
Dynamic Graph Clustering
Using Minimum-Cut Trees�

Robert Görke, Tanja Hartmann, and Dorothea Wagner

Faculty of Informatics, Universität Karlsruhe (TH)
Karlsruhe Institute of Technology (KIT)

{rgoerke,hartmn,wagner}@informatik.uni-karlsruhe.de

Abstract. Algorithms or target functions for graph clustering rarely admit qual-
ity guarantees or optimal results in general. Based on properties of minimum-cut
trees, a clustering algorithm by Flake et al. does however yield such a provable
guarantee. We show that the structure of minimum-s-t-cuts in a graph allows for
an efficient dynamic update of minimum-cut trees, and present a dynamic graph
clustering algorithm that maintains a clustering fulfilling this quality quarantee,
and that effectively avoids changing the clustering. Experiments on real-world
dynamic graphs complement our theoretical results.

1 Introduction

Graph clustering has become a central tool for the analysis of networks in general, with
applications ranging from the field of social sciences to biology and to the growing
field of complex systems. The general aim of graph clustering is to identify dense sub-
graphs in networks. Countless formalizations thereof exist, however, the overwhelming
majority of algorithms for graph clustering relies on heuristics, e.g., for some NP-hard
optimization problem, and do not allow for any structural guarantee on their output.
For an overview and recent results on graph clustering see, e.g., [2,1] and references
therein. Inspired by the work of Kannan et al. [8], Flake et al. [3] recently presented a
clustering algorithm which does guarantee a very reasonable bottleneck-property. Their
elegant approach employs minimum-cut trees, pioneered by Gomory and Hu [4], and
is capable of finding a hierarchy of clusterings by virtue of an input parameter. There
has been an attempt to dynamize this algorithm, by Saha and Mitra [9], however, we
found it to be erroneous beyond straightforward correction. We are not aware of any
other dynamic graph-clustering algorithms in the literature.

In this work we develop the first correct algorithm that efficiently and dynamically
maintains a clustering for a changing graph as found by the method of Flake et al. [3],
allowing arbitrary atomic changes in the graph, and keeping consecutive clusterings
similar (a notion we call temporal smoothness). Our algorithms build upon partially
updating an intermediate minimum-cut tree of a graph in the spirit of Gusfield’s [6]
simplification of the Gomory-Hu algorithm [4]. We show that, with only slight modifi-
cations, our techniques can update entire min-cut trees. We corroborate our theoretical

� This work was partially supported by the DFG under grant WA 654/15-1.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 339–350, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

340 R. Görke, T. Hartmann, and D. Wagner

results on clustering by experimentally evaluating the performance of our procedures
compared to the static algorithm on a real-world dynamic graph.

We briefly give our notational conventions and one fundamental lemma in Sec. 1.
Then, in Sec. 2, we revisit some results from [4,6,3], convey them to a dynamic scenario,
and derive our central results. In Section 3 we give actual update algorithms, which we
analyse in Sec. 4, concluding in Sec. 5. We do not include any proof in this extended
abstract, without further notice these can all be found in the full version [5].

Preliminaries and Notation. Throughout this work we consider an undirected,
weighted graph G = (V,E,c) with vertices V , edges E and a non-negative edge weight
function c, writing c(u,v) as a shorthand for c({u,v}) with u∼ v, i.e., {u,v}∈ E . We re-
serve the term node (or super-node) for compound vertices of abstracted graphs, which
may contain several basic vertices; however, we identify singleton nodes with the con-
tained vertex without further notice. Dynamic modifications of G will solely concern
edges; the reason for this is, that vertex insertions and deletions are trivial for a discon-
nected vertex. Thus, a modification of G always involves edge {b,d}, with c(b,d) = Δ ,
yielding G⊕ if {b,d} is newly inserted into G, and G� if it is deleted from G. For
simplicity we will not handle changes to edge weights, since this can be done almost
exactly as deletions and additions. Bridges in G require special treatment when deleted
or inserted. However, since they are both simple to detect and to deal with, we ignore
them by assuming the dynamic graph to stay connected at all times.

The minimum-cut tree T (G) = (V,ET ,cT) of G is a tree on V and represents for any
node pair {u,v}∈ (V

2

)
a minimum-u-v-cut θu,v in G by the cheapest edge on the u-v-path

in T (G). For b,d ∈V we always call this path γ (as a set of edges). An edge eT = {u,v}
of T induces the cut θu,v in G, sometimes denoted θv if the context identifies u. We
sometimes identify eT with the cut it induces in G.

A contraction of G by N ⊆ V means replacing set N by a single super-node η , and
leaving η adjacent to all former adjacencies u of vertices of N, with edge weight equal
to the sum of all former edges between N and u. Analogously we can contract by a set
M ⊆ E . A clustering C (G) of G is a partition of V into clusters Ci, usually conforming
to the paradigm of intra-cluster density and inter-cluster sparsity. We start by giving
some fundamental insights, which we will rely on in the following.

Lemma 1. Let e = {u,v} ∈ ET be an edge in T (G).
Consider G⊕: If e /∈ γ then e is still a min-u-v-cut with weight c(θe). If e ∈ γ then its
cut-weight is c(θe)+ Δ , it stays a min-u-v-cut iff ∀u-v-cuts θ ′ in G that do not separate
b,d: c(θ ′)≥ c(θe)+ Δ .

Consider G�: If e ∈ γ then e remains a min-u-v-cut, with weight c(θe)−Δ . If e /∈ γ
then it retains weight c(θe), it stays a min-u-v-cut iff ∀u-v-cuts θ ′ in G that separate
b,d: c(θ ′)≥ c(θe)+ Δ .

2 Theory

The Static Algorithm. Finding communities in the world wide web or in citation
networks are but example applications of graph clustering techniques. In [3] Flake et al.
propose and evaluate an algorithm which clusters such instances in a way that yields a

Dynamic Graph Clustering Using Minimum-Cut Trees 341

certain guarantee on the quality of the clusters. The authors base their quality measure
on the expansion of a cut (S, S̄) due to Kannan et al. [8]:

Ψ =
∑u∈S,v∈S̄ w(u,v)

min{|S|, |S̄|} (expansion of cut (S, S̄)) (1)

Inspired by a bicriterial approach for good clusterings by Kannan et al. [8], which bases
on the related measure conductance1, Flake et al. [3] design a graph clustering algo-
rithm that, given parameter α , asserts:2

c(C,V \C)
|V \C|

︸ ︷︷ ︸
intercluster cuts

≤ α ≤ c(P,Q)
min{|P|, |Q|}
︸ ︷︷ ︸

intracluster cuts

∀C ∈ C ∀P,Q �= /0 P ·∪Q = C (2)

Algorithm 1. CUT-CLUSTERING

Input: Graph G = (V,E,c), α
Vα := V ∪{t}1

Eα := E ∪{{t,v} | v ∈V}2

cα |E := c, cα |Eα\E := α3

Gα := (Vα ,Eα ,cα)4

T (Gα) := min-cut tree of Gα5

T (Gα)← T (Gα)− t6

C (G)← components of T (Gα)7

These quality guarantees—simply
called quality in the following—are due to
special properties of min-cut trees, which
are used by the clustering algorithm, as
given in Alg. 1 (comp. [3], we omit a tex-
tual description). In the following, we will
call the fact that a clustering can be com-
puted by this procedure the invariant. For
the proof that CUT-CLUSTERING yields
a clustering that obeys Eq. (2) and for a
number of other interesting properties, we refer the reader to [3]. In the following we
will use the definition of Gα = (Vα ,Eα ,cα), denoting by G�α and G⊕α the corresponding
augmented and modified graphs. For now, however, general G⊕(�) are considered.

A Dynamic Attempt. Saha and Mitra [9] published an algorithm that aims at the same
goal as our work. Unfortunately, we discovered a methodical error in this work. Roughly
speaking, the authors implicitly (and erroneously) assume an equivalence between qual-
ity and the invariant, e.g., in their CASE2 of the procedure for dynamic inter-addition:
their proof of correctness requires the invariant but guarantees only quality; there is no
immediate remedy for this error. We scrutinize these issues alongside counter-examples
and correct parts in the full versions [5,7]. A full description is beyond the scope of this
extended abstract, but we sketch out a counter-example in Fig. 1.

Minimum-Cut Trees and the Gomory-Hu Algorithm. Although we heavily build
upon the construction of a min-cut tree as proposed by Gomory and Hu [4] we cannot
accomodate a detailed description of their algorithm and refer the reader to their work.
The algorithm builds the min-cut tree of a graph by iteratively finding min-u-v-cuts
for vertices that have not yet been separated by a previous min-cut. An intermediate
min-cut tree T∗(G) = (V∗,E∗,c∗) (or simply T∗ if the context is clear) is initialized as
an isolated, edgeless super-node containing all original nodes. Then, until no node S of

1 conductance is similar to expansion but normalizes cuts by total incident edge weight.
2 The disjoint union A∪B with A∩B = /0 is denoted by A ·∪B.

342 R. Görke, T. Hartmann, and D. Wagner

4 5

6

3

12 100 α

100 α

0.5α
0.75α 0.25α 0.5α

0.75α

4 5

6

3

12 100 α

100 α

0.5α
0.75α 0.25α 0.5α

0.75α

2.75α

α 4 5

6

3

12 100 α

100 α

0.75α 0.25α 0.5α
0.75α

2.75α

0.5α

Fig. 1. Example showing error in [9]. Left: initial instance, clustered via static algorithm; middle:
updated clustering after one edge-addition, preserving quality but not the invariant; right: update
after second edge-addition, quality is violated, dashed cut weighs 11/4α < α min{|P|, |V \ |P}.

. . .b dp2 p3 pz−1

(a) T◦ by contracting all edges of γ in T (G)

. . .

b dp2 p3 pz−1

(b) T◦ by contracting all edges of ET \ γ

Fig. 2. Sketches of intermediate min-cut trees T◦; for G⊕ (a) we contract γ to a node, and for G�
(b) we contract each connected component induced by ET \ γ

T∗ contains more than one vertex, a node S is split. To this end, nodes Si �= S are dealt
with by contracting in G whole subtrees Nj of S in T∗, connected to S via edges {S,S j},
to single nodes η j before cutting, which yields GS—a notation we will continue using
in the following. The split of S into (Su,Sv) is then defined by a min-u-v-cut in GS.
Afterwards, Nj is reconnected, again by S j, to either Su or Sv depending on which side
of the cut η j, containing S j, ended up. Note that this cut in GS can be proven to induce
a min-u-v-cut in G. An execution GH = (G,F,K) of GOMORY-HU is characterized by
graph G, sequence F of n− 1 step pairs of nodes and sequence K of split cuts. Pair
{u,v} ⊆V is a cut pair of edge e of cut-tree T if θe is a min-u-v-cut in G.

Theorem 1. Consider a set M ⊆ ET and let T◦(G) = (V◦,M,c◦) be T (G) with ET \M
contracted. Let f and f ′ be sequences of the elements of M and ET \M, respectively, and
k and k′ the corresponding sequences of edge-induced cuts of G. GH = (G, f ′ · f ,k′ ·k)3

has T◦(G) as intermediate min-cut tree (namely after f).

In the following we will denote by T◦ an intermediate min-cut tree which serves as a
starting point, and by T∗ a working version. This theorem states that if for some reason
we can only be sure about a subset of the edges of a min-cut tree, we can contract all
other edges to super-nodes and consider the resulting tree T◦ as the correct intermediate
result of some GH, which can then be continued. One such reason could be a dynamic
change in G, such as the insertion of an edge, which by Lem. 1 maintains a subset of the
old min-cuts. This already hints at an idea for an effort-saving update of min-cut trees.

Using Arbitrary Minimum Cuts in G. Gusfield [6] presented an algorithm for finding
min-cut trees which avoids complicated contraction operations. In essence he provided
rules for adjusting iteratively found min-u-v-cuts in G (instead of in GS) that poten-
tially cross, such that they are consistent with the Gomory-Hu procedure and thus non-
crossing, but still minimal. We need to review and generalize some of these ideas as to

3 The term b ·a denotes the concatenation of sequences b and a, i.e., a happens first.

Dynamic Graph Clustering Using Minimum-Cut Trees 343

fit our setting. The following lemma essentially tells us, that at any time in GOMORY-
HU, for any edge e of T◦ there exists a cut pair of e in the two nodes incident to e.

Lemma 2 (Gus. [6], Lem. 44). Let S be cut into Sx and Sy, with {x,y} being a cut pair
(not necessarily the step pair). Let now {u,v} ⊆ Sx split Sx into Sxu and Sxv, wlog. with
Sy ∼ Sxu in T∗. Then, {x,y} remains a cut pair of edge {Sy,Sxu} (we say edge {Sx,Sy}
gets reconnected). If x ∈ Sxv, i.e., the min-u-v-cut separates x and y, then {u,y} is also
a cut pair of {Sxu,Sy}.
In the latter case of Lem. 2, we say that pair {x,y} gets hidden, and, in the view of
vertex y, its former counterpart x gets shadowed by u (or by Su). It is not hard to see
that during GOMORY-HU, step pairs remain cut pairs, but cut pairs need not stem from
step pairs. However, each edge in T has at least one cut pair in the incident nodes. We
define the nearest cut pair of an edge in T∗ as follows: As long as a step pair {x,y} is in
adjacent nodes Sx,Sy, it is the nearest cut pair of edge {Sx,Sy}; if a nearest cut pair gets
hidden in T∗ by a step of GOMORY-HU, as described in Lem. 2 if x ∈ Sxv, the nearest
cut pair of the reconnected edge {Sy,Sxu} becomes {u,y} (which are in the adjacent
nodes Sy,Sxu). The following theorem basically states how to iteratively find min-cuts
as GOMORY-HU, without the necessity to operate on a contracted graph.

Theorem 2 (Gus. [6], Theo. 25). Let {u,v} denote the current step pair in node S
during some GH. If (U,V \U), (u ∈U) is a min-u-v-cut in G, then there exists a min-
u-v-cut (US,VS \US) of equal weight in GS such that S∩U = S∩US and S∩ (V \U) =
S∩ (VS \US), (u ∈US).

Being an ingredient to the original proof of Theo. 2, the following Lem. 3 gives a
constructive assertion, that tells us how to arrive at a cut described in the theorem by in-
ductively adjusting a given min-u-v-cut in G. Thus, it is the key to avoiding contraction
and using cuts in G by rendering min-u-v-cuts non-crossing with other given cuts.

Lemma 3 (Gus. [6], Lem. 15). Let (Y,V \Y) be a min-x-y-cut in G (y∈Y). Let (H,V \
H) be a min-u-v-cut, with u,v∈V \Y and y∈H. Then the cut (Y ∪H,(V \Y)∩(V \H))
is also a min-u-v-cut.

Given a cut as by Theo. 2, Gomory and Hu state a simple mechanism which reconnects a
former neighboring subtree Nj of a node S to either of its two split parts; when avoiding
contraction, this criterion is not available. For this purpose, Gusfield iteratively defines
representatives r(Si)∈V of nodes Si of T∗, and states his Theorem 3: For u,v∈ S let any
min-u-v-cut (U,V \U), u∈U , in G split node S into Su � u and Sv � v and let (US,V \US)
be this cut adjusted via Lem. 3 and Theo. 2; then a neighboring subtree Nj of S, formerly
connected by edge {S,S j}, lies in US iff r(S j)∈U . We do not have such representatives
and thus need to adapt this, namely using nearest cut pairs as representatives:

Theorem 3 (comp. Gus. [6], Theo. 35). In any T∗ of a GH, suppose {u,v} ⊆ S is the
next step pair, with subtrees Nj of S connected by {S,S j} and nearest cut pairs {x j,y j},
y j ∈ S j. Let (U,V \U) be a min-u-v-cut in G, and (US,V \US) its adjustion. Then
η j ∈US iff y j ∈U.

4 This lemma is also proven in [6] and [4], we thus omit a proof.
5 This Lemma alongside Lemma 3, Theo. 2 and a simpler version of our Theo. 3 have been

discussed in [6] and the lemma also in [4].

344 R. Görke, T. Hartmann, and D. Wagner

Finding and Shaping Minimum Cuts in the Dynamic Scenario. In this section we
let graph G change, i.e., we consider the addition of an edge {b,d} or its deletion, yield-
ing G⊕ or G�. First of all we define valid representatives of the nodes on T◦(omitting
proofs). By Lem. 1 and Theo. 1, given an edge addition, T◦ consists of a single super-
node and many singletons, and given edge deletion, T◦ consists of a path of super-nodes;
for examples see Fig. 2.

Definition 1 (Representatives in T◦)
Edge addition: Set singletons to be representatives of themselves; for the only super-
node S choose an arbitrary r(S) ∈ S.
Edge deletion: For each node Si, set r(Si) to be the unique vertex in Si which lies on γ .
New nodes during algorithm, and the choice of step pairs: On a split of node S require
the step pair to be {r(S),v} with an arbitrary v ∈ S,v �= r(S). Let the split be S =
Sr(S) ·∪Sv,v ∈ Sv, then define r(Sr(S)) := r(S) and r(Sv) := v.

Following Theo. 1, we define the set M of “good” edges of the old tree T (G), i.e., edges
that stay valid due to Lem. 1, as M := ET \γ for the insertion of {b,d} and to M := γ for
the deletion. Let T◦(G⊕(�)) be T (G) contracted by M. As above, let f be any sequence
of the edges in M and k the corresponding cuts in G. We now state a specific variant of
the setting in Theo. 1 which is the basis of our updating algorithms, founded on T◦s as
in Fig. 2, using arbitrary cuts in G⊕(�) instead of actual contractions.

Lemma 4. Given an edge addition (deletion) in G. The Gomory-Hu execution
GH⊕(�) = (G⊕(�), f⊕(�) · f ,k⊕(�) · k) is feasible for G⊕(�) yielding T◦(G) as the in-
termediate min-cut tree after sequence f , if f⊕(�) and k⊕(�) are feasible sequences of
step pairs and cuts on T◦(G⊕(�)).

b

d

. . .
. . .

⇑A

�ANb Nd

⇑B

v

u

e

θ′

θ

�B

�e

⇑e

r

Fig. 3. Special parts of G�: γ (fat) connects b and d,
with r on it; wood �e and treetop ⇑e (dotted) of edge
e, both cut by θ ′ (dashed), adjusted to θ (solid) by
Lem. 6. Both �e and ⇑e are part of some node S, with
representative r, outside subtrees of r are Nb and Nd
(dash-dotted). Compare to Fig. 2(b).

Cuts That Can Stay. The non-
crossing nature of min-u-v-cuts allow
for more effort-saving and temporal
smoothness. There are several cir-
cumstances which imply that a previ-
ous cut is still valid after a graph mod-
ification, making its recomputation
unnecessary. The following lemma
gives one such assertion (we omit a
few others here), based on the defini-
tion of a treetop and of wood (comp.
Fig. 3): Consider edge e = {u,v} off
γ , and cut θ = (U,V \U) in G in-
duced by e in T (G) with γ contained
in U . In G�(S), S∩ (V \U) is called
the treetop ⇑e, and S∩U the wood #e of e. The subtrees of S are Nb and Nd , containing
b and d, respectively.

Lemma 5. In G�, let (U,V \U) be a min-u-v-cut not separating {b,d}, with γ in V \U.
Then, a cut induced by edge {g,h} of the old T (G), with g,h ∈U, remains a min sepa-
rating cut for all its previous cut pairs within U in G�, and a min g-h-cut in particular.

Dynamic Graph Clustering Using Minimum-Cut Trees 345

vi vj

r Rj V \RjRiV \Ri

Pi Pj

(a) θ ′i separates v j,r, and θ ′j
separates vi,r

vi vj

r
Rj V \RjRiV \Ri

Pi
Pj

(b) θ ′i does not separate
v j,r, but θ ′j separates vi,r

vi
vj

r
Rj V \RjRiV \Ri

Pi
Pj

(c) neither does θ ′i separate
v j,r, nor θ ′j vi,r

Fig. 4. Three cases concerning the positions of θ ′i and θ ′j , and their adjustments

As a corollary from Lem. 5 we get that in T (G�) the entire treetops of reconfirmed
edges of T (G) are also reconfirmed. This saves effort and encourages smoothness; how-
ever new cuts can also be urged to behave well, as follows.

The Shape of New Cuts. In contrast to the above lemmas, during a Gomory-Hu ex-
ecution for G�, we might find an edge {u,v} of the old T (G) that is not reconfirmed
by a computation in G�, but a new, cheaper min-u-v-cut θ ′ = (U,V (S) \U) is found.
For such a new cut we can still make some guarantees on its shape to resemble its
“predecessor”: Lemma 6 tells us, that for any such min-u-v-cut θ ′, there is a min-u-v-
cut θ = (U\ ⇑e,(V (S) \U)∪ ⇑e) in G� that (a) does not split ⇑e, (b) but splits V\ ⇑e

exactly as θ ′ does. Figure 3 illustrates such cuts θ (solid) and θ ′ (dashed).

Lemma 6. Given e = {u,v} within S (off γ) in G�(S). Let (⇑A,⇑B) be a cut of ⇑e with
v∈⇑A. Then c�(Nb∪⇑e,Nd∪#e)≤ c�(Nb∪⇑A,Nd ∪#e∪⇑B). Exchanging Nb and Nd is
analogous. This result can be generalized in that both considered cuts are also allowed
to cut the wood #e in some arbitrary but fixed way.

While this lemma can be applied in order to retain treetops, even if new cuts are found,
we now take a look at how new, cheap cuts can affect the treetops of other edges. In fact
a similar treetop-conserving result can be stated. Let G′ denote an undirected, weighted
graph and {r,v1, . . . ,vz} a set of designated vertices in G′. Let Π := {P1, . . . ,Pz} be a
partition of V \ r such that v j ∈ Pj. We now assume the following partition-property to
hold: For each v j it holds that for any v j-r-cut θ ′j := (R j,V \R j) (with r ∈ R j), the cut
θ j := (R j \Pj,(V \R j)∪Pj) is of at most the same weight. The crucial observation is,
that Lem. 6 implies this partition-property for r(S) and its neighbors in T (G) that lie
inside S of T◦ in G�. Treetops thus are the sets Pj. However, we keep things general for
now: Consider a min-vi-r-cut θ ′i := (Ri,V \Ri), with r ∈ Ri, that does not split Pi and
an analog min-v j-r-cut θ ′j (by the partition-property they exist). We distinguish three
cases, given in Fig. 4, which yield the following possibilities of reshaping min-cuts:

Case (a): As cut θ ′i separates v j and r, and as v j satisfies the partition-property,
the cut θi := (Ri \Pj,(V \Ri)∪Pj) (red dashed) has weight c(θi)≤ c(θ ′i) and is thus a
min-vi-r-cut, which does not split Pi∪Pj. For θ ′j an analogy holds.

Case (b): For θ ′j Case (a) applies. Furthermore, by Lem. 3, the cut θnew(j) := (Ri ∩
R j,(V \Ri)∪ (V \R j)) (green dotted) is a min-v j-r-cut, which does not split Pi∪Pj. By
Lem. 2 the previous split cut θ ′i is also a min-vi-v j-cut, as θnew(j) separates vi,r.

Case (c): As in case (b), by Lem. 3 the cut θnew(i) := ((V \R j)∪Ri,(V \Ri)∩R j)
(green dotted) is a min-vi-r-cut, and the cut θnew(j) := ((V \ Ri) ∪ R j,(V \ R j)∩ Ri)

346 R. Görke, T. Hartmann, and D. Wagner

t
b

v1 d

v2
v3

S

Nb

Nd

vb

vd

Fig. 5. T◦(G�α) for an inter-del.; t’s neighbors
off γ need inspection. Cuts of vb and vd are cor-
rect, but might get shadowed.

t
vb,d

v1

v2

v3

v4

b

d r(S)

S
Nb

Nd

Fig. 6. T◦(G�α) for an intra-del.; edge {vb,d ,t}
defines a treetop (t’s side). The dashed cut
could be added to Θ .

(green dotted) is a min-v j-r-cut. These cuts do not cross. So as vi and v j both satisfy the
partition-property, cut θi := (((V \R j)∪Ri)\Pi,((V \Ri)∩R j)∪Pi) and θ j := (((V \
Ri)∪R j) \Pj,((V \R j)∩Ri)∪Pj) (both red dashed) are non-crossing min separating
cuts, which neither split Pi nor Pj.

To summarize the cases discussed above, we make the following observation.

Observation 1. During a GH starting from T◦ for G�, whenever we discover a new,
cheaper min-vi-r(S)-cut θ ′ (vi ∼ r(S) in node S) we can iteratively reshape θ ′ into a
min-vi-r(S)-cut θ which neither cuts ⇑i nor any other treetop ⇑ j (vi ∼ r(S) in S).

3 Update Algorithms for Dynamic Clusterings

In this section we put the results of the previous sections to good use and give algorithms
for updating a min-cut tree clustering, such that the invariant is maintained and thus also
the quality. By concept, we merely need to know all vertices of T (G) adjacent to t; we
call this set W = {v1, . . . ,vz}∪{vb,vd}, with {vb,vd} being the particular vertex/vertices
on the path from t to b and d, respectively. We call the corresponding set of non-crossing
min-vi-t-cuts that isolate t, Θ . We will thus focus on dynamically maintaining only this
information, and sketch out how to unfold the rest of the min-cut tree. From Lem. 4,
for a given edge insertion or deletion, we know T◦, and we know in which node of T◦
to find t, this is the node we need to examine. We now give algorithms for the deletion
and the insertion of an edge running inside or between clusters.

Algorithm 2. INTER-CLUSTER EDGE DELETION

Input: W (G), Θ(G) G�α = (Vα ,Eα \{{b,d}},c�α), edge {b,d} with weight Δ
Output: W (G�), Θ(G�)
L(t)← /0, l(t)← /01

for i = 1, . . . ,z do Add vi to L(t), D(vi)← /0 // old cut-vertices, shadows2

Θ(G�)← {θb,θd} , W (G�)← {vb,vd}3

returnCHECK CUT-V. (W (G),Θ(G),W (G�),Θ(G�),G�α ,{b,d},D,L(t))4

Dynamic Graph Clustering Using Minimum-Cut Trees 347

Algorithm 3. CHECK CUT-VERTICES

Input: W (G),Θ(G),W (G�),Θ(G�),G�α ,{b,d},D,L(t)
Output: W (G�),Θ(G�)
while L(t) has next element vi do1

θi← first min-vi-t-cut given by FLOWALGO(vi,t) // small side for vi2

if c�α (θi) = cα (θ old
i) then Add θ old

i to l(t) // retain old cut?3

else4

Add θi to l(t) // pointed at by vi5

while L(t) has next element v j �= vi do // test vs. other new cuts6

if θi separates v j and t then // v j shadowed by Lem. 37

Move v j from L(t) to D(vi)8

if l(t) � θ j, pointed at by v j then Delete θ j from l(t)9

while L(t) has next element vi do // make new cuts cluster-preserving10

set (R,Vα \R) := θi with t ∈ R for θi ∈ l(t) pointed at by vi11

θi← (R\Ci,(Vα \R)∪Ci) // by partition-property (Lem. 6)12

forall v j ∈D(vi) do θi← (R\Cj,(Vα \R)∪Cj) // Cases (a) and (b)13

forall v j �= vi in L(t) do θi← (R∪Cj,(Vα \R)\Cj) // Case (c)14

Add all vertices in L(t) to W (G�), and their cuts from l(t) to Θ(G�)15

Edge Deletion. Our first algorithm handles inter-cluster deletion (Alg. 2). Just like its
three counterparts, it takes as an input the old graph G and its sets W (G) and Θ(G)
(not the entire min-cut tree T (Gα)), furthermore it takes the changed graph, augmented
by t, G�α , the deleted edge {b,d} and its weight Δ . Recall that an inter-cluster deletion
yields t on γ , and thus, T◦(Gα) contains edges {vb, t} and {vd,t} cutting off the subtrees
Nb and Nd of t by cuts θb,θd , as shown in Fig. 5. All clusters contained in node S � t
need to be changed or reconfirmed. To this end Algorithm 2 lists all cut vertices in S,
v1, . . . ,vz, into L(t), and initializes their shadows D(vi) = /0. The known cuts θb,θd are
already added to the final list, as are vb,vd (line 3). Then the core algorithm, CHECK

CUT-VERTICES is called, which—roughly speaking—performs those GH-steps that are
necessary to isolate t, using (most of) the above lemmas derived.

First of all, note that if |C |= 2 (C = {Nb,Nd} and S = {t}) then L(t) = /0 and Alg. 2
lets CHECK CUT-VERTICES (Alg. 3) simply return the input cuts and terminates. Oth-
erwise, it iterates the set of former cut-vertices L(t) once, thereby possibly shortening
it. We start by computing a new min-vi-t-cut for vi. We do this with a max-vi-t-flow
computation, which is known to yield all min-vi-t-cuts, taking the first cut found by
a breadth-first search from vi (lines 2). This way we find a cut which minimally in-
terferes with other treetops, thus encouraging temporal smoothness. If the new cut is
non-cheaper, we use the old one instead, and add it to the tentative list of cuts l(t)
(lines 3-3). Otherwise we store the new, cheaper cut θi, and examine it for later adjust-
ment. For any candidate v j still in L(t) that is separated from t by θi, Case (a) or (b)
applies (line 7). Thus, v j will be in the shadow of vi, and not a cut-vertex (line 8). In case
v j has already been processed, its cut is removed from l(t). Once all cut-vertex candi-
dates are processed, each one either induces the same cut as before, is new and shadows
other former cut-vertices or is itself shadowed by another cut-vertex. Now that we have

348 R. Görke, T. Hartmann, and D. Wagner

t

b
v1 d

v2
v3

S
vb

vd

Fig. 7. T◦(G⊕α) for an inter-cluster addition. At
least vb and vd need inspection.

t
vb,d

v1

v3

d

S

b

v4

v2

Fig. 8. T◦(G⊕α) for an intra-cluster addition. All
relevant min-v-t-cuts persist.

collected these relations, we actually apply Cases (a,b,c) and Lem. 6 in lines 10-14.
Note that for retained, old cuts, no adjustment is actually performed here. Finally, all
non-shadowed cut-vertices alongside their adjusted cuts are added to the final lists.

Unfortunately we must completely omit intra-cluster edge deletion here, please find
it detailed in the full versions [5,7]. In a way roughly analogue to the former case we
again call CHECK CUT-VERTICES and after that merely have to clean up a potentially
“wild” area of leftover vertices from cluster Cb,d .

Edge Addition. The good news for handling G⊕ is, that an algorithm INTRA-CLUSTER

EDGE ADDITION only needs to return the old clustering: By Lem. 1 and Theo. 1, in
T◦, only path γ is contracted. But since γ lies within a cluster, the cuts in Gα , defining
the old clustering, all remain valid in G⊕α , as depicted in Fig. 8 with dotted clusters
and affected node S. By contrast, adding an edge between clusters is more demanding.
Again, γ is contracted, see region S in Fig. 7; however, t lies on γ in this case. A sketch
of what needs to be done resembles the above algorithms: We compute new min-vb-t-
and min-vd-t-cuts (or possibly only one, if it immediately shadows the other), and keep
the old vi-t-cuts. Then—proceeding as usual—we note which cuts shadow which others
and reconnect nodes by Theo. 3.

Updating Entire Min-Cut Trees. An interesting topic on its own right and more fun-
damental than clustering, is the dynamic maintenance of min-cut trees. In fact the above
clustering algorithms are surprisingly close to methods that update min-cut trees. Since
all the results from Sec. 2 still apply, we only need to unfold treetops or subtrees of
t—which we gladly accept as super-nodes for the purpose of clustering—and take care
to correctly reconnect subtrees. This includes, that merely examining the neighbors of
t does not suffice, we must iterate through all nodes Si of T◦. For the sake of brevity we
must omit further details on such algorithms and refer the reader to the full version [5].

4 Performance of the Algorithm

Temporal Smoothness. Our secondary criterion—which we left unformalized—to pre-
serve as much of the previous clustering as possible, in parts synergizes with effort-
saving, an observation foremost reflected in the usage of T◦. Lemmas 5 and 6, using
first cuts and Observation 1 nicely enforce temporal smoothness. However, in some

Dynamic Graph Clustering Using Minimum-Cut Trees 349

Table 1. Bounds on the number of max-flow calculations

worst case
old clustering still valid

lower bound upper bound guaran. smooth

Inter-Del |C (G)|−2 |C (G)|−2 |C (G)|−2 Yes

Intra-Del |C (G)|+ |Cb,d |−1 1 |C (G)|+ |Cb,d |−1 No (1)

Inter-Add |Cb|+ |Cd | 1 |Cb|+ |Cd | No (2)

Intra-Add 0 0 0 Yes

cases we must cut back on this issue, e.g., when we examine which other cut-vertex
candidates are shadowed by another one, as in line 7 of Alg. 3. Here it entails many
more cut-computations and a combinatorially non-trivial problem to find an ordering of
L(t) to optimally preserve old clusters. Still we can state the following lemma:

Lemma 7. Let C (G) fulfill the invariant for G�, i.e., let the old clustering be valid for
G�. In the case of an inter-cluster deletion, Alg 2 returns C (G). For an intra-cluster
deletion we return a clustering C (G�) ⊇ C (G) \Cb,d, i.e., only Cb,d might become
fragmented. Intra-cluster addition retains a valid old clusterings.

Running Times. We express running times of our algorithms in terms of the num-
ber of max-flow computations, leaving open how these are done. A summary of tight
bounds is given in Tab. 1 (for an in-depth discussion thereof see the full version). The
columns lower bound/upper bound denote bounds for the—possibly rather common—
case that the old clustering is still valid after some graph update. As discussed in the
last subsection, the last column (guaran. smooth) states whether our algorithms always
return the previous clustering, in case its valid; the numbers in brackets denotes a tight
lower bound on the running time, in case our algorithms do find that previous cluster-
ing. Note that a computation from scratch entails a tight upper bound of |V | max-flow
computations for all four cases, in the worst case.

Further Speed-Up. For the sake of brevity we leave a few ideas and lemmas for effort-
saving to the full version. One heuristic is to decreasingly order vertices in the list
L(t), e.g., in line 2 of Alg. 2; for their static algorithm Flake et al. [3] found that this
effectively reduces the number of cuts necessary to compute before t is isolated. Since
individual min-u-v-cuts are constantly required, another dimension of effort-saving lies
in dynamically maintaining max-u-v-flows. We detail two approaches based on dynamic
residual graphs in the full version.

Experiments. In this brief section, we very roughly describe some experiments we
made with an implementation of the update algorithms described above, just for a
first proof of concept. The instance we use is a network of e-mail communications
within the Fakultät für Informatik at Universität Karlsruhe. Vertices represent mem-
bers and edges correspond to e-mail contacts, weighted by the number of e-mails sent
between two individuals during the last 72 hours. We process a queue of 12560 el-
ementary modifications, 9000 of which are actual edge modifications, on the initial
graph G (|V |= 310, |E|= 450). This queue represents about one week, starting on Sat-
urday (21.10.06); a spam-attack lets the graph slightly grow/densify over the course.

350 R. Görke, T. Hartmann, and D. Wagner

We delete zero-weight edges and isolated nodes. Following the recommendations of
Flake et al. [3] we choose α = 0.15 for the initial graph, yielding 45 clusters. For the
9K proper steps, static computation needed ≈ 2M max-flows, and our dynamic update
needed ≈ 2K, saving more than 90% max-flows, such that in 96% of all modifications,
the dynamic algorithm was quicker. Surprisingly, inter-additions had the greatest im-
pact on effort-saving, followed by the trivial intra-additions. Out of the 9K operations,
49 of the inter-, and 222 of the intra-cluster deletions were the only ones, where the
static algorithm was quicker. See the full versions [5,7] for details on these results.

5 Conclusion

We have proven a number of results on the nature of min-u-v-cuts in changing graphs,
which allow for feasible update algorithms of a minimum-cut tree. In particular we
have presented algorithms which efficiently update specific parts of such a tree and thus
fully dynamically maintain a graph clustering based on minimum-cut trees, as defined
by Flake et al. [3] for the static case, under arbitrary atomic changes. The striking fea-
ture of graph clusterings computed by this method is that they are guaranteed to yield
a certain expansion—a bottleneck measure—within and between clusters, tunable by
an input parameter α . As a secondary criterion for our updates we encourage temporal
smoothness, i.e., changes to the clusterings are kept at a minimum, whenever possi-
ble. Furthermore, we disprove an earlier attempt to dynamize such clusterings [9]. Our
experiments on real-world dynamic graphs affirm our theoretical results and show a
significant practical speedup over the static algorithm of Flake et al. [3]. Future work
on dynamic minimum-cut tree clusterings will include a systematic comparison to other
dynamic clustering techniques and a method to dynamically adapt the parameter α .

References

1. Brandes, U., Delling, D., Gaertler, M., Görke, R., Höfer, M., Nikoloski, Z., Wagner, D.: On
Modularity Clustering. IEEE TKDE 20(2), 172–188 (2008)

2. Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg
(2005)

3. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum Cut Trees.
Internet Mathematics 1(4), 385–408 (2004)

4. Gomory, R.E., Hu, T.: Multi-terminal network flows. Journal of the Society for Industrial and
Applied Mathematics 9(4), 551–570 (1961)

5. Görke, R., Hartmann, T., Wagner, D.: Dynamic Graph Clustering Using Minimum-Cut Trees.
Technical report, Informatics, Universität Karlsruhe (2009)

6. Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM Journal on Com-
puting 19(1), 143–155 (1990)

7. Hartmann, T.: Clustering Dynamic Graphs with Guaranteed Quality. Master’s thesis, Univer-
sität Karlsruhe (TH), Fakultät für Informatik (October 2008)

8. Kannan, R., Vempala, S., Vetta, A.: On Clusterings - Good, Bad and Spectral. In: Proc. of
FOCS 2000, pp. 367–378 (2000)

9. Saha, B., Mitra, P.: Dynamic Algorithm for Graph Clustering Using Minimum Cut Tree. In:
Proc. of the, SIAM Int. Conf. on Data Mining, pp. 581–586 (2007)

	Dynamic Graph Clustering Using Minimum-Cut Trees
	Introduction
	Theory
	Update Algorithms for Dynamic Clusterings
	Performance of the Algorithm
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

