]. Observe that from a given level-k-stack a word from Ops∗k
yields a new stack, and a language O ⊆ Ops∗k a set of stacks. A set of level-k
stacks is regular if it can be obtained by applying a regular subset of Ops∗k to
the empty level-k stack [ ]k. We write ORegk(Γ ) for the regular sets of stacks of
level k.

In the subsequent definition of pushdown automata that produce a 0-1-
sequence as output, we refer to a finite family R of regular sets of stacks. The
output alphabet is Σ = {0, 1, ε}; ε serves as a formal output token for the tran-
sitions that do not produce either 0 or 1. By τ we shall denote the identity
function on Opsk, i.e. τ(s) = s for all s ∈ Stacksk(Γ ).
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Definition 2. A higher-order pushdown sequence generator of level k (short:
k-HOPDSG) is a deterministic higher-order pushdown automaton A of level k
with tests in a finite set R of subsets of Stacksk(Γ ) which is given by the tuple
(Q,Σ, Γ, q0, Δ) where Q is a finite set of states, Σ = {0, 1, ε} is the output
alphabet, Γ is the stack alphabet, q0 ∈ Q is the initial state, and Δ ⊆ Q ×
Σ × Opsk × R × Q is the transition relation. The set of tests is defined by
R = {T1, . . . , Tn} with Ti ∈ ORegk(Γ ) for all i ∈ [1, n].

A configuration of A is again a tuple in Q × Stacksk(Γ ) and the initial con-
figuration is (q0, [ ]k). We write (p, s) α−→ (q, s′) if there exists a transition
(p, α, γ, T, q) ∈ Δ, such that s′ = γ(s) and s ∈ T .

The automaton is deterministic if for every configuration (q, s) there is at
most one transition (q, α, γ, T, p) in Δ which can be applied.

An ω-word α ∈ {0, 1}ω is defined by the automaton A if there exists an infinite
run (q0, [ ]k) a0−→ (q1, s1)

α1−→ (q2, s2)
α2−→ (q3, s3)

α3−→ . . . such that α is obtained
from α0α1α2α3 . . . by deleting all occurrences of ε. (Of course, an automaton
may produce just a finite word. We focus on the infinite words generated by
HOPDSG’s.)

The “regular tests” in our level k-HOPDSG’s are introduced to obtain a model
of computation that is deterministic and generates precisely the sets P such
that (N,+1, P ) is in the Caucal hierarchy. Determinism is needed for our game-
theoretic context. The automata in the literature have less powerful tests but are
non-deterministic. In our model we can restrict to apply a “test” which checks
if the operations that follow the current transition can indeed be applied to the
current stack. We shall use the tests only in transitions with output ε and then
speak of restricted tests.

Definition 3. A set P ⊆ N is level-k-definable if there is a higher-order push-
down sequence generator A of level k with restriced tests that defines P .

Theorem 2. A structure (N,+1, P ) is in the k-th level of the Caucal hierarchy
iff P is level-k-definable.

As an example for the application of sequence generators, let us describe the
idea for a level-2 higher-order pushdown sequence generator defining the set
P = {2i | i ∈ N} of the powers of 2. Note that after output 1 at position 2i, the
next output 1 occurs 2i steps later at position 2i+1. The idea for the automaton
is to remember in its first level 1 stack the current i by the stack content 0i.
Above this bottom-line the automaton can build a tower of i stacks with the
contents 0i−1, 0i−2, . . . , 0. We can now allow the top symbols of these i stacks
to be 0 or 1; so the sequence of b1 . . . bi of top symbols is a binary number (the
leading bit corresponds to the bottom stack) which we use to “count” in binary
up to 1i, where of course many steps are needed to proceed from one binary
number to the next. When such a new binary number is reached the automaton
outputs a 0 (otherwise ε). More precisely, the automaton deletes the stacks with
top symbol 1 until it reaches a stack with top symbol 0; it turns it into 1 and
goes up again building towers of 0 of decreasing length as at the start:
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⎢⎣0

0 1
0 0 1
0 0 0 0

⎤
⎥⎦⇒

⎡
⎢⎣1

0 1
0 0 1
0 0 0 0

⎤
⎥⎦⇒

⎡
⎢⎣

0 0 0 1

⎤
⎥⎦⇒

⎡
⎢⎣0

0 0
0 0 0
0 0 0 1

⎤
⎥⎦

Let us continue the example and discuss a regular P -game for P = {2i | i ∈
N}. The winning condition requires that player 2 copies the bits played by player
1 except for the moments i− 1 where i ∈ P ; in these moments the converse bit
is required. An example play won by player 2 could be:

Set P 0 1 1 0 1 0 0 0 1 0 . . .
Player 1 0 1 0 0 1 0 0 1 1 1 . . .
Player 2 1 0 0 1 1 0 0 0 1 1 . . .

It is easy to see that a finite-state winning strategy does not suffice for player 2
to win this game; no finite memory suffices to determine the moments i−1 with
i ∈ P . On the other hand, if player 2 has the computational means of a HOPDSG
that defines P , he can detect the critical moments without using a look-ahead.

We return to the preparations of main result. In the following we introduce parity
games played on the configuration graph of a higher-order pushdown system and
a result we need for our main theorem.

Definition 4. A higher-order pushdown parity game G of level k(k-HOPDPG) is
given by a k-HOPDS P = (Q,Σ, Γ,Δ), a partition of the states Q0 ' Q1 and a
coloring mapping ΩP : Q → N. The induced game arena is (V0, V1, E,Ω) where:
V0 = Q0 × Stacksk(Γ ), V1 = Q1 × Stacksk(Γ ), E is the Σ-labeled transition
relation of P and Ω is defined for (p, s) ∈ Q× Stacksk(Γ ) by Ω(p, s) := ΩP (p).

Theorem 3 ([4]). Given a pushdown parity game of level k, we can construct in
k-Exptime reduced level-k automata1 describing the winning region, respectively
a global positional winning strategy for each of the two players.

4 Regular P -Games with P in the Pushdown Hierarchy

We now want to show that a regular P -game where P is defined by a higher-
order pushdown sequence generator of level k with restricted tests can be solved
in k-Exptime, and that the winner has a winning strategy which is executable
by a level-k pushdown automaton.

Theorem 4. Let P ⊆ N be defined by a higher-order pushdown sequence gen-
erator P of level k with restricted tests. The regular P -game where the winning
condition is given by a deterministic parity word automaton C over {0, 1}3 is (de-
termined and) solvable: It can be decided who wins the game and for the winner
one can construct a level-k HOPDA that computes a winning strategy.
1 The reduced level-k automata are finite automata running over Opsk and accepting

regular sets of stacks, i.e. sets in ORegk(Γ ). See [4] for more details.



190 P. Hänsch, M. Slaats, and W. Thomas

In the proof, we first treat solvability and the format of the winning strategy;
the statement on complexity is shown afterwards.

Proof. Let P = (QP , ΣP , ΓP , q
P
0 , ΔP ) be a k-HOPDSG with restricted tests defin-

ing P , and let C = (QC , ΣC , q
C
0 , δC , ΩC) be a parity word automaton over the

alphabet ΣC = {0, 1}3 defining the winning condition.
We construct a higher-order pushdown parity game (HOPDPG) GP , defined by

the HOPDS PG = (Q,ΣP , ΓP , q0, Δ), the state partition Q1, Q2 and the coloring
Ω, simulating the game between player 1 and player 2 with the external param-
eter P . The idea is that in GP we compute with the help of P , i.e. the level-k
stack, the next bit of the sequence χP , then let first player 1 choose a bit then
player 2. These three bits we store in the state of the current vertex and then
compute by C the color of its vertex. (For this we give C those three bits as
input.) The parity game GP is then won by player 2 iff the given regular P -game
is won by player 2. Using this allows us to invoke Theorem 3 to solve the game
GP and compute a winning strategy.

The HOPDS PG works repeatedly in four phases, indicated by the symbols of
the alphabet Φ := {ΦP , Φ1, Φ2, ΦC}. The symbol ΦP indicates that the next bit
of χP is computed by P , the symbol Φi that player i chooses a bit, and the
symbol ΦC that the next state of C is computed by evaluating the chosen bits.

The HOPDS PG has the state set Q = QP ×QC ×Φ×{0, 1}3 where for a state
(qP , qC , x, (b0, b1, b2)) ∈ Q we have that qP resp. qC is the current state in P
resp. C. Furthermore by the third component we know in which phase of a move
we are, and by (b0, b1, b2) we memorize the current bits of χP and the last bits
chosen by player 1 and player 2. The start state is q0 = (qP0 , q

C
0 , ΦP , (0, 0, 0)).

The transitions Δ are the following. (Note that the bits b′0, b
′
1, b

′
2 are the current

choices for χP , player 1, respectively player 2.)

– for (qP , ε, γ, T, q′P)∈ΔP :
((qP , qC , ΦP , (b0, b1, b2)), ε, γ, (q′P , qC , ΦP , (b0, b1, b2)))

– for b′0 ∈ {0, 1}, (qP , b′0, γ, T, q′P)∈ΔP :
((qP , qC , ΦP , (b0, b1, b2)), b′0, γ, (q

′
P , qC , Φ1, (b′0, b1, b2)))

– for b′1 ∈ {0, 1}: ((qP , qC , Φ1, (b0, b1, b2)), b′1, τ, (qP , qC , Φ2, (b0, b′1, b2)))
– for b′2 ∈ {0, 1}: ((qP , qC , Φ2, (b0, b1, b2)), b′2, τ, (qP , qC , ΦC , (b0, b1, b′2)))
– for δC(qC , (b0, b1, b2)) = q′C :

((qP , qC , ΦC , (b0, b1, b2)), ε, τ, (qP , q′C , ΦP , (b0, b1, b2)))

The coloring is given by Ω((qP , qC , x, (b0, b1, b2))) = ΩC(qC) for x ∈ {ΦC , Φ1, Φ2}
and Ω((qP , qC , ΦP , (b0, b1, b2))) = (2·n) where n is the maximal color in ΩC .

The state partitioning is defined by Q1 = QP ×QC × {Φ1, ΦP , ΦC} × {0, 1}3

and Q2 = QP ×QC × {Φ2} × {0, 1}3.
The restricted tests which are used in the computation of χP , i.e. in the

transitions of P to make the HOPDSG deterministic, are omitted in the game.
This can be done because of their special form. Note that in the game GP the
computation of P is not completely deterministic because we attribute to player
1 the choice of bits for the sequence χP . If player 1 chooses such a bit incorrectly,
however, then either the current stack operation or one of the subsequent ones
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will be undefined or he would get stuck in the computation of a later χP -bit
(here we use the resticted tests). In the case that in a Φ1-state some operation is
not defined on the current stack, player 1 loses immediately; in the second case
he will lose because the only color which is seen infinitely often in the game will
be even; note that we colored the ΦP -vertices by an even number that cannot
be surpassed; so player 2 wins in this case.

The idea for the construction of the strategy automaton for the player winning
the game is similar as above. Assume player 2 wins the game GP . Then by
Theorem 3 we get two regular sets of level-k stacks, say S0 and S1 where S0
contains all configurations2 where player 2 should take 0 as output and S1 those
where output 1 should be taken.

The strategy automaton is constructed similarly as the automaton PG except
that in the transitions with Φ2 we add as tests once S0 and and once S1, which
ensure that player 2 takes the right transition. These tests are also used for the
output function which outputs the corresponding bit for player 2. — If player 1
wins the game the construction is analogous.

Proposition 3. The computation of the winner and the winning strategy in
Theorem 4 is done in k-exponential time.

Proof. By Theorem 3 we have a k-Exptime procedure to compute the winner
of the game GP and the positional winning strategy for the player winning GP .
As the construction of GP is polynomial in the size of the automata P and C we
have altogether again an algorithm running in k-exponential time to compute the
winner of the regular P -game as well as the desired winning strategy automaton.

5 Conclusion

The purpose of the present paper was twofold: First we developed a streamlined
proof of a result of Rabinovich [12,13] on regular P -games, using automata the-
oretic concepts and ideas that go back to Siefkes [16]. The result says that for
recursive P , regular P -games can be solved effectively when the MSO-theory of
(N,+1, P ) is decidable, and that in this case also a recursive winning strategy
for the winner can be constructed.

In the second part of the paper, we considered predicates that can be gener-
ated by higher-order pushdown automata (covering a large class of interesting
examples) and showed that for such predicates P , regular P -games can be solved
with strategies that are again computable by such automata. In this context, we
mention some questions.

In natural examples, mentioned e.g. at the end of Section 3, the reference
to P in the winning condition involves just a bounded look-ahead on P . In
our approach a look-ahead is made superfluous by a corresponding computation
from the past, which involves a big overhead. Strategies (maybe even finite-state

2 The state of the configuration (p, s) is stored in the set by pushing it onto the topmost
stack, i.e. we have pushp(s) ∈ S0.
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strategies) with bounded look-ahead on P seem to be a natural class, and the
range of their applicability should be investigated.

A related question is to decide when a regular P -game where (N,+1, P ) is in
the Caucal hierarchy can be solved with finite-state winning strategies.

Finally, one can aim at finding more general frameworks than the Caucal
hierarchy as considered here, and develop corresponding more general types of
winning strategies (that are more restricted than the recursive strategies).
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1. Büchi, R., Landweber, L.: Solving sequential conditions by finite state strategies.
Transactions of the AMS 138(27), 295–311 (1969)

2. Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J.,
Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Hei-
delberg (2005)
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Abstract. In social network theory, a simple graph G is called k-role
assignable if there is a surjective mapping that assigns a number from
{1, . . . , k} called a role to each vertex of G such that any two vertices
with the same role have the same sets of roles assigned to their neighbors.
The decision problem whether such a mapping exists is called the k-Role

Assignment problem. This problem is known to be NP-complete for any
fixed k ≥ 2. In this paper we classify the computational complexity of
the k-Role Assignment problem for the class of chordal graphs. We
show that for this class the problem becomes polynomially solvable for
k = 2, but remains NP-complete for any k ≥ 3. This generalizes results
of Sheng and answers his open problem.

1 Introduction

Given two graphs, say G on vertices u1, . . . , un and R on vertices 1, . . . , k called
roles, an R-role assignment of G is a vertex mapping r : VG → VR such that the
neighborhood relation is maintained, i.e., all neighbors of a vertex u’s role r(u)
in R appear as roles of vertices in the neighborhood of u in G. Such a condition
can be formally expressed as

for all u ∈ VG : r(NG(u)) = NR(r(u)),

where NG(u) denotes the set of neighbors of u in the graph G. An R-role as-
signment r of G is called a k-role assignment of G if |r(VG)| = |VR| = k. Here,
we use the shorthand notation r(S) = {r(u) | u ∈ S} for S ⊆ VG. An equivalent
definition states that r is a k-role assignment of G if r maps each vertex of G
into a positive integer such that |r(VG)| = k and r(NG(u)) = r(NG(u′)) for any
two vertices u and u′ with r(u) = r(u′).

Role assignments are introduced by Everett and Borgatti [8], who call them
role colorings. They originate in the theory of social behavior. The role graph
R models roles and their relationships, and for a given society (e.g., a hospital
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with doctors, nurses and patients) we can ask if its individuals can be assigned
roles such that relationships are preserved: each person playing a particular role
has exactly the roles prescribed by the model among its neighbors. This way one
investigates whether large networks of individuals can be compressed into smaller
ones that still give some description of the large network. Because persons of the
same social role may be related to each other, the smaller network can contain
loops. In other words, given a simple instance graph G of n vertices does there
exist a possibly nonsimple role graph R of k < n vertices in such a way that G
has an R-role assignment? From the computational complexity point of view it
is interesting to know whether the existence of such assignment can be decided
quickly (in polynomial time). This leads to the following two decision problems.

R-Role Assignment

Input: a simple graph G.
Question: does G have an R-role assignment?

k-Role Assignment

Input: a simple graph G.
Question: does G have an k-role assignment?

Known results and related work. A graph homomorphism from a graph G
to a graph R is a vertex mapping r : VG → VR satisfying the property that
r(u)r(v) belongs to ER whenever the edge uv belongs to EG. If for every u ∈ VG

the restriction of r to the neighborhood of u, i.e. the mapping ru : NG(u) →
NR(f(u)), is bijective, we say that r is locally bijective [1,16]. If for every u ∈ VG

the mapping ru is injective, we say that r is locally injective [9,10]. If for every
u ∈ VG the mapping ru is surjective, r is an R-role assignment of G. In this
context, r is also called a locally surjective homomorphism from G to R.

Locally bijective homomorphisms have applications in distributed comput-
ing [2,3,5] and in constructing highly transitive regular graphs [4]. Locally in-
jective homomorphisms, also called partial graph coverings, have applications in
models of telecommunication [10] and frequency assignment [11]. Besides social
network theory [8,17,19], locally surjective homomorphisms also have applica-
tions in distributed computing [6].

The main computational question is whether for every graph R the problem
of deciding if an input graph G has a homomorphism of given local constraint
to the fixed graph R can be classified as either NP-complete or polynomially
solvable. For the locally bijective and injective homomorphisms there are many
partial results, see e.g. [10,16] for both NP-complete and polynomially solvable
cases, but even conjecturing a classification for these two locally constrained
homomorphisms is problematic. This is not the case for the locally surjective
constraint and its corresponding decision problem R-Role Assignment.

First of all, Roberts and Sheng [19] show that the k-Role Assignment prob-
lem is already NP-complete for k = 2. The authors of [12] show that the k-Role

Assignment problem is also NP-complete for any fixed k ≥ 3 and classify the
computational complexity of the R-Role Assignment problem. Let R be a
fixed role graph without multiple edges but possibly with self-loops. Then the
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R-Role Assignment problem is solvable in polynomial time if and only if one
of the following three cases holds: either R has no edge, or one of its components
consists of a single vertex incident with a loop, or R is simple and bipartite
and has at least one component isomorphic to an edge. In all other cases the
R-Role Assignment problem is NP-complete, even for the class of bipartite
graphs [12]. If the instance graphs are trees, then the R-Role Assignment

problem becomes polynomially solvable for any fixed role graph R [13].
A graph is chordal if it does not contain an induced cycle of length at least

four. Chordal graphs are also called triangulated graphs. This class contains var-
ious subclasses such as trees, split graphs and indifference graphs (graphs whose
vertices can be assigned some function value such that two vertices are adja-
cent if and only if their function values are sufficiently close). Due to their nice
properties, chordal graphs form an intensively studied graph class both within
structural graph theory and within algorithmic graph theory. Sheng [20] presents
an elegant greedy algorithm that solves the 2-Role Assignment problem in
polynomial time for chordal graphs with at most one vertex of degree one. He
also characterizes all indifference graphs that have a 2-role assignment.

Our results. We provide a polynomial time algorithm for the 2-Role Assign-

ment problem on chordal graphs. This settles an open problem of Sheng [20].
Contrary to the greedy algorithm of [20], which uses a perfect elimination scheme
of a chordal graph with at most one pendant vertex, our algorithm works for
an arbitrary chordal graph G by using a dynamic programming procedure on a
clique tree decomposition of G. Our second result states that, for any fixed k ≥ 3,
the k-Role Assignment problem remains NP-complete on chordal graphs.

Paper organization. In Section 2 we explain our notations and terminology.
In Section 3 we present a polynomial-time algorithm for solving the 2-Role

Assignment problem for chordal graphs. In Section 4 we show that the k-Role

Assignment problem for chordal graphs stays NP-complete for any fixed k ≥ 3.
Section 5 contains the conclusions and mentions some open problems.

2 Preliminaries

All graphs considered in this paper are undirected, finite and simple, i.e., without
loops or multiple edges, unless stated otherwise. For terminology not defined
below, we refer to [7].

Let G = (V,E) be a chordal graph. A clique tree of G is a tree T = (K, E)
such that K is the set of maximal cliques of G, and for each vertex v ∈ V the set
Kv of maximal cliques of G containing v induces a connected subtree in T . It is
well-known that a graph is chordal if and only if it has a clique tree, and that
a clique tree of a chordal graph can be constructed in linear time (cf. [14]). We
refer to a set K ∈ K as a bag of T . We define the notions root bag, parent bag,
child bag and leaf bag of a clique tree similar to the notions root, parent, child
and leaf of a ‘normal’ tree. If the bag Kr ∈ K is the root bag of the clique tree
T of G, then we say that T is rooted at Kr. Every bag K �= Kr of the clique
tree T has exactly one parent bag K ′. We say that a vertex v ∈ K is given to
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the parent bag K ′ if v ∈ K ∩K ′, i.e., if v is both in the child bag K and in the
parent bag K ′. We say that vertex v ∈ K stays behind if v ∈ K \K ′, i.e., if v is
in the child bag K but not in the parent bag K ′.

A hypergraph H is a pair (Q,S) consisting of a set Q = {q1, . . . , qm}, called
the vertices of H , and a set S = {S1, . . . , Sn} of nonempty subsets of Q, called
the hyperedges of H . With a hypergraph H = (Q,S) we associate its incidence
graph I, which is a bipartite graph with partition classes Q and S, where for
any q ∈ Q,S ∈ S we have qS ∈ E(I) if and only if q ∈ S. A 2-coloring of a
hypergraph H = (Q,S) is a partition (Q1, Q2) of Q such that Q1 ∩ Sj �= ∅ and
Q2 ∩ Sj �= ∅ for 1 ≤ j ≤ n. A hypergraph H is called nontrivial if Q contains at
least three vertices. The Hypergraph 2-Colorability problem asks whether
a given (nontrivial) hypergraph has a 2-coloring. This problem, also known as
Set Splitting, is NP-complete (cf. [15]).

3 The Polynomial Algorithm for 2-Role Assignments

In this section, we prove the following result.

Theorem 1. The 2-Role Assignment problem is solvable in polynomial time
for the class of chordal graphs.

We will start by discussing the different 2-role assignments. Let G be a chordal
graph. Following the notation of Sheng [20], the six different role graphs on
two vertices are R1 = ({1, 2}, ∅), R2 = ({1, 2}, {22}), R3 = ({1, 2}, {11, 22}),
R4 = ({1, 2}, {12}), R5 = ({1, 2}, {12, 22}) and R6 = ({1, 2}, {11, 12, 22}).

If G contains at most one vertex, then G has no 2-role assignment. Suppose
|VG| ≥ 2. If G only contains isolated vertices, then G has an R1-role assignment.
If G contains at least one isolated vertex and at least one component with at
least two vertices, then G has an R2-role assignment. If G is disconnected but
does not have isolated vertices, then G has an R3-role assignment.

Now, assume thatG is connected and has at least two vertices. IfG is bipartite,
then G has an R4-role assignment. If G is non-bipartite, then G has a 2-role
assignment if and only if G has an R5-role assignment or an R6-role assignment.

We claim that we only have to check whether G has an R5-role assignment.
This is immediately clear if G has a vertex of degree 1, as such a vertex must
be mapped to a role of degree 1 and R6 does not have such a role. If G does not
have any degree 1 vertices, we use the following result by Sheng [20].

Theorem 2 ([20]). Let G be a chordal graph with at most one vertex of degree
1 and no isolated vertices. Then G has an R5-role assignment.

We now present a polynomial-time algorithm that solves the R5-Role Assign-

ment problem for chordal graphs. From the above, it is clear that this suffices
to prove Theorem 1. We start by giving an outline of the algorithm.

Our algorithm takes as input a clique tree T = (K, E) of a chordal graph
G = (V,E). The algorithm outputs an R5-role assignment of G, or outputs No

if such a role assignment does not exist. The algorithm consists of two phases.
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Phase 1. Decide whether or not G has an R5-role assignment.

In Phase 1, the algorithm processes the maximal cliques of G in a “bottom-up”
manner, starting with the leaf bags of T , and processing a bag only after all its
child bags have been processed. When processing a bag K with parent K ′, labels
are assigned to the vertices in K ∩K ′ maintaining the following invariant.

Invariant 1. Let V ′ be the set of vertices of G minus those in K and its de-
scendants. If G is R5-role assignable, then a partial solution on G[V ′] can be
extended to a solution on G if and only if it satisfies the constraints given by the
labels of the vertices on K ∩K ′.

Each label L(v) contains information about the possible roles that v can get in
any R5-role assignment of G as well as information about the possible roles of
the neighbors of v. The possible labels for a vertex v in a bag K are:

L(v) = 0 : initial label for every vertex
L(v) = 1∗ : exactly one vertex with label 1∗ in this bag must get role 1,

all others must get role 2
L(v) = 1 : v must get role 1, no role restrictions for its neighbors
L(v) = 2 : v must get role 2, no role restrictions for its neighbors
L(v) = 21 : v must get role 2, and at least one neighbor must get role 1
L(v) = 22 : v must get role 2, and at least one neighbor must get role 2
L(v) = 1|2 : v can get either role 1 or 2 without restrictions
L(v) = 1|21 : v can get role 1, or v can get role 2 in which case at least

one neighbor must get role 1
L(v) = 1|22 : v can get role 1, or v can get role 2 in which case at least

one neighbor must get role 2
Initially, L(v) = 0 for every v ∈ V . The label of a vertex can change several

times: the arrows in Figure 1 represent all possible transitions between two labels.
This figure will be clarified in detail later on. For now, we only note that there no
arrows point downwards in Figure 1. This corresponds to the fact that labels in
a higher level contain more information than labels in a lower level. For example,
if a vertex v in bag K has a label L(v) = 22 and one of its neighbors in K gets
label 2, then we change the label of v into L(v) = 2 before processing the parent
bag of K. After all, label 2 contains more information than label 22, as label 2
contains the information that at least one neighbor of v will get role 2 in Phase
2. Labels changes such as these can also be applied to vertices not in K ∩K ′,
these serve to simplify the algorithm.

The algorithm outputs No if conflicting labels are assigned to vertices in K.
The easiest example of this is when K has two vertices with label 1 from different
child bags; 1 has no self loop in R5. Once the algorithm has successfully processed
all maximal cliques and no conflicting labels have been created, it concludes that
G has an R5-role assignment and produces such a role assignment in Phase 2.

Phase 2. Produce an R5-role assignment of G.

An R5-role assignment of G is constructed in a greedy way satisfying the con-
straints imposed by the labels. Since Invariant 1 holds, we eventually obtain an
R5-role assignment on G.
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0

1|21 1|22

1∗ 1|2 21 22

1 2

Fig. 1. All possible labels and all possible transitions between them

Before we present the algorithm in detail, we make a useful observation.

Observation 1. Let T = (K, E) be a clique tree of a connected chordal graph
G, rooted at Kr. For any bag K �= Kr of T and its parent bag K ′, we have
K ∩K ′ �= ∅ and K \K ′ �= ∅. Moreover, for all K: |K| ≥ 2.

Theorem 3. The R5-Role Assignment problem is polynomial time solvable
for the class of chordal graphs.

Proof. Let G be a connected chordal graph, and let T = (K, E) be a clique tree
of G rooted at Kr which we obtain in linear time (cf. [14]). We set L(u) = 0
for all u ∈ V and start with Phase 1. Let K be the bag that is currently being
processed. Recall that all child bags of K have already been processed. First
assume K �= Kr. So K has a parent bag K ′. By Observation 1, at least one
vertex in K stays behind, and at least one vertex is given to K ′. We shall see
that when our algorithm moves to K ′ then each vertex u ∈ K∩K ′ has L(u) �= 0.

Suppose K is a leaf bag of T . Let v be a vertex that stays behind. If |K| = 2,
then its other vertex x is given to K ′. Because v has degree 1 in G, we must set
L(v) = 1 and L(x) = 22, as v must get role 1, x must get role 2, and at least
one other neighbor of x must get role 2. Suppose |K| ≥ 3. We assign label 1|2 to
every vertex in K. We may do so because we can say that v gives us the freedom
to complete any assignment on K. In other words, if in Phase 2 all vertices in
K ∩ K ′ receive role 2, then we assign role 1 to v and role 2 to all remaining
vertices of K. If one of the vertices in K ∩K ′ receives role 1, then we assign role
2 to v and all remaining vertices of K.

We continue with non-leaf bags and consider several cases; each dealt with in
polynomial time.

Case 1: K contains a v with L(v) = 1.
In any R5-role assignment r of G with r(v) = 1, all vertices of K \ {v} have role
2. Thus, if two vertices (coming from different child bags) in K have label 1, or
other vertices in K have label 1∗, we have conflicting labels and output NO.

If |K| ≥ 3, then we may assign label 2 to every vertex in K \ {v}; as at least
two vertices get role 2, all vertices in K \{v} will have both a neighbor with role
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1 (namely v) and a neighbor with role 2. If |K| = 2, then for the only vertex
x ∈ K \ {v} set L(x) := 2 if x had a label in {1|2, 1|21, 2, 21} and set L(x) := 22
if x had a label in {0, 1|22, 22}.

Case 2: K contains a v with L(v)=1∗ and L(K)={0, 1∗, 1|2, 1|21, 1|22, 2, 21, 22}.
If multiple sets of vertices with label 1∗ originate from different child bags, we
have conflicting labels and output No. Let V ∗ := {x ∈ K | L(x) = 1∗}. We
assume that |V ∗| ≥ 2; otherwise replace label 1∗ with label 1 and return to Case
1. Because of the vertices with label 1∗, K contains a vertex with role 1 and at
least one vertex with role 2. Therefore, we may set L(x) := 2 for every x ∈ K\V ∗.
If V ∗ ⊆ (K ∩K ′), then we are done. Otherwise, at least one vertex v ∈ V ∗ is
left behind. This vertex gives us the freedom to complete any assignment to the
vertices in V ∗ ∩K ′. Hence, we relabel them to 1|2. This is so, since if a vertex
x ∈ V ∗ ∩K ′ receives role 1, then all neighbors of x (including v) must receive
role 2. If all vertices in V ∗ ∩K ′ receive role 2, then we can give role 1 to v.

Case 3: K contains a v with L(v) = 22 and L(K) = {0, 1|2, 1|21, 1|22, 2, 21, 22}.
If K contains any other vertex with label 2, 21 or 22, then v has its required
neighbor and we replace the label 22 by 2. Furthermore, if |K| ≥ 3, then at least
one vertex in K will get role 2 and we can also replace the label 22 by 2. In both
cases, we arrive at another case in this proof which we discuss later on.

The case where |K| = 2 remains; let x be the other vertex inK. If L(x) = 1|22,
then we can replace it by L(x) = 1|2 since neighbor v will receive role 2. We
conclude that by this argument and previous cases L(x) ∈ {0, 1|2, 1|21}. Now,
either x stays behind, or x is given to K ′.

If x stays behind, then v is given to K ′. The label of x can only be influenced
by v. If L(x) = 1|2, then x can function as the neighbor with role 2 that v needs,
so we may set L(v) = 2. If L(x) ∈ {0, 1|21}, then the fact that none of the
neighbors of x will receive role 1 (otherwise x would not have label 0 or 1|21)
means we must give x role 1 and leave L(v) = 22 unaltered. If x is given to K ′,
then v stays behind while it still needs a neighbor with role 2, which can only
be x. Hence, we apply the following relabelling to x that forces x to get role 2:
0 → 21, 1|2 → 2, 1|21 → 21.

Case 4: K contains a v with L(v) = 21 and L(K) = {0, 1|2, 1|21, 1|22, 2, 21}.
Similar to the previous case, we can replace any label 1|22 in K by 1|2. Hence, by
the above cases, we may assume that L(x) ∈ {0, 1|2, 1|21, 2, 21} for every x ∈ K.

Suppose there exists a vertex x ∈ K \{v} with L(x) ∈ {0, 1|2, 1|21} that stays
behind. This vertex gives us the freedom to change the labels of every vertex
v′ ∈ K ∩ K ′ as follows: if L(v′) ∈ {0, 1|2, 1|21} then we set L(v′) := 1|2, if
L(v′) ∈ {2, 21} then we set L(v′) := 2. This is so, since if none of the vertices in
K ∩K ′ receives role 1 in Phase 2, then Phase 2 assigns role 1 to x; otherwise x
gets role 2. The latter is fine since v will also receive role 2.

Suppose L(x) = 2 for every vertex x that stays behind. For every vertex
v′ ∈ K ∩ K ′ with L(v′) = 0, we set L(v) = 1|21. We may do this because v′

either gets role 1, or gets role 2 in which case it needs at least one neighbor to
get role 1. We leave all other labels unaltered.
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In the remaining case, at least one vertex with label 21 stays behind; w.l.o.g.
let this be v. If K ∩K ′ does not contain a vertex x with L(x) ∈ {0, 1|2, 1|21},
then we obtain a contradiction (x will never have a neighbor with role 1) and
the algorithm outputs No. If K ∩K ′ contains exactly one vertex x with L(x) ∈
{0, 1|2, 1|21}, this is the only vertex that can be the role 1 neighbor of v, hence we
set L(x) := 1. IfK∩K ′ contains multiple vertices with a label from {0, 1|2, 1|21},
then we set them all to 1∗ by the same reasoning. Furthermore, since there will
now be a vertex with role 1, we replace any 21 by 2 and any 1|21 by 1|2.

Case 5: K contains a v with L(v) = 2 and L(K) = {0, 1|2, 1|21, 1|22, 2}.
Since v will receive role 2 and every vertex in K is a neighbor of v, we may
change the label of every vertex x ∈ K with L(x) = 1|22 or L(x) = 0 into
L(x) = 1|2 or L(x) = 1|21, respectively. Because of this and the previous cases,
we may assume that L(x) ∈ {1|2, 1|21, 2} for every vertex x ∈ K. Suppose x is
a vertex of K that stays behind with L(x) ∈ {1|2, 1|21}. Then, just as before, x
gives us the freedom to change any label 1|21 in K ∩K ′ to label 1|2; x will be
the neighbor with role 1 if necessary. Otherwise, if L(x) = 2 for all x ∈ K \K ′,
then we leave all labels in K unaltered; all vertices in K \K ′ have the required
neighbors and add nothing useful to K ′.

Case 6: L(v) ∈ {0, 1|2, 1|21, 1|22} for every v ∈ K.

Case 6a: there exists an x ∈ K with L(x) = 1|2 that is left behind.
If |K| ≥ 3, then x gives us the freedom to complete any assignment on K ∩K ′

and we set L(v) = 1|2 for all v ∈ K. This is true, because each vertex will get a
neighbor with role 2 anyway (|K| ≥ 3), and if no vertex of K ∩K ′ gets role 1
in Phase 2, we give role 1 to x. Otherwise, |K| = 2; let K = {x, y} where y is
given to K ′. If y will get role 1 in Phase 2, then x will get role 2. If y gets role
2, then it already has a neighbor in K ′ (K \K ′ �= ∅) with some role and we set
x to have the other. Hence, we may set L(y) := 1|2.

Case 6b: there exists an x ∈ K with L(x) = 1|21 that is left behind.
Suppose |K| ≥ 3. Using the same arguments as in Case 6a, we can show that
we may assign label 1|2 to every vertex in K ∩ K ′. Otherwise |K| = 2. Let
K = {x, y} where y is given to K ′. Notice that if we give y role 1, then we can
complete the role assignment by giving role 2 to x. If we want to give role 2 to
y, then x will get role 1, since otherwise it has no role 1 neighbor. In this case,
the requirements on y depend on the current label of y. As a result, we apply
the following replacements for the label of y: 0 → 1|22, 1|2 → 1|2, 1|21 → 1|2,
1|22 → 1|22.

Case 6c: there exists an x with L(x) = 1|22 that is left behind.
If |K| ≥ 3, then at least one vertex in K gets role 2. Hence we may change the
label of x into 1|2 and return to Case 6a. Thus |K| = 2; let K = {x, y} where y
is given to K ′. In this case, y can not get role 1 because then x must get role 2.
This is not possible, as then x does not have a neighbor with role 2. We maintain
Invariant 1 as follows. If L(y) ∈ {1|2, 1|21}, then we set L(y) := 2. Then x can
get role 1. If L(y) = 1|22, then set L(y) := 2 and x will receive role 2. If L(y) = 0,
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we also set L(y) := 2. In that case y needs two neighbors with different roles: in
Phase 2 a neighbor of y in K ′ gets some role. Then we give x the other role.

Case 6d: there exists an x with L(x) = 0 that is left behind.
If |K| ≥ 3 then at least one vertex in K gets role 2. Hence we may change L(x)
into 1|21 and return to Case 6b. Thus |K| = 2; let K = {x, y} where y is given
to K ′. As x has label 0 and is left behind, x must have degree one in G. Then it
must get role 1 while y must get role 2. This leads to the following replacement
rules for the label of y: 1|2 → 2, 1|21 → 2, 1|22 → 22. Note that L(y) �= 0,
because then we are in a leaf bag.

At some moment we arrive at root bag Kr. Note that we can check in poly-
nomial time if Kr allows an assignment of roles 1 and 2 such that (i) no two
vertices in Kr get role 1 and (ii) the labels of the vertices in Kr are satisfied. If
we find such an assignment, then we are done by Invariant 1 (which has been
maintained during Phase 1). We now start with Phase 2 of the algorithm which
follows the reasoning used in Phase 1 in reverse order. �

Remark. In our polynomial-time algorithm that solves the 2-Role Assign-

ment problem for chordal graphs we do not have to check if the input graph has
an R6-role assignment (cf. Theorem 2). This is very “fortunate” as the R6-Role

Assignment problem remains NP-complete when restricted to chordal graphs.
This can be seen as follows. Let (Q,S) be a nontrivial hypergraph. In its inci-
dence graph I we add an edge between every pair of vertices in Q. This results
in a chordal graph G. It is easy to see that (Q,S) has a 2-coloring if and only if
G has an R6-Role Assignment.

4 Complexity of the Role Assignment Problem for k ≥ 3

It is known that the k-Role Assignment problem is NP-complete for any fixed
k ≥ 2 [12]. Theorem 1 states the 2-Role Assignment becomes polynomially
solvable when the instance graph is chordal. In this section, we show that the
problem for chordal graphs gets NP-complete again when k jumps to 3. Our
NP-completeness construction is more involved than the one for general graphs
in [12] as the latter is not chordal.

Theorem 4. For k ≥ 3, the k-Role Assignment problem is NP-complete for
the class of chordal graphs.

Proof. Let k ≥ 3. We use a reduction from Hypergraph 2-Coloring. Let
(Q,S) be a nontrivial hypergraph with incidence graph I.

We modify I as follows. Firstly, we add an edge between any two vertices in Q;
so Q becomes a clique. Secondly, for each S ∈ S we take a path PS = pS

1 · · · pS
k−2

and connect it to S by the edge pS
k−2S; so these new paths PS are pendant paths

in the resulting graph. Thirdly, we add a copy Hq of a new graph H for each
q ∈ Q. Before we explain how to do this, we first define H . Start with a path
u1u2 · · ·u2k−4. Then take a complete graph on four vertices a, b, c, d, and a com-
plete graph on four vertices w, x, y, z. Add the edges cu1, du1, u2k−4w, u2k−4x.
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We then take three paths S = s1 · · · sk−2, T = t1 · · · tk−2 and T ′ = t′1 · · · t′k−2,
and we add the edges sk−2w, ctk−2, dt

′
k−2. This finishes the construction of H .

We connect a copy Hq to q via the edge quq
1, where uq

1 is the copy of the vertex
u1. We call the resulting graph G; notice that this is a connected chordal graph.
See Figure 2 for an example.

y z

w x

s2 u4

s1

t1 t′1

t2 u1 t′2

c d

a b

H

pS
1

pS
2

S

q

uq
1

S

Q

G

Hq

Fig. 2. The graph H (left side) and the graph G (right side) when k = 4

We first show that if G has a k-role assignment r, then it has an R∗-role
assignment, where R∗ denotes the path r1 · · · rk on k vertices with a self-loop in
vertices rk−1 and rk. To see this, consider a copy Hq of H in G; we show that
we can assign roles to the vertices of Hq in only one way. For convenience, we
denote the vertices of Hq without the superscript q.

Note that r must map an induced path of length smaller than k in G to an
induced path of the same length in R. Otherwise, r is not a k-role assignment.
Hence, we may write r(ti) = i for i = 1, . . . , k− 2 and r(c) = k− 1. This implies
that a vertex with role 1 only has vertices with role 2 in its neighborhood and
a vertex with role i for 2 ≤ i ≤ k − 2 only has vertices with role i− 1 and role
i + 1 as neighbors. Then a vertex with role k can only be adjacent to vertices
with role k − 1 or role k. Hence c must have a neighbor with role k.

Suppose r(d) = k. Then r(t′k−2) ∈ {k − 1, k} and this eventually leads to
r(t′1) ≥ 2 without a neighbor of role r(t′1) − 1 for t′1. This is not possible. Hence
r(d) �= k. This means that k ∈ r({a, b, u1}). Since a, b, u1 are neighbors of d as
well and a vertex with role k can only have neighbors with role k − 1 and k, we
then find that d has role k − 1.

The above implies that a and b have their role in {k − 2, k − 1, k}. Suppose
k = 3. If r(a) = 1, then r(b) = 2 implying that r is a 2-role assignment (as
r(c) = r(d) = 2). Suppose r(a) = 2. Then a needs a neighbor with role 1. Hence
r(b) = 1, but then r is a 2-role assignment. Suppose r(a) = 3. Then r(b) �= 2, as
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otherwise b needs a neighbor with role 1. Hence r(b) = 3. This means that r is
an R∗-role assignment. Suppose k ≥ 4. If r(a) = k − 2, then a needs a neighbor
with role k−3. So, r(b) = k−3. However, this is not possible since vertex b with
role k−3 is adjacent to vertex c with role k−1. If r(a) = k−1, then r(b) = k−2.
This is not possible either. Hence r(a) = k and for the same reasons r(b) = k.
Then r is an R∗-role assignment.

We claim that (Q,S) has a 2-coloring if and only if G has a k-role assignment.
Suppose (Q,S) has a 2-coloring (Q1, Q2). We show that G has an R∗-role

assignment, which is a k-role assignment. We assign role i to each pS
i for i =

1, . . . , k − 2 and role k − 1 to each S ∈ S. As (Q,S) is nontrivial, either Q1 or
Q2, say Q2, has size at least two. Then we assign role k − 1 to each q ∈ Q1
and role k − 2 to neighbor uq

1. We assign role k to each q ∈ Q2 and k − 1 to
neighbor uq

1. As |Q2| ≥ 2, every vertex in Q has a neighbor with role k. Hence,
we can finish off the role assignment by assigning roles to the remaining vertices
of each copy Hq of H as follows. For convenience, we remove the superscript q.
We map each path S, T, T ′ to the path 1 · · ·k−2, where r(si) = r(ti) = r(t′i) = i
for i = 1, . . . , k − 2. If u1 received role k − 2 we assign ui role k − 1 − i for
i = 2, . . . , k−2 and we assign uk−2+i role i+1 for i = 1, . . . , k−2. Furthermore,
we assign role k−1 to c, d, w, and role k to a, b, x, y, z. If u1 received role k−1, it
already has a neighbor with role k (namely its neighbor in Q). Then we assign ui

role k− i for i = 2, . . . , k− 1 and we assign uk−1+i role i+1 for i = 1, . . . , k− 3.
Furthermore, we assign role k − 1 to c, d, w, x, and role k to a, b, y, z.

To prove the reverse statement, suppose G has a k-role assignment r. As we
have shown above, by construction, G must have an R∗-role assignment. Then
each pS

i must have role i for i = 1, . . . , k− 2. Then r(S) = k− 1 for each S ∈ S,
and each S must have a neighbor in Q with role k− 1 and a neighbor in Q with
role k. We define Q1 = {q ∈ Q | r(q) = k−1} and Q2 = Q\Q1. Then we find that
(Q1, Q2) is a 2-coloring of (Q,S). This completes the proof of Theorem 4. �

5 Conclusions

We have settled an open problem of Sheng [20] by showing that it can be decided
in polynomial time if a chordal graph has a k-role assignment when k = 2. We
also showed that for any fixed k ≥ 3 the problem stays NP-complete when
restricted to chordal graphs.

Role assignments are also studied in topological graph theory. There, a graph
G is called an emulator of a graph R if G has an R-role assignment. Then the
question is which graphs allow planar emulators, see e.g. the recent manuscript
[18] for nice developments in this area. An interesting question is the computa-
tional complexity of the k-Role Assignment problem for planar graphs. The
answer to this question is already unknown for k = 2.

Acknowledgements. The second author thanks Jǐŕı Fiala for fruitful discussions
on the subject.
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Abstract. Three-valued Markov chains and their PCTL semantics ab-
stract – via probabilistic simulations – labeled Markov chains and their
usual PCTL semantics. This abstraction framework is complete for a
PCTL formula if all labeled Markov chains that satisfy said formula
have a finite-state abstraction that satisfies it in its abstract semantics.
We show that not all PCTL formulae are complete for this abstraction
framework. But PCTL formulae whose path modalities occur in a suit-
able combination of negation polarity and threshold type are proved to be
complete, where abstractions are bounded, 3-valued unfoldings of their
concrete labeled Markov chains. This set of complete PCTL formulae
subsumes widely used PCTL patterns.

1 Introduction

Markov chains are an important modeling formalism for systems that contain
stochastic uncertainty and for which the assumption of the “Markov property”
(that the transition probability at a state depends only on that state and not
on the execution history of the system) is feasible. Markov chains are used in a
wide range of applications, e.g., biological sequence analysis, statistical software
testing, and formal verification of communication protocols.

In formal verification, we want to validate a system model (and so hopefully
the system, too) by proving that it satisfies critical properties. In the context of
Markov chains as models, probabilistic computation tree logic [1] has emerged
as the defacto standard for expressing such properties. The semantics of that
probabilistic logic over Markov chains also renders algorithms for automatically
deciding the truth of formulae over finite-state Markov chains, leading to the
now mature and established methodology of probabilistic model checking [2].

But the initial models of systems often have infinitely many states. A system
state, e.g., may implicitly encode the value of a continuous-time clock. Since we
ultimately want to validate critical properties on systems and not on models,
this begs the question of whether truth of some property on an infinite-state
system or model can, in principal, be witnessed as truth of that same property
on a suitable finite-state model. Suitability here means that the obtained model
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abstracts certain features of the system but still contains sufficient state and
behavior of the system it intends to model.

We therefore study the feasibility of this approach in a formal setting, where
systems are identified with infinite-state Markov chains and abstractions are
finite-state Markov chains with 3-valued atomic observables such that abstrac-
tion is based on probabilistic simulation [3,4]. In this setting, we show negative
and positive existence results for finite-state witnesses of truth that depend on
the interplay between path modalities (e.g., “true at all reachable states”) and
threshold types (e.g., “true with probability at least .999”). As we will demon-
strate, these results suggest that – from a practical perspective – finite-state
abstractions for probabilistic computation tree logic and Markov chains more
often than not exist. But there may not be an algorithm for computing them.

Related work. In [5], Markov chains and their PCTL semantics are soundly
abstracted into 3-valued models, and a model checking algorithm is given for
their 3-valued abstract semantics of PCTL. This gives a foundation for counter-
example guided abstraction refinement where abstractions have intervals (not
real numbers) as probability transitions.

In [6], game-theoretic foundations for truth of PCTL formulae φ over Markov
chains M are developed. A Hintikka game for φ and M , with Büchi type accep-
tance conditions for infinite plays, is designed so that a “Verifier” player has a
winning strategy if M satisfies φ. Dually, a “Refuter” player has a winning strat-
egy if M doesn’t satisfy φ. In loc. cit. it is also observed that a winning strategy
could be chosen so that it forces always finite plays for certain path modalities.
This insight provides the seed for the results reported here. But proving these
results doesn’t require any appeal to the games and results of loc. cit.

In [7], stochastic 2-player games are used as abstractions of Markov decision
processes (MDPs) and a game simulation is developed and shown to be sound
for PCTL. Interestingly, they also show incompleteness in the sense of our paper
(for finite games) for the PCTL formula [ttUq]>0, which is expressible in our
complete fragment. This contradiction is only apparent since the incompleteness
of that formula results solely from the non-determinism in MDPs whereas our
work considers Markov chains, which are deterministic.

Outline of paper. In Section 2, we provide the background – notably our ab-
straction framework – needed for our technical development. The key concept
of “completeness” for our abstraction framework and our incompleteness results
are presented in Section 3. Completeness results for a fragment of PCTL are
presented in Section 4. In Section 5, we put negative and positive results into
context and conclude the paper.

2 Background

We define the models of systems considered here.

Definition 1 (Markov chains). A 3-valued, labeled Markov chain M over a
countable set AP of atomic propositions is a tuple (S,P, L), where
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1. S is a countable set of states,
2. P is a stochastic matrix P : S × S −→ [0, 1] such that the countable sum∑

s′∈S P(s, s′) exists and equals 1 for all s ∈ S,
3. and L is a labeling function L : S × AP −→ {tt, ?,ff}.

M is finitely branching if {s′ | P(s, s′) > 0} is finite for all s ∈ S. We write
(M, s0) to denote that M has a designated initial state s0.

Throughout we refer to 3-valued, labeled Markov chains as models. Such models
can be seen as (possibly infinite) labeled graphs where the outgoing transitions
of state s to states s′ are decorated with the positive transition probabilities
P(s, s′) of the corresponding distribution P(s, ·), and vertices s ∈ S are labeled
with atomic propositions as follows: label q? marks the states s with L(s, q) = ?,
label q at s indicates L(s, q) = tt, and absence of any q or q? label at state s
implicitly marks L(s, q) = ff. When all labels for M have value tt or ff, we call
model M a Markov chain, concrete or 2-valued. Thus ? abstracts both tt and ff
in the familiar information ordering [9].

A widely used notion of probabilistic (bi-)simulation was defined by Larsen
and Skou in [3] for probabilistic processes with actions. We define probabilistic
simulation for our 3-valued models, based on probabilistic simulation for proba-
bilistic specification systems with propositional labels in [4].

Definition 2 (Probabilistic simulation). Let M = (S,P, L) be a model over
AP. Relation H ⊆ S×S is a probabilistic simulation if whenever (t, s) ∈ H then

1. L(t, q) �= ? implies L(t, q) = L(s, q) for all q ∈ AP.
2. there is a weight function ρs: S × S −→ [0, 1] such that

(a)
∑

s′∈S(P(s, s′) · ρs(s′, t′)) = P(t, t′) for all t′ ∈ S;
(b) (t′, s′) ∈ H whenever ρs(s′, t′) > 0.

We often write tHs for (t, s) ∈ H, and say that t simulates s, written t - s,
if there is a probabilistic simulation H such that tHs. Model A simulates model
M , written A - M , if this is true of their respective initial states in the model
A+M that is the disjoint sum of the models A and M .

Definition 3 (PCTL syntax). The syntax of PCTL is as follows:

φ ::= q | ¬φ | φ ∧ φ | φ ∨ φ | [α]��p (state formulae)
α ::= Xφ | φU≤kφ | φW≤k φ (path formulae)

where q ∈ AP, p ∈ [0, 1], !� ∈ {<,≤,≥, >} and k ∈ N ∪ {∞}. Let PCTL be the
set of state formulae φ generated in this manner. We write tt and ff for any
PCTL formulae [α]≥0 and [α]>1, respectively.

Intuitively, [α]��p specifies the property that the probability of all paths (infinite
sequences of states s0s1 . . . with positive transition probabilities P(si, si+1)) that
begin at state s and satisfy path formula α is !� p. The path modalities X, U ,
and W stand for Next, Strong Until, and Weak Until (respectively). The value
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• π �m X φ iff s1 ∈ �φ�m
M

• π �m φU≤kψ iff there is an l ∈ N such that l ≤ k, sl ∈ �ψ�m
M and for all 0 ≤ j < l

we have sj ∈ �φ�m
M

• π �m φW≤k ψ iff for all l ∈ N such that 0 ≤ l ≤ k we have either sl ∈ �φ�m
M or there

is 0 ≤ j ≤ l with sj ∈ �ψ�m
M

Fig. 1. Path-formula semantics on paths π = s0s1 . . . in interpretation m ∈ {o, p}

k = ∞ is used to express unbounded Untils, whereas k ∈ N expresses a proper
step bound on Untils. We write φUφ as a shorthand for φU≤∞φ, and φW φ as
shorthand for φW≤∞ φ. For example, X q holds in paths whose second (next)
state satisfies q, whereas qUr holds in paths that have a finite prefix of states
satisfying q followed by a state satisfying r, and qW r holds in paths that either
satisfy qUr or where all states satisfy q.

We define semantics for PCTL formulae based on an optimistic and a pes-
simistic interpretation of labels [10,11]. Optimistically, we interpret a proposition
as true if it isn’t false, i. e. �q�o

M = {s ∈ S | L(s, q) �= ff}; pessimistically, q is
true only if the labeling says so, i. e. �q�p

M = {s ∈ S | L(s, q) = tt}.

Definition 4 (PCTL semantics). Let m ∈ {o, p} be two modes of interpreta-
tion, ¬o = p, and ¬p = o. For φ in PCTL, we define �φ�

m
M :

�φ ∧ ψ�
m
M = �φ�

m
M ∩ �ψ�

m
M �φ ∨ ψ�

m
M = �φ�

m
M ∪ �ψ�

m
M

�¬φ�
m
M = S \ �φ�

¬m
M �[α]��p�

m
M = {s ∈ S | Probm

M (s, α) !� p}

where Probm
M (s, α) is the probability of the measurable set Pathm(s, α) of paths

π = s0s1 . . . in M that begin in s0 = s and satisfy π �m α, defined in Figure 1.

We often write M s �m φ for s ∈ �φ�m
M and use M �m φ as abbreviation of

M s0 �m φ for initial state s0. For 2-valued Markov chains �o equals �p and
coincides with the familiar and standard PCTL semantics � over Markov chains.

The interpretation m is sound in that verifications of φ by �p on A (A �p

φ) and refutations of φ by �o on A (A �o φ) are verifications, respectively
refutations, in any concrete M with A -M . This soundness requires that PCTL
formulae are presented in a particular normalform in which negations occur only
on atomic propositions and where probability thresholds are either ≥ or >:

Definition 5 (Greater-than negation normal form). The following subset
of PCTL constitutes the Greater-than negation normal form (GTNNF):

φ ::= q | ¬q | φ ∧ φ | φ ∨ φ | [α]��p

α ::= Xφ | φU≤kφ | φW≤k φ

where q ∈ AP, p ∈ [0, 1], !� ∈ {≥, >} and k ∈ N ∪ {∞}.

Every formula φ of PCTL that is not in GTNNF can be transformed to a for-
mula in GTNNF, equivalent in the two-valued semantics � over Markov chains,
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by (1) replacing each sub-formula of the form [α]<p and [α]≤p by ¬[α]≥1−p and
¬[α]>1−p respectively, and then (2) pushing negations inwards. The second step,
i. e. pushing negations inwards, is possible without breaking the syntactical re-
strictions of PCTL, only because the used definition includes both the Weak and
the Strong Until. With an intermediate step into PCTL* [13] one gets:

¬[Xφ]>p ≡ [¬Xφ]≥1−p ≡ [X¬φ]≥1−p

¬[φU≤kψ]>p ≡ [¬(φU≤kψ)]≥1−p ≡ [(¬ψ)W≤k(¬φ ∧ ¬ψ)]≥1−p

¬[φW≤k ψ]>p ≡ [¬(φW≤k ψ)]≥1−p ≡ [(¬ψ)U≤k(¬φ ∧ ¬ψ)]≥1−p

Swapping the roles of ≥ and > in the above equivalences yields the dualities
for the remaining combinations of temporal operators and threshold types. The
negations ¬φ and ¬ψ above are then processed in the same manner, recursively.

We can now secure the desired soundness result:

Lemma 1. Let M and A be models and A - M . Then for all formulae φ in
GTNNF we have the implications A �p φ⇒M �p φ and M �o φ⇒ A �o φ.

This lemma is proved by structural induction on φ, using standard fixed-point
and duality arguments for Weak and Strong Until formulae. As our paper focuses
on completeness not on soundness, we don’t feature this proof here.

3 Completeness for PCTL Formulae

The notion of completeness we now define is relative to our class of models, their
abstract PCTL semantics, and its abstraction via probabilistic simulation. We
refer to this triad as “our abstraction framework” subsequently.

Definition 6 (Finitary completeness). A PCTL formula φ is complete (for
our abstraction framework) iff for all Markov chains M that satisfy φ there is a
finite-state model A such that A - M and A �p φ. A set of PCTL formulae Γ
is complete iff every φ ∈ Γ is complete.

Completeness for φ thus means that all Markov chains that satisfy φ (M � φ)
have a finite-state abstraction that also satisfies φ in the �p semantics. We chose
�p for this definition since it, unlike �o, is sound for verification.

Example 1. The infinite-state Markov chain M depicted in Figure 2(a) satisfies
ϕ = [qUr]>0.7. It is simulated by the finite-state model M s0

3,3 in Figure 2(b) and
M s0

3,3 �p ϕ. In Section 4, we will see that ϕ is complete.

Incompleteness of PCTL. We show that full PCTL is incomplete by giving sev-
eral counterexamples which consist of a concrete Markov chain M and a PCTL
formula ϕ such that no finite-state model A can exist, which simulates M and
for which A �p ϕ. These examples are strongly inspired by Dams and Namjoshi’s
work on completeness for Kripke structures and the modal mu-calculus [12].
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Fig. 2. A model M satisfying [qUr]≥1 and [qW r]≥1, and its unfolding Ms0
3,3

Lemma 2. Not all formulae of the form [φUψ]≥p and [φWψ]≥p are complete.

Proof. We consider [qUr]≥1 and [qW r]≥1. Let M be the Markov chain illus-
trated in Figure 2(a): The initial state s0 is labeled q and is infinitely branching
with P(s0, si,1) > 0 for all i ≥ 1; its i-th successor si,1 has probability 1/2i, all
other transition probabilities are 1; the i-th path s0si,1 . . . si,i consists of i − 1
states labeled q and ends in an absorbing state si,i labeled r. The Markov chain
M obviously satisfies any ϕ ∈ {[qUr]≥1, [qW r]≥1}.

Now assume there is a finite-state model A with n > 0 states and initial state
a0, such that A �p ϕ and A - M . Since A is finite-state there exists a state a1 in
A (a successor of a0) which simulates infinitely many successors sij ,1 (j > 0) of s0
in M . Of these states sij ,1 there must be a state sn0,1 which is starting point of a
path sn0,1 . . . sn0,n0 with n0 > n+1 states labeled q before reaching its absorbing
r state. By the definition of simulation this path must be matched by a path
a1 . . . an0 in A such that aj - sn0,j for all 1 ≤ j ≤ n0. Since A is of finite size n
there must be a state aj′ re-occurring along this path, and thus there is a loop in
A. As the states sn0,1 . . . sn0,n0−1 are labeled q, all states of the path a1 . . .an0 ,
and on the loop in this path, must be labeled q or q?. Similarly, as the states
sn0,1 . . . sn0,n0−1 are not labeled r, for all states aj of the loop we get L(ai, r) = ff
or L(ai, r) = ?. Now, since A �p ϕ by assumption, the states aj must actually
be labeled with q. Otherwise, let α ∈ {qUr, qWr}. If one state ai0 in the loop
were labeled q?, and so Aai0 ��p q, there would be a finite prefix a0a1 . . . ai0 , and
thus a measurable cylinder path set with positive probability for which no path
pessimistically satisfies α. Thus Probp

M (a0, α) < 1, contradicting A |=p ϕ.
But now we have an overall contradiction: no model that contains a loop of

states labeled q can simulate M because this would imply that M contains an
infinite path of states labeled q, which the given M clearly does not. Hence there
cannot be a finite-state model A such that A �p ϕ and A - M . �

We can use the same concrete Markov chain M from Figure 2(a) and a similar
proof structure to show the incompleteness of [Xφ]≥p.
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Lemma 3. Not all formulae of form [X φ]≥p are complete.

Proof. We consider ϕ = [X [qUr]>0]≥1 and the Markov chainM from Figure 2(a)
which satisfies ϕ. Again, assume there is a finite-state model A with n states
and initial state a0, such that A �p ϕ and A - M .

Since A is finite-state there exists a state a1 in A (a successor of a0) which
simulates infinitely many successors si,1 of s0 in M . Since A � ϕ the state a1
needs to satisfy [qUr]>0. Hence there must be a path π = a1 . . .ak where the
states a1, . . . , ak−1 are labeled q and ak is labeled r. If this path were loop-free,
then each of the infinitely many states si,1 would be starting point of a path
which reaches an r state after at most k steps. This is a contradiction to the
definition of M . Thus π must contain a loop of states labeled q. But this would
force M to contain an infinite path si,1 . . . where all states are labeled q. Again
we have a contradiction because M does not contain such a path. �

Sub-formula [qUr]>0 in and of itself does not imply incompleteness. In Section 4,
we will actually show that formulae of this form are complete.

Incompleteness of formulae of form [X [φUψ]>p]≥p′ requires infinite branching,
as in the Markov chain in Figure 2(a). For finitely branching Markov chains this
form is complete, as then only a finite number of successor states needs to be
considered, on each of which sub-formula [φUψ]>p can be finitely verified (as we
show in the next section). Forms [φUψ]≥1 and [φWψ]≥1 are also incomplete for
finitely branching models (for slightly different Until formulae). We summarize:

Corollary 1. Full PCTL is incomplete.

Our incompleteness proofs above work for any simulation notion - satisfying

1. L(t, q) �= ? implies L(t, q) = L(s, q) for all q ∈ AP
2. P(s, s′) > 0 implies P(t, t′) > 0 for some t′ with t′ - s′

3. P(t, t′) > 0 implies P(s, s′) > 0 for some s′ with t′ - s′

whenever t - s. In their bi-directionality, these three conditions are reminis-
cent of Larsen and Skou’s probabilistic 2/3-bisimulation [3] and of Dams and
Namjoshi’s notion of (mixed) reverse simulation for labeled transition systems
[12]: conditions (1) and (2) together constrain the abstract model in terms of
the concrete model (and are necessary but not sufficient for sound abstraction
à la Lemma 1); conditions (1) and (3) constrain the concrete model in terms of
the abstract one (and are necessary for securing our incompleteness results).

4 Complete Fragment of PCTL

We now present a complete fragment of PCTL: those PCTL formulae whose path
modalities occur in a suitable combination of negation polarity and threshold
type. The technical details of this definition, and its alternative characterization
via a normal form will be formalized below. In fact, we will show that for this
fragment the desired finite abstractions can be obtained by unfolding the infinite
model up to a bounded height and width. We first formalize full unfoldings.
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Definition 7 (Unfolding). Let M = (S,P, L) be a model. The full unfolding of
M at s0 is the model M s0

full = (Sfull,P′, L′) where Sfull is the set of nonempty se-
quences π over S, transition probability P′(s1 . . . sn, s1 . . . snsn+1) is P(sn, sn+1),
and L′(π · s) = L(s). We restrict the set Sfull to the set of sequences reachable
from s0 with positive probability.

If M is a concrete Markov chain, so is M s0
full. Also, M and M s0

full simulate each
other, and so are equivalent. We now formalize finite unfoldings.

Definition 8 (Finite Unfolding)

1. For i ∈ N and s0 ∈ S, the finite unfolding M s0
i = (Si,Pi, Li) is the

model where Si is the set of nonempty sequences over S of length at most
i, plus a designated sink state tsink. As above Pi(s1 . . . sn, s1 . . . snsn+1) =
P(sn, sn+1), Pi(s0 . . . si−1, tsink) = 1 for each sequence of length i, and
Pi(tsink, tsink) = 1. Again, Li(π ·s) = L(s), and L(tsink, q) = ? for all q ∈ AP.
We restrict Si to sequences reachable from s0 with positive probability.

2. For j ∈ N, this model is further restricted to maximal branching degree j
as follows. Let M s0

i,j = (Si,j ,Pi,j , Li,j), where the components of M s0
i,j are

as follows. For each s ∈ Si, let t1, t2, . . . be an enumeration of {tk ∈ Si |
Pi(s, tk) > 0} such that Pi(s, tk) ≥ Pi(s, tk+1) for all k ∈ N. We then
define Pi,j by setting Pi,j(s, tk) = Pi(s, tk) for k ≤ j and Pi,j(s, tsink) =
1 − Σj

k=1Pi(s, tk). We set Li,j = Li and again restrict Si,j to sequences
reachable from s0 with positive Pi,j transition probabilities.

The unfolding M s0
3,3 for the labeled Markov chain M of Figure 2(a) is depicted

in Figure 2(b). Finite unfoldings are not the usual finite unfoldings since we add
a sink state. This addition gives then rise to desired simulations:

Lemma 4. For all models M with initial state s0 and i, j ∈ N, the finite un-
folding M s0

i,j simulates M .

Now we show that Next and Strong Until with > p bounds have finite unfoldings
of the model as witnesses.

Lemma 5. Let M be a model, q, r ∈ AP be propositions, and M �p [α]>p for
α ∈ {Xq, qUr}. There are i0, j0 with M s0

i,j �p [α]>p for all i ≥ i0 and j ≥ j0.

Proof. Let α be X q. By assumption M �p [X q]>p. If s0 has finitely many suc-
cessors, the claim is obviously true. Otherwise, let t1, t2, . . . be the successors
of s0 ordered so that P(s0, tl) ≥ P(s0, tl+1) for every l ≥ 1. Let tm1 , tm2 , . . .
be the sub-sequence of those states ti with M ti �p q. Then M �p [X q]>p im-
plies Σ∞

l=1P(s0, tml
) > p. Thus there is some l0 with Σl0

l=1P(s0, tml
) > p. Let

j0 = ml0 . For every i ≥ 1 and j ≥ j0 it is then easily seen that M s0
i,j �p [X q]>p.

Now let α be qUr. Consider first the case that M is finitely branching. It is
simple to see that for all i ≥ 0 we have Probp

M
s0
i

(s0, qUr) ≤ Probp

M
s0
i+1

(s0, qUr)

and that limi→∞ Probp
Mi

(s0, qUr) = Probp
M (s0, qUr). Hence, for some i0 we have

that Probp

M
s0
i0

(s0, qUr) > p and for every i ≥ i0 we have M s0
i �p [qUr]>p.
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φpos ::= q | ¬q | φpos ∧ φpos | φpos ∨ φpos | ¬φneg | [αpos]>p | [αneg]<p

φneg ::= q | ¬q | φneg ∧ φneg | φneg ∨ φneg | ¬φpos | [αneg]≥p | [αpos]≤p

αpos ::= X φpos | φposU
≤kφpos αneg ::= X φneg | φneg W≤k φneg

Fig. 3. PCTL>, our complete fragment of PCTL, defined as all φpos above where
q ∈ AP, k ∈ N ∪ {∞} and p ∈ [0, 1]

If M has infinite branching the proof is similar. As before, there is some
i0 such that M s0

i0
�p [qUr]>p. For every j ∈ N we have Probp

M
s0
i0,j

(s0, qUr) ≤
Probp

M
s0
i0,j+1

(s0, qUr) and that limj→∞ Probp

M
s0
i0,j

(s0, qUr) = Probp

M
s0
i0

(s0, qUr).

Hence, for some j0 we have Probp

M
s0
i0,j0

(s0, qUr) > p and the lemma follows. �

Weak Until and Next with ≥ p bounds have finite counter-examples.

Corollary 2. Let M �o [α]≥p for α ∈ {X q, qW r} and a model M . Then there
exist i0 and j0 such that for all i ≥ i0 and j ≥ j0 we have M s0

i,j �o [α]≥p.

Proof. For α being X q this follows from [Xϕ]>p ≡ ¬[X¬ϕ]≥1−p over two-valued
models and from the duality of the optimistic and pessimistic semantics in three-
valued models. For α being qW r, we similarly exploit that [ϕ1 Wϕ2]≥p is equiv-
alent to ¬[¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)]>1−p over two-valued models. �

We state and prove our main result, the completeness of PCTL>, which is defined
in Figure 3. GTNNF normalforms of PCTL> allow only [U ]>p and [X]>p type
operators. That is, they disallow Weak Until and the comparison ≥ p.

Although any finite-state abstraction would be sufficient for completeness we
show a stronger result: the abstraction can be chosen as finite unfolding.

Theorem 1 (Completeness of PCTL>). Let M be a Markov chain with ini-
tial state s0, φ a formula in PCTL>, and M � φ. Then there exist i, j such that
the finite unfolding M s0

i,j of M pessimistically satisfies φ, i.e. M s0
i,j �p φ.

Proof. We strengthen the claim with a dual claim for formulae in the negative
part of PCTL> and for the optimistic semantics: “For φ in the negative part
φneg of PCTL>, if M s � φ then there exist i, j such that M s

i,j �o φ.” We show
this extended claim by structural induction on φ, simultaneously for all states s.

– Let φ be q. If M s � q then for every i ≥ 0 and j ≥ 0 we have M s
i,j �p q.

Dually, if M s � q then for every i ≥ 0 and j ≥ 0 we have M s
i,j �o q.

– For the Boolean connectives φ1 ∧ φ2 and φ1 ∨ φ2 and a state s, we take as
bounds the maximum of the bounds ik and jk for sub-formulae φk obtained
by induction for state s. These bounds work for the dual case as well.

– For a negation ϕ = ¬ψneg and a state s, if M s � ¬ψneg, then M s � ψneg. By
induction, there are i and j with M s

i,j �o ψneg. Thus M s
i,j �p ¬ψneg.

Dually, for a negation ϕ = ¬ψpos and a state s, if M s � ¬ψpos, then M s �
ψpos. By induction, there are i and j with M s

i,j �p ψpos, so M s
i,j �o ¬ψpos.
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Height required to satisfy subformula.

Height following Lemma 5.

Fig. 4. Intuitively an unfolding for a sub-formula can be attached to every inner state
of the unfolding of the formula. The resulting maximal height is still finite.

– We now consider the path modalities X, U , and W.
• For formula ϕ = [Xψpos]>p and a state s such thatM s � ϕ, we treat ψpos

as a proposition that labels the states of M . By (the proof of) Lemma 5,
there is some j′0 such that for every i ≥ 1 and j ≥ j′0 we have M s

i,j �p ϕ.
Let t1, . . . , tj0 be the first j′0 successors of s. For tk there exists ik0 and jk

0
such that if M tk � ψpos we have M tk

ik
0 ,jk

0
�p ψpos. Let i0 = 1 + maxk(ik0)

and j0 = max(j′0,maxk(jk
0 )). It follows that M s

i0,j0
�p ϕ.

• Let ϕ = [Xψneg]≥p with M s � ϕ. The proof is similar to the one in the
previous item and uses Corollary 2.

• For ϕ = [ψ1Uψ2]>p, with ψ1 and ψ2 in the positive fragment φpos, and a
state s withM s � [ψ1Uψ2]>p, we initially treat ψ1 and ψ2 as propositions
that label the states of M . By Lemma 5 there are i′0 and j′0 such that
for every i ≥ i′0 and j ≥ j′0 we have M s

i,j �p [ψ1Uψ2]>p. Now we no
longer treat the ψi as atoms: Let t1, . . . , tm be all the states appearing
in Mi′0,j′0 . For α ∈ {1, 2} and every tk there exists ik,α

0 and jk,α
0 such that

if M tk � ψα we have M tk

ik,α
0 ,jk,1

0
�p ψα. Let i0 = i′0 + maxk,α(ik,α

0 ) and

j0 = max(j′0,maxk,α(jk,α
0 )) (see Figure 4). It follows that M s

i0,j0
�p ϕ.

• The proof for ϕ = [ψ1 Wψ2]≥p, with ψ1 and ψ2 in the fragment φneg,
and a state s such that M s � [ψ1Uψ2]≥p is similar to the one in the
previous item and uses Corollary 2.

• Formula [αneg]<p is equivalent to ¬[αneg]≥1−p of form ¬ϕpos. Formula
[αpos]≤p is equivalent to ¬[αpos]>1−p of form ¬ϕneg. Thus this case
follows by induction. For example, for state s, we have e.g. M s

i0,j0 �p

[αneg]<p iff M s
i0,j0

�p ¬[αneg]≥1−p iff M s
i0,j0

��o [αneg]≥1−p. �

We now show that the results in Section 3 imply that PCTL fragments that
allow combinations of the operators we disallow cannot be complete. To that
end, we first prove an additional incompleteness result.

Lemma 6. Not all formulae of form [[φUψ]>p W ρ]>p′ are complete.

Proof. Let ϕ be [[qUr]>0 W ff]>0 and M be as in Figure 5. It is simple to see that
M � ϕ. Suppose there is a finite-state model A such that A - M and A �p ϕ.
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r
s1,1 s1 s2,2

q r q
s2,1

q r
s2 si,i si,i−1 si,1 si

q q q

Fig. 5. Concrete Markov chain M that satisfies [[qUr]>0 W ff]>0

Let a be the initial state of A such that a - s0. As A �p ϕ, there is a bottom
strongly connected component (SCC) in A such that every state in this SCC
satisfies pessimistically [qUr]>0. By a pigeon-hole principle, we can find a state
a′ in this SCC that is labeled by r and simulates states si for infinitely many
i. Consider a cycle from a′ to itself. This cycle has some fixed length n. As for
every i > 0 the distance from si to si+1 is i+ 1, this is a contradiction. �

We can now prove that static extensions of PCTL> are incomplete.

Theorem 2. Consider a PCTL fragment κ that contains one of the following
combinations of PCTL operators: (i) [φWψ]≥p, (ii) [φUψ]≥p, (iii) [Xφ]≥p and
[φUψ]>p, or (iv) [φWψ]>p and [φUψ]>p. Then κ is incomplete.

Proof. The first three items follow from Lemmas 2 and 3 in Section 3. The last
item follows from Lemma 6 above. �

5 Discussion and Conclusions

From a practical perspective, our completeness results mean that those PCTL
formulae whose Strong Untils occur under positive polarity and Weak Untils
under negative polarity are complete for our abstraction framework: Given such
a formula, we can determine all its occurrences of path modalities whose nega-
tion polarity and threshold type do not match. Then we can change all such
threshold types and adjust their probability with a small perturbation in situ.
For example, a Weak Until under negative polarity with > .99 threshold could
be made complete by making it a Weak Until with ≥ .99 + 10−12 threshold
without compromising the original intent of that property. But our results offer
no algorithm and no bounds for the numbers i and j of Theorem 1. In fact, we
do not know whether satisfiability of the logic PCTL> is decidable.

Let us conclude. We investigated whether the truth of formulae in probabilis-
tic computation tree logic over infinite-state Markov chains can, in principle, be
witnessed by finite-state Markov chains that simulate such infinite-state mod-
els of formulae and allow for 3-valued interpretations of atomic propositions.
Negative results were presented for certain combinations of path modalities and
probability threshold type, e.g. for Weak Until with strict threshold type. Pos-
itive results were proved for a sizeable fragment of PCTL formulae whose path
modalities all occur in a statically determined combination of negation polarity
and threshold type. Finally, we showed that static extensions of that complete
fragment of PCTL are incomplete.
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Abstract. We argue that closure operators are fundamental tools for the study
of relationships between order structures and their sequence representations. We
also propose and analyse a closure operator for interval order structures.

1 Introduction

While the two major models of concurrency, interleaving abstraction ([2,22]) and par-
tially ordered causality ([5,15,23]), have been very successful, they have some limita-
tions. Neither of them can model the “not later than” relationship effectively, which
causes problems with specifying priorities, error recovery, time testing, inhibitor nets,
etc. (see for instance [4,9,12,16,17,18]). A solution, proposed independently (in this or-
der) in [19,8] and [10], suggests modeling concurrent behaviours by a triple (X ,≺,�),
where X is the set of event occurrences, and ≺ and � are binary relations on X . The
relation ≺ is “causality” (i.e. an abstraction of the “earlier than” relationship), and �
is “weak causality” (an abstraction of the “not later than” relationship). For this model,
the following two kinds of relational structures are of special importance: stratified or-
der structures (so-structures) and interval order structures (io-structures). The former
structures can fully model concurrent behaviours when system executions (operational
semantics) are described in terms of stratified orders, while the latter structures can fully
model concurrent behaviours when system executions are described in terms of interval
orders [9,13]. It was argued in [11] (and also implicitly in 1914 Wiener’s paper [26])
that any execution that can be observed by a single observer must be an interval order.
Thus, io-structures provide a very general model of concurrency. However, the theory
of io-structures is far less developed than the simpler theory of so-structures.

When dealing with partial orders, many constructions use the fundamental notion
of transitive closure of relations. The analogue of transitive closure for so-structures,
called ♦-closure, has been proposed in [12] and successfully used in [12,16,17,18] and
others. However, a similar concept for io-structures has not yet been proposed. In this
paper we introduce the concept of �-closure for io-structures and show that it has the
same kind of properties as transitive closure and ♦-closure.
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The paper is structured as follows. Section 2 provides some mathematical prelim-
inaries, while basic properties of Mazurkiewicz traces are discussed in Section 3. In
Section 4 old and new properties of so-structures are discussed. Section 5 is devoted to
io-structures and their �-closure operator. Section 6 contains some final comments.

2 Relations, Partial Orders and Transitive Closure

In this section, we recall some well-known mathematical concepts and results that will
be used frequently in this paper.

Let X be a set and R1,R2 ⊆ X × X are two relations on X . We define R1 ◦ R2
df
={

(x,y) | ∃z ∈ Z. (x,z) ∈ R1 ∧ (y,z) ∈ R2
}

, and idX
df
= {(x,x) | x ∈ X}. For each relation

R ⊆ X ×X , we define R+, the transitive closure of R, as R+ df
=
⋃∞

i=1 Ri, and the reflexive
and transitive closure of R, as R∗ =

⋃∞
i=0 Ri, where R0 = idX and Ri+1 = Ri ◦R for i> 0.

A binary relation R ⊆ X ×X is: irreflexive iff for all a ∈ X .¬(aRa); transitive iff for
all a,b,c ∈ X . aRb∧bRc =⇒ aRc; and acyclic iff for all a ∈ X . ¬(aR+ a).

A relation <⊆ X ×X is a (strict) partial order if it is irreflexive and transitive, i.e.
for all a,c,b ∈ X , a �< a and a< b< c =⇒ a< c. We also define:

a$< b
df⇐⇒ ¬(a< b)∧¬(b< a)∧a �= b

a<$ b
df⇐⇒ a< b∨a$< b

Note that a$< b means a and b are incomparable (w.r.t. <) elements of X .
Let < be a partial order on a set x. Then

1. < is total if $<= /0. In other words, for all a,b ∈ X , a < b ∨ b < a ∨ a = b. For
clarity, we will reserve the symbol � to denote total orders;

2. < is stratified if a $< b $< c =⇒ a $< c∨a = c, i.e., the relation $< ∪ idX is
an equivalence relation on X .

3. < is interval if for all a,b,c,d ∈ X , a< c ∧ b< d =⇒ a< d ∨b< c.

It is clear from these definitions that every total order is stratified and every stratified
order is interval.

Given a partial order<⊆ X ×X , a relation<′⊆ X ×X is an extension of < if <⊆<′.

For convenience, we define Total(<)
df
= {� ⊆ X ×X | � is a total order and <⊆ �}.

In other words, the set Total(<) consists of all the total order extensions of <.
By Szpilrajn’s Theorem [25], we know that every partial order < is uniquely repre-

sented by the the set Total(<). Szpilrajn’s Theorem can be stated as following:

Theorem 1 (Szpilrajn [25]). For every partial order <, <=
⋂

�∈Total(<) �. �

Stratified orders are often defined in an alternative way, namely, a partial order < on
X is stratified if and only if there exists a total order � on some Y and a mapping
φ : X → Y such that ∀x,y ∈ X . x < y ⇐⇒ φ(x)� φ(y). This definition is illustrated
in Figure 1, where φ(a) = {a}, φ(b) = φ(c) = {b,c}, φ(d) = {d}. Note that for all
x,y ∈ {a,b,c,d} we have x <2 y ⇐⇒ φ(x)�2 φ(y), where the total order �2 can be
concisely represented by a step sequence {a}{b,c}{d}. As a consequence, stratified
orders and step sequences can uniquely represent each other (cf. [12,14,20]).
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Fig. 1. Various types of partial orders (represented as Hasse diagrams). The partial order <1
is an extension of <2, <2 is an extension of <3, and <3 is and extension of <4. Note that
order <1, being total, is uniquely represented by a sequence abcd, the stratified order <2 is
uniquely represented by a step sequence {a}{b,c}{d}, and the interval order<3 is (not uniquely)
represented by a sequence that represents �3, i.e. B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

For the interval orders, the name and intuition follow from Fishburn’s Theorem:

Theorem 2 (Fishburn [6]). A partial order < on X is interval iff there exists a total
order � on some T and two mappings B,E : X → T such that for all x,y ∈ X,

1. B(x)� E(y), and 2. x < y ⇐⇒ E(x)� B(y). �
Usually B(x) is interpreted as the beginning and E(x) as the end of an interval x. The
intuition of Fishburn’s theorem is illustrated in Figure 1 with <3 and �3. For all x,y ∈
{a,b,c,d}, we have B(x)�3 E(x) and x <3 y ⇐⇒ E(x)�3 B(y).

We will next recall the fundamental properties of transitive closure operator.

Proposition 1. Let R ⊆ X ×X.

1. If R is irreflexive then R ⊆ R+ \ idX ,
2. (R+)+ = R+,
3. R+ is a partial order if and only if R+ is irreflexive,
4. if R is a partial order then R+ = R.
5. if R is a partial order and R0 ⊆ R, then R+

0 is a partial order and R+
0 ⊆ R. �

These properties were extended to the ♦-closure operator for so-structures in [12] and
will be extended to the �-closure operator for io-structures in Section 5.

3 Partial Orders Generated by Mazurkiewicz Traces

A triple (X ,∗,�), where X is a set, ∗ is a total binary operation on X , and � ∈ X , is
called a monoid [3], if (a ∗ b)∗ c = a ∗ (b ∗ c) and a ∗�= �∗ a = a, for all a,b,c ∈ X .

A nonempty equivalence relation ∼⊆ X ×X is a congruence in the monoid (X ,∗,�)
if for all a1,a2,b1,b2 ∈ X , a1 ∼ b1 ∧a2 ∼ b2 ⇒ (a1 ∗ a2) ∼ (b1 ∗ b2).

The triple (X/∼,	, [�]), where [a]	 [b] = [a ∗ b], is called the quotient monoid of
(X ,∗,1) under the congruence ∼. The symbols ∗ and 	 are often omitted if this does
not lead to any discrepancy.
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Let M = (X ,∗,�) be a monoid and let EQ = { xi = yi | i = 1, . . . ,n } be a finite
set of equations. Define ≡EQ (or just ≡) to be the least congruence on M satisfying,
xi = yi =⇒ xi ≡EQ yi, for each equation xi = yi ∈ EQ. We call the relation ≡EQ the
congruence defined by EQ, or EQ-congruence.

The quotient monoid M≡EQ = (X/≡EQ,	, [�]), where [x]	 [y] = [x∗ y], is called an
equational monoid (see [14,20] for more details).

Monoids of Mazurkiewicz traces (or traces) (cf. [5,21]) are equational monoids over
sequences. The theory of traces has been utilised to tackle problems from quite diverse
areas including combinatorics, graph theory, algebra, logic and, especially concurrency
theory [5,21].

Applications of traces in concurrency theory are originated from the fact that traces
are sequence representation of partial orders, which gives traces the ability to model
“true concurrency” semantics. We will now recall the definition of a trace monoid.

Definition 1 ([5,21]). Let M = (E∗,∗,λ ) be a free monoid generated by E, and let the
relation ind ⊆ E × E be an irreflexive and symmetric relation (called independency),
and EQ = {ab = ba | (a,b)∈ ind}. Let ≡ind , called trace congruence, be the congruence
defined by EQ. Then the equational monoid M≡ind =

(
E∗/≡ind,	, [λ ]

)
is a monoid of

traces. The pair (E, ind) is called a trace alphabet.

We will omit the subscript ind from trace congruence if it causes no ambiguity.

Example 1. Let E = {a,b,c}, ind = {(b,c),(c,b)}, i.e., EQ = { bc = cb }. Given three
sequences s = abcbca, s1 = abc and s2 = bca, we can generate the traces [s] = {abcbca,
abccba,acbbca,acbcba,abbcca,accbba}, [s1] = {abc,acb} and [s2] = {bca,cba}. Note
that [s] = [s1] 	 [s2] since [abcbca] = [abc]	 [bca] = [abc∗ bca].

Each trace represents a finite partial order in the following sense. For the trace [s]
from Example 1, we can define Σ[s] =

{
a(1),b(1),c(1),b(2),c(2),a(2)} to be the set of all

enumerated events occurring in [s], where a(1) and
a(2) simply denote the first and the second occur-
rences of a respectively in the sequence s1. Then the
partially ordered set (poset)

(
Σ[s],≺[s]

)
represented

by [s] is depicted in the diagram on the right (arcs
inferred from transitivity are omitted for simplicity).

b(1) ��

��
��

��
��

��
� b(2)

�����
�

a(1)

������

�����
� a(2)

c(1) ��

�����������
c(2)

������

In fact, the total orders induced by the elements of [s] comprise all the total extensions
of ≺[s] (see [21]), which by Theorem 1 implies that [s] uniquely determines the partial
order ≺[s].

Remark 1. Given a sequence s, to construct the partial order ≺[s] represented by [s], we
do not need to build up to exponentially many elements of [s]. We can simply construct
the direct acyclic graph (Σ[s],≺s), where x(i) ≺s y( j) iff x(i) occurs before y( j) on the
sequence s and (x,y) �∈ ind. The relation ≺s is usually not the same as the partial order
≺[s]. However, after applying the transitive closure operator, we have ≺[s]=≺+

s . To ex-
tend this simple idea to the more difficult cases of constructing stratified or io-structures
from their sequence representations, it is inevitable that we have to generalise the tran-
sitive closure operator to these order structures.
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4 Stratified Order Structures, Comtraces, and ♦-Closure

A relational structure is a triple S = (X ,R1,R2), where R1,R2 ⊆ X ×X . We will write
S = (X ,R1,R2) ⊆ S′ = (X ,R′

1,R
′
2) iff R1 ⊆ R′

1 and R2 ⊆ R′
2.

Definition 2 ([11]). A stratified order structures (so-structure) is a relational structure
S = (X ,≺,�), such that for all a,b,c ∈ X, the following hold:

S1: a �� a S3: a � b � c ∧ a �= c =⇒ a � c

S2: a ≺ b =⇒ a � b S4: a � b ≺ c ∨ a ≺ b � c =⇒ a ≺ c

So-structures were independently introduced in [8] and [10]. Their comprehensive the-
ory has been presented in [12,13]. They have been successfully applied to model in-
hibitor and priority systems, asynchronous races, synthesis problems, etc., [17] (see [9]
for more references).

The relation ≺ is called causality and represents the “earlier than” relationship, and
the relation � is called weak causality and represents the “not later than” relationship.
The axioms S1–S4 model the mutual relationship between “earlier than” and “not later
than” relations, provided that the system runs are defined as stratified orders.

A stratified order < on X is a stratified extension of a so-structure S = (X ,≺,�) if
≺⊆< and �⊆<$. The set of all stratified extensions of S will be denoted by Strat(S).

Theorem 3 ([13]). For every so-structure S = (X ,≺,�):
S =

(
X ,
⋂
<∈Strat(S) <,

⋂
<∈Strat(S) <

$
)
. �

The above theorem is a generalisation of Szpilrajn’s Theorem to so-structures and is
interpreted as the proof of the claim that so-structures uniquely represent sets of equiv-
alent system runs provided that the system operational semantics can be fully described
in terms of stratified orders (see [9,13] for details).

We will now present the concept of ♦-closure that plays a substantial role in most of
the applications of so-structures for modelling concurrent systems (cf. [13,16,17]).

Definition 3 ([12]). For every relational structure S = (X ,R1,R2) we define S♦ as

S♦ df
=
(

X ,≺♦
R1,R2

,�♦
R1,R2

)
=
(
X ,(R1 ∪R2)∗ ◦R1 ◦ (R1 ∪R2)∗,(R1 ∪R2)∗ \ idX

)
.

Intuitively the ♦-closure is a generalisation of transitive closure for relations to so-
structures. The theorem below shows that the ♦-closure has all the properties formulated
for transitive closure in Proposition 1.

Theorem 4 ([12]). Let S = (X ,R1,R2) be a relational structure.

1. If R2 is irreflexive then S ⊆ S♦.
2. (S♦)♦ = S♦.
3. S♦ is a so-structure if and only if the relation ≺♦

R1,R2
is irreflexive.

4. If S is a so-structure then S = S♦.
5. Let S be a so-structure and let S0 ⊆ S. Then S♦

0 ⊆ S and S♦
0 is a so-structure. �
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Among others, Theorem 4 helps us to show a relationship between so-structures and
comtraces, an extension of Mazurkiewicz traces that allows us to model the “not later
than” relationship using quotient monoids of step sequence monoids [12,14,20].

Definition 4 ([12]). Let E be a finite set (of events) and let ser ⊆ sim ⊂ E ×E be two
relations called serialisability and simultaneity respectively and the relation sim is ir-
reflexive and symmetric. Then the triple (E,sim,ser) is called the comtrace alphabet.

Intuitively, if (a,b) ∈ sim then a and b can occur simultaneously, while (a,b) ∈ ser
means that a and b may occur simultaneously or a may occur before b (i.e., both ex-
ecutions are equivalent). We define S, the set of all (potential) steps, as the set of all

cliques of the graph (E,sim), i.e., S
df
= {A | A �= /0∧∀a,b ∈ A. (a = b∨ (a,b) ∈ sim)}.

Hence, the triple (S∗,∗,λ ), where “∗” denotes the step sequence concatenation operator
(usually omitted), is a monoid of step sequences.

Definition 5 ([12]). Let θ = (E,sim,ser) be a comtrace alphabet and let ≡ser, called
comtrace congruence, be the EQ-congruence defined by the set of equations:

EQ = {A = BC | A = B∪C ∈ S∧B×C ⊆ ser}.
Then the equational monoid (S∗/≡ser,	, [λ ]) is called a monoid of comtraces over θ .

We will omit the subscript ser from comtrace congruence if it causes no ambiguity.

Example 2. Let E = {a,b,c}, sim = {(b,c),(c,b)} and ser = {(b,c)}. Then we have
S = {{a},{b},{c},{b,c}},EQ = {{b,c}= {b}{c}}.A step sequence s = {a}{b,c}{a}
generates [s] = {{a}{b,c}{a},{a}{b}{c}{a},{a,b}{c}{a},{b}{a}{c}{a}} as its
comtrace. Note that {a}{c}{b}{a} /∈ [s].

Let u = A1 . . .Ak be a step sequence. By u = A1 . . .Ak be the event enumerated represen-
tation of u. We will skip a lengthy but intuitively obvious formal definition (cf. [12]),
but for instance, from Example 2, s = {a(1)}{b(1),c(1)}{a(2)}. Let Σu =

⋃k
i=1 Ai denote

the set of all enumerated events occurring in u, for example, Σs = {a(1),a(2),b(1),c(1)}.
For each α ∈ Σu, let posu(α) denote the consecutive number of a step where α be-
longs, i.e. if α ∈ Aj then posu(α) = j. For our example, poss(a(2)) = 3, poss(b(1)) = 2,
etc. For each enumerated even α = e(i), let l(α) denote the label of α , i.e. l(α) =
l(e(i)) = e. One can easily show that u ≡ v =⇒ Σu = Σv, so we can define Σ[u] = Σu.

Given a step sequence u, we define the stratified order

�u ⊆ Σu ×Σu induced by u by: α �u β df⇐⇒ posu(α)<
posu(β ). Then it can be easily checked that the stratified
orders induced by the step sequences of the comtrace [s]
from Example 2 are exactly the stratified extensions of
the so-structure S[s] = (Σ[s],≺[s],�[s]) on the right. The
dotted edge denotes �[s], while the solid edges denote
both ≺[s] and �[s].

b(1)

�� ��

c(1) �� a(2)

a(1)

		�����





Analogous to Remark 1 for traces, given a comtrace alphabet (E,sim,ser) and a
step sequence u, we do not need to analyse any other elements of [u] except u itself
to construct the so-structure S[u], which the comtrace [u] represents. We will now show
how the ♦-closure operator helps us to build the desired construction.
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Definition 6 ([12]). Let u ∈ S∗. We define the relations ≺u,�u⊆ Σ[u] ×Σ[u] as:

1. α ≺u β df⇐⇒ α �u β ∧ (l(α), l(β )) /∈ ser,

2. α �u β df⇐⇒ α �$
u β ∧ (l(β ), l(α)) /∈ ser.

Definition 6 describes two basic “local” invariants of the elements of Σu. The relation
≺u captures the situation when α always precedes β , and the relation �u captures the
situation when α never follows β . However, since ≺u and �u are “locally” invariant,
the relation structure (Σ[u],≺u,�u) might not contain “global” invariants that can be
inferred from (S3) and (S4) of Definition 2. For instance, the step sequence s from
Example 2 generates the following relations ≺s= {(a(1),c(1)),(a(1),a(2)),(c(1),a(2))}
and �s=≺s ∪{(b(1),c(1))}, where the edge (b(1),a(2)) from ≺[s] and �[s] is absent from
both of these relations. To make sure all invariants are included, we need ♦-closure.

Definition 7. Given a step sequence u ∈ S∗ and its respective comtrace [u] ∈ S∗/ ≡.

We define the relational structures S[u] as: S[u]
df
=
(
Σ[u],≺u,�u

)♦
.

The relational structure S[u] is the so-structure defined by the comtrace [u]. The follow-
ing theorem justifies the names and summarises the following nontrivial results con-
cerning the so-structures generated by comtraces. The proofs of these results heavily
use the properties of ♦-closure from Theorem 4.

Theorem 5 ([12,13]). For all u,v ∈ S∗, we have

1. S[u] is a so-structure and S[u] =
(

Σ[u],
⋂

x∈[u] �x,
⋂

x∈[u] �
$
x

)
,

2. u ≡ v ⇐⇒ S[u] = S[v],
3. ext

(
S[u]
)

=
{
�s | s ∈ [u]

}
. �

Note that a generalisation of Theorem 5 to generalised stratified order structures (gso-
structures) [9], an extension of so-structures which can additionally model the “non-
simultaneously” relationship, was recently shown in [14,20]. A sequence representation
of gso-structures called generalised comtraces were proposed and shown to represent
precisely finite gso-structures. The intuition of the approach in [20] is similar to what
we discussed here and the ♦-closure operator was applied extensively.

5 Interval Order Structures and �-Closure

This section contains the major contribution of this paper. We start with a short presen-
tation of some properties on io-structures, then we define �-closure, the main concept
of this paper, and prove the equivalence of Theorem 4. Because io-structures are more
complex than so-structures, the proofs are more involved than that of Theorem 4.

Definition 8 ([11]). An interval order structure (io-structure) is a relational structure
S = (X ,≺,�), such that for all a,b,c,d ∈ X, the following hold:

I1: a �� a I4: a ≺ b � c ∨ a � b ≺ c =⇒ a � c

I2: a ≺ b =⇒ a � b I5: a ≺ b � c ≺ d =⇒ a ≺ d

I3: a ≺ b ≺ c =⇒ a ≺ c I6: a � b ≺ c � d =⇒ a � d ∨ a = d
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Here the causality relation ≺ also represents the “earlier than” relationship, and the
weak causality relation � represents the “not later than” relationship but under the
assumption that the system runs are interval orders.

Proposition 2 ([11])

1. ≺ is a partial order such that a ≺ b ⇒ b �� a and a � b ⇒ b �≺ a.
2. If < is an interval order on X, then (X ,<,<$) is an io-structure. �

Interval order structures were independently introduced in [19] and [10]. Some of their
properties have been presented in [13], yet their theory is not as well-developed and
much less often applied than that of so-structures [9]. The lack of an operator anal-
ogous to the ♦-closure prevented us from building a working relationship between
io-structures and sequence models of concurrency such as Mazurkiewicz traces and
comtraces.

Theorem 6 ([13]). Every so-structure is an io-structure. �

Since every so-structure is an io-structure, many properties of so-structures also hold for
io-structures. Furthermore, we also have an analogue of Theorem 3 for interval orders
and io-structures.

An interval order < on X is an interval extension of an io-structure S = (X ,≺,�) if
≺⊆< and �⊆<$. The set of all interval extensions of S will be denoted by Interv(S).

Theorem 7 ([13]). For each io-structure S = (X ,≺,�), we have

S =
(

X ,
⋂
<∈Interv(S) <,

⋂
<∈Interv(S) <

$
)
. �

The above theorem is a generalisation of Szpilrajn’s Theorem to io-structures. It is inter-
preted as the proof of the claim that io-structures uniquely represent sets of equivalent
system runs, provided that the system’s operational semantics can be fully described in
terms of interval orders (see [9,13] for details). An example of a simple interval order
structure which illustrates the main ideas behind this concept is shown in Figure 2.

Before defining the concept of �-closure and proving its properties, we need to in-
troduce some auxiliary notions and prove some preliminary results.

Definition 9. Let R1,R2 ⊆ X ×X be two relations and let 〈S1, . . . ,Sk〉 be a sequence of
relations such that Si ∈ {R1,R2}, i = 1, . . . ,k.

1. A sequence 〈S1, . . . ,Sk〉 has '-property w.r.t. (R1,R2), if for all i, 1 ≤ i< k, we have
¬(Si = Si+1 = R2), i.e. there are no two consecutive R2’s.

2. A sequence 〈S1, . . . ,Sk〉 has ⊕-property w.r.t. (R1,R2), if k ≥ 1, S1 = Sk = R1 and
the sequence 〈S2, . . . ,Sk−1〉 has '-property w.r.t. (R1,R2);

3. R1 'R2 =
⋃

k≥0{S1 ◦ . . .◦ Sk | 〈S1, . . . ,Sk〉 has '-property w.r.t. (R1,R2)}.
4. R1 ⊕R2 =

⋃
k≥1{S1 ◦ . . .◦ Sk | 〈S1, . . . ,Sk〉 has ⊕-property w.r.t. (R1,R2)}.

For example the sequence 〈R1,R2,R2,R1〉 has neither '- nor ⊕-property, the empty
sequence 〈〉 and the sequence 〈R1,R1,R2,R1,R2〉 has '-property but not ⊕-property,
and 〈R1,R1,R2,R1,R2,R1〉 has ⊕-property. We will omit the suffix “w.r.t. (R1,R2)” if
the relations R1 and R2 are clear from the context. The relations R1 ⊕R2 and R1 'R2

can easily be defined by appropriate regular expressions built from R1 and R2.
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P: begin int x,y,z:

a: begin x:=0; y:=0; z:=0 end;

cobegin

begin

b: x=0 → y:=y+1;

d: z:=z+1
end,

c: x:=x+1
coend

end P

Fig. 2. An example of a simple interval order structure S = (X ,≺,�), with X = {a,b,c,d} and
its set of all interval extensions Interv(S) = {<1,<2,<3,<4,<5}. The orders <1 and <2 are
total, <3 and <4 are stratified and <5 is interval but not stratified. The elements of Interv(S)
are all equivalent runs (executions) of the program P involving the actions a, b, c and d, so the
interval order structure uniquely defines a concurrent behaviour (history) of P (see [9] for details).
The elements of Interv(S) are represented as Hasse diagrams, while ≺ and � are represented as
graphs of their entire relations. In this case ≺ equals <5, as there are not so many partial orders
over the four elements set, but the interpretations of <5 and ≺ are different. The incomparability
in <5 is interpreted as simultaneity while in ≺ as having no casual relationship.

Proposition 3. Let R1,R2 ⊆ X ×X be two relations. Then

1. R1 ⊕R2 = (R+
1 ◦R2)∗ ◦R+

1 ,
2. R1 'R2 = (R2 ∪ idX)◦ (R1 ∪R1 ◦R2)∗,
3. R1 ⊕R2 ⊆ R1 'R2,
4. (R1 ⊕R2)' (R1 'R2) ⊆ (R1 'R2),
5. (R1 ⊕R2)⊕ (R1 'R2) ⊆ (R1 ⊕R2).

Proof. Follows immediately from Definition 9. �

We can now define the main concept of this paper, the concept of �-closure.

Definition 10. For every relational structure S = (X ,R1,R2) we define S�, the �-closure
of S, as:

S� df
= (X ,≺�

R1,R2
,��

R1,R2
) = (X ,R1 ⊕R2,(R1 'R2)\ idX).

The �-closure is an extension of ♦-closure of so-structures and transitive closure of
relations to io-structures. We will start by proving equivalences of Theorem 4(1,2).
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Proposition 4

1. If R2 is irreflexive, then S ⊆ S�.

2.
(
S�)� = S�.

Proof

1. By the definition R1 ⊆ R1 ⊕R2 = ≺�
R1,R2

and R2 ⊆ R1 'R2. Hence, if R2 is irreflex-

ive, R2 \ idX ⊆ (R1 'R2)\ idX = ��
R1,R2

.

2. (⊇) Since �R1,R2 is irreflexive, by (1) we have S� ⊆ (S�)�.
(⊆) We need to show that ≺�

≺�
R1,R2

,��
R1,R2

⊆≺�
R1,R2

and ��
≺�

R1,R2
,��

R1,R2

⊆��
R1,R2

, which

means (R1 ⊕R2)⊕ (R1 'R2) ⊆ R1 ⊕R2, and (R1 ⊕R2)' (R1 'R2) ⊆ R1 'R2. But
this follows from Proposition 3(4,5). �

Proposition 4(2) states that �-closure is idempotent, and justifies the name closure (cf.
[24]).

Note that the exact replica of Theorem 4(3) is false. Consider an example, where
X = {a,b}, R1 = {(a,b)} and R2 = {(b,a)}. Thus, ≺�

R1,R2
= {(a,b)} and ��

R1,R2
=

{(a,b),(b,a)}, so ≺�
R1,R2

is irreflexive, but (X ,≺�
R1,R2

,��
R1,R2

) is not an io-structure

since a ≺�
R1,R2

b ��
R1,R2

a =⇒ a � a, which contradicts (I1) from Definition 8. To find
the necessary and sufficient condition for the �-closure of a relational structure to be an
io-structure, we need a new concept.

Definition 11. A relational structure S = (X ,R1,R2) is i-directed if

1. R1 ⊕R2 is irreflexive, and
2. ∀a,b ∈ X . (a,b) ∈ R2 =⇒ (b,a) /∈ R1 ⊕R2.

Proposition 5. S� is an io-structure if and only if S = (X ,R1,R2) is i-directed.

Proof. (⇒) If S� is an io-structure then by (I1) and (I2), ≺�
R1,R2

= R1 ⊕R2 is irreflexive.

Suppose (a,b) ∈ R2 and (b,a) ∈ R1 ⊕R2. Since R2 ⊆ ��
R1,R2

, we have a ≺�
R1,R2

b and

b ��
R1,R2

a, which contradicts Proposition 2(1).
(⇐) We need to show that the conditions of Definition 8 are satisfied.

(I1) Clearly (R1 'R2)\ idX is irreflexive.
(I2) From Corollary 3(3) we have ≺�

R1,R2
⊆ R1'R2. Since ≺�

R1,R2
is irreflexive,≺�

R1,R2
⊆

(R1 'R2)\ idX = ��
R1,R2

.

(I3) Let a ≺�
R1,R2

b and let b ≺�
R1,R2

c. This means aS1 ◦ . . . ◦ SkbQ1 ◦ . . . ◦Qrc, where
〈S1, . . . ,Sk〉 and 〈Q1, . . . ,Qr〉 both have ⊕-property. Hence 〈S1, . . . ,Sk,Q1, . . . ,Qr〉
also has ⊕-property. Thus, a ≺R1,R2 c.

(I4) Let a ≺�
R1,R2

b and let b ��
R1,R2

c. This means aS1 ◦ . . . ◦ SkbQ1 ◦ . . . ◦Qrc, where
〈S1, . . . ,Sk〉 satisfies ⊕-property, and 〈Q1, . . . ,Qr〉 satisfies '-property. Hence the
sequence 〈S1, . . . ,Sk,Q1, . . . ,Qr〉 has '-property and thus (a,c) ∈ R1 'R2. Suppose
a = c. Since a ≺�

R1,R2
b and b ��

R1,R2
c, this means aR1 ◦ S1 ◦ . . . ◦ Sk ◦ R1b, and
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bQ1 ◦Q2 ◦ . . .◦Qs−1 ◦Qsa, where Si,Qi ∈ {R1,R2}. Either Q1 or Qs are equal to R2,
otherwise b ≺�

R1,R2
a, contradicting that ≺�

R1,R2
is irreflexive. Suppose Q1 = R2. This

means Q2 = R1. Thus there is some b1 such that bR2b1R1 ◦Q3 ◦ . . .◦Qs ◦R1 ◦ S1 ◦
. . .◦Sk ◦R1b, which means (b1,b)∈ R1 ⊕R2, contradicting Definition 11(2). Hence
Q1 = R1 and Qs = R2, i.e. Qs−1 = R1. Thus, there is some bs such that bsR2a and
aR1 ◦S1 ◦ . . .◦Sk ◦R1 ◦Q1 ◦ . . .◦R1bs, which means (a,bs) ∈ R1 ⊕R2, contradicting
Definition 11(2). Therefore a �= c, i.e. (a,c) ∈ (R1 'R2)\ idX = ��

R1,R2
.

For the case when a ��
R1,R2

b ≺�
R1,R2

c, we proceed almost identically.

(I5) Let a ≺�
R1,R2

b ��
R1,R2

c ≺�
R1,R2

d. Thus, there are sequences 〈S1, . . . ,Sk〉, 〈P1, . . . ,Ps〉
and 〈Q1, . . . ,Qr〉, such that aS1◦ . . .◦SkbP1◦ . . .◦PscQ1◦ . . .◦Qrd, where 〈S1, . . . ,Sk〉
and 〈Q1, . . . ,Qr〉 have ⊕-property and 〈P1, . . . ,Ps〉 has '-property. It follows that
〈S1, . . . ,Sk,Q1, . . . ,Qr,P1, . . . ,Ps〉 has ⊕-property and thus a ≺�

R1,R2
d.

(I6) Let a ��
R1,R2

b ≺�
R1,R2

c ��
R1,R2

d. Thus, there are sequences 〈S1, . . . ,Sk〉, 〈P1, . . . ,Ps〉
and 〈Q1, . . . ,Qr〉, such that aS1◦ . . .◦SkbP1◦ . . .◦PscQ1◦ . . .◦Qrd, where 〈S1, . . . ,Sk〉
and 〈Q1, . . . ,Qr〉 have '-property and 〈P1, . . . ,Ps〉 has ⊕-property. It follows that
〈S1, . . . ,Sk,Q1, . . . ,Qr,P1, . . . ,Ps〉 has '-property. So a ��

R1,R2
b or a = d. �

The fact that the above result is slightly weaker than Theorem 4(3) does not seem to
matter much as in virtually all applications of ♦-closure in [12] and [17], the relations
R1 and R2 satisfy the equivalence of the conditions of Definition 11 for so-structures. The
below result appears to be quite useful for various potential applications of �-closure.

Proposition 6. Let S = (X ,R1,R2) be a relational structure and let <⊆ X × X be an
interval order such that R1 ⊆< and R2 ⊆<$. Then S is i-directed.

Proof. By Proposition 2(2), (X ,<,<$) is an io-structure, so it satisfies I1–I6. We have
R+

1 ⊆<+=<, so R1 ⊕R2 = (R+
1 ◦R2)∗ ◦R+

1 ⊆ (< ◦R2)∗◦<=
⋃∞

i=0((< ◦R2)i◦<). For
each i, we have (< ◦R2)i◦ <⊆ (< ◦ <$)i◦ < and then by applying (I5) i times, we
have (< ◦<$)i ◦<⊆<. Hence R1 ⊕R2 ⊆<. i.e. R1 ⊕R2 is irreflexive. If (a,b) ∈ R2

then a<$ b, i.e. ¬(b < a) and also (a,b) /∈ R1 ⊕R2 as R1 ⊕R2 ⊆<. �

Both ♦- and �-closures are often used for the cases like the one in Definition 7, so we
can then use the above results to simplifies the proofs.

We now prove an analogue of Theorem 4(4), which states that io-structures are fixed
points of �-closure.

Proposition 7. If S = (X ,≺,�) is an io-structure then S = S�.

Proof. (⊆) Since S is an io-structure, � is irreflexive. Thus, by Proposition 4(1), S ⊆ S�.
(⊇) We will first show that ≺ ⊕ �⊆≺. Since ≺ ⊕ �= (≺+ ◦ �)∗◦ ≺+, it suffices to
show that for each i ≥ 1, j ≥ 0, k ≥ 1, (≺i ◦ �) j◦ ≺k⊆≺. From (I3) it follows ≺i⊆≺
and ≺k⊆≺, so (≺i ◦ �) j◦ ≺k⊆ (≺ ◦ �) j◦ ≺. By apply (I5) from right to left i times,
we have (≺ ◦ �) j◦ ≺⊆≺. Thus, ≺⊕ �⊆≺.

It remains to show (≺ ' �)\ idX ⊆�. By Proposition 3(2), ≺ ' �= (� ∪idX)◦ (≺
∪≺ ◦ �)∗. It suffices to show that for all i ≥ 0, (� ∪idX)◦ (≺∪≺ ◦ �)i ⊆� ∪idX . The
case when i = 0 is trivial. For i> 0, by the induction hypothesis, we have (� ∪idX)◦(≺
∪ ≺ ◦ �)i−1 ⊆� ∪idX . It suffices to show (� ∪idX)◦ (≺ ∪ ≺ ◦ �) ⊆� ∪idX . But this
holds since, by (I4) and (I6),

(
(� ∪idX )◦ ≺

)
∪
(
(� ∪idX)◦ ≺ ◦ �

)
⊆� ∪idX . �
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Directly from Proposition 7 we obtain the below result which will be used in the proof
of the analogue of Theorem 4(5).

Corollary 1. Every io-structure is i-directed. �
Proposition 8. Let S = (X ,≺,�) be an io-structure and let S0 ⊆ S. Then S�

0 ⊆ S and
S�

0 is an io-structure.

Proof. From Proposition 7 it immediately follows S�
0 ⊆ S� = S.

Due to Proposition 5 it suffices to show that S0 is i-directed. Let S0 = (X ,R1,R2). We
have R1 ⊕R2 ⊆≺ ⊕ �=(Proposition 7) ≺. Since ≺ is irreflexive, R1 ⊕R2 is irreflexive
as well. Let (a,b) ∈ R2. Since R2 ⊆�, we have a � b which by Corollary 1, implies
(b,a) /∈≺⊕ �. Since R1 ⊕R2 ⊆≺⊕ �, (b,a) /∈ R1 ⊕R2. Therefore S0 is i-directed. �
We can also show that �-closure is indeed a generalisation of ♦-closure.

Proposition 9. If S is so-structure then S = S♦ = S�.

Proof. A consequence of Theorem 4(4), Theorem 6 and Proposition 7. �

6 Final Comments

A concept of �-closure has been defined for io-structures. It is an equivalence of ♦-
closure of so-structures ([12]) and classical transitive closure of relations. It has also
been proven that, in principle, �-closure has the same properties as ♦-closure and tran-
sitive closure. Because the definition of �-closure was more elaborate, the proofs were
substantially more complex than their counterparts for ♦-closure. Nevertheless, only
one property of �-closure is slightly weaker than its ♦-closure counterpart.

The counterpart of comtraces for io-structures has not been fully developed yet, but
its foundation has been established. Fishburn’s Theorem (Theorem 2) states that each
interval order can be represented by an appropriate total order of the interval begin-
nings and ends. The below fundamental theorem states that each io-structure can be
represented by an appropriate partial (not necessarily interval) order of the beginnings
and ends.

Theorem 8 (Abraham, Ben-David, Magodor [1]). A relational structure S = (X ,≺,
�) is an io-structure iff there exists a partial order � on some Y and two mappings
B,E : X → Y such that B(X)∩E(X) = /0 and for each

1. B(x)� E(x), 2. x ≺ y ⇐⇒ E(x)� B(y), 3. x � y ⇐⇒ B(x)� E(y). �
Szpilrajn’s Theorem (Theorem 1) allows us to represent each partial order by its total
extensions. The combination of these three theorems and Theorem 7 makes it possible
to construct “interval traces”, a version of Mazurkiewicz traces over an appropriate
monoid of sequences of beginnings and ends, and then use “interval traces” to represent
io-structures via Theorem 8. This topic is beyond the scope of this paper; however, the
properties of �-closure are essential tools in this process.

Acknowledgement. The authors thank all three anonymous referees whose comments
have helped us improve the final version of this paper significantly.
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Abstract. By k-disturbed sequence we mean a sequence obtained from a
sorted sequence by changing the values of at most k elements. We present
an algorithm for single-hop radio networks that sorts a k-disturbed
sequence of length n (where each station stores single key) in time
4n + k · (�lg k�2 + �lg(n − k + 1)� + 6�lg k�) − 2 with energetic cost
3 · � (�lg k�+1)(�lg k�+2)

2	n/k
 � + 4 · � �lg k�
	n/k
� + 10. If (�lg k�+1)(�lg k�+2)

2
+ �lg k� ≤

�n/k� then the energetic cost is bounded by 14.

1 Introduction

By k-disturbed sequence we mean a sequence obtained from a sorted sequence by
changing the values of at most k elements. We consider the problem of sorting
k-disturbed sequence of length n, for a relatively small value of k. We call it
k-correction problem. Our model of computation is a single hop radio network.
Such network consists of n stations s0, . . . , sn−1 communicating with each other
by exchanging short radio messages. The stations are synchronized. Time is
divided into slots. Within a single time slot a single message can be broadcast.
During each time slot each station is either listening or sending or idle. If it
is sending or listening then it dissipates a unit of energy. We assume that the
stations are powered by batteries. Therefore we want to minimize energetic cost
of the algorithm, i.e. the maximum over all stations of non-idle time slots. We
consider single hop network: Each station is in the range of any other station.
If two or more stations send messages simultaneously, then a collision occurs.
Since our algorithm is avoiding collisions, we do not need to state precisely what
happens during the collisions and whether they are detectable.

Algorithm for k-correction can be applied whenever we want to keep sorted
a sequence of values that can change infrequently. As one example consider the
following scenario: The stations are deployed in some area and equipped with
sensors measuring some relatively stable value (e.g. temperature or air pressure).
We want to keep the measured values sorted. Thus our algorithm can be invoked
periodically, if we expect that the number of values changed within each period
is substantially lower than n.
� This work has been supported by MNiSW grant N N206 1842 33.

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 230–241, 2009.
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The naive solution of our problem is to sort the input sequence using one
of the existing sorting algorithms (e.g. [9], [4]). However, the energetic cost of
such algorithms is Ω(log n) and the time of energetically efficient algorithms is
Ω(n · logn). The direct simulation of comparator sorting networks (e.g. [1], [2]),
where each comparator between two positions is simulated in two time slots by
the corresponding two stations, leads to quite efficient sorting algorithms. The
problem of k-correction has also been studied for the comparator networks (e.g
[7], [10]). However, they are practically efficient for very small (sub-polynomial)
and fixed values of k. On the other hand, the algorithms for radio networks can
be adaptive, and we can use the fact that each station can notice the change
of its own key. The value of k in our algorithm can be arbitrary (even as large
as n − 1, although the normal merge-sort (i.e. [4]) is more efficient for k close
to n). The costs of the algorithm (time and energetic cost) are adapted to the
actual value of k. As long as (
lg k�+1)(
lg k�+2)

2 + �lg k� ≤  n/k!, the energetic
cost of our algorithm is bounded by 14 and for arbitrary k it is bounded by
3 · � (
lg k�+1)(
lg k�+2)

2�n/k	 � + 4 · � 
lg k�
�n/k	� + 10. Moreover, the algorithm uses only a

constant number of variables within each station.

2 Preliminaries

Each station si initially stores a key in its local variable oldKey[si]. Variable
oldIdx[si] is the index of oldKey[si] in the sorted sequence of keys. (The indexes
are numbered from 0 to n− 1.) The station si also stores a new value of its key
in newKey[si] which is either equal to or different from oldKey[si]. The task of
each si is to compute newIdx[si] which is the index of newKey[si] in the sorted
sequence of the new keys. (The keys remain in their originating stations. We just
compute their positions in the sorted sequence.)

In this paper “lg” denotes “log2”. Whenever we define a permutation π of
{0, . . . , n− 1}, π−1 denotes the permutation reverse to π.

0 3 2 4 4 5

5 21 1

3 0

Fig. 1. The tree of T6

Let Tm be a balanced binary tree consisting of m nodes, such that the last
level of Tm is filled from left to right (see Figure 1). We define two ways of
indexing of the nodes of Tm:

y-indexing: The y-index of the root is zero and, for each node with y-index
y, the indexes of its left and the right son are l(y) = 2(y + 1) − 1 and
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r(y) = 2(y + 1), respectively. For y-index y the level of y in the tree is
lev(y) =  log2(y + 1)! and, if y > 0, then the y-index of its parent is p(y) =
 (y − 1)/2!.

x-indexing: The x-indexing is obtained by numbering the nodes in the in-order
with the numbers 0, . . . ,m− 1.

On Figure 1: The x-index is printed inside each node and the y-index – to the
right of the node. Binary search ordering bsom is a permutation of {0, . . . ,m−1},
such that bsom(x) = y if and only if the node with x-index x has the y-index
equal to y. We define some functions and algorithm that can be used for efficient
computation of bso. The height of Tm is h(m) = �log2(m + 1)�. The size of
full binary tree of height h is fs(h) = 2h − 1. Thus the number of missing
leaves on the last level of Tm is ml(m) = fs(h(m)) −m. Let ls(m) be the size
of the left subtree of the root of Tm. If m ≤ 1 then ls(m) = 0 else ls(m) =
fs(h(m) − 1) − max{0,ml(m) − 2h(m)−2}. (The left subtree is full if there are
at most 2h(m)−2 missing leaves in Tm.) Thus the size of the right subtree of
the root of Tm is rs(m) = m − 1 − ls(m). The position of y-index y within its
level is inlev(y) = y − fs(lev(y)). Using these functions we can define efficient
algorithm for computing bso (see Algorithm 1). Note that the while loop in
Algorithm 1 iterates at most h(m) ≈ lgm times and each iteration involves a
constant number of computations of elementary functions. Thus the computation
of bso is efficient.

function bsom(x)
if x �∈ {0, . . . , m − 1} then return x; (* x outside domain *)
y ← 0; (* y-index of the current node. We start from the root. *)
x1 ← ls(m); (* x-index of the root is the size of its left subtree *)
m1 ← m; (* size of the subtree of current node *)
while x1 �= x do

if x < x1 then
y ← l(y); (* y-index of the left child *)
m1 ← ls(m1); (* size of the left subtree *)
x1 ← x1 − m1 + ls(m1); (* x-index of the left child *)

else
y ← r(y); (* y-index of the right child *)
m1 ← rs(m1); (* size of the right subtree *)
x1 ← x1 + ls(m1) + 1; (* x-index of the right child *)

return y;

Algorithm 1. Permutation bsom

In the remaining algorithms we also use functions at(l, i) = fs(l) + i (the
y-index of the ith node at level l) and levsizem(l) (the size of the lth level of
Tm). Note that, for 0 ≤ l < h(m) − 1, levsizem(l) = 2l and, for l = h(m) − 1,
levsizem(l) = 2l −ml(m).
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3 Description of the Algorithm

The network performs Algorithm 2. The general idea is to isolate the modified
keys, sort them and merge them with the (sorted) sequence of the unmodified
keys. We also try to balance the energetic costs among almost all the stations
by forcing them to act as virtual workers.

begin
split-and-count;
(* all stations have learned k – the number of changed keys *)
if k ≥ n/3 then

apply sorting algorithm to compute new ranks of keys (e.g. the simple
merge-sort from [4] without permuting the keys between the stations as
is done in [6])

else if k > 0 then
assign-workers;
sort;
final-merge;
Each si does: oldIdx[si] ← newIdx[si]; oldKey[si] ← newKey[si];

end

Algorithm 2. Correction algorithm

Initially each station recognizes whether its key is changed. Then the stations
perform the procedure split-and-count (Algorithm 3) that counts the number of
changed keys and computes the initial position of each key either in the sequence
of not changed keys (called a-sequence) or in the sequence of the changed keys
(called b-sequence). Split-and-count is similar to the first phase of the counting
sort algorithm ([3]). The ordering of the keys within a-sequence and within
b-sequence is the same as in the original sorted sequence. Thus the a-sequence
is already sorted.

Then the procedure assign-workers (Algorithm 4) assigns equal number of
stations (workers) to each key (b-key) from the b-sequence. Each real station s
simulates one virtual station vs that is used as a worker.

Next the b-sequence is sorted by a simple merge-sort algorithm ([4]), however
the energy required by each b-key is balanced among all the workers (virtual
stations) assigned to this key. This is done by the procedure sort (Algorithm 5).
Sorting is done by merging neighboring blocks of sorted b-keys of length m into
sorted blocks of length 2m. We start with m = 1 (sorted singletons) and end-up
with m ≥ k. Procedure merge([i1, i2], [i3, i4]) (Algorithm 6) merges the block
of b-keys on positions i1,. . . , i2 with the block of b-keys on positions i3,. . . , i4.

To merge the blocks each b-key from one block learns its rank in the other
block and adds it to its index in the sorted sequence of the b-keys from its own
block. In the procedure rank([i1, i2],〈b0, . . . , bm−1〉,d) (Algorithm 8), each b-key
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procedure split-and-count
Each si does (in parallel): begin

idx[si] ← oldIdx[si]; idxa[si] ← NIL; idxb[si] ← NIL; sum[si] ← 0;
key[si] ← newKey[si];
if newKey[si] �= oldKey[si] then changed[si] ← 1 else changed[si] ← 0;

end
for time slot t ← 0 to n − 2 do

Station si with idx[si] = t does: begin
if changed[si] = 1 then idxb[si] ← sum[si]
else idxa[si] ← idx[si] − sum[si];
si sends msg, where msg = sum[si] + changed[si];

end
Station sj with idx[sj ] = t + 1 receives msg and does: sum[sj ] ← msg;

in time slot n − 1: begin
Station si with idx[si] = n − 1 does: begin

if changed[si] = 1 then idxb[si] ← sum[si]
else idxa[si] ← idx[si] − sum[si];
si sends msg, where msg = sum[si] + changed[si];

end
Each station sj receives msg and does k[sj ] ← msg; (* number of changed
keys *)

end

Algorithm 3. Split and count

procedure assign-workers
(* Each si has the same value k[si] denoted by k. *)
(* The value �n/k� is denoted by gs (group size) *)
for time slot t ← 0 to k − 1 do

The station si with idxb[si] = t sends msg, where msg = newKey[si];
Each sj with t · gs ≤ j < (t + 1) · gs, does: begin

sj creates virtual station vst,t′ , where t′ = j mod gs;
vst,t′ receives msg;
key[vst,t′ ] ← msg; (* vst,t′ will be the t′th worker for tth changed key *)
rworker[vst,t′ ] ← 0; (* initial index of current r-worker *)
iworker[vst,t′ ] ← gs − 1; (* initial index of current i-worker *)

end

Algorithm 4. Assigning workers

from the block [i1, i2] learns its rank in the block of keys stored in the stations
b0, . . . , bm1 . Each worker can act as an i-worker or as a r-worker. The task of
an i-worker (respectively, r-worker) is to update the current index (respectively,
rank) of its b-key. For stability of sorting and avoiding collisions of indexes, the
parameter d (either zero or one) is used to decide whether the b-key from the
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procedure sort
Each virtual station does: m ← 1;
Each vsi,j with j = iworker[vsi,j ] does: idx[vsi,j ] ← 0;
while m < k do

for i ← 0 to � k
2m

� − 1 do
merge([2i · m, (2i + 1)m − 1], [(2i + 1)m, (2i + 2)m − 1]);

if k mod (2m) > m then
merge([i, i + m − 1], [i + m, k − 1]), where i = � k

2m
� · 2m;

Each virtual station does: m ← 2 · m;

Algorithm 5. Sorting

procedure merge([i1, i2], [i3, i4])
begin

(* Let bi denote vsi,j with iworker[vsi,j ] = j. *)
rank([i1, i2], 〈bi3 , . . . , bi4〉, 0);
rank([i3, i4], 〈bi1 , . . . , bi2〉, 1);
transfer-indexes([i1, i2]);
transfer-indexes([i3, i4]);

end

Algorithm 6. Merging

procedure transfer-indexes([i1 , i2])
(* For each i ∈ [i1, i2], all vsi,j have the same value of iworker[vsi,j ], denoted
here by iwi. Let iw′

i = (iwi − 1) mod gs.*)
for time slot t ← 0 to i2 − i1 do

Let r = i1 + t; vsr,iw sends msg = newIdx[vsr,iw] to vsr,iw′ , and vsr,iw′

does: idx[vsr,iw′ ] ← msg.
Each vsi,j , for i1 ≤ i ≤ i2, does: iworker[vsi,j ] ← iw′.

Algorithm 7. Transferring indexes

block [i1, i2] should be ranked before or after the equal b-keys from b0, . . . , bm1 .
Each b-key from b0, . . . , bm1 is broadcast only once (by its current i-worker).
Each i-worker knows the index idx of is b-key in the sorted sequence of its block.
These indexes are permuted by the bsom an the keys are transmitted according
to this permutation. Thus, the sorted sequence is transmitted level by level of
the Tm-tree and each b-key (that knows its rank in the previously transmitted
levels) has to listen only once to determine its rank (the newRank) on the
currently transmitted level. In the Tm-tree, each level is interleaved with the
sorted sequence consisting of all the elements above this level. The last level of
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procedure rank([i1, i2],〈b0, . . . , bm−1〉,d)
For i1 ≤ i ≤ i2, each vsi,j with j = rworker[vsi,j ] does: rank[vsi,j ] ← 0.
for l ← 0 to h(m) − 2 do

(* Let ai be the vsi,j with rworker[vsi,j ] = j *)
lrank(l, 〈ai1 , . . . , ai2〉,〈b0, . . . , bm−1〉,d);
transfer-ranks([i1, i2]);

(* Let ai be the vsi,j with rworker[vsi,j ] = j *)
lrank(h(m) − 1, 〈ai1 , . . . , ai2〉,〈b0, . . . , bm−1〉,d); (* on the last level of Tm *)
send-ranks-to-indexes([i1, i2]);

Algorithm 8. Ranking

procedure lrank(l,〈a0, . . . , al−1〉, 〈b0, . . . , bm−1〉,d);
for time slot r ← 0 to levsizem(l) − 1 do

The unique bj with bsom(idx[bj ]) = at(l, r) sends msg = key[bj ];
Each ai with rank[ai] = r listens and does: begin

if (key[ai] ≤ msg and d = 0) or (key[ai] < msg and d = 1) then
newRank[ai] ← 2r;

else
newRank[ai] ← 2r + 1;

end
(* The following may happen if l is the last level of the tree Tm of bsom. *)
Each ai with rank[ai] ≥ levsizem(l) does:
newRank[ai] ← rank[ai] + levsizem(l);

Algorithm 9. Level ranking

procedure transfer-ranks([i1, i2])
(* For each i ∈ [i1, i2], all vsi,j have the same value of rworker[vsi,j ], denoted
here by rwi. Let rw′

i = (rwi + 1) mod gs.*)
for time slot t ← 0 to i2 − i1 do

Let i = i1 + t; vsi,rwi sends msg = newRank[vsi,rwi ] to vsi,rw′
i
, and vsi,rw′

i

does: rank[vsi,rw′
i
] ← msg.

Each vsi,j , for i1 ≤ i ≤ i2, does: rworker[vsi,j ] ← rw′
i.

Algorithm 10. Transferring ranks

Tm may be non-full, therefore in the computation of newRank in the lrank for
the last level we are considering this case by adding the size of the level to the
ranks of the b-keys ranked after it.

To avoid excessive energy loss in a single station, each level of the bsom-tree is
transmitted in a separate procedure lrank (Algorithm 9) and between the lranks
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procedure send-ranks-to-indexes([i1, i2])
(* For each i ∈ [i1, i2], all vsi,j have the same value of rworker[vsi,j ] and of
iworker[vsi,j ], denoted here by rwi and iwi respectively. Let
rw′

i = (rwi + 1) mod gs.*)
for time slot t ← 0 to i2 − i1 do

Let i = i1 + t;
vsi,rwi sends msg = newRank[vsi,rwi ] to vsi,iwi , and vsi,iwi does:
newIdx[vsi,iwi ] ← idx[vsi,iwi ] + msg.

Each vsi,j , for i1 ≤ i ≤ i2, does: rworker[vsi,j ] ← rw′
i.

Algorithm 11. Sending and adding ranks to indexes

procedure final-merge
(* For 0 ≤ i < n− k, let ai be the station sj with idxa[sj ] = i. For 0 ≤ i < k, let
bi be the sj with idxb[sj ] = i.*)
Each ai does: idx[ai] ← idxa[ai];
rank([0, k − 1],〈a0, . . . , an−k−1〉,0);
(* bt listens to the message msg sent during the t-th time slot of
send-ranks-to-indexes in the above rank procedure, and does: rank[bt] ← msg *)
(* Let vi be the vsi,j with iworker[vsi,j ] = j. *)

A: for t ← 0 to k − 1 do
vt sends msg = newIdx[vt] to bt and bt does:
newIdx[bt] ← msg; idx[bt] ← msg − rank[bt];

The bi with idx[bi] = k − 1 does: last[bi] ← TRUE
B: for t ← k − 1 downto 1 do

the bi with idx[bi] = t sends msg = rank[bi];
the bj with idx[bj ] = t − 1 listens and does:
if rank[bj ] �= msg then last[bj ] ← TRUE else last[bi] ← FALSE;

Each ai does: if i = 0 then mov[ai] ← 0 else mov[ai] ← NIL;
C: for t ← 0 to n − k − 1 do

the bi with rank[bi] = t and last[bi] = TRUE sends msg = idx[bi];
at listens and if it received msg then it does: mov[at] ← msg + 1;

D: for t ← 0 to n − k − 2 do
at sends msg = mov[at];
If mov[at+1] = NIL then at+1 listens and does: mov[at+1] ← msg;

Each ai does newIdx[ai] ← idxa[ai] + mov[ai];

Algorithm 12. Final merging of a-sequence with b-sequence

the task of ranking on the next level is transferred from the current r-worker to
the next r-worker by transfer-ranks (Algorithm 10). After the lrank for the last
level, the current r-worker knows the rank of its b-key in the whole transmitted
sequence and sends it to the corresponding i-worker (in the procedure send-ranks-
to-indexes – Algorithm 11). The i-worker can now compute the index of the b-key
in the merged sequence.
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As soon as each i-worker knows the index of its b-key in the merged sequence,
these indexes are transferred to the next i-workers in the procedures transfer-
indexes.

After the b-sequence is sorted, the procedure final-merge (Algorithm 12)
merges the two sorted sequences: a-sequence with b-sequence. First we use the
workers to perform ranking of each b-key in the a-sequence. Each station bt
learns the rank of newKey[bt] in the a-sequence by overhearing the t-th time
slot of the procedure send-ranks-to-indexes concluding this ranking. Then (in the
loop A:) each b-key learns its index in the sorted b-sequence (variable idx) and
in the final output sequence (variable newIdx). In the loop B: each b-key learns
the rank of its successor in the b-sequence. Thus each b-key knows whether it
is the last b-key with the same rank. Then (in the loop C:) each a-key keya is
informed by the last b-key keyb with the rank equal to to the position of keya

in the a-sequence about its rank in the b-sequence. Next (in the loop D:), each
informed a-key informs its uninformed successors in the a-sequence about their
rank in the b-sequence. Finally, each a-key computes its position in the sorted
output sequence as the sum of its position in its own sequence and its rank in
the other sequence. Here, each b-key is ranked before the equal or greater a-keys.

4 Analysis of Complexity

Time: Time of split-and-count is t1 = n. Time of assign-workers is t2 = k. Let t3
be the time of sort. Let tM (m1,m2) denote the time of merging two sequences
with lengths m1 and m2. tM (m1,m2) = tR(m1,m2) + tR(m2,m1) + m1 + m2,
where tR(m′,m′′) is time of rankingm′ elements in the sequence of lengthm′′ and
m1 +m2 is the time of transfer-indexes. Note that tR(m′,m′′) = m′′+h(m′′) ·m′,
wherem′′ is the total time spent in all lranks and h(m′′)·m′ is the remaining time
(spent in transfer-ranks and send-ranks-to-indexes). Thus t3 ≤

∑
lg k�−1
i=0 �k/2i+1�·

tM (2i, 2i) ≤ k(�lg k�2 + 6�lg k�) (see Appendix A). Let t4 be the time of final-
merge. t4 = tR(k, n−k)+k+(k−1)+(n−k)+(n−k−1) = (n−k)+k · �lg(n−
k+1)�+k+(k−1)+(n−k)+(n−k−1) = k · �lg(n−k+1)�+3n−k−2. Thus
the total time is: t1 + t2 + t3 + t4 ≤ 4n+k · (�lg k�2 +�lg(n−k+1)�+6�lgk�)−2.

Energy: In the procedure split-and-count each station broadcasts once and listens
at most twice. After that each station acts either as a-station or a b-station. In
assign-workers each b-station broadcasts once and each station listens once. In
the procedures sort and final-merge, the energy used for each b-key keyt with idxb

equal t is balanced among the gs =  n/k! virtual stations vst,0, . . . , vst,gs−1.
By current r-worker (respectively, i-worker) we mean the virtual station vst,j

with rworker[vst,j ] = j (respectively, iworker[vst,j ] = j). The tasks of r-worker
and of i-worker are transferred in round-robin fashion in opposite directions.
Initially, vst,0 becomes the first r-worker of its group and vt,gs−1 becomes the
first i-worker of its group. Each time vst,i becomes r-worker it listens at most
twice (once in transfer-ranks and once in lrank) and broadcasts once (either in the
next transfer-ranks or in send-ranks-to-indexes). Then the vst,(i+1) mod gs becomes
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the next r-worker. The keyt requires α r-workers, where α ≤
∑
lg k�

i=0 h(2i) =
(
lg k�+1)(
lg k�+2)

2 . (The last component of the sum comes from the rank in final-
merge.) Each time vt,i becomes i-worker it listens at most twice (once in transfer-
indexes and once in send-ranks-to-indexes) and broadcasts twice (once in rank and
once either in the next transfer-indexes or in the loop A: of final-merge). Then
the vt,(i−1) mod gs becomes the next i-worker. The key keyt requires β i-workers,
where β ≤ �lg k�. We split the energy used by the virtual station vst,i into two
components: the energy used as r-worker: er and the energy used as i-worker: ei.
Since vst,i becomes r-worker (respectively, i-worker) once  n/k! times, we have
er ≤ 3 · � α

�n/k	 � and ei ≤ 4 · � β
�n/k	 �. If β + α ≤  n/k! then the energy used

by vst,i is at most 4, otherwise it can be bounded by er + ei. In the procedure
final-merge, each b-station listens at most three times (once in rank, once in loop
A:, and once in loop B:) and broadcasts at most twice (once in loop B: and
once in loop C:). Each a-station listens at most twice (once in loop C: and once
in loop D:) and broadcasts at most twice (once in rank and once in loop D:). Let
ea (respectively, eb) denote the energy used by a-station (respectively, b-station).
Thus, ea = 5 and eb = 7 and the total energy used by each station can be bound
by: 3+max{ea, eb}+ei+er ≤ 10+3·� (
lg k�+1)(
lg k�+2)

2�n/k	 �+4·� 
lg k�
�n/k	 �. Additionally,

if (
lg k�+1)(
lg k�+2)
2 + �lg k� ≤  n/k! then the energetic cost is bounded by 14.

5 Conclusions and Final Remarks

The following theorem concludes the discussion of previous sections:

Theorem 1. There exists an algorithm that sorts a k-disturbed sequence of
length n distributed among n stations of single-hop radio network in time at
most 4n+ k · (�lg k�2 + �lg(n− k+ 1)�+ 6�lg k�)− 2 with energetic cost at most
3 · � (
lg k�+1)(
lg k�+2)

2�n/k	 � + 4 · � 
lg k�
�n/k	� + 10. If (
lg k�+1)(
lg k�+2)

2 + �lg k� ≤  n/k!
then the energetic cost of the algorithm is bounded by 14. �
Consider a scenario in which the algorithm is invoked periodically. The stations
with largest indexes have greater chance of not being used as virtual worker (if
n mod  n/k! �= 0). Since the the indexes of the stations are independent of the
indexes of the keys in the sequence, we can try to balance this chance among all
stations by re-indexing them between the periods (for example, by adding one
modulo n to each index).

Our algorithm is designed for reliable network (i.e. each transmitted message
is received by each listening station with probability one). It would be interest-
ing to consider k-correction in unreliable networks. (Sorting algorithm for such
networks has been proposed in [6]).
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A Analysis of Time Complexity of the Procedure Sort

t3 ≤

lg k�−1∑

i=0

�k/2i+1� · tM (2i, 2i)

=

lg k�−1∑

i=0

�k/2i+1� · (2 · tR(2i, 2i) + 2 · 2i)

=

lg k�−1∑

i=0

�k/2i+1� · (2 · (2i + h(2i) · 2i) + 2 · 2i)

=

lg k�−1∑

i=0

�k/2i+1� · 2i+1(2 + h(2i)).

Since h(2i) = i+ 1, we have:

t3 =

lg k�−1∑

i=0

�k/2i+1� · 2i+1(3 + i)

≤

lg k�−1∑

i=0

(k/2i+1 + 1) · 2i+1(3 + i)

=

lg k�−1∑

i=0

(k + 2i+1)(3 + i).
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For 0 ≤ i ≤ �lg k� − 1, we have 2i+1 < k. Thus

t3 ≤

lg k�−1∑

i=0

2 · k · (3 + i)

= 6k�lg k� + 2k ·

lg k�−1∑

i=0

i

= 6k�lg k� + 2k · (�lg k� − 1)�lg k�
2

≤ k(�lg k�2 + 6�lg k�).
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Abstract. We present a new distributed algorithm, which finds a good
approximation of the Minimum Spanning Tree in the Unit Disc Graphs.
Our algorithm, in O(d2) synchronous rounds, where d is an input pa-
rameter, finds a subgraph H of the Unit Disc Graph G which contains a
Minimum Spanning Tree of G. Moreover, H is planar, does not contain
cycles of weight smaller than d/3 and the weight of H is (1 + O(1/d))
approximation of the weight of the Minimum Spanning Tree of G.

1 Introduction

Consider a set V - the set of points on the plane. A Unit Disc Graph (UDG) is a
graph with vertex set V and the edge set E consisting of those pairs of vertices,
which are at distance at most 1 (i.e. E = {(u, v)|u, v ∈ V and ‖u, v‖ ≤ 1},
where ‖·, ·‖ is an Euclidian norm). Therefore in UDG’s, by default, we assign
to e(u, v) a weight w(u, v) equal to the distance between their endpoints, i.e.,
w(u, v) = ‖u, v‖.

UDG can be used as a model of wireless ad hoc networks such as cell phone
networks or sensor networks, in which all communication ranges are identical.
Here cell phones, sensors or other devices, which form a network, are represented
by the vertices while edges represent possible communication links.

One of the most important characteristics of such graphs (networks) is the
weight of its Minimum Spanning Tree (MST), defined as the spanning tree with
the minimum weight (minimum sum of weights of its edges). Finding MST is
instrumental in the design of data and communication networks, the network all
communication ranges are identical. For example, in ad hoc sensor networks MST
is the optimal routing tree for data aggregation (see [1]) and the broadcasting
based on MST consumes, up to a constant factor, almost optimum. We should
point out that, for general graphs, the problem of finding MST in distributed
way has been considered before, including [2,3,4,5,6], as well as [7,8,9,10].

In our paper we present a new distributed algorithm, called AlmostMST,
which finds a good approximation of the Minimum Spanning Tree in Unit Disc
Graphs in O(d2) synchronous rounds, where d is an input parameter. More
precisely, it finds a subgraph K of the Unit Disc Graph G such that K contains
� This work was supported by grant N206 017 32/2452 for years 2007-2010.
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a minimum spanning tree of G. Moreover, K is planar, does not have cycles of
weight less than d/3 and, most importantly, the weight of K is (1 + O(1/d))-
approximation of the weight of a minimum spanning tree of G. The key idea
behind the construction of our algorithm is an application of so-called ”three
lattices” method, developed in [11]. A similar idea of lattice translation has
been introduced independently by Lillis, Pemmaraju and Pirwani in [12].

At COCOON’2003 Xiang-Yang Li (see [9]) presented a distributed localized
algorithm, called here ApproxMST, which finds a low weight subgraph L of a
Unit Disc Graph G, such that L contains some MST of G as a subgraph, and
L is bounded degree planar graph whose total edge length (weight) is within a
multiplicative constant factor of the weight of MST of G. The construction of
ApproxMST is based on a concept of relative neighborhood graph (RNG).

Our algorithm takes a graph L generated by the algorithm ApproxMST as an
input, and produces its subgraph K (and so a subgraph of G) which, in constant
number of distributed rounds, approximates the weight of MST of G to within
a factor 1 +O(1/d). To get such significant improvement over ApproxMST in
terms of the approximation factor our algorithm incurs some additional cost in
terms of the number of communication rounds. The algorithm runs in poly(d)
synchronous rounds. So, if d is chosen to be a constant, our algorithm runs in
O(1) rounds. Unfortunately both the locality and communication cost are rising.
Namely, instead of only two-hop information gathering, as in ApproxMST, our
algorithm uses O(d2)-hops. Also the communication cost of AlmostMST, for
an n vertex graph, is O(n2), to compare with O(n) for ApproxMST.

Our paper is organized as follows: in Section 2 we present the main algorithm,
basic definitions and the idea of three lattice method. In Section 3 we prove that
the graph K contains MST (G), does not have short cycles and that its weight is
(1 +O(1/d))-approximation of the weight of MST(G). We finish Section 3 with
the proof that the algorithm works in poly(d) synchronous rounds.

2 Main Result

The presented algorithm will work in distributed, synchronous, message-passing
model of computations. We model the network as a Unit Disc Graph (UDG).
Network nodes correspond to vertices in the graph and unit radius discs centered
at the points correspond to communication range. Two nodes are said to be able
to communicate directly if and only if their euclidean distance is within 1. Here
we also assume that every computational unit (vertex) is equipped with the
Global Positioning System (GPS), or knows its position on the plane by other
sources. Moreover, to simplify arguments, let us assume that local clocks of
vertices of UDG can be synchronized i.e., assume that we perform computations
in rounds (model LOCAL defined in [13]). In each round a vertex can send,
receive messages from its neighbors, and can perform some local computations.
While we assume a synchronous model of computation, it is not hard to adapt
our algorithm to the asynchronous setting.

Recall that by the weight of an edge (e = (u, v)) in UDG we will mean an
Euclidean distance between v and u and denote it by w(e) = ‖v, u‖. If H ⊆ G is
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a subgraph of G then the weight of H we define as w(H) =
∑

e∈E(H) w(e). For
a given connected graph G, MST(G) is a spanning tree T of G such that w(T )
is minimal possible over all spanning trees of G.

As we have already mentioned, the main idea of our algorithm is to use
three square lattices to compute locally optimal solutions inside the appropri-
ate squares formed by those lattices. We call this approach the three lattices
method. In this technique we divide the plane into three separate lattices which
define three classes of squares. In the first step we compute optimal solutions
inside squares of the first class. In the second step we correct those solutions
inside squares of the second class and next we perform corrections inside squares
of the third class.

Consider a lattice L(0,0)
d (with origin in (0, 0) and which consists of paral-

lel horizontal and vertical lines at distance d) and two other lattices L(d/3,d/3)
d

and L
(2d/3,2d/3)
d (obtained from L

(0,0)
d by moving it by vectors (d/3, d/3) and

(2d/3, 2d/3) , respectively (see Figure 1). The set of interiors of squares deter-
mined by lattice L(ν1,ν2)

d are denoted by S(ν1,ν2)
d . We denote by G[S] a subgraph

of G induced by vertices contained in the square S (i.e. vertices from the set
{v ∈ V (G) : v ∈ S})in a square lattice.

Let G be a connected graph and let H be a subgraph of G, such that it has
k connected components H1, H2, . . .Hk.

Define first a simple procedure SpanSub in the following way:

SpanSub(G,H)
Input: A graph G and its subgraph H .
Output: A spanning subgraph S of G, S = S(G,H).

1. V (S) := V (G)

2. E(S) := (E(G) \ E(H)) ∪
(⋃k

i=1 E(MST(Hi))
)

Our algorithm repeatedly calls the above procedure and consists of the fol-
lowing main steps:

AlmostMST

Input: Connected Unit Disc Graph G and input parameter d .
Output: Graph K which contains MST(G) .

(1) Run ApproxMST with graph G as the input and L as the output.

(2) Run SpanSub

(
L,
⋃

S∈S(0,0)
d

L[S]
)
, return graph N ′.

(3) Run SpanSub

(
N ′,

⋃
S∈S(d/3,d/3)

d

N ′[S]
)
, return graph N ′′.

(4) Run SpanSub

(
N ′′,

⋃
S∈S(2d/3,2d/3)

d

N ′′[S]
)
, return graph K.

In the theorem below, we summarize properties of the output graph of the algo-
rithm AlmostMST.
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Fig. 1. An illustration of the idea of algorithm AlmostMST

Theorem 1. Let G be a Unit Disc Graph and let d be a input parameter, d > 9.
Suppose thatK is an output graph of the algorithm AlmostMST. ThenK is planar
graph with bounded degrees, MST(G) ⊆ K, w(K) ≤ (1 + 6

d−6 )w(MST(G)) and
weight of each cycle ofK is at least d/3. Moreover algorithm AlmostMST can be
implemented in O(d2) synchronous rounds in LOCAL model of computations.

3 Correctness of AlmostMST Algorithm

We shall prove Theorem 1 via a sequence of lemmas.

Lemma 2. Let G be a connected Unit Disc Graph. Output graph K of the al-
gorithm AlmostMST is planar, has bounded degrees and contains MST(G).

Proof. Planarity and bounded degree property of K simply follow from the ob-
servation that K is a subgraph of the graph L generated by the algorithm Ap-

proxMST.
Recall that L contains MST(G) (see [9]). It remains to prove that K contains

MST(G) as well. For simplicity, we assume that all edges of G have different
weights and so MST(G) is unique.

If we analyze the main ingredient of the algorithm AlmostMST we see that
only thing that remains to be shown is that if H is a connected subgraph of
the connected graph G then MST(G) ⊆ SpanSub(G,H). By the definition of
the procedure SpanSub it is equivalent to showing that E(MST(G)) ⊆ (E(G) \
E(H)) ∪ (E(MST (H))).
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Suppose that E(MST(G)) is not a subset of (E(G)\E(H))∪(E(MST (H))). So
there exists an edge e = uv such that e ∈ (E(MST(G)) ∩E(H)) \ E(MST(H)).
Since H is connected, there exists a path in MST(H) joining vertices u and v.
Denote it by pu,v. The edge e /∈ MST(H) thus ∀e′∈pu,vw(e′) < w(e) (otherwise
we could replace any of the edges from pu,v by e and form a spanning tree with
a smaller weight). Now consider a graph M = MST(G) \ e which contains two
connected components Mu (with vertex u) and Mv (with vertex v). At least one
edge e′ ∈ pu,v connects Mu with Mv. Therefore we can construct the spanning
tree M ′ = (MST(G) ∪ e′) \ e such that w(M ′) < MST(G) (we have assumed
that w(e′) < w(e)), a contradiction.

The following observation will be helpful in the proof of Lemma 4.

Fact 3. For any three points q0 ∈ L
(0,0)
d , q1 ∈ L

(d/3,d/3)
d and q2 ∈ L

(2d/3,2d/3)
d

we have ‖q0, q1‖ + ‖q0, q2‖ ≥ d/3.

Proof. Let
∥∥∥q0, L(ν1,ν2)

d

∥∥∥ = min
q′∈L

(ν1,ν2)
d

‖q0, q′‖ and choose an arbitrary point
q0 = (x, y) lying on the segment with ends in (0, 0) and (0, d). Then

∥∥∥q0, L(d/3,d/3)
d

∥∥∥ =

⎧⎪⎨
⎪⎩
d/3 − y if y ∈ [0, d/3]
y − d/3 if y ∈ [d/3, 2d/3]
d/3 if y ∈ [2d/3, d]

∥∥∥q0, L(2d/3,2d/3)
d

∥∥∥ =

⎧⎪⎨
⎪⎩
d/3 if y ∈ [0, d/3]
2d/3 − y if y ∈ [d/3, 2d/3]
y − 2d/3 if y ∈ [2d/3, d] .

Therefore

∥∥∥q0, Ld/3,d/3)
d

∥∥∥+
∥∥∥q0, L(2d/3,2d/3)

d

∥∥∥ =

⎧⎪⎨
⎪⎩

2d/3 − y if y ∈ [0, d/3]
d/3 if y ∈ [d/3, 2d/3]
y − d/3 if y ∈ [2d/3, d] .

Thus, for such choice of q0 the sum is always at least d/3 and it is easily seen
that it also holds for other possible choices of a position of q0.

Lemma 4. All cycles in output graph K of the algorithm AlmostMST have
weight at least d/3.

Proof. The conclusion follows from the observation that if C is a cycle in the
graphK, then it must intersect all three lattices L(0,0)

d , Ld/3,d/3)
d and L(2d/3,2d/3)

d .
Otherwise, assume that C does not cross L(0,0)

d and is entirely contained in the
square S ∈ S(0,0)

d . It is however impossible since at least one edge of C would
then be deleted in the first step of the algorithm AlmostMST. Similar argument
also works in the case when C avoids intersection with two other lattices. So,



A Local Distributed Algorithm to Approximate MST in Unit Disc Graphs 247

let q0, q1 and q2 be points in which C crosses L(0,0)
d , L(d/3,d/3)

d and L(2d/3,2d/3)
d ,

respectively. Then, by Fact 3, w(C) ≥ ‖q0, q1‖ + ‖q0, q2‖ ≥ d/3, and the lemma
follows.

Lemma 5. Output graph K of the algorithm AlmostMST satisfies

w(K) ≤ (1 + 6/(d− 6))w(MST(G)).

Proof. Since the graph K is a subgraph of the graph L generated by the algo-
rithm ApproxMST, therefore K is planar. Denote by |F (K)| the number of
bounded faces in the plane embedding of K. Every bounded face corresponds to
some cycle C and by Lemma 4 each such C has weight at least d/3. Since every
edge in C belongs to the frontier of at most two faces, therefore

w(K) ≥ |F (K)|
2

d

3
.

By Lemma 2, K contains MST (G). By Euler’s formula |V (K)| − |E(K)| +
|F (K)| = 1 (remind that F (K) is the number of bounded faces), so MST (G)
can be extracted from K by the removal of exactly |F (K)| edges. Since each
edge have weight at most 1 we have

|F (K)| d
6

≤ w(K) ≤ |F (K)| + w(MST(G)).

Thus,

|F (K)| ≤ 6w(MST(G))
d− 6

,

which implies that

w(K) ≤
(

1 +
6

d− 6

)
w(MST(G)).

Finally, let us show that AlmostMST algorithm, under the LOCAL model of
computation, can be implemented in poly(d) synchronous rounds. The imple-
mentation is based on FindingMstInSquare procedure described below.

FindingMstInSquare

Input: Connected component H ′ of H [S] where H is a subgraph of the Unit Disc
Graph G.
Output: MST(H ′) .

(1) Select a leader in H ′.
(2) Apply BFS procedure on the graph H ′ in order to deliver to the leader

complete information about weights of all the edges in H ′.
(3) The leader of H ′, using Kruskal algorithm, computes MST(H ′).
(4) The leader of H ′, using BFS procedure, sends information to all vertices of

H ′ about the edges which belong to MST(H ′).
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Lemma 6. Let d be a length of a side of a square S. Then the algorithm Find-

ingMstInSquare works in is O(d2) synchronous rounds in LOCAL model of
computations.

Proof. First observe that steps (1), (2) and (4) of the algorithm FindingMstIn-

Square take O(diam(H [S])) synchronous rounds, where diam(H [S]) denotes
the diameter of graph H [S]). Under the LOCAL model of computation, step (3)
of the algorithm FindingMstInSquare takes a single synchronous round.

It remains to show that if H ′ ⊆ H [S] is connected then diam(H ′) = O(d2).
Denote by c(r, v) a disc of radius r with the center in a vertex v. If we take
two distinct vertices wi, wj ∈ MIS(H ′) (maximal independent set of H ′) then
‖wi, wj‖ > 1, so discs c

( 1
2 , wi

)
and c

( 1
2 , wj

)
are disjoint. Obviously every

c
( 1

2 , wi

)
lie in a square of side d+1. Such a square contains at most (d+1)2

π/4 disjoint

discs of radius 1
2 , therefore MIS(H ′) is at most 4(d+1)2

π . Let v, w ∈ G[S] be two
vertices such that the shortest path pv,w between v and w has length equal to the
diameter of H ′. It is obvious that if we choose every second vertex on that path,
it will form an independent set. Therefore diam(H ′) ≤ 2|MIS(H ′)| ≤ 8(d+1)2

π .
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Abstract. In the uniform circuit model of computation, the width of
a boolean circuit exactly characterises the “space” complexity of the
computed function. Looking for a similar relationship in Valiant’s alge-
braic model of computation, we propose width of an arithmetic circuit
as a possible measure of space. We introduce the class VL as an algebraic
variant of deterministic log-space L. In the uniform setting, we show that
our definition coincides with that of VPSPACE at polynomial width.

Further, todefinealgebraicvariantsofnon-deterministic space-bounded
classes, we introduce the notion of “read-once” certificates for arithmetic
circuits. We show that polynomial-size algebraic branching programs can
be expressed as a read-once exponential sum over polynomials in VL, i.e.
VBP ∈ ΣR ·VL. We also show that ΣR ·VBP = VBP, i.e. VBPs are stable
under read-once exponential sums. Further, we show that read-once expo-
nential sumsover a restricted class of constant-widtharithmetic circuits are
within VQP, and this is the largest known such subclass of poly-log-width
circuits with this property.

1 Introduction

In the arithmetic circuit model of computation, Valiant introduced the classes
VP and VNP to capture the complexity of polynomial families ([1], see also
[2]). Over Boolean computation these classes correspond roughly to P and NP;
over arithmetic computation with Boolean inputs they correspond roughly to
#LogCFL and #P. Given the rich structure within P and LogCFL, it is natural
to ask for a complexity theory that can describe arithmetic computation at this
level. In particular, there are two well-known hierarchies within polynomial-size
Boolean circuit families: the NC hierarchy based on depth, modelling parallel
time on a parallel computer, and the SC hierarchy based on width, modelling
simultaneous time-space complexity of P machines. It is straightforward to adapt
Valiant’s definition of VP to NC. But an adaptation capturing a space-bound is
more tricky, especially when dealing with sub-linear space. The main question
is: what would be a “right” measure for space? Two obvious choices are: 1) the
number of arithmetic “cells” or registers used during the course of computation
(i.e., the unit-space model), and 2) the size of a succinct description of the
polynomials computed at each cell. A third choice is the complexity of computing
the coefficient function for polynomials in the family. All three of these space
measures have been studied in the literature, [3,4,5,6], with varying degrees of
success. In particular, the models [3,5,6], when adapted to logarithmic space,

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 250–261, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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are too powerful to give meaningful insights into small-space classes, whereas
the model of [4] as defined for log-space is too weak.

In this paper, we propose yet another model for describing space-bounded
computations of families of polynomials. Our model is based on width of arith-
metic circuits, and captures both succinctness of coefficients and ease of eval-
uating the polynomials. Special cases of this model have been studied in the
past: in [7], such circuits over Z with Boolean inputs and an additional syntactic
degree restriction are studied, while in [8,9] such circuits over arbitrary rings
but restricted to be syntactic multilinear are studied. We show that our notion
of space VSPACE(s) coincides with that of [5,6] at polynomial space with uni-
formity (Theorem 1), and so far avoids the pitfalls of being too powerful or too
weak at logarithmic space.

Continuing along this approach, we propose a way of describing non-
deterministic space-bounded computation in this context. The specific motiva-
tion for this is to obtain an analogue of the class non-deterministic log-space NL
as well as an analogue of the result that VNP = Σ · VP. Again, there is a well-
known model for NL that easily carries over to the arithmetic setting, namely
polynomial-size branching programs BP. But we are unable to compare VBP
with our version of VL. Our model here for NL is based on read-once certificates,
which also provide the correct description of NL in terms of L in the Boolean
world. We show that the arithmetization of this model, ΣR · VL does contain
arithmetic branching programs (Theorem 2).

Surprisingly, we are unable to show a good upper bound on the complexity
of read-once certified log-space polynomial families. This raises the question: Is
the read-once certification procedure inherently too powerful? We show that this
is not always the case; for branching programs, read-once-certification adds no
power at all (Theorem 3). Similarly, for polylog-width circuits where the syntac-
tic degree is bounded by a polynomial, read-once certification does not take us
beyond VQP (Theorem 4). Further, if the circuit is multiplicatively disjoint and
of constant width, then read-once certification does not take us beyond VP.

2 Preliminaries

We use standard definitions for complexity classes such as polynomial space
PSPACE, NC, L, NL and LogCFL (see e.g. [10],[11]).

An arithmetic circuit over a ring 〈K,+,×, 0, 1〉 is a directed acyclic graph C,
where vertices with non-zero in-degree are labelled from {+,×}, and vertices of
zero-in-degree (called leaf nodes) are labelled fromX∪K, whereX = {x1 . . . , xn}
is the set of variable inputs to the circuit. An output node of C is a node of zero
out-degree, and it computes a polynomial in K[X ]. (A circuit can have more
than one output node, thus computing a set of polynomials.)

The following definitions apply to both arithmetic and boolean circuits, hence
we simply use the term circuit. Depth of a circuit is the length of a longest path
from a leaf node to an output node. Size of the circuit is the number of nodes
and edges in it. Width of a layered circuit is the maximum number of nodes at
any particular layer. We assume that all output nodes appear at the last layer.
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Polynomial size poly-log depth Boolean circuits form the class NC; NC1 is the
subclass of log-depth circuits and is known to be contained in L. Polynomial
size poly-log width boolean circuits form the class SC; SC0 is the subclass of
constant-width circuits and SC1 is the subclass of log-width circuits. It is known
that SC0 equals NC1 ([12]) and uniform SC1 equals L.

An arithmetic (resp. Boolean) circuit C is said to be skew if for every multi-
plication gate f = g × h (resp. ∧ gate f = g ∧ h), either h or g is in X ∪ K. C
is said to be weakly skew if for every f = g × h, either the edge (g, f) or (h, f)
is a bridge in the circuit, i.e removing the edge disconnects the circuit. Poly-size
Boolean skew circuits are known to characterise NL([13]).

An algebraic branching program (BP for short) over a ring K is a layered
directed acyclic graph, where edges are labelled from {x1, . . . , xn} ∪ K. There
are two designated nodes, s and t, where s has zero in-degree and t has zero
out-degree. Size of a BP is the number of nodes and edges in it and width is the
maximum number of nodes at any layer. Length of a BP is the number of layers
in it. Depth of a BP B equals 1 + length(B). The polynomial P computed by
a BP is the sum of weights of all s-t paths in P , where weight of a path is the
product of all edge labels in the path. We will also consider multi output BPs,
where the above is generalised in the obvious way to several nodes t1, t2, . . . , tm
existing at the last level. Note that BPs can be simulated by skew circuits and
vice versa with a constant blow up in the width.

VP denotes the class of families of polynomials (fn)n≥0 such that ∀n ≥ 0

– fn ∈ K[x1, . . . , xu(n)], where u ≤ poly(n)
– deg(fn) ≤ poly(n)
– fn can be computed by a polynomial size arithmetic circuit.

VPe is the sub-class of VP corresponding to poly-size arithmetic formula ( i.e.
circuits with out-degree at most 1). If fn can be computed by arithmetic circuits
with resource bounds the same as NC1 or SC0 or SC1, then we say the family
is in VNC1 or VSC0 or VSC1 respectively. It is known that VPe is the same as
VNC1. If the circuits computing fn have quasipolynomial size 2logc n, we say that
{fn} is in the class VQP.

A polynomial family (fn)n≥0 is in VNP if there exists a family (g	)n≥0 in VP
such that fn(X) =

∑
e∈{0,1}m gn(X, e), where m is bounded by poly(n).

We let VBP and VBWBP stand for classes corresponding to poly-size BPs of
poly and constant width, respectively. Without loss of generality, we can treat
these classes as skew circuits. ([14])

Let C be a complexity class defined in terms of Turing machines. A circuit
family (Bn)n≥0 is said to be C-uniform, if the direct connection language for Bn

can be decided in C. (see [10])

3 Notion of Space for Arithmetic Computations?

In the case of boolean computations, the notion of “width” of a circuit cap-
tures the notion of space in the Turing machine model (under certain uniformity
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assumptions). In the case of arithmetic computations, defining a notion of “space
bounded computation” seems to be a hard task.

3.1 Previously Studied Notions

One possible measure for space is the number of arithmetic “cells” or regis-
ters used in the course of computation (i.e., the unit-space model). Michaux [3]
showed that with this notion of space, any language that is decided by a machine
in the Blum-Shub-Smale model of computation (a general model for algebraic
computation capturing the idea of computation over reals, [15]; see also [2]) can
also be computed using O(1) registers. Hence there is no space-hierarchy theorem
under this space measure.

Another possible measure is the size of a succinct description of the polyno-
mials computed at each cell. In [4], Naurois introduced a notion of weak space in
the Blum-Shub-Smale model, and introduced the corresponding log space classes
LOGSPACE W and PSPACEW . This is in fact a way of measuring the complexity
of succinctly describing the polynomials computed by or represented at each
“real” cell. Though this is a very natural notion of “succinctness” of describing
a polynomial, this definition has a few drawbacks:

1. LOGSPACE W seems to be too weak to contain even NC1 over R, which is in
contrast to the situation in the Boolean world.

2. The polynomials representable at every cell have to be “sparse”, i.e., the
number of monomials with non-zero coefficients should be bounded by some
polynomial in the number of variables.

The second condition above makes the notion of weak space very restrictive if
we adapt the definition to the Valiant’s algebraic computation model. This is
because the corresponding log-space class in this model will be computing only
sparse polynomials, but in the non-uniform setting sparse polynomials are known
to be contained in a highly restrictive class called skew formula ([8]), which is in
fact a proper subclass of constant depth arithmetic circuits (i.e., VAC0).

Koiran and Perifel ([5,6]) suggested a notion of polynomial space for Valiant’s
( [1,2]) classes. The main purpose of their definition was to prove a transfer the-
orem over R and C. Under their definition Uniform-VPSPACE (the non-uniform
counterpart can be defined similarly) is defined as the set of families (fn) of mul-
tivariate polynomials fn ∈ F [x1, . . . , xu(n)] with integer coefficients such that

– u(n) is bounded by a polynomial in n.
– Size of coefficients of fn is bounded by 2poly(n).
– Degree of fn is bounded by 2poly(n).
– Every bit of the coefficient function of fn is computable in PSPACE.

In [5], it was observed that the class VPSPACE is equivalent to the class of
polynomials computed by arithmetic circuits of polynomial depth and expo-
nential size. Such Boolean circuits compute exactly PSPACE, hence the name
VPSPACE. Thus one approach to get reasonable smaller space complexity classes
is to generalise this definition. We can consider VSPACE(s(n)) to consist of fam-
ilies (fn)n≥1 of polynomials satisfying the following:
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– fn ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn, is bounded
by some polynomial in n.

– Degree of fn is bounded by 2s(n).
– The number of bits required to represent each of the coefficients of fn is

bounded by 2s(n), i.e. the coefficients of fn are in the range [−22s(n)
, 22s(n)

]
– Given n in unary, an index i ∈ [1, 2s(n)], and a monomial M , the ith bit of

the coefficient of M in fn is computable in DSPACE(s(n)).

It is easy to see that with this definition, even the permanent function PERMn

is in log-space. Thus VSPACE(logn) would be too big a class to be an arith-
metic version of log-space. The reason here is that this definition, unlike that of
[4], goes to the other extreme of considering only the complexity of coefficient
functions and ignores the resource needed to add the monomials with non-zero
coefficients. The relationship between the complexity of coefficient functions and
the polynomials themselves is explored more thoroughly in [16].

3.2 Defining VPSPACE in Terms of Circuit Width

In this section we propose width of a (layered) circuit as a possible measure of
space for arithmetic computations.

Definition 1. Let VWIDTH(S) (with S = S(n)) be the class of polynomial fam-
ilies (fn)n≥0 with the following properties,

– The number of variables u(n) in fn is bounded by poly(n)
– fn ∈ Z[x1, . . . , xu(n)], i.e fn has only integer coefficients
– deg(f) ≤ max{2S(n), poly(n)}.
– The coefficients of fn are representable using max{2S(n), poly(n)} many bits.
– fn is computable by an arithmetic circuit of width S(n) and size ≤ max{

2S(n), poly(n)}.
Further, if the arithmetic circuits in the last condition are DSPACE(S)-uniform,
we call the family Uniform-VWIDTH(S).

Remark 1. In [7], poly size circuits of log width and poly degree were introduced.
The above definition generalises this definition to arbitrary width. A notable
difference is that in [7] and [8], the degree bound was on the syntactic degree of
the width-bounded circuits rather than on the degree of output polynomial. This
was necessary to bound the degree of the output polynomial as well as the size
of its coefficients. Here we do not deal with syntactic degree but independently
bound the degree of the polynomial as well as the values of the coefficients.

We show in Theorem 1 below that with this definition, uniform VWIDTH(poly)
coincides with uniform VPSPACE as defined in [5]; thus polynomial width indeed
corresponds to polynomial space. Motivated by this equivalence, we define the
following complexity classes:

Definition 2. VSPACE(S(n)) = VWIDTH(S(n))
Uniform-VSPACE(S(n))= Uniform-VWIDTH(S(n))

We denote the log-space class by VL; thus VL = VWIDTH(logn) = VSC1.
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The following containments and equalities follow directly from known results
about width-constrained arithmetic circuits.

Lemma 1 ([17,7,8,9]). VBWBP = VNC1 = VPe ⊆ VSPACE(O(1)) = VSC0 ⊆
VL = VSC1 ⊆ VP

Thus VL according to this definition is in VP and avoids the trivially “too-
powerful” trap; also, it contains VNC1 and thus avoids the “too weak” trap.

The following closure property is easy to see.

Lemma 2. For every S(n) > logn, the classes VSPACE(S(n)) are closed under
polynomially bounded summations and constant many products.

3.3 Comparing VPSPACE and VWIDTH(poly)

This subsection is devoted to proving the following equivalence,

Theorem 1. The class Uniform-VPSPACE as defined in [5] coincides with
Uniform-VWIDTH(poly).

The equivalence follows from the two lemmas below.

Lemma 3. Uniform-VPSPACE ⊆ Uniform-VWIDTH(poly).

The converse direction is a little more tedious, but essentially follows from the
Lagrange interpolation formula for multivariate polynomials.

Lemma 4. Uniform-VWIDTH(poly) ⊆ Uniform-VPSPACE.

Lemma 4 requires that the VWIDTH family be uniform (with a direct-connection
uniformity condition). If the VWIDTH family is non-uniform, this problem can-
not be circumvented with polynomial advice, since the circuit has exp-size.

4 Read-Once Certificates

In general, non-deterministic complexity classes can be defined via existential
quantifiers. e.g. , NP = ∃·P . In the algebraic setting, Valiant ([1], [2]) introduced
the class VNP (algebraic counterpart of NP) obtained as an “exponential” sum
of values of a polynomial size arithmetic circuit. i.e. , VNP = Σ ·P . Valiant also
showed that VNP = Σ · VPe, which equals Σ · VNC1.

If we consider smaller classes, NL is the natural non-deterministic version of
L. However to capture it via existential quantifiers, we need to restrict the use
of the certificate, since otherwise ∃ · L = NP. It is known that with the notion
of “read once” certificates (see, e.g. , [11], Chapter 4) one can express NL as an
existential quantification over L. Analogously, we propose a notion of “read-once”
certificates in the context of arithmetic circuits so that we can get meaningful
classes by taking exponential sums over classes that are below VP.
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Definition 3. Let C be a layered arithmetic circuit with � layers. Let X =
{x1, . . . , xn} and Y = {y1, . . . , ym} be the input variables of C. C is said to be
“read-once certified” in Y if the layers of C can be partitioned into m blocks,
such that each block reads exactly one variable from Y . That is, C satisfies the
following:

– There is a fixed permutation π ∈ Sm such that the variables of Y appear in
the order yπ(1), . . . , yπ(m) along any leaf-to-root path.

– There exist indices 0 = i1 ≤ . . . ≤ im ≤ � such that the variable yπ(j) appears
only from layers ij + 1 to ij+1.

We usually assume, without loss of generality, that π is the identity permutation.
Now we define the the exponential sum over read-once certified circuits.

Definition 4. Let C be any arithmetic circuit complexity class. A polynomial
family (fn)n≥0 is said to be in the class ΣR · C, if there is a family (gn)n≥0 such
that fn(X) =

∑
Y ∈{0,1}m(n) gn(X,Y ) and gn is computed by a circuit of type C

that is read-once certified in Y and m(n) ≤ poly(n).

We also use the term “read once exponential sum” over C to denote ΣR · C.
For circuits of width polynomial or more, the restriction to read-once certi-

fication is immaterial: the circuit can read a variable once and carry its value
forward to any desired layer via internal gates. This is equivalent to saying that
for a P machine, read-once input is the same as two-way-readable input. Thus

Lemma 5. ΣR · VP = Σ · VP = VNP

Having seen that the read-once certificate definition is general enough for the
case of large width circuits, we turn our focus on circuits of smaller width. Once
the width of the circuit is substantially smaller than the number of bits in the
certificate, the read-once property becomes a real restriction. If this restriction
correctly captures non-determinism, we would expect that in analogy to BP =
NL = ΣR · L, we should be able to show that VBP equals ΣR · VL. In a partial
answer, we show in the following theorem one direction: read-once exponential
sums over VL are indeed powerful enough to contain VBP.

Theorem 2. VBP ⊆ ΣR · VL.

In order to prove the above theorem, we consider a problem that is complete for
VBP under projections. (see [2] for definition of a projection). Let Gn = (Vn, En)
(with Vn = {1, . . . , n}) be the complete layered graph with variable xi,j as label
on the edge (i, j) ∈ En. Let s = 1 and t = n denote two special nodes in Gn. Let
X = (xi,j)i,j∈{1,...,n}. For any directed s− t path P = 〈v0, v1, . . . , v	, v	+1〉 in Gn,
letMP denote the monomial that is the product of the variables corresponding to
edges in P . Let PATHn

G =
∑

P MP , where P is over all the s− t paths in Gn.

Proposition 1. (folklore) (PATHn
G)n≥0 is complete for VBP under projections.

We prove theorem 2 by showing that PATHn
G ∈ ΣR · VL.
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Proof (of theorem 2). Here onwards we drop the index n from Gn.
We define function hG(Y, Z) : {0, 1}
logn� × {0, 1}n2 → {0, 1} as follows.

Assume that the variables in Y = {y1, . . . , yk} and Z = {z1,1, . . . , zn,n} take
only values from {0, 1}. hG(Y, Z) = 1 if and only if Z = z1,1, . . . , zn,n represents
a directed s-t path in G of length exactly �, where � written in binary is y1 . . . yk,
and Z reads off the entries of X in column-major order. Note that s − t paths
P in G are in one-to-one correspondence with assignments to Y, Z such that
hG(Y, Z) = 1. Hence

PATHn
G =

∑
P

MP =
∑
Y,Z

hG(Y, Z) [ weight of path specified by Y, Z]

=
∑
Y,Z

hG(Y, Z)
∏
i,j

(xi,jzi,j + (1 − zi,j))

There is a deterministic log-space algorithm A which computes hG(Y, Z) when
Y, Z is given on a “read once” input tape (see [11]). Let C be the corresponding
logn width boolean circuit. ( w.l.o.g., all negation gates in C are at the leaves.)
Call its natural arithmetization D. Since Y and Z are on a read-once input tape,
it is easy to see that C, and hence D, are read-once certified in the variables from
Y and Z. We can attach, parallel to D, constant-width circuitry that collects
factors of the product

∏
i,j (xi,jzi,j + (1 − zi,j)) as and when the zi,j variables

are read, and finally multiplies this with hG(Y, Z). The resulting circuit remains
O(log n)-width, and remains read-once certified on Y, Z. �

While we are unable to show the converse, we are also unable to show a reason-
able upper bound on ΣR · VL. It is not even clear if ΣR · VL is contained in VP.
One possible interpretation is that the ΣR operator is too powerful and can lift
up small classes unreasonably. We show that this is not the case in general; in
particular, it does not lift up VBP and VBWBP.

Theorem 3
1. ΣR · VBP = VBP

2. ΣR · VBWBP = VBWBP

This theorem follows from Lemma 6 below, and from the facts that weakly skew
circuits can be transformed into (1) skew circuits ([14]), and (2) skew circuits
with a quadratic blowup in width ([9]). First, a definition.

Definition 5. For f ∈ K[X,Y ] with X = {x1, . . . , xn} and Y = {y1, . . . , ym},
EY (f) denotes the exponential sum of f(X,Y ) over all Boolean settings of Y .
That is,

EY (f)(X) =
∑

e⊆{0,1}m

f(X, e)

Lemma 6. Let C be a layered skew arithmetic circuit on variables X ∪ Y .
Suppose C is read-once certified in Y . Let w = width(C), s = size(C) and
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� = the number of layers in C. Let f1, . . . , fw denote the output gates (also
the polynomials computed by them) of C. There exists a weakly skew circuit
C′, of size O(mw4s) and width 4w, that computes all the exponential sums
EY (f1), . . . , EY (fw).

Proof. We proceed by induction on m = |Y |. In the base case when m = 1,
EY (fj)(X) = fj(X, 0) + fj(X, 1). Putting two copies of C next to each other,
one with y = 0 and the other with y = 1 hardwired, and adding corresponding
outputs, gives the desired circuit.

Assume now that the lemma is true for all skew circuits with m′ = |Y | < m.
LetC be a given circuit where |Y | = m. Let Y ′ denote Y \{ym} = {y1, . . . , ym−1}.
As per definition 3, the layers of C can be partitioned into m blocks, with the
kth block reading only yk from Y . Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ � be the layer
indices such that yk is read between layers ik +1 and ik+1. Let f1, . . . , fw be the
output gates of C.

We slice C into two parts: the bottom m− 1 blocks of the partition together
form the circuit D, and the top block forms the circuit Cm. Let g1, . . . , gw be the
output gates of D. These are also the inputs to Cm; we symbolically relabel the
non-leaf inputs at level 0 and the outputs of Cm as Z1, . . .Zw and h1, . . . , hw.
Clearly, Cm andD are both skew circuits of width w. Further, each hj depends on
X , ym and Z; that is, h1, . . . , hw ∈ R[Z1, . . . , Zw] where R = K[X, ym]. Similarly,
each gj depends on X and Y ′; g1, . . . , gw ∈ K[X,Y ′]. The values computed by
C can be expressed as fj(X,Y ) = hj (X, ym, g1(X,Y ′), . . . , gw(X,Y ′)).

Since C and Cm are skew circuits, and since the variables Zj represent non-leaf
gates of C, Cm must be linear in these variables. Hence each hj can be written
as hj(X, ym, Z) = cj +

∑w
k=1 cj,kZk, where the coefficients cj, cj,k ∈ K[X, ym].

Combining this with the expression for fj , we have

fj(X,Y ) = hj (X, ym, g1(X,Y ′), . . . , gw(X,Y ′))

= cj(X, ym) +
w∑

k=1

cj,k(X, ym)gk(X,Y ′) and hence

∑
e∈{0,1}m

fj(X, e) =
∑

e∈{0,1}m

[
cj(X, em) +

w∑
k=1

cj,k(X, em)gk(X, e′)

]

= 2m−1
1∑

em=0

cj(X, em) +
w∑

k=1

∑
e∈{0,1}m

cj,k(X, em)gk(X, e′)

= 2m−1
1∑

em=0

cj(X, em) +
w∑

k=1

⎛
⎝ ∑

em∈{0,1}
cj,k(X, em)

⎞
⎠
⎛
⎝ ∑

e′∈{0,1}m−1

gk(X, e′)

⎞
⎠

Thus EY (fj)(X) = 2m−1Eym(cj)(X) +
w∑

k=1

Eym(cj,k)(X)EY ′(gk)(X)
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By induction, we know that there is a weakly skew circuit D′ of width 4w and
size O((m − 1)w4s) computing EY ′(gk)(X) for all k simultaneously.

To compute Eym(cj)(X), note that a copy of Cm with all leaves labelled Zk

replaced by 0 computes exactly cj(X, ym). So the sum can be computed as in
the base case, in width w+1 and size 2(size(Cm)+1). Multiplying this by 2m−1

in the standard way adds nothing to width and 2 to size, so overall width is
w + 1 and size is at most 2s+ 4.

To compute Eym(cj,k)(X), we modify Cm as follows: replace leaves labelled
Zk by the constant 1, replace leaves labelled Zk′ for k′ �= k by 0, leave the rest
of the circuit unchanged, and let hj be the output gate. This circuit computes
cj(X, ym) + cj,k(X, ym). Subtracting cj(X, ym) (as computed above) from this
gives cj,k(X, ym). Now, the sum can be computed as in the base case. Again, to
compute Eym(cj,k)(X), we use two copies of the difference circuit with ym = 0
and ym = 1 hardwired, and add their outputs. It is easy to see that this circuit
has width w + 2 and size at most 4(w + 2)size(Cm) ≤ 4(w + 2)s.

Putting together these circuits naively may increase width too much. So we
position D′ at the bottom, and carry w wires upwards from it corresponding
to its w outputs. Alongside these wires, we position circuitry to accumulate the
terms for each fj and to carry forward already-computed fk’s. The width in this
part is w for the wires carrying the outputs of D′, w for wires carrying the values
EY (fj), w + 2 for computing the terms in the sum above (they are computed
sequentially so the width does not add up), and 2 for computing partial sums
in this process, overall at most 3w + 4. Thus the resulting circuit has width at
most max{width(D′), 3w + 4} ≤ 4w.

To bound the size of the circuit, we bound its depth in the part above D′

by d; then size is at most size(D′) + width2 × d. The circuit has w modules to
compute the EY (fj)s. The depth of each module can be bounded by the depth
to compute Eym(cj) plus w times the depth to compute any one Eym(cj,k), that
is, at most (2s+ 4) +w2 × 4(w+ 2)s. So d ≤ w2(2s+ 4 + 4sw(w+ 2)) = θ(w4s),
and the size bound follows. �

5 Read-Once Exponential Sums of Some Restricted
Circuits

In this section, we explore how far the result of Theorem 3 can be pushed to
larger classes within VP. In effect, we ask whether the technique of Lemma 6 is
applicable to larger classes of circuits. Such a question is relevant because we do
not have any bound (better than VNP) even for ΣR · VSC0 and ΣR · VL.

One generalization we consider is multiplicative disjointness. An arithmetic
circuit C is said to be multiplicatively disjoint (md) if every multiplication gate
operates on sub-circuits which are not connected to each other. (See [14].) i.e.
if g = u × v then the sub-circuits rooted at u and v are disjoint. Multiplicative
disjointness generalises skewness and weak-skewness.
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A further generalization is polynomial syntactic degree. Let C be an arith-
metic circuit computing the polynomial f ∈ K[X ]. The syntactic degree of C is
the degree of the polynomial f ′ ∈ K[X, y] computed by the circuit C′ which is
obtained by replacing all the leaves in C labelled by a constant from K with the
variable y. The syntactic degree is an upper bound on the actual degree of the
polynomial computed, though the two can differ significantly. All multiplicatively
disjoint circuits have syntactic degree bounded by their size.

We add a prefixmd- to denote the multiplicative disjoint version of a class. e.g.
md-VSC0 denotes class of all polynomials that are computed by constant width
arithmetic circuits of polynomial size which are also multiplicatively disjoint. For
i ≥ 0, let VsSCi denote the sub-class of families of polynomials in VSCi whose
witness circuits also have syntactic degree bounded by poly(n). Analogous classes
sSCi in the Boolean and counting worlds have been studied in [7].

Examining the proof of Lemma 6, we see that the main barrier in extending
it to these larger classes is that when we slice C into D and Cm, Cm is no longer
linear in the “slice variables” Z. However, for md-circuits, Cm is multilinear in
Z. As far as computing the coefficients cj,α goes, where α describes a multilinear
monomial, this is not a problem; in [9], it is shown that for such circuits the
coefficient function can be computed efficiently. There is a cost to pay in size
because the number of multilinear monomials is much larger. To handle this,
we modify the inductive step, slicing C not at the last block but at a level that
halves the number of Y variables read above and below it. This works out fine for
constant-width, but results in quasipolynomial blow-up in size for larger widths.

Formally, we show the following:

Lemma 7. Let C be a layered multiplicatively disjoint circuit of width w and
size s on variables X ∪ Y . Let � be the number of layers in C. Suppose C is
read-once certified in Y . Let f1 . . . , fw be the output gates of C. Then, there is
an arithmetic circuit C′ of size smO(w) which computes EY (f1), . . . , EY (fw).

For VsSC circuits, the “upper half” circuit is not even multilinear. So we need to
explicitly account for each monomial up to the overall degree, and compute the
coefficient of each. We show that this is possible, if a quasipolynomial blow-up
in size is allowed. Formally,

Lemma 8. Let C be a layered arithmetic circuit size of s on the variables X ∪
Y ∪Z. Let d be the syntactic degree bound on C and w be its width. Let f ∈ R[Z]
be a polynomial computed by C, where R = K[X,Y ]. Let t = 〈t1, . . . , tw〉 be a
degree sequence for variables from Z. Then coefff (Zt) can be computed by a
circuit of width w + 2 and size O((d + 1)2w), where Zt =

∏w
k=1 Z

tk .

As a consequence of Lemmas 7, 8, we have the following:

Theorem 4

– ΣR ·md-VSC0 ⊆ VP.
– ΣR ·md-VSC ⊆ VQP.
– For all i ≥ 0, ΣR · VsSCi ⊆ VQP.
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Abstract. We give small universal Turing machines with state-symbol
pairs of (6, 2), (3, 3) and (2, 4). These machines are weakly universal,
which means that they have an infinitely repeated word to the left of
their input and another to the right. They simulate Rule 110 and are
currently the smallest known weakly universal Turing machines. Despite
their small size these machines are efficient polynomial time simulators
of Turing machines.

1 Introduction

Shannon [22] was the first to consider the problem of finding the smallest univer-
sal Turing machine, where size is the number of states and symbols. Here we say
that a Turing machine is standard if it has a single one-dimensional tape, one
tape head, and is deterministic [7]. Over the years, small universal programs were
given for a number of variants on the standard model. By generalising the stan-
dard model we often find smaller universal programs. One such generalisation
is to allow the blank portion of the Turing machine’s tape to have an infinitely
repeated word to the left, and another to the right. We refer to such universal
machines as weakly universal Turing machines, and they are the subject of this
work.

Beginning in the early sixties Minsky and Watanabe engaged in a vigor-
ous competition to see who could come up with the smallest universal Tur-
ing machine [13,14,23,24]. In 1961, Watanabe [23] gave a 6-state, 5-symbol
machine that was the first weakly universal machine. In 1962, Minsky [14] found
a small 7-state, 4-symbol standard universal Turing machine. Not to be out-done,
Watanabe improved on his earlier machine to give 5-state, 4-symbol and 7-state,
3-symbol weakly universal machines [24].
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Excellence from the Junta de Andalućıa grant TIC-581, and by Science Foundation
Ireland grant 04/IN3/1524.
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The 7-state universal Turing machine of Minsky has received much atten-
tion. Minsky’s machine simulates Turing machines via 2-tag systems, which were
proved universal by Cocke and Minsky [3]. The technique of simulating 2-tag sys-
tems, pioneered by Minsky, was extended by Rogozhin [21] to give the (then)
smallest known universal Turing machines for a number of state-symbol pairs.
Many of these 2-tag simulators were subsequently reduced in size by Kudlek
and Rogozhin [9], and Baiocchi [2]. Neary and Woods [17] gave small universal
machines that simulate Turing machines via a new variant of tag systems called
bi-tag systems. All of the smallest known universal Turing machines, that obey
the standard definition (deterministic, one tape, one head), simulate either 2-tag
or bi-tag systems. They are plotted as circles and triangles in Figure 1. To get
the polynomial time overhead for 2-tag simulators in Figure 1 the 2-tag simu-
lation of Turing Machines given in [15,26] is used instead of the exponentially
slow technique given in [3].

The small weak machines of Watanabe have received little attention. In par-
ticular the 5-state and 7-state machines seem little known and are largely ignored
in the literature. It is worth noting that while all other weak machines simulate
Turing machine via other simple models, Watanabe’s weak machines simulate
Turing machines directly. His machines are the most time efficient of the small
weak machines. More precisely, let t be the running time of any deterministic
single tape Turing machine M , then Watanabe’s machines are the smallest weak
machines that simulate M with a time overhead of O(t2).

We often refer to Watanabe’s machines as being semi-weak. Semi-weak ma-
chines are a restriction of weak machines: they have an infinitely repeated word
to one side of their input, and on the other side they have a (standard) infinitely
repeated blank symbol. Recently, Woods and Neary [28] have given semi-weakly
universal machines that simulate cyclic tag systems with state-symbol pairs of
(3, 7), (4, 5) and (2, 13). All of the smallest known semi-weakly universal ma-
chines are plotted as diamonds in Figure 1.

Cook [4] and Wolfram [25], recently gave weakly universal Turing machines,
smaller than Watanabe’s semi-weak machines, that simulate the universal cellu-
lar automaton Rule 110. These machines have state-symbol pairs of (7, 2), (4, 3),
(3, 4) and (2, 5) and are plotted as hollow squares in Figure 1. (Note that David
Eppstein constructed the (7, 2) machine to be found in [4].)

Here we present weakly universal Turing machines with state-symbol pairs
of (6, 2), (3, 3) and (2, 4) making them the smallest known weakly universal
machines. Our machines efficiently simulate (single tape, deterministic) Turing
machines in time O(t4 log2 t), via Rule 110. These machines are plotted as solid
squares in Figure 1 and induce a weakly universal curve.

Weakness has not been the only generalisation on the standard model in the
search for small universal Turing machines. Priese [20] gave a 2-state, 4-symbol
machine with a 2-dimensional tape, and a 2-state, 2-symbol machine with a 2-
dimensional tape and 2 tape heads. Margenstern and Pavlotskaya [11] gave a
2-state, 3-symbol Turing machine that is universal when coupled with a finite
automaton. The Turing machine part of this couple uses only 5 instructions, and
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�� : universal, 2-tag simulation, O(t4 log2 t)
� : universal, bi-tag simulation, O(t6)
�� : semi-weakly universal, direct simulation, O(t2)
� : semi-weakly universal, cyclic tag simulation, O(t4 log2 t)
�� : weakly universal, Rule 110 simulation, O(t4 log2 t)
� : weakly universal, Rule 110 simulation, O(t4 log2 t)

: universal curve (standard machines)

: weakly universal curve
: non-universal curve (standard machines)
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Fig. 1. State-symbol plot of small universal Turing machines. Each of our new weak
machines is represented by a solid square. These machines induce a weakly universal
curve. Simulation time overheads are specified. The non-universal curve shows standard
machines that are known to have a decidable halting problem.

they also show that the halting problem is decidable for couples in which the Tur-
ing machine has only 4 instructions. Hence, it is not possible to have a universal
couple with a 4-instruction Turing machine that simulates any Turing machine
M and halts if and only if M halts. Thus, they have given the smallest possible
Turing machine that is universal when coupled with a finite automaton. It is
worth noting that the weakly universal machines that we present in this paper
have the smallest number of instructions of any known universal machines with
polynomial time overhead. This comparison even includes all other generalised
Turing machine models such as those mentioned above: all known machines that
use fewer instructions but generalise other aspects (multiple tapes, coupling with
automata etc.) of the model are exponentially slow.

More on small universal Turing machines, and related notions, can be found
in [10,15,27].

1.1 Preliminaries

The Turing machines considered in this paper are deterministic and have a single
bi-infinite tape. We let Um,n denote our weakly universal Turing machine with m
states and n symbols. We write c1 1 c2 if a configuration c2 is obtained from c1
via a single computation step. We let c1 1s c2 denote a sequence of s computation
steps, and let c1 1∗ c2 denote zero or more computation steps.
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c0

c1

c2

c3...

. . . -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 . . .

Fig. 2. Seven consecutive timesteps of Rule 110. These seven timesteps show the evo-
lution of the background ether that is used in the proof [4] of universality of Rule 110.
Each black or each white square represents, a Rule 110 cell containing, state 1 or 0
respectively. Each cell is identified by the index given above it. To the left of each row
of cells there is a configuration label that identifies that row.

2 Rule 110

Rule 110 is a very simple (2 state, nearest neighbour, one dimensional) cel-
lular automaton. It is composed of a sequence of cells . . . p−1p0p1 . . . where
each cell has a binary state pi ∈ {0, 1}. At timestep s + 1, the value pi,s+1 =
F (pi−1,s, pi,s, pi+1,s) of the cell at position i is given by the synchronous local
update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0
F (0, 0, 1) = 1 F (1, 0, 1) = 1
F (0, 1, 0) = 1 F (1, 1, 0) = 1
F (0, 1, 1) = 1 F (1, 1, 1) = 0

(1)

Rule 110 was proven universal by Cook [4] (Cook’s proof is sketched in [25]).
Neary and Woods [16] proved that Rule 110 simulates Turing machines efficiently
in polynomial time O(t3 log t), an exponential improvement. This time overhead
was further improved to O(t2 log t) [15]. Rule 110 simulates cyclic tag systems
in linear time. The weak machines in this paper, and in [4,25], simulate Rule
110 with a quadratic polynomial increase in time and hence simulate Turing
machines in time O(t4 log2 t). It is worth noting that the prediction problem [5]
for these machines is P-complete, and this is also the case when we consider only
bounded initial conditions [16].

3 Three Small Weakly Universal Turing Machines

The following observation is one of the reasons for the improvement in size over
previous weak machines, and gives some insight into the simulation algorithm
we use. Notice from Equation (1) that the value of the update function F , with
the exception of F (0, 1, 1) and F (1, 1, 1), may be determined using only the
rightmost two states. Each of our universal Turing machines exploit this fact as
follows. The machines scan from right to left, and in six of the eight cases they
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need only remember the cell immediately to the right of the current cell i in
order to compute the update for i. Thus for these six cases we need only store a
single cell value, rather than two values. The remaining two cases are simulated
as follows. If two consecutive encoded states with value 1 are read, it is assumed
that there is another encoded 1 to the left and the update F (1, 1, 1) = 0 is
simulated. If our assumption proves false (we instead read an encoded 0 to the
left), then our machine returns to the wrongly updated cell and simulates the
update F (0, 1, 1) = 1.

Before giving our three small Rule 110 simulators, we give some further back-
ground explanation. Rule 110 simulates Turing machines via cyclic tag systems.
A Rule 110 instance that simulates a cyclic tag system computation is of the
following form (for more details see [4]). The input to the cyclic tag system
is encoded in a contiguous finite number of Rule 110 cells. On the left of the
input a fixed constant word (representing the ‘ossifiers’) is repeated infinitely
many times. On the right, another fixed constant word (representing the cyclic
tag system program/appendants, and the ‘leaders’) is repeated infinitely many
times. Both of these repeated words are independent of the input.

As in [4], our weakly universal machines operate by traversing a finite amount
of the tape from left to right and then from right to left. This simulates a single
timestep of Rule 110 over a finite part of the encoded infinite Rule 110 instance.
With each simulated timestep the length of a traversal increases. To ensure that
each traversal is of finite length, the left blank word l and the right blank word
r of each of our weak machines must have a special form. These words contain
special subwords or symbols that terminate each traversal, causing the tape head
to turn. When the head is turning it overwrites any symbols that caused a turn.
Thus the number of cells that are being updated increases monotonically over
time. This technique simulates Rule 110 properly if the initial condition is set up
so that within each repeated blank word, the subword between each successive
turn point is shifted one timestep forward in time.

In the sequel we describe the computation of our three machines by showing a
simulation of the update on the ether in Figure 2. In the next paragraph below,
we outline why this example is in fact general enough to prove universality. First,
we must define blank words that are suitable for this example. The left blank
word l, on the Turing machine tape, encodes the Rule 110 sequence 0001. In
the initial configuration as we move left each subsequent sequence 0001 is one
timestep further ahead. To see this note from Figure 2 that 0001 occupies, cells
−7 to −4 in configuration c1, cells −11 to −8 in c2, cells −15 to −12 in c3, etc.
Similarly, the right blank word r encodes the Rule 110 sequence 110011. Looking
at the initial configuration, as we move right from cell 0, in the first blank word
the first four cells 1100 are shifted two timesteps ahead, and the next two cells
11 are shifted a further one timestep. To see this note from Figure 2 that 1100
occupies cells 1 to 4 in c2 and 11 occupies cells 5 and 6 in c3. In each subsequent
sequence the first four cells 1100 are shifted only one timestep ahead and the last
two cells 11 are shifted one further timestep. In each row the ether in Figure 2
repeats every 14 cells and if the number of timesteps s between two rows is s ≡ 0



Small Weakly Universal Turing Machines 267

mod 7 then the two rows are identical. The periodic nature of the ether, in both
time and space, allows us to construct such blank words.

It should be noted that the machines we present here, and those in [4,25], re-
quire suitable blank words to simulate a Rule 110 instance directly. If no suitable
blank words can be found (i.e. if it is not possible to construct subwords that
terminate traversals in the encoding) then it may be the case that the particular
instance can not be simulated directly. In the sequel our machines simulate the
background ether that is used in the universality proof of Rule 110 [4]. The glid-
ers used by Cook [4] that move through this ether are periodic in time and space.
Thus, we can construct blank words that include these gliders and place the sub-
words that terminate traversals in the ether. By this reasoning, our example is
sufficiently general to prove that our machines simulate Turing machines via
Rule 110 and we do not give a full (and possibly tedious) proof of correctness.
For U3,3 we explicitly simulate three updates from Figure 2, which is general
enough so that an update [Equation (1)] on each of the eight possible three state
combinations is simulated. We give shorter examples for the machines U2,4 and
U6,2 as they use the same simulation algorithm as U3,3.

As with the machines in [4,25], the machines we present here do not halt.
Cook [4] shows how a special glider may be produced during the simulation of a
Turing machine by Rule 110. This glider may be used to simulate halting as the
encoding can be such that it is generated by Rule 110 if and only if the simulated
machine halts. The glider would be encoded on the tape of our machines as a
unique, constant word.

3.1 U3,3

We begin by describing an initial configuration of U3,3. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by 0, and the
Rule 110 state 1 is encoded by either 1 or b. The word 1b0 is used to terminate
a left traversal. (Note an exception: the 1 in the subword 1b0 encodes the Rule
110 state 0.) To the right of the tape head position, the Rule 110 state 0 is
encoded by 1, and the Rule 110 state 1 is encoded by 0 or b. The tape symbol 0
is used to terminate a right traversal. The left and right blank words, described
in paragraph 4 of Section 3, are encoded as 001b and 0b110b respectively.

Table 1. Table of behaviour for U3,3

u1 u2 u3

0 1Lu1 0Ru1 bLu1

1 bLu2 1Lu2 0Ru3

b bLu3 1Ru3

We give an example of U3,3 simulating the three successive Rule 110 timesteps
c0 1 c1 1 c2 1 c3 given in Figure 2. In the below configurations the current
state of U3,3 is highlighted in bold, to the left of its tape contents. The tape
head position of U3,3 is given by an underline and the start state is u1. The
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configuration immediately below encodes c0 from Figure 2 with the tape head
over cell index 0.

u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 1 0 b 1 1 0 b 0 b 1 1 0 b . . .

1 u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

1 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

1 u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

1 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

12 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 1 1 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

1 u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 1 b 1 1 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

When the tape head reads the subword 1b0 the left traversal is complete and
the right traversal begins.

16 u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 1 0 b 1 1 0 b 0 b 1 1 0 b . . .

1 u1u1u1, . . . 0 0 1 b 0 0 1 b 0001 0011 b b 1 1 0 b 0 b 1 1 0 b . . .

Immediately after the tape head reads a 0, during a right traversal, the simulation
of timestep c0 1 c1 is complete. To see this, compare the part of the Turing
machine tape in bold with cells −7 to 0 of configuration c1 in Figure 2. We
continue our simulation to give timestep c1 1 c2.

1 u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

1 u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

1 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

1 u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 b b b b 1 1 0 b 0 b 1 1 0 b . . .

13 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

12 u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

13 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 b b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

13 u3u3u3, . . . 0 0 1 b 0 0 1 b 1 1 b b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

115 u1u1u1, . . . 0 0 1 b 0001 0011 0111 1100 b b 0 b 1 1 0 b . . .

The simulation of timestep c1 1 c2 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −11 to 4 of configuration c2 in
Figure 2. We continue our simulation to give timestep c2 1 c3.

13 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 1 0 1 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

14 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 1 0 1 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .
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15 u1u1u1, . . . 0 0 1 b 0 0 0 1 0 0 1 1 b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

12 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

15 u1u1u1, . . . 0 0 1 b 0 0 0 1 0 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

12 u2u2u2, . . . 0 0 1 b 0 0 0 b 1 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

16 u3u3u3, . . . 0 0 1 b 1 1 b b 1 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

121 u1u1u1, . . . 0001 0011 0111 1100 010011 b b 1 1 0 b . . .

The simulation of timestep c2 1 c3 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −15 to 6 of configuration c3 in
Figure 2.

3.2 U2,4

We begin by describing an initial configuration of U2,4. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by either 0 or 0/
and the Rule 110 state 1 is encoded by either 1 or 1/ . The word 0/ 1 is used to
terminate a left traversal. To the right of the tape head position, the Rule 110
state 0 is encoded by 0/ and the Rule 110 state 1 is encoded by 1/ or 0. The tape
symbol 0 is used to terminate a right traversal. The left and right blank words,
from paragraph 4 of Section 3, are encoded as 0 0 0/ 1 and 0 1/ 0/ 0/ 0 1/ respectively.

Table 2. Table of behaviour for U2,4

u1 u2

0 0/ Lu1 1/ Ru1

1 1/ Lu2 0/ Lu2

0/ 1/ Lu1 0Ru2

1/ 1/ Lu1 1Ru2

We give an example of U2,4 simulating the two successive Rule 110 timesteps
c0 1 c1 1 c2 given in Figure 2. The configuration immediately below encodes c0
from Figure 2 with the tape head over cell index 0.

u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

16 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/ 1 0/ 0/ 1/ 1/ 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

1 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/1/ 0/ 0/ 1/ 1/ 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

When the tape head reads the subword 0/ 1 the left traversal is complete and the
right traversal begins.

16 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 1 1 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

1 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0001 0011 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .
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Immediately after the tape head reads a 0, during a right traversal, the simulation
of timestep c0 1 c1 is complete. To see this, compare the part of the Turing
machine tape in bold with cells −7 to 0 of configuration c1 in Figure 2. We
continue our simulation to give timestep c1 1 c2.

12 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 1 1 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

12 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 0/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

1 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 1/ 0/1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

14 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

15 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0/ 0/ 1/ 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

1 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1/ 0/ 0/ 1/ 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

115 u1u1u1, . . . 0 0 0/ 1 0001 0011 0111 11001/ 1/ 0 1/ 0/ 0/ 0 1/ . . .

The simulation of timestep c1 1 c2 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −11 to 4 of configuration c2 in
Figure 2.

3.3 U6,2

We begin by describing an initial configuration of U6,2. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by the word 00
and the Rule 110 state 1 is encoded by the word 11. The word 010100 is used to
terminate a left traversal and encodes the sequence of Rule 110 states 010. To
the right of the tape head position the Rule 110 state 0 is encoded by the word 00
and the Rule 110 state 1 is encoded by either of the words 01 or 10. The word 10
is used to terminate a right traversal. The left and right blank words, from para-
graph 4 of Section 3, are encoded as 00000101 and 100100001001 respectively.

Table 3. Table of behaviour for U6,2

u1 u2 u3 u4 u5 u6

0 0Lu1 0Lu6 0Ru2 1Ru5 1Lu4 1Lu1

1 1Lu2 0Lu3 1Lu3 0Ru6 1Ru4 0Ru4

To illustrate the operation of U6,2 we simulate the Rule 110 timestep c0 1 c1
given in Figure 2. The configuration immediately below encodes c0 from Figure 2
with the tape head over cell index 0.

u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 11 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u3u3u3, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 00 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 01 1 0 0 1 0 0 0 0 1 0 0 1 . . .
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1 u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 00 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 01 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

15 u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 01 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 10 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 01 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

When the tape head reads the subword 1 0 1 0 0 the left traversal is complete
and the right traversal begins.

1 u5u5u5, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u5u5u5, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

14 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 01 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u5u5u5, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 10 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 01 1 0 0 1 0 0 0 0 1 0 0 1 . . .

12 u4u4u4, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 . . .

1 u1u1u1, . . . 0 0 0 0 0 1 0 1 00000011 00001111 0 1 0 1 0 0 0 0 1 0 0 1 . . .

Immediately after the tape head reads a 10, during a right traversal, the simula-
tion of timestep c0 1 c1 is complete. To see this, compare the part of the Turing
machine tape in bold (recall 0 and 1 are encoded as 00 and 11 respectively) with
cells −7 to 0 of configuration c1 in Figure 2.

4 Discussion on Lower Bounds

The pursuit to find the smallest possible universal Turing machine must also
involve the search for lower bounds, finding the largest Turing machines that
are in some sense non-universal. One approach is to settle the decidability of
the halting problem, but this approach is not suitable for the machines we have
presented.

It is known that the halting problem is decidable for (standard) Turing ma-
chines with the following state-symbol pairs (2, 2) [8,18], (3, 2) [19], (2, 3) (claimed
by Pavlotskaya [18]), (1, n) [6] and (n, 1) (trivial), where n 
 1. Then, these decid-
ability results imply that a universal Turing machine, that simulates any Turing
machineM and halts if and only ifM halts, is not possible for these state-symbol
pairs. Hence these results give lower bounds on the size of universal machines of
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this type. While it is trivial to prove that the halting problem is decidable for (pos-
sibly halting) weak machines with state-symbol pairs of the form (n, 1), it is not
known whether the other decidability results above generalise to (possibly halt-
ing) weak Turing machines.

The weakly universal machines presented in this paper, and those in [4,25], do
not halt. Hence the non-universality results discussed in the previous paragraph
would have to be generalised to non-halting weak machines to give lower bounds
that are relevant for our machines. This may prove difficult for two reasons.
The first issue is that, intuitively speaking, weakness gives quite an advantage.
For instance, the program of a universal machine may be encoded in one of the
infinitely repeated blank words of the weak machine. The second issue is related
to the problem of defining a computation. Informally, a computation could be
defined as a sequence of configurations that ends in a special terminal config-
uration. For non-halting machines, there are many ways to define a terminal
configuration. Given a definition of terminal configuration we may prove that
the terminal configuration problem (will a machine ever enter a terminal config-
uration) is decidable for a machine or set of machines. However this result may
not hold as a proof of non-universality if we subsequently alter our definition of
terminal configuration. In fact, it may be easily shown that the Turing machine
U2,4 from Table 2, which we prove weakly universal, is provably non-universal
when it is restricted to the standard blank background.

It is trivial that no weakly universal Turing machines exist for the state-
symbol pair (n, 1) even when we consider machines with no halting condition.
We also believe that relevant decidability results for the state-symbol pair (2, 2)
may be given. If this is true, then the problem of whether or not there are 2-
state and 3-state weakly universal machines remains open for only (2, 3) and
(3, 2) respectively.

Margenstern [10], Baiocchi [1], and Michel [12] have found small machines that
simulate iterations of the 3x+ 1 problem and other Collatz-like functions. The
smallest known weakly universal machines are almost at the minimum possible
size, thus implementing the Collatz problem on weak machines could be an
interesting way of exploring the little space remaining between these machines
and the state-symbol pairs where weak universality is not possible.
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Abstract. The intention of the paper is to show the applicability of the
general categorical framework of open maps to the setting of two models
– higher dimensional automata (HDA) and timed higher dimensional au-
tomata (THDA) – in order to transfer general concepts of equivalences to
the models. First, we define categories of the models under consideration,
whose morphisms are to be thought of as simulations. Then, accompa-
nying (sub)categories of observations are chosen relative to which the
corresponding notions of open maps are developed. Finally, we use the
open maps framework to obtain two abstract bisimulations which are
established to coincide with hereditary history preserving bisimulations
on HDA and THDA, respectively.

1 Introduction

Geometrical methods in concurrency theory have appeared recently for mod-
elling, analysis and verification of the behaviour of concurrent systems. The
most popular geometric model for concurrency is higher dimensional automata
(HDA) which have been proposed by V. Pratt [22]. Actually at about the same
time a bisimulation semantics has been given for HDA in [6]. Based on the con-
cepts of HDA, numerous papers have emerged in the literature. Basic strands
of research are concerned with giving true concurrent semantics to concurrent
languages [11,8,2], with analyzing correctness of distributed databases [3], with
formalizing the fault-tolerant implementation of distributed programs [12,10,13].
The relationships between higher dimensional automata and other true concur-
rent models have been thoroughly studied in the paper [7]. Real-time extensions
of HDA (THDA) have been investigated by Goubault [9].

In an attempt to explain and unify apparent differences between the extensive
amount of research within the field of bisimulation equivalences, several category
theoretic approaches to the matter have appeared. One of them was initiated
by Joyal, Nielsen, and Winskel in [15] where they proposed an abstract way of
capturing the notion of bisimulation through the so-called spans of open maps:
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first, a category of models of computations is chosen, then a subcategory of
observation is chosen relative to which open maps are defined; two models are
bisimilar if there exists a span of open maps between the models. The abstract
definition of bisimilarity makes possible a uniform definition of bisimulation over
different models ranging from interleaving models like transition systems [18] to
true concurrency models like event structures [15], Petri nets [19], transition sys-
tems with independence [15], higher dimensional transition systems [24], higher
dimensional automata [4]. The papers [14] and [26] transfer the concepts of ab-
stract bisimularity to timed models — timed transition systems and timed event
structures, respectively.

The contribution of the paper is to show the applicability of the general cate-
gorical framework of open maps to provide abstract characterizations of hered-
itary history preserving bisimulations in the setting of two models – HDA and
THDA. In addition to the possibility of a uniform definition of bisimulation over
different models presented as categories, the open maps based bisimilarity allows
one to apply general results from the categorical setting (e.g. the existence of
canonical models and characteristic games and logics) to concrete behavioural
equivalences. In contrast to [4], we treat the notion of hereditary history preserv-
ing bisimulation [1] but not bisimulation [17]. Unlike [20], we exploit a slightly
different definition of a model run, which allows us to uniformly apply the open
maps approach to the the setting of both HDA and THDA.

The rest of the paper is organized as follows. The following two sections con-
centrate on HDA and THDA, respectively. First, the basic notions and nota-
tions concerning the structure and behaviour of the models under consideration
are introduced. Then, it is defined categories of the models and accompany-
ing (sub)categories of observations, to which the corresponding notions of open
maps are developed. Also, behavioural characterizations of the open maps are
provided. Finally, the abstract equivalences based on spans of the open maps are
shown to coincide with hereditary history preserving bisimulations on HDA and
on THDA, respectively. Section 4 contains conclusion and some remarks on fu-
ture work. In Appendix, we give a short introduction to open maps as presented
in [15]. For lack of the space, the proofs are relegated to the paper [21].

2 (Untimed) HDA

2.1 Basic Definitions

In this section, we present the model of higher dimensional automata (HDA)
– a geometric model for true concurrency based on the ideas of the works by
V. Pratt [22] and R. van Glabbeek [6]. HDA are generalizations of the usual
models of automata, also known as process graphs, state transition diagrams or
labelled transition systems. The basic idea of HDA is to use the higher dimensions
to represent the concurrent execution of processes. In contrast to interleaving
models, HDA are built as sets of 0-cubes (points) and 1-cubes (edges) between
0-cubes but also as sets of 2-cubes (squares) between 1-cubes, 3-cubes (cubes)
between 2-cubes and more generally n-cubes (hypercubes) between (n−1)-cubes.
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Fig. 1.

In this way, n-cubes represent concurrent executions of n actions. For example,
for two actions a and b, we model the mutually exclusive execution of a and b by
the HDA consisting of the 1-cubes x1, y1 and x2, y2 (in some sense, x2 and y2
are copies of x1 and y1, respectively), as shown at the left-hand side of Figure 1,
whereas the concurrent execution of a and b is modelled by 2-dimensional surface
x labelled by {a, b} and delineated by the 1-cubes x1, y1 and x2, y2, as shown at
the right-hand side of Figure 1. Thus, in HDA non-determinism arises as holes
but concurrency is modelled by hypercubes with the interior filled. It is natural
to graphically represent n-cubes as n-dimensional objects whose boundaries are
the (n−1)-cubes from which they can start and to which they end up. The 2-cube
x shown at the right-hand side of Figure 1 can start from x1 or y1. Similarly, x
ends up to x2 and y2. Thus, the boundary of the square can be divided into two
source boundary functions d0

1, d
0
2 with d0

1(x) = x1, d0
2(x) = y1 and two target

boundary functions d1
1, d

1
2 with d1

1(x) = x2, d1
2(x) = y2. In addition, we fix a

distinguished basepoint called the initial point and denoted as i0.
The following is the (well known but presented in a slightly different manner)

definition of HDA from [7].

Definition 1. A precubical set M is a collection of sets (Mn)n∈N, such that

Mn ∩Mk = ∅ for all n �= k, together with boundary functions Mn

d0
i

⇒
d1

j

Mn−1 for all

n ∈ N and i, j = 1 . . .n, such that dk
i ◦ dm

j = dm
j−1 ◦ dk

i (i < j, k,m = 0, 1).

Definition 2. A (labelled) HDA is a tuple M = (M, i0M , L, l), where M is a
precubical set, i0M ∈ M0 is a distinguished basepoint of M , called the initial
point, L is an alphabet of actions, l : M1 → L is a labelling function such that
l(d0

i (x)) = l(d1
i (x)) (i = 1, 2), for all x ∈M2

1.

We shall henceforth assume any HDA to satisfy the following: for x ∈ Mn,
|{dm

1 ◦ . . . dm
i−1 ◦ dm

i+1 ◦ . . . ◦ dm
n (x)|i = 1 . . .n}| = n, for all m = 0, 1. This means

that any n-cube starts from n distinct edges and ends up to n distinct edges.
In order to reason about the behaviour of HDA, we introduce the following

notions and notations. A cubical path in an HDA is a sequence P = p0p1 . . . pk

of cubes such that ps−1 = d0
i (ps) or ps = d1

j(ps−1) (s = 1 . . .k). A cubical path
P = p0p1 . . . pk is acyclic if there are no other relations between the ps than the

1 To extend l to all x ∈ Mn define l(x) = ∅, for n = 0, and l(x) :=
⊎
{l(y) | y =

d0
1 ◦ . . . d0

i−1 ◦d0
i+1 ◦ . . . ◦d0

n(x), i = 1, . . . , n} (
⊎

is the union of multisets), for n > 1.
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ones above. For cubical paths P and Q, we write P → Q if Q is an extension of
P . A cubical run is a cubical path P with p0 = i0M .

Two cubical paths P = p0 . . . ps . . . pk and P ′ = p0 . . . ps−1p
′
sps+1 . . .

pk (s = 1 . . .k − 1) in M are s-adjacent (denoted s↔) if one can be obtained

from the other by replacing (for i < j and m = 0, 1) either a segment
d0

i−→
ps

dm
j−→ with a segment

dm
j−1−→ p′s

d0
i−→; or a segment

dm
j−→ ps

d1
i−→ with a segment

d1
i−→ p′s

dm
j−1−→. The homotopy relation on the cubical paths in M is the reflexive

transitive closure of the adjacency relation ↔= ∪s
s↔. Moreover, P and P ′ are

(s, u, v)-adjacent (denoted P
(s,u,v)←→ P ′) if P ′ can be obtained from P by an

s-adjacency replacement of the segment
dn

u−→ ps
dl

v−→.
Further, we define a behavioural equivalence on HDA, called hereditary his-

tory preserving bisimulation (hhp-bisimulation), which is in close similarity with
the corresponding definition from [1,7].

Definition 3. Let M and N be HDA.
Cubical runs P = p0 . . . pk in M and Q = q0 . . . qk in N are called l-related iff

lM (pj) = lN (qj) for all j = 0 . . . k.
A binary relation R on cubical runs in M and N is called a hereditary history

preserving bisimulation (hhp-bisimulation) between M and N if for any (P,Q) ∈
R, P and Q are l-related and the following conditions are satisfied:

1. if P → P ′ then there exists Q′ such that Q → Q′ and (P ′, Q′) ∈ R,
2. if Q→ Q′ then there exists P ′ such that P → P ′ and (P ′, Q′) ∈ R,
3. if P ′ → P then there exists Q′ such that Q′ → Q and (P ′, Q′) ∈ R,
4. if Q′ → Q then there exists P ′ such that P ′ → P and (P ′, Q′) ∈ R,

5. if P
(s,u,v)←→ P ′ then there exists Q′ such that Q

(s,u,v)←→ Q′ and (P ′, Q′) ∈ R,

6. if Q
(s,u,v)←→ Q′ then there exists P ′ such that P

(s,u,v)←→ P ′ and (P ′, Q′) ∈ R.

HDA M and N are hhp-bisimilar if there exists an hhp-bisimulation between them
which relates their initial points (regarded as cubical runs).

Note, hhp-bisimulation is indeed an equivalence relation.

Example 1. To get more intuition about the above concept, we consider examples
of HDA shown in Figures 2 and 3. For the HDA in Figure 2, the boundary
functions are given as follows: d0

1(x1) = p1, d0
2(x1) = p2, d0

1(x2) = p3, d0
2(x2) = p2

for the left-hand HDA, and d0
1(y) = q1, d0

2(y) = q2 for the right-hand HDA. It
is easy to see that the HDA are hhp-bisimilar. For the HDA in Figure 3, the
boundary functions are given as follows: d0

1(x1) = p1, d1
2(x1) = p5, d0

1(x2) = p1,
d1
2(x2) = p2, d0

2(x3) = p4, d1
1(x3) = p3, d0

1(x4) = p5, d0
2(x4) = p6, for the left-

hand HDA, and d0
1(y1) = q1, d1

2(y1) = q6, d0
1(y2) = q1, d1

2(y2) = q2, d0
2(y3) = q4,

d1
1(y3) = q5, d0

1(y4) = q6, d0
2(y4) = q7, d0

2(y5) = q2, d1
1(y5) = q3, for the right-

hand HDA. We then have that the run (sp1s1p2s2p3s3) in the left-hand HDA can
be related only to the run (tq1t1q2t2q3t3) in the right-hand HDA. Moreover, we
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can see that (tq1t1q2t2q3t3)
(5,1,1)←→ (tq1t1q2y5q3t3) in the right-hand HDA. Then,

there should exist a run P in the left-hand HDA such that (sp1s1p2s2p3s3)
(5,1,1)←→

P but it is not the case.

2.2 Open Maps Characterization

In this subsection, we first define a category of HDA, HDA, whose morphisms
will be simulation morphisms following the approach of [15]. We then specify an
accompanying (sub)category Obs of observations, to which the corresponding
notion of open maps is developed. We finally use the open maps framework to ob-
tain abstract bisimulation which is established to coincide with hhp-bisimulation
on HDA.

Define a morphism between two HDA, which is a pair of functions, mapping
labels and cubes of the simulated system to simulating labels and cubes of the
other, satisfying some requirements.

Definition 4. Let M = (M,m0M , LM , lM ) and N = (N, i0N , LN , lN ) be HDA.
A mapping f = 〈f, α〉 (where f = ∪fn, fn : Mn → Nn, α : LM → LN) is called
a morphism from M to N iff it holds: 1. f0(i0M ) = i0N , 2. lN ◦ f = α ◦ lM ,
3. fn ◦ dm

i = dm
i ◦ fn+1.

The first condition guarantees that morphisms preserve initial points; the second
and third conditions ensure the consistency of labels and boundaries of cubes,
respectively.

Consider a simulation property of a morphism defined prior to that.



Open Maps Bisimulations for Higher Dimensional Automata Models 279

Proposition 1. If f = 〈f, α〉 is a morphism from M to N then for all cubical
runs P in M it holds:

1. whenever P −→ P ′ in M, then f(P ) −→ f(P ′) in N,

2. whenever P
(s,u,v)←→ P ′ in M, then f(P )

(s,u,v)←→ f(P ′) in N.

HDA with morphisms between them form a category HDA, HDA, in which the
composition of two morphisms f = 〈f, α〉 : M → M′ and g = 〈g, β〉 : M′ → M′′

is g ◦ f = 〈g ◦ f , β ◦ α〉 : M → M′′, and the identity morphism is a pair of the
identity functions.

For our purposes we need to endow HDA with a fibred structure. Denote
HDAL the subcategory of HDA whose objects are HDA labelled over L and
morphisms have the identity label component. We shall follow similar conven-
tions for the other categories defined in the paper.

Relying on the standards of HDA and the paper [15] (also, see Appendix), we
would like to choose ‘observation objects’ with morphisms between them so as
to form a subcategory of observations of the category of HDA. An observation
is a HDA having the form of an acyclic cubical run. We use Obs to denote the
full subcategory of observations of the category HDA.

Our next aim is to characterize ObsL-open morphisms relative to the subcat-
egory of observations defined prior to that. In the below characterization, the
first condition is usually referred to as the ”higher-dimensional” zig-zag property
and the second one ensures that ObsL-open morphisms reflect concurrency.

Theorem 1. A morphism f = 〈f, 1L〉 : M → N of HDAL is ObsL-open iff for
all cubical runs P in M it holds:

1. whenever f(P ) −→ Q′ in N, then P −→ P ′ and f(P ′) = Q′, for some
cubical run P ′ in M,

2. whenever f(P )
(s,u,v)←→ Q′ in N, then P

(s,u,v)←→ P ′ and f(P ′) = Q′, for some
cubical run P ′ in M.

At last, the coincidence of ObsL-bisimulation and hhp-bisimulation is estab-
lished.

Theorem 2. Two HDA (with the same set L of labels) are ObsL-bisimilar iff
they are hhp-bisimilar.

3 Timed HDA

3.1 Basic Definitions

We begin with presenting the concept of a timed HDA (THDA) [9] – a timed
extension of HDA. THDA are defined as a geometric shape together with an
structure given by cubes realized on this shape, and a family of norms defining
the infinitesimal duration of a computation in all directions. Time is measured
as the length of paths in cubes.
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Introduce some auxiliary notions and notations. Consider a unit cube of di-
mension n in Rn: �n := {(t1, . . . , tn) ∈ Rn | 0 ≤ ti ≤ 1, i = 1, . . . , n}, for n > 0,
and �0 := {0}, for n = 0. Let

◦
�n denote the topological interior of �n, i.e.

◦
�n:= {(t1, . . ., tn) ∈ Rn | 0 < ti < 1, i = 1, . . . , n}, for n > 0, and

◦
�0:= {0}, for

n = 0.
In order to define a THDA we first need a geometric shape (topological

space) X . We are especially interested in compactly generated Hausdorff topo-
logical spaces2 [16]. Then we should give a differential structure on X to be
able to measure time. In our case the differential structure on X is given by
cubes. Intuitively, cubes should be a sort of deformed cubes, so we define them
as continuous functions x : �n → X which induce homeomorphisms from
◦
�n to their images. Thus, x : �n → X gives the trivial structure of man-
ifold3 to x(

◦
�n). For a cube x(

◦
�n), we can define its coordinates as follows:

(x(t1, . . . , tn))i = ti (i = 1, . . . , n, n > 0). We consider functions x : �n → X
to be continuously deformed cubes only in their interior since we may want
to identify some of their boundaries to get cyclic shapes. To do this we need
functions characterizing the boundaries of cubes. Assume δm

i : �n−1 → �n

(i ∈ {1, . . ., n}, m ∈ {0, 1}) to be continuous functions defined as follows:
δm
i (t1, . . . , tn−1) = (t1, . . . , ti−1,m, ti, . . . , tn−1), for n > 1, and δm

1 (0) = (m), for
n = 1. We then have δk

i δ
m
j = δm

j+1δ
k
i for i ≤ j. To be able to take boundaries we

should require the collection of cubes to be stable by composition with bound-
ary functions. To illustrate the concepts, consider Figure 4. We have the edge
�1, the square �2 and the torus T . Moreover, x1 continuously maps the edge
�1 into small circle of T so that x1(

◦
�1) is small circle without a point, and x2

continuously maps the square �2 into T so that x2(
◦
�2) is a torus without small

and big circles. Then, we get x1 = x2 ◦ δ01 .

Fig. 4.

We can now split our cubes into sets Xn containing only cubes with the
domain �n. Also, we require X to be covered by all its cubes, i.e. X is the
disjoint union

⊔
x∈Xn, n∈N

(x(
◦
�n)).

2 In topology, a compactly generated space is a topological space X satisfying the
following condition: each subspace U ⊂ X which intersects every compact subset K
of X in a closed set is itself closed.

3 The definition of the notion of manifold can be found in [25].
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Finally, to measure the time (length) of cubes from X , we are to have a norm
‖ · ‖u on the tangent space TuX =def Tux(

◦
�n) (u ∈ x(

◦
�n)) at every u ∈ X

(for further details see [25]). A tangent space Tux(
◦
�n) is an n-dimensional space

consisting of the tangent vectors u̇ of the curves through a point u, which can
be measured by the norm. Intuitively, a tangent space contains the possible
”directions” in which one can pass through u and the norm can be seen as an
infinitesimal duration of the computation at u. In order to be consistent with the
space, the norm should be continuous on X , i.e. F (u,

.
u) = ‖ .

u ‖u is a continuous
function w.r.t. u. Note the fact that the norm ‖ · ‖u is continuious w.r.t. u̇ on a
tangent space follows from the properties of the norm [9].

We are now ready to define (labelled) THDA. For full details and explanations
on the definitions related to THDA, we refer the reader to [9], where the concept
has been first introduced.

Definition 5. A (labelled) THDA is a tuple X = (X, i0X , L, l, ‖ · ‖X), where

– X is a compactly generated Hausdorff topological space together with a presen-
tation of X by singular cubes, i.e. X is the disjoint union

⊔
x∈Xn, n∈N

(x(
◦
�n)),

where Xn consists of continuous functions xn : �n → X which induce home-
omorphisms from

◦
�n to its image and are such that xn ◦ δm

i ∈ Xn−1 for all
i = 1, . . . , n and m = 0, 1 (note, x0 ◦ δm

i = x0),
– i0X is a distinguished basepoint of X called the initial point and represented

in the form of i0X = x(0) for some function x ∈ X0,
– L is a set of labels,
– l : X1 → L is a labelling function4 such that l(x ◦ δ0i ) = l(x ◦ δ1i ) (i = 1, 2),

for all x ∈ X2,
– X is given a family of norms ‖·‖u on every tangent space TuX =def Tux(

◦
�n)

(u ∈ x( ◦
�n)) such that F (u,

.
u) = ‖ .

u ‖u is a continuous function (u ∈ X).

We shall henceforth assume any THDA to satisfy the following: for x ∈ Xn

|{x ◦ δm
n ◦ . . . ◦ δm

i+1 ◦ δm
i−1 ◦ . . . ◦ δm

1 |i = 1 . . .n}| = n for all m = 0, 1.
In order to know how much time cubes of a THDA may take, we introduce

the following definition of paths as being particular curves between two points
in X . A continuous function γ : [0, 1] → X is called a path in a THDA X if γ is
differentiable in each cube (of non-zero dimension) having nonempty intersection
with γ([0, 1]) and is increasing w.r.t. each coordinate in such the cubes. The

length of a path γ is calculated as follows: length(γ) =
1∫
0
‖ dγ

dt (t)‖γ(t)dt
5. A run

is a path γ with γ(0) = i0. A point u ∈ X is called reachable if there exists a
run γ such that γ(1) = u.
4 To extend l to all x ∈ Xn define l(x) = ∅, for n = 0, and l(x) :=

⊎
{l(y) | y =

x ◦ δ0
n ◦ . . . δ0

i+1 ◦ δ0
i−1 ◦ . . . ◦ δ0

1 , i ∈ {1, . . . , n}} (
⊎

is the union of multisets), for
n > 1.

5 The integral is actually the sum of the integrals over intervals in which γ is a differ-
entiable function.
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Let γ1 and γ2 be paths from γ1(0) = γ2(0) to γ1(1) = γ2(1) in X. A continous
function h : [0, 1] × [0, 1] → X is a homotopy between γ1 and γ2 iff 1. h(0, t) =
γ1(t), for all t ∈ [0, 1], 2. h(1, t) = γ2(t), for all t ∈ [0, 1], 3. t �→ h(s, t) is a path
from γ1(0) to γ1(1) in X, for all s ∈ [0, 1]. This defines an equivalence relation
on paths starting and ending at the same points in X. The equivalent class of a
path γ is denoted by [γ].

X

i0X

c

(0, 0, 3)

a (4, 0, 0)
b

(4, 2, 0)

(0, 2, 3) (4, 2, 3)

d

(6, 2, 3)

b

Fig. 5.

Example 2. Figure 5 shows a trivial example of a THDA. The THDA X =
(X = x(�3) ∪ x1(�1) ∪ x0(�1), i0X = (0, 0, 0), LX = {a, b, c, d}, lX , ‖ · ‖X) is
generated by the 3-cube x(t1, t2, t3) = (4t1, 2t2, 3t3) ((t1, t2, t3) ∈ �3), the 1-cube
x1(t) = (4 + 2t, 2, 3) (t ∈ �1) and the unit circle x0(t) = (6 − sin(2πt), 2, 2 +
cos(2πt)) (t ∈ �1) which is depicted by the filled-in cube, the segment and
the circle, respectively. The labelling function is given by lX(x ◦ δ03 ◦ δ02) = a,
lX(x◦δ03 ◦δ01) = b, lX(x◦δ02 ◦δ01) = c, lX(x1) = d and lX(x0) = b. The norm ‖·‖X

is induced by the Euclidean one in R3. Notice that geometrically, the interior of
the filled-in cube consists of the union of all paths where occurrences of a, b and
c overlap in time. The lengths of the runs travelled along the 1-cube labelled by
a (b or c) are equal to 4 (2 or 3, respectively). Then the lengths of all runs in
the filled-in cube are varied between

√
42 + 22 + 32 and 4 + 2 + 3.

Note, when X = (X, i0, L, l, ‖ · ‖X) is a THDA, it is easy to see that M =
(∪nXn, i0, L, l) is an HDA, where for any x ∈ Xn d

m
i (x) = x ◦ δm

i (m = 0, 1 and
i = 1 . . .n), and n-cubes are considered as discrete values but not as continuous
functions. The definitions of a cubical path (run), s- and (s, u, v)-adjacency,
homotopy on HDA can be used for THDA. Further, we extend the notion of
hhp-bisimulation to THDA as follows.

Definition 6. Let X and Y be THDA.
Cubical runs P = p0 . . . pk in X and Q = q0 . . . qk in Y are called d-related

iff for all 0 ≤ j ≤ k it holds: ‖dtpj(ṫ)‖pj(t) = ‖dtqj(ṫ)‖qj(t) for all ṫ ∈ Tt
◦
�dim pj

and t ∈ ◦
�dim pj .

A binary relation R on cubical runs in X and Y is called a timed hhp-
bisimulation between X and Y iff R is an hhp-bisimulation and for any (P,Q) ∈
R, P and Q are d-related.

THDA X and Y are timed hhp-bisimilar if there exists a timed hhp-bisimula-
tion between them which relates their initial points (regarded as cubical runs).
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Clearly, timed hhp-bisimulation is indeed an equivalence relation.

Example 3. Consider the representations shown in Figure 2 as THDA whose
spaces included in R2. At the left-hand side, we have THDA X = (X = x1(�2)∪
x2(�2)∪p4(�1)∪p5(�1)∪p6(�1)∪p7(�1), i0X = (0, 0), LX = {a, b, c}, lX , ‖·‖X).
It is generated by the 2-cubes: x1(t1, t2) = (t1, t2), x2(t1, t2) = (−t1, t2) ((t1, t2) ∈
�2) and the 1-cubs: p4(t) = (1, 1 + t), p5(t) = (1, 2 + t), p6(t) = (−1, 1 + t) and
p7(t) = (−1, 2 + t) (t ∈ �1). The labelling function is depicted in Figure 2. The
norm ‖·‖X is induced by the Euclidean one in R2. Next, at the right-hand side we
have THDA Y = (Y = y(�2) ∪ q3(�1) ∪ q4(�1) ∪ q5(�1) ∪ q6(�1), i0Y = (0, 0),
LY = {a, b, c}, lY , ‖ · ‖Y ). It is generated by the 2-cube y(t ∈ �1)(t1, t2) =
(t1, λt2) ((t1, t2) ∈ �2) and the 1-cubs: q3(t) = (1 + t, λ), q4(t) = (2, λ + t),
q5(t) = (1, λ + t) and q6(t) = (1 + t, 1 + λ) (t ∈ �1). The labelling function is
depicted in Figure 2. The norm ‖ · ‖Y is induced by the Euclidean one in R2. If
λ = 1, then THDA X and Y are timed hhp-bisimilar, otherwise they are not.

3.2 Open Maps Characterization

In this subsection, we proceed to show that timed hhp-bisimulation can be char-
acterized using the open maps framework (see Appendix).

Consider the definition of a morphism that is a pair of functions, mapping
points and labels of the simulated system to simulating points and labels of the
other, satisfying some requirements. Note, we want morphisms to contract time.

Definition 7. Let X = (X, i0X , LX , lX , ‖ · ‖X) and Y = (Y, i0Y , LY , lY , ‖ · ‖Y )
be THDA. A mapping f = 〈f, α〉 (where f : X → Y is a continuous function,
α : LX → LY is a function) is called a morphism from X to Y iff it holds:

1. f(i0X ) = i0Y ,
2. for all functions x ∈ Xn (n ∈ N), there exists a function y ∈ Yn such that

lY (y) = α(lX(x)) and the diagram: �n
x−→ X, �n

y−→ Y and X
f−→ Y ,

commutes6.
3. ‖duf(u̇)‖f(u) ≤ ‖u̇‖u for all u̇ ∈ TuX and u ∈ X.

The first condition guarantees that morphisms preserve initial points. The second
ensures that an n-cube maps to a n-cube and labels of the n-cubes coincide (α
is matched to f). The third condition guarantees that the length of each path
in X is not less than the length of its image. If in the third condition we have
‖duf(u̇)‖f(u) = ‖u̇‖u for all u̇ ∈ TuX and u ∈ X , then f preserves the length of
every path (i.e. f is an isometry).

We next establish that the morphisms defined prior to that represent some
notions of simulation of the behaviour of one system by the other.

Proposition 2. If f = 〈f, α〉 is a morphism from X to Y, then for all cubical
runs P = p0, . . . , pk in X it holds:

6 The commutativity of the diagram guarantees y−1 ◦ f ◦ x = id on
◦
�n. Hence, we

have f ∈ C∞.
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1. whenever P −→ P ′ in X, then f(P ) −→ f(P ′) in Y,

2. whenever P
(s,u,v)←→ P ′ in X, then f(P )

(s,u,v)←→ f(P ′) in Y,
3. ‖duf(u̇)‖f(u) ≤ ‖u̇‖u for all u̇ ∈ Tupj(

◦
�dim pj ), u ∈ pj(

◦
�dim pj ), j = 1 . . .k.

THDA with morphisms between them form a category of THDA, THDA, in
which the composition of two morphisms f = 〈f, α〉 : X → Y and g = 〈g, β〉 :
Y → Z is g ◦ f = 〈g ◦ f , β ◦ α〉 : X → Z, and the identity morphism is a pair of
the identity functions.

An observation is a THDA having the form of an acyclic cubical run. We use
TObsL to denote the full subcategory of observations of the category THDAL.

Further, we provide a behavioural criterion of TObsL-open morphisms which
is crucial to formulate an open maps characterization of timed hhp-bisimulation
(see Appendix).

Theorem 3. A morphism f = 〈f, 1L〉 : X → Y of THDAL is TObsL-open iff
for all cubical runs P in X it holds:

1. whenever f(P ) −→ Q′ in Y, then P −→ P ′ and f(P ′) = Q′, for some
cubical run P ′ in X,

2. whenever f(P )
(s,u,v)←→ Q′ in Y, then P

(s,u,v)←→ P ′ and f(P ′) = Q′, for some
cubical run P ′ in X,

3. duf is an isometry for all reachable points u ∈ X.

Finally, the coincidence of TObsL-bisimulation and timed hhp-bisimulation is
established.

Theorem 4. Two THDA (with the same set L of labels) are TObsL-bisimilar
iff they are timed hhp-bisimilar.

4 Conclusion

The paper focuses on open maps characterizations of hhp-bisimulation on HDA
and timed hhp-bisimulation on THDA. We remark that the equivalences have
been attacked using homotopy techniques, following the papers [7,24]. In par-
ticular, guided by our intuitive understanding of what it means for a higher
dimensional automata model to be simulated by another one, we have defined
categories of HDA and THDA and accompanying (sub)categories of observa-
tions, to which the corresponding notions of open maps have been developed.
We have used the open maps framework [15] to obtain abstract bisimulations
which have been established to coincide with the mentioned above bisimulations
on HDA and THDA. The open maps based bisimilarity makes possible a uniform
definition of bisimulation over different models presented as categories and al-
lows one to apply general results from the categorical setting (e.g. the existence
of canonical models and characteristic games and logics) to concrete behavioural
equivalences.
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As a matter of future work, it would be interesting to extend the results
obtained in the paper [5] to weak variant of bisimulation on HDA and THDA,
combining open maps and presheaf approaches. Also, we plan some investigation
on coalgebraic characterizations [23] of bisimulation in the setting of HDA and
THDA.
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Appendix: Introduction to Open Maps
We briefly recall the basic definitions from [15].

First, a category which represents a model of computation has to be identified.
Let us denote this category by M. A morphism f : X −→ Y in M should
intuitively be thought of as a simulation ofX in Y . Then, inside the category M,
one chooses a subcategory of ‘observation objects’ and ‘observation extension’
morphisms between these objects. The category of observations is denoted by P .
Given an observation (object) O in P and a model X in M, then O is said to
be an observable behaviour of X if there exists a morphism p : O −→ X in M.
In this case, p can be thought of as representing a particular way of realizing O
in X .

Next, one identifies morphisms f : X −→ Y which have the property that
whenever an observable behaviour of X can be extended via f in Y then that
extension can be matched by an extension of the observable behaviour in X . A
morphism f : X → Y in M is called P-open if whenever m : O1 → O2 in P ,
p : O1 → X , q : O2 → Y in M such that f ◦ p = q ◦m, there exists a morphism
r : O2 → X in M such that p = r ◦m and q = f ◦ r.

Finally, an abstract notion of bisimilarity is introduced. As reported in [15],
the open map approach provides general concepts of bisimilarity for any cate-
gorical model of computation. The definition is given in terms of spans of open
maps. Two models X and Y in M are said to be P-bisimilar if there exists a

span X
f←− Z

f ′
−→ Y with vertex Z and P-open morphisms.

http://www.iis.nsk.su/virb/osh09.zip
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Abstract. After Trahtman in his brilliant paper [10] solved the Road
Coloring Problem, a couple of new problems have arisen in the field of
synchronizing automata. Some of them naturally extends questions re-
lated to the ’classical’ version of synchronization. Particulary, it is known
that the problem of finding the synchronizing word of a given length for
a given automaton is NP-complete. Volkov [11] asked, what is the com-
plexity of the following problem: given a constant out-degree digraph
(possibly with multiple edges) and a natural number m, does there exist
a synchronizing word of length m for some synchronizing labeling of G.
In this paper we show that this decision version of the Road Coloring
Problem is NP-complete.

1 Introduction

The Road Coloring Problem (RCP) originates in [1] and it was stated explicitly
in the paper of Adler et al. [2]. It can be stated as follows: let G be a strongly
connected, constant out-degree finite digraph, such that the greatest common
divisor of the lengths of all cycles in G equals 1. Is there an edge labeling, turning
G into a deterministic finite synchronizing automaton? The problem is of great
importance in automata theory, because the synchronizing property makes the
automaton behavior resistant to errors that could occur in an input word: after
the error is detected, the synchronizing word can reset the automaton to its
initial state, as if there was no error. In this way we are getting back the control
over automaton action. In his paper, Trahtman [10] says:

The problem appeared first in the context of symbolic dynamics and is
important also in this area. Together with the Černý conjecture [6,8], the
road coloring problem belongs to the most fascinating problems in the
theory of finite automata. However, at the same time it was considered
as a ”notorious open problem” [5].

Trahtman [10] solved the RCP by showing that the synchronizing labeling
exists for any strongly connected, constant out-degree finite digraph G if and
only if the gcd of the lengths of all cycles in G equal to 1. RCP uses a notion of
synchronization, which, in fact, was introduced few years before the work of Adler

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 287–297, 2009.
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et al. The ’classical’ version of synchronizing problem (SP) is as follows: given
a labeled graph G with constant out-degree, find the (minimal) synchronizing
word for G. In RCP it is our task to find some synchronizing coloring, in SP the
labeling is already given. There are several questions about the complexity of
different variants of SP, important from the practical point of view. These are:

(P1) given a labeled constant out-degree graph G, check if there exists a syn-
chronizing word for G,

(P2) given a labeled constant out-degree graph G and natural number m, check
if G can be synchronized by some word of length m,

(P3) given a labeled constant out-degree graph G and natural number m, check
if the minimal synchronizing word for G has length m.

It is a well-known fact, that (P1) can be solved in polynomial time and that
(P2) is NP-complete [4]. Recently, Volkov [12] has given (referring to the un-
published result of Samotij [7]), that finding the synchronizing word of minimal
length for a given synchronizing coloring is hard. More precisely, (P3) is coNP-
hard. Under the P �= NP assumption we see that (P2) is harder than (P1). Notice
that (P2) is polynomially reducible to (P3), because of NP-hardness of the last
one. But coNP-hardness of (P3) implies that (P3) is not polynomially reducible
to (P2), unless NP=coNP, which is strongly believed to be false. Therefore, un-
der assumptions P �= NP and NP �= coNP, we can say that (P3) is harder than
(P2) and (P2) is harder than (P1).

The solution of the RCP opened a new, broad field of research. For example,
[3,9] deal with the algorithms for finding the synchronizing coloring, given a
graph G. We can reformulate (P1)-(P3) in the ’RCP fasion’:

(P1’) given a constant out-degree graph G, check if there exists a synchronizing
word for some labeling of G,

(P2’) given a constant out-degree graph G and natural number m, check if
G can be synchronized by some word of length m for some synchronizing
coloring,

(P3’) given a constant out-degree graph G and natural number m, check if
the minimal synchronizing word for G has length m for some synchronizing
coloring.

During the Wroclaw Conference on Černý Conjecture, Volkov [11] presented
some new open problems related to the RCP. Among others he asked about the
complexity of (P2’) and (P3’). Similar to (P1)-(P3), the answers for (P1’)-(P3’)
are also of practical nature. In [13], Volkov gives a good example of application
of the RCP-type problems to the real life: let a transportation network be given.
We can model it as a digraph G with vertices representing network nodes and
arrows representing one-way roads. Each road has a unique labeling (a color).
Suppose we want to help people to orientate in this network in case they get lost.
A good solution would be to provide them a sequence of road labels, such that
no matter where they start, after walking the roads according to this sequence
they will reach some common node. So, we want to find the shortest possible
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synchronizing sequence for some labeling of G. If G is strongly connected and
with constant out-degree, this is exactly the (P2’) or (P3’) problem. Therefore
it is important to know what are the complexities of problems like (P1’)-(P3’).

Polynomial algorithms that find the synchronizing coloring for G, described in
[3,9], prove that (P1’) can be solved in a polynomial time. It is a natural question,
if the ’hardness hierarchy’ of (P1’)-(P3’) is similar to (P1)-(P3). Namely, we ask
if (P2’) is essentially harder than (P1’) and if (P3’) is harder than (P2’). In this
paper we show that the slightly weaker assumption in (P2’) in comparison to
(P2) (an unlabeled graph instead of an automaton) does not change the problem
difficulty: (P2’) is NP-complete.

The rest of this paper is organized as follows: in the next section we give
the formal definitions. They will be used in Section 3, where the main result is
presented.

2 Preliminaries

An automaton is a triple A = (Q,A, δ), where Q is a nonempty, finite set of
states, A is a finite alphabet and δ : Q × A → Q is the transition function,
called also the automaton action. By A∗ we denote the free monoid over A,
consisting of all finite words over A. The empty word of length 0 is denoted
by ε. Sometimes, for the sake of simplicity, we will write p.a = q instead of
δ(p, a) = q. It is convenient to extend the δ function to subsets in the usual
way: for P ⊂ Q we define P.ε = P , P.a =

⋃
p∈P {p.a}. We say that w ∈ A∗

synchronizes A = (Q,A, δ) if |Q.w| = 1. If such a word exists, A is called a
synchronizing automaton.

Let G be a constant out-degree, strongly connected, finite digraph G = (V,E),
where V is a finite set of vertices and E is a (multi)set of edges. Let k be the
out-degree of each vertex and let A be a k-element alphabet. A path in G is a
sequence of vertices (v1, v2, ..., vn) such that (vi, vi+1) ∈ E for each 1 ≤ i ≤ n−1.
The length of the path is the number of its vertices minus one. A labeling of G
is a function L : E → A, which assigns letters from A to the edges in such a
way that for each vertex v ∈ V all of its k outgoing edges have pairwise different
labels (colors). By reachn(v) we define the set of all vertices that can be reached
from v by some path of length n: reachn(v) = {v.w : w ∈ An}. We also define
reach(v) =

⋃∞
n=0 reachn(v) = {v.w : w ∈ A∗}.

In RCP one assumes G to be a strongly connected graph. In our solution we
use a connected digraph (denoted later by G(ϕ)) with one strongly connected
componentC. This does not violate the reasoning, because for each labeling there
exists a finite word which transforms all states into C and then we deal only with
C. The assumptions about gcd for cycles are important only with reference to the
strongly connected component C. It is also possible to modify our G(ϕ) to be a
strongly connected graph, but this would complicate the solution by introducing
some ”technical” tricks. Therefore we stay with G(ϕ) as a connected digraph
with one strongly connected component.
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3 Main Theorem

We consider the following Road-Coloring-Synchr-Word problem:

– INPUT: a constant out-degree digraph G and a natural number m (assume
m ≥ 8);

– OUTPUT: ”YES”, if there exists a synchronizing word of length m for some
synchronizing labeling of G. ”NO” otherwise.

It is clear that the Road-Coloring-Synchr-Word is in NP: given the
labeling and the word W one can check if W synchronizes G and it can be done
in O(|W | · |G|) time. The only difficulty appears when W is exponential in |G|.
But it is easy to show (by combining Trahtman’s algorithm [9] with Eppstein’s
one [4]) that the minimal synchronizing word for any synchronizing coloring of
G is polynomial in |G|. So if W is large, it suffices to find a shorter word W ′

of polynomial length. To obtain the long solution W it suffices to concatenate
some arbitrarily chosen word U of length |W |−|W ′| with W ′. Clearly,W = UW ′

is a synchronizng word of length |W | for a labeling of G found by Trahtman’s
algorithm.

We will prove that Road-Coloring-Synchr-Word is NP-complete by re-
ducing 3-SAT to the problem. Let ϕ be a 3-SAT formula in a standard, con-
junctive normal form with n clauses and N variables x1,¬x1, ..., xN ,¬xN . By a
”standard” form we mean that:

– if literal lj ∈ ci, then ¬lj �∈ ci,
– for each j = 1, ..., N there exist two clauses ci and ck, i �= k, such that lj ∈ ci

and ¬lj ∈ ck
– Γϕ is connected, where Γϕ = (X,E), X = {x1, . . . , xN ,¬x1, . . . ,¬xN} and

for i �= j {li, lj} ∈ E iff there is a clause ck, such that li, lj ∈ ck.

Notice that if Γϕ is not connected and has k components, the formula can be split
into k formulas and for each of them we can assign variables values independently.

We will construct a digraph G = G(ϕ) = (V,E), such that there exists a
synchronizing word of length m for some synchronizing labeling of G if and
only if ϕ is satisfiable. The main construction of G is presented in Fig. 2. G
has a constant out-degree 3, so we will consider automata over 3-letter alphabet
{a, b, c}. Graph Gi, together with its neighborhood, is depicted in Fig. 3. Graph
G consists of (n + 2N) + 2N(m − 5) + 4N(m − 4) + 4N + 5(m − 4) + 5 =
n + 6Nm − 20N + 5m − 15 nodes. For the sake of simplicity, some edges are
not shown in Fig. 2. For each 1 ≤ i ≤ N the missing edges from nodes xm−4

i

and ym−4
i (two for each node) go to nodes xi and ¬xi resp. Missing edges from

t, u, w (two for each node) go to t1, u1, w1 resp. One missing edge from v goes to
v1. Finally, for each 1 ≤ i ≤ m, one missing node from ri goes to r1i . The lack of
these edges should cause no confusion to the reader, because they will not play
any role in our considerations.
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Before we pass to the proof of the main theorem, let us shortly describe the
main steps of the proof:

1. show that satisfiability of ϕ implies the existence of labeling, for which we
can obtain a specific set of states after the transformation with the first letter
of some word (Lemma 1),

2. show that any m− 4-letter word transforms the whole set Q of states to the
set containing some fixed set S, and if ϕ is satisfiable, then for some labeling
δ we can transform Q exactly to S; but if ϕ is not satisfiable, then δ will
transform Q to S plus at least some one additional state q (Lemma 2),

3. show that S can be synchronized by the word of length 4 and cannot be
synchronized by any shorter word (Lemma 3 and 4),

4. show that S ∪ {q} cannot be synchronized by any word of length at most 4
(Lemma 5).

· · ·c1 c2 cn

x1 ¬x1 x2 ¬x2 xN ¬xN· · ·

Fig. 1. Part of the main graph construction. Edges in this part depend on the ϕ
formula. ϕ is satisfiable if and only if we can label this graph with {a, b, c}, such that
{c1, ..., cn}.a does not contain simultaneously a literal and it’s negation.

Top part of the graph, shown in Fig. 1 and denoted by Gϕ, depends on the ϕ
formula. It is constructed as follows: if clause cj contains literal li ∈ {xi,¬xi},
we put (cj , li) ∈ E.

Lemma 1. Let C = {c1, c2, ..., cn} ⊂ V . The following statements are equiva-
lent:

(a) ϕ is satisfiable,
(b) there exists a labeling δ for Gϕ, such that

∀1 ≤ i ≤ N xi �∈ C.a ∨ ¬xi �∈ C.a.

Proof. (a ⇒ b) Let ϕ be satisfiable. Then there exists an assignment such that
in each clause there exists at least one literal lj with true value. We put

δ(cj , a) = lj . (1)

If there are two or more true values, we can take the one with the smallest index.
It is clear that, if cj.a = li for some i, j, then for each k �= j we have ck.a �= ¬li.
(b ⇒ a) Let δ be the labeling fulfilling condition (b). We assign the logic values
to literals as follows: if δ(cj , a) = lj , then we assign true to lj . This assignment
is correct and there is at least one literal with true value in each clause.
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c1 c2 cn

x1 ¬x1 xN ¬xN

x2
1 y2

1 x2
N y2
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1 ym−5
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N ym−5

N

xm−4
1 ym−4

1 xm−4
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N

G1 GN

t

v x

w

u

pm−4
1p1

1

q1
1 qm−4

1

sm−4
1s1

1

p1
N pm−4

N

q1
N qm−4

N

s1
N sm−4

N

r1
1 · · · rm−4

1 r1
N · · · rm−4

N

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · · · · · · · ·

· · ·

· · ·

v1 · · · vm−4

um−4· · ·u1

wm−4· · ·w1

tm−4 · · · t1

xm−4 · · · x1

· · · · · ·

Gϕ

Fig. 2. Graph G - the main construction

Let A = {a, b, c}, Q = V and let A = (Q,A, δ) be an automaton with underly-
ing graph G from Fig. 2. Let us define the sets: Di = {pi, qi, ri, si} (1 ≤ i ≤ N),
E = {t, u, v, w, x} and put D =

⋃N
i=1Di. The following Proposition is straight-

forward.

Proposition 1. ∀W ∈ Am−4 Q.W ⊇ D ∪E.
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pi

t

qi

si

ri

xm−4
i ym−4

i

rm−4
i

sm−4
i

pm−4
i qm−4

i

v x

w

u

Gi

Fig. 3. Graph Gi (in rectangle) and its neighborhood

Lemma 2. Let ϕ be satisfiable, W ∈ Am−4 and for C = {c1, . . . , cn} let δ be de-
fined according to (1). Then |Q.W | ≥ 5m+5 and there exist zi ∈ {xm−4

i , ym−4
i },

i = 1, 2, ..., N , such that

D ∪ E ∪ {z1, ..., zN} ⊆ δ(Q,W ). (2)

Moreover, there exists a labeling δ and unique W0 ∈ Am−4, for which relation
(2) is an equality.

Proof. The first part of the thesis flows directly from Lemma 1, Proposition 1
and direct analysis of G. For the second part of the thesis, consider any labeling
δ for which the following conditions hold:

– edges going from {c1, ..., cn} are labeled according to (1),
– ∀1 ≤ i ≤ N xm−4

i .a = pi, y
m−4
i .a = qi,

– t.a = v, u.a = v, v.a ∈ {w, x}, w.a = x, x.a ∈ {v, w},
– ∀1 ≤ i ≤ m ri.a = si.

We have Q.am−4 = D ∪ E ∪ {z1, ..., zN} and |Q.am−4| = 5m + 5. Notice that
each xm−4

i and ym−4
i has only one edge going to Gi. For any word W of length
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k < m−4 the set {xm−4
1 , ym−4

1 , ..., xm−4
N , ym−4

N } is contained in Q.W . These two
facts imply that for m − 4-letter word W we have Q.W = D ∪ E ∪ {z1, ..., zN}
if and only if W = W0 = am−4.

Notice that, for the labeling from the proof of Lemma 2,Q.am−4 is the smallest
possible set, which Q is transformed into after m− 4 first letters of the synchro-
nizing word W . It always contains D∪E and one state from each {xm−4

i , ym−4
i }.

Therefore, in the later analysis we assume that the first m−4 letters of the ana-
lyzed wordW transform Q into this set (denote it by B). From the synchronizing
point of view, this is the ’best’ case we can be in after m− 4 steps.

Observation 1. In the rest of this paper we will show that the shortest syn-
chronizing word for any automaton with underlying graph G is of length at least
m. So B can be synchronized by some 4-letter word a1a2a3a4. If there exists
k ∈ {1, 2, 3} such that B.a1, B.a1a2, ..., B.a1...ak ⊂ D ∪ E and B.a1...ak+1 �⊂
D ∪ E, then after m − 4 + k steps we are at least in one state g, such that
g ∈ {p1

i , q
1
i , r

1
i , s

1
i , t

1, u1, v1, w1, x1}. But synchronization can take place only in
a state from reach(t), so we have to transform g at least to t. The shortest such
path is of length m−3, so together with the beginning of the synchronizing word,
am−4, this word has length l ≥ (m−4)+(m−3) = 2m−7 ≥ m+8−7 = m+1 > m.
This shows, that if we are in the set D ∪E it does not pay to us to use a trans-
formation α, for which (D ∪E).α �⊂ (D ∪E). Therefore it is convenient to treat
the automaton (D∪E) as a partial (or carefully synchronizing) automaton, that
is, we can use only edges that does not transform any state from D ∪E outside
this set.

Automata with underlying graphs Di are ’independent’ in the sense, that in
order to find the minimal synchronizing word for automaton with underlying
graph D ∪E it is enough to find such a word for an automaton with underlying
graphDi∪E for some i ∈ {1, ..., N} and define labelings in all Dj , j �= i to be the
same as in Di. In the following considerations we will investigate this problem
for the automata A = (QG, A, δG), Ax = (Qx, A, δx) and Ay = (Qy, A, δy),
where the corresponding underlying graphs are: QG = Di ∪ E ∪ {xm−4

i , ym−4
i },

Qx = QG \ {ym−4
i }, Qy = QG \ {xm−4

i } and the transition functions are just
δ restricted to the corresponding induced graphs. The i value is arbitrary, but
fixed.

Lemma 3. There exists no synchronizing word of length less then 4 for any of
automata Ax, Ay and A.

Proof. We will show that QG \ {xm−4
i , ym−4

i } cannot be synchronized by any
word of length less than 4. It is clear that there is no synchronizing word of
length 1. We have reach2(u)∩ reach2(ri) = ∅, so there is no synchronizing word
of length 2. We have reach3(x)∩ reach3(ri) = {v, w, x} ∩ {pi, qi, ri, si, t} = ∅, so
there is also no synchronizing word of length 3.

Lemma 4. There exists a synchronizing word of length 4 for Ax and for Ay.
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Proof. We will show this for Ay, for Ax the proof is similar. Consider the fol-
lowing labeling:

u.a = v v.a = x v.b = w

w.a = x x.a = v x.b = w

x.c = t t.a = v pi.a = qi

pi.b = ri pi.c = t qi.a = ri

qi.b = pi qi.c = t ri.a = si

ri.b = si si.a = qi si.b = pi ym−4
i .a = qi.

One can easily check that Qx.abac = {t}.

Lemma 5. There exists no synchronizing word of length 4 for A.

Proof. From the Gϕ construction it is necessary that (a) ri.a = si, (b) u.a = v,
(c) w.a = x and (d) t.a = v. We have

⋂
α∈QG

reach4(α) = {t, v}, so these are
the only possible synchronizing states.

Case 1. Suppose first that, there exists W = a1a2a3a4, such that QG.W = {t}.
From Observation 1 we have a1 = a. The only two opportunities for ri to reach
t in 4 steps are P1 = ri → si → pi → qi → t and P ′

1 = ri → si → qi → pi → t.
Because of the ’symmetry’ between pi and qi we can consider only the first path,
P1. For the second one the reasoning is similar. The only way for u to reach t
in 4 steps is the path P2 = u → v → w → x → t. Comparing P1 and P2 and
taking into account (a)-(d) we have that pi.a = qi. Let si.Y = pi. Then v.Y = w
and because v.a = x �= w (v can reach t only if transformed into x in the first
step), necessarily Y �= a. So we have a1 = a, a2 = Y �= a. Now consider the state
xm−4

i . We have xm−4
i .aY = p.Y ∈ {ri, t}, but neither reach2(ri) nor reach2(t)

contains t, so there is no path of length 4 leading from xm−4
i to t.

Case 2. Suppose now that there exists W = a1a2a3a4 such that QG.W = {v}.
Again, there must hold ri.a = si, u.a = v, t.a = v, w.a = x. There are only
two ways for ri to reach v: P1 = ri → si → pi → t → v and P2 = ri → si →
qi → t → v. As in Case 1., because of the ’symmetry’ between pi and qi we can
choose, without loss of generality, one of them, say P1. Let s.Y = p and p.Z = t,
where Y, Z ∈ {a, b, c}. There is only one possible path of length 4 from xm−4

i

to v: P2 = xm−4
i → pi → qi → t → v and only one such path from ym−4

i to
v: P4 = ym−4

i → qi → pi → t → v. Comparing P1, P2 and P3 we have that
p.Y = q (which, in view of p.Z = t, implies Y �= Z), q.Z = t and q.Y = p. The
last one implies q.a = r. The synchronizing word of length 4, if exists, has form
aY Za, where Y, Z �= a. But q.a = r and v �∈ reach3(r), so we cannot construct
a synchronizing word of length 4 with v as a synchronizing state.

Now we are ready to state the main theorem:

Theorem 1. Road-Coloring-Synchr-Word is NP-complete.

Proof. From Lemmata 2, 3, 4, 5 we have that there exists a minimal synchroniz-
ing word of length m for some automaton with underlying graph G if and only if
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we can construct a labeling, such that ∀1 ≤ i ≤ N (xm−4
i �∈ C.am−4 ∨ ¬xm−4

i �∈
C.am−4). This is equivalent to ∀1 ≤ i ≤ N (xi �∈ C.a∨¬xi �∈ C.a), and by Lemma
1 this can be done if and only if the corresponding formula ϕ is satisfiable.

We can easily obtain the following

Remark 1. (P3’) is NP-hard.

To prove this, it is enough to verify that the minimal synchronizing word for any
labeling of G has length ≥ m and the lower bound m is achieved if and only if
the corresponding formula ϕ is satisfiable. This comes from Lemmata 1-5.

4 Conclusions and Future Work

We presented three complexity problems (P1)-(P3) for synchronizing automata,
which are important not only from the theoretical, but also from the practical
point of view. In the light of Trahtman’s Road Coloring Theorem, these problems
can be reformulated, in the ’RCP-fashion’, as (P1’)-(P3’). It is a natural question
to ask about their complexities. The main theorem states that (P2’) is NP-
complete. The present state of knowledge about these problems is given in the
following table.

Table 1. Complexities of decision version of problems related to the synchronizing
automata

synchronizing automata Road Coloring version
(P1) P (P1’) P

(P2) NP-complete [4] (P2’) NP-complete (this paper)
(P3) coNP-hard [7] (P3’) NP-hard (this paper)

Although complexities of (P2), (P2’) are the same, it is not an obvious fact: in
(P2) we ask about some synchronizing word w of a given length, but the graph
labeling δ is given and it may happen that δ is ’difficult’ to synchronize. In (P2’)
version we ask about the same word, but here it is our decision to choose δ. This
may suggest that (P2’) is easier than (P2), because we have much more room of
manoeuvre in the first one. Unfortunately, this does not help us much: both (P2)
and (P2’) are NP-complete. It is an open question if the complexity of (P3’) is
the same as for (P3). In the light of results from Table 1. we conjecture that
(P3’) is coNP-hard.
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Abstract. An st-orientation or bipolar orientation of a 2-connected
graph G is an orientation of its edges to generate a directed acyclic graph
with a single source s and a single sink t. Given a plane graph G and
two vertices s and t on the exterior face of G, the problem of finding an
optimum st-orientation, i.e., an st-orientation in which the length of the
longest st-path is minimized, was first proposed indirectly by Rosenstiehl
and Tarjan in [14] and then later directly by He and Kao in [6]. In this
paper, we prove that, given a 2-connected plane graph G, two vertices
s, t, on the exterior face of G and a positive integer K, the decision
problem of whether G has an st-orientation, where the maximum length
of an st-path is ≤ K, is NP-Complete. This solves a long standing open
problem on the complexity of optimum st-orientations for plane graphs.

1 Introduction

Given a 2-connected graph G = (V,E) and two vertices s, t ∈ V (G), an st-
orientation (also known as bipolar orientation or st-numbering [3]) is an orien-
tation of the edges of G, such that a directed acyclic graph with s as the single
source and t as the single sink is produced. The properties of st-orientations have
been extensively studied [7,8,14] and st-orientations have wide applications in
graph drawing [12], network routing [1,9] and graph partitioning [10]. Starting
with an undirected 2-connected graph G, many graph drawing algorithms use
an st-orientation of G in order to compute drawings of G, such as hierarchical
drawings [2], visibility representations [15] and orthogonal drawings [11]. Addi-
tionally, the length of the longest st-path (an st-path is a directed path from s to
t) determines certain characteristics of the drawing. The complexity of the prob-
lem of finding an optimum st-orientation for general graphs has been shown to
be NP-Hard by Gallai in 1968 [4]. In contrast, the complexity of the problem of
finding an optimum st-orientation for a plane graph, i.e., one that minimizes the
length of its longest st-path remained open for over two decades, as the question
was first proposed in 1986 [14] for planar layouts of planar graphs. Later, the
same question was proposed in [6] for planar graph drawings in 1995. In this pa-
per, we investigate the complexity of finding optimum st-orientations for plane
� Corresponding author. His research is supported in part by NSF grant CCF-0728830.

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 298–309, 2009.
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graphs. By a reduction from the 3-PARTITION [5] problem, we show that, given
a 2-connected plane graph G, two vertices s, t, on the exterior face of G and
a positive integer K, the decision problem of whether G has an st-orientation
where the length of the longest st-path ≤ K, is NP-Complete. This proves that
the long standing open problem of finding an optimum st-orientation for a plane
graph is NP-Hard.

The rest of the paper is organized as follows. Section 2 introduces the 3-
PARTITION problem. Section 3 introduces the st-ORIENTATION problem and
presents the reduction from the 3-PARTITION problem and proves the NP-
Completeness of the st-ORIENTATION problem.

2 3-PARTITION

3-PARTITION is shown to be NP-Complete in the strong sense in [5], i.e., it
cannot be solved by a pseudo-polynomial time algorithm unless P = NP.

Instance: A finite multiset S = {x1, x2, x3, ..., xn} of n = 3×m positive integers
that satisfy B

4 < xi <
B
2 , 1 ≤ i ≤ n, where the sum of the numbers in S is m×B.

Question: Can S be partitioned into m subsets S1, S2, ..., Sm, such that the
sum of the numbers in each subset is B. The subsets S1, S2, ..., Sm, must form a
partition of S in the sense that they are disjoint and they cover S.

Lemma 1. 3-PARTITION remains strongly NP-Complete even if we limit the
number of partitions to be an odd number.

Proof. Let P be an instance of 3-PARTITION with variables n, m, B and the
multiset S = {xi, 1 ≤ i ≤ n}, where m is an even number. Construct an instance
P ′ of 3-PARTITION from P with variables n′ = n+ 3, m′ = m+ 1, B′ = 9×B
and the multiset S′ = {9×xi, 1 ≤ i ≤ n}∪{3B−2, 3B+1, 3B+1}, where m′ is
an odd number. Since B ≥ 3, it is easy to verify that both (3B−2) and (3B+1)
are greater than B′

4 and less than B′
2 . Therefore, P ′ is indeed an instance of

3-PARTITION, in which its elements should be partitioned into an odd number
(m+ 1) of subsets.

Note that, in a solution to P ′, the three elements (3B − 2), (3B + 1) and
(3B + 1) must be in a single partition, since all the other elements in S′ are
divisible by 3. Thus, if P is an yes instance, then P ′ is an yes instance and vice
versa, i.e., the instances P and P ′ are equivalent. Thus, 3-PARTITION remains
strongly NP-Complete even if we limit the number of partitions to be an odd
number. �

3 st-ORIENTATION Is NP-Complete

Now we formally introduce the st-ORIENTATION decision problem:

Instance: An undirected 2-connected plane graph G = (V,E), two vertices s, t
on the exterior face of G and a positive integer K.
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Question: Is there an st-orientation of G with s as the single source and t as
the single sink, such that the length of the longest st-path is ≤ K.

Given an st-orientation of G, we can easily verify in linear time whether the
length of the longest st-path is ≤ K [7,14,8]. Thus, st-ORIENTATION is in NP.

3.1 Construction of the Graph G for st-ORIENTATION

We intend to establish a polynomial reduction from 3-PARTITION to st-ORIEN-
TATION to show that st-ORIENTATION is indeed NP-Complete. In this subsec-
tion, we introduce the quite sophisticated reduction.

According to Lemma 1, without loss of generality, we can assume that m is
odd and m > 1. Given an instance of 3-PARTITION as defined in Section 2, and
in which m is odd, the construction of the graph G for the equivalent instance
of st-ORIENTATION is shown in Fig. 1, Fig. 2 and Fig. 3. In Fig. 1, Fig. 2
and Fig. 3, ignore the direction of the edges and the red and green colors on
the edges for now, as these will be used later in the reduction. In Fig. 1 and
Fig. 2, a brown text near an “edge” denotes that it is actually a path of that
length, i.e., a brown text ofD near an “edge” denotes that it is actually a path of
length D. Edges without brown text around them are regular edges. It is worth
mentioning that, in this reduction from an instance of 3-PARTITION to an
equivalent instance of st-ORIENTATION, we do not necessarily need to require
the condition B

4 < xi <
B
2 , where 1 ≤ i ≤ n, i.e., the number of elements in a

partition need not be three. The reason we choose this more restricted version
of 3-PARTITION problem for reduction is purely for presentation purposes.

We define the following variables: f =  m/2!, e = 8f×n, D = 4e+8m+B+3
and the value of K for the corresponding instance of st-ORIENTATION as
K = 8fD+ (2D+ 2) + 4e+ 8m+B < 8fD+ 3D, where m, n and B are values
from the instance of 3-PARTITION.

For each xi in 3-PARTITION, a subgraph Gi is constructed as shown in Fig. 1
and this subgraph Gi is the corresponding subgraph of xi. As shown in Fig. 1,
the triangular shaped face formed by a path of length D and two other edges
is a dividing triangle. The path of length D in a dividing triangle is a ditch.
The three vertices of degree three on the boundary of a dividing triangle are
corner vertices. For each corner vertex, there is exactly one edge adjacent to it
that is not on the boundary of the dividing triangle and this edge is a corner
edge. As shown in Fig. 1, within each Gi, the value of xi itself is represented
by exactly one horizontal path of length (xi + 1), that connects two dividing
triangles. This path is the corresponding path of xi and is denoted by Pi. Gx

denotes the subgraph for which V (Gx) = ∪n
i=1V (Gi) and E(Gx) = ∪n

i=1E(Gi).
A subgraph Gst that contains the vertices s and t is constructed as shown

in Fig. 2. The overall graph G for st-ORIENTATION is such that, V (G) =
V (Gst) ∪ V (Gx) and E(G) = E(Gst) ∪ E(Gx). An example construction of G
with m = 5 is shown in Fig. 3. We use the following notation to represent the
vertices in G:
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Fig. 3. An example st-orientation that is generated with m = 5

– Yi, Pi, Qi, Li and Hi denote the set of vertices {yi
1, y

i
2}, {pi

1, p
i
2, ..., p

i
m−1},

{qi
1, q

i
2, ..., q

i
m−1}, {li1, li2, ..., lim} and {hi

1, h
i
2, ..., h

i
m+1} respectively, where

0 ≤ i ≤ n.
– Vi denotes the set of vertices Pi ∪Qi ∪ Li ∪Hi ∪ Yi, where 0 ≤ i ≤ n.
– Ps, Pt, Qs, Qt, Ls, Lt, Hs and Ht denote the set of vertices {ps

1, p
s
2, ..., p

s
m−1},

{pt
1, p

t
2, ..., p

t
m−1}, {qs

1, q
s
2, ..., q

s
m−1}, {qt

1, q
t
2, ..., q

t
m−1}, {ls1, ls2, ..., lsm},

{lt1, lt2, ..., ltm}, {hs
1, h

s
2, ..., h

s
m+1} and {ht

1, h
t
2, ..., h

t
m+1} respectively.

– Vs and Vt denote the set of vertices Ps ∪Qs ∪Ls ∪Hs and Pt ∪Qt ∪Lt ∪Ht

respectively.

Observe that V (Gi)∩V (Gi+1) = Vi, where 1 ≤ i ≤ (n−1), V (G1)∩V (Gst) =
V0 and V (Gn) ∩ V (Gst) = Vn. In the graph G, the horizontal paths adjacent
to the vertices in Vi − Yi, 0 ≤ i ≤ n, and the horizontal paths connecting
two dividing triangles between the vertical paths ai

2j−1 to bi2j−1 and ai
2j to bi2j ,

1 ≤ j ≤ 4f − 1, are assigned a level from −(2m− 1) to (2m− 1) in increasing
order from bottom to top, for a total of (4m− 1) levels, as shown in Fig. 1 and
2. Thus, the corresponding path Pi of xi is at level 0.

It is straight-forward to prove that G is a 2-connected plane graph and |V (G)|
is of polynomial size in the variables n, m and B of 3-PARTITION. (Since
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3-PARTITION is NP-Complete in the strong sense, we can measure the size of
the constructed graph by n, m and B directly.)

3.2 st-Orientations of G with Length of Longest st-Path ≤ K

Let O denote an st-orientation of G and lengthO(u, v) denote the length of the
longest directed path from u to v in an st-orientation O of G. An st-orientation
O of G is a satisfying st-orientation of G if lengthO(s, t) ≤ K. Note that the
maximum degree of a vertex in G is three. Thus, in any st-orientation O of G,
a blend vertex is a vertex that has two incoming edges and a fork vertex is a
vertex that has two outgoing edges. Also, for each dividing triangle, its three
corner edges cannot be all incoming (directed towards the dividing triangle) or
all outgoing (directed away from the dividing triangle). Thus, a blend triangle
is a dividing triangle that has two incoming corner edges and a fork triangle is
a dividing triangle that has two outgoing corner edges.

Lemma 2. In any satisfying st-orientation O of G, the directions of the follow-
ing edges must be as follows:

1. The two faces having the edge (s, t) on its boundary must have their edges
directed such that they form two directed paths from s to t.

2. In subgraph Gst, the horizontal path between a vertex u ∈ Vs and v ∈ V0−Y0,
where both u and v are at the same level, must be directed from u to v.

3. In subgraph Gst, the horizontal path between a vertex u ∈ Vt and v ∈ Vn−Yn,
where both u and v are at the same level, must be directed from v to u.

Proof. (1) This is straight-forward, as the boundary of each face in an st-
orientation must be made up of two lateral paths [7,8,14]. Thus, lengthO(yn

1 , t) >
8fD + 2D and lengthO(yn

2 , t) > 8fD + 2D. (2) If the direction of the edges
on the horizontal path between u and v is from v to u, then lengthO(s, t) ≥
lengthO(s, v)+lengthO(v, u)+lengthO(u, yn

2 )+lengthO(yn
2 , t) > lengthO(v, u)+

lengthO(yn
2 , t) > D + (8fD + 2D) > K. Thus, the edges must be directed from

u to v. (3) Note that lengthO(qt
m−1, t) must be < 4m. If there is a directed

path from u to v, then there is a directed path from qt
m−1 to v. The path from

v to t must still go through a vertex in Vn − {v}, however, for all w ∈ Vn,
lengthO(w, t) ≥ 4m. Thus, it follows that there cannot be a path from qt

m−1 to
v and hence the edges between u and v must be directed from v to u. �

In any satisfying st-orientation O of G, we identify some edges as red or green
based on the following criteria:

– A directed edge (u, v) ∈ E(Gx), is denoted as a red edge (marked in red
color in the figures in this paper) if it satisfies at least one of the following:
(1) u ∈ H0, (2) u has a directed path from a vertex in H0.

– A directed edge (u, v) ∈ E(Gx) is denoted as a green edge (marked in green
color in the figures in this paper) if it satisfies at least one of the following:
(1) v ∈ Ln, (2) v has a directed path to a vertex in Ln.
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We prove that every satisfying st-orientationO ofGmust have these red and green
edges. From Lemma 2, it follows that, for a red edge (u, v), lengthO(s, u) > 8fD+
2D and for a green edge (u, v), lengthO(s, v) < 8fD +D. Thus, an edge cannot
be both a red edge and a green edge. A set of red edges (green edges, respectively)
that form a simple directed path is defined as a red path (green path, respectively).
An edge that is neither a red edge nor a green edge is a black edge.

Lemma 3. In any satisfying st-orientation O of G, a directed path from a vertex
u ∈ H0 to t can only go through a vertex v ∈ Hn and cannot go through any
vertex w ∈ Vn −Hn.

Proof. Any directed path from the vertex u to t must go through a vertex in
Vn. Since lengthO(s, u) > 8fD + 2D and lengthO(w, t) > D, the path from u
to t cannot go through any vertex w ∈ Vn −Hn and the only possibility is to go
through a vertex v ∈ Hn. �
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Fig. 4. (a) Proof of Lemma 4: A red path cannot have a fork vertex in it. (b) Proof of
Lemma 5.

Lemma 4. In any satisfying st-orientation O of G, a directed red path from a
vertex u ∈ H0 to a vertex v ∈ Hn cannot have a fork vertex in it.

Proof. Since any directed path from u to t cannot go through a vertex in Yn,
this path does not have any vertex from the boundary of the two faces that have
the edge (s, t) on its boundary. Thus, if this path has a fork vertex, it has to
be one of the corner vertices of a dividing triangle. As illustrated in Fig. 4 (a),
since a dividing triangle has the ditch of length D as one of its sides, a red path
cannot fork at one of its corner vertices, otherwise lengthO(s, t) > K. Hence, it
follows that a path of red edges does not contain a fork vertex in it and all the
edges adjacent to a red path are directed towards the path. This implies that
the directed path from u to t is unique and goes through exactly one vertex in
Hn. �

Lemma 5. In any satisfying st-orientation O of G, for any blend triangle, at
least one of its corner vertices with incoming corner edge, say v, must satisfy
lengthO(s, v) < 8fD + 2D.
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Proof. The proof is by contradiction. For a blend triangle, let u and v be the
corner vertices with an incoming corner edge and w be the corner vertex with
an outgoing corner edge. Let lengthO(s, u) ≥ 8fD + 2D and lengthO(s, v) ≥
8fD+ 2D. Then, as shown in Fig. 4 (b), lengthO(s, w) > K. �

From Lemma 5, it follows that in any satisfying st-orientation O of G, a blend
triangle cannot have two incoming red corner edges, since any vertex v on a red
path has lengthO(s, v) > 8fD + 2D. Thus, the red paths from u, v ∈ H0, with
u �= v, to some vertices in Hn cannot have a common vertex, i.e., the two paths
do not meet at a common vertex. Also, from Lemmas 3, 4 and 5, it follows that
in any satisfying st-orientation O of G, there is exactly one directed path from
h0

j to t and this path must go through the vertex hn
j , where 1 ≤ j ≤ (m + 1).

Also, within the subgraph Gx, all the edges on this path are red edges. Since all
the edges adjacent to a red path from h0

j to hn
j are directed towards the path,

there is no directed path from a vertex on one side of the path to a vertex on
the other side of the path. Thus, if these (m + 1) red paths are visualized as
boundaries dividing Gx into (m+2) regions, then there is no directed path from
a vertex in one region to a vertex in another region. These regions in Gx are as
follows:

– R0 is the region below the red path from h0
1 to hn

1 .
– Rj is the region between the red paths from h0

j to hn
j and from h0

j+1 to hn
j+1,

where 1 ≤ j ≤ m.
– Rm+1 is the region above the red path from h0

m+1 to hn
m+1.
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Fig. 5. (a) Proof of Lemma 6: A green edge cannot fork into two green edges. (b) Proof
of Lemma 7: The corresponding path Pi consists of only green edges.

Lemma 6. In any satisfying st-orientation O of G, there is no directed path
from V0 − {l0j} to lnj and there is exactly one directed path from l0j to lnj , where
1 ≤ j ≤ m.

Proof. None of the vertices in V0 − {l0j} are in region Rj and hence there is
no directed path from a vertex in V0 − {l0j} to lnj . Since the vertex lnj has a
directed path from s, this path must come through l0j . The directed path from
l0j to lnj consists of all green edges. In order to have more than one directed
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path from l0j to lnj , a green edge must fork at some corner vertex that has two
outgoing green edges. As shown in Fig. 5 (a), this scenario is impossible due
to the presence of the ditch of length D. Whenever a green edge forks at the
corner vertices of a dividing triangle, one of the other corner vertices w, will have
lengthO(s, w) > 8fD +D and hence cannot have a directed path to lnj . �

Lemma 7. In any satisfying st-orientation O of G, the corresponding path Pi of
xi, 1 ≤ i ≤ n, must consist of only green edges, i.e., all edges on a corresponding
path must also be on a green path from some l0j to lnj , 1 ≤ j ≤ m.

Proof. Note that the red path from h0
1 to hn

1 is always below level 0 and the
red path from h0

m+1 to hn
m+1 is always above level 0 (since, there are a total

of (2m + 1) red and green paths). Thus, the corresponding path Pi of xi must
be in one of the regions Rj , 1 ≤ j ≤ m, i.e., it cannot be in the region R0 or
Rm+1. It is obvious that a red path cannot go through the corresponding path
Pi of xi. Also, from Fig. 5 (a) and Lemma 6, it is obvious that within the region
Rj , 1 ≤ j ≤ m, every corner vertex v of a dividing triangle that is not on a
green path has lengthO(s, v) > 8fD + D. Hence, if the corresponding path Pi

of some xi consists of non-green edges, then, consider the corner vertex u of the
dividing triangle, to which the corresponding path is directed towards in the
st-orientation. This corner vertex has lengthO(s, u) > 8fD + D. We have the
following cases to consider as shown in Fig. 5 (b):

Case 1: If the dividing triangle is a blend triangle and has an incoming green
edge at vertex v, then that green path cannot continue forward towards a vertex
in Ln.

Case 2: If the dividing triangle is a blend triangle and has an incoming red edge
at vertex v, then the other corner vertex w will have lengthO(s, w) > K.

Case 3: If the dividing triangle is a blend triangle and has an incoming edge
that is neither red nor green at vertex v, then the other corner vertex w will
have lengthO(s, w) > 8fD+ 2D. In this case, the path from w to t can only go
through one of the vertices in Hn, which means it has a common vertex with
one of the red paths, but this is impossible as shown in Lemma 5.

Case 4: If the dividing triangle is a fork triangle, then the other corner vertex
w will have lengthO(s, w) > 8fD + 2D. The proof is same as Case 3.

Thus, the corresponding path Pi of any xi, 1 ≤ i ≤ n, must consist of only
green edges, i.e., all edges on a corresponding path must also be on a green path
from some l0j to lnj , where 1 ≤ j ≤ m. �

3.3 Correctness of the Reduction from 3-PARTITION to
st-ORIENTATION

Lemma 8. For an instance of st-ORIENTATION, a satisfying st-orientation O
of G can be constructed in polynomial time, given a solution to the corresponding
instance of 3-PARTITION.
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Proof. Assign directions to the edges in G as shown in Fig. 1 and 2. The red
edges form (m+1) directed red paths and each red path originates from h0

j , goes
through hi

j in each Gi and ends in hn
j , where 1 ≤ j ≤ (m+ 1). The green edges

form m directed green paths representing the m partitions in 3-PARTITION
and each green path originates from l0j , goes through lij in each Gi and ends in
lnj , where 1 ≤ j ≤ m. In a solution to 3-PARTITION, if xi belongs to a set Sj ,
1 ≤ j ≤ m, then orient the red and green paths up and down as needed such
that the green path from l0j goes through the matching path Pi of xi in Gi, as
shown in Fig. 1 and 3. The edges in Gst are assigned directions as shown in Fig.
2. The edges in Gx are assigned directions as shown in Fig. 1 as follows:

1. All the horizontal edges are directed from left to right.
2. All edges incident to a red-path are directed towards it and all edges incident

to a green-path are directed away from it.
3. In the region R0, the direction of the non-horizontal edges is upwards and

in the region Rm+1 the direction of the non-horizontal edges is downwards.
4. In the region Rj , 1 ≤ j ≤ m, the edges are oriented such that they are

directed from the green path to the red path.

Observe that except for the green path that goes through the matching path
Pi of xi, each green or red path has a length of 4 × 8f within Gi. The green
path that goes through the matching path Pi of xi, has a length of 4 × 8f + xi

within Gi. Since each green path goes only through the corresponding paths of
the elements in a partition, it has a length of 4×8f×n+B within Gx. Thus, each
st-path that goes through a vertex in Ln has length = 4m+8fD+4×8f×n+B+
(2D+2)+4m = K. Similarly, each st-path that goes through a vertex in Hn has
length = 4m+8fD+(2D+2)+B+4×8f×n+4m = K. The maximum length
of an st-path through any vertex in Pn∪Qn is 4m+e+8fD+8f+D+4m ≤ K.
Also, it can be readily seen that the length of an st-path through any vertex in
Yn is also ≤ K. Thus, a satisfying st-orientation O of G with lengthO(s, t) ≤ K
can be constructed from a solution to 3-PARTITION and it is trivial to prove
that this construction can be done in polynomial time. �

Lemma 9. A solution to an instance of 3-PARTITION can be obtained in poly-
nomial time, given a satisfying st-orientation O of G to the corresponding in-
stance of st-ORIENTATION.

Proof. From Lemma 7, each corresponding path Pi of xi, 1 ≤ i ≤ n, lies on
a green path. Note that the length of a green path within each Gi is at least
4× 8f . Since the length of any green path within Gx must be ≤ 4× 8f ×n+B,
the n corresponding paths must be distributed among the m green paths, such
that the length of each green path within Gx is exactly 4 × 8f × n + B. This
distribution gives us the required solution for 3-PARTITION and it is trivial to
prove that this solution can be obtained in polynomial time from O of G. �
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We now have our main theorem as follows:

Theorem 1. Given a 2-connected plane graph G = (V,E), two vertices s, t, on
the exterior face of G and a positive integer K, the decision problem of whether
G has an st-orientation O, such that the length of the longest st-path is ≤ K, is
NP-Complete.

Proof. The proof of Theorem 1 follows from Lemmas 8 and 9. �
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Nested Word to Word Transducers
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Abstract. We study the equivalence problem of deterministic nested
word to word transducers and show it to be surprisingly robust. Modulo
polynomial time reductions, it can be identified with 4 equivalence prob-
lems for diverse classes of deterministic non-copying order-preserving
transducers. In particular, we present polynomial time back and fourth
reductions to the morphism equivalence problem on context free lan-
guages, which is known to be solvable in polynomial time.

Keywords: Trees, transducers, automata, context-free grammars, XML.

1 Introduction

Nested word automata (nas) [1] are tree automata, that operate on linearizations
of unranked trees in streaming manner. All nodes of the tree are visited twice,
as usual in preorder traversals. At the first visit (opening event), a symbol is to
be pushed onto a stack that is popped at the second visit (closing event). nas
were introduced as a reformulation of visibly pushdown automata [2] and proved
equivalent to pushdown forest automata [11] and streaming tree automata [6].

More formally, a nested word overΣ is a word of parenthesis in Σ̂ = {op, cl}×
Σ, such that all opening parenthesis are properly closed. We consider nested
words as linearizations of unranked trees. For instance, the linearization of
a(b(c), d) is the nested word (op, a) · (op, b) · (op, c) · (cl, c) · (cl, b) · (op, d) ·
(cl, d) · (cl, a), or in XML notation <a><b><c></c></b><d></d></a>. nas pro-
cess nested words from left to right, while passing finite state information from
opening to matching closing parenthesis.

In this paper, we study nested word to word transducers (n2ws). These pro-
cess input nested words such as nas, while producing output letters in paral-
lel, both from left to right. n2ws are pushdown transducers that must push at
opening and pop at closing parenthesis (see Fig. 2 for an example of a n2w-
transduction). n2ws were first introduced in [15], where they were called visibly
pushdown transducers. Our notion is slightly more general in that we do not
impose any well-nesting conditions on output words. Furthermore, we do not as-
sume synchronization, i.e., that deletion and renaming operations on matching
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opening and closing parenthesis are in sync (see Fig. 3). Synchronization is a
sufficient restriction to make type checking decidable.

n2ws T with input alphabet Σ and output alphabet Δ define relations �T � :
TΣ ×Δ∗ mapping unranked trees with labels in Σ to words with letters in Δ.
They have rules of the following two forms:

q
op a/w:γ−−−−−→ q′ or q

cl a/w:γ−−−−−→ q′

where q, q′ are states, γ a stack symbol, a ∈ Σ an input label, and w ∈ Δ∗ a word
of output letters. An opening rule applies in state q, consumes an opening paren-
thesis (op, a) from the input, pushes a symbol γ onto the stack, concatenates w
to the output word, and goes into state q′. Closing rules are applied similarly,
except that they pop symbol γ from the stack. Note that we do not permit rules
with ε input (blind insertion) as they are incompatible with determinism.

We call an n2w deterministic or a dn2w, if 1. it has a unique initial state,
2. opening rules are determined by the current state q and input label a, and
3. closing rules are determined by q, a, and the current stack symbol γ. Ev-
ery dn2w T with input alphabet Σ and output alphabet Δ defines a partial
function �T � : TΣ → Δ∗. Since dn2ws can be identified with deterministic push-
down transducer, it follows from the very general result of Szenergues [16] that
equivalence of dn2ws is decidable.

We call an n2w top-down, if it is top-down as an na, i.e., if all its closing rules

have the form q
cl a/w:q′
−−−−−−→ q′, so that the closing state is already determined by the

stack symbol pushed at opening time. A top-down deterministic n2w or a dn2w↓

is a deterministic n2w that is top-down. Similarly to top-down deterministic tree
automata, dn2w↓ are less expressive than dn2ws.

We consider two kinds of standard transducers on ranked trees [8,4], ranked
tree to word transducers (r2ws) which may either be top-down deterministic
(dr2w↓s) or bottom-up deterministic (dr2w↑s). Our main results are polynomial
time reductions between all of the following problems:

1. equivalence of dn2ws,
2. equivalence of dn2ws↓,
3. equivalence of dr2w↓s that are non-copying and order-preserving,
4. equivalence of dr2w↑s that are non-copying and order-preserving,
5. equivalence of morphisms on context free languages.

Plandowski [13,14] has shown that the last problem is decidable in polynomial
time. Since all of our reductions are in polynomial time, all of the above problems
are decidable in polynomial time too. This result has not been stated before for
any of the first 4 problems. It should be noticed, that equivalence of tree-to-
tree transducers can be reduced to equivalence of tree-to-word transducers that
linearize output trees. As a consequence, we obtain polynomial time algorithms
for deciding equivalence of top-down and bottom-up deterministic tree-to-tree
transducers that are non-copying and order-preserving.

Our main motivation is to define XML document transformation in a deter-
ministic manner, as for instance by the W3C standard XSLT. Various classes of
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tree transducers have been proposed to this end before [10,9]. Also the class
of dn2ws↓ does neither allow tree copying nor tree permutation operations.
However, we believe this is a good compromise between complexity results
and expressive power. For instance, it can express more than non-copying and
order-preserving transducers from [10]. In particular, it can express most usual
“stylesheet-like” XML to HTML transformations (e.g. Fig. 2). Also, it is suitable
to model streamed-like processing.

Related Work. As shown by [5], the equivalence of top-down deterministic tree-
to-tree transducers (dr2rs↓) can be decided in polynomial time. This result is
orthogonal to ours. It is more general in that copying and permutations are
permitted, but cannot capture word output of dr2w↓s, since lacking the word
concatenation operation. Every tree-to-tree transducer can be transformed into
a tree-to-word transducer by composition with the yield function. This has been
done for instance in order to measure the generating capacities of tree trans-
ducers [8]. However, since different trees may have the same yield, one cannot
reduce the equivalence problem of tree-to-tree transducers to that of tree-to-word
transducers this way (if not adding concatenation operations or macros).

The methods used in this paper are reminiscent of those used by Culik and
Karhumäki to show decidability of equivalence of synchronized deterministic
pushdown automata and transducers, e.g. see [7]. Intuitively, two deterministic
pushdown automata are synchronized if their stacks have almost the same height
throughout every computation. Then, their execution can be simulated with
a single pushdown automaton, very much in the spirit of Lemma 3. In this
setting the complexity of this approach is exponential. We take advantage of the
observation that two n2ws can be viewed as synchronized pushdown transducers,
and moreover, the stacks always have exactly the same height.

2 Nested Word to Word Transducers

Let Σ be a finite set of labels. We define the set of unranked trees TΣ to be
the least set that contains all pairs a(t1, . . . , tn) consisting of a label a ∈ Σ and
a tuple of unranked trees (t1, . . . , tn) ∈ (TΣ)n for some n ≥ 0, i.e. TΣ = Σ ×
∪n≥0(TΣ)n. When writing XML documents into files, unranked trees are usually
linearized in a preorder traversal to words lin(t) ∈ Σ̂∗ where Σ̂ = {op, cl} ×Σ.

lin(a(t1, . . . , tn)) = (op, a) · lin(t1) · . . . · lin(tn) · (cl, a)

Linearizations of unranked trees are words in Σ̂∗ that are well-nested in that all
opening parenthesis are properly closed. See Fig. 1 for an example. We define
the set of all nested words over Σ by NΣ = {lin(t) | t ∈ TΣ}. More general
definitions can be found in the literature. We impose 4 restrictions, of which
only the first matters technically, while the others simplify presentation: (1) No
dangling opening or closing parenthesis. As a consequence, segments of nested
words between two positions do not need to be nested words. (2) No internal
letters, which are neither opening nor closing. (3) No corresponding parenthesis



Equivalence of Deterministic Nested Word to Word Transducers 313

a b c c b d d a

(op, a)·(op, b)·(op, c)·(cl, c)·(cl, b)·(op, d)·(cl, d)· (cl, a)

a

b

c

d

Fig. 1. Example of a tree and its linearization into a nested word

with different labels (for instance, (op a)(cl b) is not well nested). (4) No hedges,
i.e. sequences of unranked trees: these can be represented by unranked trees by
adding artificial roots.

A nested word to word transducer (n2w) T is a tuple of finite sets T =
(Σ,Δ,Q, Γ, rul , init ,fin) such that init ,fin ⊆ Q and rul ⊆ Q2×Σ̂×Δ∗×Γ . There
are labels a ∈ Σ of input trees, an alphabet for output words u ∈ Δ∗, states
q ∈ Q, and stack symbols γ ∈ Γ . We denote rules r equal to ((q, q′), (α, a), u, γ)

as q
α a/u:γ−−−−−→ q′. We denote lhs(r) = q (for left hand side), rhs(r) = q′ (for

right hand side), act(r) = (α, a) (for action), output(r) = u and ssy(r) = γ (for
stack symbol). Note that our definition of n2ws excludes rules with ε-input. A
nested word automaton (na) is a n2w which always outputs the empty word, so

that all rules are of the form q
α a/ε:γ−−−−→ q′. The main interest of nas compared

to tree automata [1] is that they combine top-down and bottom-up processing
by operating on preorder linearizations of unranked trees (nested words). n2w
is a suitable choice to model transformations that do not require copying or
reordering, for instance simple XML to HTML transformations (Fig. 2).

address-book

person person

name email office name email office

Adam a@a.com 101 Eve e@b.org 202

<HTML><BODY><TABLE>

<TR><TH>Name</TH>

<TH>Email</TH></TR>

<TR><TD>Adam</TD>

<TD>a@a.com</TD></TR>

<TR><TD>Eve</TD>

<TD>e@b.org</TD></TR>

</TABLE></BODY></HTML>

Fig. 2. An example of XML to HTML transformation

An n2w defines a relation �T � ⊆ TΣ × Δ∗. We will present two equivalent
definitions of �T �. The first interprets T as a pushdown transducer, which inputs
nested words in NΣ and outputs words in Δ∗. The pushdown is “visible” in that
it pushes (resp. pops) when reading opening (resp. closing) parenthesis. We define
the set of configurations of an n2w by Σ̂∗ ×Q× Γ ∗ ×Δ∗. Every configuration
C = (w, q, S, u) has an input word w, a state q, a stack S and an output word
u. We call C initial for t ∈ TΣ if w = lin(t), q ∈ init , S = ε, and u = ε. We
call C a final configuration for u if w = ε, q ∈ fin, and S = ε. An opening rule

q
op a/u′:γ−−−−−−→ q′ applies in state q ∈ Q, reads an opening parenthesis (op, a) where
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a ∈ Σ pushes γ ∈ Γ to the stack, concatenates u′ to the end of the current

output word, and goes to state q′ ∈ Q. A closing rule q
cl a/u′:γ−−−−−−→ q′ applies in

state q ∈ Q, reads a closing parenthesis (cl, a) under the condition that the
top-most symbol on the stack is γ. It then pops γ from the stack, concatenates
u′ to the end of the current output word, and goes to state q′. The transitions
between configurations is defined as follow:

q
op a/u′:γ−−−−−−→ q′ ∈ rul

((op, a) · w, q, S, u) → (w, q′, γ · S, u · u′)
q

cl a/u′:γ−−−−−−→ q′ ∈ rul

((cl, a) · w, q, γ · S, u) → (w, q′, S, u · u′)

We say that a n2w T transforms unranked tree t to word u if T licences a
transition sequence C →∗ C′ where C is initial for t and C′ final for u, and
define the relation �T � = {(t, u) ∈ TΣ ×Δ∗ | T transforms t to u}. Also, an na

A recognizes the tree language L(A) = {t ∈ TΣ | (t, ε) ∈ �A�}.
The second characterization of �T � is based on runs, which annotate opening

and closing events of nodes of unranked trees by rules. As usual, a single run of
an automata on a tree is supposed to capture all information of all intermediate
configurations leading to acceptance. We define the set of nodes of an unranked
trees by nod(a(t1, . . . , tn)) = {ε} ∪ {i · π | π ∈ nod(ti)}. An event is a member
of the set n̂od(t), i.e. an element of a preorder traversal of t. The set n̂od(t) is
totally ordered: the first event is the opening of the root (op, ε), the last event is
the closing of the root (cl, ε), etc. We write (α, π) < (α′, π′) if (α, π) is properly
before (α′, π′) in this order and define pr (α, π) ∈ n̂od(t) to be the immediate
predecessor of (α, π) ∈ n̂od(t) in that order.

A run of an n2w on a tree t ∈ TΣ is a function R : n̂od(t) → rul such that
lhs(R(op, ε)) ∈ init , and for any (α, π) ∈ n̂od(t), ssy(R(op, π)) = ssy(R(cl, π)),
rhs(R(pr (α, π))) = lhs(R(α, π)), and act(R(α, π)) = (α, a), where a is the label
of the node π in t. We call R successful if rhs(R(cl, ε)) ∈ fin.

See Fig. 3 for an example of a successful run.

Lemma 1. �T � = {(t, output(R(e1)) · . . . · output(R(en))) | t ∈ TΣ , R successful
run of T on t, the events of t are e1 < . . . < en}.

An n2w T is deterministic or an dn2w if it satisfies (1) for all q ∈ Q and a ∈ Σ
there exists at most one γ ∈ Γ , u ∈ Δ∗, and q′ ∈ Q such that q

op a/u:γ−−−−−→ q′

belongs to rul ; (2) for all q ∈ Q, a ∈ Σ, and γ ∈ Γ there is at most one u ∈ Δ∗

and q′ ∈ Q such that q
cl a/u:γ−−−−−→ q′ belongs to rul ; (3) there exists at most one

state in init .
An n2w is top-down if Q = Γ and all closing rules have the form q

cl a/u:q′
−−−−−→ q′.

An n2w is top-down deterministic (dn2w↓) if it is top-down and deterministic.
A dna is a dn2w and an na, and a dna

↓ is a dn2w↓ and an na.
It is known that dnas can recognize all regular languages of unranked trees,

while dna
↓s are properly less expressive. This is similar to the case of ranked

trees, where bottom-up deterministic tree automata can recognize all regular
languages, while top-down deterministic tree automata capture only path closed
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a , x

4
b
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a , x

3
b

such that ∀d ∈ {a, b}:
x1

d = op d/(op, c) : 3
x2

d = op d/ε : 2
x3

d = cl d/(op, d) · (cl, d)
·(cl, c) : 3

x4
d = cl d/(op, d) · (cl, d) : 2

3

a

2

b

2

b

(op, c) (op, a) · (cl, a) · (cl, c)

ε (op, b) · (cl, b)

ε (op, b) · (cl, b)

0

1

1

1

3

2

2

Fig. 3. An example dn2w↓ with a successful run on a(b(b)). For a node α of the
input tree, we put output(R(op, α)) and rhs(R(op, α)) on its left, rhs(R(cl, α)) and
output(R(cl, α)) on its right, and ssy(R( , α)) above it.

languages. Emptiness of nas can be checked in quadratic time. Intersection and
complementation for dnas can be performed in polynomial time. We can thus
check inclusion and equivalence of dnas in polynomial time too. We also remark
that the set of all possible outputs of a n2w can be defined by a context-free
grammar of size polynomial in the size of the n2w. Using the results of [17] we
show that verifying that a n2w outputs only well-balanced words is in PTIME.

As an example, we consider a transformation τ : TΣ → Δ̂ where Σ = {a, b}
and Δ = Σ ∪ {c}. τ “turns 90 degree clockwise” the input tree: a(b(b(a(b))) is
mapped to (the linearization of) c(b, a, b, b, a)). More generally, transformation
τ maps tree a1(a2(...(an) . . .)) to lin(c(an, . . . , a1)) where a1, . . . , an ∈ Σ and
n ≥ 0. We define τ with a dn2w↓ in Fig. 3 with Q = Γ = {0, 1, 2, 3}, init = {0}
and fin = {3}. Except for the opening c parenthesis, all output is produced at
closing time. A run of T on the input tree a(b(b)) is shown in Fig. 3 too. The
inverse transformation modulo linearization τ ′ : TΔ → Σ̂ cannot be expressed by
any n2w since we would have to read a horizontal word from the right to the left.
This is impossible, similarly to word inversion by one-way string transducers.

For every class C of transducers, we define the C-equivalence problem. Its
input are two transducers T1, T2 ∈ C with the same alphabets, and its output is
yes if �T1� = �T2� and no otherwise.

3 Morphism Equivalence on CFGs

We relate dn2ws and dn2ws↓-equivalence to word morphism equivalence on cfgs
[14,13]. A (word) morphism is a total function M : Σ∗ → Δ∗ such that M(v ·
u) = M(v) · M(u). It is uniquely specified by the values taken on letters of
Σ. We use the set {(a,M(a)) | a ∈ Σ} as the representation of M with size
|M | =

∑
a∈Σ |M(a)|.

A context-free grammar (cfg) over Σ is a tuple G = (Σ,Q, init , rul), where
Σ is the set of terminals, Q is the set of nonterminals or states, init ⊆ Q the set
of start states, rul ⊆ Q × (Σ ∪Q∗) a set of rules. We denote rules r as q → ω
where q ∈ Q is its left-hand side (lhs(r)) and ω ∈ Σ ∪ Q∗ its right-hand side
(rhs(r)). The size of a rule |r| is the length of its rhs . The size of a grammar G
is |G| = |Σ|+ |Q|+Σr∈rul |r|. The set L(G) of words recognized by G is defined
in the standard way.
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Morphism equivalence on cfgs is the decision problem, which inputs two
finite sets Σ and Δ, two morphisms M1,M2 : Σ∗ → Δ∗, and a cfg G with
alphabet Σ, and outputs yes iff M1(w) = M2(w) for all w ∈ L(G).

We need extended parse trees, whose inner nodes are labeled by rules instead
of nonterminals. Formally, an extended parse tree of a grammar G is a tree
t ∈ Trul∪Σ , such that for all nodes π ∈ nod(t): 1. inner nodes are labeled by
rules and leafs in Σ, 2. if the label of π is a rule q → q1 · · · qn then π has exactly
n children, and for all 1 ≤ i ≤ n child π · i is labeled by a rule with lhs qi, and
3. if the label of π is a rule q → a then π has exactly one child which is a leaf
labeled a. Extended parse trees are ranked trees, when using the size of a rule
as its arity. As usually, given a tree t we define yield(t) to be the concatenation
of the labels of all leaves in left-to-right order. Clearly, w ∈ L(G) if and only if
there exists an extended parse tree t of G with w = yield(t).

Lemma 2. For every morphism M : Σ∗ → Δ∗ and cfg G with alphabet Σ, we
can construct in time O(|M | + |G|2) a dn2w

↓ T with alphabet Σ and Δ such
that �T � = {(t,M(yield(t))) | t extended parse tree of G}.

Proof (sketch). We take the grammar G = (Σ,QG, initG, rulG) and construct
an dn2w↓ T = (Σ′, Δ,QT , ΓT , initT , rulT ,finT ) that takes as an input extended
parse tree of G t and outputs M(yield(t)). This can be done top-down deter-
ministically since extended parse trees contain all necessary information. Let
Σ′ = QG∪Σ, QT = ΓT = {(r, j) | r ∈ rulG, 0 ≤ j ≤ |r|}∪{o, d, f}, initT = {o},
finT = {f}, and rulT consists of the following transitions:

r ∈ rulG lhs(r) ∈ initG

o
op r/ε:f−−−−−→ (r, 0)

(r, |r|) cl r/ε:f−−−−−→ f

r ∈ rulG rhs(r) = a

(r, 0)
op a/M(a):(r,1)−−−−−−−−−−→ d

d
cl a/ε:(r,1)−−−−−−−→ (r, 1)

r, r′ ∈ rulG rhs(r) = q1 · · · qk 1 ≤ j ≤ |r| lhs(r′) = qj

(r, j−1)
op r′/ε:(r,j)−−−−−−−→ (r′, 0)

(r′, |r′|) cl r′/ε:(r,j)−−−−−−−→ (r, j)

�

Proposition 1. Morphism equivalence on cfgs can be reduced in quadratic time
to dn2w

↓-equivalence.

Proof. Take two morphisms M1,M2 : Σ∗ → Δ∗ and a cfg G, and let T1 and T2
be obtained with the construction described in Lemma 2 for M1 with G and M2
with G respectively, in O(|G|2 + |M1| + |M2|). Since T1 and T2 have the same
domain, it should be clear that T1 and T2 are equivalent if and only if M1 and
M2 are equivalent on G. �

We next reduce dn2w-equivalence to morphism equivalence on cfgs. Let T1 and
T2 be two n2ws with input alphabet Σ and output alphabet Δ. Let t ∈ TΣ be a
tree whose events are e1 < . . . < en. A successful parallel run of T1 and T2 on tree
t is a word s with alphabet R = rulT1 ×rulT2 such that there exist two successful
runs R1 of T1 and R2 of T2 on t with s = (R1(e1), R2(e1)) · . . . · (R1(en), R2(en)).
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We use two morphisms M1 and M2 from R to Δ such that:

Mi((r1, r2)) = u if ri = q
α a/u:γ−−−−−→ q′

If s is a successful parallel run of T1 and T2 on t, then (t,Mi(s)) ∈ �Ti�.

Lemma 3. For any two n2ws T1 and T2 with the same alphabets there exists a
cfg G such that L(G) is the set of all successful parallel runs of T1 and T2.

Proof (sketch). We construct the grammar G = (R, QG, initG, rulG) as follows.
The set of nonterminals isQG = {o}∪Q2

T1
×Q2

T2
. A nonterminal ((p1, q1), (p2, q2))

is supposed to produce a parallel run of T1 from p1 to q1 and T2 from p2 to q2
(on the same input). There is only one start symbol initG = {o} and the rules
in rulG are defined follows:

r1, r
′
1 ∈ rulT1 r1 = p1

op a/u1:γ1−−−−−−→ q1 r′1 = p′
1

cl a/u′
1:γ1−−−−−−→ q′1 p1 ∈ initT1 q′1 ∈ finT1

r2, r
′
2 ∈ rulT2 r2 = p2

op a/u2:γ2−−−−−−→ q2 r′2 = p′
2

cl a/u′
2:γ2−−−−−−→ q′2 p2 ∈ initT2 q′2 ∈ finT2

o → (r1, r2) · ((q1, p
′
1), (q2, p

′
2)) · (r′1, r′2)

r1, r
′
1 ∈ rulT1 r1 = p1

op a/u1:γ1−−−−−−→ q1 r′1 = p′
1

cl a/u′
1:γ1−−−−−−→ q′1,

r2, r
′
2 ∈ rulT2 r2 = p2

op a/u2:γ2−−−−−−→ q2 r′2 = p′
2

cl a/u′
2:γ2−−−−−−→ q′2

((p1, q
′
1), (p2, q

′
2)) → (r1, r2) · ((q1, p

′
1), (q2, p

′
2)) · (r′1, r′2)

p1, p
′
1, q1 ∈ QT1 p2, p

′
2, q2 ∈ QT2

((p1, q1), (p2, q2)) → ((p1, p
′
1), (p2, p

′
2)) · ((p′

1, q1), (p′
2, q2))

q1 ∈ QT1 , q2 ∈ QT2

((q1, q1), (q2, q2)) → ε
�

Proposition 2. dn2w-equivalence can be reduced in polynomial time to mor-
phism equivalence on cfgs.

Proof. Let T1 and T2 be two dn2ws with the input alphabet Σ and the output
alphabet Δ. First, we need to verify that the domains of T1 and T2 coincide. To
do that, we test equivalence of the dnas that define the domains of T1 and T2
(obtained by removing the output components from transitions). We recall that
this can be done in polynomial time due to determinism.

If the domains of T1 and T2 are equal, let G be the grammar constructed
in Lemma 3, and M1 and M2 the two morphisms defined above. Clearly, T1 is
equivalent to T2 if and only if M1 is equivalent to M2 on G. �

Interestingly, composing Proposition 2 with Proposition 1 allows us to reduce
dn2w-equivalence to dn2w↓-equivalence, the latter dealing with a weaker model
than the former. The converse reduction is trivial.

Corollary 1. dn2w-equivalence can be reduced in polynomial time to dn2w
↓-

equivalence, and vice versa.

4 Top-Down Ranked Tree to Word Transducers

We now relate dn2ws↓ to standard top-down deterministic transducers on ranked
trees, based on binary encoding of unranked trees.
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fcns(a(t1, . . . , tn)) = a(fcns ′(t1, . . . , tn), #)
fcns ′(a(t11, . . . , tm

1 ), t2, . . . , tn) =
a(fcns ′(t11, . . . , tm

1 ), fcns ′(t2, . . . , tn))
fcns ′(()) = #

d

a b

c

d

a #

c b

# # # #

Fig. 4. First-child next-sibling encoding

A ranked alphabet consists of a set Σ and a arity function ar : Σ → N. The
set T r

Σ of ranked trees over Σ is the least subset of TΣ that contains all trees
a(t1, . . . , tar(a)) with ti ∈ T r

Σ .
We fix an infinite sequence of pairwise distinct tree variables (xi)i∈N. A top-

down ranked-tree to word transducer (r2w↓) is a tuple S = (Σ, Δ, Q, init , rul),
where Σ is a ranked alphabet, Δ a finite set, init ⊆ Q, and rul a finite set of rules
of the form q(a(x1, . . . , xar(a))) → w where q ∈ Q and w is a word over alphabet
Δ ' {p(xi) | p ∈ Q, 1 ≤ i ≤ ar(a)}. An r2w↓ S is top-down deterministic or
a dr2w↓s if for every a ∈ Σ there exists at most one state q ∈ init such that
q(a(x1, . . . , xar(a))) → w ∈ rul for some w, and if there exist no two rules in rul
with the same left hand side.

The semantics of S is defined in terms of the relations �S�q ⊆ T r
Σ ×Δ∗, where

q ∈ Q, intuitively representing the transformation performed by S in state q.
Formally, (a(t1, . . . , tk), u) ∈ �S�q if and only if there exists q(a(x1, . . . , xk)) → w
in rul such that u is obtained by replacing in w every occurrence of p(xi) by
ui for some (ti, ui) ∈ �S�p (if some p(xi) occurs more than once in w, then
different pairs (ti, ui), (ti, u′i) ∈ �S�p can be used for replacement). Finally, the
transformation defined by S is �S� =

⋃
q∈init �S�q.

From now, we will restrict ourselves to noncopying and order-preserving
dr2w↓s. These are dr2w↓s with rules of the form:

q(a(x1, . . . , xk)) → u0 · q1(x1) · u1 · . . . · uk−1 · qk(xk) · uk,

where ui ∈ Δ∗ for all i ∈ {1, . . . , k}. Given this restriction, we can drop variables
from the rules, and simply denote them as q(a) → u0 · q1 · . . . · qk · uk.

Our first result, shows that any transformation definable with a dn2w↓ can be
expressed by a noncopying order-preserving dr2w↓s, modulo a binary encoding
of input trees. Here we use Rabin’s encoding of unranked trees as usual, often
called first-child next-sibling encoding. An unranked tree over Σ is represented
using a binary tree whose inner nodes are labeled with Σ (binary symbol) and
leaves with # (constant symbol not belonging to Σ). Formally, the encoding is
defined and illustrated by an example in Fig. 4.

Proposition 3. For any dn2w
↓ T we can construct in time O(|Σ|2 ∗ |QT |2) a

noncopying order-preserving dr2w
↓s S with �S� = {(fcns(t), u) | (t, u) ∈ �T �}.

Proof (sketch). Let T = (Σ,Δ,QT , ΓT , initT , rulT ,finT ) and recall that ΓT =
QT because T is a dn2w↓. We defined S = (Σ ∪ {#}, Δ,QS, initS , rulS) such
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that QS = initT ∪ {q#} ∪QT ×Σ × ΓT , initS = initT , and rulS consists of the
following rules:

q0 ∈ initT q2 ∈ finT q0
op a/u:q2−−−−−−→ q1 ∈ rulT

q0(a) → u · (q1, a, q2) · q#
q

cl a/u:q′
−−−−−→ q′ ∈ rulT
(q, a, q′)(#) → u

b ∈ Σ p ∈ QT q
op a/u:q2−−−−−−→ q1 ∈ rulT

(q, b, p)(a) → u · (q1, a, q2) · (q2, b, p)
true

q#(#) → ε

Intuitively, the state (q, a, γ) corresponds to T being in state q, having γ on the
top of the stack, and a being the label of the parent of the current node. The
introduction of the state q# makes sure that S accepts on the input only trees
that are result of the first-child next-sibling encoding of some unranked tree.
One can then prove inductively that �S� = {(fcns(t), u) | (t, u) ∈ �T �}. �

Next, we show the converse, i.e. that every transformation defined with a dr2w↓s
can be expressed by dn2w↓. This time no encoding is necessary since unranked
trees comprise a subset of ranked trees.

Proposition 4. noncopying order-preserving dr2w
↓s S can be converted to

dn2ws↓ T with �S� = �T � in time O(|S| ∗ n) where n = max({ar(x) | x ∈ Σ}).

Proof (sketch). Let S = (Σ,Δ, statesS , initS , rulS). We extend the arity func-
tion ar to rulS in the following way: ar(q(a) → w) = ar(a).

The constructed dn2w↓ is T = (Σ,Δ,QT , ΓT , initT , rulT ,finT ) , where QT =
ΓT = {(r, j) | r ∈ rulS , 0 ≤ j ≤ ar(r)} ∪ {o, f}, initT = {o}, finT = {f}, and
rulS consists of the following rules

q0 ∈ initS

r = q0(a) → u0 · q1 . . . qk · uk ∈ rulS

o
op a/uo:f−−−−−−→ (r, 0)

(r, k)
cl a/ε:f−−−−−→ f

r = q(a) → u0 · q1 . . . qj · uj . . . qk · uk ∈ rulS
r′ = qj(b) → v0 · p1 . . . pm · vm 1 ≤ j ≤ k

(r, j − 1)
op b/vo:(r,j)−−−−−−−−→ (r′, 0)

(r′, m)
cl b/uj :(r,j)
−−−−−−−−→ (r, j)

Intuitively, when the transducer is in the state (r, j), it processes the rule
r = q0(a) → u0 · q1 . . . qk ·uk, has just written out uj , and is about to handle the
state qj+1 (or to close the parenthesis a if j = k). �S� = �T � is proved with an
inductive proof. �

Corollary 2. Equivalence of noncopying order-preserving dr2w
↓s can be re-

duced in polynomial time to dn2w
↓-equivalence, and vice versa.

5 Bottom-Up Ranked Tree to Word Transducers

Even though the expressive power of bottom-up and top-down deterministic tree
transducers are uncomparable, we can show their equivalence problems are the
same. Here we use direct reductions, that are inspired from the reduction of
dn2w-equivalence to dn2w↓-equivalence.
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We fix an infinite sequence of pairwise distinct variables (Xi)i∈N for out-
put words. A bottom-up ranked-tree to word transducer (r2w↑) is a tuple S =
(Σ,Δ,Q,fin, rul) with rules in rul of the form: a(q1(X1), . . . , qk(Xk)) → q(w)
where k = ar(a) q, qi ∈ Q, and w is a word with alphabet Δ' {X1, . . . , Xk}. The
semantics �S� ⊆ T r

Σ ×Δ∗ can be defined as follows:

a(q1(X1), . . . , qk(Xk)) → q(w) ∈ rul
(t1, u1) ∈ �S�q1 . . . (tk, uk) ∈ �S�qk

(a(t1, . . . , tk), w[u1/X1, . . . , un/Xn]) ∈ �S�q

true

�S� = ∪q∈fin�S�q

An r2w↑ S is bottom-up deterministic (or a dr2w↑) if no two rules of S have
the same left-hand side. In this case, �S� defines a partial function.

From now on, we will only consider noncopying and order-preserving r2w↑s,
i.e., r2w↑s with rules restricted to the form a(q1(X1), . . . , qk(Xk)) → q(u0 · X1 ·
u1 · · · Xk ·uk). Since noncopying, such r2w↑s can be translated to r2w↓s defining
the same relation, and vice versa. A rule as above is transformed to q(a) →
u0 ·q1 ·u1 · · · qk ·uk, while final states of the bottom-up transducer become initial
states of its top-down version. We can thus talk of r2ws in the noncopying case,
rather than distinguishing r2w↑s and r2w↓s artificially.

Given two noncopying order-preserving r2ws S1 and S2 with the same alpha-
bets Σ and Δ, a successful parallel run of S1 and S2 is a tree s over alphabet
R = rulS1 × rulS2 with nodes π ∈ nod(s) labeled by some pair of rules (rπ

1 , r
π
2 )

such that (1) the label of the root of s satisfies rε
i = qi( ) → for some qi ∈ finSi

,
and (2) for all nodes π ∈ nod(s) with rπ

i = qi(ai) → u0
i · q1i . . . qki

i · uki

i , it holds
that a1 = a2 and thus k1 = k2 = ar(a1) = ar(a2) and that π has exactly
k = k1 = k2 children π · j labeled by rules rπ·j

i = qj
i ( ) → where 1 ≤ j ≤ k and

1 ≤ i ≤ 2. For every successful parallel run s we define input(s) ∈ T r
Σ and the

outputi(s) ∈ Δ∗ as follows, where ri = qi(a) → u0
i · q1i . . . qk

i · uk
i :

input((r1, r2)(s1, . . . , sk)) = a(input(s1), . . . , input(sk))
outputi((r1, r2)(s1, . . . , sk)) = u0

i · outputi(s1) . . . outputi(sk) · uk
i

Lemma 4. Let S1 and S2 be noncopying and order-preserving r2ws over the
alphabets Σ and Δ. Then, for all t ∈ T r

Σ and u1, u2 ∈ Δ∗ we have that (t, u1) ∈
�S1� and (t, u2) ∈ �S2� if and only if there exists a successful parallel run s of
S1 and S2 such that input(s) = t, output1(s) = u1, and output2(s) = u2.

Proposition 5. Equivalence of noncopying and order-preserving dr2w
↑s S1

and S2 can be reduced in O(|S1| × |S2|) to equivalence of noncopying and order-
preserving dr2w

↓s, and vice versa.

Indeed, taking for example two noncopying and order-preserving dr2w↑s S1 and
S2 over the same domain (otherwise, it just a problem of equivalence over tree
automata that can be dealt in O(|S1| × |S2|), see [3]), one can build two dr2w↓s
S′

1 and S′
2 with �S′

i� containing (s, outputi(s)) where s is a parallel run of S1 and
S2. Lemma 4 then finishes the reduction.
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6 Conclusion and Future Work

We have shown that various classes of tree-to-word transducers have the same
equivalence problem modulo polynomial time reductions. Our results are based
on a new relationship to the morphism equivalence problem on CFGs that we
established. Our equivalences do not carry over to tree-to-tree transducers with-
out macros or concatenation operations, since these cannot express word mor-
phisms on CFGs in any obvious manner (Lemma 3). The classes of deterministic
nested word transducers that we have proposed here, open up quite a number
of questions of interest for the XML, formal language, tree automata and gram-
matical inference communities. For instance, grammatical inference algorithm
algorithms often relies on Myhill-Nerode theorem, which is closely linked with
equivalence problem (for example, see [12] for a learning algorithm for a class
of word transducers). So far, there lack results on type checking, minimization,
and learnability.
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2008, Part II. LNCS, vol. 5126, pp. 386–397. Springer, Heidelberg (2008)

16. Sénizergues, G.: The equivalence problem for deterministic pushdown automata
is decidable. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP
1997. LNCS, vol. 1256, pp. 671–681. Springer, Heidelberg (1997)

17. Tozawa, A., Minamide, Y.: Complexity results on balanced context-free languages.
In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 346–360. Springer, Hei-
delberg (2007)



Reachability in K3,3-Free Graphs and
K5-Free Graphs Is in Unambiguous Log-Space

Thomas Thierauf1 and Fabian Wagner2,�

1 Fak. Elektronik und Informatik, HTW Aalen, 73430 Aalen, Germany
2 Inst. für Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany

{thomas.thierauf,fabian.wagner}@uni-ulm.de

Abstract. We show that the reachability problem for directed graphs
that are either K3,3-free or K5-free is in unambiguous log-space, UL ∩
coUL. This significantly extends the result of Bourke, Tewari, and Vin-
odchandran that the reachability problem for directed planar graphs is
in UL ∩ coUL.

1 Introduction

For undirected graphs, the reachability problem is L-complete [8] and for gen-
eral graphs it is NL-complete. The reachability problem on planar graphs is in
UL ∩ coUL and is hard for L [3]. These results are built on work of [9] and [1].

We study reachability on extensions of planar graphs. Our main result is
that reachability for directed K3,3-free graphs and directed K5-free graphs log-
space-reduces to planar reachability. Thus, both problems are in UL∩coUL. One
motivation for our results clearly is to improve the complexity upper bounds
of certain reachability problems, from NL to UL in this case. Another aspect
is that thereby we also consider the relationship of complexity classes, namely
of UL vs. NL. The major open question is whether one can extend our results
further such that we finally get a collapse of NL to UL.

In the case of a K3,3-free graph G, our technique is to decompose G into
biconnected components which are further decomposed into planar triconnected
components and K5-components. We construct a tree where the nodes are asso-
ciated with these components (cf. [12]), the PlaK5-component tree.

For reachability from vertices s to t in graph G we consider the simple path
P in the PlaK5-component tree from component nodes S to T , where s and t
are contained. We split the graph into components along the separating pairs we
have on path P . A s-t-path must contain vertices of all these separating pairs
and we have to test reachability on all these components. The crucial step is to
replace all the K5-components in the tree by planar components such that the
reachability is not changed. Then we recombine the planar components into a
planar graph H such that there is a path from s to t in G if and only if this
holds too in H . The construction can be carried out in log-space.

� Supported by DFG grant TO 200/2-2.
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There also exists a decomposition of K5-free graphs (cf. Khuller [6]). This is
obtained by decomposing the graph into triconnected components. Each tricon-
nected component is either planar, the four-rung Mobius ladder, also called V8, or
it is constructed by taking 3-clique sums of planar 4-connected components [13].
We replace the V8-components by planar components such that the reachability
is not changed. Then we recombine the planar components into a planar graph.
A difficulty that arises here is that we cannot use the 3-clique sum operation
to recombine the components, because this would result again in a non-planar
graph. Instead, we carefully add copies of the components that can be arranged
in a planar way such that the reachability is not altered. All the steps can be
accomplished in log-space.

Our transformations from K3,3-free or K5-free graphs to planar graphs also
maintain the distances of the vertices. Hence, distances inK3,3- orK5-free graphs
can be computed in UL∩ coUL. The same is true for longest paths when consid-
ering directed acyclic graphs (DAG’s), but this requires some extra arguments.

In Section 3 we prove that reachability on K3,3-free graphs reduces to planar
reachability. In Section 4 we prove that reachability on K5-free graphs reduces
to planar reachability. We omit proofs of lemmas for space reasons, which are
provided in the full version of the paper.

2 Definitions and Notations

Let G = (V,E) be a graph. For U ⊆ V let G \ U be the induced subgraph of G
on V \ U . Let S ⊆ V with |S| = k. S is a k-separating set if G \ S is not
connected. The vertices of a k-separating set are called articulation point (or cut
vertex) for k = 1, separating pair for k = 2, and separating triple for k = 3. G
is k-connected if it contains no (k − 1)-separating set. A 1-connected graph is
simply called connected . The connected components of G \ S are called the split
components of S. We also say that S separates u from v if u ∈ S, v ∈ S, or u
and v are in different components of G \S. A K3,3-free graph (K5-free graph) is
an undirected graph which does not contain a K3,3 (or K5) as a minor.

Tree Decomposition of Connected Planar Graphs. We decompose the
connected graph G into biconnected components, and define the biconnected
component tree based on these components (see [5]). There is a node in the tree
for each maximal biconnected component of G and for each articulation point.
An articulation point node is connected to a biconnected component node if the
articulation point is contained as vertex in the biconnected component. In the
special case that two articulation points u, v are adjacent, there is a component
node which consists of one edge {u, v}. This node is connected to the articulation
point nodes for u and v. The biconnected component tree of an undirected graph
can be computed in log-space.

Tree Decomposition of Biconnected Planar Graphs. For biconnected
graphs, Hopcroft and Tarjan [5] introduced the decomposition into separat-
ing pairs and triconnected components . The latter are essentially maximal 3-
connected components and, for technical reasons, cycles and 3-bonds .
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Fig. 1. [4] The decomposition of G into triconnected components G1, . . . , G4 and the
triconnected component tree T . The dashed lines are virtual edges. The separating
pairs are {a, b} and {c, d}. Since {c, d} is connected by an edge in G, we also get {c, d}
as triple-bond G3. The virtual edges corresponding to the 3-connected separating pairs
are drawn with dashed lines.

Hopcroft and Tarjan proved that this decomposition has a tree structure. We
define the triconnected component tree that has these components as nodes simi-
lar to that of [4]. There is an edge between the separating pair node for {a, b} and
the triconnected component node for C, if {a, b} is contained in C (connected by
a virtual edge). The resulting graph on these nodes is a tree T which is rooted
at an arbitrary separating pair. For an example see Figure 1. Datta et. al. [4]
showed that when the graph is in addition planar , then the triconnected com-
ponent tree can be computed in log-space. In the full version, we extend this to
non-planar graphs.

Let T be a biconnected or a triconnected component tree. We define the size
of such a tree. The size of an individual component node of T is the number
of nodes in the component. The size of the tree T , denoted by |T |, is the sum
of the sizes of its component nodes. Let TC be a component tree rooted at an
arbitrary node C and let TC′ be a subtree of T rooted at a child C′ of C. We
call C′ a large child of C, if |TC′ | > |TC |/2.

Complexity. L (log-space) is the class of languages accepted by deterministic
and NL (respectively UL) by (unambiguous) nondeterministic log-space Turing-
machines. Unambiguous means, there exists at most one accepting computation
path. coUL is the class of complements of languages in UL. We also use the
fact that LUL∩coUL = UL ∩ coUL (c.f. Thierauf and Wagner [10]). We denote
log-space many-one reductions by ≤L

m and log-space Turing reductions by ≤L
T .

3 Reachability in K3,3-Free Graphs

We give a log-space reduction from the reachability problem for directed K3,3-
free graphs to the reachability problem for directed planar graphs which is known
to be in UL ∩ coUL [3].

For the reduction, we decompose the given graph G into triconnected compo-
nents. For the decomposition, we consider G as undirected . That is, each directed
edge of G is considered as an undirected edge. After the decomposition we con-
sider the components again as directed graphs.
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Tree Decomposition. We consider the decomposition of biconnected K3,3-free
graphs into triconnected components. Tutte [11] proved that the decomposition
is unique. Moreover, Asano [2] proved that it has the following form.

Lemma 1. [2] Each triconnected component of a K3,3-free graph is planar or
exactly the graph K5.

The triconnected components are the nodes of the triconnected component tree.
For our purpose it suffices to distinguish between planar and non-planar com-
ponents. Vazirani [12] recombines the planar triconnected components that are
neighbors in the tree into one planar component. This defines a new tree with
alternating planar and K5-component nodes which we call the PlaK5-component
tree. Vazirani [12] showed that the PlaK5-component tree is unique and can be
computed in NC2. Here we give a simpler and more direct construction that
works in log-space.

Lemma 2. Let G = (V,E) be a K3,3-free biconnected undirected graph. A set K
⊆ V of 5 vertices is a K5-minor in G if and only if for every pair u, v ∈ K
either {u, v} ∈ E or {u, v} is a separating pair in G such that the three remaining
vertices of K are all in one split component of G \ {u, v}.

As a consequence, we can compute all the K5-components of a biconnected
undirected graph in log-space: cycle through all the

(
n
5

)
sets of 5 vertices and

check the condition of Lemma 2 for each set. With the K5-components in hand,
we show that we can compute the PlaK5-component tree in log-space. For proof
details we refer to the full version of the paper.

Theorem 1. The decomposition of a K3,3-free biconnected graph into a PlaK5-
component tree can be computed in log-space.1

Reduction to the Planar Case. We construct a reduction from the reachabil-
ity problem for directed K3,3-free graphs to the reachability problem for directed
planar graphs.

Theorem 2. K3,3-free reachability ≤L
T planar reachability.

It suffices to consider biconnected directed K3,3-free graphs, because a path from
s to t visits all articulation points which separate s from t.

Lemma 3. Reachability ≤L
T biconnected reachability.

Let G = (V,E) be a biconnected directed K3,3-free graph and s, t be two vertices
in G. Let TG be the PlaK5-component tree of G. Let S be the biconnected
component that contains s and T the one that contains t.

We partition the tree into subtrees and consider the reachability problem
for these subtrees. Then we replace non-planar components of TG by planar
components such that the reachability condition remains unchanged.
1 The result came up in discussion with Samir Datta, Nutan Limaye, and Prajakta

Nimbhorkar. The proof presented here was developed in this paper.
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Fig. 2. Partitioning of the PlaK5-component tree TG into pieces TCi . The boxes indicate
component nodes and the triangles indicate subtrees.

Partitioning of G into Subgraphs. Consider the simple path from S to T
in TG, say S = C1, C2, . . . , Cl = T . A path from s to t always contains vertices
of separating pairs, say {ui, vi}, which are shared by the component nodes Ci−1
and Ci+1. For an example see Figure 2. A path p from s to t must visit at least
one vertex of each of these separating pairs. Once we have reached Ci, then p
will not go back to Ci−1, because otherwise p would not be simple. On the other
hand, p can pass through one sibling of Ci−1 before it goes to the parent Ci+1.

We partition the reachability problem into subproblems. For a component
node Ci define the tree TCi as the subtree of TG rooted at Ci, where the branches
to Ci−1 and Ci+1 are cut off. Let Gi be the graph corresponding to TCi .

Lemma 4. Any simple path p from s to t in G can be written as a concatenation
of paths, p = p1, . . . , pl, such that

– path p1 goes from s to u2 or v2 in G1,
– path pi is a path from ui−1 or vi−1 to ui+1 or vi+1 in Gi, i ∈ {3, 5, . . . , l−2}
– path pi is a path from ui or vi to ui or vi in Gi, for all i ∈ {2, 4, . . . , l− 1}
– path pl is a path from ul−1 or vl−1 to t in Gl.

In the reachability problems for Gi, we search for a path from ui−1 (or vi−1)
to ui+1 (or vi+1). Each separating pair is connected by a virtual edge. If Ci is
a separating pair node {ui, vi}, then we have to check whether there is a path
from ui to vi or vice versa in Gi.

Lemma 5. There is a path from ui−1 or vi−1 to ui+1 or vi+1 in Gi if and only
if there exists a path in Ci such that for virtual edges {a, b} on this path there
exists a path from a to b in the child component of Ci.

Because we have K5-component nodes, it is not clear yet, how we can test
reachability in UL∩coUL. We transform the K3,3-free graph into a planar graph.

Transforming a K5-Component into a Planar Component. Let TCi be a
PlaK5-component tree rooted at Ci as described above. We start with the root Ci

and traverse the tree in depth first manner. When we reach a K5-component
node D, then we replace it by a planar component D′ as described next such
that the reachability problem does not change. This results in a new component
tree of a planar graph G′.



328 T. Thierauf and F. Wagner

v3

v4v5

v2

vi+1

ui

vi

ui+1
D′

v5
v2

v3

v′
5 v′′

5

v4

(b) (c)(a)

D TCi,1

TCi,2

TCi,3

TCi,4

v1

v1

Fig. 3. (a) A K5-component node D and (b) the planar component node D′ where v′
5

and v5
′′ are copies of v5. For example, an edge (v1, v5) in D occurs twice in D′, as (v1, v5)

and (v1, v
′
5). The edges of D and D′ are drawn undirected to not overload the pic-

ture. Note that only the virtual edges are undirected. (c) The construction if D is the
root of TCi . Because there are four reachability problems, we have four versions of D,
say D1, . . . , D4 which replace the root in TCi . This leads to four trees TCi,1, . . . , TCi,4.
The resulting graph is planar.

Lemma 6. There is a log-space algorithm that transforms G into a planar
graph G′ such that there is a path from s to t in G if and only if there is such a
path in G′.

Let D be a K5-component node with vertices v1, . . . , v5. Let TCi be the subtree
that contains D. Let N be the size of the subtree rooted at D in TCi . Since our
algorithm works recursively and in order to have a log-space bound, we would
like to have recursive calls only on subtrees of small size, i.e. a fraction of N .
Recall, that there can be at most one large child. In the following, we consider
the situation that we search a path from v1 to v2 in D and we have a large child
at v3, v4. The same construction works if there is no large child, and it can be
easily adapted to the case that the large child is at another pair. The graph D′

is defined as shown in Figure 3 and has the following properties:

1. D′ is planar.
2. Every path from v1 to v2 in D exists as well in D′, possibly going through

one of the copies v′5 or v′′5 instead of v5.
3. D′ contains the edge {v3, v4} once. Thus we visit a large child only once.
4. Vertices v1 and v2 are on the outer face of D′.

The last property is important for the special case when D is the root of the
subtree, i.e. D = Ci. Then we have two vertices ui, vi and ask whether we can
reach two other vertices ui+1 and vi+1 and all these vertices belong to D. For
a planar arrangement, we make the construction as shown in Figure 3 (c). For
example, D1 is a copy of D where v1 is identified with ui and v2 with ui+1. In
total, this gives four combinations of reachability questions. Hence, we make four
copies of the whole planar graph corresponding to TCi , one for each path from a
vertex of the incoming separating pair to a vertex of the outgoing separating pair.
Note, that this case can occur only at the root, and not in the recursion in the
tree TCi . Therefore, we can afford to make the four copies. The replacement of
the K5-components is done recursively in depth-first manner with all the copies
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of children (i.e. the subtrees rooted at separating pairs) which we have in the
new components D′. Consequently, we give new names to vertices in the copies
of the subtrees.

We do this for all edges on all paths inD′. The order of the edges is given by the
order in which they appear on the input tape. We can always recompute the new
planar component D′, because we can recompute the sizes of the subtrees of D.
We can always refer to which copy of a separating pair we went into recursion by
storing O(1) bits on the work-tape when we go into recursion. Hence, whenever
we have to change vertex names, we can recompute the new vertex names of the
copy of a separating pair. We need such bits at each level of recursion. Since the
sizes of the copied subtrees are at most 1/2 the size of the tree, there are at most
logarithmically many levels of recursion. Hence, the algorithm runs in log-space.
Let N be the size of the PlaK5-component tree of G.

Lemma 7. The resulting graph G′ after the transformation of the K5 com-
ponents is planar, has size S(N) polynomial in N and there are simple paths
from ui or vi to ui+1 or vi+1 in Gi if and only if there are corresponding simple
paths in G′.

For some constant k we get the following space bound for G′:

S(N) = k · S(N/2) +O(N)

Hence, S(N) is polynomial in N . This finishes the proof of Theorem 2.

Corollary 1. K3,3-free reachability is in UL ∩ coUL.

4 Reachability in K5-Free Graphs

We give a log-space reduction from the reachability problem for directed K5-free
graphs to the reachability problem for directed planar graphs. For the reduction,
we decompose the given graph G into 3-connected and 4-connected components.
For the decomposition we consider G as undirected. It follows from a theorem
of Wagner [13] that besides planar components we also obtain non-planar com-
ponents this way: The four-rung Mobius ladder, also called V8 (see Figure 4), a
3-connected graph on 8 vertices, which is non-planar because it contains a K3,3.
The remaining 3-connected non-planar components are further decomposed into
4-connected components which are all planar.

The key step in the reduction is to replace the V8-components by planar
components similar as for the K5. For the remaining non-planar components
we define trees for a decomposition into 4-connected components. We will show,
that this can be done in log-space.

4.1 The Tree Decomposition

Khuller [6] described a decomposition of K5-free graphs with a clique-sum oper-
ation. If two graphs G1 and G2 each contain cliques of equal size, the clique-sum
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of G1 and G2 is a graph G formed from their disjoint union by identifying pairs
of vertices in these two cliques to form a single shared clique, and then possibly
deleting some of the clique edges. A (≤ k)-clique-sum is a clique-sum in which
both cliques have at most k vertices. If G can be constructed by repeatedly
taking (≤ k)-clique-sums starting from graphs isomorphic to members of some
graph class G then we say G ∈ 〈G〉k.

Theorem 3. [13] Let C be the class of all planar graphs together with the four-
rung Mobius ladder V8. Then 〈C〉3 is the class of all graphs with no K5-minor.

Note, some of the clique sum operations, e.g. those in which both cliques have
one or two vertices, lead to planar graphs which are not 3-connected. Therefore,
we decompose planar graphs into 3-connected components in beforehand. We
make two easy observations with respect to the above clique-sum operation.
If we built the (≤ 3)-clique-sum of two 3-connected planar graphs, then the
three vertices of the joint clique are a separating triple in the resulting graph.
Hence, the 4-connected components of a graph which is built as the 3-clique-sum
of planar graphs must all be planar. The V8 is non-planar and 3-connected, but
not 4-connected. Furthermore, the V8 cannot be part of a 3-clique sum operation
where all the tree vertices are chosen from the V8. By Theorem 3 and the two
observations we have the following situation.

Corollary 2. (cf. [6]) A 3-connected non-planar component of a K5-free undi-
rected graph is either the V8 or its 4-connected components are all planar.

In the following we argue that the 3-connected and 4-connected components
can be computed in log-space. Similar to the decomposition algorithm of Vazi-
rani [12], we decompose theK5-free graph into triconnected components. That is,
we first decompose it into biconnected components and then these components
further into triconnected components. This can be done in log-space.

The Triconnected Component Tree for Biconnected K5-Free Graphs.
Datta et.al. [4] show how to construct the triconnected component tree for a
planar biconnected graph in log-space. We give a different construction which is
suitable for K5-free biconnected graphs. The difference is, that the 3-connected
components must not be planar. Equivalently, we define the triconnected com-
ponent tree T for a K5-free biconnected graph G which also contains nodes for
non-planar triconnected components.

Lemma 8. The triconnected component tree for a K5-free biconnected graph
can be computed in log-space.

Decomposition into 4-Connected Components. It remains to further de-
compose the 3-connected components which are non-planar and not the V8. We
decompose such a component C into 4-connected components. Intuitively, we
start with a root separating triple and recursively decompose a split compo-
nent at those separating triples which split off subgraphs of maximum size. The
resulting components are 4-connected.
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We define a tree T with nodes for separating triples and the 4-connected
components. A separating triple node is connected to a 4-connected component
node if the separating triple is contained in the 4-connected component. Choose
one separating triple τroot in C as the root node of T . The resulting graph is a
tree, the 4-connected component tree of C.

Lemma 9. The 4-connected component tree of a 3-connected K5-free graph can
be computed in log-space.

4.2 Reachability on K5-Free Graphs

Theorem 4. K5-free reachability ≤L
m planar reachability.

Let G be a connected graph and s and t be two vertices in G. By Lemma 3
and Lemma 5, we can partition the reachability problem for G into reachability
problems on the triconnected components of G. If it is non-planar, then we
distinguish the two cases whether the triconnected component is the V8 or not.

In a triconnected component tree, a triconnected component has an incoming
separating pair {ui, vi} and an outgoing separating pair {ui+1, vi+1}. We con-
sider four reachability tests, from ui to ui+1, from ui to vi+1, from vi to ui+1
and from vi to vi+1. For each of these reachability tests, we construct a planar
copy of the triconnected non-planar component and connect them as shown in
Figure 3 (c) on page 328.

Transforming a V8-Component into a Planar Component. Let TC be a
triconnected component tree rooted at some node C. Let D be a V8-component
node in TC and v1, . . . , v8 the vertices in D. We transform D into a planar com-
ponent D′ such that the reachability question remains unchanged. The transfor-
mation is shown in Figure 4. For this, let v1, . . . , v4 be four vertices in D such
that v1, v2 are pairwise different. Assume, that we search for a path from v1 to v2
in D and that {v3, v4} is a virtual edge in D which corresponds to a large child
of D. By construction, D′ has the following properties.

– For each path from v1 to v2 that does not contain {v3, v4}, D′ contains a
copy of this path, i.e. a copy of all vertices and edges on this path.

– For all paths from v1 to v2 containing {v3, v4}, D′ contains a copy of the
sub-path from v1 to v3 and v4 to v2 or vice versa from v1 to v4 and v3 to v2.

– D′ contains the virtual edge {v3, v4} exactly once.
– v1 and v2 are both on the outer-face of D′. This property is important in

the case, that D is the root of TC (i.e. D = C).
– D′ with all copies of paths is planar and contains O(1) copies of each edge.

The replacement of the V8-components is done recursively in depth-first man-
ner with all the copies of children (i.e. the subtrees rooted at separating pairs)
which we have in the new components D′. Consequently, we give new names to
vertices in the copies of the subtrees. We do this for all edges on all paths in D′.
The order of the edges is given by the order in which they appear on the input
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Fig. 4. To simplify matters, we do not identify copies of vertices which share the
same label. (a) The V8 component D with edges drawn undirected. (b) The planar
component D′ is shown schematically. We consider {v1, v2} ∩ {v3, v4} = ∅ where paths
from v1 to v2 are copied. Paths containing {v3, v4} are indicated in the part below
{v1, v2}. (c) D′ in the case that (v1, v3) is the large child.

tape. We can always recompute the new planar component D′, because we can
recompute the sizes of subtrees of D. We can always recompute from which copy
of a separating pair we went into recursion by storing O(1) bits on the work-tape
when we go into recursion. So, when we have to change vertex names, then we
can recompute the new vertex names of the copied separating pair. We need
such bits at each level of recursion. Since the sizes of the copied subtrees are at
most 1/2 the size of the tree, there are at most logarithmically many levels of
recursion. Hence, the algorithm runs in log-space and the resulting planar graph
is of size polynomial in the size of the given graph.

Planar Arrangement of Split Components in a 4-Connected Compo-
nent Tree. After the replacement of V8-components by planar components,
we have to consider the other non-planar 3-connected components. We have
decomposed them into planar 4-connected components. We have to recombine
all the components into one planar graph. However, we cannot simply reverse
the decomposition process because the 3-clique sum of the 4-connected (planar)
components could result in a non-planar 3-connected component. To get around
this problem we make copies of some of the components and arrange the copies
in a planar way. This has to be done carefully such that the size of the graph
constructed that way stays polynomial in the size of the input graph.

Consider a 4-connected component tree T . Let S and T be the component
nodes in T where vertices s and t are contained in, respectively. Consider S as
the root of T i.e., let TS = T and let P be a simple path from S to T in TS .
We describe how to find a planar arrangement of the components of TS . We
start by putting the component S in the new planar arrangement. Inductively
assume that we have put some component C and let τ be a child node of C
in TS . Let furthermore the children of τ be the nodes C1, . . . , Ck. Precisely one
of the children is put once in the planar arrangement, the other children are put
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Fig. 5. (a) A planar 4-connected component C with separating triple τ = {v1, v2, v3}.
The edges of τ are virtual edges, indicated with dashed lines. (b) The 4-connected
component tree with nodes C, τ and its children, C1, C2 and C3. (c) The planar ar-
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three times, i.e. there are two additional copies which are connected to copies of
the vertices of τ . Figure 5 shows the construction. By G′ we denote the resulting
planar arranged graph which we obtain for G.

The construction does not change the reachability properties. For example, if
there is a path from v1 to v2 in G which goes through the component C2 and also
passes v3, then there will be a path from v1 to v2 in G′ which goes through the
copy C′′

2 of C2 and passes the copy v′′3 instead of v3. If there is no path from v1
to v2 in G then there is no path from v1 to v2 in the constructed planar graph
either. The child which is put only once is selected as follows:

1. If a child Ci of τ is a node on path P then we select Ci.
2. If no child of τ is a node on P but there is a large child Cj then we select Cj .
3. Otherwise, we select an arbitrary component, say C1.

Let N be the size of the triconnected component tree rooted at node C. We
emphasize that in case 1, if a large child is copied three times because another
child of τ is on path P then this situation does not occur recursively, because
the ancestors of the copied large child do not belong to P . Hence, the planar
arranged graph G′ is of polynomial size S(N), because we just copy recursively
subgraphs of size smaller than N/2 even if we consider the exception of case 1.
The recursion equation is again S(N) = k · S(N/2)+O(N) for some constant k.
Also, with similar arguments this construction gives a log-space algorithm, (i.e.
in each of the O(log n) levels of recursion we store O(1) bits on the work-tape).
This finishes the proof of Theorem 4. Since reachability for planar graphs is in
UL ∩ coUL [3], we get the following corollary.

Corollary 3. K5-free reachability is in UL ∩ coUL.

Further Results. The graph transformations increase the number of simple
paths between incoming and outgoing vertices of a component, but the distances
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between vertices remain the same. Although it is not as obvious, the same is true
for the length of the longest simple paths between vertices in DAG’s. Let

Distance = { (G, s, t, k) | G contains a s-t-path of length ≤ k },
Long-Path = { (G, s, t, k) | G contains a simple s-t-path of length ≥ k }.

Since the distance problem for planar graphs and the longest path problem for
planar DAGs are in UL ∩ coUL [7,10], we get the following corollary.

Corollary 4. Distance for K3,3-free and K5-free graphs is in UL ∩ coUL.
Long-Path for K3,3-free and K5-free DAGs is in UL ∩ coUL.
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Abstract. In the paper we show that there is a close relationship be-
tween the energy complexity and the depth of threshold circuits com-
puting any Boolean function although they have completely different
physical meanings. Suppose that a Boolean function f can be computed
by a threshold circuit C of energy complexity e and hence at most e
threshold gates in C output “1” for any input to C. We then prove that
the function f can be computed also by a threshold circuit C′ of depth
2e+1 and hence the parallel computation time of C′ is 2e+1. If the size
of C is s, that is, there are s threshold gates in C, then the size s′ of C′

is s′ = 2es + 1. Thus, if the size s of C is polynomial in the number n of
input variables, then the size s′ of C′ is polynomial in n, too.

1 Introduction

A threshold (logic) gate is a theoretical model of a neuron, and a threshold
(logic) circuit, which is a combinatorial circuit consisting of threshold gates, is a
theoretical model of a neural circuit in the brain. A threshold circuit is intensively
studied for a few decades [1,2,3,4,5]. Information processing in a neural circuit
results from “firing” of neurons. Recent studies in biology report that a neuron
consumes a large amount of energy for firing, and consequently the firing rate
of neurons is quiet low[6,7]. Based on the fact above, the energy complexity e
of a threshold circuit C is defined as the maximum number of threshold gates
outputting “1” over all inputs to C[8]. There have been known several results
on the energy complexity of threshold circuits [8,9,10], and it turns out that the
energy complexity e of C has a close relationship with other major complexity
measures such as the size s and the depth d; the size s of C is the number of
threshold gates in C; and the depth d of C is the length of the longest directed
path going from an input node to the output gate in C, and corresponds to the
parallel computation time. In particular, there is a tradeoff n ≤ se between the
size s and the energy complexity e of threshold circuits computing the PARITY
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function of n variables [10]. On the other hand, there is a tradeoff n ≤ 2sd−1

between the size s and the depth d of threshold circuits computing the PARITY
function [11], and a tradeoff n ≤ (s/d)d−ε also holds for any ε > 0 [12]. In all
these tradeoffs, the left hand side is the number n of input variables, while either
the energy complexity e or the depth d appears in the exponent of s in the right
hand side. Thus the two measures, energy e and depth d, play the similar role
in the tradeoffs at least for circuits computing the PARITY function, although
the two measures have completely different physical meanings. Thus, the energy
complexity e seems to have a close relationship with the depth d not only for
the circuits computing the PARITY function but also for circuits computing any
Boolean function.

In the paper, we investigate a relationship between the energy complexity and
the depth of threshold circuits computing any Boolean function, and obtain the
following result as the main theorem: if a Boolean function f can be computed
by a threshold circuit C of energy complexity e, then f can be computed also
by a threshold circuit C′ of depth d′ = 2e+ 1. If C has size s, then C′ has size
s′ = 2es + 1. Thus, if a Boolean function of n variables can be computed by
a threshold circuit C of constant energy complexity and polynomial size in n,
then f can be computed also by a threshold circuit C′ of constant depth and
polynomial size. Since the proof of the main theorem is constructive, a threshold
circuit C′ of shallow depth can be immediately obtained from a circuit C of
small energy complexity.

The rest of the paper is organized as follows. In Section 2, we first define some
terms on threshold circuits, and then present the main theorem. In Section 3,
we prove the main theorem. In Section 4, we conclude with some remarks.

2 Definitions and Main Theorem

In the section, we first define some terms on threshold circuits, and then present
the main theorem and a corollary.

A threshold gate in the paper is the so-called linear threshold logic gate, and
can have an arbitrary number k of inputs. For every input z = (z1, z2, · · · , zk) ∈
{0, 1}k to a threshold gate g with weights w1, w2, · · · , wk and a threshold t, the
output g(z) of the gate g for z is defined as follows:

g(z) =

⎧⎨
⎩1 if

k∑
i=1

wizi ≥ t;

0 otherwise.

We assume that the weights w1, w2, · · · , wk and the threshold t are arbitrary real
numbers.

A threshold (logic) circuit C is a combinatorial circuit consisting of threshold
gates, and is represented by a directed acyclic graph, as illustrated in Figs. 1 and
2. We denote by n the number of inputs to C, and by x = (x1, x2, · · · , xn) the
input variables to C. The underlying directed acyclic graph of C has n nodes
of in-degree 0, each of which corresponds to one of the n input variables and
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is called an input node. The size s of a threshold circuit C is the number of
threshold gates in C.

Let C be a threshold circuit of size s, and let g1, g2, · · · , gs be the s gates
in C. Then the input zi to a gate gi, 1 ≤ i ≤ s, either consists of the inputs
x1, x2, · · · , xn to C and the outputs of the gates other than gi or consists of some
of them. However, we denote by gi[x] the output gi(zi) of gi for zi, because x
decides gi(zi). Thus gi[x] = gi(zi).

Let f : {0, 1}n → {0, 1} be a Boolean function of n variables. (Our main
theorem can be immediately generalized to an m-output Boolean function f :
{0, 1}n → {0, 1}m for any positive integer m, as stated in Section 4.) Let gs

be a gate of out-degree 0 in C, and let the output gs[x] of gs be the output
C(x) of C. Thus, C(x) = gs[x] for every input x ∈ {0, 1}n. The gate gs is
called the output gate of C. A threshold circuit C computes a Boolean function
f : {0, 1}n → {0, 1} if C(x) = f(x) for every input x ∈ {0, 1}n.

We say that a gate gi, 1 ≤ i ≤ s, is in the l-th layer of a circuit C if there
are l gates (including gi) on the longest path from an input node to gi in the
underlying graph of a circuit C. The depth d of C is the number of gates on the
longest path to the output gate gs.

For each input x ∈ {0, 1}n to a circuit C, we denote by eC(x) the number of
gates fired by x, that is,

eC(x) =
s∑

i=1

gi[x].

We then define the energy complexity eC of C as

eC = max
x∈{0,1}n

eC(x).

Thus, the energy complexity eC is the maximum number of gates outputting
“1” over all inputs x ∈ {0, 1}n. Obviously 0 ≤ eC ≤ s. We often denote eC(x)
and eC simply by e(x) and e, respectively.

We are now ready to present our main result as the following theorem, whose
proof will be given in the next section.

Theorem 1. If a Boolean function f can be computed by a threshold circuit C
of energy complexity e and size s, then f can be computed also by a threshold
circuit C′ of depth d′ = 2e+ 1 and size s′ = 2es+ 1.

Since s′ = 2es+ 1 ≤ 2s2 + 1, s′ is polynomial in n if s is polynomial in n. We
thus have the following corollary.

Corollary 1. If a Boolean function f can be computed by a polynomial-size
threshold circuit C of energy complexity e, then f can be computed also by a
polynomial-size threshold circuit C′ of depth d′ = 2e+ 1.

A Boolean function f is non-trivial if f(x) = 1 for some x ∈ {0, 1}n and
f(x′) = 0 for some x′ ∈ {0, 1}n. If f is non-trivial, then the upper bound
d′ ≤ 2e+ 1 on the depth d′ of C′ in Theorem 1 can be improved to d′ ≤ 2e, as
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Fig. 1. Threshold circuit computing f in Eq. (1)

stated in Section 4. The bound d′ ≤ 2e cannot be improved to d′ ≤ (2 − ε)e for
any number ε > 0, as follows. Let n be the number of input variables, and let
n ≥ 2. Let a be an integer such that 0 < a < n, and let f be

f(x) =

⎧⎨
⎩1 if

n∑
i=1

xi = a;

0 otherwise.
(1)

Then f is non-trivial, and can be computed by the threshold circuit C in Fig. 1,
which has the energy complexity e = 1. However, f cannot be computed by any
threshold circuit C′ of depth d′ = 1 ≤ (2 − ε)e.

3 Proof of Theorem 1

We prove Theorem 1 in this section.
Suppose that a Boolean function f can be computed by a threshold circuit C

of energy complexity e and size s. In Section 3.1, we construct a threshold circuit
C′ computing f , and show that C′ has depth d′ = 2e+ 1 and size s′ = 2es+ 1.
In Section 3.2, we prove that C′ computes f .

3.1 Construction of C′

Suppose that a threshold circuit C computing f consists of s threshold gates
g1, g2, · · · , gs, and that gs is the output gate of C. One may assume that
g1, g2, · · · , gs are topologically ordered with respect to the underlying acyclic
graph of C. Thus, for each i, 1 ≤ i ≤ s, the input zi to a gate gi either consists
of all the n inputs x1, x2, · · · , xn to C and the outputs of all the i − 1 gates
g1, g2, · · · , gi−1 preceding gi or consists of some of them. We denote the weights
of gi for inputs x1, x2, · · · , xn by wi,1, wi,2, · · · , wi,n, respectively, and denote the
weights of gi for the outputs of g1, g2, · · · , gi−1 by ŵi,1, ŵi,2, · · · , ŵi,i−1, respec-
tively. Some of the weights may be zero. Let ti be the threshold of gi. Then the
output gi[x] of gi is

gi[x] = sign

⎛
⎝ n∑

j=1

wi,jxj +
i−1∑
k=1

ŵi,kgk[x] − ti

⎞
⎠ . (2)
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Fig. 2. Sketch of C′

Figure 2 illustrates the circuit C′ which we are going to construct. The circuit
C′ has depth d′ = 2e+1. There are exactly s gates gl

1, g
l
2, · · · , gl

s in the l-th layer
of C′ for each integer l, 1 ≤ l ≤ 2e, and there is only the output gate g2e+1

s of
C′ in the top (2e+ 1)-st layer of C′. Thus C′ has size s′ = 2es+ 1.

Intuitively speaking, each pair of consecutive layers of C′ “finds” the next gate
with output 1 in C. More precisely, the circuit C′ satisfies the following lemma,
whose proof is omitted in this extended abstract due to the page limitation.

Lemma 1. Let x ∈ {0, 1}n be an arbitrary input to C. Let ga1 , ga2 , · · · , gae(x)

be the e(x) gates outputting “1” for x, and let 1 ≤ a1 < a2 < · · · < ae(x) ≤ s.
Thus ga1 fires first, ga2 fires second, and subsequently gae(x) fires last for x in C,
as illustrated in Fig. 3(a) for x such that f(x) = gs(x) = 1. Then the following
(a) and (b) hold. (See Fig. 3(b).)

(a) For every integer l, 1 ≤ l ≤ e(x), the gate g2l−1
al

first fires among the s gates
in the (2l − 1)-st layer of C′, and only the gate g2l

al
fires among the s gates in

the 2l-th layer of C′. That is, for every integer l, 1 ≤ l ≤ e(x), and every index
i, 1 ≤ i ≤ s,
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Fig. 3. Firing patterns of (a) C and (b) C′ for x such that f(x) = 1 and 1 ≤ e(x) < eC ,
where ∗ means 0 or 1

g2l−1
i [x] =

{
0 if 1 ≤ i ≤ al − 1;
1 if i = al

(3)

and

g2l
i [x] =

{
1 if i = al;
0 otherwise. (4)

(b) None of the gates in the l-th layer, 2e(x) + 1 ≤ l ≤ 2eC, fires. That is, for
every integer l, e(x) + 1 ≤ l ≤ eC, and every index i, 1 ≤ i ≤ s,

g2l−1
i [x] = 0 (5)

and

g2l
i [x] = 0. (6)

We now show how to construct C′ by separating the 2e + 1 layers into the
following four sets of layers.
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〈1〉 First layer
Each gate g1

i , 1 ≤ i ≤ s, in the first layer of C′ has the same threshold ti as gi in
C, and receives inputs only from the input nodes x1, x2, · · · , xn with the same
weights as gi. Thus, the output g1

i [x] of g1
i is

g1
i [x] = sign

⎛
⎝ n∑

j=1

wi,jxj − ti

⎞
⎠ (7)

for every input x ∈ {0, 1}n. From Eq. (2) and Eq. (7), we have

g1
i [x] = gi[x] if g1[x] = g2[x] = · · · = gi−1[x] = 0. (8)

If e(x) ≥ 1, then the gate ga1 fires first for x in C and hence we have from (8)

g1
i (x) =

{
0 if 1 ≤ i ≤ a1 − 1;
1 if i = a1.

(9)

Thus Eq. (3) holds for l = 1. If e(x) = 0, then gi[x] = 0 for every i, 1 ≤ i ≤ s,
and hence by (8)

g1
i [x] = 0 (10)

for every i, 1 ≤ i ≤ s. Thus Eq. (5) holds for l = 1.

〈2〉 Even-numbered layers
We design gates g2l

i , 1 ≤ i ≤ s, in the 2l-th layer, 1 ≤ l ≤ e, as follows. The gate
g2l

i receives, as inputs, only the outputs of i gates g2l−1
1 , g2l−1

2 , · · · , g2l−1
i in the

(2l− 1)-st layer. The weights for the outputs of g2l−1
1 , g2l−1

2 , · · · , g2l−1
i−1 are −1’s,

and the weight for the output of g2l−1
i is 1. The gate g2l

i has a threshold 1. Thus,
the output g2l

i [x] of g2l
i is

g2l
i [x] = sign

(
−

i−1∑
k=1

g2l−1
k [x] + g2l−1

i [x] − 1

)
(11)

for every input x ∈ {0, 1}n. Therefore,

g2l
i [x] = 1 if and only if

g2l−1
1 [x] = g2l−1

2 [x] = · · · = g2l−1
i−1 [x] = 0 and g2l−1

i [x] = 1.
(12)

Hence, if g2l−1
i fires first among the s gates in the (2l− 1)-st layer, then only g2l

i

fires among the s gates in the 2l-th layer.
Let l = 1, and consider gates g2

i , 1 ≤ i ≤ s, in the second layer. If e(x) ≥ 1,
then Eqs. (9) and (12) imply

g2
i [x] =

{
1 if i = a1;
0 otherwise. (13)
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Thus Eq. (4) holds for l = 1. If e(x) = 0, then Eqs. (10) and (12) imply that
g2

i [x] = 0 for every i, 1 ≤ i ≤ s. Thus Eq. (6) holds for l = 1.

〈3〉 Odd-numbered layers
We now design gate g2l−1

i , 1 ≤ i ≤ s, in the (2l − 1)-st layer, 2 ≤ l ≤ e. The
gate g2l−1

i has the same threshold ti as gi in C, and receives inputs x1, x2, · · · , xn

with the same weights as gi in C. Thus the weights of g2l−1
i for x1, x2, · · · , xn

are wi,1, wi,2, · · · , wi,n, respectively. The gate g2l−1
i receives, as inputs, also the

outputs of gates g2m
1 , g2m

2 , · · · , g2m
i−1 in the 2m-th layer for each m, 1 ≤ m ≤ l−1,

with weights ŵi,1, ŵi,2, · · · , ŵi,i−1, respectively. In addition, g2l−1
i receives the

output of g2m
i with weight −W for each m, 1 ≤ m ≤ l − 1, where W is a

sufficiently large positive integer. For example, we choose W so that

W > max
1≤i≤s

max
x∈{0,1}n

⎛
⎝ n∑

j=1

wi,jxj +
i−1∑
k=1

ŵi,kgk[x] − ti

⎞
⎠ . (14)

We thus have

g2l−1
i [x] = sign

⎛
⎝ n∑

j=1

wi,jxj +
l−1∑
m=1

i−1∑
k=1

ŵi,kg
2m
k [x] −

l−1∑
m=1

Wg2m
i [x] − ti

⎞
⎠ .

(15)

Hence, g2l−1
i does not fire if at least one of the l−1 gates g2

i , g
4
i , · · · , g

2(l−1)
i fires.

〈4〉 Top layer
There is only the output gate g2e+1

s in the top (2e+1)-st layer of C′. The thresh-
old of the gate g2e+1

s is 1, and g2e+1
s receives the outputs of e gates g2

s , g
4
s , · · · , g2e

s

with weights 1. Thus

g2e+1
s [x] = sign

(
e∑

l=1

g2l
s [x] − 1

)
. (16)

Hence, g2e+1
s computes the OR of outputs of g2

s , g
4
s , · · · , g2e

s .

We have thus completed the construction of C′.

3.2 C′ Computes f

In the section, we prove that the circuit C′ constructed in Section 3.1 computes
f , that is, C′(x) = f(x) for every input x ∈ {0, 1}n. We separate the proof into
two cases, f(x) = 1 and f(x) = 0, as follows.
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Case 1: f(x) = 1.
In the case, f(x) = C(x) = gs[x] = 1, and hence e(x) ≥ 1 and ae(x) = s as
illustrated in Fig. 3(a). Substituting i = s and l = 1, 2, · · · , e(x) in Eq. (4), we
obtain

g2
s [x] = g4

s [x] = · · · = g2(e(x)−1)
s [x] = 0 (17)

and

g2e(x)
s [x] = 1. (18)

Substituting i = s and l = e(x) + 1, e(x) + 2, · · · , e in Eq. (6), we have

g2(e(x)+1)
s [x] = g2(e(x)+2)

s [x] = · · · = g2e
s [x] = 0. (19)

By Eqs. (17)−(19), we have

e∑
l=1

g2l
s [x] = 1. (20)

Equations (16) and (20) imply that

C′(x) = g2e+1
s [x] = sign(0) = 1 = f(x).

Case 2: f(x) = 0.
In the case, f(x) = C(x) = gs[x] = 0 and hence a1, a2, · · · , ae(x) < s. Therefore,
by Eq. (4) and Eq. (6), we have

e∑
l=1

g2l
s [x] = 0. (21)

Equations (16) and (21) imply that

C′(x) = g2e+1
s [x] = sign(−1) = 0 = f(x).

4 Conclusions

In the paper, we prove that if a Boolean function f can be computed by a
threshold circuit C of energy complexity e and size s then the function f can be
computed also by a threshold circuit C′ of depth d′ = 2e+ 1 and s′ = 2es+ 1.
Lemma 1 implies that the energy complexity e′ of C′ satisfies e′ ≤ e(s+ 1) + 1.
Thus, the energy complexity e′ of C′ is not necessarily small even if the energy
complexity e of C is small. Let nwire be the number of wires in C, that is, nwire
is the number of all the non-zero weights wi,j and ŵi,k, 1 ≤ i ≤ s, 1 ≤ j ≤ n,
1 ≤ k ≤ i−1, in C. Then the number n′wire of wires in C′ is n′wire ≤ es2+e2nwire.
Let nin be the maximum fan-in of gates in C, then the maximum fan-in n′in of
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gates in C′ is n′in ≤ max{s, e(nin + 1)}. If all the weights and thresholds in C
are integers, then all of them in C′ are integers, too.

One can indeed decrease the depth d′ of the circuit C′ in Theorem 1 by 1 if f
is non-trivial and hence e ≥ 1, as follows. Since the s− 1 gates g2e

1 , g
2e
2 , · · · , g2e

s−1
in the 2e-th layer have out-degree 0 as illustrated in Fig. 2, these s−1 gates can
be removed from C′. The two gates g2e

s and g2e+1
s can be merged into a single

output gate of C′. One can thus construct a circuit C′ of depth d′ = 2e and size
s′ = s(2e− 1) + 1.

One can easily generalize Theorem 1 for an m-output Boolean function f :
{0, 1}n → {0, 1}m, where m is any positive integer, as follows. If such a function
f can be computed by a threshold circuit C of energy complexity e and size s,
then f can be computed also by a threshold circuit C′ of depth d′ = 2e+ 1 and
size s′ = 2es+m. The construction of C′ is similar to that in Section 3.1 except
for the top layer, in which there are m output gates of C′, each corresponds to
one of the m output gates in C and is designed similarly as g2e+1

s .
One would expect that the following proposition, which is a converse proposi-

tion of Corollary 1, holds: if f can be computed by a polynomial-size threshold
circuit C of depth d, then f can be computed also by a polynomial-size threshold
circuit C′ of energy e′ = O(d). However, the proposition does not hold, as fol-
lows. The addition of two n-bit numbers can be computed by a polynomial-size
threshold circuit C of depth d = 2 [5], while every circuit C′ computing the
addition has energy complexity e ≥ n.

A polynomial-size threshold circuit of constant depth has big computational
power; for example, not only the addition but also the multiplication and di-
vision of two n-bit numbers can be computed by such a circuit [13,14,15]. On
the other hand, some functions cannot be computed by any polynomial-size
threshold circuit of depth 2 or 3 under some restrictions on weights, thresholds,
fan-ins, etc. [16,17,18,19]. It is interesting to know whether there is a function
f : {0, 1}n → {0, 1} which cannot be computed by any polynomial-size threshold
circuit of constant energy complexity.
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Abstract. In the frequency allocation problem we are given a cellu-
lar telephone network whose geographical coverage area is divided into
cells where phone calls are serviced by frequencies assigned to them,
so that none of the pairs of calls emanating from the same or neigh-
boring cells is assigned the same frequency. The problem is to use the
frequencies efficiently, i.e. minimize the span of used frequencies. The
frequency allocation problem can be regarded as a multicoloring prob-
lem on a weighted hexagonal graph. In this paper we present a 1-local
17/12-competitive distributed algorithm for a multicoloring of hexagonal
graph, thereby improving the competitiveness ratio of previously known
best 1-local 13/9-competitive algorithm (see [1]).

1 Introduction

The basic problem concerning cellular networks concentrates on assigning sets
of frequencies (colors) to transmitters (vertices) in order to avoid unacceptable
interference (see [7]). In an ordinary cellular model the transmitters are centers
of hexagonal cells and the corresponding adjacency graph is a subgraph of the
infinite triangular lattice. In our model to each vertex v of a the triangular lattice
T we assign a non-negative integer d(v), called the demand (or weight) of the
vertex v. A proper multicoloring of G is a mapping ϕ from V (G) to subsets of
integers (colors) [n] = {1, 2, . . . , n}, such that |ϕ(v)| = d(v) for any vertex v ∈ G
and ϕ(v)∩ϕ(u) = ∅ for any pair of adjacent vertices u and v in the graph G. The
minimal n for which there exists a proper multicoloring of G, denoted by χm(G),
is called the multichromatic number of G. A hexagonal graph G = (V,E, d) is the
vertex weighted subgraph of T , induced by the set of its vertices with positive
demands (the idea of hexagonal graphs arise naturally in studies concerning
cellular networks). The multichromatic number is closely related to the weighted
clique number ω(G), which is defined as the maximum over all cliques of G of
their weights, where the weight of a clique is the sum of demands on its vertices.
Obviously, for any graph, χm(G) ≥ ω(G), while for hexagonal graphs (see, for
example, [2], [3], [6]), χm(G) ≤

⌈
4ω(G)

3

⌉
+ O(1). Since all proofs of the upper

bound are constructive, therefore it implies the existence of a 4/3-competitive

M. Kuty�lowski, M. Gȩbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 346–356, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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algorithm, i.e. algorithms which can online serve calls with the approximation
ratio equal to 4/3 respectively to the weighted clique number (see [5], [8]). It
should be also mentioned that McDiarmid and Reed showed in [3] that to decide
whether χm(G) = ω(G) is NP-complete.

In distributed graph algorithms a special role plays their ”locality” property.
An algorithm is k-local if the computation at any vertex v uses only the infor-
mation about the demands of the vertices at distance at most k from v. For
hexagonal graphs the best previously known 1-local algorithm for multicoloring
is 13/9-competitive, and it has been presented in [1]. In this paper we develop
a new 1-local algorithm which uses no more than

⌈17
12ω(G)

⌉
+O(1) colors, thus

improving the result from [1]. Our algorithm substantially differs from previous
ones. Those algorithms (e.g. [1], [2]) are composed of two stages. At the first
stage, a triangle-free hexagonal graph with weighted clique number no larger
than �ω(G)/3� is constructed from G, while at the second stage an algorithm
for multicoloring a triangle-free hexagonal graph is used (see [1], [10], [11]). Our
algorithm skips the second stage entirely.

Theorem 1. There is a 1-local distributed approximation algorithm for multi-
coloring hexagonal graphs which uses at most

⌈17
12ω(G)

⌉
+ O(1) colors. Time

complexity of the algorithm at each vertex is constant.

In [8] it was proved that a k-local c-approximate offline algorithm can be easily
converted to a k-local c-competitive online algorithm. Hence,

Corollary 1. There is a 1-local 17/12-competitive algorithm for multicoloring
hexagonal graphs.

In the next Section we formally define some basic terminology, while in Section
3 we present the algorithm and prove Theorem 1.

2 Basic Definition and Useful Facts

Following the notation from [3], the vertices of the triangular lattice T can be
described as follows: the position of each vertex is an integer linear combination
xp+yq of two vectors p = (1, 0) and q = (1

2 ,
√

3
2 ). Thus vertices of the triangular

lattice may be identified with pairs (x, y) of integers. Two vertices are adjacent
when the Euclidean distance between them is one. Therefore each vertex (x, y)
has six neighbors: (x−1, y), (x−1, y+1), (x, y+1), (x+1, y), (x+1, y−1), (x, y−1).
For simplicity we refer to the neighbors as: left, up-left, up-right, right, down-right
and down-left. We define a hexagonal graph G = (V,E) as an induced subgraph
of the triangular lattice (see Figure 1).

There exists an obvious 3-coloring of the infinite triangular lattice which gives
partition of the vertex set of any hexagonal graph into three independent sets.
Let us denote a color of any vertex v in this 3-coloring by bc(v) and call it a base
color (for simplicity we will use red, green and blue as base colors and their
arrangement is given in Figure 1), i.e. bc(v) ∈ {R,G,B}.
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Fig. 1. An example of a hexagonal graph

We call a triangle-free hexagonal graph an induced subgraph of the triangular
lattice without 3-clique. We define a corner in a triangle-free hexagonal graph
as a vertex which has at least two neighbors and none of them are at angle π.
A vertex is a right corner if it has an up-right or a down-right neighbor, and
otherwise it is a left corner (see Figure 2). A vertex which is not a corner is
called a non-corner.

Fig. 2. All possibilities for: (a) - left corners, (b) - right corners

In graph G = (V,E), we call a coloring f : V → {1, . . . , k} k-good if for every
odd cycle in G and for every i, 1 ≤ i ≤ k, there is a vertex v ∈ V in the cycle
such that f(v) = i. A graph is k-good if such coloring exists.

Lemma 1. [4] Consider a 3-coloring of the triangular lattice (R,G,B). Every
odd cycle of the triangle-free hexagonal graph G contains at least one non-corner
vertex of every color.

Proof. Assume without loss of generality that there exists an odd cycle in the
graph which does not have a non-corner vertex colored red. Notice that in
the 3-coloring of the triangular lattice, a corner has all its neighbors colored
by the same color (they are at the angle 2π/3 since the graph is triangle-free).
Hence, if all neighbors of a red colored corner are blue, we can recolor this cor-
ner by green color and vice-versa. That gives a valid 2-coloring of an odd cycle,
a contradiction. �
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Note that two successive corners in any cycle cannot be both left (right). By
Lemma 1 and since every cycle has at least one left and one right corner, we get
the following observation:

Proposition 1. Any triangle-free hexagonal graph G is 5-good.

One can also give an explicit 5-good coloring of every triangle-free hexagonal
graph by assigning colors in the following way:

– PINK – to non-corner vertices with base color equal to red,
– LIME – to non-corner vertices with base color equal to green,
– AQUA – to non-corner vertices with base color equal to blue,
– WHITE – to left corner vertices,
– YELLOW – to right corner vertices.

We denote color of a vertex v in this 5-good coloring by ec(v) and call it an extra
color of v (for simplicity we will use pink, lime, aqua, white and yellow as extra
colors, see Figure 3) , i.e. ec(v) ∈ {P,L,A,W, Y }.

Fig. 3. An example of a triangle-free hexagonal graph with 5-good coloring

Notice that if a graph G is 5-good then after removing vertices colored by any
of those five colors, the resulting graph is bipartite. For any weighted bipartite
graph H , χm(H) = ω(H) (see [6]), and it can be optimally multicolored by the
following procedure.

Procedure 2. Let H = (V ′, V ′′, E, d) be a weighted bipartite graph. We get
an optimal multicoloring of H if to each vertex v ∈ V ′ we assign a set of col-
ors {1, 2, . . . , d(v)}, while with each vertex v ∈ V ′′ we associate a set of colors
{m(v) + 1,m(v) + 2, . . . ,m(v) + d(v)}, where m(v) = max{d(u) : {u, v} ∈ E}.

Notice that in any weighted hexagonal graph G, a subgraph of the triangular
lattice T induced by vertices with positive demands d(v), the only cliques are
triangles, edges and isolated vertices. Note also that we assume that all vertices
of T which are not in G have to have demand d(v) = 0. Therefore, the weighted
clique number of G can be computed as follows:
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ω(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T )},
where τ(T ) is the set of all triangles of T .

For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T )},

where a(u, v, t) = �(d(u) + d(v) + d(t))/3�, is an average weight of the triangle
{u, v, t} ∈ τ(T ). It is easy to observe that the following fact holds.

Proposition 2. For each v ∈ G,

κ(v) ≤
⌈
ω(G)

3

⌉
We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v)
we call vertex very heavy.

To color vertices of G we use colors from appropriate palette. For a given color
c, its palette is defined as a set of pairs {(c, i)}i∈IN. A palette is called base color
palette if c ∈ {R,G,B}, while it is called extra color palette if c ∈ {P,L,A,W, Y }.

In our model of computations we assume that each vertex knows its coor-
dinates as well as its own demand (weight) and demands of all it neighbors.
With this knowledge, each vertex has to color itself properly in constant time in
a distributed way.

3 Algorithm and Its Correctness

Our algorithm consists of two main phases. In the first phase vertices take
κ(v) colors from its base color palette, so use no more than ω(G) colors. Af-
ter this phase all light vertices are fully colored while the remaining vertices
create a triangle-free hexagonal graph with weighted clique number not exceed-
ing �ω(G)/3� (after technical removing very heavy vertices). In the second phase
we construct 5-good coloring of the remaining graph. Recall that in 5-good col-
oring, a graph is bipartite after removing vertices of any of these five colors. If
we use Procedure 2 and color such graphs optimally with weight function equal
in each vertex to 1/4 of its demands, then we would fully color the remaining
graph and use no more than 5/4 colors than it is needed. Due to the proof of
Lemma 1, bipartition is easy to find after removing any class of non-corners
(pink, aqua or lime vertices). Unfortunately we cannot obtain this bipartition in
our 1-local model of computation when we remove any class of corners (white
or yellow vertices). We can do it only for non-corners, while corners have to be
satisfied in a separate way – by using free colors from base color palettes.

More precisely, our algorithm consists of the following steps:

Algorithm

Step 0: For each vertex v = (x, y) ∈ V compute its base color bc(v)

bc(v) =

⎧⎨
⎩
R if x+ 2y mod 3 = 0
G if x+ 2y mod 3 = 1
B if x+ 2y mod 3 = 2

,
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and its base function value

κ(v) = max
{⌈

d(u) + d(v) + d(t)
3

⌉
: {v, u, t} ∈ τ(T )

}
.

Step 1: For each vertex v ∈ V assign to v min{κ(v), d(v)} colors from its base
color palette. Construct a new weighted triangle-free hexagonal graph G1 =
(V1, E1, d1) where d1(v) = max{d(v)− κ(v), 0}, V1 ⊆ V is the set of vertices
with d1(v) > 0 (heavy vertices) and E1 ⊆ E is the set of all edges in G with
both endpoints from V1 (E1 is induced by V1).

Step 2: For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices) assign
free colors from the first κ(v) of base color palettes of its neighbors in T .
Construct a new graph G2 = (V2, E2, d2) where d2 is the difference between
d1(v) and the number of assigned colors in this Step, V2 ⊆ V1 is the set of
vertices with d2(v) > 0 and E2 ⊆ E1 is the set of all edges in G1 with both
endpoints from V2 (E2 is induced by V2).

Step 3: Determine 5-good coloring of G2: for each vertex v ∈ V2 compute its
extra color ec(v)

ec(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P if v is non-corner in G2 and bc(v) = R
L if v is non-corner in G2 and bc(v) = G
A if v is non-corner in G2 and bc(v) = B
W if v is left corner in G2
Y if v is right corner in G2

Step 4: For each class of non-corners (pink, lime, aqua) do as follows: remove
from G2 all pink (lime, aqua) vertices and based on the proof of Lemma 1
find a bipartition of the remaining graph. Apply Procedure 2 to satisfy 1/4
demands in G2 by colors from pink (lime, aqua) extra color palette.

Step 5: For each class of corners (white, yellow) do as follows: remove from G2
all white (yellow) vertices and:
5a find a bipartition of non-corners using their positions in the triangular

lattice T and apply Procedure 2 to satisfy 1/4 demands in G2 by colors
from white (yellow) extra color palette.

5b for each corner satisfy 1/4 its demands in G2 by the free colors of first
κ(v) from base color palettes of its light neighbors in T .

Correctness proof

At the very beginning of the algorithm there is a 1-local communication when
each vertex finds out about the demands of all its neighbors. From now on, no
more communication will be needed. Recall that each vertex knows its position
(x, y) on the triangular lattice T .

In Step 0 there is nothing to prove.
In Step 1 each heavy vertex v assigns κ(v) colors from its base color palette,

while each light vertex u assigns d(u) colors from its base color palette. Note that
G1 consists only of heavy vertices, thereforeG1 is a triangle-free hexagonal graph.
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For any {v, u, t} ∈ τ(G), since 3 min {κ(v), κ(u), κ(t)} ≥ d(v) + d(u) + d(t) and
min {κ(v), κ(u), κ(t)} ≥ min {d(v), d(u), d(t)}, at most two of d1(v), d1(u), d1(t)
are strictly positive and at least one of the vertices u, v and t has all its required
colors totally assigned in Step 1. Therefore, the graph G1 does not contain 3-
clique, i.e. it is a triangle-free hexagonal graph. The remaining weight of each
vertex v ∈ G1 is

d1(v) = d(v) − κ(v).

In Step 2 only vertices with d1(v) > κ(v) (very heavy vertices) are colored. If
vertex v is very heavy in G then it is isolated in G1 (all its neighbors are light
in G). Otherwise, for some {v, u, t} ∈ τ(T ) we would have

d(v) + d(u) > 2κ(v) + κ(u) ≥ 3a(v, u, t) ≥ d(v) + d(u),

a contradiction. Without loss of generality we may assume that bc(v) = R.
Denote by

DG(v) = min{κ(v) − d(u) : {u, v} ∈ T, bc(u) = G},

DB(v) = min{κ(v) − d(u) : {u, v} ∈ T, bc(u) = B}.
Obviously, DG(v), DB(v) > 0 for very heavy vertices v ∈ G1. Since in Step 1
each light vertex t uses exactly d(t) colors from its base color palette, we have at
least DG(v) free colors from the green base color palette and at least DB(v) free
colors from the blue base color palette, so that vertex v can assign those colors
to itself. Then, we would have G2 with ω(G2) ≤ �ω(G)/3�. To prove it, we will
need the following lemma:

Lemma 2. In G1 for every edge {v, u} ∈ E1 holds:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u).

Proof. Assume that v and u are heavy vertices in G and d1(v) + d1(u) > κ(v).
Then for some {v, u, t} ∈ τ(T ) we have:

d(v)+d(u) = d1(v)+κ(v)+d1(u)+κ(u) > 2κ(v)+κ(u) ≥ 3a(u, v, t) ≥ d(u)+d(v),

again a contradiction. �

Proposition 3
ω(G2) ≤ �ω(G)/3�.

Proof. Recall that in a hexagonal graph the only cliques are triangles, edges and
isolated vertices. Since G1 is a triangle-free hexagonal graph, G2 also does not
contain any triangle, so we have only edges and isolated vertices to check.

For each edge {v, u} ∈ E2 from Lemma 2 and Proposition 2 we have:

d2(v) + d2(u) ≤ d1(v) + d1(u) ≤ κ(v) ≤ �ω(G)/3�.

For each isolated vertex v ∈ G2 we should have d2(v) ≤ �ω(G)/3�. Indeed, if
d2(v) ≤ κ(v), then it holds by Proposition 2. If d2(v) > κ(v), then d1(v) > κ(v),
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so v has to borrow colors from its neighbors’ base color palettes in Step 2. Then,
for bc(v) = R,

d2(v) = d1(v) −DG(v) −DB(v) ≤ d(v) − κ(v) − κ(v) + d(u) − κ(v) + d(t) ≤

≤ 3a(v, u, t) − 3κ(v) ≤ 0

for some {v, u, t}∈τ(T ). Hence, d2(v)≤�ω(G)/3�, and so ω(G2)≤�ω(G)/3�. �

In Step 3 each vertex v has to decide whether it is a corner in G2 or not. Only
heavy neighbors of v can still exist in G2. Unfortunately, in 1-local model v does
not know which of his neighbors are heavy (and still exist in G2) and which
are light. Vertex v knows only where its neighbors with d(u) ≤ max{a(v, u, t) :
{v, u, t} ∈ τ(T )} are located. We call those vertices slight neighbors of v. They
must be light and, so, they are fully colored in Step 1. Thus, v knows where it
cannot have neighbors in G2 and presumes that all its neighbors which are not
slight, still exist in G2. Based on that knowledge, it can decide whether it is
a corner or not. In each triangle in τ(T ) containing v at least one neighbor of v
is slight, so v has at least three such neighbors. If vertex v has more than four
slight neighbors, then it is a non-corner. If vertex v has four slight neighbors,
then the remaining two are not slight. In this case if an angle between those two
are π, then v is non-corner, otherwise it is a corner – a right corner if its down-
left, up-left and right neighbors are slight, and a left corner if its down-right,
up-right and left neighbors are slight. If vertex v has three slight neighbors, then
it is a corner and distinction between left and right is determined in the same
way as above.

Step 4 strictly depends on a 5-good coloring of graph G2 (function ec). For
simplicity, consider only graph GP = (VP , EP , �d2/4�) where VP is obtained
from V2 by removing pink vertices, EP ⊆ E2 is the set of edges of G2 with both
endpoints in VP and weight function is 1/4 of weight function in G2. (Similarly
we can define GL for lime vertices and GA for aqua vertices and the analysis is
identical.) Since for GP we remove pink vertices from G2, therefore by Lemma 1,
graph GP is bipartite. We can easily find bipartition of this graph using base
colors (function bc): we put to the first set of the bipartition all non-corners
with base color equal to blue and red corners for which all neighbors in G2 are
green; while to the second set we put all non-corners with base color equal to
green and red corners for which all neighbors in G2 are blue. Next, we can apply
Procedure 2 to GP with bipartition defined above and weight function on each
vertex v equal to �d2(v)/4�, assigning colors from the pink extra color palette.
The problem is that, under 1-locality assumption, vertices cannot calculate value
of d2 of the neighbors, which is needed in Procedure 2 to calculate value m(v) =
max{�d2(u)/4� : {u, v} ∈ E2}. However, we can replace d2(u) by dv

2(u), which is
the number of expected demands on vertex u in vertex v after Step 2, and take
m′(v) = max{�dv

2(u)/4� : {u, v} ∈ E2}. More precisely,

dv
2(u) = d(u) − max{a(u, v, t) : {u, v, t} ∈ τ(T )}
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Note that dv
2(u) ≥ d2(u) for any {u, v} ∈ E2. However, for every {v, u} ∈ E2 we

have
d2(v) + dv

2(u) ≤ κ(v).

Assume that this inequality does not hold. Denote by

b(u, v) = max{a(u, v, t) : {u, v, t} ∈ τ(T )}.

Then for some {t, v, u} ∈ τ(T ) we have:

d(v) + d(u) = d2(v) + κ(v) + dv
2(u) + b(u, v) > 2κ(v) + b(u, v) ≥

≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction. Hence, if we use dv
2 instead of d2 in each vertex from the second

set of our bipartition, we have new ω(G2) and inequality from Proposition 3 still
holds. Thus, Procedure 2 works and uses at most �ω(G2)/4� colors in GP .

In Steps 5 and 5a we proceed almost in the same way. For simplicity, consider
only graph GW = (VW , EW , �d2/4�) where VW is obtained from V2 by removing
white vertices, EW ⊆ E2 is the set of edges from G2 with both endpoints in
VW and the weight function is 1/4 of the weight function in G2. (Similarly we
can define GY for yellow vertices and the analysis is identical.) Since we take
G2 without white vertices, in GW there are not any left corners and we have
only right corners and non-corners. In 5a we apply Procedure 2 to non-corners
and assign colors from the white extra color palette. We find a bipartition using
parity function p on each vertex. Parity is a function which calculates whether
v = (x, y) is ”even” or ”odd” vertex on the line to which it belongs. Formally:

– if v has up-left, up-right, down-left, down-right slight neighbors then

p(v) = x mod 2

– if v has left, up-left, right, down-right slight neighbors then

p(v) = y mod 2

– if v has left, down-left, right, up-right slight neighbors then

p(v) = y mod 2

In Step 5b for GW we take right corners and go back for a while to the base
color palettes. If vertex v ∈ G2 is a corner, it means that it has three slight
neighbors with the same base color. Without loss of generality, assume that
bc(v) = R and its slight neighbors’ base color is blue. Recall function DB from
Step 2 – we have DB(v) free colors from blue base color palette. We should have
d2(v) ≤ DB(v). Let Δ = {u, v, t} ∈ τ(T ) be a triangle such that t is the green
vertex which is not slight neighbor of v, and u is the blue vertex which is a slight
neighbor of v. Denote by sΔ(t) = d(t) − a(u, v, t). Then we have
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0 ≥ d(v) − a(u, v, t) + d(t) − a(u, v, t) + d(u) − a(u, v, t) ≥
≥ d(v) − κ(v) + sΔ(t) + d(u) − κ(v) ≥ d1(v) + sΔ(t) −DB(v) ≥

≥ d2(v) + sΔ(t) −DB(v)

Since t is not a slight neighbor of v, d2(v) < DB(v). Therefore, vertex v has as
much as d2(v) free colors from the blue base color palette at his disposal, while
it needs just �d2(v)/4�.

In both rounds of Step 5b (white and yellow vertices) we do the same for
every right and left corners. We have to be careful not to cause a conflict when
some right and left corners are adjacent in G2. Then we cannot use the same
color from the base colors palette from common slight neighbors. To ensure that,
for left corners we can take only ”even colors” and for right corners only ”odd
colors” from the base color palettes (recall that we think of colors in a palette
as integers). We can do this because we have four times more free colors than
we need in each corner, and two times more than may be needed for any two
adjacent corners.

During Steps 4 and 5 each vertex v participates in exactly four from five
rounds (in each round one extra color is removed from G2) and �d2(v)/4� colors
are assigned in each. Therefore, at the end, all demands are satisfied.

Ratio

We claim that during the first phase (Steps 1 and 2) our algorithm uses at most
ω(G) + 3 colors. To see this notice that in Step 1 each vertex v uses at most
κ(v) colors from its base color palette and, by Proposition 2 and the fact that
there are three base colors, we know that no more than 3 �ω(G)/3� ≤ ω(G) + 3
colors are used. Note also that in Step 2 we use only those colors from base color
palettes which have not been used in Step 1, so overall no more than ω(G) + 3
colors are used in total in the first phase.

To count the number of colors used in the second phase (Steps 4 and 5)
notice that we divide the demands of each vertex in G2 into four equal parts.
Each vertex v participates in four from five rounds and assigns �d2(v)/4� colors
in each round. Since in each round of Step 4 and 5a we use ω(G2)/4 + 2 colors
from extra color palettes, we use only 5(ω(G2)/4 + 2) colors in total, while in
5b, when vertex cannot use an extra color palette, it borrows some colors from
the base color palettes of its neighbors that have not been used by them in the
previous steps, in order to avoid an introduction of any new colors.

Let A(G) denote the number of colors used by our algorithm for the graph G.
Thus, since ω(G2) ≤ �ω(G)/3� ≤ ω(G)/3 + 1, the total number of colors used
by our algorithm is at most

A(G) ≤ ω(G)+3+5
(
ω(G2)

4
+ 2
)

≤ ω(G)+3+
5ω(G)

12
+

5
4

+10 ≤ 17
12
ω(G)+15.

So, the performance ratio for our strategy is 17/12 and we arrived at the thesis
of Theorem 1.
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4 Conclusion

We have given a 17/12-approximation algorithm for multicoloring hexagonal
graphs. This implies a 17/12-competitive solution for the online frequency allo-
cation problem, which involves servicing calls in each cell in a cellular network.
The distributed algorithm is practical in the sense that frequency allocation for
each base station is done locally, based on the information about itself and its
neighbors only, and the time complexity is constant.
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Lê, Dai Tri Man 217
Lemay, Aurélien 310
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