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Preface

This volume contains the papers presented at the 11th Algorithms and Data
Structures Symposium, WADS 2009 (formerly Workshop on Algorithms and
Data Structures), held during August 21–23, 2009 in Banff, Alberta, Canada.
WADS alternates with the Scandinavian Workshop on Algorithms Theory
(SWAT), continuing the tradition of SWAT and WADS starting with SWAT
1988 and WADS 1989.

In response to the call for papers, 126 papers were submitted. From these sub-
missions, the Program Committee selected 49 papers for presentation at WADS
2009. In addition, invited lectures were given by the following distinguished
researchers: Erik Demaine, Richard Karp, and Christos Papadimitriou.

On behalf of the Program Committee, we would like to express our appreci-
ation to the invited speakers, reviewers and all authors who submitted papers.

May 2009 Frank Dehne
Marina Gavrilova

Jörg-Rüdiger Sack
Csaba D. Tóth
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Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer



VIII Table of Contents

An Improved SAT Algorithm in Terms of Formula Length . . . . . . . . . . . . . 144
Jianer Chen and Yang Liu

Shortest Path Problems on a Polyhedral Surface . . . . . . . . . . . . . . . . . . . . . 156
Atlas F. Cook IV and Carola Wenk

Approximation Algorithms for Buy-at-Bulk Geometric Network
Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Artur Czumaj, Jurek Czyzowicz, Leszek G ↪asieniec, Jesper Jansson,
Andrzej Lingas, and Pawel Zylinski

Rank-Sensitive Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Brian C. Dean and Zachary H. Jones

Algorithms Meet Art, Puzzles, and Magic (Invited Talk) . . . . . . . . . . . . . . 193
Erik D. Demaine

Skip-Splay: Toward Achieving the Unified Bound in the BST Model . . . . 194
Jonathan C. Derryberry and Daniel D. Sleator

Drawing Graphs with Right Angle Crossings (Extended Abstract) . . . . . . 206
Walter Didimo, Peter Eades, and Giuseppe Liotta

Finding a Hausdorff Core of a Polygon: On Convex Polygon
Containment with Bounded Hausdorff Distance . . . . . . . . . . . . . . . . . . . . . . 218

Reza Dorrigiv, Stephane Durocher, Arash Farzan, Robert Fraser,
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On the Approximability of Geometric and Geographic Generalization
and the Min-Max Bin Covering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Wenliang Du, David Eppstein, Michael T. Goodrich, and
George S. Lueker

On Reconfiguration of Disks in the Plane and Related Problems . . . . . . . 254
Adrian Dumitrescu and Minghui Jiang

Orientation-Constrained Rectangular Layouts . . . . . . . . . . . . . . . . . . . . . . . 266
David Eppstein and Elena Mumford

The h-Index of a Graph and Its Application to Dynamic Subgraph
Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

David Eppstein and Emma S. Spiro

Optimal Embedding into Star Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
David Eppstein and Kevin A. Wortman



Table of Contents IX

Online Square Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Sándor P. Fekete, Tom Kamphans, and Nils Schweer

Worst-Case Optimal Adaptive Prefix Coding . . . . . . . . . . . . . . . . . . . . . . . . 315
Travis Gagie and Yakov Nekrich

New Results on Visibility in Simple Polygons . . . . . . . . . . . . . . . . . . . . . . . . 327
Alexander Gilbers and Rolf Klein

Dynamic Graph Clustering Using Minimum-Cut Trees . . . . . . . . . . . . . . . . 339
Robert Görke, Tanja Hartmann, and Dorothea Wagner

Rank-Balanced Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan

Approximation Algorithms for Finding a Minimum Perimeter Polygon
Intersecting a Set of Line Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Farzad Hassanzadeh and David Rappaport

Reconfiguration of List Edge-Colorings in a Graph . . . . . . . . . . . . . . . . . . . 375
Takehiro Ito, Marcin Kamiński, and Erik D. Demaine
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On the Power of the
Semi-Separated Pair Decomposition

Mohammad Ali Abam1,�, Paz Carmi2,��, Mohammad Farshi3,��,
and Michiel Smid3,��

1 MADALGO Center, Aarhus University, Denmark
abam@madalgo.au.dk

2 Ben-Gurion University of the Negev, Israel
paz@cg.scs.carleton.ca

3 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada
mfarshi@cg.scs.carleton.ca, michiel@scs.carleton.ca

Abstract. A Semi-Separated Pair Decomposition (SSPD), with param-
eter s > 1, of a set S ⊂ Rd is a set {(Ai, Bi)} of pairs of subsets of S
such that for each i, there are balls DAi and DBi containing Ai and Bi

respectively such that d(DAi , DBi) ≥ s ·min(radius(DAi), radius(DBi)),
and for any two points p, q ∈ S there is a unique index i such that
p ∈ Ai and q ∈ Bi or vice-versa. In this paper, we use the SSPD to
obtain the following results: First, we consider the construction of geo-
metric t-spanners in the context of imprecise points and we prove that
any set S ⊂ Rd of n imprecise points, modeled as pairwise disjoint balls,
admits a t-spanner with O(n log n/(t − 1)d) edges which can be com-
puted in O(n log n/(t − 1)d) time. If all balls have the same radius, the
number of edges reduces to O(n/(t− 1)d). Secondly, for a set of n points
in the plane, we design a query data structure for half-plane closest-pair
queries that can be built in O(n2 log2 n) time using O(n log n) space and
answers a query in O(n1/2+ε) time, for any ε > 0. By reducing the pre-
processing time to O(n1+ε) and using O(n log2 n) space, the query can
be answered in O(n3/4+ε) time. Moreover, we improve the preprocessing
time of an existing axis-parallel rectangle closest-pair query data struc-
ture from quadratic to near-linear. Finally, we revisit some previously
studied problems, namely spanners for complete k-partite graphs and
low-diameter spanners, and show how to use the SSPD to obtain simple
algorithms for these problems.

1 Introduction

Background. The Well-Separated Pair Decomposition (WSPD) introduced by
Callahan and Kosaraju [1] has found numerous applications in proximity prob-
lems [2, Chapter 10]. A WSPD for a point set S ⊂ Rd with respect to a con-
stant s > 1 is a set of pairs {(Ai, Bi)}i where (i) Ai, Bi ⊂ S, (ii) Ai and Bi

� MAA was supported by the MADALGO Center for Massive Data Algorithmics, a
Center of the Danish National Research Foundation.

�� PC, MF and MS were supported by NSERC of Canada.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M.A. Abam et al.

are s-well-separated, i.e., there are balls DAi and DBi containing Ai and Bi,
respectively, such that d(DAi , DBi) ≥ s · max(radius(DAi), radius(DBi)), and
(iii) for any two points p, q ∈ S there is a unique index i such that p ∈ Ai and
q ∈ Bi or vice-versa. Callahan and Kosaraju showed that a WSPD containing
O(sdn) pairs can be constructed in O(sdn+n logn) time. Although they showed
that

∑
min(|Ai|, |Bi|) = O(n log n), the summation

∑
(|Ai|+ |Bi|), the so-called

weight of the WSPD, can be Θ(n2). This disadvantage led Varadarajan [3] to
define the Semi-Separated Pair Decomposition (SSPD).

An SSPD is defined as a WSPD, except for the condition (ii) which is re-
laxed to the requirement that Ai and Bi are s-semi-separated, i.e., there are
balls DAi and DBi containing Ai and Bi, respectively, such that d(DAi , DBi) ≥
s · min(radius(DAi), radius(DBi)). Varadarajan [3] showed how to compute an
SSPD of weight O(n log4 n) for a set of n points in the plane in O(n log5 n) time
and used the decomposition to solve the min-cost perfect-matching problem. Re-
cently, Abam et al. [4] presented an algorithm which improves the construction
time to O(n log n) and the weight to O(n log n); in [5], the same bounds were
obtained in Rd. It follows from results by Hansel [6] that any SSPD of any set
of n points has weight Ω(n log n)—see Bollobás and Scott [7] as well.

Abam et al. [4] used the SSPD to compute a region fault-tolerant t-spanner
in R2, which is a geometric t-spanner, as defined next, and remains a t-spanner
after everything inside a half-plane fault region is removed from the spanner.

Let G = (S, E) be a geometric graph on a set S of n points in Rd. That is, G is
an edge-weighted graph where the weight of an edge (p, q) ∈ E is equal to |pq|, the
Euclidean distance between p and q. The distance in G between two points p and
q, denoted by dG(p, q), is defined as the length of a shortest (that is, minimum-
weight) path between p and q in G. The graph G is called a (geometric) t-spanner,
for some t ≥ 1, if for any two points p, q ∈ S we have dG(p, q) ≤ t · |pq|. We define
a t-path between p and q to be any path between p and q having length at most
t · |pq|. Geometric spanners have received a lot of attention in the past few years—
see the book by Narasimhan and Smid [2] for more details.

Our results. In this paper, we present more applications of the SSPD and show
how powerful the SSPD can be:

(i) We consider geometric t-spanners in the context of imprecise points. We
model each imprecise point as a ball which specifies the possible location of the
point. For a set of n pairwise disjoint imprecise points in Rd, for a constant d, we
compute a geometric t-spanner with O(n log n/(t− 1)d) edges such that regard-
less of the position of each point in its associated ball, it remains a t-spanner.
Moreover, we improve the number of edges to O(n/(t − 1)d) if the associated
balls have the same radius.
(ii) We present a query data structure for the half-plane closest-pair query prob-
lem that uses O(n log2 n) space and can be computed in O(n1+ε) time and
answers a query in O(n3/4+ε) time, where ε > 0 is an arbitrary constant. By
increasing the pre-processing time to O(n2 log2 n) and using O(n log n) space,
we achieve O(n1/2+ε) query time. We also improve the pre-processing time of
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the axis-parallel rectangle closest-pair query data structure of [8] from quadratic
to near-linear.
(iii) We revisit some previously studied problems, specifically spanners for k-
partite graphs [9] and low-diameter spanners [10,11], and show how to use the
SSPD to obtain simple algorithms for these problems. Here, we just emphasize
on the simplicity of the algorithms; we do not improve the existing results.

2 Spanners for Imprecise Points

Computational geometers traditionally assume that input data, such as points,
are precise. However, in the real-world, the input comes from measuring devices
which are subject to finite precision. Therefore, the input data given to an algo-
rithm is imprecise and running the algorithm on the input may lead to incorrect
output. One solution is to design algorithms that explicitly compute with im-
precise data which can be modeled in different ways. One possible model, for
data that consists of points, is to consider each point as a region. This region
represents all possible locations where the point might be. Given a collection
of such imprecise points, one can then ask questions about these points. What
is their convex hull? What is their Voronoi diagram/Delaunay triangulation?
These questions were recently studied— see [12,13]— and here we consider one
more interesting question: “Is it possible to design a t-spanner with few edges for
imprecise points such that regardless of the positions of the points in their asso-
ciated regions, it remains a t-spanner?”. In this section we answer this question
affirmatively using the SSPD.

We model each imprecise input point pi as a ball Di in Rd and we assume
that the balls Di are pairwise disjoint. Indeed, the input is a set of n pairwise
disjoint balls Di = (ci, ri), where ci and ri are the center and the radius of Di.

2.1 Balls with Similar Sizes

We first consider the case when all balls are unit-balls. We can easily extend the
results to the case when all balls have similar sizes. Our spanner construction
is based on the WSPD approach [14] which works as follows. It computes a
WSPD of the point set with respect to a constant s, and then for each pair
(A, B) in the WSPD, it adds an edge between an arbitrary point from A and an
arbitrary point from B. Choosing an appropriate value s based on t leads us to
a t-spanner.

The above construction is applicable to an imprecise point set if we are able
to construct a WSPD of the imprecise point set, i.e., regardless of the posi-
tions of the points in their associated balls, the pairs in the decomposition re-
main s-well-separated. The following lemma states that it is possible to obtain
a WSPD of imprecise points using a WSPD of the center points.

Lemma 1. If a WSPD of the center points {ci}i with respect to s′ := 2s + 2 is
available, then we can obtain a WSPD of the points {pi}i with respect to s.
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Proof. Let (A, B) be an s′-well-separated pair in the WSPD of the points {ci}i.
Let A′ (B′) be the set containing the points pi ∈ Di corresponding to the points
ci ∈ A (ci ∈ B). We will show that (A′, B′) is an s-well-separated pair.

Since (A, B) is an s′-well-separated pair for s′ = 2s + 2, there are two balls
DA and DB containing the points in A and B, respectively, and d(DA, DB) ≥
(2s + 2) · max(radius(DA), radius(DB)). If max(radius(DA), radius(DA)) < 1,
then the disjointness of the balls Di implies that A and B are singletons, which
implies that (A′, B′) is an s-well-separated pair. Otherwise, let D′

A (D′
B) be a

ball with radius radius(DA) + 1 (radius(DB) + 1) co-centered with DA (DB).
Since |pici| ≤ 1, from ci ∈ DA we can conclude that pi ∈ D′

A. The same property
holds for B. Therefore D′

A and D′
B contain all points in A′ and B′, respectively,

and it is easy to prove that d(D′
A, D′

B) ≥ s ·max(radius(D′
A), radius(D′

B)).

Theorem 1. For any set of n imprecise points in Rd modeled as pairwise dis-
joint balls with similar sizes and any t > 1, there is a t-spanner with O(n/(t− 1)d)
edges which can be computed in O(n/(t− 1)d + n log n) time.

2.2 Balls with Arbitrary Sizes

When the sizes of the balls vary greatly, we cannot simply construct a WSPD of
the points pi using a WSPD of the center points ci. Hence, a more sophisticated
approach is needed. As we will see, the SSPD comes handy here. The overall
idea is to construct an SSPD of the points {pi}i using an SSPD of the points
{ci}i and then construct a t-spanner using the SSPD of the points {pi}i.

Lemma 2. If an SSPD of the center points {ci}i with respect to s′ := 3s + 3 is
available, we can obtain an SSPD of the points {pi}i with respect to s.

Proof. Let (A, B) be an s′-semi-separated pair in the SSPD of the points {ci}i.
Let A′ (B′) be the set containing the points pi ∈ Di corresponding to the
points ci ∈ A (ci ∈ B). Since (A, B) is an s′-semi-separated pair, there are
two balls DA and DB containing all points in A and B, respectively, such that
d(DA, DB) ≥ s′ · min(radius(DA), radius(DB)). Without loss of generality, as-
sume that radius(DA) ≤ radius(DB). If radius(Di) ≥ 2 · radius(DA), the dis-
jointness of the balls implies that A, and as a consequence A′, is a singleton and
therefore (A′, B′) is an s-semi-separated pair.

Otherwise, assume that for any point ci ∈ A, radius(Di) < 2 · radius(DA).
Therefore, every point pi corresponding to the point ci ∈ A must lie in the ball
co-centered with DA and having radius 3 · radius(DA). Let D be the ball co-
centered with DA and radius s′ · radius(DA). Using a packing argument, it can
be shown that the number of points ci ∈ B whose associated balls intersect D
and have radius greater than radius(DA) is bounded by a constant. For each
such point ci, (A′, {pi}) is an s-semi-separated pair. For the remaining points ci,
the corresponding point pi is at least (s′ − 1) · radius(DA) away from DA. This
implies that these points are at least (s′−3) ·radius(DA) away from the points in
A′; the latter points are inside a ball with radius 3 ·radius(DA). This all together
implies that these points and A′ are s-semi-separated, because (s′ − 3)/3 = s.
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Note that each pair (A, B) produces a constant number of pairs each of which
has linear size based on A and B and therefore the weight of the generated SSPD
remains O(n log n).

Our spanner construction is as follows. First we use Lemma 2 to compute an
SSPD S of the points {pi}i with respect to 4/(t−1). Then, for each pair (A, B) ∈
S, assuming radius(DA) ≤ radius(DB), we select an arbitrary point from A and
connect it by an edge to every other point in A∪B. The number of edges added
to the spanner is at most

∑
(A,B)∈S(|A|+ |B|) which is O(n log n) based on the

property of the SSPD. We claim that this gives a t-spanner. To prove this, let p
and q be two arbitrary points. There is a pair (A, B) ∈ S such that p ∈ A and
q ∈ B or vice-versa. Assume that radius(DA) ≤ radius(DB), p ∈ A, and q ∈ B.
Based on our construction, both p and q are connected to a point w in A—note
that w can be p. Therefore the length of the path between p and q in the graph
is at most |pw|+ |wq|, which can be bounded as follows:

|pw|+ |wq| ≤ 2|pw|+ |pq| ≤ 4 radius(DA) + |pq| ≤ (t− 1)|pq|+ |pq| ≤ t · |pq|.

This shows that the path is a t-path between p and q.

Theorem 2. For any set of n imprecise points in Rd modeled as pairwise dis-
joint balls and any t > 1, there is a t-spanner with O(n log n/(t − 1)d) edges
which can be computed in O(n log n/(t− 1)d) time.

3 Range Closest-Pair Query

The range searching problem is a well-studied problem in computational geom-
etry. In such a problem, we are given a set of geometric objects, such as points
or line segments, and want to pre-process the set into a data structure such that
we can report the objects in a query region quickly—see the survey by Agarwal
and Erickson [15]. However, in several applications, we need more information
about the objects in the query area, for example the closest pair or the prox-
imity of these objects. For this kind of queries, a so-called aggregation function
can be defined to satisfy the property we are looking for. This range-aggregate
query problem has been studied in recent years in both the computational ge-
ometry [16] and the database communities [17].

The range-aggregate query problem for the case when ranges are axis-parallel
rectangles and the aggregation function is the closest pair, was first considered
by Shan et al. [18]. They proposed an algorithm and showed that it works well
in practice, but no theoretical bound was provided. Later Gupta [19] gave a
data structure with constant query time using O(n) space for points in R. For
points in the plane, their structure answers a query in O(log3 n) time and uses
O(n2 log3 n) space. Later, Sharathkumar and Gupta [20] improved the space in
the 2D case to O(n log3 n) while guaranteeing the same query time. Recently,
Gupta et al. [8] improved the query time to O(log2 n) using O(n log5 n) space. It
is unknown whether the data structures in [8,20] can be built in sub-quadratic
time.
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In this section, we first present a data structure for range closest-pair query
problem when ranges are half-planes. Then, we show how to modify Gupta
et al.’s data structure in [8] such that it can be built in near-linear time without
affecting the query time and space bound.

3.1 Half-Plane Closest-Pair Query

Let S be a set of n points in the plane. We first start investigating which pairs of
points can be a closest pair for some half-plane. Let G be the graph with vertex
set S where p and q are connected if and only if (p, q) is a closest pair in S∩h for
some half-plane h. The following lemma states that the number of such closest
pairs is O(n), even though the number of “different” half-planes is Θ(n2).

Lemma 3. The graph G defined above is plane.

Proof. For the sake of contradiction, assume that (p, q) and (r, s) properly inter-
sect, where (p, q) and (r, s) are the closest pairs inside the half-planes h1 and h2,
respectively. It is easy to see that h1 contains at least one of the points r and s.
Assume that r is inside h1. Since (p, q) is the closest pair inside h1, |pr| and |qr|
are at least |pq|. The same argument holds for (r, s). Under the assumption that
p is in h2, we can conclude that |pr| and |ps| are at least |rs|. This all together im-
plies that |pq|+ |rs| ≤ |ps|+ |rq|. On the other hand, |pq|+ |rs| > |ps|+ |rq|, since
(p, q) and (r, s) properly intersect. This contradiction implies that the graph G
is plane.

We describe our data structure under the assumption that G is available to us.
Later, we will explain how to construct G. We construct a half-plane segment-
reporting data structure for the edges of G, which is a multi-level partition
tree—see [21, Section 16.2]. This data structure stores n segments not sharing
any endpoint in such a way that the segments inside the half-plane query can be
reported as the union ofO(n1/2+ε) disjoint canonical subsets. The data structure
uses O(n log n) space and can be constructed in O(n1+ε) time. We also pre-
compute the closest pair for each canonical subset of nodes in the second level
of the tree to be able to report the closest pair without visiting all the edges in
the query region.

The assumption that the segments are not sharing any endpoint can be relaxed
to the assumption that each endpoint can be adjacent to at most a constant
number of segments. Indeed, by such an assumption, the size of the associated
partition tree with a node v in the first level is still proportional to |S(v)|, where
S(v) is the set of points stored at the subtree rooted at v. This is the key property
in the analysis of the space and time complexity. Unfortunately, this assumption
does not hold in our graph G, as we can simply find a configuration of n points
such that the maximum degree in G is Θ(n). To make it work, we first make the
graph G directed such that the out-degree of each vertex is constant. This can
be performed as follows. We select a set S1 of n/2 vertices whose degrees are at
most 12—this is always possible, since the degree sum in any plane graph is at
most 6 times the number of vertices. For each edge (p, q), if both p and q are
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in S1 we give this edge an arbitrary direction. If one of them is in S1, say p, we
make the edge (p, q) directed in the direction −→pq. We remove every directed edge
as well as the vertices in S1 from the graph and recurse on the remaining graph.
At the end, we have a directed graph

−→
G such that the out-degree of each node

is at most 12.
Now, given the graph

−→
G , for each node v in the first level of the multi-level

partition tree, we look at the edges going out from S(v). Since the number of
such edges is proportional to |S(v)|, the same query-time bound can be obtained.

One easy way of computing G is to compute the closest pair for all 2 ·
(
n
2

)
possible half-planes which takesO(n3 log n) time. Unfortunately it seems difficult
to compute G in near-linear time. Hence, we introduce a new graph G′ with
O(n log n) edges which contains G as a subgraph and can be computed in near-
linear time. To define G′, we use the convex region fault-tolerant t-spanner of
the points, as introduced by Abam et al. [4]. This graph has the property that
after removing all vertices and edges which are inside a convex fault region,
what remains is a t-spanner of the complete graph minus the vertices and edges
in the convex fault region. They used an SSPD to construct a convex region
fault-tolerant t-spanner containing O(n log n) edges in O(n log2 n) time. When
the fault regions are half-planes, what remains from the graph is a t-spanner
of the remaining points due to the fact that the line segment between any two
points outside the half-plane fault region does not touch the fault region. Since
any t-spanner, for t < 2, contains the closest pair as an edge, we set G′ to be a
region fault-tolerant t-spanner for some t < 2.

There are two possibilities of using G′: (i) use G′ instead of G in the above
construction and (ii) use G′ to compute G faster. Next we look at each of them
more precisely.

(i) Using G′ instead of G in our structure will obviously affect the asymptotic
complexity of the space bound by a factor of O(log n). Moreover, since we cannot
make G′ directed such that the out-degree of each vertex is bounded, we are
unable to obtain the same query-time bound. We can show, however, that the
query time is O(n3/4+ε): Searching in the first level of the multi-level partition
tree boils down to O(n1/2+ε) associated partition trees which are disjoint and
whose total size is O(n log n). If x is the size of one of the associated trees,
searching in the associated tree takes O(x1/2+ε) time. By the Cauchy-Schwarz
inequality, we know that

∑m
i=1
√

xi/m ≤
√∑m

i=1 xi/m. Therefore, the total
search costs O(n3/4+ε)—note that m = O(n1/2+ε) and

∑m
i=1 xi = O(n log n).

(ii) We can construct G from G′ as follows. We sort all edges of G′ by their
lengths and process them in ascending order. Initially, we set G to be the graph
on the point set whose edge set is empty. Let e be the edge of G′ to be processed.
We check in linear time whether it intersects any of the current edges of G. If so,
we ignore e. Otherwise, we perform two rotational sweeps around the endpoints
of e, in O(n log n) time, to see whether there is a half-plane containing e which
does not contain any edge in the current graph G. If so, e is inserted into G,
otherwise, we ignore e. Since we process O(n log n) edges, each of which takes
O(n log n) time, the total construction time is O(n2 log2 n).
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Theorem 3. Let S be a set of n points in the plane. For any ε > 0, there is a
data structure for S

(i) of size O(n log2 n) that can be constructed in O(n1+ε) time and answers a
half-plane closest-pair query in O(n3/4+ε) time; or

(ii) of size O(n log n) that can be constructed in O(n2 log2 n) time and answers
a half-plane closest-pair query in O(n1/2+ε) time.

3.2 Axis-Parallel Rectangle Closest-Pair Query

We now consider the axis-parallel rectangle closest-pair query. As mentioned
above, Gupta et al. [8] presented a data structure of size O(n log5 n) and query
time O(log2 n). It is unknown whether their structure can be built in sub-
quadratic time. Their data structure works as follows: They first construct
a data structure to answer closest-pair queries for two-sided queries (verti-
cal/horizontal strips and quadrants). To do that, they pre-compute a graph
G with vertex set S whose edges are closest pair for some two-sided region.
They show that G has linear size for quadrants and O(n log n) size for verti-
cal/horizontal strips; however, it is unknown how to compute G quickly. For
three- and four-sided queries, they use the data structure for two-sided queries
together with some additional information which can be computed in near-linear
time. Therefore, the time-consuming ingredient of their structure is computing
the graph G.

As in the previous section, we introduce a graph G′ which has O(n log n)
edges, including all edges of G. We use G′ instead of G. The graph G′ indeed is
a kind of t-spanner which we call local t-spanner.

A geometric t-spanner G is an F -local spanner, for a region F in the plane, if
the part of G which is completely inside F is a t-spanner of the points inside F .
For a family F of regions, we call a graph G an F -local t-spanner, if for any
region F ∈ F the graph G is an F -local t-spanner. As an example, any convex
region fault-tolerant t-spanner is an H-local t-spanner, where H is the family
of half-planes. We will show that there are F -local t-spanners with O(n log n)
edges, when F is the family of all axis-parallel two-sided regions in the plane.
To this end, we set G′ to be an F -local t-spanner for some t < 2 which therefore
contains the closest pair for every possible query region.

Theorem 4. A set S of n points in the plane can be stored in a structure of size
O(n log5 n) such that for any axis-parallel query rectangle Q, the closest pair in
S ∩Q can be reported in O(log2 n) time. Moreover, the structure can be built in
O(n log5 n) time.

Local t-spanner. In this section, we constructF -local t-spannerswithO(n log n)
edges, when F is the family of all axis-parallel two-sided regions in the plane. Due
to similarity, we just consider the family VS of vertical strips and the family NE
of north-east quadrants. Our construction is based on the region fault-tolerant
t-spanner [4]. To re-use the approach in [4], we construct the graph such that
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the following property holds for every s-semi-separated pair (A, B) (assuming
that radius(DA) ≤ radius(DB)).

(I) For every region R ∈ F such that R ∩ A 
= ∅ and R ∩ B 
= ∅, the point in
R ∩B that is closest to the center of DA is connected to a point in R ∩A.

This property is equivalent to Lemma 3.2 of [4] and following a similar argument
as in the proof of Lemma 3.3 of the same paper, proves that any graph satisfying
this property is an F -local t-spanner.

We will show how to satisfy property (I) using O(|A|+|B|) edges when regions
are vertical strips and north-east quadrants. Therefore, this gives us an F -local
t-spanner which contains O(n log n) edges.

Vertical strips. We first sort the points in A based on their x-coordinates. Then,
for each point b ∈ B, we find two consecutive points a, a′ ∈ A surrounding b on
the x-axis. We then connect b to both a and a′.

Lemma 4. The above connecting schema satisfies property (I) and uses
O(|A|+ |B|) edges and can be performed in O((|A| + |B|) log |A|) time.

Proof. Assume that an arbitrary region R ∈ VS contains at least one point
from each subset A and B. Let a1, . . . , ak be the sorted list of points in A, based
on their x-coordinates. Let b ∈ B ∩ R be the point that is closest to the center
of DA. Our schema connects b to ai and ai+1 for some i. If R does not contain ai

or ai+1, then R∩A must be empty which is not true by assumption—note that
since R is a vertical strip, it contains a contiguous subsequence of the sorted list.
Therefore, the point b must be connected to a point of A.

Since the above schema just needs a sorted list of |A|, and it makes |B| binary
searches in this list, it can be performed in O((|A| + |B|) log |A|) time.

North-east quadrants. For a point p = (px, py), let NE(p) be the north-east
quadrant with apex at p. More precisely, NE(p) = [px, +∞)×[py, +∞). Similarly
we define NW(p) = (−∞, px]× [py, +∞) and SE(p) = [px, +∞)× (−∞, py). The
connecting schema is as follows:

(1) We connect every point a ∈ A to the point in NE(a) ∩ B, if it exists, that is
closest to the center of DA.

(2) We connect each point b ∈ B to an arbitrary point in NE(b)∩A, to the highest
point in SE(b) ∩A and to the rightmost point in NW(b) ∩A, if they exist.

Lemma 5. The above connecting schema satisfies property (I) and uses
O(|A|+ |B|) edges and can be performed in O((|A|+ |B|) log2(|A|+ |B|)) time.

Proof. Let R ∈ NE be an arbitrary north-east quadrant containing at least one
point of each subset A and B, and let b ∈ R ∩B be the point that is closest to
the center of DA. If there exists a point of R∩A in NE(b), SE(b), or NW(b), our
schema guarantees that b is connected to one of points in R ∩ A. If this is not
the case, then for every a ∈ R∩A, the point b must be in NE(a) which then, by
the first step of our schema, guarantees that a is connected to b.
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To perform the above schema, we need two 2-dimensional range trees TA and
TB for the points in A and B, respectively. We perform |A| searches in TB and 3|B|
searches in TA which in total can be done inO((|A|+ |B|) log2(|A|+ |B|)) time.

4 SSPD Makes Life Easier

4.1 Spanners for Complete k-Partite Graphs

Bose et al. [9] introduced the following problem: Given a complete k-partite
graph K on a set of n points in Rd, compute a sparse spanner of the graph K.
They presented an algorithm running in O(n log n) time that computes a (5+ε)-
spanner of K with O(n) edges. They also gave an algorithm of O(n log n) time
complexity which computes a (3 + ε)-spanner of K with O(n log n) edges. This
algorithm is based on a WSPD of the points and a bit involved. They also showed
that every t-spanner of K for t < 3 must contain Ω(n log n) edges.

We present a simpler algorithm, using the SSPD, to compute a (3 + ε)-spanner
of K with O(n log n) edges in O(n log n) time. We first present the algorithm
when K is a complete bipartite graph; at the end, we describe how to extend
it to any k-partite graph. To this end, assume that we are given a complete
bipartite graph of n red and blue points.

We first compute an SSPD of the point set with respect to s = 6/ε, no matter
what the color of the points is. Consider a pair (A, B) in the SSPD. There exist
two disjoint balls DA and DB containing A and B, resp., such that d(DA, DB) ≥
s · min(radius(DA), radius(DB)). Assume that radius(DA) ≤ radius(DB). We
choose a red and a blue representative point in A, denoted by repr(A) and repb(A),
resp., if they exist. We also choose red and blue representative points in B, denoted
by repr(B) and repb(B), which are the red and the blue points in B that are clos-
est to A. Then we connect repr(A) to all blue points in B and repb(A) to all red
points in B. We apply the same procedure for the representative points in B.

Consider a pair (x, y) of points, where x is red and y is blue and assume
that (A, B) is the pair in the SSPD such that x ∈ A and y ∈ B. Assume that
radius(DA) ≤ radius(DB). Our algorithm connects x to repb(B), repb(B) to
repr(A), and repr(A) to y. Let Π be this 3-hop path between x and y. For ease
of presentation let z = repr(A) and w = repb(B), and let o and r be the center
and the radius of DA. We have:

|Π | ≤ |xw|+ |wz|+ |zy|
≤ r + |wo| + r + |ow|+ 2r + |xy| = 4r + 2|wo|+ |xy|
≤ 4r + 2|yo|+ |xy|
≤ 4r + 2(|xy|+ r) + |xy| = 6r + 3|xy|
≤ 6|xy|/s + 3|xy| = (3 + 6/s)|xy| = (3 + ε)|xy|.

Extending the results to k-partite complete graphs is simple. We choose a rep-
resentative point for any component for each color and we connect each represen-
tative to all the other points whose colors are different form the representative.
This gives a (3 + ε)-spanner of size O(kn log n).
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4.2 Low-Diameter Spanners

The diameter of a t-spanner is the minimum integer Δ such that for any pair of
points, there exists a t-path between them in the t-spanner containing at most
Δ links. Spanners with low diameter are desirable to many applications like ad
hoc networks where in order to quickly get a packet to the receiver it must pass
through few stations. There are several t-spanners with O(log n) diameter and
O(n) edges; for example see [11,22,23]. Moreover, Arya et al. [10] presented an
algorithm for constructing a t-spanner of diameter 2 which contains O(n log n)
edges. They also showed that a t-spanner with a constant diameter cannot have
a linear number of edges.

t-spanner with diameterO(log n). We present one more t-spannerwithO(n) edges
and diameter O(log n). Our construction is the same as that of the region fault-
tolerant t-spanner given in [4], except that instead of using O(|A| + |B|) edges to
connect a pair (A, B) of the SSPD, we useO(1/(t− 1)) edges. For a pair (A, B) in
the SSPD, assuming that radius(DA) ≤ radius(DB), we draw k cones with apex
at the center of DA. Let Bi be the set of points of B inside ith cone. We connect
the point of Bi that is closest to A to an arbitrary point of A. Since the SSPD
constructed in [4] is based on BAR tree [24] which has a depth of O(log n), it is
straightforward to see that the diameter of the new t-spanner is O(log n).

t-spanner with diameter 2. Computing t-spanner of diameter 2 is even simpler
using the SSPD. We compute an SSPD of the points with respect to 4/(t− 1).
Then for each pair (A, B) in the SSPD, assuming radius(DA) ≤ radius(DB), we
choose an arbitrary point p in A and connect all the points in A ∪B \ {p} to p.
This gives us a spanner with O(n log n), because of the SSPD property.

Let p and q be two arbitrary points. There is a pair (A, B) in the SSPD such
that p ∈ A and q ∈ B or vice-versa. Assume that radius(DA) ≤ radius(DB).
Based on our construction, both p and q are connected to a point w in A. Since

|pw|+ |wq| ≤ 2|pw|+ |pq| ≤ 4 radius(DA) + |pq| ≤ (t− 1)|pq|+ |pq| ≤ t · |pq|,

it follows that the spanner has diameter 2.
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Abstract. Let S be a set of n points in general position in the plane.
Together with S we are given a set of parity constraints, that is, every
point of S is labeled either even or odd. A graph G on S satisfies the
parity constraint of a point p ∈ S, if the parity of the degree of p in
G matches its label. In this paper we study how well various classes of
planar graphs can satisfy arbitrary parity constraints. Specifically, we
show that we can always find a plane tree, a two-connected outerplanar
graph, or a pointed pseudo-triangulation which satisfy all but at most
three parity constraints. With triangulations we can satisfy about 2/3
of all parity constraints. In contrast, for a given simple polygon H with
polygonal holes on S, we show that it is NP-complete to decide whether
there exists a triangulation of H that satisfies all parity constraints.

1 Introduction

Computing a simple graph that meets a given degree sequence is a classical
problem in graph theory and theoretical computer science, dating back to the
work of Erdös and Gallai [6]. A degree sequence is a vector d = (d1, . . . , dn) of n
positive numbers. It is realizable, iff there exists a simple graph whose nodes have
precisely this sequence of degrees. Erdös and Gallai gave necessary and sufficient
conditions for a degree sequence to be realizable, and several algorithms have
been developed that generate a corresponding abstract graph.

An extension of this problem prescribes not only a degree sequence d, but
also gives a set S ⊂ �2 of n points in general position, where pi ∈ S is assigned
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der Wissenschaftlichen Forschung] under grant S9205-N12, NFN Industrial Geom-
etry. Research by B. Speckmann supported by the Netherlands Organisation for
Scientific Research (NWO) under project no. 639.022.707.
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degree di. It is well known that a degree sequence d is realizable as a tree if and
only if

∑n
i=1 di = 2n− 2. Tamura and Tamura [11] extended this result to plane

(straight line) spanning trees, giving an O(n2 log n) time embedding algorithm,
which in turn was improved by Bose et al. [4] to optimal O(n log n) time.

In this paper we study a relaxation of this problem, where we replace exact
degrees with degree parity: odd or even. Although parity constrains are sig-
nificantly weaker than actual degree constrains, they still characterize certain
(classes of) graphs. For example, Eulerian graphs are exactly those connected
graphs where all vertices have even degree, and a classical theorem of Whitney
states that a maximal planar graph is 3-colorable iff all vertices have even degree.
A given graph might satisfy only a subset of the parity constraints. So we study
how well various classes of planar graphs can satisfy arbitrary parity constraints.
Definitions and notation. Let S ⊂ �2 be a set of n points in general posi-
tion. We denote the convex hull of S by CH(S). The points of S have parity
constraints, that is, every point of S is labeled either even or odd ; for ease of ex-
planation we refer to even and odd points. We denote by ne and no the number
of even and odd points in S, respectively. Throughout the paper an even point
is depicted by , an odd point by , and a point that can be either by . A
graph G on S makes a point p ∈ S happy, if the parity of degG(p) matches its
label. If p is not happy, then it is unhappy. Throughout the paper a happy point
is depicted by , an unhappy point by , and a point that can be either by ? .
Results. Clearly, not every arbitrary set of parity constraints can be fulfilled.
For example, in any graph the number of odd-degree vertices is even. Hence, the
number of unhappy vertices has the same parity as no. For the class of plane
trees, the aforementioned results on degree sequences immediately imply:

Theorem 1. On every point set S ⊂ �2 with parity constraints, there exists a
plane spanning tree that makes (i) all but two points happy if no = 0, (ii) all but
one point happy if no is odd, and (iii) all points happy if no ≥ 2 is even.

We show that we can always find a two-connected outerplanar graph (which is
a Hamiltonian cycle with additional edges in the interior, Theorem 2) and a
pointed pseudo-triangulation (Theorem 3), which satisfy all but at most three
parity constraints. For triangulations (Theorem 4), we can satisfy about 2/3 of
the parity constraints. Our proofs are based on simple inductive constructions,
but sometimes involve elaborate case distinctions. We also argue that for trian-
gulations the number of unhappy vertices might grow linearly in n. Finally, in
Section 5 we show that if we are given a simple polygon H with polygonal holes
on S, it is NP-complete to decide whether there exists a triangulation of H that
satisfies all parity constraints.
Related work. Many different types of degree restrictions for geometric graphs
have been studied. For example, for a given set S ⊂ �2 of n points, are there
planar graphs on S for which the maximum vertex degree is bounded? There
clearly is a path, and hence a spanning tree, of maximum degree at most two.
Furthermore, there is always a pointed pseudo-triangulation of maximum degree
five [8], although there are point sets where every triangulation must have a
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vertex of degree n− 1. Another related question is the following: we are given a
set S ⊂ �2 of n points, together with a planar graph G on n vertices. Is there
a plane straight-line embedding of G on S? Outerplanar graphs are the largest
class of planar graphs for which this is always possible, in particular, Bose [3]
showed how to compute such an embedding in O(n log2 n) time.

One motivation for our work on parity restrictions stems from a bi-colored
variation of a problem stated by Erdős and Szekeres in 1935: Is there a number
fES(k) such that any set S ⊂ �2 of at least fES(k) bi-colored points in general
position has a monochromatic subset of k points that form an empty convex
k-gon (that is, a k-gon that does not contain any points of S in its interior)?
It has been shown recently [1] that every bi-colored point set of at least 5044
points contains an empty (not necessarily convex) monochromatic quadrilateral.
The proof uses, among others, a result that for any point set there exists a
triangulation where at least half of the points have odd parity. Any increase in
the guaranteed number of odd parity points translates into a lower minimum
number of points required in the above statement. More specifically, Theorem 4
below shows that the above result holds for any set of at least 2760 points.

2 Outerplanar Graphs

After trees as minimally connected graphs, a natural next step is to consider
two-connected graphs. In particular, outerplanar graphs generalize trees both in
terms of connectivity and with respect to treewidth. In this section we consider
two-connected outerplanar graphs, which are the same as outerplanar graphs
with a unique Hamiltonian cycle [5], in other words, simple polygons augmented
with a set of pairwise non-crossing diagonals.

The following simple construction makes all but at most three points happy.
Pick an arbitrary point p. Set p1 = p and denote by p2, . . . , pn the sequence
of points from S, as encountered by a counterclockwise radial sweep around p,
starting from some suitable direction (if p is on CH(S) towards its counterclock-
wise neighbor). The outerplanar graph G consists of the closed polygonal chain
P = (p1, . . . , pn) plus an edge between p and every odd point in p3, . . . , pn−1. All
points are happy, with the possible exception of p, p2, and pn. The figure below
shows an example of a point set S with parity constraints and an outerplanar
graph on S such that all but two points are happy.

p

pn

p2

p

pn

p2

Theorem 2. For every set S ⊂ �2 of n points with parity constraints, there
exists an outerplanar graph on S that makes all but at most three points happy.



16 O. Aichholzer et al.

3 Pointed Pseudo-triangulations

Pseudo-triangulations are related to triangulations and use pseudo-triangles in
addition to triangles. A pseudo-triangle is a simple polygon with exactly three
interior angles smaller than π. A pseudo-triangulation is called pointed if every
vertex p has one incident region whose angle at p is greater than π. In the
following we describe a recursive construction for a pointed pseudo-triangulation
P on S that makes all but at most three points of S happy.

At any time in our construction we have only one recursive sub-problem to
consider. This subproblem consists of a point set S∗ whose convex hull edges
have already been added to P . The current set P is a pointed set of edges
that subdivides the exterior of CH(S∗) into pseudo-triangles such that all points
outside CH(S∗) are happy. P contains no edges inside CH(S∗). We say that S*
is hopeful if at least one point on CH(S∗) is made happy by the current version
of P . Otherwise, we say that S∗ is unhappy.

We initialize our construction by setting S∗ = S and adding CH(S) to P .
Now we distinguish four cases.

?

v

?

?

? ?

?

v

?

?

? ?

q q

p p

(1) S∗ is hopeful. Let v be a point
on CH(S∗) that is currently happy,
let p and q be its neighbors, and
let S′ be the (possibly empty) set
of points from S that lie in the in-
terior of the triangle qvp. Then
CH(S′ ∪ {p, q}) without the edge
pq defines a convex chain C from p to q, in a way that C and v together form
a pseudo-triangle. (If S′ = ∅, then C = pq.) Remove v from consideration by
adding C to P . If |S∗| ≥ 5, recurse on S∗ \ {v}. Otherwise, there are at most
three unhappy points.

p p ?

(2) S∗ is unhappy and has no interior
points. Choose one point p on CH(S∗)
and triangulate CH(S∗) by adding edges
from p. There are at most three unhappy
points, namely p and its two neighbors.

p pp

?

?

(3) S∗ is unhappy and has exactly one
interior point, pi. Pick an arbitrary
point p on CH(S∗) and draw a line through
p and pi. This line intersects exactly one
edge e of CH(S∗), and e, p, and pi together
define a pseudo-triangle ∇. Add ∇ to P ,
which splits CH(S∗) into two sub-polygons. Triangulate the sub-polygon
which contains pi by adding edges from pi to all other vertices, except to
its neighbors. Similarly, triangulate the other sub-polygon by adding edges
from p. There are at most three unhappy points: p, pi, and a neighbor of p.
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?

?

?
?

(4) S∗ is unhappy and has more than
one interior point. Let Si be the set
of interior points. First add the edges of
CH(Si) to P . Then connect each point on
CH(S∗) tangentially to CH(Si) in clock-
wise direction, thereby creating a “lens
shutter” pattern. Each point on CH(S∗) is now happy. If |Si| > 3, then
recurse on Si. Otherwise, there are at most three unhappy points.

Theorem 3. For every point set S ⊂ �
2 with parity constraints, there exists a

pointed pseudo-triangulation onS thatmakes all but atmost three points ofS happy.

4 Triangulations

The final class of planar graphs which we consider are triangulations. If the
point set S lies in convex position, then all pseudo-triangulations of S are in fact
triangulations. Thus we obtain the following as a consequence of Theorem 3:

Corollary 1. For every point set S ⊂ �2 in convex position with parity con-
straints, and any three points p, q, r that are consecutive along CH(S), there
exists a triangulation on S that makes all points of S happy, with the possible
exception of p, q, and r.

The following simple observation will prove to be useful.

Observation 1. For every set S ⊂ �2 of four points in convex position with
parity constraints and every p ∈ S there exists a triangulation on S that makes
at least two of the points from S \ {p} happy.

For point sets of small cardinality we can investigate the number of happy ver-
tices with the help of the order type data base [2]. For any set of 11 points
with parity constraints we can always find a triangulation which makes at least
7 vertices happy. This immediately implies that there is always a triangulation
that makes at least 7n/11 ≈ 0.63n vertices happy.

The figure below shows a double circle for 10 points with parity constraints,
such that at most 5 points can be made happy. This is in fact the only point
configuration for n = 10 (out of 14 309 547) with this property.

Based on the double circle we have
been able to construct large exam-
ples with a repeating parity pattern
(starting at an extreme vertex) σ =
〈(ee(oe)3ee(oe)7ee(oe)5)3〉 of length 108,
where e denotes even, and o odd parity.
It can be shown by inductive arguments
that for such configurations for any triangulation we get at least n/108 + 2
unhappy vertices. Triangulating the interior of the double circle is equivalent to
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triangulating a simple polygon, as the inner vertices are connected by unavoid-
able edges, that is, edges that have to be in any triangulation of the set. Hence,
all base cases (over 46000) for the required induction can be checked using dy-
namic programming, see the full version of the paper and [10] for details. Open
Problem 1 in [1] asks which is the maximum constant c such that for any point
set there always exists a triangulation where cn− o(n) points have odd degree.
While for the question as stated we still believe that c = 1 is possible, the above
construction shows that for general parity constraints we have c ≤ 107

108 .

Theorem 4. For every set S ⊂ �2 of n points with parity constraints, there
exists a triangulation on S that makes at least �2(n−1)/3�−6 points of S happy.

Proof. Pick an arbitrary point p on CH(S), set p1 = p, and denote by p2, . . . , pn

the sequence of points from S, as encountered by a counterclockwise radial sweep
around p. Consider the closed polygonal chain P = (p1, . . . , pn) and observe that
P describes the boundary of a simple polygon (Fig. 1). With � pqr denote the
counterclockwise angle between the edges pq and qr around q. A point pi, 2 ≤
i < n, is reflex if the interior angle of P at pi is reflex, that is, � pi−1pipi+1 > π;
otherwise, pi is convex. Thus, p1, p2, and pn are convex.

We construct a triangulation T on S as follows. As a start, we take the edges
of CH(S) and all edges of P , and denote the resulting graph by T0. If P is
convex then T0 forms a convex polygon. Otherwise CH(S) is partitioned into
two or more faces by the edges of P . Thinking of p as a light source and of P as
opaque, we call the face of T0 that contains p the light face and the other faces
of T0 dark faces. Dark faces are shown gray in figures.

In a next step, we insert further edges to ensure that all faces are convex. The
light face is made convex by adding all edges ppi where pi is reflex. Hence the
light face of T0 might be split into a number of faces, all of which we refer to
as light faces in the following. We partition the dark faces into convex faces as
follows. First, we add all edges to connect the subsequence of P that consists
of all convex points by a polygonal path. Note that some of those edges may
be edges of P or CH(S) and, hence, already be present. Next, we triangulate
those dark faces that are not convex. For now, let us say that these faces are
triangulated arbitrarily. Later, we add a little twist.

Our construction is based on choosing particular triangulations for those faces
that share at least two consecutive edges with P . Let us refer to these faces as

p = p1

pn p2
?

?

?

?

?

? ?

??

?

p = p1

pn p2
?

?

?

?

?

? ?

??

?

p = p1

pn p2
?

?

?

?

?

? ?

? ?

?

Fig. 1. The simple polygon bounded by P , the initial graph T0 (with dark faces shown
gray), and the graph T1 in which all faces are convex (interesting light and dark faces
shown light gray and dark gray, respectively)
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interesting, while the remaining ones are called uninteresting. The interesting
faces can be ordered linearly along P , such that any two successive faces share ex-
actly one edge. We denote this order by f1, . . . , fm. Note that fi is light for i odd
and dark for i even, and that both f1 and fm are light. Also observe that p is
a vertex of every light face; therefore, any interesting light face other than f1
and fm has at least four vertices and all uninteresting light faces are triangles.
On the dark side, however, there may be both interesting triangles and uninter-
esting faces with more than three vertices. Similar to above, we triangulate all
uninteresting dark faces, for now, arbitrarily (a little twist will come later). We
denote the resulting graph by T1.

As a final step, we triangulate the interesting faces f1, . . . , fm of T1 in this
order to obtain a triangulation on S with the desired happiness ratio. We always
treat a light face fi and the following dark face fi+1 together. The vertices that
do not occur in any of the remaining faces are removed, and the goal is to choose
a local triangulation for fi and fi+1 that makes a large fraction of those vertices
happy. The progress is measured by the happiness ratio h/t, if h vertices among
t removed vertices are happy. Note that these ratios are similar to fractions.
But in order to determine the collective happiness ratio of two successive steps,
the corresponding ratios have to be added component-wise. In that view, for
instance, 2/2 is different from 3/3.

We say that some set of points can be made happy “using a face f”, if f
can be triangulated—for instance using Corollary 1 or Observation 1—such that
all these points are happy. Two vertices are aligned, if either both are currently
happy or both are currently unhappy. Two vertices that are not aligned are
contrary. Denote the boundary of a face f by ∂f , and let ∂fi = (p, pj, . . . , pk),
for some k ≥ j + 2, and ∂fi+1 = (pk−1, . . . , pr), for some r ≥ k + 1.

After treating fi and fi+1, we have removed all vertices up to, but not includ-
ing, the last two vertices pr−1 and pr of fi+1, which coincide with the first two
vertices of the next face fi+2. Sometimes, the treatment of fi and fi+1 leaves
the freedom to vary the parity of the vertex pr−1 while maintaining the desired
happiness ratio as well as the parity of pr. This means that the future treatment
of fi+2 and fi+3 does not need to take care of the parity of pr−1. By adjusting
the triangulation of fi and fi+1 we can always guarantee that pr−1 is happy.

Therefore, we distinguish two different settings regarding the treatment of a
face pair: no choice (the default setting with no additional help from outside)
and 1st choice (we can flip the parity of the first vertex pj of the face and, thus,
always make it happy).

No choice. We distinguish cases according to the number of vertices in fi.

pj

p

pk

pk−2pk−1
. . .

pr
?

?

?

?

fi

fi+1

(1.1) k ≥ j + 3, that is, fi has at least five vertices.
Then pj , . . . , pk−2 can be made happy using fi, and
pk−1, . . . , pr−3 can be made happy using fi+1. Out of
the r− j − 1 points removed, at least (k− 2− j + 1) +
(r−3− (k−1)+1) = r− j−2 are happy. As r− j ≥ 4,
this yields a happiness ratio of at least 2/3. The figure
to the right shows the case r = k + 1 as an example.
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(1.2) k = j + 2, that is, fi is a convex quadrilateral. We distinguish subcases
according to the number of vertices in fi+1.

pj

p

pj+2

pj+1

pr−1

...

pr

fi

fi+1
?

?

?

?

(1.2.1) r ≥ j + 4, that is, fi+1 has at least
four vertices. Using fi+1, all of pj+3, . . . , pr−2
can be made happy. Then at least two out of
pj , . . . , pj+2 can be made happy using fi. Over-
all, at least r − 2− (j + 3) + 1 + 2 = r − j − 2
out of r − j − 1 removed points are happy. As
r − j ≥ 4, the happiness ratio is at least 2/3.

pj

p

pj+2

pj+1
pr fi+1

?

?

?

pj

p

pj+2

pj+1
pr fi+1

?

?

?

(1.2.2) r = j + 3, that is,
fi+1 is a triangle. If both
pj and pj+1 can be made
happy using fi, the happi-
ness ratio is 2/2. Otherwise,
regardless of how fi is trian-
gulated exactly one of pj and pj+1 is happy, see the figure to the right. This
yields a ratio of 1/2 and 1st choice for fi+2.

First choice. Denote by f ′ the other (than fi) face incident to the edge pjpj+1 in
the current graph. As all of f1, . . . , fi−1 are triangulated already, f ′ is a triangle
whose third vertex (other than pj and pj+1) we denote by p′. Recall that in the
1st choice setting we assume that, regardless of how fi is triangulated, pj can
be made happy. More precisely, we assume the following in a 1st choice scenario
with a face pair fi, fi+1 to be triangulated: By adjusting the triangulations of
f1, . . . , fi−1, we can synchronously flip the parity of both pj and p′, such that

(C1) All faces fi, fi+1, . . . , fm as well as f ′ remain unchanged,
(C2) the degree of all of pj+1, . . . , pn remains unchanged, and
(C3) the number of happy vertices among p2, . . . , pj−1 does not decrease.

Observe that these conditions hold after Case 1.2.2. Using this 1st choice flip,
we may suppose that p′ is happy. Then by (C3) the number of happy vertices
among {p2, . . . , pj−1} \ {p′} does not decrease, in case we do the 1st choice flip
(again) when processing fi, fi+1. We distinguish cases according to the number
of vertices in fi.

pj

p

pk

pk−2pk−1
. . .

pr
?

?

?

fi

fi+1

(2.1) k ≥ j + 3, that is, fi has at least five vertices. Then
pj+1, . . . , pk−1 can be made happy using fi. If fi+1 is a
triangle (as shown in the figure to the right), this yields
a ratio of at least 3/3. Otherwise (r ≥ k + 2), apart
from keeping pk−1 happy, fi+1 can be used to make all
of pk, . . . , pr−3 happy. At least r− j− 2 out of r− j− 1
vertices removed are happy, for a happiness ratio of at least 3/4.

(2.2) k = j + 2, that is, fi is a convex quadrilateral. We distinguish subcases
according to the size of fi+1.
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pj

p

pj+2

pj+1

pr−1

...

pr

fi

fi+1
?

?

?

?

(2.2.1) r ≥ j + 5, that is, fi+1 has at least five
vertices. Triangulate fi arbitrarily and use fi+1
to make all of pj+1, . . . , pr−3 happy. At least
r − j − 2 out of r − j − 1 vertices removed are
happy, for a happiness ratio of at least 3/4.

pj

p

pj+2

pj+1

pj+3

fi

fi+1
?

?

?

(2.2.2) r = j + 3, that is, fi+1 is a trian-
gle. Use fi to make pj+1 happy for a perfect
ratio of 2/2.

pj

p

pj+1

pj+3

pj+4

fi

fi+1
?

?

?

pj+2(2.2.3) r = j + 4, that is, fi+1 is a convex quadrilat-
eral. If pj+1 and pj+2 are aligned, then triangu-
lating fi arbitrarily makes them contrary. Using
fi+1 both can be made happy, for a perfect 3/3
ratio overall. Thus, suppose that pj+1 and pj+2
are contrary. We make a further case distinction
according to the position of pj with respect to fi+1.

pj

p

pj+1

pj+3

pj+4

fi+1
?

?

?

pj+2(2.2.3.1) � pj+3pj+2pj ≤ π, that is, p, pj , pj+2, pj+3
form a convex quadrilateral. Add edge pjpj+2
and exchange edge ppj+2 with edge pjpj+3. In
this way, pj+1 and pj+2 remain contrary. Hence,
both pj+1 and pj+2 can be made happy using
fi+1, for a perfect ratio of 3/3 overall.

pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′?

pj+1
fi+1

f ′?

?

?

(2.2.3.2) � pjpj+1pj+3 ≤ π, that is, the
points pj , pj+4, pj+3, pj+1 form a convex
quadrilateral. To conquer this case we
need p′pj+4 to be an edge of T1. In or-
der to ensure this, we apply the before
mentioned little twist: before triangulat-
ing the non-convex dark faces, we scan
through the sequence of dark faces for
configurations of points like in this case. Call a dark quadrilateral fi with
∂fi = (pj+1, . . . , pj+4) delicate if � pjpj+1pj+3 ≤ π. For every delicate dark
quadrilateral fi in f4, f6, . . . , fm−1 such that fi−2 is not delicate, add the
edge pj+4ph, where ph is the first vertex of fi−2. Observe that this is pos-
sible as ph, . . . , pj+1, pj+3, pj+4 form a convex polygon f∗: ph, . . . , pj+1 and
pj+1, pj+3, pj+4 form convex chains being vertices of fi−2 and fi, respectively,
and pj+1 is a convex vertex of f∗ because � pjpj+1pj+3 ≤ π. Then we trian-
gulate the remaining non-convex and the uninteresting dark faces arbitrarily
to get T1.
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pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′

pj+1f∗

To handle this case we join fi+1
with f ′ by removing the edges pj+1pj+4
and p′pj+1 and adding the edge
pj+3pj+1, which yields a convex pen-
tagon f∗ = pj+4, pj+3, pj+1, pj, p

′. Ob-
serve that pj+1 and pj+2 are aligned
now. Thus, making pj+2 happy using fi

leaves pj+1 unhappy. If p′ and pj are
aligned, then triangulate f∗ using a star from p′, making pj+1 happy. As
p′ and pj remain aligned, both can be made happy—possibly using the 1st

choice flip—for a perfect 3/3 ratio. If, on the other hand, p′ and pj are con-
trary, then triangulate f∗ using a star from pj+4, making pj+1 happy. Now p′

and pj are aligned and both can made happy—possibly using the 1st choice
flip—for a perfect 3/3 ratio.

pj

p

pj+1

pj+3

pj+4

fi+1
?

?

?

pj+2

(2.2.3.3) Neither of the previous two cases oc-
curs and, thus, pj , pj+1, pj+3, pj+2 form a con-
vex quadrilateral f∗. Remove pj+1pj+2 and add
pj+1pj+3 and pjpj+2. Note that pj is happy be-
cause of 1st choice for fi, and pj+1 and pj+2 are
still contrary. Therefore, independent of the trian-
gulation of f∗, at least two vertices out of pj , pj+1, pj+2 are happy. Moreover,
using f∗ we can synchronously flip the parity of both pj+1 and pj+3 such that
(C1)–(C3) hold. This gives us a ratio of 2/3 and 1st choice for fi+2.

Putting things together. Recall that the first face f1 and the last face fm

are the only light faces that may be triangles. In case that f1 is a triangle,
we just accept that p2 may stay unhappy, and using f2 the remaining vertices
removed, if any, can be made happy. Similarly, from the last face fm up to three
vertices may remain unhappy. To the remaining faces f3, . . . , fm−1 we apply the
algorithm described above.

In order to analyze the overall happiness ratio, denote by h0(n) the minimum
number of happy vertices obtained by applying the algorithm described above
to a sequence P = (p1, . . . , pn) of n ≥ 3 points in a no choice scenario. Similarly,
denote by h1(n) the minimum number of happy vertices obtained by applying
the algorithm described above to a sequence P = (p1, . . . , pn) of n ≥ 3 points in
a 1st choice scenario. From the case analysis given above we deduce the following
recursive bounds.

a) h0(n) = 0 and h1(n) = 1, for n ≤ 4.
b) h0(n) ≥ min{2 + h0(n− 3), 1 + h1(n− 2)}.
c) h1(n) ≥ min{3 + h0(n− 4), 2 + h0(n− 2), 2 + h1(n− 3)}.

By induction on n we can show that h0(n) ≥ �(2n− 8)/3� and h1(n) ≥ �(2n−
7)/3�. Taking the at most four unhappy vertices from f1 and fm into account
yields the claimed overall happiness ratio. ��
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5 Triangulating Polygons with Holes

Theorem 5. Let H be a polygon with holes and with parity constraints on the
vertices. It is NP-complete to decide whether there exists a triangulation of H
such that all vertices of H are happy.

Proof. Following Jansen [7], we use a restricted version of the NP-complete pla-
nar 3-SAT problem [9], in which each clause contains at most three literals and
each variable occurs in at most three clauses.

(d) (e) (f)

(a) (b) (c)

Fig. 2. Wire (a) that transfers true (b), and False (c). The short edge between the
two vertices is in every triangulation. A variable (d) in true (e) and False (f) state.

The edges of the planar formula are represented by wires (Fig. 2(a)–(c)),
narrow corridors which can be triangulated in two possible ways, and thereby
transmit information between their ends. Negation can easily be achieved by
swapping the labels of a single vertex pair in a wire. The construction of a
variable (Fig. 2(d)–(f)) ensures that all wires emanating from it carry the same
state, that is, their diagonals are oriented in the same direction.

To check clauses we use an or-gate with two inputs and one output wire which
we build by cascading two or-gates and fixing the output of the second gate to
true (Fig. 3(b)). The or-gate is a convex 9-gon with three attached wires, and
a don’t-care loop (Fig. 3(a)) attached to the two top-most vertices. This loop
has two triangulations and gives more freedom for the two vertices to which it
is attached: they must have an even number of incident diagonals in total.

Fig. 4 shows triangulations for the four possible input configurations, where
the output is False iff both inputs are false. We have to ensure that the config-
uration where both inputs are False and the output is True is infeasible. This

(b)

∨

∨

a b c

True

(a)

Fig. 3. A don’t-care loop (a), checking a clause a ∨ b ∨ c by joining two or-gates (b)
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(a)

dc dc

(b)

dc

(c) (d)

dc

Fig. 4. An or-gate with inputs False, False (a), True, False (b), False, True (c),
and True, True (d). The two inputs are at the lower side and the output is at the
upper right side. A don’t-care loop dc is attached to the two top-most vertices.

can be checked by an exhaustive search of the 429 triangulations of the convex
9-gon. (The output of an or-gate can be False even if only one input is False;
this does not affect the correctness of the clause gadget.)

To combine the constructed elements to a simple polygon H with holes rep-
resenting a given Boolean formula φ is now straightforward. ��
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Abstract. We show that every c-planar clustered graph admits
a straight-line c-planar drawing in which each cluster is repre-
sented by an axis-parallel rectangle, thus solving a problem posed
by Eades, Feng, Lin, and Nagamochi [Algorithmica, 2006 ].

1 Introduction

A clustered graph is a pair (G, T ), where G is a graph, called underlying graph,
and T is a rooted tree, called inclusion tree, such that the leaves of T are the
vertices of G. Each internal node ν of T corresponds to the subset of vertices of
G, called cluster, that are the leaves of the subtree of T rooted at ν.

Clustered graphs are widely used in applications where it is needed at the
same time to represent relationships between entities and to group entities with
semantic affinities. For example, in the Internet network, links among routers
give rise to a graph; geographically close routers are grouped into areas, which
in turn are grouped into Autonomous Systems.

Visualizing clustered graphs turns out to be a difficult problem, due to the
simultaneous need for a readable drawing of the underlying structure and for a
good rendering of the recursive clustering relationship. As for the visualization
of graphs, the most important aesthetic criterion for a drawing of a clustered
graph to be “nice” is commonly regarded to be the planarity, which however
needs a refinement in order to take into account the clustering structure.

A drawing of a clustered graph C(G, T ) consists of a drawing of G (vertices
are points in the plane and edges are Jordan curves between their endvertices)
and of a representation of each node μ of T as a simple closed region containing
all and only the vertices of μ. In what follows, when we say “cluster”, we refer
both to a set of vertices and to the region representing the cluster in a drawing,
the meaning being clear from the context. A drawing has an edge crossing if two
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(a) (b)

Fig. 1. (a) A clustered graph C. (b) A straight-line rectangular drawing of C.

edges of G cross, an edge-region crossing if an edge crosses a cluster boundary
more than once, and a region-region crossing if two cluster boundaries cross. A
drawing is c-planar if it has no edge crossing, no edge-region crossing, and no
region-region crossing. A clustered graph is c-planar if it has a c-planar drawing.

Given a clustered graph, testing whether it admits a c-planar drawing is a
problem of unknown complexity, perhaps the most studied problem in the Graph
Drawing community during the last ten years (see, e.g., [12,10,4,14,13,2,15,3]).

Suppose that a c-planar clustered graph C is given together with a c-planar
embedding, that is, together with an equivalence class of c-planar drawings of
C, where two c-planar drawings are equivalent if they have the same order of the
edges incident to each vertex and the same order of the edges incident to each
cluster. How can the graph be drawn? Such a problem has been intensively stud-
ied in the literature and a number of papers have been presented for constructing
c-planar drawings of clustered graphs within many drawing conventions.

Eades et al. [7] show how to construct O(n2)-area c-planar orthogonal and
poly-line drawings of c-planar clustered graphs with clusters drawn as axis-
parallel rectangles. Di Battista et al. [5] give algorithms and show bounds for
constructing small-area drawings of c-planar clustered trees within several draw-
ing styles. The strongest result in the area is perhaps the one of Eades et al. [6].
Namely, the authors present an algorithm for constructing c-planar straight-line
drawings of c-planar clustered graphs in which each cluster is drawn as a convex
region (see also [17]). Such an algorithm requires, in general, exponential area.
However, such a bound is asymptotically optimal in the worst case [11].

In this paper we address a problem posed by Eades et al. [8,10,6]: Does ev-
ery c-planar clustered graph admit a straight-line rectangular drawing, i.e., a
c-planar straight-line drawing in which each cluster is an axis-parallel rectangle
(see Fig. 1)? Eades et al. observe how pleasant and readable straight-line rectan-
gular drawings are; however, they argue that their algorithm [6] for constructing
c-planar straight-line convex drawings cannot be modified to obtain straight-line
rectangular drawings without introducing edge-region crossings.

We show that every c-planar clustered graph has a straight-line rectangular
drawing. We obtain such a result as a corollary of a stronger theorem stating
that a straight-line rectangular drawing of a c-planar clustered graph exists for an
arbitrary convex-separated drawing of its outer face, that is, a drawing satisfying
some properties of convexity and of visibility among vertices and clusters.
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Such a stronger result is proved by means of an inductive algorithm reminis-
cent of Fary’s drawing algorithm for planar graphs [9]. Namely, the algorithm
consists of three inductive cases. Each case considers a clustered graph C and
performs an operation (removal of a cluster, split of the graph in correspondence
of a separating 3-cycle, contraction of an edge) turning C into a smaller clus-
tered graph C′, for which a straight-line rectangular drawing can be inductively
constructed. Then, such a drawing can be easily augmented to a straight-line
rectangular drawing of C. The algorithm is described more in detail in Sect. 5.

When none of the three inductive cases applies, every cluster contains a vertex
incident to the outer face. We call outerclustered graph a clustered graph satisfy-
ing this property. We prove that every outerclustered graph admits a straight-line
rectangular drawing even when a convex-separated drawing of its outer face is
arbitrarily fixed, thus providing a base case for the above inductive algorithm for
general clustered graphs. In order to draw an outerclustered graph C, we split it
into three linearly-ordered outerclustered graphs (an even more restricted family
of clustered graphs), we separately draw such graphs, and we compose the ob-
tained drawings to get a drawing of C. How to split C and how to compose the
drawings of the obtained linearly-ordered outerclustered graphs into a drawing
of C are described in Sect. 4.

A linearly-ordered outerclustered graph is an outerclustered graph in which
all the vertices of the underlying graph belong to a path in the inclusion tree. A
drawing algorithm is provided for constructing a straight-line rectangular draw-
ing of any linearly-ordered outerclustered graph C(G, T ) for an arbitrary convex-
separated drawing of its outer face. Such an inductive algorithm finds a subgraph
of G (a path plus an edge) that splits G into smaller linearly-ordered outerclus-
tered graphs and draws such a subgraph so that the outer faces of the smaller
linearly-ordered outerclustered graphs are convex-separated, thus allowing the
induction to go through. Such an algorithm is presented in Sect. 3.

Omitted and sketched proofs can be found in the full version of the paper [1].

2 Preliminaries

Let C(G, T ) be a clustered graph. An edge (u, v) of G is incident to a cluster
μ of T if u belongs to μ and v does not. Let σ(u1, u2, . . . , uk) be the smallest
cluster of T containing vertices u1, u2, . . . , uk of G, i.e., the node of T containing
all of u1, u2, . . . , uk and such that none of its children in T , if any, contains all
of u1, u2, . . . , uk. A cluster is minimal if it contains no other cluster. A cluster
μ is an ancestor (descendant) of a cluster ν if μ is an ancestor (descendant) of ν
in T . C is c-connected if each cluster induces a connected subgraph of G.

A straight-line rectangular drawing of a clustered graph is a c-planar drawing
such that each edge is a straight-line segment and each cluster is an axis-parallel
rectangle. From now on, “clustered graph” will always mean c-planar clustered
graph, and “drawing” will always mean straight-line rectangular drawing.

A clustered graph C(G, T ) is maximal if G is a maximal planar graph. In order
to prove that every clustered graph admits a straight-line rectangular drawing,
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Fig. 2. (a) An outerclustered graph. (b) A linearly-ordered outerclustered graph. (c) A
convex-separated drawing of the outer face of a linearly-ordered outerclustered graph.

it suffices to consider maximal clustered graphs. Namely, every non-maximal
c-planar clustered graph C(G, T ) can be augmented to a maximal c-planar clus-
tered graph by adding dummy edges to G [16]. Further, by the results of Feng
et al. [12], every maximal c-planar clustered graph is c-connected. From now on,
we assume that the embedding (that is, the order of the edges incident to each
vertex) and the outer face of any graph G is fixed in advance. We denote by
o(G) the outer face of G. A clustered graph C(G, T ) is internally-triangulated if
every internal face of G is delimited by a 3-cycle.

Let C(G, T ) be a clustered graph and let f be any face of G. Denote by
Cf (Gf , Tf) the clustered graph such that Gf is the cycle delimiting f , and such
that Tf is obtained from T by removing the clusters not containing any vertex in-
cident to f . The outer face of C(G, T ) is the clustered graph Co(G)(Go(G), To(G)),
simply denoted by Co. In Sect.s 3, 4, and 5, we prove that a drawing of a clustered
graph can be constructed given an arbitrary drawing of its outer face satisfying
some geometric properties to be described below. Then, a straight-line rectan-
gular drawing Γ (C) of C completes a straight-line rectangular drawing Γ (Co) of
Co if the part of Γ (C) representing Co coincides with Γ (Co).

We now introduce the following class of clustered graphs, whose study is
essential to achieve the main result of this paper. A c-planar clustered graph
C(G, T ) is an outerclustered graph if (see Fig. 2.a): (O1) every cluster contains
at least one vertex incident to o(G); (O2) the boundary of every cluster μ of
T that contains some but not all the vertices incident to o(G) intersects o(G)
exactly twice, namely it intersects exactly two edges e1(μ) and e2(μ) incident to
o(G); and (O3) every edge (u, v) with σ(u) = σ(v) is incident to o(G).

The following class of outerclustered graphs is used as a base case in the algo-
rithm for drawing outerclustered graphs. An internally-triangulated biconnected
outerclustered graph C(G, T ) is linearly-ordered if a sequence μ1, μ2, . . . , μk of
clusters in T and an index 1 ≤ h ≤ k exist such that (see Fig. 2.b): (LO1) for
each vertex v of G, σ(v) = μi, for some index 1 ≤ i ≤ k; (LO2) let vi and
vj be any two vertices incident to o(G) such that σ(vi) = μ1 and σ(vj) = μk;
then, o(G) is delimited by two monotone paths P1 = (vi, vi+1, . . . , vj−1, vj) and
P2 = (vi, vi−1, . . . , vj+1, vj), i.e., paths such that, if σ(vt) = μa and σ(vt+1) = μb,
then a ≤ b if (vt, vt+1) ∈ P1 and b ≤ a if (vt, vt+1) ∈ P2; and (LO3) μi+1 is the
parent of μi, for each 1 ≤ i < h, and μi+1 is a child of μi, for each h ≤ i < k.
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In Sect. 3 we prove that a drawing of a linearly-ordered outerclustered graph
C(G, T ) exists completing an arbitrary convex-separated drawing Γ (Co) of Co,
that is, a straight-line rectangular drawing such that (see Fig. 2.c):

– CS1: the polygon P representing o(G) is convex;
– CS2: there exist two vertices vi and vj such that σ(vi) = μ1, σ(vj) = μk,

and the angles incident to vi and vj in P are strictly less than 180◦; and
– CS3: for every pair of clusters μ and ν such that μ is the parent of ν in T

and such that μ is not an ancestor of the smallest cluster containing all the
vertices of o(G), there exists a convex region R(μ, ν) such that: (i) R(μ, ν) is
entirely contained inside μ∩ (P ∪ int(P )), where int(P ) denotes the interior
of polygon P ; (ii) for any cluster μ′ 
= μ and any child ν′ of μ′, R(μ, ν)
intersects neither R(μ′, ν′) nor the boundary of μ′; (iii) R(μ, ν) ∩ P consists
of two polygonal lines l1(μ, ν) and l2(μ, ν) such that l1(μ, ν) belongs to the
polygonal line representing P1 in Γ (Co) and l2(μ, ν) belongs to the polygonal
line representing P2 in Γ (Co); further, at least one endpoint of l1(μ, ν) (resp.
of l2(μ, ν)) lies on e1(ν) (resp. on e2(ν)).

Let C(G, T ) be a linearly-ordered outerclustered graph with outer face o(G)
delimited by cycle C = (vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vi−1, vi). Let (vx, vy) be
a chord of C. Consider the clustered graphs C1(G1, T 1) and C2(G2, T 2) such
that G1 (resp. G2) is the subgraph of G induced by the vertices incident to and
internal to cycle C1 = (vx, vx+1, . . . , vy−1, vy, vx) (resp. incident to and internal
to cycle C2 = (vy, vy+1, . . . , vx−1, vx, vy)), and such that T 1 (resp. T 2) is the
subtree of T induced by the clusters containing vertices of G1 (resp. of G2).

Lemma 1. C1(G1, T 1)andC2(G2, T 2)are linearly-orderedouterclusteredgraphs.

Let Γ be any convex-separated drawing of Co. Suppose that vx and vy are not
collinear with any vertex of o(G). Let Γ1 and Γ2 be the drawings of C1

o and C2
o

obtained by drawing (vx, vy) in Γ as a straight-line segment.

Lemma 2. Γ1 and Γ2 are convex-separated drawings.

When dealing with outerclustered and clustered graphs, it is sufficient to consider
underlying graphs with triangular outer faces. Then, let C(G, T ) be a clustered
graph such that G is a 3-cycle (u, v, z). Denote by e1(μ) and e2(μ) the edges of
G incident to a cluster μ of T not containing all the vertices of G. A straight-line
rectangular drawing Γ (C) of C is a triangular-convex-separated drawing if, for
every pair of clusters μ and ν such that μ is the parent of ν in T and such that
μ is not an ancestor of σ(u, v, z), there exists a convex region R(μ, ν) such that:
(i) R(μ, ν) is entirely contained inside μ ∩ (P ∪ int(P )), where P is the triangle
representing G in Γ (C); (ii) for any cluster μ′ 
= μ and any child ν′ of μ′, R(μ, ν)
intersects neither R(μ′, ν′) nor the boundary of μ′; (iii) R(μ, ν) ∩ P consists of
two polygonal lines l1(μ, ν) and l2(μ, ν) such that at least one endpoint of l1(μ, ν)
(resp. of l2(μ, ν)) belongs to e1(ν) (resp. to e2(ν)).

We observe the following relationship between convex-separated drawings and
triangular-convex-separated drawings.
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Lemma 3. Let C(G, T ) be a linearly-ordered maximal outerclustered graph. Then,
a triangular-convex-separated drawing of Co is a convex-separated drawing of Co.

Finally, we define a class of drawings in which the properties of convexity and
visibility among vertices and clusters are imposed on all the internal faces rather
than on the outer face. Let C(G, T ) be an internally-triangulated clustered
graph. A drawing Γ (C) of C is an internally-convex-separated drawing if, for
every internal face f of G, the part Γ (Cf ) of Γ (C) representing Cf is a triangular-
convex-separated drawing.

3 Drawing Linearly-Ordered Outerclustered Graphs

In this section we show how to construct an internally-convex-separated drawing
of any linearly-ordered outerclustered graph C for an arbitrary convex-separated
drawing of the outer face Co of C. This is done by means of an inductive algo-
rithm that uses the following lemma as the main tool:

Lemma 4. Let C(G, T ) be an internally-triangulated triconnected outerclustered
graph. Suppose that C is linearly-ordered according to a sequence μ1, μ2, . . . , μk of
clusters of T . Let vi and vj be any two vertices such that σ(vi) = μ1 and σ(vj) = μk.
Let V1 (resp. V2) be the set of vertices between vi and vj (resp. between vj and vi)
in the clockwise order of the vertices around o(G). Then, if V1 
= ∅, there exists a
path Pu = (u1, u2, . . . , ur) such that (see Fig. 3.a):

– P1: u1 and ur belong to V2 ∪ {vi, vj};
– P2: ui is an internal vertex of G, for each 2 ≤ i ≤ r − 1;
– P3: if σ(ui) = μj1 and σ(ui+1) = μj2 , then j1 < j2, for each 1 ≤ i ≤ r − 1;
– P4: there exists exactly one vertex ux, where 2 ≤ x ≤ r − 1, that is adjacent

to at least one vertex vx in V1;
– P5: there exist no chords among the vertices of path (u1, u2, . . . , ux) and no

chords among the vertices of path (ux, ux+1, . . . , ur).

A lemma similar to Lemma 4 can be proved in which V1 replaces V2 and vice
versa (see also [1]). We now present the main theorem of this section.

Theorem 1. Let C(G, T ) be a linearly-ordered internally-triangulated tricon-
nected outerclustered graph. For every convex-separated drawing Γ (Co) of Co,
there exists an internally-convex-separated drawing Γ (C) of C completing Γ (Co).

Proof sketch: The proof consists of an inductive drawing algorithm that dis-
tinguishes two cases. In the first case, the vertices of V1 ∪ {vi, vj} are not all
collinear. Then, Lemma 4 applies and a path Pu = (u1, u2, . . . , ux, . . . , ur) is
found. The three internal faces in the graph o(G) ∪ Pu ∪ (ux, vx) are the outer
faces of the underlying graphs G1, G2, and G3 of three clustered graphs C1,
C2, and C3, respectively, whose inclusion trees are the subtrees of T induced
by the clusters containing vertices of G1, G2, and G3, respectively. Then, C1,
C2, and C3 can be proved to be linearly-ordered outerclustered graphs. Further,
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Fig. 3. (a) A path Pu satisfying Properties P1–P5. (b) Drawing Pu in Γ (Co).

path Pu can be suitably drawn (see Fig. 3.b) in Γ (Co), so that the outer faces
of C1, C2, and C3 are represented by convex-separated drawings. By Lemma 1,
possible chords between the vertices of the outer faces of G1, G2, and G3 split
C1, C2, and C3 into smaller triconnected linearly-ordered outerclustered graphs;
by Lemma 2, drawing such chords as straight-line segments splits the drawings
of the outer faces of C1, C2, and C3 into convex-separated drawings of the ob-
tained linearly-ordered outerclustered graphs, thus allowing the induction to go
through. In the second case, the vertices of V2 ∪ {vi, vj} are not all collinear.
Then, a path Pu is found, with its endvertices in V1 ∪ {vi, vj} and with a vertex
ux adjacent to a vertex vx in V2. Pu and (ux, vx) split C into smaller linearly-
ordered outerclustered graphs C1, C2, and C3; further, suitable drawings of Pu

and (ux, vx) split Γ (Co) into convex-separated drawings of the outer faces of C1,
C2, and C3. Since Γ (Co) is a convex-separated drawing, one of the two cases
applies, otherwise the polygon representing o(G) would not be convex. �

4 Drawing Outerclustered Graphs

In this section we generalize from linearly-ordered outerclustered graphs to
general outerclustered graphs. In order to show that any maximal outerclus-
tered graph has an internally-convex-separated drawing completing an arbitrary
triangular-convex-separated drawing of its outer face, we show how to reduce
the problem of drawing an outerclustered graph to the one of drawing some
linearly-ordered outerclustered graphs.

Consider a maximal outerclustered graph C(G, T ) and let u, v, and z be
the vertices incident to o(G). Suppose that G has internal vertices, that the
smallest containing clusters of u, v, and z are three distinct clusters, that is,
σ(u) 
= σ(v), σ(u) 
= σ(z), and σ(v) 
= σ(z), and that, if there exists a cluster
containing exactly two vertices incident to o(G), then such vertices are u and v.
The following lemma aims at finding three (or two) paths Pu, Pv, and Pz (resp.
Pu and Pv), all starting from the same internal vertex u1 of G (resp. from z) and
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ending at u, v, and z (resp. at u and v), respectively. The paths, that share no
vertex other than u1 (resp. than z), are such that their insertion into Co splits C
into three linearly-ordered outerclustered graphs Cu,v, Cu,z , and Cv,z . In order
to perform such a split, the three paths have to be monotone for the cluster
sequences with respect to which Cu,v, Cu,z, and Cv,z are linearly-ordered.

Lemma 5. One of the following holds:

1. There exist three paths Pu = (u1, u2, . . . , uU ), Pv = (v1, v2, . . . , vV ), and
Pz = (z1, z2, . . . , zZ) such that (see Fig. 4.a):
(a) uU = u, vV = v, zZ = z, and u1 = v1 = z1;
(b) the vertices of Pu \ {u1}, Pv \ {v1}, and Pz \ {z1} are distinct;
(c) each of paths Pu \ {u1}, Pv \ {v1}, and Pz has no chords;
(d) σ(ui) does not contain neither v nor z, for each 2 ≤ i ≤ U ; σ(vi) does

not contain neither u nor z, for each 2 ≤ i ≤ V ; σ(zi) does not contain
neither u nor v, for each Z∗ ≤ i ≤ Z, where Z∗ is an index such that
1 ≤ Z∗ ≤ Z;

(e) σ(ui+1) is a descendant of σ(ui), for each 2 ≤ i ≤ U − 1; σ(vi+1) is a
descendant of σ(vi), for each 2 ≤ i ≤ V − 1;

(f) σ(z1) is either a cluster containing z and not containing u and v (then
Z∗ = 1 and σ(zi+1) is a descendant of σ(zi), for each 1 ≤ i ≤ Z − 1),
or is σ(u, v, z) (then Z∗ = 2 and σ(zi+1) is a descendant of σ(zi), for
each 1 ≤ i ≤ Z − 1), or a cluster not containing z and containing u and
v. In the latter case Z∗ ≥ 2, σ(zi+1) is an ancestor of σ(zi), for each
1 ≤ i ≤ Z∗−2, σ(zi+1) is a descendant of σ(zi), for each Z∗ ≤ i ≤ Z−1,
and either σ(zZ∗) is a descendant of σ(zZ∗−1) (if σ(zZ∗−1) = σ(u, v, z)),
or σ(zZ∗) is not comparable with σ(zZ∗−1) (if σ(zZ∗−1) contains u and
v and does not contain z).

(g) G contains an internal face having incident vertices u1, u2, and v2.
2. There exist two paths Pu = (u1, u2, . . . , uU ) and Pv = (v1, v2, . . . , vV ) such

that:
(a) uU = u, vV = v, and u1 = v1 = z;
(b) the vertices of Pu \ {u1} and Pv \ {v1} are distinct;
(c) each of paths Pu \ {u1} and Pv \ {v1} has no chords;
(d) σ(ui) does not contain neither v nor z, for each 2 ≤ i ≤ U ; σ(vi) does

not contain neither u nor z, for each 2 ≤ i ≤ V ;
(e) σ(ui+1) is a descendant of σ(ui), for each 2 ≤ i ≤ U − 1; σ(vi+1) is a

descendant of σ(vi), for each 2 ≤ i ≤ V − 1;
(f) G contains an internal face having incident vertices u2, v2, and z.

Suppose that Condition 1 of Lemma 5 holds. Denote by Cu,v, by Cu,z , and
by Cv,z the clustered graphs whose underlying graphs Gu,v, Gu,z , and Gv,z are
the subgraphs of G induced by the vertices incident to and internal to cycles
Cu,v ≡ (u, v) ∪ (Pu \ {u1}) ∪ (u2, v2) ∪ (Pv \ {v1}), Cu,z ≡ (u, z) ∪ Pu ∪ Pz, and
Cv,z ≡ (v, z) ∪ Pv ∪ Pz, and whose inclusion trees Tu,v, Tu,z, and Tv,z are the
subtrees of T induced by the clusters containing vertices of Gu,v, Gu,z , and Gv,z .
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Fig. 4. (a) Paths Pu, Pv, and Pz. (b) Drawing Pu, Pv, and Pz in Γ (Co).

Lemma 6. Cu,v, Cu,z, and Cv,z, are linearly-ordered outerclustered graphs.

Suppose that Condition 2 of Lemma 5 holds. Denote by Cu,v, by Cu,z, and by
Cv,z the clustered graphs whose underlying graphs Gu,v, Gu,z , and Gv,z are
the subgraphs of G induced by the vertices incident to and internal to cycles
Cu,v ≡ (u, v) ∪ (Pu \ {u1}) ∪ (u2, v2) ∪ (Pv \ {v1}), Cu,z ≡ (u, z) ∪ Pu, and
Cv,z ≡ (v, z)∪Pv, and whose inclusion trees Tu,v, Tu,z, and Tv,z are the subtrees
of T induced by the clusters containing vertices of Gu,v, Gu,z , and Gv,z .

Lemma 7. Cu,v, Cu,z, and Cv,z, are linearly-ordered outerclustered graphs.

We are now ready to exhibit the main theorem of this section.

Theorem 2. Let C(G, T ) be a maximal outerclustered graph. Then, for every
triangular-convex-separated drawing Γ (Co) of Co, there exists an internally-
convex-separated drawing Γ (C) of C completing Γ (Co).

Proof sketch: If σ(u) = σ(v), or σ(u) = σ(z), or σ(v) = σ(z), then C can be
proved to be a linearly-ordered outerclustered graph and the theorem follows from
Theorem 1 and Lemma 3. Otherwise, σ(u) 
= σ(v), σ(u) 
= σ(z), and σ(v) 
=
σ(z). Then, Lemma 5 applies, and either three paths Pu = (u1, u2, . . . , uU ), Pv =
(v1, v2, . . . , vV ), and Pz = (z1, z2, . . . , zZ) are found satisfying Condition 1 of
Lemma 5, or two paths Pu = (u1, u2, . . . , uU ) and Pv = (v1, v2, . . . , vV ) are found
satisfyingCondition 2ofLemma 5. In the first case, the three internal faces different
from (u1, u2, v2) in the graph o(G)∪Pu∪Pv∪Pz∪(u2, v2) are the outer faces ofGu,v,
Gu,z, and Gv,z, respectively. By Lemma 6, Cu,v, Cu,z, and Cv,z are linearly-ordered
outerclustered graphs. Further, pathsPu,Pv,Pz, and edge (u2, v2) can be suitably
drawn in Γ (Co) so that the outer faces of Cu,v, Cu,z, and Cv,z are represented by
convex-separated drawings (see Fig. 4.b). Then, Theorem 1 applies to draw Cu,v,
Cu,z, and Cv,z , thus constructing an internally-convex-separated drawing of C. In
the second case, analogously as in the first case, paths Pu, Pv, and edge (u2, v2)
split C into three clustered graphs Cu,v, Cu,z, and Cv,z that, by Lemma 7, are
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linearly-ordered outerclustered graphs. Suitable drawings of Pu, Pv, and (u2, v2)
split Γ (Co) into convex-separated drawings of the outer faces of Cu,v, Cu,z , and
Cv,z. Again, Theorem 1 applies to draw Cu,v, Cu,z, and Cv,z , thus constructing an
internally-convex-separated drawing of C. �

5 Drawing Clustered Graphs

In this section we prove that every clustered graph C(G, T ) admits an internally-
convex-separated drawing Γ (C) completing an arbitrary triangular-convex-sepa-
rated drawing Γ (Co) of Co. The result is achieved by means of an inductive
algorithm, where the induction is on the number of vertices of G plus the number
of clusters in T . In the base case, C is an outerclustered graph and the statement
follows from Theorem 2. Consider any maximal clustered graph C(G, T ).

Case 1: There exists a minimal cluster μ containing exactly one vertex v inter-
nal to G and containing no vertex incident to o(G). Remove μ from T obtaining
a clustered graph C′(G, T ′). Observe that Co and C′

o are the same graph. The
number of vertices plus the number of clusters in C′ is one less than in C. Hence,
the inductive hypothesis applies and there exists an internally-convex-separated
drawing Γ (C′) of C′ completing an arbitrary triangular-convex-separated draw-
ing Γ (Co) of Co. In Γ (C′) a small disk D can be drawn centered at v, not
intersecting the boundary of any cluster, not containing any vertex of G dif-
ferent from v, and intersecting only the edges incident to v. For each edge ei

incident to v, choose two points p1
i and p2

i inside D, where p1
i is closer to v than

p2
i . Insert a drawing of μ in Γ (C′) as a rectangle containing v and contained

inside the polygon (p1
1, p

1
2, . . . , p

1
k, p1

1), thus obtaining a drawing Γ (C) that can
be proved to be an internally-convex-separated drawing of C. In particular, for
each face fi of G incident to edges ei and ei+1, the quadrilateral having p1

i , p2
i ,

p1
i+1, and p2

i+1 as vertices satisfies the property of a triangular-convex-separated
drawing.

Case 2: There exists a separating 3-cycle (u′, v′, z′) in G. Let C1(G1, T 1)
(C2(G2, T 2)) be the clustered graph defined as follows. G1 (resp. G2) is the sub-
graph of G induced by u′, v′, z′, and by the vertices outside (u′, v′, z′) (resp. by
u′, v′, z′, and by the vertices inside (u′, v′, z′)). T 1 (resp. T 2) is the subtree of T
whose clusters contain vertices of G1 (resp. of G2). Observe that Co and C1

o are
the same graph. Since (u′, v′, z′) is a separating 3-cycle, the number of vertices
plus the number of clusters in each of C1 and C2 is strictly less than in C. Hence,
the inductive hypothesis applies and there exists an internally-convex-separated
drawing Γ (C1) of C1 completing an arbitrary triangular-convex-separated draw-
ing Γ (Co) of Co. Cycle (u′, v′, z′) is a face f of G1. Then, the drawing Γ (Cf ) of Cf

in Γ (C1) is a triangular-convex-separated drawing. Observe that Cf and C2
o are

the same graph. Hence, the inductive hypothesis applies again and an internally-
convex-separated drawing Γ (C2) can be constructed completing Γ (C2

o ). Plug-
ging Γ (C2) in Γ (C1) provides a drawing Γ (C) of C, that can be proved to be
an internally-convex-separated drawing of C.
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Case 3: There exists no separating 3-cycle, and there exist two adjacent vertices
u′ and v′ such that σ(u′) = σ(v′) and such that they are not both external. Suppose
that G contains two adjacent vertices u′ and v′ such that σ(u′) = σ(v′) and such
that u′ is internal, and suppose that there exists no separating 3-cycle in G. Since
G is maximal, u′ and v′ have exactly two common neighbors z′1 and z′2. Contract
edge (u′, v′) to a vertex w′, that is, replace vertices u′ and v′ with a vertex w′ con-
nected to all the vertices u′ and v′ are connected to. Vertex w′ belongs to σ(u′) and
to all the ancestors of σ(u′) in T ′. The resulting clustered graph C′(G′, T ′) is eas-
ily shown to be a maximal c-planar clustered graph. In particular, the absence of
separating 3-cycles in G guarantees that G′ is simple and maximal. Observe that
Co and C′

o are the same graph. Hence, the inductive hypothesis applies and there
exists an internally-convex-separateddrawingΓ (C′) of C′ completing an arbitrary
triangular-convex-separated drawing Γ (Co) of Co. Then consider a small disk D
centered at w′ and consider any line l from w′ to an interior point of the segment
between z′1 and z′2. Replace w′ with u′ and v′ so that such vertices lie on l and inside
D. Connect u′ and v′ to their neighbors, obtaining a drawing Γ (C) of C, that can
be proved to be an internally-convex-separated drawing of C.

It remains to observe that, if none of Cases 1, 2, and 3 applies, then C is an
outerclustered graph. Hence, we get the following:

Theorem 3. Let C(G, T ) be a maximal c-planar clustered graph. Then, for ev-
ery triangular-convex-separated drawing Γ (Co) of Co, there exists an internally-
convex-separated drawing Γ (C) of C completing Γ (Co).

6 Conclusions

In this paper we have shown that every c-planar clustered graph admits a
c-planar straight-line rectangular drawing. Actually, the algorithms we proposed
do not exploit at all the fact that clusters are drawn as rectangles. The only prop-
erty that must be satisfied by each region representing a cluster for the algorithm
to work is that an edge incident to the cluster must cross its boundary exactly
once. Hence, the algorithm we proposed can be modified in order to construct a
c-planar straight-line drawing of a given clustered graph for an arbitrary assign-
ment of convex shapes to the clusters (more generally, even star-shaped polygons
are feasible, that is, polygons that have a set of points, called kernel, from which
it is possible to draw edges towards all the vertices of the polygon without cross-
ing its sides).

The algorithm we described in this paper uses real coordinates, hence it re-
quires exponential area to be implemented in a system with a finite resolution
rule. However, this drawback is unavoidable, since there exist clustered graphs
requiring exponential area in any straight-line drawing in which clusters are rep-
resented by convex regions, as proved by Feng et al. [11]. We believe worth of
interest the problem of determining whether clustered graphs whose hierarchy
is flat, i.e., all clusters different from the root do not contain smaller clusters,
admit straight-line convex drawings and straight-line rectangular drawings in
polynomial area.
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16. Jünger, M., Leipert, S., Percan, M.: Triangulating clustered graphs. Technical re-
port, Zentrum für Angewandte Informatik Köln (December 2002)
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Online Priority Steiner Tree Problems
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Abstract. A central issue in the design of modern communication net-
works is the provision of Quality-of-Service (QoS) guarantees at the pres-
ence of heterogeneous users. For instance, in QoS multicasting, a source
needs to efficiently transmit a message to a set of receivers, each re-
quiring support at a different QoS level (e.g., bandwidth). This can be
formulated as the Priority Steiner tree problem: Here, each link of the
underlying network is associated with a priority value (namely the QoS
level it can support) as well as a cost value. The objective is to find a
tree of minimum cost that spans all receivers and the source, such that
the path from the source to any given receiver can support the QoS level
requested by the said receiver. The problem has been studied from the
point of view of approximation algorithms.

In this paper we introduce and address the on-line variant of the
problem, which models the situation in which receivers join the multi-
cast group dynamically. Our main technical result is a tight bound on the
competitive ratio of Θ

(
min

{
b log k

b
, k
})

(when k > b), and Θ(k) (when
k ≤ b), where b is the total number of different priority values and k is
the total number of receivers. The bound holds for undirected graphs,
and for both deterministic and randomized algorithms. For the latter
class, the techniques of Alon et al. [Trans. on Algorithms 2005] yield a
O(log k log m)-competitive randomized algorithm, where m is the num-
ber of edges in the graph. Last, we study the competitiveness of online
algorithms assuming directed graphs; in particular, we consider directed
graphs of bounded edge-cost asymmetry.

1 Introduction

Problem statement and motivation. The provision of Quality-of-Service
(QoS) guarantees is amongst the most important design considerations in mod-
ern telecommunication networks. Today’s networks are routinely used to route
vast amounts of traffic, ranging from high-definition video to voice and text.
However, reliable data dissemination remains a complex issue, due to the het-
erogeneity of both the network and the end users. More specifically, some types
of traffic may require more stringent QoS guarantees than others: for instance,
high-definition video requires significantly higher bandwidth than text. On the
other hand, the Internet itself consists of highly heterogeneous subnetworks, each
capable of supporting only certain levels of QoS.

As a concrete application, consider multicast communication in an environ-
ment comprised by heterogeneous users. A multicast group consists of a source

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 37–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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which disseminates data to a number of receivers, i.e., the members of the group.
These members may vary significantly in their characteristics (such as the band-
width of the end-connection or their computational power), which implies that
they may require vastly different QoS guarantees in terms of the delivered traffic.
The objective is to deliver information to all members of the group, while meet-
ing the requirements of each individual member. Furthermore, this dissemination
must be efficient in terms of utilization of network links.

Multicast communication in networks is often modeled by means of Steiner
tree problems (for an in-depth study of the interplay between Steiner trees and
network multicasting, the interested reader is referred to [1]). In terms of QoS
multicasting, Charikar, Naor and Schieber [2] introduced formulations based
on the Priority Steiner tree problem (or PST for brevity). In particular, the
underlying network is represented by a graph G = (V, E) (which unless specified,
is assumed to be undirected). Let r ∈ V denote the source of the multicast
group (which we also call root). We let K ⊆ V denote the set of receivers of the
multicast group, also called terminals.

In addition, the different QoS levels that can be supported by the network
are modeled by b integral priorities 1 . . . b, where b is the highest priority and
1 the lowest. Every edge e ∈ E is associated with its own priority value p(e),
which reflects the level of QoS capabilities of the corresponding link (e.g., the
bandwidth of the link) as well as with a cost value c(e) which reflects the cost
incurred when including the link in the multicast tree. Last, every terminal t ∈ K
is associated with a priority p(t) ∈ [1, b], which describes the QoS level it requires.
A feasible Steiner tree T in this model is a tree rooted in r that spans K, and is
such that for every terminal t ∈ K, the priority of each edge in the path from r
to t in T is at least p(t). The interpretation of this requirement is that terminal
t should be able to receive traffic at a level of QoS at least as good as p(t). The
objective of the problem is to identify a feasible tree of smallest cost, where the
cost of the tree is defined as the total edge-cost of the tree.

A generalization of this problem follows along the lines of the Generalized
Steiner tree problem (see eg. [3]). Here, the set K consists of k pairs of vertices
(s1, t1), . . . (sk, tk). Each pair (si, ti) is associated with a priority level pi ∈ [1, b].
The objective is to identify a feasible Steiner forest of smallest cost, such that
for all i ∈ [1, k] the path connecting si to pi in the forest has priority at least pi

1.
We refer to this problem as the Generalized Priority Steiner problem (or GPS).

In this work we address priority Steiner tree problems from the point of view
of online algorithms, in that the set K of terminals in PST (or pairs of terminals
in GPS) is not known to the algorithm in advance, but instead is revealed as a
sequence of requests. This models the situation in which subscribers to a mul-
ticast group are not predetermined, but rather issue dynamic requests to join
a group. Thus it is not surprising that many variants of Steiner tree problems
have been studied extensively in the on-line setting (see also Section 1). For PST,
when a new request for a terminal t is issued, the algorithm must guarantee a
path from r to t, of priority at least p(t). Likewise, for GPS, at request (si, ti),

1 The priority of a path is defined as the smallest priority among its edges.
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the algorithm must guarantee a path connecting si and ti of priority at least pi.
For both problems, the graph G is assumed to be known to the algorithm. In
terms of performance analysis, we apply the standard framework of competitive
analysis (see, e.g., [4]). More precisely, the competitive ratio of an algorithm is
defined as the supremum (over all request sequences and input graphs) of the
ratio of the cost of the solution produced by the algorithm over the optimal
off-line cost assuming complete knowledge of the request sequence.

The definition of PST in [2] assumes an underlying undirected graph, how-
ever a directed graph is a more accurate and realistic representation of a real
network. Indeed, a typical communication network consists of links asymmetric
in the quality of service they provide. This motivates the definition of the edge
asymmetry α (or simply asymmetry) of a directed graph G, originally due to
Ramanathan [5], as the maximum ratio of the cost of antiparallel links in G.
More formally, let A denote the set of pairs of vertices in V such that if the pair
u, v is in A, then either (v, u) ∈ E or (u, v) ∈ E (i.e, there is an edge from u to
v or an edge from v to u or both). Then the edge asymmetry is defined as

α = max
{v,u}∈A

c(v, u)
c(u, v)

According to this measure, undirected graphs are graphs of asymmetry α = 1,
whereas directed graphs in which there is at least one pair of vertices v, u such
that (v, u) ∈ E, but (u, v) /∈ E are graphs with unbounded asymmetry (α =
∞). Between these extreme cases, graphs of small asymmetry model networks
relatively homogeneous networks in terms of the cost of antiparallel links.

The objective is to address the efficiency of an algorithm (in our case, the
competitiveness of algorithms for PST) assuming that the underlying graph has
bounded asymmetry α. More specifically, for PST, we need to maintain (on-line)
an arborescence rooted at r that spans all requests, such that the directed path
from the root to each terminal has priority at least the priority of the terminal.

Related Work. The priority Steiner tree problem was introduced by Charikar,
Naor and Schieber [2]. In their work, they provided O(min{log k, b}) approxima-
tion algorithms for both PST and GPS. The question on whether PST could be
approximated within a constant factor was left open in [2], and sparked consid-
erable interest in this problem, until Chuzoy et al. [6] showed a lower bound of
Ω(log log n) (under the complexity assumption that NP has slightly superpoly-
nomial time deterministic algorithms). Interestingly, this is one of few problems
for which a log log inapproximability result is currently the best known.

Steiner tree problems have been extensively studied from the point of view
of online algorithms. For graphs of either constant or unbounded asymmetry,
the competitive ratio is tight. For the former class, Imase and Waxman [7]
showed that a simple greedy algorithm is optimal and achieves competitive ra-
tio Θ(log k). Berman and Coulston [8] extended the result to the Generalized
Steiner problem by providing a more sophisticated algorithm. The performance
of the greedy algorithm for online Steiner Trees and its generalizations has also
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been studied by Awerbuch et al. [3] and Westbrook and Yan [9]. For the on-
line Steiner Tree in the Euclidean plane, the best known lower bound on the
competitive ratio is Ω(log k/ log log k) due to Alon and Azar [10]. Westbrook
and Yan [11] showed that in directed graphs (of unbounded asymmetry), the
competitive ratio can be as bad as Ω(k), which is trivially matched by a naive
algorithm that serves each request by buying a least-cost path from the root to
the requested terminal.

The first study of the online Steiner tree problem in graphs of bounded asymme-
try is due toFaloutsos et al. [12] and continuedwithwork of this author [13,14].Cur-
rently, the best competitive ratio is O

(
min

{
max

{
α log k

log α , α log k
log log k

}
, k
})

and is
achieved by a simple greedy algorithm. The known lower bounds are
Ω
(
min

{
α log

log α , k
})

[12] and Ω
(
min

{
α log

log log k , k1−ε
})

[13], where ε is any
arbitrarily small constant.

Summary of our results. The main technical result of this paper is a tight
bound on the competitive ratio of deterministic algorithms for both PST and
GPS equal to Θ

(
min

{
b log k

b , k
})

(if k > b), and Θ(k), otherwise (c.f. Theorem 1
and Theorem 2). The bound extends to randomized algorithms (Theorem 3). For
the latter class of algorithms, the techniques introduced by Alon et al. [15] yield
a near-optimal O(log k log m)-competitive randomized algorithm, where m is the
number of edges in the graph (c.f Theorem 4). Thus, when k is comparable to m,
there exist efficient online algorithms regardless of the number of priority levels.

Last, we study the competitiveness of algorithms for PST assuming directed
graphs. If antiparallel links have the same costs, but their priorities can differ
by as little as one, it is easy to show a tight bound of Θ(k) on the competitive
ratio. Hence we focus on the case in which antiparallel links have the same
priority, but their costs may vary. In particular, we consider directed graphs of
bounded edge-cost asymmetry α. For this case, we derive an upper bound of
O
(
min

{
max

{
αb log(k/b)

log α , αb log(k/b)
log log(k/b)

}
, k
})

, and a corresponding lower bound

of Ω
(
min

{
αb log(k/b)

log α , k1−ε
})

(where ε is any arbitrarily small constant).

2 Tight Bounds for Online PST and GPS in Undirected
Graphs

We begin by showing the following lower bound for undirected graphs:

Theorem 1. The competitive ratio of every deterministic online algorithm for
online PST and GPS is Ω

(
min{b log k

b , k}
)
.

Proof. We will prove the bound for online PST, then the result carries over to
online GPS. We distinguish two cases, based on whether k ≥ b or not. Depending
on the case, the adversary will present a suitable input graph G and a request
sequence σ of k terminals (the latter is derived by means of a game between the
algorithm and the adversary).
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Case 1: k > b. We will describe the construction of G in b consecutive phases.
Each phase, in turn, will be defined in terms of additions of appropriate vertices
and edges, which occurs in consecutive rounds.

• Construction of the adversarial graph.

We begin with the definition of some auxiliary constructions. Let T1
= {v1, . . . , vl} and T2 = {v1, . . . , v

′
l} be two disjoint sets of l vertices each (we

should think of T1 as lying higher than T2). For every i ≤ l, we say that the
distance between vi and v′i is equal to 1. We call index i the i-th column, and
require that l is a power of 2, and that it is large compared to k (e.g., at least 2k).
For a column i ≤ l, we say that we insert a vertex w at depth d < 1 in column i
if we introduce a new vertex w at distance d from vertex vi and distance 1 − d
from vertex v′i. We denote by E the set of all l columns.

On the set E of columns, we define a construction B(E, β) called block which
appropriately inserts vertices and edges in log(k/b)−1 consecutive rounds2; here
β is an integral parameter, with β ∈ [1, b]. The rounds are defined inductively
as follows: In round 1, l vertices w1,1 . . . , w1,l are inserted in each column of E,
at depth equal to 1/2. We partition the l vertices in two groups, S1,1 and S1,2,
consisting of vertices {w1,1, . . . w1,l/2}, and {w1,l/2+1, . . . w1,l}, respectively. We
will refer to groups of w vertices as s-sets. For each one of the two s-sets add
a corresponding vertex, namely we add vertices u1,1 and u1,2. For every vertex
w ∈ S1,1 (resp. w ∈ S1,2) we add the edge (w, u1,1) (resp. (w, u1,2), which has
zero cost and priority equal to β.

We now describe the j-th round in the construction of B(E, β), assuming that
rounds 1, . . . , j− 1 have been defined. Let d denote the size of the s-set of smallest
cardinality that was inserted in round j − 1. For every i ∈ [1, 2j − 1], we insert l
vertices at depth i/2j, one for each column in E, unless some other w vertex has
been inserted at this same depth in a previous round, in which case we do not per-
form any additional insertion. This has the effect that 2j−1 additional layers of
vertices are inserted in round j. We call the i-th deepest layer of vertices that is
inserted in round j the i-th layer of round j, and denote by wj,i,1 . . . wj,i,l its ver-
tices. We partition the l w-vertices of the i-th layer of round j in (2il)/d s-sets (from
left to right), all of the same size d/2i: In particular, the s-set Sj,i,q (in words, the
q-th s-set, from left to right, of the i-th layer in round j) consists of d/2i vertices

{wj,i, (q−1)d
2i +1, . . . wj,i, qd

2i }. For each such s-set of the form Sj,i,q, we add a vertex
uj,i,q, and for every vertex w ∈ Sj,i,q we add the edge (w, uj,i,q) of zero cost and
priority β. The depth of a u-vertex is defined as the depth of any of the w-vertices
in its corresponding s-set, and its height as the quantity (1-depth). This completes
the definition of round j. Figure 1 illustrates an example.

Finally, we turn B(E, β) into a well-defined graph by inserting edges between
any two pairs of consecutive vertices in all columns. More precisely, for each pair
of consecutive vertices w,w′ of every column i, we add an edge (w, w′) (which we
call vertical edge) of cost equal to the distance between w and w′ in the column

2 Throughout the paper we omit floors and ceilings since they do not affect the asymp-
totic behavior of the algorithms.



42 S. Angelopoulos

S2,2,8

T1

T2

1 161284

S1,1 S1,2

S2,1,1 S2,1,2 S2,1,3 S2,1,4

S2,2,1 S2,2,2 S2,2,3 S2,2,4 S2,2,5 S2,2,6 S2,2,7

Fig. 1. An illustration of B(E,β), assuming a set E of 16 columns, and two rounds.
For simplicity, the figure illustrates only the partition of w-vertices into s-sets (i.e., we
omit the u-vertices). In the figure, S1,1 and S1,2 are the s-sets of the first round. The
sets S2,1,1 . . . S2,1,4 are the s-sets at the first layer of round 2, and S2,2,1 . . . S2,2,8 are
the s-sets at the second layer of round 2.

and priority equal to b. We use the same notation B(E, β) to refer to this graph,
when clear from context.

We say that an s-set crosses a certain set of columns if and only if the set of
columns in which the vertices of S lie intersects the set of columns in question.
Two s-sets cross each other iff the intersection of the sets of columns crossed
by each one is non-empty. Note that there is a 1-1 correspondence between s-
sets and u-vertices, which means that several properties/definitions pertaining
to s-sets carry over to the corresponding u vertices (e.g., we will say that two u
vertices cross if their s-sets cross).

The adversarial graph G is defined by performing a series of block construc-
tions, in b consecutive phases. Let T1, T2 and E be as defined earlier. Phase 1
consists only of the insertion of block B(E, 1). Suppose that phase p − 1 < b
has been defined, we will define phase p. Let d denote the smallest cardinality
among s-sets inserted3 in phase p−1. This induces a partition of the columns in
E in d sets, where the i-th set in this partition, say set Ei, consists of columns
(i−1)d+1, . . . id. Phase p consists of inserting d blocks, namely blocks B(Ei, p),
for all i ∈ [1, d] (see Fig. 2 for an illustration).

One subtle point has to do with w-vertices of the same column, which are at
the same depth but belong to different phases. Say w1 and w2 are such vertices,
added in phases j1 and j2, respectively. For every such pair, there is an edge
(w1, w2) in G of zero weight and priority equal to min{j1, j2}. In words, this
means that using this edge is free, however it can be of use only if we route
traffic at a level at most the minimum of the two corresponding phases.

3 In other words, d is the cardinality of s-sets in the last (i.e., highest) layer inserted
in the last round of phase p − 1.
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T1

T2

B(E, 2)

Fig. 2. An illustration of the insertion of blocks B(E, 2) in the creation of G. In this
figure, B(E, 1) consists of 2 rounds, similar to Figure 1, i.e., three layers are inserted in
total. Each of the blocks B(E, 2) is represented by a rectangle; its edges and vertices
are omitted due to its complexity. There are 8 such blocks inserted, each crossing the
columns of the highest S-set of B(E, 1).

This essentially completes the construction of G. We also add a root vertex r
and edges (r, v), for all v ∈ T1, as well as edges (t, v′), for all v′ ∈ Tw (where t is
a new vertex). These edges are assigned zero cost and priority b.

Before proceeding to the description of the game between the algorithm and
the adversary, we provide some alternative classification of vertices added in
round j of phase p, which will make the description of the game easier. Consider
the collection of deepest s-sets inserted during round j of phase p. This collection
induces a partition of the set of all columns E into disjoint sets Ej,1

p , Ej,2
p , . . .,

from left to right: every s-set inserted during round j of phase p will cross
only one of the sets of columns Ej,1

p , Ej,2
p , . . .. We then say that an s-set (or a

corresponding u-vertex) inserted during round j of phase p that crosses edges
of the set Ej,i

p belongs in component Cj,i
p . This provides a convenient way to

identify s-sets and u-vertices in this construction. Namely, we use the nota-
tion Cj,i

p (level, pos) to describe the s-set which belongs in component Cj,i
p , is in

the level-th deepest layer among layers of the component Cj,i
p and is also the

pos-th s-set (from left to right) in this component. We call the s-set Cj,i
p (1, 1)

the s-root of component Cj,i
p (by definition, the unique deepest s-set of the

component).
The purpose of introducing this notation is to define a parent/child relation

among s-sets in the same component. From construction, every s-set in layer L
of Cj,i

p (say S) crosses exactly two other s-sets in the same component which are
inserted at layer L + 1 (say S1 and S2, from left to right). The only exception is
the highest layer of the component, which does not have any children. We say
that S1 (resp. S2) is the left (resp. right) child of S in this component.

We emphasize that the definitions that relate s-sets apply also to u-vertices,
due to their 1-1 correspondence.
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• The game between the algorithm and the adversary

We show how to construct an adversarial sequence σ of at most k requests
(the actual number of requests will be k − b + 1, but this does not affect the
asymptotic analysis). The request sequence σ is constructed in b phases, and
each phase will request a u-vertex which was added in the corresponding phase
in the construction of G (with the exception of the very first request, which is for
vertex t). Every requested vertex in phase p ≤ b will be assigned a priority equal
to the phase index, namely p. For every such vertex u, the online algorithm must
establish a connection path from r to u denoted by path(u) (of priority at least
p(u)), possibly buying new edges. We can assume, without loss of generality,
that the algorithm provides a single connection path for each requested terminal
(if more than one such paths exist, the adversary can declare one arbitrarily as
path(u), and ignore all others. Similar arguments are used in [12] and [13]).

All phases consist of log(k/b)−1 rounds, with the exception of phase 1, which
consists of log(k/b) rounds (with round 0 an “initialization” round). To give some
intuition about the game, we first describe the actions of the the adversary on
the first three rounds of phase 1, then provide a more formal iterative description
of the game. Every request in phase 1 is assigned priority equal to 1. In round 0,
vertex t is requested, and the connection path path(t) chosen by the algorithm
will cross exactly one of the sets S1,1 and S1,2 (which are also the s-roots of
the trivial components C1,1

1 and C1,2
1 ). Round 1 consists of a single request to

a u-vertex determined as follows: if path(t) crosses the s-root of C1,1
1 (resp.

C1,2
1 ), then the adversary requests the root of C1,2

1 (resp. C1,1
1 ). At this point,

no matter what the connection paths chosen so far, there is a component C2,x
1 ,

with x ∈ [1, 4], such that no columns of C2,x
1 are crossed by existing connection

paths4. Round 2 then begins, during which the adversary will request one u
vertex per layer of C2,x

1 . In the first request of the round, the adversary requests
the root of C2,x

1 . The connection path for the latter will cross exactly one of its
children: if it crosses the left child, then the next request will be to the right
child and vice versa. In total 2 requests to u-vertices are made in this round.

For a formal description of the algorithm/adversary game, we will first need
a straightforward proposition concerning u-vertices.

Proposition 1. Let u be a u-vertex requested by the adversary which belongs
to component Cj,x

p , for some round j and index x. Suppose that u satisfies the
precondition that prior to its request in σ, no connection path for previously
requested vertices crosses u. Then the following hold:

(a) If u is the highest u-vertex in Cj,x
p , (i.e., u has no children in Cj,x

p ) and j <

log(k/b)− 1, then after path(u) is established, there is a component Cj+1,y
p

whose root does not cross any connection paths for all previous requests.
(b) If u is not the highest u-vertex in Cj,x

p (i.e., u has children in Cj,x
p ) then

after path(u) is established, there is a child of u in Cj,x
p that is not crossed

by any connection paths for all previous requests.
4 We will say that a connection path for a terminal crosses an s-set (or a corresponding

u-vertex) if it contains (vertical) edges in a column that is crossed by the s-set).
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(c) If u is the highest u-vertex in Cj,x
p , and j = log(k/b)− 1, then after path(u)

is established, there is a component C1,y
p+1 whose root does not cross any

connection paths of previous requests.

The game proceeds as follows: First, suppose that rounds 1, . . . j of phase p
have been defined (with j < log(k/b)− 1), we will now describe the requests of
round j + 1 of phase p. Let s denote the s-set of the highest u-vertex requested
in round j. Then, from Proposition 1(a), there is a component, namely Cj+1,y

p

for some index y such that no connection path established so far crosses the
s-root of Cj+1,y

p . Round j + 1 begins with the adversary requesting the u-root
of this component. The connection path for this request will cross only one of
its children in the component, and the child that is not crossed will be the 2nd
terminal to be requested in this round. Round j of this phase proceeds with
requesting u-vertices in an upwards fashion, one u-vertex per layer of Cj+1,y

p :
when a vertex is requested, the next request is the unique child of the vertex
that is not crossed by any connection paths up to that point (as Proposition 1(b)
suggests). The round continues until the highest vertex in component Cj+1,y

p is
requested, i.e., continues with 2j requests in total.

It remains to argue how to generate the first request for any phase p > 1.
Note that the last request of phase p − 1 is to a u-vertex which is highest in
some component C

log(k/b)−1,x
p−1 for some index value x. Property 1(c) guarantees

that there is a component C1,y
p , for some index y, whose root does not cross any

connection paths of previous requests. Then the first request in phase p (indeed
the only request of the first round in phase p) is to the u-root of C1,y

p .

• Analysis
We first observe that the adversarial sequence of requests σ is such that for
any request u, there exists a column in u that crosses all previously requested
u-vertices in σ (this is easy to show by means of a straightforward induction).
This implies that all requested u-vertices in σ share a common column, say i.
Then, an offline solution suffices to buy: i) all vertical edges of column i (for
a total cost equal to 1); ii) edges from a w vertex in column i to a requested
u-vertex (zero cost); iii) edges of the form (r, vi), and (t, v′i) (at zero cost). Hence
the optimal offline cost is at most 1.

On the other hand, consider the requests which belong in round j of phase p.
These requests are part of a component Cj,x

p for some index x. Due to the actions
of the adversary, as well as Proposition 1(b), every time a request is issued for a
u-vertex in Cj,x

p other than the root of this component the algorithm must pay
cost at least 1/2j. Since there are 2j−1 requests in σ that belong to Cj,x

p , the
algorithm pays a cost which is at least 1/2− 1/2j during the round. Since there
are log(k/b)− 1 rounds and b phases, the overall cost is Ω(b log k

b ).

Case 2: k ≤ b. This case is easier to show, and its proof is omitted.
The theorem follows by combining the results of the two cases. �

We now show a simple algorithm for the problem that is asymptotically optimal.
The algorithm applies not only to PST but also to its generalization, namely GPS
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(as defined in Section 1). We use the online algorithm for the (plain) Generalized
Steiner problem in undirected graphs due to Berman and Coulston [8], which we
denote by BC. In particular, the algorithm maintains b Steiner forests, F1, . . . Fb,
one for each priority value, in an online fashion (the forests may not be edge-
disjoint, i.e., Fi may share edges with Fj). When a request ri = (si, ti, bi) is
issued, the algorithm will assign ri to forest Fbi , by running the BC algorithm
for (si, ti) (ignoring the priority values). We denote the resulting algorithm by
PrBC.

Theorem 2. The competitive ratio of PrBC is O
(
min

{
b log k

b , k
})

.

Proof. For any fixed integer j ≤ b, let Gj denote the subgraph of G induced
by all edges e of priority at least j. For any sequence of requests R = r1, . . . rk,
partition R into subsequences R1, . . . , Rb such that Rj consists of all requests
in R of priority equal to j. Let (Gj , Rj) denote an instance of the (plain) online
Generalized Steiner Problem on graph Gj and request sequence Rj : here we
ignore the priority of edges and requests, and our objective is to minimize the
cost of the Steiner forest for the sequence Rj without concerns about priorities.
Let OPTj denote the cost of the optimal Steiner forest for the above instance.
Since the algorithm of Berman and Coulston is O(log |Rj |)-competitive, it follows
that c(Rj) = O(log |Rj |)OPTj = O(log |Rj |)OPT (this follows from the fact that
OPTj ≤ OPT ). Here, we denote by c(Rj) the cost paid by PrBC on request
set Rj (which is the same as the cost of BC for instance (Gj , Rj), and by OPT
the cost of the optimal offline solution to the problem.

Therefore, the total cost of PrBC on sequence R is bounded by c(R) =
O
(∑b

j=1 log |Rj |OPT
)

= O
(
log
∏b

j=1 |Rj |
)

OPT , which is maximized when

|Rj | = k
b (for k > b.) Hence c(R) = O

(
b log k

b ·OPT
)
.

In addition, c(R) ≤ k · OPT . Therefore, c(R) = O
(
min

{
b log k

b , k
})

OPT ,
when k > b, and c(R) = O(k)OPT , otherwise. �

3 Extensions: Randomized Algorithms and Directed
Graphs

3.1 Randomized Algorithms

We begin by showing that the lower bound of Theorem 1 holds even when
considering randomized algorithms against an oblivious adversary.

Theorem 3. The competitive ratio of every randomized online algorithm against
the oblivious adversary for online PST and GPS is Ω

(
min{b log k

b , k}
)
.

Proof sketch. We resort to Yao’s principle [16]. We use the same adversarial
graph G as in the proof of Theorem 1. The distribution for the case k > b is
motivated by the request sequence in the deterministic case: more specifically, for
a given round of a phase, the next terminal to be requested is chosen, uniformly
at random (i.e. with probability 1/2) among the two children of the last requested



Online Priority Steiner Tree Problems 47

terminal. This ensures that any deterministic algorithm will pay, on average, a
cost at least half the cost determined in the analysis of Theorem 1, whereas the
optimal average cost remains as in the same analysis. A similar (and simpler)
argument can be made for the case k ≤ b. �

Even though Theorem 1 and Theorem 3 are tight, in the case where b is large,
namely when b ∈ Ω(k), the competitive ratio of any deterministic or randomized
algorithm is disappointingly bad (i.e., Ω(k)). However, observe that the adver-
sarial graph G requires at least an exponential number of vertices (and edges)
in the number of requested terminals k. Thus the following question arises: if
the number of edges is comparable to the number of terminals, can we achieve
better competitive ratios? To answer this, we can use the framework of Alon et
al. [15], which addresses online algorithms for broad classes of (edge-weighted)
connectivity and cut problems. In particular, we can obtain the following:

Theorem 4. There exists a randomized algorithm for GPS and PST with com-
petitive ratio O(log k log m), where m is the number of edges in the graph.

3.2 Directed Graphs

So far in this paper we assumed that the input graph G is undirected. However,
the competitiveness of PST changes dramatically when G is directed. Specifically,
since the online Steiner tree problem is Ω(k)-competitive for directed graphs [11],
the same lower bound carries over to online PST. More importantly, it is not
difficult to show that the same bound applies even in graphs in which antiparallel
edges have the same cost, as long as their priorities can differ by as little as one.

We thus focus on graphs of bounded edge-cost asymmetry, denoted by α,
assuming that antiparallel links have the same priority. In other words, the
“directedness” of a graph manifests itself in terms of edge costs, and not in
terms of edge priorities. In this model, we can show the following:

Theorem 5. The competitive ratio of the greedy algorithm for PST is

O

(
min

{
max

{
αb

log(k/b)
log α

, αb
log(k/b)

log log(k/b)

}
, k

})
.

Furthermore, the competitive ratio of every deterministic (or randomized) algo-
rithm is Ω

(
min

{
αb log(k/b)

log α , k1−ε
})

, for arbitrarily small constant ε.

Proof sketch. For the upper bound, we use a classification of terminals according
to their priority (similar to the proof of Theorem 2), in combination with the
analysis of the greedy algorithm for the asymmetric Steiner tree problem of [14].
We also make use of the concavity of the functions log(x) and log(x)/ log log(x)
so as to upper-bound the overall contribution of terminals.

For the lower bound, we combine ideas from Theorem 1 and the lower bounds
of [12] and [13]. The adversarial sequence will force any algorithm to pay a cost
of Ω

(
min

{
α log(k/b)

log α , (k/b)1−ε
})

, in each of a total number of b phases. �
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Abstract. A feed-link is an artificial connection from a given location
p to a real-world network. It is most commonly added to an incomplete
network to improve the results of network analysis, by making p part
of the network. The feed-link has to be “reasonable”, hence we use the
concept of dilation to determine the quality of a connection.

We consider the following abstract problem: Given a simple polygon
P with n vertices and a point p inside, determine a point q on P such that
adding a feedlink pq minimizes the maximum dilation of any point on P .
Here the dilation of a point r on P is the ratio of the shortest route from
r over P and pq to p, to the Euclidean distance from r to p. We solve this
problem in O(λ7(n) log n) time, where λ7(n) is the slightly superlinear
maximum length of a Davenport-Schinzel sequence of order 7. We also
show that for convex polygons, two feed-links are always sufficient and
sometimes necessary to realize constant dilation, and that k feed-links
lead to a dilation of 1 + O(1/k). For (α, β)-covered polygons, a constant
number of feed-links suffices to realize constant dilation.

1 Introduction

Network analysis is a type of geographical analysis on real-world networks, such
as road, subway, or river networks. Many facility location problems involve net-
work analysis. For example, when a location for a new hospital needs to be
chosen, a feasibility study typically includes values that state how many people
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would have their travel time to the nearest hospital decreased to below 30 min-
utes due to the new hospital location. In a more global study of connectivity, one
may analyze how many households are reachable within 45 minutes from a fire
station. In this case, the households are typically aggregated by municipality or
postal-code region, and the centroid of this region is taken as the representative
point. This representative point might not lie on the road network. It might
even be far removed from it, since nation-wide connectivity studies seldomly use
detailed network data for their analysis. A similar situation occurs when the
quality of the network data is not very high. In developing countries, data sets
are often incomplete due to omissions in the digitization process, or due to lack
of regular updates. In both cases a network study must be executed that involves
a set of locations that are not connected to the network in the available data.

A workable solution in such cases is to connect the given locations to the
known road network by feed-links. A feed-link is an artificial connection between
a location and the known network that is “reasonable”, that is, it is conceivable
that such a connection exists in the real world [2,6]. A road network forms
an embedded, mostly planar graph. Hence a location that does not lie on the
network, lies inside some face of this graph. Such a face can be represented by a
simple polygon. A feed-link is then a connection from the given location to the
boundary of the simple polygon.

When computing feed-links we need to be able to judge their quality. That is,
we have to assess if a particular connection could possibly exist in reality. To do
this, we use the concept of dilation, also known as stretch factor or crow flight
conversion coefficient. People in general do not like detours, so a connection that
causes as little detour as possible, is more likely to be “real”. Given an embedded
plane graph, the dilation of two points p and q on the graph is the ratio of their
distance within the graph to their Euclidean distance. The concept of dilation
is commonly used in computational geometry for the construction of spanners :
a t-spanner is a graph defined on a set of points such that the dilation between
any two points is at most t, see [7,10,13,14,15].

In this paper we consider a single point p inside a simple polygon, whose
boundary we denote by P . We solve the problem of placing one feed-link between
p and P so that the maximum dilation over all points on P to p is minimized.
We assume that a feed-link is a straight-line connection between p and exactly
one point q on P . We allow the feed-link pq to intersect P in more points, see
Fig. 1 (left), but assume that it is not possible to “hop on” the feed-link at any
such point other than q (the white points in the figure provide no access to the
feed-link). Fig. 1 (middle) shows that the feed-link yielding minimum dilation
may intersect P in a point other than q. One could also choose to disallow feed-
links that intersect the outside of P , or to use geodesic shortest paths inside P
as feed-links, and measure the dilation of any point on P with respect to its
geodesic distance to p. We also study the problem of connecting several feed-
links to p to bound the dilation. Then any point on P uses exactly one of the
feed-links to reach p over the network. Fig. 1 (right) shows that n/2 feed-links
may be necessary to bound the dilation by a constant, if P has n vertices.
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p

P

p

q P

p

P

Fig. 1. A feed-link that intersects P gives no access to the feed-link other than q (left).
A minimum dilation feed-link may intersect P in the interior of the feed-link (middle).
Simple polygons may require many feed-links to achieve constant dilation (right).

In a recent paper [2] we showed how to compute the dilation of a polygon
when a collection of feed-links to a point inside is given. We also gave heuristic
algorithms to place one or more feed-links and compared them experimentally
on generated polygons. The simple heuristic for one feed-link that connects p
to the closest point on P is a factor-2 approximation for the optimal feed-link
placement. We also studied the problem of placing as few feed-links as possible
to realize a specified dilation. A simple incremental algorithm exists that uses
at most one more feed-link than the minimum possible.

Results. In Section 2 we give an efficient algorithm to compute an optimal feed-
link. For a simple polygon with n vertices, our algorithm runs in O(λ7(n) log n)
time, where λ7(n) is the maximum length of a Davenport-Schinzel sequence
of order 7, which is only slightly superlinear [1,16]. If we are interested in the
dilation with respect to only m fixed points on P , the running time reduces to
O(n+m logm). Furthermore, we give a (1+ ε)-approximation algorithm for the
general problem that runs in O(n + (1/ε) log(1/ε)) time, for any ε > 0. The
results in this section also hold with geodesic dilation and feed-links, or with
feed-links that are not allowed to intersect the outside of P .

In Section 3.1 we show that for any convex polygon and any point inside, two
feed-links are sufficient and sometimes necessary to achieve constant dilation. In
this case the dilation is at most 3+

√
3. There are convex polygons where no two

feed-links can realize a dilation better than 2 +
√

3. We also show that we can
realize a dilation of 1+O(1/k) with k feed-links. Finally, in Section 3.2 we show
that for (α, β)-covered polygons [8] (a class of realistic polygons), a constant
number of feed-links suffices to obtain constant dilation. This result does not
hold for most other classes of realistic polygons.

Notation. P denotes the boundary of a convex or simple polygon, and p is a
point inside it. For two points a and b on P , P [a, b] denotes the portion of P from
a clockwise to b, its length is denoted by μ(a, b). Furthermore, μ(P ) denotes the
length (perimeter) of P . The Euclidean distance between two points p and q is
denoted by |pq|. For two points q and r on P , the dilation of point r when the
feed-link is pq is denoted by δq(r). For an edge e, δq(e) denotes the maximum
dilation of any point on e when the feed-link is pq.
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2 Computing One Feed-Link with Minimum Dilation

Let v0, . . . , vn−1 be the vertices of P and let p be a point inside P . We seek
a point q on P such that the feed-link pq minimizes the maximum dilation to
any point on P . We first consider the restricted case of minimizing the dilation
only for m given points on P . Then we solve the general case. In both cases, the
feed-link may connect to any point on P .

Let r be a point on P and let r′ be the point opposite r, that is, the distance
along P between r and r′ is exactly μ(r, r′) = μ(r′, r) = μ(P )/2. For any given
location of q, r has a specific dilation. We study the change in dilation of r as
q moves along P . If q ∈ P [r′, r], then the graph distance between p and r is
|pq|+ μ(q, r), otherwise it is |pq|+ μ(r, q).

v0

p
q

r

r′
ccw-dist(q)

cw-dist(q)

Fig. 2. cw-dist(q) and ccw-dist(q);
shown is case 1 with order v0qrr

′

We choose a fixed point v0 on P and
define two functions cw-dist(q) and ccw-
dist(q) that measure the distance from p
to v0 via the feed-link pq and then from q
either clockwise or counterclockwise along
P , see Fig. 2. The dilation δq(r) of r can be
expressed using either cw-dist(q) or ccw-
dist(q), depending on the order in which
v0, q, r, and r′ appear along P . In partic-
ular, we distinguish four cases that follow
from the six possible clockwise orders of
v0, q, r, and r′:

1. If the clockwise boundary order is v0qrr
′ or v0r

′qr, then the dilation is
δq(r) = (cw-dist(q)− μ(r, v0)) / |rp|.

2. If the clockwise boundary order is v0rr
′q, then the dilation is

δq(r) = (cw-dist(q) + μ(v0, r)) / |rp|.
3. If the clockwise boundary order is v0qr

′r, then the dilation is
δq(r) = (ccw-dist(q) + μ(r, v0)) / |rp|.

4. If the clockwise boundary order is v0rqr
′ or v0r

′rq, then the dilation is
δq(r) = (ccw-dist(q)− μ(v0, r)) / |rp|.

As q moves along P in clockwise direction, starting from v0, three of the cases
above apply consecutively. Either we have v0qrr

′ → v0rqr
′ → v0rr

′q, or v0qr
′r →

v0r
′qr → v0r

′rq. We parameterize the location of q both by cw-dist(q) and
ccw-dist(q). This has the useful effect that the dilation δq(r) of r is a linear
function on the intervals where it is defined (see Fig. 3). In particular, for a
fixed point r, δq(r) consists of three linear pieces. Note that we cannot combine
the two graphs into one, because the parameterizations of the location of q by
cw-dist(q) and ccw-dist(q) are not linearly related. This follows from the fact
that cw-dist(q)+ ccw-dist(q) = μ(P ) + 2 · |pq|.

We now solve the restricted case of minimizing the dilation only for m given
points on P . For each point r we determine the line segments in the two graphs
that give the dilation of r as a function of cw-dist(q) and ccw-dist(q). These line
segments can be found in O(n + m) time in total. Next, we compute the upper
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ccw-dist(q)

1

μ(P )/2+|r′p|
|rp|

cw-dist(q)

1

μ(P )/2+|r′p|
|rp|

μ(v0,r)+|v0p|
|rp|

δq(r) δq(r)

q@r′q@r
q@v0q@v0

q@r′ q@r
q@v0q@v0

case 4case 1 case 2

Fig. 3. Two graphs showing the dilation of a point r as a function of cw-dist(q) (left)
and ccw-dist(q) (right); q@r indicates “q is at position r”

envelope of the line segments in each of the two graphs. This takes O(m log m)
time using the algorithm of Hershberger [12], and results in two upper envelopes
with complexity O(m ·α(m)). Finally, we scan the two envelopes simultaneously,
one from left to right and the other from right to left, taking the maximum of the
corresponding positions on the two upper envelopes, and recording the lowest
value encountered. This is the optimal position of q.

To implement the scan, we first add the vertices of P to the two envelopes.
Since we need to compute the intersection points of the two envelopes we must
unify their parameterizations. Consider the locations of q that fall within an
interval I which is determined by two envelope edges e1 and e2. Since cw-
dist(q) = −ccw-dist(q)+2·|pq|+μ(P ), the line segment of one envelope restricted
to I becomes a hyperbolic arc in the parametrization of the other envelope. Hence
e1 and e2 can intersect at most twice in a unified parametrization, and the scan
takes time linear in the sum of the complexities of the two envelopes.

Theorem 1. Given the boundary P of a simple polygon with n vertices, a point
p inside P , and a set S of m points on P , we can compute the feed-link (which
might connect to any point on P ) that minimizes the maximum dilation from p
to any point in S in O(n + m log m) time.

Next we extend our algorithm to minimize the dilation over all points on P . Let
re(q) denote the point with the maximum dilation on a given edge e of P . Instead
of considering the graphs of the dilation for a set of fixed points, we consider
the graphs for the points re(q) for all edges of P . The positions of re(q) change
with q. The graphs of the dilation do not consist of line segments anymore, but
of more complex functions, which, however, intersect at most six times per pair,
as we prove in the full paper. As a consequence, we can compute their upper
envelope in O(λ7(n) log n) time [12], where λ7(n) is the maximum length of a
Davenport-Schinzel sequence of order 7, which is slightly superlinear [1,16].

Theorem 2. Given the boundary P of a simple polygon with n vertices and a
point p inside P , we can compute the feed-link that minimizes the maximum
dilation from p to any point on P in O(λ7(n) log n) time.
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Note that our algorithms ignore the degenerate case where p lies on a line sup-
porting an edge e of P . In this case cw-dist(q) and ccw-dist(q) are both constant
on e. This is in fact easy to handle, as we describe below when discussing geodesic
dilation.

We can adapt our algorithms to not allow feed-links that intersect the exterior
of P . We first compute the visibility polygon V (p) of p with respect to P . The
vertices of V (p) partition the edges of P into parts that are allowed to contain
q and parts that are not. The number of parts is O(n) in total, and they can be
computed in O(n) time.

We compute the upper envelopes exactly as before. Before we start scanning
the two envelopes, we add the vertices of P and also the vertices of the visibility
polygon to the two envelopes. The envelopes now have the property that between
two consecutive vertices, a feed-link is allowed everywhere or nowhere. During
the scan, we keep the maximum of the dilation functions and record the lowest
value that is allowed. The time complexity of our algorithms does not change.

We can also adapt our algorithms to use geodesic feed-links and geodesic
shortest distances. In this case the feed-link is a geodesic shortest path between
p and q, and the dilation of a point r on P is defined as the ratio of the graph
distance between r and p (necessarily via q) and the geodesic shortest path
between r and p.

By computing the shortest path tree of p inside P , we obtain the geodesic
shortest distances of p to every vertex of P , and hence can partition P into O(n)
parts, such that the first vertex on a geodesic shortest path to p is the same (this
first vertex can also be p itself) [11].

When we use cw-dist(q) and ccw-dist(q) to represent the location of q, we
use the length of the geodesic from q to p instead of |pq|, plus the clockwise or
counterclockwise distance to v0. But now a value of cw-dist(q) or ccw-dist(q) does
not necessarily represent a unique position of q anymore: when q traverses an
edge of P and the geodesic from q to p is along this edge in the opposite direction,
cw-dist(q) and ccw-dist(q) do not change in value. However, it is sufficient to
consider only the location of q that gives the shortest feed-link (if any such feed-
link is optimal, then the shortest one is optimal too). All other adaptations to
the algorithms are straightforward, and we obtain the same time complexities.

3 Number of Feed-Links vs. Dilation

In this section we study how many feed-links are needed to achieve constant
dilation. We immediately observe that there are simple polygons that need n/2
feed-links to achieve constant dilation, see Fig. 1. For convex polygons, we estab-
lish that two feed-links are necessary and sufficient to obtain constant dilation.
For realistic (“fat”) simple polygons, there are several definitions one can use
to capture realism ([4,5,8,9,17] and others). Most of these definitions are not
sufficient to guarantee constant dilation with a constant number of feed-links.
However, for (α, β)-covered polygons [8] we can show that a constant number of
feed-links suffices for constant dilation.
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3.1 Convex Polygons

Let P be the boundary of a convex polygon and let p be a point inside P . We
explore how many feed-links are necessary and sufficient to guarantee constant
dilation for all points on P .

One feed-link is not sufficient to guarantee constant dilation. Consider a rect-
angle with width w and height h < w, and let p be its center. One of the points
in the middle of the long sides will have dilation greater than 2w/h, which can
become arbitrarily large. Hence two feed-links may be necessary.

Two feed-links are also sufficient to guarantee constant dilation for all points
on P . In fact we argue that we can always choose two feed-links such that the
dilation is at most 3 +

√
3 ≈ 4.73. This bound is not far from the optimum,

since an equilateral triangle with p placed in the center has dilation at least
2 +
√

3 ≈ 3.73 for any two feed-links. To see that, observe that one of the sides
of the equilateral triangle does not have a feed-link attached to it (or only at a
vertex), which causes the middle of that side to have dilation at least 2 +

√
3.

t1

p

q

t2

r

l1

l2

π/3
se0

e2e1

Fig. 4. The smallest equilateral
triangle that contains P

Let q be the closest point to p on P . We
choose pq as the first feed-link and argue that
the dilation is now constant for all points in
some part of P which includes q. Then we
show how to place the second feed-link to
guarantee constant dilation for the remaining
part of P . Consider the smallest equilateral
triangle Δ that contains P and which is ori-
ented in such a way, that one of its edges con-
tains q. Let e0 be the edge of Δ containing
q, and let e1 and e2 be the other edges, in
clockwise order from e0 (see Fig. 4). By con-
struction, each edge of Δ is in contact with P .
Let t1 be a point of P in contact with e1, and
let t2 be a point of P in contact with e2.

Lemma 1. For any point r ∈ P [t2, t1], δq(r) ≤ 3 +
√

3 .

We prove Lemma 1 by arguing that μ(r, q) ≤ l1 + l2. The details can be found in
the full paper. The second feed-link connects p to the point q′ on P [t1, t2] closest
to p. Lemma 2 can be proven with similar arguments as Lemma 1.

Lemma 2. For any point r ∈ P [t1, t2], δq′(r) ≤ 3 +
√

3.

These two lemmas jointly imply

Theorem 3. Given the boundary P of a convex polygon and a point p inside it,
two feed-links from p to P are sufficient to achieve a dilation of 3 +

√
3.

We now consider the general setting of placing k feed-links, where k is a constant.
We prove that placing the feed-links at an equal angular distance of η = 2π/k
guarantees a dilation of 1 + O(1/k). To simplify the argument we choose k ≥ 6
(the result for smaller k immediately follows from the result for two feed-links).
Our proof uses the following lemma.
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Lemma 3. Let q1 and q2 be two points on the boundary P of a convex polygon
such that the angle ∠q1pq2 = η ≤ π/3. Then for all points r ∈ P [q1, q2], we have
δ(r)/ max(δ(q1), δ(q2)) ≤ 1 + η.

Note that pq1 and pq2 need not be feed-links in Lemma 3. The lemma implies
that for η = 2π/k we obtain the following result.

Theorem 4. Given the boundary P of a convex polygon and a point p inside it,
k feed-links from p to P are sufficient to achieve a dilation of 1 + O(1/k).

Approximation algorithm for convex polygons. We can use Lemma 3
to obtain a linear-time (1 + ε)-approximation algorithm to place one feed-link
optimally. We measure dilation only at 2π/ε points on P , and hence the running
time of the approximation algorithm is O(n+(1/ε) log(1/ε)) by Theorem 1. The
points at which we measure the dilation are chosen on P such that the angle
between two consecutive points measured at p is ε. Since Lemma 3 bounds the
dilation between two consecutive points, the theorem follows.

Theorem 5. For any ε > 0, given the boundary P of a convex polygon with n
vertices and a point p inside it, we can compute a feed-link that approximately
minimizes the maximum dilation from p to any point on P within a factor 1 + ε
in O(n + (1/ε) log(1/ε)) time.

3.2 Realistic Polygons

A constant number of feed-links should guarantee constant dilation for realistic
polygons. Therefore, we define a simple polygon to be feed-link realistic if there
are two constants δ > 1 and c ≥ 1, such that there exist c feed-links that achieve
a dilation of at most δ for any point on its boundary. Many different definitions
of realistic polygons exist in the literature. We show that most of them do not
imply feed-link realism. However, we also argue that polygons that are (α, β)-
covered [8] are feed-link realistic.

Consider the left polygon in Fig. 5. At least c feed-links are required to obtain
a dilation smaller than δ, if the number of prongs is c and their length is at least

p ≤ 1

≥ 2δ

p

≤ 1

Fig. 5. A β-fat polygon (left) and an adaptation (right) that require many feed-links
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δ times larger than the distance of their leftmost vertex to p. No feed-link can
give a dilation at most δ for the leftmost vertex of more than one dent. However,
the polygon is β-fat [5]. Definitions that depend on the spacing between the
vertices or edge-vertex distances will also not give feed-link realism, because the
left polygon in Fig. 5 can be turned into a realistic polygon according to such
definitions. We simply add extra vertices on the edges to get the right polygon: it
has edge lengths that differ by a factor of at most 2, it has no vertex close to an
edge in relation to the length of that edge, and it has no sharp angles. The extra
vertices obviously have no effect on the dilation. This shows that definitions like
low density (of the edges) [17], unclutteredness (of the edges) [4,5], locality [9],
and another fatness definition [18] cannot imply feed-link realism.

(α, β)-covered polygons. For an angle φ and a distance d, a (φ, d)-triangle
is a triangle with all angles at least φ and all edge lengths at least d. Let P be
the boundary of a simple polygon, let diam(P ) be the diameter of P , and let
0 < α < π/3 and 0 < β < 1 be two constants. P is (α, β)-covered if for each
point on P , an (α, β ·diam(P ))-triangle exists with a vertex at that point, whose
interior is completely inside P [8]. Furthermore, P is (α, β)-immersed if for each
point on P there is such a triangle completely inside P and one completely
outside P . For ease of description, we assume that diam(P ) = 1.

We use a result by Bose and Dujmović [3] that bounds the perimeter of P as
a function of α and β.

Lemma 4. The perimeter of an (α, β)-covered polygon P is at most c
β sin α , for

some absolute constant c > 0.

Also, we need a technical lemma that states that if the distance between two
points on P is short enough, then it is proportional to the Euclidean distance.

Lemma 5. If p and q can see each other on the inside of an (α, β)-covered
polygon P and μ(p, q) < β, then μ(p, q) < f(α) · |pq|, where f(α) ≤ 2π

α sin 1
4 α

.

When P is (α, β)-immersed, each point on the boundary has an empty (α, β)-
triangle outside P as well as inside P . This implies that the lemma also holds
for two points p and q that can see each other on the outside of the polygon.

pP

(a)

pP

(b)

r

q pP

(c)

Fig. 6. (a) A polygon P that is (α, β)-immersed. (b) A feed-link to the closest point
on each boundary piece of length β. (c) The dilation of r is constant, because the
boundary distance between r and q is bounded by their Euclidean distance.
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Theorem 6. When P is (α, β)-immersed, we can place c
β2 sin α feed-links such

that the dilation of every point on P is at most 1 + 4π
α sin 1

4 α
.

Proof. We give a constructive proof. Given an (α, β)-immersed polygon and a
point p inside it, we split P into pieces of length β. By Lemma 4 there are
only c

β2 sin α pieces. On each piece, we place a feed-link to the closest point to p.
Fig. 6(b) shows the resulting feed-links in an example.

For each point r on P , we show that the dilation is constant. Consider the
piece of P containing r and the point q that is the closest point to p on that
piece, as in Fig. 6(c). The segment qr may intersect P in a number of points.
For each pair of consecutive intersection points, they can see each other either
inside or outside P . Since P is (α, β)-immersed, Lemma 5 applies to each pair,
and hence μ(q, r) ≤ f(α) · |qr|. Also, we know that |pq| ≤ |pr|. We conclude that
the dilation is bounded by

δq(r) =
|pq|+ μ(q, r)
|pr| ≤ |pq|+ f(α)|qr|

|pr|

≤ |pq|+ f(α)(|pr| + |pq|)
|pr| ≤ |pr|+ f(α)(|pr| + |pr|)

|pr| = 1 + 2f(α).

��
When P is (α, β)-covered but not (α, β)-immersed, the proof no longer works
since there can be two points that see each other outside the polygon, in which
case Lemma 5 does not hold. However, we can still prove that (α, β)-covered
polygons are feed-link realistic, albeit with a different dependence on α and β.

Let C = 4πc
β2α sin α sin 1

2 α
be a constant (depending on α and β). We incremen-

tally place feed-links until the dilation is at most C everywhere. In particular,
after placing the first i feed-links, consider the set of points on the boundary of
P that have dilation worse than C. If qi+1 is the point of this set that is closest
to p, then we let the next feed-link be pqi+1.

We now need to prove that this results in a constant number of feed-links. So,
say we placed k feed-links this way, and let their points be q1 . . . qk. Obviously,
we have |pqi| ≤ |pqj | if i < j.

Lemma 6. Unless k = 1, all points qi are inside the circle D centered at p of
radius R = 1

2β sin 1
2α.

Inside the circle D, there cannot be edges of P of length β or longer. So, each
point qi has an empty (α, β)-triangle ti with one corner at qi and the other two
corners outside D. Fig. 7(a) illustrates the situation, where the grey part is inside
P . Let di be the direction of the bisector of ti at qi. In the full paper we prove
that two directions di and dj differ by at least 1

2α.

Lemma 7. The angle between di and dj is at least 1
2α.

Theorem 7. Given the boundary P of an (α, β)-covered polygon and a point p
inside it, 4π

α feed-links are sufficient to achieve a dilation of 4πc
β2α sin α sin 1

2 α
.
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p

R

α qi

(a)

pqi qj

di dj

s

(b)

di dj

s

qi qj

(c)

Fig. 7. (a) A circle around p of radius R contains points qi such that pqi is a feed-link.
(b) If the angle between two bisecting directions di and dj is small, the (α, β)-triangles
intersect in s. (c) The boundary length between qi and qj cannot be too long.

Proof. We place feed-links incrementally as described, until all points on P have
dilation at most C. By Lemma 7 there cannot be more than 4π

α feed-links,
because otherwise some pair qi and qj would have (α, β)-triangles with directions
di and dj whose angle is smaller than 1

2α. ��

4 Conclusions

We presented an efficient algorithm to compute an optimal feed-link for the
boundary of a simple polygon and a point inside it. Furthermore, we showed
that two feed-links are sometimes necessary and always sufficient to guarantee
constant dilation for convex polygons; by placing k feed-links, we can even guar-
antee a dilation of at most 1 + O(1/k). Finally, we considered the number of
feed-links necessary for realistic polygons, and proved that (α, β)-covered poly-
gons require only a constant number of feed-links for constant dilation. For other
definitions of realistic polygons such a result does provably not hold.

It is open whether the optimal feed-link can be placed in O(n log n) time or
even faster. It is also open whether a linear-time, (1+ε)-approximation algorithm
exists for computing an optimal feed-link in a simple polygon (we proved this
only for convex polygons).

A number of interesting and challenging extensions of our work are possi-
ble. Firstly, the optimal placement of more than one feed-link seems difficult.
Secondly, we did not consider the situation where several points lie inside P
and need to be connected via feed-links. Here we may or may not want to
allow one feed-link to connect to another feed-link. Thirdly, assume we are
given an incomplete road network N and several locations, which might fall
into different faces of the graph induced by N . How should we place feed-links
optimally?

Acknowledgements. We thank Tom de Jong for introducing us to this problem
and Mark de Berg for pointing us to the results in [3].
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Abstract. Locked tree linkages have been known to exist in the plane
since 1998, but it is still open whether they have a polynomial-time char-
acterization. This paper examines the properties needed for planar trees
to lock, with a focus on finding the smallest locked trees according to
different measures of complexity, and suggests some new avenues of re-
search for the problem of algorithmic characterization. First we present
a locked linear tree with only eight edges. In contrast, the smallest pre-
vious locked tree has 15 edges. We further show minimality by proving
that every locked linear tree has at least eight edges. We also show that
a six-edge tree can interlock with a four-edge chain, which is the first
locking result for individually unlocked trees. Next we present several
new examples of locked trees with varying minimality results. Finally,
we provide counterexamples to two conjectures of [12], [13] by showing
the existence of two new types of locked tree: a locked orthogonal tree
(all edges horizontal and vertical) and a locked equilateral tree (all edges
unit length).

1 Introduction

A locked tree is a tree graph (linkage) embedded in the plane that is unable
to reconfigure to some other configuration if we treat the edges as rigid bars
that cannot intersect each other. The idea of locked trees goes back to 1997, in
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the context of an origami problem [8]. Only four main families of locked trees
have been discovered so far. The first two locked trees, shown in Figure 1(a–b),
were discovered soon after in 1998 [3]. In 2000, it was established that locked
trees must have vertices of degree more than 2 (the Carpenter’s Rule Theorem)
[6,14]. The third locked tree, shown in Figure 1c, shows that this result is tight:
a single degree-3 vertex suffices to lock a tree [5]. The fourth locked tree, shown
in Figure 1d, modified the first locked tree to reduce its graph diameter to 4,
which is the smallest of any locked tree [12].

All four trees have a similar structure: they arrange repeated pieces in a cycle
so that no piece can individually squeeze and so that no piece can individually
expand without squeezing the other pieces (which in turn is impossible). Do all
locked trees have this structure? This paper aims to find minimal examples of
locked trees, with the goal of finding the “heart” of being locked. In particular
we find smaller locked trees that lack the cyclic structure of previous examples.

It seems difficult to characterize locked trees. Toward this goal, some types
of trees are easy to prove locked via recent algorithmic tools [5,4], and we use
this theory extensively here. On the other hand, deciding whether a tree link-
age can be transformed from one configuration to another is PSPACE-complete
[2]. However, this hardness result says nothing about the special case of testing
whether a tree is locked. In the sections that follow, we describe several new
examples and counterexamples in locked trees, and suggest ways in which they
may hint at deeper results in the associated algorithmic theory.

Our results. We discover several new families of locked trees with several
previously unobtained properties. We also introduce a new general category of
locked tree, the linear locked tree, which in addition to being important for
the study of locked linkages also provides an interesting special case for the
algorithmic characterization of lockedness.

First, in Section 3, we present a locked tree with only eight edges. In contrast,
the smallest previous locked tree is Figure 1a with 15 edges. Our tree is also
the only locked tree other than Figure 1c that has just one degree-3 vertex (and
the other degrees at most 2). Therefore we improve the number of edges in the
smallest such tree from 21 to eight.

Our tree has the additional property that it is linear : its vertices lie (roughly)
along a line (see the full definition in Section 3). In Section 4, we prove that

(a) [3] (b) [3, tech. rep.] (c) [5] (d) [12]

Fig. 1. All previous families of locked trees. Shaded regions are tighter than drawn
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all linear locked trees have at least eight edges, establishing minimality of our
eight-edge locked tree. We conjecture further that all locked trees have at least
eight edges, though this problem remains open.

We also show in Section 4 that all linear locked trees have diameter at least 5.
In Section 5, we find a linear locked tree of precisely this diameter, using nine
edges, and further show that this is the smallest number of edges possible for a
diameter-5 linear locked tree. In contrast, the (nonlinear) locked tree in Figure 1d
has diameter 4, while no locked trees have diameter 3 [12].

Next we consider interlocked trees, in the spirit of interlocked 3D chains
[9,10,11]. In Section 6, we show that though diameter 3 trees cannot lock, they
can interlock. (In contrast, any number of diameter-2 trees cannot interlock, as
they are star-shaped [7,15,10].) As a consequence, caterpillar trees, which gen-
eralize diameter-3 trees, can lock. Additionally, we prove for the first time that
smaller trees suffice for interlocking: a six-edge tree can interlock with a four-edge
chain.

Finally we solve two conjectures about the existence of locked trees with
particular properties. On the easier side, we show in Section 7 that certain linear
locked trees, such as our eight-edge locked tree, can be transformed to obtain
locked orthogonal trees. Such trees were previously conjectured not to exist [13]
because all examples in Figure 1 critically use angles strictly less than 90◦.

Our technically most challenging result is the design of a locked equilateral
tree, where every edge has the same length. The hexagonal analog of Figure 1b
is tantalizingly close to this goal, as the edges can have lengths arbitrarily close
to each other. But if the tree is to not overlap itself, the lengths cannot be
made equal. For this reason, equilateral locked trees were conjectured not to
exist [12]. Nonetheless, in Section 8, we find one. This result is quite challenging
because previous algorithmic frameworks were unable to analyze the lockedness
of trees with fixed edge lengths. Specifically, where previous locked trees were
very tightly locked (within an arbitrarily small constant), our locked equilateral
tree has fairly large positive gaps between edges, forcing us to carefully compute
the freedom of motion instead of simply using topological limiting arguments.

2 Terminology

A (planar) linkage is a simple graph together with an assignment of a nonneg-
ative real length to each edge and a combinatorial planar embedding (clockwise
order of edges around each vertex and which edges form the outer face). A con-
figuration of a linkage is a (possibly self-intersecting) straight-line drawing of
that graph in the plane, respecting the linkage’s combinatorial embedding, such
that the Euclidean distance between adjacent nodes equals the length assigned
to their shared edge.

We are primarily interested in nontouching configurations, that is, configu-
rations in which no edges intersect each other except at a shared vertex. The
set of all such configurations is called the configuration space of the linkage. A
motion of a nontouching configuration C is a continuous path in the configu-
ration space beginning at C. A configuration of a tree linkage can be flattened
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Fig. 2. Flattening a linkage: the initial tree (left) can be continuously transformed
into the “flat” tree on the right, with all edges trailing off in the same direction from
the root

if it has a motion transforming it as in Figure 2 so that all edges are trailing
off in the same direction from an arbitrarily chosen root node. Otherwise, it is
unflattenable. (Which node is chosen as the root does not affect the definition;
see [3].) We say a tree configuration is locked if it is unflattenable, and a tree
linkage is locked if it has a locked configuration.

To analyze nontouching configurations it is helpful to also consider self-
touching configurations, where edges may overlap as long as they do not cross
each other. This complicates the definitions, because edges can share the same
geometric location. Care is also needed in generalizing the definition of a mo-
tion, because two geometrically identical configurations may have different sets
of valid motions depending on the combinatorial ordering of the edges. A full
discussion of these details is beyond our scope, so we rely on the formalization
and results of [5], [4] and [1]. The reader who wishes for the intuition behind
this theory can think of a self-touching configuration as a convergent sequence
of nontouching configurations, but for the formal definitions see the references.

A self-touching configuration is rigid if it has no nonrigid motion. A configu-
ration is locked within ε if no motion can change the position of any vertex by a
distance of more than ε (modulo equivalence by rigid motions). A configuration
C is strongly locked if, for any ε > 0, for any sufficiently small perturbation
of C’s vertices (respecting the original combinatorial relations between edges—
see [5]), the resulting perturbed configuration is locked within ε. This property
trivially implies unflattenability, and thus also that the underlying linkage is
locked. Note that strongly locked configurations must be rigid and thus self-
touching.

3 Minimal Locked Linear Tree

In this section we describe a new locked tree that is edge-minimal within an
important class of locked trees, and is conjectured to be edge-minimal among all
locked trees. Namely, a linear configuration is a (usually self-touching) configu-
ration of a linkage in which all vertices lie on a single line. A locked linear tree
is a tree linkage having an unflattenable linear configuration.
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Note that our primary interest is still in nontouching configurations, but
the existence of a linear configuration has implications for the general config-
uration space of the tree. Specifically, we make extensive use of the following
lemma:

Lemma 1 (Theorem 8.1 from [5]). Any rigid self-touching configuration is
strongly locked.

A B C

E

F

D

(a) Eight-bar locked lin-
ear tree. Shaded regions
are tighter than drawn. All
edges are straight lines,
but shown “pulled apart”.

(b) Reduced version
of the tree after ap-
plying Lemma 2 and
Lemma 3.

Fig. 3. The fewest-edge locked linear tree

Because our proofs proceed
by showing our linear trees
rigid, this result implies that
they remain locked even when
the parameters are modified
slightly to allow a nontouch-
ing configuration.

Consider the self-touching
tree in Figure 3a. The lin-
ear geometry of this tree is
a straight vertical line with
only three distinct vertices at
the top, center and bottom,
but it is shown “pulled apart”
to ease exposition. We claim
this tree is rigid and thus, by
Lemma 1, strongly locked. To
show rigidity, we use two lem-
mas from [4]:

Lemma 2 (Rule 1 from [4]). If a bar b is collocated with another bar b′ of
equal length, and two other bars incident to b′ on each end form angles less than
90◦ on the same side as b, then any motion must keep b collocated with b′ for
some positive time.

Lemma 3 (Rule 2 from [4]). If a bar b is collocated with an incident bar
b′ of the same length whose other incident bar b′′ forms a convex angle with b′

surrounding b, then any motion must keep b collocated with b′ for some positive
time.

Theorem 1. The tree in Figure 3a is strongly locked.

Proof: By Lemma 2, edges A and B must be collocated for positive time under
any continuous motion, as must edges C and D. With these identifications,
Lemma 3 shows that edges E and F must also remain collocated. We conclude
that for positive time, the tree is equivalent to Figure 3b, which is trivially rigid.
Therefore, the original tree is rigid and, by Lemma 1, strongly locked. �



66 B. Ballinger et al.

4 Unfolding Linear Trees of Seven Edges

In Section 3, we presented a linear locked tree with eight edges. Now we will
show that this is minimal: linear trees with at most seven edges can always be
flattened. Because the full proof requires an extensive case analysis, we defer
this to the full paper, and here present a sketch of how our arguments exploit
the linearity of a tree.

Theorem 2. A linear tree of diameter 4 can always be flattened.

Lemma 4. A linear tree of seven edges and diameter 5 can always be flattened.

Lemma 5. A linear tree of seven edges and diameter 6 can always be flattened.

Proof sketch of Theorem 2, Lemma 4, Lemma 5: Because the tree’s initial
configuration lies on a line, many steps become simpler: first, if there are any loose
edges along the perimeter of the tree, we can immediately straighten these. In
Theorem 2, the tree has a center node, and we can then pivot all subtrees around
that node so they lie in the same direction. This allows us to sequentially rotate
out individual subtrees and straighten them one by one (a case analysis shows that
if distinct subtrees are tangled together they can be safely pulled apart).

When the diameter is 5 or 6, the key observation is that the constraints do not
allow a double-triangle structure as in Figure 3b. Specifically, case analysis shows
the center edge cannot be formed, and thus the bounding quadrilateral can be
expanded. When this quadrilateral becomes convex, the tree pulls apart easily. �

Because it was already shown in [6] that a seven-edge, diameter-7 tree (i.e., a
7-chain) cannot lock, combining these results immediately gives us the following:

Theorem 3. A linear tree of at most seven edges can always be flattened.

We thus conclude that the linear locked tree in Figure 3a has the fewest possible
edges.

5 Additional Locked Linear Trees

Theorem 4. The trees in Figure 4 are strongly locked.

Like Theorem 1, all these theorems are proven by repeatedly applying Lemmas
2 and 3 until the configuration simplifies to Figure 3b, after which Lemma 1
applies.

By a slight extension to the results of Section 4, we can prove the minimality
of Figure 4a in a second sense, by showing that any diameter-5 linear locked tree
requires at least nine edges:

Theorem 5. A linear tree of 8 edges and of diameter 5 can always be flattened.

This claim is nearly implicit in the proof of Lemma 4; see the full paper.
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(a) A locked tree hav-
ing nine edges and the
lowest diameter (5) of
any possible locked lin-
ear tree.

B A
CDEF

G

(b) A 10-edge locked lin-
ear tree with a somewhat
different structure. Edge
labels appear to the right
of their respective edge.

AB
C

D

(c) Another symmetric
locked linear tree, this time
with 11 edges. Edge labels
appear to the right of their
respective edge.

Fig. 4. Additional locked linear trees

6 Interlocked Trees

6.1 Diameter-3 Interlocked Trees

In this section we describe a set of eight interlocked trees of diameter 3 (although
four of the “trees” are in fact 2-chains). Because diameter-2 trees cannot interlock
(as they are star-shaped [7,15,10]), this example is tight. Because diameter-
3 trees cannot lock, this is also the first example showing that the required
diameter for interlocked (planar) trees is strictly below that of locked trees.

(a) Interlocked configuration (shaded re-
gions are self-touching or very close).

(b) Identifications obtained from
Lemma 2 and Lemma 3 (darkened ar-
eas indicate edges glued together).

Fig. 5. Eight interlocked diameter-3 trees
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For our proof, we introduce a new general lemma in the spirit of Lemma 2
and Lemma 3. The proof requires a geometric computation which we defer to
the full version.

Lemma 6 (“Rule 3”). If endpoints v1 and v3 of incident bars v1v2 and v2v3
are collocated with the endpoints of a third bar b, and bars incident to b form
acute angles containing v1 and v3, then for positive time, any motion that moves
v1 or v3 with respect to b must strictly increase the distance between v2 and b.

Theorem 6. The eight diameter-3 trees in Figure 5a are strongly (inter)locked.

Proof: As with previous examples we begin by applying Lemma 2 and Lemma 3.
The edge identifications from this process are shown in Figure 5b. It is enough
to prove that the resulting figure is rigid, and the rest will follow from Lemma 1.

Now, observe that the 2-chains inside each of the four regions of the figure
satisfy the requirements of Lemma 6, and that therefore the long diagonal edges
are rigid: any rotation on their part would decrease the angular space allocated
to some region, and push the center of the corresponding 2-chain closer to the
opposing edge, contradicting the lemma. But then Lemma 6 implies the 2-chains
themselves are glued in place for positive time.

The preceding leaves only the four loose edges around the outside. But because
the 2-chains glue to their base vertices and to the long diagonals, Lemma 3 now
applies, so these edges too are locked in place. �

6.2 Six-Edge Interlocked Tree

(a) Interlocked version
of Figure 4a.

(b) Interlocked version of
Figure 4c.

Fig. 6. Interlocked variations of our locked trees

Here we describe a simple
transformation that applies
to many locked linear trees,
yielding a smaller tree in-
terlocked with a chain. Ap-
plying this transformation
to Figure 4a, we obtain the
smallest known instance of
a tree interlocked with a
chain. This is the first ex-
ample of a planar inter-
locking tree strictly smaller
than known locked trees.

Figure 6 shows the trans-
formation. The basic idea is
to disconnect a subtree at
one end of the tree, replac-
ing the connection with an
extra edge that serves the same purpose, that is, such that the edge also con-
strains the subtree to remain adjacent to the same node. In Figure 6a, this gives
us a 6-edge tree interlocked with a 4-edge chain, the best known.
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(a) Interlocked caterpillar
(black) and two 9-chains.

(b) Identifications ob-
tained from Lemma 2.

(c) Simplified linkage af-
ter identifications and re-
moval of extraneous bars.

Fig. 7. A locked caterpillar

Theorem 7. The configurations in Figure 6a and Figure 6b are interlocked.

As with their locked predecessors, successive applications of Lemma 2 and
Lemma 3 suffice to prove rigidity of the configurations; see the full paper.

6.3 (Inter)Locked Caterpillar

Here we describe an interesting example originally inspired by the search for the
diameter-3 interlocked trees of Section 6.1. A caterpillar graph is a graph where
removal of all leaf vertices and their incident edges results in a path. Because
every vertex is at most one edge away from the central chain, the leaf vertices
form the “legs” of the central chain “body” of the caterpillar. The intuition is of
a graph that is locally low-diameter, or almost chain-like. Caterpillars provide a
natural intermediate structure between collections of diameter-3 graphs and the
full power of diameter 4, which was already known to lock.

Because a caterpillar can take the place of any number of diameter-3 graphs,
we can implicitly obtain a locked caterpillar directly from Figure 5a. However, in
this section we describe a much simpler structure, and one that can be realized
as the interlocking of a single ten-edge caterpillar and two 9-chains (or one 22-
chain). We can also produce a single locking (not interlocking) caterpillar by
merging the separate chains into the main body of the caterpillar.

Theorem 8. The configuration in Figure 7a is rigid, and therefore strongly
locked.

This claim follows from successive applications of Lemma 2, Lemma 3 and
Lemma 6, similar to Theorem 6.
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7 Locked Orthogonal Tree

Fig. 8. Orthogonal
version of Figure 3a

We now show that a simple transformation of the locked
tree in Section 3 produces a locked orthogonal tree (a tree
configuration such that all edges are axis-aligned), resolv-
ing a conjecture of Poon [13].

A modification to Figure 3a makes it orthogonal: see
Figure 8. This diagram is still unflattenable (if the di-
mensions are chosen appropriately). The key is that this
diagram can still be viewed as a small perturbation of the
original tree if we add a zero-length edge to Figure 3a
wherever Figure 8 has a horizontal edge, and thus we can
again apply Lemma 1. Unfortunately, existing proofs of
Lemma 1 do not work when the self-touching configura-
tion has zero-length edges. It is a straightforward but tech-
nical matter to extend the lemma in this way. We defer
the formal details to the full version.

8 Locked Equilateral Tree

In [13], Poon conjectured that an equilateral tree (a tree linkage all of whose
edges are equal length) could not lock. We provide a counterexample, shown in
Figure 9a. This follows the “pinwheel” style of previous locked trees (Figure 1).
The difference is that all previous locked trees (including the other examples in
this paper) select their edge lengths so as to obtain an infinitesimally tight fit,
whereas with unit edges we are limited to explicit numerical constraints.

(a) The locked unit tree, having seven arms
of radius 2.

O

E

A B

C

D

A′

β γ

α

(b) Close-up of two adjacent arms.
Roman letters refer to vertices,
Greek to angles.

Fig. 9. A locked unit tree
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Theorem 9. The tree in Figure 9a is locked.

Proof sketch: To prove lockedness in the absence of machinery derived from
rigidity theory, we consider the angles and vertices labelled in Figure 9b. We
claim that, under any continuous motion, the following invariants hold:

√
3 ≤ ‖A−A′‖ ≤

√
3 + 0.025 (1)

1.94 ≤ ‖A−O‖ (2)
0.2850989π ≤ α ≤ 0.28941π (3)

∣∣β − π
6

∣∣ ≤ 0.078π (4)
π
3 ≤ γ ≤ π

( 1
3 + 0.02

)
(5)

‖C −AE‖ ≤ 0.386 (6)
We do so by showing that, if these inequalities hold for some valid config-

uration, then they actually hold strictly, that is, every instance of ≤ above is
actually <. Thus, these properties are preserved by any continuous motion. Due
to space constraints, we give here the proofs for Equation 1 and Equation 3.

Consider Equation 3. The minimal α is attained when A and A′ are at min-
imum distance from each other and maximum distance from the center vertex
O. The latter is trivially 2, and the former is

√
3 by Equation 1. The angle so

obtained is 2 arcsin(
√

3
2·2 ) > 0.2850989π, as required. On the other hand, there are

seven arms in the tree, and by the preceding that leaves < 2π − 7(0.2850989)π
of angular free space, and even if one pair of arms uses all of it, we still have
α < 2π − 6(0.2850989)π < 0.28941π, so Equation 3 holds strictly.

Now consider the distance ‖A−A′‖ between two adjacent arms. If we look at
the line from A to A′, (4) and (5) show that it must pass through edge BC (and,
by symmetry, that of the neighbor arm). The distance from A to BC is least
when the three vertices form an equilateral triangle, in which case it is

√
3/2.

Because this is true for both arms, and because the tree is not self-touching,
the true distance between A and A′ must be strictly greater than

√
3. On the

other hand, by (3) the maximum angular distance between A and A′ is 0.28941π.
Given this, ‖A − A′‖ is maximized when both vertices are at distance 2 from
the center (it could be higher if one of the vertices approached the center very
closely, but (2) prevents this; see below). In this case, the distance between them
is 2 · 2 sin(0.28941π/2) <

√
3 + 0.25, proving Equation 1 strict. �

9 Open Problems

The results of this paper open up several new questions, both in terms of their
optimality and in exploring the newly discovered class of locked linear trees.

Figure 3a has eight edges. Is this the smallest possible for a locked (not neces-
sarily linear) tree? We conjecture yes. We believe that a proof along the general
outline of Theorem 3 may work, but the case analysis must be arranged more
carefully in a general tree.

The orthogonal tree in Figure 8 has 14 edges. Is this minimal? We suspect so.
A possible path to proving this conjecture is to show that any smaller orthogonal
tree can be projected down to a locked linear tree with fewer than eight edges,
contradicting Theorem 3.
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Stefan Langerman proposed the idea of interlocked trees by asking whether
multiple diameter-3 trees could interlock, which we have shown in Section 6 to
be the case. However, this leaves minimality open: four diameter-3 trees can
interlock with four 2-chains. Can this be done with fewer trees? Fewer edges?

Our results suggest some more general algorithmic questions. All of our locked
trees were reduced to the two triangles of Figure 3b by repeated applications of
Lemmas 2 and 3. This may not be a coincidence. Can every rigid linear tree can
be reduced to a set of connected triangles by applying these lemmas, or simple
extensions of them? In particular, we believe that rigidity in linear trees is a
purely combinatorial (rather than geometric) property. Even more generally, is
there an efficient algorithm to decide rigidity of linear trees? We suspect so.

In linear trees, there may also be a closer connection between rigidity and
lockedness than is (known to be) true in general. If we start with a locked
linear tree, and extend its loose edges until they are tightly constrained (and
hence possibly satisfy the preconditions for Lemma 2 and Lemma 3), does the
resulting graph have a rigid subtree? This is true for all the examples we are
aware of, and may provide a starting point for an algorithmic characterization.
Analysis of linear trees seems much more feasible than the general case. Is there
an efficient algorithm to decide lockedness?
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Abstract. We consider minimum equivalent digraph problem, its max-
imum optimization variant and some non-trivial extensions of these two
types of problems motivated by biological and social network appli-
cations. We provide 3

2
-approximation algorithms for all the minimiza-

tion problems and 2-approximation algorithms for all the maximization
problems using appropriate primal-dual polytopes. We also show lower
bounds on the integrality gap of the polytope to provide some intuition
on the final limit of such approaches. Furthermore, we provide APX-
hardness result for all those problems even if the length of all simple
cycles is bounded by 5.

1 Introduction

Finding an equivalent digraph is a classical computational problem (cf. [13]).
The statement of the basic problem is simple. For a digraph G = (V, E), we
use the notation u

E→ v to indicate that E contains a path from u to v and
the transitive closure of E is the relation u

E→ v over all pairs of vertices of V .
Then, the digraph (V, A) is an equivalent digraph for G = (V, E) if (a) A ⊆ E
and (b) transitive closures of A and E are the same. To formulate the above as
an optimization problem, besides the definition of a valid solution we need an
objective function. Two versions are considered:

– Min-ED, in which we minimize |A|, and
– Max-ED, in which we maximize |E −A|.

If we skip condition (a) we obtain the transitive reduction problem which was
optimally solved in polynomial time by Aho et al. [1]. These names are a bit
confusing because one would expect a reduction to be a subset and an equivalent
set to be unrestricted, but transitive reduction was first discussed when the name

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 74–85, 2009.
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minimum equivalent digraph was already introduced [13]. This could motivate
renaming the equivalent digraph as a strong transitive reduction [14].

Further applications in biological and social networks have recently introduced
the following non-trivial extensions of the above basic versions of the problems.
Below we introduce these extensions, leaving discussions about their motivations
in Section 1.3 and in the references [2,3,5,8].

The first extension is the case when we specify a subset D ⊂ E of edges which
have to be present in every valid solution. It is not difficult to see that this
requirement may change the nature of an optimal solution. We call this problem
as Min-TR1 or Max-TR1 depending on whether we wish to minimize |A| or
maximize |E −A|, respectively.

A further generalization can be obtained when each edge e has a character
�(e) ∈ Z2, where edge characters define the character of a path as the sum
modulo 2. In a valid solution we want to have paths with every character that
is possible in the full set of edges. This concept than be applied to any group,
but our method works only for Zp where p is prime. Formally,

① � : E �→ Zp;
② a path P = (u0, u1, . . . , uk) has character �(P ) =

∑k
i=1 �(ui−1, ui) (mod p);

③ Closure�(E) = {(u, v, q) : ∃P in E from u to v such that �(P ) = q};

Then we generalize the notion of “preserving the transitive closure” as follows:
(V, A) is a p-ary transitive reduction of G = (V, E) with a required subset D if
D ⊆ A ⊆ E and Closure�(A) = Closure�(E).

Our two objective functions, namely minimizing |A| or maximizing |E − A|,
define the two optimization problems Min-TRp and Max-TRp, respectively.

For readers convenience, we indicate the relationships for the various versions
below where A ≺ B indicates that problem B is a proper generalization of
problem A:

Min-ED ≺ Min-TR1 ≺ Min-TRp

Max-ED ≺ Max-TR1 ≺ Max-TRp

1.1 Related Earlier Results

The initial work on the minimum equivalent digraph by Moyles and Thomson [13]
described an efficient reduction to the case of strongly connected graphs and an
exact exponential time algorithm for the latter.

Several approximation algorithms for Min-ED have been described in the
literature, most notably by Khuller et al. [11] with an approximation ratio of
1.617 + ε and by Vetta [15] with a claimed approximation ratio of 3

2 . The latter
result seems to have some gaps in a correctness proof.

Albert et al. [2] showed how to convert an algorithm for Min-ED with approx-
imation ratio r to an algorithm for Min-TR1 with approximation ratio 3− 2/r.
They have also proved a 2-approximation for Min-TRp. Other heuristics for
these problems were investigated in [3,8].
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On the hardness side, Papadimitriou [14] indicated that the strong transi-
tive reduction is NP-hard, Khuller et al. proved it formally and also showed its
APX-hardness. Motivated by their cycle contraction method in [11], they were
interested in the complexity of the problem when there is an upper bound γ
on the cycle length; in [10] they showed that Min-ED is solvable in polynomial
time if γ = 3, NP-hard if γ = 5 and MAX-SNP-hard if γ = 17.

Finally, Frederickson and JàJà [7] provides a 2-approximation for a weighted
generalization of Min-ED based on the works of [6,9].

1.2 Results in This Paper

Table 1 summarizes our results. We briefly discuss the results below.
We first show a 1.5-approximation algorithm for Min-ED that can be ex-

tended for Min-TR1. Our approach is inspired by the work of Vetta [15], but
our combinatorial approach makes a more explicit use of the primal-dual for-
mulation of Edmonds and Karp, and this makes it much easier to justify edge
selections within the promised approximation ratio.

Next, we show how to modify that algorithm to provide a 1.5-approximation
for Min-TR1. Notice that one cannot use a method for Min-ED as a “black
box” because we need to control which edges we keep and which we delete.

We then design a 2-approximation algorithm Max-TR1. Simple greedy al-
gorithms that provides a constant approximation for Min-ED, such as delete
an unnecessary edge as long as one exists, would not provide any bounded ap-
proximation at all since it is easy to provide an example of Max-ED instance
with n nodes and 2n− 2 edges in which greedy removes only one edge, and the
optimum solution removes n − 2 edges. Other known algorithms for Min-ED

are not much better in the worst case when applied to Max-ED.
Next, we show that for a prime p we can transform a solution of Min-

TR1/Max-TR1 to a solution of Min-TRp/Max-TRp by a single edge inser-
tion per strongly connected component, thereby obtaining 1.5-approximation

Table 1. Summary of our results. The parameter γ indicates the maximum cycle
length and the parameter p is prime. Our results in a particular row holds for

all problems in that row. We also provide a lower bound of 4/3 and 3/2 on the
integrality gap of the polytope used in our algorithms for Min-ED and Max-ED,
respectively (not mentioned in the table).

Problem names Our results Previous best (if any)
Result Ref

Min-ED,Min-TR1, 1.5-approx. 1.5-approx. for Min-ED [15]
Min-TRp MAX-SNP-hard for γ = 5 1.78-approx. for Min-TR1 [2]

2 + o(1)-approx. for Min-TRp [2]
MAX-SNP-hard for γ = 17 [10]

NP-hard for γ = 5 [10]
Max-ED,Max-TR1, 2-approx. NP-hard for γ = 5 [10]

Max-TRp MAX-SNP-hard for γ = 5
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for Min-TRp and a 2-approximation for Max-TRp (we can compensate for an
insertion of a single edge, so we do not add a o(1) to the approximation ratio).

Finally, We provide an approximation hardness proof for Min-ED and Max-

ED when γ, the maximum cycle length, is 5. This leaves unresolved only the
case of γ = 4.

1.3 Some Motivations and Applications

Application of Min-ED: Connectivity Requirements in Computer Networks.
Khulleret al. [10] indicated applications of Min-ED to design of computer net-
works that satisfy given connectivity requirements. With preexisting sets of con-
nections, this application motivates Min-TR1 (cf. [12]).

Application of Min-TR1: Social Network Analysis and Visualization.
Min-TR1 can be applied to social network analysis and visualization. For ex-
ample, Dubois and Cécile [5] applies Min-TR1 to the publicly available (and
famous) social network built upon interaction data from email boxes of Enron
corporation to study useful properties (such as scale-freeness) of such networks
as well as help in the visualization process. The approach employed in [5] is
the straightforward greedy approach which, as we have discussed, has inferior
performance, both for Min-TR1 and Max-TR1.

Application of Min-TR2: Inferring Biological Signal Transduction Networks.
In the study of biological signal transduction networks two types of interactions
are considered. For example, nodes can represent genes and an edge (u, v) means
that gene u regulates gene v. Without going into biological details, regulates may
mean two different things: when u is expressed, i.e. molecules of the protein
coded by u are created, the expression of v can be repressed or promoted. A path
in this network is an indirect interaction, and promoting a repressor represses,
while repressing a repressor promotes. Moreover, for certain interactions we have
direct evidence, so an instance description includes set D ⊂ E of edges which
have to be present in every valid solution. The Min-TR2 problem allows to
determine the sparsest graph consistent with experimental observations; it is a
key part of the network synthesis software described in [3,8] and downloadable
from http://www.cs.uic.edu/~dasgupta/network-synthesis/.

2 Overview of Our Algorithmic Techniques

Moyles and Thompson [13] showed that Min-ED can be reduced in linear time
to the case when the input graph (V, E) is strongly connected, therefore we will
assume that G = (V, E) is already strongly connected. In Section 2.5 we will use
a similar result obtained for Min-TRp and Max-TRp obtained in [2]. We use
the following additional notations.

– G = (V, E) is the input digraph;
– ι(U) = {(u, v) ∈ E : u 
∈ U & v ∈ U};
– o(U) = {(u, v) ∈ E : u ∈ U & v 
∈ U};

http://www.cs.uic.edu/~dasgupta/network-synthesis/
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– sccA(u) is the strongly connected component containing vertex u in the
digraph (V, A);

– T [u] is the node set of the subtree with root u (of a rooted tree T ).

A starting point for our approximation algorithms for both Min-TR1 and Max-

TR1 is a certain polytope for them as described below.

2.1 A Primal-Dual LP Relaxation for Min-TR1 and Max-TR1

The minimum cost rooted out-arborescence1 problem is defined as follows. We
are given a weighted digraph G = (V, E) with a cost function c : E → R+ and
root node r ∈ V . A valid solution is A ⊆ E such that in (V, A) there is a path
from r to every other node and we need to minimize

∑
e∈A c(e). The following

exponential-size LP formulation for this was provided by Edmonds and Karp.
Let x = (. . . , xe, . . .) ∈ {0, 1}|E| be the 0-1 selection vector of edges with xe = 1
if the edge e being selected and xe = 0 otherwise. Abusing notations slightly, let
ι(U) ∈ {0, 1}|E| also denote the 0-1 indicator vector for the edges in ι(U). Then,
the LP formulation is:

(primal P1)
minimize c · x subject to

x ≥ 0
ι(U) · x ≥ 1 for all U s.t. ∅ ⊂ U ⊂ V and r 
∈ U (1)

Edmonds [6] and Karp [9] showed that the above LP always has an integral
optimal solution and that we can find it in polynomial-time.

From now on, by a requirement we mean a set of edges R that any valid
solution must intersect; in particular, it means that the LP formulation has
the constraint Rx ≥ 1. We modify P1 to an LP formulation for Min-ED by
setting c = 1 in (1) and removing “and r 
∈ U” from the condition (so we have
a requirement for every non-empty ι(U)). The dual program of this LP can be
constructed by having a vector y that has a coordinate yU for every ∅ ⊂ U ⊂ V ;
both the primal and the dual is written down below for clarity:

(primal P2) (dual D2)
minimize 1 · x subject to maximize 1 · y subject to

x ≥ 0 y ≥ 0
ι(U) · x ≥ 1 for all U s.t. ∅ ⊂ U ⊂ V

∑
e∈ι(U) yU ι(U) ≤ 1 for all e ∈ E

We can change P2 into the LP formulation for Max-ED by replacing the ob-
jective to “maximize 1 · (1− x)”. and the dual is changed accordingly to reflect
this change. Finally, we can extend P2 to an LP formulation for Min-TR1 or
Max-TR1 by adding one-edge requirements {e} (and thus inequality xe ≥ 1)
for each e ∈ D where D is the set of edges that have to be present in a valid so-
lution. Abusing notations slightly, we will denote all these polytopes by P2 when
it is clear from the context.
1 The corresponding in-arborescence problem must have a path from every node to r.
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Fig. 1. The left panel shows an example of a lower bound solution L, the right panel
shows an example of an eventual solution

2.2 Using the Polytope to Approximate Min-TR1

For Min-TR1, our goal is to prove the following theorem.

Theorem 1. There is a polynomial time algorithm for Min-TR1 that produces
a solution with at most 1.5OPT − 1 edges, where OPT is the number of edges
in an optimum solution.

We mention the key ideas in the proof in the next few subsections.

A Combinatorial Lower Bound L for Min-TR1. We will form a set of
edges L that satisfies |L| ≤ OPT by solving an LP P3 derived from P2 by
keeping a subset of requirements (hence, with the optimum that is not larger)
and which has an integer solution (hence, it corresponds to a set of edges L).
We form an P3 by keeping only those requirements Rx ≥ 1 of P2 that for some
node u satisfy R ⊆ ι(u) or R ⊆ o(u). To find the requirements of P3 efficiently,
for each u ∈ V we find strongly connected components of V − {u}. Then,

(a) for every source component C have requirement ι(C) ⊂ o(u);
(b) for every sink component C have requirement o(C) ⊂ ι(u);
(c) if we have one edge requirement {e} ⊂ R we remove R.

After (c) the requirements of P3 contained in a particular ι(u) or o(u) are
pairwise disjoint, hence requirements of P3 form a bipartite graph in which con-
nections have the form of shared edges. If we have m requirements, a minimum
solution can be formed by finding a maximum matching in this graph, say of
size a, and then greedily adding m − 2a edges. See Figure 1 for an illustration
of calculation of L.

Converting L to a Valid Solution of Min-TR1. We will convert L into a
valid solution. In a nutshell, we divide L into strongly connected components of
(V, L) which we will call objects. We merge objects into larger strongly connected
components, using amortized analysis to attribute each edge of the resulting
solution to one or two objects. To prove that we use at most 1.5|L|−1 edges, an
object with a edges of L can be responsible for at most 1.5a edges, and in one
case, the “root object”, for at most a edges.

Starting Point: the DFS. One can find an equivalent digraph using depth first
search starting at any root node r. Because we operate in a strongly connected
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Dfs(u)
{ Counter ←Counter+1

Number[u] ←LowDone[u] ←LowCanDo[u] ←Counter

for each edge (u, v) // scan the adjacency list of u
ifNumber[v] = 0

Insert(T, (u, v)) // (u, v) is a tree edge
Dfs(v)
ifLowDone[u] > LowDone[v]

LowDone[u] ←LowDone[v]
ifLowCanDo[u] > LowCanDo[v]

LowCanDo[u] ←LowCanDo[v]
LowEdge[u] ←LowEdge[v]

elseifLowCanDo[u] > Number[v]
LowCanDo[u] ←Number[v]
LowEdge[u] ← (u, v)

// the final check: do we need another back edge?
ifLowDone[u] = Number[u] and u �= r

Insert(B,LowEdge[u]) // LowEdge[u] is a back edge
LowDone[u] ←LowCanDo[u]

}

T ← B ← ∅
for every node u

Number[u] ← 0
Counter ← 0
Dfs(r)

Fig. 2. Dfs for finding an equivalent digraph of a strongly connected graph

graph, only one root call of the depth first search is required. This algorithm (see
Fig. 2) mimics Tarjan’s algorithm for finding strongly connected components and
biconnected components. As usual for depth first search, the algorithm forms a
spanning tree T in which we have an edge (u, v) if and only if Dfs(u) made a
call Dfs(v). The invariant is

(A) if Dfs(u) made a call Dfs(v) and Dfs(v) terminated then
T [v] ⊂ sccT∪B(u).

(A) implies that (V, T ∪B) is strongly connected when Dfs(r) terminates. More-
over, in any depth first search the arguments of calls that already have started
and have not terminated yet form a simple path starting at the root. By (A),
every node already visited is, in (V, T ∪ B), strongly connected to an ancestor
who has not terminated. Thus, (A) implies that the strongly connected compo-
nents of (V, T ∪B) form a simple path. This justifies our convention of using the
term back edge for all non-tree edges.

To prove the invariant, we first observe that when Dfs(u) terminates then
LowCanDo[u] is the lowest number of an end of an edge that starts in T [u].

Application of (A) to each child of v shows that T [v] ⊂ sccT∪B(v) when we
perform the final check of Dfs(v).
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If the condition of the final check is false, we already have a B edge from T [v]
to an ancestor of u, and thus we have a path from v to u in T ∪B. Otherwise,
we attempt to insert such an edge. If LowCanDo[v] is “not good enough” then
there is no path from T [v] to u, a contradiction with the assumption that the
graph is strongly connected.

The actual algorithm is based on the above Dfs, but we also need to alter the
set of selected edges in some cases.

An Overview of the Amortized Scheme

Objects, Credits, Debits. The initial solution L to P3 is divided into objects,
namely the strongly connected components of (V, L). L-edges are either inside
objects, or between objects. We allocate L-edges to objects, and give 1.5 for each.
In turn, an object has to pay for solution edges that connect it, for a T-edge
that enters this object and for a B-edge that connects it to an ancestor. Each
solution edge costs 1. Some objects have enough money to pay for all L-edges
inside, so they become strongly connected, and two more edges of the solution,
to enter and to exit. We call them rich. Other objects are poor and we have to
handle them somehow.

Allocation of L-Edges to Objects

– L-edge inside object A: allocate to A;
– from object A: call the first L-edge primary, and the rest secondary;
• primary L-edge A→ B, |A| = 1: 1.5 to A;
• primary L-edge A→ B, |A| > 1: 1 to A, and 0.5 to B;
• secondary L-edge A → B (while there is a primary L-edge A → C): if
|A| > 1, 1.5 to B, otherwise 0.5 to each of A, B and C.

When is an Object A rich?

1. A is the root object, no payment for incoming and returning edges;
2. |A| ≥ 4: it needs at most L-edges inside, plus two edges, and it has at least

0.5|A| for these two edges;
3. if |A| > 1 and an L-edge exits A: it needs at most L-edges inside, plus two

edges, and it has at least (1 + 0.5|A|) for these two edges;
4. if |A| = 1, 3 and a secondary L-edge enters A;
5. if |A| = 1, 3 and a primary L-edge enters A from some D where |D| > 1.

To discuss a poor object A, we call it a path node, digons or a triangles when
|A| = 1, 2, or 3 respectively.

Guiding. Dfs For a rich object A, we decide at once to use L-edges inside A in
our solution, and we consider it in Dfs as a single node, with combined adjacency
list. This makes point (1) below moot. Otherwise, the preferences are in the order:
(1) L-edges inside the same object; (2) primary L-edges; (3) other edges.

The analysis of the balance of poor objects for enough credits is somewhat
complicated, especially since we desire to extend the same approach from Min-

ED to Min-TR1. The details are available in the full version of the paper.
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2.3 Using the Polytope to Approximate Max-TR1

Theorem 2. There is a polynomial time algorithm for Max-TR1 that produces
a solution set of edges H with |E −H | ≥ 1

2OPT + 1, where OPT = |E −H | if
H is an optimum solution.

Proof. (In the proof, we add in parenthesis the parts needed to prove 0.5OPT +
1 bound rather than 0.5OPT .) First, we determine the necessary edges: e is
necessary if e ∈ D or {e} = ι(S) for some node set S. (If there are any cycles of
necessary edges, we replace them with single nodes.)

We give a cost of 0 to the necessary edges and a cost of 1 for the remaining
ones. We set xe = 1 if e is a necessary edge and xe = 0.5 otherwise. This is a
valid solution for the fractional relaxation of the problem as defined in P1.

Now, pick any node r. (Make sure that no necessary edges enter r.) Consider
the out-arborescence problem with r as the root. Obviously, edges of cost 0 can
be used in every solution. An optimum (integral) out-arborescence T can be
computed in polynomial time by the greedy heuristic in [9]; this algorithm also
provides a set of cuts that forms a dual solution.

Suppose that m+1 edges of cost 1 are not included in T , then no solution can
delete more than m edges (because to the cuts collected by the greedy algorithm
we can add ι(r)). Let us reduce the cost of edges in T to 0. Our fractional solution
is still valid for the in-arborescence, so we can find the in-arborescence with at
most (m + 1)/2 edges that still have cost 1. Thus we delete at least (m + 1)/2
edges, while the upper bound is m.

To assure deletion of at least k/2 + 1 edges, where k is the optimum number,
we can try in every possible way one initial deletion. If the first deletion is correct,
subsequently the optimum is k − 1 and our method finds at least (k − 1 + 1)/2
deletions, so together we have at least k/2 + 1. ❑

2.4 Some Limitations of the Polytope

We also show an inherent limitation of our approach by showing an integrality
gap of the LP relaxation of the polytope P2 for Min-TR1 and Max-TR1.

Lemma 1. The LP formulation P2 for Min-ED and Max-ED has an integral-
ity gap of at least 4/3 and 3/2, respectively.
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Fig. 3. A graph for the integrality gap of the polytope.
The fractional solution is indicated.

To prove the lemma, we use
a graph with 2n + 2 nodes
and 4n + 2 edges; Fig. 3
shows an example with n =
5. This graph has no cy-
cles of five or more edges
while every cut has at least
2 incoming and 2 outgoing
edges. For Min-ED, one could show that the optimal fractional and integral
solutions of the polytope P2 are 2n + 1 and (8n + 8)/3, respectively; the claim
for Max-ED also follows from these bounds.
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2.5 Approximating Min-TRp and Max-TRp for Prime p

We will show how to transform our approximation algorithms for Min-TR1
and Min-TR1 into approximation algorithms for Min-TRp and Max-TRp with
ratios 1.5 and 2 respectively. In a nutshell, we can reduce the approximation
in the general case the case of a strongly connected graph, and in a strongly
connected graph we will show that a solution to Min-TR1 (Max-TR1) can be
transformed into a solution to Min-TRp (Max-TRp) by adding a single edge,
and in polynomial time we can find that edge.

In turn, when we run approximation algorithms within strongly connected
components, we obtain the respective ratio even if we add one extra edge.

Let G be the input graph. The following proposition says that it suffices to
restrict our attention to strongly connected components of G2. (One should note
that the algorithm implicit in this Proposition runs in time proportional to p.)

Proposition 3. [2] Suppose that we can compute a ρ-approximation of TRp

on each strongly connected component of G for some ρ > 1. Then, we can also
compute a ρ-approximation of TRp on G.

The following characterization of scc’s of G appear in [2].

Lemma 2. [2] Every strongly connected component U ⊂ V is one of the fol-
lowing two types:

(Multiple Parity Component) {q : (u, v, q) ∈ Closure�(E(U))} = Zp for
any two vertices u, v ∈ U ;

(Single Parity Component) |{q : (u, v, q) ∈ Closure�(E(U))}| = 1 for any
two vertices u, v ∈ U .

Based on the above lemma, we can use the following approach. Consider an
instance (V, E, �, D) of Min-TRp. For every strongly connected component U ⊂
V we consider an induced instance of Min-TR1, (U, E(U), D ∩ U). We find an
approximate solution AU that contains an out-arborescence TU with root r. We
label each node u ∈ U with �(u) = �(Pu) where Pu is the unique path in TU

from r to u.
Now for every (u, v) ∈ E(U) we check if �(v) = �(u) + �(u, v) mod p.
If this is true for every e ∈ E(U) then U is a single parity component. Other-

wise, we pick a single edge (u, v) violating the test and we insert it to AU , thus
assuring that (U, AU ) becomes a multiple parity component.

2.6 Inapproximability of Min-ED and Max-ED

Theorem 4. Let γ be the length of the longest cycle in the given graph. Then,
both 5-Min-ED and 5-Max-ED are MAX-SNP-hard even if γ = 5.

2 The authors in [2] prove their result only for Min-TRp, but the proofs work for
Max-TRp as well.
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Proof. We will use a single approximation reduction that reduces 2Reg-Max-

SAT to Min-ED and Max-ED with γ = 5.
In Max-SAT problem the input is a set S of disjunctions of literals, a valid

solution is an assignment of truth values (a mapping from variables to {0, 1}),
and the objective function is the number of clauses in S that are satisfied. 2Reg-

Max-SAT is Max-SAT restricted to sets of clauses in which every variable x
occurs exactly four times (of course, if it occurs at all), twice as literal x and
twice as literal x. This problem is MAX-SNP hard even if we impose another
constraint, namely that each clause has exactly three literals [4].

Consider an instance S of 2Reg-Max-SAT with n variables and m clauses.
We construct a graph with 1 + 6n + m nodes and 14n + m edges. One node is h,
the hub. For each clause c we have node c. For each variable x we have a gadget
Gx with 6 nodes, two switch nodes labeled x, two nodes that are occurrences of
literal x and two nodes that are occurrences of literal x.

h

x*

x

c

h

h

x*

x

c

hh

x

c

x

c

__

Fig. 4. Illustration of our reduction.
Marked edges are necessary. Dash-
marked edges show set Ax that we
can interpret it as x =true. If some i
clause nodes are not reached (i.e., the
corresponding clause is not satisfied)
then we need to add k extra edges.
Thus, k unsatisfied clauses correspond
to 8n+m+k edges being used (6n−k
deleted) and k satisfied clauses corre-
spond to 8n+2m−k edges being used
(6n + m − k deleted).

We have the following edges: (h, x∗) for
every switch node, (c, h) for every clause
node, (l, c) for every occurrence l of a lit-
eral in clause c, while each node gadget is
connected with 8 edges as shown in Fig. 4.

We show that

① if we can satisfy k clauses, then we have
a solution of Min-ED with 8n+2m−k
nodes, which is also a solution of Max-

ED that deletes 6n−m + k edges;
② if we have a solution of Min-ED with

8n+2m−k edges, we can show a solu-
tion of 2Reg-Max-SAT that satisfies
k clauses.

To show ①, we take a truth assignment
and form an edge set as follows: include all
edges from h to switch nodes (2n edges)
and from clauses to h (m edges). For a
variable x assigned as true pick set Ax

of 6 edges forming two paths of the form
(x∗, x, x, c), where c is the clause where lit-
eral x occurs, and if x is assigned false, we
pick set Ax of edges from the paths of the
form (x∗, x, x, c) (6n edges). At this point,
the only nodes that are not on cycles in-
cluding h are nodes of unsatisfied clauses, so for each unsatisfied clause c we
pick one of its literal occurrences, l and add edge (l, c) (m− k edges).

The proof of ② will appear in the full version. ❑

Remark 1. Berman et al. [4] have a randomized construction of 2Reg-Max-

SAT instances with 90n variables and 176n clauses for which it is NP-hard to
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tell if we can leave at most εn clauses unsatisfied or at least (1− ε)n. The above
construction converts it to graphs with (14 × 90 + 176) edges in which it is
NP-hard to tell if we need at least (8 × 90 + 176 + 1 − ε)n edges or at most
(8 × 90 + 176 + ε)n, which gives an inapproximability bound of 1 + 1/896 for
Min-ED and 1 + 1/539 for Max-ED.

Acknowledgments. The authors thank Samir Khuller for useful discussions.
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Abstract. Given a connected graph G = (V, E) with nonnegative costs on
edges, c : E → R+, and a subset of terminal nodes R ⊂ V , the Steiner tree
problem asks for the minimum cost subgraph of G spanning R. The Steiner Tree
Problem with distances 1 and 2 (i.e., when the cost of any edge is either 1 or 2) has
been investigated for long time since it is MAX SNP-hard and admits better ap-
proximations than the general problem. We give a 1.25 approximation algorithm
for the Steiner Tree Problem with distances 1 and 2, improving on the previously
best known ratio of 1.279.

1 Introduction

Given a connected graph G = (V, E) with nonnegative costs on edges, c : E → R+,
and a subset of terminal nodes R ⊂ V , the Steiner tree problem asks for the mini-
mum cost subgraph of G spanning R. This is a well-known MAX SNP-hard problem
with a long history of efforts to improve the approximation ratio achievable in polyno-
mial time. For several decades the best known approximation algorithm has been the
minimum spanning tree heuristic (MST heuristic) which reduces the original Steiner
tree problem to the minimum spanning tree problem in the graph induced by the set of
terminal nodes R. The best up-to-date ratio is 1.55 [3].

This paper is focused on a special case of the general Steiner tree problem when
the cost of any edge between different vertices is either 1 or 2 (usually referred to as
the Steiner Tree Problem with distances 1 and 2, or STP[1,2]) which is also MAX
SNP-hard. The Rayward-Smith heuristic [2] has been the first algorithm with a bet-
ter approximation ratio than the MST-heuristic for STP[1,2]. Bern and Plassman [1]
have shown that its ratio is 4

3 while the ratio of MST-heuristic is 2. The previously best
approximation ratio for this problem is 1.279 which is achieved by polynomial-time
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approximation scheme of so called loss-contracting algorithms, the same scheme that
achieves the best known ratio of 1.55 in the general case [3]. For a decade it remained
open if there exists an algorithm (different from the loss-contracting algorithm applica-
ble in the general case) which can have a better approximation ratio.

In this paper, we give a new 1.25-approximation algorithm for STP[1,2]. Unlike
previously best 1.279-approximation, which is a PTAS and achieves the ratio in the
limit [3], the proposed Seven-Phase algorithm is a single polynomial-time algorithm
with runtime O(|V |3.5).1 The main idea behind the new algorithm is considering only
Steiner full components of certain type, so called comets which are generalization of
stars. In the proof of the approximation ratio we compare the found solution with the
optimal Steiner tree whose only Steiner full components are comets and repeatedly
associate several types of potential functions with different elements of Steiner trees.

The rest of the paper is organized as follows. Section 2 introduce several stan-
dard definitions related to Steiner trees. In Section 3 we give a strengthen proof of
4
3 -approximation ratio for Rayward-Smith heuristic based on the two types of poten-
tials. Section 4 describes the Seven-Phase algorithm and the worst-case performance.
Finally, Section 5 concludes with the proof of the 5

4 -approximation ratio of the Seven-
Phase algorithm for STP[1,2].

2 Definitions and Notation

A metric with distances 1 and 2 can be represented as a graph, so edges are pairs in
distance 1 and non-edges are pairs in distance 2.

The problem instance of STP[1,2] is a graph G = (V, E) that defines a metric in
this way, and a set R ⊂ V of terminal nodes. A valid solution is a set of unordered
node pairs S, i.e., a Steiner tree, such that R is contained in a connected component of
(V, S). We minimize |S ∩E|+ 2|S − E|.

We will further use the following standard notations. Let S be a Steiner tree, each
node of S that is not a terminal will be called Steiner node. The edges of S can be
split into Steiner full components, i.e., maximal connected subsets of S in which the
degree of each terminal node is at most 1. For brevity, we will also refer to a Steiner full
components as an S-comp.

Let T ∗ be an optimal Steiner tree and let T = T ∗∩E be its Steiner skeleton consist-
ing of its edges (cost-1 connections. We can assume that all cost-2 connections in T ∗

(as well as in any Steiner tree) are only between terminals, therefore, S-comps of T ∗

are connected (i.e., have only cost-1 connections).
Each full Steiner component has gain and loss (see [3]) that for STP[1,2] can be

defined as follows. The gain of an S-comp K equals 2k − 2 (cost of connecting all k
terminals of K with cost-2 connections) minus cost(K). The loss of an S-comp is the
cost of connection of all its Steiner points to the terminals. The loss symbolizes by how
much addition of an S-comp can deviate solution from the optimum. Let gloss of an
S-comp S be the ratio of gain over loss, i.e., gloss(S) = gain(S)

loss(S) . The loss-contracting
algorithm (LCA) from [3] greedily processes S-comps with the largest gloss.

1 A slight modification of the algorithm (omitted for brevity) reduces the runtime to O(|V |3).
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A simplest example of an S-comp is an s-star consisting of a Steiner node c, called
the center, s terminal nodes t1, . . . , ts and edges (c, t1), . . . , (c, ts). If s < 3 we say
that the star is degenerate, and proper otherwise. One can easily see that the gloss of an
s-star is s− 2 since its gain is s− 2 and and its loss is 1.

We now generalize a notion of a star. A (a, b) comet (sometimes referred as b-comet)

a forks

b terminals

center c

(a,b) comet

Fig. 1. An (a,b) comet with center c connected to b terminals
and a forks

is an S-comp consisting of a
center c connected to b ter-
minals and a non-terminals
called fork nodes; each fork
node is connected only to c
and two terminals, those three
nodes and two edges form a
fork. Pictorially, a comet is
like a star with trailing tail
consisting of forks (see Fig.
1). It is easy to see that the gloss of an (a, b)-comet is gloss(S) = a+b−2

a+1 . It is some-
what less obvious that

Lemma 1. A comet S with the maximum gloss(S) can be found in time O(|V |2.5).

Proof. First, observe that if b ≥ 3, the gloss of a (a, b)-comet is not greater than the
gloss of a b-star, so we can remove all the forks. If b ≤ 2 the situation is opposite: the
gloss grows with the number of forks. However, gloss grows if we add a terminal and
remove a fork. Thus we can find the best comet as follows. Try every possible center c
and find bc, the number of terminals to which it can be connected. If bc > 2 for some c,
select c with the largest bc. Otherwise, for each c form the following graph Gc: for every
non-terminal u that is connected to c and to two terminals v, w (not directly connected
to c) add an edge {v, w} to Ec. The maximum number of forks with the center c is the
size of maximum matching which can be found in O(n1.5) time since |Ec| < n. ��
All recent approximation algorithms restrict the type of S-comps. LCA approximates
the optimal k-restricted Steiner tree, i.e., the one whose S-comps has at most k termi-
nals. It is shown that the approximation ratio of LCA converges to 1.279 with k →
∞ [3]. The Rayward-Smith heuristic (RSH) approximates the optimal star-restricted
Steiner tree whose S-comps are stars [2]. In the next section we will give our proof of 4

3 -
approximation ratio for RSH. In Section 4, we describe the new Seven-Phase algorithm
approximating the optimal comet-restricted Steiner tree whose S-comps are comets.

When we analyze an algorithm, we view its selections as transformations of the
input instance, so after each phase we have a partial solution and a residual instance.
We formalize these notions as follows. A partition Π of V induces a graph (Π, E(Π))
where (A, B) ∈ E(Π) if (u, v) ∈ E for some u ∈ A, v ∈ B). We say that (u, v)
is a representative of (A, B). Similarly, Π induces the set of terminals RΠ = {A ∈
Π : A ∩ R 
= ∅}. In our algorithms, we augment initially empty solution F . Edge set
F defines partition Π(F ) into connected components of (V, F ). In a step, we identify
a connected set A in the induced graph (Π(F ), E(Π(F ))) and we augment F with
representatives of edges that form a spanning tree of A. We will call it collapsing A,
because A will become a single node of (Π(F ), E(Π(F ))).
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Fig. 2. Three S-comps and two C-comps of a Steiner skeleton. Terminal nodes are black and
Steiner nodes are white.

3 A Potential-Based Analysis of the Rayward-Smith Heuristic

In this section we introduce a new way of analyzing greedy heuristics for STP[1,2],
applying it to RSH. The potential-based analysis method will allow to tighten the per-
formance analysis of Bern and Plassman [1] (see Theorem 1). We have reformulated
the RSH as follows.

1. Preprocessing: Collapse all edges (cost-1 connections) between terminals.
2. Greedy collapsing of s-stars, s ≥ 4: Find an s-star S with the largest possible

s. If s ≤ 3, then exit. Collapse S.
3. Greedy collapsing of 3-stars: Find an s-star S with the largest possible s. If

s = 2, then exit. Collapse S.
4. Finishing: Connect the remaining terminals with non-edges.

In the rest of the section we are going to prove the following

Theorem 1. Let TRS be the Steiner tree given by RSH. Then cost(TRS) ≤ cost(T ∗)+
1
3cost(T ), where T ∗ is the optimal tree and T is its skeleton

If Preprocessing is nontrivial, then it can only improve the approximation ratio since all
such edges can be forced into the optimal solution. So further we assume that any two
terminals are within distance 2 from each other. In the analysis of Steps 2-4, we update
the following three values after each iteration:

CA = the cost of edges collapsed so far, initially, CA = 0;
CR = the cost of a certain solution T ′ where all collapsed edges have cost 0, initially,

T ′ = T ∗, the optimum solution, and CR = cost(T ∗);
P = the sum of potentials distributed among objects, which will be defined later.

We will define the potential satisfying the following conditions:

(a) initially, P < cost(T ∗)/3, at each stage, P ≥ 0;
(b) after collapse of each star S, the decrease in full cost (which is equal to CR + P )

is at least cost(S), i.e., ΔCA = cost(S) ≤ Δ full cost;
(c) the final Steiner skeleton is empty.
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The potential is given to the following objects (see Fig. 2):

– edges of a Steiner skeleton T = T ∗ ∩E consisting of cost-1 connections of T ∗;
– C-comps which are connected components of the Steiner skeleton T ;
– S-comps which are Steiner full components of T ∗.

Initially, the potential of each edge e is p(e) = 1/3 and the potential of each C-comp
and S-comp is zero.The total edge potential is denoted PE and the total C-comps and
S-comps potential is denoted PC.

We will now modify the Steiner skeleton without increasing the full cost such that the
resulting Steiner tree will be star-restricted, i.e., each S-comp will be a either a proper
star or non-edge. This star-restricted Steiner tree is constructed by repeatedly applying
the following two steps.

Path step. Let Steiner skeleton T contain a Steiner point v of degree 2. We remove two
edges incident to v from T adding a non-edge (cost-2 connection) to T ∗. The potential
for the both resulting C-comps is set to 0. We then repeatedly remove all degree-1
Steiner points that may appear.

Bridge Step. Let each Steiner node have degree at lest 3 and let e be a bridge, i.e.,
an edge e = (u, v) between Steiner points. We remove this edge from T (adding a
non-edge to T ∗) thus splitting a connected component C into C0 and C1. Each new
C-comp has at least two edges since u and v originally have degree at least 3. We set
p(C0) = p(C) and p(C1) = −2/3.

Lemma 2. There exists a star-restricted Steiner tree T ∗
B and a potential p for its skele-

ton TB such that

(i) each edge e ∈ TB has p(e) = 1/3;
(ii) each C-comp C has p(C) ≥ −2/3 and each trivial C-comp (with at most one

edge) has p(C) = 0;
(iii) each S-comp S has p(S) = 0;

with full cost not larger than in the optimal tree, full cost(T ∗
B) ≤ full cost(T ∗).

Proof. After Path Step, the cost does not increase, edge potential PE is decreased by
2/3 due to removal of 2 edges, while we may increase PC by at most 2/3: we start
with one C-comp C with p(C) ≥ −2/3 and we end with two C-comps with potential
0; thus we do not increase full cost. After Bridge Step, the cost is increased by 1, the
total edge potential is decreased by 1/3 and the total C-comp potential is decreased by
2/3 resulting in unchanged full cost. ��

Lemma 3. After greedy collapsing of an s-star S, s > 3, conditions (i)-(iii) are satis-
fied and cost(S) ≤ Δ full cost(T ∗).

Proof. Let terminals of S be in a C-comps. To break cycles created in T ∗ when we
collapse S, we replace s−1 connections, of which a−1 are cost-2 connections between
different C-comps and s− a edges within C-comps. Note that deletion of edges within
a C-comp C decreases degree of its Steiner point and if all terminals of C are in S, then
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the Steiner point becomes a leaf and the edge connecting it to the terminal is removed
from the optimal solution. Let k be the number of nontrivial C-comps with all terminals
in S. The decrement in the cost is at least ΔCR ≥ 2(a−1)+s−a+k = s+a+k−2
and the decrement of the edge potential is ΔPE ≥ s−a+k

3 .
Collapsing of S replaces a different C-comps with a single C-comp. If the resulting

C-comp is nontrivial or one of C-comps intersecting S is trivial then the number of
nontrivial C-comps is reduced by at most a−1 and the C-comp potential is incremented
by at most 2

3 (a− 1), i.e., ΔPC ≥ − 2
3 (a− 1), and

Δ full cost = ΔCR + ΔPE + ΔPC

≥ s + a + k − 2 +
s− a + k

3
− 2

3
(a− 1)

≥ s +
1
3
(s− 4)

≥ cost(S)

Otherwise, ΔPC ≥ − 2
3a and there exits at least one nontrivial C-comp with all

terminals in S, i. e., k ≥ 1. Similarly,

Δ full cost ≥ s + a + k − 2 +
s− a + k

3
− 2

3
a ≥ cost(S) ��

When collapsing of s-stars with s > 3 is completed, we redistribute potential between
C-comps and S-comps by increasing potential of each nontrivial C-comp by 1

6 bring-
ing it to − 1

2 and decreasing potential of one of its S-comps by 1
6 . This will replace

conditions (ii)-(iii) with

(ii’) each C-comp C has p(C) ≥ −1/2 and each trivial C-comp (with at most one
edge) has p(C) = 0;

(iii’) each S-comp S has p(S) ≥ − 1
6 ;

Lemma 4. After greedy collapsing of any 3-star S, conditions (i)-(ii’)-(iii’) are satis-
fied and cost(S) ≤ Δ full cost(T ∗).

Proof. Suppose that the terminals of the selected star belong to 3 different C-comps.
We remove two cost-2 connections from T ∗, hence ΔCR = 4, and we replace three C-
comps with one, hence ΔPC ≥ −2/2, so we have cost(S) = 3 and Δ full cost ≥ 4−1.

Suppose that the terminals of the selected star belong to 2 different C-comps. ΔCR =
3 because we remove one cost-2 connection from T ∗ and one edge from an S-comp. This
S-comp becomes a 2-star, hence we remove it from T using a Path Step, so together we
remove 3 edges from T and ΔPE = 1.

One S-comp disappears, so ΔPS = −1/6. Because we collapse two C-comps into
one, ΔPC = −1/2.

If the terminals of the selected star belong to a single C-comp and we remove 2 edges
from a single S-comp, we also remove the third edge of this S-comp and ΔCR = −3,
while ΔPE = −1, ΔPS = 1/6, and if its C-comp degenerates to a single node, we
have ΔPC = 1/2 (otherwise, zero). Thus the balance Δ full cost− cost(S) is at least
1/3.
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Finally, if the terminals of the selected star belong to a single C-comp and we remove
2 edges from two S-comps, we have ΔCR = −2. Because we apply Path Steps to those
two S-comps, ΔPE = −2. while ΔPS = 1/3 and ΔPC ≤ 1/2. Thus the balance is
at least 1/6. ��

Proof of Theorem 1. We initialized CA = 0, CR = opt and P ≤ opt/3. The sum of
costs of all collapsed stars is at most Δ full cost(T ∗) and when we finish star collapsing
we have P = 0 and T = ∅. At this point, we can connect the partial solution using
exactly the same number of cost-2 connections as we have in T ∗ so we obtain a solution
with cost at most full cost(T ∗).

4 Seven-Phase Approximation Algorithm

We will formulate a new approximation algorithm and analyze its runtime and give a
worst-case example.

The new Seven-Phase Algorithm proceeds as follows:

1. Collapse all edges between terminals.
2. Repeatedly, collapse an s-stars with the largest s, s > 4.
3. Collapse all s-stars with s = 4.
4. Find T3, a maximum size set of 3-stars.
5. Repeatedly, whenever possible replace each 3-star from T3 with

a (1,3)-comet and collapse it. Collapse 3-stars remaining in T3.
6. Repeatedly, collapse a comet with the maximum gloss.
7. Connect the remaining terminals with non-edges.

In the following section we will prove the following

Theorem 2. The Seven-Phase Algorithm has the approximation ratio of 5/4 for the
Steiner Tree Problem in metrics with distances 1 and 2.

The tightness of the 5
4 -ratio follows from the following example (see Figure 3).

c1 c2 c3 ck

c’1 c’2 c’kc’3

Fig. 3. Solid edges are in optimal solution and dashed edges
are in approximate solution

Let X1, ..., Xk be the set of
nonintersecting 3-stars, each
Xi with a center ci, such that
there is an edge between ci

and ci+1, i = 1, . . . , k − 1.
Thus there is a Steiner tree of
length 4k − 1. Also let there
exists a star X ′

i for each Xi

with a center c′i instead of ci

but with the same terminals. Let Step 4 find X ′
i’s rather than Xi’s. Then Step 5 can-

not guarantee to find existing (3, 1) comets since one such comet replaces two 3-stars.
Finally, the cost of the approximate solution will be 5k -2.
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The runtime of this algorithm is dominated by the runtime for Steps 4 and 6. Step 4
can be performed in time O(|V |3.5) [4] and step 6 requires O(|V |2.5) per iteration (see
Lemma 1). Therefore, the total runtime is O(|V |3.5).

5 Proof of the 5/4-Approximation Ratio

In the analysis, we use similar potential as in Section 3, assigned to objects defined by
the skeleton TR of the restriced solution T ∗

R: edges, S-comps and C-comps. Now we
start with p(e) = 1/4 (and zero potential for component objects).

5.1 Analysis of Phases 1 and 2

Collapsing edges between terminals has balance Δ full cost−cost(e) = 1+1/4−1 > 0.
Collapsing an s-star S for s > 4 removes s−1 edges from T , so the balance is

Δ full cost− cost(S) ≥ (s− 1)5/4− s = (s− 5)/4 ≥ 0.

5.2 Preliminary to the Analysis of Phases 3-6

As in Section 3, we will modify the Steiner skeleton T of the optimal tree without
increasing the full cost such that the resulting Steiner tree T ∗

R will be comet-restricted,
i.e., each nontrivial S-comp of TR is either an s-star, s > 2 or an (a, b)-comet, a+b > 2.
The Path Step is the same and the Bridge Step is altered – we remove an edge between
Steiner nodes splitting a C-comp C into C0 and C1 only if both Ci’s have at least 3
nodes. We set p(C0) = p(C) and p(C1) = −3/4.

Repeatedly applying Path Steps and altered Bridge Steps to the optimum tree T ∗ we
obtain a comet-restricted Steiner tree for which the following analogue of Lemma 2
holds.

Lemma 5. There exists a comet-restricted Steiner tree T ∗
R and a potential p for its

skeleton TR such that each edge e ∈ TR has p(e) = 1/3, each C-comp C has p(C)
either 0 or −3/4, each S-comp has p(S) = 0 and with full cost not larger than in the
optimal tree, full cost(T ∗

B) ≤ full cost(T ∗).

5.3 Analysis of Phase 3

Now we discuss the phase of selecting 4-stars. We change the potential distribution by
setting p(C) = −2/3 for each C-comp C that had potential −3/4, and we compensate
by setting, for one of its S-comps, say, S, p(S) = −1/12.

When we select a 4-star S, we remove 3 connections from T ∗
R. With each such con-

nection e′ we associate cost(e′) = cost(S)/3 = 4/3 and the corresponding compo-
nents of Δ full cost to compute the balance.

When we remove a non-edge from T ∗
R we have ΔCR = 2. We also coalesce two

C-comps, so ΔPC ≥ −2/3. Edges and S-comps are not affected, so we get balance
2− 2/3− 4/3 ≥ 0.

When we remove an edge from a fork (i.e. incident to a fork node of a comet), we
can apply Path Step and remove two more edges from TR. Thus we have ΔCR = 1,



94 P. Berman, M. Karpinski, and A. Zelikovsky

ΔPE = 3/4, and balance at least 1 + 3/4− 4/3. The balance is even better when we
remove two edges from the same fork with two connections, because in that case ΔCR
is better; in TR we erase three edges of a fork, rather then erasing one and replacing two
with a non-edge. Thus we have ΔCR = 3 and ΔPE = 3/4 and balance 3+3/4−8/3.

When we remove an edge from a 3-star or a “borderline” comet, like (2, 1)-comet
or (3, 0)-comet, the reasoning is similar to the fork case. We have significant surplus.
We also eliminate a negative potential of the star, but the surplus is so big we will not
calculate it here.

The cases that remain is removing edges from stars, or edges that connect terminals
with centers of comets. Without changing the potential of the affected S-comp we would
have a deficit: ΔCR = 1 and ΔPE = 1/4, for the “preliminary” balance of 1+ 1/4−
4/3 = 1/12. Surplus of other connections can give non-negative balance, but if not, we
obtain zero balance by decreasing the potential of the affected S-comp by 1/12.

This process has the following invariants:

(a) the sum of the potentials of S-comps of a C-comp, and of that C-comp, is a multiple
of 1/4.

(b) a s-star or a s-comet has potential at least −(5− s)/12.

Invariant (a) follows from the fact that cost change is integral, and the other potentials
that change are edge potentials, each 1/4. Moreover, we coalesce a group of C-comps if
we charge more than one. (A careful reasoning would consider consequences of break-
ing a C-comp by applying a Path Step).

Invariant (b) is clearly true at the start of the process. Then when we remove an edge
from an s star we subtract 1 from s and 1/12 from the potential, and the invariant is
preserved.

5.4 Preliminary to the Analysis of Phases 4-5

When Phase 3 is over, we reorganize the potential in a manner more appropriate for
considering 3-stars. We increase a potential of a C-comp from −2/3 to −1/2, and we
decrease the potential of one or two of its S-comps. In the same time, we want to have
the following potential for S-comps:

p4(S) =

{− 1
4 if S is a 3-star or a 3-comet

− 3−s
4 if S is an s-comet, s < 3

Note that before the decrease, a 3-star or a 3-comet has potential at least −2/12, so
it can aborb 1/12. Similarly, a 1-comet had potential at least −4/12, so it can absorb
2/12, and the balance of 0 comets is even better. We would have a problem if we have
only 2-comets that have the minimum potential of 1/4 and perhaps only one exception
in the form of a 3-star/3-comet with the minimum potential or 2-comet with potential
only 1/12 above the minimum. With no exceptions, the sum of potentials of S-comps
and the C-comp before the distribution is a multiple of 1/4 plus p(C) = −2/3, and this
violates invariant (b). With one exception, that sum is a multiple of 1/4 plus−2/3+1/6
and this also violates that invariant.
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Before phase 6 we need a different distribution of potential. In that phase we do not
have 3-stars, the best gloss is below 1. The following values of potential are sufficiently
high for the analysis:

p6(S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 7

12 if S is a 2-comet

−1 if S is a 1-comet

− 29
20 if S is a 0-comet

Moreover, we will have potential zero for C-comps except for C-comps that consist
of one S-comp only; for such C-comp C we can have p6(C) = −1/3 if C is a 2-comet
and p6(C) = −1/4 if C is an 1-comet.

5.5 Analysis of Phases 4-5

In phase 4 we insert a maximum set of 3-stars to the solution, and this selection can be
modified in phase 5. Note that we can obtain a set of 3-stars from the TR by taking all
3-stars and stripping forks from 3-comets.

If a selected 3-star has terminals in three C-comps, we can collapse it, ΔPE = ΔPS
= 0, ΔCA = 3, ΔCR = −4 and ΔPC = −1, so this analysis step has balance zero.
And we still can find at least as many 3-stars as we have 3-stars and 3-comets in TR.

We will consider connected component created by the inserted 3-stars together with
C-comps of TR. When we consider selection of a 3-star, we view it as a pair of connec-
tions e0, e1, each with cost(ei) = 3/2, we insert such a connection to T ∗

R and break the
cycle by removing a connection, a non-edge or an edge from an S-comp S. This changes
the potential of S; the first change we account by comparing p4(S) with p6(S′), where
S′ is S with one connection removed. When a subsequent such change is considered,
we compare p6(S) with p6(S′). In that accounting we need to collect some surplus, so
we will be able to cover increases of the potential of C-comps (from −1/2 to 0, with
some critically important exceptions).

The following cases analyze the impact of a single new connection introduced in
phase 4, followed by a deletion of a non-edge or a connection within S-comp S, which
“annihilates” S or changes it into S′. We number the cases as follows: the first digit
describes the type of S-comp from which a connection is removed, 2 for 3-star, 3, 4,
5, 6 for 3-, 2-, 1- and 0- comet; the second digit indicates the initial or a subsequent
removal, and the third digit, with values 1 and 2, indicates the outcome of the removal:
1 for annihilation (when the S-comp ceases to be cheaper that cost-2 connections), 2 for
the decrease in the number of terminals and 3 for a removal of a fork.

Case 1: the new connection causes a deletion of a non-edge. This entails ΔCR = −2
and ΔPC = 1/2, so we have balance zero.
Case 2: the new connection causes a deletion of a connection in a 3-star. This entails
ΔCR = −1, ΔPE = −3/4 and ΔPS = 1/4 for the balance of −3/2 + 1 + 3/4 −
1/4 = 0. (Second deletion, if any, will be treated as Case 1.)
Case 3: the new connection causes the first deletion of a connection in a 3-comet S.
Because no 3-star survives phase 4, we can assume that this is a connection from the
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center to a terminal, which alters (a, 3)-comet S into (a, 2)-comet S′. We have ΔCR =
1, ΔPE = 1/4, ΔPS = p4(S)− p6(S′) = 4/12 for the balance of−3/2+1+1/4+
4/12 = 1/12. (Second deletion will be treated as Case 4.2).
Case 4.1: the new connection causes the first deletion of a connection in a (a, 2)-comet.
Case 4.1.1: S is “annihilated”, which implies that S is a (1,2)-comet. We have ΔCR =
1, ΔPE = 5/4, ΔPS = p4(S) = −1/4 for the balance of−3/2+1+5/4−1/4 = 1/2.
Case 4.1.2: the deletion is from the center to a terminal, so S′ is a (a, 1)-comet. We
have ΔCR = 1, ΔPE = 1/4, ΔPS = p4(S) − p6(S′) = 3/4 for the balance of
−3/2 + 1 + 1/4 + 3/4 = 1/2.
Case 4.1.3: the deletion is in a fork, so S′ is an (a−1, 2)-comet. This entails ΔCR = 1,
ΔPE = 3/4 and ΔPS = 4/12 for the balance of −3/2 + 1 + 3/4 + 4/12 = 7/12.
Case 4.2: the new connection causes a subsequent deletion in what is now a (a, 2)-
comet. We have similar cases, but with balance lower by 4/12, as our starting potential
of S is lower; thus the balance of 4.2.1, 4.2.2, 4.2.3 is 1/6, 1/6 and 1/4 respectively.
Case 5.1: the new connection causes the first deletion of a connection in a (a, 1)-comet.
Case 5.1.1: S is “annihilated”, which implies that S is a (2,1)-comet. We have ΔCR =
1, ΔPE = 7/4, ΔPS = p4(S) = −1/2 for the balance of−3/2+1+7/4−1/2 = 3/4.
Case 5.1.2: the deletion is from the center to a terminal, so S′ is a (a, 0)-comet. We
have ΔCR = 1, ΔPE = 1/4, ΔPS = p4(S) − p6(S′) = 19/20 for the balance of
−3/2 + 1 + 1/4 + 19/20 = 7/10.
Case 5.1.3: the deletion is in a fork, so S′ is an (a−1, 1)-comet. This entails ΔCR = 1,
ΔPE = 3/4 and ΔPS = 1/2 for the balance of −3/2 + 1 + 3/4 + 1/2 = 3/4.
Case 5.2: the new connection causes a subsequent deletion in what is now a (a, 1)-
comet. We have similar cases, but with balance lower by 1/2, as our starting potential
of S is lower; thus the balance of 5.2.1, 5.2.2, 5.2.3 is 1/4, 1/5 and 1/4 respectively.
Case 6: the new connection causes a deletion in a 0-comet. The calculation is similar
to the previous cases except that the balance is even more favorable, except for the case
of subsequent deletion that removes a fork, the balance is the same 1/4 for 2-, 1- and
0-stars.

As we see, no deletion has negative balance. Now we can make the final accounting
that includes the potential of C-comps. We have to pay for “annihilating” the negative
potential, which amounts to 1/2 per affected C-comp.

Coalescing C-comps increases the potential, but it is accounted for, because this is
Case 1. Removing connections when we annihilate forks or non-viable comets may
sometimes decrease the potential (when we separate a C-comp that consists of a single
S-comp, 1- or 2-comet), and we disregard it. Thus we need to account for 1/2 in each
of the resulting C-comps.

If the “history” of a resulting C-comp C involves a deletion in a pre-existing 2-, 1-
or 0-comet, we had Case 4.1, 5.1 or 6.1 with balance at least 1/2. If C includes a comet
S in which we had no deletions, we have surplus balance p4(S)− p6(S) ≥ 1/3. Thus
we have no problem if there are two such comets.

Now suppose that C contains a comet S′ that was obtained from a 3-comet S. If S
was affected by one deletion only, in Phase 5 we can replace the triple that caused that
with S; this would lead to a net gain of two “cheap” connections that provide a gain of
1/2 each (or less, if they cause subsequent removals in pre-existing 2-, 1-, or 0-comets),
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thus a gain of 1. Because inserting a (1,3)-comet makes 4 connections, greedily we can
find 1/4-th o them (or more, if they caused removals in pre-existing 2-, 1- or 0-comets,
rather than in the “correct” 3-comets). Therefore with a 3-comet we associate a gain of
at least 1/4. (We left out the case when a 3-comet is annihilated by two removals and
it annihilates its C-comp; if this is done by two 3-stars, they coalesce with some other
C-comps and thus Case 1 pays for that, and if it was done by a single 3-star, we still
have the ability of replacing it with S.)

If C contains two comets, then each can provide at least 1/4 toward the increase of
p(C). The same holds if it contains a single 0-comet (we have larger drop p4(S) −
p6(S)). If C contains one larger comet, then the drop is reduced by at least 1/4.

What remains is to consider former C-comps that consisted solely of 3-stars and all
these 3-stars were annihilated. Observe that because Phase 4 uses an exact algorithm for
maximizing the number of 3-stars, we found at least as many stars as were annihilated,
so we did not increase the solution cost (while the sum of potentials that vanished in
the process could not be negative, positive PE always dominates negative potentials of
S-comps and C-comps).

5.6 Analysis of Phase 6

Basically, when we contract a comet with i+1 terminals, we have to delete i connections
from TR, and the accounting is like in Cases 4.2, 5.2 and 6.2 of the previous sections,
except that we have a higher ΔCA, which was in that calculation assumed to be 3/2.

If we remove from a 2-comet, then the portion of the cost per connection is at most
5/3 = 3/2 + 1/6, so it suffices that in the respective subcases of Case 4.2 we had
balance at least 1/6. Similarly, if we delete from a 1-comet, the cost per connection
is at most 7/4 = 3/1/4 and it suffices that we had a balance of 1/4 in Case 5.2. For
0-stars, the cost is at most 9/5 = 3/2 + 3/10, and when we anihilate, we have such
balance in Case 6.2.1. When we remove a fork without annihilation, then we have at
least (4,1)-comet and the cost is at most 12/7 < 3/2 + 1/4, and the balance of the fork
removal is 1/4.

Thus we proved Theorem 2.
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Abstract. We present a succinct representation of a set of n points on
an n × n grid using n lg n + o(n lg n) bits1 to support orthogonal range
counting in O(lg n/ lg lg n) time, and range reporting in O(k lg n/ lg lg n)
time, where k is the size of the output. This achieves an improvement on
query time by a factor of lg lg n upon the previous result of Mäkinen and
Navarro [1], while using essentially the information-theoretic minimum
space. Our data structure not only can be used as a key component in
solutions to the general orthogonal range search problem to save storage
cost, but also has applications in text indexing. In particular, we apply
it to improve two previous space-efficient text indexes that support sub-
string search [2] and position-restricted substring search [1]. We also use
it to extend previous results on succinct representations of sequences of
small integers, and to design succinct data structures supporting certain
types of orthogonal range query in the plane.

1 Introduction

The two-dimensional orthogonal range search problem is a fundamental problem
in computational geometry. In this problem, we store a set, N , of points in a data
structure so that given a query rectangle R, information about the points in R
can be retrieved efficiently. There are two common types of queries: orthogonal
range counting queries and orthogonal range reporting queries. An orthogonal
range counting query returns the number of points in N ∩R, and an orthogonal
range reporting query returns these points. The orthogonal range search problem
has applications in many areas of computer science, including databases and
computer graphics, and thus has been studied extensively [3,4,5,6,7]. Many trade-
offs for this problem have been achieved. For example, for the two-dimensional
range reporting query, there are data structures achieving the optimal O(lg n+k)
query time using O(n lgε n) words of space, where k is the size of the output and
0 < ε < 1 [6], and structures of linear space that answer queries in O(lg n+k lgε n)
time [4]. See [7] for a recent survey.
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In this paper, we mainly study the orthogonal range search problem in two-
dimensional rank space, i.e. on an n × n grid, where n is the size of the point
set. The general orthogonal range search problem in which the points are real
numbers can be reduced to this problem using a standard approach [3]. Thus,
solutions to the general range search problem are often based on range search
structures in rank space [3,6]. For example, one key component for the data
structure achieving the optimal O(lg n + k) query time for orthogonal range
reporting by Alstrup et al. [6] is a data structure supporting orthogonal range
reporting in rank space in O(lg lg n + k) time using O(n lgε n) words of space.

More recently, the orthogonal range search problem on an n × n grid was
studied to design succinct data structures, and in particular succinct text in-
dexes. Succinct data structures provide solutions to reduce the storage cost of
modern applications that process huge amounts of data, such as textual data
in databases and on the World Wide Web, geometric data in GIS systems, and
genomic data in bioinformatics applications. They were first proposed by Jacob-
son [8] to encode bit vectors, (unlabeled) trees and planar graphs using space
close to the information-theoretic lower bound, while supporting efficient nav-
igation operations in them. For example, Jacobson showed how to represent a
tree on n nodes using 2n + o(n) bits, so that the parent and the children of a
node can be efficiently located. The obvious approach uses 3n words, which is
about 96 times as much as the space required for the succinct representation on
a 64-bit machine. This approach was also successfully applied to various other
abstract data types, including dictionaries [9], strings [10,11,12], binary rela-
tions [11,12] and labeled trees [13,14,11,12]. For orthogonal range search in rank
space, Mäkinen and Navarro [1] designed a succinct data structure that encodes
the point set using n lg n + o(n lg n) bits to support orthogonal range counting
in O(lg n) time and range reporting in O(k lg n) time. This space cost is close
to the information-theoretic minimum, but their structure requires that there
does not exist two points in the set with the same coordinate in one of the two
dimensions.

The succinct range search structure mentioned in the previous paragraph was
further used to design space-efficient text indexes. Mäkinen and Navarro [1]
initially designed this structure for the problem of position-restricted substring
search. The goal is to construct an index for a text string T of length n such
that given a query substring P of length m and a range [i..j] of positions in T ,
the occurrences of P in this range can be reported efficiently. They showed how
to reduce the problem to orthogonal range search on an n×n grid, and designed
a text index of 3n lg n + o(n lg n) bits to support position-restricted substring
search in O(m + occ lg n) time, where occ is the number of occurrences of P in
T . Chien et al. [2] considered the problem of indexing a text string to support
the general substring search that reports the occurrences of a query pattern P
in a text string T . This is a fundamental problem in computer science. They
designed a succinct text index using O(n lg σ) bits, where σ is the alphabet size,
to support substring search in O(m + lg n(lgσ n + occ lg n)) time. One key data
structure in their solution is the same succinct range search structure [1].
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1.1 Our Results

In this paper, we design succinct data structures for orthogonal range search
on an n × n grid. Our range search structure is an improvement upon that of
Mäkinen and Navarro [1], and we use it to improve previous results on design-
ing space-efficient text indexes for substring search [2] and position-restricted
substring search [1]. We also apply our structure to extend the previous re-
sult on representing a sequence of small integers succinctly [15], as well as a
restricted version of orthogonal range search in which the query range is de-
fined by two points in the point set [16]. More precisely, we present the follow-
ing results, among which the first one is our main result and the rest are its
applications:

1. A succinct data structure that encodes a point set, N , of n points in an
n× n grid using n lg n + o(n lg n) bits to support orthogonal range counting
in O(lg n/ lg lg n) time, and orthogonal range reporting in O(k lg n/ lg lg n)
time, where k is the size of the output. Compared to the succinct struc-
ture of Mäkinen and Navarro [1], this data structure achieves an improve-
ment on query time by a factor of lg lg n, while still using space close to the
information-theoretic minimum. Another improvement is that our structure
does not require each point to have a distinct x-coordinate or y-coordinate.

2. A succinct text index of O(n lg σ) bits for a text string T of length n over
an alphabet of size σ that supports substring search in O(m + lg n(lgσ n +
occ lg n)/ lg lg n) time, where m is the length of the query substring, and occ
is the number of its occurrences in T . This provides faster query support than
the structure of Chien et al. [2] while using the same amounts of space.

3. A text index of 3n lg n + o(n lg n) bits that supports position-restricted sub-
string search in O(m + occ lg n/ lg lg n) time. This improves the query time
of the index of Mäkinen and Navarro [1] using the same amount of space.

4. A succinct data structure that encodes a sequence, S, of n numbers in [1..s],
where s = polylog(n), in nH0(S) + o(n) bits2 to support the following
query in constant time: given a range, [p1..p2], of positions in S and a range,
[v1..v2], of values, compute the number of entries in S[p1..p2] whose values
are in the range [v1..v2]. These entries can also be reported in constant time
per entry. This extends the result of Ferragina et al. [15] on the same input
data to support more operations.

5. A space-efficient data structure that encodes a point set N in the plane in
cn + n lg n + o(n lg n) bits, where c is the number of bits required to encode
the coordinate pair of a point, to provide O(lg n/ lg lg n)-time support for a
restricted version of orthogonal range counting in which the query rectangle
is defined by two points in N . The points in the query range can be reported
in O(k lg n/ lg lg n) time.

All our results are under the word RAM model of Θ(lg n)-bit word size.

2 H0(S) is the zeroth-order empirical entropy of S, defined as
∑s

i=1(pi log2
1
pi

), where
pi is the frequency of the occurrence of i in S, and 0 log2 0 is interpreted as 0.
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2 Preliminaries

Bit vectors. A key structure for many succinct data structures and for our
research is a bit vector B[1..n] that supports rank and select operations. For
α ∈ {0, 1}, the operator rankB(α, x) returns the number of occurrences of α in
B[1..x], and selectB(α, r) returns the position of the rth occurrence of α in B.
Lemma 1 addresses the problem of succinct representations of bit vectors.

Lemma 1 ([8,17]). A bit vector B[1..n] with v 1s can be represented using
n + o(n) bits to support the access to each bit, rank and select in O(1) time.

Sequences of small numbers. The rank/select operations can also be per-
formed on a sequence, S, of n integers in [1..s]. To define rankS(α, x) and
selectS(α, r), we simply let α ∈ {1, 2, · · · , s} to extend the definitions of these
operations on bit vectors. Ferragina et al. [15] proved the following lemma:

Lemma 2 ([15]). A sequence, S, of n numbers in [1..s], where 2 ≤ s ≤
√

n, can
be represented using nH0(S)+O(s(n lg lg n)/ logs n) bits to support the access of
each number, rank and select in O(1) time.

3 Succinct Range Search Structures on a Grid

In this section, we design a succinct data structure that supports orthogonal
range search in rank space. We first design a structure for a narrow grid (more
precisely, an n×O(lgε n) grid) in Section 3.1 with the restriction that each point
has a distinct x-coordinate. Based on this structure, we further design structures
for an n× n grid in Section 3.2 without any similar restrictions.

3.1 Orthogonal Range Search on an n × O(lgε n) Grid

We first consider range counting on a narrow grid. We make use of the well-known
fact that the orthogonal range counting problem can be reduced to dominance
counting queries. A point whose coordinates are (x1, y1) dominates another point
(x2, y2) if x1 ≥ x2 and y1 ≥ y2, and a dominance counting query computes the
number of points dominating the query point.

Lemma 3. Let N be a set of points from the universe M = [1..n]× [1..t], where
n = |N | and t = O(lgε n) for any constant ε such that 0 < ε < 1. If each point in
N has a distinct x-coordinate, the set N can be represented using n�lg t�+ o(n)
bits to support orthogonal range counting in O(1) time.

Proof. As each point in N has a distinct x-coordinate, we can store the coor-
dinates as a sequence S[1..n], in which S[i] stores the y-coordinate of the point
whose x-coordinate is i. Thus S occupies n�lg t� bits, and it suffices to show how
to construct auxiliary data structures of o(n) bits to support dominance counting
(recall that dominance counting can be used to support range counting).
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We first partition the universe M into regions called blocks of size �lg2 n� × t
by dividing the first dimension into ranges of size �lg2 n�. More precisely, the ith

block of M under this partition is Li = [(i− 1)�lg2 n�+ 1..i�lg2 n�]× [1..t]. We
assume that n is divisible by �lg2 n� for simplicity.

For each block Li, we further partition it into subblocks of size �lgλ n� × t by
dividing the first dimension into ranges of size �lgλ n�, where λ is a constant
such that ε < λ < 1. Under this partition, the jth subblock of Li is Li,j =
[(i−1)�lg2 n�+(j−1)�lgλ n�+1..(i−1)�lg2 n�+ j�lgλ n�]× [1..t]. For simplicity,
we assume that �lg2 n� is divisible by �lgλ n�.

We construct the following auxiliary data structures:

– A two-dimensional array A[1..n/�lg2 n�, 1..t], in which A[i, j] stores the num-
ber of points in N dominating the coordinate pair (i�lg2 n�, j);

– A two-dimensional array B[1..n/�lgλ n�, 1..t], in which B[i, j] stores the num-
ber of points in N dominating the coordinate pair (i�lgλ n�, j) in the block
that contains this coordinate pair;

– A table C that stores for each possible set of �lgλ n� points in the universe
[1..�lgλ n�]× [1..t] (each point in this set has a distinct x-coordinate), every
integer i in [1..�lgλ n�] and every integer j in [1..t], the number of points in
this set that dominates the coordinate pair (i, j).

We now analyze the space costs of the above data structures. A occupies
n/�lg2 n�×t×�lgn� = O(n/ lg1−ε n) = o(n) bits. As there are �lg2 n� points inside
each block, each entry of B can be stored in O(lg lg n) bits. Therefore, B occupies
n/�lgλ n�×t×O(lg lg n) = O(n lg lg n/ lgλ−ε n) = o(n) bits. To compute the space
cost of C, we first count the number, b, of possible �lgλ n�-point set in the universe
[1..�lgλ n�]×[1..t], where each point in this set has a distinct x-coordinate. We have
b = t
lg

λ n� = 2
lg
λ n� lg t. Let f = �lgλ n� lg t. Then f = O(lgλ n lg lg n) = o(lg n).

By the definition of order notation, there exists a constant n0 such that f < 1
2 lg n

for any n > n0. As b = 2f , we have b < 2
1
2 lg n =

√
n when n > n0. Therefore,

when n > n0, the space cost of C in bits is less than
√

n× �lgλ n� × t. Thus, the
space cost of C is O(

√
n lgλ+ε n) = o(n) bits. Hence the auxiliary data structures

occupy O(n lg lg n/ lgλ−ε n) = o(n) bits in total.
With the above data structures, we can support dominance counting. Let

(u, v) be the coordinates of the query point q. Let Li and Li,j be the block and
subblock that contain q, respectively. The result is the sum of the following three
values: k1, the number of points in blocks Li+1, Li+2, · · · that dominate q; k2, the
number of points in subblocks Li,j+1, Li,j+2, · · · , Li,v that dominate q, where v
is the number of subblocks in block Li; and k3, the number of points in subblock
Li,j that dominate q. By the definitions of the data structures we constructed,
we have k1 = A[i, y] and k2 = B[(i − 1) × �lg2 n�/�lgλ n� + j, y]. To compute
k3, we first compute the coordinates of q inside block Li,j by treating Li,j as a
universe of size �lgλ n� × t, and get the encoding of the subsequence of S that
corresponds to points inside Li,j. With these we can perform table lookup on C
to compute k3 in constant time. ��
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We next show how to support range reporting.
Lemma 4. Let N be a set of points from the universe M = [1..n]× [1..t], where
n = |N | and t = O(lgε n) for any constant ε such that 0 < ε < 1. If each point in
N has a distinct x-coordinate, the set N can be represented using n�lg t�+ o(n)
bits to support orthogonal range reporting in O(k) time, where k is the size of
the output.

Proof. As with the proof of Lemma 3, we encode N as the string S, and divide
M into blocks and subblocks. Based on this, we design auxiliary data structures
to support orthogonal range reporting. We answer a query in two steps. Given
a query rectangle R, we first compute the set, Y , of y-coordinates of the output
in O(k′) time, where k′ is the number of distinct y-coordinates of the points in
the output. Then, for each y-coordinate, v, in Y , we compute the points in R
whose y-coordinate is v (we spend O(1) time on each such point).

We first show how to compute Y in O(k′) time. We construct the following
auxiliary data structures:

– A two-dimensional array D[1..n/�lg2 n�, 1..�lg n�]. Each entry, D[i, j], stores
a bit vector of length t whose lth bit is 1 iff there is at least one point (from
the set N) in blocks Li, Li+1, · · · , Li+2j−1 whose y-coordinate is l;

– A two-dimensional array Ei[1..w][1..�lg w�] for each block Li, where w =
�lg2 n�/�lgλ n� (i.e. the maximum number of subblocks in a given block).
Each entry, Ei[j, u], stores a bit vector of length t whose lth bit is 1 iff there
is at least one point (from the set N) in subblocks Li,j , Li,j+1, · · · , Li,j+2u−1
whose y-coordinate is l;

– A table F which stores for every possible set of �lgλ n� point in the universe
[1..�lgλ n�]× [1..t] (each point in this set has a distinct x-coordinate), every
pair of integers i and j in [1..�lgλ n�], a bit vector of length t whose lth bit is
1 iff there is at least one point from this set whose x-coordinate is between
(and including) i and j and whose y-coordinate is l.

To analyze the space cost, we have that D occupies O(n/ lg2 n × lg n × t) =
O(n/ lg1−ε n) bits. As there are n/�lgλ n� subblocks in total, all the Ei’s occupy
O(n/ lgλ n× lg lg n× lgε n) = O(n lg lg n/ lgλ−ε) bits. Similarly to the analysis in
the proof of Lemma 3, we have F occupies O(

√
n× �lgλ n� × �lgλ n� × �lgε n�)

bits. Therefore, these data structures occupy O(n lg lg n/ lgλ−ε) = o(n) bits.
To use the above data structures to compute Y , let R = [x1..x2] × [y1..y2] be

the query rectangle. We first show how to compute a bit vector Z of length t, where
Z[i] = 1 iff there is a point from N whose y-coordinate is i and whose x-coordinates
are between (and including) x1 and x2. Let La,b and Lc,d be the two subblocks
whose ranges of x-coordinates contain x1 and x2, respectively. Assume that a < c
(the case in which a = c can be handled similarly). Then Z is the result of bitwise
OR operation on the the following five bit vectors of length t:

– Z1, where Z1[i] = 1 iff there is a point in blocks La+1, La+2, · · · , Lc−1 whose
y-coordinate is i;

– Z2, where Z2[i] = 1 iff there is a point in subblocks La,b+1, La,b+2, · · · , La,q

whose y-coordinate is i (let La,q be the last subblock in block La);
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– Z3, where Z3[i] = 1 iff there is a point in subblocks Lc,1, Lc,2, · · · , Lc,d−1
whose y-coordinate is i;

– Z4, where Z4[i] = 1 iff there is a point in subblock La,b that is in the query
rectangle and whose y-coordinate is i;

– Z5, where Z4[i] = 1 iff there is a point in subblock La,b that is in the query
rectangle and whose y-coordinate is i.

To compute Z1, we first observe that the corresponding range of indexes of
blocks is [a + 1..c− 1] = [a + 1, a + 2g]∪ [c− 2g, c− 1], where g = �lg(c− a− 2)�
(similar ideas were used by Bender and Farach-Colton to support range minimum
queries [18]). Hence Z1 is the result of bitwise OR operation on the bit vectors
stored in D[a + 1, g] and D[c − 2g, g]. Z2 and Z3 can be computed in a similar
way using Ea and Ec. Z4 and Z5 can be computed by performing table lookups
on F in constant time. Therefore, Z can be computed in constant time.

To compute Y using Z in O(k′) time, it suffices to support rank and select
operations on Y in constant time. As Y is of size t = O(lgε n), this can be
achieved by precomputing a table of o(n) bits [17].

To further report the points in R, we observe that we store the coordinates as
a sequence, S, of numbers in [1..t]. The data structures of Ferragina et al. [15]
designed for Lemma 2 has two parts: a compressed encoding of the sequence of
nH0(S) bits and an auxiliary data structure of O(s(n lg lg n)/ lgs n) bits. Their
data structures still work if we replace the first part by the uncompressed version
of the original sequence. Thus we can construct the auxiliary data structures in
Lemma 2 to support rank and select on S in constant time. As t = O(lgε n),
these data structures occupy O(n(lg lg n)2/ lg1−ε n) = o(n) bits. For each y-
coordinate, v, in Y , the set of the points in R whose y-coordinates are equal to v
can be computed by performing rank and select operations on S, which takes
constant time per point in the output. ��

As Lemma 3 and Lemma 4 both encode and store the coordinates in the same
sequence and build auxiliary structures of o(n) bits, we can combine them:

Lemma 5. Let N be a set of points from the universe M = [1..n]× [1..t], where
n = |N | and t = O(lgε n) for any constant ε such that 0 < ε < 1. If each point in
N has a distinct x-coordinate, the set N can be represented using n�lg t�+ o(n)
bits to support orthogonal range counting in O(1) time, and orthogonal range
reporting in O(k) time, where k is the size of the output.

3.2 Orthogonal Range Search on an n × n Grid

To design succinct data structures for range search in rank space, we first consider
range counting with the restriction that each point has a distinct x-coordinate.

Lemma 6. Let N be a set of points from the universe M = [1..n] × [1..n],
where n = |N |. If each point in N has a distinct x-coordinate, the set N can be
represented using n lg n + o(n lg n) bits to support orthogonal range counting in
O(lg n/ lg lg n) time.
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Proof. The main idea is to combine the techniques of Lemma 3 with the gen-
eralized wavelet tree structures proposed by Ferragina et al. [15] to design a
representation of N , based on which we design algorithms to support range
counting.

We construct our structure recursively; at each level, we construct an orthog-
onal range counting structure over a set of points whose y-coordinates are in
the range [1..t] using Lemma 3, where t = O(lgε n) for any constant ε such that
0 < ε < 1. At the first (i.e. top) level, we consider a conceptual point set N1
from the universe M1 = [1..n]× [1..t]. N1 can be obtained by dividing the range
of y-coordinates in the universe M into t ranges of the same size, and there
is a point (a, b) in N1 iff there is a point in N whose x-coordinate is a, and
whose y-coordinate is in the ith range. More precisely, if there is a point (x, y) in
N , then there is a point (x, �y/(n/t)�) in N1. We then construct an orthogonal
range counting structure, C1 for N1 using Lemma 3. Note that when we use
the approach of Lemma 3 to construct C1, we store the set N1 as a sequence
S1 over alphabet [t] in which S1[i] stores the y-coordinate of the point whose
x-coordinate is i. The approach of Lemma 2 can be used here to construct an
auxiliary structure of o(n) bits to support rank/select operations on S1 in con-
stant time. The space cost of the data structures constructed for the first level
is clearly n�lg t�+ o(n) bits.

At the second level, we consider t conceptual point sets N2,1, N2,2, · · · , N2,t.
The set N2,i is from the universe M2,i = [1..n2,i] × [1..t], which corresponds to
the ith range of y-coordinates of M for the level above (i.e. the first level), and
n2,i is the number of points in N whose y-coordinates are in this range. We
further divide this range into t subranges of the same size, such that the point
(x, y) is in N2,i iff there is a point in N1 whose x-coordinate is selectS1(i, x),
and whose y-coordinate is in the yth subrange of M2,i. Note that

∑t
i=1 n2,i = n.

Thus, if we combine all the universes M2,1, M2,2, · · · , M2,t such that the universe
M2,i−1 is adjacent and to the left of M2,i, we can get a universe M2 = [1..n]×
[1..t]. We also transform the coordinates of the points in N2,1, N2,2, · · · , N2,t

into coordinates in the universe M2, and denote the set that contains all these
(n) points N2. We construct an orthogonal range counting structure, C2, for N2
using Lemma 3 (same as S1, S2 denotes the corresponding string). We can count
the total number of points in the sets N2,1, N2,2, · · · , N2,j−1 in constant time for
any given j by performing range counting on C1. Thus, we can determine the
range of x-coordinates in C2 that correspond to the points in C2,i in constant
time, which allows us to use C2 to answer orthogonal range queries on each set
C2,i in constant time. We also construct the auxiliary structures of Lemma 2
to support rank/select operations on C2 in constant time, which can be further
used to support rank/select operations on each substring of S2 that corresponds
to the set C2,i. The total space of the data structures constructed for the second
level is thus n�lg t�+ o(n) bits.

We continue the above process recursively, and at each level l, we construct
t point sets for each point set considered at level l − 1. Figure 1 illustrates the
hierarchy of our structure. This structures use n�lg t� + o(n) bits for each level
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N1

N2,1 N2,2 · · · N2,t

N3,1 N3,2 · · · N3,t+1 N3,t+2 · · · N3,2t

· · ·

N3,t2−t+1 N3,t2−t+2 · · · N3,t2

N1

N2

N3N3,t

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · ·

Fig. 1. The hierarchy of the data structures in Lemma 6

to support orthogonal range counting in each point set at this level, as well as
rank/select operations on the substrings of Sl corresponding to each set. Note
that the substring of Sl and the sub-universe of Ml that correspond to any set
at this level can be located in a top-down traversal, performing range counting
at each level in constant time until we reach level l. We continue this process
until we can no longer divide a point set into t subsets (i.e. the y-coordinates of
the points in this set are from a range of size t in M). Thus our structures have
logt n levels, and the set of data structures for each level occupy n�lg t� + o(n)
bits. Therefore, the overall space of our structures is n lg n + o(n lg n) bits.

We now design a recursive algorithm to support orthogonal range count-
ing using our data structures. Let R = [x1..x2] × [y1..y2] be the query rect-
angle. We consider the case in which y2 − y1 ≥ n/t. Let z1 = �y1/(n/t)�
and z2 = �y2/(n/t)�. Then R can be partitioned into three query rectangles:
R1 = [x1..x2] × [y1..z1(n/t)], R2 = [x1..x2] × [z1(n/t) + 1..z2(n/t)] and R3 =
[x1..x2]× [z2(n/t) + 1..y2]. The result is the sum of the numbers, r1, r2 and r3,
of points in R1, R2 and R3, respectively. We observe that r2 can be computed
by performing an orthogonal range counting query over the structure C1, using
[x1..x2]× [z1..z2− 1] as the query rectangle. Thus we need only compute r1 (the
computation of r3 is similar). Note that R2 is the maximum sub-rectangle of R
whose range of y-coordinates starts with a multiple of n/t and whose width is
divisible by n/t, and we use C1 to compute the number of points in it. Using
the same strategy, we can compute the maximum sub-rectangle of R1 whose
range of y-coordinates starts with a multiple of n/t2 and whose width is di-
visible by n/t2, and we use C2,z1−1 to compute this result. To perform this
query on C2,z1−1, we need to scale down the range of x-coordinates of R1 to
[rankS1(z1 − 1, x1)..rankS1(z1 − 1, x2)]. The number of points in the remaining
part of R1 (note that they are all above this sub-rectangle) can be computed in a
recursive fashion using the same approach. Thus r1 can be computed by perform-
ing a top-down traversal to at most the bottom level, and we require constant
time per level. Therefore, r1 can be computed in O(logt n) = O(lg n/ lg lg n) time.
Hence we can compute r in O(lg n/ lg lg n) time. The case in which y2−y1 < n/t
can be handled similarly. ��
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We now remove the restriction that each point has a distinct x-coordinate:

Lemma 7. Let N be a set of points from the universe M = [1..n]× [1..n], where
n = |N |. N can be represented using n lg n + o(n lg n) bits to support orthogonal
range counting in O(lg n/ lg lg n) time.

Proof. We construct a point set N ′ whose points have distinct x-coordinates as
follows: Sort the points in N in increasing order using their x-coordinates as the
primary key and their y-coordinates as the secondary key. If the ith point in this
order has y-coordinate yi, we add the point (i, yi) into N ′. We also construct
a bit vector C to encode the number of points having the same x-coordinates.
More precisely, C = 10k110k2 · · · 10kn , where kj is the number of points whose
x-coordinates are j.

We represent N ′ using Lemma 6 with n lg n + o(n lg n) bits. There are n 1s
and n 0s in C, so we can represent C in 2n + o(n) bits using Lemma 1 to
support rank/select operations. The overall space cost of our data structures is
n lg n + o(n lg n) bits.

To answer an orthogonal range query, let R = [x1..x2]× [y1..y2] be the query
rectangle. Consider the points from N that is in R. We observe that the points in
N ′ corresponding to them are in the rectangle R′ = [rankC(0, selectC(1, x1))+
1..rankC(0, selectC(1, x2+1))]×[y1..y2]. Thus we need only perform an orthog-
onal range counting query on N ′ using R′ as the query rectangle. ��

Lemma 8. Let N be a set of points from the universe M = [1..n]× [1..n], where
n = |N |. N can be represented using n lg n + o(n lg n) bits to support orthogonal
range reporting in O(k lg n/ lg lg n) time, where k is the size of the output.

Proof. We only consider the case in which each point has a distinct x-coordinate;
the approach in Lemma 7 can be used to extend this to the more general case.

We use the approach of Lemma 6 to construct a hierarchy of structures.
The only difference is that at each level i, we use Lemma 4 to construct Ci

to support range reporting on Ni. The same algorithm can be used to support
orthogonal range reporting; at each level we report a set of points in the an-
swer. The challenge here is how to get the original coordinates of each point
reported at the ith level. Let (x, y) be the coordinates of a point, v, reported
in the set Nj,k. Then the set Nj−1,
k/t� contains v in the level above. Note
that in previous steps, we have computed the number, u, of points in the sets
Nj−1,1, Nj−1,2, · · · , Nj−1,
k/t�−1. The x-coordinate of the point in Nj,k corre-
sponding to v is selectSj−1(k, x + rankSj−1(k, u)) − u). Using this approach,
we can go up one level at a time, until we reach the top level, where we get
the original x-coordinate of v. Thus the x-coordinate of v can be computed in
O(lg n/ lg lg n) time. To retrieve the y-coordinate of v, we use the fact that each
successive level (after level i) divides the range in N corresponding to each y-
coordinate at the level above into t ranges of the same size. Thus, by going down
our hierarchy of structures until reaching the bottom level, we can compute the
original y-coordinate of v. This can be performed in O(lg n/ lg lg n) time. ��
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Combing Lemma 7 and Lemma 8, we have our main result:

Theorem 1. Let N be a set of points from the universe M = [1..n] × [1..n],
where n = |N |. N can be represented using n lg n + o(n lg n) bits to support
orthogonal range counting in O(lg n/ lg lg n) time, and orthogonal range reporting
in O(k lg n/ lg lg n) time, where k is the size of the output.

4 Applications

Substring search. The succinct text index of Chien et al. [2] uses the succinct
orthogonal range search structure of Mäkinen and Navarro [1]. Thus, we can
speed up substring search by using our structure in Theorem 1:

Theorem 2. A text string T of length n over an alphabet of size σ can be
encoded in O(n lg σ) bits to support substring search in O(m + lg n(lgσ n +
occ lg n)/ lg lg n) time, where m is the length of the query substring, and occ
is the number of its occurrences in T .

Position-restricted substring search. As Mäkinen and Navarro [1] designed
a text index that supports position-restricted substring search by reducing this
problem to orthogonal range search on a grid, we can improve their result by
applying Theorem 1:

Theorem 3. Given a text string T of length n over an alphabet of size σ, there
is an index of O(3n lg n) bits that supports position-restricted range search in
O(m+ occ(lg n)/ lg lg n) time, where m is the length of the query substring, and
occ is the number of its occurrences in T .

Sequences of small numbers. Lemma 2 is interesting only if s = o(lg n/ lg lg n)
because otherwise, the second term in its space bound becomes a dominating term.
Thus, Ferragina et al. [15] designed another approach to encode a sequence, S, of n
integers bounded by s = polylog(n) in nH0(S)+o(n) bits to support rank/select
operations in constant time. We can further extend their representation to sup-
port one more operation: retrieving the entries in any given subsequence of S
whose values are in a given range. This is equivalent to the problem of supporting
range search on an n × t grid where t = polylog(n) (each point has a distinct
x-coordinate). If we apply the techniques in Section 3.2 to this problem, we only
build a constant number of levels of structures. The approach in [15] can also be
applied here to achieve compression. Thus:

Theorem 4. A sequence, S, of n numbers in [1..s], where s = polylog(n), can
be encoded in nH0(S) + o(n) bits such that given a range, [p1..p2], of positions
in S and a range, [v1..v2], of values, the number of entries in S[p1..p2] whose
values are in the range [v1..v2] can be computed in constant time. These entries
can be listed in O(k) time, where k is the size of the output. The access to each
number, rank and select operations can also be supported in O(1) time.
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A restricted version of orthogonal range search. We consider a restricted
version of range search (a weaker operation was proposed by Bauernöppel et
al. [16]) and we have the following theorem (we omit the proof):

Theorem 5. A point set N in the plane can be encoded in cn+n lg n+o(n lg n)
bits, where n = |N | and c is the number of bits required to encode the coordinate
pair of each point, to support orthogonal range counting in O(lg n/ lg lg n) time
and orthogonal range reporting in O(k lg n/ lg lg n) time (k is the size of the
output) if the query rectangle is defined by two points in N .
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Abstract. The time required for a sequence of operations on a data
structure is usually measured in terms of the worst possible such se-
quence. This, however, is often an overestimate of the actual time re-
quired. Distribution-sensitive data structures attempt to take advantage
of underlying patterns in a sequence of operations in order to reduce time
complexity, since access patterns are non-random in many applications.
Unfortunately, many of the distribution-sensitive structures in the liter-
ature require a great deal of space overhead in the form of pointers. We
present a dictionary data structure that makes use of both randomiza-
tion and existing space-efficient data structures to yield very low space
overhead while maintaining distribution sensitivity in the expected sense.

1 Introduction

For the dictionary problem, we would like to efficiently support the operations of
Insert, Delete and Search over some totally ordered universe. There exist
many such data structures: AVL trees [1], red-black trees [7] and splay trees [11],
for instance. Splay trees are of particular interest because they are distribution-
sensitive, that is, the time required for certain operations can be measured in
terms of the distribution of those operations. In particular, splay trees have
the working set property, which means that the time required to search for an
element is logarithmic in the number of distinct accesses since that element was
last searched for. Splay trees are not the only dictionary to provide the working
set property; the working set structure [8], the unified structure [2] and a variant
of the skip list [3] also have it.

Unfortunately, such dictionaries often require a significant amount of space
overhead. Indeed, this is a problem with data structures in general. Space over-
head often takes the form of pointers: a binary search tree, for instance, might
have three pointers per node in the tree: one to the parent and one to each child.
If this is the case and we assume that pointers and keys have the same size, then
it is easy to see that 3/4 of the storage used by the binary search tree consists
of pointers. This seems to be wasteful, since we are really interested in the data
itself and would rather not invest such a large fraction of space in overhead.
� This research was partially supported by NSERC and MRI.
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To remedy this situation, there has been a great deal of research in the area of
implicit data structures. An implicit data structure uses only the space required
to hold the data itself (in addition to only a constant number of words, each of
size O(log n) bits). Implicit dictionaries are a particularly well-studied problem
[4,6,10].

Our goal is to combine notions of distribution sensitivity with ideas from
implicit dictionaries to yield a distribution-sensitive dictionary with low space
overhead.

1.1 Our Results

In this paper, we present a dictionary data structure with worst-case insertion
and deletion times O(log n) and expected search time O(log t(x)), where x is the
key being searched for and t(x) is the number of distinct queries made since x
was last searched for, or n if x has not yet been searched for. The space overhead
required for this data structure is O(log log n), i.e., O(log log n) additional words
of memory (each of size O(log n) bits) are required aside from the data itself.
Current data structures that can match this query time include the splay tree
[11] (in the amortized sense) and the working set structure [8] (in the worst
case), although these require 3n and 5n pointers respectively, assuming three
pointers per node (one parent pointer and two child pointers). We also show
how to modify this structure (and by extension the working set structure [8])
to support predecessor queries in time logarithmic in the working set number of
the predecessor.

The rest of the paper is organized in the following way. Section 2 briefly
summarizes the working set structure [8] and shows how to modify it to reduce
its space overhead. Section 3 shows how to modify the new dictionary to support
more useful queries with additional–but sublinear–overhead. These modifications
are also applicable to the working set structure [8] and make both data structures
considerably more useful. Section 4 concludes with possible directions for future
research.

2 Modifying the Working Set Structure

In this section, we describe the data structure. We will begin by briefly summa-
rizing the working set structure [8]. We then show how to use randomization to
remove the queues from the working set structure, and finally how to shrink the
size of the trees in the working set structure.

2.1 The Working Set Structure

The working set structure [8] consists of k balanced binary search trees T1, . . . , Tk

and k queues Q1, . . . , Qk. Each queue has precisely the same elements as its
corresponding tree, and the size of Ti and Qi is 22i

, except for Tk and Qk which
simply contain the remaining elements. Therefore, since there are n elements,
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k = O(log log n). The structure is manipulated with a shift operation in the
following manner. A shift from i to j is performed by dequeuing an element
from Qi and removing the corresponding element from Ti. The removed element
is then inserted into the next tree and queue (where “next” refers to the tree
closer to Tj), and the process is repeated until we reach Tj and Qj . In this
manner, the oldest elements are removed from the trees every time. The result
of a shift is that the size of Ti and Qi has decreased by one and the size of Tj

and Qj has increased by one.
Insertions are made by performing a usual dictionary insertion into T1 and

Q1, and then shifting from the first index to the last index. Such a shift makes
room for the newly inserted element in the first tree and queue by moving the
oldest element in each tree and queue down one index. Deletions are accom-
plished by searching for the element and deleting it from the tree (and queue)
it was found in, and then shifting from the last index to the index the element
was found at. Such a shift fills in the gap created by the removed element by
bringing elements up from further down the data structure. Finally, a search is
performed by searching successively in T1, T2, . . . , Tk until the element is found.
This element is then removed from the tree and queue in which it was found and
inserted into T1 and Q1 in the manner described previously. By performing this
shift, we ensure that elements searched for recently are towards the front of the
data structure and will therefore by found quickly on subsequent searches.

The working set structure was shown by Iacono [8] to have insertion and
deletion costs of O(log n) and a search cost of O(log t(x)), where x is the key
being searched for and t(x) is the number of distinct queries made since x was
last searched for, or n if x has not yet been searched for. To see that the search
cost is O(log t(x)), consider that if x is found in Ti, it must have been dequeued
from Qi−1 at some point. If this is the case, then 22i−1

accesses to elements other
than x have taken place since the last access to x, and therefore t(x) ≥ 22i−1

.
Since the search time for x is dominated by the search time in the tree it was
found in, the cost is O

(
log 22i

)
= O(log t(x)).

2.2 Removing the Queues

Here we present a simple use of randomization to remove the queues from the
working set structure. Rather than relying on the queue to inform the shifting
procedure of the oldest element in the tree, we simply pick a random element in
the tree and treat it exactly as we would the dequeued element. Lemma 1 shows
that we still maintain the working set property in the expected sense.

Lemma 1. The expected search cost in the randomized working set structure is
O(log t(x)).

Proof. Fix an element x and let t = t(x) denote the number of distinct accesses
since x was last accessed. Suppose that x is in Ti and a sequence of accesses occurs
during which t distinct accesses occur. Since Ti has size 22i

, the probability that
x is not removed from Ti during these accesses is at least
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Pr{x not removed from Ti after t accesses} ≥
(

1− 1
22i

)t

=
(

1− 1
22i

) t22
i

22i

≥
(

1
4

) t

22i

Now, if x ∈ Ti, it must have been selected for removal from Ti−1 at some
point. The probability that x is in at least the i-th tree is therefore at most

Pr{x ∈ Tj for j ≥ i} ≤ 1−
(

1
4

) t

22i−1

An upper bound on the expectation E[S] of the search cost S is therefore

E[S] =
k∑

i=1

O(log |Ti|)× Pr{x ∈ Ti}

≤
k∑

i=1

O(log |Ti|)× Pr{x ∈ Tj for j ≥ i}

≤
k∑

i=1

O
(
log
(
22i
))(

1−
(

1
4

) t

22i−1
)

=
k∑

i=1

O
(
2i
)(

1−
(

1
4

) t

22i−1
)

=
�log log t∑

i=1

O
(
2i
)(

1−
(

1
4

) t

22i−1
)

+
k∑

i=1+�log log t
O
(
2i
)(

1−
(

1
4

) t

22i−1
)

= O(log t) +
k−�log log t∑

i=1

O
(
2i+�log log t

)(
1−

(
1
4

) t

22
(i+�log log t�)−1

)

= O(log t) + O(log t)
k−�log log t∑

i=1

O
(
2i
)(

1−
(

1
4

) t

22
(i+�log log t�)−1

)

≤ O(log t) + O(log t)
k−�log log t∑

i=1

O
(
2i
)(

1−
(

1
4

) t

22i log t

)

= O(log t) + O(log t)
k−�log log t∑

i=1

O
(
2i
)(

1−
(

1
4

) 1

t2i−1

)
It thus suffices to show that the remaining sum is O(1). We will assume that

t ≥ 2, since otherwise x can be in at most the second tree and can therefore be
found in O(1) time. Considering only the remaining sum, we have
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k−�log log t∑
i=1

O
(
2i
)(

1−
(

1
4

) 1

t2i−1

)
≤

k−�log log t∑
i=1

O
(
2i
)(

1−
(

1
4

) 1

22i−1

)

≤
k−�log log t∑

i=1

O
(
2i
)(

1−
(

1
16

) 1

22i

)

≤
∞∑

i=1

O
(
2i
)(

1−
(

1
16

) 1

22i

)

All that remains to show is that this infinite sum is bounded by a decreasing
geometric series (and is therefore constant.) The ratio of consecutive terms is

lim
i→∞

2i+1
(
1−

( 1
16

) 1

22i+1
)

2i
(
1−

( 1
16

) 1

22i

) = 2 lim
i→∞

(
1−

( 1
16

) 1

22i+1
)

(
1−

( 1
16

) 1

22i

)
If we substitute u = 1

22i , we find that 1
22i+1 = u2. Observe that as i→∞, we

have u→ 0. Thus

2 lim
i→∞

(
1−

( 1
16

) 1

22i+1
)

(
1−

( 1
16

) 1

22i

) = 2 lim
u→0

(
1−

( 1
16

)u2)
(
1−

( 1
16

)u) = 2 lim
u→0

8
( 1

16

)u2

u ln 2

4
( 1

16

)u ln 2
= 0

Therefore, the ratio of consecutive terms is o(1) and the series is therefore
bounded by a decreasing geometric series. An expected search time of O(log t(x))
follows.

At this point, we have seen how to eliminate the queues from the structure at a
cost of an expected search cost. In the next section, we will show how to further
reduce space overhead by shrinking the size of the trees.

2.3 Shrinking the Trees

Another source of space overhead in the working set structure is that of the trees.
As mentioned before, many pointers are required to support a binary search tree.
Instead, we will borrow some ideas from the study of implicit data structures.
Observe that there is nothing special about the trees used in the working set
structure: they are simply dictionary data structures that support logarithmic
time queries and update operations. In particular, we do not rely on the fact
that they are trees. Therefore, we can replace these trees with one of the many
implicit dictionary data structures in the literature (see, e.g., [4,5,6,10].) The
dictionary of Franceschini and Grossi [5] provides a worst-case optimal implicit
dictionary with access costs O(log n), and so we will employ these results.1

1 It is useful to note that any dictionary that offers polylogarithmic access times will
yield the same results: the access cost for each operation in our data structure will
be the maximum of the access costs for the substructure, since the shifting operation
consists of searches, insertions and deletions in the substructures.
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Unfortunately, the resulting data structure is not implicit in the strict sense.
Since each substructure can use O(1) words of size O(log n) bits and we have
O(log log n) such substructures, the data structure as a whole could use as much
as O(log log n) words of size O(log n) bits each. Nevertheless, this is a signifi-
cant improvement over the O(n) additional words used by the traditional data
structures. We have

Theorem 1. There exists a dictionary data structure that stores only the data
required for its elements in addition to O(log log n) words of size O(log n) bits
each. This dictionary supports insertions and deletions in worst-case O(log n)
time and searches in expected O(log t(x)) time, where t(x) is the working set
number of the query x.

3 Further Modifications

In this section, we describe a simple modification to the data structure outlined
in Section 2 that makes searches more useful. This improvement comes at the
cost of additional space overhead.

Until now, we have implicitly assumed that searches in our data structure are
successful. If they are not, then we will end up searching in each substructure
at a total cost of O(log n) and returning nothing. Unfortunately, this is not very
useful.2 Typically, a dictionary will return the largest element in the dictionary
that is smaller than the element searched for or the smallest element larger
than the element searched for. Such predecessor and successor queries are a
very important feature of comparison-based data structures: without them, one
could simply use hashing to achieve O(1) time operations. Predecessor queries
are simple to implement in binary search trees since we can simply examine
where we “fell off” the tree. This trick will not work in our data structure,
however, since we have many such substructures and we will have to know when
to stop.

Our goal is thus the following. Given a search key x, we would (as before) like
to return x in time O(log t(x)) if x is in the data structure. If x is not in the
data structure, we would like to like to return pred(x) in time O(log t(pred(x))),
where pred(x) denotes the predecessor of x.

To accomplish this, we will augment our data structure with some pointers. In
particular, every item in the data structure will have a pointer to its successor.
During an insertion, each substructure will be searched for the inserted element
for a total cost of O(log n) and the smallest successor in each substructure will
be recorded. The smallest such successor is clearly the new element’s successor in
the whole structure. Therefore, the cost of insertion remains O(log n). Similarly,
during a deletion only the predecessor of the deleted element will need to have its
successor pointer updated and thus the total cost of deletion remains O(log n).

During a search for x, we proceed as before. Consider searching in any par-
ticular substructure i. If the result of the search in substructure i is in fact x,
2 Note that this is also true of the original working set structure [8]. The modifications

described here are also applicable to it.
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then the analysis is exactly the same as before and we can return x in time
O(log t(x)). Otherwise, we won’t find x in substructure i. In this case, we search
substructure i for the predecessor (in that substructure) of x.3 Denote this el-
ement by predi(x). Since every element knows its successor in the structure as
a whole, we can determine succ(predi(x)). If succ(predi(x)) = x, then we know
that x is indeed in the structure and thus the query can be completed as before.
If succ(predi(x)) < x, then we know that there is still an element smaller than x
but larger than what we have seen, and so we continue searching for x. Finally, if
succ(predi(x)) > x, then we have reached the largest element less than or equal
to x, and so our search stops.

In any case, after we find x or pred(x), we shift the element we returned to
the first substructure as usual. The analysis of the time complexity of this search
algorithm is exactly the same as before; we are essentially changing the element
we are searching for during the search. The search time for the substructure we
stop in dominates the cost of the search and since we return x if we found it
or pred(x) otherwise, the search time is O(log t(x)) if x is in the dictionary and
O(log t(pred(x))) otherwise.

Of course, this augmentation incurs some additional space overhead. In par-
ticular, we now require n pointers, resulting in a space overhead of O(n). While
the queues are now gone, we still have one pointer for each element in the dictio-
nary. To fix this, observe that we can leave out the pointers for the last few trees
and simply do a brute-force search at the cost of slightly higher time complex-
ity. Suppose we leave the pointers out of the last j trees: Tk−j+1 to Tk, where
k represents the index of the last tree, as before. Therefore, each element x in
the trees T1, . . . , Tk−j has a pointer to succ(x). Now, suppose we are searching
in the data structure and get to Tk−j+1. At this point, we may need to search
all remaining trees, since if we do not find the key we are looking for, we have
no way of knowing when we have found its predecessor. Consider the following
lemma.

Lemma 2. Let 0 ≤ j ≤ k. A predecessor search for x takes expected time
O
(
2j log t(x)

)
if x is in the dictionary and O

(
2j log t(pred(x))

)
otherwise.

Proof. Assume the search reaches Tk−j+1, since otherwise our previous analyses
apply. We therefore have t(x) ≥ 22k−j

, since at least 22k−j

operations have taken
place.4 As before, the search time is bounded by the search time in Tk. Since Tk

has size at most 22k

, we have an expected search time of

O
(
log 22k

)
= O

(
log 22k−j2j

)
= O

(
2j log 22k−j

)
≤ O

(
2j log t(x)

)
This analysis applies as well when x is not in the dictionary. In this case, the

search can be accomplished in time O
(
2j log t(pred(x))

)
.

3 Here we are assuming that substructures support predecessor queries in the same
time required for searching. This is not a strong assumption, since any comparison-
based dictionary must compare x to succ(x) and pred(x) during an unsuccessful
search for x.

4 This follows from Lemma 1, which is why the results here hold in the expected sense.
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One further consideration is that once an element is found in the last j trees,
we need to find its successor so that it knows where it is once it is shifted to
the front. However, this is straightforward because we have already examined all
substructures in the data structure and so we can make a second pass. It remains
to consider how much space we have saved using this scheme. Since each tree has
size the square of the previous, by leaving out the last j trees, the total number
of extra pointers used is O

(
n1/2j

)
. We therefore have

Theorem 2. Let 0 ≤ j ≤ k. There exists a dictionary that stores only the data
required for its elements in addition to O

(
n1/2j

)
words of size O(log n) bits each.

This dictionary supports insertions and deletions in worst-case O(log n) time
and searches in expected O

(
2j log t(x)

)
time if x is found in the dictionary and

expected O
(
2j log t(pred(x))

)
time otherwise (in which case pred(x) is returned).

Observe that j ≤ k = O(log log n), and so while the dependence on j is expo-
nential, it is still quite small relative to n. In particular, take j = 1 to get

Corollary 1. There exists a dictionary that stores only the data required for
its elements in addition to O(

√
n) words of size O(log n) bits each. This dictio-

nary supports insertions and deletions in worst-case O(log n) time and searches
in expected O(log t(x)) time if x is found in the dictionary. If x is not in the
dictionary, pred(x) is returned in expected O(log t(pred(x))) time.

4 Conclusion

We have seen how to modify the Iacono’s working set structure [8] in several
ways. To become more space efficient, we can remove the queues and use ran-
domization to shift elements, while replacing the underlying binary search trees
with implicit dictionaries. To support more useful search queries, we can sac-
rifice some space overhead to maintain information about some portion of the
elements in the dictionary in order to support returning the predecessor of any
otherwise unsuccessful search queries. All such modifications maintain the work-
ing set property in an expected sense.

4.1 Future Work

The modifications described in this paper leave open a few directions for research.
The idea of relying on the properties of the substructures (in this case, im-

plicitness) proved fruitful. A natural question to ask, then, is what other sub-
structure properties can carry over to the dictionary as a whole in a useful way?
Other substructures could result in a combination of the working set property
and some other useful properties.

In this paper, we concerned ourselves with the working set property. There are
other types of distribution sensitivity, such as the dynamic finger property, which
means that query time is logarithmic in the rank difference between successive



118 P. Bose, J. Howat, and P. Morin

queries. A sorted array, for example, has the dynamic finger property (assuming
we keep a pointer to the result of the previous query) but does not support
efficient updates. One could also consider a notion complementary to the idea of
the working set property, namely the queueish property [9], wherein query time
is logarithmic in the number of items not accessed since the query item was last
accessed. Are there implicit dictionaries that provide either of these properties?
Could we provide any of these properties (or some analogue of them) for other
types of data structures?

Finally, it would be of interest to see if a data structure that does not rely on
randomization is possible, in order to guarantee a worst case time complexity of
O(log t(x)) instead of an expected one.
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Abstract. This paper provides a systematic study of several proposed
measures for online algorithms in the context of a specific problem,
namely, the two server problem on three colinear points. Even though the
problem is simple, it encapsulates a core challenge in online algorithms
which is to balance greediness and adaptability. We examine Competi-
tive Analysis, the Max/Max Ratio, the Random Order Ratio, Bijective
Analysis and Relative Worst Order Analysis, and determine how these
measures compare the Greedy Algorithm and Lazy Double Coverage,
commonly studied algorithms in the context of server problems. We find
that by the Max/Max Ratio and Bijective Analysis, Greedy is the better
algorithm. Under the other measures, Lazy Double Coverage is better,
though Relative Worst Order Analysis indicates that Greedy is some-
times better. Our results also provide the first proof of optimality of an
algorithm under Relative Worst Order Analysis.

1 Introduction

Since its introduction by Sleator and Tarjan in 1985 [16], Competitive Analy-
sis has been the most widely used method for evaluating online algorithms. A
problem is said to be online if the input to the problem is given a piece at a
time, and the algorithm must commit to parts of the solution over time before
the entire input is revealed to the algorithm. Competitive Analysis evaluates an
online algorithm in comparison to the optimal offline algorithm which receives
the input in its entirety in advance and has unlimited computational power in
determining a solution. Informally speaking, we look at the worst-case input
which maximizes the ratio of the cost of the online algorithm for that input
to the cost of the optimal offline algorithm on that same input. The maximum
ratio achieved is called the Competitive Ratio. Thus, we factor out the inherent
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difficulty of a particular input (for which the offline algorithm is penalized along
with the online algorithm) and measure what is lost in making decisions with
partial information.

Despite the popularity of Competitive Analysis, researchers have been well
aware of its deficiencies and have been seeking better alternatives almost since
the time that it came into wide use. (See [9] for a recent survey.) Many of
the problems with Competitive Analysis stem from the fact that it is a worst
case measure and fails to examine the performance of algorithms on instances
that would be expected in a particular application. It has also been observed
that Competitive Analysis sometimes fails to distinguish between algorithms
which have very different performance in practice and intuitively differ in
quality.

Over the years, researchers have devised alternatives to Competitive Analysis,
each designed to address one or all of its shortcomings. There are exceptions,
but it is fair to say that many alternatives are application-specific, and very
often, these papers only present a direct comparison between a new measure
and Competitive Analysis.

This paper is a study of several generally-applicable alternative measures for
evaluating online algorithms that have been suggested in the literature. We per-
form this comparison in the context of a particular problem: the 2-server problem
on the line with three possible request points, nick-named here the baby server
problem. Investigating simple k-servers problems to shed light on new ideas has
also been done in [2], for instance.

We concentrate on two algorithms (Greedy and Lazy Double Coverage

(Ldc) [8]) and four different analysis techniques (measures): Bijective Analysis,
the Max/Max Ratio, Random Order Ratio and Relative Worst Order Analysis.

In investigating the baby server problem, we find that according to some
quality measures for online algorithms, Greedy is better than Ldc, whereas for
others, Ldc is better than Greedy.

The ones that conclude that Ldc is best are focused on a worst-case sequence
for the ratio of an algorithm’s cost compared to Opt. In the case of Greedy and
Ldc, this conclusion makes use of the fact that there exists a family of sequences
for which Greedy’s cost is unboundedly larger than the cost of Opt, whereas
Ldc’s cost is always at most a factor two larger than the cost of Opt.

On the other hand, the measures that conclude that Greedy is best compare
two algorithms based on the multiset of costs stemming from the set of all
sequences of a fixed length. In the case of Greedy and Ldc, this makes use of
the fact that for any fixed n, both the maximum as well as the average cost of
Ldc over all sequences of length n are greater than the corresponding values for
Greedy.

Using Relative Worst Order Analysis a more nuanced result is obtained, con-
cluding that Ldc can be a factor at most two worse than Greedy, while Greedy

can be unboundedly worse than Ldc.
All omitted proofs may be found in the full version of the paper [7].
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2 Preliminaries

2.1 The Server Problem

Server problems [4] have been the objects of many studies. In its full generality,
one assumes that some number k of servers are available in some metric space.
Then a sequence of requests must be treated. A request is simply a point in
the metric space, and a k-server algorithm must move servers in response to the
request to ensure that at least one server is placed on the request point. A cost
is associated with any move of a server (this is usually the distance moved in
the given metric space), and the objective is to minimize total cost. The initial
configuration (location of servers) may or may not be a part of the problem
formulation.

In investigating the strengths and weaknesses of the various measures for the
quality of online algorithms, we define the simplest possible nontrivial server
problem:

Definition 1. The baby server problem is a 2-server problem on the line with
three possible request points A, B, and C, in that order from left to right, with
distance one between A and B and distance d > 1 between B and C. The cost
of moving a server is defined to be the distance it is moved. We assume that
initially the two servers are placed on A and C.

All results in the paper pertain to this problem. Even though the problem is
simple, it contains a core k-server problem of balancing greediness and adapt-
ability, and this simple set-up is sufficient to show the non-competitiveness of
Greedy with respect to Competitive Analysis [4].

2.2 Server Algorithms

First, we define some relevant properties of server algorithms:

Definition 2. A server algorithm is called

– noncrossing if servers never change their relative position on the line.
– lazy [15] if it never moves more than one server in response to a request and

it does not move any servers if the requested point is already occupied by a
server.

A server algorithm fulfilling both these properties is called compliant.

Given an algorithm, A, we define the algorithm lazy A, LA, as follows: LA will
maintain a virtual set of servers and their locations as well as the real set of
servers in the metric space. There is a one-to-one correspondence between real
servers and virtual servers. The virtual set will simulate the behavior of A. The
initial server positions of the virtual and real servers are the same. Whenever
a virtual server reaches a request point, the corresponding real server is also
moved to that point (unless both virtual servers reach the point simultaneously,
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in which case only the physically closest is moved there). Otherwise the real
servers do not move.

In [8], it was observed that for any 2-server algorithm, there exists a non-
crossing algorithm with the same cost on all sequences. In [15], it was observed
that for an algorithm A and its lazy version LA, for any sequence I of requests,
A(I) ≥ LA(I) (we refer to this as the laziness obervation). Note that the lazi-
ness observation applies to the general k-server problem in metric spaces, so
the results which depend on it can also be generalized beyond the baby server
problem.

We define a number of algorithms by defining their behavior on the next re-
quest point, p. For all algorithms, no moves are made if a server already occupies
the request point (though internal state changes are sometimes made in such a
situation).

Greedy moves the closest server to p. Note that due to the problem formu-
lation, ties cannot occur (and the server on C is never moved).

If p is in between the two servers, Double Coverage (Dc), moves both servers
at the same speed in the direction of p until at least one server reaches the point.
If p is on the same side of both servers, the nearest server moves to p.

We define a-Dc to work in the same way as Dc, except that the right-most
server moves at a speed a ≤ d times faster than the left-most server.

We refer to the lazy version of Dc as Ldc and the lazy version of a-Dc as
a-Ldc.

The balance algorithm [15], Bal, makes its decisions based on the total dis-
tance travelled by each server. For each server, s, let ds denote the total distance
travelled by s from the initiation of the algorithm up to the current point in
time. On a request, Bal moves a server, aiming to obtain the smallest possible
maxs ds value after the move. In case of a tie, Bal moves the server which must
move the furthest.

If p is in between the two servers, Dummy moves the server that is furthest
away to the request point. If p is on the same side of both servers, the nearest
server moves to p. Again, due to the problem formulation, ties cannot occur (and
the server on A is never moved).

2.3 Quality Measures

In analyzing algorithms for the baby server problem, we consider input sequences
I of request points. An algorithm A, which treats such a sequence has some cost,
which is the total distance moved by the two servers. This cost is denoted by
A(I). Since I is of finite length, it is clear that there exists an offline algorithm
with minimal cost. By Opt, we refer to such an algorithm and Opt(I) denotes
the unique minimal cost of processing I.

All of the measures described below can lead to a conclusion as to which
algorithm of two is better. In contrast to the others, Bijective Analysis does not
indicate how much better the one algorithm might be; it does not produce a
ratio, as the others do.
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Competitive Analysis: In Competitive Analysis [11,16,12], we define an al-
gorithm A to be c-competitive if there exists a constant α such that for all input
sequences I, A(I) ≤ cOpt(I) + α.

The Max/Max Ratio: The Max/Max Ratio [3] compares an algorithm’s worst
cost for any sequence of length n to Opt’s worst cost for any sequence of length n.
The Max/Max Ratio of an algorithm A, wM (A), is M(A)/M(Opt), where

M(A) = lim sup
t→∞

max
|I|=t

A(I)/t.

The Random Order Ratio: Kenyon [13] defines the Random Order Ratio to
be the worst ratio obtained over all sequences, comparing the expected value of
an algorithm, A, with respect to a uniform distribution of all permutations of a
given sequence, to the value of Opt of the given sequence:

lim sup
Opt(I)→∞

Eσ [A(σ(I))]
Opt(I)

The original context for this definition is Bin Packing for which the optimal
packing is the same, regardless of the order in which the items are presented.
Therefore, it does not make sense to take an average over all permutations for
Opt. For server problems, however, the order of requests in the sequence may
very well change the cost of Opt. We choose to generalize the Random Order
Ratio as shown to the left, but for the results presented here, the definition to
the right would give the same:

lim sup
Opt(I)→∞

Eσ [A(σ(I))]
Eσ [Opt(σ(I))]

lim sup
Opt(I)→∞

Eσ

[
A(σ(I))

Opt(σ(I))

]

Bijective Analysis and Average Analysis: In [1], Bijective and Average
Analysis are defined, as methods of comparing two online algorithms directly.
We adapt those definitions to the notation used here. As with the Max/Max
Ratio and Relative Worst Order Analysis, the two algorithms are not necessarily
compared on the same sequence.

In Bijective Analysis, the sequences of a given length are mapped, using a
bijection onto the same set of sequences. The performance of the first algorithm
on a sequence, I, is compared to the performance of the second algorithm on the
sequence I is mapped to. If In denotes the set of all input sequences of length
n, then an online algorithm A is no worse than an online algorithm B according
to Bijective Analysis if there exists an integer n0 ≥ 1 such that for each n ≥ n0,
there is a bijection f : In → In satisfying A(I) ≤ B(f(I)) for each I ∈ In.

Average Analysis can be viewed as a relaxation of Bijective Analysis. An
online algorithm A is no worse than an online algorithm B according to Average
Analysis if there exists an integer n0 ≥ 1 such that for each n ≥ n0, ΣI∈InA(I) ≤
ΣI∈InB(I).
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Relative Worst Order Analysis: Relative Worst Order Analysis was intro-
duced in [5] and extended in [6]. It compares two online algorithms directly. As
with the Max/Max Ratio, it compares two algorithms on their worst sequence in
the same part of a partition. The partition is based on the Random Order Ratio,
so that the algorithms are compared on sequences having the same content, but
possibly in different orders.

Definition 3. Let I be any input sequence, and let n be the length of I. If σ is
a permutation on n elements, then σ(I) denotes I permuted by σ. Let A be any
algorithm. Then, A(I) is the cost of running A on I, and

AW(I) = max
σ

A(σ(I)).

Definition 4. For any pair of algorithms A and B, we define

cl(A, B) = sup {c | ∃b : ∀I : AW(I) ≥ c BW(I) − b} and
cu(A, B) = inf {c | ∃b : ∀I : AW(I) ≤ c BW(I) + b} .

If cl(A, B) ≥ 1 or cu(A, B) ≤ 1, the algorithms are said to be comparable and
the Relative Worst-Order Ratio WRA,B of algorithm A to algorithm B is defined.
Otherwise, WRA,B is undefined.

If cl(A, B) ≥ 1, then WRA,B = cu(A, B), and

if cu(A, B) ≤ 1, then WRA,B = cl(A, B) .

If WRA,B < 1, algorithms A and B are said to be comparable in A’s favor.
Similarly, if WRA,B > 1, the algorithms are said to be comparable in B’s favor.

Definition 5. Let cu be defined as in Definition 4. If at least one of the ratios
cu(A, B) and cu(B, A) is finite, the algorithms A and B are (cu(A, B), cu(B, A))-
related.

Definition 6. Let cu(A, B) be defined as in Definition 4. Algorithms A and B

are weakly comparable in A’s favor, 1) if A and B are comparable in A’s favor,
2) if cu(A, B) is finite and cu(B, A) is infinite, or 3) if cu(A, B) ∈ o(cu(B, A)).

3 Competitive Analysis

The k-server problem has been studied using Competitive Analysis starting
in [14]. In [8], it is shown that the competitive ratios of Dc and Ldc are k,
which is optimal, and that Greedy is not competitive.

4 The Max/Max Ratio

In [3], a concrete example is given with two servers and three non-colinear points.
It is observed that the Max/Max Ratio favors the greedy algorithm over the
balance algorithm, Bal.

Bal behaves similarly to Ldc and identically on Ldc’s worst case sequences.
The following theorem shows that the same conclusion is reached when the three
points are on the line.
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Theorem 1. Greedy is better than Ldc on the baby server problem with re-
spect to the Max/Max Ratio.

It follows from the proof of this theorem that Greedy is close to optimal with
respect to the Max/Max Ratio, since the cost of Greedy divided by the cost of
Opt tends toward one for large d.

Since Ldc and Dc perform identically on their worst sequences of any given
length, they also have the same Max/Max Ratio.

5 The Random Order Ratio

The Random Order Ratio correctly distinguishes between Dc and Ldc, indicat-
ing that the latter is the better algorithm.

Theorem 2. Ldc is better than Dc according to the Random Order Ratio.

Proof. For any sequence I, Eσ[Dc(σ(I))] ≥ Eσ[Ldc(σ(I))], by the laziness ob-
servation. Let I = (ABC)n. Whenever the subsequence CABC occurs in σ(I),
Dc moves a server from C towards B and back again, while moving the other
server from A to B. In contrast, Ldc lets the server on C stay there, and has
cost 2 less than Dc. The expected number of occurrences of CABC in σ(I) is
cn for some constant c. The expected costs of both Opt and Ldc on σ(I) are
bounded above and below by some other constants times n. Thus, Ldc’s random
order ratio will be less than Dc’s.

Theorem 3. Ldc is better than Greedy on the baby server problem with
regards to the Random Order Ratio.

Proof. The Random Order Ratio is the worst ratio obtained over all sequences,
comparing the expected value of an algorithm over all permutations of a given se-
quence to the expected value of Opt over all permutations of the given
sequence.

Since the competitive ratio of Ldc is two, on any given sequence, Ldc’s cost
is bounded by two times the cost of Opt on that sequence, plus an additive
constant. Thus, the Random Order Ratio is also at most two.

Consider all permutations of the sequence (BA)
n
2 . We consider positions from

1 through n in these sequences. Refer to a maximal consecutive subsequence
consisting entirely of either As or Bs as a run.

Given a sequence containing h As and t Bs, the expected number of runs is
1 + 2ht

h+t . (A problem in [10] gives that the expected number of runs of As is
h(t+1)

h+t , so the expected number of runs of Bs is t(h+1)
h+t . Adding these gives the

result.) Thus, with h = t = n
2 , we get n

2 + 1 expected number of runs.
The cost of Greedy is equal to the number of runs if the first run is a run

of Bs. Otherwise, the cost is one smaller. Thus, Greedy’s expected cost on a
permutation of s is n

2 + 1
2 .

The cost of Opt for any permutation of s is d, since it simply moves the server
from C to B on the first request to B and has no other cost after that.

Thus, the Random Order Ratio is n+1
2d , which, as n tends to infinity, is

unbounded.
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6 Bijective Analysis

Bijective analysis correctly distinguishes between Dc and Ldc, indicating that
the latter is the better algorithm. This follows from the following general theorem
about lazy algorithms, and the fact that there are some sequences where one of
Dc’s servers repeatedly moves from C towards B, but moves back to C before
ever reaching B, while Ldc’s server stays on C.

Theorem 4. The lazy version of any algorithm for the baby server problem is
at least as good as the original algorithm according to Bijective Analysis.

Theorem 5. Greedy is at least as good as any other lazy algorithm Lazy

(including Ldc) for the baby server problem according to Bijective Analysis.

Proof. Since Greedy has cost zero for the sequences consisting of only the point
A or only the point C and cost one for the point B, it is easy to define a bijection
f for sequences of length one, such that Greedy(I) ≤ Lazy(f(I)). Suppose that
for all sequences of length k that we have a bijection, f , from Greedy’s sequences
to Lazy’s sequences, such that for each sequence I of length k, Greedy(I) ≤
Lazy(f(I)). To extend this to length k +1, consider the three sequences formed
from a sequence I of length k by adding one of the three requests A, B, or C
to the end of I, and the three sequences formed from f(I) by adding each of
these points to the end of f(I). At the end of sequence I, Greedy has its two
servers on different points, so two of these new sequences have the same cost
for Greedy as on I and one has cost exactly 1 more. Similarly, Lazy has its
two servers on different points at the end of f(I), so two of these new sequences
have the same cost for Lazy as on f(I) and one has cost either 1 or d more.
This immediately defines a bijection f ′ for sequences of length k + 1 where
Greedy(I) ≤ Lazy(f ′(I)) for all I of length k + 1.

If an algorithm is better than another algorithm with regards to Bijective Anal-
ysis, then it is also better with regards to Average Analysis [1].

Corollary 1. Greedy is the unique optimal algorithm with regards to Bijective
and Average Analysis.

Proof. Note that the proof of Theorem 5 shows that Greedy is strictly better
than any lazy algorithm which ever moves the server away from C, so it is
better than any other lazy algorithm with regards to Bijective Analysis. By
Theorem 4, it is better than any algorithm. By the observation above, it also
holds for Average Analysis.

Theorem 6. Dummy is the unique worst algorithm among compliant server
algorithms for the baby server problem according to Bijective Analysis.

Lemma 1. If a ≤ b, then there exists a bijection σn : {A, B, C}n → {A, B, C}n
such that a-Ldc(I) ≤ b-Ldc(σn(I)) for all sequences I ∈ {A, B, C}n.
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Theorem 7. According to Bijective Analysis and Average Analysis, slower vari-
ants of Ldc are better than faster variants for the baby server problem.

Proof. Follows immediately from Lemma 1 and the definition of the measures.

Thus, the closer a variant of Ldc is to Greedy, the better Bijective and Average
Analysis predict that it is.

7 Relative Worst Order Analysis

Similarly to the random order ratio and bijective analysis, relative worst order
analysis correctly distinguishes between Dc and Ldc, indicating that the latter
is the better algorithm. This follows from the following general theorem about
lazy algorithms, and the fact that there are some sequences where one of Dc’s
servers repeatedly moves from C towards B, but moves back to C before ever
reaching B, while Ldc’s server stays on C. If d is just marginally larger than
some integer, even on Ldc’s worst ordering of this sequence, it does better than
Dc.

Let IA denote a worst ordering of the sequence I for the algorithm A.

Theorem 8. The lazy version of any algorithm for the baby server problem is
at least as good as the original algorithm according to Relative Worst Order
Analysis.

Theorem 9. Greedy and Ldc are (∞, 2)-related and are thus weakly compa-
rable in Ldc’s favor for the baby server problem according to Relative Worst
Order Analysis.

Proof. First we show that cu(Greedy,Ldc) is unbounded. Consider the se-
quence (BA)

n
2 . As n tends to infinity, Greedy’s cost is unbounded, whereas

Ldc’s cost is at most 3d for any permutation.
Next we turn to cu(Ldc,Greedy). Since the competitive ratio of Ldc is 2,

for any sequence I and some constant b, Ldc(I
Ldc

) ≤ 2Greedy(I
Ldc

) + b ≤
2Greedy(I

Greedy
) + b. Thus, cu(Ldc,Greedy) ≤ 2.

For the lower bound of 2, consider a family of sequences Ip = (BABA...BC)p,
where the length of the alternating A/B-sequence before the C is 2 �d�+ 1.

Ldc(Ip) = p(2 �d�+ 2d).
A worst ordering for Greedy alternates As and Bs. Since there is no cost

for the Cs and the A/B sequences start and end with Bs, Greedy(σ(Ip)) ≤
p(2 �d�) + 1 for any permutation σ.

Then, cu(Ldc,Greedy) ≥ p(2�d+2d)
p(2�d)+1 ≥

p(4d)
p(2d)+1 . As p goes to infinity, this

approaches 2.
Thus, Greedy and Ldc are weakly comparable in Ldc’s favor.

Recalling the definition of a-Ldc, a request for B is served by the right-most
server if it is within a virtual distance of no more than a from B. Thus, when
the left-most server moves and its virtual move is over a distance of l, then
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the right-most server virtually moves a distance al. When the right-most server
moves and its virtual move is over a distance of al, then the left-most server
virtually moves a distance of l.

In the results that follow, we frequently look at the worst ordering of an
arbitrary sequence.

Definition 7. The canonical worst ordering of a sequence, I, for an algorithm
A is the sequence produced by allowing the cruel adversary (the one which always
lets the next request be the unique point where A does not currently have a server)
to choose requests from the multiset defined from I. This process continues until
there are no requests remaining in the multiset for the point where A does not
have a server. The remaining points from the multiset are concatenated to the
end of this new request sequence in any order.

The canonical worst ordering of a sequence for a-Ldc is as follows:

Proposition 1. Consider an arbitrary sequence I containing nA As, nB Bs,
and nC Cs. A canonical worst ordering of I for a-Ldc is Ia = (BABA...BC)pa X,
where the length of the alternating A/B-sequence before the C is 2

⌊
d
a

⌋
+1. Here,

X is a possibly empty sequence. The first part of X is an alternating sequence
of As and Bs, starting with a B, until there are not both As and Bs left. Then
we continue with all remaining As or Bs, followed by all remaining Cs. Finally,

pa = min

{⌊
nA⌊
d
a

⌋⌋ ,

⌊
nB⌊

d
a

⌋
+ 1

⌋
, nC

}
.

Theorem 10. If a ≤ b, then a-Ldc and b-Ldc are (�
d
a�+d

� d
b �+d

,
(�d

b �+d)� d
a�

(� d
a�+d)� d

b �
)-related

for the baby server problem according to Relative Worst Order Analysis.

We provide strong indication that Ldc is better than b-Ldc for b 
= 1. If b > 1,
this is always the case, whereas if b < 1, it holds in many cases, including all
integer values of d.

Theorem 11. Consider the baby server problem evaluated according to Relative
Worst Order Analysis. For b > 1, if Ldc and b-Ldc behave differently, then they
are (r, rb)-related, where 1 < r < rb. If a < 1, a-Ldc and Ldc behave differently,
and d is a positive integer, then they are (ra, r)-related, where 1 < ra < r.

The algorithms a-Ldc and 1
a -Ldc are in some sense of equal quality:

Corollary 2. When d
a and d

b are integers, then a-Ldc and b-Ldc are (b, b)-
related when b = 1

a .

We now set out to prove that Ldc is an optimal algorithm in the following sense:
there is no other algorithm A such that Ldc and A are comparable and A is
strictly better or such that Ldc and A are weakly comparable in A’s favor.

Theorem 12. Ldc is optimal for the baby server problem according to Relative
Worst Order Analysis.
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Similar proofs show that a-Ldc and Bal are also optimal algorithms.
In the definitions of Ldc and Bal given in Sect. 2, different decisions are

made as to which server to use in cases of ties. In Ldc the server which is
physically closer is moved in the case of a tie (equal virtual distances from the
point requested). The rationale behind this is that the server which would have
the least cost is moved. In Bal the server which is further away is moved to the
point. The rationale behind this is that, since d > 1, when there is a tie, the
total cost for the closer server is already significantly higher than the total cost
for the other, so moving the server which is further away evens out how much
total cost they have, at least temporarily. With these tie-breaking decisions, the
two algorithms behave very similarly when d is an integer.

Theorem 13. Ldc and Bal are not comparable on the baby server problem
with respect to Relative Worst Order Analysis, except when d is an integer, in
which case they are equivalent.

8 Concluding Remarks

The purpose of quality measures is to give information for use in practice, to
choose the best algorithm for a particular application. What properties should
such quality measures have?

First, it may be desirable that if one algorithm does at least as well as another
on every sequence, then the measure decides in favor of the better algorithm.
This is especially desirable if the better algorithm does significantly better on
important sequences. Bijective Analysis, Relative Worst Order Analysis, and
the Random Order Ratio have this property, but Competitive Analysis and
the Max/Max Ratio do not. This was seen in the lazy vs. non-lazy version of
Double Coverage for the baby server problem (and the more general metric k-
server problem). Similar results have been presented previously for the paging
problem—LRU vs. FWF and look-ahead vs. no look-ahead. See [6] for these
results under Relative Worst Order Analysis and [1] for Bijective Analysis.

Secondly, it may be desirable that, if one algorithm does unboundedly worse
than another on some important families of sequences, the quality measure re-
flects this. For the baby server problem, Greedy is unboundedly worse than
Ldc on all families of sequences which consist mainly of alternating requests to
the closest two points. This is reflected in Competitive Analysis, the Random
Order Ratio, and Relative Worst Order Analysis, but not by the Max/Max Ra-
tio or Bijective Analysis. Similarly, according to Bijective Analysis, LIFO and
LRU are equivalent for paging, but LRU is often significantly better than LIFO,
which keeps the first k− 1 pages it sees in cache forever. In both of these cases,
Relative Worst Order Analysis says that the algorithms are weakly comparable
in favor of the “better” algorithm.

Another desirable property would be ease of computation for many different
problems, as with Competitive Analysis and Relative Worst Order Analysis. It
is not clear that the other measures have this property.
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Abstract. Suppose we want to compute the Delaunay triangulation of a
set P whose points are restricted to a collection R of input regions known
in advance. Building on recent work by Löffler and Snoeyink [21], we show
how to leverage our knowledge of R for faster Delaunay computation.
Our approach needs no fancy machinery and optimally handles a wide
variety of inputs, eg, overlapping disks of different sizes and fat regions.

1 Introduction

Data imprecision is a fact of life that is often ignored in the design of geometric
algorithms. The input for a typical computational geometry problem is a finite
point set P in R2, or more generally Rd. Traditionally, one assumes that P is
known exactly, and indeed, in the 1980s and 1990s this was often justified, as
much of the input data was hand-constructed for computer graphics or simu-
lations. Nowadays, however, the input is often sensed from the real world, and
thus inherently imprecise. This leads to a growing need to deal with imprecision.

An early model for imprecise geometric data, motivated by finite precision of
coordinates, is ε-geometry [17]. Here, the input is a traditional point set P and
a parameter ε. The true point set is unknown, but each point is guaranteed to
lie in a disk of radius ε. Even though this model has proven fruitful and remains
popular due to its simplicity [2, 18], it may often be too restrictive: imprecision
regions could be more complicated than disks, and their shapes and sizes may
even differ from point to point, eg, to model imprecision from different sources
or independent imprecision in different input dimensions. The extra freedom in
modeling leads to more involved algorithms, but still many results are available.

1.1 Preprocessing

The above results assume that the imprecise input is given once and simply has
to be dealt with. While this holds in many applications, it is also often possible to
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get (more) precise estimates of the points, but they will only become available
later, or they come at a higher cost. For example, in the update complexity
model [16, 6], each data point is given imprecisely at the beginning but can
always be found precisely at a certain price.

One model that has received attention lately is that of preprocessing an im-
precise point set so that some structure can be computed faster when the ex-
act points become available later. Here, we consider triangulations: let R be
a collection of n planar regions, and suppose we know that the input has ex-
actly one point from each region. The question is whether we can exploit our
knowledge of R to quickly triangulate the exact input, once it is known. More
precisely, we want to preprocess R into a data structure for imprecise triangula-
tion queries : given a point pi from each region Ri ∈ R, compute a triangulation
of {p1, . . . , pn}. There are many parameters to consider; not only do we want
preprocessing time, space usage, and query time to be small, but we would also
like to support general classes of input regions and obtain “nice” (ie, Delaunay)
triangulations. In the latter case, we speak of imprecise Delaunay queries.

Held and Mitchell [19] show that if R consists of n disjoint unit disks, it
can be preprocessed in O(n log n) time into a linear-space data structure that
can answer imprecise triangulation queries in linear time. This is improved by
Löffler and Snoeyink [21] who can handle imprecise Delaunay queries with the
same parameters. Both results generalize to regions with limited overlap and
limited difference in shape and size—as long as these parameters are bounded,
the same results hold. However, no attempt is made to optimize the dependence
on the parameters.

Contrarily, van Kreveld, Löffler and Mitchell [23] study imprecise triangula-
tion queries when R consists of n disjoint polygons with a total of m vertices,
and they obtain an O(m)-space data structure with O(m) query and O(m log m)
preprocessing time. There is no restriction on the shapes and sizes of the individ-
ual regions (they do not even strictly have to be polygonal), only on the overlap.
As these works already mention, a similar result for imprecise Delaunay queries
is impossible. Djidjev and Lingas [15] show that if the points are sorted in any
one direction, it still takes Ω(n log n) time to compute their Delaunay triangu-
lation. If R consists of vertical lines, the only information we could precompute
is exactly this order (and the distances, but they can be found from the order
in linear time anyway). All the algorithms above are deterministic.

1.2 Contribution

Our main concern will be imprecise Delaunay queries. First, we show that the
algorithm by Löffler and Snoeyink [21] can be simplified considerably if we are
happy with randomization and expected running time guarantees. In particular,
we avoid the need for linear-time polygon triangulation [7], which was the main
tool in the previous algorithm.

Second, though fast Delaunay queries for arbitrary regions are out of reach,
we show that for realistic input we can get a better dependence on the realism
parameters than in [21]. In particular, we consider k, the largest depth in the
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arrangement of R, and βf , the smallest fatness of any region in R (defined for
a region R as the largest β such that for any disk D with center in R and
intersecting ∂R, area(R ∩D) ≥ β · area(D)). We can preprocess R in O(n log n)
time into a data structure of O(n) size that handles imprecise Delaunay queries
in O(n log(k/βf )) time. We also consider βt, the smallest thickness (defined as
the fraction of the outcircle of a region occupied by it) of any region in R, and
r, the ratio between the diameters of the largest and the smallest region in R.
With the same preprocessing time and space, we can answer imprecise Delaunay
queries in O(n(log(k/βt) + log log r)) time. For comparison, the previous bound
is O(nkr2/β2

t ) [21]. Finally, we achieve similar results in various other realistic
input models.

We describe two different approaches. The first, which gives the same result
as [21], is extremely simple and illustrates the general idea. The second approach
relies on quadtrees [12, Chapter 14] and is a bit more complicated, but generalizes
easily. We extensively use a technique that has emerged just recently in the
literature [9, 10, 23] and which we call scaffolding: in order to compute many
related structures quickly, we first compute a “typical” structure—the scaffold
Q—in a preprocessing phase. To answer a query, we insert the input points into
Q and use a hereditary algorithm [9] to remove the scaffold efficiently. We need
an algorithm for hereditary Delaunay triangulations:

Theorem 1 (Chazelle et al [8], see also [9]). Let P, Q ⊆ R2 be two planar
point sets with |P ∪ Q| = m, and suppose that DT (P ∪Q) is available. Then
DT (P ) can be computed in expected time O(m). ��

2 Unit Disks: Simplified Algorithm

We begin with a very simple randomized algorithm for the original setting: given
a sequence R = 〈R1, . . . , Rn〉 of n disjoint unit disks, we show how to preprocess
R in O(n log n) time into a linear-space data structure that can handle imprecise
Delaunay queries in O(n) expected time.

Let ci denote the center of Ri and for r > 0 let Rr
i be the disk centered at ci

with radius r. The preprocessing algorithm creates a point set Q that for each
Ri contains ci and 7 points equally spaced on ∂R2

i , the boundary of R2
i . Then

it computes DT (Q), the Delaunay triangulation of Q, and stores it. Since Q
has 8n points, this takes O(n log n) time (eg, [12, Section 9]). We will need the
following useful lemma about Q.

Lemma 1. Let X be a point set with at most one point from each Ri. Any disk
D of radius r contains at most 9(r + 3)2 points of Q ∪X.

Proof. Let c be the center of D. Any point of Q ∪X in D comes from some Ri

with ‖c− ci‖ ≤ r + 2. The number of such Ri is at most the number of disjoint
unit disks that fit into a disk of radius r + 3. A simple volume argument bounds
this this by (r+3)2. As each Ri contributes up to 9 points, the claim follows. ��
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Given the sequence P = 〈p1, . . . , pn〉 of precise points, we construct DT(P ) by
first inserting P into DT (Q) to obtain DT(Q∪P ) and then applying Theorem 1
to remove Q. To compute DT (Q ∪ P ), we proceed as follows: for each point pi

we perform a (breadth-first or depth-first) search among the triangles of DT(Q∪
{p1, . . . , pi−1}) that starts at some triangle incident to ci and never leaves Ri,
until we find the triangle ti that contains pi. Then we insert pi into DT(Q ∪
{p1, . . . , pi−1)) by making it adjacent to the three vertices of ti and performing
Delaunay flipping [12, Section 9.3]. This takes time proportional to the number of
triangles visited plus the degree of pi in DT (Q ∪ {p1, . . . , pi}). The next lemma
allows us to bound these quantities.

Lemma 2. Let Y = Q ∪ X where X is any point set and consider DT (Y ).
Then, for any point p ∈ Y ∩Ri, all neighbors of p in DT (Y ) lie inside R3

i .

Proof. Suppose there is an edge pq with p ∈ R1
i and q 
∈ R3

i , see Figure 1.
Then there is a disk C with p and q on its boundary and having no point of
Y in its interior. The disk C contains a (generally smaller) disk C′ tangent
to R1

i and to ∂R3
i . The intersection of C′ with ∂R2

i is a circular arc of length
8 arcsin(1/4) > 4π/7. But this is a contradiction since one of the 7 points on
∂R2

i must lie in C′ ⊆ C, so C cannot be empty. ��

ci
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i
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2
1
2
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4

)

Fig. 1. C′ covers a constant fraction of the boundary of R2
i and hence meets Q

The next two lemmas bound the number of triangles visited while inserting pi.

Lemma 3. Any triangle of DT (Q ∪ {p1, . . . , pi}) that intersects Ri has all three
vertices in R3

i .

Proof. Let t be a triangle with a vertex q outside of R3
i that intersects Ri. The

outcircle C of t intersects Ri, has q on its boundary, and contains no point of
Q ∪ {p1, . . . , pi} in its interior. As in Lemma 2, we see that C contains one of
the 7 points on the boundary of R2

i , so t cannot be Delaunay. ��
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Lemma 4. At most 644 triangles of DT (Q ∪ {p1, . . . , pi}) intersect Ri.

Proof. The triangles that intersect Ri form the of faces of a planar graph G. By
Lemma 3 every vertex of G lies inside R3

i , so by Lemma 1, there are at most
v = 9(3 + 3)2 = 324 vertices, and thus at most 2v − 4 = 644 faces. ��
The final lemma bounds the degree of pi at the time it is inserted.

Lemma 5. The degree of pi in DT(Q ∪ {p1, . . . , pi}) is at most 324.

Proof. By Lemma 2, all the neighbours of pi are inside R3
i and by Lemma 1

there are at most 9(3 + 3)2 = 324 points of Q ∪ {p1, . . . , pi} in R3
i . ��

Thus, by Lemmas 4 and 5 each point of P can be inserted in constant time, so
we require O(n) time to construct DT(Q∪ P ). A further O(n) expected time is
then needed to obtain DT (P ) using Theorem 1. This yields the desired result.

Theorem 2. Let R = 〈R1, . . . , Rn〉 be a sequence of disjoint planar unit disks.
In O(n log n) time and using O(n) space we can preprocess R into a data struc-
ture that can answer imprecise Delaunay queries in O(n) expected time.

3 Disks of Different Size: Quadtree-Approach

We now extend Theorem 2 to differently-sized disks using a somewhat more in-
volved approach. The main idea is the same: to answer a Delaunay query P we
first construct DT (Q′ ∪ P ) for an appropriate set Q′ and split it using Theo-
rem 1. The difference is that now we do not immediately precompute Q′, but we
derive a quadtree from R that can be used to find Q′ and DT (Q′ ∪ P ) efficiently
later on. With the additional structure of the quadtree we can handle disks of
different sizes. The following lemma follows from the empty circle property of
Delaunay triangulations.

Lemma 6 (see Rajan [22]). Let P ⊆ R2 be a planar n-point set, and let T be
a triangulation of P with no obtuse angle. Then T is Delaunay. ��
A free quadtree T is an ordered rooted tree that corresponds to a hierarchical
decomposition of the plane into axis-aligned square boxes. Each node v of T has
an associated box Bv, such that (i) if w is a descendent of v in T , then Bw ⊆ Bv;
and (ii) if v and w are unrelated, then Bv ∩Bw = ∅. The size of a node v is the
side length of Bv. For each node v, its cell Cv is the part of Bv not covered by
v’s children. The cells are pairwise disjoint and their union covers the root. A
standard quadtree is a free quadtree with two kinds of nodes: internal nodes have
exactly four children of half their size, and leaf nodes have no children. In this
section we also allow cluster nodes, which have a single child that is smaller than
its parent by at least a large constant factor 2c, see Figure 2(a). They ensure
that the complexity of T stays linear [4, Section 3.2]. Given P ⊆ R2, we say that
T is a quadtree for P if (i) |P ∩Cv| ≤ 1 for each leaf v of T ; (ii) P ∩Cv = ∅ for
all nonleaves v; (iii) P is contained in T ’s root box and sufficiently far away from
its boundary; and (iv) T has O(|P |) nodes, see Figure 2(b). The next lemma is
a variant of a theorem by Bern et al [4] (see also [5]).
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(a) (b)

Fig. 2. (a) A quadtree. The lower left box contains a cluster node. (b) The quadtree
is a valid quadtree for this set of points.

Lemma 7. Let P ⊆ R2 be a planar n-point set, and let T be a quadtree for P .
Then, given P and T , we can find DT(P ) in expected time O(n).

Proof. First, we extend T into a quadtree T ′ that is (i) balanced and (ii) sepa-
rated, ie, (i) no leaf in T ′ shares an edge with a leaf whose size differs by more
than a factor of two and (ii) each non-empty leaf of T ′ is surrounded by two
layers of empty boxes of the same size. This can be done by a top-down traver-
sal of T , adding additional boxes for the balance condition and by subdividing
the non-empty leaves of T to ensure separation. If after c subdivision steps a
non-empty leaf B still does not satisfy separation, we place a small box around
the point in B and treat it as a cluster, in which separation obviously holds.

Given T ′, we obtain a non-obtuse Steiner triangulation T for P with O(n)
additional vertices through a sequence of local manipulations, as described by
Bern et al [4, Section 3]. Since all these operations involve constantly many
adjacent cells, the total time for this step is linear. By Lemma 6, T is Delaunay,
and we can use Theorem 1 to extract DT (P ) in O(n) expected time. ��

To apply Lemma 7 we need to preprocess R into a quadtree T such that any
cell Cv in T intersects only constantly many disks. While we could consider the
disks directly, we will instead use a quadtree T for a point set Q representing the
disks. For each disk we include its center and top-, bottom-, left- and rightmost
points in Q. Then, T can be constructed in O(n log n) time [4].

Lemma 8. Every cell Cv of T is intersected by O(1) disks in R.

Proof. If v is an internal node, then Cv = ∅. If v is a leaf, then Cv = Bv and if
a disk D intersects Bv without meeting a corner of Bv, then Bv either contains
D’s center or one of its four extreme points [13]. Thus, Cv intersects at most 5
disks, one for each corner and one for a point of Q it contains.

Now suppose v is a cluster node with child w. Then Cv = Bv \ Bw, and
we must count the disks that intersect Bv, do not cover a corner of Bv, and
have an extreme point or their center in Bw. For this, consider the at most
four orthogonal neighbors of Bw in Bv (ie, copies of Bw directly to the left,
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to the right, above and below Bw). As we just argued, each of these neighbors
meets O(1) disks, and every disk D with an extreme point or center in Bw that
intersects Cv also meets one of the orthogonal neighbors (if D has no extreme
point or center in an orthogonal neighbor and does not cover any of its corners,
it has to cover its center), which implies the claim.1 ��

Theorem 3. Let R = 〈R1, . . . , Rn〉 be a sequence of disjoint planar disks (of
possibly different size). In O(n log n) time and using O(n) space we can prepro-
cess R into a data structure that can answer imprecise Delaunay queries in O(n)
expected time.

Proof. We construct Q and the quadtree T for Q as described above. For each
Ri we store a list with the leaves in T that intersect it. By Lemma 8, the total
size of these lists, and hence the complexity of the data structure, is linear. Now
we describe how queries are handled: let P = 〈p1, . . . , pn〉 be the input sequence.
For each pi, we find the node v of T such that pi ∈ Cv by traversing the list
for Ri. This takes linear time. Since each cell of T contains at most constantly
many input points, we can turn T into a quadtree for P in linear time. We now
compute DT(P ) via Lemma 7. ��

4 Overlapping Disks: Deflated Quadtrees

We extend the approach to disks with limited overlap. Now R contains n planar
disks such that no point is covered by more than k disks. Aronov and Har-
Peled [1] show that k can be approximated up to a constant factor in O(n log n)
time. It is easily seen that imprecise Delaunay queries take Ω(n log k) time in
the worst case, and we show that this bound can be achieved.

The general strategy is the same as in Section 3. Let Q be the 5n representative
points for R, and let T be a quadtree for Q. As before, T can be found in time
O(n log n) and has complexity O(n). Now we use T to build a k-deflated quadtree
T ′. For an integer λ > 0, a λ-deflated quadtree T ′ for a point set Q has the same
general structure as the quadtrees from the previous section, but it has lower
complexity: each node of T ′ can contain up to λ points of Q in its cell and there
are O(n/λ) nodes. We have four different types of nodes: (i) leaves are nodes
v without children, with up to λ points in Cv; (ii) internal nodes v have four
children of half their size covering their parent, and Cv = ∅; (iii) cluster nodes are,
as before, nodes v with a single—much smaller—child, and with no points in Cv;
(iv) finally, a deflated node v has only one child w—possibly much smaller than
its parent—and additionally Cv may contain up to λ points. Deflated nodes are a
generalization of cluster nodes and ensure a more rapid progress in partitioning
the point set Q.
1 There is a slight subtlety concerning clusters which are close to the boundary of Bv:

we require that either Bw shares an edge with Bv or that Bw’s orthogonal neighbors
are fully contained in Bv. This is ensured by positioning the clusters appropriately.
The additional points on Bv’s boundary can easily be handled, eg, by building a
corresponding cluster in the adjacent box.
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Algorithm DeflateTree(v)

1. If nv ≤ λ, return the tree consisting of v.
2. Let Tv be the subtree rooted in v, and let z be a node in Tv with the smallest value

nz such that nz > nv − λ. Note that z could be v.
3. For all children w of z, let T ′

w = DeflateTree(w).
4. Build a tree T ′

v by picking v as the root, z as the only child of v, and linking the
trees T ′

w to z. If v �= z, then v is a deflated node. Return T ′
v as the result.

Algorithm 1. Turn a quadtree into a λ-deflated quadtree

Given a quadtree T for Q, a λ-deflated quadtree T ′ can be found in linear
time. For every node v in T , compute nv = |Bv∩Q|. This takes O(n) time. Then,
T ′ is obtained by applying DeflateTree (Algorithm 1) to the root of T . Since
DeflateTree performs a simple top-down traversal of T , it takes O(n) time.

Lemma 9. A λ-deflated quadtree T ′ produced by Algorithm 1 has O(n/λ) nodes.

Proof. Let T ′′ be the subtree of T ′ that contains all nodes v with nv > λ, and
suppose that every cluster node in T ′′ has been contracted with its child. We will
show that T ′′ has O(n/λ) nodes, which implies the claim, since no two cluster
nodes are adjacent, and because all the non-cluster nodes in T ′ which are not in
T ′′ must be leaves. We count the nodes in T ′′ as follows: (i) since the leaves of
T ′′ correspond to disjoint subsets of Q of size at least λ, there are at most n/λ
of them; (ii) the bound on the leaves also implies that T ′′ contains at most n/λ
nodes with at least 2 children; (iii) the number of nodes in T ′′ with a single child
that has at least 2 children is likewise bounded; (iv) when an internal node v
has a single child w that also has only a single child, then by construction v and
w together must contain at least λ points in their cells, otherwise they would
not have been two separate nodes. Thus, we can charge λ/2 points from Q to v,
and the total number of such nodes is 2n/λ. ��

Now let T ′ be a k-deflated quadtree for Q. By treating deflated nodes like clusters
and noting that the center and corners of each box of T ′ can be contained in at
most k disks, the same arguments as in Lemma 8 lead to the next lemma:

Lemma 10. Every cell Cv of T ′ is intersected by O(k) disks of R. ��

Theorem 4. Let R = 〈R1, . . . , Rn〉 be a sequence of planar disks such that no
point is covered by more than k disks. In O(n log n) time and using O(n) space
we can preprocess R into a data structure that can answer imprecise Delaunay
queries in O(n log k) expected time.

Proof. It remains to show how to preprocess T ′ to handle the imprecise Delaunay
queries in time O(n log k). By Lemmas 9 and 10, the total number of disk-cell
incidences in T ′ is O(n). Thus, in O(n) total time we can find for each R ∈ R
the list of cells of T ′ it intersects. Next, we determine for each node v in T ′
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the portion Xv of the original quadtree T inside the cell Cv and build a point
location data structure for Xv. Since Xv is a partial quadtree for at most k
points, it has complexity O(k), and since the Xv are disjoint, the total space
requirement and construction time are linear. This finishes the preprocessing.

To handle an imprecise Delaunay query, we first locate the input points P
in the cells of T ′ just as in Theorem 3. This takes O(n) time. Then we use the
point location structures for the Xv to locate P in T in total time O(n log k).
Now we turn T into a quadtree for P in time O(n log k), and find the Delaunay
triangulation in time O(n), as before. ��

5 Realistic Input Models

In this section we show that the results of the previous sections readily generalize
to many realistic input models [14]. This is because a point set representing the
regions—like the point set Q for the disks—exists in such models, eg, for fat
regions. Thus, we directly get an algorithm for fat regions for which we provide
a matching lower bound. We then demonstrate how to handle situations where
a set like Q cannot be easily constructed by the example of thick regions.

Let β be a constant with 0 < β ≤ 1. A planar region R is β-fat if for any
disk D with center in R and intersecting ∂R, area(R ∩ D) ≥ β · area(D). A
planar region R is β-thick if area(R) ≥ β · area(Dmin(R)), where Dmin denotes
the smallest disk enclosing R. Let κ be a positive integer. A set Q of points is
called a κ-guarding set (against axis-aligned squares) for a set of planar regions
R, if any axis-aligned square not containing a point from Q intersects at most κ
regions from R. For instance, the point set Q considered in the previous sections
is a 4-guarding set for disjoint disks [13]. It is also a 4k-guarding set for disks
which do not cover any point more than k times.

The definition of a κ-guarding set Q does not explicitly state how many regions
a square containing points of Q might intersect, but a square containing m points
of Q can intersect only 4κm regions [13, Theorem 2.8]. Now, assume each point
in Q is assigned to a region in R. We call Q a κ-strong-guarding set of R
if any square containing m points of Q intersects at most κ regions plus the
regions assigned to the m points. This definition is motivated by the following
relation between fatness and guardability. A set of planar regionsR is κ-cluttered
if the corners of the bounding rectangles for R constitute a κ-guarding set.
De Berg et al prove that a set of disjoint β-fat regions is 16/β-cluttered [14,
Theorem 3.1, Theorem 3.2]. Their argument actually shows strong guardability
(cf [11, Lemma 2.8]) and easily extends to overlapping regions.

Lemma 11. For a set of β-fat regions R that cover no point more than k times,
the corners of the bounding rectangles of R constitute a (16k/β)-strong-guarding
set for R (with corners assigned to the corresponding region). ��
Since the argument in the proof of Lemma 8 (and of Lemma 10) is based on
axis-aligned squares, it directly generalizes to the quadtree for a guarding set.

Lemma 12. Let R be a set of regions and Q a κ-strong-guarding set for R. Let
T ′ be a κ-deflated quadtree of Q. Then any cell of T intersects O(κ) regions. ��
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We say that R is traceable if we can find the m incidences between the n regions
in R and the l cells of a deflated quadtree T in O(l + m + n) time and the
bounding rectangles of the regions in R in O(n) time. For example, this holds
for polygonal regions of total complexity O(|R|).

Theorem 5. Let R = 〈R1, . . . , Rn〉 be a sequence of traceable planar regions
with linear-size κ-strong-guarding set Q, where κ is not necessarily known, but
Q is. In O(n log n) time and using O(n) space we can preprocess R into a
data structure that can answer imprecise Delaunay queries in O(n log κ) expected
time.

Proof. Lemma 12 would directly imply the theorem if κ was known. We can
find a suitable λ-deflated tree with λ ∈ O(κ) by an exponential search on λ, i.e.,
for a given λ we build a λ-deflated tree and check whether any box intersects
more than cλ regions for a constant c ≥ 6. Recall that a deflated quadtree can
be computed from a quadtree in linear time. Thus, finding a suitable λ takes
O(n log n) time. ��

For overlapping fat regions Lemma 11 and Theorem 5 imply the following result.

Corollary 1. Let R = 〈R1, . . . , Rn〉 be a sequence of planar traceable β-fat
regions such that no point is covered by more than k of the regions. In O(n log n)
time and using O(n) space we can preprocess R into a data structure that can
answer imprecise Delaunay queries in O(n log(k/β)) expected time.

We next show that the O(n log(1/β)) bound for disjoint fat regions is optimal.

Theorem 6. For any n and 1/β ∈ [1, n], there exists a set R of O(n) planar
β-fat rectangles such that imprecise Delaunay queries for R take Ω(n log(1/β))
steps in the algebraic computation tree model.

Proof. We adapt a lower bound by Djidjev and Lingas [15, Section 4]. Wlog,
β−1 is an integer. Consider the problem β-1-closeness: we are given k = βn-
sequences x1, . . . ,xk, each containing β−1 real numbers in [0, β−2], and we need
to decide whether any xi contains two numbers with difference at most 1. Any al-
gebraic decision tree for β-1-closeness has cost Ω(n log(1/β)): let W ′ ⊆ Rn be
defined as W ′ =

{
(x1, . . . ,xk) | |xij − xil| > 1 for 1 ≤ i ≤ k; 1 ≤ j 
= l ≤ β−1

}
,

where xij is the jth coordinate of xi. Let W = W ′∩[0, β−2]n. Since W has at least
(β−1!)βn connected components, Ben-Or’s lower bound [3, Theorem 5] implies
the claim. Now, we construct R. Let ε = β/10 and consider the β−1 +2 intervals
on the x-axis Bε[0], Bε[β/3], Bε[2β/3], . . . , Bε[1/3], Bε[1/2], where Bε[x] denotes
the one-dimensional closed ε-ball around x. Extend the intervals into β3-fat rect-
angles with side lengths 2ε and β−2. These rectangles constitute a group. Now,
R consists of k congruent groups G1, . . . , Gk; sufficiently far away from each
other. Let x1, . . . ,xk be an instance of β-1-closeness. The input P consists of
k sets P1, . . . , Pk, one for each xi. Each Pi contains β−1 + 2 points, one from
every rectangle in Gi: Pi = 〈(0, 0), (1/(3α), xi1), . . . , (1/3, xiβ−1), (1/2, 0)〉 + vi,
where vi denotes the displacement vector for Gi. Clearly, P can be computed in
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O(n) time. Djidjev and Lingas [15] argue that either xi contains two numbers
with difference at most 1/3, or the Voronoi cells for Pi intersect the line through
the left-most rectangle in Gi according to the sorted order of xi. In either case,
we can decide β-1-closeness in linear time from DT (P ), as desired. ��

Finally, we consider β-thick regions. Although thickness does not give us a guard-
ing set, we can still preprocess R for efficient imprecise Delaunay queries if the
ratio between the largest and smallest region in R is bounded (we measure the
size by the radius of the smallest enclosing circle).

Theorem 7. Let R be a sequence of n β-thick k-overlapping regions such that
the ratio of the largest and the smallest region in R is r. In O(n log n) time we
can preprocess R into a linear-space data structure that can answer imprecise
Delaunay queries in time O(n(log(k/β) + log log r)).

Proof. Subdivide the regions into log r groups such that in each group the radii
of the minimum enclosing circles differ by at most a factor of 2. For each group
Ri, let ρi be the largest radius of a minimum enclosing circle for a region in
Ri. We replace every region in Ri by a disk of radius ρi that contains it. This
set of disks is at most (2k/β)-overlapping, so we can build a data structure
for Ri in O(ni log ni) time by Theorem 4. To answer an imprecise Delauany
query, we handle each group in O(ni log(k/β)) time and then use Kirkpatrick’s
algorithm [20] to combine the triangulations in time O(n log log r). ��

6 Conclusions

We give an alternative proof of the result by Löffler and Snoeyink [21] with a
much simpler, albeit randomized, algorithm that avoids heavy machinery. Our
approach yields optimal results for overlapping disks of different sizes and fat
regions. Furthermore, it enables us to leverage known facts about guarding sets
to handle many other realistic input models. We need randomization only when
we apply Theorem 1 to remove the scaffold, and finding a deterministic algorithm
for hereditary Delaunay triangulations remains an intriguing open problem.
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Abstract. We present an improved algorithm for the general satisfia-

bility problem. We introduce a new measure, the l-value, for a Boolean
formula F , which is defined based on weighted variable frequencies in
the formula F . We then develop a branch-and-search algorithm for the
satisfiability problem that tries to maximize the decreasing rates in
terms of the l-value during the branch-and-search process. The com-
plexity of the algorithm in terms of the l-value is finally converted into
the complexity in terms of the total length L of the input formula, re-
sulting in an algorithm of running time O(20.0911L) = O(1.0652L) for
the satisfiability problem, improving the previous best upper bound
O(20.0926L) = O(1.0663L) for the problem.

1 Introduction

The satisfiability problem (briefly, SAT: given a CNF Boolean formula, decide
if the formula has a satisfying assignment) is perhaps the most famous and most
extensively studied NP-complete problem. Given the NP-completeness of the
problem [4], it has become natural to develop exponential time algorithms that
solve the problem as fast as possible.

There are three popular parameters that have been used in measuring expo-
nential time algorithms for the SAT problem: the number n of variables, the
number m of clauses, and the total length L that is the sum of the clause lengths
in the input formula. Note that the parameter L is probably the most precise
parameter in terms of standard complexity theory, and that both parameters n
and m could be sublinear in instance length. Algorithms for SAT in terms of each
of these parameters have been extensively studied. See [6] for a comprehensive
review and [10] for more recent progress on the research in these directions.

In the current paper, we are focused on algorithms for SAT in terms of the pa-
rameter L. The research started 20 years ago since the first published algorithm
of time O(1.0927L) [5]. The upper bound was subsequently improved by an im-
pressive list of publications. We summarize the major progress in the following
table.
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Ref. Van Gelder [5] Kullmann et al. [9] Hirsh [7] Hirsh [8] Wahlstom [11]
Bound 1.0927L 1.0801L 1.0758L 1.074L 1.0663L

Year 1988 1997 1998 2000 2005

The branch-and-search method has been widely used in the development of
SAT algorithms. Given a Boolean formula F , let F [x] and F [x] be the result-
ing formula after assigning true and false, respectively, to the variable x in
the formula F . The branch-and-search method is based on the fact that F is
satisfiable if and only if at least one of F [x] and F [x] is satisfiable. Most SAT
algorithms are based on this method.

Unfortunately, analysis directly based on the parameter L usually does not
give a good upper bound in terms of L for a branch-and-search SAT algorithm.
Combinations of the parameter L and other parameters, such as the number n of
variables, have been used as “measures” in the analysis of SAT algorithms. For
example, the measure L− 2n [12] and a more general measure that is a function
f(L, n) of the parameters L and n [11] have been used in the analysis of SAT
algorithms whose complexity is measured in terms of the parameter L.

In the current paper, we introduce a new measure, the l-value of a Boolean
formula F . Roughly speaking, the measure l-value l(F) is defined based on
weighted variable frequencies in the input formula F . We develop a branch-
and-search algorithm that tries to maximize the decreasing rates in terms of the
l-value during its branch-and-search process. In particular, by properly choosing
the variable frequency weights so that the formula l-value is upper bounded by
L/2, by adopting new reduction rules, and by applying the analysis technique
of Measure and Conquer recently developed by Fomin et al. [3], we develop a
new branch-and-search algorithm for the SAT problem whose running time is
bounded by O(1.1346l(F)) on an input formula F . Finally, by combining this
algorithm with the algorithm in [12] to deal with formulas of lower variable fre-
quencies and by converting the measure l(F) into the parameter L, we achieve a
SAT algorithm of running time O(1.0652L), improving the previously best SAT
algorithm of running time O(1.0663L) [11].

We remark that although the analysis of our algorithm is lengthy, our algo-
rithm itself is very simple and can be easily implemented. Note that the lengthy
analysis needs to be done only once to ensure the correctness of the algorithm,
while the simplicity of the algorithm gives its great advantage when it is applied
(many times) to determine the satisfiability of CNF Boolean formulas.

2 Preliminaries

A (Boolean) variable x can be assigned value either 1 (true) or 0 (false). The
variable x has two corresponding literals x and x. A literal z is satisfied if z = 1.
A clause C is a disjunction of a set of literals, which can be regarded as a set
of literals. Therefore, we may write C1 = zC2 to indicate that the clause C1
consists of the literal z plus all literals in the clause C2, and use C1C2 to denote
the clause that consists of all literals that are in either C1 or C2, or both. The
length of a clause C, denoted by |C|, is the number of literals in C. A clause
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C is satisfied if any literal in C is satisfied. A (CNF Boolean) formula F is a
conjunction of clauses C1 , . . ., Cm, which can be regarded as a collection of the
clauses. The formula F is satisfied if all clauses in F are satisfied. The length L
of the formula F is defined as L = |C1|+ · · ·+ |Cm|.

A literal z is an i-literal if z is contained in exactly i clauses, and is an i+-
literal if z is contained in at least i clauses. An (i, j)-literal z is a literal such that
exactly i clauses contain z and exactly j clauses contain z. A variable x is an
i-variable (or, the degree of x is i) if there are exact i clauses that contain either
x or x. A clause C is an k-clause if |C| = k, and is an k+-clause if |C| ≥ k.

A resolvent on a variable x in a formula F is a clause of the form CD such
that xC and xD are clauses in F . The resolution on the variable x in the formula
F , written as DPx(F), is a formula that is obtained by first removing all clauses
that contain either x or x from F and then adding all possible resolvents on the
variable x into F .

A branching vector is a tuple of positive real numbers. A branching vector
t = (t1, . . . , tr) corresponds to a polynomial 1−

∑r
i=1 x−ti , which has a unique

positive root τ(t) [1]. We say that a branching vector t′ is inferior to a branching
vector t′′ if τ(t′) ≥ τ(t′′). In particular, if either t′1 ≤ t′′1 and t′2 ≤ t′′2 , or t′1 ≤ t′′2
and t′2 ≤ t′′1 , then it can be proved [1] that the branching vector t′ = (t′1, t′2) is
inferior to the branching vector t′′ = (t′′1 , t′′2).

The execution of a SAT algorithm based on the branch-and-search method
can be represented as a search tree T whose root is labeled by the input formula
F . Recursively, if at a node w0 labeled by a formula F0 in the search tree T ,
the algorithm breaks F0, in polynomial time, into r smaller formulas F1, . . .,
Fr, and recursively works on these smaller formulas, then the node w0 in T has
r children, labeled by F1, . . ., Fr, respectively. Suppose that we use a measure
μ(F) for a formula F , then the branching vector for this branching, with respect
to the measure μ, is t = (t1, . . . , tr), where ti = μ(F0) − μ(Fi) for all i. Finally,
suppose that t′ is a branching vector that is inferior to all branching vectors for
any branching in the search tree T , then the complexity of the SAT algorithm
is bounded by O(τ(t′)μ(F)) times a polynomial of L [1].

Formally, for a given formula F , we define the l-value for F to be l(F) =∑
i≥1 wini, where for each i, ni is the number of i-variables in F , and the fre-

quency weight wi for i-variables are set by the following values:

w0 = 0, w1 = 0.32, w2 = 0.45, (1)
w3 = 0.997, w4 = 1.897, wi = i/2, for i ≥ 5.

Define δi = wi − wi−1, for i ≥ 1. Then we can easily verify that

δi ≥ 0.5, for all i ≥ 3,

δmin = min{δi | i ≥ 1} = δ2 = 0.13, (2)
δmax = max{δi | i ≥ 1} = δ4 = 0.9.

Note that the length L of the formula F is equal to
∑

i≥1 i · ni, and that i/5 ≤
wi ≤ i/2 for all i. Therefore, we have L/5 ≤ l(F) ≤ L/2.
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3 The Reduction Rules

We say that two formulas F1 and F2 are equivalent if F1 is satisfiable if and only
if F2 is satisfiable. A literal z in a formula F is monotone if the literal z does
not appear in F .

We present in this section a set of reduction rules that reduce a given for-
mula F to an equivalent formula F ′ without increasing the l-value. Consider the
algorithm given in Figure 1.

Algorithm Reduction(F)
input: a non-empty formula F
output: an equivalent formula on which no further reduction is applicable

change = true;
while change do

case 1. a clause C is a subset of a clause D: remove D;
case 2. a clause C contains both x and x: remove C;
case 3. a clause C contains multiple copies of a literal z:

remove all but one z in C;
case 4. there is a variable x with at most one non-trivial resolvent:

F ← DPx(F);
case 5. there is a 1-clause (z) or a monotone literal z: F ← F [z];
case 6. there exist a 2-clause z1z2 and a clause z1z2C:

remove z2 from the clause z1z2C;
case 7. there are clauses z1z2C1 and z1z2C2 and z2 is a (2, 1)-literal:

remove z1 from the clause z1z2C1;
case 8. there are clauses z1z2 and z1z2C such that literal z1 is a 1-literal:

remove the clause z1z2;
case 9. there is a (2, 2)-variable x with clauses xz1, xz2 and two

3-clauses xC1 and xC2 such that z1 and z2 are in C1 ∪ C2:
F ← DPx(F). Apply case 2, if possible;

case 10. there is a 2-clause z1z2 where z1 is a 1-literal, or there are two
2-clauses z1z2 and z1z2: replace z1 with z2. Apply case 2 if possible;

case 11. there are two clauses CD1 and CD2 with |C| > 1:
replace CD1 and CD2 with xC, xD1, and xD2, where x is a new
variable. Apply case 2 on C if possible;

default: change = false;

Fig. 1. The reduction algorithm

Lemma 1. The algorithm Reduction(F1) produces a formula equivalent to F1.

Proof. It suffices to prove that in each of the listed cases, the algorithm Reduc-
tion on the formula F1 produces an equivalent formula F2. This can be easily
verified for Cases 1, 2, 3, and 5.

The claim holds true for Cases 4 and 9 from the resolution principle [2].
In Case 6, the clause z1z2C in F1 is replaced with the clause z1C. If an

assignment A2 satisfies F2, then obviously A2 also satisfies F1. On the other
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hand, if an assignment A1 satisfies F1 but does not satisfy the clause z1C in F2,
then because of the clause z1z2 in F1, we must have z1 = 0 and z2 = 1. Since A1
satisfies the clause z1z2C in F1, this would derive a contradiction that A1 must
satisfy z1C. Therefore, A1 must also satisfy the formula F2.

In Case 7, the clause z1z2C1 in F1 is replaced with the clause z2C1. Again,
the satisfiability of F2 trivially implies the satisfiability of F1. For the other
direction, let z2C3 be the other clause that contains z2 (note that z2 is a (2, 1)-
literal). If an assignment A1 satisfies F1 (thus satisfies z1z2C1) but not F2 (i.e.,
not z2C1), then we must have z1 = 1, z2 = 0, and C3 = 1 under A1. By replacing
the assignment z2 = 0 with z2 = 1 in A1, we will obtain an assignment A′

2 that
satisfies all z2C1, z1z2C2, and z2C3, thus satisfies the formula F2.

In Case 8, the formula F2 is obtained from the formula F1 by removing the
clause z1z2. Thus, the satisfiability of F1 trivially implies the satisfiability of
F2. On the other hand, suppose that an assignment A2 satisfying F2 does not
satisfy F1 (i.e., does not satisfy the clause z1z2). Then A2 must assign z1 = 0 and
z2 = 0. We can simply replace z1 = 0 with z1 = 1 in A2 and keep the assignment
satisfying F2: this is because z1z2C is the only clause in F2 that contains z1.
Now the new assignment also satisfies z1z2, thus satisfies the formula F1.

For Case 10, it is suffice to show that we can always set z1 = z2 in a satisfying
assignment for the formula F1. For the subcase where z1 is a 1-literal and z1z2 is
a 2-clause, if a satisfying assignment A1 for F1 assigns z2 = 1 then we can simply
let z1 = z2 = 0 since z1 is only contained in the clause z1z2. If A1 assigns z2 = 0
then because of the 2-clause z1z2, A1 must assign z1 = z2 = 1. For the other
subcase, note that the existence of the 2-clauses z1z2 and z1z2 in the formula
F1 trivially requires that every assignment satisfying F1 have z1 = z2.

For Case 11, the clauses CD1 and CD2 in F1 are replaced with the clauses
xC, xD1, and xD2 in F2. If an assignment A1 satisfies F1 (thus satisfies CD1
and CD2), then if C = 0 under A1 we assign the new variable x = 0, and if
C = 1 under A1 we assign the new variable x = 1. It is easy to verify that this
assignment to x plus A1 will satisfy F2. For the other direction, suppose that an
assignment A2 satisfies F2. If A2 assigns x = 1 then we have C = 1 under A2
thus the assignment A2 also satisfies CD1 and CD2 thus F1; and if A2 assigns
x = 0 then we have D1 = 1 and D2 = 1 under A2 and again A2 satisfies F1. ��

Next, we show that the algorithm Reduction always decreases the l-value.

Lemma 2. Let F1 and F2 be two formulas such that F2 = Reduction(F1),
and F1 
= F2. Then l(F1) ≥ l(F2) + 0.003.

Proof. Since F1 
= F2, at least one of the cases in the algorithm Reduction is
applicable to the formula F1. Therefore, it suffices to verify that each case in the
algorithm Reduction decreases the l-value by at least 0.003.

Cases 1-8 simply remove certain literals, which decrease the degree of certain
variables in the formula. Therefore, if any of these cases is applied on the formula
F1, then the l-value of the formula is decreased by at least δmin = δ2 = 0.13.

Consider Cases 9-11. Note that if we reach these cases then Cases 4-5 are not
applicable, which implies that the formula F1 contains only 3+-variables.
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Case 9. If both z1 and z2 are in the same clause, say C1, then the resolution
DPx(F) after the next application of Case 2 in the algorithm will replace the
four clauses xz1, xz2, xC1, and xC2 with two 3-clauses z1C2 and z2C2, which
decreases the l-value by w4 (because of removing the 4-variable x) and on the
other hand increases the l-value by at most 2δmax (because of increasing the
degree of the two variables in C2). Therefore, in this case, the l-value is decreased
by at least w4−2δmax = w4−2δ4 = 0.097. If z1 and z2 are not in the same clause
of C1 and C2, say z1 is in C1 and z2 is in C2, then the resolution DPx(F) after
the next application of Case 2 in the algorithm will replace the four clauses xz1,
xz2, xC1, and xC2 with two 3-clauses z1C2 and z2C1. In this case, the l-value is
decreased by exactly w4 = 1.897 because of removing the 4-variable x.

Case 10. Suppose that z1 is an i-variable and z2 is a j-variable. Replacing z1 by
z2 removes the i-variable z1 and makes the j-variable z2 into an (i+ j)-variable.
However, after an application of Case 2 in the algorithm, the clause z1z2 in the
original formula disappears, thus z2 becomes an (i + j − 2)-variable. Therefore,
the total value decreased in the l-value is (wi + wj) − wi+j−2. Because of the
symmetry, we can assume without loss of generality that i ≤ j. Note that we
always have i ≥ 3. If i = 3, then w3 + wj = δmax + 0.097+ wj ≥ wj+1 + 0.097 =
w3+j−2 + 0.097. If i = 4, then w4 + wj = 2δmax + wj + 0.097 ≥ wj+2 + 0.097 =
w4+j−2 + 0.097. If i ≥ 5, then wi + wj = i/2 + j/2 = (i + j − 2)/2 + 1 =
wi+j−2 + 1. Therefore, in this case, the l-value of the formula is decreased by
(wi + wj)− wi+j−2, which is at least 0.097.

Case 11. Since the clauses CD1 and CD2 in F1 are replaced with xC, xD1
and xD2, each variable in C has its degree decreased by 1. Since all variables
in F1 are 3+-variables and |C| ≥ 2, the degree decrease for the variables in C
makes the l-value to decrease by at least 2 · min{δi | i ≥ 3} = 1. On the other
hand, the introduction of the new 3-variable x and the new clauses xC, xD1
and xD2 increases the l-value by exactly w3 = 0.997. In consequence, the total
l-value in this case is decreased by at least 1− 0.997 = 0.003. ��

4 The Main Algorithm

By definition, the l-value l(F1) of the formula F1 is bounded by L1/2, where
L1 is the length of the formula F1. By Lemma 2, each application of a case in
the algorithm Reduction takes time polynomial in L1 and decreases the l-value
by at least 0.003. Therefore, the algorithm must stop in polynomial time and
produce an equivalent formula F2 for which no case in the algorithm is applicable.
Such a formula F2 will be called a reduced formula. Reduced formulas have a
number of interesting properties, which are given below.

Lemma 3. There are no 1-variables or 2-variables in a reduced formula.

Lemma 3 holds true because Cases 4-5 of the algorithm Reduction are not
applicable to a reduced formula.

Lemma 4. Let F be a reduced formula and let xy be a clause in F . Then
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(1) No other clauses contain xy;
(2) No clause contains xy or xy;
(3) There is at most one clause containing xy, and that clause must be a

3+-clause. Moreover, if y is a 3-variable or if x is a 1-literal, then no
clause contains xy.

Proof. (1) Since Case 1 is not applicable, no other clause in F contains xy.
(2) Since Case 6 is not applicable, no clause in F contains either xy or xy.
(3) A clause containing xy in F cannot be a 2-clause since Case 10 is not ap-

plicable. Thus, it must be a 3+-clause. Moreover, since Case 11 is not applicable,
there cannot be two 3+-clauses containing xy.

If y is a 3-variable and if a clause in F contains xy, then it is not hard to
verify that the resolution on y would have at most one non-trivial resolvent, and
Case 4 would be applicable. Finally, if x is a 1-literal, then no clause in F can
contain xy, since Case 8 is no applicable. ��

Lemma 5. Let F be a reduced formula. Then for any two literals z1 and z2, at
most one clause in F can contain z1z2. Moreover, If z1z2 appears in a clause in
F and if z2 is a literal of a 3-variable, then among z1z2, z1z2, z1z2, only z1z2
may appear in another clause in F .

Proof. If z1z2 is a 2-clause in F , then by Case 1, no other clause can contain
z1z2. If z1z2 is contained in two 3+-clauses, then Case 11 would be applicable.
In conclusion, at most one clause in the reduced formula F may contain z1z2.

If z1z2 appears in a clause in F and if z2 is a literal of a 3-variable, then z1z2
can not appear in any clause – otherwise, the resolution on z2 would have at
most one non-trivial resolvent, and Case 4 would be applicable. If z1z2 appears
in a clause in F , then Case 7 would be applicable. ��

Our main algorithm for the SAT problem is given in Figure 2. Some explanations
are needed to understand the algorithm. The degree d(F) of a formula F is
defined to be the largest degree of a variable in F . As already defined, for a
literal z, F [z] is the formula obtained from F by assigning the value true to
the literal z. To extend this notation, for a set {z1, · · · zh} of literals, denote by
F [z1, . . . , zh] the formula obtained from F by assigning the value true to all
the literals z1, . . ., zh. Finally, in Step 4.1 of the algorithm, where the formula
F contains a clause y2C0, F [C0 = true] denotes the formula obtained from F
by replacing the clause y2C0 by the clause C0, and F [C0 = false] denotes the
formula obtained from F by assigning the value false to all literals in C0.

Theorem 1. The algorithm SATSolver(F) solves the SAT problem in time
O(1.0652L), where L is the length of the input formula F .

Proof. We first verify the correctness of the algorithm. Step 3 and Step 4.2 recur-
sively test the satisfiability of the formulas F [x] and F [x], which are obviously
correct. To see the correctness of Step 4.1, note that the satisfiability of either
F [C0 = true] or F [C0 = false] will trivially imply the satisfiability of F . On the
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Algorithm SATSolver(F)
input: a CNF formula F
output: a report whether F is satisfiable

1. F = Reduction(F);
2. pick a d(F)-variable x;
3. if d(F) > 5 then

return SATSolver(F [x]) ∨ SATSolver(F [x]);
4. else if d(F) > 3 then
4.1 if x is a (2, 2)-variable with clauses xy1z1, xz2z3, xy1, and xy2

such that y1 is a 4-variable and y2 is a 3-variable then
let y2C0 be a clause containing y2;
return SATSolver(F [C0 = true]) ∨ SATSolver(F [C0 = false]);

4.2 if both x and x are 2+-literals then
return SATSolver(F [x]) ∨ SATSolver(F [x]);

4.3 else (* assume the only clause containing x is xz1 · · · zh *)
return SATSolver(F [x]) ∨ SATSolver(F [x, z1, . . . , zh]);

5. else if d(F) = 3 then
Apply the algorithm by Wahlström [12];

6. else return true;

Fig. 2. The main algorithm

other hand, if an assignment satisfying F does not satisfy F [C0 = true], then it
must not satisfy the clause C0. Therefore, it must satisfy F [C0 = false].

Next, consider Step 4.3. Since the variable x passes Step 4.2, x is either a (d, 1)-
variable or a (1, d)-variable, where d ≥ 3. Therefore, without loss of generality, we
can assume that x is a (d, 1)-variable (otherwise we simply replace x with x) and
that the only clause containing x is xz1 · · · zh. Again, the satisfiability of either
F [x] or F [x, z1, . . . , zh] trivially implies the satisfiability of F . On the other
hand, since xz1 · · · zh is the only clause in F that contains x, F [x] is obtained
from F by removing all clauses in F that contain x, and replacing the clause
xz1 · · · zh by the clause z1 · · · zh. In particular, if an assignment π satisfying F
does not satisfies F [x], then it must assign value false to x and must not satisfy
z1 · · · zh. Therefore, π must assign the value true to all literals x, z1, . . ., zh.
This implies that the formula F [x, z1, . . . , zh] must be satisfiable.

Finally, if the variable x passes Steps 3-4, the degree of x is bounded by 3.
In case the degree of x is 3, we apply Wahlström’s algorithm [12] to solve the
problem in Step 5. If the variable x also passes Step 5, then the degree of x is
bounded by 2. By Lemma 3, a reduced formula has no 1-variable and 2-variable.
Thus, the reduced formula obtained from Step 1 of the algorithm must be an
empty formula, which is trivially satisfiable, as concluded in Step 6.

It verifies the correctness of the algorithm SATSolver(F).
To see the complexity of the algorithm, note that Wahlström’s algorithm on

a formula F of degree bounded by 3 runs in time O(1.1279n), where n is the
number of variables in F [12], which is also O(1.1346l(F)) since l(F) ≤ w3n =
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0.997n. The proof that the algorithm SATSolver(F) runs in time O(1.1346l(F))
when the degree of F is larger than 3 is given in the next section. The relation
O(1.1346l(F)) = O(1.0652L) is because l(F) ≤ L/2. ��

5 The Analysis of the Main Algorithm

Given two formulas F1 and F2, by definition we have l(F1) =
∑

x∈F1
w(x)

and l(F2) =
∑

x∈F2
w′(x), where w(x) is the frequency weight of x in F1 and

w′(x) is the frequency weight of x in F2. The l-value reduction from F1 to F2
is l(F1)− l(F2). The contribution of x to the l-value reduction from F1 to F2 is
w(x)−w′(x). The contribution of a variable set S to the l-value reduction from
F1 to F2 is the sum of contributions of all variables in S.

Given a formula F , let reduced(F) be the output formula of Reduction(F),
and let reducedp(F) be the first formula during the execution of Reduction(F)
such that Cases 1-8 are not applicable to the formula. We first discuss the rela-
tionship among the l-values of F , of reducedp(F), and of reduced(F).

By Lemma 2, each application of a case in the algorithm Reduction decreases
the l-value of the formula. This trivially gives the following lemma.

Lemma 6. l(F) ≥ l(reducedp(F)) ≥ l(reduced(F)).

The reason that we consider reducedp(F) is that it is easier to give a bound
on the l-value reduction from F to reducedp(F). In particular, since Cases 1-8
of the algorithm Reduction neither introduces new variables nor increases the
degree of any variables, we have the following lemma.

Lemma 7. The contributions of any subset of variables in a formula F is
bounded by the l-value reduction from F to reducedp(F).

From now on in this section, let F be the formula after step 1 in the algorithm
SATSolver(F). Then F is a reduced formula. In the algorithm SATSolver(F),
we break F into two formulas F1 and F2 of smaller l-values at step 3 or 4. To give
better bound, we are interested in the branching vector from F to reduced(F1)
and reduced(F2), instead of the branching vector from F to F1 and F2. To give
feasible analysis, we focus on the branching vector from F to reducedp(F1) and
reducedp(F2). This is valid by the following lemma, which can be easily derived
using Lemma 6.

Lemma 8. The branching vector from F to reducedp(F1) and reducedp(F2) is
inferior to the branching vector from F to reduced(F1) and reduced(F2).

To simplify our description, we say that a variable x is in a clause if either x or
x is in the clause (this should be distinguished with a literal in a clause).

In Step 3 and Step 4.2 of the algorithm SATSolver(F), we break the input
formula F into F [x] and F [x], where x is a variable whose degree is equal to
the degree of the formula F . Let y be a variable such that the variables x and
y are in the same clause. We can bound from below the contribution of y to the
l-value reduction from F to reducedp(F [x]).
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Lemma 9. Let y be an i-variable. The contribution of y to the l-value reduction
from F to reducedp(F [x]) is at least

(1) w3, if i = 3 and y is in a clause with the literal x;
(2) wi, if y is in a 2-clause with the literal x;
(3) δi, if i > 3 and y is only in one clause with the literal x, or δi + δi−1

if i > 3 and y is in more than one clauses with the literal x.

Let S be the set of variables that are contained with the variable x in some
clause. We do not include x in S. Let x be an h-variable in F . We can bound
the l-value reduction from F to reducedp(F [x]) with the following calculations:

Step 1: set cx = wh and cy = 0 for y ∈ S.
Step 2: for each 2-clause xy or xy, where y is an i-variable in S

(1) when i = 3, add w3 to cy,
(2) when i > 3, add wi− δi to cy if there is a clause xC containing variable

y, or add wi to cy otherwise.
Step 3: for each clause xyC, where y is an i-variable in S

(1) when i = 3, add w3 to cy,
(2) when i > 3, add δi to cy.

Step 4: c = cx +
∑

y∈S cy.

The value c calculated above is the c-value from F to reducedp(F [x]). The
c-value from F to reducedp(F [x]) can be calculated similarly. The following
lemma shows that the c-value is not larger than the l-value reduction from F to
reducedp(F). The lemma can be verified directly by the definitions.

Lemma 10. The c-value is not larger than the contribution of S ∪ {x} to the
l-value reduction from F to reducedp(F [x]).

To give a better analysis, some further notations are needed.
n1: the number of 3+-clauses containing literal x.
n3: the number of 2-clauses containing 3-variables and literal x.
n4: the number of 2-clauses containing 4-variables and literal x.
n5: the number of 2-clauses containing 5+-variables and literal x.
n1: the number of 3+-clauses containing literal x.
n3: the number of 2-clauses containing 3-variables and literal x.
n4: the number of 2-clauses containing 4-variables and literal x.
n5: the number of 2-clauses containing 5+-variables and literal x.
m1 = wi + 2n1δi + (n3 + n3 + n4)w3 + n4δ4 + n5δ5 + n5w4.
m2 = wi + 2n1δi + (n3 + n3 + n4)w3 + n4δ4 + n5δ5 + n5w4.

We have the following lemma:

Lemma 11. The value m1 is not larger than the l-value reduction from F to
reducedp(F [x]), and the value m2 is not larger than the l-value reduction from
F to reducedp(F [x]).

Lemma 11 is sufficient for most cases in the following analysis. Sometimes, we
may need values better than m1. Let



154 J. Chen and Y. Liu

n1,1: the number of 3-clauses containing literal x.
n1,2: the number of 4+-clauses containing literal x.
n4,1: the number of 2-clauses containing literal x and variable y such
that some clause containing both literal x and variable y.
n4,2: the number of 2-clauses containing literal x and variable y such
that no clauses containing both literal x and variable y.
m′

1 = wi +(2n1,1 +3n1,2)δi +(n3 +n3 +n4,1)w3 +n4δ4 +n5δ5 +n4,2w4 +
n5w4.

By a proof similar to that for Lemma 11, we can prove the following lemma.

Lemma 12. The value m′
1 is not larger than the l-value reduction from F to

reducedp(F [x]), and the value m2 is not larger than the l-value reduction from
F to reducedp(F [x]).

Now we are ready to analyze the branching vector from F to reducedp(F [x])
and reducedp(F(x).

Lemma 13. Let F be a reduced formula with d(F) = i, and let x be an i-
variable in F . Then both (m1, m2) and (m′

1, m2) are inferior to the branching
vector from F to reducedp(F [x]) and reducedp(F [x]).

If x is a (i − 1, 1)-literal and if no 2-clause contains x, we can have a better
branching vector.

Lemma 14. Given a reduced formula F of degree i, and an (i − 1, 1)-literal x
in F such that no 2-clause contains x, let

m′
1 = wi + 2n1δi + n3w3 + n4δ4 + n5δ5, and m′

2 = wi + 3w3.

Then (m′
1, m

′
2) is inferior to the branching vector from F to reducedp(F [x]) and

reducedp(F [x). Moreover, n1 = 1 and n3 = n4 = n5 = 0.

Due to the space limit, we omit the analysis for the case where the formula
degree is 4 or 5, which will be given in a complete version of the current paper.
In the following, we present the analysis for formulas of degree larger than 5.

Let x be a (d1, d0)-literal. Then d = d1+d0 ≥ 6. Suppose there are s1 2-clauses
containing literal x, and s0 2-clauses containing literal x. Let l1 be the l-value
reduction and c1 be the value of c from F to F [x]. Let l0 be the l-value reduction
and c0 be the c-value from F to F [x]. By lemma 10, c1 (c0) is not larger than
l1 (l0). Thus l1 + l2 ≥ c1 + c2. It can be verified that each 2-clause (containing
either x or x) adds at least 0.5 to both c1 and c0 by the calculation of c-value.
Thus the s1 + s2 2-clauses add at least s1 + s0 to c1 + c2. Moreover, the d1 − s1
3+-clauses containing literal x add at least 2(d1−s1)δi ≥ d1−s1 to c1 since i ≥ 3
(all variables in F are 3-variables), and the d0 − s0 3+-clauses containing literal
x add at least d0−s0 to c0. Thus the 3+-clauses add at least (d1−s1)+(d0−s0)
to c1 + c2. Finally, x adds wd = 0.5d ≥ 3 to both c1 and c0 since x is a d-variable
where d ≥ 6. Thus x add at least 2wd ≥ 6 to c1 + c0. Therefore, we have that
l1 + l0 ≥ c1 + c0 ≥ (s1 + s0) + (d1 − s1) + (d0 − s0) + 6 ≥ 12.
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Next we prove that both of l1 and l0 are greater than 0.5+d/2 = 3.5. As shown
above, the s1+s0 2-clauses add at least 0.5(s1+s0) to both c1 and c0, the (d1−s1)
3+-clauses add at least d1−s1 to c1, the (d0−s0) 3+-clauses add at least d0−s0
to c0, and x add at least 3 to both c1 and c0. Thus c1 ≥ 0.5(s1+s0)+(d1−s1)+3
and c0 ≥ 0.5(s1 + s0) + (d0 − s0) + 3. Note that d0 − s1 ≥ 0 and d0 − s0 ≥ 0.
If s1 + s0 = 1, then both c1 and c0 are not less than 3.5. If s1 + s0 = 0, then
s1 = s0 = 0. Since both d1 and d0 are not less than 1, we have that both c1 and
c0 are not less than 4. By lemma 10, both l1 and l0 are not less than 3.5.

So the branching vector in this case is at least (l1, l2), not inferior to (3.5, 12−
3.5) = (3.5, 8.5), which leads to O(1.1313l(F)).

Summarizing all the above discussions, we can verify that the worst branching
vector is t0 = (3w3 + 5δ4, 3w3 + δ4) = (7.491, 3.891). The root of the polyno-
mial corresponding to this branching vector is τ(t0) ≤ 1.1346. In conclusion,
we derive that the time complexity of the algorithm SATSolver is bounded by
O(1.1346l(F)) on an input formula F , which completes the proof of Theorem 1.
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Abstract. We develop algorithms to compute edge sequences, Voronoi
diagrams, shortest path maps, the Fréchet distance, and the diameter
of a polyhedral surface. Distances on the surface are measured by the
length of a Euclidean shortest path. Our main result is a linear factor
speedup for the computation of all shortest path edge sequences and the
diameter of a convex polyhedral surface. This speedup is achieved with
kinetic Voronoi diagrams. We also use the star unfolding to compute a
shortest path map and the Fréchet distance of a non-convex polyhedral
surface.
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1 Introduction

Two questions are invariably encountered when dealing with shortest path prob-
lems. The first question is how to represent the combinatorial structure of a
shortest path. In the plane with polygonal obstacles, a shortest path can only
turn at obstacle vertices, so a shortest path can be combinatorially described
as a sequence of obstacle vertices [16]. On a polyhedral surface, a shortest path
need not turn at vertices [20], so a path is often described combinatorially by
an edge sequence that represents the sequence of edges encountered by the path
[1]. The second question is how to compute shortest paths in a problem space
with M vertices. The following preprocessing schemes compute combinatorial
representations of all possible shortest paths. In a simple polygon, Guibas et
al. [16] give an optimal Θ(M) preprocessing scheme that permits a shortest
path between two query points to be computed in O(log M) time. In the plane
with polygonal obstacles, Chiang and Mitchell [9] support shortest path queries
between any two points after O(M11) preprocessing. On a convex polyhedral
surface, Mount [21] shows that Θ(M4) combinatorially distinct shortest path
edge sequences exist, and Schevon and O’Rourke [23] show that only Θ(M3) of

� This work has been supported by the National Science Foundation grant NSF CA-
REER CCF-0643597. Previous versions of this work have appeared in [12,13].

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 156–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Shortest Path Problems on a Polyhedral Surface 157

these edge sequences are maximal (i.e., they cannot be extended at either end
without creating a suboptimal path). Agarwal et al. [1] use these properties to
compute the Θ(M4) shortest path edge sequences in O(M62α(M) log M) time
and the diameter in O(M8 log M) time, where α(M) is the inverse Ackermann
function. The diameter is the largest shortest path distance between any two
points on the surface. Our main result improves the edge sequence and diameter
algorithms of [1] by a linear factor. We achieve this improvement by combining
the star unfolding of [1] with the kinetic Voronoi diagram of Albers et al. [3].

A popular alternative to precomputing all combinatorial shortest paths is to
precompute a shortest path map structure SPM(s) that describes all shortest
paths from a fixed source s. In the plane with polygonal obstacles, Hershberger
and Suri [17] use the continuous Dijkstra paradigm to support all queries from a
fixed source after Θ(M log M) preprocessing. On a (possibly non-convex) poly-
hedral surface, Mitchell, Mount, and Papadimitriou [20] use the continuous Dijk-
stra paradigm to construct SPM(s) by propagating a wavefront over a polyhedral
surface in O(M2 log M) time and O(M2) space. Chen and Han [8] solve the same
polyhedral surface problem in O(M2) time and space by combining unfolding
and Voronoi diagram techniques. Schreiber and Sharir [24] use the continuous
Dijkstra paradigm to construct an implicit representation of a shortest path map
for a convex polyhedral surface in O(M log M) time and space. In addition to the
exact algorithms above, there are also various efficient algorithms to compute
approximate shortest paths on weighted polyhedral surfaces, see for example
Aleksandrov et al. [4].

1.1 Terminology

Throughout this paper, M is the total complexity of a problem space that con-
tains a polyhedral surface and auxiliary objects on the surface such as points,
line segments, and polygonal curves. A shortest path on a polyhedral surface
between points s and t is denoted by π(s, t), and d(s, t) signifies the Euclidean
length of π(s, t). A convex polyhedral surface is denoted by P , and a non-convex
polyhedral surface is represented by PN . The extremely slowly growing inverse
Ackermann function is signified by α(M). The line segment with endpoints a
and b is denoted by ab. The Fréchet distance [5] is a similarity metric for con-
tinuous shapes that is defined for two polygonal curves A, B : [0, 1] → Rν as
δF (A, B) = infα,β:[0,1]→[0,1] supt∈[0,1] d(A(α(t)), B(β(t))), where Rν is an arbi-
trary Euclidean vector space, α and β range over continuous non-decreasing
reparameterizations, and d is a distance metric for points. For a given constant
ε ≥ 0, free space is {(s, t) | s ∈ A, t ∈ B, d(s, t) ≤ ε}. A cell is the parameter
space defined by two line segments ab ⊂ A and cd ⊂ B, and the free space inside
the cell consists of all points {(s, t) | s ∈ ab, t ∈ cd, d(s, t) ≤ ε}.

1.2 Our Results

For a convex polyhedral surface, Agarwal et al. [1] give algorithms to compute the
diameter and either the exact set or a superset of all Θ(M4) shortest path edge
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sequences. All three of these algorithms are improved by a linear factor in sections
2 and 3. Section 4 contains an algorithm to compute the Fréchet distance between
polygonal curves on a convex polyhedral surface, and this algorithm is a linear
factor faster than the algorithm of Maheshwari and Yi [19]. In addition, section 4
contains the first algorithm to compute the Fréchet distance between polygonal
curves on a non-convex polyhedral surface. Our motivation for studying the
Fréchet distance on a polyhedral surface is that teaming up two people for safety
reasons is common practice in many real-life situations, ranging from scouts in
summer camp, to fire fighters and police officers, and even to astronauts exploring
the moon. In all of these applications, two team members need to coordinate their
movement in order to stay within “walking distance” so that fast assistance can
be offered in case of an emergency. The Fréchet distance is an ideal model for
this scenario. Section 5 describes shortest path maps that support queries from
any point on a line segment.

2 Shortest Path Edge Sequences

This section contains superset and exact algorithms to compute the Θ(M4)
shortest path edge sequences on a convex polyhedral surface P . Both of these
algorithms improve results of Agarwal et al. [1] by a linear factor.

Let v1, ..., vM be the vertices of P , and let Π = {π(s, v1), ..., π(s, vM )} be an
angularly ordered set of non-crossing shortest paths from a source point s ∈ P
to each vertex vj ∈ P .1 The star unfolding S is a simple polygon [6] defined
by cutting P along each of the shortest paths in Π and unfolding the resulting
shape into the plane. Since the source point s touches all of the M cuts, s ∈ P
maps to M image points s1, ..., sM on the (two-dimensional) boundary of the
unfolded simple polygon S (see Fig. 1).

The equator [8] in the star unfolding is the closed polygonal curve through
the points v1, ..., vM , v1. The region inside the equator contains no source image
and is called the core [14].2 The regions outside the core each contain a source
image and are collectively referred to as the anti-core [14]. A core edge is the
image of an edge of P that was not cut during the unfolding process. Each of the
O(M) core edges has both of its endpoints at vertices and is entirely contained
in the core. An anti-core edge is the image of a connected portion of an edge
of P that was defined by cuts during the unfolding process. Each of the Θ(M2)
anti-core edges either has both of its endpoints on a cut or has one endpoint on
a cut and the other endpoint at a vertex. The interior of an anti-core edge is
entirely contained in one anti-core region (see Fig. 1b). The dual graph of the
star unfolding is a tree,3 and this tree defines a unique edge sequence that can
be used to connect any two points in the star unfolding.
1 If multiple shortest paths exist from s to vj , then any of these shortest paths can be

used to represent π(s, vj) [8].
2 The core has also been referred to as the kernel or the antarctic in [1,8]. Note that

neither the star unfolding nor its core are necessarily star-shaped [1].
3 In [1], this dual graph is referred to as the pasting tree.
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Fig. 1. (a) A convex polyhedral surface P . (b) The star unfolding of P is created by
cutting along shortest paths from the source point s to every vertex v1, ..., v20 of P .
The core of the star unfolding is heavily-shaded.

The star unfolding of s can be used to compute a shortest path π(s, t) for
points s, t ∈ P as follows. If an image of t lies in the anti-core region containing
si, then the line segment in the star unfolding from si to the image of t is an
optimal shortest path [1]. By contrast, if an image of t lies in the core, then a
nearest source image can be determined with Voronoi diagram techniques, and
the line segment in the star unfolding from this nearest source image to the
image of t is an optimal shortest path [1,8].

Agarwal et al. [1] partition the M edges of the convex polyhedral surfaceP into
O(M3) line segment edgelets. All source points on an edgelet can be associated
with the same combinatorial star unfolding, and all source points in the interior
of an edgelet have a unique shortest path to each vertex of P [1]. These edgelets
are constructed in O(M3 log M) time by computing a shortest path between each
pair of vertices on P and intersecting these O(M2) shortest paths with each of
the M edges of P [1]. Agarwal et al. [1] compute a star unfolding for each edgelet
and use these structures to construct an O(M6) superset of the Θ(M4) shortest
path edge sequences for P in O(M6) time and space [1]. In addition, Agarwal et
al. [1] show how to compute the exact set of Θ(M4) shortest path edge sequences
in O(M62α(M) log M) time.

Although we have defined the star unfolding only for a convex polyhedral sur-
face P , the concept generalizes to a non-convex polyhedral surface PN because
the star unfolding can still be defined by an angularly ordered set of non-crossing
shortest path cuts from the source to every vertex [8,20]. In addition, there are
still O(M3) edgelets on PN because a shortest path between each pair of vertices
can intersect each edge at most once.

We show how to maintain a combinatorial star unfolding in O(M4) total
time and space as a source point varies continuously over all O(M3) edgelets
on a possibly non-convex polyhedral surface PN . Our approach takes advantage
of small combinatorial changes between adjacent edgelets and achieves a linear
factor improvement over the approach [1] of computing a separate star unfolding
for each edgelet.
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Theorem 1. A star unfolding can be maintained as a source point s varies
continuously over all M edges of a (possibly non-convex) polyhedral surface PN

in O(M4) time and space.

Proof. The set Π of shortest paths to each corner vertex defines a combinato-
rial star unfolding. These paths can only change at edgelet endpoints, so Π can
be maintained over a discrete set of O(M3) events. Each change to Π requires
removing and adding a constant number of O(M) complexity anti-core regions
from the star unfolding S and possibly updating all O(M) core edges in S. As
s varies continuously in the interior of an edgelet, each source image is parame-
terized along a line segment in the star unfolding, and the remaining vertices in
the star unfolding are fixed [1]. See Fig. 2a. Thus, O(M ·M3) time and space is
sufficient to maintain S combinatorially over all edgelets. ��

The below lemma computes an implicit superset of the shortest path edge se-
quences on P in O(M5) time and space. Note that we do not attempt to compute
shortest path edge sequences on a non-convex polyhedral surface PN because
Mount [21] has shown that there can be exponentially many shortest path edge
sequences on PN .

Theorem 2. An implicit superset of the Θ(M4) shortest path edge sequences
for a convex polyhedral surface P with M vertices can be computed in O(M5)
time and space.

Proof. Each edgelet defines a star unfolding with source images s1, ..., sM . For
each si, use the relevant star unfolding’s dual graph tree to construct an edge
sequence from si to each of the O(M) anti-core edges in the anti-core region
containing si and to each of the O(M) core edges. This yields O(M2) edge
sequences per edgelet, and O(M5) edge sequences over all edgelets. The result is
the desired superset because only core edges have shortest path edge sequences
to multiple sites, and this approach considers all possibilities. O(M5) storage is
sufficient to store a dual graph tree for each edgelet, and these trees collectively
encode an implicit representation of the desired superset. ��

The exact set of shortest path edge sequences for each combinatorial star unfold-
ing can be determined with a kinetic Voronoi diagram that allows its defining
point sites to move. In our case, the moving sites are the source images s1, ..., sM ,
and each source image is parameterized along a line segment as a source point
varies continuously over an edgelet [1]. This behavior ensures that each pair of
moving source images defines O(M) Voronoi events [3], and Albers et al. [3] show
how to maintain a kinetic Voronoi diagram in O(log M) time per event with a
priority queue.

Theorem 3. A kinetic Voronoi diagram of source images s1, ..., sM can be
maintained in O(M4 log M) time and O(M4) space as a source point varies
continuously over one edge e of a convex polyhedral surface P.

Proof. A kinetic Voronoi diagram for the first edgelet on e defines O(M2 ·M)
events [3] due to the linear motion of O(M2) pairs of source images in the
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star unfolding. Each of the O(M2) subsequent edgelets on e can be handled by
removing and adding a constant number of source image sites. All other sites
continue to be parameterized along the same line segments as in the previous
edgelet. Thus, each of these O(M2) edgelets contributes M − 1 new pairs of
sites and O(M ·M) new events to the priority queue. Handling each event in
O(log M) time and O(1) space as in [3] yields the stated runtime. ��

We construct the exact set of shortest path edge sequences as follows. For the
moment, fix an edgelet α and a core vertex vi ∈ S such that vi touches the anti-
core region that contains the source image si. Maintaining a kinetic Voronoi
diagram for α yields a two-dimensional parameterized Voronoi cell ϕi for the
source image si. The unique edge sequence in the star unfolding’s dual graph
from si to a core edge e represents a shortest path if and only if e intersects ϕi

for some s ∈ α. This follows because si must be a nearest source image to some
point on e in order to define a shortest path to e.

Agarwal et al. [1] represent each parameterized Voronoi vertex as an algebraic
curve. They triangulate the region of the core that is directly visible to core
vertex vi such that each triangle Δ has apex vi. The dual graph D of the (fixed)
core for an edgelet α is a tree [1] that defines candidate edge sequences. Let the
portion of D inside a fixed triangle Δ be the subtree DΔ. Agarwal et al. [1]
compute each subtree DΔ in O(M) time. In the following lemma, we improve
this process to O(log M) time.

Lemma 1. A subtree DΔ can be computed in O(log M) time.

Proof. Assume Δ has vertices vi, vj , vk. The subtree DΔ consists of one path in
D from the face containing vi to the face containing vj and a second path in D
from the face containing vi to the face containing vk. Point location in the core
can identify these two paths in D in O(log M) time. ��

After computing the subtree DΔ for each triangle Δ, Agarwal et al. [1] use polar
coordinates centered at core vertex vi to compute an upper envelope μ of the
algebraic curves defining the kinetic Voronoi cell ϕi. This upper envelope is then
refined into a set of curve segments such that each curve segment is contained
in some triangle Δ. For each curve segment, a binary search is performed on the
two paths in DΔ. The deepest edge on each of these two paths that is intersected
by a curve segment defines a maximal shortest path edge sequence. Repeating
this technique for all core vertices defined by all edgelets yields Θ(M3) maximal
shortest path edge sequences. The set of all prefixes of these maximal sequences
defines all Θ(M4) shortest path edge sequences of P [1].

Theorem 4. The exact set of Θ(M4) shortest path edge sequences for a convex
polyhedral surface P with M vertices can be explicitly constructed in O(M52α(M)

log M) time. This set can be implicitly stored in O(M4) space or explicitly stored
in O(M5) space.

Proof. Let ni be the total number of parameterized Voronoi vertices over all
edgelets, and let tΔ be the time to process each triangle Δ. There are O(M5)
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possible triangles Δ because each of the O(M3) edgelets defines O(M) core
vertices, and each of these vertices defines O(M) triangles. The technique of
Agarwal et al. [1] requires O(ni2α(M) log M + M5tΔ) time. Since they assume
ni ∈ O(M6) and tΔ ∈ O(M), this yields O(M62α(M) log M) time.

We improve this runtime as follows. By Theorem 3, ni ∈ O(M5) over all O(M)
edges of P . By Lemma 1, tΔ ∈ O(log M) time. Thus, we achieve O(M52α(M)

log M) total time. The implicit space bound follows by storing the kinetic Voronoi
diagram for only one edge at a time and storing each of the Θ(M3) maximal
shortest path edge sequences [23] in O(M) space. ��

3 Diameter

The diameter of a convex polyhedral surface is the largest shortest path distance
between any pair of points on the surface. O’Rourke and Schevon [22] originally
gave an algorithm to compute the diameter in O(M14 log M) time. Subsequently,
Agarwal et al. [1] showed how to compute the diameter in O(M8 log M) time.
The approach of Agarwal et al. [1] computes shortest paths between all pairs
of vertices, and these shortest paths induce an arrangement of O(M4) ridge-
free regions on the surface. Each ridge-free region can be associated with a
combinatorial star unfolding that defines a set of source images in the unfolded
plane. Each of these source images can be linearly parameterized according to the
position of a source point s in a (two-dimensional) ridge-free region. Using these
linear parameterizations, Agarwal et al. [1] represent a kinetic Voronoi diagram of
the source images as a lower envelope in R9. The upper bound theorem for convex
polyhedra ensures that this kinetic Voronoi diagram has O(M4) complexity [1].

The below approach computes the diameter a linear factor faster than [1].
Instead of representing a kinetic Voronoi diagram of parameterized source images
as a high-dimensional lower envelope, we maintain a kinetic Voronoi diagram
over a set of collinear and co-circular Voronoi events that are defined by a set
of continuously moving sites. The idea of maintaining a kinetic Voronoi diagram
for a set of continuously moving points is due to Albers et al. [3]. They show
that a kinetic Voronoi diagram can be maintained in O(log M) time per event.

Theorem 5. The diameter of a convex polyhedral surface P with M vertices
can be computed in O(M7 log M) time and O(M4) space.

Proof. To compute the diameter, we maintain a kinetic Voronoi diagram of
source images and return the largest distance ever attained between a source
image site and any of its Voronoi vertices. Begin by picking an initial ridge-free
region r and choosing linear parameterizations for the source images in the com-
binatorial star unfolding of r. As mentioned above, the upper bound theorem
for convex polyhedra ensures that these parameterizations define O(M4) Voronoi
events. Process the remaining ridge free regions in depth-first order so that the
current ridge-free region rc is always adjacent to a previously processed region
rp. Due to the definition of ridge-free regions, the star unfolding for rc can always
be obtained from the star unfolding for rp by removing and inserting two source
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image sites. This implies that the kinetic Voronoi diagram for rc involves only
O(M3) Voronoi events that were not present in rp. This follows because each of
these O(M3) events must involve at least one of the two new source image sites.
These bounds imply that there are a total of O(M7) Voronoi events over all
O(M4) ridge-free regions, and each of these events can be handled in O(log M)
time by [3]. Each parameterized Voronoi vertex v can now be associated with a
function f(v) that represents the distance from v to its defining source image.
The diameter is the largest distance defined by any of these functions. ��

4 Fréchet Distance

Let δC(A, B) (resp. δN (A, B)) denote the Fréchet distance between polygonal
curves A and B on a convex (resp. non-convex) polyhedral surface. Maheshwari
and Yi [19] have previously shown how to compute δC(A, B) in O(M7 log M)
time by enumerating all edge sequences. However, their approach relies on [18]
whose key claim “has yet to be convincingly established” [1]. By contrast, we use
the star unfolding from section 2 to compute δC(A, B) in O(M6 log2 M) time
and O(M2) space. We build a free space diagram [5] to measure the distance
d(s, t) between all pairs of points s ∈ A and t ∈ B. Each cell in our free space
diagram is the parameter space defined by an edgelet α ∈ A and either a core
edge or an anti-core edge in the combinatorial star unfolding for α. A cell is
always interior-disjoint from all other cells.

To compute δC(A, B), we determine for a given constant ε ≥ 0 all points {(s, t)
| s ∈ A, t ∈ B, d(s, t) ≤ ε} that define the free space [5]. The star unfolding S
maps a fixed source point s ∈ A to a set s1, ..., sM of source image points in S and
maps the polygonal curve B to a set β1, ..., βO(M2) of core and anti-core edges in
S. Since s maps to multiple images in S, free space is defined by the union of a
set of disks d1, ..., dM , where each disk di has radius ε and is centered at si (see
Fig. 2). This follows by [6,7] because all L2 distances in the star unfolding for
a convex polyhedral surface are at least as large as the shortest path between
those two points (even when the L2 path does not stay inside the boundary of
the star unfolding). As the source point s varies continuously over an edgelet
α ∈ A, the core is fixed and each si is parameterized along a line segment li in
the star unfolding [1]. This is illustrated in Fig. 2a. The below δC(A, B) decision
problem decides whether the Fréchet distance between polygonal curves A and
B on a convex polyhedral surface is at most some constant ε ≥ 0.

Theorem 6. The δC(A, B) decision problem can be computed in O(M6 log M)
time and O(M2) space.

Proof. Partition the polygonal curve A into O(M3) edgelets and maintain a star
unfolding for these edgelets in O(M4) total time by Theorem 1. Free space for
an edge β in the anti-core region containing si is defined by an ellipse Eli,β =
{(s, t) | s ∈ li, t ∈ β, ||s − t|| ≤ ε}, and free space for an edge γ in the core
is defined by the union of the M ellipses El1,γ , ..., ElM ,γ (see Fig. 2b). Thus,
the free space defined by all O(M2) anti-core edges and O(M) core edges has
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Fig. 2. The Star Unfolding of a Polyhedral Surface. Free space for an edge in the
lightly-shaded anti-core is completely described by a single disk (e.g., the disk centered
on l5 is always closest to βi). Free space for edges in the heavily-shaded core (e.g., βj)
is defined by the union of O(M) disks.

O(M3) total complexity per edgelet and O(M6) complexity over all edgelets.
Reachability information can be propagated through the free space diagram via
plane sweep [11] in O(M6 log M) time, and the decision problem returns true
if and only if the upper right corner of the free space diagram is reachable. By
storing one star unfolding, one cell, and one vertical line segment of the free
space diagram at a time, O(M2) space is sufficient. ��

For a non-convex polyhedral surface, even the core of the star unfolding can
overlap itself [12], and shortest paths can turn at vertices in the star unfolding
[20]. However, the star unfolding can still be defined by a tree of angularly
ordered shortest path cuts from the source to every vertex [8,20], and a core
can still be defined by a polygonal equator with O(M) complexity that connects
adjacent leaves in the tree. An anti-core region now has an hourglass shape [16,10]
because an anti-core region is bounded by a (possibly parameterized) vertex, a
line segment, and two shortest paths in the unfolded plane. The below δN (A, B)
decision problem decides whether the Fréchet distance between polygonal curves
A and B on a non-convex polyhedral surface is at most some constant ε ≥ 0.

Theorem 7. The δN(A, B) decision problem can be computed in O(M7 log M)
time and O(M3) space.

Proof. Partition the polygonal curve A into O(M3) edgelets such that all points
on an edgelet can be associated with the same combinatorial star unfolding.
Maintain a star unfolding for these edgelets in O(M4) total time by Theorem 1.
Let C be the parameter space for an edgelet and either a core edge or an anti-
core edge. Free space for an anti-core edge is the intersection of C with the O(M)
complexity free space for one hourglass. Free space for a core edge is the inter-
section of C with the union of the free spaces for O(M) hourglasses. This union
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has O(M3) complexity because the free space for any pair of hourglasses has
O(M) complexity. Since each core edge γ is a chord of the core, the dual graph
of the core is a tree. Consequently, the O(M) hourglasses for γ can be defined
by iteratively extending an hourglass from every vertex in the star unfolding [8]
through the dual graph of the core to γ. The free space for each edgelet has
O(M4) complexity because it involves O(M2) anti-core edges and O(M) core
edges, and this free space can be computed in O(M4 log M) time [2]. A plane
sweep [11] can be used to answer the decision problem over all O(M3) edgelets
in O(M7 log M) time. O(M3) space is sufficient to store one star unfolding, one
cell, and one vertical line segment of the free space diagram at a time. ��

Theorem 8. The Fréchet distance can be computed on a convex polyhedral sur-
face in O(M6 log2 M) time and O(M2) space and on a non-convex polyhedral
surface in O(M7 log2 M) time and O(M3) space, where M is the total complex-
ity of the surface and the polygonal curves A, B. The free space diagram for a
non-convex polyhedral surface can have Ω(M4) complexity.

Proof. Represent each of the O(M6) (resp. O(M7)) free space vertices from
Theorems 6 and 7 as an algebraic curve ρi(ε) that has constant degree and de-
scription complexity. Critical values [5] are candidate values of ε that are caused
by a geometric configuration change of the free space. Type (a) critical values
are values of ε such that some ρi(ε) touches a corner of the free space diagram.
Type (b) critical values occur when two ρi(ε) intersect or when free space be-
comes tangent to a cell boundary. Monotonicity-enforcing type (c) critical values
occur when a pair of intersection points lie on a horizontal/vertical line. Para-
metric search [5] can be applied to the ρi(ε) functions to compute the Fréchet
optimization problem in O(M6 log2 M) (resp. O(M7 log2 M)) time. The space
bounds are identical to the decision problems. See [12] for our lower bound. ��

5 Shortest Path Maps

This section develops shortest path maps on convex and non-convex polyhedral
surfaces. These structures support queries from any point on an arbitrary source
line segment ab that lies on the surface. Throughout this section, M denotes the
complexity of either a convex or non-convex polyhedral surface, and K is the
complexity of any returned path.

Theorem 9. A shortest path map SPM(ab,P) can be built for a convex polyhe-
dral surface P in O(M4 log M) time and O(M4) space. For all points s ∈ ab ⊂ P
and t ∈ P, SPM(ab,P) can return d(s, t) in O(log2 M) time and π(s, t) in
O(log2 M + K) time.4

Proof. A kinetic Voronoi diagram can be maintained for O(M2) edgelets on ab
in O(M4 log M) total time and O(M4) space by Theorem 3. Point location in
this kinetic Voronoi diagram takes O(log2 M) time by [15]. ��
4 O(log M) time queries are also possible by [15] but at the cost of essentially squaring

both the time and space preprocessing bounds.
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Our next theorem uses the star unfolding [1] and the hourglass structure of [16]
to encode all shortest paths between two line segments. Such an hourglass defines
a piecewise hyperbolic free space that has O(M) complexity [10].

Theorem 10. A shortest path map SPM(ab,PN ) can be built for a non-convex
polyhedral surface PN in O(M9+ε) time and O(M9) space for any constant ε > 0.
For all points s ∈ ab ⊂ PN and t ∈ PN , SPM(ab,PN ) can return d(s, t) in
O(log M) time and π(s, t) in O(log M + K) time.

Proof. Let α be one of the O(M2) edgelets on ab (see section 2). A shortest path
between a point s ∈ α and any fixed point in the anti-core can be resolved using
one hourglass (cf. section 4). By contrast, all shortest paths between s ∈ α and a
fixed point in a face of the core are defined by O(M) hourglasses (see section 4).
To support logarithmic query time for all points in a fixed face of the core, we can
form O(M3) constant complexity distance functions from these hourglasses and
compute their lower envelope and a vertical decomposition structure in O(M6+ε)
time and O(M6) space, for any constant ε > 0 [2]. Repeating this procedure for
all O(M) faces in the core yields O(M7+ε) time per edgelet and O(M9+ε) time
over all O(M2) edgelets. ��

6 Conclusion

We develop algorithms to compute edge sequences, Voronoi diagrams, shortest
path maps, the Fréchet distance, and the diameter for a polyhedral surface.
Despite efforts by Chandru et al. [7] to improve edge sequence algorithms, these
runtimes had not improved since 1997. Our work speeds up the edge sequence
and diameter approaches of Agarwal et al. [1] by a linear factor and introduces
many new shortest path algorithms that apply to both convex and non-convex
polyhedral surfaces. It would be interesting to lower the gaps between our various
lower and upper bounds. In particular, future work could attempt to construct
the Θ(M4) shortest path edge sequences on a convex polyhedral surface in o(M5)
time. Numerous link distance results and our overlapping core example were
omitted due to space constraints and can be found in our technical report [12].

References

1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a poly-
tope with applications. SIAM Journal on Computing 26(6), 1689–1713 (1997)

2. Agarwal, P.K., Sharir, M.: Davenport–Schinzel Sequences and Their Geometric Ap-
plications. Handbook of Computational Geometry, pp. 1–47. Elsevier, Amsterdam
(2000)

3. Albers, G., Mitchell, J.S.B., Guibas, L.J., Roos, T.: Voronoi diagrams of moving
points. Journal of Computational Geometry & Applications 8, 365–380 (1998)

4. Aleksandrov, L., Djidjev, H., Huo, G., Maheshwari, A., Nussbaum, D., Sack, J.-R.:
Approximate shortest path queries on weighted polyhedral surfaces. In: Královič,
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Abstract. The buy-at-bulk network design problem has been extensively stud-
ied in the general graph model. In this paper we consider the geometric version
of the problem, where all points in a Euclidean space are candidates for net-
work nodes. We present the first general approach for geometric versions of ba-
sic variants of the buy-at-bulk network design problem. It enables us to obtain
quasi-polynomial-time approximation schemes for basic variants of the buy-at-
bulk geometric network design problem with polynomial total demand. Then, for
instances with few sinks and low capacity links, we design very fast polynomial-
time low-constant approximations algorithms.

1 Introduction

Consider a water heating company that plans to construct a network of pipelines to carry
warm water from a number of heating stations to a number of buildings. The company
can install several types of pipes of various diameters and prices per unit length. Typ-
ically, the prices grow with the diameter while the ratio between the pipe throughput
capacity and its unit price decreases. The natural goal of the company is to minimize
the total cost of pipes sufficient to construct a network that could carry the warm water
to the buildings, assuming a fixed water supply at each source. Similar problems can
be faced by oil companies that need to transport oil to refineries or telecommunication
companies that need to buy capacities (in bulk) from a phone company.
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The common difficulty of these problems is that only a limited set of types of links
(e.g., pipes) is available so the price of installing a link (or, a node respectively) to carry
some volume of supply between its endpoints does not grow in linear fashion in the
volume but has a discrete character. Even if only one type of link with capacity not less
than the total supply is available the problem is NP-hard as it includes the minimum
Steiner tree problem. Since the geometric versions of the latter problem are known
to be strongly NP-complete [11], these problems cannot admit fully polynomial-time
approximations schemes in the geometric setting [11].

In operations research, they are often termed as discrete cost network optimization
[4,20] whereas in computer science as minimum cost network (or, link/edge) installa-
tion problems [23] or as buy-at-bulk network design [3]; we shall use the latter term.

In computer science, the buy-at-bulk network design problem has been introduced
by Salman et al. [23], who argued that the case most relevant in practice is when the
graph is defined by points in the Euclidean plane. Since then, various variants of
buy-at-bulk network design have been extensively studied in the graph model
[3,5,6,7,10,12,13,14,15,17,19] (rather than in geometric setting). Depending on whether
or not the whole supply at each source is required to follow a single path to a sink they
are characterized as non-divisible or divisible [23]. In terms of the warm water supply
problem, the divisible graph model means that possible locations of the pipes and their
splits or joints are given a priori.

In this paper, we consider the following basic geometric divisible variants of the
buy-at-bulk network design:

� Buy-at-bulk geometric network design (BGND): for a given set of different edge
types and a given set of sources and sinks placed in a Euclidean space construct a
minimum cost geometric network sufficient to carry the integral supply at sources
to the sinks.

� Buy-at-bulk single-sink geometric network design (BSGND): for a given set of dif-
ferent edge types, a given single-sink and given set of sources construct a minimum
cost geometric network sufficient to carry the integral supply at sources to the sink.

Motivated by the practical setting in which the underlying network has to posses
some basic structural properties, we distinguish also special versions of both problems
where each edge of the network has to be parallel to one of the coordinate system
axes, and term them as buy-at-bulk rectilinear network design (BRND) and buy-at-bulk
single-sink rectilinear network design (BSRND), respectively.

Our contributions and techniques. A classical approach for approximation algorithms
for geometric optimization problems builds on the techniques developed for polynomial-
time approximation schemes (PTAS) for geometric optimization problems due to Arora
[1]. The main difficulty with the application of this method to the general BGND prob-
lem lies in the reduction of the number of crossings on the boundaries of the dissection
squares. This is because we cannot limit the number of crossings of a boundary of a
dissection square below the integral amount of supply it carries into that square. On the
other hand, we can significantly limit the number of crossing locations at the expense
of a slight increase in the network cost. However with this relaxed approach we can-
not achieve polynomial but rather only quasi-polynomial upper bounds on the number
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of subproblems on the dissection squares in the dynamic programming phase but for
very special cases (cf. [2]). Furthermore, the subproblems, in particular the leaf ones,
become much more difficult. Nevertheless, we can solve them exactly in the case of
BRND with polynomially bounded demands of the sources and nearly-optimally in the
case of BGND with polynomially bounded demands of the sources and constant edge
capacities, in at most quasi-polynomial time1.

As the result, we obtain a randomized quasi-polynomial-time approximation scheme
(QPTAS) for the divisible buy-at-bulk rectilinear network design problem in the Eu-
clidean plane with polynomially bounded total supply and a randomized QPTAS for the
divisible buy-at-bulk network design problem on the plane with polynomially bounded
total supply and constant edge capacities. Both results can be derandomized and the
rectilinear one can be generalized to include O(1)-dimensional Euclidean space. They
imply that the two aforementioned variants of buy-at-bulk geometric network design
are not APX-hard, unless SAT ∈ DTIME[nlogO(1) n].

These two results are later used to prove our further results about low-constant-factor
approximations for more general geometric variants. By using a method based on a
novel belt decomposition for the single-sink variant, we obtain a (2+ ε) approximation
to the divisible buy-at-bulk rectilinear network design problem in the Euclidean plane,
which is fast if there are few sinks and the capacities of links are small; e.g., it runs in
n(log n)O(1) time if the number of sinks and the maximum link capacity are polyloga-
rithmic in n. Similarly, we obtain a (2+ε) approximation to the corresponding variants
of the divisible buy-at-bulk network design problem in the Euclidean plane, which are
fast if there are few sinks and the capacities of links are small, e.g., n(log n)O(1)-time
if the number of sinks is polylogarithmic in n and maximum link capacity is O(1). For
comparison, the best known approximation factor for single-sink divisible buy-at-bulk
network design in the graph model is 24.92 [13].

Related work. Salman et al. [23] initiated the algorithmic study of the single-sink buy-
at-bulk network design problem. They argued that the problem is especially relevant
in practice in the geometric case and they provided a polynomial-time approximation
algorithm for the indivisible variant of BSGND on the input Euclidean graph (which
differs from our model in that Salman et al. [23] allowed only some points on the plane
to be used by the solution, whereas we allow the entire space to be used) with the
approximation guarantee of O(log D), where D is total supply. Salman et al. gave also
a constant factor approximation for general graphs in case where only one sink and one
type of links is available; this approximation ratio has been improved by Hassin et al.
[15]. Mansour and Peleg [18] provided an O(log n) approximation for the multi-sink
buy-at-bulk network design problem when only one type of link is available. Awerbuch
and Azar [3] were the first who gave a non-trivial (polylogarithmic) approximation
for the general graph case for the total of n sinks and sources even in the case where
different sources have to communicate with different sinks.

In the single-sink buy-at-bulk network design problem for general graphs, Garg et al.
[12] designed an O(K) approximation algorithm, where K is the number of edge types,

1 Our solution method does not work in quasi-polynomial time in the case of the stronger version
of BRND and BGND where specified sources must be assigned to specified sinks [3].
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and later Guha et al. [14] gave the first constant-factor approximation algorithm for the
(non-divisible) variant of the problem. This constant has been reduced in a sequence
of papers [10,13,17,24] to reach the approximation ratio of 145.6 for the non-divisible
variant and 24.92 for the divisible variant. Recently, further generalizations of the buy-
at-bulk network design problem in the graph model have been studied [5,6].

2 Preliminaries

Consider a Euclidean d-dimensional space Ed. Let s1, . . . , sns be a given set of ns

points in Ed (sources) and t1, . . . , tnt be a given set of nt points in Ed (sinks). Each
source si supplies some integral demand d(si) to the sinks. Each sink tj is required to
receive some integral demand d(tj). The sums

∑
i d(si),

∑
j d(tj) are assumed to be

equal and their value is termed as the total demand D. There are K types of edges, each
type with a fixed cost and capacity. The capacity of an edge of type i is ci and the cost
of placing an edge e of ith type and length |e| is |e| · δi.

The objective of the buy-at-bulk geometric network design problem (BGND) is to
construct a geometric directed multigraph G in Ed such that:

• each copy of a multi-edge in the network is one of the K types;
• all the sources si and the sinks tj belong to the set of vertices of G (the remaining

vertices are called Steiner vertices);
• for � = 1, . . . , D, there is a supply-demand path (sd-path for short) P� from a

source si to a sink tj such that each source si is a startpoint of d(si) sd-paths, each
sink tj is an endpoint of d(tj) sd-paths, and for each directed multi-edge of the
multigraph the total capacity of the copies of this edge is not less than the total
number of sd-paths passing through it;
• the multigraph minimizes the total cost of the copies of its multi-edges.

If the set of sinks is a singleton then the problem is termed as the buy-at-bulk single-
sink geometric network design problem (BSGND for short). If the multigraph is re-
quired to be rectilinear, i.e., only vertical and horizontal edges are allowed, then the
problem is termed as the buy-at-bulk rectilinear network design problem (BRND for
short) and its single-sink version is abbreviated as BSRND.

We assume, that the types of the edges are ordered c1 < · · · < cK , δ1 < · · · < δK

and δ1
c1

> · · · > δK

cK
, since otherwise we can eliminate some types of the edges [23].

In this paper, we will always assume that the Euclidean space under consideration is
a Euclidean plane E2, even though the majority of our results can be generalized to any
Euclidean O(1)-dimensional space.

Zachariasen [25] showed that several variants and generalizations of the minimum
rectilinear Steiner problem in the Euclidean plane are solvable on the Hanan grid of the
input points, i.e., on the grid formed by the vertical and horizontal straight-lines passing
through these points. The following lemma extends this to BRND.

Lemma 1. Any optimal solution to BRND in the plane can be converted into a planar
multigraph (so the sd-paths do not cross) where all the vertices lie on the Hanan grid.



172 A. Czumaj et al.

3 Approximating Geometric Buy-at-Bulk Network Design

In this section, we present our QPTAS for BRND and BGND. We begin with general-
izations of several results from [1,22] about PTAS for TSP and the minimum Steiner
tree in the plane. We first state a generalization of the Perturbation Lemma from [1,22].

Lemma 2. [22] Let G = (V, E) be a geometric graph with vertices in [0, 1]2, and let
U ⊆ V . Denote by E(U) the set of edges incident to the vertices in U . One can perturb
the vertices in U so they have coordinates of the form ( i

k , j
k ), where i, j are natural

numbers not greater than a common natural denominator k, and the total length of G
increases or decreases by an additive term of at most

√
2 · |E|/k.

Consider an instance of BGND or BRND with sources s1 . . . sns and sinks t1 . . . tnt .
We may assume, w.l.o.g., that the sources and the sinks are in [0, 1)2.

Suppose that the total demand D is nO(1) where n = ns + nt. It follows that the
maximum degree in a minimum cost multigraph solving the BGND or BRND is nO(1).
Hence, the total number of copies of edges incident to the sources and sinks in the
multigraph is also, w.l.o.g., nO(1) = nO(1) × n. In the case of BRND, we infer that
even the total number of copies of edges incident to all vertices, i.e., including the
Steiner points, is, w.l.o.g., nO(1) = nO(1) ×O(n2) by Lemma 1.

Let δ > 0. By using a straightforward extension of Lemma 2 to include a geometric
multigraph and rescaling by L = nO(1)

δ the coordinates of the sources and sinks, we can
alter our BGND or BRND with all vertices on the Hanan grid such that:

• the sources and sinks of the BGND and BRND as well as the Steiner vertices of
the BRND lie on the integer grid in [0, L)2, and
• for any solution to the BGND with the original sources and sites (or, BRND with

all vertices on the Hanan grid) and for any type of edge, the total length of copies of
edges of this type in the solution resulting for the BGND with the sources and sinks
on the integer grid (or, for BRND with all vertices on the integer grid, respectively)
is at most L(1 + δ) times larger, and
• for any solution to the BGND with the sources and sinks on the integer grid (or,

for BRND with all vertices on the integer grid, respectively), the total length of
copies of edges of this type in the solution resulting for the BGND with the orig-
inal sources and sites (or, BRND with all vertices on the Hanan grid) is at most
(1 + δ)/L times larger.

Note the second and the third properties imply that we may assume further that our
input instance of BGND has sources and sinks on the integer grid in [0, L)2, since
this assumption introduces only an additional (1 + δ) factor to the final approximation
factor. We shall call this assumption the rounding assumption. In the case of BRND,
we may assume further, w.l.o.g., not only that our input instance has sources and sinks
on the integer grid but also that Steiner vertices may be located only on this grid by the
second and third property, respectively. This stronger assumption in the case of BRND
introduces also only an additional (1+ δ) factor to the final approximation factor by the
aforementioned properties. We shall term it the strong rounding assumption.

Now we pick two integers a and b uniformly at random from [0, L) and extend the
grid by a vertical grid lines to the left and L − a vertical grid lines to the right. We
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similarly increase the height of the grid using the random integer b, and denote the
obtained grid by L(a, b). Next, we define the recursive decomposition of L(a, b) by
dissection squares using quadtree. The dissection quadtree is a 4-ary tree whose root
corresponds to the square L(a, b). Each node of the tree corresponding to a dissection
square of area greater than 1 is dissected into four child squares of equal side length; the
four child squares are called siblings. The obtained quadtree decomposition is denoted
by Q(a, b).

We say a graph G is r-light if it crosses each boundary between two sibling dissection
squares of Q(a, b) at most r times. A multigraph H is r-fine if it crosses each boundary
between two sibling dissection squares of Q(a, b) in at most r places. For a straight-line
segment � and an integer r, an r-portal of � is any endpoint of any of the r segments of
equal length into which � can be partitioned.

3.1 QPTAS for Buy-at-Bulk Rectilinear Network Design (BRND)

We obtain the following new theorem which can be seen as a generalization of the
structure theorem from [1] to include geometric multigraphs, where the guarantee of
r-lightness is replaced by the weaker guarantee of r-fineness.

Theorem 1. For any ε > 0 and any BRND (or BGND, respectively) on the grid L(a, b),
there is a multigraph on L(a, b) crossing each boundary between two sibling dissec-
tion squares of Q(a, b) only at O(log L/ε)-portals, being a feasible solution of BRND
(BGND, respectively) and having the expected length at most (1 + ε) times larger than
the minimum.

To obtain a QPTAS for an arbitrary BRND with polynomial total demand in the Eu-
clidean plane it is sufficient to show how to find a minimum cost multigraph for BRND
on L(a, b) which crosses each boundary between two sibling dissection squares of
Q(a, b) only at r-portals efficiently, where r = O(log n/ε).

We specify a subproblem in our dynamic programming method by a dissection
square occurring in some level of the quadtree Q(a, b), a choice of crossing points
out of the O(r)-portals on the sides of the dissection square, and for each of the chosen
crossing points p, an integral demand d(p) it should either supply to or receive from
the square (instead of the pairing of the distinguished portals [1]). By the upper bound
D ≤ nO(1), we may assume, w.l.o.g., that d(p) = nO(1). Thus, the total number of such
different subproblem specifications is easily seen to be nO(r). The aforementioned sub-
problem consists of finding a minimum cost r-fine rectilinear multigraph for the BRND
within the square, where the sources are the original sources within the square and the
crossing points expected to supply some demand whereas the sinks are the original
sinks within the square and the crossing points expected to receive some demand.

Each leaf subproblem, where the dissection square is a cell of L(a, b) and the original
sources and sinks may be placed only at the corners of the dissection square, and the
remaining O(r) ones on the boundary of the cell, can be solved by exhaustive search
and dynamic programming as follows. By Lemma 1, we may assume, w.l.o.g., that
an optimal solution of the subproblem is placed on the Hanan O(r) × O(r) grid. We
enumerate all directions and total capacity assignments to the edges of the grid in time
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nO(r) by using the nO(1) bound on the total demand. For each such grid edge with non-
zero total capacity assigned, we find (if possible) the cheapest multi-covering of this
capacity with different edge types with capacity bounded by the total demand by using
a pseudo-polynomial time algorithm for the integer knapsack problem [11]. Next, we
compare the cost of such optimal multi-covering with the cost of using a single copy of
the cheapest edge type whose capacity exceeds the total demand (if any) to choose an
optimal solution. It follows that all the leaf subproblems can be solved in time nO(r2).

Then, we can solve subproblems corresponding to consecutive levels of the quadtree
Q(a, b) in a bottom up fashion by combining optimal solutions to four compatible sub-
problems corresponding to the four dissection squares which are children of the dis-
section square in the subproblem to solve. The compatibility requirement is concerned
with the location of the crossing points and their demand requirements. Since there are
nO(r) subproblems, solution of a single subproblem also takes nO(r) time.

The bottleneck in the complexity of the dynamic programming are the leaf subprob-
lems. If we could arbitrarily closely approximate their solutions in time nO(r) then we
could compute a minimum cost r-fine multigraph for BRND on L(a, b) with polyno-
mially bounded total demand in time nO(r). The following lemma will be helpful.

Lemma 3. For any ε > 0, one can produce a feasible solution to any leaf subproblem
which is within (1 + ε) from the minimum in time nO(log2 r).

By halving ε both in the dynamic programming for the original problem as well as in
Lemma 3 and using the method of this lemma to solve the leaf subproblems, we obtain
the following lemma.

Lemma 4. A feasible r-fine multigraph for BRND on L(a, b)with polynomially bounded
total demand and total cost within 1 + ε from the optimum is computable in time nO(r).

By combining Theorem 1 with Lemma 4 for r = O( log n
ε ) and the fact that the rounding

assumption introduces only an additional factor of (1 + O(ε)) to the approximation
factor, we obtain our first result.

Theorem 2. For any ε > 0, there is a randomized nO(log n/ε)-time algorithm for BRND
in the Euclidean plane with a total of n sources and sinks and total demand polynomial
in n, which yields a solution whose expected cost is within (1 + ε) of the optimum.

Theorem 2 immediately implies the following result for BGND (which will be substan-
tially subsumed in Section 3.2 in the case of constant maximum edge capacity).

Corollary 1. For any ε > 0, there is a randomized nO(log n/ε)-time algorithm for
BGND in the Euclidean plane with the total of n sources and sinks and with polynomial
in n total demand, which yields a solution whose expected cost is within (

√
2 + ε) from

the optimum.

3.2 QPTAS for the Buy-at-Bulk Geometric Network Design Problem (BGND)

We can arbitrarily closely approximate BGND analogously as BRND if it is possible to
solve or very closely approximate the leaf subproblems where all the sources and sinks
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are placed in O(log n/ε) equidistant portals on a boundary of a dissection square, and
feasible solutions are restricted to the square area. Note that such a leaf subproblem is
logarithmic as for the number of sources and sinks but the total capacity of its sources
or sinks might be as large as the total capacity D of all sources. We shall assume D to
be polynomial in the number of sinks an sources as in the previous section.

By an h-square BGND, we mean BGND restricted to instances where h sources and
sinks are placed on a boundary of a square. By a logarithmic square BGND, we mean
an h-square BGND where the total demand of the sources is O(log n).

Lemma 5. If there is an nO(log n)-time approximation scheme for a logarithmic square
BGND then there is an nO(log n)-time approximation scheme for an O(log n)-square
BGND with maximum edge capacity O(1).

Proof. Let D denote the total capacity of the sources in the h-square BGND, where h =
O(log n). Consider an optimal solution to the h-square BGND. It can be decomposed
into D sd-paths, each transporting one unit from a source to a sink. There are O(h2)
types of the sd-paths in one-to-one correspondence with the O(h2) pairs source-sink.
Analogously as in the rectilinear case (see Lemma 1), we may assume, w.l.o.g., that the
sd-paths do not intersect and that that the minimum edge capacity is 1. Let M be the
maximum edge capacity in the h-square BGND.

For a type t of sd-path, let Nt be the number of sd-paths of type t in the optimal
solution. Since these sd-paths do not intersect, we can number them, say, in the cyclic
ordering around their common source, with the numbers in the interval [1, Nt]. Note
that each of these paths whose number is in the sub-interval [M, Nt −M + 1] can use
only edges which are solely used by sd-paths of this type in the optimal solution. Let
k = � 1ε�, and let � be the ratio between the cost δ1 (per length unit) of an edge of
capacity 1 and the cost δmax of an edge of the maximum capacity M divided by M .
Suppose that Nt ≥M + �kM + 2(M − 1). Let q = �(Nt − 2(M − 1))/M�.

Consider the following modification of the optimal solution. Group the consecutive
bunches of M sd-paths of type t in the sub-interval [M, qM − 1], and direct them
through q directed edges of capacity M from the source to the sink corresponding to
the type t. Remove all edges in the optimal solution used by these sd-paths in this sub-
interval. Note that solely at most M − 1 sd-paths of the type t immediately to the left
of [M, Nt−M + 1] as well as at most M − 1 sd-paths of the type t immediately to the
right of this interval can loose their connections to the sink in this way. Independently
of whether such a path looses its connection or not, we direct it through a direct edge of
capacity 1 from the source to the sink.

The total cost of the directed edges of capacity M from the source to the sink in the
distance d is qδmaxd. It yields the lowest possible cost per unit, sent from the source to
the sink corresponding to t, equal to δmax

M d. Thus the total cost of the removed edges
must be at least qδmaxd ! The additional cost of the 2(M − 1) direct edges of capacity
1 from the source to the sink is ≤ ε fraction of qδmaxd by our assumption on Nt.

By starting from the optimal solution and performing the aforementioned modifica-
tion of the current solution for each type t of sd-path satisfying Nt ≥ M + �kM +
2(M − 1), we obtain a solution which is at most (1 + ε) times more costly than the
optimal, and which is decomposed into two following parts. The first, explicitly given
part includes all sd-paths of type t satisfying Nt ≥M + �kM + 2(M − 1) whereas the
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second unknown part includes all paths of types t satisfying Nt < �kM + 2(M − 1).
It follows that it is sufficient to have an (1 + ε)-approximation of an optimal solution to
the logarithmic square BGND problem solved by the second part in order to obtain an
(1 + O(ε))-approximation to the original h-square BGND. ��

Lemma 6. For any ε > 0, the logarithmic square BGND problem with the total ca-
pacity of the sources D can be (1 + ε)-approximated in time (D/ε)O(D(log D/ε)) if
cmax = O(1).

By combining Lemma 5 with Lemma 6 for D = O(log n/ε) and straightforward cal-
culations, we obtain an arbitrarily close to the optimum solutions to the nO(log n/ε) leaf
problems in total time nO(log n/εO(1)). Hence, analogously as in case of BRND, we
obtain a QPTAS for BGND with polynomially bounded demand when cmax = O(1).

Theorem 3. BGND with polynomially bounded demand of the sources and constant
maximum edge capacity admits an nO(log n)-time approximation scheme.

4 Fast Low-Constant Approximation for BRND and BGND

In this section, we present another method for BGND and BRND which runs in polyno-
mial time, gives a low-constant approximation guarantee, and does not require a polyno-
mial bound on the total demand. The method is especially efficient if the edge capacities
are small and there are few sinks.

We start with the following two simple lemmas. The first lemma is analogous to the
so-called routing lower bound from [18,23] and the second follows standard arguments.

Lemma 7. Let S be the set of sources in an instance of BGND (BRND), and for each
s ∈ S, let t(s) be the closest sink in this instance. The cost of an optimal solution to the
BGND (BRND, respectively) is at least

∑
s∈S dist(s, t(s)) δK

cK
d(s), where dist(s, t(s))

is the Euclidean distance (the L1 distance, respectively).

Lemma 8. Let S be a set of k points within a square of side length �. One can find in
time O(k) a Steiner tree of S with length O(�

√
k).

The following lemma describes a simple reduction procedure which yields an almost
feasible solution to BSGND or BSRND with cost arbitrarily close to the optimum.

Lemma 9. For any ε > 0, there is a reduction procedure for BSGND (or BSRND, re-
spectively), with one sink and n − 1 sources and the ratio between the maximum and
minimum distances of a source from the sink equal to m, which returns a multigraph
yielding a partial solution to the BSGND (or BSRND, respectively) satisfying the fol-
lowing conditions:

• all but O((1
ε )2c2

K log m) sources can ship their whole demand to the sink;
• for each source s there are at most cK − 1 units of its whole demand d(s) which

cannot be shipped to the sink.

The reduction runs in time O( cK

ε log m log n + cKn), which is O(n/ε2) if cK = O(1).
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Proof. Form a rectilinear 2�m�×2�m� grid F with unit distance equal to the minimum
distance between the only sink t and a source, centered around t. Let μ be a positive
constant to be set later.

We divide F into the square R of size 2�μ√cK� centered in t and for i = 0, 1, . . . ,
the belts Bi of squares of size 2i within the L∞ distance at least 2i�μ√cK� and
at most 2i+1�μ√cK� from t. Note that the number of squares in the belt Bi is at
most (4�μ√cK�)2 = O(μ2cK), hence the total number of squares in all the belts is
O(μ2cK log m) by the definition of the grid.

The reduction procedure consists of two phases. In the first phase, we connect each
source s by a multi-path composed of �d(s)/cK� copies of a shortest path from s to t
implemented with the K-th type of edges. Observe that the average cost of such a con-
nection per each of the cK�d(s)/cK� demand units u shipped from s to t is dist(s, t) δK

cK

which is optimal by Lemma 7. Note that after the first phase the remaining demand for
each source is at most cK − 1 units.

In the second phase, for each of the squares Q in each of the belts Bi, we sum the
remaining demands of the sources contained in it, and for each complete cK-tuple of
demand units in Q, we find a minimum Steiner multi-tree of their sources and connect
its vertex v closest to t by a shortest path to t. The total length of the resulting multi-tree
is easily seen to be dist(v, t) + O(2i√cK) ≤ (1 + O( 1

μ ))dist(v, t) by the definition
of the squares and Lemma 8. Hence, for each unit u in the cK-tuple originating from
its source s(u), we can assign the average cost of connection to t by the multi-tree
implemented with the K-th type of edges not greater than (1 + O( 1

μ))dist(s(u), t) δK

cK
.

It follows by Lemma 7 that the total cost of the constructed network is within
(1+O( 1

μ)) from the minimum cost of a multigraph for the input BSGND. By choosing
μ appropriately large, we obtain the required 1 + ε-approximation.

Since the total number of squares different from R is O(μ2cK log m), the total num-
ber of their sources with a non-zero remaining demand (at most cK − 1 units) to ship is
O(μ2c2

K log m). Furthermore, since the square R can include at most O(μ2cK) sources,
the number of sources with a non-zero remaining demand (at most cK − 1 units) in R
is only O(μ2cK).

The first phase can be implemented in time linear in the number of sources. The sec-
ond phase requires O(μ2cK log m) range queries for disjoint squares and O(cKn/cK)
constructions of Steiner trees on cK vertices using the method of Lemma 8. Thus it
needs O(μ2cK log m logn + cKn) time by [21] and Lemma 8. Since, w.l.o.g, μ =
O(1

ε ), we conclude that the whole procedure takes O( cK

ε2 log m logn + cKn) time. ��

Extension to BRND and BGND. We can generalize our reduction to include nt sinks
by finding the Voronoi diagram in the L2 (or L1 for BGND) metric on the grid, lo-
cating each source in the region of the closest sink, and then running the reduction
procedure separately on each set of sources contained in a single region of the Voronoi
diagram. The construction of the Voronoi diagram and the location of the sources takes
time O(n log n) (see [16,21]). The nt runs of the reduction procedure on disjoint sets
of sources takes time O((1

ε )2ntcK log m log n + cKn). The union of the nt result-
ing multigraphs may miss to ship the whole demand only from O((1

ε )2ntc
2
K log m)

sources. This gives the following generalization of Lemma 9.
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Lemma 10. For any ε > 0, there is a reduction procedure for BGND (or BRND, resp.),
with nt sinks and n − nt sources and the ratio between the maximum and minimum
distances of a source from the sink equal to m, which returns a multigraph yielding a
partial solution to the BGND (or BRND, resp.) satisfying the following conditions:

• all but O((1
ε )2ntc

2
K log m) sources can ship their whole demand to the sink;

• for each source s there are at most cK − 1 units of its whole demand d(s) which
cannot be shipped to the sink.

The reduction procedure runs in time O((1
ε )2ntcK log m log n + n(cK + log n)). In

particular, if cK = (log n)O(1) then the running time is (1
ε )2n log m(log n)O(1).

Now, we are ready to derive our main results in this section.

Theorem 4. For any ε > 0, there is a (2 + ε)-approximation algorithm for BRND with
nt sinks and n−nt sources in the Euclidean plane, running in time O((1

ε )2ntcK log2 n+

n(log n + cK)) + (ntc
2
K log n)O( log nt+log cK

ε2 ), in particular in time n(log n)O(1) +
(log n)O( log log n

ε2 ) if nt = (log n)O(1) and cK = (log n)O(1).

Proof. By the rounding assumption discussed in Section 3 we can perturb the sinks
and the sources so they lie on an integer grid of polynomial size introducing only an
additional (1 + O(ε)) factor to the final approximation factor. The perturbation can be
easily done in linear time. Next, we apply the reduction procedure from Lemma 10 to
obtain an almost feasible solution of total cost not exceeding (1 + O(ε)) of that for the
optimal solution to the BSRND on the grid. Note that m ≤ nO(1) and hence log m =
O(log n) in this application of the reduction by the polynomiality of the grid. It remains
to solve the BRND subproblem for the O((1

ε )2ntcK log n) remaining sources with total
remaining demand polynomial in their number. This subproblem can be solved with the
randomized (1+O(ε))-approximation algorithm of Theorem 2. In fact, we can use here

also its derandomized version which will run in time (ntc
2
K log n)O( log nt+log cK

ε2 ). ��

As an immediate corollary from Theorem 4, we obtain a (
√

8 + ε)-approximation al-
gorithm for BGND with nt sinks and n − nt sources in the Euclidean plane, running

in time O((1
ε )2ntcK log2 n + n(log n + cK)) + (ntc

2
K log n)O( log nt+log cK

ε2 ). However,
the direct method analogous to that of Theorem 4 yields a better approximation, in
particular also an (2 + ε)-approximation if cK = O(1).

Theorem 5. For any ε > 0, there is a (1 +
√

2 + ε)-approximation algorithm for
BGND with nt sinks and n − nt sources in the Euclidean plane, running in time

O((1
ε )2ntcK log2 n + n(log n + cK)) + (ntc

2
K log n)O( log nt+log cK

ε2 ); the running time

is n(log n)O(1) +(logn)O( log log n

ε2 ) if nt = (log n)O(1) and cK = (log n)O(1). Further-
more, if cK = O(1) then the approximation factor of the algorithm is 2 + ε.

5 Final Remarks

We have demonstrated that BRND and BGND in a Euclidean space admit close ap-
proximation under the assumption that the total demand is polynomially bounded. By
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running the first phase of the reduction procedure from Lemma 9 as a preprocessing,
we could get rid of the latter assumption at the expense of worsening the approximation
factors by the additive term 1.

All our approximation results for different variants of BRND in Euclidean plane
derived in this paper can be generalized to include corresponding variants of BRND in
a Euclidean space of fixed dimension. All our approximation schemes are randomized
but they can be derandomized similarly as those in [1,8,9,22].
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Abstract. We introduce the rank-sensitive priority queue — a data
structure that always knows the minimum element it contains, for which
insertion and deletion take O(log(n/r)) time, with n being the number
of elements in the structure, and r being the rank of the element being
inserted or deleted (r = 1 for the minimum, r = n for the maximum).
We show how several elegant implementations of rank-sensitive priority
queues can be obtained by applying novel modifications to treaps and
amortized balanced binary search trees, and we show that in the compar-
ison model, the bounds above are essentially the best possible. Finally,
we conclude with a case study on the use of rank-sensitive priority queues
for shortest path computation.

1 Introduction

Let us say that a data structure is min-aware if it always knows the minimum
element it contains; equivalently, the structure should support an O(1) time find-
min operation. Furthermore, we say a data structure is dynamic if it supports an
insert operation for adding new elements, and a delete operation for removing
elements (as is typical, we assume delete takes a pointer directly to the element
being deleted, since our data structure may not support an efficient means of
finding elements). The functionality of a dynamic min-aware structure captures
the essence of the priority queue, the class of data structures to which the results
in this paper are primarily applicable. In a priority queue, the find-min and delete
operations are typically combined into an aggregate delete-min operation, but we
will find it convenient to keep them separate and focus on the generic framework
of a dynamic min-aware structure in the ensuing discussion.

In the comparison model of computation, it is obvious that either insert or
delete must run in Ω(log n) worst-case time for any dynamic min-aware struc-
ture, since otherwise we could circumvent the well-known Ω(n log n) worst-case
lower bound on comparison-based sorting by inserting n elements and repeatedly
deleting the minimum. As a consequence, even the most sophisticated comparison-
based priority queues typically advertise a running time bound of O(log n) for in-
sert or (more commonly) delete-min. The sorting reduction above makes it clear
that this is the best one can hope to achieve to inserting or deleting the minimum
element in our structure, but what about other elements? Might it be possible,
say, to design a comparison-based dynamic min-aware data structure with insert

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 181–192, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and delete running in only O(1) time, except for the special case where we insert or
delete a new minimum element, which takes O(log n) time? At first glance, these
requirements no longer seem to run afoul of the sorting lower bound, but they still
seem quite ambitious. This motivates the general question: if we take the rank of
the element being inserted or deleted into consideration, how quickly can a dy-
namic min-aware structure support insert and delete?

In this paper, we answer the question above by providing several implemen-
tations of what we call rank-sensitive priority queues. These are dynamic min-
aware data structures capable of performing insert and delete in O(log(n/r))
time (possibly amortized or in expectation), where n denotes the number of el-
ements in the structure and r denotes the rank of the element being inserted or
deleted (r = 1 for the minimum, r = n for the maximum1). Note that the struc-
ture is not explicitly told the ranks of the elements being inserted or deleted;
rather, its performance simply scales in a graceful manner from O(log n) for
inserting or deleting near the minimum down to O(1) for, say, modifying any
of the 99% of the largest elements. The resulting structure should therefore be
ideally suited for the case where we want to maintain a dynamic collection of
elements for which we only occasionally (say, in case of emergency) need prior-
ity queue functionality. Our various implementations of rank-sensitive priority
queues will appeal to the serious data structure aficionado in that they involve
elegant new twists on well-studied data structures, notably treaps, amortized
balanced binary search trees, and radix heaps.

After discussing our data structures, we then give a proof that in the com-
parison model, O(log(n/r)) is essentially the best one can hope to achieve for a
rank-sensitive running time bound. There are two main challenges in doing this,
the first being that it is actually not so easy to state such a lower bound theorem
the right way; for example, if we are not careful, we can end up with a theorem
that is vacuously true since it must hold for the special case where r = 1. The
second main challenge is to perform a reduction that somehow manages to use
our data structure to sort by removing mostly non-minimal elements.

Much of the research driving the development of fast priority queues is ulti-
mately focused on speeding up Dijkstra’s shortest path algorithm. Rank-sensitive
priority queues are also worth studying in this context. Since the dominant com-
ponent of the running time for Dijkstra’s algorithm is typically the large number
of decrease-key operations (in our case, implemented by delete followed by insert
with a new key), we expect a rank-sensitive priority queue to perform well as
long as many of our decrease-key operations don’t move elements too close to
the minimum in rank (a potentially reasonable assumption, for many types of
shortest path problems). One might therefore hope that rank-sensitive priority
queues might give us performance bounds in practice that match those of more
complicated data structures, such as Fibonacci heaps. The last section of our

1 We assume for simplicity that all elements in our structure have distinct values, so
ranks are uniquely-defined. In the event of ties, we would need to define r to be the
maximum rank of all tied elements, in order to ensure that our upper bounds still
hold in the worst case.
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paper investigates this possibility with a discussion of computational results of
using rank-sensitive priority queues in shortest path computation.

Several works related to ours appear in the literature. Splay trees [12] and
the unified structure [3] satisfy the static and dynamic finger theorems (see
[6,5]), which (if we use the minimum element as a finger) give us amortized
bounds of O(log r) for insertion or deletion of a rank-r element. This is indeed
a form of rank sensitivity, but it is significantly weaker than our O(log(n/r))
bound above: O(log r) evaluates to O(log n) for nearly all the elements in a
structure, while O(log(n/r)) evaluates to O(1) for nearly all the elements. A
similar bound is obtained by the Fishspear priority queue of Fisher and Patterson
[8], where the running time for inserting and deleting element x is bounded by
O(log m(x)), with m(x) giving the maximum rank of x over its lifetime in the
structure. Iacono’s queap data structures [11] support delete-min(x) operation in
time O(log q(x)), where q(x) gives the number of elements in the structure that
are older than x; this can also be considered a form of “rank sensitivity”, where
“rank” now has the very different meaning of “seniority” in the structure. Note
that the working set property of splay trees and the unified structure leads to
a symmetric bound: O(log y(x)), where y(x) denotes the number of elements in
the structure younger than x.

2 A Randomized Approach

The first idea that comes to mind when trying to build a rank-sensitive priority
queue is perhaps whether or not a standard binary heap might be sufficient.
Insertion and deletion of an element x in a binary heap can be easily imple-
mented in time proportional to the height of x, which is certainly O(log n) for
the minimum element and O(1) for most of the high-rank elements in the struc-
ture. However, if the maximum element in the left subtree of the root is smaller
than the minimum element in the right subtree of the root, it is possible we
could end up with, say, the median element being the right child of the root, for
which deletion will take O(log n) time instead of the O(1) time required by a
rank-sensitive structure.

Randomization gives us a nice way to fix the problem above, giving a simple
and elegant implementation of a rank-sensitive priority queue in which insert and
delete run in O(log(n/r)) expected time. Let us store our elements in a heap-
ordered binary tree (not necessarily balanced), where we maintain an unordered
array of pointers to the empty “NULL” spaces at the bottom of the tree, as shown
in Figure 1. To insert a new element into an (n−1)-element tree, we place it into
one of the n empty spaces at the bottom of the tree, chosen uniformly at random
in O(1) time, and then we sift it up (by repeatedly rotating with its parent) until
the heap property is restored. To delete an element, we set its value to +∞ and
sift it down (by repeatedly rotating with its smallest child) until it becomes a
leaf, after which it is removed.

The structure above is closely related to a treap [2], a hybrid between a binary
search tree (BST) and heap in which every node in a binary tree stores two keys:
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spaces:
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Fig. 1. The h-treap: a heap-ordered n-element binary tree augmented with an un-
ordered array of pointers to the n + 1 empty “NULL” spaces at the bottom of the
tree

a “BST” key, and a heap key. The structure satisfies the BST property with
respect to the BST keys, and the heap property with respect to the heap keys.
The primary application of treaps is to provide a simple balancing mechanism
for BSTs — if we store our actual elements in the BST keys, and choose the heap
keys randomly, then this forces the shape of the treap to behave probabilistically
as if we had built a BST from our elements by inserting them in random order
(and it is well known that such randomly-built BSTs are balanced with high
probability). In our case, we are using the treap in a new “symmetric” way that
does not seem to appear in the literature to date: we are storing our actual
elements within the heap keys, and we are effectively assigning the BST keys
randomly. However, rather than storing explicit numeric BST keys in the nodes
of our tree, these random BST keys are implicit in the sequence encoded by the
inorder traversal of our tree. Each time we insert a new element, we are effectively
assigning it a random “BST key” since by inserting it into a randomly-chosen
empty space at the bottom of the tree, we are inserting it into a randomly-chosen
location within the inorder traversal sequence encoded by the tree. For lack of
a better name, let us call such a structure an h-treap (since the actual elements
are stored in the heap part of the treap), versus a standard b-treap in which
we store our elements in the BST part. Observe that the h-treap behaves like a
b-treap in that its shape is probabilistically that of a randomly-built BST, so it
is balanced with high probability.

Theorem 1. The insert and delete operations in an h-treap run in O(log(n/r))
expected time.

Proof. For any element x stored in an h-treap T , let s(x) denote the number of
elements present in x’s subtree (including x). Since subtrees in an h-treap are
balanced with high probability, it takes O(log s(x)) time both in expectation and
with high probability to delete x, since the height of x’s subtree is O(log s(x))
with high probability. Consider now the deletion of element x having rank r.
Note that s(x) is a random variable, owing to the random shape of T . If we
define Tr−1 to be the “top” part of T containing only the elements of ranks
1 . . . r − 1, then x will be located at one of the r empty spaces at the bottom of
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Tr−1. Since the remaining n − r elements of ranks r + 1 . . . n are equally likely
to appear in each of these r spaces, we have E[s(x)] = 1 + (n− r)/r = n/r. Due
to Jensen’s inequality, we now see that the expected time required to delete x
is E[O(log s(x))] = O(log E[s(x)]) = O(log(n/r)). The expected running time
of insertion is the same due to symmetry, since the time required to insert an
element of rank r is exactly the same as the time required to subsequently delete
the element (the sequence of rotations performed by the deletion will be the
reversal of those performed during insertion).

Since Er[log(n/r)] = O(1), we note that one can build an h-treap on n elements
in O(n) expected time by inserting them sequentially in random order.

3 An Amortized Approach

In [7] (problem 18-3), a simple and elegant BST balancing technique of G. Vargh-
ese is described that allows for the insert and delete operations both run in
O(log n) amortized time. In this section, we build on this approach to obtain
a rank-sensitive priority queue with O(log(n/r)) amortized running times for
insert and delete.

Let s(x) denote the size (number of elements) of x’s subtree in a BST. For
any α ∈ [1/2, 1), we say x is α-weight-balanced if s(left(x)) ≤ αs(x) and
s(right(x)) ≤ αs(x). A tree T is α-weight-balanced if all its elements are α-
weight-balanced, and it is easy to show that an n-element α-weight-balanced
tree has maximum height log1/α n. The amortized rebalancing method of Vargh-
ese selects α ∈ (1/2, 1) and augments each element x in an α-weight-balanced
BST with its subtree size s(x). Whenever an element is inserted or deleted, we
examine the elements along the path from the root down to the inserted or
deleted element, and if any of these are no longer α-weight-balanced, we select
the highest such node x in the tree and rebalance x’s subtree in O(s(x)) time
so it becomes 1/2-balanced. It is easy to show that insert and delete run in
only O(log n) time, because we can pay for the expensive operation of rebalanc-
ing the subtree of a non-α-weight-balanced element x by amortizing this across
the Ω(s(x)) intervening inserts and deletes that must have occurred within x’s
subtree since the last time x was 1/2-weight-balanced.

We can build an effective rank-sensitive priority by relaxing the amortized
balanced BST above so that the right subtree of every element is left “unbuilt”,
storing the elements of each unbuilt subtree in a circular doubly-linked list. As
shown in Figure 2, only the left spine of the tree remains fully built. The only
elements that effectively maintain their subtree sizes are now those on the left
spine, and each one of these elements also maintains the size of its right subtree.
To allow us to walk up the tree from any element, we augment every element in
the circular linked list of the right subtree of element x with a pointer directly
to x. In order to support find-min in O(1) time, we maintain a pointer to the
lowest element on the left spine.

Note that the mechanics of the amortized BST rebalancing mechanism above
continue to function perfectly well in this relaxed setting. To insert a new
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Fig. 2. An α-weight-balanced tree with all its right subtrees left unbuilt (whose ele-
ments are stored in circular doubly-linked lists)

element, we walk down the left spine until the BST property dictates into which
right subtree it should be placed, unless the element is the new minimum, in
which case it is placed at the bottom of the left spine. We then walk back up
the tree, updating the subtree sizes and checking if rebalancing should occur
(we discuss how to rebalance in a moment). Deletion is accomplished lazily, by
marking elements as inactive, maintaining a count of the number of inactive
elements in each subtree, and rebuilding any subtree x for which (2α− 1)s(x) of
its elements have become inactive (if multiple subtrees satisfy this condition, we
rebuild the highest one); this can be done using essentially the same mechanism
we use for rebuilding in the event that elements become non-α-weight balanced.

For rebalancing, we must take some care because the standard method of
rebalancing a BST in linear time exploits the fact that we can obtain a sorted
ordering of its elements via an inorder traversal. Fortunately, since our structure
is relaxed, we do not need to know the full sorted ordering of our elements in
order to rebalance. The following procedure will make any k-element subtree
1/2-weight-balanced in O(k) time:

1. Select the median element m in the subtree in O(k) time.
2. Partition the k − 1 remaining elements about m into two sets S< and S>

such that |S<| and |S>| differ by at most one.
3. Make m the root of the rebalanced subtree, setting its right subtree to be

the doubly-linked list containing elements in S>.
4. Recursively build a 1/2-weight-balanced subtree from S< and set this to be

m’s left subtree.

For an even simpler algorithm, we could choose m randomly instead of using a
deterministic median-finding algorithm. If we do this, our running time bounds
will all still hold in expectation.

Lemma 1. In an α-weight-balanced tree with n elements, the depth of a rank-r
element is at most log1/α(n/r).
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Proof. Let k = �log1/α(n/r)�, and let x1, x2, . . . denote the elements down the
left spine of an n-element α-weight-balanced tree, with x1 being the root. Since
s(xi+1) ≤ αs(xi), we have s(xk+1) ≤ αks(x1) = αkn, so at least the 1 + (1 −
αk)n ≥ 1 + (1− (r/n))n = 1 + n− r largest elements live at depth at most k in
our tree, and this set includes the rank-r element.

Theorem 2. The insert and delete operations in the structure above run in
O(log(n/r)) amortized time.

Proof. To amortize the cost of rebalancing properly, let c(x) denote the number
of insertions and deletions in x’s subtree after the last time x was made to be 1/2-
weight-balanced, and let us define a potential function Φ = 1

2α−1

∑
x c(x). The

amortized cost of an operation is given by its actual (“immediate”) cost plus any
resulting change in potential. Assume for a moment that no rebalancing takes
place. For insert, the preceding lemma tells us that the actual cost is O(log(n/r)),
and we also add up to 1

2α−1 log1/α(n/r) units of potential. For delete, the actual
cost is O(1), and again we add up to 1

2α−1 log1/α(n/r) new units of potential.
Now consider the case where we rebalance; this can occur either if (i) some
element x becomes non-α-weight-balanced, or (ii) if some element x is found
to contain at least (2α − 1)s(x) inactive elements in its subtree. For case (i)
to occur, we must have |s(left(x)) − s(right(x))| ≥ (2α − 1)s(x), and since
c(x) ≥ |s(left(x))−s(right(x))|, we find that in both (i) and (ii), we always have
c(x) ≥ (2α − 1)s(x) when rebalancing occurs at x, so the decrease in potential
caused by setting c(x) = 0 is at least s(x), the amount of work required to
rebalance. Rebalancing is therefore essentially “free” (in the amortized sense),
since we can pay for it using previously-generated credit invested in our potential
function.

It is worth noting the similarity between the amortized rank-sensitive priority
queue above and the well-studied radix heap [1]. Radix heaps are RAM data
structures that store integer-valued keys in a fixed known range, but their oper-
ation is quite similar to our amortized structure above — they also leave right
subtrees unbuilt, and perform periodic rebalancing when the minimum value in
the heap reaches a specific threshold. In fact, one might wish to think of our
structure as a natural comparison-based analog of the radix heap. Another re-
lated structure worth considering is the scapegoat tree [9], a more sophisticated
variant of the amortized balanced BST above that manages to avoid storing any
augmented information while still achieving O(log n) height at all times. Since
scapegoat trees are not always α-weight-balanced (they adhere to a slightly more
relaxed notion of this property), it does not appear that one can easily modify
them in the manner above to obtain an analogous rank-sensitive priority queue.

If we want to build a rank-sensitive priority queue with O(log(n/r)) worst-
case performance for insert and delete, then we can do so by “de-amortizing”
the structure above in a standard mechanical fashion — rebuilds are performed
at an accelerated rate, several steps at a time (but still only O(1) at once), in
parallel with the subsequent insertions and deletions occurring after the rebuild.
We omit further details until the full version of this paper. Since the resulting
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data structure is rather clumsy, it remains an interesting open question whether
or not there is a simple and more elegant method to obtain O(log(n/r)) worst-
case bounds.

4 Lower Bounds

We now argue that O(log(n/r)) is essentially the best bound one can hope
to achieve, in the comparison model, for deletion in a rank-sensitive priority
queue. It is slightly challenging to find the “right” statement of this lower bound,
however. Suppose we fix a value of ρ ∈ (0, 1] and consider an access sequence
S of insert and delete operations in a dynamic min-aware data structure, all
involving elements for which r/n ≤ ρ. We would like to claim that the average
cost of a delete operation in our access sequence must be Ω(log(1/ρ)) in the worst
case, in the comparison model (henceforth, we assume we are in the comparison
model). Unfortunately, this claim is trivially true since it holds for the special
case where S is the access sequence arising when we use our structure to sort n
elements — n deletions of the rank r = 1 element. Moreover, if we try to remedy
this problem by considering only access sequences without any deletions at rank
r = 1, then the claim above becomes false because now our data structure can
now be assured that it will never need to remove the minimum element, so it
can “cheat” and use less work maintaining the current minimum than it would
normally need to do (e.g., it could simply maintain a pointer to the current
minimum that is reset whenever a new minimum element is inserted, thereby
supporting both insert and delete in O(1) time).

In order to obtain a meaningful lower bound, we therefore need to consider ac-
cess sequences in which deletion of a rank-1 element is possible (just to “keep the
data structure on its toes” and make it do an honest amount of work in maintain-
ing the current minimum), but where we cannot allow so many rank-1 deletions
that we aggravate the comparison-based sorting lower bound and obtain a trivial
Ω(log n) worst-case lower bound per deletion that does not incorporate rank. Our
solution is to consider access sequences of the following form:

Definition 1. An access sequence S of insertions and deletions containing k
deletions is ρ-graded if all k deletions S satisfy r/n ≤ ρ, and if for every a ≥ 1,
at most k/a deletions satisfy r/n ≤ ρ/a.

For example, in a 1
8 -graded sequence, all deletions operate on elements having

rank r ≤ n/8 (i.e,. elements in the smallest 1/8 portion of the structure), at
most half the deletions can remove elements of rank r ≤ n/16, at most a quarter
can remove elements of rank r ≤ n/32, and at most an 8/n fraction of these
deletions can involve a rank-1 element.

A key ingredient we will need soon is a d-limit heap — a priority queue
from which we promise to call delete-min at most d times. It is reasonably
straightforward to implement a d-limit heap that can process x calls to insert
and y calls to delete-min in O(x)+y log2 d+o(y log d) time; details will appear in
the full version of this paper. Another ingredient we need is that for any dynamic
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min-aware structure M , we can instrument M so as to maintain the directed
acyclic graph G(M) of all its comparisons to date. The DAG G(M) contains a
directed edge (x, y) after M directly compares x and y and finds x < y. Elements
inserted and removed from M are correspondingly inserted and removed from
G(M). If M makes c comparisons during its lifetime, then maintenance of G(M)
can be achieved in only O(c) time, thereby leaving the asymptotic running time
of M unchanged.

Lemma 2. In any dynamic min-aware structure M , if all elements previously
removed from M are smaller than those presently in M , then every non-minimal
element of M must have positive in-degree in G(M).

Proof. If this were not the case, then a non-minimal element with zero in-degree
would have no way of certifying its non-minimality.

The main result of this section is now the following.

Theorem 3. For ρ ∈ (0, 1/2), in the comparison model, any dynamic min-
aware data structure (starting out empty) must spend Ω(|S|+n log(1/ρ)) worst-
case time processing a ρ-graded sequence S containing n deletions.

Proof. We show how to sort a set E containing n elements by using a small num-
ber of comparisons plus the execution of a carefully-crafted ρ-graded sequence
S containing O(n) deletions on a dynamic min-aware data structure M . Since
the sorting problem requires at least n log2 n − o(n log n) comparisons in the
worst case, we will be able to show that at least Ω(|S|+n log(1/ρ)) comparisons
must come from M . The main challenge in our reduction is to sort with only
a limited number of rank-1 deletions. To do this, we initially insert into M the
contents of E followed by a set D of d = ρn−1

1−ρ ≤
ρ

1−ρn ≤ n dummy elements
that are all taken to be smaller than the elements in E. Note that the element
of relative rank ρ in our structure has rank ρ(n+ d) = d+1, so it is the smallest
of the elements in E. We maintain pointers to the d dummy elements, since we
will occasionally delete and re-insert them. We now sort the contents of E by
enacting n/d rounds, each of which involves these steps:

1. Initialize a new d-limit heap H .
2. For each dummy element e ∈ D, largest to smallest, delete and then re-

insert e, taking the new values of the dummy elements to be larger than
all the old values (but still smaller than the elements of E), so we satisfy
the conditions of Lemma 2. In this step and for the rest of the phase, any
element e ∈M\D which acquires a new incoming edge in G(M) from some
element of D is inserted in H .

3. Repeat the following d times: call delete-min in H to obtain element e (the
smallest remaining element in E, thanks to Lemma 2). Then delete e from
M and add all e’s immediate successors in G(M) to H (elements e′ for which
(e, e′) is an edge). Finally, insert a large dummy element at the end of M to
keep the total element count equal to n + d.

4. Destroy H .
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We claim that the sequence of operations we perform in M above is ρ-graded
— half the deletions occur at relative rank ρ, and the other half are spread over
the range [0, ρ]. The elements we remove from H over all n/d phases give us
the contents of E in sorted order, so the procedure above must indeed require
n log2 n − o(n log n) comparisons in the worst case. Letting c denote the total
number of comparisons made by M during our procedure, we note that the total
number of comparisons we make outside the operation of M is bounded by O(c)
except for those made by H . If we include the comparisons made by H , we find
that the total number of comparisons is O(c) + n log2 d + o(n log d). Since this
must be at least n log2 n−o(n log n), we have c = Ω(n log n/d) = Ω(n log 1−ρ

ρ ) =
Ω(n log(1/ρ)).

5 Case Study: Shortest Path Computation

Rank-sensitive priority queues are worth considering in conjunction with Dijk-
stra’s shortest path algorithm since they may support a fast decrease-key oper-
ation in practice. To decrease the key of an element, we delete it and re-insert
it with a new value, and as long as this new value gives the element a new
rank sufficiently far from the minimum, we expect the entire operation to run
quite fast; for many shortest path instances, we expect most of the decrease-key
invocations to run essentially in constant time, which gives the rank-sensitive
priority queue the potential for matching the performance in practice of more
sophisticated priority queues, such as Fibonacci heaps.

To evaluate the utility of rank-sensitive priority queues for shortest path com-
putation, we implemented the structures outlined in Sections 2 and 3 and com-
pared them with binary heaps and Fibonacci heaps on a variety of shortest path
instances. We also tested a variant of the amortized balanced structure from Sec-
tion 3 in which rebalancing was turned off, in which we only rebalanced at the
lower end of the left spine in response to removal of the minimum; owing to the
“well-behaved” structure of most of our inputs, this structure actually tended
to perform better in practice than its counterpart with rebalancing enabled.
Our implementations of the amortized balanced structures perform rebalanc-
ing of a subtree by partitioning on a randomly-chosen element, rather than by
finding the median deterministically. Implementations of Dijkstra’s algorithm
using a binary heap and Fibonacci heap were obtained from the widely-used
“splib” library [4], and inputs and random network generators were obtained
from the DIMACS shortest path implementation challenge. All computational
experiments were run on a 1GHz Opteron processor with 4GB memory.

Figure 3 illustrates our computational results. The graphs we tested were (a)
the USA road network, with roughly 23 million nodes and 58 million edges, (b)
2d grids, (c) random graphs Gn,m with n = 10, 000 and m ranging from 100, 000
up to 100 million, and (d) random Euclidean graphs (defined by n nodes em-
bedded in the 2d Euclidean plane, with edge length equal to squared Euclidean
distance) with 10, 000 nodes and 1 to 100 million edges. On all of our tests,
the rank-sensitive structures demonstrated performance slightly worse than a
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Fig. 3. Performance of rank-sensitive priority queues versus binary heaps and Fibonacci
heaps on (a) the USA road network, (b) random grid graphs, (c) random Gn,m graphs,
and (d) random Euclidean graphs

binary heap and slightly better than a Fibonacci heap, with the performance
gap versus the binary heap narrowing as our graphs become more dense. The
random edge lengths in our grids (b) and random graphs (c) are chosen indepen-
dently from a common uniform distribution, so we should not be surprised to
see the standard binary heap perform so well even on dense graphs, since Gold-
berg and Tarjan have shown that Dijkstra’s algorithm only performs O(n log n)
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decrease-key operations with high probability if edge lengths are independently
generated from the same probability distribution [10].

We conclude from our studies that a rank-sensitive priority queue is a re-
spectable data structure to use for shortest path computation, but most likely
not the fastest choice available in practice. A possibly interesting question for
future research might be determining which types of random graphs (if any) al-
low us to obtain provable expected performance bounds for Dijkstra’s algorithm
with a rank-sensitive priority queue that are close to those of a Fibonacci heap.
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3. Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on
comparison-based dictionaries. Theoretical Computer Science 382(2), 86–96 (2007)

4. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest path algorithms: Theory
and experimental evaluation. Mathematical Programming 73, 129–174 (1996)

5. Cole, R.: On the dynamic finger conjecture for splay trees. part II: The proof.
SIAM Journal on Computing 30(1), 44–85 (2000)

6. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic finger conjecture for
splay trees. part I: Splay sorting log n-block sequences. SIAM Journal on Comput-
ing 30(1), 1–43 (2000)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press/McGraw-Hill, Cambridge (1990)

8. Fischer, M.J., Paterson, M.S.: Fishspear: A priority queue algorithm. Journal of
the ACM 41(1), 3–30 (1994)

9. Galperin, I., Rivest, R.L.: Scapegoat trees. In: Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 165–174 (1993)

10. Goldberg, A.V., Tarjan, R.E.: Expected performance of dijkstra’s shortest path
algorithm. Technical Report TR-96-063, NEC Research Institute (1996)

11. Iacono, J., Langerman, S.: Queaps. Algorithmica 42(1), 49–56 (2005)
12. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the

ACM 32(3), 652–686 (1985)



Algorithms Meet Art, Puzzles, and Magic

Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139, USA

edemaine@mit.edu

Abstract. Two years before WADS began, my father Martin Demaine
and my six-year-old self designed and made puzzles as the Erik and Dad
Puzzle Company, which distributed to toy stores across Canada. So began
our journey into the interactions between algorithms and the arts. More
and more, we find that our mathematical research and artistic projects
converge, with the artistic side inspiring the mathematical side and vice
versa. Mathematics itself is an art form, and through other media such as
sculpture, puzzles, and magic, the beauty of mathematics can be brought
to a wider audience. These artistic endeavors also provide us with deeper
insights into the underlying mathematics, by providing physical realiza-
tions of objects under consideration, by pointing to interesting special
cases and directions to explore, and by suggesting new problems to solve
(such as the metapuzzle of how to solve a puzzle). This talk will give
several examples in each category, from how our first font design led to a
universality result in hinged dissections, to how studying curved creases
in origami led to sculptures at MoMA. The audience will be expected to
participate in some live magic demonstrations.
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Abstract. We present skip-splay, the first binary search tree algorithm
known to have a running time that nearly achieves the unified bound.
Skip-splay trees require only O(m lg lg n + UB(σ)) time to execute a
query sequence σ = σ1 . . . σm. The skip-splay algorithm is simple and
similar to the splay algorithm.

1 Introduction and Related Work

Although the worst-case access cost for comparison-based dictionaries is Ω(lg n),
many sequences of operations are highly nonrandom, allowing tighter, instance-
specific running time bounds to be achieved by algorithms that adapt to the
input sequence. Splay trees [1] are an example of such an adaptive algorithm
that operates within the framework of the binary search tree (BST) model [2],
which essentially requires that all elements be stored in symmetric order in a
rooted binary tree that can only be updated via rotations, and requires queried
nodes to be rotated to the root. (BST algorithms that do not rotate to the root
can usually be coerced into this model with just a constant factor of overhead.)

The two most general bounds proven for splay trees are the working set
bound [1] and the dynamic finger bound [3], [4]. The working set bound shows
that splay trees can have better than O(lg n) cost per operation when recently
accessed elements are much more likely to be accessed than random elements,
while the dynamic finger bound shows that splay trees have better than O(lg n)
performance when each access is likely to be near the previous access.

Iacono later introduced the unified bound, which generalized both of these two
bounds [5]. Roughly, a data structure that satisfies the unified bound has good
performance for sequences of operations in which most accesses are likely to be
near a recently accessed element. More formally, suppose the access sequence is
σ = σ1 . . . σm and each access σj is a query to the set {1, . . . , n} (we also use σj

to refer to the actual element that is queried, as context suggests). The unified
bound can be defined as follows:

UB(σ) =
m∑

j=1

min
j′<j

lg(w(σj′ , j
′) + |σj′ − σj |), (1)

where w(x, j) is, at time j, the number of distinct elements including x that
have been queried since the previous query to x, or n if no such previous query
exists. For a more formal definition, see the definitions that precede Lemma 1.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 194–205, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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To achieve a running time of O(m +UB(σ)), Iacono introduced a data struc-
ture called the unified structure. The unified structure did not require amorti-
zation to achieve this bound, and was later improved by Bădoiu et al. to allow
insertion and deletion [6]. The unified structure was comparison-based but did
not adhere to the BST model. Thus, in addition to leaving open questions re-
garding how powerful the BST model was, it was not clear, for example, how
to achieve the unified bound while keeping track of aggregate information on
subsets of elements as can be done with augmented BSTs.

These unresolved issues motivate the question of whether a BST algorithm
exists that achieves the unified bound. Achieving this goal contrasts with the
separate pursuit of a provably dynamically optimal BST algorithm in that it is
possible for a data structure that achieves the unified bound to have the trivial
competitive ratio of Θ(lg n) to an optimal BST algorithm. Conversely, prior
to this work, even if a dynamically optimal BST algorithm had been found, it
would not have been clear whether it satisfied the unified bound to within any
factor that was o(lg n) since dynamic optimality by itself says nothing about
actual formulaic bounds, and prior to this work no competitive factor better
than O(lg n) was known for the cost of the optimal BST algorithm in comparison
to the unified bound. See [7], [8], and [9] for progress on dynamic optimality in
the BST model.

The skip-splay algorithm presented in this paper has three important qualities.
First, it conforms to the BST model and has a running time of O(m lg lg n +
UB(σ)), just an additive term of O(lg lg n) per query away from the unified
bound. Thus, skip-splay trees nearly close the gap between what is known to
be achievable in the BST model and what is achieved by the unified structure.
Second, the skip-splay algorithm is very simple. The majority of the complexity
of our result resides in the analysis of skip-splaying, not in the design of the
algorithm itself. The unified structure, though it avoids the additional O(lg lg n)
cost per query, is significantly more complicated than skip-splay trees. Finally,
skip-splaying is almost identical to splaying, which suggests that a similar anal-
ysis, in combination with new insight, might be used to prove that splay trees
satisfy the unified bound, at least to within some nontrivial multiplicative factor
or additive term.

2 The Skip-Splay Algorithm

We assume for simplicity that a skip-splay tree T stores all elements of {1, . . . , n}
where n = 22k−1 − 1 for some positive integer k, and that T is initially perfectly
balanced. We mark as a splay tree root every node whose height (starting at a
height of 1 for the leaves) is 2i for i ∈ {0, . . . , k− 1}.1 Note that the set of all of
these splay trees partitions the elements of T .

1 If we allow the ratio between the initial heights of successive roots to vary, we can
achieve a parameterized running time bound, but in this version of the paper we use
a ratio of 2 for simplicity.
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Fig. 1. An example of a four-level skip-splay tree T at the beginning of a query se-
quence. The white nodes are the roots of the splay trees that make up T , and the gray
edges are never rotated. If the bottom element of the bold path is queried, then each
of the boxed nodes is splayed to the root of its splay tree.

The following definitions will help us describe the algorithm more clearly:

1. Let Ti be the set of all keys x whose path to the root of T contains at most
i root nodes, including x itself if x is marked as a root.

2. Define level i of T to be the set of keys x whose path to the root contains
exactly i nodes. We will sometimes use the adjective “level-i” to refer to
objects associated with level i in some way.

3. Let tree(x) be the splay tree that contains x. Also, tree(x) can represent the
set of elements in tree(x).

We assume that all operations are queries, and we use σ = σ1 . . . σm to denote
the sequence of queries. To query an element σj , we first perform binary search
through T to locate σj . Then, we splay σj to the root of tree(σj) and transfer
the relevant root marker to σj . If we are at the root of T , we terminate, else we
“skip” to σj ’s new parent x and repeat this process by splaying x to the root of
tree(x). The cost of a query is defined to be the number of nodes on the access
path to σj .2 Figure 1 shows an example of what a skip splay tree looks like at
the beginning of an access sequence and depicts how a query is performed.

Intuitively, skip-splaying is nearly competitive to the unified bound because if
the currently queried element σj is near to a recently queried element σf , then
many of the elements that are splayed while querying σj are likely to be the same
as the ones that were splayed when σf was queried. Therefore, by the working
set bound for splay trees, these splays should be fairly cheap. The analysis in
Section 3 formalizes this intuition.

3 Proving Skip-Splay Runs in Time O(m lg lg n +UB(σ))

Our analysis in this section consists of three lemmas that together prove that
skip-splay trees run in time O(m lg lg n+UB(σ)). The purpose of the first lemma
2 Note that this algorithm can be coerced into the BST Model defined in [2] by rotating

σj to the root and back down, incurring only a constant factor of additional cost.
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is to decompose the cost of skip-splay trees into a series of “local working set
costs” with one cost term for each level in T . The second lemma is the main step
of the analysis and it uses the first lemma to prove that skip-splay trees satisfy
a bound that is very similar to the unified bound, plus an additive O(lg lg n)
term. The third lemma shows that this similar bound is within a constant factor
of the unified bound, so our main analytical result, that skip-splay trees run in
O(m lg lg n + UB(σ)) time, follows immediately from these three lemmas.

In the first lemma and in the rest of this paper, we will use the following
custom notation for describing various parts of T :

1. Let ρk = 1 and for i < k let ρi = 22k−i−1
so that ρi = ρ2

i+1 for i < k − 1.
Note that if element x ∈ T is in level i for i < k, then |tree(x)| = ρi − 1.

2. Let Ri(x), the level-i region of x ∈ T be defined as follows. First, define the
offset δi = δ mod ρi, where δ is an integer that is arbitrary but fixed for all
levels of T . (Our analysis will later make use of the fact that we can choose
δ to be whatever we want.) Then, let Ri(x) = R∗

i (x) ∩ T where

R∗
i (x) =

{⌊
x+δi

ρi

⌋
ρi − δi, . . . ,

⌊
x+δi

ρi

⌋
ρi − δi + ρi − 1

}
.

Note that the level-i regions partition the elements of T and the level-i + 1
regions are a refinement of the level-i regions. Two regions R and R′ are said
to be adjacent if they are distinct, occupy the same level, and their union
covers a contiguous region of keyspace. Note that |Ri(x)| = ρi if R∗

i (x) ⊆ T .
3. Let Ri(x), the level-i region set of x, be the set of level-i regions that are

subsets of Ri−1(x) with R1(x) defined to be the set of all level-1 regions.
Note that |Ri(x)| = ρi if 1 < i < k and R∗

i−1(x) ⊆ T .

Additionally, we give the following definitions of working set numbers and
some auxiliary definitions that will also be helpful (these definitions assume we
are working with a fixed query sequence σ):

1. Let splays(j) be the set of elements that are splayed during query σj .
2. Let p(x, j) represent the index of the previous access to x before time j.

More formally, assuming such an access exists, let

p(x, j) = max({1, . . . , j − 1} ∩ {j′ | σj′ = x}).

We define p(x, j) = −n if the argument to max is the empty set.
3. Let p′(x, j) represent the index of the previous access that resulted in a splay

to x before time j. More formally, assuming such an access exists, let

p′(x, j) = max({1, . . . , j − 1} ∩ {j′ | x ∈ splays(j′)}).

We define p′(x, j) = −ρi if the argument to max is the empty set.
4. Let pi(x, j) represent the index of the previous access to region Ri(x). More

formally, assuming such an access exists, let

pi(x, j) = max({1, . . . , j − 1} ∩ {j′ | Ri(σj′ ) = Ri(x)}).

We define pi(x, j) = −ρi if the argument to max is the empty set. Also, let
pi(R, j) be equivalent to pi(x, j) if R = Ri(x).
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5. For x ∈ T , let w(x, j) represent the number of elements queried since the
previous access to x. More formally, if p(x, j) > 0 let

w(x, j) =
∣∣∣{σj′ | j′ ∈ {p(x, j), . . . , j − 1}

}∣∣∣.
Else, if p(x, j) ≤ 0 then let w(x, j) = −p(x, j).

6. For x ∈ T , let w′(x, j) represent the working set number of x within tree(x)
(i.e., the number of elements splayed in tree(x) since the previous query
resulting in a splay to x). More formally, if p′(x, j) > 0 let

w′(x, j) =
∣∣∣tree(x) ∩

⋃
j′∈{p′(x,j),...,j−1}

splays(j′)
∣∣∣.

Else, if p′(x, j) ≤ 0 then let w′(x, j) = −p′(x, j).
7. For x ∈ T , let wi(x, j) represent the number of regions in Ri(x) that contain

a query since the previous access to a member of Ri(x). More formally, if
pi(x, j) > 0 let

wi(x, j) =
∣∣∣{Ri(σj′ ) | j′ ∈ {pi(x, j), . . . , j − 1}

}
∩Ri(x)

∣∣∣.
Else, if pi(x, j) ≤ 0 then let wi(x, j) = −pi(x, j). Also, let wi(R, j) be equiv-
alent to wi(x, j) if R = Ri(x).

8. For x ∈ T , let w′
i(x, j) be the working set number of x within tree(x) that

is reset whenever a query is executed to a region that could cause a splay of
x. More formally, let R(x) be the set of up to three regions R such that a
query to R can cause a splay of x. If pi(R, j) > 0 for some R ∈ R(x) let

w′
i(x, j) =

∣∣∣tree(x) ∩
⋃

j′∈{maxR∈R(x) pi(R,j),...,j−1}
splays(j′)

∣∣∣.
Else, if pi(R, j) ≤ 0 for all R ∈ R(x) then let w′

i(x, j) = ρi. Note that
w′

i(x, j) ≤ 3wi(R, j) +1 for R ∈ (R(x)∩Ri(x)) because accesses to a region
in Ri(x) can result in splays of at most three different elements of tree(x),
and at most one, the minimum element of tree(x), can be splayed as the result
of a query to another level-i region set. Also, note that w′

i(x, j) ≤ w′(x, j).

In the proof of the first lemma, we will be making use of the working set
theorem in Sleator and Tarjan’s original splay tree paper [1], which shows that
the cost of a query sequence σ on an individual splay tree, for sufficiently large
n, is bounded by cs(n lg n +

∑m
j=1 lg(w(σj , j) + 1)), for some constant cs. For

simplicity, we assume we are starting with a minimum potential arrangement of
each splay tree, so this simplifies to

∑m
j=1 cs lg(w(σj , j)+1). In order to make the

analysis in Lemma 2 simpler, we move beyond simply associating this working
set cost with each splay that is executed in T by proving the following lemma.
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Lemma 1. For query sequence σ in a skip-splay tree T with k levels, the amor-
tized cost of query σj is

O

(
k +

k∑
i=1

lg wi(σj , j)

)
. (2)

Proof. By the definition of the skip-splay algorithm and the working set theorem
for splay trees, the amortized cost of query σj is

∑
x∈splays(j) w′(x, j), suppressing

multiplicative and additive constants. To prove Lemma 1, we will do further
accounting for the cost of a query σj and focus on the cost associated with an
arbitrary level i of T .

Note that at level i during query σj , one of three cases occurs with regard to
which level-i node, if any, is splayed. First, if σj resides in a strictly shallower
level than i, then no splay is performed in level i. Second, if σj resides within
level i, then σj is splayed in level i. Third, if σj resides in a deeper level than
i, then either the predecessor or the successor of σj in level i is splayed. (We
know that at least one of these two nodes exists and is on the access path in this
case.) We will use the following potential function on T to prove that the bound
in Equation 2 holds regardless of which of these three cases occurs:

Φ(T, j) = φ1(T, j) + φ2(T, j), (3)

where
φ1(T, j) =

∑
x∈T

(lg w′(x, j + 1)− lg w′
i(x, j + 1)) (4)

and
φ2(T, j) =

∑
(x,y)∈A

| lg w′
i(x, j + 1)− lg w′

i(y, j + 1)|, (5)

where A is the set of pairs of level-i nodes (x, y) such that x is the maximum
element in tree(x), y is the minimum element in tree(y), and there are no other
level-i elements between x and y. For succinctness below, define ΔΦ(T, j) to be
Φ(T, j)− Φ(T, j − 1) and define Δφ1(T, j) and Δφ2(T, j) analogously.

First, notice that the cost of the splay, if any, that is performed on node x
at level i is offset by the change in potential of lg w′(x, j + 1) − lg w′(x, j) =
− lg w′(x, j). Note that this ignores the difference lg w′

i(x, j) − lg w′
i(x, j + 1) =

lg w′
i(x, j), which will be accounted for below.

Second, define Δ+Φ(T, j) to be the sum of the positive terms of ΔΦ(T, j) plus
lg w′

i(x, j) in the case in which some node x is splayed during query σj . We will
show that regardless of whether a splay is performed in level i during query σj ,
it is true that Δ+Φ(T, j) is at most 4 lg(3wi(σj , j) + 1) + 2.

To see this, let Y be the set of up to three level-i nodes that can be splayed
while accessing members of the region Ri(σj), and notice that if a node x is
splayed at level i during query σj then x ∈ Y . Note that the only positive terms
of Δ+Φ(T, j) from Δφ1(T, j) are the ones that use some member of Y as an argu-
ment. This is true because lg w′(z, j+1)− lgw′(z, j) ≤ lg w′

i(z, j+1)− lgw′
i(z, j)



200 J.C. Derryberry and D.D. Sleator

for z ∈ T \Y since w′(z, j) ≥ w′
i(z, j) and w′(z, j + 1) − w′(z, j) ≤ w′

i(z, j + 1)
− w′

i(z, j). Further, note that Δ+Φ(T, j) contains at most two terms from
Δφ2(T, j) that do not use some member of Y as an argument, and these two
terms are at most 1 each.

Now, we consider the following two cases. All additional cases are either similar
to or simpler than these two cases. First, suppose that Y contains two elements
y1 < y2 and tree(y1) 
= tree(y2). Note that in this case we know that Ri(σj) =
Ri(y1). Then,

Δ+Φ(T, j) ≤ lg w′
i(y1, j) + lg w′

i(y2, j)− | lg w′
i(y1, j)− lg w′

i(y2, j)|+ 2
≤ 2 lg w′

i(y1, j) + 2
≤ 2 lg(3wi(σj , j) + 1) + 2.

Second, suppose that Y contains three elements y1 < y2 < y3 that all reside in
the same splay tree T ′, suppose y3 is the maximum element of T ′, and let z be
the successor of y3 among the level-i elements (assuming z exists in this case).
Using the fact that | lg w′

i(y3, j +1)− lg w′
i(z, j +1)| = lg w′

i(z, j+1) = lg w′
i(z, j)

and the fact that Ri(y1) = Ri(y2) = Ri(y3) = Ri(σj), we have

Δ+Φ(T, j) ≤
3∑

q=1

lg w′
i(yq, j) + lg w′

i(z, j)− | lg w′
i(y3, j)− lg w′

i(z, j)|+ 2

≤ lg w′
i(y1, j) + lg w′

i(y2, j) + 2 lg w′
i(y3, j) + 2

≤ 4 lg(3wi(σj , j) + 1) + 2. ��

We note that the potential function used in Lemma 1 starts at its minimum
value and the splay trees also start at their minimum potential configuration.
Therefore, the sum of the amortized costs of each query, according to Lemma 1,
is an upper bound on the cost of the sequence. Using Lemma 1, we can prove a
bound that is similar to the unified bound, plus an additive O(lg lg n) term per
query. This bound differs from the unified bound in that the working set portion
of the cost consists not of the number of elements accessed since the previous
query to the relevant element, but of the number of queries since the previous
query to the relevant element. Before we prove this bound, we give the following
definitions, which will be useful in formally describing the bound and proving it:

1. Let fj represent the element σj′ such that

j′ = argmin
j′′<j

lg(w(σj′′ , j) + |σj − σj′′ |).

Intuitively, fj represents the “finger” for query σj because it represents the
previously-queried element that yields the smallest unified bound value for
query σj .

2. For x ∈ T , let t(x, j) represent the number of queries (rather than distinct
elements accessed) since the previous access to x. More formally, let

t(x, j) = |{p(x, j), . . . , j − 1}| = j − p(x, j).

Note that the above definition handles the case in which p(x, j) ≤ 0.
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3. For x ∈ T , let ti(x, j) represent the number of queries to all members of
Ri(x) since the previous access to a member of Ri(x). More formally, let

ti(x, j) =
∣∣∣{j′ ∈ {max(1, pi(x, j)), . . . , j − 1} | Ri(σj′ ) ∈ Ri(x)

}∣∣∣,
with an additional −pi(x, j) added if pi(x, j) ≤ 0.

4. For x ∈ T , let t̂i(x, j) represent the number of queries to all members of
Ri(x) since the previous access to x. More formally, let

t̂i(x, j) =
∣∣∣{j′ ∈ {max(1, p(x, j)), . . . , j − 1} | Ri(σj′ ) ∈ Ri(x)

}∣∣∣,
with an additional ρ2

i added if p(x, j) ≤ 0. Note that t̂1(x, j) ≤ t(x, j)+1 by
definition.

Next, we define UB ′(σ), a variant of the unified bound, as

UB ′(σ) =
m∑

j=1

lg(t(fj , j) + |σj − fj|), (6)

and we are ready to proceed with our second lemma.

Lemma 2. Executing the skip-splay algorithm on query sequence σ = σ1 . . . σm

costs time O(m lg lg n + UB ′(σ)).

Proof. In this proof, we will be making use of the bound in Lemma 1 with a
randomly chosen offset δ that is selected uniformly at random from {0, . . . , ρ1−
1}. We will use induction on the number of levels i from the top of the tree
while analyzing the expected amortized cost of an arbitrary query σj . In the
inductive step, we will prove a bound that is similar to the one in Lemma 2, and
this similar bound will cover the cost associated with levels i and deeper. Even
though we are directly proving the inductive step in expectation only, because
the bound in Lemma 1 is proven for all values of δ, we know that there exists
at least one value of δ such that the bound holds without using randomization
if we amortize over the entire query sequence. Therefore, the worst-case bound
on the total cost of the access sequence in Lemma 2 will follow.

Our inductive hypothesis is that the cost of skip-splaying σj that is associated
with levels i + 1 and deeper according to Lemma 1 is at most

α lg t̂i+1(fj , j) + β lg min(1 + |σj − fj |2, ρi+1) + γ(k − i), (7)

where k, as before, represents the number of levels of splay trees in T .
We choose levels k and k − 1 to be our base cases. The inductive hypothesis

is trivially true for these base cases as long as we choose the constants appropri-
ately. Also, the bound for the inductive hypothesis at level 1, summed over all
queries, is O(m lg lg n + UB ′(σ)), so proving the inductive step suffices to prove
the lemma.
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To prove the inductive step, we assume Equation 7 holds for level i + 1 and
use this assumption to prove the bound for level i. Thus, our goal is to prove the
following bound on the cost that Lemma 1 associates with query σj for levels i
and deeper:

α lg t̂i(fj , j) + β lg min(1 + |σj − fj|2, ρi) + γ(k − i + 1). (8)

As a starting point for the proof of the inductive step, Lemma 1 in addition to
the inductive hypothesis allows us to prove an upper bound of

lg wi(σj , j) + α lg t̂i+1(fj , j) + β lg min(1 + |σj − fj|2, ρi+1) + γ(k − i), (9)

where we have suppressed the constant from Lemma 1 multiplying lg wi(σj , j).
Our proof of the inductive step consists of three cases. First, if |σj−fj|2 ≥ ρi,

then substituting ρi for ρi+1 increases the bound in Equation 9 by

lg ρi − lg ρi+1 = lg
(

ρi

ρi+1

)
= lg (ρi+1) = lg

(
ρ
1/2
i

)
≥ lg

(
wi(σj , j)1/2

)
, (10)

which offsets the elimination of the cost lg wi(σj , j) as long as β ≥ 2. The
other substitutions only increase the bound, so for this case we have proved the
inductive step.

Second, if |σj − fj |2 < ρi and Ri(σj) 
= Ri(fj), then we simply pay lg wi(σ, j)
which is at most lg ρi. However, we note that the probability of this occurring for
a random choice of δ is at most ρ

1/2
i /ρi = ρ

−1/2
i , so the expected cost resulting

from this case is at most ρ
−1/2
i lg ρi, which is at most a constant, so it can be

covered by γ.
The third and most difficult case occurs when |σj − fj |2 < ρi and Ri(σj) =

Ri(fj), and we will spend the rest of the proof demonstrating how to prove
the inductive step for this case. First, we note that lg ti(fj , j) ≥ lg wi(fj , j) =
lg wi(σj , j), so we can replace lg wi(σj , j) with lg ti(fj , j) and ρi+1 with ρi in
Equation 9 without decreasing the bound and prove a bound of

lg ti(fj , j) + α lg t̂i+1(fj , j) + β lg min(1 + |σj − fj |2, ρi) + γ(k − i). (11)

It remains only to eliminate the term lg ti(fj , j) by substituting t̂i(fj , j) for
t̂i+1(fj, j) while incurring an additional amortized cost of at most a constant so
that it can be covered by γ.

Observe that if σj satisfies

t̂i+1(fj , j) ≤ t̂i(fj ,j)

ti(fj ,j)
1
2
, (12)

then we have an upper bound of

lg ti(fj, j)+α(lg t̂i(fj , j)− lg ti(fj ,j)
2 )+β lg min(1+ |σj−fj|2, ρi)+γ(k− i), (13)

which would prove the inductive step if α ≥ 2. However, it is possible that
t̂i+1(fj, j) does not satisfy the bound in Equation 12. In this latter case, we
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pessimistically assume that we must simply pay the additional lg ti(fj , j). In the
rest of the proof, we show that the amortized cost of such cases is at most a
constant per query in this level of the induction, so that it can be covered by
the constant γ.

We first give a few definitions that will make our argument easier. A query
σb is R-local if Ri(σb) = R. Further, if σb is R-local and satisfies Ri(fb) = R as
well as the bound t̂i+1(fb, b) > t̂i(fb, b)/ti(fb, b)

1
2 , then we define σb also to be

R-dense. Note that if σb is R-dense then p(fb, b) > 0. Finally, if σb additionally
satisfies the inequality τ < ti(fb, b) ≤ 2τ , then we define σb also to be R-τ-bad.
Notice that all queries that have an excess cost at level i due to being in this
third case and not meeting the bound in Equation 12 are R-τ -bad for some
level-i region R and some value of τ (actually a range of values τ).

Our plan is to show that the ratio of R-τ -bad queries to R-local queries
is low enough that the sum of the excess costs associated with the R-τ -bad
queries can be spread over the R-local queries so that each R-local query is
only responsible for a constant amount of these excess costs. Further, we show
that if we partition the R-dense queries by successively doubling values of τ ,
with some constant lower cutoff, then each R-local query’s share of the cost is
exponentially decreasing in lg τ , so each R-local query bears only a constant
amortized cost for the excess costs of all of the R-dense queries. Lastly, note
that in our analysis below we are only amortizing over R-local queries for some
specific but arbitrary level-i region R, so we can apply the amortization to each
level-i region separately without interference.

To begin, we bound the cost associated with the R-τ -bad queries for arbitrary
level-i region R and constant τ as follows. Let σb be the latest R-τ -bad query.
First, note that the number of R-τ -bad queries σa where a ∈ {p(fb, b)+1, . . . , b}
is at most t̂i(fb, b)/τ because there are t̂i(fb, b) queries to Ri(fb) in that time
period, and immediately prior to each such σa, the previous τ − 1 queries to
Ri(fb) are all outside of R so that ti(fa, a) ≥ τ . Second, note that because σb

was chosen to be R-τ -bad we have

t̂i+1(fb, b) > t̂i(fb,b)
ti(fb,b)1/2 ≥ t̂i(fb,b)

(2τ)1/2 . (14)

Thus, the ratio of the number of R-local queries in this time period, t̂i+1(fb, b),
to the number of R-τ -bad queries in this time period is strictly greater than

t̂i(fb,b)
(2τ)1/2 · τ

t̂i(fb,b)
= ( τ

2 )1/2. (15)

The constraint that ti(fa, a) ≤ 2τ for each of the aforementioned R-τ -bad queries
σa implies that the excess level-i cost of each is at most lg(2τ), so we charge each
R-local query with a time index in {p(fb, b)+1, . . . , b} a cost of lg(2τ)/( τ

2 )1/2 to
account for the R-τ -bad queries that occur during this time interval. Notice that
we can iteratively apply this reasoning to cover the R-τ -bad queries with time
indices that are at most p(fb, b) without double-charging any R-local query.

To complete the argument, we must account for all R-dense queries, not just
the R-τ -bad ones for some particular value of τ . To do this, for all R-dense queries
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σj such that ti(fj , j) ≤ τ0, for some constant τ0, we simply charge a cost of lg τ0
to γ. Next, let τq = 2qτ0 for integer values q ≥ 0. From above, we have an upper
bound on the amortized cost of the R-τq-bad queries of lg(2q+1τ0)/(2q−1τ0)1/2,
so the sum over all values of q is at most a constant and can be covered by γ. ��

To complete the argument that skip-splay trees run in O(m lg lg n + UB(σ))
time, it suffices to show that UB ′(σ) is at most a constant factor plus a linear
term in m greater than UB(σ). Thus, the following lemma completes the proof
that skip-splay trees run in time O(m lg lg n + UB(σ)).

Lemma 3. For query sequence σ = σ1 . . . σm, the following inequality is true:

m∑
j=1

lg(t(fj , j) + |σj − fj|) ≤ mπ2 lg e
6 + lg e +

m∑
j=1

2 lg(w(fj , j) + |σj − fj|). (16)

Proof. To begin, we give a new definition of a working set number that is a hy-
brid between w(fj , j) and t(fj , j) for arbitrary time index j. Let hi(fj , j) =
max(w(fj , j)2, min(t(fj , j), j − i)). Note that lg hm(fj , j) = 2 lg w(fj , j) and
h−n(fj , j) ≥ t(fj , j) for all j. Also, note that if p(fj , j) > 0 then lg h−n(fj, j)−
lg h0(fj, j) = 0, else if p(fj , j) ≤ 0, which is true for at most n queries, then
lg h−n(fj , j)− lg h0(fj , j) ≤ lg(n2 + n)− lg(n2) ≤ lg e

n .
Next, note that lg hi(fj , j) − lg hi+1(fj , j) = 0 if i ≥ j or t(fj , j) ≤ j − i− 1

and for all j we have lg hi(fj , j) − lg hi+1(fj , j) ≤ lg e
w(fj ,j)2 . Also, we know that

the number of queries for which i < j, t(fj , j) ≥ j − i, and w(fj , j) ≤ w0 is at
most w0 for w0 ∈ {1, . . . , n}. This is true because each such query is to a distinct
element since they all use a finger that was last queried at a time index of at
most i (if two of these queries were to the same element, then the second query
could use the first as a finger). If there were w0 + 1 such queries, the latest such
query σ� would have w(f�, j) ≥ w0 + 1 because of the previous w0 queries after
time i to distinct elements, a contradiction. Therefore,

m∑
j=1

(lg hi(fj, j)− lg hi+1(fj , j)) ≤
n∑

k=1

lg e
k2 ≤ π2 lg e

6 ,

so that
m∑

j=1

(lg t(fj , j)− 2 lg w(fj , j)) ≤
m∑

j=1

(lg h−n(fj , j)− lg hm(fj , j)) ≤ mπ2 lg e
6 + lg e.

The fact that lg(t(fj , j)+ d)− 2 lg(w(fj , j)+ d) ≤ lg t(fj , j)− 2 lg w(fj , j) for all
j and non-negative d completes the proof. ��

4 Conclusions and Future Work

The ideal improvement to this result is to show that splay trees satisfy the unified
bound with a running time of O(m+UB(σ)). However, achieving this ideal result
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could be extremely difficult since the only known proof of the dynamic finger
theorem is very complicated, and the unified bound is stronger than the dynamic
finger bound.

In light of this potential difficulty, one natural path for improving this result is
to apply this analysis to splay trees, perhaps achieving the same competitiveness
to the unified bound as skip-splay trees. Intuitively, this may work because the
skip-splay algorithm is essentially identical to splaying except a few rotations are
skipped to keep the elements of the tree partitioned into blocks with a particular
structure that facilitates our analysis.

Additionally, it may be possible to design a different BST algorithm and show
that it meets the unified bound, which would prove that we do not need to leave
the BST model, and the perks such as augmentation that it provides, to achieve
the unified bound. If such an algorithm is to be similar to skip-splaying, it must
mix the splay trees together so that all nodes can reach constant depth.

To summarize the clearest paths for related future work, it would be significant
progress to show that splay trees meet the unified bound to within any factor
that is o(lg n), or to show that some BST algorithm achieves the unified bound
to within better than an additive O(lg lg n) term.
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Abstract. Cognitive experiments show that humans can read graph drawings in
which all edge crossings are at right angles equally well as they can read planar
drawings; they also show that the readability of a drawing is heavily affected
by the number of bends along the edges. A graph visualization whose edges can
only cross perpendicularly is called a RAC (Right Angle Crossing) drawing. This
paper initiates the study of combinatorial and algorithmic questions related with
the problem of computing RAC drawings with few bends per edge. Namely, we
study the interplay between number of bends per edge and total number of edges
in RAC drawings. We establish upper and lower bounds on these quantities by
considering two classical graph drawing scenarios: The one where the algorithm
can choose the combinatorial embedding of the input graph and the one where
this embedding is fixed.

1 Introduction

The problem of making good drawings of relational data sets is fundamental in several
application areas. To enhance human understanding the drawing must be readable, that
is it must easily convey the structure of the data and of their relationships (see, for
example, [4,9,10]).

A tangled rat’s nest of a diagram can be confusing rather than helpful. Intuitively,
one may measure the “tangledness” of a graph layout by the number of its edge cross-
ings and by the number of its bends along the edges. This intuition has some scientific
validity: experiments by Purchase et al. have shown that performance of humans in path
tracing tasks is negatively correlated to the number of edge crossings and to the number
of bends in the drawing [16,17,21].

This negative correlation has motivated intense research about how to draw a graph
with few edge crossings and small curve complexity (i.e., maximum number of bends
along an edge). As a notable example we recall the many fundamental combinatorial
and algorithmic results about planar or quasi-planar straight-line drawings of graphs
(see, for example, [11,12]). However, in many practical cases the relational data sets
do not induce planar or quasi-planar graphs and a high number of edge crossings is
basically not avoidable, especially when a particular drawing convention is adopted.
How to handle these crossings in the drawing remains unanswered.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 206–217, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Recent cognitive experiments of network visualization provide new insights in the
classical correlation between edge crossings and human understanding of a network
visualization. Huang et al. show that the edge crossings do not inhibit human task
performance if the edges cross at a large angle [6,7,8]. In fact, professional graphic
artists commonly use large crossing angles in network drawings. For example, cross-
ings in hand drawn metro maps and circuit schematics are conventionally at 90◦ (see, for
example, [20]).

This paper initiates the study of combinatorial and algorithmic questions related with
the problem of computing drawings of graphs where the edges cross at 90◦. Graph vi-
sualizations of this type are called RAC (Right Angle Crossing) drawings. We study the
interplay between the curve complexity and total number of edges in RAC drawings and
establish upper and lower bounds on these quantities. It is immediate to see that every
graph has a RAC drawing where the edges are represented as simple Jordan curves that
are “locally adjusted” around the crossings so that they are orthogonal at their intersec-
tion points. However, not every graph has a RAC drawing if small curve complexity is
required.

We consider two classical graph drawing scenarios: In the variable embedding set-
ting the drawing algorithm takes in input a graph G and attempts to compute a RAC
drawing of G; the algorithm can choose both the circular ordering of the edges around
the vertices and the sequence of crossings along each edge. In the fixed embedding
setting the input graph G is given along with a fixed ordering of the edges around its
vertices and a fixed ordering of the crossings along each edge; the algorithm must com-
pute a RAC drawing of G that preserves these fixed orderings. An outline of our results
is as follows.

– We study the combinatorial properties of straight-line RAC drawings in the variable
embedding setting (Section 3). We give a tight upper bound on the number of edges
of straight-line RAC drawings. Namely, we prove that straight-line RAC drawings
with n vertices can have at most 4n− 10 edges and that there exist drawings with
these many edges. It might be worth recalling that straight-line RAC drawings are a
subset of the quasi-planar drawings, for which the problem of finding a tight upper
bound on the edge density is still open (see, for example, [1,2,14]).

– Motivated by the previous result, we study how the edge density of RAC drawable
graphs varies with the curve complexity (Section 4). We show how to compute a
RAC drawing whose curve complexity is three for any graph in the variable em-
bedding setting. We also show that this bound on the curve complexity is tight by
proving that curve complexity one implies O(n

4
3 ) edges and that curve complexity

two implies O(n
7
4 ) edges.

– As a contrast, we show that in the fixed embedding setting the curve complexity
of a RAC drawing may no longer be constant (Section 5). Namely, we establish
an Ω(n2) lower bound on the curve complexity in this scenario. We also show
that if any two edges cross at most k times, it is always possible to compute a
RAC drawing with O(kn2) curve complexity. This last result implies that the lower
bound is tight under the assumption that the number of crossings between any two
edges is bounded by a constant.

For reasons of space some proofs are sketched or omitted.
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2 Preliminaries

We assume familiarity with basic definitions of graph drawing [4]. Let G be any non-
planar graph. The crossing number of G is the minimum number of edge crossings in a
plane drawing of G, and it is denoted by cr(G). The following bound on cr(G) for any
graph G with n vertices and m edges has been proved by Pach et al. [13].

Lemma 1. [13] cr(G) ≥ 1
31.1

m3

n2 − 1.06n.

A Right Angle Crossing drawing (or RAC drawing for short) of G is a poly-line drawing
D of G such that any two crossing segments are orthogonal. Throughout the paper we
study RAC drawings such that no edge is self-intersecting and any two edges cross a
finite number of times. We also assume that all graphs are simple, that is, they contain
neither multiple edges nor self-loops.

The curve complexity of D is the maximum number of bends along an edge of D. A
straight-line RAC drawing has curve complexity zero.

3 Straight-Line Right Angle Crossing Drawings

A quasi-planar drawing of a graph G is a drawing of G where no three edges are pair-
wise crossing [2]. If G admits a quasi-planar drawing it is called a quasi-planar graph.
Quasi-planar graphs are sometimes called 3-quasi-planar graphs in the literature.

Lemma 2. Straight-line RAC drawings are a proper subset of the quasi-planar
drawings.

Proof. In a straight-line RAC drawing there cannot be any three mutually crossing
edges because if two edges cross a third one, these two edges are parallel. Hence a
straight-line RAC drawing is a quasi-planar drawing. The subset is proper because in a
quasi-planar drawing edge crossings may not form right angles. ��

Quasi-planar drawings have been the subject of intense studies devoted to finding an
upper bound on their number of edges as a function of their number of vertices (extremal
problems of this type are generically called Turán-type problems in combinatorics and
in discrete and computational geometry [12]). Agarwal et al. prove that quasi-planar
drawings have O(n) edges where n denotes the number of the vertices [2]. This result
is refined by Pach, Radoicic, and Tóth, who prove that the number of edges of a quasi-
planar drawing is at most 65n [14]. This upper bound is further refined by Ackerman
and Tardos, who prove that straight-line quasi-planar drawings have at most 6.5n− 20
edges [1]. We are not aware of any tight upper bound on the number of edges of quasi-
planar drawings.

The main result of this section is a tight upper bound on the number of edges of
straight-line RAC drawings with a given number of vertices.

Let G be a graph and let D be a straight-line RAC drawing of G; the crossing graph
G∗(D) of D is the intersection graph of the (open) edges of D. That is, the vertices of
G∗(D) are the edges of D, and two vertices of G∗(D) are adjacent in G∗(D) if they cross
in D. The following lemma is an immediate consequence of the fact that if two edges of
a straight-line RAC drawing cross a third edge, then these two edges are parallel.
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Lemma 3. The crossing graph of a straight-line RAC drawing is bipartite.

Let E be the set of the edges of a straight-line RAC drawing D. Based on Lemma 3 we
can partition E into two subsets E1 and E2, such that no two edges in the same set cross.
We refine this bipartition by dividing E into three subsets as follows: (i) a red edge set
Er, whose elements have no crossings; a red edge corresponds to an isolated vertex of
G∗(D), (ii) a blue edge set Eb = E1 − Er, and (iii) a green edge set Eg = E2 − Er.
We call this partition a red-blue-green partition of E. Let Drb = (V, Er ∪ Eb) denote
the subgraph of D consisting of the red and blue edges, and let Drg = (V, Er ∪ Eg)
denote the subgraph of D consisting of the red and green edges. Graphs Drb and Drg

are also called the red-blue graph and red-green graph induced by D, respectively.
Since only blue and green edges can cross each other in D, it follows that both the

red-blue and the red-green are planar embedded graphs. Therefore, each of them has a
number of edges that is less than or equal to 3n−6, and so a straight-line RAC drawing
has at most 6n − 12 edges. However, to get a tight upper bound 4n − 10 we need to
count more precisely.

Let G be a graph that has a straight-line RAC drawing. We say that G is RAC maximal
if any graph obtained from G by adding an extra edge does not admit a straight-line
RAC drawing. The proof of the next lemma is omitted for reasons of space.

Lemma 4. Let G be a RAC maximal graph, let D be any straight-line RAC drawing of
G, and let Drb and Drg be the red-blue and red-green graphs induced by D, respec-
tively. Every internal face of Drb and every internal face of Drg contains at least two
red edges. Also, all edges of the external boundary of D are red edges.

Theorem 1. A straight-line RAC drawing with n ≥ 4 vertices has at most 4n − 10
edges. Also, for any k ≥ 3 there exists a straight-line RAC drawing with n = 3k − 5
vertices and 4n− 10 edges.

Proof. Let G be a RAC maximal graph with n ≥ 4 vertices and m edges. Let D be a
straight-line RAC drawing of G. Denote by Er, Eb, Eg the red-blue-green partition of
the edges of D and let mr = |Er|, mb = |Eb|, mg = |Eg|. Assume (without loss of
generality) that mg ≤ mb. Of course m = mr + mb + mg.

Denote by frb the number of faces in Drb, and let ω be the number of edges of the
external face of Drb. From Lemma 4 we have that Drb has frb − 1 faces with at least
two red edges and one face (the external one) with ω red edges. Also, since every edge
occurs on exactly two faces, we have

mr ≥ frb − 1 + ω/2. (1)

Graph Drb is not necessarily connected, but Euler’s formula guarantees that

mr + mb ≤ n + frb − 2. (2)

Substituting the inequality (1) into (2) we deduce that

mb ≤ n− 1− ω/2. (3)
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fence faces

(a)

u

v
α

(b) (c)

Fig. 1. (a) Fence faces. (b) Triangular fence faces; the dashed edge is a green edge. (c) A straight-
line RAC drawing with n = 7 vertices and m = 4n − 10 edges.

Since Drg has the same external face as Drb we have

mr + mg ≤ 3n− 3− ω. (4)

Also, from m = mr + mg + mb, we can sum the Inequalities (3) and (4) to obtain

m ≤ 4n− 4− 3ω/2. (5)

Observe that if ω ≥ 4 then Inequality (5) implies m ≤ 4n− 10. Thus we need only
consider the case when the external face is a triangle, that is, ω = 3.

Suppose that ω = 3; consider the (at least one and at most three) faces that share
an edge with the outside face, as in Fig. 1(a). We call these faces the fence faces of D.
Notice that, since we are assuming that n > 3 then there is at least one internal vertex.
Also, since the graph is RAC maximal, then it is not possible that every internal vertex
is an isolated vertex. Hence every fence face has at least one internal edge.

Suppose that one of the fence faces has more than three edges. In this case, Drb is a
planar graph in which at least one face has at least four edges; this implies that

mr + mb ≤ 3n− 7. (6)

Since we have assumed that mg ≤ mb, Inequality (6) implies that

mr + mg ≤ 3n− 7. (7)

Summing Inequalities (3) with ω = 3 and (7) yields

m ≤ 4n− 19/2; (8)

since m is an integer the result follows.
The final case to consider is where all the fence faces are triangles. In this case there

are exactly three fence faces. We show that all the edges of at least two of these faces
are red. Suppose that a fence face has one blue edge. This implies that this edge must
be crossed by a green edge (u, v). Note that two edges incident on a common vertex
cannot be crossed by a third edge or else the perpendicularity of the crossings would be
violated. From this fact and since the external face is red, it follows that (u, v) cannot
cross another edge of the fence face. Therefore (u, v) must be incident to one vertex of
the external face, as in Fig. 1(b).
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Now (u, v) crosses at an angle of 90◦, and so the interior angle α of the triangle that
it crosses is less than 90◦. However, the sum of the interior angles of the three fence
faces is at least 360◦. Thus at most one of the three triangles can have an interior angle
less than 90◦, and so at least two of the fence faces cannot have an edge crossing. Thus
at least two of the fence faces have three red edges. Also, the outside face has three red
edges, and so the drawing has at least three faces in which all three edges are red. It
follows that the number of red edges is bounded from below:

mr ≥ frb − 3 + (3 · 3)/2 = frb + 3/2. (9)

Substituting (9) into (2), we deduce that mb ≤ n−7/2, and thus m ≤ 4n−19/2. Since
m is integer, the first part of the theorem follows.

We now prove that for each even integer k ≥ 3, there exists a RAC maximal graph
Gk with n = 3k − 5 vertices and 4n − 10 edges. Graph Gk is constructed as follows
(refer to Fig. 1(c) for an illustration where k = 4). Start from an embedded maximal
planar graph with k vertices and add to this graph its dual planar graph without the
face-node corresponding to the external face (in Fig. 1(c) the primal graph has white
vertices and the dual graph has black vertices). Also, for each face-node u, add to Gk

three edges that connect u to the three vertices of the face associated with u.
A result by Brightwell and Scheinermann about representations of planar graphs

and of their duals guarantees that Gk admits a straight-line RAC drawing [3]. More
precisely, Brightwell and Scheinermann show that every 3-connected planar graph G
can be represented as a collection of circles, a circle for each vertex and a circle for
each face. For each edge e of G, the four circles representing the two end-points of e
and the two faces sharing e meet at a point, and the vertex-circles cross the face-circles
at right angles. This implies that the union of G and its dual (without the face-node
corresponding to the external face) has a straight-line drawing such that the primal
edges cross the dual edges at right angles.

Since the number of face-nodes is 2k − 5, then Gk has n = 3k − 5 vertices. The
number of edges of Gk is given by m = (3k − 6) + 3(2k − 5) + 3k − 9, and hence
m = 12k − 30 = 4n− 10. ��

4 Poly-Line Right Angle Crossing Drawings

Motivated by Theorem 1, in the attempt of computing RAC drawings of dense graphs
we relax the constraint that the edges be drawn as straight-line segments. In this section
we study how the edge density of RAC drawable graphs varies with the curve complex-
ity in the variable embedding setting.

Lemma 5. Every graph has a RAC drawing with at most three bends per edge.

Sketch of Proof: Papakostas and Tollis describe an algorithm to compute an orthogonal
drawing H of G with at most one bend per edge and such that each vertex is represented
as a box [15]. Of course, in an orthogonal drawing any two crossing segments are per-
pendicular. To get a RAC drawing D from H it is sufficient to replace each vertex-box
with a point placed in its center and to use at most two extra bends per edge to connect
the centers to the boundaries of the boxes. �
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Lemma 5 naturally raises the question about whether three bends are not only sufficient
but sometimes necessary. This question has a positive answer as we are going to show
with the following lemmas.

Let D be a poly-line drawing of a graph G. An end-segment in D is an edge segment
incident to a vertex. An edge segment in D that is not an end-segment is called an
internal segment. Note that the end points of an internal segment are bends in D.

Lemma 6. Let D be a RAC drawing of a graph G. For any two vertices u and v in
G, there are at most two crossings between the end-segments incident to u and the
end-segments incident to v.

Proof. Each crossing between an end-segment incident to u and an edge segment inci-
dent to v in D occurs on the circle whose diameter is the line segment uv. If there are
more than two such points, then at least two crossings occur in a half circle (either from
a side of uv or on the other side of uv). It follows that two line segments meet at an
angle of more than 90◦, and the drawing is not a RAC drawing. ��

Lemma 7. Let D be a RAC drawing of a graph G with n vertices. Then the number of
crossings between all end-segments is at most n(n− 1).

Proof. It follows from Lemma 6 by considering that the number of distinct pairs of
vertices is n(n− 1)/2. ��

Lemma 8. Let D be a RAC drawing and let s be any edge segment of D. The number
of end-segments crossed by s is at most n.

Proof. If s crosses more than n end-segments in D, then there are two of these segments
incident to the same vertex, which is impossible in a RAC drawing. ��

The previous lemmas are the ingredients to show that not all graphs admit a RAC draw-
ing with curve complexity two.

Lemma 9. A RAC drawing with n vertices and curve complexity two has O(n
7
4 ) edges.

Proof. Let D be a RAC drawing with at most two bends per edge. We prove that the
number m of edges of D is m ≤ 36n

7
4 . Assume by contradiction that m > 36n

7
4 .

From Lemma 1, the number of crossings in D is at least 1
31.1

m3

n2 − 1.06n. There are at
most 3m edge segments in D because every edge has at most two bends; it follows that
there is at least one edge segment s with at least 1

93.3
m2

n2 − 0.36 n
m crossings. For each

vertex u, at most one end-segment of an edge incident to u can cross s. Hence, there
are at most n edges (u, v) that cross s in an end-segment of (u, v). This implies that the
number m′ of edges whose internal segments cross s is such that:

m′ ≥ 1
93.3

m2

n2 − 0.36
n

m
− n (10)

From our assumption that m > 36n
7
4 , we can replace m on the right hand side of

Equation (10) with 36n
7
4 to obtain m′ > 13, 89n

3
2 −0.01n−3

4 −n. Since 0.01n−3
4 < 1,
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it follows that m′ > 13, 89n
3
2 − (n + 1). Also, since 2n

3
2 ≥ n + 1 (for every n ≥ 1),

it follows that:

m′ > 11, 89n
3
2 . (11)

Let D′ be a sub-drawing of D consisting of m′ edges that cross s with an internal
segment, as well as the vertices incident to these edges. Let n′ be the number of vertices
in D′. Using Lemma 1 applied to D′, the number of crossings in D′ is at least 1

31.1
m′3
n′2 −

1.06n′. However, the internal segments of edges in D′ are all parallel (since they all
cross s at an angle of 90◦). Thus, all crossings in D′ involve an end-segment. From
Lemmas 7 and 8, there are at most n′(n′− 1)+ m′n′ such crossings. Hence, it must be

n′(n′ − 1) + m′n′ ≥ 1
31.1

m′3

n′2 − 1.06n′. (12)

Since n′ < n, and since, from Inequality (11), m′ > n − 1, we have that 2m′n ≥
n′(n′ − 1) + m′n′. From Inequality (12), it must also hold 2m′n ≥ 1

31.1
m′3
n2 − 1.06n,

that is:

n ≥ 1
62.2

m′2

n2 − 0.53
n

m′ . (13)

From Inequalities (11) and (13) we have n ≥ 2.27n− 0.045n−1
2 , which is however

false for any n ≥ 1, a contradiction. ��

The next lemma completes the analysis of the number of edges in poly-line RAC draw-
ings with curve complexity smaller than three.

Lemma 10. A RAC drawing with n vertices and curve complexity one has O(n
4
3 )

edges.

Proof. Let D be a RAC drawing with at most one bend per edge. D contains end-
segments only. Therefore, from Lemma 7, the number of crossings in D is at most n(n−
1). Also, from Lemma 1, the number of crossings in D must be at least 1

31.1
m3

n2 −1.06n.

It follows that: n(n−1) ≥ 1
31.1

m3

n2 −1.06n, which implies that n4 +0.06n3 ≥ 1
1.31m3,

and then m < 3.1n
4
3 , i.e., m = O(n

4
3 ). ��

The following theorem summarizes the interplay between curve complexity and edge
density of RAC drawings in the variable embedding setting. It is implied by Theorem 1,
Lemma 5, Lemma 9, and Lemma 10.

Theorem 2. Let G be a graph with n vertices and m edges.

(a) There always exists a RAC drawing of G with at most three bends per edge.
(b) If G admits a RAC drawing with straight-line edges then m = O(n).
(c) If G admits a RAC drawing with at most one bend per edge then m = O(n

4
3 ).

(d) If G admits a RAC drawing with at most two bends per edge then m = O(n
7
4 ).
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5 Fixed Embedding Setting

A classical constraint of many algorithms that draw planar graphs is to preserve a given
circular ordering of the edges around the vertices, also called a combinatorial embed-
ding. In this section we consider similar constraints for RAC drawings. In contrast with
Theorem 2, we show that fixed combinatorial embedding constraints may lead to RAC
drawings of non-constant curve complexity, while quadratic curve-complexity is always
sufficient for any graph and any fixed combinatorial embedding.

Let G be a graph and let D be a drawing of G. Since in a RAC drawing no three
edges can cross each other at the same point, we shall only consider drawings whose
crossings involve exactly two edges. We denote by G the planar embedded graph ob-
tained from D by replacing each edge crossing with a vertex, and we call it a planar
enhancement of G. A vertex of G that replaces a crossing is called a cross vertex. Giv-
ing a planar enhancement of G corresponds to fixing the number and the ordering of
the cross vertices along each edge, the circular clockwise ordering of the edges incident
to each vertex (both real and cross vertices), and the external face.

Let G be a graph along with a planar enhancement G and let D′ be a drawing of G.
We say that D′ preserves the planar enhancement G if the planar enhancement of G
obtained from D′ coincides with G.

The next theorems establish lower and upper bounds for the curve complexity of
RAC drawings in the fixed embedding setting.

Theorem 3. There are infinitely many values of n for which there exists a graph G with
n vertices and a planar enhancement G such that any RAC drawing preserving G has
curve complexity Ω(n2).

Sketch of Proof: Based on a construction of Roudneff, Felsner and Kriegel show simple
arrangements of m pseudolines in the Euclidean plane forming m(m− 2)/3 triangular
faces for infinitely many values of m [5,18]. For each such values of m, let A(m) be
the corresponding arrangement of pseudolines and let n = 2(�

√
m�+ 1).

We define G as a simple bipartite graph with n vertices and m edges such that ev-
ery partition set of G has n

2 vertices (note that n2

4 ≥ m). We also define a planar
enhancement of G by constructing a drawing D where each edge uses a portion of a
corresponding pseudoline of A(m). The planar enhancement of G obtained from D is
denoted as G.

We observe that the arrangement of pseudolines defined in [5,18] has the following
property: There exists a circle C(m) such that all crossings of A(m) lie inside C(m)
and every pseudoline of A(m) crosses C(m) in exactly two points. Drawing D is de-
fined as follows:

– Each vertex v of G is drawn as a distinct point p(v) arbitrarily chosen outside
C(m).

– Let {�1, . . . , �m} be the pseudolines of A(m) and let {e1, . . . , em} be the edges
of G. Let p1

i and p2
i be the points of intersection between C(m) and �i and let

ei = (v1
i , v2

i ) (1 ≤ i ≤ m). Edge ei is drawn as the union of: (i) the portion
of �i inside C(m) that connects p1

i with p2
i ; (ii) a simple curve that connects p1

i
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with p(v1
i ) and that does not cross the interior of C(m); (iii) a simple curve that

connects p2
i with p(v2

i ) and that does not cross the interior of C(m).

Since drawing D maintains all triangular faces of A(m) and m = Θ(n2), it follows
that D (and hence G) has Θ(n4) triangular faces inside C(m). Also, the vertices of
each triangular face inside C(m) are cross vertices in G. Therefore, any RAC drawing
of G that preserves G has at least one bend for each triangular face inside C(m). Hence
any RAC drawing of G preserving G has Ω(n4) bends and curve complexity Ω(n2). �

The next theorem proves that the lower bound of Theorem 3 is tight for those graphs
that can be drawn in the plane such that the number of crossings between any two edges
is bounded by a given constant.

Theorem 4. Let G be a graph with n vertices and let G be a planar enhancement
of G obtained from a drawing where any two edges cross at most k times, for some
k ≥ 1. There exists a RAC drawing of G that preserves G and that has O(kn2) curve
complexity.

Sketch of Proof: Let m be the number of edges of G and let n and m be the number of
vertices and edges of G, respectively. From the hypothesis that two distinct edges cross
at most k times and that an edge cannot cross itself, we have that n ≤ n + k(m− 1)m.
Namely, every edge of G is subdivided in G by at most k(m− 1) cross vertices, i.e., it
is formed by at most k(m− 1) + 1 = km− k + 1 edges of G.

Assume first that G has vertex degree at most four (which of course implies that also
G has vertices of degree at most four). In this case one can compute a planar orthogonal
drawing D of G with the technique described by Tamassia and Tollis [19]. This tech-
nique first computes a visibility representation of the graph, i.e., a planar drawing in
which each vertex is drawn as a horizontal segment and each edge is drawn as a vertical
segment between its end-vertices. Then it replaces each horizontal segment of a vertex
v with a point pv , and connects pv to the vertical segments representing the incident
edges of v, by a local transformation that uses at most two bends per edge around pv

(see, e.g., Fig. 2(a)). Hence an edge can get at most four bends (two for each local trans-
formation around an end-vertex). Therefore, this technique guarantees at most 4 bends
per edge. Also, observe that since it is always possible to compute a visibility represen-
tation of an embedded planar graph that preserves its planar embedding and since the
local transformations do not change this embedding, the technique described above can
be applied so that the embedding of G is preserved.

When cross vertices are replaced by cross points, we get from D an orthogonal draw-
ing D of G that preserves G and that has at most 4(km− k + 1) bends per edge. Since
m < n2

2 and since D is a RAC drawing, the theorem follows in this case.
If G has vertices of degree greater than four then we can apply a variant of the

algorithm of Tamassia and Tollis. Namely, after the computation of a visibility rep-
resentation of G we apply the same transformations as before around the vertices of
degree at most four. For a vertex v of degree greater than four we replace the horizontal
segment of v with a point pv , and then locally modify the edges incident to v as shown
in Fig. 2(b), by using at most one bend per edge. The drawing D obtained in this way
is not an orthogonal drawing but it still has at most four bends per edge. By replacing
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v

v

v

pv

pv

pv

(a)

v

pv

(b)

Fig. 2. Local transformations from a visibility representation to a RAC drawing: (a) for vertices
of degree at most four; (b) for vertices of degree greater than four

cross vertices with cross points, we still get from D a drawing D of G that preserves G
and that has at most 4(km−k+1) bends per edge. Also, since a cross vertex has degree
four in D, we are guaranteed that D is a RAC drawing, because for these vertices we
have applied an orthogonal drawing transformation. �

6 Conclusion and Open Problems

This paper has studied RAC drawings of graphs, i.e. drawings where edges can cross
only at right angles. In fact, many crossings are unavoidable when drawing large graphs
and recent perceptual studies have shown that right angle crossings do not have impact
on the readability of a diagram. We have focused on the interplay between edge density
and curve complexity of RAC drawings and have proved lower and upper bounds for
these quantities. There are several open questions that we consider of interest about
RAC drawings. Among them we mention the following.

1. By Theorem 1, a graph that has a straight-line RAC drawing has at most 4n − 10
edges. How difficult is it to recognize whether a graph with m ≤ 4n − 10 edges
has a straight-line RAC drawing?

2. Find tight upper bounds to the number of edges of RAC drawings with curve com-
plexity one and two. See also Theorem 2.

3. Study the area requirement of RAC drawings. For example, can all planar graphs
be drawn in o(n2) area if edges are allowed to cross at right angles?
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9. Jünger, M., Mutzel, P. (eds.): Graph Drawing Software. Springer, Heidelberg (2003)
10. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. Springer, Heidelberg (2001)
11. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore (2004)
12. Pach, J.: Geometric graph theory. In: Handbook of Discrete and Computational Geometry,

pp. 219–238. CRC Press, Boca Raton (2004)
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Abstract. Given a simple polygon P , we consider the problem of finding
a convex polygon Q contained in P that minimizes H(P,Q), where H
denotes the Hausdorff distance. We call such a polygon Q a Hausdorff
core of P . We describe polynomial-time approximations for both the
minimization and decision versions of the Hausdorff core problem, and
we provide an argument supporting the hardness of the problem.

1 Introduction

Traditional hierarchical representations allow for efficient storage, search and
representation of spatial data. These representations typically divide the search
space into areas for which membership can be tested efficiently. If the query re-
gion does not intersect a given area, the query can proceed without further con-
sideration of that area. When a space or object has certain structural properties,
the data structure built upon it can benefit from those properties. For example,
the data structure of Kirkpatrick [12] is designed to index planar subdivisions
answering point queries in time O(log n) and space O(n), with preprocessing
time O(n log n).

Our study is motivated by the problem of path planning in the context of
navigation at sea. In this application, a plotted course must be tested against
bathymetric soundings to ensure that the ship will not run aground. We suppose
the soundings have been interpolated into contour lines [1] and the plotted course
is given as a polygonal line. There is no requirement of monotonicity or even
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continuity between contour lines in the map. A given line might be a maximum,
minimum or a falling slope. Similarly, we observe that in general there are several
disconnected contour lines with the same integer label (depth).

Although contour lines can be arbitrarily complicated, typical shipping routes
run far from potential obstacles for the majority of their trajectories, and only
short segments require more careful route planning. As a result, most intersec-
tion checks should be easy: we should be able to subdivide the map into areas
such that most of our intersection tests are against conveniently-shaped areas,
reserving more expensive tests for the rare cases where the path comes close to
intersecting the terrain.

The search for easily-testable areas motivates the study of the simplification
of a contour line into a simpler object which is either entirely contained within
the contour line or fully contains it. In this paper we consider the case in which
the simplified polygon must be convex and contained.

1.1 Definitions

A polygon P is a closed region in the plane bounded by a finite sequence of line
segments or edges. We restrict our attention to simple polygons, in which the
intersection of any two edges is either empty or an endpoint of each edge and
the intersection of any three edges is empty. Finally, recall that a region P is
convex if for all points p and q in P , the line segment pq is contained in P .

Given a simple polygon P and a metric d (defined on polygons), a d-core of
P is a convex polygon Q contained in P that minimizes d(P, Q). Examples of
metrics d of interest include the area of the region P \Q, the Hausdorff distance
between P and Q, and the link distance (which is a discrete distance metric). A
common measure of distance between two sets P and Q is given by

d(P, Q) = max
{

max
p∈P

min
q∈Q

dist(p, q), max
q∈Q

min
p∈P

dist(p, q)
}

.

When P and Q are polygons in the plane and dist(p, q) denotes the Euclidean (�2)
distance between points p and q, d(P, Q) corresponds to the Hausdorff distance
between sets P and Q, which we denote by H(P, Q). We define the corresponding
d-core as the Hausdorff core. We consider both the minimization and decision
versions of problem of finding a Hausdorff core for a given simple polygon P :

Input. A simple polygon P .

Question. Find a Hausdorff core of P .

Input. A simple polygon P and a non-negative integer k.

Question. Does there exist a convex polygon Q contained in P such that
H(P, Q) ≤ k?

The 1-centre of a polygon P (also known as Euclidean centre) is the point c
that minimizes the maximum distance from c to any point in P . In this work we
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are only interested in the 1-centre inside P , also known as constrained Euclidean
centre. Although the unconstrained 1-centre is unique, this is not necessarily true
for the constrained version [6]. A constrained 1-centre of a polygon P of n vertices
can be computed in time O(n log n + k), where k is the number of intersections
between P and the furthest point Voronoi diagram of the vertices of P [6]. For
simple polygons k ∈ O(n2). Note that the constrained 1-centre of P is a point
c ∈ P that minimizes H(P, c). Throughout the rest of the paper, when we refer
to a 1-centre, we specifically mean a constrained 1-centre.

1.2 Related Work

We can divide the problem of approximating polygons into two broad classes:
inclusion problems seek an approximation contained in the original polygon,
while enclosure problems determine approximation that contains the original
polygon. Formally, let P and Q be classes of polygons and let μ be a function
on polygons such that for polygons P and Q, P ⊆ Q ⇒ μ(P ) ≤ μ(Q). Chang
and Yap [7] define the inclusion and enclosure problems as:

– Inc(P ,Q, μ): Given P ∈ P , find Q ∈ Q included in P , maximizing μ(Q).
– Enc(P ,Q, μ): Given P ∈ P , find Q ∈ Q enclosing P , minimizing μ(Q).

The best known enclosure problem is the convex hull, which we may state for-
mally as Enc(Psimple,Pcon, area), where Psimple is the family of simple polygons
and Pcon is the family of convex polygons. Given a convex polygon P , many
problems are tractable in linear time: Enc(Pcon,P3, area) [16], Enc(Pcon,P3,
perimeter) [5], and Enc(Pcon,Ppar, area) [17], where Ppar is the family of parallel-
ograms. For general k-gons, Enc(Pcon,Pk, area) can be solved in O(kn+n log n)
time [3].

Perhaps the best known inclusion problem is the potato-peeling problem of
Chang and Yap [7], defined as Inc(Psimple,Pcon, area). There is an O(n7) time
algorithm for this problem, and an O(n6) time algorithm when the measure is
the perimeter, Inc(Psimple,Pcon, perimeter), where n is the number of vertices of
P [7]. The problem of finding the triangle of maximal area included in a convex
polygon, Inc(Pcon,P3, area), can be solved in linear time [9]. The generalization
of this problem to any k-gon can be solved in time O(kn + n logn) [2]. If the
input polygon is not restricted to be convex, Inc(Pcon,P3, area) can be found in
time O(n4) [15].

The inclusion and enclosure problems can also be formulated as minimizing or
maximizing a measure d(P, Q). Note that in the case when μ(Q) is the area, maxi-
mizing or minimizing μ(Q) for the inclusion and enclosure problems, respectively,
is equivalent to minimizing the difference in areas (d(P, Q) = |μ(P ) − μ(Q)|).
Both the inclusion and enclosure problems using the Hausdorff distance as a
measure were studied by Lopez and Reisner [14], who present polynomial-time
algorithms to approximate a convex polygon minimizing the Hausdorff distance
to within an arbitrary factor of the optimal. Since the input polygon is convex,
the approximating solution is restricted to a maximum number of vertices. In the
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A B C D E

Fig. 1. A. The input polygon P . B. “Shrinking” the polygon. C. Shrink until the
convex hull is contained in P . D. The solution returned by the Chassery and Coeurjolly
algorithm. E. An actual solution.

same work, the authors also studied the min-# version of the problem, where
the goal is to minimize the number of vertices of the approximating polygon,
given a maximum allowed error. For this setting, they show that the inclusion
and enclosure problems can be approximated to within one vertex of the optimal
in O(n log n) time and O(n) time, respectively.

The inclusion problem that minimizes the Hausdorff distance where the input
is a simple (not necessarily convex) polygon was addressed in [8]. They present
an algorithm that returns a Hausdorff core for the case when the point 1-centre
is contained in the input polygon P . The algorithm shrinks the input polygon
P until its convex hull is contained in the original P . If the shrunken polygon
P ′ is not convex, the region in which the convex hull P ′ intersects P is removed
from P ′. The procedure is repeated starting with P ′ until a convex polygon is
obtained. In general, the algorithm does not return a Hausdorff core if the point
1-centre is not contained in P . A counterexample is illustrated in Figure 1. To the
best of our knowledge, no algorithm for finding a Hausdorff core of an arbitrary
simple polygon, Inc(Psimple,Pcon, Hausdorff), has appeared in the literature.

2 Preliminary Observations

In this section we make several observations about properties of polygons, convex
polygons, and the Hausdorff distance in the context of the discussed problem.
These observations will be useful in later sections in establishing our main results.
Due to lack of space, we omit the proofs.

Given a polygon P and a convex polygon Q inside P , it suffices to optimize
the maximum distance from points p ∈ P to polygon Q to obtain a Q with a
minimum Hausdorff distance:

Observation 1. Given any simple polygon P and any convex polygon Q con-
tained in P , maxp∈P minq∈Q d(p, q) ≥ maxq∈Q minp∈P d(p, q). Therefore,

H(P, Q) = max
p∈P

min
q∈Q

d(p, q).

Among the points of P and Q, the Hausdorff distance is realized at the vertices
of P . Furthermore, it occurs between Q and vertices that lie on the convex hull
of P :

Lemma 1. Given a simple polygon P and a convex polygon Q contained in P ,

H(P, Q) = H(CH(P )V , Q),
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where CH(P ) denotes the convex hull of set P and for any polygon A, AV

denotes the set of vertices of set A.

H(P, Q) is determined by the vertices of P that lie on the convex hull of P ,
however all vertices and edges of P must be considered to determine whether
Q is contained in P . The decision version of the Hausdorff core problem with
parameter k is defined as follows; we consider circles of radius k centered at
vertices CH(P )V and ask whether there exists a convex polygon Q such that it
intersects all such circles:

Observation 2. Let Ck(p) denote a circle of radius k centred at p. Given a
simple polygon P and a convex polygon Q contained in P ,

H(P, Q) ≤ k ⇔ ∀p ∈ CH(P ), Ck(p) ∩Q 
= ∅.

Finally, we wish to know some point contained in Q. If the 1-centre of P is not
in Q, then Q intersects some vertex of P :

Lemma 2. Given a simple polygon P and a convex polygon Q contained in P ,
let P1c be the constrained 1-centre of P . At least one point in the set {P1c, PV }
is contained in Q if Q is a Hausdorff core of P . Let a point chosen arbitrarily
from this set be Qp.

3 Hausdorff Core Minimization Problem

In this section we outline an algorithm to solve the Hausdorff core problem which
operates by shrinking circles centred on selected vertices of P (which vertices
have circles is discussed shortly). Invariant 1 must hold for a solution to exist:

Invariant 1. There exists a set of points {p1, p2, . . . , pk}, where k is the current
number of circles, such that ∀i pi ∈ Ci and ∀i, j, i 
= j pipj does not cross outside
the original simple polygon.

Invariant 1 implies that a solution Q with H(P, Q) = r exists, where r is the
radius of the circles. We sketch the solution in Algorithm 1, and we illustrate
an example of the operation of the algorithm in Figure 2. We find P1c using
the technique of [6]; there may be multiple such vertices, but we can choose one
arbitrarily. A solution is not unique in general, but we find a polygon Q which
minimizes H(P, Q).

3.1 Proof of Correctness

The solution Q is a convex polygon that intersects every circle. If each circle Ci

touches the solution convex polygon Q, we know that the distance from each
vertex with a circle to Q is at most r, the radius of Ci. If a vertex v ∈ CH(P )V

does not have a circle, then dist(v, Qp) ≤ r. Therefore, given a simple polygon
P , this algorithm finds a convex polygon Q contained in P such that ∀p ∈
CH(P )V , ∃q ∈ Q s.t. d(p, q) ≤ r. By Lemma 1, we know that Q is a solution
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Algorithm 1. Hausdorff Core Minimization Algorithm
HCORE(P )
Q = ∅, rmin = ∞
for each Qp ∈ {P1c, PV } do

Begin with circles of radius r0 centred on the vertices v ∈ CH(P )V , where
r0 = dist(vf , Qp) and vf = arg maxp∈P dist(p, Qp).
Any circle centred at a vertex v where dist(Qp, v) < r contains Qp; such circles
are ignored for now.
Reduce the radius such that at time ti ∈ [0, 1], each circle has radius r(ti) =
r0 × (1− ti). Let Q(ti) be a solution at time ti, if it exists. The radius is reduced
until one of three events occurs:
(1) r(ti) = dist(Qp, vn), where vn is the farthest vertex from Qp that is not the
centre of a circle. Add a circle centred at vn with radius r(ti).
(2) Q(ti) cannot cover Qp. In this case, we break and if r(ti) < rmin, then set
Q = Q(ti) and rmin = r(ti).
(3) A further reduction of r will prevent visibility in P between two circles.
Again, we break and if r(ti) < rmin, then set Q = Q(ti) and rmin = r(ti).

end for
return Q

where H(P, Q) = r. It remains to be shown that there does not exist a convex
polygon Q′ such that dist(p, q′) ≤ r′, where r′ < r. This cannot be the case, for
if the circles were shrunk any further, no convex polygon could intersect some
pair of the circles by Invariant 1. Therefore, the polygon would necessarily be of
distance dist(p, q′) > r′ for some vertex p.

Finally, the optimality of the algorithm is guaranteed since we search different
possibilities for the point Qp which is contained in the solution Q. By Lemma 2,
we know that at least one such point Qp is contained in the optimal solution. By
trying all possibilities, we ensure that the globally optimal solution is obtained.

4 Algorithmic Complexity of the Problem

The decision version of the exact problem consists of determining whether we
can draw a polygon with one vertex in or on each circle and each successive pair
of vertices is able to see each other around the obstructions formed by vertices
of the input. For any fixed choice of the obstructing vertices, this consists of a
system of quadratic constraints of the form “variable point in circle” and “two
variable points collinear with one constant point.” For the optimization version
we need only make the circle radius a variable and minimize that. This is a simple
mathematical programming problem, potentially tractable with a general solver.

Solving systems that include quadratic constraints is in general NP-hard; we
can easily reduce from 0-1 programming by means of constraints of the form
x(x− 1) = 0. Nonetheless, some kinds of quadratic constraints can be addressed
by known efficient algorithms. Lobo et al. [13] describe many applications for
second-order cone programming, a special case of semidefinite programming. The
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(a) (b)

(c) (d)

Fig. 2. (a) Two circles are centred on the critical points vf . (b) dist(E, 1c) = r, so
we add a new circle centred on E of radius r. The orange (light) lines indicate lines
of visibility between the circles. (c) Another circle is added centred at point B. (d)
We cannot shrink the circles any further, otherwise Invariant 1 would be violated.
Therefore, a solution can be composed from the orange line segments.

“point in circle” constraints of our problem can be easily expressed as second-
order cone constraints, so we might hope that our problem could be expressed as
a second-order cone program and solved by their efficient interior point method.

However, the “two variable points collinear with one constant point” con-
straints are not so easy to handle. With (x1, y1) and (x2, y2) the variable points
and (xC, yC) the constant point, we have the following:

y1 − yC

x1 − xC
=

y2 − yC

x2 − xC
(1)

x2y1 − x2yC − xCy1 = x1y2 − x1yC − xCy2 (2)

This constraint is hyperbolic because of its cross-product terms. The techniques
of Lobo et al. [13] can be applied to some hyperbolic constraints, subject to
limitations whose basic purpose is to keep the optimization region convex.

As shown in Figure 3, it is possible for our problem to have two disconnected
sets of solutions, even with as few as four circles. For a point A on the first
circle, we can trace the polygon through the constant point B to that edge’s
intersection with the second circle at C, then through the constant point D and
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I A B
C

D

EFG

H

Fig. 3. Two disconnected solution intervals

so on around to H . The lines AB and GH intersect at I, which is our choice
for one vertex of the polygon, the others being C, E, and G. If I is inside the
circle, we have a feasible solution. But the heavy curves show the locus of I for
different choices of A, and the portion of it inside the circle is in two disjoint
pieces. The set of solutions to the problem as shown is disjoint, corresponding to
a slice (for a constant value of the circle-radius variable) through a non-convex
optimization region. As a result, neither second-order cone programming nor any
other convex optimization technique is immediately applicable.

5 An Approximation Algorithm Hausdorff Core

5.1 The Decision Problem

First we discuss the decision version of the approximation algorithm, where were
are given a distance r and wish to know whether there is an approximate Haus-
dorff core solution with H(P, Q′) ≤ r + 2ε′. This approximation scheme seeks to
grow circles by an additive factor ε′, and determine whether there exists a solu-
tion for these expanded circles. We still require that the approximate solution Q′

must not cross outside P , and that Invariant 1 holds. Given ε as input, where ε is
a small positive constant, we calculate ε′ = dvf ·ε as the approximation factor of
H(P, Q). Recall that dvf is the distance from the constrained 1-centre P1c to the
most distant vertex vf ∈ P . Notice that this method of approximation maintains
a scale invariant approximation factor, and the size of the of the approximation
factor for a given P is constant, regardless of Q and the magnitude of r.

The strategy behind this approximation scheme is that by growing the circles
by ε′, they may be discretized. Consequently, it is possible to check for strong vis-
ibility between discrete intervals, which avoids some of the problems faced by the
exact formulation of the problem. One of the challenges of this approach is the se-
lection of the length of the intervals on the new circles of radius r + ε′. We require
that the intervals be small enough so that we will find a solution for the approxi-
mation if one existed for the original circle radius. In other words, given an exact
solution Q for the original radius r such that H(P, Q) ≤ r, we are guaranteed that
at least one interval on each of the expanded circles will be contained inside Q.
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First we determine whether the polygon can be approximated by a single line
segment. We construct an arc segment of radius 2dvf (the maximum diameter
of P ) and arc length ε′. The interior angle of the circular segment Cϕ formed
by this arc is ϕ = ε′/2dvf = ε/2. If an interior angle of Q′ is less than or equal
to ϕ, then Q′ may be fully covered by Cϕ since Q′ is convex. In this case, there
exists a line segment Q� which approximates Q′ such that H(Q′, Q�) < ε′.

To determine whether Q can be approximated by a line segment, we grow all
existing circles by a further factor of ε′, so that they have radius r� = r + 2ε′.
Since Q is convex, this operation means that a line segment which approximates
Q will now intersect at least one arc from each circle. By Lemma 2, we know
that Pc ∈ {P1c, PV } is contained in Q. Therefore, we attempt to find a line
intersecting a point Pc and a segment of each circle of radius r� for each Pc. For
a selected Pc, we build an interval graph in the range [0...π]. For each circle Ci,
if a line at angle θ mod π from an arbitrary reference line intersects a segment
of Ci contained in P before intersecting P itself, then Ci covers θ in the interval
graph. If there is a non-zero intersection between all circles in the interval graph,
then the solution is a line segment Q� at angle θ to the reference line, intersecting
Pc with endpoints at the last circles that Q� intersects. Therefore, if there exists
a solution H(P, Q) ≤ r where Q can be approximated by a line segment Q� with
H(Q, Q�) < 2ε′, then we will find Q�.

If we have not found a solution Q�, we know that all interior angles of Q are
greater than ϕ, and so we wish to determine an approximating polygon Q′. If
we divide the expanded circle of radius r + ε′ into 12π/(ε2dvf ) equal intervals,
at least one would be fully contained in Q regardless of where the intervals
are placed on the circle. Now finding Q′ is simply a matter of finding a set
of intervals such that there exists one interval on each circle which has strong
visibility with an interval on all the other circles, and then selecting one point
from each interval. A solution has the form Q′ = {q1 . . . qk}, where qi is a point
on Ci in the interval contained in the solution.

We use a dynamic programming algorithm to find a solution given a set of
circles in the input polygon. We use a table A[i, j] that stores, for a pair of
intervals i and j in different circles, a range of possible solutions that include
those intervals (See Figure 4). We find the convex polygon that includes intervals
i and j by combining two convex polygons, one that includes i and an interval
k∗ and another that includes j and k∗. In order to compute A[i, j] we lookup the
entries for A[i, k1] . . . A[i, km] and A[k1, j] . . . A[km, j], where k1, . . . , km are the
intervals of a circle k, to determine if there is such k∗ for which there are solutions
A[i, k∗] and A[k∗, j] that can be combined into one convex polygon. There are
many solutions that include a certain pair of intervals, but we store only O(n)
solutions for each pair. For example, for the entry A[i, j] we would store the edge
coming out of j that minimizes the angle Θ for each choice of an edge coming out
of interval i, as shown in Figure 4. This would be done recursively at each level,
which would make partial solutions easier to combine with other solutions while
keeping convexity. Note that a particular choice of pairs of circles to form the
solution Q′ corresponds to a triangulation of Q′, and since there are O(n) pairs
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i j

A[i, j]

k∗

A[i, k∗]

Θ

A[k∗, j]

Fig. 4. The convex polygon that includes intervals i and j is built by combining a
polygon that includes i and k∗ and one that includes j and k∗ (painted in grey)

of vertices joined in the triangulation, we need to store entries for the intervals
of O(n) pairs of circles. Given the clique of strongly visible intervals, we may
now freely choose a point from each interval to obtain the solution polygon Q′.
We run the dynamic programming algorithm iteratively for each Pc ∈ {P1c, PV },
using only circles centred on vertices v ∈ PV where dist(v, Pc) < r. If no solution
Q′ is found for any Pc, then there is no solution where H(P, Q) = r.

We present the following observations pertaining to Q and Q′:

– ∃Q ⇒ ∃Q′, ¬∃Q′ ⇒ ¬∃Q. The intervals are defined such that at least one
interval from each circle will be contained in Q′.

– ∃Q′ � ∃Q. The existence of Q′ does not imply the existence of Q because
the optimal solution may have circles of radius r + νdvf , where ν < ε.

5.2 The Minimization Problem

Given an optimal solution polygon Q where H(P, Q) = rOPT , our algorithm
finds an approximate solution Q′ such that H(P, Q′) < rOPT + 3ε′. To deter-
mine a value of r′ such that r′ ≤ rOPT +3ε′, it suffices to perform a binary search
over possible values for r′ in the range of [0 . . . vf ] executing the decision approx-
imation algorithm at each iteration. At the ith iteration of the algorithm, let the
current radius be ri. If the algorithm finds a solution Qi such that H(P, Qi) = ri,
we shrink the circles and use ri+1 = ri − dvf/2i. If the algorithm fails to find
a solution, we use ri+1 = ri + dvf/2i. Initially, r0 = dvf , and the stopping
condition is met when we find an approximate solution for radius r, and the
approximate decision algorithm fails for radius r − ε′. Thus, the minimization
version of the approximation algorithm requires O(log(ε−1)) iterations of the
decision algorithm to find a solution. In the decision version, we showed that
H(Q, Q′) < 2ε′, if Q exists. In the minimization version, the best solution for
a value of r may approach ε′ less than the optimal value located on one of the
radius intervals. Therefore, the minimization algorithm returns a solution Q′

where H(P, Q′) < rOPT + 3ε′.
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5.3 Running Time and Space Requirements

First we estimate the space and running time of the approximate decision algo-
rithm. We compute the 1-centre using the technique in [6], which takes O(n2)
time. The line solution tests a line against O(n) circles, each of which may have
O(n) segments. This procedure is repeated O(n) times, so this requires O(n3)
time in total. In the dynamic programming table, there are O(n) pairs of cir-
cles. The number of intervals on each circle is bounded by O(ε−2), so we have
O(ε−4) possible combinations of intervals between two circles. Therefore there
are O(nε−4) entries in the table, and each of them stores a description of O(n)
solutions. Hence the table needs roughly O(n2ε−4) space. If the number of entries
in the table is O(nε−4), the dynamic programming algorithm should run in time
O(nε−6), since in order to calculate each entry we need to check all the O(ε−2)
intervals of one circle. The algorithm may require O(n) iterations to test each
value of Pc, so the approximate decision algorithm requires O(n3 +n2ε−6) time.
Finally, the minimization version of the algorithm performs O(log(ε−1)) itera-
tions of the approximate decision algorithm, so the complete algorithm requires
O((n3 + n2ε−6) log(ε−1)) time to find an approximate solution.

6 Discussion and Directions for Future Research

The d-core problem is defined for any metric on polygons; we chose the Hausdorff
metric, but many others exist. A natural extension of the Hausdorff metric might
consider the average distance between two polygons instead of the maximum.
This metric could be defined as follows:

H ′(P, Q) = max
{∫

p∈P

min
q∈Q

dist(p, q) dp,

∫
q∈Q

min
p∈P

dist(p, q) dq

}
,

where dist(p, q) denotes the Euclidean (�2) distance between points p and q. If
Q is a point, then finding a point Q that minimizes H ′(P, Q) for a given polygon
P corresponds to the continuous Weber problem, also known as the continuous
1-median problem. In the discrete setting, no algorithm is known for finding the
exact position of the Weber point [4]. Furthermore, the problem is not known to
be NP-hard nor polynomial-time solvable [11]. That suggests our problem may
be equally poorly-behaved. Fekete et al. [10] considered the continuous Weber
problem under the �1 distance metric.

In our original application, we hoped to create a hierarchy of simplified poly-
gons, from full-resolution contour lines down to the simplest possible approxima-
tions. Then we could test paths against progressively more accurate, and more
expensive, approximations until we got a definitive answer. We would hope to
usually terminate in one of the cheaper levels. But our definition of d-core re-
quires the core to be convex. Convexity has many useful consequences and so is
of theoretical interest, but it represents a compromise to the original goal be-
cause it only provides one non-adjustable level of approximation. It would be
interesting to consider other related problems that might provide more control
over the approximation level.
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Therefore, a direction for further work would be to define some other con-
straint to require of the simplified polygon. For instance, we could require that
it be star-shaped, i.e. there is some point p ∈ P such that every q ∈ P can see
p. A similar but even more general concept might be defined in terms of link
distance.
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Abstract. We present a new linear-time algorithm for constructing mul-
tiway search trees with near-optimal search cost whose running time is
independent of the size of the node in the tree. With the analysis of
our construction method, we provide a new upper bound on the aver-
age search cost for multiway search trees that nearly matches the lower
bound. In fact, it is tight for infinitely many probability distributions.
This problem is well-studied in the literature for the case of binary search
trees. Using our new construction method, we are able to provide the
tightest upper bound on the average search cost for an optimal binary
search tree.

1 Introduction

Search trees are fundamental data structures widely used to store and retrieve
elements from a set of totally ordered keys. The problem of building static search
trees optimizing various criteria is well-studied in the literature.

Consider a set x1, x2, . . . , xn of ordered keys. We are given 2n + 1 weights
q0, p1, q1, p2, q2, . . . , pn, qn such that

∑n
i=1 pi +

∑n
i=0 qi = 1. Each pi is the prob-

ability that we query the key xi (a successful search) and qi is the probability
that we query a key lying between xi and xi+1 (an unsuccessful search). Note
that q0 is the probability that we query a key that is less than all keys in the
set. Similarly, qn is the probability we query a key that is greater than all keys
in the set.

A static k-ary tree (or a multiway search tree) is a generalization of most static
search tree structures. Each internal node of a k-ary tree contains at least one
key and at most k− 1 keys, so it has between 2 and k children. A leaf in a k-ary
tree does not contain any key. A successful search ends up at the internal node
of the k-ary tree containing the requested key, whereas an unsuccessful search
ends up in one of the n + 1 leaves of the k-ary tree. A standard measure of the
average number of nodes traversed in a k-ary tree T is the average path-length
(or weighted path-length) defined as follows:
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n∑
i=1

pi(dT (xi) + 1) +
n∑

i=0

qidT (xi−1, xi), (1)

where dT (xi) is the depth of the internal node containing the key xi, which is the
number of edges on the path from the internal node to the root. The depth of
the leaf reached at the end of an unsuccessful search for a key lying between xi−1
and xi is denoted by dT (xi−1, xi). In the context of binary search trees in the
comparison-based model, the path length corresponds to the average number of
comparisons performed during a search. In the external memory model, the path
length corresponds to the average number of I/Os performed during a search.

In this paper, we provide a tight upper bound on the average path-length of
a static optimal k-ary tree and then find an efficient algorithm to build a k-ary
tree given the access probability distribution whose average path-length matches
this bound. The construction algorithm is also shown to be near-optimal. For the
case of binary search trees (where k=2), we show that our construction algorithm
improves on the current best upper bound on the average path-length.

1.1 Related Work

Knuth [11] has shown that an optimal binary search tree can be built in O(n2)
time using O(n2) space. Mehlhorn [14] gave an O(n) time algorithm to build a
binary search tree that is near-optimal. His analysis of the construction algorithm
provided the first upper bound on the average path-length of an optimal binary
search tree. Currently, the tightest upper bound on the average path-length of
an optimal binary search tree is due to De Prisco and De Santis [15].

With respect to k-ary trees, Vaishnavi et al. [18] and Gotlieb [8] independently
showed that an optimal k-ary tree can be built in O(kn3) time. Becker [2] gave
an O(knα) time algorithm, where α = 2 + logk 2, to build an optimal k-ary tree
in the model proposed by Bayer and McCreight [1] (B-tree) where every leaf
in the k-ary tree has the same depth and every internal node contains between
(k − 1)/2 and k − 1 keys except possibly the root. In the remainder of the
paper, we only consider the general k-ary tree model and not the B-tree model.
Becker [3] presented a method to build a k-ary tree in O(Dkn) time where D is
the height of the resulting tree. He provided empirical evidence to suggest that
the k-ary tree produced by his method is near-optimal, however no theoretical
bound was given on the average path-length of the resulting tree nor was any
approximation ratio proven. In the restricted model of (a,b) trees where a node
has between a and b children with 2 ≤ a ≤ �b/2� and considering only successful
searches, Feigenbaum and Tarjan [6] showed how to achieve a good upper bound
on the optimal path length of an (a,b) tree (this improved [4,5]).

The problem of building an optimal search tree when only unsuccessful
searches occur, i.e., when

∑n
i=1 pi = 0, is called the optimal alphabetic search

tree problem. An alternate view of this problem is to consider that the keys only
occur in the leaves and the internal nodes simply serve as indicators to help guide
the search to the appropriate leaf. Hu and Tucker [9] developed an O(n2) time
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and O(n) space algorithm for constructing an optimal alphabetic binary search
tree. This was subsequently improved by two algorithms; the first was developed
by Knuth [10] and the second by Garsia and Wachs [7]. Both algorithms require
O(n lg n) 1 time and O(n) space. Yeung [19] provided an O(n) time algorithm
to build a near-optimal alphabetic binary search tree. Yeung’s upper bound was
then improved by De Prisco and De Santis [15].

1.2 Our Results

In Section 2, we describe our linear-time algorithm to build a near-optimal k-ary
tree whose running time is independent of the size of the node in the tree. Let
Popt represent the average path-length of the optimal k-ary tree and PT represent
the average path-length of the tree built using our algorithm. We prove that

H

lg(2k − 1)
≤ Popt ≤ PT ≤

H

lg k
+ 1 +

n∑
i=0

qi − q0 − qn −
m∑

i=0

qrank[i],

where H = −
∑n

i=1 pi lg pi−
∑n

i=0 qi lg qi is the entropy of the access probability
distribution. The value m = max{n−3P, P}−1 ≥ n

4 −1 where P is the number
of increasing or decreasing sequences in the access probability distribution on the
ordered leaves. The value qrank[i] is the ith smallest access probability among the
leaves except for the extremal ones (i.e. we exclude q0 and qn from consideration).
The upper and lower bounds are explained in subsection 2.4 and 2.5 respectively.

We provide a better upper bound on the average path-length of an optimal
k-ary tree. For k = 2, i.e. binary search trees, our new construction provides
a better upper bound than the algorithm by Mehlhorn [14]. Moreover, when
restricted to alphabetic trees, our method provides a better upper bound than
the method of Yeung [19]. The current best upper bound on the average path-
length of binary search trees is derived through a construction algorithm by De
Prisco and De Santis [15]. Since at the core of their algorithm they use Yeung’s
method, we are able to provide a tighter upper bound on the average path-length
by incorporating our construction algorithm instead. We show precisely how to
do this in Section 4.

2 New Method to Construct Near-Optimal k-Ary Trees

We introduce a technique to build near-optimal multiway search trees inspired
by Mehlhorn’s technique [14] to build near-optimal binary search trees. To the
best of our knowledge, our technique is the first to provide an upper bound on
the average path-length of an optimal k-ary tree. The construction algorithm by
Becker [3] was only shown empirically to be near-optimal. No theoretical proof
is given. In the case of binary search trees (k=2), our technique improves the
upper bound on the path-length given by Mehlhorn [14] and by Yeung [19] (for
alphabetic tree).
1 lg x in this paper is defined as log2 x.
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We begin with an overview of the main steps of our technique: given the access
probabilities p1, p2, . . . , pn (for the internal nodes) and q0, q1, . . . , qn (for the
leaves), we first build a new sequence of probabilities, p′1, . . . , p′n, by transferring
the weights of the leaves to the internal nodes. We then build an initial tree
using these new weights on the internal nodes. Finally, we attach the leaves to
this tree, resulting in the final tree. The key to ensuring that the final tree is
near-optimal is in the weight transfer. When a leaf with access probability qi is
attached, the weight transfer guarantees that it does not fall much deeper than
logk

1
qi

.

2.1 Transfer of Leaf Weights

Consider the access probability distribution on the leaves q0, q1, . . . , qn. This
distribution is decomposed into maximal increasing or decreasing sequences of
probabilities. The sequences are defined from left to right such that the probabil-
ity of each leaf in an increasing sequence is less than or equal to the probability
of its right adjacent leaf, i.e. qi ≤ qi+1. For decreasing sequences, qi ≥ qi+1. We
define a peak (resp. a valley) to be the last leaf of an increasing (resp. decreasing)
sequence. Let P be the number of peaks in a given distribution.

The leaf weights are transfered to the internal nodes in the following way:
The weight of an extremal leaf, i.e., (−∞, x1) or (xn,∞), is transferred entirely
to its unique adjacent internal node. Thus, q0 is added to p1 and qn is added to
pn. The weight of a peak or a valley leaf is split equally between its two adjacent
internal nodes, i.e. qi/2 is added to pi and to pi+1. Finally, the weight of a leaf
in an increasing (resp. decreasing) sequence is transfered entirely to its adjacent
left (resp. right) internal node. Let p′i be the weight of the internal node xi after
the weights of the leaves have been transferred. Note that by construction, we
have that p′i ≥ pi for all node xi and

∑n
i=1 p′i = 1. See Fig. 1 for an example of

weight transfer.

Fig. 1. Example of transferring the weights of the leaves (squares) into the internal
nodes (disks). The number on top of an internal node is its weight after the transfer.
The weights are represented as percentages.
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Lemma 1. After transferring the weights, the following is satisfied:

qi ≤ 2 min{p′i, p′i+1} for i = 1, . . . , n− 1, (2)
q0 ≤ p′1, (3)
qn ≤ p′n, (4)
qi ≤ min{p′i, p′i+1} for at least max{n− 3P, P} − 1 leaves. (5)

Proof. First consider the extremal leaves (−∞, x1) and (xn,∞). Their weights,
q0 and qn are entirely transferred to the internal nodes x1 and xn, respectively.
Hence q0 ≤ p′1 and qn ≤ p′n, thereby proving (3) and (4). For the remainder of this
proof when referring to a leaf, we exclude the extremal leaves from consideration.

The weight qi of a valley leaf (xi, xi+1) is divided equally between its two
adjacent internal nodes xi and xi+1. Since (xi, xi+1) is a valley leaf, by definition,
its two adjacent leaves (xi−1, xi) and (xi+1, xi+2) have a weight that is greater
than or equal to qi. Moreover, leaf (xi−1, xi) is either a peak or on a decreasing
sequence, which means that it transfers at least half of its weight to xi. Similarly,
(xi+1, xi+2) is either a peak or on an increasing sequence and transfers at least
half of its weight to xi+1. Thus, p′i and p′i+1 are each greater than or equal to
qi. Note that the number of valley leaves is at least P − 1. This partially proves
(5), namely that at least P − 1 leaves satisfy qi ≤ min{p′i, p′i+1}.

A peak leaf (xi, xi+1) divides its weight equally between the internal nodes xi

and xi+1. Thus, we have qi

2 ≤ min{p′i, p′i+1}.
Call a leaf adjacent to a peak, a subpeak if it is not already a valley. For a

subpeak (xi, xi+1), note that either qi

2 ≤ p′i or qi

2 ≤ p′i+1 depending on whether
or not the subpeak is on the left or right side of the peak. Without loss of
generality, assume it is on the left. Since the peak is to its right, we have that
qi

2 ≤ p′i+1. As the subpeak is part of an increasing sequence, all of the weight of
qi is transferred to xi, which implies that qi ≤ p′i.

Finally, a leaf (xi, xi+1) that is neither a peak, a subpeak nor a valley transfers
its entire weight either to xi or xi+1 depending on whether it is on an increasing
or decreasing sequence. Without loss of generality, assume it is on an increasing
sequence. The entire weight of (xi, xi+1) is transferred to the internal node xi, thus
qi ≤ p′i. Since it is not a subpeak, the weight of (xi+1, xi+2) is greater than or equal
to qi and entirely transferred to the internal node xi+1, thus qi ≤ p′i+1. So (5) is
guaranteed for every leaf except for the peaks and subpeaks, i.e., for n − 3P − 1
leaves (the extremal leaves are not counted). This proves (2 and 5). ��

2.2 Construction of the Internal Tree

After transferring the leaf weights, we have an ordered set of keys x1, . . . , xn

where each key xi has a weight p′i such that
∑n

i=1 p′i = 1. We now begin the
construction of the k-ary tree. The main idea is to ensure that after each step
of search the weight is divided by k. Our construction is recursive. The keys
xk1 , . . . , xk�

(with � < k) are selected to form the root node of the internal tree
provided that they adhere to the following properties:
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k1−1∑
i=1

p′i ≤
1
k

,

kj+1−1∑
i=kj+1

p′i ≤
1
k

for j = 2, . . . , �− 1, and
n∑

i=k�+1

p′i ≤
1
k

.

We outline precisely how to efficiently select a set of keys having these properties
in Section 3. The procedure is then repeated recursively in each subtree of the
root. The probabilities are normalized at each iteration.

Lemma 2. A tree T built according to our construction guarantees

dT (xi) ≤ �logk

1
p′i
� for i = 1, . . . , n.

Proof. By construction, the sum of the weights p′ of the nodes contained in a
subtree at depth j is at most 1/kj. This implies dT (xi) ≤ �logk

1
p′

i
�. ��

2.3 Attach the Leaves

Consider xk1 , xk2 , . . . , xk�
the set of keys contained in a node y of the k-ary tree

T constructed so far. We define the left or the right child of a key xki as the child
of y that defines a subtree containing keys in the ranges [xki−1 , xki ] or [xki , xki+1 ]
respectively. The left child of xk1 and the right child of xk�

corresponds to the
child of y that defines a subtree containing keys smaller than xk1 or respectively
greater than xk�

. Note that two adjacent keys inside an internal node share their
right and left child.

Once the internal tree T is built, the leaf nodes are attached. This is done by
performing an inorder traversal of the internal tree adding the leaves sequentially
to the tree. If within an internal node, a key xi has no left or right child, then the
leaf (xi−1, xi) or (xi, xi+1), respectively, is attached to it. Since a leaf (xi−1, xi)
is necessarily a child of an internal node containing either the key xi−1, xi or
both, we note the following:

dT (xi−1, xi) ≤ max{dT (xi−1), dT (xi)} + 1. (6)

Building the internal tree and attaching the leaves to it are two steps that
can easily be done at the same time.

2.4 Upper Bound

Theorem 1. The average path-length of a k-ary tree built using the method
presented above is at most

H

lg k
+ 1 +

n∑
i=0

qi − q0 − qn −
m∑

i=1

qrank[i],

where H = −
∑n

i=1 pi lg pi −
∑n

i=0 qi lg qi is the entropy of the access probability
distribution. The value m = max{n− 3P, P} − 1 ≥ n

4 − 1 and qrank[i] is the ith
smallest access probability among leaves except the extremal leaves.
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Proof. According to Lemma 2 the depth of an internal node xi is

dT (xi) ≤ �logk

1
p′i
� ≤ �logk

1
pi
�.

Equation (6) says that the depth of a leaf (xi−1, xi) is

dT (xi−1, xi) ≤ max{dT (xi−1), dT (xi)}+ 1 ≤ �logk max{ 1
p′i−1

,
1
p′i
}�+ 1.

By Lemma 1, dT (xi−1, xi) ≤ �logk
2
qi
� + 1 for every leaf (xi−1, xi) and for at

least m of them dT (xi−1, xi) ≤ �logk
1
qi
�+1 (possibly the ones with the smallest

weights). This is also the case for the extremal leaves. Putting this in equation (1)
proves the theorem. ��

Note that for k = 2, i.e., for binary search trees, this new construction improves
the performance of the original method of Mehlhorn [14]. That one guarantees
H +

∑n
i=1 pi +

∑n
i=0 2qi, thus we decrease this upper bound by (q0 + qn) +∑m

i=0 qrank[i]. When restricted to alphabetic trees our method improves over the
method of Yeung [19], we decrease his bound by

∑m
i=0 qrank[i]. Since the best

method to build near-optimal BST developed by De Prisco and De Santis [15]
uses Yeung method, we consequently improve it. We will see more precisely how
in Section 4.

The construction of an (a,b) tree developed by Feigenbaum and Tarjan [6]
can easily be adapted to handle unsuccessful searches so that the path length is
upper bounded by H

lg a +3+
∑n

i=0 qi. This gives in the general case of k-ary tree
model a path length of at most H

lg(k)+1 + 3 +
∑n

i=0 qi since b is the maximum
number of children in the tree and a ≤ b/2.

2.5 Lower Bound

Theorem 2. The path length of an optimal k-ary tree is at least H
lg(2k−1) , where

H = −
∑n

i=1 pi lg pi−
∑n

i=0 qi lg qi is the entropy of the access probability distri-
bution.

Proof. This corresponds in fact to an information theoretic result due to Shan-
non [17]. A k-ary tree corresponds to a code tree of degree (2k − 1) derived by
moving the weight of each key inside a node to a leaf extending from this node.
Then the variable length coding theorem for codes using an alphabet of size
(2k − 1) gives the lower bound, i.e., H

lg(2k−1) . ��

Now we show that our lower bound on the path-length of any k-ary tree is sharp
for precise access probability distributions. The argument used is a generalization
of [13]. A k-ary tree is said to be full if each of its internal nodes contains exactly
k − 1 keys. Consider any full k-ary tree T and define an access probability
distribution on the keys in T as follows:
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pi = 1/(2k − 1)d(xi)+1,

qi = 1/(2k − 1)d(xi−1,xi),

where d(xi) is the depth of the key xi in the tree T and d(xi−1, xi) is the depth of
the leaf (xi−1, xi) in T . It is easy to show by induction that

∑n
i=1 pi+

∑n
i=0 qi = 1,

i.e., the weights pi and qi are indeed probabilities. The path-length of T is

H

lg(2k − 1)
≤ Popt ≤ PT =

n∑
i=1

pi(d(xi) + 1) +
n∑

i=0

qid(xi−1, xi)

=
n∑

i=1

pi log(2k−1) pi +
n∑

i=0

qi log(2k−1) qi

=
H

lg(2k − 1)
.

This shows that our lower bound on the path-length of a k-ary tree is sharp
for infinitely many distributions. Note that for those distributions our algorithm
constructs the optimal tree. For the particular case of binary search trees (k=2)
tighter lower bounds on the path length are known [12,13,14,16] as well as for
the alphabetic case [15,19].

3 Efficient Implementation

We now discuss the complexity of the construction algorithm. The set S of keys
xk1 , . . . , xk�

(with � < k) associated with the root node of the tree is chosen
using exponential and binary search techniques combined together similar to
what Mehlhorn [14] did to construct near-optimal binary search trees. Here we
generalize this approach to construct near-optimal k-ary trees. We first build in
O(n) time a table of size n where the ith element of the table, associated with
the key xi, is set to si =

∑i
j=1 p′j.

Consider the smallest element x that satisfies sx ≥ 1
k and the greatest element

y that satisfies sy ≤ k−1
k (x could possibly be equal to y). In order to find one

of these elements, we perform an exponential search simultaneously from both
ends of the table. That is, we search for the smallest value i, with i = 0, 1, 2, . . . ,
where either s2i ≥ 1

k or sn+1−2i ≤ k−1
k . Suppose j is the minimum value of i.

Either 2j−1 ≤ x ≤ 2j or n+1−2j ≤ y ≤ n+1−2j−1, in the first case we perform
a binary search for x between the positions 2j−1 and 2j, in the second case we
perform a binary search for y between the positions n + 1− 2j and n + 1− 2j−1.
If we are in the first case, we include the key in position x into the set S of keys
associated with the root of the tree, otherwise we include the key in position
y. We then iterate the process on the table minus the part from its beginning
to the element x or from the element y to the end of the table. The values si

are virtually updated when the left part of the table is removed, i.e., si is set to
si − sx (we only have to remember an offset value). The number of element has
to be virtually updated as well.
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By virtually updated, we mean that the algorithm retains two parameters, the
first one is the weight of elements removed from consideration and the second
is the number of elements remaining in consideration. We simply update values
on the fly using these two parameters.

We stop the process when the remaining elements have a total weight of
at most 1/k. The process can be repeated at most k − 1 times since at least
1/k of the weight is removed at each iteration. Let I1, I2, . . . , I� be the sizes of
successive parts removed from the array during each iteration in the selection of
keys associated with the root described above. That is, in the first iteration, I1
is the number of elements removed from the array (i.e. either all elements whose
value is less than x or greater than y depending on which position is found first
in the double-ended search). Note that � is the number of keys in the root node.
The complexity of the selection procedure is given by

�∑
i=1

c lg Ii,

where c is a constant. By construction, we have Ii ≤
n−∑ i−1

j=1 Ij+1
2 , this implies

n−
∑�

j=1 Ij ≥ n−2�+1
2� (proof by induction on �). Once the keys associated with

the root are found the construction of the k-ary tree continues recursively in
each part of size Ii. The time T (n) required to build a k-ary tree of n keys using
our construction technique is given by the following recurrence:

T (0) = 0 ,

T (n) = T (I1 − 1) + . . . + T (I� − 1) + T (n−
�∑

i=1

Ii) + c

�∑
i=1

lg Ii .

Theorem 3. Our construction technique guarantees T (n) ≤ c(n − lg(n + 1))
which is independent of k.

Proof. We prove this theorem by induction on the number n of keys contained
in the k-ary tree. For n = 0, we have T (0) ≤ 0 which is true. For n > 0 we have

T (n) = T (I1 − 1) + . . . + T (I� − 1) + T (n−
�∑

i=1

Ii) + c

�∑
i=1

lg Ii .

We apply the induction hypothesis and obtain

T (n) ≤ c(n− �)− c
�∑

i=1

lg Ii − c lg(n−
�∑

i=1

Ii + 1) + c
�∑

i=1

lg Ii

= cn− c(� + lg(n−
�∑

i=1

Ii + 1))

≤ cn− c(� + lg(
n− 2� + 1

2�
+ 1))

= c(n− lg(n + 1)). ��
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Our method builds a near-optimal k-ary tree in O(n) time. Note that the run-
ning time is independent of k. This improves over Becker’s construction both
in running time since his method has O(kDn) construction time, where D is
the height of the output tree, and more importantly, Becker’s construction is
only a heuristic (with empirical evidence to support its near-optimal average
path length) whereas our bound is proven theoretically. Remark that Feigen-
baum and Tarjan [6] did not specifically describe a tree construction algorithm.
However it is easy to use their data structure to build a multiways tree since
their structure is dynamic. Simply insert successively elements into an initially
empty structure. The construction time of this algorithm is O(n lgk n).

4 Improving Upper Bound on Optimal BST

In this section we show how to improve the method developed by De Prisco
and De Santis [15] to build near-optimal binary search trees. We briefly describe
their method. It consists of three phases:

Phase 1: Modify the instance of the problem by introducing 2n auxiliary keys
k1, k2, . . . , k2n with a zero access probability and by considering each original
key as a leaf. The key ki is adjacent to the � i

2�th original key and � i
2�th original

leaf. Given this new instance of the problem, an alphabetic tree is built using
the technique of Yeung [19].

Phase 2: Each original key xi is moved up in the tree to replace an auxiliary key
corresponding to the lowest common ancestor of the original leaves (xi−1, xi)
and (xi, xi+1).

Phase 3: The last phase removes the remaining auxiliary keys left after the
second phase. A node containing an auxiliary key and its two children are
contracted into one node containing the original key present in one of the
children.

Every phase takes O(n) time. Basically, phase 1 builds a tree T on a given
instance. Then phases 2 and 3 modify T to decrease by at least 2 the depth of
every original key and by at least 1 the depth of every original leaf except for
one. An example originally given by De Prisco and De Santis illustrating the
different phases is shown in Fig. 2.

In Section 2 our method has been shown to achieve a tighter upper bound
than that given by Yeung [19]. Therefore by using our method instead of Yeung’s
method in phase 1, we improve the construction and the bound given by De
Prisco and De Santis [15] by

∑m′

i=0 pqrank[i].

Theorem 4. The path length of an optimal binary search tree is at most

H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i],
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Fig. 2. Situation after each phase of the construction method

where H = −
∑n

i=1 pi lg pi −
∑n

i=0 qi lg qi is the entropy of the access probability
distribution. The value m′ = max{2n− 3P, P} − 1 ≥ n

2 − 1, pqrank[i] is the ith
smallest access probability among every key and every leaf (except the extremal
leaves) and qmax is the greatest leaf probability including external leaves.

Proof. Given the new instance constructed in phase 1, i.e., 2n auxiliary keys and
2n+1 leaves, our method guarantees that the depth of every leaf with an access
probability α is smaller than �lg 1

α� plus 1 for at least max{2n − 3P, P} − 1
leaves (for the extremal leaves as well) and plus 2 for the remaining leaves. Here
P is defined as the number of peaks in the access probability distribution of the
original keys and leaves combined, i.e., q0, p1, q1, . . . , pn, qn. Thus after applying
the last two phases of the method of De Prisco and De Santis, each original
key decrease its depth by at least 2 and each original leaf decrease it depth by
at least 1 except for one (possibly the one with the greatest probability among
the leaves). Therefore this binary search tree construction guarantees an upper
bound on the path length of H + 1− q0 − qn + qmax −

∑m
i=0 pqrank[i], ��

Remark that this result only improves the upper bound on the cost of optimal
binary search trees. For the restricted case of alphabetic trees the upper bound
matches the previous best one. This is because in the alphabetic case every
pi = 0 and the probability distribution on the leaves of the modified instance is
as follows q0, 0, q1, 0, . . . , 0, qn. Thus the number of peaks in this distribution is
exactly n minus the number of qi = 0 which implies

∑m′

i=0 pqrank[i] = 0. Thus
our method only guarantees the same upper bound.

Corollary 1. If all access probabilities are of the form 2−i with i ∈ N then
the upper bounds on the path length can be improved to H − q0 − qn + qmax −∑m

i=0 pqrank[i] + pqmin, where pqmin is the smallest non-null probability among
all access probabilities. This is an improvement of 1− pqmin.

Proof. Due to lack of space we omit the proof.
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Abstract. We study the problem of abstracting a table of data about individuals
so that no selection query can identify fewer than k individuals. We show that it
is impossible to achieve arbitrarily good polynomial-time approximations for a
number of natural variations of the generalization technique, unless P = NP ,
even when the table has only a single quasi-identifying attribute that represents a
geographic or unordered attribute:

– Zip-codes: nodes of a planar graph generalized into connected subgraphs
– GPS coordinates: points in R2 generalized into non-overlapping rectangles
– Unordered data: text labels that can be grouped arbitrarily.

These hard single-attribute instances of generalization problems contrast with the
previously known NP-hard instances, which require the number of attributes to be
proportional to the number of individual records (the rows of the table). In addi-
tion to impossibility results, we provide approximation algorithms for these diffi-
cult single-attribute generalization problems, which, of course, apply to multiple-
attribute instances with one that is quasi-identifying. Incidentally, the generaliza-
tion problem for unordered data can be viewed as a novel type of bin packing
problem—min-max bin covering—which may be of independent interest.

1 Introduction

Data mining is an effective means for extracting useful information from various data
repositories, to highlight, for example, health risks, political trends, consumer spend-
ing, or social networking. In addition, some public institutions, such as the U.S. Cen-
sus Bureau, have a mandate to publish data about U.S. communities, so as to benefit
socially-useful data mining. Thus, there is a public interest in having data repositories
available for public study through data mining.

Unfortunately, fulfilling this public interest is complicated by the fact that many
databases contain confidential or personal information about individuals. The publica-
tion of such information is therefore constrained by laws and policies governing privacy
protection. For example, the U.S. Census Bureau must limit its data releases to those
that reveal no information about any individual. Thus, to allow the public to benefit
from the knowledge that can be gained through data mining, a privacy-protecting trans-
formation should be performed on a database before its publication.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 242–253, 2009.
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One of the greatest threats to privacy faced by database publication is a linking at-
tack [14, 13]. In this type of attack, an adversary who already knows partial identifying
information about an individual (e.g., a name and address or zip-code) is able to identify
a record in another database that belongs to this person. A linking attack occurs, then,
if an adversary can “link” his prior identifying knowledge about an individual through
a non-identifying attribute in another database. Non-identifying attributes that can be
subject to such linking attacks are known as quasi-identifying attributes.

To combat linking attacks, several researchers [9,13,14,11,1,3,18,2] have proposed
generalization as a way of specifying a quantifiable privacy requirement for published
databases. The generalization approach is to group attribute values into equivalence
classes, and replace each individual attribute value with its class name. In this paper we
focus on generalization methods that try to minimize the maximum size of any equiva-
lence class, subject to lower bounds on the size of any equivalence class.

Related Prior Results. The concept of k-anonymity [14, 13], although not a complete
solution to linking attacks, is often an important component of such solutions. In this
application of generalization, the equivalence classes are chosen to ensure that each
combination of replacement attributes that occurs in the generalized database occurs in
at least k of the records. Several researchers have explored heuristics, extensions, and
adaptations for k-anonymization (e.g., see [9, 1, 3, 18, 2, 16]).

The use of heuristics, rather than exact algorithms, for performing generalization is
motivated by claims that k-anonymization-based generalization is NP-hard. Meyerson
and Williams [11] assume that an input dataset has been processed into a database or
table in which identical records from the original dataset have been aggregated into a
single row of the table, with a count representing its frequency. They then show that
if the number of aggregated rows is n and the number of attributes (table columns) is
at least 3n, then generalization for k-anonymization is NP-hard. Unfortunately, their
proof does not show that generalization is NP-hard in the strong sense: the difficult
instances generated by their reduction have frequency counts that are large binary num-
bers, rather than being representable in unary. Therefore, their result doesn’t actually
apply to the original k-anonymization problem. Aggarwal et al. [1] address this defi-
ciency, showing that k-anonymization is NP-hard in the strong sense for datasets with
at least n/3 quasi-identifying attributes. Their proof uses cell suppression instead of
generalization, but Byun et al. [3] show that the proof can be extended to general-
ization. As in the other two NP-hardness proofs, Byun et al. require that the num-
ber of quasi-identifying attributes be proportional to the number of records, which is
typically not the case. Park and Shim [12] present an NP-hardness proof for a ver-
sion of k-anonymization involving cell suppression in place of generalization, and
Wong et al. [17] show an anonymity problem they call (α, k)-anonymity to be
NP-hard.

Khanna et al. [8] study a problem, RTILE, which is closely related to generaliza-
tion of geographic data. RTILE involves tiling an n × n integer grid with at most p
rectangles so as to minimize the maximum weight of any rectangle. They show that
no polynomial-time approximation algorithm can achieve an approximation ratio for
RTILE of better than 1.25 unless P=NP. Unlike k-anonymization, however, this prob-
lem does not constrain the minimum weight of a selected rectangle.
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Our Results. In this paper, we study instances of k-anonymization-based generalization
in which there is only a single quasi-identifying attribute, containing geographic or
unordered data. In particular, we focus on the following attribute types:

– Zip-codes: nodes of a planar graph generalized into connected subgraphs
– GPS coordinates: points in R2 generalized into non-overlapping rectangles
– Unordered data: text labels that can be grouped arbitrarily (e.g., disease names).

We show that even in these simple instances, k-anonymization-based generalization is
NP-complete in the strong sense. Moreover, it is impossible to approximate these prob-
lems to within (1 + ε) of optimal, where ε > 0 is an arbitrary fixed constant, unless
P = NP . These results hold a fortiori for instances with multiple quasi-identifying at-
tributes of these types, and they greatly strengthen previous NP-hardness results which
require unrealistically large numbers of attributes. Nevertheless, we provide a number
of efficient approximation algorithms and show that they achieve good approximation
ratios. Our approximation bounds for the zip-codes problem require that the graph has
sufficiently strong connectivity to guarantee a sufficiently low-degree spanning tree.

The intent of this paper is not to argue that single-attribute generalization is a typical
application of privacy protection. Indeed, most real-world anonymization applications
will have dozens of attributes whose privacy concerns vary from hypersensitive to be-
nign. Moreover, the very notion of k-anonymization has been shown to be insufficient
to protect against all types of linking attack, and has been extended recently in various
ways to address some of those concerns (e.g., see [5, 10, 17]); some work also argues
against any approach similar to k-anonymization [?]. We do not attempt to address this
issue here. Rather, our results should be viewed as showing that even the simplest forms
of k-anonymization-based generalization are difficult but can be approximated. We an-
ticipate that similar results may hold for its generalizations and extensions as well.

In addition, from an algorithmic perspective, our study of k-anonymization-based
generalization has uncovered a new kind of bin-packing problem (e.g., see [4]), which
we call Min-Max Bin Covering. In this variation, we are given a collection of items
and a nominal bin capacity, k, and we wish to distribute the items to bins so that each
bin has total weight at least k while minimizing the maximum weight of any bin. This
problem may be of independent interest in the algorithms research community.

2 Zip-Code Data

The first type of quasi-identifying information we consider is that of zip-codes, or anal-
ogous numeric codes for other geographic regions. Suppose we are given a database
consisting of n records, each of which contains a single quasi-identifying attribute that
is itself a zip-code. A common approach in previous papers using generalization for
zip-code data (e.g., see [3, 18]) is to generalize consecutive zip-codes. That is, these
papers view zip-codes as character strings or integers and generalize based on this data
type. Unfortunately, when zip-codes are viewed as numbers or strings, geographic ad-
jacency information can be lost or misleading: consecutive zip codes may be far apart
geographically, and geographically close zip codes may be numerically far, leading to
generalizations that have poor quality for data mining applications.
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We desire a generalization algorithm for zip-codes that preserves geographic adja-
cency. Formally, we assume each zip-code is the name of a node in a planar graph, G.
The most natural generalization in this case is to group nodes of G into equivalence
classes that are connected subgraphs. This is motivated, in the zip-code case, by a de-
sire to group adjacent regions in a country, which would naturally have more likelihood
to be correlated according to factors desired as outcomes from data mining, such as
health or buying trends. So the optimization problem we investigate in this section is
one in which we are given a planar graph, G, with non-negative integer weights on its
nodes (representing the number of records for each node), and we wish to partition G
into connected subgraphs so that the maximum weight of any subgraph is minimized
subject to the constraint that each has weight at least k.

Generalization for Zip-codes is Hard. Converting this to a decision problem, we can
add a parameter K and ask if there exists a partition into connected subgraphs such that
the weight of each subgraph in G is at least k and at most K . In this section, we show
that this problem is NP-complete even if the weights are all equal to 1 and k = 3. Our
proof is based on a simple reduction that sets K = 3, so as to provide a reduction from
the following problem:

3-Regular Planar Partition into Paths of Length 2 (3PPPL2): Given a 3-regular
planar graph G, can G be partitioned into paths of length 2? That is, is there a spanning
forest for G such that each connected component is a path of length 2?

This problem is a special case of the problem, “Partition into Paths of Length-2 (PPL2)”,
whose NP-completeness is included as an exercise in Garey and Johnson [7]. Like
PPL2, 3PPPL2 is easily shown to be in NP. To show that 3PPPL2 is NP-hard, we pro-
vide a reduction from the 3-dimensional matching (3DM) problem:

3-Dimensional Matching (3DM): Given three sets X , Y , and Z , each of size n, and a
set of triples {(x1, y1, z1), . . . , (xm, ym, zm)}, is there a subset S of n triples such that
each element in X , Y , and Z is contained in exactly one of the triples?

Suppose we are given an instance of 3DM. We create a vertex for each element in X ,
Y , and Z . For each tuple, (xi, yi, zi), we create a tuple subgraph gadget as shown in
Figure 1a, with nodes ti,x, ti,y , and ti,z , which correspond to the representatives xi,
yi, and zi, respectively, in the tuple. We then connect each ti,x, ti,y and ti,z vertex to
the corresponding element vertex from X , Y , and Z , respectively, using the connector
gadget in Figure 1b.

This construction is, in fact, a version of the well-known folklore reduction from
3DM to PPL2, which solves an exercise in Garey and Johnson [7]. Note, for example,
that the vertices in the triangle in the tuple gadget must all three be completely included
in a single group or must all be in separate groups. If they are all included, then grouping
the degree-1 vertices requires that the corresponding x, y, and z elements must all
be included in a group with the degree-1 vertex on the connector. If they are all not
included, then the corresponding x, y, and z elements must be excluded from a group
in this set of gadgets.

Continuing the reduction to an instance of 3PPPL2, we make a series of transforma-
tions. The first is to embed the graph in the plane in such a way that the only crossings
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occur in connector gadgets. We then take each crossing of a connector, as shown in
Figure 2a, and replace it with the cross-over gadget shown in Figure 2b.

There are four symmetric ways this gadget can be partitioned into paths of length 2.
Note that the four ways correspond to the four possible ways that connector “parity”
can be transmitted and that they correctly perform a cross-over of these two parities.
In particular, note that it is impossible for opposite connectors to have the same parity
in any partition into paths of length 2. Thus, replacing each crossing with a cross-over
gadget completes a reduction of 3DM to planar partition in paths of length 2.

Next, note that all vertices of the planar graph are degree-3 or less except for the
“choice” vertices at the center of cross-over gadgets and possibly some nodes corre-
sponding to elements of X , Y , and Z . For each of these, we note that all the edges
incident on such nodes are connectors. We therefore replace each vertex of degree-4 or
higher with three connector gadgets that connect the original vertex to three binary trees
whose respective edges are all connector gadgets. This allows us to “fan out” the choice
semantics of the original vertex while exclusively using degree-3 vertices. To complete
the reduction, we perform additional simple transformations to the planar graph to make
it 3-regular. This completes the reduction of 3DM to 3PPPL2.

ti,x ti,y

ti,z

x
ti,x

(a) (b)

Fig. 1. Gadgets for reducing 3DM to PPL2. (a) the tuple gadget; (b) the connector.

x

y

ti,x

tj,y

x

y

ti,x

tj,y

(a) (b)

Fig. 2. Dealing with edge crossings. (a) a connector crossing; (b) the cross-over gadget.
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In the preprint version of this paper [6], we complete the proof of the following:

Theorem 1. There is a polynomial-time approximation algorithm for k-anonymization
on planar graphs that guarantees an approximation ratio of 4 for 3-connected planar
graphs and 3 for 4-connected planar graphs. It is not possible for a polynomial-time
algorithm to achieve an approximation ratio better than 1.33, even for 3-regular planar
graphs, unless P=NP.

3 GPS-Coordinate Data

Next we treat geographic data that is given as geographic coordinates rather than having
already been generalized to zip-codes. Suppose we are given a table consisting of n
records, each of which contains a single quasi-identifying attribute that is itself a GPS
coordinate, that is, a point (x, y) in the plane. Suppose further that we wish to generalize
such sets of points using axis-aligned rectangles.

Generalizing GPS-Coordinates is Hard. Converting this to a decision problem, we can
add a parameter K and ask whether there exists a partition of the plane into rectangles
such that the weight of the input points within each rectangle is at least k and at most K .
We show that this problem is NP-complete even when we set k and K equal to three.
Our proof, which is given in the preprint version of this paper [6], is based on a simple
reduction from 3-dimensional matching (3DM).

We also provide in the preprint version of this paper [6] the following:

Theorem 2. There is a polynomial-time approximation algorithm for rectangular gen-
eralization, with respect to k-anonymization in the plane, that achieves an approxima-
tion ratio of 5 in the worst case. It is not possible for a polynomial-time algorithm to
achieve an approximation ratio better than 1.33 unless P=NP.

4 The Min-Max Bin Covering Problem

In this section, we examine single-attribute generalization, with respect to the prob-
lem of k-anonymization for unordered data, where quasi-identifying attribute values
are arbitrary labels that come from an unordered universe. (Note that if the labels were
instead drawn from an ordered universe, and we required the generalization groups to
be intervals, the resulting one-dimensional k-anonymization problem could be solved
optimally in polynomial time by a simple dynamic programming algorithm.) Our opti-
mization problem, then, is to generalize the input labels into equivalence classes so as to
minimize the maximum size of any equivalence class, subject to the k-anonymization
constraint.

It is convenient in this context to use the terminology of bin packing; henceforth in
this section we refer to the input labels as items, the equivalence classes as bins, and
the entire generalization as a packing. The size of an item corresponds in this way to
the number of records having a given label as their attribute value. Thus the problem
becomes the following, which we call the Min-Max Bin Covering Problem:
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Input: Positive integers x1, x2, . . . , xn and an integer nominal bin capacity k > 0.
Output: a partition of {1, 2, . . . , n} into subsets Sj , satisfying the constraint that,
for each j, ∑

i∈Sj

xi ≥ k, (1)

and minimizing the objective function

max
j

∑
i∈Sj

xi. (2)

We will say that a partition satisfying (1) for all j is feasible, and the function shown in
(2) is the cost of this partition. Note that any feasible solution has cost at least k.

Hardness Results. In this subsection, we show that Min-Max Bin Covering is NP-hard
in the strong sense. We begin by converting the problem to a decision problem by adding
a parameter K , which is intended as an upper bound on the size of any bin: rather than
minimizing the maximum size of an bin, we ask whether there exists a solution in which
all bins have size at most K . This problem is clearly in NP.

We show that Min-Max Bin Covering is NP-hard by a reduction from the following
problem, which is NP-complete in the strong sense [7].

– 3-Partition. Given a value B, and a set S of 3m weights w1, w2, . . . , w3m each
lying in (B/4, B/2), such that

∑3m
i=1 wi = mB, can we partition {1, 2, . . . , 3m}

into sets Sj such that for each j,
∑

i∈Sj
wi = B? (Note that any such family of sets

Sj would have to have exactly m members.)

For the reduction we simply let xi = wi and k = K = B. If the 3-Partition problem
has answer yes, then we can partition the items into m sets each of total size k = K =
B so the Min-Max Bin Covering problem has answer yes. If, on the other hand, the
3-Partition problem has answer no, no such partition is possible, so we have

Theorem 3. Min-Max Bin Covering is NP-complete in the strong sense.

In the preprint version of this paper [6], we show that there are limits on how well we
can approximate the optimum solution (unless P = NP):

Theorem 4. Assuming P 
= NP, there does not exist a polynomial-time algorithm for
Min-Max Bin-Covering that guarantees an approximation ratio better than 2 (when
inputs are expressed in binary), or better than 4/3 (when inputs are expressed in unary).

Achievable Approximation Ratios. While the previous section shows that sufficiently
small approximation ratios are hard to achieve, in this section we show that we can es-
tablish larger approximation bounds with polynomial time algorithms. The algorithms
in this section can handle inputs that are expressed either in unary or binary, so they
are governed by the stronger lower bound of 2 on the approximation ratio given in The-
orem 4. If A is some algorithm for Min-Max Bin Covering Problem, and I is some
instance, let A(I) denote the cost of the solution obtained by A. Let Opt(I) denote the
optimum cost for this instance.
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Note that if
∑n

i=1 xi < k, there is no feasible solution; we will therefore restrict our
attention to instances for which

n∑
i=1

xi ≥ k. (3)

An approximation ratio of three is fairly easy to achieve.

Theorem 5. Assuming (3) there is a linear-time algorithm A guaranteeing that

A(I) ≤ max(k − 1 +
n

max
i=1

xi, 3k − 3).

Proof. Put all items of size k or greater into their own bins, and then, with new bins,
use the Next Fit heuristic for bin covering (see [?]) for the remaining items, i.e., add the
items one at a time, moving to a new bin once the current bin is filled to a level of at
least k. Then all but the last bin in this packing have level at most 2k − 2, as they each
have level at most k − 1 before the last item value is added and this last item has size
less than k. There may be one leftover bin with level less than k which must be merged
with some other bin, leading to the claimed bound. ��
With a bit more effort we can improve the approximation ratio. For convenience, in the
remainder of this section we scale the problem by dividing the item sizes by k. Thus
each bin must have level at least 1, and the item sizes are multiples of 1/k.

Lemma 1. Suppose we are given a list of numbers x1, x2, . . . , xn, with each xi ≤ 1/2
and

∑n
i=1 xi = 1. Then we can partition the list into three parts each having a sum of

at most 1/2.

Proof. Omitted.

Theorem 6. There is a polynomial algorithm to solve Min-Max Bin Packing with an
approximation factor of 5/2.

Proof. We will assume without loss of generality that Opt(I) ≥ 6/5, since otherwise
the algorithm of Theorem 5 could give a 5/2-approximation.

Assume the items are numbered in order of decreasing size. Pack them greedily in
this order into successive bins, moving to a new bin when the current bin has level at
least 1. Note that then all of the bins will have levels less than 2, and all of the bins
except the last will have level at least 1. If the last bin also has level at least 1, this
packing is feasible and has cost less than 2, so it is within a factor of 2 of the optimum.

Next suppose that the last bin has level less than 1. We omit the details for the case
in which we have formed at most 3 bins, and subsequently we assume we have formed
at least 4 bins.

Now let f be size of the largest item in the final bin, and let r be the total size of the
other items in the last bin. Call an item oversize if its size is at least 1, large if its size is
in (1/2, 1), and small if its size is at most 1/2. Consider two cases.

Case 1. f ≤ 1/2. Then all items in the last bin are small, so by Lemma 1 we can
partition them into three sets, each of total size at most 1/2. Add each of these sets to one
of the first three bins, so no bin is filled to more than 5/2, unless it was one of the bins



250 W. Du et al.

containing an oversize item. (We no longer use the last bin.) Thus we have achieved an
approximation ratio of 5/2.

Case 2. f > 1/2. Note that in this case there must be an odd number of large items,
since each bin except the last has either zero or exactly two large items. Note also that
r in this case is the total size of the small items, and r < 1/2. Let x1 be the first large
item packed. If x1 lies in the last bin, we must have packed at least one oversize item.
Then moving all of the items from the last bin (which will no longer be used) into the
bin with this oversize item guarantees a 2-approximation. Thus assume x1 is not in the
last bin.

Case 2.1. x1 + r ≥ 1. Then swap items x1 and f , so the last bin will be filled to a
level x1 + r ∈ [1, 2]. Also, the bin now containing f will contain two items of size in
the range [1/2,1] and thus have a level in the range [1,2]. Thus we have a solution that
meets the constraints and has cost at most 2.

Case 2.2. x1 + r < 1. Since r is the total size of the small items, if any bin had
only one large item it could not have level at least 1 (as required for feasibility) and
at most 6/5 (as required since Opt(I) ≤ 6/5). Thus the optimum solution has no
bin containing only one large item. Since there are an odd number of large items, this
means that the optimum solution has at least one bin with 3 or more large items, so
the cost of the optimum solution is at least 3/2. But then since the simple algorithm of
Theorem 5 gives a solution of cost less than 3, it provides a solution that is at most twice
the optimum. ��

A Polynomial Time Approximation Guaranteeing a Ratio Approaching 2. With more
effort we can come arbitrarily close to the lower bound of 2 on the approximation factor
given in Theorem 4 for the binary case, with a polynomial algorithm.

Theorem 7. For each fixed ε > 0, there is a polynomial time algorithm Aε that, given
some instance I of Min-Max Bin Covering, finds a solution satisfying

Aε(I) ≤ (1 + ε)
(
Opt(I) + 1

)
. (4)

(The degree of the polynomial becomes quite large as ε becomes small.)

Proof. The idea of the proof is similar to many approximation algorithms for bin pack-
ing (see in particular [15, Chapter 9]); for the current problem, we have to be especially
careful to ensure that the solution constructed is feasible.

We can assume that the optimum cost is at most 3, by the following reasoning. Say
an item is nominal if its size is less than 1, and oversize if its size is greater than or equal
to 1. First suppose the total size of the nominal items is at least 1 and some oversize
item has size at least 3. Then the greedy algorithm of Theorem 5 achieves an optimum
solution, so we are done. Next suppose the sum of the nominal items is at least 1 and
no oversize item has size at least 3. Then the greedy algorithm of Theorem 5 achieves
a solution of cost at most 3, so the optimum is at most 3. Finally suppose that the total
size of the nominal items is less than 1. Then there must be an optimum solution in
which every bin contains exactly one oversize item (and possibly some nominal items).
Let t0 (resp. t1) be the size of the smallest (resp. largest) oversize item. If t1 − t0 ≥ 1,
then we can form an optimum solution by putting all nominal items in a bin with t0. If
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on the other hand t1 − t0 < 1, we can reduce the size of all oversize items by t0 − 1
without changing the structure of the problem, after which all oversize items will have
size at most 2, and the optimum will be at most 3.

Now call those items that have size greater than or equal to ε large, and the others
small. Let b =

∑n
i=1 xi; note that b ≤ 3n, and any feasible partition will have at most

b bins. Let N be the largest integer for which ε(1 + ε)N is less than three; note that N
is a constant depending only on ε. Let

Ŝ =
{
ε(1 + ε)� : � ∈ {0, 1, 2, . . . , N}

}
.

For any item size x, define round(x) to be the largest value in Ŝ that is less than or equal
to x. Let the type of a packing P , written type(P ), be the result of discarding all small
items in P , and replacing each large xi by round(xi). Note that any type can be viewed
as a partial packing in which the bins contain only items with sizes in Ŝ.

Since, for fixed ε, there are only a constant number of item sizes in Ŝ, and each of
these is at least ε, there are only finitely many ways of packing a bin to a level of at
most 3 using the rounded values; call each of these ways a configuration of a bin. Since
the ordering of the bins does not matter, we can represent the type of a packing by the
number of times it uses each configuration. It is not hard to show that for fixed ε, as in
the proof of [15, Lemma 9.4], there are only polynomially many types having at most
b bins. (Of course, for small ε, this will be a polynomial of very high degree.) We will
allow types that leave some of the bins empty, allowing them to be filled later.

The algorithm proceeds as follows. Enumerate all possible types T that can be
formed using the rounded large item sizes. For each such type T carry out the following
steps:

1. Let T ′ be the result of replacing each item x in T , which resulted from rounding
some original input item xi, by any one of the original items xj such that x =
round(xj), in such a way that the set of items in T ′ is the same as the set of large
items in the original input. Note that there is no guarantee that xi = xj , since the
rounding process does not maintain the distinct identities of different items that
round to the same value in Ŝ. However, we do know that round(xi) = round(xj),
so we can conclude that xj/xi ∈

(
(1 + ε)−1, 1 + ε

)
.

2. Pack the small items into T ′ by processing them in an arbitrary order, placing each
into the bin with the lowest current level. Call this the greedy completion of T .

3. Finally, while any bin has a level less than 1, merge two bins with the lowest current
levels. Note that this will lead to a feasible packing because of (3). Call the resulting
packingF(T ), and let cost

(
F(T )

)
be the maximum level to which any bin is filled.

Return the packing F(T ) that minimizes cost
(
F(T )

)
over all T .

We now show that (4) holds. Let P ∗ be a feasible packing achieving Opt(I), and
let P ∗

large be the result of discarding the small items in P ∗ (retaining any bins that
become empty). Consider the type T obtained by rounding all large items in P ∗

large

down to a size in Ŝ. Note that this must be one of the types, say T , considered in the
algorithm. When we perform step 1 on T , we obtain a packing T ′ such that cost(T ′) ≤
(1 + ε)cost(P ∗).
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If any level in the greedy completion is greater than (1 + ε)Opt(I) + ε, then during
the greedy completion all bins must have reached a level greater than (1 + ε)Opt(I),
so their total size would be greater than (1 + ε)

∑n
i=1 xi, contradicting the fact that the

greedy completion uses each of the original items exactly once. Thus all bins in the
greedy completion have level at most (1+ ε)Opt(I)+ ε. Also, it cannot be that all bins
in the greedy completion have level less than 1, since then the total size of the items
would be less than the number of bins, contradicting the fact that the optimum solution
covers all the bins.

During step 3, as long as at least two bins have levels below 1, two of them will be
merged to form a bin with a level at most 2. If then only one bin remains with a level
below 1, it will be merged with a bin with level in

[
1, (1 + ε)Opt(I) + ε

)
to form a

feasible packing with no bin filled to a level beyond (1 + ε)Opt(I) +1 + ε, as desired.
��

Note that the bound of Theorem 7 implies Aε(I) ≤ 2(1 + ε)Opt(I).
We also note that if one is willing to relax both the feasibility constraints and the cost

of the solution obtained, a polynomial-time (1 + ε) approximation scheme of sorts is
possible. (Of course, this would not guarantee k-anonymity.)

Theorem 8. Assume that all item sizes xi in the input are expressed in binary, and
let ε > 0 be a fixed constant. There is a polynomial time algorithm that, given some
instance I of Min-Max Bin Covering, finds a partition of the items into disjoint bins Sj

such that

∀j
∑
i∈Sj

xi ≥ 1− ε, and max
j

∑
i∈Sj

xi ≤ (1 + ε)Opt(I). (5)

Proof (sketch). Roughly, one can use an algorithm similar to that of the previous the-
orem but omitting the last phase in which we merge bins to eliminate infeasibility. We
omit the details. ��
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Abstract. We revisit two natural reconfiguration models for systems of
disjoint objects in the plane: translation and sliding. Consider a set of
n pairwise interior-disjoint objects in the plane that need to be brought
from a given start (initial) configuration S into a desired goal (target)
configuration T , without causing collisions. In the translation model,
in one move an object is translated along a fixed direction to another
position in the plane. In the sliding model, one move is sliding an ob-
ject to another location in the plane by means of an arbitrarily complex
continuous motion (that could involve rotations). We obtain several com-
binatorial and computational results for these two models:

(I) For systems of n congruent disks in the translation model, Abel-
lanas et al. [1] showed that 2n − 1 moves always suffice and 8n/5�
moves are sometimes necessary for transforming the start configuration
into the target configuration. Here we further improve the lower bound
to 5n/3� − 1, and thereby give a partial answer to one of their open
problems.
(II) We show that the reconfiguration problem with congruent disks in
the translation model is NP-hard, in both the labeled and unlabeled vari-
ants. This answers another open problem of Abellanas et al. [1].
(III) We also show that the reconfiguration problem with congruent
disks in the sliding model is NP-hard, in both the labeled and unlabeled
variants.
(IV) For the reconfiguration with translations of n arbitrary convex bodies
in the plane, 2n moves are always sufficient and sometimes necessary.

1 Introduction

A body (or object) in the plane is a compact connected set in R2 with nonempty
interior. Two initially disjoint bodies collide if they share an interior point at
some time during their motion. Consider a set of n pairwise interior-disjoint
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objects in the plane that need to be brought from a given start (initial) configu-
ration S into a desired target (goal) configuration T , without causing collisions.
The reconfiguration problem for such a system is that of computing a sequence
of object motions (a schedule, or motion plan) that achieves this task. Depend-
ing on the existence of such a sequence of motions, we call that instance of the
problem feasible and respectively, infeasible.

Our reconfiguration problem is a simplified version of the multi-robot motion
planning problem, in which a system of robots are operating together in a shared
workplace and once in a while need to move from their initial positions to a set
of target positions. The workspace is often assumed to extend throughout the
entire plane, and has no obstacles other than the robots themselves. In many
applications, the robots are indistinguishable (unlabeled), so each of them can
occupy any of the specified target positions. Beside multi-robot motion planning,
another application which permits the same abstraction is moving around large
sets of heavy objects in a warehouse [10]. Typically, one is interested in minimiz-
ing the number of moves and designing efficient algorithms for carrying out the
motion plan. It turns out that moving a set of objects from one place to another
is related to certain separability problems [4,6,7,9]; see also [11]. There are several
types of moves that make sense to study, as dictated by specific applications.
Here we focus on systems of convex bodies in the plane.

Next we formulate these models for systems of disks, since they are simpler
and most of our results are for disks. These rules can be extended (not necessar-
ily uniquely) for arbitrary convex bodies in the plane. The decision problems we
refer to below, pertaining to various reconfiguration problems we discuss here,
are in standard form, and concern systems of (arbitrary or congruent) disks.
For instance, the Reconfiguration Problem U-SLIDE-RP for congruent disks is:
Given a start configuration and a target configuration, each with n unlabeled
congruent disks in the plane, and a positive integer k, is there a reconfigura-
tion motion plan with at most k sliding moves? It is worth clarifying that for
the unlabeled variant, if the start and target configuration contain subsets of
congruent disks, there is freedom is choosing which disks will occupy target po-
sitions. However in the labeled variant, this assignment is uniquely determined
by the labeling; of course a valid labeling must respect the size of the disks.

1. Sliding model: one move is sliding a disk to another location in the plane
without colliding with any other disk, where the disk center moves along an
arbitrary continuous curve. This model was introduced in [3]. The labeled
and unlabeled variants are L-SLIDE-RP and U-SLIDE-RP, respectively.

2. Translation model: one move is translating a disk to another location in the
plane along a fixed direction without colliding with any other disk. This
is a restriction imposed to the sliding model above for making each move
as simple as possible. This model was introduced in [1]. The labeled and
unlabeled variants are L-TRANS-RP and U-TRANS-RP, respectively.

3. Lifting model: one move is lifting a disk and placing it back in the plane
anywhere in the free space. This model was introduced in [2]. The labeled
and unlabeled variants are L-LIFT-RP and U-LIFT-RP, respectively. (We
have only included this model for completeness.)
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Our results are:

(1) For any n, there exist pairs of start and target configurations each with n
disks, that require �5n/3� − 1 translation moves for reconfiguration (The-
orem 1 in Section 2). This improves the previous bound of �8n/5� due to
Abellanas et al. and thereby gives a partial answer to their first open problem
regarding the translation model [1].

(2) The reconfiguration problem with congruent disks in the translation model,
in both the labeled and unlabeled variants, is NP-hard. That is, L-TRANS-

RP and U-TRANS-RP are NP-hard (Theorem 2 and Theorem 3 in Sec-
tion 3). This answers the second open problem of Abellanas et al. regarding
the translation model [1].

(3) The reconfiguration problem with congruent disks in the sliding model, in
both the labeled and unlabeled variants, is NP-hard. That is, L-SLIDE-RP

and U-SLIDE-RP are NP-hard (Theorem 4 and Theorem 5 in Section 4).
(4) For the reconfiguration with translations of n arbitrary convex bodies in the

plane, 2n moves are always sufficient and sometimes necessary (Theorem 6
in Section 5).

2 A New Lower Bound for Translating Unlabeled
Congruent Disks

In this section we consider the problem of moving n disks of unit radius, here
also referred to as coins, to n target positions using translation moves. Abellanas
et al. [1] have shown that �8n/5� moves are sometimes necessary. Their lower
bound construction is shown in Fig. 1. Here we further improve this bound to
�5n/3� − 1.

Fig. 1. Two groups of five disks with their targets: part of the old 8n/5� lower bound
construction for translating disks. The disks are white and their targets are shaded.

Theorem 1. For every m ≥ 1, there exist pairs of start and target configura-
tions each with n = 3m + 2 disks, that require 5m + 3 translation moves for
reconfiguration. Consequently, for any n, we have pairs of configurations that
require �5n/3� − 1 translation moves.

Proof. A move is a target move if it moves a disk to a final target position.
Otherwise, it is a non-target move. We also say that a move is a direct target
move if it moves a disk from its start position directly to its target position.
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A

C

B

�

Fig. 2. Illustration of the lower bound construction for translating congruent unlabeled
disks, for m = 3, n = 11. The disks are white and their targets are shaded. Two
consecutive partially overlapping parallel strips of width 2 are shown.

Let n = 3m + 2. The start and target configurations, each with n disks, are
shown in Fig. 2. The n target positions are all on a horizontal line �, with the
disks at these positions forming a horizontal chain, T1, . . . , Tn, consecutive disks
being tangent to each other. Let o denote the center of the median disk, T�n/2.
Let r > 0 be very large. The start disks are placed on two very slightly convex
chains (two concentric circular arcs):

– 2m + 2 disks in the first layer (chain). Their centers are 2m + 2 equidistant
points on a circular arc of radius r centered at o.

– m disks in the second layer. Their centers are m equidistant points on a
concentric circular arc of radius r cosα+

√
3. Each pair of consecutive points

on the circle of radius r subtends an angle of 2α from the center of the circle
(α is very small).

The parameters of the construction are chosen to satisfy: sin α = 1/r and
2n sinnα ≤ 2. Set for instance α = 1/n2, which results in r = Θ(n2).

Alternatively, the configuration can be viewed as consisting of m groups of
three disks each, plus two disks, one at the higher and one at the lower end of the
chain along the circle of radius r. Denote the three pairwise tangent start disks
in a group by A, B and C, with their centers making an equilateral triangle,
and the common tangent of A and C passing through o. Disks A and C are on
the first layer, and the “blocking” disk B on the second layer. The groups are
numbered from the top. We therefore refer to the three start disks of group i by
Ai, Bi and Ci, where i = 1, . . . , m.

For each pair of tangent disks on the first chain, consider the open strip of
width 2 of parallel lines orthogonal to the line segment connecting their centers.
By selecting r large enough we ensure the following crucial property of the
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construction: the intersection of all these 2m + 1 parallel strips contains the
set of n centers of the targets in its interior. More precisely, let a be the center
of T1 and let b be the center of Tn. Then the closed segment ab of length 2n− 2
is contained in the intersection of all the 2m + 1 open parallel strips of width 2.
Observe that for any pair of adjacent disks in the first layer, if both disks are
still in their start position, neither can move so that its center lies in the interior
of the strip of width 2 determined by their centers. As a consequence for each
pair of tangent disks on the first chain at most one of the two disks can have a
direct target move, provided its neighbor tangent disks have been already moved
away from their start positions. See also Fig. 3.

Fig. 3. The n disks at the target positions as viewed from a parallel strip of a pair of
start positions below the horizontal line � in Fig. 2. The targets are shown denser than
they are: the chain of targets is in fact longer.

Recall that there are 2m + 2 disks in the first layer and m disks in the second
layer. We show that the configuration requires at least 2m+1 non-target moves,
and consequently, at least 3m + 2 + 2m + 1 = 5m + 3 moves are required to
complete the reconfiguration. Throughout the process let:

– k be the number of disks in the first layer that are in their start positions,
– c be the number of connected components in the intersection graph of these

disks, i.e., disks in the first layer that are still in their start positions,
– x be the number of non-target moves executed so far.

Let t denote the number of moves executed. Consider the value Φ = k − c
after each move. Initially, k = 2m + 2 and c = 1, so the initial value of k − c
is Φ0 = 2m + 1. In the end, k = c = 0, hence the final value of k − c is
Φt = 0, and x = xt represents the total number of non-target moves executed
for reconfiguration. Consider any reconfiguration schedule. It is enough to show
that after any move that reduces the value of Φ by some amount, the value of x
increases by at least the same amount. Since the reduction of Φ equals 2m + 1,
it implies that x ≥ 2m + 1, as desired.

Observe first that a move of a coin in the second layer does not affect the
values of k and c, and therefore leaves Φ unchanged. Consider now any move of
a coin in the first layer, and examine the way Φ and x are modified as a result
of this move and possibly some preceding moves. The argument is essentially a
charging scheme that converts the reduction in the value of Φ into non-target
moves.
Case 0. If the moved coin is the only member of its component, then k and c
decrease both by 1, so the value of Φ is unchanged.
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Assume now that the moved coin is from a component of size at least two (in
the first layer). We distinguish two cases:

Case 1. The coin is an end coin, i.e., one of the two coins at the upper or the
lower end of the component (chain) in the current step. Then k decreases by 1
and c is unchanged, thus Φ decreases by 1. By the property of the construction,
the current move is a non-target move, thus x increases by 1.

Case 2. The coin is a middle coin, i.e., any other coin in the first layer in its
start position that is not an end coin in the current step. By the property of the
construction, this is necessarily a non-target move (from a component of size at
least 3). As a result, k decreases by 1 and c increases by 1, thus Φ decreases by
2. Before the middle coin (Ai or Ci) can be moved by the non-target move, its
blocking coin Bi in the second layer must have been moved by a previous non-
target move. Observe that this previous non-target move is uniquely assigned
to the current non-target move of the middle coin, because the middle coins
of different moves cannot be adjacent! Indeed, as soon a middle coin is moved,
it breaks up the connect component, and its two adjacent coins cannot become
middle coins in subsequent moves. We have therefore found two non-target moves
uniquely assigned to this middle coin move, which contribute an increase by 2
to the value of x.

This exhausts the possible cases, and thereby completes the analysis. The
lower bounds for values of n other than 3m+2 are immediately obtainable from
the above: for n = 3m, at least 5m− 1 moves are needed, while for n = 3m + 1,
at least 5m + 1 moves are needed. This completes the proof of the theorem. ��

3 Hardness Results for Translating Congruent Disks

Theorem 2. The unlabeled version of the disk reconfiguration problem with
translations U-TRANS-RP is NP-hard even for congruent disks.

Proof. Here we adapt for our purpose the reduction in [5] showing that the
reconfiguration problem with unlabeled chips in graphs is NP-complete. We re-
duce 3-SET-COVER to U-TRANS-RP. The problem 3-SET-COVER is a
restricted variant of SET-COVER. An instance of SET-COVER consists of a
family F of subsets of a finite set U , and a positive integer k. The problem is to
decide whether there is a set cover of size k for F , i.e., a subset F ′ ⊆ F , with
|F ′| ≤ k, such that every element in U belongs to at least one member of F ′. In
the variant 3-SET-COVER the size of each set in F is bounded from above by
3. Both the standard and the restricted variants are known to be NP-hard [8].

Consider an instance of 3-SET-COVER represented by a bipartite graph
(B ∪ C, E), where B = F , C = U , and E describes the membership relation.
First construct a “broom” graph G with vertex set A ∪B ∪C, where |A| = |C|,
as shown in Fig. 4. Place a start (unlabeled) chip at each element of A∪B, and
let each element of B ∪ C be a target position. A move in the graph is defined
as shifting a chip from v1 to v2 (v1, v2 ∈ V (G)) along a “free” path in G, so
that no intermediate vertices are occupied; see also [5]. Positions in B are called
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A
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a2

a3

a4

a5

a6

S3

S4

S1

Fig. 4. The “broom” graph G corresponding to a 3-SET-COVER instance with m =
|B| = |F| = 4 and n = |A| = |C| = |U | = 6. Chips-only: white; obstacles: black;
target-only: gray.

obstacles, since any obstacle position that becomes free during reconfiguration
must be finally filled by one of the chips. Write m = |F|, and n = |U |. Then
|B| = m and |A| = |C| = n.

Now construct a start and target configuration, each with O((m + n)8) disks,
that represents G in a suitable way. The start positions are (correspond to) S =
A∪B and the target positions are T = B∪C. The positions in B are also called
obstacles, since any obstacle position that becomes free during reconfiguration
must be finally filled by one of the disks. Let z be a parameter used in the
construction, to be set later large enough. Consider an axis-parallel rectangle
R of width 2z · max{m + 1, n} and height z · max{m + 1, n}. Fig. 5 shows a
scaled-down version for a smaller value of z (z = 10). Initially place an obstacle
disk centered at each grid point in R. The obstacle chips in B from the graph G
are represented by m obstacles disks, denoted by S1, . . . , Sm (the m sets), whose
centers are on on the top side of R at distances 2z, 4z, 6z, . . . from the left side of
R. Next we (i) delete some of the obstacle disks in R, (ii) add a set of target-only
disks in n connected areas (legs) below R, and (iii) change the positions of some
of the obstacle disks in B, as described next:

(i) Consider the obstacles whose centers are on on the bottom side of R at dis-
tances z, 3z, 5z, . . . from the left side of R. Let these be denoted by a1, . . . , an

in Fig. 5 and Fig. 6. For each edge Siaj in the bipartite graph (B ∪ C, E),
consider the convex hull Hij of the two disks Si and aj ; see Fig. 6(middle).
We refer to these Hijs as roads. Delete now from R any obstacle disk D, ex-
cept the disks Si, that intersects some Hij in its interior (the disks a1, . . . , an

are also deleted).
(ii) The target-only chips in C from the graph G are represented by n2 target-

only disks located in n connected areas (legs) extending rectangle R from
below. Each leg is a thin rectangle of unit width. These legs extend vertically
below the bottom side of R at distances z, 3z, 5z, . . . from the left side of R,
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S1 S2 S3 S4

a1 a2 a3 a4 a5 a6

Fig. 5. Reduction from 3-SET-COVER to U-TRANS-RP implementing a disk real-
ization of the “broom” graph G in Fig. 4 (z = 10). |A| = |C| = n = 6, and |B| = m = 4.
The start-only disks are white, the obstacle disks are black, and the target-only disks
are gray. Obstacle disks on the side of the roads are pushed tangent to the roads (not
shown here). The pentagon with 6 legs that encloses the main part of the construction
is further enclosed by another thick layer of obstacles. Only 13 out of the 36 start-only
disks are shown. Notice the displaced final obstacle positions for the disks Si; see also
Fig. 6(left). An optimal reconfiguration takes 3 × 36 + 3 = 111 translation moves (S2,
S3, and S4 form an optimal set cover).

exactly below the obstacles a1, . . . , an that were previously deleted. Let these
legs be denoted by L1, . . . , Ln in Fig. 6. In each of the legs we place n target-
only disk positions. Since each leg is vertical, its vertical axis is not parallel
to any of the road directions Hij .

(iii) For each road Hij , push the disk obstacles next to the road sides closer to
the roads, so that they become tangent to the road sides. Displace now each
of the obstacle disks Si to a nearby position that partially blocks any of the
(at most 3) roads Hij incident to Si. See Fig. 6. The new obstacle positions
prohibit any Si to reach any aj position in one translation move. This special
position of these obstacles is important, as the reduction wouldn’t work
otherwise (that is, if the obstacle would be placed at the intersection of the
outgoing roads), at least not in this way.
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ai

Li

Si Si

Hij

aj

Fig. 6. Left: the actual position of the disk Si (black) partially blocks the three outgoing
roads Hij from Si. The white dotted disk (not part of the construction) is contained
in the intersection of the three incident roads Hij . Middle: a road Hij . Right: a white
dotted disk (not part of the construction) representing ai. This element is used in road
construction, for the placement of the incident incoming roads. The corresponding leg
is Li.

The start-only disks in A form a vertical chain of n2 disks placed on the
vertical line �, which is a vertical symmetry axis of R. The position of start disks
is such that no start disk is on any of the road directions Hij . Finally enclose
all the above start-only disks, obstacle disks, and target-only disks by a closed
pentagonal shaped chain with n legs of tangent (or near tangent) obstacle disks,
as shown in Fig. 5. Surround all the above construction by another thick layer
of obstacle disks; a thickness of z will suffice. This concludes the description
of the reduction. Clearly, G and the corresponding disk configuration can be
constructed in polynomial time. The reduction is complete once the following
claim is established.

Claim. There is a set cover consisting of at most q sets if and only if the disk
reconfiguration can be done using at most 3n2 + q translations. ��

A similar reduction can be made for the labeled version by adapting the idea
used in [5] to show that the labeled version for reconfiguration of chips in graphs
is NP-hard.

Theorem 3. The labeled version of the disk reconfiguration problem with trans-
lations L-TRANS-RP is NP-hard even for congruent disks.

4 Hardness Results for Sliding Congruent Disks

We start with the unlabeled variant, and adapt for our purpose the reduction
in [5] showing that the reconfiguration problem with unlabeled chips in an in-
finite grid is NP-complete. We reduce the Rectilinear Steiner Tree problem R-

STEINER to U-SLIDE-RP. An instance of R-STEINER consists of a set S
of n points in the plane, and a positive integer bound q. The problem is to decide
whether there is a rectilinear Steiner tree (RST), that is, a tree with only hori-
zontal and vertical edges that includes all the points in S, along with possibly
some extra Steiner points, of total length at most q. For convenience the points
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can be chosen with integer coordinates. R-STEINER is known to be Strongly
NP-complete [8], so we can assume that all point coordinates are given in unary.

Theorem 4. The unlabeled version of the sliding disks reconfiguration problem
in the plane U-SLIDE-RP is NP-hard even for congruent disks.

Proof. Assume the disks have unit diameter. In our construction each (start and
target) disk will be centered at an integer grid point. A disk position (i.e., the
center of a disk) that is both a start and a target position is called an obstacle.
We have four types of grid points: free positions, start positions, target positions,
and obstacles.

p0

A

B

Fig. 7. Left: an instance of R-STEINER with n = 9 points, and a rectilinear Steiner
tree for it. Right: the configuration of start positions (white), target positions (gray),
and obstacle positions (black).

Consider an instance P = {p0, p1, . . . , pn−1} of R-STEINER with n points.
Assume that p0 = (0, 0) is a leftmost point in P , see Fig. 7(left). The instance of
U-SLIDE-RP is illustrated in Fig. 7(right). Choose n − 1 start positions with
zero y-coordinate and x-coordinates 0,−1,−2, . . . ,−(n − 2), i.e., in a straight
horizontal chain extending from p0 to the left. Choose n − 1 target positions
at the remaining n− 1 points {p1, . . . , pn−1} of the R-STEINER instance. Let
B be a smallest axis-parallel rectangle containing the 2n− 2 disks at the start
and target positions, and Δ be the length of the longer side of B. Consider a
sufficiently large axis-parallel rectangle A enclosing B: the boundary of A is at
distance 2nΔ from the boundary of B. Place obstacle disks centered at each
of the remaining grid points in the rectangle A. The number of disks in the
start and target configurations is O(n2Δ2). This construction is done in time
polynomial in Δ, which is polynomial in the size of the R-STEINER instance
since the coordinates are given in unary. The reduction is complete once the
following claim is established.
Claim. There is a rectilinear Steiner tree of length at most q for P if and only if
the disk reconfiguration can be done using at most q sliding moves. ��
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A similar reduction can be made for the labeled version by adapting the idea
used in [5] to show that the labeled version for reconfiguration of chips in grids
is NP-hard.

Theorem 5. The labeled version of the sliding disks reconfiguration problem in
the plane L-SLIDE-RP is NP-hard even for congruent disks.

5 Translating Convex Bodies

In this section we consider the general problem of reconfiguration of convex
bodies with translations. When the convex bodies have different shapes, sizes,
and orientations, assume that the correspondence between the start positions
{S1, . . . , Sn} and the target positions {T1, . . . , Tn}, where Ti is a translated copy
of Si, is given explicitly. Refer to Fig. 8. In other words, we deal with the labeled
variant of the problem. Our result can be easily extended to the unlabeled variant
by first computing a valid correspondence by shape matching. We first extend
the 2n upper bound for translating arbitrary disks to arbitrary convex bodies:

Theorem 6. For the reconfiguration with translations of n labeled disjoint con-
vex bodies in the plane, 2n moves are always sufficient and sometimes necessary.

1

1

2

2

3

3

4

4

5

5
6

6

Fig. 8. Reconfiguration of convex bodies with translations. The start positions are
unshaded; the target positions are shaded.

5.1 Translating Unlabeled Axis-Parallel Unit Squares

Throughout a translation move, the moving square remains axis-parallel, how-
ever the move can be in any direction. We have the following bounds:

Theorem 7. For the reconfiguration with translations of n unlabeled axis-parallel
unit squares in the plane, 2n−1 moves are always sufficient, and �3n/2�moves are
sometimes necessary.

Theorem 8. For the reconfiguration with translations of n unlabeled axis-parallel
unit squares in the plane from the third quadrant to the first quadrant, n moves are
always sufficient and sometimes necessary.
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Orientation-Constrained Rectangular Layouts
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Abstract. We construct partitions of rectangles into smaller rectangles from an
input consisting of a planar dual graph of the layout together with restrictions
on the orientations of edges and junctions of the layout. Such an orientation-
constrained layout, if it exists, may be constructed in polynomial time, and all
orientation-constrained layouts may be listed in polynomial time per layout.

1 Introduction

Consider a partition of a rectangle into smaller rectangles, at most three of which meet
at any point. We call such a partition a rectangular layout. Rectangular layouts are an
important tool in many application areas. In VLSI design rectangular layouts represent
floorplans of integrated circuits [8], while in architectural design they represent floor-
plans of buildings [2, 12]. In cartography they are used to visualize numeric data about
geographic regions, by stylizing the shapes of a set of regions to become rectangles,
with areas chosen to represent statistical data about the regions; such visualizations are
called rectangular cartograms, and were first introduced in 1934 by Raisz [11].

The dual graph or adjacency graph of a layout is a plane graph G(L) that has a
vertex for every region of L and an edge for every two adjacent regions. In both VLSI
design and in cartogram construction, the adjacency graph G is typically given as input,
and one has to construct its rectangular dual, a rectangular layout for which G is the
dual graph. Necessary and sufficient conditions for a graph to have a rectangular dual
are known [7], but graphs that admit a rectangular dual often admit more than one.
This fact allows us to impose additional requirements on the rectangular duals that we
select, but it also leads to difficult algorithmic questions concerning problems of finding
layouts with desired properties. For example, Eppstein et al [3] have considered the
search for area-universal layouts, layouts that can be turned into rectangular cartograms
for any assignment of positive weights to their regions.

In this paper, we consider another kind of constrained layouts. Given a graph G we
would like to know whether G has a rectangular dual that satisfies certain constraints on
the orientations of the adjacencies of its regions; such constraints may be particularly
relevant for cartographic applications of these layouts. For example, in a cartogram of
the U.S., we might require that a rectangle representing Nevada be right of or above a
rectangle representing California, as geographically Nevada is east and north of Califor-
nia. We show that layouts with orientation constraints of this type may be constructed
in polynomial time. Further, we can list all layouts obeying the constraints in polyno-
mial time per layout. Our algorithms can handle constraints (such as the one above)
limiting the allowed orientations of a shared edge between a pair of adjacent regions,

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 266–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Orientation-Constrained Rectangular Layouts 267

as well as more general kind of constraints restricting the possible orientations of the
three rectangles meeting at any junction of the layout. We also discuss the problem of
finding area-universal layouts in the presence of constraints of these types. A version
of the orientation-restricted layout problem was previously considered by van Kreveld
and Speckmann [14] but they required a more restrictive set of constraints and searched
exhaustively through all layouts rather than developing polynomial time algorithms.

Following [3], we use Birkhoff’s representation theorem for finite distributive lat-
tices to associate the layouts dual to G with partitions of a related partial order into a
lower set and an upper set. The main idea of our new algorithms is to translate the ori-
entation constraints of our problem into an equivalence relation on this partial order. We
form a quasiorder by combining this relation with the original partial order, partition the
quasiorder into lower and upper sets, and construct layouts from these partitions. How-
ever, the theory as outlined above only works directly on dual graphs with no nontrivial
separating 4-cycles. To handle the general case we must do more work to partition G
by its 4-cycles into subgraphs and to piece together the solutions from each subgraph.

2 Preliminaries

Kozminski and Kinnen [7] demonstrated that a plane triangulated graph G has a rect-
angular dual if it can be augmented with four external vertices {l, t,r,b} to obtain an
extended graph E(G) in which every inner face is a triangle, the outer face is a quadri-
lateral, and E(G) does not contain any separating 3-cycles (a separating k-cycle is a
k-cycle that has vertices both inside and outside of it). A graph G that can be extended
in this way is said to be proper—see Fig. 1 for an example. The extended graph E(G) is
sometimes referred to as a corner assignment of G , since it defines which vertices of G
become corner rectangles of the corresponding dual layout. In the rest of the paper we
assume that we are given a proper graph with a corner assignment. For proper graphs
without a corner assignment, one can always test all possible corner assignments, as
their number is polynomial in the number of external vertices of the graph.

A rectangular dual L induces a labeling for the edges of its graph G(L): we color
each edge blue if the corresponding pair of rectangles share a vertical line, or red if
the corresponding pair of rectangles share a horizontal border; we direct the blue edges
from left to right and red edges from bottom to top. For each inner vertex v of G(L) the
incident edges with the same label form continuous blocks around v: all incoming blue
edges are followed (in clockwise order) by all outgoing red, all outgoing blue and finally
all incoming red edges. All edges adjacent to one of the four external vertices l, t,r,b
have a single label. A labeling that satisfies these properties is called a regular edge

l r

t

b

Fig. 1. A proper graph G , extended graph E(G), and rectangular dual L of E(G), from [3]
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labeling [6]. Each regular edge labeling of a proper graph corresponds to an equivalence
class of rectangular duals of G , considering two duals to be equivalent whenever every
pair of adjacent regions have the same type of adjacency in both duals.

2.1 The Distributive Lattice of Regular Edge Labelings

A distributive lattice is a partially ordered set in which every pair (a,b) of elements has
a unique supremum a∧b (called the meet of a and b) and a unique infinum a∨b (called
the join of a and b) and where the join and meet operations are distributive over each
other. Two comparable elements that are closest neighbours in the order are said to be
a covering pair, the larger one is said to cover the smaller one.

Fig. 2. Recoloring the interior of an alternatingly-colored four-cycle in a regular edge labeling

All regular edge labelings of a proper graph form a distributive lattice [4, 5, 13] in
which the covering pairs of layouts are the pairs in which the layouts can be transformed
from one to the other by means of a move—changing the labeling of the edges inside an
alternating four-cycle (a 4-cycle C whose edge colors alternate along the cycle). Each
red edge within the cycle becomes blue and vice versa; the orientations of the edges
are adjusted in a unique way such that the cyclic order of the edges around each vertex
is as defined above—see Fig. 2 for an example. In terms of layouts, the move means
rotating the sublayout formed by the inner vertices of C by 90 degrees. A move is called
clockwise if the borders between the red and blue labels of each of the four vertices
of the cycle move clockwise by the move, and called counterclockwise otherwise. A
counterclockwise move transforms a layout into another layout higher up the lattice.

We can represent the lattice by a graph in which each vertex represents a single
layout and each edge represents a move between a covering pair of layouts, directed
from the lower layout to the higher one. We define a monotone path to be a path in this
graph corresponding to a sequence of counterclockwise moves.

2.2 The Birkhoff Representation of the Lattice of Layouts

For any finite distributive lattice D, let P be the partial order of join-irreducible ele-
ments (elements that cover only one other element of D), and let J(P ) be the lattice of
partitions of P into sets L and U , where L is downward closed and U is upward closed
and where meets and joins in J(P ) are defined as intersections and unions of these sets.
Birkhoff’s representation theorem [1] states that D is isomorphic to J(P ).

Eppstein et al. [3] show that when E(G) has no nontrivial separating four-cycles
(four-cycles with more than one vertex on the inside) the partial order of join-irreducible
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Fig. 3. The rectangular layouts dual to a given extended graph E(G) and the corresponding reg-
ular edge labelings and partial order partitions. Two layouts are shown connected to each other
by an edge if they differ by reversing the color within a single alternatingly-colored four-cycle;
these moves are labeled by the edge or vertex within the four-cycle. From [3].

elements of the lattice of rectangular duals of E(G) is order-isomorphic to the partial
order P on pairs (x, i), where x is a flippable item of E(G), and i is a flipping number
of x. A flippable item x is either a degree-four vertex of G or an edge of G that is
not adjacent to a degree-four vertex, such that there exist two regular edge labelings of
E(G) in which x has different labels (when x is a vertex we refer to the labels of its
four adjacent edges). Given a layout L and a flippable item x, the number fx(L) is the
number of times that x has been flipped on a monotone path in the distributive lattice
from its bottom element to L; this number, which we call the flipping number of x in
L , is well defined, since it is independent of the path by which L has been reached. For
every flippable item x, P contains pairs (x, i) for all i such that there exist a layout L
where fx(L) = i− 1. A pair (x, i) is associated with the transition of x from state i to
i+ 1. A pair (x, i) is less than a pair (y, j) in the partial order if is not possible to flip y
for the jth time before flipping x for the ith time. If (x, i) and (y, j) form a covering pair
in P , the flippable items x and y belong to the same triangular face of E(G).

As Eppstein et al. show, the layouts dual to E(G) correspond one-for-one with par-
titions of the partial order P into a lower set L and an upper set U . The labeling of the
layout corresponding to a given partition of P can be recovered by starting from the
minimal layout and flipping each flippable item x represented in the lower set L of the
partition nx + 1 times, where (x,nx) is the highest pair involving x in L. The downward
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moves that can be performed from L correspond to the maximal elements of L, and
the upward moves that can be performed from L correspond to the minimal elements
of U . Fig. 3 depicts the lattice of layouts of a 12-vertex extended dual graph, showing
for each layout the corresponding partition of the partial order into two sets L and U .
The partial order of flippable items has at most O(n2) elements and can be constructed
in time polynomial in n, where n is the number of vertices in G [3].

3 The Lattice Theory of Constrained Layouts

As we describe in this section, in the case where every separating 4-cycle in E(G) is
trivial, the orientation-constrained layouts of E(G) may themselves be described as a
distributive lattice, a sublattice (although not in general a connected subgraph) of the
lattice of all layouts of E(G).

3.1 Sublattices from Quotient Quasiorders

We first consider a more general order-theoretic problem. Let P be a partial order and
let C be a (disconnected) undirected constraint graph having the elements of P as its
vertices. We say that a partition of P into a lower set L and an upper set U respects C
if there does not exist an edge of C that has one endpoint in L and the other endpoint
in U . As we now show, the partitions that respect C may be described as a sublattice of
the distributive lattice J(P ) defined via Birkhoff’s representation theorem from P .

We define a quasiorder (that is, reflexive and transitive binary relation) Q on the
same elements as P , by adding pairs to the relation that cause certain elements of P
to become equivalent to each other. More precisely, form a directed graph that has the
elements of P as its vertices , and that has a directed edge from x to y whenever either
x≤ y in P or xy is an edge in C, and define Q to be the transitive closure of this directed
graph: that is, (x,y) is a relation in Q whenever there is a path from x to y in the directed
graph. A subset S of Q is downward closed (respectively, upward closed) if there is no
pair (x,y) related in Q for which S∩{x,y}= {y} (respectively, S∩{x,y}= {x}).

Denote by J(Q ) the set of partitions of Q into a downward closed and an upward
closed set. Each strongly connected component of the directed graph derived from P
and C corresponds to a set of elements of Q that are all related bidirectionally to each
other, and Q induces a partial order on these strongly connected components. Therefore,
by Birkhoff’s representation theorem, J(Q ) forms a distributive lattice under set unions
and intersections.

Lemma 1. The family of partitions in J(Q ) is the family of partitions of P into lower
and upper sets that respect C.

Proof. We show the lemma by demonstrating that every partition in J(Q ) corresponds
to a partition of J(P ) that respects C and the other way round.

In one direction, let (L,U) be a partition in J(Q ). Then, since Q ⊃ P , it follows that
(L,U) is also a partition of P into a downward-closed and an upward-closed subset.
Additionally, (L,U) respects C, for if there were an edge xy of C with one endpoint in
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L and the other endpoint in U then one of the two pairs (x,y) or (y,x) would contradict
the definition of being downward closed for L.

In the other direction, let (L′,U ′) be a partition of P into upper and lower sets that
respects C, let (x,y) be any pair in Q , and suppose for a contradiction that x ∈U ′ and
y ∈ L′. Then there exists a directed path from x to y in which each edge consists either
of an ordered pair in P or an edge in C. Since x ∈U ′ and y ∈ L′, this path must have
an edge in which the first endpoint is in U ′ and the second endpoint is in L′. But if this
edge comes from an ordered pair in P , then (L′,U ′) is not a partition of P into upper
and lower sets, while if this edge comes from C then (L′,U ′) does not respect C. This
contradiction establishes that there can be no such pair (x,y), so (L′,U ′) is a partition
of Q into upper and lower sets as we needed to establish.

If P and C are given as input, we may construct Q in polynomial time: by finding
strongly connected components of Q we may reduce it to a partial order, after which it
is straightforward to list the partitions in J(Q ) in polynomial time per partition.

3.2 Edge Orientation Constraints

Consider a proper graph G with corner assignment E(G) and assume that each edge e
is given with a set of forbidden labels, where a labels is a color-orientation combination
for an edge, and let P be the partial order whose associated distributive lattice J(P )
has its elements in one-to-one correspondence with the layouts of E(G). Let x be the
flippable item corresponding to e—that is either the edge itself of the degree-four vertex
e is adjacent to. Then in any layout L , corresponding to a partition (L,U) ∈ J(P ), the
orientation of e in L may be determined from i mod 4, where i is the largest value such
that (x, i) ∈ L. Thus if we would like to exclude a certain color-orientation combination
for x, we have find the corresponding value k ∈ Z4 and exclude the layouts L such that
fx(L) = k mod 4 from consideration. Thus the set of flipping values for x can be par-
titioned into forbidden and legal values for x; instead of considering color-orientation
combinations of the flippable items we may consider their flipping values. We formalize
this reasoning in the following lemma.

Lemma 2. Let E(G) be a corner assignment of a proper graph G . Let x be a flippable
item in E(G), let L be an element of the lattice of regular edge labelings of E(G), and
let (L,U) be the corresponding partition of P .

Then L satisfies the constraints described by the forbidden labels if and only if for
every flippable item x one of the following is true:

– The highest pair involving x in L is (x, i), where i+1 is not a forbidden value for x,
or

– (x,0) is in the upper set and 0 is not a forbidden value for x.

Lemma 1 may be used to show that the set of all constrained layout is a distributive
lattice, and that all constrained layouts may be listed in polynomial time per layout. For
technical reasons we augment P to a new partial order A(P ) = P ∪{−∞,+∞}, where
the new element −∞ lies below all other elements and the new element +∞ lies above
all other elements. Each layout of E(G) corresponds to a partition of P into lower and
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Fig. 4. The family of rectangular layouts dual to a given extended graph E(G) satisfying the
constraints that the edge between rectangles a and b must be vertical (cannot be colored red) and
that the edge between rectangles b and c must be horizontal (cannot be colored blue). The green
regions depict strongly connected components of the associated quasiorder Q . The four central
shaded elements of the lattice correspond to layouts satisfying the constraints.

upper sets, which can be mapped into a partition of A(P ) by adding −∞ to the lower
set and +∞ to the upper set. The distributive lattice J(A(P )) thus has two additional
elements that do not correspond to layouts of E(G): one in which the lower set is empty
and one in which the upper set is empty. We define a constraint graph C having as its
vertices the elements of A(P ), with edges defined as follows:

– If (x, i) and (x, i+1) are both elements of A(P ) and i+1 is a forbidden value for x,
we add an edge from (x, i) to (x, i+ 1) in C.

– If (x, i) is an element of A(P ) but (x, i+ 1) is not, and i+ 1 is a forbidden value for
x, we add an edge from (x, i) to +∞ in C.

– If 0 is a forbidden value for x, we add an edge from−∞ to (x,0) in C.

All together, this brings us to the following result:

Lemma 3. Let E(G) be an extended graph without nontrivial separating 4-cycles and
with a given set of forbidden orientations, and let Q be the quasiorder formed from
the transitive closure of A(P )∪C as described in Lemma 1. Then the elements of J(Q )
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corresponding to partitions of Q into two nonempty subsets correspond to exactly the
layouts that satisfy the forbidden orientation constraints.

Proof. By Lemma 2 and the definition of C, a partition in J(P ) corresponds to a con-
strained layout if and only if it respects each of the edges in C. By Lemma 1, the ele-
ments of J(Q ) correspond to partitions of A(P ) that respect C. And a partition of A(P )
corresponds to an element of J(P ) if and only if its lower set does not contain +∞ and
its upper set does not contain −∞.

Corollary 1. Let E(G) be an extended graph without nontrivial separating 4-cycles
and with a given set of forbidden orientations. There exists a constrained layout for
E(G) if and only if there exists more than one strongly connected component in Q .

Corollary 2. The existence of a constrained layout for a given extended graph E(G)
without nontrivial separating 4-cycles can be proved or disproved in polynomial time.

Corollary 3. All constrained layouts for a given extended graph E(G) without nontriv-
ial separating 4-cycles can be listed in polynomial time per layout.

Figure 4 depicts the sublattice resulting from these constructions for the example from
Figure 3, with constraints on the orientations of two of the layout edges.

3.3 Junction Orientation Constraints

So far we have only considered forbidding certain edge labels. However the method
above can easily be extended to different types of constraints. For example, consider
two elements of P (x, i) and (y, j) that are a covering pair in P ; this implies that x and
y are two of the three flippable items surrounding unique a T-junction of the layouts
dual to E(G). Forcing (x, i) and (y, j) to be equivalent by adding an edge from (x, i)
to (y, j) in the constraint graph C can be used for more general constraints: rather than
disallowing one or more of the four orientations for any single flippable item, we can
disallow one or more of the twelve orientations of any T-junction. For instance, by
adding equivalences of this type we could force one of the three rectangles at the T-
junction to be the one with the 180-degree angle.

Any internal T-junction of a layout for E(G) (dual to a triangle of G) has 12 potential
orientations: each of its three rectangles can be the one with the 180-degree angle, and
with that choice fixed there remain four choices for the orientation of the junction. In
terms of the regular edge labeling, any triangle of G may be colored and oriented in
any of 12 different ways. For a given covering pair (x, i) and (y, j), let Ci, j

x,y denote the
set of edges between pairs (x, i + 4k) and (y, j + 4k) for all possible integer values of
k, together with an edge from −∞ to (y,0) if j mod 4 = 0 and an edge from (x, i+ 4k)
to +∞ if i + 4k is the largest value of i′ such that (x, i′) belongs to P . Any T-junction
is associated with 12 of these edge sets, as there are three ways of choosing a pair
of adjacent flippable items and four ways of choosing values of i and j (mod 4) that
lead to covering pairs. Including any one of these edge sets in the constraint graph C
corresponds to forbidding one of the 12 potential orientations of the T-junction.

Thus, Lemma 3.2 and its corollaries may be applied without change to dual graphs
E(G) with junction orientation constraints as well as edge orientation constraints, as
long as E(G) has no nontrivial separating 4-cycles.
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4 Constrained Layouts for Unconstrained Dual Graphs

Proper graphs with nontrivial separating 4-cycles still have finite distributive lattices of
layouts, but it is no longer possible to translate orientation constraints into equivalences
between members of an underlying partial order. The reason is that, for a graph without
trivial separating 4-cycles, the orientation of a feature of the layout changes only for a
flip involving that feature, so that the orientation may be determined from the flip count
modulo four. For more general graphs the orientation of a feature is changed not only
for flips directly associated with that feature, but also for flips associated with larger
4-cycles that contain the feature, so the flip count of the feature no longer determines
its orientation. For this reason, as in [3], we treat general proper graphs by decompos-
ing them into minimal separation components with respect to separating 4-cycles and
piecing together solutions found separately within each of these components.

For each separating four-cycle C in a proper graph G with a corner assignment E(G)
consider two minors of G defined as follows. The inner separation component of C is
a graph GC and its extended graph E(GC), where GC is the subgraph of G induced by
the vertices inside C and E(GC) adds the four vertices of the cycle as corners of the
extended graph. The outer separation component of C is a graph formed by contracting
the interior of C into a single supervertex. A minimal separation component of G is
a minor of G formed by repeatedly splitting larger graphs into separation components
until no nontrivial separating four-cycles remain. A partition tree of E(G) into minimal
separation components may be found in linear time [3].

We use the representation of a graph as a tree of minimal separation components in
our search for constrained layouts for G . We first consider each such minimal compo-
nent separately for every possible mapping of vertices of C to {l,t,r,b} (we call these
mappings the orientation of E(G)). Different orientations imply different flipping val-
ues of forbidden labels for the given constraint function, since the flipping numbers are
defined with respect to the orientation of E(G). Having that in mind we are going to
test the graph E(G) for existence of a constrained layout in the following way:

For each piece in a bottom-up traversal of the decomposition tree and for each ori-
entation of the corners of the piece:

1. Find the partial order P describing the layouts of the piece
2. Translate the orientation constraints within the piece into a constraint graph on the

augmented partial order A(P ).

Fig. 5. An extended graph with a nontrivial separating four-cycle (left), its outer separation com-
ponent (center), and its inner separation component (right). From [3].
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3. Compute the strongly connected components of the union of A(P ) with the con-
straint graph, and form a binary relation that is a subset of Q and that includes all
covering relations in Q by finding the components containing each pair of elements
in each covering relation in P .

4. Translate the existence or nonexistence of a layout into a constraint on the label of
the corresponding degree-4 vertex in the parent piece of the decomposition. That
is, if the constrained layout for a given orientation of E(G ′) does not exist, for-
bid (in the parent piece of the decomposition) the label of the degree-four vertex
corresponding to that orientation.

If the algorithm above confirms the existence of a constrained layout, we may list all
layouts satisfying the constraints as follows. For each piece in the decomposition tree,
in top-down order:

1. List all lower sets of the corresponding quasiorder Q .
2. Translate each lower set into a layout for that piece.
3. For each layout, and each child of the piece in the decomposition tree, recursively

list the layouts in which the child’s corner orientation matches the labeling of the
corresponding degree-four vertex of the outer layout.

4. Glue the inner and outer layouts together.

Theorem 1. The existence of a constrained layout for a proper graph G can be found
in polynomial time in |G |. The set of all constrained layouts for graph can be found in
polynomial time per layout.

As described in [3], the partial order P describing the layouts of each piece has a number
of elements and covering pairs that is quadratic in the number of vertices in the dual
graph of the piece, and a description of this partial order in terms of its covering pairs
may be found in quadratic time. The strongly connected component calculation within
the algorithm takes time linear in the size of P , and therefore the overall algorithm for
testing the existence of a constrained layout takes time O(n2), where n is the number of
vertices in the given dual graph.

5 Finding Area-Universal Constrained Layouts

Our previous work [3] included an algorithm for finding area-universal layouts that
is fixed-parameter tractable, with the maximum number of separating four-cycles in
any piece of the separation component decomposition as its parameter. It is not known
whether this problem may be solved in polynomial time for arbitrary graphs. But as we
outline in this section, the same fixed parameter tractability result holds for a combina-
tion of the constraints from that paper and from this one: the problem of searching for
an area-universal layout with constrained orientations.

These layouts correspond to partitions of P such that all flippable items that are
minimal elements of the upper set and all flippable items that are maximal items of the
lower set are all degree-four vertices. A brute force algorithm can find these partitions
by looking at all sets of degree-four vertices as candidates for extreme sets for partitions
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of P . Instead, in our previous work on this problem we observed that a flippable edge
is not free in a layout (i.e. cannot be flipped in the layout), if an only if it is fixed by
a so-called stretched pair. A stretched pair is a pair of two degree-four vertices (v,w),
such that on any monotone path up from L w is flipped before w, and on any monotone
path down from L v is flipped before w. If fv(L) is the maximal flipping value of v,
then we declare (v, /0) to be stretched (where /0 is a special symbol) and declare ( /0,w)
to be a stretched pair if fw(L) = 0. An edge is fixed by a stretched pair (v,w) in L if
x if every monotone path up from L moves w before moving x, and every monotone
path down from L moves v before moving x. So instead of looking for extreme sets, we
could check every set of degree-four vertices for existence of a layout in which every
pair in the set is stretched, and check which edges each such a set fixes. Each set H
of pairs can be checked for stretchability by starting at the bottom of the lattice and
flipping the corresponding items of P up the lattice until every pair in H is stretched
or the maximal elements of the lattice is reached. If there are k degree-four vertices (or
equivalently separating 4-cycles) in a piece, there are 2O(k2) sets of stretched pairs we
need consider, each of which takes polynomial time to test, so the overall algorithm for
searching for unconstrained area-universal layouts takes time 2O(k2)nO(1).

For constrained layouts, a similar approach works. Within each piece of the separa-
tion decomposition, we consider 2O(k2) sets of stretched pairs in P , as before. However,
to test one of these sets, we perform a monotonic sequence of flips in J(Q ), at each point
either flipping an element of Q that contains the upper element of a pair that should be
stretched, or performing a flip that is a necessary prerequisite to flipping such an up-
per element. Eventually, this process will either reach an area-universal layout for the
piece or the top element of the lattice; in the latter case, no area-universal layout having
that pattern of stretched pairs exists. By testing all sets of stretched pairs, we may find
whether an area-universal layout matching the constraints exists for any corner coloring
of any piece in the separation decomposition. These constrained layouts for individual
pieces can then be combined by the same tree traversal of the separation decomposition
tree that we used in the previous section, due to the observation from [3] that a layout
is area-universal if and only if the derived layout within each of its separation compo-
nents is area-universal. The running time for this fixed-parameter tractable algorithm is
the same as in [3].

6 Conclusions and Open Problems

We have provided efficient algorithms for finding rectangular layouts with orientation
constraints on the features of the constraints, and we have outlined how to combine
our approach with the previous algorithms for finding area-universal layouts so that we
can find orientation-constrained area-universal layouts as efficiently as we can solve the
unconstrained problem.

An important problem in the generation of rectangular layouts with special proper-
ties, that has resisted our lattice-theoretic approach, is the generation of sliceable lay-
outs. If we are given a graph G , can we determine whether it is the graph of a sliceable
layout in polynomial time? Additionally, although our algorithms are polynomial time,
there seems no reason intrinsic to the problem for them to take as much time as they do:



Orientation-Constrained Rectangular Layouts 277

can we achieve subquadratic time bounds for finding orientation-constrained layouts,
perhaps by using an algorithm based more on the special features of the problem and
less on general ideas from lattice theory?

Moving beyond layouts, there are several other important combinatorial construc-
tions that may be represented using finite distributive lattices, notably the set of match-
ings and the set of spanning trees of a planar graph, and certain sets of orientations of
arbitrary graphs [9]. It would be of interest to investigate whether our approach of com-
bining the underlying partial order of a lattice with a constraint graph produces useful
versions of constrained matching and constrained spanning tree problems, and whether
other algorithms that have been developed in the more general context of distributive
finite lattices [10] might fruitfully be applied to lattices of rectangular layouts.
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7. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 5(2), 145–157
(1985)

8. Liao, C.-C., Lu, H.-I., Yen, H.-C.: Compact floor-planning via orderly spanning trees. Journal
of Algorithms 48, 441–451 (2003)

9. Propp, J.: Lattice structure for orientations of graphs. Electronic preprint arxiv:math/0209005
(1993)

10. Propp, J.: Generating random elements of finite distributive lattices. Electronic J. Combina-
torics 4(2), R15 (1997)

11. Raisz, E.: The rectangular statistical cartogram. Geographical Review 24(2), 292–296 (1934)
12. Rinsma, I.: Rectangular and orthogonal floorplans with required rooms areas and tree adja-

cency. Environment and Planning B: Planning and Design 15, 111–118 (1988)
13. Tang, H., Chen, W.-K.: Generation of rectangular duals of a planar triangulated graph by

elementary transformations. In: IEEE Int. Symp. Circuits and Systems, vol. 4, pp. 2857–
2860 (1990)

14. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Computational Geometry: The-
ory and Applications 37(3), 175–187 (2007)



The h-Index of a Graph and Its
Application to Dynamic Subgraph Statistics

David Eppstein1 and Emma S. Spiro2

1 Computer Science Department, University of California, Irvine
2 Department of Sociology, University of California, Irvine

Abstract. We describe a data structure that maintains the number of triangles in
a dynamic undirected graph, subject to insertions and deletions of edges and of
degree-zero vertices. More generally it can be used to maintain the number of
copies of each possible three-vertex subgraph in time O(h) per update, where h
is the h-index of the graph, the maximum number such that the graph contains h
vertices of degree at least h. We also show how to maintain the h-index itself, and
a collection of h high-degree vertices in the graph, in constant time per update.
Our data structure has applications in social network analysis using the exponen-
tial random graph model (ERGM); its bound of O(h) time per edge is never worse
than the Θ(

√
m) time per edge necessary to list all triangles in a static graph, and

is strictly better for graphs obeying a power law degree distribution. In order to
better understand the behavior of the h-index statistic and its implications for the
performance of our algorithms, we also study the behavior of the h-index on a set
of 136 real-world networks.

1 Introduction

The exponential random graph model (ERGM, or p∗ model) [18, 35, 30] is a general
technique for assigning probabilities to graphs that can be used both to generate sim-
ulated data for social network analysis and to perform probabilistic reasoning on real-
world data. In this model, one fixes the vertex set of a graph, identifies certain features
fi in graphs on that vertex set, determines a weight wi for each feature, and sets the
probability of each graph G to be proportional to an exponential function of the sum of
its features’ weights, divided by a normalizing constant Z:

Pr(G) =
exp∑ fi∈G wi

Z
.

Z is found by summing over all graphs on that vertex set:

Z = ∑
G

exp ∑
fi∈G

wi.

For instance, if each potential edge is considered to be a feature and all edges have
weight ln p

1−p , the normalizing constant Z will be (1− p)−n(n−1)/2, and the probability

of any particular m-edge graph will be pm(1− p)n(n−1)/2−m, giving rise to the famil-
iar Erdős-Rényi G(n, p) model. However, the ERG model is much more general than
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the Erdős-Rényi model: for instance, an ERGM in which the features are whole graphs
can represent arbitrary probabilities. The generality of this model, and its ability to de-
fine probability spaces lacking the independence properties of the simpler Erdős-Rényi
model, make it difficult to analyze analytically. Instead, in order to generate graphs in
an ERG model or to perform other forms of probabilistic reasoning with the model, one
typically uses a Markov Chain Monte Carlo method [31] in which one performs a large
sequence of small changes to sample graphs, updates after each change the counts of
the number of features of each type and the sum of the weights of each feature, and uses
the updated values to determine whether to accept or reject each change. Because this
method must evaluate large numbers of graphs, it is important to develop very efficient
algorithms for identifying the features that are present in each graph.

Typical features used in these models take the form of small subgraphs: stars of
several edges with a common vertex (used to represent constraints on the degree distri-
bution of the resulting graphs), triangles (used in the triad model [19], an important pre-
decessor of ERG models, to represent the likelihood that friends-of-friends are friends
of each other), and more complicated subgraphs used to control the tendencies of sim-
pler models to generate unrealistically extremal graphs [32]. Using highly local features
of this type is important for reasons of computational efficiency, matches well the type
of data that can be obtained for real-world social networks, and is well motivated by
the local processes believed to underly many types of social network. Thus, ERGM
simulation leads naturally to problems of subgraph isomorphism, listing or counting all
copies of a given small subgraph in a larger graph.

There has been much past algorithmic work on subgraph isomorphism problems. It
is known, for instance, that an n-vertex graph with m edges may have Θ(m3/2) triangles
and four-cycles, and all triangles and four-cycles can be found in time O(m3/2) [22, 6].
All cycles of length up to seven can be counted rather than listed in time of O(nω) [3]
where ω≈ 2.376 is the exponent from the asymptotically fastest known matrix multipli-
cation algorithms [7]; this improves on the previous O(m3/2) bounds for dense graphs.
Fast matrix multiplication has also been used for more general problems of finding and
counting small cliques in graphs and hypergraphs [10, 24, 26, 34, 36]. In planar graphs,
or more generally graphs of bounded local treewidth, the number of copies of any fixed
subgraph may be found in linear time [13, 14], even though this number may be a
large polynomial of the graph size [11]. Approximation algorithms for subgraph iso-
morphism counting problems based on random sampling have also been studied, with
motivating applications in bioinformatics [9, 23, 29]. However, much of this subgraph
isomorphism research makes overly restrictive assumptions about the graphs that are
allowed as input, runs too slowly for the ERGM application, depends on impractically
complicated matrix multiplication algorithms, or does not capture the precise subgraph
counts needed to accurately perform Markov Chain Monte Carlo simulations.

Markov Chain Monte Carlo methods for ERGM-based reasoning process a sequence
of graphs each differing by a small change from a previous graph, so it is natural to seek
additional efficiency by applying dynamic graph algorithms [15,17,33], data structures
to efficiently maintain properties of a graph subject to vertex and edge insertions and
deletions. However, past research on dynamic graph algorithms has focused on problems
of connectivity, planarity, and shortest paths, and not on finding the features needed
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in ERGM calculations. In this paper, we apply dynamic graph algorithms to subgraph
isomorphism problems important in ERGM feature identification. To our knowledge,
this is the first work on dynamic algorithms for subgraph isomorphism.

A key ingredient in our algorithms is the h-index, a number introduced by Hirsch [21]
as a way of balancing prolixity and impact in measuring the academic achievements of
individual researchers. Although problematic in this application [1], the h-index can
be defined and studied mathematically, in graph-theoretic terms, and provides a con-
venient measure of the uniformity of distribution of edges in a graph. Specifically, for
a researcher, one may define a bipartite graph in which the vertices on one side of the
bipartition represent the researcher’s papers, the vertices on the other side represent oth-
ers’ papers, and edges correspond to citations by others of the researcher’s papers. The
h-index of the researcher is the maximum number h such that at least h vertices on the
researcher’s side of the bipartition each have degree at least h. We generalize this to
arbitrary graphs, and define the h-index of any graph to be the maximum h such that the
graph contains h vertices of degree at least h. Intuitively, an algorithm whose running
time is bounded by a function of h is capable of tolerating arbitrarily many low-degree
vertices without slowdown, and is only mildly affected by the presence of a small num-
ber of very high degree vertices; its running time depends primarily on the numbers of
intermediate-degree vertices. As we describe in more detail in Section 7, the h-index of
any graph with m edges and n vertices is sandwiched between m/n and

√
2m, so it is

sublinear whenever the graph is not dense, and the worst-case graphs for these bounds
have an unusual degree distribution that is unlikely to arise in practice.

Our main result is that we may maintain a dynamic graph, subject to edge insertions,
edge deletions, and insertions or deletions of isolated vertices, and maintain the number
of triangles in the graph, in time O(h) per update where h is the h-index of the graph
at the time of the update. This compares favorably with the time bound of Θ(m3/2)
necessary to list all triangles in a static graph. In the same O(h) time bound per update
we may more generally maintain the numbers of three-vertex induced subgraphs of each
possible type, and in constant time per update we may maintain the h-index itself. Our
algorithms are randomized, and our analysis of them uses amortized analysis to bound
their expected times on worst-case input sequences. Our use of randomization is limited,
however, to the use of hash tables to store and retrieve data associated with keys in O(1)
expected time per access. By using either direct addressing or deterministic integer
searching data structures instead of hash tables we may avoid the use of randomness at
an expense of either increased space complexity or an additional factor of O(log logn)
in time complexity; we omit the details.

We also study the behavior of the h-index, both on scale-free graph models and on
a set of real-world graphs used in social network analysis. We show that for scale-free
graphs, the h-index scales as a power of n, less than its square root, while in the real-
world graphs we studied the scaling exponent appears to have a bimodal distribution.

2 Dynamic h-Indexes of Integer Functions

We begin by describing a data structure for the following problem, which generalizes
that of maintaining h-indexes of dynamic graphs. We are given a set S, and a function
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f from S to the non-negative integers, both of which may vary discretely through a
sequence of updates: we may insert or delete elements of S (with arbitrary function
values for the inserted elements), and we may make arbitrary changes to the function
value of any element of S. As we do so, we wish to maintain a set H such that, for
every x ∈ H, f (x) ≥ |H|, with H as large as possible with this property. We call |H|
the h-index of S and f , and we call the partition of S into the two subsets (H,S \H) an
h-partition of S and f .

To do so, we maintain the following data structures:

– A dictionary F mapping each x ∈ S to its value under f : F [x] = f (x).
– The set H (stored as a dictionary mapping members of H to an arbitrary value).
– The set B = {x ∈ H | f (x) = |H|}.
– A dictionary C mapping each non-negative integer i to the set {x∈ S\B | f (x) = i}.

We only store these sets when they are non-empty, so the situation that there is no
x with f (x) = i can be detected by the absense of i among the keys of C.

To insert an element x into our structure, we first set F[x] = f (x), and add x to C[ f (x)]
(or add a new set {x} at C[ f (x)] if there is no existing entry for f (x) in C). Then, we test
whether f (x) > |H|. If not, the h-index does not change, and the insertion operation is
complete. But if f (x) > |H|, we must include x into H. If B is nonempty, we choose an
arbitrary y ∈ B, remove y from B and from H, and add y to C[|H|] (or create a new set
{y} if there is no entry for |H| in C). Finally, if f (x) > |H| and B is empty, the insertion
causes the h-index (|H|) to increase by one. In this case, we test whether there is an
entry for the new value of |H| in C. If so, we set B to equal the identity of the set in
C[|H|] and delete the entry for |H| in C; otherwise, we set B to the empty set.

To remove x from our structure, we remove its entry from F and we remove it from B
(if it belongs there) or from the appropriate set in C[ f (x)] otherwise. If x did not belong
to H, the h-index does not change, and the deletion operation is complete. Otherwise, let
h be the value of |H| before removing x. We remove x from H, and attempt to restore the
lost item from H by moving an element from C[h] to B (deleting C[h] if this operation
causes it to become empty). But if C has no entry for h, the h-index decreases; in this
case we store the identity of set B into C[h], and set B to be the empty set.

Changing the value of f (x) may be accomplished by deleting x and then reinserting
it, with some care so that we do not update H if x was already in H and both the old and
new values of f (x) are at least equal to |H|.

Theorem 1. The data structure described above maintains the h-index of S and f , and
an h-partition of S and f , in constant time plus a constant number of dictionary opera-
tions per update.

We defer the proof to the full version of the paper [16].

3 Gradual Approximate h-Partitions

Although the vector h-index data structure of the previous section allows us to maintain
the h-index of a dynamic graph very efficiently, it has a property that would be unde-
sirable were we to use it directly as part of our later dynamic graph data structures:
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the h-partition (H,S \H) changes too frequently. Changes to the set H will turn out to
be such an expensive operation that we only wish them to happen, on average, O(1/h)
times per update. In order to achieve such a small amount of change to H, we need to
restrict the set of updates that are allowed: now, rather than arbitrary changes to f , we
only allow it to be incremented or decremented by a single unit, and we only allow an
element x to be inserted or deleted when f (x) = 0. We now describe a modification of
the H-partition data structure that has this property of changing more gradually for this
restricted class of updates.

Specifically, along with all of the structures of the H-partition, we maintain a set
P ⊂ H describing a partition (P,S \P). When an element of x is removed from H, we
remove it from P as well, to maintain the invariant that P ⊂ H. However, we only add
an element x to P when an update (an increment of f (x) or decrement of f (y) for some
other element y) causes f (x) to become greater than or equal to 2|H|. The elements to
be added to P on each update may be found by maintaining a dictionary, parallel to C,
that maps each integer i to the set {x ∈H \P | f (x) = i}.
Theorem 2. Let σ denote a sequence of operations to the data structure described
above, starting from an empty data structure. Let ht denote the value of h after t op-
erations, and let q = ∑i 1/hi. Then the data structure undergoes O(q) additions and
removals of an element to or from P.

We defer the proof to the full version of the paper [16]. For our later application of this
technique as a subroutine in our triangle-finding data structure, we will need a more
local analysis. We may divide a sequence of updates into epochs, as follows: each epoch
begins when the h-index reaches a value that differs from the value at the beginning of
the previous epoch by a factor of two or more. Then, as we show in the full version,
an epoch with h as its initial h-index lasts for at least Ω(h2) steps. Due to this length,
we may assign a full unit of credit to each member of P at the start of each epoch,
without changing the asymptotic behavior of the total number of credits assigned over
the course of the algorithm. With this modification, it follows from the same analysis
as above that, within an epoch of s steps, with an h-index of h at the start of the epoch,
there are O(s/h) changes to P.

4 Counting Triangles

We are now ready to describe our data structure for maintaining the number of triangles
in a dynamic graph. It consists of the following information:

– A count of the number of triangles in the current graph
– A set E of the edges in the graph, indexed by the pair of endpoints of the edge,

allowing constant-time tests for whether a given pair of endpoints are linked by an
edge.

– A partition of the graph vertices into two sets H and V \H as maintained by the
data structure from Section 3.

– A dictionary P mapping each pair of vertices u,v to a number P[u,v], the number of
two-edge paths from u to v via a vertex of V \H. We only maintain nonzero values
for this number in P; if there is no entry in P for the pair u,v then there exist no
two-edge paths via V \H that connect u to v.
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Theorem 3. The data structure described above requires space O(mh) and may be
maintained in O(h) randomized amortized time per operation, where h is the h-index of
the graph at the time of the operation.

Proof. Insertion and deletion of vertices with no incident edges requires no change to
most of these data structures, so we concentrate our description on the edge insertion
and deletion operations.

To update the count of triangles, we need to know the number of triangles uvw in-
volving the edge uv that is being deleted or inserted. Triangles in which the third vertex
w belongs to H may be found in time O(h) by testing all members of H, using the data
structure for E to test in constant time per member whether it forms a triangle. Trian-
gles in which the third vertex w does not belong to H may be counted in time O(1) by
a single lookup in P.

The data structure for E may be updated in constant time per operation, and the
partition into H and V \H may be maintained as described in the previous sections
in constant time per operation. Thus, it remains to describe how to update P. If we
are inserting an edge uv, and u does not belong to H, it has at most 2h neighbors; we
examine all other neighbors w of u and for each such neighbor increment the counter in
P[v,w] (or create a new entry in P[v,w] with a count of 1 if no such entry already exists).
Similarly if v does not belong to H we examine all other neighbors w of v and for each
such neighbor increment P[u,w]. If we are deleting an edge, we similarly decrement the
counters or remove the entry for a counter if decrementing it would leave a zero value.
Each update involves incrementing or decrementing O(h) counters and therefore may
be implemented in O(h) time.

Finally, a change to the graph may lead to a change in H, which must be reflected in
P. If a vertex v is moved from H to V \H, we examine all pairs u,w of neighbors of v and
increment the corresponding counts in P[u,w], and if a vertex v is moved from V \H to
H we examine all pairs u,w of neighbors of v and decrement the corresponding counts
in P[u,w]. This step takes time O(h2), because v has O(h) neighbors when it is moved
in either direction, but as per the analysis in Section 3 it is performed an average of
O(1/h) times per operation, so the amortized time for updates of this type, per change
to the input graph, is O(h).

The space for the data structure is O(m) for E , O(n) for the data structure that main-
tains H, and O(mh) for P because each edge of the graph belongs to O(h) two-edge
paths through low-degree vertices. ��

5 Subgraph Multiplicity

Although the data structure of Theorem 3 only counts the number of triangles in a
graph, it is possible to use it to count the number of three-vertex subgraphs of all types,
or the number of induced three-vertex subgraphs of all types. In what follows we let
pi = pi(G) denote the number of paths of length i in G, and we let ci = ci(G) denote
the number of cycles of length i in G.

The set of all edges in a graph G among a subset of three vertices {u,v,w} determine
one of four possible induced subgraphs: an independent set with no edges, a graph with
a single edge, a two-star consisting of two edges, or a triangle. Let g0, g1, g2, and g3



284 D. Eppstein and E.S. Spiro

denote the numbers of three-vertex subgraphs of each of these types, where gi counts
the three-vertex induced subgraphs that have i edges.

Observe that it is trivial to maintain for a dynamic graph, in constant time per oper-
ation, the three quantities n, m, and p2, where n denotes the number of vertices of the
graph, m denotes the number of edges, and p2 denotes the number of two-edge paths
that can be formed from the edges of the graph. Each change to the graph increments
or decrements n or m. Additionally, adding an edge uv to a graph where u and v already
have du and dv incident edges respectively increases p2 by du + dv, while removing an
edge uv decreases p2 by du + dv− 2. Letting c3 denote the number of triangles in the
graph as maintained by Theorem 3, the quantities described above satisfy the matrix
equation ⎡⎢⎢⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

g0

g1

g2

g3

⎤⎥⎥⎦=

⎡⎢⎢⎣
n(n−1)(n−2)/6

m(n−2)
p2

c3

⎤⎥⎥⎦ .

Each row of the matrix corresponds to a single linear equation in the gi values. The
equation from the first row, g0 +g1 +g2 +g3 =

(n
3

)
, can be interpreted as stating that all

triples of vertices form one graph of one of these types. The equation from the second
row, g1 +2g2 +3g3 = m(n−2), is a form of double counting where the number of edges
in all three-vertex subgraphs is added up on the left hand side by subgraph type and on
the right hand side by counting the number of edges (m) and the number of triples each
edge participates in (n− 2). The third row’s equation, g2 + 3g3 = p2, similarly counts
incidences between two-edge paths and triples in two ways, and the fourth equation
g3 = c3 follows since each three vertices that are connected in a triangle cannot form
any other induced subgraph than a triangle itself.

By inverting the matrix we may reconstruct the g values:

g3 = c3

g2 = p2−3g3

g1 = m(n−2)− (2g2 + 3g3)

g0 =
(

n
3

)
− (g1 + g2 + g3).

Thus, we may maintain each number of induced subgraphs gi in the same asymptotic
time per update as we maintain the number of triangles in our dynamic graph. The
numbers of subgraphs of different types that are not necessarily induced are even easier
to recover: the number of three-vertex subgraphs with i edges is given by the ith entry
of the vector on the right hand side of the matrix equation.

As we detail in the full version of the paper [16], it is also possible to maintain
efficiently the numbers of star subgraphs of a dynamic graph, and the number of four-
vertex paths in a dynamic graph.

6 Weighted Edges and Colored Vertices

It is possible to generalize our triangle counting method to problems of weighted trian-
gle counting: we assign each edge uv of the graph a weight wuv, define the weight of a
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triangle to be the product of the weights of its edges, and maintain the total weight of
all triangles. For instance, if 0 ≤ wuv ≤ 1 and each edge is present in a subgraph with
probability wuv, then the total weight gives the expected number of triangles in that
subgraph.

Theorem 4. The total weight of all triangles in a weighted dynamic graph, as de-
scribed above, may be maintained in time O(h) per update.

Proof. We modify the structure P[u,v] maintained by our triangle-finding data structure,
so that it stores the weight of all two-edge paths from u to v. Each update of an edge
uv in our structure involves a set of individual triangles uvx involving vertices x ∈ H
(whose weight is easily calculated) together with the triangles formed by paths counted
in P[u,v] (whose total weight is P[u,v]wuv). The same time analysis from Theorem 3
holds for this modified data structure. ��

For social networking ERGM applications, an alternative generalization may be ap-
propriate. Suppose that the vertices of the given dynamic graph are colored; we wish to
maintain the number of triangles with each possible combination of colors. For instance,
in graphs representing sexual contacts [25], edges between individuals of the same sex
may be less frequent than edges between individuals of opposite sexes; one may model
this in an ERGM by assigning the vertices two different colors according to whether
they represent male or female individuals and using feature weights that depend on the
colors of the vertices in the features. As we now show, problems of counting colored
triangles scale well with the number of different groups into which the vertices of the
graph are classified.

Theorem 5. Let G be a dynamic graph in which each vertex is assigned one of k dif-
ferent colors. Then we may maintain the numbers of triangles in G with each possible
combination of colors, in time O(h + k) per update.

Proof. We modify the structure P[u,v] stored by our triangle-finding data structure, to
store a vector of k numbers: the ith entry in this vector records the number of two-
edge paths from u to v through a low-degree vertex with color i. Each update of an
edge uv in our structure involves a set of individual triangles uvx involving vertices
x ∈ H (whose colors are easily observed) together with the triangles formed by paths
counted in P[u,v] (with k different possible colorings, recorded by the entries in the
vector P[u,v]). Thus, the part of the update operation in which we compute the numbers
of triangles for which the third vertex has low degree, by looking up u and v in P, takes
time O(k) instead of O(1). The same time analysis from Theorem 3 holds for all other
aspects of this modified data structure. ��

Both the weighting and coloring generalizations may be combined with each other with-
out loss of efficiency.

7 How Small Is the h-Index of Typical Graphs?

It is straightforward to identify the graphs with extremal values of the h-index. A split
graph in which an h-vertex clique is augmented by adding n−h vertices, each connected
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only to the vertices in the clique, has n vertices and m = h(n− 1) edges, achieving an
h-index of m/(n− 1). This is the minimum possible among any graph with n vertices
and m edges: any other graph may be transformed into a split graph of this type, while
increasing its number of edges and not decreasing h, by finding an h-partition (H,V \H)
and repeatedly replacing edges that do not have an endpoint in H by edges that do have
such an endpoint. The graph with the largest h-index is a clique with m edges together
with enough isolated vertices to fill out the total to n; its h-index is

√
2m(1 + o(1)).

Thus, for sparse graphs in which the numbers of edges and vertices are proportional to
each other, the h-index may be as small as O(1) or as large as Ω(

√
n). At which end of

this spectrum can we expect to find the graphs arising in social network analysis?
One answer can be provided by fitting mathematical models of the degree distribu-

tion, the relation between the number of incident edges at a vertex and the number of
vertices with that many edges, to social networks. For many large real-world graphs,
observers have reported power laws in which the number of vertices with degree d is
proportional to nd−γ for some constant γ > 1; a network with this property is called
scale-free [2,25,27,28]. Typically, γ lies in or near the interval 2≤ γ≤ 3 although more
extreme values are possible. The h-index of these graphs may be found by solving for
the h such that h = nh−γ; that is, h = Θ(n1/(1+γ)). For any γ > 1 this is an asymptotic
improvement on the worst-case O(

√
n) bound for graphs without power-law degree

distributions. For instance, for γ = 2 this would give a bound of h = O(n1/3) while for
γ = 3 it would give h = O(n1/4). That is, by depending on the h-index as it does, our
algorithm is capable of taking advantage of the extra structure inherent in scale-free
graphs to run more quickly for them than it does in the general case.

To further explore h-index behavior in real-world networks, we computed the h-
index for a collection of 136 network data sets typical of those used in social network
analysis. These data sets were drawn from a variety of sources traditionally viewed as
common repositories for such data. The majority of our data sets were from the well
known Pajek datasets [4]. Pajek is a program used for the analysis and visualization of
large networks. The collection of data available with the Pajek software includes cita-
tion networks, food-webs, friendship network, etc. In addition to the Pajek data sets, we
included network data sets from UCINET [5]. Another software package developed for
network analysis, UCINET includes a corpus of data sets that are more traditional in
the social sciences. Many of these data sets represent friendship or communication rela-
tions; UCINET also includes various social networks for non-human animals. We also
used network data included as part of the statnet software suite [20], statistical model-
ing software in R. statnet includes ERGM functionality, making it a good example for
data used specifically in the context of ERG models. Finally, we included data available
on the UCI Network Data Repository [8], including some larger networks such as the
WWW, blog networks, and other online social networks. By using this data we hope to
understand how the h-index scales in real-world networks.

Details of the statistics for these networks are presented in the full version of the
paper [16]; a summary of the statistics for network size and h-index are in Table 1,
below. For this sample of 136 real-world networks, the h-index ranges from 2 to 116.
The row of summary statistics for logh/ logn suggests that, for many networks, h scales
as a sublinear power of n. The one case with an h-index of 116 represents the ties among
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Table 1. Summary statistics for real-world network data

min. median mean max.

network size (n) 10 67 535.3 10616
h-index (h) 2 12 19.08 116

logn 2.303 4.204 4.589 9.270
logh 0.6931 2.4849 2.6150 4.7536

logh/ log n 0.2014 0.6166 0.6006 1.0000

Fig. 1. A frequency histogram for logh/ log n

Slovenian magazines and journals between 1999 and 2000. The vertices of this network
represent journals, and undirected edges between journals have an edge weight that
represents the number of shared readers of both journals; this network also includes self-
loops describing the number of all readers that read this journal. Thus, this is a dense
graph, more appropriately handled using statistics involving the edge weights than with
combinatorial techniques involving the existence or nonexistence of triangles. However,
this is the only network from our dataset with an h-index in the hundreds. Even with
significantly larger networks, the h-index appears to scale sublinearly in most cases.

A histogram of the h-index data in Figure 1 clearly shows a bimodal distribution.
Additionally, as the second peak of the bimodal distribution corresponds to a scaling
exponent greater than 0.5, the graphs corresponding to that peak do not match the pre-
dictions of the scale-free model. However we were unable to discern a pattern to the
types of networks with smaller or larger h-indices, and do not speculate on the reasons
for this bimodality. We look more deeply at the scaling of the h-index using standard
regression techniques in the full version of the paper [16].

8 Discussion

We have defined an interesting new graph invariant, the h-index, presented efficient dy-
namic graph algorithms for maintaining the h-index and, based on them, for maintaining
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the set of triangles in a graph, and studied the scaling behavior of the h-index both on
theoretical scale-free graph models and on real-world network data.

There are many directions for future work. For sparse graphs, the h-index may be
larger than the arboricity, a graph invariant used in static subgraph isomorphism [6,12];
can we speed up our dynamic algorithms to run more quickly on graphs of bounded
arboricity? We handle undirected graphs but the directed case is also of interest. We
would like to find efficient data structures to count larger subgraphs such as 4-cycles, 4-
cliques, and claws; dynamic algorithms for these problems are likely to be slower than
our triangle-finding algorithms but may still provide speedups over static algorithms.
Another network statistic related to triangle counting is the clustering coefficient of a
graph; can we maintain it efficiently? Additionally, there is an opportunity for additional
work in implementing our data structures and testing their efficiency in practice.
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Abstract. We present an O(n3 log2 n)-time algorithm for the following problem:
given a finite metric space X , create a star-topology network with the points of X
as its leaves, such that the distances in the star are at least as large as in X , with
minimum dilation. As part of our algorithm, we solve in the same time bound the
parametric negative cycle detection problem: given a directed graph with edge
weights that are increasing linear functions of a parameter λ, find the smallest
value of λ such that the graph contains no negative-weight cycles.

1 Introduction

A metric space is a set of sites separated by symmetric positive distances that obey the
triangle inequality. If X and Y are metric spaces and f : X �→ Y does not decrease the
distance between any two points, the dilation or stretch factor of f is

sup
x1,x2∈X

d( f (x1), f (x2))
d(x1,x2)

.

We define a star metric to be a metric space in which there exists a hub h such that, for
all x and y, d(x,y) = d(x,h)+ d(h,y). Given the distance matrix of an n-point metric
space X , we would like to construct a function f that maps X into a star metric Y , that
does not decrease distances, and that has as small a dilation as possible. In this paper we
describe an algorithm that finds the optimal f in time O(n3 log2 n). Our problem may
be seen as lying at the confluence of three major areas of algorithmic research:

Spanner construction. A spanner for a metric space X is a graph G with the points of
X as its vertices and weights (lengths) on its edges, such that path lengths in G equal
or exceed those in X ; the dilation of G is measured as above as the maximum ratio
between path length and distance in X . The construction of sparse spanners with low
dilation has been extensively studied [9] but most papers in this area limit themselves to
bounding the dilation of the spanners they construct rather than constructing spanners
of optimal dilation. Very few optimal spanner construction problems are known to be
solvable in polynomial time; indeed, some are known to be NP-complete [15] and others
NP-hard [3, 8]. Our problem can be viewed as constructing a spanner in the form of a
star (a tree with one non-leaf node) that has optimal dilation.

Metric embedding. There has been a large amount of work within the algorithms com-
munity on metric embedding problems, in which an input metric space is to be em-
bedded into a simpler target space with minimal distortion [16]; typical target spaces
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for results of this type include spaces with Lp norms and convex combinations of tree
metrics. As with spanners, there are few results of this type in which the minimum dila-
tion embedding can be found efficiently; instead, research has concentrated on proving
bounds for the achievable dilation. Our result provides an example of a simple class of
metrics, the star metrics, for which optimal embeddings may be found efficiently. As
with embeddings into low-dimensional Lp spaces, our technique allows an input met-
ric with a quadratic number of distance relationships to be represented approximately
using only a linear amount of information.

Facility location. In many applications one is given a collection of demand points in
some space and must select one or more supply points that maximize some objective
function. For instance, the 1-median (minimize the sum of all distances from demand
points to a single supply point) and 1-center (minimize the greatest distance between
any destination point and a single supply point) can be applied to operational challenges
such as deciding where to build a radio transmitter or railroad hub so as to maximize
its utility [7]. In a similar vein the problem discussed in this paper may be seen as
selecting a single supply point to serve as the hub of a star-topology network. In this
context dilation corresponds to the worst multiplicative cost penalty imposed on travel
between any pair of input points due to the requirement that all travel is routed through
the hub (center) point. Superficially, our problem differs somewhat from typical facility
location problems in that the star we construct has a hub that is not given as part of the
input. However, it is possible to show that the hub we find belongs to the tight span
of the input metric space [6], a larger metric space that has properties similar to those
of L∞ spaces. Viewing our problem as one of selecting the optimal hub point from the
tight span gives it the format of a facility location problem.

Previously [10] we considered similar minimum dilation star problems in which
the input and output were both confined to low-dimensional Euclidean spaces. As we
showed, the minimum-dilation star with unrestricted hub location may be found in
O(n logn) expected time in any bounded dimension, and for d = 2 the optimal hub
among the input points may be selected in expected time O(n2α(n) log2 n), where α(n)
is the inverse Ackermann function. For the general metric spaces considered here, the
difficulty of the problems is reversed: it is trivial to select an input point as hub in time
O(n3), while our results show that an arbitrary hub may be found in time O(n3 log2 n).

As we discuss in Section 2, the minimum dilation star problem can be represented
as a linear program; however solving this program directly would give a running time
that is a relatively high order polynomial in n and in the number of bits of precision of
the input matrix. In this paper we seek a faster, purely combinatorial algorithm whose
running time is strongly polynomial in n. Our approach is to first calculate the dilation
λ∗ of the optimal star. We do this by forming a λ-graph G(λ): a directed graph with
weights in the form w(e) = λ ·me + be for parameters me ≥ 0 and be determined from
the input metric. G(λ) has the property that it contains no negative weight cycles if and
only if there exists a star with dilation λ. Next we calculate λ∗, the smallest value such
that G(λ∗) contains no negative-weight cycles, which is also the dilation of the star we
will eventually create. Finally we use G(λ) and λ∗ to compute the lengths of the edges
from the star’s center to each site, and output the resulting star.
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Fig. 1. Example of a metric space and its optimal star, which has dilation λ∗ = 8/5

Our algorithm for computing λ∗, the smallest parameter value admitting no nega-
tive cycles in a parametrically weighted graph, warrants independent discussion. To our
knowledge no known strongly polynomial algorithm solves this problem in full gener-
ality. Karp and Orlin [14] gave an O(mn) time algorithm for a problem in which the
edge weights have the same form w(e) = λ ·me + be as ours, but where each me is re-
stricted to the set {0,1}. If all me = 1, the problem is equivalent to finding the minimum
mean cycle in a directed graph [13], for which several algorithms run in O(mn) time [4].
In our problem, each me may be any nonnegative real number; it is not apparent how
to adapt the algorithm of Karp and Orlin to our problem. Gusfield provided an upper
bound [12] on the number of breakpoints of the function describing the shortest path
length between two nodes in a λ-graph, and Carstensen provided a lower bound [2] for
the same quantity; both bounds have the form nΘ(logn). Hence any algorithm that con-
structs a piecewise linear function that fully describes path lengths for the entire range
of λ values takes at least nΘ(logn) time. In Section 4 we describe our algorithm, which is
based on a dynamic programming solution to the all pairs shortest paths problem. Our
algorithm maintains a compact piecewise linear function representing the shortest path
length for each pair of vertices over a limited range of λ values, and iteratively contracts
the range until a unique value λ∗ can be calculated. Thus it avoids Carstensen’s lower
bound by finding only the optimal λ∗, and not the other breakpoints of the path length
function, allowing it to run in O(n3 log2 n) time.

2 Linear Programming Formulation

In this section we formally define the overall minimum dilation star problem and de-
scribe how to solve it directly using linear programming. Our eventual algorithm never
solves nor even constructs this linear program directly; however stating the underlying
linear program and its related terminology will aid our later exposition.

The input to our algorithm is a finite metric space. Formally, a metric space X is a
tuple X = (X ,dX), where X is a set of sites and the function dX maps any pair of sites to
the nonnegative, real distance between them. The following metric conditions also hold
for any x,y,z ∈ X :

1. dX(x,y) = 0 if and only if x = y (positivity);
2. dX(x,y) = dX(y,x) (symmetry); and
3. dX(x,y)+ dX(y,z) ≥ dX(x,z) (the triangle inequality).

The input to our algorithm is a finite metric space S = (S,dS); we assume that the
distance dS(x,y) between any x,y ∈ S may be reported in constant time, for instance by
a lookup matrix.
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A star is a connected graph with one center vertex. A star contains an edge between
the center and every other vertex, but no other edges. Hence any star is a tree of depth
1, and every vertex except the center is a leaf. Our algorithm must output a weighted
star H whose leaves are the elements S from the input. The edge weights in H must
be at least as large as the distances in S, and must obey reflexivity and the triangle
inequality. In other words, if dH(x,y) is the length of a shortest path from x to y in H,
then dH(x,y) ≥ dS(x,y), dH(x,y) = dH(y,x), and dH(x,y)+ dH(y,z) ≥ dH(x,z) for any
vertices x,y,z in H.

We also ensure that the dilation of H is minimized. For any two vertices u,v in some
weighted graph G whose vertices are points in a metric space, the dilation between u
and v is

δG(u,v) =
dG(u,v)
dS(u,v)

.

The dilation of the entire graph G is the largest dilation between any two vertices, i.e.

ΔG = max
u,v∈G

δG(u,v).

Our output graph H is a star; hence every path between two leaves has two edges, so if
we apply the definition of dilation to H, we obtain

δH(u,v) =
dH(u,c)+ dH(c,v)

dS(u,v)
=

wu,c + wc,v

dS(u,v)

where wx,y is the weight of the edge connecting x and y in H. Hence the dilation of H
may be computed by

ΔH = max
u,v∈H

wu,c + wc,v

dS(u,c)
.

This equation lays the foundation for our formulation of the minimum dilation star
problem as a linear program.

Definition 1. Let L be the following linear program, defined over the variables λ and
cv for every v ∈ S:

Minimize λ

such that for any v ∈ S,
cv ≥ 0, (1)

and for any v,w ∈ S,

cv + cw ≥ dS(v,w) (2)

cv + cw ≤ λ ·dS(v,w). (3)

Let λ∗ be the value assigned to λ in the optimal solution to L . In other words, λ∗ is the
smallest dilation admitted by any set of distances satisfying all the constraints of L .

L is clearly feasible. For example, if D = maxx,y∈S dS(x,y), then the solution ∀v cv = D
and λ = 2D/minx,y∈S dS(x,y) is a feasible, though poor, solution.
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Lemma 1. For any optimal solution of L , the value of λ gives the minimum dilation of
any star network spanning S, and the cv values give the edge lengths of an optimal star
network spanning S.

Proof. Each variable cv corresponds to the weight wv,c of the edge between c and v in
H. Inequality 1 ensures that the distances are nonnegative, Inequality 2 ensures that they
obey the triangle inequality, and Inequality 3 dictates that λ is a largest dilation among
any pair of sites from S. The value of λ is optimal since L is defined to minimize λ.

Unfortunately L contains O(n) variables and O(n2) constraints. Such a program could
be solved using general purpose techniques in a number of steps that is a high-order
polynomial in n and the number of bits of precision used, but our objective is to obtain
a fast algorithm whose running time is strongly polynomial in n. Megiddo showed [19]
that linear programs with at most two variables per inequality may be solved in strongly
polynomial time; however our type (3) inequalities have three variables, so those results
cannot be applied to our problem.

3 Reduction to Parameteric Negative Weight Cycle Detection

In this section we describe a subroutine that maps the set of sites S to a directed,
parametrically-weighted λ-graph G(λ). Every edge of G(λ) is weighted according to
a nondecreasing linear function of a single graph-global variable λ. An important prop-
erty of G(λ) is that the set of values of λ that cause G(λ) to contain a negative weight
cycle is identical to the set of values of λ that cause the linear program L to be infeasi-
ble. Thus any assignment of λ for which G(λ) contains no negative weight cycles may
be used in a feasible solution to L .

Definition 2. A λ-graph is a connected, weighted, directed graph, where the weight
w(e) of any edge e is defined by a linear function in the form

w(e) = λ ·me + be,

where me and be are real numbers and me ≥ 0.

Definition 3. Let G(λ) be the λ-graph corresponding to a particular set of input sites
S. G(λ) has vertices s and s for each s ∈ S. For s,t ∈ S, G(λ) has an edge of length
−dS(s,t) from s to t, and for s 
= t, G(λ) has an edge of length λ ·dS(s,t) from s to t.

Note that an edge from s to t has weight−dS(s,s) = 0 when s = t. An example λ-graph
G(λ) for n = 3 is shown in Figure 2.

Lemma 2. G(λ) may be constructed in O(n2) time.

Proof. G(λ) has 2n vertices and O(n2) edges, each of which may be initialized in con-
stant time.

Lemma 3. If λ≥ 1 is assigned such that L has a feasible solution, then G(λ) contains
no negative weight cycle.
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Fig. 2. The graph G(λ) for n = 3. The weights of grayed edges are omitted.

Proof. Since G(λ) is bipartite, any sequence of edges M traversed by a cycle in G(λ)
has even length. Depending on which partition M begins with, the sequence either takes
the form

M = 〈(si1 ,si2),(si2 ,si3),(si3 ,si4), . . . ,(sik ,si1)〉
or

M = 〈(si1 ,si2),(si2 ,si3),(si3 ,si4), . . . ,(sik ,si1)〉 ,

where si1 ,si2 , . . . ,sik are vertices from G(λ). In either case, the cycle has weight

w(M) = λ ·dS(si1 ,si2)−dS(si2 ,si3)+ λ ·dS(si3 ,si4)− . . .−dS(sik ,si1) (4)

by the commutativity of addition. Since L is feasible, there exists some set of distances
C satisfying the constraints of L , i.e.

cx + cy ≤ λ ·dS(x,y)⇒ (cx + cy)/λ≤ dS(x,y) (5)

and
cx + cy ≥ dS(x,y)⇒−(cx + cy)≤−dS(x,y). (6)

Substituting (5) and (6) into (4), we obtain

w(M) ≥ λ((ci1 + ci2)/λ)− (ci2 + ci3)+ λ((ci3 + ci4))− . . .− (cik + ci1)
≥ (ci1 + ci2)− (ci2 + ci3)+ (ci3 + ci4)− . . .− (cik + ci1)
≥ ci1 − ci1 + ci2− ci2 + . . .+ cik − cik

≥ 0.

Theorem 1. Any set S of n sites from a metric space may be mapped to a λ-graph G(λ)
with O(n) vertices, such that for any λ ≥ 1, G(λ) contains a negative weight cycle if
and only if L is infeasible for that value of λ. The mapping may be accomplished in
O(n2) time.

Proof. By Lemma 2, G(λ) may be created in O(n2) time, and by Lemma 3, feasibility
of L implies an absence of negative cycles in G(λ). Section 5 describes an algorithm
that, given a value λ for which G(λ) has no negative cycle, generates an edge length
cv for every v ∈ S that obeys the constraints of L . Thus, by the correctness of that
algorithm, an absence of negative cycles in G(λ) implies feasibility of L .
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4 Searching for λ∗

We now turn to the problem of computing the quantity λ∗. This problem is an example
of parametric negative weight cycle detection: given a λ-graph G(λ), find λ∗, the small-
est value such that G(λ∗) contains no cycles of negative weight. Our algorithm func-
tions by maintaining a range [λ1,λ2] which is known to contain λ∗. Initially the range
is [−∞,+∞]; over O(logn) iterations, the range is narrowed until it is small enough
that λ∗ may be calculated easily. This approach is similar in spirit to Megiddo’s general
parametric search framework [17, 18], which, in loose terms, searches for the solution
to an optimization problem by simulating the execution of a parallel algorithm for the
corresponding decision problem.

Our algorithm is presented in Listing 1. It is an adaptation of a parallel all pairs
shortest paths algorithm based on matrix squaring [20]. The original algorithm uses a
matrix Di(u,v), which stores the weight of the shortest path from u to v among paths
with at most 2i edges. Each Di(u,v) may be defined as the smallest sum of two cells
of Di−1, and D�log2 n� defines the shortest paths in the graph. In the context of that orig-
inal algorithm, edges and paths had real-number lengths, so it was sufficient to store
real numbers in Di. In the context of this paper, an edge’s weight is a linear function
of a variable λ; hence the weight of a path is a linear function of λ. Unfortunately the
minimum-cost path between u and v may be different for varying values of λ, so the
weight of the shortest path from u to v is defined by the minima of one or more linear
functions of λ. Such a lower envelope of linear functions may be represented by a piece-
wise linear function; hence each element of Di must store a piecewise linear function.
Without further attention the number of breakpoints in these piecewise linear functions
would grow at every iteration, and eventually operating on them would dominate our
algorithm’s running time. To address this, at every iteration we choose a new interval
[λ1,λ2] that contains no breakpoints, so that every Di may be compacted down to a
single linear function.

Lemma 4. For any λ ∈ [λ1,λ2], the function Di(u,v) as computed in the listing evalu-
ates to the weight of the shortest path from u to v among paths with at most 2i edges, or
+∞ if no such path exists.

Proof. We argue by induction on i. In the base case i = 0, Di(u,v) must represent the
weight of shortest path from u to v that includes up to 20 = 1 edges. The only such paths
are trivial paths, for which u = v and Di(u,v) = 0, and single edge paths, for which the
path length equals the edge length.

For i≥ 1, each Di(u,v) is first defined as the lower envelope of two entries of Di−1 in
line 10, then redefined as a strictly linear function over the new smaller range [λ1,λ2] in
line 16, so we argue that the lemma holds after each assignment. In the first assignment,
Di(u,v) is defined to be the lower envelope of [Di−1(u,w)+Di−1(w,v)] for all w∈V ; in
other words, every w ∈ V is considered as a potential “layover” vertex, and Di(u,v) is
defined as a piecewise linear function that may be defined by differing layover vertices
throughout the range [λ1,λ2]. By the inductive hypothesis, the Di−1 values represent
weights of minimum cost paths with at most 2i−1 edges; hence the resulting Di values
represent weights of minimum cost paths with at most 2i−1 + 2i−1 = 2i edges.
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Listing 1. Computing the quantity λ∗.
1: INPUT: A λ-graph G(λ) with n vertices V .
2: OUTPUT: λ∗, the smallest value of λ such that G(λ) has no negative-weight cycles.
3: Let λ1 =−∞ and λ2 = +∞.
4: INVARIANT: λ1 ≤ λ∗ ≤ λ2
5: INVARIANT: Di(u,v) contains a linear function that represents the length of the shortest

path from u to v among the subset of paths that use at most 2i edges, as a function of λ, for
any λ ∈ [λ1,λ2]

6: Let D0 be an n×n matrix of piecewise linear functions.

7: Initialize D0(u,v)≡

⎧⎨⎩
0 if u = v
λ ·me +be if G(λ) contains an edge e from u to v
+∞ otherwise

8: for i = 1,2, . . . ,�log2 n� do
9: for u,v ∈V do

10: Di(u,v)≡minw∈V [Di−1(u,w)+Di−1(w,v)]
11: end for
12: Let B be the set of breakpoints of the piecewise linear functions stored in the entries of Di.
13: Perform a binary search among the values in B, seeking an interval bounded by two con-

secutive breakpoints that contains λ∗. At each step, the test value of the binary search is
less than λ∗ if and only if setting λ equal to the test value causes G(λ) to contain a nega-
tive cycle; use the Bellman–Ford shortest paths algorithm to determine whether this is the
case.

14: Set λ1 and λ2 to the endpoints of the interval found in the previous step.
15: for u,v ∈V do
16: Replace the piecewise linear function Di(u,v) with the equivalent linear function over

the range [λ1,λ2].
17: end for
18: end for
19: Compute λ∗, the smallest value in the range [λ1,λ2], such that Dk(v,v) ≥ 0 for every v ∈V .
20: Return λ∗.

When Di(u,v) is reassigned in line 16, the range endpoints λ1 and λ2 have been
contracted such that no entry of Di contains breakpoints in the range [λ1,λ2]. Hence
any individual Di(u,v) has no breakpoints in that range, and is replaced by a simple
linear function. This transformation preserves the condition that Di(u,v) represents the
weight of the shortest path from u to v for any λ ∈ [λ1,λ2].

Lemma 5. Given two values λ1 and λ2 such that λ1 < λ2, it is possible to decide
whether λ∗ < λ1, λ∗ > λ2, or λ∗ ∈ [λ1,λ2], in O(n3) time.

Proof. By Lemma 3, for any value λ′, if G(λ′) contains a negative cycle when λ = λ′,
then λ′ < λ∗. So we can determine the ordering of λ1,λ2, and λ∗ using the Bellman–
Ford shortest paths algorithm [1, 11] to detect negative cycles, as follows. First run
Bellman–Ford, substituting λ = λ2 to evaluate edge weights. If we find a negative cycle,
then report that λ∗ > λ2. Otherwise run Bellman–Ford for λ = λ1; if we find a negative
cycle, then λ∗ must be in the range [λ1,λ2]. If not, then λ∗ < λ1. This decision process
invokes the Bellman–Ford algorithm once or twice, and hence takes O(n3) time.
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Lemma 6. The algorithm presented in Listing 1 runs in O(n3 log2 n) time.

Proof. Each Di−1(u,v) is a linear function, so each [Di−1(u,w)+Di−1(w,v)] is a linear
function as well. Di(u,v) is defined as the lower envelope of n such linear functions,
which may be computed in O(n logn) time [5]. So each Di(u,v) may be computed is
O(n logn) time, and all O(n2) iterations of the first inner for loop take O(n3 logn) total
time. Each Di(u,v) represents the lower envelope of O(n) lines, and hence has O(n)
breakpoints. So the entries of Di contain a total of O(n3) breakpoints, and they may all
be collected and sorted into B in O(n3 logn) time. Once sorted, any duplicate elements
may be removed from B in O(|B|) = O(n3) time.

Next our algorithm searches for a new, smaller [λ1,λ2] range that contains λ∗. Recall
that λ∗ is the value of λ for which G(λ∗) contains no negative weight cycle, and every
entry of Di is a piecewise linear function comprised of non-decreasing linear segments;
so it is sufficient to search for the segment that intersects the λ = 0 line. We find this seg-
ment using a binary search in B. At every step in the search, we decide which direction
to seek using the decision process described in Lemma 5. Each decision takes O(n3)
time, and a binary search through the O(n2) elements of B makes O(logn) decisions,
so the entire binary search takes O(n3 logn) time.

Replacing an entry of Di with a (non-piecewise) linear function may be done naively
in O(n) time by scanning the envelope for the piece that defines the function in the
range [λ1,λ2]. So the second inner for loop takes O(n3) total time, and the outer for
loop takes a total of O(n3 log2 n) time.

The initialization before the outer for loop takes O(n2) time. The last step of the
algorithm is to compute λ∗, the smallest value in the range [λ1,λ2] such that Dk(v,v)≥ 0
for every v∈V . At this point each Di(u,v) is a non-piecewise increasing linear function,
so this may be done by examining each of the n linear functions Dk(v,v), solving for its
λ-intercept, and setting λ∗ to be the largest intercept. This entire process takes O(n2)
time, so the entire algorithm takes O(n3 log2 n) time.

Theorem 2. The algorithm presented in Listing 1 calculates λ∗ in O(n3 log2 n) time.

5 Extracting the Edge Weights

Once λ∗ has been calculated, all that remains is to calculate the weight of every edge
in the output star. Our approach is to create a new graph G′, which is a copy of G(λ)
with the addition of a new source node s with an outgoing weight 0 edge to every
v (see Figure 3). We then compute the single source shortest paths of G′ starting at
s, and define each cv to be a function of the shortest path lengths to v and v. This
process is a straightforward application of the Bellman–Ford algorithm, and hence takes
O(n3) time. The remainder of this section is dedicated to proving the correctness of this
approach.

Definition 4. Let G′ be a copy of the graph G(λ) described in Definition 3, with all
edge weights evaluated to real numbers for λ = λ∗, and the addition of a source vertex
s with an outgoing 0-weight edge to every v ∈ G′. Let P(v) be a shortest path from s to
v for any vertex v ∈ G′, and let l(v) be the total weight of any such P(v). The operation
P(v)∪w yields the path formed by appending the edge (v,w) to P(v).
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Fig. 3. The graph G′ for n = 3. The weights of grayed edges are omitted.

Definition 5. Define cv = l(v)−l(v)
2 .

We now show that our choice of cv satisfies all three metric space properties.

Lemma 7. Every cv satisfies cv ≥ 0.

Proof. For each vertex v ∈ G′ there exists an edge from v to v with weight 0.

Lemma 8. Every distinct cv and cw satisfy cv + cw ≥ dS(v,w).

Proof. By the definition of shortest paths, we have

l(w) ≤ l(v)−dS(v,w)
dS(v,w) ≤ l(v)− l(w).

and by symmetric arguments,

dS(w,v)≤ l(w)− l(v).

Adding these inequalities, we obtain

dS(v,w)+ dS(w,v) ≤ l(v)− l(w)+ l(w)− l(v)

dS(v,w) ≤ l(v)− l(v)
2

+
l(w)− l(w)

2
dS(v,w) ≤ (cv)+ (cw).

Lemma 9. Every distinct cv and cw satisfy cv + cw ≤ λ ·dS(v,w).

Proof. Observe that the path P(w)∪v is a path to v with weight l(w)+λ ·dS(w,v), and
that the path P(v)∪w is a path to w with weight l(v)+λ ·dS(v,w). By definition P(v) is
a shortest path to v, and similarly P(w) is a shortest path to w, so we have

l(v)≤ l(w)+ λ ·dS(v,w)

and
l(w)≤ l(v)+ λ ·dS(v,w).
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Adding these inequalities, we obtain

l(v)+ l(w)≤ (l(w)+ λ ·dS(w,v))+ (l(v)+ λ ·dS(v,w)) .

By assumption dS(w,v) = dS(v,w), so

l(v)− l(v)+ l(w)− l(w) ≤ 2λ ·dS(v,w)
(cv)+ (cw) ≤ λ ·dS(v,w).

Theorem 3. Given S and the corresponding G(λ) and λ∗, a set C of edge lengths cv for
each v ∈ S, such that for every v ∈ S

cv ≥ 0

and for every distinct v,w ∈ S

cv + cw ≥ dS(v,w)

cv + cw ≤ λ ·dS(v,w)

may be computed in O(n3) time.

Theorem 3 establishes that for any λ∗ there exists a set C of valid edge lengths. This
completes the proof of Theorem 1.

6 Conclusion

Finally we codify the main result of the paper as a theorem.

Theorem 4. Given a set S ⊆ X of n sites from a metric space X = (X ,d), it is possible
to generate a weighted star H such that the distances between vertices of H obey the
triangle inequality, and such that H has the smallest possible dilation among any such
star, in O(n3 log2 n) time.
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Abstract. We analyze the problem of packing squares in an online fash-
ion: Given a semi-infinite strip of width 1 and an unknown sequence of
squares of side length in [0, 1] that arrive from above, one at a time. The
objective is to pack these items as they arrive, minimizing the resulting
height. Just like in the classical game of Tetris, each square must be
moved along a collision-free path to its final destination. In addition, we
account for gravity in both motion and position. We apply a geomet-
ric analysis to establish a competitive factor of 3.5 for the bottom-left
heuristic and present a 34

13
≈ 2.6154-competitive algorithm.

1 Introduction

In this paper, we consider online strip packing of squares. Squares arrive from
above in an online fashion, one at a time, and have to be moved to their final po-
sitions in a semi-infinite, vertical strip of unit width. On its path, a square may
move only through unoccupied space; in allusion to the well-known computer
game, this is called the Tetris constraint. In addition, an item is not allowed
to move upwards and has to be supported from below when reaching its final
position (i.e., the bottom side of the square touches either another square or the
bottom side of the strip). These conditions are called gravity constraints. Note
that the gravity constraints make the problem harder, because we are not al-
lowed to “hang squares in the air”. The objective is to minimize the total height
of the packing. Applications of this problem arise whenever physical access to
the packed items is required. For example, objects stored in a warehouse need
to be packed in a way such that the final positions can be accessed. Moreover,
gravity is—obviously—a natural constraint in real-world packing applications.

Related Work. The strip packing problem was first considered by Baker et
al. [1]. They showed that for online packing of rectangles, the bottom left heuristic
does not necessarily guarantee a constant competitive ratio. For the offline case
they proved an upper bound of 3 for a sequence of rectangles, and of 2 for
squares. Kenyon and Rémila designed a FPTAS [2] for packing rectangles. For
the online case, Csirik and Woeginger [3] gave a lower bound of 1.69103 on
rectangle packings and an algorithm whose asymptotic worst-case ratio comes
arbitrarily close to this value.
� Supported by DFG grant FE 407/8-3, project “ReCoNodes”.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 302–314, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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For the one-dimensional online version of bin packing (pack a set of items
into a minimum number of unit-capacity bins), the current best algorithm is
1, 58889-competitive [4]. The best known lower bound is 1, 54014 [5]. Copper-
smith and Raghavan considered this problem in higher dimensions d ≥ 2 [6].
They introduced a 2.6875-competitive algorithm and a lower bound of 4/3 for
d = 2. Epstein and van Stee improved both bounds by designing an optimal,
bounded-space, 2.3722-competitive algorithm [7].

Life gets considerably harder if items cannot be packed at arbitrary positions,
but must be placed from above avoiding previously packed objects as obstacles—
just like in the classical game of Tetris. In this setting, no item can ever move
upward, no collisions between objects must occur, an item will come to a stop
if and only if it is supported from below, and each placement has to be fixed
before the next item arrives. Tetris is PSPACE-hard, even for the original game
with a limited set of different objects; see Breukelaar et al. [8].

Azar and Epstein [9] considered tetris-constraint online packing of rectangles
into a strip. For the case without rotation, they showed that no constant com-
petitive ratio is possible, unless there is a fixed-size lower bound of ε on the side
length of the objects, in which case there is an upper bound of O(log 1

ε ). For
the case with rotation, they showed a 4-competitive strategy, based on shelf-
packing methods; until now, this is also the best deterministic upper bound for
squares. Observe that their strategy does not take the gravity constraints into
account, as items are allowed to be placed at appropriate levels, even if they
are unsupported. Coffmann et al. [10] considered probabilistic aspects of online
rectangle packing with Tetris constraint, without allowing rotations. If rectan-
gle side lengths are chosen uniformly at random from the interval [0, 1], they
showed that there is a lower bound of (0.3138...)n on the expected height of the
strip. Using another strategy, which arises from the bin-packing–inspired Next
Fit Level, they established an upper bound of (0.3697...)n on the expected height.

Our Results. In this paper, we demonstrate that it pays off to take a closer look
at the geometry of packings. We analyze a natural and simple heuristic called
BottomLeft, similar to the one introduced by Baker et al. [1]. We show that it is
possible to give a better competitive guarantee than 4 (as achieved by Azar and
Epstein), even in the presence of gravity. We obtain an asymptotic competitive
ratio of 3.5 for BottomLeft, implying an asymptotic density of at least 0.2857...
Improving this ratio even further, we introduce the strategy SlotAlgorithm and
establish a competitive ratio 34/13 = 2.6154...

2 Preliminaries

We are given a vertical strip, S, of width 1 and a sequence, A = (A1, . . . , An),
of squares with side lengths ai ≤ 1. Our goal is to find a non-overlapping, axis-
parallel placement of squares in the strip that keeps the height of the strip as
low as possible. A packing has to fulfill the Tetris and the gravity constraints.
Moreover, we consider the online problem.
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We denote the bottom (left, right) side of the strip by BS (RS , LS; respec-
tively), and the sides of a square, Ai, by BAi , TAi , RAi , LAi (bottom, top, right,
left; respectively). The x-coordinates of the left and right side of Ai in a pack-
ing are lAi and rAi ; the y-coordinates of the top and bottom side are tAi and
bAi , respectively. Let the left neighborhood, NL(Ai), be the set of squares that
touch the left side of Ai. In the same way we define the bottom, top, and right
neighborhoods, denoted by NB(Ai), NT (Ai), and NR(Ai), respectively.

A packing may leave areas of the strip empty. We call a maximal connected
component of the strip’s empty area a hole, denoted by Hh, h ∈ IN. A point,
P , is called unsupported, if there is a vertical line segment from P downwards
whose interior lies inside a hole. Otherwise, P is supported. A section of a line
segment is supported, if every point in this section is supported. For an object
ξ we refer to the boundary by ∂ξ, to the interior by ξ◦, and to its area by |ξ|.

3 The Strategy BottomLeft

In this section, we analyze the packing generated by the strategy BottomLeft,
which works as follows: We place the current square as close as possible to the
bottom of the strip (provided that there is a collision-free path from the top of
the strip to the desired position that never moves in positive y-direction). We
break ties by choosing the leftmost among all possible bottommost positions.1

For a simplified analysis, we finish the packing with an additional square,
An+1, of side length 1. This implies that all holes have a closed boundary. Let
H1, . . . , Hs be the holes in the packing. Then the height of the packing produced
by BottomLeft is BL =

∑n
i=1 a2

i +
∑s

h=1 |Hh|. In the following sections, we
prove

∑s
h=1 |Hh| ≤ 2.5 ·

∑n+1
i=1 a2

i . Because any strategy needs at least a height
of
∑n

i=1 a2
i , our bound implies that asymptotically BL ≤ 3.5 ·OPT .

We proceed as follows. First, we state some properties of the generated packing
(Section 3.1). In Section 3.2 we simplify the shape of the holes by partitioning
a hole into several disjoint new parts.2 In the packing, these new holes are open
at their top side, so we introduce virtual lids that close these holes. Afterwards,
we estimate the area of a hole in terms of the squares that enclose the hole
(Section 3.3). Summing up the charges to a single square (Table 1) we get

Theorem 1. BottomLeft is (asymptotically) 3.5-competitive.

3.1 Basic Properties of the Generated Packing

In this section, we analyze structural properties of the boundary of a hole. We
say that a square, Ai, contributes to the boundary of a hole, Hh, iff ∂Ai and
∂Hh intersect in more than one point. Let Ã1, . . . , Ãk denote the squares on the
1 To implement the strategy, we can use robot-motion-planning techniques. For k

placed squares, this can be done in time O(k log2 k); see de Berg et al. [11].
2 Let the new parts replace the original hole, so that we do not have to distinguish

between ‘holes’ and ‘parts of a hole’.



Online Square Packing 305
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Fig. 1. (i) A packing produced by BottomLeft. The squares Ã1, . . . , Ãk contribute to
the boundary of the hole Hh, which is split into a number of subholes. In the shown
example one new subhole H�

h is created. Note that the square Ã1 also contributes to
the holes Hh+1 and Hh+2 and serves as a virtual lid for H�

h+1. (ii) The hole Hh with
the two squares Ãi and Ãi+1 and their bottom sequences. Here, Ãi+1 is Ã1. If ∂Hh is
traversed in ccw order, then ∂Hh ∩ ∂Ãi+2 is traversed in cw order w.r.t. to ∂Ãi+2.

boundary of Hh in counterclockwise order starting with the upper left square.3

We call Ã1 the lid of Hh and define Ãk+1 = Ã1, Ãk+2 = Ã2 and so on. By Pi,i+1

we denote the point where ∂Hh leaves ∂Ãi and enters ∂Ãi+1.
Let Ai be a packed square. We define the left (bottom) sequence, LAi , (BAi), of

Ai, as follows: The first element of LAi (BAi) is Ai. The next element is chosen as
an arbitrary left (bottom) neighbor of the previous element. The sequence ends if
no such neighbor exists. We call the polygonal chain from the upper right corner
of the first element of LAi to the upper left corner of the last element while
traversing the boundary of the sequence in counterclockwise order the skyline,
SAi , of Ai. Obviously, SAi has an endpoint on LS. Further, S◦Ai

∩H◦
h = ∅.

Lemma 1. Let Ãi be a square that contributes to ∂Hh. Then,
(i) ∂Hh ∩ ∂Ãi is a single curve, and
(ii) if ∂Hh is traversed in counterclockwise (clockwise) order, then ∂Hh ∩∂Ãi is
traversed in clockwise (counterclockwise) order w.r.t. ∂Ãi; see Fig. 1(ii).

Proof. (i) Assume that ∂Hh ∩ ∂Ãi consists of (at least) two curves, c1 and c2.
Consider a simple curve, C, that lies inside Hh and has one endpoint in c1 and
the other one in c2. We add the straight line between the endpoints to C and
obtain a simple closed curve C′. As c1 and c2 are not connected, there is a square
Ãj inside C′ that is a neighbor of Ãi. If Ãj is a left, right or bottom neighbor of
Ãi this contradicts the existence of BÃj

; if it is a top neighbor this contradicts
the existence of LÃj

. Hence, ∂Hh ∩ ∂Ãi is a single curve.

3 It is always clear from the context which hole defines this sequence of squares. Thus,
we chose not to introduce an additional superscript referring to the hole.
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(ii) Imagine that we walk along ∂Hh in ccw order: The interior of Hh lies on
our left-hand side and all squares that contribute to ∂Hh lie on our right-hand
side. Hence, their boundaries are traversed in cw order w.r.t. their interior. ��

Let P and Q be the left and right endpoint, respectively, of the line segment
∂Ã1 ∩ ∂Hh. The next lemma restricts the relative position of two squares:

Lemma 2. Let Ãi, Ãi+1 contribute to the boundary of a hole Hh.
(i) If Ãi+1 ∈ NL(Ãi) then either Ãi+1 = Ã1 or Ãi = Ã1.
(ii) If Ãi+1 ∈ NT (Ãi) then Ãi+1 = Ã1 or Ãi+2 = Ã1.
(iii) There are two types of holes: Type I with Ãk ∈ NR(Ãk−1), and Type II with
Ãk ∈ NT (Ãk−1); see Fig. 3.

Proof. (i) Let Ãi+1 ∈ NL(Ãi). Consider the endpoints of the vertical line RÃi+1
∩

LÃi
; see Fig. 1(ii). We traverse ∂Hh in counterclockwise order starting in P . By

Lemma 1, we traverse ∂Ãi in clockwise order and, therefore, Pi,i+1 is the lower
endpoint of RÃi+1

∩ LÃi
. Now, BÃi

, BÃi+1
, and the segment of BS completely

enclose an area that completely contains the hole, Hh. If the sequences share a
square, Aj , we consider the area enclosed up to the first intersection. Therefore,
if bÃi+1

≥ bÃi
then Ãi+1 = Ã1 else Ãi = Ã1 by the definition of PQ.

The proof of (ii) follows almost directly from (i). Let Ãi+1 ∈ NT (Ãi). We
know that ∂Ãi+1 is traversed in clockwise order and we know that Ãi+1 has
to be supported to the left. Therefore, Ãi+2 ∈ NL(Ãi+1) ∪ NB(Ãi+1) and the
result follows from (i). For (iii) we traverse ∂Hh from P in clockwise order.
From the definition of PQ and Lemma 1 we know that Pk,1 is a point on LÃk

.
If Pk−1,k ∈ LÃk

, then Ãk ∈ NR(Ãk−1); if Pk−1,k ∈ BÃk
, then Ãk ∈ NT (Ãk−1).

In any other case Ãk does not have a lower neighbor. ��

3.2 Splitting Holes

Let Hh be a hole whose boundary does not touch the boundary of the strip. We
define two lines: The left diagonal, Dh

l , is defined as the straight line with slope
−1 starting in P2,3 if P2,3 ∈ RÃ2

or, otherwise, in the lower right corner of Ã2;
see Fig. 3. We denote the point in which Dh

l starts by P ′. The right diagonal,
Dh

r , is defined as the line with slope 1 starting in Pk−1,k if Ãk ∈ NR(Ãk−1)
(Type I) or in Pk−2,k−1, otherwise (Type II). Note that Pk−2,k−1 lies on LÃk−1

,
otherwise there would not be a left neighbor of Ãk−1. We denote the point in
which Dh

r starts by Q′. If h is clear or does not matter, we omit the superscript.

Lemma 3. Let Hh be a hole, Dr its right diagonal. Then Dr ∩H◦
h = ∅ holds.

Proof. Consider the left sequence, LÃk
= (Ãk = α1, α2, . . .) or LÃk−1

= (Ãk−1 =
α1, α2, . . .) for Hh being of Type I or II, respectively. By induction, the upper left
corners of the αi’s lie above Dr: If Dr intersects ∂αi at all, the first intersection
is on Rαi , the second on Bαi . Thus, at least the skyline separates Dr and Hh. ��
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ÃqÃq
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Fig. 2. Dl can intersect Ãi (for the second time) in two different ways: on the right
side or on the bottom side. In Case A, the square Ãi−1 is on top of Ãi; in Case B, Ãi

is on top of Ãi+1.

It is a simple observation that if Dl intersects a square Ãi in a nontrivial way4

then either F ∈ RÃi
and E ∈ TÃi

or F ∈ BÃi
and E ∈ LÃi

. To break ties,
we define that an intersection in the lower right corner of Ãi belongs to BÃi

(Fig. 1(i) and 2). Unfortunately, Lemma 3 does not hold for Dl. Therefore,
we split our hole, Hh, into two new holes, H

(1)
h and H�

h, as follows: Let F be
the first nontrivial intersection point of ∂Hh and Dl while traversing ∂Hh in
counterclockwise fashion, starting in P . We consider two cases, F ∈ RÃi

\ BÃi

(Case A) and F ∈ BÃi
(Case B); see Fig. 2.

Let E be the other intersection point of Dl and ∂Ãi. In Case A, let Ãup :=
Ãi−1 and Ãlow := Ãi, in Case B Ãup := Ãi and Ãlow := Ãi+1. The horizontal ray
that emanates from the upper right corner of Ãlow to the right is subdivided into
supported and unsupported sections. Let U = MN be the leftmost unsupported
section. Now we split Hh into two parts, H�

h below MN and H
(1)
h := Hh\H�

h.
We split H

(1)
h into H

(2)
h and H��

h etc., until there is no further intersection
between the boundary of H

(z)
h and Dh

l . Every split is caused by a pair of squares.
It can be shown that MN < ãup and, therefore, a copy of Ãup, denoted by Ã′

up,
placed on MN can serve as a virtual lid for the hole below. Moreover, a square
serves as a virtual lid for at most one hole. Regarding the holes, they are either
of Type I or Type II and, thus, can be analyzed in the same way as original
holes. See the full version of this paper for a rigorous proof.

3.3 Computing the Area of a Hole

We eliminated all intersections of Dh
l with the boundary of the hole H

(z)
h by

splitting the hole. Thus, we have a set of holes Ĥh, h = 1, . . . , s�, that fulfill
∂Ĥh ∩Dh

l = ∅ and have either a non-virtual or a virtual lid.
Our aim is to bound |Ĥh| by the areas of the squares that contribute to ∂Ĥh.

A square Ai may contribute to more than one hole. It is too expensive to use

4 An intersection, p ∈ Γ ∩Δ, of a Jordan curve Δ and a line, ray, or line segment Γ is
called nontrivial, iff there is a line segment � of length ε > 0 on the line through Γ
such that p is in the interior of � and the endpoints of � lie on different sides of Δ.
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Fig. 3. Holes of Type I and Type II with their left and right diagonals

its total area a2
i in the bound for a single hole. Instead, we charge only fractions

of a2
i per hole. Moreover, we charge every edge of Ai separately. By Lemma 1,

∂Ĥh ∩ ∂Ai is connected. In particular, every side of Ai contributes at most one
line segment to ∂Ĥh. For the left (bottom, right) side of a square Ai, we denote
the length of the line segment contributed to ∂Ĥh by λh

i (βh
i , ρh

i ; respectively).5

Let c
{λ,β,ρ}
h,i be appropriate coefficients, such that the area of a hole can be

charged against the area of the adjacent squares; i.e., |Ĥh| ≤
∑n+1

i=1 cλ
h,i(λ

h
i )2 +

cβ
h,i(β

h
i )2 + cρ

h,i(ρ
h
i )2. As each point on ∂Ai is on the boundary of at most one

hole, the line segments are pairwise disjoint. Thus, for the left side of Ai, the two
squares inside Ai induced by the line segments λh

i and λg
i of two different holes,

Ĥh and Ĥg, do not overlap. Therefore, we obtain
∑s�

h=1 cλ
h,i ·(λh

i )2 ≤ cλ
i ·a2

i , where
cλ
i := maxh cλ

h,i. We call cλ
i the charge of LAi and define cβ

i and cρ
i analogously.

We use virtual copies of some squares as lids. However, for every square,
Ai, there is at most one copy, A′

i. We denote the line segments and charges
corresponding to A′

i by λh
i′ , cλ

h,i′ and so on. The total charge of Ai is given by

ci = cλ
i +cβ

i +cρ
i +cλ

i′ +cβ
i′ +cρ

i′ . Altogether, we bound
∑s�

h=1 |Ĥh| ≤
∑n+1

i=1 ci ·a2
i ≤∑n+1

i=1 c · a2
i , with c = maxi ci. Next, we want to find an upper bound on c.

Holes with a Non-Virtual Lid. We removed all intersections of Ĥh with its
diagonal Dh

l . Therefore, Ĥh lies completely inside the polygon formed by Dh
l ,

Dh
r and the part of ∂Ĥh that is clockwise between P ′ and Q′; see Fig. 3. If Ĥh is

of Type I, we consider the rectangle, R1, of area ρh
2 ·βh

1 induced by P , P ′ and Q.
Let Δ1 be the triangle below R1 formed by the bottom side of R1, Dh

l , and the
vertical line VQ passing through Q; see Fig. 3(i). Obviously, |Ĥh| ≤ |R1|+|Δ1|. As
Dh

l has slope−1, we get |Δ1| = 1
2 (βh

1 )2. We have |R1| = ρh
2 ·βh

1 ≤ 1
2 (ρh

2 )2+ 1
2 (βh

1 )2.
Thus, for a Type I-hole we get |Ĥh| ≤ (βh

1 )2 + 1
2 (ρh

2 )2, i.e., we charge the bottom
side of Ã1 with 1 and the right side of Ã2 with 1

2 . In this case, we get cβ
h,1 = 1

5 If a side of a square does not contribute to a hole, the corresponding length of the
line segment is defined to be zero.
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and cρ
h,2 = 1

2 . For a Type II hole, we additionally get a rectangle R2 and a
triangle, Δ2, as in Fig. 3(ii). Using similar arguments as above we get charges
cβ
h,1 = cβ

h,k = 1 and cρ
h,2 = 1

2 = cλ
h,k−1 = 1

2 .

Holes with a Virtual Lid. Let Ĥh be a hole with a virtual lid, Ĥg be imme-
diately above Ĥh, Ãup be the square whose copy, Ã′

up, becomes a new lid, and
Ãlow the bottom neighbor of Ãup. We show that Ã′

up increases the charge of Ãup

by at most 1
2 : If Ãup does not exceed Ãlow to the left, it cannot serve as a lid for

any other hole (Fig. 4). Hence, the charge of the bottom side of Ãup is 0; like in
the preceding section, we obtain a charge ≤ 1 to the bottom of Ã′

up. If it exceeds
Ãlow to the left, we know that the part BÃup

∩ TÃlow
of BÃup

is not charged by
another hole, because it does not belong to a hole and the lid is defined uniquely.

We define points P and P ′ for Ĥh in the same way as in the preceding section.
Independent of Ĥh’s type, Ã′

up gets charged only for the rectangle R1 induced
by P , P ′ and N , as well as for the triangle below R1 (Fig. 3). Now we show that
we do not have to charge Ã′

up for R1, since the part of R1 above Dg
l is already

included in the bound for Ĥg, and the remaining part can be charged to BÃup

and RÃlow
. Ã′

up gets charged 1
2 for the triangle.

Dg
l splits R1 into a part that is above this line, and a part that is below this

line. The latter part of R1 is not included in the bound for Ĥg. Let F be the
intersection of ∂Ĥg and Dg

l that caused the creation of Ĥh. If F ∈ RÃlow
, this

part is at most 1
2 (ρh

low)2, where ρh
low is the length of P ′F . We charge 1

2 to RÃlow
.

If F ∈ BÃup
, the part of R1 below Dg

l can be split into a rectangular part of
area ρh

low · βh
up, and a triangular part of area 1

2 (ρh
low)2. Here βh

up is the length of
PF . The cost of the triangle is charged to RÃlow

. Note that the part of BÃup
that

exceeds Ãlow to the right is not charged and ρh
low is not larger than BÃup

∩TÃlow

(i.e., the part of BÃup
that was not charged before). Thus, we can charge the

rectangular part completely to BÃup
. Hence, Ã′

up is charged 1
2 in total.

Ãlow
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F
E

P N
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F
N
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ÃqÃq
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Ãq−1

Ãq−1

Dg
lDg

l
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P ′ P ′

Ĥg Ĥg

Ĥh Ĥh

Fig. 4. The holes Ĥg and Ĥh and the rectangle R1 which is divided into two parts by
Dg

l . The upper part is already included in the bound for Ĥg. The lower part is charged
completely to RÃlow

and BÃ′
up

. Here, P and P ′ are defined w.r.t. Ĥh.
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Holes Containing Parts of ∂S. We show in this section that holes that touch
∂S are just special cases of the ones discussed in the preceding sections.

Because the top side of a square never gets charged for a hole, it does not
matter whether a part of BS belongs to the boundary. Moreover, for any hole Ĥh

either LS or RS can be a part of ∂Ĥh, because otherwise there exits a curve with
one endpoint on LS and the other endpoint on RS , with the property that this
curve lies completely inside of Ĥh. This contradicts the existence of the bottom
sequence of a square lying above the curve.

For a hole Ĥh touching LS , LS ∩ ∂Ĥh is a single line segment (similar to
Lemma 1). Let P be the topmost point of this line segment and Ã1 be the
square containing P . The existence of BÃ1

implies that Ã1 is the lid of Ĥh. As
Ã1 must have a bottom neighbor, Ãk, and Ãk must have a right neighbor, Ãk−1,
we get Pk,1 ∈ BÃ1

and Pk−1,k ∈ LÃk
, respectively. We define the right diagonal

Dr and the point Q′ as above and conclude that Ĥh lies completely inside the
polygon formed by LS ∩ ∂Ĥh, Dr and the part of ∂Ĥh that is between P and
Q′ (in clockwise order). We split this polygon into a rectangle and a triangle in
order to obtain charges of 1 to BÃ1

and 1
2 to LÃk

.
Now consider a hole where a part of RS belongs to ∂Ĥh. We denote the

topmost point on RS ∩ ∂Ĥh by Q, and the square containing Q by Ã1. Ã1 is
the lid of this hole. As above, we eliminate the intersections of Dl and ∂Ĥh by
creating new holes. After this, the modified hole Ĥ

(z)
h can be viewed as a hole of

Type II, for which the part on the right side of VQ has been cut off. We obtain
charges of 1 to BÃ1

, 1
2 to RÃ2

, and 1
2 to the bottom of a virtual lid.

Table 1. Charges to different sides of a single square. The charges depend on the type
of the adjacent hole (Type I, II, touching or not touching the strip’s boundary), but
the maximal charge dominates the other one. Moreover, the square may also serve as
a virtual lid. These charges sum up to a total charge of 2.5 per square.

Non-virtual Lid Virtual Lid Total
Type I Type II LS RS Max. Type I Type II RS Max.

Left side 0 0.5 0.5 0 0.5 0 0 0 0 0.5
Bottom side 1 1 1 1 1 0.5 0.5 0.5 0.5 1.5
Right Side 0.5 0.5 0 0.5 0.5 0 0 0 0 0.5
Total 2 0.5 2.5

4 The Strategy SlotAlgorithm

Consider two vertical lines going upward from the bottom side of S and parallel
to sides of S. We call the area between these lines a slot, the lines the slot’s left
and right boundary, and the distance between the lines the width of the slot.

Our strategy SlotAlgorithm works as follows: We divide the strip S of width
1 into one slot of width 1, two slots of width 1/2, four slots of width 1/4 etc.
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A1 AS
1

P

A3AS
3 AS

3
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3

δ2

QR
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2
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2

δ′2
δ′3a3−δ′3

A2

Ã1

E1Ã2
E2
E3

Ã3

T2 T3

2−k1

2−k2

2−k3

≤ ã3
2k2 − 2ã3

2
(i) (ii)

2−k1

2−k1−1 2−k1−1

2−k1−2 2−k1−2 2−k1−2 2−k1−2

Fig. 5. (i) Squares Ai with shadows AS
i and widenings AW

i . δ′2 = a2 and δ′3 = δ3. P and
Q are charged to A1. R is charged to A2. (ii) The first three squares of the sequence.
Here, Ã2 is the smallest square that bounds Ã1 from below. Ã3 is the smallest one that
intersects E2 in an active slot (w.r.t. E2) of width 1/2k2 . T2 is nonactive (w.r.t. E2)
and also w.r.t. all Ej , j ≥ 3. The part of FÃ1

(darkest gray) between E2 and E3 in an
active slot of width 2−k2 is ≤ ã3/2k2 − 2ã2

3 as points in ÃW
3 are not charged to Ã1.

(i.e., creating 2j of width 2−j). Note that a slot of width 2−j contains 2 slots of
width 2−j−1; see Fig. 5(i). For every square Ai we round the side length ai to the
smallest number 1/2ki that is larger than or equal to ai. We place Ai in the slot
of width 2−ki that allows Ai to be placed as near to the bottom of S as possible
by moving Ai down along the left boundary of the chosen slot until another
square is reached. SlotAlgorithm satisfies the Tetris and the Gravity constraints.

Theorem 2. SlotAlgorithm is (asymptotically) 2.6154-competitive.

Proof. Let Ai be a square placed by SlotAlgorithm in a slot Ti of width 2−ki .
Let δi be the distance between the right side of Ai and the right boundary of
the slot of width 2−ki+1 that contains Ai and δ′i := min{ai, δi}. We call the area
obtained by enlarging Ai by δ′i to the right and by ai− δ′i to the left the shadow
of Ai and denote it by AS

i . Thus, AS
i is an area of the same size as Ai and lies

completely inside a slot of twice the width of Ai’s slot. Moreover, we define the
widening of Ai as AW

i = (Ai ∪AS
i ) ∩ Ti; see Fig. 5(i).

Now, consider a point P in Ti that is not inside an AW
j for any square Aj .

We charge P to the square Ai if AW
i is the first widening that intersects the

vertical line going upwards from P . Let FAi be the set of all points charged to
Ai. For the analysis, we place a closing square, An+1, of side length 1 on top
of the packing. Therefore, every point in the packing that does not lie inside
an AW

j is charged to a square. Because Ai and AS
i have the same area, we can

bound the height of the packing by 2
∑n

i=1 a2
i +

∑n+1
i=1 |FAi |.

The height of an optimal packing is at least
∑n

i=1 a2
i and, therefore, it suffices

to show |FAi | ≤ 0.6154 · a2
i . We construct for every Ai a sequence of squares

Ãi
1, Ã

i
2, . . . , Ã

i
m with Ãi

1 = Ai. (To ease notation, we omit the superscript i in
the following.) We denote by Ej the extension of the bottom side of Ãj to the left
and to the right; see Fig. 5(ii). We will show that by an appropriate choice of the
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sequence we can bound the area of the part of FÃ1
that lies between a consecutive

pair of extensions, Ej and Ej+1, in terms of Ãj+1 and the slot widths. From this
we will derive the upper bound on the area of FÃ1

. We assume throughout the
proof that the square Ãj , j ≥ 1, is placed in a slot, Tj , of width 2−kj . Note that
FÃ1

is completely contained in T1. A slot is called active (w.r.t. Ej and Ã1) if
there is a point in the slot that lies below Ej and that is charged to Ã1 and
nonactive otherwise. If it is clear from the context we leave out the Ã1.

The sequence of squares is chosen as follows: Ã1 is the first square and Ãj+1,
j = 1, . . . , m − 1 is chosen as the smallest one that intersects or touches Ej in
an active slot (w.r.t. Ej and Ã1) of width 2−kj and that is not equal to Ãj . The
sequence ends if all slots are nonactive w.r.t. to an extension Em. We claim:

(i) Ãj+1 exists for j + 1 ≤ m and ãj+1 ≤ 2−kj−1 for j + 1 ≤ m− 1.
(ii) The number of active slots (w.r.t. Ej) of width 2−kj is at most 1 for j = 1
and

∏j
i=2(

1
2ki−1

2ki − 1) for j ≥ 2.
(iii) The area of the part of FÃ1

that lies in an active slot of width 2−kj between
Ej and Ej+1 is at most 2−kj ãj+1 − 2ã2

j+1.
We prove the claims by induction. Assume that the
(j + 1)st element does not exist for j + 1 ≤ m. Let
T ′ be an active slot in T1 (w.r.t. Ej) of width 2−kj

for which Ej is not intersected by a square in T ′.
If there is a rectangle of height ε below T ′ ∩Ej for
which every point is charged to Ã1, SlotAlgorithm
would have chosen this slot for Ãj . Hence, at least

Ã1

Â

BÂ
Q

ε Ej

Ãj

T ′

2−kj

one point, Q, below Ej is not charged to Ã1. Consider the bottom sequence
(see Section 3.1) of the square, Â, to which Q is charged. This sequence has to
intersect Ej outside of T ′ (by choice of T ′). But then one of its elements has
to intersect the left or the right boundary of T ′ and we can conclude that this
square has at least the width of T ′, because (by the algorithm) a square with
rounded side length 2−� cannot cross a slot’s boundary of width larger than
2−�. Hence, a setting as shown in the figure is not possible. In turn, a square
larger than T ′ completely covers T ′ and T ′ cannot be active w.r.t. to Ej and
Ã1. Thus, all points in T ′ below Ej are charged to this square; a contradiction.
This proves the existence of Ãj+1. Because we chose Ãj+1 to be of minimal side
length, ãj+1 ≥ 2−kj would imply that all slots inside T are nonactive (w.r.t. Ej).
Therefore, if Ãj+1 is not the last element of the sequence, ãj+1 ≤ 2−kj−1 holds.

By the induction hypothesis there are at most (2−k12k2 − 1) · (2−k22k3 − 1) ·
. . . · (2−kj−22kj−1 − 1) active slots of width 2−kj−1 (w.r.t. Ej−1). Each of these
slots contains 2kj−kj−1 slots of width 2−kj and in every active slot of width
2−kj−1 at least one slot of width 2−kj is nonactive because we chose Ãj to be of
minimum side length. Hence, the number of active slots (w.r.t. Ej) is a factor of
( 1
2kj−1

2kj − 1) larger than the number of active slots (w.r.t. Ej−1).
By the choice of Ãj+1 and the fact that in every active slot of width 2−kj

there is at least one square that intersects Ej (points below its widening are
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not charged to Ã1) we conclude that the area of FÃ1
between Ej and Ej+1 is

at most 2−kj ãj+1 − 2ã2
j+1 in every active slot of width 2−kj (Fig. 5). We get

|FÃ1
| ≤ ã2

2k1 − 2ã2
2 +
∑m

j=2

[(
ãj+1

2kj
−2ã2

j+1

)∏j−1
i=1

(
2ki+1

2ki
−1
)]

. This is maximized

for ãi+1 = 1/2ki+2, 1,≤ i ≤ m implying ki = k1 + 2(i − 1). We get |FÃ1
| ≤∑∞

i=0
3i

22k1+4i+3 . |FÃ1
|/ã2

1 is maximized for ã1 as small as possible; i.e., Ã1 =

2−(k1+1) +ε. We get:
|FÃ1

|
ã2
1
≤
∑∞

i=0
22k1+2·3i

22k1+4i+3 = 1
2

∑∞
i=0

( 3
16

)
i = 8

13 = 0.6154... ��

5 Conclusion

We have demonstrated that geometric analysis improves the best competitive
guarantee for online square packing. We believe that this is not the end of the
line: It should be possible to combine this type of analysis with more sophisti-
cated, shelf-based algorithms. Our best lower bound for BottomLeft is a competi-
tive factor of 5/4: Consider a sequence of small items of total width 1/3, followed
by two items slightly larger than 1/3. Asymptotically, this yields a lower bound
of 5/4 by taking turns with unit squares.

The bottleneck in our analysis are squares that have large holes at their right,
left, and bottom side and also serve as a virtual lid; see Fig. 1(i). This worst
case can happen to only a few squares, but never to all of them, so it may be
possible to transfer charges between squares. It may also be possible to apply
better lower bounds than the total area, e.g., similar to [12].

We also presented an algorithm that is 2.6154-competitive. We believe that
our algorithm can be improved (as the best known lower bound is only 1.2).
Moreover, we believe that our approach can be extended to higher dimensions.
Rectangles may require a slightly different analysis. These topics will be the
subject of future research. It is an open question whether our analysis is tight
or can be improved. The best lower bound for SlotAlgorithm known to us is 2.
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Abstract. A common complaint about adaptive prefix coding is that it
is much slower than static prefix coding. Karpinski and Nekrich recently
took an important step towards resolving this: they gave an adaptive
Shannon coding algorithm that encodes each character in O(1) amor-
tized time and decodes it in O(log H +1) amortized time, where H is the
empirical entropy of the input string s. For comparison, Gagie’s adaptive
Shannon coder and both Knuth’s and Vitter’s adaptive Huffman coders
all use Θ(H +1) amortized time for each character. In this paper we give
an adaptive Shannon coder that both encodes and decodes each char-
acter in O(1) worst-case time. As with both previous adaptive Shannon
coders, we store s in at most (H + 1)|s| + o(|s|) bits. We also show that
this encoding length is worst-case optimal up to the lower order term.
In short, we present the first algorithm for adaptive prefix coding that
encodes and decodes each character in optimal worst-case time while
producing an encoding whose length is also worst-case optimal.

1 Introduction

Adaptive prefix coding is a well studied problem whose well known and widely
used solution, adaptive Huffman coding, is nevertheless not worst-case optimal.
Suppose we are given a string s of length m over an alphabet of size n. For static
prefix coding, we are allowed to make two passes over s but, after the first pass,
we must build a single prefix code, such as a Shannon code [19] or Huffman
code [11], and use it to encode every character. Since a Huffman code minimizes
the expected codeword length, static Huffman coding is optimal (ignoring the
asymptotically negligible O(n log n) bits needed to write the code). For adaptive
prefix coding, we are allowed only one pass over s and must encode each charac-
ter with a prefix code before reading the next one, but we can change the code
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Table 1. Bounds for adaptive prefix coding: the times to encode and decode each
character and the total length of the encoding. Bounds in the first row and last column
are worst-case; the others are amortized.

Encoding Decoding Length

this paper O(1) O(1) (H + 1)m + o(m)
Karpinski and Nekrich [12] O(1) O(log H + 1) (H + 1)m + o(m)

Gagie [6] O(H + 1) O(H + 1) (H + 1)m + o(m)
Vitter [21] O(H + 1) O(H + 1) (H + 1 + h)m + o(m)
Knuth [13]

Gallager [9]

}
O(H + 1) O(H + 1) (H + 2 + h)m + o(m)

Faller [3]

after each character. Assuming we compute each code deterministically from the
prefix of s already encoded, we can later decode s symmetrically. Table 1 presents
a summary of bounds for adaptive prefix coding. The most intuitive solution is
to encode each character using a Huffman code for the prefix already encoded;
Knuth [13] showed how to do this in time proportional to the length of the en-
coding produced, taking advantage of a property of Huffman codes discovered
by Faller [3] and Gallager [9]. Shortly thereafter, Vitter [21] gave another adap-
tive Huffman coder that also uses time proportional to the encoding’s length;
he proved his coder stores s in fewer than m more bits than static Huffman
coding, and that this is optimal for any adaptive Huffman coder. With a similar
analysis, Milidiú, Laber and Pessoa [15] later proved Knuth’s coder uses fewer
than 2m more bits than static Huffman coding. In other words, Knuth’s and
Vitter’s coders store s in at most (H +2+h)m+ o(m) and (H +1+h)m+ o(m)
bits, respectively, where H =

∑
a(occ(a, s)/m) log(m/occ(a, s)) is the empirical

entropy of s (i.e., the entropy of the normalized distribution of characters in s),
occ(a, s) is the number of occurrences of the character a in s, and h ∈ [0, 1) is the
redundancy of a Huffman code for s; therefore, both adaptive Huffman coders
use Θ(H + 1) amortized time to encode and decode each character of s. Turpin
and Moffat [20] gave an adaptive prefix coder that uses canonical codes, and
showed it achieves nearly the same compression as adaptive Huffman coding but
runs much faster in practice. Their upper bound was still O(H + 1) amortized
time for each character but their work raised the question of asymptotically
faster adaptive prefix coding. In all of the above algorithms the encoding and
decoding times are proportional to the bit length of the encoding. This implies
that we need O(H +1) time to encode/decode each symbol; since the entropy H
depends on the size of the alphabet, the running times grow with the alphabet
size.

The above results for adaptive prefix coding are in contrast to the algorithms
for the prefix coding in the static scenario. The simplest static Huffman coders
use Θ(H + 1) amortized time to encode and decode each character but, with
a lookup table storing the codewords, it is not hard to speed up encoding
to take O(1) worst-case time for each character. We can also decode an ar-
bitrary prefix code in O(1) time using a look-up table, but the space usage and
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initialization time for such a table can be prohibitively high, up to O(m). Moffat
and Turpin [16] described a practical algorithm for decoding prefix codes in O(1)
time; their algorithm works for a special class of prefix codes, the canonical codes
introduced by Schwartz and Kallick [18].

While all adaptive coding methods described above maintain the optimal Huff-
man code, Gagie [6] described an adaptive prefix coder that is based on sub-optimal
Shannon coding; his method also needs O(H + 1) amortized time per character
for both encoding and decoding. Although the algorithm of [6] maintains a Shan-
non code that is known to be worse than the Huffman code in the static scenario,
it achieves (H + 1)m + o(m) upper bound on the encoding length that is better
than the best known upper bounds for adaptive Huffman algorithms. Karpinski
and Nekrich [12] recently reduced the gap between static and adaptive
prefix coding by using quantized canonical coding to speed up an adaptive Shan-
non coder of Gagie [6]: their coder uses O(1) amortized time to encode each charac-
ter and O(log H) amortized time to decode it; the encoding length is also at most
(H + 1)m + o(m) bits. Nekrich [17] implemented a version of their algorithm and
showed it performs fairly well on the Calgary and Canterbury corpora.

In this paper we describe an algorithm that both encodes and decodes each
character in O(1) worst-case time, while still using at most (H +1)m+o(m) bits.
It can be shown that the encoding length of any adaptive prefix coding algorithm
is at least (H + 1)m− o(m) bits in the worst case. Thus our algorithm works in
optimal worst-case time independently of the alphabet size and achieves optimal
encoding length (up to the lower-order term). As is common, we assume n& m;
in fact, our main result is valid if n = o(m/ log5/2 m); for two results in section 6
we need a somewhat stronger assumption that n = o(

√
m/ logm). For simplicity,

we also assume s contains at least two distinct characters and m is given in
advance; Karpinski and Nekrich [12, Section 6.1] described how to deal with the
case when m is not given. Our model is a unit-cost word RAM with Ω(log m)-
bit words on which it takes O(1) time to input or output a word. Our encoding
algorithm uses only addition and bit operations; our decoding algorithm also
uses multiplication and finding the most significant bit in O(1) time. We can
also implement the decoding algorithm, so that it uses AC0 operations only.
Encoding needs O(n) words of space, and decoding needs O(n log m) words of
space. The decoding algorithm can be implemented with bit operations only at
a cost of higher space usage and additional pre-processing time. For an arbitrary
constant α > 0, we can construct in O(mα) time a look-up table that uses
O(mα) space; this look-up table enables us to implement multiplications with
O(1) table look-ups and bit operations.

While the algorithm of [12] uses quantized coding, i.e., coding based on the
quantized symbol probabilities, our algorithm is based on delayed probabilities:
encoding of a symbol s[i] uses a Shannon code for the prefix s[1..i − d] for
an appropriately chosen parameter d; henceforth s[i] denotes the i-th symbol
in the string s and s[i..j] denotes the substring of s that consists of symbols
s[i]s[i+1] . . . s[j]. In Section 2 we describe canonical Shannon codes and explain
how they can be used to speed up Shannon coding. In Section 3 we describe two
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useful data structures that allow us to maintain the Shannon code efficiently.
We present our algorithm and analyze the number of bits it needs to encode a
string in Section 4. In Section 5 we prove a matching lower bound by extending
Vitter’s lower bound from adaptive Huffman coders to all adaptive prefix coders.

2 Canonical Shannon Coding

Shannon [19]defined the entropyH(P ) of a probabilitydistributionP = p1, . . . , pn

to be
∑n

i=1 pi log2(1/pi).1 He then proved that, if P is over an alphabet, then we
can assign each character with probability pi > 0 a prefix-free binary codeword
of length �log2(1/pi)�, so the expected codeword length is less than H(P ) + 1; we
cannot, however, assign them codewords with expected length less than H(P ).2

Shannon’s proof of his upper bound is simple: without loss of generality, assume
p1 ≥ · · · ≥ pn > 0; for 1 ≤ i ≤ n, let bi =

∑i−1
j=1 pj ; since |bi − bi′ | ≥ pi for i′ 
= i,

the first �log(1/pi)� bits of bi’s binary representation uniquely identify it; let these
bits be the codeword for the ith character. The codeword lengths do not change if,
before applying Shannon’s construction, we replace each pi by 1/2
log(1/pi)�. The
code then produced is canonical [18]: i.e., if a codeword is the cth of length r, then it
is the first r bits of the binary representation of

∑r−1
�=1 W (�)/2� +(c−1)/2r, where

W (�) is the number of codewords of length �. For example,

1) 000 7) 1000
2) 001 8) 1001
3) 0100 9) 10100
4) 0101 10) 10101
5) 0110 ...
6) 0111 16) 11011

are the codewords of a canonical code. Notice the codewords are always in lexi-
cographic order.

Static prefix coding with a Shannon code stores s in (H + 1)m + o(m) bits.
An advantage to using a canonical Shannon code is that we can easily encode
each character in O(1) worst-case time (apart from first pass) and decode it
symmetrically in O(log log m) worst-case time (see [16]). To encode a symbol
s[i] from s, it suffices to know the pair 〈r, c〉 such that the codeword for s[i] is
the c-th codeword of length r, and the first codeword lr of length r. Then the
codeword for s[i] can be computed in O(1) time as lr + c. We store the pair 〈r, c〉
for the k-th symbol in the alphabet in the k-th entry of the array C. The array
L[1..�logm�] contains first codewords of length l for each 1 ≤ l ≤ �log m�. Thus,
if we maintain arrays L and C we can encode a character from s in O(1) time.

For decoding, we also need a data structure D of size log m and a matrix
M of size n × �log m�. For each l such that there is at least one codeword of

1 We assume 0 log(1/0) = 0.
2 In fact, these bounds hold for any size of code alphabet; we assume throughout that

codewords are binary, and by log we always mean log2.
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length l, the data structure D contains the first codeword of length l padded
with �log m� − l 0’s. For an integer q, D can find the predecessor of q in D,
pred(q, D) = max{x ∈ D|x ≤ q}. The entry M [r, c] of the matrix M contains
the symbol s, such that the codeword for s is the c-th codeword of length r. The
decoding algorithm reads the next �log m� bits into a variable w and finds the
predecessor of w in D. When pred(w, D) is known, we can determine the length
r of the next codeword, and compute its index c as (w − L[r]) ' (�log m� − r)
where ' denotes the right bit shift operation.

The straightforward binary tree solution allows us to find predecessors in
O(log log m) time. We will see in the next section that predecessor queries on a
set of log m elements can be answered in O(1) time. Hence, both encoding and
decoding can be performed in O(1) time in the static scenario. In the adaptive
scenario, we must find a way to maintain the arrays C and L efficiently and, in
the case of decoding, the data structure D.

3 Data Structures

It is not hard to speed up the method for decoding we described in Section 2.
For example, if the augmented binary search tree we use as D is optimal in-
stead of balanced then, by Jensen’s Inequality, we decode each character in
O(log H) amortized time. Even better, if we use a data structure by Fredman
and Willard [4], then we can decode each character in O(1) worst-case time; due
to space constraints, we postpone the proof to the full version of this paper.

Lemma 1 (Fredman and Willard, 1993). Given O(log1/6 m) keys, in
O(log2/3 m) worst-case time we can build a data structure that stores those keys
and supports predecessor queries in O(1) worst-case time.

Corollary 1. Given O(log m) keys, in O(log3/2 m) worst-case time we can build
a data structure that stores those keys and supports predecessor queries in O(1)
worst-case time.

In Lemma 1 and Corollary 1 we assume that multiplication and finding the most
significant bit of an integer can be performed in constant time. As shown in [1],
we can implement the data structure of Lemma 1 using AC0 operations only.
We can restrict the set of elementary operations to bit operations and table
look-ups by increasing the space usage and preprocessing time to O(mε). In our
case all keys in the data structure D are bounded by m; hence, we can construct
in O(mε) time a look-up table that uses O(mε) space and allows us to multiply
two integers or find the most significant bit of an integer, in constant time.

Corollary 1 is useful to us because the data structure it describes not only
supports predecessor queries in O(1) worst-case time but can also be built in
time polylogarithmic in m; the latter property will let our adaptive Shannon
coder keep its data structures nearly current by regularly rebuilding them. The
array C and matrix M cannot be built in o(n) time, however, so we combine
them in a data structure that can be updated incrementally. Arrays C[] and L[],
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and the matrix M defined in the previous section, can be rebuilt as described in
the next lemma, which will be proved in the full version of this paper.

Lemma 2. If codeword lengths of f ≥ log m symbols are changed, we can rebuild
arrays C[] and L[], and update the matrix M in O(f) time.

4 Algorithm

The main idea of the algorithm of [12], that achieves O(1) amortized encoding
cost per symbol, is quantization of probabilities. The Shannon code is main-
tained for the probabilities p̃j = 
i/q�

�occ(ai,s[1..i])/q where occ(aj , s[1..i]) denotes
the number of occurrences of the symbol aj in the string s[1..i] and the param-
eter q = Θ(log m). The symbol ai must occur q times before the denominator
of the fraction p̃i is incremented by 1. Roughly speaking, the value of p̃i, and
hence the codeword length of ai, changes at most once after log m occurrences
of ai. As shown in Lemma 2, we can rebuild the arrays C[] and L[] in O(log m)
time. Therefore encoding can be implemented in O(1) amortized time. However,
it is not clear how to use this approach to obtain constant worst-case time per
symbol.

In this paper a different approach is used. Symbols s[i+1], s[i+2], . . . , s[i+d]
are encoded with a Shannon code for the prefix s[1]s[2] . . . s[i− d] of the input
string. Recall that in a traditional adaptive code the symbol s[i + 1] is encoded
with a code for s[1] . . . s[i]. While symbols s[i + 1] . . . s[i + d] are encoded, we
build an optimal code for s[1] . . . s[i]. The next group of symbols, i.e., s[i +
d + 1] . . . s[i + 2d] will be encoded with a Shannon code for s[1] . . . s[i], and the
code for s[1] . . . s[i + d] will be simultaneously rebuilt in the background. Thus
every symbol s[j] is encoded with a Shannon code for the prefix s[1] . . . s[j − t],
d ≤ t < 2d, of the input string. That is, when a symbol s[i] is encoded, its
codeword length equals⌈

log
i + n− t

max (occ(s[i], s[1..i− t]), 1)

⌉
.

We increased the enumerator of the fraction by n and the denominator is always
at least 1 because we assume that every character is assigned a codeword of
length �log n − d� before encoding starts. We make this assumption only to
simplify the description of our algorithm. There are other methods of dealing
with characters that occur for the first time in the input string that are more
practically efficient, see e.g. [13]. The method of [13] can also be used in our
algorithm, but it would not change the total encoding length.

Later we will show that the delay of at most 2d increases the length of encoding
only by a lower order term. Now we turn to the description of the procedure that
updates the code, i.e., we will show how the code for s[1] . . . s[i] can be obtained
from the code for s[1] . . . s[i− d].

Let C be a code for s[1] . . . s[i− d] and C′ be a code for s[1] . . . s[i]. As shown
in section 2, updating the code is equivalent to updating the arrays C[] and L[],
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the matrix M , and the data structure D. Since a group of d symbols contains
at most d different symbols, we must change codeword lengths of at most d
codewords. The list of symbols a1, . . . , ak such that the codeword length of ak

must be changed can be constructed in O(d) time. We can construct an array
L[] for the code C′ in O(max(d, log m)) time by Lemma 2. The matrix M and
the array C[] can be updated in O(d) time because only O(d) cells of M are
modified. However, we cannot build new versions of M and C[] because they
contain Θ(n log m) and Θ(n) cells respectively. Since we must obtain the new
version of M while the old version is still used, we modify M so that each cell
of M is allowed to contain two different values, an old one and a new one.
For each cell (r, c) of M we store two values M [r, c].old and M [r, c].new and the
separating value M [r, c].b: when the symbol s[t], t < M [r, c].b, is decoded, we use
M [r, c].old; when the symbol s[t], t ≥ M [r, c].b, is decoded, we use M [r, c].new.
The procedure for updating M works as follows: we visit all cells of M that
were modified when the code C was constructed. For every such cell we set
M [r, c].old = M [r, c].new and M [r, c].b = +∞. Then, we add the new values for
those cells of M that must be modified. For every cell that must be modified,
the new value is stored in M [r, c].new and M [r, c].b is set to i + d. The array
C[] can be updated in the same way. When the array L[] is constructed, we can
construct the data structure D in O(log3/2 m) time.

The algorithm described above updates the code if the codeword lengths of
some of the symbols s[i− d + 1] . . . s[i] are changed. But if some symbol a does
not occur in the substring s[i − d + 1] . . . s[i], its codeword length might still
change in the case when log(i) > log(ia) where ia = max{j < i|s[j] = a}. We
can, however, maintain the following invariant on the codeword length la:⌈

log
i + n

max(occ(a, s[1..i− 2d]), 1)

⌉
≤ la ≤

⌈
log

i + 2n

max(occ(a, s[1..i− 2d]), 1)

⌉
.

(1)
When the codeword length of a symbol a must be modified, we set its length
to �log i+2n

max(occ(a,s[1..i]),1)�. All symbols a are also stored in the queue Q. When
the code C′ is constructed, we extract the first d symbols from Q, check whether
their codeword lengths must be changed, and append those symbols at the end
of Q. Thus the codeword length of each symbol is checked at least once when
an arbitrary substring s[u] . . . s[u+ n] of the input string s is processed. Clearly,
the invariant 1 is maintained.

Thus the procedure for obtaining the code C′ from the code C consists of the
following steps:
1. check symbols s[i − d + 1] . . . s[i] and the first d symbols in the queue Q;

construct a list of codewords whose lengths must be changed; remove the
first d symbols from Q and append them at the end of Q

2. traverse the list N of modified cells in the matrix M and the array C[], and
remove the old values from those cells; empty the list N

3. update the array C[] for code C′; simultaneously, update the matrix M and
construct the list N of modified cells in M and C[]

4. construct the array L and the data structure D for the new code C′
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Each of the steps described above, except the last one, can be performed in
O(d) time; the last step can be executed in O(max(d, log3/2 m)) time. For d =
�log3/2 m�/2, code C can be constructed in O(d) time. If the cost of constructing
C′ is evenly distributed among symbols s[i − d], . . . , s[i], then we spend O(1)
extra time when each symbol s[j] is processed. Since occ(a, s[1..i−�log3/2 m�]) ≥
max(occ(a, s[1..i])− �log3/2 m�, 1), we need at most⎡⎢⎢⎢log

i + 2n

max
(
occ(s[i], s[1..i])− �log3/2 m�, 1

)
⎤⎥⎥⎥

bits to encode s[i].

Lemma 3. We can keep an adaptive Shannon code such that, for 1 ≤ i ≤ m,
the codeword for s[i] has length at most⎡⎢⎢⎢log

i + 2n

max
(
occ(s[i], s[1..i])− �log3/2 m�, 1

)
⎤⎥⎥⎥

and we use O(1) worst-case time to encode and decode each character.

We can combine several inequalities by Gagie [6] and Karpinski and Nekrich [12]
into the following lemma, which will be proved in the full version of this paper:

Lemma 4

m∑
i=1

⎡⎢⎢⎢log
i + 2n

max
(
occ(s[i], s[1..i])− �log3/2 m�, 1

)
⎤⎥⎥⎥ ≤ (H + 1)m + O(n log5/2 m) .

Together with Lemma 3, this immediately yields our result.

Theorem 1. We can encode s in at most (H +1)m+o(m) bits with an adaptive
prefix coding algorithm that encodes and decodes each character in O(1) worst-
case time.

5 Lower Bound

It is not difficult to show that any prefix coder uses at least (H + 1)m − o(m)
bits in the worst case (e.g., when s consists of m − 1 copies of one character
and 1 copy of another, so Hm < log m + log e). However, this does not rule
out the possibility of an algorithm that always uses, say, at most m/2 more bits
than static Huffman coding. Vitter [21] proved such a bound is unachievable
with an adaptive Huffman coder, and we now extend his result to all adaptive
prefix coders. This implies that for an adaptive prefix coder to have a stronger
worst-case upper bound than ours (except for lower-order terms), that bound
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can be in terms of neither the empirical entropy nor the number of bits used by
static Huffman coding.3

Theorem 2. Any adaptive prefix coder stores s in at least m− o(m) more bits
in the worst case than static Huffman coding.

Proof. Suppose n = m1/2 = 2� +1 and the first n characters of s are an enumer-
ation of the alphabet. For n < i ≤ m, when the adaptive prefix coder reaches
s[i], there are at least two characters assigned codewords of length at least �+1.
To see why, consider the prefix code used to encode s[i] as a binary tree — a
code-tree — whose leaves are labelled with the characters in the alphabet and
whose branches correspond to the codewords; since any binary tree on 2� + 1
leaves has at least two leaves at depth at least �+1, there must be two codewords
of length at least � + 1. It follows that, in the worst case, the coder uses at least
(� + 1)m − o(m) bits to store s. On the other hand, a static prefix coder can
assign codewords of length � to the n−2 most frequent characters and codewords
of length � + 1 to the two least frequent ones, and thus use at most �m + o(m)
bits. Therefore, since a Huffman code minimizes the expected codeword length,
any adaptive prefix coder uses at least m − o(m) more bits in the worst case
than static Huffman coding. ��

6 Other Coding Problems

Several variants of the prefix coding problem have been considered and exten-
sively studied. In the alphabetic coding problem [10], codewords must be sorted
lexicographically, i.e., i < j ⇒ c(ai) < c(aj), where c(ak) denotes the codeword
of ak. In the length-limited coding problem, the maximum codeword length is
limited by a parameter F > log n. In the coding with unequal letter costs prob-
lem, one symbol in the code alphabet costs more than another and we want to
minimize the average cost of a codeword. All of the above problems were stud-
ied in the static scenario. Adaptive prefix coding algorithms for those problems
were considered in [5]. In this section we show that the good upper bounds on
the length of the encoding can be achieved by algorithms that encode in O(1)
worst-case time. The main idea of our improvements is that we encode a symbol
s[i] in the input string with a code that was constructed for the prefix s[1..i− d]
of the input string, where the parameter d is chosen in such a way that a cor-
responding (almost) optimal code can be constructed in O(d) time. Using the
same arguments as in the proof of Lemma 4 we can show that encoding with
delays increases the length of encoding by an additive term of O(d ·n log m) (the
analysis is more complicated in the case of coding with unequal letter costs). We
will provide proofs in the full version of this paper.
3 Notice we do not exclude the possibility of natural probabilistic settings in which

our algorithm is suboptimal — e.g., if s is drawn from a memoryless source for which
a Huffman code has smaller redundancy than a Shannon code, then adaptive Huff-
man coding almost certainly achieves better asymptotic compression than adaptive
Shannon coding — but in this paper we are interested only in worst-case bounds.
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Alphabetic Coding. Gagie [6] noted that, by replacing Shannon’s construction
by a modified construction due to Gilbert and Moore [10], his coder can be made
alphabetic — i.e., so that the lexicographic order of the possible encodings is
the same as that of the inputs. This modification increases the worst-case length
of the encoding to (H + 2)m + o(m) bits, and increases the time to encode and
decode each character to O(log n). We can use our results to speed up Gagie’s
adaptive alphabetic prefix coder when n = o(

√
m/ log m).

Whereas Shannon’s construction assigns a prefix-free binary codeword of length
�log(1/pi)� to each character with probability pi > 0, Gilbert and Moore’s con-
struction assigns a codeword of length �log(1/pi)�+ 1. Building a code according
to Gilbert and Moore’s algorithm takes O(n) time because, unlike Shannon’s con-
struction, we do not need to sort the characters by probability. Hence, although
we don’t know how to update the alphabetic code efficiently, we can construct it
from scratch in O(n) time. We can apply the same approachas in previous sections,
and use rebuilding with delays: while we use the alphabetic code for s[1..i− n/2]
to encode symbols s[i], s[i + 1], . . . , s[i + n/2], we construct the code for s[1..i]
in the background. If we use O(1) time per symbol to construct the next code, it
will be completed when s[i + n/2] is encoded. Hence, we encode each character
using at most

⌈
log i+n

max(occ(s[i],s[1..i])−n,1)

⌉
+ 1 bits. Unfortunately we cannot use

the encoding and decoding methods of Section 2 because the alphabetic coding
is not canonical. When an alphabetic code for the following group of O(n) sym-
bols is constructed, we also create in O(n) time a table that stores the codeword
of each symbol ai. Such a table can be created from the alphabetic code in O(n)
time; hence, the complexity of the encoding algorithm is not increased. We can de-
code the next codeword by searching in the data structure that contains all code-
words. Using a data structure due to Andersson and Thorup [2] we can decode in
O(min(

√
log n, log log m) time per symbol. A detailed description of the algorithm

will be given in the full version of this paper.

Theorem 3. There is an algorithm for adaptive alphabetic prefix coding that en-
codes and decodes each symbol of a string s in O(1) and O(min(

√
log n, log log m))

time respectively. If n = o(
√

m/ log m), the encoding length is ((H + 2)m + o(m).

Coding with unequal letter costs. Krause [14] showed how to modify Shan-
non’s construction for the case in which code letters have different costs, e.g., the
different durations of dots and dashes in Morse code. Consider a binary chan-
nel and suppose cost(0) and cost(1) are constants with 0 < cost(0) ≤ cost(1).
Krause’s construction gives a code such that, if a symbol has probability p, then
its codeword has cost less than ln(p)/C + cost(1), where the channel capacity
C is the largest real root of e−cost(0)·x + e−cost(1)·x = 1 and e is the base of the
natural logarithm. It follows that the expected codeword cost in the resulting
code is H ln 2/C + cost(1), compared to Shannon’s bound of H ln 2/C. Based on
Krause’s construction, Gagie gave an algorithm that produces an encoding of s
with total cost at most

(
H ln 2

C + cost(1)
)
m+o(m) in O(m log n) time. Since the

code of Krause [14] can be constructed in O(n) time, we can use the encoding
with delay n and achieve O(1) worst-case time. Since the costs are constant and
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the minimum probability is Ω(1/m), the maximum codeword length is O(log m).
Therefore, we can decode using the data structure described above.

Theorem 4. There is an algorithm for adaptive prefix coding with unequal letter
costs that encodes and decodes each symbol of a string s in O(1) and
O(min(

√
log n, log log m)) time respectively. If n = o(

√
m/ logm), the encoding

length is
(

H ln 2
C + cost(1)

)
m + o(m).

Length-limited coding. Finally, we can design an algorithm for adaptive
length-limited prefix coding by modifying the algorithm of section 4. Using
the same method as in [5] — i.e., smoothing the distribution by replacing
each probability with a weighted average of itself and 1/n — we set the code-
word length of symbol s[i] to �log 2f

(2f−1)x+1/n
� instead of �log 1

x�, where x =
max(occ(s[i],s[1..i])−�log3/2 m,1)

i+2n and f = F − log n. We observe that the codeword
lengths li of this modified code satisfy the Kraft-McMillan inequality:

∑
i

2−li ≤
∑

x

(2f − 1)x + 1/n

2f
=
∑

x

2fx

2f
−
∑

x

x

2f
+ n

1/n

2f
< 1 .

Therefore we can construct and maintain a canonical prefix code with code-
word lengths li. Since 2f

(2f−1)x+1/n
≤ min( 2f

(2f−1)x , 2f

1/n ), �log 2f

(2f−1)x+1/n
� ≤

min(�log 2f

(2f−1)x�, log n + f) . Thus the codeword length is always smaller than
F . We can estimate the encoding length by bounding the first part of the above
expression: �log 2f

(2f−1)x� < x+1+log 2f+1
2f and log 2f+1

2f = (1/2f) log(1+ 1
2f )2

f ≤
1

2f ln 2 . Summing up by all symbols s[i], the total encoding length does not exceed

m∑
i=1

log
i + 2n

max
(
occ(s[i], s[1..i])− �log3/2 m�, 1

) + m +
m

2f ln 2
.

We can estimate the first term in the same way as in Lemma 4; hence, the length
of the encoding is (H+1+ 1

2f ln 2 )m+O(n log5/2 m). We thus obtain the following
theorem:

Theorem 5. There is an algorithm for adaptive length-limited prefix coding that
encodes and decodes each symbol of a string s in O(1) time. The encoding length
is (H +1+ 1

2f ln 2 )m+O(n log5/2 m), where f = F − logn and F is the maximum
codeword length.

7 Open Problems

In a recent paper [7] we gave an adaptive prefix coding algorithm that lets us
trade off the quality of the compression against the amount of memory used,
while using O(log log n) worst-case time to encode and decode each character;
combining that algorithm with the one in this paper, to improve the tradeoff and
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reduce the time bound to O(1) is an interesting open question. Our algorithms for
alphabetic and unequal letter cost coding assume that n = o(

√
m/ log m). Design

of efficient adaptive codes for the case n = Ω(
√

m/ logm) remains an open
problem. In [8] we showed how a similar approach can be used to obtain tight
bounds for the online stable sorting problem in the case when n = o(

√
m/ log m).

Thus this question is also relevant for the online stable sorting problem.
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15. Milidiú, R.L., Laber, E.S., Pessoa, A.A.: Bounding the compression loss of the

FGK algorithm. Journal of Algorithms 32(2), 195–211 (1999)
16. Moffat, A., Turpin, A.: On the implementation of minimum redundancy prefix

codes. IEEE Transactions on Communications 45(10), 1200–1207 (1997)
17. Nekrich, Y.: An efficient implementation of adaptive prefix coding. In: Proceedings

of the Data Compression Conference, p. 396 (2007)
18. Schwartz, E.S., Kallick, B.: Generating a canonical prefix encoding. Communica-

tions of the ACM 7(3), 166–169 (1964)
19. Shannon, C.E.: A mathematical theory of communication. Bell System Technical

Journal 27, 379–423, 623–656 (1948)
20. Turpin, A., Moffat, A.: On-line adaptive canonical prefix coding with bounded

compression loss. IEEE Transactions on Information Theory 47(1), 88–98 (2001)
21. Vitter, J.S.: Design and analysis of dynamic Huffman codes. Journal of the

ACM 1987(4), 825–845 (1987)



New Results on Visibility in Simple Polygons

Alexander Gilbers and Rolf Klein

Institute of Computer Science
University of Bonn

53117 Bonn, Germany
{gilbers,rolf.klein}@cs.uni-bonn.de

Abstract. We show that (A), 14 points on the boundary of a Jordan
curve, and (B), 16 points in convex position encircled by a Jordan curve,
cannot be shattered by interior visibility domains. This means that there
always exists a subset of the given points, for which no point of the curve’s
interior domain sees all points of the subset and no point of its comple-
ment. As a consequence, we obtain a new result on guarding art galleries.
If each point of the art gallery sees at least an r-th part of the gallery’s
boundary, then the art gallery can be covered by 13 · C · r log r guards
placed on the boundary. Here, C is the constant from the ε-net theorem.

Keywords: Computationalgeometry,artgalleries, guards,VC-dimension,
visibility.

1 Introduction

Visibility of objects and, in particular, the guarding of art galleries, belong to
the most famous topics in computational geometry. A wealth of results can be
found, e. g., in O’Rourke [6] and Urrutia [7].

A classic result states that a simple polygon on n vertices can be guarded by
at most �n

3 � stationary guards with 360◦ view. The well-known example depicted
in Figure 1 shows that this number of guards may also be necessary.

This art gallery has the significant property that it contains many points from
which only a small portion of the total area is visible. It is quite natural to ask
if galleries that do not have this property can be guarded by fewer guards. More
precisely, let us assume that R is a simple closed Jordan curve in the plane1 and
that, for each point p in R the condition

area(vis(p)) ≥ 1
r
· area(R)

holds, for some parameter r > 1. Here

vis(p) = { x ∈ R | xp ⊂ R }

denotes the visibility domain of p in R.
1 For simplicity, we use R to also denote the interior domain plus the curve itself.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 327–338, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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P

Fig. 1. An art gallery over 3m + 2 vertices that requires m guards

One might be tempted to think that, if each guard see an r-th part of R, then
r guards should be sufficient to cover all of R. Although this argument ignores
that visibility regions can overlap, so that their areas cannot simply be added
up, it is, surprisingly, not too far off. Indeed, Kalai and Matoušek [2] have shown
that the Vapnik-Chervonenkis dimension

dimVC(R, F )

of a simple closed curve R and of the set F of all visibility domains vis(w), where
w ∈ R, is bounded from above by some constant2.

By definition,
dmax := max

R
dimVC(R, F )

is the smallest number for which the following holds. If one draws an arbitrary
simple closed curve R and places an arbitrary set S of dmax + 1 points inside R,
then S cannot be “shattered” by F , in the following sense. There always exists
a subset T of S, such that no point w in R can see each point of T and no point
of S \ T . In other words, subset T cannot be visually distinguished.

By the theory of ε-nets, there exists an 1/r-net N for (R, F ) of size

C · dmax · r log r (1)

This means that each visibility domain vis(w) of area at least 1/r times the area
of R contains a point p of N . If we assume that each visibility domain vis(w)
fulfills this size condition, we can conclude that each w ∈ R is visible from some
point p of N , that is, the C · dmax · r log r many points of N are a system of
guards for R. One should observe that only parameter r depends on the actual
curve R, while C and dmax are independent constants. (Thus, the false argument
from above is wrong by only a log r factor.) Since ε-nets can be found by random
sampling, such results have strong algorithmic consequences.

Complete proofs of these facts can be found in Matoušek [5], Chapter 10.
While they result in an upper bound of 13.08 for C, the resulting upper bound
for dmax is ≈ 1012, due to costly dualization. A better bound on dmax was
presented by Valtr [8]. He shows that

6 ≤ dmax ≤ 23
2 In general, for a set F of subsets of some set X, dimVC(X, F ) is defined as the

maximum size of a subset Y ⊆ X such that each Y ′ ⊆ Y can be obtained by
intersecting Y with a set in F .
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holds, leaving a challenging gap that has been open now for a decade. While one
strongly feels that the true value of dmax is closer to 6 than to 23, it seems not
easy to improve on Valtr’s arguments. Only for the case of external visibility have
some new results been obtained. Isler, Kannan, Daniilidis, and Valtr [1] proved,
among other results, that no set of 6 boundary points of R can be shattered
by visibility domains whose centers are situated outside the convex hull of R.
They gave an example of a set of 5 boundary points that can be shattered in
this way. King [3] considered 1.5-dimensional terrains and showed that here at
most 4 points can be shattered by visibility.

With this paper we start a new attack on the original, apparently more difficult
problem of internal visibility. We prove the following results.

(A) No set of 14 boundary points of R can be shattered, and
(B) no set of 16 arbitrary points of R in convex position can be shattered

by visibility domains vis(w), where w ∈ R. Result (A) gives also rise to a new
bound on guard numbers.

(C) If each point w ∈ R sees at least an r-th part of the boundary of R, then
all of R can be guarded by C · 13 · r log r guards placed on the boundary
of R.

Here, C is the constant for the size of ε-nets from (1) above. Result (C) is similar
in spirit to the following theorem of Kirkpatrick’s [4]. If each vertex of a simple
polygon sees at least an r-th part of its boundary, as few as 64r log log r vertex
guards are sufficient to cover the boundary of R. One should, however, observe that
guards covering the boundary are not necessarily able to see each interior point.

In our proof of (A) we are using new techniques that are different from the cell
decompositions employed by Matoušek [5] and Valtr [8]. We start with proving a
simple, yet powerful combinatorial fact that may be interesting in its own right;
see Lemma 1. This fact is applied to separate, by lines, points from potential
viewpoints; see Section 2 for details. Then we show that, for certain points p,
those viewpoints w′ that can see p form a contiguous radial subsequence of the set
of all viewpoints w. This allows us to apply a bound on the dual VC-dimension
of wedges by Isler et al. [1].

2 Preliminaries

Let R be the closed domain encircled by a Jordan curve, and let F denote the
set of all visibility domains vis(w), where w ∈ R.

A finite point set S ⊂ R is said to be “shattered” by F if, for each subset T
of S, there exists a viewpoint w in R such that T = vis(w) ∩ S. In this case we
say that viewpoint w sees subset T (and no other point of S); cf. Figure 2 for an
example. We are interested in establishing that point sets S of at least a certain
size cannot be shattered.

The following fact will be useful in Section 3. It holds for arbitrary sets E
and their power sets, P (E). We are not aware that this fact has been established
before.
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p

q
r

s

t

u

v

w

R

x
vis(w)

Fig. 2. Viewpoint w sees {q, s, u, x}. Solid segments indicate visibility, while dashed
segments connect points that are not mutually visible.

Lemma 1. Let E = E′ ( E′′ and P (E) = P ′ ( P ′′ be disjoint decompositions
of a set E and of its power set, P (E), respectively. Then P ′ shatters E′, or P ′′

shatters E′′.

Proof. Assume that P ′ does not shatter E′. Then there exists a subset S′
0 ⊂ E′

such that for all A′ ∈ P ′ the inequality S′
0 
= A′ ∩ E′ holds. Since each set

A′ := S′
0 ( S′′, for arbitrary S′′ ∈ P ′′, does fulfill S′

0 = A′ ∩ E′, such A′ cannot
be in P ′. We conclude

for each S′′ ∈ P ′′ : S′
0 ( S′′ ∈ P ′′. (2)

Moreover, let us assume that P ′′ does not shatter E′′ either. By a symmetric
argument, we obtain that there exists a subset S′′

0 ⊂ E′′ such that

for each S′ ∈ P ′ : S′ ( S′′
0 ∈ P ′. (3)

Now we specialize S′′ := S′′
0 in (2) and S′ := S′

0 in (3), and obtain the contradiction

S′
0 ( S′′

0 ∈ P ′ ∩ P ′′ = ∅.

Now we explain the main idea of the proof of Result (A), which states that
14 boundary points cannot be shattered. We shall illustrate how Lemma 1 will
be put to work in this proof.

Kalai and Matoušek [2] obtained a finite upper bound on the VC-dimension
of interior visibility domains by proving that, for shattered point sets beyond a
certain size, the impossible configuration depicted in Figure 3 (i) would occur3.

3 Again, solid segments indicate visibility, while dashed segments are crossed by the
boundary of P , so that their endpoints cannot see each other.
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p

l r

w

p

w

w′ w′′

(i) (ii)

L

Fig. 3. In (i), segment pw cannot be accessed by the boundary of R which, by assump-
tion, encircles these six points. Hence, this configuration is impossible. For the same
reason, the dotted segment in (ii) connecting p to w must be a solid visibility segment.

We shall use similar configurations, but in a different way. Let us consider the
set V of all viewpoints from which two points, l and r, are visible, like w′, w, w′′

in Figure 3 (ii). If w′ and w′′ can also see point p, then w must be able to see
p, too, as this figure illustrates. Consequently, those viewpoints of V that are
able to see p form a contiguous subsequence, in radial order around p. Our proof
of Result (A) draws on this “wedge” property, that will be formally defined in
Definition 1 below.

But how can we guarantee this property? To ensure that segment pw is indeed
encircled by visibility segments, as shown in Figure 3 (ii), two conditions should
be fulfilled. First, to all viewpoints should l, p, r appear in the same clockwise
order. This condition is met because l, p, r are situated on the boundary of R.
Second, l, p, r and the view points should see each other (in the absence of R) at
angles < 180◦. This condition is ensured by proving, with the help of Lemma 1,
that a line L exists that separates points from view points.

Now we formally define the wedge property.

Definition 1. Let p be a point in S, G a subset of S \ {p}, and V a set of view
points all of which can see at least the points of G. Moreover, let L denote a line.
We say that (p, G, V, L) has the wedge property iff the following conditions hold
for V and for the subset

Vp := {w ∈ V | p is visible from w}

1. Point p and view point set V are separated by line L.
2. For all w′, w′′ ∈ Vp and for all w ∈ V : if w lies inside the wedge with apex p

defined by w′, w′′ then w ∈ Vp holds.

In Figure 3 (ii) we have G = {l, r} and V = {w′, w, w′′}. In general, the sets G, V
and the line L may depend on p. If we are in a situation where (p, G, V, L) has
the wedge property, we call p a wedge point and the points in G wing points. As
the name suggests, the wedge property allows us to define a geometric wedge
in the following way. Let wl, wr be those view points of Vp that maximize
�(wl, p, wr); this angle is less than 180◦ because p and wl, wr are separated
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p
l r

p
l r

L

(i) (ii)
Qp Qp

Fig. 4. Two configurations addressed in Lemma 2

p
l r

p
l r

L

(i) (ii)
w′

w

w′′
w′

w

w′′

Fig. 5. In either case, segment pw is encirled by visibility edges. Thus, w sees p.

by a line. Now, let Wp denote the wedge with apex p whose angles are defined
by wl and wR. Then the wedge property ensures that Wp contains exactly those
points w of V that are able to see p. That is, Vp = V ∩Wp holds.

Now we show that two configurations, which will be used repeatedly in our
proofs, enjoy the wedge property.

Lemma 2. Let l, p, r, L, and Qp be situated as shown in Figure 4 (i) or (ii).
Let G := {l, r}, let V be a set of view points below L each of which sees G, and
assume that Vp ⊂ Qp holds. Then (p, G, V, L) has the wedge property.

Proof. Suppose that w′, w, w′′ ⊂ Qp appear in counterclockwise order around p,
as shown in Figure 5. Moreover, suppose that w′, w′′ ∈ Vp holds, that is, w′ and
w′′ can see l, p, r. If w ∈ V then segment pw is contained in an interior domain
of the cycle

wl · lw′ · w′p · pw′′ · w′′r · rw.

We observe that this fact is independent of the position of w′ with respect to
the line through l, w. Similarly, it does not matter if w′′ lies to the left or to the
right of the line through w and r. Hence, w sees p, that is, w ∈ Vp. This proves
the wedge property.

If, in Figure 4 (i), line L passes through l and r, or, in (ii), if L passes through
p, we can draw the same conclusions if V ∩ L = ∅. But without a separating
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line, the wedge property would not always be granted, as the example depicted
in Figure 6 shows.

3 Boundary Points

In this section we first prove Result (A).

Theorem 1. No set of 14 points on a simple closed curve can be shattered by
interior visibility regions.

Proof. Let R denote the closed interior domain of a Jordan curve, and let S be
a set of 14 points on the boundary of R

We choose two points l, r ∈ S such that the two boundary segments, τ and β,
of P between l and r contain 6 points of S each. Let T := τ ∩S and B := β ∩S.
We may assume that the line L through l and r is horizontal; see Figure 7 for a
sketch.

p

l

r

R

w′

w

w′′

w′′′

Fig. 6. Here the viewpoints seeing
l, p, r do not appear consecutively
around p

L
l r

τ

β

T

B

R

p

Fig. 7. Some notations used

Now let us assume that S can be shattered by the visibility regions vis(w),
where w ∈ R. This implies, in particular, the following. For each U ⊆ T ∪ B
there is a viewpoint wU ∈ R such that vis(wU ) = {l, r} ∪ U.

Let E := T ∪ B. Let P ′ denote the set of all subsets U ⊆ E where wU is
situated below line L, and let P ′′ be the set of those U ⊆ E for which wU lies
above L. Clearly, P ′ ∪ P ′′ equals the power set P (E) of E.

An application of Lemma 1 yields, up to symmetry, the following fact. For
each U ′ ⊆ T there exists a viewpoint wU ∈ R below line L such that U ′ = T ∩U.

That is, for each subset U ′ of T there is a point vU ′ := wU in R that (i), lies
below line L, (ii), sees l, r, and, (iii), sees of T exacly the subset U ′4. We define

V := {vU ′ |U ′ ⊆ T } and, for p ∈ T, Vp := {vU ′ ∈ V |p ∈ U ′}.
4 We need not care which points of B are visible from vU′ .
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Thus, from each viewpoint in Vp at least l, r and p are visible. Now, our main
task is in proving the following fact.

Lemma 3. For each p ∈ T there exists a wedge Wp with apex p such that
Vp = Wp ∩ V holds.

Proof. We distinguish two cases.

Case 1: p lies above line L. We define the wedge Wp by p and the two half-lines
from p through those viewpoints vl, vr ∈ Vp that maximize �(vl, p, vr). Clearly,
direction “⊆” of our lemma holds by definitions of Wp and Vp.

Since p and vl, vr are separated by line L, both visibility segments pvl and
pvr must cross L. We claim that both crossing points, cl, cr must be situated
on L between l and r. In fact, all other orderings would lead to a contradiction.
Namely, if r were lying in between cl and cr, then r could not be contained
in the boundary of R, which cannot intersect visibility segments. In Figure 8
the combinatorially different configurations are depicted. If both cl and cr were
to the right of r, then vl and vr could not be contained in R; see Figure 9.
This settles the claim: cl, cr must indeed be between l and r, see Figure 10. We
are in the situation depicted in Figure 4 (i), and conclude from Lemma 2 that
(p, {l, r}, V, line(l, r)) has the wedge property. Thus, Vp ⊇Wp∩V , and the proof
of Case 1 is complete.

p

l rcl cr

vl vr

vl

vr

cl crl

p

r

p

l rcl cr

vl vr(i) (ii) (iii)

L

Fig. 8. If r were between cl and cr it could not be reached by the boundary of R

Case 2: p lies below line L. Let Qp denote the wedge with apex p defined by
the halflines from l and r through p; see Figure 11 (i). We claim that Vp ⊂ Qp

holds. Indeed, if some point v′ ∈ Vp were situated outside Qp then R could not
contain v′, because the boundary of R visits l, r, p in counterclockwise order; see
Figure 11 (ii).

Now let vl, vr be those viewpoints in Vp that maximize �(vl, p, vr). As in
Case 1, let Wp be the wedge with apex p defined by the halflines from p trough
vl, vr, respectively; see Figure 11 (iii). We have Wp ⊆ Qp and are in the situation
depicted in Figure 4 (ii). As in Case 1, Lemma 2 implies Vp ⊇ Wp ∩ V . This
completes the proof of Lemma 3.

Now let U ′ ⊆ T and p ∈ T . Thanks to Lemma 3 we obtain the following
equivalence for the viewpoint vU ′ ∈ V of U ′.

vU ′ ∈ Wp ⇐⇒ vU ′ ∈ Vp ⇐⇒ p ∈ U ′.
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p

l r cl cr

vl vr

R

Fig. 9. If cl, cr were to the right of r
then the boundary of R, which visits
l, r, p in counterclockwise order, could
not encircle vl, vr

p

l rcl cr

vl

vr

Wp Qp

Fig. 10. Viewpoint set Vp is contained in
wedge Wp ⊂ Qp

p

l r

vl vr

(i) (ii)

(iii)

Qp

p

l r

v′

p

l r

Wp

Fig. 11. (i) Wedge Qp is defined by p and the halflines from l, r through p. (ii) As
the boundary of R visits l, r, p in counterclockwise order, it could not encircle v′. (iii)
Wedge Wp is defined by the viewpoints vl, vr of Vp that make a maximum angle at p.

That is, for each subset U ′ of T there exists a point (namely, vU ′) that is con-
tained in exactly those wedges Wp where p ∈ U ′. But this is impossible because
of |T | = 6. Namely, Isler et al. [1] have shown that for at most 5 wedges can each
subset be stabbed by one point. This conludes the proof of Theorem 1.

As in the Introduction, let C denote the constant from the ε-net theorem.

Theorem 2. If each point encircled by a simple closed curve sees at least an
rth part of the curve, then its interior domain can be covered by 13 · C · r log r
many guards on the curve.

Proof. Let J denote the curve, let R be its interior domain plus J , and F :=
{vis(w) ∩ J |w ∈ R}. From Theorem 1 we infer that dimVC(J, F ) ≤ 13 holds.
By ε-net theory, there exists an 1/r-net N ⊂ J of size at most 13 C r log r. By
assumption, each set in F contains a point p of N . That is, each w ∈ R is visible
from some point p ∈ N on the curve.

We think that this statement is quite interesting because a set of curve points
covering the whole curve is not necessarily able to guard each point of the
interior.
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4 Points in Convex Position

One key property for showing that 14 points on a curve cannot be shattered by
their visibility domains was, informally speaking, that we could easily find two
wing points l, r from S such that the viewpoints see all other points between
them. For the general case this is not possible. Nevertheless with a bit more
effort we can show that in the case where the points of S are in convex position,
we can find different such wing points for different points.

Theorem 3. No set of 16 points in convex position inside a simple closed curve
can be shattered by interior visibility regions.

We give only an outline of the proof. If P = {p1, . . . , p16} is ordered along its
convex hull boundary, we consider the viewpoint vE , that sees exactly the points
that have even index. We can then show that there is some point pi ∈ P with odd
index that sees only about half of the other points of P . We then find another
point pj ∈ P , so that pi and pj serve as wing points for all pk with i < k < j or
j < k < i, respectively. Figure 12 depicts a typical configuration, that arises in
this situation. There we have i = 1 and j = 7.

Then (pk, {pi, pj}, V, L) has the wedge property for every k. An example that
illustrates the main argument providing the wedge property is given in Figure 13,
where the points that see p1 and p7 but not p3 have to lie outside the wedge
w′p3w

′′.
In general the wedge points obtained by this first step will be less than 6. But

by repeating the procedure and forming the union of the sets of wedge points
and wing points, respectively, we always get at least 6 wedge points in the end.

p1

p2

p3
p4 p5

p6

p7

vE
L

Fig. 12. p1 and p7 serve as wing points for the points between them
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p1

p2

p3
p4 p5

p6

p7

w

w′

w′′

s′
s′′

Fig. 13. Visibility edge p3w cannot be broken because it is inside the quadrilateral
p3s

′ws′′

Therefore the full proof amounts to careful bookkeeping, to make sure that
16 points are always sufficient to obtain a shattered set of 6 wedge points,
which leads to a contradiction because of [1]. We omit it due to lack of
space.

5 Conclusions

Understanding visibility inside simple polygons is a fundamental challenge to
computational geometry. In this paper we have shown that no set of 14 boundary
points, and no set of 16 points in convex position, can be shattered by visibility
domains. The former fact implies a new result on the number of boundary guards
needed to guard a polygon. Our proofs are based on two new techniques. First,
we use Lemma 1 to find lines that separate points from viewpoints. Second,
we single out some wing points, like l, r in Lemma 2, that must be seen by
all view points considered; these visibility edges serve to protect other point-
viewpoint edges from boundary intrusion. Costwise, the first technique increases
the number of points by a factor of two, while the second technique adds a
constant. It will be interesting to see to what extent these techniques can be
generalized or strenghtened.
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Abstract. Algorithms or target functions for graph clustering rarely admit qual-
ity guarantees or optimal results in general. Based on properties of minimum-cut
trees, a clustering algorithm by Flake et al. does however yield such a provable
guarantee. We show that the structure of minimum-s-t-cuts in a graph allows for
an efficient dynamic update of minimum-cut trees, and present a dynamic graph
clustering algorithm that maintains a clustering fulfilling this quality quarantee,
and that effectively avoids changing the clustering. Experiments on real-world
dynamic graphs complement our theoretical results.

1 Introduction

Graph clustering has become a central tool for the analysis of networks in general, with
applications ranging from the field of social sciences to biology and to the growing
field of complex systems. The general aim of graph clustering is to identify dense sub-
graphs in networks. Countless formalizations thereof exist, however, the overwhelming
majority of algorithms for graph clustering relies on heuristics, e.g., for some NP-hard
optimization problem, and do not allow for any structural guarantee on their output.
For an overview and recent results on graph clustering see, e.g., [2,1] and references
therein. Inspired by the work of Kannan et al. [8], Flake et al. [3] recently presented a
clustering algorithm which does guarantee a very reasonable bottleneck-property. Their
elegant approach employs minimum-cut trees, pioneered by Gomory and Hu [4], and
is capable of finding a hierarchy of clusterings by virtue of an input parameter. There
has been an attempt to dynamize this algorithm, by Saha and Mitra [9], however, we
found it to be erroneous beyond straightforward correction. We are not aware of any
other dynamic graph-clustering algorithms in the literature.

In this work we develop the first correct algorithm that efficiently and dynamically
maintains a clustering for a changing graph as found by the method of Flake et al. [3],
allowing arbitrary atomic changes in the graph, and keeping consecutive clusterings
similar (a notion we call temporal smoothness). Our algorithms build upon partially
updating an intermediate minimum-cut tree of a graph in the spirit of Gusfield’s [6]
simplification of the Gomory-Hu algorithm [4]. We show that, with only slight modifi-
cations, our techniques can update entire min-cut trees. We corroborate our theoretical
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F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 339–350, 2009.
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results on clustering by experimentally evaluating the performance of our procedures
compared to the static algorithm on a real-world dynamic graph.

We briefly give our notational conventions and one fundamental lemma in Sec. 1.
Then, in Sec. 2, we revisit some results from [4,6,3], convey them to a dynamic scenario,
and derive our central results. In Section 3 we give actual update algorithms, which we
analyse in Sec. 4, concluding in Sec. 5. We do not include any proof in this extended
abstract, without further notice these can all be found in the full version [5].

Preliminaries and Notation. Throughout this work we consider an undirected,
weighted graph G = (V,E,c) with vertices V , edges E and a non-negative edge weight
function c, writing c(u,v) as a shorthand for c({u,v}) with u ∼ v, i.e., {u,v}∈ E . We re-
serve the term node (or super-node) for compound vertices of abstracted graphs, which
may contain several basic vertices; however, we identify singleton nodes with the con-
tained vertex without further notice. Dynamic modifications of G will solely concern
edges; the reason for this is, that vertex insertions and deletions are trivial for a discon-
nected vertex. Thus, a modification of G always involves edge {b,d}, with c(b,d) = Δ ,
yielding G⊕ if {b,d} is newly inserted into G, and G� if it is deleted from G. For
simplicity we will not handle changes to edge weights, since this can be done almost
exactly as deletions and additions. Bridges in G require special treatment when deleted
or inserted. However, since they are both simple to detect and to deal with, we ignore
them by assuming the dynamic graph to stay connected at all times.

The minimum-cut tree T (G) = (V,ET ,cT ) of G is a tree on V and represents for any
node pair {u,v}∈

(V
2

)
a minimum-u-v-cut θu,v in G by the cheapest edge on the u-v-path

in T (G). For b,d ∈V we always call this path γ (as a set of edges). An edge eT = {u,v}
of T induces the cut θu,v in G, sometimes denoted θv if the context identifies u. We
sometimes identify eT with the cut it induces in G.

A contraction of G by N ⊆ V means replacing set N by a single super-node η , and
leaving η adjacent to all former adjacencies u of vertices of N, with edge weight equal
to the sum of all former edges between N and u. Analogously we can contract by a set
M ⊆ E . A clustering C (G) of G is a partition of V into clusters Ci, usually conforming
to the paradigm of intra-cluster density and inter-cluster sparsity. We start by giving
some fundamental insights, which we will rely on in the following.

Lemma 1. Let e = {u,v} ∈ ET be an edge in T (G).
Consider G⊕: If e /∈ γ then e is still a min-u-v-cut with weight c(θe). If e ∈ γ then its
cut-weight is c(θe)+ Δ , it stays a min-u-v-cut iff ∀u-v-cuts θ ′ in G that do not separate
b,d: c(θ ′) ≥ c(θe)+ Δ .

Consider G�: If e ∈ γ then e remains a min-u-v-cut, with weight c(θe)−Δ . If e /∈ γ
then it retains weight c(θe), it stays a min-u-v-cut iff ∀u-v-cuts θ ′ in G that separate
b,d: c(θ ′) ≥ c(θe)+ Δ .

2 Theory

The Static Algorithm. Finding communities in the world wide web or in citation
networks are but example applications of graph clustering techniques. In [3] Flake et al.
propose and evaluate an algorithm which clusters such instances in a way that yields a
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certain guarantee on the quality of the clusters. The authors base their quality measure
on the expansion of a cut (S, S̄) due to Kannan et al. [8]:

Ψ =
∑u∈S,v∈S̄ w(u,v)

min{|S|, |S̄|} (expansion of cut (S, S̄)) (1)

Inspired by a bicriterial approach for good clusterings by Kannan et al. [8], which bases
on the related measure conductance1, Flake et al. [3] design a graph clustering algo-
rithm that, given parameter α , asserts:2

c(C,V \C)
|V \C|︸ ︷︷ ︸

intercluster cuts

≤ α ≤ c(P,Q)
min{|P|, |Q|}︸ ︷︷ ︸
intracluster cuts

∀C ∈ C ∀P,Q �= /0 P ·∪Q = C (2)

Algorithm 1. CUT-CLUSTERING

Input: Graph G = (V,E,c), α
Vα := V ∪{t}1

Eα := E ∪{{t,v} | v ∈ V}2

cα |E := c, cα |Eα\E := α3

Gα := (Vα ,Eα ,cα)4

T (Gα) := min-cut tree of Gα5

T (Gα) ← T (Gα)− t6

C (G) ← components of T (Gα)7

These quality guarantees—simply
called quality in the following—are due to
special properties of min-cut trees, which
are used by the clustering algorithm, as
given in Alg. 1 (comp. [3], we omit a tex-
tual description). In the following, we will
call the fact that a clustering can be com-
puted by this procedure the invariant. For
the proof that CUT-CLUSTERING yields
a clustering that obeys Eq. (2) and for a
number of other interesting properties, we refer the reader to [3]. In the following we
will use the definition of Gα = (Vα ,Eα ,cα), denoting by G�

α and G⊕
α the corresponding

augmented and modified graphs. For now, however, general G⊕(�) are considered.

A Dynamic Attempt. Saha and Mitra [9] published an algorithm that aims at the same
goal as our work. Unfortunately, we discovered a methodical error in this work. Roughly
speaking, the authors implicitly (and erroneously) assume an equivalence between qual-
ity and the invariant, e.g., in their CASE2 of the procedure for dynamic inter-addition:
their proof of correctness requires the invariant but guarantees only quality; there is no
immediate remedy for this error. We scrutinize these issues alongside counter-examples
and correct parts in the full versions [5,7]. A full description is beyond the scope of this
extended abstract, but we sketch out a counter-example in Fig. 1.

Minimum-Cut Trees and the Gomory-Hu Algorithm. Although we heavily build
upon the construction of a min-cut tree as proposed by Gomory and Hu [4] we cannot
accomodate a detailed description of their algorithm and refer the reader to their work.
The algorithm builds the min-cut tree of a graph by iteratively finding min-u-v-cuts
for vertices that have not yet been separated by a previous min-cut. An intermediate
min-cut tree T∗(G) = (V∗,E∗,c∗) (or simply T∗ if the context is clear) is initialized as
an isolated, edgeless super-node containing all original nodes. Then, until no node S of

1 conductance is similar to expansion but normalizes cuts by total incident edge weight.
2 The disjoint union A∪B with A∩B = /0 is denoted by A ·∪B.
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Fig. 1. Example showing error in [9]. Left: initial instance, clustered via static algorithm; middle:
updated clustering after one edge-addition, preserving quality but not the invariant; right: update
after second edge-addition, quality is violated, dashed cut weighs 11/4α < α min{|P|, |V \ |P}.

. . .b dp2 p3 pz−1

(a) T◦ by contracting all edges of γ in T (G)

. . .

b dp2 p3 pz−1

(b) T◦ by contracting all edges of ET \ γ

Fig. 2. Sketches of intermediate min-cut trees T◦; for G⊕ (a) we contract γ to a node, and for G�
(b) we contract each connected component induced by ET \ γ

T∗ contains more than one vertex, a node S is split. To this end, nodes Si �= S are dealt
with by contracting in G whole subtrees Nj of S in T∗, connected to S via edges {S,S j},
to single nodes η j before cutting, which yields GS—a notation we will continue using
in the following. The split of S into (Su,Sv) is then defined by a min-u-v-cut in GS.
Afterwards, Nj is reconnected, again by S j, to either Su or Sv depending on which side
of the cut η j, containing S j, ended up. Note that this cut in GS can be proven to induce
a min-u-v-cut in G. An execution GH = (G,F,K) of GOMORY-HU is characterized by
graph G, sequence F of n − 1 step pairs of nodes and sequence K of split cuts. Pair
{u,v} ⊆ V is a cut pair of edge e of cut-tree T if θe is a min-u-v-cut in G.

Theorem 1. Consider a set M ⊆ ET and let T◦(G) = (V◦,M,c◦) be T (G) with ET \M
contracted. Let f and f ′ be sequences of the elements of M and ET \M, respectively, and
k and k′ the corresponding sequences of edge-induced cuts of G. GH = (G, f ′ · f ,k′ ·k)3

has T◦(G) as intermediate min-cut tree (namely after f ).

In the following we will denote by T◦ an intermediate min-cut tree which serves as a
starting point, and by T∗ a working version. This theorem states that if for some reason
we can only be sure about a subset of the edges of a min-cut tree, we can contract all
other edges to super-nodes and consider the resulting tree T◦ as the correct intermediate
result of some GH, which can then be continued. One such reason could be a dynamic
change in G, such as the insertion of an edge, which by Lem. 1 maintains a subset of the
old min-cuts. This already hints at an idea for an effort-saving update of min-cut trees.

Using Arbitrary Minimum Cuts in G. Gusfield [6] presented an algorithm for finding
min-cut trees which avoids complicated contraction operations. In essence he provided
rules for adjusting iteratively found min-u-v-cuts in G (instead of in GS) that poten-
tially cross, such that they are consistent with the Gomory-Hu procedure and thus non-
crossing, but still minimal. We need to review and generalize some of these ideas as to

3 The term b ·a denotes the concatenation of sequences b and a, i.e., a happens first.
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fit our setting. The following lemma essentially tells us, that at any time in GOMORY-
HU, for any edge e of T◦ there exists a cut pair of e in the two nodes incident to e.

Lemma 2 (Gus. [6], Lem. 44). Let S be cut into Sx and Sy, with {x,y} being a cut pair
(not necessarily the step pair). Let now {u,v} ⊆ Sx split Sx into Sxu and Sxv, wlog. with
Sy ∼ Sxu in T∗. Then, {x,y} remains a cut pair of edge {Sy,Sxu} (we say edge {Sx,Sy}
gets reconnected). If x ∈ Sxv, i.e., the min-u-v-cut separates x and y, then {u,y} is also
a cut pair of {Sxu,Sy}.

In the latter case of Lem. 2, we say that pair {x,y} gets hidden, and, in the view of
vertex y, its former counterpart x gets shadowed by u (or by Su). It is not hard to see
that during GOMORY-HU, step pairs remain cut pairs, but cut pairs need not stem from
step pairs. However, each edge in T has at least one cut pair in the incident nodes. We
define the nearest cut pair of an edge in T∗ as follows: As long as a step pair {x,y} is in
adjacent nodes Sx,Sy, it is the nearest cut pair of edge {Sx,Sy}; if a nearest cut pair gets
hidden in T∗ by a step of GOMORY-HU, as described in Lem. 2 if x ∈ Sxv, the nearest
cut pair of the reconnected edge {Sy,Sxu} becomes {u,y} (which are in the adjacent
nodes Sy,Sxu). The following theorem basically states how to iteratively find min-cuts
as GOMORY-HU, without the necessity to operate on a contracted graph.

Theorem 2 (Gus. [6], Theo. 25). Let {u,v} denote the current step pair in node S
during some GH. If (U,V \U), (u ∈ U) is a min-u-v-cut in G, then there exists a min-
u-v-cut (US,VS \US) of equal weight in GS such that S∩U = S∩US and S∩ (V \U) =
S∩ (VS \US), (u ∈ US).

Being an ingredient to the original proof of Theo. 2, the following Lem. 3 gives a
constructive assertion, that tells us how to arrive at a cut described in the theorem by in-
ductively adjusting a given min-u-v-cut in G. Thus, it is the key to avoiding contraction
and using cuts in G by rendering min-u-v-cuts non-crossing with other given cuts.

Lemma 3 (Gus. [6], Lem. 15). Let (Y,V \Y ) be a min-x-y-cut in G (y ∈Y ). Let (H,V \
H) be a min-u-v-cut, with u,v ∈V \Y and y ∈ H. Then the cut (Y ∪H,(V \Y )∩(V \H))
is also a min-u-v-cut.

Given a cut as by Theo. 2, Gomory and Hu state a simple mechanism which reconnects a
former neighboring subtree Nj of a node S to either of its two split parts; when avoiding
contraction, this criterion is not available. For this purpose, Gusfield iteratively defines
representatives r(Si)∈V of nodes Si of T∗, and states his Theorem 3: For u,v ∈ S let any
min-u-v-cut (U,V \U), u ∈U , in G split node S into Su � u and Sv � v and let (US,V \US)
be this cut adjusted via Lem. 3 and Theo. 2; then a neighboring subtree Nj of S, formerly
connected by edge {S,S j}, lies in US iff r(S j)∈U . We do not have such representatives
and thus need to adapt this, namely using nearest cut pairs as representatives:

Theorem 3 (comp. Gus. [6], Theo. 35). In any T∗ of a GH, suppose {u,v} ⊆ S is the
next step pair, with subtrees Nj of S connected by {S,S j} and nearest cut pairs {x j,y j},
y j ∈ S j. Let (U,V \U) be a min-u-v-cut in G, and (US,V \US) its adjustion. Then
η j ∈ US iff y j ∈U.

4 This lemma is also proven in [6] and [4], we thus omit a proof.
5 This Lemma alongside Lemma 3, Theo. 2 and a simpler version of our Theo. 3 have been

discussed in [6] and the lemma also in [4].
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Finding and Shaping Minimum Cuts in the Dynamic Scenario. In this section we
let graph G change, i.e., we consider the addition of an edge {b,d} or its deletion, yield-
ing G⊕ or G�. First of all we define valid representatives of the nodes on T◦(omitting
proofs). By Lem. 1 and Theo. 1, given an edge addition, T◦ consists of a single super-
node and many singletons, and given edge deletion, T◦ consists of a path of super-nodes;
for examples see Fig. 2.

Definition 1 (Representatives in T◦)
Edge addition: Set singletons to be representatives of themselves; for the only super-
node S choose an arbitrary r(S) ∈ S.
Edge deletion: For each node Si, set r(Si) to be the unique vertex in Si which lies on γ .
New nodes during algorithm, and the choice of step pairs: On a split of node S require
the step pair to be {r(S),v} with an arbitrary v ∈ S,v �= r(S). Let the split be S =
Sr(S) ·∪Sv,v ∈ Sv, then define r(Sr(S)) := r(S) and r(Sv) := v.

Following Theo. 1, we define the set M of “good” edges of the old tree T (G), i.e., edges
that stay valid due to Lem. 1, as M := ET \γ for the insertion of {b,d} and to M := γ for
the deletion. Let T◦(G⊕(�)) be T (G) contracted by M. As above, let f be any sequence
of the edges in M and k the corresponding cuts in G. We now state a specific variant of
the setting in Theo. 1 which is the basis of our updating algorithms, founded on T◦s as
in Fig. 2, using arbitrary cuts in G⊕(�) instead of actual contractions.

Lemma 4. Given an edge addition (deletion) in G. The Gomory-Hu execution
GH⊕(�) = (G⊕(�), f⊕(�) · f ,k⊕(�) · k) is feasible for G⊕(�) yielding T◦(G) as the in-
termediate min-cut tree after sequence f , if f⊕(�) and k⊕(�) are feasible sequences of
step pairs and cuts on T◦(G⊕(�)).

b

d

. . .
. . .

⇑A

�ANb Nd

⇑B

v

u

e

θ′

θ

�B

�e

⇑e

r

Fig. 3. Special parts of G�: γ (fat) connects b and d,
with r on it; wood �e and treetop ⇑e (dotted) of edge
e, both cut by θ ′ (dashed), adjusted to θ (solid) by
Lem. 6. Both �e and ⇑e are part of some node S, with
representative r, outside subtrees of r are Nb and Nd
(dash-dotted). Compare to Fig. 2(b).

Cuts That Can Stay. The non-
crossing nature of min-u-v-cuts allow
for more effort-saving and temporal
smoothness. There are several cir-
cumstances which imply that a previ-
ous cut is still valid after a graph mod-
ification, making its recomputation
unnecessary. The following lemma
gives one such assertion (we omit a
few others here), based on the defini-
tion of a treetop and of wood (comp.
Fig. 3): Consider edge e = {u,v} off
γ , and cut θ = (U,V \U) in G in-
duced by e in T (G) with γ contained
in U . In G�(S), S∩ (V \U) is called
the treetop ⇑e, and S∩U the wood #e of e. The subtrees of S are Nb and Nd , containing
b and d, respectively.

Lemma 5. In G�, let (U,V \U) be a min-u-v-cut not separating {b,d}, with γ in V \U.
Then, a cut induced by edge {g,h} of the old T (G), with g,h ∈ U, remains a min sepa-
rating cut for all its previous cut pairs within U in G�, and a min g-h-cut in particular.
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vi vj

r Rj V \RjRiV \Ri

Pi Pj

(a) θ ′
i separates v j,r, and θ ′

j
separates vi,r

vi vj

r
Rj V \RjRiV \Ri

Pi
Pj

(b) θ ′
i does not separate

v j,r, but θ ′
j separates vi,r

vi
vj

r
Rj V \RjRiV \Ri

Pi
Pj

(c) neither does θ ′
i separate

v j,r, nor θ ′
j vi,r

Fig. 4. Three cases concerning the positions of θ ′
i and θ ′

j , and their adjustments

As a corollary from Lem. 5 we get that in T (G�) the entire treetops of reconfirmed
edges of T (G) are also reconfirmed. This saves effort and encourages smoothness; how-
ever new cuts can also be urged to behave well, as follows.

The Shape of New Cuts. In contrast to the above lemmas, during a Gomory-Hu ex-
ecution for G�, we might find an edge {u,v} of the old T (G) that is not reconfirmed
by a computation in G�, but a new, cheaper min-u-v-cut θ ′ = (U,V (S) \U) is found.
For such a new cut we can still make some guarantees on its shape to resemble its
“predecessor”: Lemma 6 tells us, that for any such min-u-v-cut θ ′, there is a min-u-v-
cut θ = (U\ ⇑e,(V (S) \U)∪ ⇑e) in G� that (a) does not split ⇑e, (b) but splits V\ ⇑e

exactly as θ ′ does. Figure 3 illustrates such cuts θ (solid) and θ ′ (dashed).

Lemma 6. Given e = {u,v} within S (off γ) in G�(S). Let (⇑A,⇑B) be a cut of ⇑e with
v ∈⇑A. Then c�(Nb∪⇑e,Nd ∪#e)≤ c�(Nb∪⇑A,Nd ∪#e∪⇑B). Exchanging Nb and Nd is
analogous. This result can be generalized in that both considered cuts are also allowed
to cut the wood #e in some arbitrary but fixed way.

While this lemma can be applied in order to retain treetops, even if new cuts are found,
we now take a look at how new, cheap cuts can affect the treetops of other edges. In fact
a similar treetop-conserving result can be stated. Let G′ denote an undirected, weighted
graph and {r,v1, . . . ,vz} a set of designated vertices in G′. Let Π := {P1, . . . ,Pz} be a
partition of V \ r such that v j ∈ Pj. We now assume the following partition-property to
hold: For each v j it holds that for any v j-r-cut θ ′

j := (R j,V \R j) (with r ∈ R j), the cut
θ j := (R j \Pj,(V \R j)∪Pj) is of at most the same weight. The crucial observation is,
that Lem. 6 implies this partition-property for r(S) and its neighbors in T (G) that lie
inside S of T◦ in G�. Treetops thus are the sets Pj. However, we keep things general for
now: Consider a min-vi-r-cut θ ′

i := (Ri,V \Ri), with r ∈ Ri, that does not split Pi and
an analog min-v j-r-cut θ ′

j (by the partition-property they exist). We distinguish three
cases, given in Fig. 4, which yield the following possibilities of reshaping min-cuts:

Case (a): As cut θ ′
i separates v j and r, and as v j satisfies the partition-property,

the cut θi := (Ri \Pj,(V \Ri)∪Pj) (red dashed) has weight c(θi) ≤ c(θ ′
i ) and is thus a

min-vi-r-cut, which does not split Pi ∪Pj. For θ ′
j an analogy holds.

Case (b): For θ ′
j Case (a) applies. Furthermore, by Lem. 3, the cut θnew( j) := (Ri ∩

R j,(V \Ri)∪ (V \R j)) (green dotted) is a min-v j-r-cut, which does not split Pi ∪Pj. By
Lem. 2 the previous split cut θ ′

i is also a min-vi-v j-cut, as θnew( j) separates vi,r.
Case (c): As in case (b), by Lem. 3 the cut θnew(i) := ((V \ R j)∪Ri,(V \ Ri)∩R j)

(green dotted) is a min-vi-r-cut, and the cut θnew( j) := ((V \ Ri) ∪ R j,(V \ R j)∩ Ri)
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Fig. 5. T◦(G�
α ) for an inter-del.; t’s neighbors

off γ need inspection. Cuts of vb and vd are cor-
rect, but might get shadowed.

t
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v3

v4
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d r(S)

S
Nb
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Fig. 6. T◦(G�
α ) for an intra-del.; edge {vb,d ,t}

defines a treetop (t’s side). The dashed cut
could be added to Θ .

(green dotted) is a min-v j-r-cut. These cuts do not cross. So as vi and v j both satisfy the
partition-property, cut θi := (((V \R j)∪Ri)\Pi,((V \Ri)∩R j)∪Pi) and θ j := (((V \
Ri)∪R j) \ Pj,((V \ R j)∩Ri)∪Pj) (both red dashed) are non-crossing min separating
cuts, which neither split Pi nor Pj.

To summarize the cases discussed above, we make the following observation.

Observation 1. During a GH starting from T◦ for G�, whenever we discover a new,
cheaper min-vi-r(S)-cut θ ′ (vi ∼ r(S) in node S) we can iteratively reshape θ ′ into a
min-vi-r(S)-cut θ which neither cuts ⇑i nor any other treetop ⇑ j (vi ∼ r(S) in S).

3 Update Algorithms for Dynamic Clusterings

In this section we put the results of the previous sections to good use and give algorithms
for updating a min-cut tree clustering, such that the invariant is maintained and thus also
the quality. By concept, we merely need to know all vertices of T (G) adjacent to t; we
call this set W = {v1, . . . ,vz}∪{vb,vd}, with {vb,vd} being the particular vertex/vertices
on the path from t to b and d, respectively. We call the corresponding set of non-crossing
min-vi-t-cuts that isolate t, Θ . We will thus focus on dynamically maintaining only this
information, and sketch out how to unfold the rest of the min-cut tree. From Lem. 4,
for a given edge insertion or deletion, we know T◦, and we know in which node of T◦
to find t, this is the node we need to examine. We now give algorithms for the deletion
and the insertion of an edge running inside or between clusters.

Algorithm 2. INTER-CLUSTER EDGE DELETION

Input: W (G), Θ(G) G�
α = (Vα ,Eα \{{b,d}},c�α ), edge {b,d} with weight Δ

Output: W (G�), Θ(G�)
L(t) ← /0, l(t) ← /01

for i = 1, . . . ,z do Add vi to L(t), D(vi) ← /0 // old cut-vertices, shadows2

Θ(G�) ← {θb,θd} , W (G�) ← {vb,vd}3

returnCHECK CUT-V. (W (G),Θ(G),W (G�),Θ(G�),G�
α ,{b,d},D,L(t) )4
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Algorithm 3. CHECK CUT-VERTICES

Input: W (G),Θ(G),W (G�),Θ(G�),G�
α ,{b,d},D,L(t)

Output: W (G�),Θ(G�)
while L(t) has next element vi do1

θi ← first min-vi-t-cut given by FLOWALGO(vi,t) // small side for vi2

if c�α (θi) = cα (θ old
i ) then Add θ old

i to l(t) // retain old cut?3

else4

Add θi to l(t) // pointed at by vi5

while L(t) has next element v j �= vi do // test vs. other new cuts6

if θi separates v j and t then // v j shadowed by Lem. 37

Move v j from L(t) to D(vi)8

if l(t) � θ j, pointed at by v j then Delete θ j from l(t)9

while L(t) has next element vi do // make new cuts cluster-preserving10

set (R,Vα \R) := θi with t ∈ R for θi ∈ l(t) pointed at by vi11

θi ← (R\Ci,(Vα \R)∪Ci) // by partition-property (Lem. 6)12

forall v j ∈ D(vi) do θi ← (R\Cj,(Vα \R)∪Cj) // Cases (a) and (b)13

forall v j �= vi in L(t) do θi ← (R∪Cj,(Vα \R)\Cj) // Case (c)14

Add all vertices in L(t) to W (G�), and their cuts from l(t) to Θ(G�)15

Edge Deletion. Our first algorithm handles inter-cluster deletion (Alg. 2). Just like its
three counterparts, it takes as an input the old graph G and its sets W (G) and Θ(G)
(not the entire min-cut tree T (Gα)), furthermore it takes the changed graph, augmented
by t, G�

α , the deleted edge {b,d} and its weight Δ . Recall that an inter-cluster deletion
yields t on γ , and thus, T◦(Gα) contains edges {vb, t} and {vd,t} cutting off the subtrees
Nb and Nd of t by cuts θb,θd , as shown in Fig. 5. All clusters contained in node S � t
need to be changed or reconfirmed. To this end Algorithm 2 lists all cut vertices in S,
v1, . . . ,vz, into L(t), and initializes their shadows D(vi) = /0. The known cuts θb,θd are
already added to the final list, as are vb,vd (line 3). Then the core algorithm, CHECK

CUT-VERTICES is called, which—roughly speaking—performs those GH-steps that are
necessary to isolate t, using (most of) the above lemmas derived.

First of all, note that if |C | = 2 (C = {Nb,Nd} and S = {t}) then L(t) = /0 and Alg. 2
lets CHECK CUT-VERTICES (Alg. 3) simply return the input cuts and terminates. Oth-
erwise, it iterates the set of former cut-vertices L(t) once, thereby possibly shortening
it. We start by computing a new min-vi-t-cut for vi. We do this with a max-vi-t-flow
computation, which is known to yield all min-vi-t-cuts, taking the first cut found by
a breadth-first search from vi (lines 2). This way we find a cut which minimally in-
terferes with other treetops, thus encouraging temporal smoothness. If the new cut is
non-cheaper, we use the old one instead, and add it to the tentative list of cuts l(t)
(lines 3-3). Otherwise we store the new, cheaper cut θi, and examine it for later adjust-
ment. For any candidate v j still in L(t) that is separated from t by θi, Case (a) or (b)
applies (line 7). Thus, v j will be in the shadow of vi, and not a cut-vertex (line 8). In case
v j has already been processed, its cut is removed from l(t). Once all cut-vertex candi-
dates are processed, each one either induces the same cut as before, is new and shadows
other former cut-vertices or is itself shadowed by another cut-vertex. Now that we have
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Fig. 7. T◦(G⊕
α ) for an inter-cluster addition. At

least vb and vd need inspection.
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Fig. 8. T◦(G⊕
α ) for an intra-cluster addition. All

relevant min-v-t-cuts persist.

collected these relations, we actually apply Cases (a,b,c) and Lem. 6 in lines 10-14.
Note that for retained, old cuts, no adjustment is actually performed here. Finally, all
non-shadowed cut-vertices alongside their adjusted cuts are added to the final lists.

Unfortunately we must completely omit intra-cluster edge deletion here, please find
it detailed in the full versions [5,7]. In a way roughly analogue to the former case we
again call CHECK CUT-VERTICES and after that merely have to clean up a potentially
“wild” area of leftover vertices from cluster Cb,d .

Edge Addition. The good news for handling G⊕ is, that an algorithm INTRA-CLUSTER

EDGE ADDITION only needs to return the old clustering: By Lem. 1 and Theo. 1, in
T◦, only path γ is contracted. But since γ lies within a cluster, the cuts in Gα , defining
the old clustering, all remain valid in G⊕

α , as depicted in Fig. 8 with dotted clusters
and affected node S. By contrast, adding an edge between clusters is more demanding.
Again, γ is contracted, see region S in Fig. 7; however, t lies on γ in this case. A sketch
of what needs to be done resembles the above algorithms: We compute new min-vb-t-
and min-vd-t-cuts (or possibly only one, if it immediately shadows the other), and keep
the old vi-t-cuts. Then—proceeding as usual—we note which cuts shadow which others
and reconnect nodes by Theo. 3.

Updating Entire Min-Cut Trees. An interesting topic on its own right and more fun-
damental than clustering, is the dynamic maintenance of min-cut trees. In fact the above
clustering algorithms are surprisingly close to methods that update min-cut trees. Since
all the results from Sec. 2 still apply, we only need to unfold treetops or subtrees of
t—which we gladly accept as super-nodes for the purpose of clustering—and take care
to correctly reconnect subtrees. This includes, that merely examining the neighbors of
t does not suffice, we must iterate through all nodes Si of T◦. For the sake of brevity we
must omit further details on such algorithms and refer the reader to the full version [5].

4 Performance of the Algorithm

Temporal Smoothness. Our secondary criterion—which we left unformalized—to pre-
serve as much of the previous clustering as possible, in parts synergizes with effort-
saving, an observation foremost reflected in the usage of T◦. Lemmas 5 and 6, using
first cuts and Observation 1 nicely enforce temporal smoothness. However, in some
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Table 1. Bounds on the number of max-flow calculations

worst case
old clustering still valid

lower bound upper bound guaran. smooth

Inter-Del |C (G)|−2 |C (G)|−2 |C (G)|−2 Yes

Intra-Del |C (G)|+ |Cb,d |−1 1 |C (G)|+ |Cb,d |−1 No (1)

Inter-Add |Cb|+ |Cd | 1 |Cb|+ |Cd | No (2)

Intra-Add 0 0 0 Yes

cases we must cut back on this issue, e.g., when we examine which other cut-vertex
candidates are shadowed by another one, as in line 7 of Alg. 3. Here it entails many
more cut-computations and a combinatorially non-trivial problem to find an ordering of
L(t) to optimally preserve old clusters. Still we can state the following lemma:

Lemma 7. Let C (G) fulfill the invariant for G�, i.e., let the old clustering be valid for
G�. In the case of an inter-cluster deletion, Alg 2 returns C (G). For an intra-cluster
deletion we return a clustering C (G�) ⊇ C (G) \Cb,d, i.e., only Cb,d might become
fragmented. Intra-cluster addition retains a valid old clusterings.

Running Times. We express running times of our algorithms in terms of the num-
ber of max-flow computations, leaving open how these are done. A summary of tight
bounds is given in Tab. 1 (for an in-depth discussion thereof see the full version). The
columns lower bound/upper bound denote bounds for the—possibly rather common—
case that the old clustering is still valid after some graph update. As discussed in the
last subsection, the last column (guaran. smooth) states whether our algorithms always
return the previous clustering, in case its valid; the numbers in brackets denotes a tight
lower bound on the running time, in case our algorithms do find that previous cluster-
ing. Note that a computation from scratch entails a tight upper bound of |V | max-flow
computations for all four cases, in the worst case.

Further Speed-Up. For the sake of brevity we leave a few ideas and lemmas for effort-
saving to the full version. One heuristic is to decreasingly order vertices in the list
L(t), e.g., in line 2 of Alg. 2; for their static algorithm Flake et al. [3] found that this
effectively reduces the number of cuts necessary to compute before t is isolated. Since
individual min-u-v-cuts are constantly required, another dimension of effort-saving lies
in dynamically maintaining max-u-v-flows. We detail two approaches based on dynamic
residual graphs in the full version.

Experiments. In this brief section, we very roughly describe some experiments we
made with an implementation of the update algorithms described above, just for a
first proof of concept. The instance we use is a network of e-mail communications
within the Fakultät für Informatik at Universität Karlsruhe. Vertices represent mem-
bers and edges correspond to e-mail contacts, weighted by the number of e-mails sent
between two individuals during the last 72 hours. We process a queue of 12560 el-
ementary modifications, 9000 of which are actual edge modifications, on the initial
graph G (|V | = 310, |E|= 450). This queue represents about one week, starting on Sat-
urday (21.10.06); a spam-attack lets the graph slightly grow/densify over the course.
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We delete zero-weight edges and isolated nodes. Following the recommendations of
Flake et al. [3] we choose α = 0.15 for the initial graph, yielding 45 clusters. For the
9K proper steps, static computation needed ≈ 2M max-flows, and our dynamic update
needed ≈ 2K, saving more than 90% max-flows, such that in 96% of all modifications,
the dynamic algorithm was quicker. Surprisingly, inter-additions had the greatest im-
pact on effort-saving, followed by the trivial intra-additions. Out of the 9K operations,
49 of the inter-, and 222 of the intra-cluster deletions were the only ones, where the
static algorithm was quicker. See the full versions [5,7] for details on these results.

5 Conclusion

We have proven a number of results on the nature of min-u-v-cuts in changing graphs,
which allow for feasible update algorithms of a minimum-cut tree. In particular we
have presented algorithms which efficiently update specific parts of such a tree and thus
fully dynamically maintain a graph clustering based on minimum-cut trees, as defined
by Flake et al. [3] for the static case, under arbitrary atomic changes. The striking fea-
ture of graph clusterings computed by this method is that they are guaranteed to yield
a certain expansion—a bottleneck measure—within and between clusters, tunable by
an input parameter α . As a secondary criterion for our updates we encourage temporal
smoothness, i.e., changes to the clusterings are kept at a minimum, whenever possi-
ble. Furthermore, we disprove an earlier attempt to dynamize such clusterings [9]. Our
experiments on real-world dynamic graphs affirm our theoretical results and show a
significant practical speedup over the static algorithm of Flake et al. [3]. Future work
on dynamic minimum-cut tree clusterings will include a systematic comparison to other
dynamic clustering techniques and a method to dynamically adapt the parameter α .
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Abstract. Since the invention of AVL trees in 1962, a wide variety of ways to
balance binary search trees have been proposed. Notable are red-black trees, in
which bottom-up rebalancing after an insertion or deletion takes O(1) amortized
time and O(1) rotations worst-case. But the design space of balanced trees has
not been fully explored. We introduce the rank-balanced tree, a relaxation of
AVL trees. Rank-balanced trees can be rebalanced bottom-up after an insertion or
deletion in O(1) amortized time and at most two rotations worst-case, in contrast
to red-black trees, which need up to three rotations per deletion. Rebalancing can
also be done top-down with fixed lookahead in O(1) amortized time. Using a
novel analysis that relies on an exponential potential function, we show that both
bottom-up and top-down rebalancing modify nodes exponentially infrequently in
their heights.

1 Introduction

Balanced search trees are fundamental and ubiquitous in computer science. Since the
invention of AVL trees [1] in 1962, many alternatives [2,3,4,5,7,10,9,11] have been pro-
posed, with the goal of simpler implementation or better performance or both. Simpler
implementations of balanced trees include Andersson’s implementation [2] of Bayer’s
binary B-trees [3] and Sedgewick’s related left-leaning red-black trees [4,11]. These
data structures are asymmetric, which simplifies rebalancing by eliminating roughly
half the cases. Andersson further simplified the implementation by factoring rebalanc-
ing into two procedures, skew and split, and by adding a few other clever ideas. Stan-
dard red-black trees [7], on the other hand, have update algorithms with guaranteed
efficiency: rebalancing after an insertion or deletion takes O(1) rotations worst-case
and O(1) time amortized [13,15]. As a result of these developments, one author [12, p.
177] has said, “AVL... trees are now passé.”

Yet the design and analysis of balanced trees is a rich area, not yet fully explored.
We continue the exploration. Our work yields both a new design and new analyses, and
suggests that AVL trees are anything but passé. Our new design is the rank-balanced
tree, a relaxation of AVL trees that has properties similar to those of red-black trees but
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better in several ways. If no deletions occur, a rank-balanced tree is exactly an AVL
tree; with deletions, its height is at most that of an AVL tree with the same number of
insertions but no deletions. Rank-balanced trees are a proper subset of red-black trees,
with a different balance rule and different rebalancing algorithms. Insertion and deletion
take at most two rotations in the worst case and O(1) amortized time; red-black trees
need three rotations in the worst case for a deletion. Insertion and deletion can be done
top-down with fixed look-ahead in O(1) amortized rebalancing time per update.

Our new analyses use an exponential potential function to measure the amortized ef-
ficiency of operations on a balanced tree as a function of the heights of its nodes. We use
this method to show that rebalancing in rank-balanced trees affects nodes exponentially
infrequently in their heights. This is true of both bottom-up and top-down rebalancing.

This paper contains five sections in addition to this introduction. Section 2 gives
our tree terminology. Section 3 introduces rank-balanced trees and presents and an-
alyzes bottom-up rebalancing methods for insertion and deletion. Section 4 presents
and analyzes top-down rebalancing methods. Section 5 develops our method of using
an exponential potential function for amortized analysis, and with it shows that rebal-
ancing affects nodes with a frequency that is exponentially small in their heights. The
concluding Section 6 compares rank-balanced trees with red-black trees.

2 Tree Terminology

A binary tree is an ordered tree in which each node x has a left child left(x) and a right
child right(x), either or both of which may be missing. Missing nodes are also called
external; non-missing nodes are internal. Each node is the parent of its children. We de-
note the parent of a node x by p(x). The root is the unique node with no parent. A leaf is
a node with both children missing. The ancestor, respectively descendant relationship
is the reflexive, transitive closure of the parent, respectively child relationship. If node x
is an ancestor of node y and y �= x, x is a proper ancestor of y and y is a proper descen-
dant of x. If x is a node, its left, respectively right subtree is the binary tree containing
all descendants of left(x), respectively right(x). The height h(x) of a node x is de-
fined recursively by h(x) = 0 if x is a leaf, h(x) = max{h(left(x)), h(right(x))}+1
otherwise. The height h of a tree is the height of its root.

We are most interested in binary trees as search trees. A binary search tree stores
a set of items, each of which has a key selected from a totally ordered universe. We
shall assume that each item has a distinct key; if not, we break ties by item identifier.
In an internal binary search tree, each node is an item and the items are arranged in
symmetric order: the key of a node x is greater, respectively less than those of all items
in its left, respectively right subtree. Given such a tree and a key, we can search for the
item having that key by comparing the key with that of the root. If they are equal, we
have found the desired item. If the search key is less, respectively greater than that of the
root, we search recursively in the left, respectively right subtree of the root. Each key
comparison is a step of the search; the current node is the one whose key is compared
with the search key. Eventually the search either locates the desired item or reaches a
missing node, the left or right child of the last node reached by the search in the tree.
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To insert a new item into such a tree, we first do a search on its key. When the search
reaches a missing node, we replace this node with the new item. Deletion is a little
harder. First we find the item to be deleted by doing a search on its key. If neither child
of the item is missing, we find either the next item or the previous item, by walking
down through left, respectively right children of the right, respectively left child of the
item until reaching a node with a missing left, respectively right child. We swap the
item with the item found. Now the item to be deleted is either a leaf or has one missing
child. In the former case, we replace it by a missing node; in the latter case, we replace
it by its non-missing child. An access, insertion, or deletion takes O(h + 1) time in the
worst case, if h is the tree height.

An alternative kind of search tree is an external binary search tree: the external
nodes are the items, the internal nodes contain keys but no items, and all the keys are
in symmetric order. Henceforth by a binary tree we mean an internal binary search tree,
with each node having pointers to its children. Our results extend to external binary
search trees and to other binary tree data structures. We denote by n the number of nodes
and by m and d, respectively, the number of insertions and the number of deletions in
a sequence of intermixed searches, insertions, and deletions that starts with an empty
tree. These numbers are related: d = m − n.

3 Rank-Balanced Trees

To make search, insertion, and deletion efficient, we limit the tree height by imposing a
rank rule on the tree. A ranked binary tree is a binary tree each of whose nodes x has
an integer rank r(x). We adopt the convention that missing nodes have rank −1. The
rank of a ranked binary tree is the rank of its root. If x is a node with parent p(x), the
rank difference of x is r(p(x))− r(x). We call a node an i-child if its rank difference is
i, and an i, j-node if its children have rank differences i and j; the latter definition does
not distinguish between left and right children and allows children to be missing.

Our initial rank rule is that every node is a 1,1-node or a 1,2-node. This rule gives
exactly the AVL trees: each leaf is a 1,1-node of rank zero, the rank of each node
is its height, and the left and right subtrees of a node have heights that differ by at
most one. To encode ranks we store with each non-root node a bit indicating whether
it is a 1- or 2-child. This is Brown’s representation [5] of an AVL tree; in the original
representation [1], each node stores one of three states, indicating whether its left or
right subtree is higher or they have equal heights. The rank rule guarantees a logarithmic
height bound. Specifically, the minimum number of nodes nk in an AVL tree of rank
k satisfies the recurrence n0 = 1, n1 = 2, nk = 1 + nk−1 + nk−2 for k > 1. This
recurrence gives nk = Fk+3 − 1, where Fk is the kth Fibonacci number. Since Fk+2 ≥
φk [8], where φ = (1 +

√
5)/2 is the golden ratio, k ≤ logφ n ≤ 1.4404 lgn1.

AVL trees support search in O(log n) time, but an insertion or deletion may cause
a violation of the rank rule. To restore the rule, we change the ranks of certain nodes
and do rotations to rebalance the tree. A promotion, respectively demotion of a node x
increases, respectively decreases its rank by one. A rotation at a left child x with parent

1 We denote by lg the base-two logarithm.
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Fig. 1. Right rotation at node x. Triangles denote subtrees. The inverse operation is a left rotation
at y.

y makes y the right child of x while preserving symmetric order; a rotation at a right
child is symmetric. (See Figure 1.) A rotation takes O(1) time.

In the case of an insertion, if the parent of the newly inserted node was previously a
leaf, the new node will have rank difference zero and hence violate the rank rule. Let q
be the newly added node, and let p be its parent if it exists, null if not. After adding q,
we rebalance the tree by repeating the following step until a case other than promotion
occurs (see Figure 2):

Insertion Rebalancing Step at p:

Stop: Node p is null or q is not a 0-child. Stop.

In the remaining cases q is a 0-child. Let s be the sibling of q, which may be missing.

Promotion: Node s is a 1-child. Promote p. This repairs the violation at q but may
create a new violation at p. Node p now has exactly one child of rank difference
one, namely q. Replace q by p. Let p be the parent of q if it exists, null if not.

In the remaining cases s is a 2-child. Assume q is the left child of p; the other possibility
is symmetric. Let t be the right child of q, which may be missing.

Rotation: Node t is a 2-child. Rotate at q and demote p. This repairs the violation
without creating a new one. Stop.

Double Rotation: Node t is a 1-child. Rotate at t twice, making q its left child and
p its right child. Promote t and demote p and q. This repairs the violation without
creating a new one. Stop.

During rebalancing there is at most one violation of the rank rule: node q may be a
0-child. Rebalancing walks up the path from the newly inserted node to the root, doing
zero or more promotion steps followed by one non-promotion step. The first step is
either a stop or a promotion. After one promotion step, node q is always a 1,2-node.
The rank of the insertion is the rank of p in the last step, just before the step occurs; if
p is null, the rank of the insertion is the rank of q in the last step (a stop).

One can do a deletion in an AVL tree similarly [6] [8, pp. 465-468], but the rebalanc-
ing may require a logarithmic number of rotations, rather than the one or two needed
for an insertion. To reduce this number, we relax the rank rule to allow non-leaf 2,2-
nodes as well as 1,1- and 1,2-nodes; leaves must still be 1,1-nodes. We call the resulting
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Fig. 2. Rebalancing after an insertion. Numbers are rank differences. The first case is non-
terminating.

trees rank-balanced trees or rb-trees (not to be confused with red-black trees, which are
equivalent to ranked binary trees with a different rank rule). One bit per non-root node
still suffices to encode the rank differences. An AVL tree is just an rb-tree with no
2,2-nodes. The rank of an rb-tree is at least its height and at most twice its height.

Theorem 1. The rank and hence the height of an rb-tree is at most 2 lg n.

Proof. The minimum number of nodes nk in an rb-tree of rank k satisfies the recurrence
n0 = 1, n1 = 2, nk = 1 + 2nk−2 for k ≥ 2. By induction nk ≥ 2
k/2�. ��

Insertion is the same in rb-trees as in AVL trees: insertion rebalancing steps do not cre-
ate 2,2-nodes (but can destroy them). A deletion in an rb-tree can violate the rank rule
by creating a node of rank one with two missing children or a node of rank two with a
(missing) 3-child. Let q be the node that replaces the deleted node (q can be a missing
node), and let p be its parent if it exists, null if not. We repair the violation by walking
up the path to the root, repeating the following step until a case other than demotion or
double demotion occurs (see Figure 3):

Deletion Rebalancing Step at p:

Stop: Node p is null, or q is not a 3-child and p is not a 2,2-node of rank 1. Stop.

In the remaining cases node q is a 2- or 3-child. Let s be the sibling of q, which may be
missing.
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Demotion: Node s is a 2-child. Demote p. This repairs the violation at q but may
create a new violation at p. Replace q by p. Let p be the parent of q if it exists, null
if not.

In the remaining cases q is a 3-child and s is a non-missing 1-child. Assume q is the
right child of p; the other possibility is symmetric. Let t and u be the right and left
children of s, either or both of which can be missing.

Double Demotion: Nodes t and u are 2-children: Demote p and s. This repairs the
violation at q but may create a new violation at p. Replace q by p. Let p be the
parent of q if it exists, null if not.

Rotation: Node u is a 1-child. Rotate at s, promote s, and demote p. If t is missing,
demote p again. (In this case q is also missing, and p is now a leaf, whose rank must
be zero.) This repairs the violation without creating a new one. Stop.

Double Rotation: Node t is a 1-child and u is a 2-child. Rotate at t twice, making s
its left child and p its right child. Promote t twice, demote s, and demote p twice.
This repairs the violation without creating a new one. Stop.

During deletion rebalancing, there is at most one violation of the rank rule: p is a 2,2-
node of rank one or q is a 3-child; after the first step, q must be a 3-child. Rebalancing
walks up the path from the node that replaces the deleted node toward the root, doing
zero or more demotion and double demotion steps followed by a stop, a rotation, or a
double rotation. The rank of the deletion is the rank of p in the last step, just before the
step occurs; if p is null, the rank of the deletion is the rank of p in the next-to-last step,
just before the step occurs, or the rank of the deleted node if there is no next-to-last step
(the root is deleted).

Deletion in rb-trees is only slightly more complicated than insertion, with two
non-terminal cases instead of one. Deletion takes at most two rotations, the same as
insertion.

The rebalancing process needs access to the affected nodes on the search path. To
facilitate this, we can either add parent pointers to the tree or store the search path, either
in a separate stack or by reversing pointers along the path. A third method is to maintain
a trailing node during the search. This node is the topmost node that will be affected by
rebalancing. In the case of an insertion, it is either the root or the parent of the nearest
ancestor of the last node reached by the search that is a 2-child or a 1,2-node. In the
case of a deletion, it is either the root or the parent of the nearest ancestor of the current
node that is a 1-child or a 1,2-node whose 1-child is not a 2,2-node. In both cases, we
initialize the trailing node to be the root and update it as the search proceeds. Once the
search reaches the bottom of the tree, we do rebalancing steps (appropriately modified)
top-down, starting from the trailing node. This method needs only O(1) extra space, but
it incurs additional overhead during the search and during the rebalancing, to maintain
the trailing node and to determine the next node on the search path, respectively. Its
big advantage is that it extends to top-down rebalancing with finite look-ahead, as we
discuss in the next section.

With any of these methods, a search, insertion, or deletion takes O(log n) time worst-
case. The number of rebalancing steps in an insertion or deletion is Θ(log n) worst-
case but O(1) amortized. To obtain this bound, we use a standard method of amortized
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Fig. 3. Rebalancing after a deletion. Numbers are rank differences. The first two cases are non-
terminating. If q is a 2-child, the first case only applies if p is a leaf. The third case assumes t is
not a missing node; if it is, p is a leaf and is demoted.

analysis [14]. We assign to each state of the data structure a non-negative potential that
is zero for an empty (initial) structure. We define the amortized cost of an operation
to be its actual cost plus the net increase in potential it causes. Then the sum of the
amortized costs is an upper bound on the sum of the actual costs for any sequence of
operations that begins with an empty structure.

To analyze rb-tree rebalancing, we define the potential of a tree to be the number
of non-leaf 1,1-nodes plus twice the number of 2,2-nodes. Each non-terminal insertion
rebalancing step decreases the potential by one by converting a 1,1-node into a 1,2-
node. Each non-terminal deletion rebalancing step except possibly the first decreases
the potential by at least one, by converting a 2,2-node into a 1,2- or 1,1-node. The first
deletion rebalancing step can increase the potential by one, by converting a 1,2-node
into a 1,1-node. A terminal insertion or deletion rebalancing step increases the potential
by at most two or three, respectively. This gives the following theorem:

Theorem 2. The total number of rebalancing steps is at most 3m + 6d.

We conclude this section by deriving a bound on the height of rb-trees that is close to
that of AVL trees unless there are almost as many deletions as insertions.
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Theorem 3. With bottom-up rebalancing, the height of an rb-tree is at most logφ m.

Proof. We define a count κ(x) for each node x, as follows: when x is first inserted, its
count is 1; when a node is deleted, its count is added to that of its parent if it has one.
The total count K(x) of a node x is the sum of the counts of its descendants. This is
equal to the sum of its count and the total counts of its children. The total count of the
root is at most m, the number of insertions. We prove by induction on the number of
rebalancing steps that if a node x has rank k, K(x) ≥ Fk+3 − 1, from which it follows
that m ≥ Fk+3 − 1 ≥ φk, giving the theorem.

We noted earlier that Fk+3 − 1 satisfies the recurrence x0 = 1, x1 = 2, xk =
1 + xk−1 + xk−2 for k > 1. This gives K(x) ≥ Fk+3 − 1 if k = 0; k = 1; or k > 1, x
is a 1,1- or 1,2-node, and the inequality holds for both children of x. This implies that
the inequality holds for a new leaf and after each rebalancing step of an insertion. In the
case of a promotion step, the children of the promoted node satisfy the inequality before
the promotion; since the promoted node becomes a 1,2-node, it satisfies the inequality
after the promotion. In the cases of rotation and double rotation, the children of the
affected nodes satisfy the inequality before the step; since none of the affected nodes
becomes a 2,2-node, they all satisfy the inequality after the step.

The inequality holds for the parent of a deleted node before rebalancing, since this
node inherits the count of the deleted node. It also holds after each rebalancing step
except possibly at a newly created 2,2-node. A 1,2-node that becomes a 2,2-node as a
result of the demotion of a child satisfies the inequality because it did before the demo-
tion. Node s in a rotation step and node t in a double rotation step satisfy the inequality
after the step because p satisfies the inequality before the step, and s, respectively t has
the same rank and count after the step as p did before it. The only other case of a new
2,2-node is node p in a rotation step if p is not a leaf. For p to become a 2,2-node, q
cannot be missing. Either q was demoted by the previous rebalancing step, or q is a leaf
whose parent was deleted. In the former case, q satisfies the inequality at rank k − 1
before its demotion, where k is the new rank of p. Since t, the other child of p, satisfies
the inequality at rank k − 2, p satisfies the inequality as well. In the latter case p has
new rank two and has total count at least four, so it satisfies the inequality. ��

4 Top-Down Rebalancing

The method of rebalancing using a trailing node described in Section 3 does the re-
balancing top-down rather than bottom-up. We can modify this method to use fixed
look-ahead. If the look-ahead is sufficiently large, the amortized number of rebalancing
steps per update remains O(1). The idea is to force a reset of the trailing node after
sufficiently many search steps. In an insertion, if the current node of the search is a
1,1-node whose parent is a 1,1-node, we can force the next search step to do a reset
by promoting the current node and rebalancing top-down from the trailing node. In a
deletion, if the current node is a 2,2 node or a 1,2-node whose 1-child is a 2,2-node, we
can force the next step to do a reset by demoting the current node in the former case or
the current node and its 1-child in the latter case, and rebalancing top-down from the
trailing node.
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Forcing a reset as often as possible minimizes the look-ahead, but if we force a reset
less often we can guarantee O(1) amortized rebalancing steps per update. To demon-
strate this, we use the same potential function as in Section 3. In an insertion, if a search
step does not do a reset, every node along the search path from the grandchild of the
trailing node to the parent of the current node is a 1,1-node. Thus if we force a reset after
five search steps that do not do a reset (by promoting the fifth 1,1-node in a row), each
rebalancing to force a reset decreases the potential: the potential of the current node in-
creases by one, each of the four non-terminal rebalancing steps decreases the potential
by one, and the last rebalancing step increases it by at most two. A forced reset takes
O(1) time including rebalancing. If we scale this time to be at most one, the amortized
time of a forced reset is non-positive. In a deletion, if a search step does not do a reset,
every node along the search path from the grandchild of the trailing node to the parent
of the current node is a 2,2-node or a 1,2-node whose 1-child is a 2,2-node. If we force
a reset after five search steps that do not do a reset (by doing a demotion or a double
demotion at the fifth node in a row that is a 2,2-node or a 1,2-node whose 1-child is a
2,2-node), each rebalancing to force a reset decreases the potential: decreasing the rank
of the current node and possibly that of its child does not increase the potential, each of
the four non-terminal rebalancing steps decreases the potential by one, and the last step
increases it by at most three. In either an insertion or deletion, any rebalancing at the
bottom of the search path takes O(1) amortized time. This gives the following theorem:

Theorem 4. Top-down rebalancing with sufficiently large fixed look-ahead does O(1)
amortized rebalancing steps per insertion or deletion.

Theorem 4 remains true as long as every forced reset reduces the potential. One dis-
advantage of top-down rebalancing is that the proof of Theorem 3 breaks down: the
induction does not apply to the 2,2-nodes created by forced resets during insertions.

5 Rank-Based Analysis

The amortized analysis of bottom-up rebalancing in Section 3 implies that most rebal-
ancing steps are low in the tree: in a sequence of m insertions and d deletions, there are
O((m+d)/k) insertions and deletions of rank k or greater. Something much stronger is
true, however: for some b > 1, there are only O((m + d)/bk)) insertions and deletions
of rank k or greater. That is, the frequency of rebalancing steps decreases exponentially
with height. This is true (and easy to prove) for weight-balanced trees if one ignores
the need to update size information, but to our knowledge ours is the first such result
for trees that use some form of height balance, and it covers rank changes as well as
rotations. The result also holds for top-down rebalancing with sufficiently large fixed
look-ahead, for a value of b that depends on the look-ahead.

It is convenient to assign potential to 1,2-nodes as well as to 1,1- and 2,2-nodes. We
assign to a node of rank k a potential of Φk if it is a 1,1- or 2,2-node, or Φk−2 if it is a
1,2-node, where Φ is a non-decreasing function such that Φ0 = Φ−1 = 0, to be chosen
later. The potential of a tree is the sum of the potentials of its nodes.

With this choice of potential, the potential change of a sequence of non-terminal
rebalancing steps telescopes. Specifically, a non-terminal insertion rebalancing step at
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a node of rank k decreases the potential by Φk − Φk−1 and promotes the node to rank
k + 1. Consecutive insertion rebalancing steps are at nodes that differ in rank by one.
Thus a sequence of non-terminal insertion rebalancing steps starting at a node of rank
0 and ending at a node of rank k decreases the potential by Φk − Φ−1 = Φk, since
Φ−1 = 0. A non-terminal deletion rebalancing step at a node of rank k decreases the
potential by Φk − Φk−3 if it is a demotion of a non-2,2-node and by Φk−1 + Φk−2 −
Φk−2 − Φk−3 = Φk−1 − Φk−3 if it is a double demotion. Since Φ is non-decreasing,
the potential decrease is at least Φk−1 − Φk−3 in either case. Consecutive deletion
rebalancing steps are at nodes that differ in rank by two. If the first rebalancing step is
a demotion of a 2,2-node of rank one, the step does not change the potential, because
the demoted node was a 1,2-node of rank one before the deletion. Thus a sequence of
non-terminal deletion rebalancing steps starting at a node of rank 1 or 2 and ending at a
node of rank k decreases the potential by at least Φk−1 − Φ0 = Φk−1.

We can compute the total potential change caused by an insertion or deletion by
combining the effect of the sequence of non-terminal rebalancing steps with that of the
initialization and the terminal step. In an insertion, the initialization consists of adding
a new leaf, which has potential Φ0 = 0. Let k be the rank of the insertion. Consider the
last rebalancing step. (See Figure 2.) Suppose this step is a stop. If p is null, then either
the insertion promotes the root and decreases the potential by at least Φk, or k = 0, the
insertion is into an empty tree, and it does not change the potential. If p is not null but
becomes a 1,2-node, the insertion decreases the potential by at least Φk; if p is not null
but becomes a 1,1-node, the insertion increases the potential by at most Φk − 2Φk−2.
Suppose the last step is a rotation. Then the insertion increases the potential by at most
Φk − 2Φk−2. Finally, suppose the last step is a double rotation. Then the insertion
increases the potential by at most Φk − 2Φk−2: node t is a 1,1- or 1,2-node before the
last step. In all cases the potential increase is at most max{−Φk, Φk − 2Φk−2}.

In a deletion, the initialization consists of deleting a leaf, or deleting a node with
one child and replacing it by its child. The deleted node has potential zero before it
is deleted. Let k be the rank of the deletion. Consider the last rebalancing step. (See
Figure 3.) Suppose this step is a stop. If p is null, then either the deletion demotes the
root and decreases the potential by at least Φk−1, or k ≤ 1 and the deletion deletes
the root and does not change the potential. If p is not null but becomes a 1,2-node, the
deletion decreases the potential by at least Φk; if p is not null but becomes a 2,2-node,
the deletion increases the potential by at most Φk − 2Φk−2. Suppose the last step is a
rotation. Then the deletion increases the potential by at most Φk−3−Φk−1−Φk−3 ≤ 0
if node s is a 1,1-node, by at most Φk−1 − 2Φk−3 if s is a 1,2-node of rank at least
two, and by Φ2 if s is a 1,2-node of rank one; in the third case, node p is a leaf after
the rotation and is demoted. Finally, suppose the last step is a double rotation. Then the
deletion increases the potential by at most Φk − 2Φk−3 if node u is a 1,1- or 1,2-node
before the last step or by at most Φk + 2Φk−4 − 2Φk−2 − 2Φk−3 ≤ Φk − 2Φk−2 if
node u is a 2,2-child before the rotation. In all cases the potential increase is at most
max{−Φk−1, Φk − 2Φk−3}.

For i ≥ 1, let Φi = bi, where b = 21/3. An insertion or deletion of rank at most
3 increases the potential by O(1). Since b2 − 2 < 0 and b3 − 2 = 0, an insertion or
deletion of rank 4 or more does not increase the potential. We prove that insertions and
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deletions of a given rank occur exponentially infrequently by stopping the growth of
the potential at a corresponding rank. Specifically, for a fixed rank k ≥ 4 and arbitrary
i ≥ 1, let Φi = bmin{i,k−3}. Then an insertion or deletion of rank at most 3 increases
the potential by O(1), and an insertion or deletion of rank greater than 3 and less than k
does not increase the potential, but an insertion or deletion of rank k or greater decreases
the potential by at least bk−3. This gives the following theorem:

Theorem 5. In a sequence of m insertions and d deletions with bottom-up rebalancing
in an initially empty rank-balanced tree, there are O((m + d)/2k/3) insertions and
deletions of rank k or more, for any k.

The base of the exponent in Theorem 5 can be increased to 1.32+ by separately ana-
lyzing insertions and deletions (proof omitted). A result similar to Theorem 5 holds for
top-down rebalancing (proof omitted):

Theorem 6. A sequence of m insertions and d deletions with top-down rebalancing
in an initially empty tree does O((m + d)/bk) rebalancing steps at nodes of rank k
if forced resets occur after six search steps in an insertion, four in a deletion, where
b = 1.13+. The base b can be increased arbitrarily close to 21/3 by increasing the fixed
lookahead.

It is possible to improve the base in both Theorem 5 and Theorem 6 at the cost of
making deletion rebalancing a little more complicated, specifically by changing the
double rotation step of deletion rebalancing to promote p if it is a 1,1-node after the
step, or promote s if it but not p is a 1,1-node after the step. With this change Theorem 5
holds for a base of 21/2, and Theorem 6 holds for a base of b = 1.17+ even if deletion
does a forced reset after only three search steps. By increasing the fixed lookahead, the
base in Theorem 6 can be increased arbitrarily close to 21/2. Unfortunately this change
in deletion rebalancing invalidates the proof of Theorem 3.

6 Rank-Balanced Trees versus Red-Black Trees

Rank-balanced trees have properties similar to those of red-black trees but better in sev-
eral respects. Rank-balanced trees are a proper subset of red-black trees (proof omitted):

Theorem 7. The nodes of an rb-tree can be assigned colors to make it a red-black tree.
The nodes of a red-black tree can be assigned ranks to make it an rb-tree if and only if
it does not contain a node x such that there is a path of all black nodes from x to a leaf
and another path of nodes alternating in color from x to a red leaf.

The height bound for AVL trees holds for rb-trees as long as there are no deletions, and
holds in weakened form even with deletions (Theorem 3) if rebalancing is bottom-up.
On the other hand, the height of a red-black tree can be 2 lg n − O(1) even without
deletions. Red-black trees need up to three rotations per deletion, rb-trees only two.

We conclude that the differences between rb-trees and red-black trees favor rb-trees,
especially the height bound of Theorem 3. Guibas and Sedgewick, in their classic paper
on red-black trees [7], considered in passing the alternative of allowing rank differences
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1 and 2 instead of 0 and 1, but said, “We have chosen to use zero weight links because
the algorithms appear somewhat simpler.” Our results demonstrate the advantages of
the alternative. We think that rank-balanced trees will prove efficient in practice, and
we intend to do experiments to investigate this hypothesis.
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Abstract. Let S denote a set of line segments in the plane. We say that
a polygon P intersects S if every segment in S has a non-empty inter-
section with the interior or boundary of P . Currently, the best known
algorithm finding a minimum perimeter polygon intersecting a set of
line segments has a worst case exponential running time. It is also still
unknown whether this problem is NP-hard. In this note we explore sev-
eral approximation algorithms. We present efficient approximation algo-
rithms that yield good empirical results, but can perform very poorly
on pathological examples. We also present an O(n log n) algorithm with
a guaranteed worst case performance bound that is at most π/2 times
that of the optimum.

Keywords: Computational Geometry, Line Segment, Intersecting
Polygon, Approximation Algorithm.

1 Introduction

The convex hull of a set of points in the plane is often defined as the smallest
convex subset of the plane that intersects all of the points. The qualifying term
smallest can be thought of as the area of this convex subset, or alternatively,
smallest can refer to the perimeter of the set. Using the latter point of view
we can say the convex hull of a set of points is the polygon with the smallest
perimeter that intersects the points. We examine an analogous situation where
the input is a set of line segments. The convex hull of a set of line segments con-
tains the segments. In this paper the goal is to find a polygon, with minimum
perimeter whose interior and boundary have a non-empty intersection with a set
of segments. We use the term minimum perimeter intersecting polygon abbrevi-
ated as MPIP. The convex hull of a set of segments is unique. However, an MPIP
may not be unique. It is well known that the convex hull of a set of segments can
be determined in O(n logn) time by computing the convex hull of the endpoints
of the segments, see for example [4,7,9]. However, to our knowledge there is no
known polynomial time algorithm to determine a minimum perimeter polygon
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that intersects a set of line segments, and furthermore the problem is not known
to be NP-hard [10,15].

When the input line segments are in a fixed number of directions then a small-
est perimeter polygon intersecting the segments can be found in O(n log n) time
[15]. However, this algorithm incurs a cost that is exponential in the number of
directions. A recent paper by Löffler and van Kreveld [10] has recently exam-
ined this very same problem in the context of computing with imprecise points.
Among a variety of other algorithms (to be described in the next paragraph),
they present an O(n log n) algorithm to determine a smallest perimeter polygon
intersecting a set of parallel (uni-directional) line segments. This result mirrors
the result obtained by Meijer and Rappaport in 1990 [13].

Löffler and van Kreveld [12] look at different computational geometry prob-
lems for imprecise points. For a set of regions L and a problem that takes a set
of points as input and returns a real number R, they are interested in finding a
way to place one point in each region of L such that the resulting set of points
minimizes or maximizes R. The imprecision for a point can be modelled in dif-
ferent ways. A disc or a square can represent a point such that the point can be
anywhere inside or on its boundary. The imprecision can also be modelled as a
line segment, in which the point can be anywhere on the line segment. Löffler
and van Kreveld [12] study the problem of minimizing and maximizing the diam-
eter, smallest bounding box, smallest enclosing circle, etc, for regions modelled
as squares and discs. They propose polynomial time algorithms for some of the
problems and prove NP-hardness for the others. Recently, Mukhopadhyay et
al., [14] have published an algorithm that is similar to that of Löffler and van
Kreveld for determining a minimum area polygon that intersects a set of parallel
segments.

In a similar vein the problem of determining whether the boundary of a convex
polygon intersects with a set of line segments was proposed by Tamir [16]. A
special case of the problem was solved by Goodrich and Snoeyink [6] who present
an O(n logn) algorithm to determine whether the boundary of a convex polygon
intersects with a set of parallel line segments, and an O(n2) algorithm to obtain
such a polygon with minimum area, or perimeter.

The remainder of the paper is organized as follows. First we set down some
requisite definitions and notation. We then review the algorithm in [15] as it
forms a basis for heuristic approximation methods. These heuristics have been
implemented and we report on empirical results that were obtained. Finally we
present an approximation algorithm with guaranteed performance bounds.

2 Preliminaries and Definitions

We begin by introducing some notation and definitions. For the most part we
adopt the notation used in [15].

Let S denote a set of line segments, where each segment s ∈ S is the con-
vex combination of the endpoints of s a(s) and b(s). It will be useful to allow
degenerate segments, that is, segments that consist of a single unique endpoint.
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We wish to determine a simple polygon P with minimum perimeter, such that
the intersection of the interior and boundary of P has a non-empty intersection
with every segment in S. If S admits a line transversal, that is the segments are
intersected by a single line, then we can apply the algorithm of Battacharya and
Toussaint [2] to find a shortest stabbing segment of S. Therefore, we assume
throughout that the input we receive has passed through a preliminary step and
we only proceed if S does not admit a line transversal.

Let H l(L) be the closed left half-plane bounded by a directed line L. We say
that H l(L) is a stabbing half-plane of the set of segments S, if H l(L) has a non
empty intersection with every s ∈ S. We say that L is an extreme line if H l(L)
is a stabbing half-plane and no proper subset of H l(L) is. An endpoint a(s) of a
line segment s is a critical point if a(s) lies on the extreme line and no point of
s intersects the interior of H l(L). A line segment s ∈ S with one or more critical
points is a critical segment. An extreme line is a critical extreme line, if it passes
through at least two critical points of two different line segments.

We partition the segments in S into two classes. The normal segments are
segments with at most one point contained by the same extreme line, and rim
segments, are non-degenerate segments collinear with an extreme line. We further
partition the rim segments. If there is a directed line L passing through a rim
segment s such that all critical points are contained in H l(L) then we say that
s is a nice rim segment. If a rim segment is not nice then we call it a pesky rim
segment. See Fig. 1.

This classification of line segments plays a crucial role in determining an
MPIP of a set of segments. In [15] an O(n log n) algorithm is given to compute
an MPIP for a set of line segments S with no pesky rim segments. On the other
hand if the set of segments does contain some positive number, say k, pesky
rim segments, then the computational complexity explodes to being exponential
in k. The crux of the matter is that there is a local decision that can be made
regarding the interaction of an MPIP and a normal or nice rim segment. For the
pesky segment there are four possible outcomes and there is no known method
to decide locally which outcome to adopt. A brute force method of testing all

nice rim segment

normal line segment

pesky rim segment

Fig. 1. Directed segments denote critical extreme line. The nice rim segments are shown
as solid line segments. The normal line segments are dotted and the pesky segments
are dashed.
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possible outcomes leads to the exponential behaviour of the algorithm. We will
propose three distinct methods for obtaining approximations for an MPIP of a
set of segments. The first two are straight forward modifications of the algorithm
proposed in [15]. We begin by sketching the algorithm.

It is well known that a ray of light that hits a reflective surface will have equal
angles of incidence and reflection. In [15] it is proved that every MPIP of S must
intersect a rim segment at a single point. This point may be an endpoint, or it
may be interior to the segment. For any nice rim segment s ∈ S, if the MPIP
intersects s at an interior point then the two exterior angles that the MPIP makes
with s are equal, thus this vertex is called a reflection vertex. After sorting the
critical extreme lines, starting at any nice rim segment, we can choose a point
(reflection vertex) on that nice rim segment, move to the next nice rim segment
(using the sorted critical extreme lines [15]), and meanwhile, cross (or include)
all the normal line segments in between. In this traversal, two nice rim segments
are called neighbours if there is no nice rim segment between them.

Consider two neighbour nice rim segments s and t. In [15] it was shown that
the part of the boundary between s and t of every MPIP is constrained to lie
in a region formed by taking the intersection of the left half planes of all the
critical extreme lines between s and t and subtracting it from the convex hull
of s, t and the critical points between them. We denote this region as a feasible
polygon. This situation repeats for every pair of neighbouring nice rim segments,
yielding a union of feasible polygons we call a feasible cycle. See Fig. 2. The task
at hand is to find a minimum perimeter polygon lying within the feasible cycle.

One way to do this is to flatten the feasible cycle and determine a number
of shortest paths. Consider a sequence of three consecutive nice rim segments r,
s and t. This will yield two feasible polygons, defined respectively by the pairs
r and s and s and t, with a common edge s. The flattening process flips about
the common edge s so that the intersection point of any straight line passing
through s will result in a reflection vertex in the pre-flipped feasible polygons.
A repetition of r in the sequence results in three flattened feasible polygons
with two copies of the edge r, say r′ and r′′. The example in Fig. 3 shows the

s
t

r

Fig. 2. A feasible polygons for a set of line segments. A possible feasible cycle is also
shown as a dash-dotted cycle. Since this cycle is located inside the feasible polygons,
it is guaranteed that the cycle includes at least one point of each line segment inside
or on its boundary.
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r

r

t s

Fig. 3. Here we see the flattened feasible polygons, illustrating how there are two
copies, r′ and r′′ of the segment r

situation with exactly 3 nice rim segments. Every point on r′ has its twin on
r′′. In [15] it is shown that every shortest path from a point on r′ to its twin on
r′′ lying within the flattened polygon is a polygon transversal of the segments.
Furthermore a point and its twin that realizes an MPIP can be found using the
flattened polygon in O(n log n) time.

The occurrence of pesky rim segments makes the previous approach to finding
an MPIP unwieldy. For nice rim segment s an MPIP either passes through an
endpoint of s or has a reflection vertex incident to s. Both these occurrences are
handled by the method using the flattened polygon. A pesky rim segment s may
interact with an MPIP P in one of four ways. If the input consists of k pesky
rim segments the algorithm presented in [15] considers all possible combinations
of the choices resulting in an algorithm that is exponential in k, and k may be
in O(n).

It will be most convenient to describe how a pesky rim segment p∗ is handled
in terms of its interaction with the an MPIP P , and in terms of constructing a
flattened polygon.

Case 1. MPIP P has no vertices incident to p∗, there is no critical polygon
associated to p∗, see Fig. 4(A).

Case 2. MPIP P has a reflection vertex incident to p∗, we treat p∗ as a nice
rim segment and construct the appropriate critical polygons, see Fig. 4(B).

Case 3, 4. MPIP P is incident to an endpoint of p∗, we treat each endpoint
of p∗ independently as if it were the endpoint of a normal segment, see
Fig. 5.

3 The Incremental Approach

The time complexity of the brute force algorithm is exponential as a result of
testing all possible outcomes. The worst case example occurs when all the line
segments are pesky rim segments. In this section we introduce an approximation
method, the incremental approach, which is a direct modification of the brute
force algorithm explained in the previous section [15]. The idea behind the incre-
mental approach is to locally resolve the pesky rim segments in order to decrease
the time complexity of the algorithm.

The incremental approach consists of two steps. In the first step, the prepa-
ration step, we remove all the unnecessary line segments from the set of line
segments S. A line segment is unnecessary if and only if none of its endpoints
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(A)

p∗

(B)

Fig. 4. (A) Case 1: Ignoring a pesky rim segment completely may have no effect on
the MPIP, as shown in this example. (B) Case 2: If we eliminate all critical points from
S that are on the wrong side of the line through the pesky segment p∗ then we can
consider the segment as if it is a nice rim segment. In this case we convert a pesky rim
segment into a nice rim segment by clipping its neighbour rim segments.

p∗

p∗

Fig. 5. Cases 3 and 4: Replacing p∗ with one of its endpoints, yields results that differ
from including the entire segment as in case 2

are critical. Then we replace each normal line segment l with an endpoint of
l that is critical. In the second step, the resolving step, we remove the pesky
rim segments from S one by one until S includes no pesky rim segments. The
removed pesky rim segments are stored in Q. Then for each pesky rim segments
pi in Q, we add pi back to S, we investigate the four different cases explained
in Section 2 in order to resolve pi and we replace pi with the best case. After
resolving every pi ∈ Q we end up with an approximated MPIP.

The preparation step of the incremental approach is trivial and can be done
in O(n) time. In the resolving step, we first remove all the pesky rim segments
in O(n). Then for each pesky rim segment pi, we resolve pi in O(n log n) time
[15]. In the worst case, where all the line segments are pesky rim segments, the
time complexity of the incremental approach is O(n2 log n).

4 The Trimming Approach

In the incremental approach we locally check the four different cases for each
pesky rim segment in order to approximate an MPIP of a set of line segments
S. In the trimming approach, we only check the second case for each pesky
rim segment. More precisely, for a set of line segments S with k pesky rim



Approximation Algorithms for Finding a Minimum Perimeter Polygon 369

segments, only one combination out of the 4k possible combinations of the pesky
rim segments is investigated, and that is when all the pesky rim segments are
treated as nice rim segments. In order to do so, we choose a pesky rim segments
pi and convert it to a nice rim segment by trimming off the parts of all the
other line segments that do not intersect H l(pi). We repeat this step for each
remaining pesky rim segment. Note that after each iteration (trimming), one or
more pesky rim segments may become non-pesky as a result of trimming the
other segments (consult Fig. 6). The iteration stops when there is no pesky rim
segment left. Then an MPIP of the remaining set of line segments is computed
using the algorithm discussed in Section 2.

In the first phase of the trimming algorithm we may have to perform a trim
operation O(n2) times. After trimming we simply apply a special case of the
algorithm described in Section 2 and since there are no more pesky segments
the cost of this phase is in O(n logn).

p2

p1

p3n1

p2

p1

p3n1

(A) (B)

Fig. 6. (A) a set of line segments. (B) Converting p1 into a nice rim segment by
trimming n1. Notice how p2 and p3 become non-pesky as a result of trimming n1.

5 Experimental Results

For a specific set of line segments S, we feed S to the brute force algorithm and
also to our two heuristics, and denote the results by R and R′ respectively. Then
we define the percentage error as R′−R

R ×100.
Table 1 shows some empirical results indicating the percentage error for differ-

ent numbers of pesky rim segments. Each error value in the table is the average
of the error values for 20 random sets of line segments with a specific number of
pesky rim segments. Although on average these heuristics yield close-to-optimum
results, the errors are not bounded in the worst case.

There are examples in which the incremental approach results in arbitrarily
bad approximations. Consider the example in Fig. 7. The MPIP of the line

Table 1. The percentage error of the incremental approach and the trimming approach

segments 1 2 3 4 5 6 7 8 9 10
incremental 0 0.028 0.092 0.154 0.120 0.183 0.169 0.181 0.164 0.131
trimming 1.176 0.172 0.515 0.286 0.762 0.866 0.726 1.005 0.926 0.848
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Fig. 7. On the left a set of segments with optimal MPIP. In the centre and right we see
two successive steps of the incremental approach that lead to a poor approximation of
the optimal MPIP.

Fig. 8. Above we see the optimal MPIP, and below a solution obtained by applying
the trimming approach that is a poor approximation of the optimum

segments is shown on the left. In the centre we the results after inserting one
of the pesky segments and on the right we see the results after both pesky
segments have been inserted. In general it is easy to construct examples where
the incremental approach may yield an approximation that is arbitrarily bad.

The trimming approach is also prone to unbounded error on some pathological
examples. Consider the example shown in Fig. 8. By making the upper two nice
rim segments more horizontal the approximation error can be increased without
bound.

Our experiments suggest that these heuristics perform quite well on some
small randomly generated examples, however, in some cases these heuristics may
produce very large errors. In the next section we present an entirely different
approximation algorithm that is guaranteed to produce an approximate solution
that is not too far from the optimum.

6 Minimum Spanning Circle Approach

In this section, we propose a completely different approach to approximate the
MPIP of a set of line segments S. The algorithm relies on finding a minimum
spanning circle (MSC) of the segments, that is, given a set of line segments S
we find a smallest perimeter circle that is a transversal of S. The MSC of a set
of (possibly overlapping) line segments can be found in O(n log n) time [1]. We
show that this approach results in an intersecting polygon with a perimeter that
is at most π

2 times greater than the optimum answer.
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6.1 Approximation Bounds

We begin by establishing the relation between the perimeter of an MPIP of
S and the perimeter of an MSC of S. Throughout we use w(·) to denote the
perimeter of the boundary of a planar region.

The following lemmas provide useful direction towards the main result:

Lemma 1. For any convex polygon P with diameter D, 2D < w(P ).

Proof. Let P be a polygon with diameter D realized by a pair of vertices of P ,
a and b. Let c be any other vertex of P such that a, b, c, is a triangle, �abc.
Clearly the perimeter of P , w(P ), is at least the perimeter of �abc. Furthermore,
by the triangle inequality 2D is less than the perimeter of �abc. Therefore,
2D < w(P ). ��

Observation 1. Let P be a polygon and C an MSC of P . The boundary of C
either passes through exactly two vertices of P , a, and b, such that a and b realize
the diameter of P , or C passes through three vertices of P such that �abc, is an
acute triangle containing the centre of C in its interior. [8]

Theorem 2. Let P ∗ be an MPIP of a set of line segments S and circle C∗ with
diameter D be a Minimum Spanning Circle of S. Then 2D < w(P ∗) < πD.

Proof. Observe that the perimeter of C∗ is at least the perimeter of P ∗, thus
w(P ∗) < πD.

Using elementary calculus one can show that an acute angled triangle in-
scribed in a circle has perimeter at least 2D. Thus we can conclude that 2D <
w(P ∗). ��

6.2 Approximation Result

In the previous section we proved that the perimeter of an MPIP of a set of
line segments S is within a constant times the diameter of an MSC of S. What
remains to be done is to find an MPIP of S such that its perimeter is bounded.
We will use the MSC of S in order to find such a polygon transversal.

Observation 3. For any two convex shapes in the plane H1 and H2, H1 ⊂ H2,
the perimeter of H1 is less than the perimeter of H2.

According to the definition of a Minimum Spanning Circle C∗ of a set of line seg-
ments S, we know that there is at least one point of each line segment s ∈ S that is
inside or on the boundary of C∗. In our approach, for each s ∈ S, we simply choose
the point on s that is closest to the centre of C∗ and we keep the chosen points in
S′. The minimum distance from any s ∈ S to the centre of C∗ is no more than the
radius of C∗, that is D/2. Then we compute the convex hull of S′ in O(n log n) [7].
Let’s call this convex hull CH′. Since all the points in S′ are included in C∗, CH′

is also included inside C∗, so according to Observation 3

w(CH′) < w(C∗) ⇒ w(CH′) < πD (1)
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Suppose that P ∗ is an MPIP of S. Then the perimeter of CH′ cannot be
smaller than the perimeter of P ∗.

w(P ∗) ≤ w(CH′) (2)

According to Theorem. 2, Equation 1 and Equation 2 we can conclude that

2D < w(P ∗) ≤ w(CH′) < πD (3)

We summarize the result of this section with the following theorem:

Theorem 4. Given a set of line segments S with MPIP P ∗, we can obtain a
convex polygon P in O(n log n) time that spans all the line segments in S and
satisfies the inequality

w(P ) ≤ π

2
× w(P ∗) (4)

6.3 The Worst Cases

According to Theorem 2, the approximated result is at most π
2 times greater

than the optimal result. Fig. 9 shows an example in which the result of the
approximation is π+2

4 times greater than the optimal result. In this figure, all
the line segments are pesky rim segments, except for the top and the bottom
line segments. The MPIP is almost vertical, crossing all the line segments. The
perimeter of the MPIP is approximately 2d. Note that according to Theorem
2, the perimeter of the MPIP in this example cannot be less than 2d. The Ap-
proximated convex hull is almost a half circle and its perimeter is approximately
πd
2 +d. This yields a π+2

4 ratio.
In Fig. 10 the ratio between the optimal answer and the approximated answer

is also π+2
4 , but in this case the MPIP is located inside the MSC. Fig. 10(A)

shows the set of line segments. Note that these line segments are non-intersecting
and except for the top and the bottom line segments, all the other ones are pesky
rim segments. The MPIP of this set of line segments is almost a vertical line
connecting the top and the bottom line segments and crossing the rest of the
line segments. The perimeter of the MPIP is approximately 2d. In Fig. 10(B) The

d + ε d d − εpesky rim segments

Fig. 9. Approximated MPIP and the optimal MPIP
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(B)

d d
2

(A)

pesky rim segments

Fig. 10. Approximated MPIP and the optimal MPIP

white point on the line segment is the closest point on that line segment to the
centre of the MSC (the big dashed circle). For the top half of the line segments,
the closest points are located on a circle with diameter d

2 which is centred on the
diameter of the MSC. For the bottom half of the line segments, there exists a
circle similar to the top half. These two circles are shown as dotted circles inside
the MSC in Fig. 10(B). The convex hull of the white points is shown as a grey
polygon in Fig. 10(B). The perimeter of this polygon is approximately πd

2 +d.
Although there are no proofs that the examples in Fig. 9 and Fig. 10 are the

worst case examples that can be found, they motivate us to investigate whether
the upper bound can be reduced from πD to πD

2 +D or even less. It is worth
mentioning that for these worst case examples, the incremental approach may
produce better results, compared to the MSC approach.

7 Future Work

Observe that our worst case approximations generalize, that is, for any set of
objects O, we can apply the MSC approximation in order to approximate the
MPIP of O. So if we can find an MSC of O, then approximate

optimal ≤ π
2 .

Whether the problem of finding a minimum perimeter polygon intersecting a
set of line segments is NP-hard, remains unknown.
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Abstract. We study the problem of reconfiguring one list edge-coloring
of a graph into another list edge-coloring by changing one edge color
at a time, while at all times maintaining a list edge-coloring, given
a list of allowed colors for each edge. First we show that this prob-
lem is PSPACE-complete, even for planar graphs of maximum degree 3
and just six colors. Then we consider the problem restricted to trees.
We show that any list edge-coloring can be transformed into any other
under the sufficient condition that the number of allowed colors for
each edge is strictly larger than the degrees of both its endpoints. This
sufficient condition is best possible in some sense. Our proof yields a
polynomial-time algorithm that finds a transformation between two given
list edge-colorings of a tree with n vertices using O(n2) recolor steps. This
worst-case bound is tight: we give an infinite family of instances on paths
that satisfy our sufficient condition and whose reconfiguration requires
Ω(n2) recolor steps.

1 Introduction

Reconfiguration problems arise when we wish to find a step-by-step transforma-
tion between two feasible solutions of a problem such that all intermediate results
are also feasible. Recently, Ito et al. [8] proposed a framework of reconfiguration
problems, and gave complexity and approximability results for reconfiguration
problems derived from several well-known problems, such as independent set,
clique, matching, etc. In this paper, we study a reconfiguration problem for
list edge-colorings of a graph.

An (ordinary) edge-coloring of a graph G is an assignment of colors from a
color set C to each edge of G so that every two adjacent edges receive different
colors. In list edge-coloring, each edge e of G has a set L(e) of colors, called
the list of e. Then, an edge-coloring f of G is called an L-edge-coloring of G if

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 375–386, 2009.
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{ c3 ,c4} {c3, c4 }

{c1,c2, c3 ,c4}

{ c2 }
{ c1 ,c3}{ c1 ,c4}

{ c3 ,c4} {c3, c4 }

{c1,c2,c3, c4 }

{ c2 }
{ c1 ,c3}{ c1 ,c4}

{ c3 ,c4} {c3, c4 }

{c1,c2,c3, c4 }

{ c2 }
{c1, c3 }{ c1 ,c4}

(a)                                                 (b)                                                (c)

Fig. 1. A sequence of L-edge-colorings of a graph

f(e) ∈ L(e) for each edge e, where f(e) denotes the color assigned to e by f . Fig.1
illustrates three L-edge-colorings of the same graph with the same list L; the
color assigned to each edge is surrounded by a box in the list. Clearly, an edge-
coloring is an L-edge-coloring for which L(e) is the same color set C for every
edge e of G, and hence list edge-coloring is a generalization of edge-coloring.

Suppose now that we are given two L-edge-colorings of a graph G (e.g., the
leftmost and rightmost ones in Fig.1), and we are asked whether we can trans-
form one into the other via L-edge-colorings of G such that each differs from
the previous one in only one edge color assignment. We call this problem the
list edge-coloring reconfiguration problem. For the particular instance
of Fig.1, the answer is “yes,” as illustrated in Fig.1, where the edge whose color
assignment was changed from the previous one is depicted by a thick line. One
can imagine a variety of practical scenarios where an edge-coloring (e.g., repre-
senting a feasible schedule) needs to be changed (to use a newly found better
solution or to satisfy new side constraints) by individual color changes (prevent-
ing the need for any coordination) while maintaining feasibility (so that nothing
breaks during the transformation). Reconfiguration problems are also interesting
in general because they provide a new perspective and deeper understanding of
the solution space and of heuristics that navigate that space.

Reconfiguration problems have been studied extensively in recent literature
[1,3,4,6,7,8], in particular for (ordinary) vertex-colorings. For a positive integer
k, a k-vertex-coloring of a graph is an assignment of colors from {c1, c2, . . . , ck}
to each vertex so that every two adjacent vertices receive different colors. Then,
the k-vertex-coloring reconfiguration problem is defined analogously.
Bonsma and Cereceda [1] proved that k-vertex-coloring reconfiguration

is PSPACE-complete for k ≥ 4, while Cereceda et al. [4] proved that k-vertex-

coloring reconfiguration is solvable in polynomial time for 1 ≤ k ≤ 3.
Edge-coloring in a graph G can be reduced to vertex-coloring in the “line graph”
of G. However, by this reduction, we can solve only a few instances of list edge-

coloring reconfiguration; all edges e of G must have the same list L(e) = C
of size |C| ≤ 3 although any edge-coloring of G requires at least Δ(G) colors,
where Δ(G) is the maximum degree of G. Furthermore, the reduction does not
work the other way, so we do not obtain any complexity results.

In this paper, we give three results for list edge-coloring reconfigu-

ration. The first is to show that the problem is PSPACE-complete, even for
planar graphs of maximum degree 3 and just six colors. The second is to give
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a sufficient condition for which there exists a transformation between any two
L-edge-colorings of a tree. Specifically, for a tree T , we prove that any two L-edge-
colorings of T can be transformed into each other if |L(e)| ≥ max{d(v), d(w)}+1
for each edge e = vw of T , where d(v) and d(w) are the degrees of the end-
points v and w of e, respectively. Our proof for the sufficient condition yields a
polynomial-time algorithm that finds a transformation between given two L-
edge-colorings of T via O(n2) intermediate L-edge-colorings, where n is the
number of vertices in T . On the other hand, as the third result, we give an
infinite family of instances on paths that satisfy our sufficient condition and
whose transformation requires Ω(n2) intermediate L-edge-colorings.

Our sufficient condition for trees was motivated by several results on the
well-known “list coloring conjecture” [9]: it is conjectured that any graph G
has an L-edge-coloring if |L(e)| ≥ χ′(G) for each edge e, where χ′(G) is the
chromatic index of G, that is, the minimum number of colors required for
an ordinary edge-coloring of G. This conjecture has not been proved yet, but
some results are known for restricted classes of graphs [2,5,9]. In particular,
Borodin et al. [2] proved that any bipartite graph G has an L-edge-coloring if
|L(e)| ≥ max{d(v), d(w)} for each edge e = vw. Because any tree is a bipartite
graph, one might think that it would be straightforward to extend their result
[2] to our sufficient condition. However, this is not the case, because the focus
of reconfiguration problems is not the existence (as in the previous work) but
the reachability between two feasible solutions; there must exist a transformation
between any two L-edge-colorings if our sufficient condition holds.

Finally we remark that our sufficient condition is best possible in some sense.
Consider a star K1,n−1 in which each edge e has the same list L(e) = C of size
|C| = n− 1. Then, |L(e)| = max{d(v), d(w)} for all edges e = vw, and it is easy to
see that there is no transformation between any two L-edge-colorings of the star.

2 PSPACE-Completeness

Before proving PSPACE-completeness, we introduce some terms and define the
problem more formally. In Section 1, we have defined an L-edge-coloring of a
graph G = (V, E) with a list L. We say that two L-edge-colorings f and f ′ of
G are adjacent if |{e ∈ E : f(e) �= f ′(e)}| = 1, that is, f ′ can be obtained
from f by changing the color assignment of a single edge e; the edge e is said
to be recolored between f and f ′. A reconfiguration sequence between two L-
edge-colorings f0 and ft of G is a sequence of L-edge-colorings f0, f1, . . . , ft of
G such that fi−1 and fi are adjacent for i = 1, 2, . . . , t. We also say that two L-
edge-colorings f and f ′ are connected if there exists a reconfiguration sequence
between f and f ′. Clearly, any two adjacent L-edge-colorings are connected.
Then, the list edge-coloring reconfiguration problem is to determine
whether given two L-edge-colorings of a graph G are connected. The length of a
reconfiguration sequence is the number of L-edge-colorings in the sequence, and
hence the length of the reconfiguration sequence in Fig.1 is 3.

The main result of this section is the following theorem.
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(a)                                         (b)                                          (c)

22

2211

2
12 1

2

1

21 2
1

Fig. 2. (a) A configuration of an NCL machine, (b) NCL And vertex, and (c) NCL
Or vertex

Theorem 1. List edge-coloring reconfiguration is PSPACE-complete
for planar graphs of maximum degree 3 whose lists are chosen from six colors.

In order to prove Theorem 1, we give a reduction from Nondeterministic Con-
straint Logic (NCL) [7]. An NCL “machine” is specified by a constraint graph:
an undirected graph together with an assignment of weights from {1, 2} to each
edge of the graph. A configuration of this machine is an orientation (direction)
of the edges such that the sum of weights of incoming edges at each vertex is
at least 2. Fig.2(a) illustrates a configuration of an NCL machine, where each
weight-2 edge is depicted by a thick line and each weight-1 edge by a thin line. A
move from one configuration is simply the reversal of a single edge which results
in another (feasible) configuration. Given an NCL machine and its two configu-
rations, it is PSPACE-complete to determine whether there exists a sequence of
moves which transforms one configuration into the other [7].

In fact, the problem remains PSPACE-complete even for And/Or constraint
graphs, which consist only of two types of vertices, called “NCL And vertices”
and “NCL Or vertices.” A vertex of degree 3 is called an NCL And vertex if
its three incident edges have weights 1, 1 and 2. (See Fig.2(b).) An NCL And

vertex behaves as a logical And, in the following sense: the weight-2 edge can
be directed outward if and only if both weight-1 edges are directed inward. Note
that, however, the weight-2 edge is not necessarily directed outward even when
both weight-1 edges are directed inward. A vertex of degree 3 is called an NCL
Or vertex if its three incident edges have weights 2, 2 and 2. (See Fig.2(c).)
An NCL Or vertex behaves as a logical Or: one of the three edges can be
directed outward if and only if at least one of the other two edges is directed
inward. It should be noted that, although it is natural to think of NCL And

and Or vertices as having inputs and outputs, there is nothing enforcing this
interpretation; especially for NCL Or vertices, the choice of input and output is
entirely arbitrary since NCL Or vertices are symmetric. From now on, we call
an And/Or constraint graph simply an NCL machine.

Proof of Theorem 1
It is easy to see that list edge-coloring reconfiguration can be solved
in (most conveniently, nondeterministic [10]) polynomial space. Therefore, in
the remainder of this section, we show that the problem is PSPACE-hard by
giving a reduction from NCL. This reduction involves constructing two types
of gadgets which correspond to NCL And and Or vertices. We call an edge
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(a)                                                                     (b)

{ c1 ,c3}{c1, c2 }

u x vu v

Fig. 3. (a) an NCL edge uv and (b) its corresponding edges ux and xv of a graph with
lists L(ux) = {c1, c2} and L(xv) = {c1, c3}

of an NCL machine an NCL edge, and say simply an edge of a graph for list

edge-coloring reconfiguration.
Assume in our reduction that the color c1 corresponds to “directed inward,”

and that both colors c2 and c3 correspond to “directed outward.” Consider an
NCL edge uv directed from u to v. (See Fig.3(a).) Then, the NCL edge is directed
outward for u, but is directed inward for v. However, in list edge-coloring, each
edge can receive only one color, of course. Therefore, we need to split one NCL
edge uv into two edges ux and xv of a graph with lists L(ux) = {c1, c2} and
L(xv) = {c1, c3}, as illustrated in Fig.3(b). It is easy to see that one of ux and
xv can be colored with c1 if and only if the other edge is colored with either c2
or c3. This property represents that an NCL half-edge can be directed inward if
and only if the other half is directed outward.

Fig.4 illustrates three kinds of “And gadgets,” each of which corresponds
to an NCL And vertex; two edges uxx and uyy correspond to two weight-1
NCL half-edges, and the edge uzz corresponds to a weight-2 NCL half-edge.
Since NCL And and Or vertices are connected together into an arbitrary NCL
machine, there should be eight kinds of And gadgets according to the choice of
lists {c1, c2} and {c1, c3} for three edges uxx, uyy and uzz. However, since the
two weight-1 NCL edges are symmetric, it suffices to consider these three kinds:
all the three edges have the same list, as in Fig.4(a); uzz has a different list from
the other two edges, as in Fig.4(b); and one of uxx and uyy has a different list
from the other two edges, as in Fig.4(c).

We denote by F(A; cx, cy, cz) the set of all L-edge-colorings f of an And

gadget A such that f(uxx) = cx, f(uyy) = cy and f(uzz) = cz. Since a triple
(cx, cy, cz) defines the direction of the three corresponding NCL half-edges, all
the L-edge-colorings in F(A; cx, cy, cz) correspond to the same configuration

(a)                                                            (b)                                                          (c)

{c1,c3}

{c1,c2} {c1,c2}

{c4,c5}

{c2,c4}

{c3,c5}

x y

z

uz

ux uy

{c1,c2}

{c1,c2} {c1,c2}

{c4,c5}

{c2,c4}

{c2,c5}

x y

z

uz

ux uy

{c1,c2}

{c1,c2} {c2,c3}

{c4,c5}

{c2,c4}

{c2,c5}

x
y

z

uz

ux

uy {c1,c3}

Fig. 4. Three kinds of And gadgets
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of the NCL And vertex. We now check that the three kinds of And gadgets
satisfy the same constraints as an NCL And vertex; we check this property by
enumerating all possible L-edge-colorings of the And gadgets. For example, in
the And gadget A of Fig.4(a), uzz can be colored with c2 (directed outward)
if and only if both uxx and uyy are colored with c1 (directed inward); in other
words, |F(A; cx, cy, c2)| ≥ 1 if and only if cx = cy = c1. In addition, every And

gadget A satisfies the following two properties:
(i) For a triple (cx, cy, cz), if |F(A; cx, cy, cz)| ≥ 2, then any two L-edge-

colorings f and f ′ in F(A; cx, cy, cz) are “internally connected,” that is,
there exists a reconfiguration sequence between f and f ′ such that all
L-edge-colorings in the sequence belong to F(A; cx, cy, cz); and

(ii) For every two triples (cx, cy, cz) and (c′x, c′y, c′z) which differ in a single
coordinate, if |F(A; cx, cy, cz)| ≥ 1 and |F(A; c′x, c′y, c′z)| ≥ 1, then there
exist two L-edge-colorings f and f ′ such that f and f ′ are adjacent, f ∈
F(A; cx, cy, cz) and f ′ ∈ F(A; c′x, c′y, c′z).

Then, it is easy to see that the reversal of a single NCL half-edge in an NCL
And vertex can be simulated by a reconfiguration sequence between two L-edge-
colorings each of which is chosen arbitrarily from the set F(A; cx, cy, cz), where
(cx, cy, cz) corresponds to the direction of the three NCL half-edges.

Fig.5 illustrates two kinds of “Or gadgets,” each of which corresponds to an
NCL Or vertex; three edges uxx, uyy and uzz correspond to three weight-2
NCL half-edges. Since an NCL Or vertex is entirely symmetric, it suffices to
consider these two kinds: all the three edges have the same list, as in Fig.5(a);
and one edge has a different list from the other two edges, as in Fig.5(b). Then,
similarly as And gadgets, it is easy to see that both kinds of Or gadgets satisfy
the same constraints as an NCL Or vertex, and that the reversal of a single NCL
half-edge in an NCL Or vertex can be simulated by a reconfiguration sequence
between corresponding two L-edge-colorings.

Given NCL machine, we construct a corresponding graph G with a list L by
connecting the vertices x, y and z of And or Or gadgets. Then, an L-edge-
coloring of G corresponds to a configuration of the NCL machine. On the other
hand, every configuration of the NCL machine can be mapped to at least one
(in general, to exponentially many) L-edge-colorings of G. We can choose an
arbitrary one for each of given two configurations, because each And gadget
satisfies Property (i) above and each Or gadget does the counterpart. It is now

(a)                                                                                                            (b)

{c1,c2}

{c1,c2}
{c1,c2}

{c3,c6}{c2,c5}

{c4,c5,c6}

{c2,c4}

x
y

z

uz

ux uy
{c2,c3}

{c1,c2}

{c1,c2}
{c3,c6}{c2,c5}

{c4,c5,c6}

{c2,c4}

x y

z

uz

ux uy
{c1,c3}

Fig. 5. Two kinds of Or gadgets
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easy to see that there is a sequence of moves which transforms one configuration
into the other if and only if there is a reconfiguration sequence between the two
L-edge-colorings of G. Since NCL remains PSPACE-complete even if an NCL
machine is planar [7], G is a planar graph of maximum degree 3. Furthermore,
each list L(e) is a subset of {c1, c2, . . . , c6}. ��

3 Trees

Since list edge-coloring reconfiguration is PSPACE-complete, it is rather
unlikely that the problem can be solved in polynomial time for general graphs.
However, in Section 3.1, we give a sufficient condition for which any two L-edge-
colorings of a tree T are connected; our sufficient condition can be checked in
polynomial time. Moreover, our proof yields a polynomial-time algorithm that
finds a reconfiguration sequence of length O(n2) between given two L-edge-
colorings, where n is the number of vertices in T . In Section 3.2, we then give
an infinite family of instances on paths that satisfy our sufficient condition and
whose reconfiguration sequence requires length Ω(n2).

3.1 Sufficient Condition and Algorithm

The main result of this subsection is the following theorem, whose sufficient
condition is best possible in some sense as we mentioned in Section 1.

Theorem 2. For a tree T with n vertices, any two L-edge-colorings f and f ′

of T are connected if |L(e)| ≥ max{d(v), d(w)} + 1 for each edge e = vw of T .
Moreover, there is a reconfiguration sequence of length O(n2) between f and f ′.

Since Δ(T ) ≥ max{d(v), d(w)} for all edges vw of a tree T , Theorem 2 imme-
diately implies the following sufficient condition for which any two (ordinary)
edge-colorings of T are connected. Note that, for a positive integer k, a k-edge-
coloring of a tree T is an L-edge-coloring of T for which all edges e have the
same list L(e) = {c1, c2, . . . , ck}.

Corollary 1. For a tree T with n vertices, any two k-edge-colorings f and f ′ of
T are connected if k ≥ Δ(T ) + 1. Moreover, there is a reconfiguration sequence
of length O(n2) between f and f ′.

It is obvious that the sufficient condition of Corollary 1 is also best possible in
some sense; consider a star K1,n−1 in Section 1.

In the remainder of this subsection, as a proof of Theorem 2, we give a
polynomial-time algorithm that finds a reconfiguration sequence of length O(n2)
between given two L-edge-colorings f0 and ft of a tree T if our condition holds.

We first give an outline of our algorithm. By the breadth-first search starting
from an arbitrary vertex r of degree 1, we order all edges e1, e2, . . . , en−1 of a
tree T . At the ith step, 1 ≤ i ≤ n− 1, the algorithm recolors ei from the current
color to its target color ft(ei), as follows. From the current L-edge-coloring f ,
we first obtain an L-edge-coloring f ′ of T such that
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Fig. 6. (a) Subtree Tu in the whole tree T and (b) inside of Tu

(i) there is no edge which is adjacent with ei and is colored with ft(ei); and
(ii) there exists a reconfiguration sequence between f and f ′ in which any of

the edges e1, e2, . . . , ei−1 is not recolored.
Then, we recolor ei to ft(ei). Therefore, ei is never recolored after the ith step,
while ei may be recolored before the ith step even if ei is colored with ft(ei). We
will show later that every edge of T can be recolored in such a way, and hence
we eventually obtain the target L-edge-coloring ft. We will also show later that
the algorithm recolors each edge ej with j ≥ i at most once in the ith step, and
hence we can recolor ei by recoloring at most n − i edges. Our algorithm thus
finds a reconfiguration sequence of total length

∑n−1
i=1 (n − i) = O(n2).

Suppose that we are given a tree T with a list L such that

|L(e)| ≥ max{d(v), d(w)} + 1 (1)

for each edge e = vw in E(T ). We choose an arbitrary vertex r of degree 1 as
the root of T , and regard T as a rooted tree. For a vertex u in V (T ) \ {r}, let p
be the parent of u in T . We denote by Tu the subtree of T which is rooted at p
and is induced by p, u and all descendants of u in T . (See Fig.6(a).) It should be
noted that Tu includes the edge eu = pu, but does not include the other edges
incident to p. Therefore, Tu consists of a single edge if u is a leaf of T . We always
denote by eu the edge which joins u and its parent p. For an internal vertex u
of T , let u1, u2, · · · , ul be the children of u ordered arbitrarily, as illustrated in
Fig.6(b). Then, the subtree Tu consists of eu and the subtrees Tui , 1 ≤ i ≤ l.

For a vertex u of T , we denote by Lu = L|Tu the restriction of the list L of
T to the subtree Tu, that is, Lu(e) = L(e) for each edge e ∈ E(Tu). Clearly,
d(v, T ) ≥ d(v, Tu) for each vertex v ∈ V (Tu), where d(v, T ) and d(v, Tu) denote
the degrees of v in T and Tu, respectively. Therefore, for each edge e = vw in
E(Tu), by Eq. (1) we have

|Lu(e)| = |L(e)|
≥ max{d(v, T ), d(w, T )} + 1
≥ max{d(v, Tu), d(w, Tu)} + 1.

The list Lu of Tu thus satisfies Eq. (1). For an L-edge-coloring f of T , we denote
by g = f |Tu the restriction of f to Tu, that is, g is an Lu-edge-coloring of Tu

such that g(e) = f(e) for each edge e in E(Tu). For an Lu-edge-coloring g of Tu,
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an edge vw of Tu and its endpoint v, we define a subset Cav(g, vw, v) of Lu(vw),
as follows:

Cav(g, vw, v) = Lu(vw) \ {g(vx) : vx ∈ E(Tu)}. (2)

Then, Cav(g, vw, v) is the set of all colors in Lu(vw) available on v for vw.
Therefore, Cav(g, vw, v)∩Cav(g, vw, w) is the set of all colors in Lu(vw) available
for vw when we wish to recolor vw from g.

Algorithm
We are now ready to describe our algorithm. Assume that all edges e1, e2, . . . ,
en−1 of a tree T are ordered by the breadth-first search starting from the root
r of T . At the ith step, 1 ≤ i ≤ n − 1, the algorithm recolors ei to its target
color ft(ei). Consider the ith step of the algorithm, and let f be the current
L-edge-coloring of T obtained by i − 1 steps of the algorithm; let f = f0 for the
first step, that is, ei = e1. Then, we wish to recolor ei = pp′ from f(ei) to ft(ei).
There are the following two cases to consider.

Case (a): ft(ei) ∈ Cav(f, ei, p) ∩ Cav(f, ei, p
′)

In this case, ft(ei) is available for ei, that is, there is no edge which is adjacent
with ei and is colored with ft(ei). We thus simply recolor ei from f(ei) to ft(ei),
and obtain an L-edge-coloring f ′ of T : for each edge e in E(T ),

f ′(e) =
{

f(e) if e ∈ E(T ) \ {ei};
ft(ei) if e = ei.

Case (b): ft(ei) /∈ Cav(f, ei, p) ∩ Cav(f, ei, p
′)

In this case, there are at most two edges pu and p′u′ which are colored with
ft(ei) and are sharing the endpoints p and p′ with ei, respectively.

If there is an edge pu which is colored with ft(ei) and is sharing p with ei,
then we recolor eu = pu to a different available color c, as follows. By Eqs. (1)
and (2) we have

|Cav(f, eu, p)| ≥
∣∣L(eu)

∣∣− ∣∣{f(px) : px ∈ E(T )}
∣∣

≥ max{d(p), d(u)} + 1 − d(p)
≥ 1.

Therefore, there exists at least one color c in L(eu) which is available on p for eu.
Clearly, c �= f(ei) and c �= ft(ei) since both colors are in {f(px) : px ∈ E(T )}. It
should be noted that c ∈ Cav(f, eu, u) does not necessarily hold: c is not always
available for eu. Let g = f |Tu be the restriction of f to Tu. Then, by using the
procedure Recolor (which is described in the next page), we recolor eu from
g(eu) (= f(eu)) to c without recoloring any edge in E(T )\E(Tu). More precisely,
we have the following lemma, whose proof is omitted due to the page limitation.

Lemma 1. Let T be a tree with a list L satisfying Eq. (1), and let f be an
L-edge-coloring of T . For a vertex u of T , let Lu = L|Tu and g = f |Tu be the
restrictions of L and f to the subtree Tu, respectively. Then, for an arbitrary
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color c in Lu(eu) \ {g(eu)}, Recolor(Tu, g, c) returns a sequence RS of Lu-
edge-colorings g1, g2, . . . , gq of Tu which satisfies the following three properties:

(i) g and g1 are adjacent;
(ii) gk−1 and gk are adjacent for each k, 2 ≤ k ≤ q; and
(iii) gk(eu) = g(eu) for each k, 1 ≤ k ≤ q − 1, and gq(eu) = c.

Procedure 1. Recolor(Tu, g, c)
1: RS ⇐ ∅ {RS does not contain g}
2: if c ∈ Cav(g, eu, u) then {See also Fig.6(b)}
3: {The color c is not assigned to any of the edges uu1, uu2, . . . , uul}
4: Recolor eu from g(eu) to c, and obtain an Lu-edge-coloring g′ of Tu

5: return {g′}
6: else {The color c is assigned to one of the edges uu1, uu2, . . . , uul}
7: Let ej = uuj be the edge such that g(ej) = c
8: Choose an arbitrary color c′ ∈ Cav(g, ej , u)
9: {Recolor ej to c′ via Lj-edge-colorings of Tuj , where Lj = Lu|Tuj}

10: RS ′ ⇐ Recolor(Tuj , g|Tuj , c′)
11: for each Lj-edge-coloring hk in RS ′ (in the same order) do
12: {Extend an Lj-edge-coloring hk of Tuj to an Lu-edge-coloring gk of Tu}

13: Let gk(e) =
{

g(e) if e ∈ E(Tu) \ E(Tuj );
hk(e) if e ∈ E(Tuj )

14: RS ⇐ RS ∪ {gk}
15: end for
16: {ej is now colored with c′, and hence c is available for eu}
17: Recolor eu from g(eu) to c, and obtain an Lu-edge-coloring g′ of Tu

18: return RS ⇐ RS ∪ {g′}
19: end if

Since c has been chosen from Cav(f, eu, p) and g is the restriction of f to Tu, by
Property (iii) of Lemma 1 we can easily extend each Lu-edge-coloring gk of Tu

in RS to an L-edge-coloring fk of T , as follows: for each edge e in E(T ),

fk(e) =
{

f(e) if e ∈ E(T ) \ E(Tu);
gk(e) if e ∈ E(Tu).

Clearly, the sequence f, f1, f2, . . . , fq of L-edge-colorings of T is a reconfigura-
tion sequence which recolors eu from f(eu)

(
= ft(ei)

)
to c. Moreover, in the

reconfiguration sequence, any of the edges in E(T ) \ E(Tu) is not recolored.
Similarly, if there is an edge p′u′ which is colored with ft(ei) and is sharing

the other endpoint p′ with ei, then we recolor p′u′ to a different color which is
available on p′ for p′u′ without recoloring any edge in E(T ) \ E(Tu′).

Then, in the current L-edge-coloring of T , ft(ei) is available for ei. Therefore,
we can finally recolor ei from f(ei) to ft(ei).

Proof of Theorem 2
Remember that all edges e1, e2, . . . , en−1 of a tree T are ordered by the breadth-
first search starting from the root r of T , and that the algorithm recolors ei to
its target color ft(ei) at the ith step, 1 ≤ i ≤ n − 1.
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We first show that ei is never recolored after the ith step of the algorithm, as
in the following lemma. (The proof is omitted due to the page limitation.)

Lemma 2. The algorithm does not recolor any edge ej with j < i in the ith
step.

Using Lemma 1 we have shown that the algorithm can recolor ei to ft(ei) at
the ith step, and hence Lemma 2 implies that the algorithm terminates with
the target L-edge-coloring ft. Therefore, the algorithm finds a reconfiguration
sequence between given two L-edge-colorings f0 and ft of T if L satisfies Eq. (1).

We now estimate the length of a reconfiguration sequence found by our al-
gorithm. Clearly, the algorithm recolors an edge at most once in each step.
Therefore, by Lemma 2, at most n − i edges are recolored in the ith step. The
total length of the reconfiguration sequence is thus

∑n−1
i=1 (n − i) = O(n2). ��

3.2 Length of Reconfiguration Sequence

We showed in Section 3.1 that any two L-edge-colorings of a tree T are connected
via a reconfiguration sequence of length O(n2) if our sufficient condition holds.
In this subsection, we show that this worst-case bound on the length is tight: we
give an infinite family of instances on paths that satisfy our sufficient condition
and whose reconfiguration sequence requires length Ω(n2).

Consider a path P = {v0, v1, . . . , v3m+1} of 3m+1 edges in which every edge e
has the same list L(e) = {c1, c2, c3}. Clearly, the list L satisfies Eq. (1), and hence
any two L-edge-colorings of P are connected. We construct two L-edge-colorings
f0 and ft of P , as follows:

f0(vivi+1) =

⎧⎨⎩
c3 if i ≡ 0 mod 3;
c2 if i ≡ 1 mod 3;
c1 if i ≡ 2 mod 3

(3)

for each edge vivi+1, 0 ≤ i ≤ 3m, and

ft(vivi+1) =

⎧⎨⎩
c3 if i ≡ 0 mod 3;
c1 if i ≡ 1 mod 3;
c2 if i ≡ 2 mod 3

(4)

for each edge vivi+1, 0 ≤ i ≤ 3m. Then, we have the following theorem, whose
proof is omitted from this extended abstract.

Theorem 3. For a path P and its two L-edge-colorings f0 and ft defined above,
every reconfiguration sequence between f0 and ft requires length Ω(n2), where n
is the number of vertices in P .

4 Concluding Remarks

A reconfiguration sequence can be represented by a sequence of “recolor steps”
(e, c), where a pair (e, c) denotes one recolor step which recolors an edge e to some
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color c ∈ L(e). Then, the algorithm in Section 3.1 can be easily implemented so
that it runs in time O(n2): we store and compute a sequence of recolor steps (e, c)
together with only the current L-edge-coloring of a tree T . On the other hand,
Theorem 3 suggests that it is difficult to improve the time-complexity O(n2) of
the algorithm if we wish to find an actual reconfiguration sequence explicitly.

One may expect that our sufficient condition for trees holds also for some
larger classes of graphs, such as bipartite graphs, bounded treewidth graphs,
etc. However, consider the following even-length cycle, which is bipartite and
whose treewidth is 2. For an even integer m, let C be the cycle of 3m edges
obtained by identifying the edge v0v1 with the edge v3mv3m+1 of P in Section
3.2, and let f0 and ft be L-edge-colorings of C defined similarly as in Eqs. (3)
and (4), respectively. Then, we cannot recolor any edge in the cycle, and hence
there is no reconfiguration sequence between f0 and ft even though |L(e)| =
max{d(v), d(w)} + 1 holds for each edge e = vw.
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Abstract. We introduce the simultaneous representation problem, de-
fined for any graph class C characterized in terms of representations, e.g.
any class of intersection graphs. Two graphs G1 and G2, sharing some
vertices X (and the corresponding induced edges), are said to have a si-
multaneous representation with respect to a graph class C, if there exist
representations R1 and R2 of G1 and G2 that are “consistent” on X.
Equivalently (for the classes C that we consider) there exist edges E′

between G1 −X and G2 −X such that G1 ∪ G2 ∪E′ belongs to class C.
Simultaneous representation problems are related to graph sandwich

problems, probe graph recognition problems and simultaneous planar
embeddings and have applications in any situation where it is desirable
to consistently represent two related graphs.

In this paper we give efficient algorithms for the simultaneous rep-
resentation problem on chordal, comparability and permutation graphs.
These results complement the recent poly-time algorithms for recogniz-
ing probe graphs for the above classes and imply that the graph sandwich
problem for these classes is solvable for an interesting special case: when
the set of optional edges induce a complete bipartite graph. Moreover for
comparability and permutation graphs, our results can be extended to
solve a generalized version of the simultaneous representation problem
when there are k graphs any two of which share a common vertex set
X. This generalized version is equivalent to the graph sandwich problem
when the set of optional edges induce a k-partite graph.

Keywords: Simultaneous graphs, Sandwich graphs, Chordal graphs,
Comparability graphs, Permutation graphs.

1 Introduction

We explore the idea of finding a simultaneous representation for two graphs
with respect to a graph class, when the graphs share some vertices and edges.
We define this precisely for intersection graph classes, but the concept is rich
enough to apply more broadly.

Let C be any intersection graph class (such as interval graphs, chordal graphs,
permutation graphs, etc) and let G1 and G2 be two graphs in C, sharing some
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vertices X and the edges induced by X . G1 and G2 are said to be simultaneous
C-representable graphs or simultaneous C graphs if there exist intersection repre-
sentations R1 and R2 of G1 and G2 such that any vertex of X is represented by
the same object in both R1 and R2. The simultaneous representation problem
for class C asks whether G1 and G2 are simultaneous C graphs.

Comparability graphs do not have an intersection representation,but the simul-
taneous representation problem can be defined in the obvious way: Two compara-
bility graphs G1 and G2 sharing some vertices X and the edges induced by X are
said to be simultaneous comparability graphs if there exist transitive orientations
T1 and T2 of G1 and G2 (respectively) such that any edge e ∈ E(X) is oriented
in the same way in both T1 and T2. For example, Figure 1(left) shows a pair of si-
multaneous comparability graphs, with the property that their union is not a com-
parability graph. Figure 1(right) shows a pair of graphs that are not simultaneous
comparability graphs, though each one is a comparability graph on its own.

The main results in this
a

b
c

d

e

f

G1 G2

a

b
c

d

e

f

gG1 G2

Fig. 1. The graphs on the left are simultaneous
comparability graphs while the graphs on the right
are not

paper are polynomial time
algorithms for the simulta-
neous representation problem
on chordal graphs, permuta-
tion graphs, and comparabil-
ity graphs. These classes of
graphs are of enduring interest
because of their many appli-
cations [15], [8]. Simultaneous
representation problems arise
in any situation where two related graphs should be represented consistently.
A main instance is for temporal relationships, where an old graph and a new graph
share some common parts. Pairs of related graphs also arise in many other situa-
tions, for example: two social networks that share some members; overlap graphs
of DNA fragments of two similar organisms, etc. Simultaneous chordal graphs have
an application in computationalbiology as a special case of reconstructing phyloge-
nies (tree structures that model genetic mutations) when part of the information is
missing. (see [1]).

The simultaneous representation problem has previously been studied for
straight-line planar graph drawings: two graphs that share some vertices and
edges (not necessarily induced) have a simultaneous geometric embedding [3] if
they have planar straight-line drawings in which the common vertices are repre-
sented by common points. Thus edges may cross, but only if they are in differ-
ent graphs. Deciding if two graphs have a simultaneous geometric embedding is
NP-hard [6].

Simultaneous representation problems are also closely related to some graph
sandwich problems. For comparability graphs and for any intersection graph
class we show that the simultaneous representation problem is equivalent to a
graph augmentation problem: given two graphs G1 and G2, sharing vertices X
and the corresponding induced edges, do there exist edges E′ between G1−X and
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G2−X so that the augmented graph G1∪G2 ∪E′ belongs to class C. Intuitively,
the simultaneous representation problem does not specify relationships between
G1 −X and G2 −X , so these are the edges that can freely be added to produce
a graph in class C.

The graph sandwich problem [9] is a more general augmentation problem de-
fined for any graph class C: given graphs G1 = (V, E1) and G2 = (V, E2), is
there a set of edges E with E1 ⊆ E ⊆ E2 so that the graph G = (V, E) belongs
to class C. This problem has a wealth of applications but is NP-complete for
interval, chordal, comparability and permutation graphs [9].

The simultaneous representation problem is the special case where E2 − E1
forms a complete bipartite subgraph. A related special case where E2−E1 forms
a clique is the problem of recognizing probe graphs: a graph G with a specified
independent set N is a probe graph for class C if there exist edges E′ ⊆ N × N
so that the augmented graph G ∪ E′ belongs to class C. Probe graphs have
many applications [13,10] and have received much attention recently. There are
polynomial time algorithms to recognize probe interval graphs [12], probe chordal
graphs [2], and probe comparability and permutation graphs [5].

For comparability and permutation graphs, our results can be directly ex-
tended to solve a generalized version of the simultaneous representation problem
when there are k graphs any of two of which share a common vertex set X . This
implies that the graph sandwich problem for these graph classes is solvable for
the special case when the optional edges induce a k-partite graph.

Our paper is organized as follows: Section 1.1 gives notation and prelimi-
naries. We prove the equivalence of the two problem formulations here. In sec-
tions 2, 3 and 4 we study the simultaneous representation problem for chordal,
comparability and permutation graphs respectively.

1.1 Notation and Preliminaries

An intersection graph is one that has an intersection representation consisting of
an object for each vertex such that there is an edge between two vertices if and
only if the corresponding objects intersect. An intersection graph class restricts
the possible objects, for example, interval graphs are intersection graphs of line
segments on a line.

For a graph G, we use V (G) and E(G) to denote its vertex set and edge set
respectively. Given a vertex v and a set of edges A, we use NA(v) to denote
the neighbors of v w.r.t A i.e. the vertex set {u : (u, v) ∈ A}. If v is a vertex
of G then we use EG(v) to denote the edges incident to v i.e. the edge set
{(u, v) : u ∈ V (G), (u, v) ∈ E(G)} and G − v to denote the graph obtained by
removing v and its incident edges from G.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs sharing some vertices X
and the edges induced by X . To be pricese, V1 ∩ V2 = X and the subgraphs of
G1 and G2 induced by vertex set X are the same. Let A ⊆ (V1 −X)× (V2 −X)
be a set of edges. We use the notation (G1, G2, A) to denote the graph whose
vertex set is V1 ∪ V2 and whose edge set is E1 ∪ E2 ∪ A. Let G = (G1, G2, A).
An edge e ∈ (V1 − X) × (V2 − X) is said to be an augmenting edge of G.
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Theorem 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs belonging
to intersection class C and sharing some vertices X and the edges induced by
X. G1 and G2 are simultaneous C graphs if and only if there exists a set A ⊆
(V1 − X) × (V2 − X) of edges such that the graph G = (G1, G2, A) belongs to
class C.

The proof is straightforward and can be found in the full version of our paper [11].
Theorem 1 implies that the simultaneous representation problem for intersection
classes is a special case of the graph sandwich problem in which the set of
optional edges induce a complete bipartite graph. In section 3, we show that
this alternative formulation holds for comparability graphs also.

2 Simultaneous Chordal Graphs

A graph is said to be chordal if it does not contain any induced cycles of length
greater than 3. We use the following well-known results about chordal graphs
[8]. Chordal graphs satisfy the hereditary property: Any induced subgraph of
a chordal graph is chordal. A chordal graph always has a simplicial vertex: a
vertex x such that N(x) induces a clique. A perfect elimination ordering is an
ordering v1, . . . , vn of the vertices such that each vi is simplicial in the subgraph
induced by {vi, · · · , vn}. Chordal graphs are characterized by the existence of
a perfect elimination ordering. Any chordal graph is the intersection graph of a
family of subtrees of a tree.

Let G1 = (V1, E1) and G2 = (V2, E2) be two chordal graphs sharing some
common vertices X = V1 ∩ V2 and the edges induced by X . Then (by Theorem
1), the simultaneous chordal graph problem asks whether there exists a set A
of augmenting edges such that the graph (G1, G2, A) is chordal. We solve the
following generalized problem: Given G1, G2 and X (as above), and a set F of
forced augmenting edges, does there exist a set A of augmenting edges such that
the graph (G1, G2, F ∪ A) is chordal.

We need the following additional notation. For a vertex v in G = (G1, G2, F ),
we use N1(v) and N2(v) to denote the sets NE(G)(v) ∩ V (G1) and NE(G)(v) ∩
V (G2) respectively. Note that if v ∈ V1 − X then N2(v) may be non-empty
because of F . Finally, we use C(v) to denote the edge set {(x, y) : x ∈ N1(v) −
X, y ∈ N2(v)−X}. A vertex v ∈ G = (G1, G2, F ) is said to be an S-elimination
vertex of G if N1(v) and N2(v) induce cliques in G1 and G2 respectively.

Lemma 1. If G = (G1, G2, F ) is augmentable to a chordal graph then there
exists an S-elimination vertex v of G.

Proof. Let A be a set of augmenting edges such that the graph G′ = (G1, G2, F ∪
A) is chordal. Because G′ is chordal it has a simplicial vertex, i.e. a vertex v such
that NE(G′)(v) induces a clique in G′. This in turn implies that N1(v) and N2(v)
induce cliques. ��

Theorem 2. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs sharing some
vertices X and the edges induced by X. Let G = (G1, G2, F ) and let v be any
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S-elimination vertex of G. G is augmentable to a chordal graph if and only if
the graph Gv = (G1, G2, F ∪ C(v)) − v is augmentable to a chordal graph.

Proof. If Gv is augmentable to a chordal graph, then there exists a set A of
augmenting edges such that G′

v = (G1, G2, F ∪C(v)∪A)−v is chordal. We claim
that G′ = (G1, G2, F∪C(v)∪A) is chordal. Note that NE(G′)(v) = N1(v)∪N2(v),
which forms a clique in G′. Thus v is simplicial in G′. Furthermore, G′ − v = G′

v

is chordal. This proves the claim. Thus G can be augmented to a chordal graph
by adding the edges C(v) ∪ A.

To prove the other direction, assume without loss of generality that v ∈ V1.
Let A be a set of augmenting edges of G such that the graph G′ = (G1, G2, F∪A)
is chordal. Consider a subtree representation of G′. In this representation, each
node x ∈ V1 ∪ V2 is associated with a subtree Tx and two nodes are adjacent in
G′ if and only if the corresponding subtrees intersect. We now alter the subtrees
as follows.

For each node x ∈ N1(v) − X we replace Tx with T ′
x = Tx ∪ Tv. Note that

T ′
x is a (connected) tree since Tx and Tv intersect. Consider the chordal graph

G′′ defined by the (intersections of) resulting subtrees. Our goal is to show that
the chordal graph G′′ − v is an augmentation of Gv, which will complete our
proof. First note that E(G′′) ⊇ C(v) because for every x ∈ N1(v) − X , subtree
T ′

x intersects every subtree Ty for y ∈ NE(G′)(v). The only remaining thing is to
show that the edges that are in G′′ but not in G′ are augmenting edges, i.e. edges
from V1 −X to V2 −X . By construction, any edge added to G′′ goes from some
x ∈ N1(v) − X to some y ∈ NE(G′)(v). Thus x ∈ V1 − X , and we only need to
show that y ∈ V2 − X . Note that (y, v) is an edge of E(G′). Now if y ∈ V1 then
(y, v) ∈ E1 and thus x, y are both in the clique N1(v) and are already joined by
an edge in G (and hence G′). Therefore y ∈ V2 − X and we are done. ��
Theorem 2 leads to the following algorithm for recognizing simultaneous chordal
graphs

Algorithm 1
1. Let G1 and G2 be the input graphs and let F = {}.
2. While there exists an S-elimination vertex v of G = (G1, G2, F ) Do
3. F ← F ∪ C(v)
4. Remove v and its incident edges from G1, G2, F .
5. End
6. If G is empty return YES else return NO

Note that the above algorithm also computes the augmented graph for the
YES instances. We show in the full version [11] that Algorithm 1 can be imple-
mented to run in time O(n3).

3 Simultaneous Comparability Graphs

Recall that a comparability graph is defined as a graph whose edges can be tran-
sitively oriented. Golumbic [8] gave an O(nm) time algorithm for recognizing
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comparability graphs and constructing the transitive orientation if it exists. In this
section we extend Golumbic’s [8] results to simultaneous comparability graphs and
show that the simultaneous comparability problem can also be solved in O(nm)
time. We begin by proving the equivalence of the original definition of the simul-
taneous comparability graph problem and the augmenting edges version of the
problem. This is the analogue of Theorem 1 which only applied to intersection
classes.

We use the following additional notation. A directed edge from u to v is
denoted by −→uv. If A is a set of directed edges, then we use A−1 to denote the
set of edges obtained by reversing the direction of each edge in A. We use Â to
denote the union of A and A−1. A is said to be transitive if for any three vertices
a, b, c, we have

−→
ab ∈ A and

−→
bc ∈ A ⇒ −→ac ∈ A. Our edge sets never include loops,

so note the implication that if A is transitive then it cannot contain a directed
cycle and must satisfy A ∩ A−1 = ∅ (because if it contained both

−→
ab and

−→
ba it

would contain −→aa). By definition a transitive orientation assigns a direction to
each edge in such a way that the resulting set of directed edges is transitive. We
use G−A to denote the graph obtained by undirecting A and removing it from
graph G.

Let G1 = (V1, E1) and G2 = (V2, E2) be two comparability graphs sharing
some vertices X and the edges induced by X . If G1 and G2 are simultaneous
comparability graphs, then there exist transitive orientations T1 and T2 of G1
and G2 (respectively) that are consistent on E(X). We call T = T1∪T2 a pseudo-
transitive orientation of G1 ∪ G2. Note that the orientation induced by V1 (and
V2) in T is transitive. If W ⊆ Ê1 ∪ Ê2, then W is said to be pseudo-transitive if
W ∩ Ê1 and W ∩ Ê2 are both transitive. We can show that any pseudo-transitive
orientation of G1∪G2 can be augmented to a transitive orientation, which is the
main ingredient in the proof (see [11]) of the following equivalence theorem.

Theorem 3. Let G1 = (V1, E1) and G2 = (V2, E2) be two comparability graphs
sharing some vertices X and the edges induced by X. G1 and G2 are simultaneous
comparability graphs if and only if there exists a set A ⊆ (V1 −X)× (V2 −X) of
edges such that the graph G = (V1 ∪ V2, E1 ∪ E2 ∪ A) is a comparability graph.

We now sketch a high level overview of Golumbic’s algorithm for recognizing
comparability graphs and compare it with our approach. Golumbic’s recognition
algorithm is conceptually quite simple: orient one edge (call it a “seed” edge),
and follow implications to orient further edges. If this process results in an edge
being oriented both forwards and backwards, the input graph is rejected. Oth-
erwise, when there are no further implications, the set of oriented edges (called
an “implication class”) is removed and the process repeats with the remaining
graph. The correctness proof is not so simple, requiring an analysis of implica-
tion classes, and of how deleting one implication class changes other implication
classes. Golumbic proves the following theorem.

Theorem 4. (Golumbic [8]) Let G = (V, E) be an undirected graph and let
Ê(G) = B̂1+B̂2+· · · B̂j be any “G-decomposition” where for each k ∈ {1, · · · , j},
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Bk is an implication class of G − ∪1≤l<kB̂l. The following statements are
equivalent:

1. G is a comparability graph.
2. I ∩ I−1 = ∅ for all implication classes I of G.
3. Bk ∩ B−1

k = ∅ for k = 1, · · · , j.

We follow a similar strategy except that the “seed” edges must be chosen care-
fully for our proof to work. We define the concept of a “composite class” which is
analogous to an implication class. We further classify a composite class as a “base
class” or a “super class” depending on whether it is disjoint from E(G1)∩E(G2)
or not. Our algorithm works as follows: As long as there is a base class remove it
and recursively orient the remaining graph. Otherwise (when there are no base
classes left) as long as there is a super class remove it and recursively orient the
remaining graph.

We prove the following theorem.

Theorem 5. Let G1 = (V1, E1) and G2 = (V2, E2) be two comparability graphs
sharing some vertices X and the edges induced by X. Let Ê1 ∪ Ê2 = B̂1 +
B̂2 + · · · + B̂i + Ŝi+1 + Ŝi+2 + · · · + Ŝj be a “S-decomposition” of G1 ∪ G2

where for each k ∈ {1, · · · , i}, Bk is a base class of G − ∪1≤l<kB̂l and for each
k ∈ {i + 1, · · · , j}, Sk is a super class of G − ∪1≤l≤iB̂l − ∪i+1≤l<kŜl

The following statements are equivalent.

1. G1 and G2 are simultaneous comparability graphs
2. C ∩ C−1 = ∅ for all composite classes C of G = G1 ∪ G2.
3. Bk ∩ B−1

k = ∅ for k = 1, · · · , i and Sk ∩ S−1
k = ∅ for k = i + 1, · · · , j.

We now formalize and justify the above defined notions. Given an undirected
graph H , we can replace each undirected edge (u, v) by two directed edges −→uv and
−→vu and define a relation Γ on the directed edges as follows.

−→
ij Γ

−→
i′j′ if (i = i′ and

(j, j′) �∈ E(H)) or (j = j′ and (i, i′) �∈ E(H)). Γ can be viewed as a constraint
that directs the (i, j) edge from i to j if and only if the edge (i′, j′) is directed
from i′ to j′. It is easy to see that the transitive closure of Γ , denoted by Γt, is an
equivalence relation. We refer to the partitions of Γt as implication classes. The
following Lemmas capture some of the fundamental properties of implication
classes.

Lemma 2. ([8]) Let A be an implication class of a graph H. If H has a transitive
orientation F , then either F ∩ Â = A or F ∩ Â = A−1 and in either case,
A ∩ A−1 = ∅.

Lemma 3. ([8]) Let the vertices a, b, c induce a triangle in H and let
−→
bc, −→ca and−→

ba belong to implication classes A, B and C respectively. If A �= C and A �= B−1,
then

1. If
−→
b′c′ ∈ A then

−→
b′a ∈ C and

−→
c′a ∈ B

2. No edge of A is incident with a.
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Lemma 4. ([8]) Let A be an implication class of a graph H. If A ∩ A−1 = ∅,
then A is transitive.

Note that in Lemma 2, if the directions of one or more edges of triangle abc are
reversed, then the Lemma can still be applied by inversing the corresponding
implication classes. For e.g when

−→
ab ∈ C, −→ac ∈ B and

−→
bc ∈ A, if A �= C−1 and

A �= B, then condition (1) becomes: If
−→
b′c′ ∈ A then

−→
ab′ ∈ C and

−→
ac′ ∈ B.

Let G1 = (V1, E1) and G2 = (V2, E2) be two comparability graphs shar-
ing some vertices X and the edges induced by X . Let G = G1 ∪ G2. We de-
fine a relation Γ ′ on the (directed) edges of G as follows: −→e Γ ′−→f if −→e Γ

−→
f and

({−→e ,
−→
f } ⊆ Ê1 or {−→e ,

−→
f } ⊆ Ê2). It is easy to see that the transitive closure

of Γ ′ denoted by Γ ′
t is an equivalence relation. We refer to the partitions of Γ ′

t

as “composite classes”. A composite class C is said to be pseudo-transitive if
(
−→
ab ∈ C and

−→
bc ∈ C) ⇒ −→ac ∈ C whenever {a, b, c} ∈ V1 or {a, b, c} ∈ V2.

From the definition it follows that each composite class is a union of one
or more of the implication classes of G1 and the implication classes of G2. If
a composite class C of G has an edge that belongs to E(X), then we use the
term “super class” to refer to C. Otherwise C is said to be a “base class”. Thus
any base class is a single implication class of G1 or G2 and is contained in
Ê1 − Ê(X) or Ê2 − Ê(X).

Observation: Note that every implication class of a super class contains an
edge −→e ∈ Ê(X).

The following Lemmas for composite classes are analogous to Lemmas 2, 3 and
4. We provide the proofs in the full version [11].

Lemma 5. Let A be a composite class of G = G1 ∪ G2. If F is a pseudo-
transitive orientation of G then either F ∩ Â = A or F ∩ Â = A−1 and in either
case, A ∩ A−1 = ∅.

Lemma 6. Let the vertices a ∈ X, b and c induce a triangle in G = G1 ∪ G2,
such that

−→
bc, −→ca and

−→
ba belong to composite classes A, B and C respectively. If

A �= C and A �= B−1, then

1. If
−→
b′c′ ∈ A then

−→
b′a ∈ C and

−→
c′a ∈ B.

2. No edge of A is incident with a.

Lemma 7. Let the vertices a, b, c form a triangle in G and let the edges
−→
bc,−→ca

and
−→
ba belong to composite classes A, B and C respectively with A �= C, A �= B−1

and B �= C. If B and C are both super classes then there exists a triangle a′, b′, c′

in X with
−→
b′c′ ∈ A,

−→
c′a′ ∈ B and

−→
b′a′ ∈ C and hence A is a super class.

Lemma 8. Let A be a composite class of a graph G = G1 ∪G2. If A∩A−1 = ∅,
then A ∩ Ê1 and A ∩ Ê2 are both transitive and hence A is pseudo-transitive.
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Corollory 1. Let A be a composite class of a graph G = G1 ∪ G2. Then A is
pseudo-transitive iff A ∩ A−1 = ∅.

Recall that our approach involves deleting a composite class A from G. Any
composite class of G−A is a union of composite classes of G formed by successive
“merging”. Two composite classes B and C of G are said to be merged by the
deletion of class A, if deleting A creates a (Γ ′) relation between a B-edge and
a C-edge. Note that for this to happen there must exist a triangle a, b, c in G

with (b, c) ∈ Â and either
−→
ba ∈ C and −→ca ∈ B or

−→
ab ∈ C and −→ac ∈ B. We first

iteratively delete all the base classes followed by the (remaining) super classes.
The following Lemmas (proved in the full version [11]) examine what happens
when a base or super class gets deleted by the algorithm.

Lemma 9. If the composite classes of G = G1 ∪ G2 are all pseudo-transitive
and A is a base class of G then the composite classes of G − A are also pseudo-
transitive.

Lemma 10. Let each of the composite classes of G = G1 ∪ G2 be super and
pseudo-transitive. If A is any super class of G then each of the composite classes
of G − A is pseudo-transitive.

A partition of the edge set Ê1 ∪ Ê2 = B̂1 + B̂2 + · · ·+ B̂i + Ŝi+1 + Ŝi+2 + · · ·+ Ŝj

is said to be a S-decomposition of G = G1 ∪ G2, if for each k ∈ {1, · · · , i}, Bk

is a base class of G − ∪1≤l<kB̂l and for each k ∈ {i + 1, · · · , j}, Sk is a super
class of G − ∪1≤l≤iB̂l − ∪i+1≤l<kŜl

We are now ready to prove the main theorem.

Theorem 5. Let G1 = (V1, E1) and G2 = (V2, E2) be two comparability graphs
sharing some vertices X and the edges induced by X. Let Ê1 ∪ Ê2 = B̂1 + B̂2 +
· · ·+ B̂i + Ŝi+1 + Ŝi+2 + · · ·+ Ŝj be a S-decomposition of G1 ∪G2. The following
statements are equivalent.

1. G1 and G2 are simultaneous comparability graphs
2. Every composite class of G = G1 ∪G2 is pseudo-transitive, i.e. C ∩C−1 = ∅

for all composite classes C of G = G1 ∪ G2.
3. Every partition of the S-decomposition is pseudo-transitive, i.e. Bk∩B−1

k = ∅
for k = 1, · · · , i and Sk ∩ S−1

k = ∅ for k = i + 1, · · · , j.

Proof. (1) ⇒ (2) follows from Lemmas 5 and 8.
(2) ⇒ (3) is a direct consequence of Lemmas 9 and 10.
(3) ⇒ (1)

Let T = B1 + B2 + · · · + Bi + · · ·Si+1 + Si+2 + · · ·Sj . We now claim that T is
pseudo-transitive. For k = 1, · · · , j, define Ck as Ck = Bk if k ≤ i and Ck = Sk

otherwise. Thus T = C1 + · · ·Cj .
For k = 1 · · · j, let Tk = Ck + · · ·Cj . (Thus T1 = T ) and Hk = Ĉk + · · · Ĉj .

Thus Ck is a composite class of Hk. Now it is enough to show that Tk is pseudo-
transitive for any k. Assume inductively that Tk+1 = Tk−Ck is pseudo-transitive.
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Note that T̂k+1 ∩ Ĉk = ∅. Now we claim that Tk = Tk+1 ∪ Ck is also pseudo-
transitive.

Suppose not. Then there exist vertices a, b, c all in G1 or all in G2 such that−→
ab ∈ Tk,

−→
bc ∈ Tk and −→ac �∈ Tk. Since Tk+1 and Ck are pseudo-transitive we only

have to consider the case when
−→
ab ∈ Tk+1 and

−→
bc ∈ Ck (the other case

−→
ab ∈ Ck

and
−→
bc ∈ Tk+1 is symmetric).

Now if the edge (a, c) is not present in Hk then
−→
bcΓ ′−→ba and thus

−→
ba ∈ Ck,

contradicting that T̂k+1 ∩ Ĉk = ∅. So either −→ca ∈ Tk+1 or −→ca ∈ Ck. This implies
(by the pseudo-transitivity of Tk+1 and Ck) that

−→
cb ∈ Tk+1 or

−→
ba ∈ Ck. In both

cases we get a contradiction to T̂k+1 ∩ Ĉk = ∅.
Thus all four cases lead to a contradiction and we conclude that Tk is pseudo-

transitive. ��

Theorem 5 gives rise to the following O(nm) algorithm for recognizing simul-
taneous comparability graphs: Given graphs G1 and G2 check whether all
composite classes of G = G1 ∪G2 are pseudo-transitive. If so return YES other-
wise return NO. Further, if G1 and G2 are simultaneous comparability graphs
then the following algorithm computes an S-decomposition of G1∪G2. As shown
in the proof of Theorem 5, this immediately gives a pseudo-transitive orientation.

Algorithm 2
1. Compute all the base classes of G = G1 ∪ G2.
2. While there is a base class B remaining in G Do
3. Add B to the solution, delete it from G and update the remaining base
classes
4. While there is a super class S remaining in G Do
5. Add S to the solution and delete it from G.

Algorithm 2 can be implemented to run in O(nm) time. We present the
detailed algorithm along with its analysis in the full version [11].

Remark: Note that if T is a pseudo-transitive orientation of G1∪G2, then T can
be augmented to a transitive orientation by computing T ′ = T 2 (as shown in the
proof of Theorem 3). The complexity of this step is same as the complexity of
matrix multiplication: O(n2.376). Hence computing an augmented comparability
graph takes O(nm + n2.376) steps.

4 Simultaneous Permutation Graphs

A graph G = (V, E) on vertices V = {1, · · · , n} is said to be a permutation
graph if there exists a permutation π of the numbers 1, 2, · · · , n such that for all
1 ≤ i < j ≤ n, (i, j) ∈ E if and only if π(i) > π(j). Equivalently, G = (V, E) is
a permutation graph if and only if there are two orderings L and P of V such
that (u, v) ∈ E iff u and v appear in the opposite order in L and in P . We
call 〈L, P 〉 an order-pair for G. The intersection representation for permutation



The Simultaneous Representation Problem 397

graphs follows immediately: G = (V, E) is a permutation graph iff there are two
parallel lines l and p and a set of line segments each connecting a distinct point
on l with a distinct point on p such that G is the intersection graph of the line
segments. Observe that L and P correspond to the ordering of the endpoints of
the line segments on l and p respectively. Since permutation graphs are a class
of intersection graphs the equivalence theorem 1 is applicable for this class.

Let G1 = (V1, E1) and G2 = (V2, E2) be two permutation graphs sharing some
common vertices X and the edges induced by X . We begin with a “relaxed”
characterization of simultaneous permutation graphs in terms of order-pairs.

Lemma 11. G1 and G2 are simultaneous permutation graphs iff there exist
order-pairs 〈L1, P1〉 and 〈L2, P2〉 for G1 and G2 (respectively) such that every
pair of vertices u, v ∈ X appear in the same order in L1 as in L2 AND appear
in the same order in P1 as in P2.

Proof. The forward direction is clear. For the reverse direction, we create a total
order L on V1∪V2 consistent with both L1 and L2. This is possible because L1 and
L2 are consistent on X . We do the same for P . The orderings L and P provide
the endpoints of line segments for the simultaneous intersection representations
of G1 and G2. ��
It is well-known that a graph G is a permutation graph if and only if G and Ḡ are
both comparability graphs [7]. Using this we can prove the following analogous
result for simultaneous permutation graphs. The proof is available in the full
version [11].

Theorem 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs
sharing some vertices X, and the edges induced by X. G1 and G2 are simultane-
ous permutation graphs if and only if G1 and G2 are simultaneous comparability
graphs and simultaneous co-comparability graphs.

Since simultaneous comparability graphs can be recognized in O(nm) time, The-
orem 6 implies that simultaneous permutation graphs can be recognized in O(n3)
time. We also note that a similar approach was used in [5] to recognize probe
permutation graphs.

5 Discussion

A main contribution of this paper is the introduction of the simultaneous repre-
sentation problem, which is closely related to the probe graph recognition and
graph sandwich problems. We gave poly-time algorithms for solving the problem
for chordal, comparability and permutation graphs. The running time of our al-
gorithm for comparability graphs is O(nm). For chordal and permutation graphs
both of our algorithms run in O(n3).Our techniques for simultaneous comparabil-
ity and permutation graphs can be extended to solve the graph sandwich problem
for these classes when the set of optional edges induce a k-partite graph.

We believe that the simultaneous representation problem for interval graphs
is also solvable in polynomial time, but it seems substantially more difficult than
for chordal and comparability graphs. We have a solution in progress [14].
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Abstract. In this paper, we study the two-dimensional geometrical bin
packing problem (2DBP): given a list of rectangles, provide a packing of
all these into the smallest possible number of 1×1 bins without rotating
the rectangles.

We present a 2-approximate algorithm, which improves over the pre-
vious best known ratio of 3, matches the best results for the rotational
case and also matches the known lower bound of approximability. Our
approach makes strong use of a recently-discovered PTAS for a related
knapsack problem and a new algorithm that can pack instances into
OPT + 2 bins for any constant OPT.

Keywords: bin packing, approximation, rectangle packing.

1 Introduction

In recent years, there has been increasing interest in extensions of packing prob-
lems such as strip packing [1–5], knapsack [6–8] and bin packing [9–13], to mul-
tiple criteria (vector packing) or multiple dimensions (geometric packing).

Two-dimensional bin packing, both with and without rotations, is one of the
very classical problems in combinatorial optimization and its study has begun
several decades ago. This is not only due to its theoretical appeal, but also to a
large number of applications, ranging from print and web layout [14] (putting all
ads and articles onto the minimum number of pages) to office planning (putting
a fixed number of office cubicles into a small number of floors), to transportation
problems (packing goods into the minimum number of standard-sized containers)
and VLSI design [15].

It is easy to see that two-dimensional bin packing without rotation (2DBP) is
strongly NP-hard as a generalization of its one-dimensional counterpart, hence
the main focus is on algorithms with provable approximation quality.
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1, “Design and analysis of approximation algorithms for two- and threedimensional
packing problems”.
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Consider an algorithm A for 2DBP, and denote for each instance I with A(I)
the number of bins A produces and with OPT(I) the smallest number of bins
into which I can be packed. A is an α-approximation for 2DBP if we have
supI{A(I)/OPT(I)} ≤ α over all instances I, and an asymptotical α-approxi-
mation if we have lim supOPT(I)→∞ A(I)/OPT(I) ≤ α. A polynomial-time ap-
proximation scheme (PTAS) is a family {Aε : ε > 0} of (1 + ε)-approximation
algorithms.

The best previously known result for the non-rotational case was a cubic-time
3-approximation by Zhang [11]; for the rotational case, Harren and van Stee have
recently given a 2-approximation in [13], the same ratio can be achieved using
techniques by Jansen and Solis-Oba [5].

As to asymptotical approximation ratios, Bansal and Sviridenko showed in [10]
that 2DBP does not admit an asymptotical PTAS. Caprara gave an algorithm
with ratio of 1.69 . . . in [9], breaking the important barrier of 2. More recently,
Bansal, Caprara and Sviridenko improved the rate to 1.52 . . . in [12] for both
the rotational and non-rotational case.

A closely related problem is two-dimensional knapsack: here, every rectangle
also has a profit and the objective is to pack a subset of high profit into a constant
number (usually one) of target bins. The best currently known results here are
a (2 + ε)-approximation by Jansen and Zhang [16] for the general case, and a
PTAS by Jansen and Solis-Oba [17] if all items are squares. For our purposes,
the special case that the profit equals the item’s area is important. We have
recently shown in [8] that this problem admits a PTAS, and this algorithm is
one of the corner stones of the algorithm presented here.

Our Contribution. We study the non-rotational geometric two-dimensional bin
packing problem, i.e. we are given a list of rectangular items {ri = (wi, hi) : i =
1, . . . , n} with all wi, hi taken from the interval ]0, 1], and the objective is to find
a non-rotational non-overlapping packing of all items into the minimum number
of containers of size 1×1. The main result of this paper is the following theorem:

Theorem 1. There is a polynomial-time 2-approximation for two-dimensional
geometric bin packing.

Observing that the problem to decide whether a given instance fits in one bin
or needs two is NP-complete as a generalization of 3Partition, this settles the
matter of absolute approximation ratio.

The result is achieved using an asymptotic approximation algorithm for large
optimal values; smaller (i.e. constant) values are solved by a recent breakthrough
in the approximability of two-dimensional knapsack problems in [8, 18, 19]: there
exists a PTAS for maximizing the area covered by rectangles within a 1× 1 bin.
This can be combined with other packing algorithms if the optimum is constant,
but at least 2, to generate a packing into OPT + 2 bins. If the optimal packing
uses only one bin, we conduct a case study, again starting from a packing that
covers (1 − ε) of the bin and generate a packing into OPT + 1 = 2 bins.

Hence, the other corner stone of the new result will be the following lemma,
proven in Section 3.
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Lemma 1. There is a polynomial-time algorithm that finds a packing into two
bins, provided that a packing into one bin exists.

The case of larger optimum values is handled in the next section.

2 Large Optimal Value

As noted above, Bansal,Caprara and Sviridenko [12] have given a polynomial-time
algorithm for 2DBP which has an asymptotic approximation ratio of 1.525 < 2.
From this, we immediately obtain a (non-asymptotic) approximation ratio of 2 for
instances with a large optimum:

Corollary 1. There is a constant K so that for every instance I with OPT(I) ≥
K, the algorithm of Bansal et al. yields a packing into at most 2OPT(I) bins.

If, for a given instance, this is not the case, we can by enumeration try the
constant number of possible optimum values and find a packing into OPT + 2
bins using the following two key statements:

Theorem 2. There is an algorithm that, given a set of rectangles I = {ri =
(wi, hi) : i = 1, . . . , n}, a constant ε and a constant k such that there exists a
packing of I into k bins, produces in polynomial time a packing of a subset I ′ ⊆ I
into k bins such that the total unpacked area

∑
{wihi : ri ∈ I \ I ′} is bounded by

ε ·
∑

{wihi : ri ∈ I}. Furthermore, all unpacked items are bounded by ε in one
direction.

The proof, which is a straightforward extension of [8] using k − 1 extra items
and a rescaling argument, can be found in the full version. The other ingredient
is a routine for packing all of the remaining items into at most 2 bins.

Lemma 2. There is an algorithm that packs a set of rectangles with total area
at most 1/2 into 2 bins.

The proof is an easy application of Steinberg’s classical result:

Theorem 3 (Steinberg [3]). We can pack a set of items {ri = (wi, hi), i =
1, . . . , n} into a target area of size u × v if the following conditions hold:

max{wi : i = 1, . . . , n} ≤ u, max{hi : i = 1, . . . , n} ≤ v,

2
n∑

i=1

wihi ≤ uv − (2 max
i=1,...,n

wi − u)+(2 max
i=1,...,n

hi − v)+ ,

where (·)+ denotes max{·, 0}.

Combining Theorem 2 and Lemma 2, we obtain:

Theorem 4. For every constant k, we can check in polynomial time whether
there exists a packing into k + 2 bins.
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An algorithm to solve the overall problem can now first run the algorithm of
Bansal et al., and it can then run for each guessed OPT = k < K, of which
there is only a constant number, a polynomial-time algorithm that tries to find
a packing into k + 2 bins. For the case of OPT = k = 1, we generate a packing
into two bins. Finally, the algorithm returns the best solution amongst these.
The details of the algorithms for OPT = 1 are given in the next sections.

3 Solving for OPT = 1

In this section, we will show how an instance that admits a packing into one bin
can be packed into two bins in polynomial time. For simplicity, we assume the
total area of items is exactly 1. In the following, all statements still hold when
interchanging width and height, unless specifically noted otherwise.

We will study several cases separately and solve each in polynomial time. The
algorithm will check which case applies and use the corresponding subroutine.
We will mean “we can pack” to imply a step admits polynomial-time algorithms
and “can/cannot be packed” to imply general feasibility or non-feasibility.

3.1 Mostly Tall and Wide Items

Let us start by making a simple observation on the arrangement of tall items in
the optimal solution:

Remark 1. Consider the set of ‘tall’ items of height more than 1/2. We can
always pack these items into a bin along with one arbitrary extra item ri.

Proof. Note that no two tall items can intersect the same vertical line x = x0.
In particular, the total width of these items is at most 1. We sort the items by
decreasing height, starting at the bottom-left corner, cf. Fig. 1a, and place the
extra item in the top right corner. Assume that ri intersects the tall items. In
particular, this means that items with height larger than 1−hi have total width
of more than 1 − wi, which means that no feasible packing of these items along
with ri exists. ��

Noting that Steinberg’s algorithm will pack any set of items of total area at most
1/2 into a bin if all items are bounded by 1/2 in the same direction, we obtain:

Corollary 2. Consider the set of ‘tall’ items of height more than 1/2. If their
total area is at least 1/2 − β for some −1/2 ≤ β ≤ 1/2, then either every other
item has area less than β or we can pack all items into two bins.

As a slight generalization, we can show:

Lemma 3. For 0 < γ ≤ 1/2 arbitrary, set W :=
∑

{wj : j ∈ {1, . . . , n}, hj >
1 − γ}. Then,∑

{wjhj : j ∈ {1, . . . , n}, wj > 1 − W, hj ≤ 1 − γ} ≤ 2γ . (1)
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y = 1/2

(a) Tall items and one
extra item

y = 1/2

(b) Space for items that
are tall or almost tall

Fig. 1. Arrangements of large items

Proof. Consider a horizontal scanline y = y0 for y0 ∈ [γ, 1 − γ] in any packing.
Such a scanline intersects all items of height at least γ, hence, it will not admit an
item of width larger than 1−W . Hence, all such items must be in the outermost
regions of height γ at the top and bottom of the bin. ��

Lemma 4. If the total width of items taller than 1/2 is larger than 1 − δ for
δ = 3/4 −

√
1/2 ≈ 0.042, we can pack all items into two bins.

Proof. We pack the tall items into the first bin, sorted by non-increasing height.
They must fit next to each other, since no two of them can be atop one another,
and the total area covered by these items is at least 1/2 − δ/2. Note that by
Cor. 2, all other items have individual area bounded by δ/2, or we are done. In
particular, every other item is bounded by

√
δ/2 in at least one direction.

We define δ′ := −1/4 +
√

1/16 + δ/2. It is easy to verify the following state-
ments:

1.
√

δ/2 ≤ (1/2 − δ′)/2,
2. (1/2 − δ′)2 ≥ 2δ,
3. we can pack a “virtual item” of size (1/2 − δ′) × (1/2 − δ′) into the upper

right corner without intersecting the tall items,
4. we can pack a “virtual item” of size 1/2 × (2

√
δ) into the upper right corner

without intersecting the tall items.

Using the first three and Steinberg’s algorithm, we are done if there are items
of width at most

√
δ/2 and height at most 1/2− δ′ with total area at least δ/2,

and we are also done if there are items of height at most
√

δ/2 and width at
most 1/2 − δ′ with total area at least δ/2.

Hence assume neither is the case. The total area of items not yet considered
is at least 1 − 1/2 − δ/2 − δ/2 = 1/2 − δ. Let us turn to items whose height
is in ]1/2 − δ′, 1/2], i.e. they are “almost tall”. Keeping in mind they cannot be
packed atop an item of height larger than 1/2+δ′ in any packing, the total width
of areas that can accomodate them in our packing, shaded in Fig. 1b, is large
enough for us to pack all but one of them by arguments similar to Graham’s
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LPT analysis [20]. Since the single item has area at most δ/2, we are done if the
total area of almost tall items is at least δ.

If this is not the case, we know that all remaining items, i.e. those of height
at most

√
δ/2 and width larger than 1/2 − δ′, cover a total area of at least

1/2 − 2δ. If the subset of these of width at most 1/2 is at least δ/2, we can use
property 4 to pack some of them in the top right corner. If all of this does not
happen, we know that all items of width larger than 1/2 cover an area of at least
1/2 − 2.5δ. We now finally claim that we can pack a selection of these items of
area at least δ/2 along with the tall items. Namely, greedily select wide items of
minimal width until their area is at least δ/2 (and at most δ), and pack them
vertically, starting in the top-right corner, in non-increasing order of width. The
total height of this stack is at most 2δ. Assume this stack overlaps the tall items
at some coordinate (x, y). In particular, this means that items taller than y have
total width at least x. By Lemma 3, this means that there is only a total area of
at most 2−2y ≤ 4δ wider than 1−x. At the same time, all unselected wide items
are at least this wide and have total area at least 1/2 − 3.5δ, which contradicts
the fact that δ < 1/15. ��

3.2 One Big Item

In this and all subsequent cases, we will first apply the algorithm in [8], which
will pack items with total area at least 1 − ε into one bin. The remaining items
have the additional property that each item is bounded in at least one direction
by ε.

While we know these items can be packed into the one more bin we are
allowed, it is in general NP-hard to find such a packing, since the items could
encode two instances of Partition even in total area ε.

Our angle of attack must hence be different: we will identify a suitable strip
of height at least 2ε in the packed bin and move all items that intersect this
strip into the second bin. This creates empty space that can be used to pack
all unpacked items of height no more than ε in the first bin using Steinberg’s
algorithm. The remaining unpacked items have height at least ε, width at most
ε and total area at most ε, and we will add them in the second bin.

In this section, we consider instances which contain one big item r1 with
w1, h1 ≥ 1/2, located at (x1, y1). To help rearranging items which are very
limited in one dimension, the following observation will be useful:

Lemma 5. Given a set {a1, . . . , an} of numbers and a minimal target value T
such that S :=

∑n
i=1 ai ≥ 2T + maxi=1...,n ai, we can identify a subset I ⊆

{1, . . . , n} such that
∑

i∈I ai ≥ T and
∑

i�∈I ai ≥ T .

Proof. Consider a fractional optimal solution to the Partition problem on the
ai’s, for example obtained by greedy packing. Note the solution contains only at
most one fractional item aj . Since aj ≤ max{ai : i = 1 . . . n}, both parts have
size at least T even if we assign aj to the other. ��
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2ε

≤ h1 −2ε

r1

≥ 1/2x1 1− x1 −w1

(a) Re-packing in the first bin

r1

r2

4ε

1/2

(b) Packing in the second bin

Fig. 2. Packing with one big item

By symmetry, we assume that y1 ≤ 1− h1 − y1, i.e. r1 is somewhat in the lower
half of the bin. We consider the horizontal strip from y1 to y1 + 2ε and all the
items that intersect it for movement to the second bin, see Fig. 2, and note
that all items that do not intersect y = y1 + 2ε are of bounded height at most
y1 +2ε ≤ h1−2ε. In particular, we can pack these items into the ‘hole’ left in the
first bin by moving r1 without obstructing the horizontal strip at its bottom.

By previous discussion, we can assume that the total width of items higher
than 1/2 that intersect y = y1+2ε is at most 1−δ, in particular, we assume that
there is a (continuous by reordering) interval of length at least δ which contains
only items of height at most 1/2. If we can apply Lemma 5 with target value 2ε,
we have cleared a vertical strip of width 2ε.

Otherwise, we know that there is an item r2 of width at least δ − 4ε > 2ε and
height at most 1/2 on this scanline. We can now construct a packing as follows: we
pack all tall items, including r1 and those that were not yet packed at all, along
with r2 as extra item, by Lemma 1. Note that there might be horizontal overlap
of r2 and the tall items, but it is bounded by 2ε, since it is only caused by tall
unpacked items. We can pack the non-tall items of the scanline below r2 in width
2ε; the remaining unpacked non-tall items, we pack into a container sized 4ε×1/2,
which we can position in the lower-right corner, since 8ε ≤ wj for ε ≤ δ/10.

3.3 One Medium-Sized Item

For this case, assume that there exists an item ri = (wi, hi) such that wi, hi ≥ 12ε
and hi ≤ 1/2 at some position (xi, yi). Without loss of generality, suppose that
yi ≤ 1/2 − 1/2hi. We will now consider three consecutive strips I, II and III that
intersect the item, cf. Fig. 3a. Since hi ≥ 12ε, we may assume that the bottom
strip is still 2ε away from the bottom of the bin. It is also easy to verify that in any
case, the top of the third strip has a distance of at least hi to the top of the bin.

Remark 2. If one of Strips I, II, III contains items other than ri of height at
most 1 − hi and total width 2ε that totally bisect the strip, we can pack the
instance into two bins.
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Proof. Move the strip in question to the second bin. Assume by reordering that
all bisecting items are adjacent to ri. It is then possible to shift ri to one side
by at least 2ε, which frees a vertical strip of width 2ε. ��

In the following, we assume that Remark 2 cannot be applied. We move Strip
II and all items that intersect it to the second bin. By reordering, we assume
that xi + wi = 1, and we re-set yi := 1 − hi. All other items in the second bin
can be partitioned into three groups: B, the set of items that completely bisect
the strip, A, the set of items that intersect the upper boundary of the strip, but
not the lower (i.e. they are ‘above the strip’), and U , the set of remaining items,
which are entirely in or partially under the strip. By reordering, we assume all
elements of B are at the left side of the bin, ordered by non-increasing height.

Note that since Strip II is in the lower half of the bin, all items in U are
bounded in height by 1/2, and in particular by 1 − hi. Since Remark 2 did not
apply to Strip I, those items in U that bisected Strip I have total width at most

ri

Strip I

Strip II

Strip III

A

B

U

(a) before re-ordering

ri

Strip II2ε 2ε

(b) if many height-bounded items
exist in A

ri

Strip II
4ε

(c) if few height-bounded items
exist in A

Fig. 3. Packing with one medium item
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2ε and can be packed below ri. All others are bounded in height by 4ε. Since
Strip I still had at least 2ε space beneath it, we can drop these items by 2ε. As
a consequence, none of them intersects Strip II anymore, so we re-sort the items
in A by non-increasing height. We now consider those items in A and B that
bisected Strip III entirely and have height at most 1 − hi. Again by Remark 2,
their total width is bounded by 2ε and we pack them below ri as well.

At this point, all items in Strip II that are not re-packed below ri have height
larger than 1 − h1 or belong to A and have height at most 4ε. If the total width
of the latter is at least 2ε, we can shift ri and all items packed below it to the left
by 2ε, generating a vertical strip of width 2ε at the right of the bin, cf. Fig. 3b.
Otherwise, we can pack them below ri. The total free width remaining below ri

is now at least 6ε, which we use to shift the entire packing of U to the right by 2ε
and finally to pack all unpacked items of height at most 1− hi, width at most ε
and total area at most ε into a target area sized 4ε× (1−hi). Now, all items that
are not packed below ri, including the remaining unpacked items, have height
larger than 1−h1 > 1/2, and hence, by Lemma 1, they fit next to r1 as sketched
in Fig. 3c.

3.4 All Small or Elongated Items

If the previous discussion does not apply, we know that all items in the in-
stance are bounded by 12ε in one direction. We show that there are few items of
‘medium’ sidelength, and items that are small in both directions can be packed
efficiently using NFDH:

Lemma 6. The total area of packed items of height at least 12ε and at most 1/2
and width at most 12ε is bounded by 54ε, or else we can pack all items into two
bins.

Proof. Partition the bins into horizontal strips of height 2ε, and note that each
item of height at least 12ε will bisect at least four of these strips and intersect
up to two more. In particular, at least 2/3 of its area is used to completely bisect
strips. If there is a total width of 36ε of such bisecting items in one strip, we can
use Lemma 5 to re-pack them, freeing a vertical strip of width 2ε, and we obtain
a packing. Otherwise, the total area of the items is at most 36ε · 3/2 = 54ε. ��
From this, we conclude that in the only case left to consider, the majority of
items are either tall or wide or very small in both dimensions. We will use this
knowledge to construct an entire packing from scratch. More precisely, denote
with Awide the total area of items of width at least 1/2 and with H their total
height, with Atall the total area of items of height at least 1/2 and with W their
total width, and with Asmall the total area of items which are bounded in both
directions by 12ε. By the previous lemma, we obtain that

Atall + Awide + Asmall ≥ 1 − ε − 108ε . (2)

For convenience, we assume Awide ≤ Atall and construct the packing illus-
trated in Fig. 4 for the first bin: all tall items are packed at the left side in
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W

NFDH

w

h

Fig. 4. Packing elongated items

non-increasing order. In the top right corner, we pack a subset of wide items
of height almost H/2 (but for one fractional item): by arguments similar to the
proof of Lemmas 4 and 3, they do not intersect the tall items. Their area is at
least Awide/3 − 12ε, since wider items might all have width 1. In the bottom
right corner, we reserve a target area of size w × h, at least δ × δ, which touches
the tall and wide items. We fill this area with small items using NFDH. If we run
out of small items doing this, the area remaining for the second bin is bounded
by 108ε+2/3Awide +12ε ≤ 120ε+1/3, which is less than 1/2 for ε ≤ 1/720, and
hence, we can pack the second bin with Steinberg’s algorithm.

If we do not run out of small items, we have covered at least an area of 1/2
in the first bin: the left part of the bin is filled at least half by tall items, the
top part is filled at least half by wide items. The remaining part is filled with
NFDH. Note that each shelf will be packed to at least w − 12ε. We might lose
12ε at the top of the area and not account for one shelf by standard shifting
arguments, but still, the covered area is at least

(w − 12ε)(h − 24ε) > wh − 36ε ≥ wh/2 (3)

if we set ε < δ2/72 ≈ 2.4 · 10−5. The unpacked items can hence be packed into
the second bin using Steinberg’s algorithm.

Summing up, the overall algorithm works as outlined in Fig. 5.

1. Run the algorithm of Bansal et al. [12].
2. For each k = 2, . . . , K, try to generate a packing into k + 2 bins.
3. If the area of all items is at most 1:

(a) Apply Lemma 4, if possible.
(b) Else, generate a packing of (1 − ε) area in the first bin using [8].
(c) If this packing contains a big item, apply the algorithm in Sect. 3.2.
(d) Else, if this packing contains an item of at least 12ε in both directions, apply

the algorithm in Sect. 3.3.
(e) Else, apply the algorithm in Sect. 3.4.

4. Return the best solution found.

Fig. 5. The overall algorithm
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4 Conclusion

We have presented an algorithm that generates 2-approximate solutions for two-
dimensional geometric bin packing, which matches the rate known for the ro-
tational problem. Since both the rotational and non-rotational problem are not
approximable to any 2 − ε unless P = NP , this concludes the study of absolute
approximability of these problems. For practical applications, it would be in-
teresting to find faster algorithms: our algorithm relies heavily on the knapsack
PTAS in [8] and techniques in [5] with a doubly-exponential dependency on ε,
in particular when compared to the running time of Zhang’s 3-approximation
in [11]. Still, our result is an important step in the study of two-dimensional
packing problems.

Another important open problem is the gap in asymptotic behaviour between
the non-existence of an APTAS and the best known algorithm with asymptotic
quality of 1.525 . . . .
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Abstract. Algorithms dealing with massive data sets are usually de-
signed for I/O-efficiency, often captured by the I/O model by Aggar-
wal and Vitter. Another aspect of dealing with massive data is how to
deal with memory faults, e.g. captured by the adversary based faulty
memory RAM by Finocchi and Italiano. However, current fault toler-
ant algorithms do not scale beyond the internal memory. In this paper
we investigate for the first time the connection between I/O-efficiency
in the I/O model and fault tolerance in the faulty memory RAM, and
we assume that both memory and disk are unreliable. We show a lower
bound on the number of I/Os required for any deterministic dictionary
that is resilient to memory faults. We design a static and a dynamic
deterministic dictionary with optimal query performance as well as an
optimal sorting algorithm and an optimal priority queue. Finally, we
consider scenarios where only cells in memory or only cells on disk are
corruptible and separate randomized and deterministic dictionaries in
the latter.

1 Introduction

In this paper we conduct the first study of algorithms and data structures for
external memory in the presence of an unreliable internal and external memory.

Contemporary memory devices such as SRAM and DRAM [1,2] can be unreli-
able due to a number of factors, such as power failures, radiation, and cosmic rays.
The content of a cell in unreliable memory can be silently altered and in standard
memory circuits there is no direct way of detecting these types of corruptions.

Corrupted content in memory cells can greatly affect many standard algo-
rithms. For instance, in a typical binary search in a sorted array, a single corrup-
tion encountered in the early stages of the search can cause the search path to
end Ω(N) locations away from its correct position. Replication of data can help
in dealing with corruptions, but is not always feasible, since the time and space
overheads of storing and fetching replicated values can be significant. Memory
corruptions have been addressed in various ways, both at the hardware and soft-
ware level. At the software level, soft memory errors are dealt with using several
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different low-level techniques [3,4,5,6]. However, most of these handle instruction
corruptions rather than data corruptions. Corruptions can also often be discov-
ered by existing hardware techniques, but even these techniques can fail and let
some corrupted data take part of computations.

Finocchi and Italiano [7] introduced the faulty-memory random access machine,
based on the traditional RAM model. In this model, memory corruptions can oc-
cur at any time and at any place in memory during the execution of an algorithm,
and corrupted memory cells cannot be distinguished from uncorrupted cells. In
the faulty-memory RAM, it is assumed that there is an adaptive adversary, that
chooses how, where, and when corruptions occur. The model is parametrized by
an upper bound, δ, on the number of corruptions the adversary can perform dur-
ing the lifetime of an algorithm, and α ≤ δ denotes the actual number of corrup-
tions that takes place. Motivated by the fact that registers in the processor are
considered incorruptible, O(1) safe memory locations are provided. Moreover, it
is assumed that reading a word from memory is an atomic operation. In random-
ized computation, as defined in [7], the adversary does not see the random bits
used by an algorithm. An algorithm is resilient if it works correctly on the set of
uncorrupted cells in the input. For instance, a resilient sorting algorithm outputs
all uncorrupted elements in sorted order while corrupted elements can appear at
arbitrary positions in the output. A resilient searching algorithm must return yes
if there is an uncorrupted element matching the search key.

Memory corruptions are of particular concern for applications dealing with
massive amounts of data since such applications typically run for a very long
time, and are thus more likely to encounter memory cells containing corrupted
data. However, algorithms designed in the RAM model assume that an infi-
nite amount of memory cells are available. This is not true for typical computers
where internal memory is limited and elements are transferred between the mem-
ory and a much larger, but dramatically slower, hard drive in large consecutive
blocks. This means that it is important to design algorithms with a high degree of
locality in their memory access pattern, that is, algorithms where data accessed
close in time is also stored close in memory. This situation is modeled in the I/O
model of computation [8]. In this model a disk of unlimited size and a memory
of size M are available. Elements are transferred between disk and memory in
blocks of size B and computation is performed on elements in memory only. The
complexity measure is the number of block transfers (I/Os) performed.

Previous Work: Several problems have been addressed in the faulty-memory
RAM, see a very recent survey [9] for more information. In [10,7], matching upper
and lower bounds for resilient sorting and randomized searching were given.
Sorting N elements requires Θ(N log N+αδ) time [7]. Searching in a sorted array
requires Ω(log N+δ) time, and an optimal deterministic algorithm matching that
bound is described in [11]. It has been empirically shown that resilient algorithms
are of practical interest [12]. Recently, in [11,13,14] resilient data structures were
proposed, in particular a resilient dynamic dictionary supporting searches in
optimal Θ(log N + δ) time with an amortized update cost of O(log N + δ) was
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Table 1. The first column shows the I/O upper bounds presented in our paper with
the assumptions shown in the second column. The third and fourth column shows
how many corruptions the algorithms can tolerate while still matching the optimal
algorithms in the I/O and comparison model respectively. Note that the restriction
imposed by the time bounds are orders of magnitude stronger than the ones imposed
by the I/O bounds for realistic values of M , B and N .

I/O Complexity Assumptions I/O Tolerance Time Tolerance
(max δ) (max δ)

Det. Dict. O
(

1
ε

logB N + δ
B1−ε

)
1

log B
< ε < 1 O(B1−ε logB N) O(log N)

Ran. Dict. O(logB N + δ
B

) Memory Safe O(B logB N) O(log N)
P. Queue O( 1

1−ε
1
B

logM/B(N/M)) δ ≤ Mε, ε < 1 O(Mε) O(log N)
Sorting O( 1

1−ε
Sort(N)) δ ≤ Mε, ε < 1 O(Mε) O(

√
N log N)

presented in [11], and a priority queue supporting operations in O(log N + δ)
time was presented in [14].

For the I/O model, a comprehensive list of results have been achieved. It is
shown in [8] that sorting N elements requires Sort(N) = Θ(N/B logM/B(N/B))
I/Os. See recent surveys [15,16] for an overview of other results. In the I/O
model, a comparison based dictionary with optimal queries can be achieved
with a B-tree [17], which supports queries and updates in O(logB N) I/Os.

Current resilient algorithms do not scale past the internal memory of a com-
puter and thus, it is currently not possible to work with large sets of data I/O-
efficiently while maintaining resiliency to memory corruptions. Since both models
become increasingly interesting as the amount of data increases, it is natural to
consider whether it is possible to achieve resilient algorithms that use the disk
optimally. Very recently, this was also proposed as an interesting direction of
research by Finocchi et al. [9,10].

Our Contribution: The work in this paper combines the faulty memory RAM
and the external memory model in the natural way. The model has three levels
of memory: a disk, an internal memory of size M , and O(1) CPU registers. All
computation takes place on elements placed in the registers. The content of any
cell on disk or in internal memory can be corrupted at any time, but at most
δ corruptions can occur. Moving elements between memory and registers takes
constant time and transferring a chunk of B consecutive elements between disk
and memory costs one I/O. Transfers between the different levels are atomic, no
data can be corrupted while it is being copied. Correctness of an algorithm is
proved with the assumption that an adaptive adversary may perform corruptions
during execution. For randomized algorithms we assume that the random bits
are hidden from the adversary. In two natural variants of our model it is assumed
that corruptions take place only on disk, or only in memory.

In this paper, we present I/O-efficient solutions to all problems that, to the
best of our knowledge, have previously been considered in the faulty memory
RAM. It is not clear that resilient algorithms can be optimal both in time and in
I/O-complexity. Most techniques for designing I/O-efficient algorithms naturally
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try to arrange data on disk such that few blocks need to be read in order to
extract the information needed, whereas resilient algorithms try to put little
emphasis on individual, potentially corrupted, memory cells.

It is known that any resilient comparison based search algorithm must examine
Ω(log N + δ) memory cells [10]. Combining this with the well-known Ω(logB N)
I/O lower bound on external memory comparison based searching, we get a
simple lower bound of Ω

(
logB N + δ

B

)
I/Os, and Ω(log N +δ) time. In Section 2

we prove a stronger lower bound of Ω
( 1

ε logB N + δ
B1−ε

)
I/Os for a search, for

all logB N ≤ δ ≤ B log N and ε given by the equation δ = B1−ε

ε logB N . In the
case where δ = Θ( B

log B loglog B N), setting ε = log log B
log B gives a lower bound of

Ω(loglog B N + δ
B log B) which is ω(logB N + δ

B ). We come to the interesting
conclusion that no deterministic resilient dictionary can obtain an I/O bound
of O(logB N + δ

B ) without some assumptions on δ. The lower bound is valid
for randomized algorithms as long as the internal memory is unreliable. For
deterministic algorithms, the lower bound also holds if the internal memory is
reliable and corruptions only occur on disk.

In Section 3 we construct a resilient dictionary supporting searches using ex-
pected O

(
logB N + δ

B

)
I/Os and O(log N + δ) time for any δ if corruptions

occur exclusively on disk. Thus, we have an interesting separation between the
I/O complexity of resilient randomized and resilient deterministic searching al-
gorithms. This also proves that it is important whether it is the disk or the
internal memory that is unreliable.

In Section 4 we present an optimal resilient static dictionary supporting
queries in O

( 1
c logB N + α

B1−c + δ
B

)
I/Os and O(log N + δ) time when log N ≤

δ ≤ B log N and 1
log B ≤ c ≤ 1. Queries use O(logB N + δ

B ) I/Os and O(log n+δ)
time for δ ≤ log N and δ > B log N . Additionally, we construct randomized and
deterministic dynamic dictionaries with optimal query bounds using our static
dictionaries.

Finally, in Section 5 we describe a resilient multi-way merging algorithm.
We use this algorithm to design an optimal resilient sorting algorithm using
O( 1

1−εSort(N)) I/Os and O(N log N + αδ) time under the assumption that δ ≤
M ε, for 0 ≤ ε < 1. The multi-way merging algorithm is also used to design a
resilient priority queue for the case δ ≤ M ε, where 0 ≤ ε < 1. Our priority
queue supports insert and delete-min in optimal O( 1

1−ε (1/B) logM/B(N/M))
I/Os amortized, matching the bounds for non-resilient external memory priority
queues. The amortized time bound for both operations is O(log N +δ) matching
the time bounds of the optimal resilient priority queue of [14].

Table 1 shows an overview of the upper bounds in this paper. The two last
columns in the table shows how many corruptions our algorithms can tolerate
while still achieving optimal bounds in the I/O model and comparison model
respectively. Note that the bounds on δ required to get optimal time are orders
of magnitude smaller than the bounds required to get optimal I/O performance
for realistic values of N , M and B. We conclude that it is possible, under realistic
assumptions, to get resilient algorithms that are optimal in both the I/O-model
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and the comparison model without restricting δ more than what was required
to obtain optimal time bounds in the faulty memory RAM.

Preliminaries: Throughout the paper we use the notion of a reliable value,
which is a value stored in unreliable memory that can be retrieved reliably in
spite of possible corruptions. This is achieved by replicating the given value in
2δ + 1 consecutive cells. Since at most δ of the copies can be corrupted, the
majority of the 2δ + 1 elements are uncorrupted. The value can be retrieved
using O( δ

B ) I/Os and O(δ) time with the majority algorithm in [18], which scans
the 2+. 1 values keeping a single majority candidate and a counter in reliable
memory. A sequence is faithfully ordered if the uncorrupted elements form a
sorted subsequence.

2 Lower Bound for Dictionaries

Any resilient searching algorithm must examine Ω(log N +). memory cells in the
comparison model [10]. The Ω(log N) term follows from the comparison model
lower bound for searching. It is well-known that comparison based searching in
the I/O model requires expected Ω(logB N) I/Os. Since any resilient searching
algorithm must read at least Ω(δ) elements to ensure at least some non-corrupted
information is the basis for the output, we get the following trivial lower bound.

Lemma 1. For any comparison based randomized resilient dictionary the
average-case expected search cost is Ω

(
logB N + δ

B

)
I/Os.

In this section we prove a stronger lower bound on the worst-case number of I/Os
required for any deterministic resilient static dictionary in the comparison model.
We do not make any assumptions on the data structure used by the dictionary, nor
on the space it uses. Additionally, we do not bound the amount of computation
time used in a query and we assume that the total order of all elements stored
in the dictionary are known by the algorithm initially. During the search for an
element e, an algorithm gains information by performing block I/Os, each I/O
reading B elements from disk. Before a block of B elements is read into memory
the adversary can corrupt the elements in the block. The adversary is allowed to
corrupt up to δ elements during the query operation, but does not have to reveal
when it chooses to do so. Also, the adversary adaptively decides what the rank of
the search element has among the N dictionary elements. Of course, the rank must
be consistent with the previous uncorrupted elements read by the algorithm.

Theorem 1. Given N and δ, any deterministic resilient static dictionary re-
quires worst-case Ω

( 1
ε logB N

)
I/Os for a search, for all ε where 1

log B ≤ ε ≤ 1
and δ ≥ 1

εB1−ε logB N .

Proof. We design an adversary that uses corruptions to control how much infor-
mation any correct query algorithm gains from each block transfer.

Let ε be a constant such that 1
log B ≤ ε ≤ 1. The strategy of the adversary

is as follows. For each I/O, the adversary narrows the candidate interval where
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e can be contained in by a factor Bε. Initially, the candidate interval consists
of all N elements. For each I/O, the adversary implicitly divides the sorted
set of elements in the candidate interval into Bε slabs of equal size. Since the
search algorithm only reads B elements in an I/O, there must be at least one
slab containing at most B1−ε of these elements. The adversary corrupts these
elements, such that they do not reveal any information, and decides that the
search element resides in this slab. The remaining elements transferred are not
corrupted and are automatically consistent with the interval chosen for e. The
game is then played recursively on the elements of the selected slab, until all
elements in the final candidate interval have been examined.

For each I/O, the candidate interval decreases by a factor Bε. The algorithm
has no information regarding elements in the slab except for the corrupted ele-
ments from the I/Os performed so far. After k I/Os the candidate interval has
size N

(Bε)k and the adversary has introduced at most kB1−ε corruptions. The
game continues as long as there is at least one uncorrupted element among the
elements remaining in the candidate interval, which the adversary can choose
as the search element. All corrupted elements may reside in the current candi-
date interval, and the game ends when the size of the candidate interval, N

(Bε)k ,
becomes smaller than or equal to the total number of introduced corruptions,
kB1−ε. It follows that at least Ω

(
logBε

N
B1−ε

)
= Ω

( 1
ε logB N

)
I/Os are required.

The adversary introduces at most B1−ε corruptions in each step. If ε satisfies
1
εB1−ε logB N ≤ δ, then the adversary can play the game for at least 1

ε logB N
rounds and the theorem follows. ��

For deterministic algorithms it does not matter whether elements can be cor-
rupted on disk or in internal memory. Since the adversary is adaptive it knows
which block of elements an algorithm will read into internal memory next, and
may choose to corrupt the elements on disk just before they are loaded into
memory, or corrupt the elements in internal memory just after they have been
written there. In randomized algorithms where the adversary does not know the
algorithm’s random choices it cannot determine which block of elements will be
fetched from disk before the transfer has started. Therefore, the adversary can
follow the strategy above only if it can corrupt elements in internal memory.

By setting δ = 1
εB1−ε logB N in Theorem 1, we get the following corollary.

Corollary 1. Any deterministic resilient static dictionary requires worst-case
Ω(1

ε logB N) = Ω( δ
B1−ε ) I/Os for a search, where δ ∈ [logB N, B log N ], and ε

given by δ = 1
εB1−ε logB N .

The trivial I/O lower bound for a resilient searching algorithm is Ω
(
logB N + δ

B

)
.

Setting ε = log log B
log B in Theorem 1 shows that this is not optimal.

Corollary 2. For δ = B
log B loglog B N any deterministic resilient static dictio-

nary requires worst-case Ω( log B
log log B (logB N + δ

B )) I/Os for a search.
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3 Randomized Static Dictionary

In this section we describe a simple I/O-efficient randomized static dictionary,
that is resilient to corruptions on the disk. Corruptions in memory are not al-
lowed, thus the adversarial lower bound in Theorem 1 does not apply. The dic-
tionary supports queries using expected O

(
logB N + δ

B

)
I/Os and O(log N + δ)

time. The algorithm is similar to the randomized binary search algorithm in [10].
Remember that, if only elements on disk can be corrupted, the lower bound from
Theorem 1 also holds for deterministic algorithms. This means that deterministic
and randomized algorithms are separated by the result in this section.

The idea is to store the N elements in the dictionary in sorted order in an
array S and to build 2δ B-trees [17], denoted T1, . . . , T2δ, of size  N

2δ !. The i’th
B-tree Ti stores the 2δj + i’th element in S for j = 0, . . . ,  N

2δ !− 1. Each node in
each tree is represented by a faithfully ordered array of Θ(B) search keys. The
nodes of the B-tree are laid out in left to right breadth first order, to avoid storing
pointers, i.e. the c’th child of the node at index k has index Bk + c − (B − 1).

The search for an element e proceeds as follows. A random number r1 ∈
{1, . . . , 2δ} is generated, and the root block of Tr1 is fetched into the internal
memory. In this block, a binary search is performed among the search keys
resulting in an index, i, of the child where the search should continue. A new
random number r2 ∈ {1, . . . , 2δ} is generated, and the i’th child of the root in
tree Tr2 is fetched and the algorithm proceeds iteratively as above. The search
terminates when a leaf is reached and two keys S[2δj + i] and S[2δ(j + 1) + i]
have been identified such that S[2δj + i] ≤ e < S[2δ(j + 1) + i]. If the binary
search was not mislead by corruptions of elements, then e is located in the
subarray S[2δj+i, . . . , 2δ(j+1)+i]. To check whether the search was mislead, the
following verification procedure is performed. Consider the neighborhoods L =
S[2δ(j−1)+i−1, . . . , 2δj+i−1] and R = S[2δ(j+1)+i+1, . . . , 2δ(j+2)+i+1],
containing the 2δ+1 elements in S situated to the left of S[2δj+i] and to the right
of S[2δ(j +1)+ i] respectively. The number sL = |{z ∈ L | z ≤ e}| of elements in
L that are smaller than e is computed by scanning L. Similarly, the number sR

of elements in R that are larger than e is computed. If sL ≥ δ+1 and sR ≥ δ+1,
and the search key is not encountered in L or R, we decide whether it is contained
in the dictionary or not by scanning the subarray S[2δj, . . . , 2δ(j + 1)]. If sL or
sR is smaller than δ + 1, at least one corruption has misguided the search. In
this case, the search algorithm is restarted.

Theorem 2. The data structure described is a linear space randomized dictio-
nary supporting searches in expected O

(
logB N + δ

B

)
I/Os and O(log N+δ) time

assuming that memory cells are incorruptible and block transfers are atomic.

Details will appear in the full paper. If memory cells were corruptible the atomic
transfer assumption would be of little use. The adversary could simply corrupt
the elements in the internal memory after the block transfer completes, decreas-
ing the benefit of the randomization.
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4 Optimal Deterministic Static Dictionary

In this section we present a linear space deterministic resilient static dictionary.
Let c be a constant such that 1

log B ≤ c ≤ 1. The dictionary supports queries in
O
( 1

c logB N + α
B1−c + δ

B

)
I/Os and O(log N + δ) time. In Section 2 we proved

a lower bound on the I/O complexity of resilient dictionaries, and by choosing
c in the above bound to minimize the expression for α = δ, this bound matches
the lower bound. Thus, this dictionary is optimal.

Our data structure is based on the B-tree and the resilient binary search algo-
rithm from [11]. In a standard B-tree search one corrupted element can misguide
the algorithm, forcing at least one I/O in the wrong part of the tree. To circum-
vent this problem, each guiding element in each internal node is determined by
taking majority of B1−c copies. This gives a trade-off between the number of
corruptions required to misguide a search, and the fan-out of the tree, which
becomes Bc. Additionally, each node stores 2δ + 1 copies of the minimum and
maximum element contained in the subtree, such that the search algorithm can
reliably check whether it is on the correct path in each step. We ensure that the
query algorithm avoids reading the same corrupted element twice by ensuring
that any element is read at most once. The exact layout of the tree and the
details of the search operation are as follows.

Structure: Let S be the set of elements contained in the dictionary and let N
denote the size of S. The dictionary is a Bc-ary search tree T built on N

δ leaves.
The elements of S are distributed to the leaves in faithful order such that each
leaf contains δ elements. Each leaf is represented by a guiding element which is
smaller than the smallest uncorrupted element in the leaf and larger than the
largest uncorrupted element in the preceding leaf. The top tree is built using
these guiding elements. The tree is stored in a breadth-first left-to-right layout
on disk, such that no pointers are required.

Each internal node u in T stores three types of elements; guiding elements,
minimum elements, and maximum elements, stored consecutively on disk. The
guiding elements are stored in "(2δ + 1)/B1−c# identical blocks. Each block
contains B1−c copies of each of the Bc guiding elements in sorted order such
that the first B1−c elements are copies of the smallest guiding element. This
means that each guiding element is stored 2δ + 1 times and can be retrieved
reliably. The minimum elements are 2δ + 1 copies of the guiding element for the
leftmost leaf in the subtree defined by u, stored consecutively in " 2δ+1

B # blocks.
Similarly the maximum elements are 2δ +1 copies of the guiding element for the
leaf following the rightmost leaf in the subtree defined by u, stored consecutively
in " 2δ+1

B # blocks. Additionally, minimum and maximum elements are stored with
each leaf. The minimum are 4δ copies of the guiding element representing the
leaf, stored consecutively in 4δ

B blocks, and the maximum elements are 4δ copies
of the guiding element representing the subsequent leaf, stored consecutively in
4δ
B blocks. These are used to verify that the algorithm found the only leaf that
may store an uncorrupted element matching the search element.
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Query: A query operation for an element q, uses an index k that indicates how
many chunks of B1−c elements the algorithm has discarded during the search,
initially k = 0. Intuitively, a chunk is discarded if the algorithm detects that
Ω(B1−c) of its elements are corrupted. The query operation traverses the tree
top-down, storing in safe memory the index k, and O(1) extra variables required
to traverse the tree using the knowledge of its layout on disk. In an internal
node u, the algorithm starts by checking whether u is on the correct path in
the tree using the copies of the minimum and maximum elements stored in u.
This is done by scanning B1−c of the 2δ + 1 copies of the minimum element
starting with the kB1−c’th copy, counting how many of these that are larger
than q. If B1−c/2 or more copies of the minimum element are larger than q the
block is discarded by incrementing k and the search is restarted (backtracked)
at node v, where v = u if u is root of the tree and the parent of u otherwise.
The maximum elements are checked similarly. If the algorithm backtracks, k is
increased ensuring that the same element is never read more than once.

If the checks succeed the k’th block storing copies of the Bc guiding elements
of u is scanned from left to right. The majority value of each of the B1−c copies
of each guiding element is extracted in sorted order using the majority algo-
rithm [18] and compared to q, until a retrieved guiding element larger than q is
found or the entire block is read. The traversal then continues to the correspond-
ing child. If any invocation of the majority algorithm fails to select a value, or
two fetched guiding elements are out of order, the block is discarded as above
by increasing k and backtracking the search to the parent node.

Upon reaching a leaf, the algorithm verifies whether the search found the
correct leaf. This is achieved by running a variant of the verification procedure
designed for the same purpose in [11]. Counters cl and cr, which are initially 1, are
stored in safe memory. Then the copies of the minimum and maximum element
are scanned in chunks of B1−c elements, starting from the 2kB1−c’th element. If
the majority of elements in a chunk of B1−c copies of the minimum element are
smaller than the search element, cl is increased by 1. Otherwise, cl is decreased
and k increased by one. The copies of maximum elements are treated similarly.
Note that every decrement of cl or cr signals that at least B1−c

2 corruptions have
been found. Thus, cl represents the number of chunks scanned that has not yet
been contradicted, where the majority of copies indicates that the search element
is in the current leaf or in leafs to the right. Similar for cr. If min{cl, cr} reaches
0, we backtrack to the parent of the leaf as above. If min{cl, cr}B1−c

2 gets larger
than δ−k(B1−c

2 )+1 the verification succeeds. The algorithm finishes by scanning
the δ elements stored in the leaf, returning whether it finds q or not.

Lemma 2. The data structure is a linear space resilient dictionary supporting
queries in O

( 1
c logB N + α

B1−c + δ
B

)
I/Os, for any 1/ logB ≤ c ≤ 1.

The correctness portion of the proof is similar to the proof for the optimal
binary search algorithm in [11]. The complexity analysis uses the observation
that if a search is guided in the wrong direction, the majority of the B1−c copies
of a guiding element in the relevant block are corrupted and each additional
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step requires B1−c

2 additional corruptions in order to pass the check against the
minimum and maximum elements. Details will appear in the full paper.

To obtain optimal time bounds for the dictionary, we use the resilient binary
search algorithm of [11] on each block, instead of scanning it. If more than B1−c

2
corruptions are discovered during the search of a block, it is discarded as above.
Otherwise, B1−c

2 supporting elements are found on both sides of an element, and
the algorithm continues to the corresponding child as before. This reduces the
time used per node to O(log B + B1−c). Verification takes O(δ) time in total.

Lemma 3. For any 1
log B ≤ c ≤ 1, queries use O((B1−c + log B)(1

c logB N +
α

B1−c ) + δ) time.

Corollary 3. If δ > B log N , queries use O( δ
B ) I/Os and O(δ) time.

Corollary 4. If δ < log N , queries use O(logB N) I/Os and O(log N) time.

Corollary 5. If log N ≤ δ ≤ B log N for any 1
log B ≤ c ≤ 1, queries use

O(1
c logB N + α

B1−c + δ
B ) I/Os and O(log n + δ) time.

The corollaries follow from Lemma 2 and 3 by setting c = 1
log B , c = 1− log log B

log B ,
and c ∈ [ 1

log B , 1 − log log B
log B ] such that 1

c logB N = δ
B1−c respectively.

By adapting the techniques of [11,19] and the static dictionary presented
above we obtain a dynamic dictionary. Details will appear in the full paper.

Theorem 3. There is a deterministic dynamic resilient dictionary supporting
searches and updates in O(1

c logB N + α
B1−c + δ

B ) I/Os and O(log N + δ) time,
worst-case and amortized respectively with c in the range 1

log B ≤ c ≤ 1.

5 Priority Queue and Sorting

In this section we present a resilient multi-way merging algorithm and use it to
design a resilient sorting algorithm and priority queue. First we show how to
merge γ faithfully ordered lists of total size x when γ ≤ min{M

B , M
δ }.

Multi-way Merging: Initially, the algorithm constructs a perfectly balanced
binary tree, T , in memory on top of the γ buffers being merged. Each edge of
the binary tree is equipped with a buffer of size 5δ+1. Each internal node u ∈ T
stores the state of a running instance of the PurifyingMerge, a resilient binary
merging algorithm from [10] that works in rounds. In each round O(δ) elements
from both input buffers are read and the next δ elements in the faithful order are
output. If corrupted elements are found, these are moved to a fail buffer and the
round is restarted. The algorithm merges elements from the buffers on u’s left
child edge and right child edge into the buffer of u’s parent edge. The states and
sizes of all buffers are stored as reliable variables. The entire tree including all
buffers and state variables are stored in internal memory, along with one block
from each of the γ input streams and one block for the output stream of the
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root. Instead of storing a fail buffer for each instance of PurifyingMerge, a global
shared fail buffer F is stored containing all detected corrupted elements.

Let bl and br be the buffers on the edges to the left and right child respectively
and let b denote the buffer on the edge from u to its parent. If u is the root,
b is the output buffer. The elements are merged using the fill operation, which
operates on u, as follows. First, it checks whether bl and br contain at least
4δ + 1 elements, and if not they are filled recursively. Then, the stored instance
of the PurifyingMerge algorithm is resumed by running a round of the algorithm
outputting the next δ elements to its output stream. The multi-way merging
algorithm is initiated by invoking fill on the root of T which runs until all
elements have been output. Then, the elements moved to F during the fill are
merged into the output using NaiveSort and UnbalancedMerge as in [10].
Lemma 4. Merging γ = min{M

B , M
δ } buffers of total size x ≥ M using O(x/B)

I/Os and O(x log γ + αδ) time.

Proof. The correctness follows from Lemma 1 in [10]. The size of T is O(γ(δ +
B)) = O(min{M

B , M
δ }(δ + B)) = O(M). We use γ I/Os to load the first block

in each leaf of T and O(x/B) I/Os for reading the entire input and writing the
output. The final merge with F takes O(x/B) I/Os. Since T fits completely in
memory we perform no other I/Os.

Merging two buffers of total size n using PurifyingMerge takes O(n + αδ)
time where α is the number of detected corruptions in the input buffers. Since
detected corruptions are moved to the global fail buffer each corruption is only
charged once. Each element passes through log γ nodes of T and the final merge
using NaiveSort and UnbalancedMerge takes O(x + αδ) time. ��
Sorting: Assuming δ ≤ M ε for 0 ≤ ε < 1, we can use the multi-way merging
algorithm to implement the standard external memory M1−ε-way mergesort
from [8] matching the optimal external memory sorting bound for constant ε.
Theorem 4. Our resilient sorting algorithm uses O( 1

1−εSort(N)) I/Os and
O(N log N + αδ) time assuming δ ≤ M ε.
Priority Queue: Our comparison based resilient priority queue is optimal
with respect to both time and I/O performance assuming that δ ≤ M ε for 0 ≤
ε < 1. An optimal I/O-efficient priority queue uses Θ(1/B logM/B(N/M)) I/Os
amortized per operation [8]. An Ω(log N + δ) time lower bound for comparison
based resilient priority queues was proved in [14]. A resilient priority queue
as defined in [14] maintains a set of elements under the operations insert and
delete-min, where insert adds an element and a delete-min deletes and returns
the minimum uncorrupted element or a corrupted one.

Our priority queue is based on an amortized version of the worst-case optimal
external memory priority queue of [20] using our new resilient multi-way merg-
ing algorithm to move elements between disk and internal memory. Details will
appear in the full paper.
Theorem 5. There is a linear space resilient priority queue supporting insert
and delete-min in amortized O( 1

1−ε (1/B) logM/B(N/M)) I/Os and O(log N +δ)
time assuming δ ≤ M ε where 0 ≤ ε < 1.
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Inspecting a Set of Strips Optimally

Tom Kamphans1 and Elmar Langetepe2
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38106 Braunschweig, Germany

2 University of Bonn, Institute of Computer Science I, 53117 Bonn, Germany

Abstract. We consider a set of axis-parallel nonintersecting strips in
the plane. An observer starts to the left of all strips and ends to the
right, thus visiting all strips in the given order. A strip is inspected as
long as the observer is inside the strip. How should the observer move
to inspect all strips? We use the path length outside a strip as a quality
measure which should be minimized. Therefore, we would like to find
a directed path that minimizes the maximal measure among all strips.
We present an optimal algorithm designed according to the structural
properties of the optimal solution.

Keywords: Computational geometry, motion planning, watchman
routes, optimal inspection path, optimal algorithm.

1 Introduction

In the last decades, routes from which an agent can see every point in a given
environment have drawn a lot of attention. For example, the optimal offline
exploration path in a simple polygon (the shortest watchman route) was first
considered by Chin and Ntafos [4] for the special case of orthogonal polygons.
Some work has been done on shortest watchman routes, until Dror et al. [7]
presented an algorithm for the more general problem of visiting a sequence of
intersecting polygons under the presence of fences. Similar problems include the
shortest watchman path with different start and end points [3] or routes with ad-
ditional constraints such as zookeeper routes [5]. The corresponding online task
was considered, for example, by Deng et al. [6] for orthogonal simple polygons,
by Hoffmann et al. [8, 9] for general simple polygons, and by Icking et al. [10]
for grid polygons. See also the surveys by Mitchell [11] or Icking et al. [9].

Usually, the objective is to find a short path or route (i.e., a closed path);
either the shortest possible route (the optimum) or an approximation. In this
paper, we focus on another criterion for routes: We want to minimize the time1

in which a certain area of the environment is not seen. Imagine a guard in
an art gallery whose objective is to be as vigilant as possible and to minimize
the time an object is unguarded. Thus, for a given inspection route the route’s
performance wrt. a single object is given by the maximal time interval where
1 We assume that the agent travels with constant speed; thus, we use time and path

length synonymously.

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 423–434, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



424 T. Kamphans and E. Langetepe

the object is unguarded. The task is to find a path that minimizes the maximal
unguarded time interval among all objects.

Mark Overmars [12] introduced this problem by posing the question whether
the shortest watchman route inside a simple polygon is the best inspection route.
In this setting the set of objects is given by the set of all points inside the poly-
gon. The shortest watchman route inspects some of these points only in a single
moment. Therefore the conjecture is that the performance of the optimal inspec-
tion route for the polygon is given by the length of the shortest watchman route.
This question is still open. In this paper, we restrict ourselves to a simple type
of environments—parallel strips in the plane. More complicated environments
are the subject of ongoing research. We present an optimal algorithm that solves
the problem for L1- and L2-metric and gives some insight into the structural
property of optimal inspection paths.

The paper is organized as follows. In Section 2, we present notational con-
ventions and define an objective function which has to be minimized. Then, in
Section 3 we first prove some structural properties of an optimal solution for the
Euclidean case. At the end we present an efficient algorithm. The ideas can be
adapted to the L1-case which is mentioned in Section 4. Finally, we summarize
the results and discuss future work, see Section 5.

2 Preliminaries

Let {S1, . . . , Sn} be a set of nonintersecting vertical strips, S = (sx, sy) be a
start point to the left of all strips, and T = (tx, ty) be an end point to the right
of all strips. W.l.o.g. we can assume that S is below T (i.e., sy ≤ ty). Strip Si

has width wi.
An inspection path, P , from S to T visits the strips successively from left to

right, see Fig. 1. For a given path P let Pi denote the part of P within strip Si.
Let |Pi| denote the corresponding path length, and last(P ) the last segment of
P (i.e., from Sn to T ).

While P visits Si, the strip is entirely visible. The performance of P for a
single strip Si therefore is given by Perf(P, Pi) := |P |− |Pi|. The performance of

P

S3S1 S2

last(P )

S

P1

P2

P3

T

Fig. 1. Visiting three strips in a given order
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the path P for all strips is given by the worst performance achieved for a single
strip. That is Perf(P ) := maxi Perf(P, Pi). Finally, the task is to find among all
inspection paths the path that gives the best performance for the given situation;
that is, an inspection path with minimal performance:

Perf := min
P

max
i

Perf(P, Pi) .

This problem belongs to the class of LP-type problems [14], but the basis
could have size n as we will see later. Therefore, we solve the problem directly.
It may also be seen as a Time and Space Problem (see, e.g., [2, 1]).

3 The Euclidean Case

In this section, we first collect some properties of the optimal solution and then
design an efficient algorithm.

3.1 Structural Properties

We can assume that the optimal inspection path is a polygonal chain with
straight line segments inside and between the strips. There can be no arcs or
kinks inside the strips or outside the strips (in the free space). The inspection
path enters a strip and leaves a strip and the straight line between these points
does not influence the performance of the corresponding strip but optimizes the
length of the corresponding subpath. Analogously, between two strips the path
leaves a strip and enters another strip and the straight line between these point
optimizes the length of the corresponding subpath.

Let us further assume that we have an inspection path as depicted in Fig. 2(i).
The first simple observation is that we can rearrange the set of strips in any nonin-
tersecting order and combine the elements of the given path adequately by shifting
the segments horizontally without changing the path length; see Fig. 2(ii).

Now, it is easy to see that an optimal solution has the same slope between two
successive strips. We simply rearrange the strips such that they stick together
and start from the X-coordinate of the start point. The last part of the solution
should have no kinks as mentioned earlier.

Lemma 1. The optimal solution is a polygonal chain without kinks between the
strips or inside the strips. The path has the same slope between all strips.

In the following, we assume that the strips are ordered by widths w1 ≤ w2 ≤
· · · ≤ wn, starting at the X-coordinate, sx, of the start point and lie side by
side (i.e., without overlaps or gaps), see Fig. 2(ii). For ty = sy the optimal path
is simply the horizontal connection between S and T . Thus, we assume ty > sy

the following.
Now, we show some structural properties of an optimal solution. The optimal

solution visits some strips with the same value d = |Pi| until it finally moves
directly to the end point, see Fig. 3 for an example.
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P1

P2

P3

P

P3

P1

P2

(i)

S3 S2S1S3S2S1

S

T

S

T

(ii)

Fig. 2. Rearranging strips and path yields the same objective value. Thus, the optimal
solution has the same slope between all strips and we can assume that the strips are
ordered by widths.

P1

P2

last(P )

S

S1 S2 S3 S4 S5

P5
P4

P3

T

Fig. 3. The structure of an optimal solution: The first three strips are visited with the
same value |Pi| = d, every other strip with |Pi| > d

Lemma 2. In a setting as described above, the optimal path P visits the first
k ≤ n strips with the same distance d and then moves directly to the end point.
That is, for i = 1, . . . , k we have |Pi| = d and for i = k + 1, . . . , n we have
|Pi| > d. The path is monotonically increasing and convex with respect to the
segment ST .

Proof. Let P denote an optimal path for n strips. First, we show that the path
is monotonically increasing. There is at least one segment, Pi, with positive
slope, because ty > sy. Let us assume—for contradiction—that there is also a
segment, Pj , with negative slope. We rearrange the strips and the path such
that Pi immediately succeeds Pj , see Fig. 4(i). Now, we can move the common
point of Pj and Pi upwards. Both segments decrease and the performance of P
improves. Thus, there is no segment with negative slope and P is monotonically
increasing.
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(ii) (iii)(i)

Pj Pi

Pk

Pi Pj Pj+1Pj+2

Fig. 4. Global optimization by local changes: The connection point can be moved (i)
upwards, (ii) downwards or (iii) upwards or downwards. In any case the solution can
be improved by local changes.

The performance of P is given by |Pk| := minj |Pj |. Let k be the greatest index
such that Pk is responsible for the performance. By contradiction, we show that
for i < k there is no Pi with |Pi| > |Pk|. So let us assume that |Pi| > |Pk| holds
for i < k. We can again rearrange the strips in such a way that Pk immediately
succeeds Pi. From wi ≤ wk we conclude that the path PiPk makes a right turn.
Because |Pi| > |Pk| holds, we can globally optimize the solution by moving the
connection point downwards, see Fig. 4(ii). Although |P |−|Pi| increases, the total
path length decreases. Thus, |Pi| = |Pk| for i = 1, . . . , k − 1. For i = k + 1, . . . , n
we have |Pi| > |Pk| by assumption.

Now, we show that there is no kink in the path Pk+1Pk+2 · · ·Pn. As |Pj | >
|Pk| for j > k we can globally optimize the solution by moving a kink point
downwards or upwards, see Fig. 4(iii). The path length decreases. Therefore,
Pk+1Pk+2 · · ·Pn is a straight line segment.

Altogether, for i = k + 1, . . . , n we have |Pi| > d. For i = 1, . . . , k we have
|Pi| = d and the part Pk+1Pk+2 · · ·Pnlast(P ) is a straight line segment. Path
P is monotonically increasing. The first part of P makes only right turns as
already seen. The last part is a line segment. The concatenation of Pk and
Pk+1Pk+2 · · ·Pn also makes a right turn; otherwise, we can again improve the
performance. Because |Pk+1| > |Pk| we can move the connection point upwards,
which decreases the path length and improves the performance of strip Sk and
Sk+1. Altogether, P is convex with respect to ST . ��

One might think that with the result of Lemma 2 there is an easy way to find
a solution by application of Snell’s law, which describes how light bends when
traveling from one medium to the next. In the formulas below an application or
extension of Snell’s law seems to be difficult to achieve.

In the following, we show that we can compute the optimal solution incre-
mentally; that is, we successively add new strips and consider the corresponding
optimal solutions.

Let S1, S2, . . . , Sn be a set of strips and let S and T be fixed. Let P i denote
the optimal solution for the first i strips. For increasing i the parameter k of
Lemma 2 is strictly increasing until it remains fixed:
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S

Si Si+1

T

wi+1

R

Q

d

|Qj | = d j ∈ {1, . . . , i + 1}
|Rj | = wi+1 j ∈ {1, . . . , i + 1}

last(Q)

Fig. 5. An optimal solution for k = i + 1 strips can be found between the extremes R
and Q. |Rj | = wi+1 holds and d fulfills |Qj | = d with horizontal last(Q).

Lemma 3. For P i either the index k (see Lemma 2) is equal to i or P i is
already given by P i−1. If P i is identical to P i−1, also P j is identical to P i−1 for
j = i + 1, . . . , n.

We postpone the complete proof of Lemma 3 and first show how to adapt a
solution P i to a solution P i+1. Let us assume that we have a solution P i and
that k in the sense of Lemma 2 is equal to i. That is, the first i strips are visited
with the same distance d. If |P i

i+1| < d holds, the solution P i is not optimal for
i + 1 strips. Therefore we want to adapt P i. Lemma 3 states that it migth be
useful to search for a solution with identical path length in k = i + 1 strips.

We now show that this solution can be computed efficiently. The task is to
compute the path P i+1 between two extreme solutions, R and Q, as follows: Let
R be the path with path lengths |Rj | = wi+1 for j = 1, . . . , i + 1 and let Q be
the path with |Qj | = d for j = 1, . . . , i + 1, where the last segment, last(Q),
is horizontal. Starting from d = wi+1, let P i+1(d) denote the unique path that
starts with |P i+1

j | = d for j = 1, . . . , i + 1 and ends with a straight line segment,
last(P i+1(d)). The path R always exists, we can construct it by starting from the
first strip. The path Q exists only if the path R does not exceed the Y -coordinate
ty of T . In this case, the strip Si+1 will have no influence on the optimal solution
in the sense of Lemma 2, an optimal solution will directly pass through Si+1 and
the following strips.

So let us assume that R and Q exist and that we would like to compute the
performance of P i+1(d) starting at d = wi+1. The performance of P i+1(d) is
given by the function

fi+1(d) := d · i + |last(P i+1(d))| .

Note that we can express |last(P j(d))| in terms of d: For convenience, let yj

be the vertical height of P i+1
j (d) (i.e., d2 = w2

j + y2
j ), and X be the horizontal
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distance from the last strip to T . With T = (tx, ty) and S = (0, 0) we have

X := tx −
∑i+1

j=1 wj . Now, we have |last(P i+1(d))| =

√
X2 +

(
ty −

∑i+1
j=1 yj

)2
.

With yj :=
√

d2 − w2
j we get

fi+1(d) = d · i +

√√√√√X2 +

⎛⎝ty −
i+1∑
j=1

√
d2 − w2

j

⎞⎠2

. (1)

By simple analysis, we can show that fi+1(d) has a unique minimum in d
while increasing d from wj until last(P i+1(d)) gets horizontal:

Lemma 4. The function fi+1(d) (Eq. 1) has exactly one minimum for d ∈
[wi+1, d̄], where d̄ is the solution of ty −

∑i+1
j=1

√
d̄2 − w2

j = 0 (i.e., the last
segment is horizontal).

Proof. Let us consider the first derivative of fi+1(d) in d, which is given by

f ′
i+1(d) = i −

ty −
∑i+1

j=1

√
d2 − w2

j√
X2 +

(
ty −

∑i+1
j=1

√
d2 − w2

j

)2
·

i+1∑
j=1

d√
d2 − w2

j

, (2)

where X := tx−
∑i+1

j=1 wj . The first summand, i, of Eq. 2 is constant. The second
summand of Eq. 2 is given by

hi+1(d) :=
ty −

∑i+1
j=1

√
d2 − w2

j√
X2 +

(
ty −

∑i+1
j=1

√
d2 − w2

j

)2
·

i+1∑
j=1

d√
d2 − w2

j

.

If hi+1(d) is strictly monotone in d, there will be at most one solution for
f ′

i+1(d) = 0. Note that hi+1(d) is always positive. Let us consider the derivative
of hi+1(d) which is g′i+1(d)li+1(d) + gi+1(d)l′i+1(d) for

gi+1(d) =
ty −

∑i+1
j=1

√
d2 − w2

j√
X2 +

(
ty −

∑i+1
j=1

√
d2 − w2

j

)2
and li+1(d) :=

i+1∑
j=1

d√
d2 − w2

j

.

It is clear that li+1(d) > 0 and gi+1(d) > 0 holds until last(P i+1(d)) is hori-
zontal. It remains to show that g′i+1(d) and l′i+1(d) both have negative sign. This
means that hi+1(d) is strictly decreasing and i − hi+1(d) changes from positive
to negative only once. Thus, fi+1(d) has a unique minimum.

By simple derivation we have

l′i+1(d) = −
i+1∑
j=1

w2
j

(d2 − w2
j )
√

d2 − w2
j

and
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g′i+1(d) = −
i+1∑
j=1

d√
d2 − w2

j

· X2(
X2 +

(
ty −

i+1∑
j=1

√
d2 − w2

j

)2
) 3

2

which both have negative sign in the given interval for d. Altogether, the state-
ment follows. ��

Now, it is easy to successively compute the minimum of fi+1(d) for i = 0, . . . , n−1.
For example, we can apply efficient numerical methods for getting a solution of
f ′

i+1(d) = 0, especially because of the strictly decreasing behaviour of f ′
i+1. In the

following, we assume that we can compute this minimum in time proportional to
the number of terms of the given functions, i.e., the minimum of fi+1(d) is com-
puted in O(i). This assumption is well justified. We can choose an appropriate
starting interval and numerical methods will achieve a good convergence rate, for
details see Schwarz [13].

Note that Eq. 2 contains the sum of cosines of the bending angles in the strips
times the cosine of the bending angle in the last segment. The parameter d has
to be adjusted and it changes all angles simultaneously. That is, there is a global
criterion involved and, thus, it seems hard to find a simple ratio that resembles
the refractive index in Snell’s law.

Using Lemma 4 we can now prove Lemma 3:
Proof of Lemma 3. Let us assume that we have a solution P i computed for i
strips and let |P i

k| = d, where k denotes the index in the sense of Lemma 2. We
use this solution for the first i+1 strips. If |P i

i+1| ≥ d holds, the given solution is
also optimal for i + 1 strips because the overall performance remains the same:
The last segment, last(P i), of P i is a line segment with positive slope. Further,
wj ≥ wj−1 holds. Thus, P i is the overall optimum; that is, we can apply P i to
all n strips and |P i

j | ≥ d holds for j = i + 1, i + 2, . . . , n.
This means: If we have found a solution P i with |P i

i+1| ≥ |P i
k| where k denotes

the index from Lemma 2, then we are done for all strips.
It remains to show that the index k is strictly increasing until it is finally

fixed. From the consideration above we already conclude that there is only one
strip, for which k does not increase. Namely, if k does not increase from i to i+1
we have k < i + 1 and d = |P i+1

k | < |P i+1
j | for j = k + 1, . . . , n. Thus, P i+1 is

the overall optimum and k is fixed.
Finally, we show that indeed k can never decrease (i.e., fall back to some

k < i) if strip Si+1 is added. Let us assume from � = 1 to � = i we have always
a solution P 	 for � strips and k = � for every P 	. Let us further assume that
for i + 1 strips the solution P i+1 comes along with k = j < i. We compare the
two solutions P i+1 (with k = j < i and |P i+1

j | =: di+1) and P j (with k = j and
|P j

j | =: dj), see Fig. 6.
As P j is optimal for j strips but not for j + 1 strips, we have |P j

j+1| < dj . On
the other hand, P i+1 is optimal for i + 1 strips. Thus, |P i+1

j+1 | > di+1 holds; see
Lemma 2.
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|P i+1
j+1 | > |P i+1

j | = di+1

S

P j(d′)

Sj−1

T

|P j(d′)j+1| = d′
|P j

j+1| < |P j
j | = dj

dj

P j

P i+1

Sj+1Sj Si+1

di+1

|P j(d′)j+1| = d′

Fig. 6. Between P i+1 and P j there has to be a solution with P (d) which is better
than P i+1

Now for a parameter d consider a monotone path P j(d) that starts from S,
has equal path length d in the first j strips and then moves toward T . While d
increases, the slope of the last segment strictly decreases. Therefore, the path
length |P j(d)j+1| is strictly decreasing in d. This means that dj > di+1 and P j

runs above P i+1. The path P j(d) changes continuously, therefore in [di+1, dj ]
there has to be a value d′ such that |P j(d′)j+1| is equal to d′, see Fig. 6. The
path P j(d′) runs between P i+1 and P j . Obviously, d′ < P j(d′)l holds for l =
j + 1, . . . , n.

We show that P (d′) is better than P i+1. This is a direct consequence of
Lemma 4. The value of P j(d) strictly decreases from d = di+1 to the unique
minimum d = dj and d′ is in between. Altogether, P i+1 is not optimal which is
a contradiction. ��

The result of Lemma 3 now suggests a method for computing the optimal path
efficiently. Starting from j = 1 we compute an optimal path for the first j strips.
Let P j denote this path. If |P j

j+1| > |P j
j | holds we are done. Otherwise, we have

to compute P j+1 for j + 1 strips and so on.

3.2 Algorithm and Its Analysis

Theorem 5. For a set of n axis-aligned strips the optimal inspection path can
be computed in O(n log n) time and linear space.

Proof. First, we sort the strips by width which takes O(n log n) time. Then we
apply binary search. That is, in a first step we compute a solution with respect
to j =  n

2 ! strips.
We compute the path R with |Rl| = wj for l = 1, . . . , j. If R does already

exceeds the Y -coordinate ty of T , the optimal path should directly pass through
Sj and all successive strips as mentioned above. Therefore we proceed with the
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interval [1, j] in this case. Otherwise, we compute the best value for fj(d) starting
from wj = d until the last segment is horizontal, see Lemma 4. Let dj denote
the optimal value for j strips and P j the optimal path.

Now, we have to determine whether the optimal path visits i ≤ j or i > j
strips with the same distance di. If dj > |P j

j+1|, we have to take into account at
least the strip Sj+1. Therefore, i > j holds and we proceed recursively with the
interval [j +1, n]. If dj ≤ |P j

j+1| we proceed with the interval [1, j]. Therefore we
will find the optimum in log n steps. Computing R and the minimum of fj(d)
for index j takes O(j) time. ��

For a lower bound construction we can simply assume that the input of an
algorithm is given by an unsorted set of strips. The X-coordinates of the strip’s
left boundaries and their widths describe the setting. The solution is given by a
polygonal chain from left to right representing the order of the left boundaries.
Thus, sorting a set of n elements can be reduced to the given problem.

Theorem 6. For a set of n axis-aligned unsorted strips the optimal inspection
path is computed in Θ(n log n) time and Θ(n) space.

4 The L1-Case

Fortunately, if we measure the distance by the L1 metric the structural properties
are equivalent. Computing the optimal path becomes much easier.

Note that the path segments between the strips have to be horizontal. We have
to distribute the vertical distance from S to T among a subset of the strips. Again
we sort the strips by their widths and rearrange the scenario. Fig. 7 shows an
example of an optimal L1-path after rearrangement.

Theorem 7. The optimal L1-path P visits the first k ≤ n strips with the same
L1-distance d and then moves horizontally to the end point T . For i = 1, . . . , k we

T

P1

P5

S

P3

S2 S3 S4 S5

P4

P2

S1

Fig. 7. The structure of an optimal solution in the L1-case after rearrangement. The
first three strips are visited with the same value d, for all other strips |Pi| > d holds.
The path is horizontal between strips.
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have |Pi| = d and for i = k +1, . . . , n we have wi > d. Additionally,
∑k

i=1 |Pi| =
ty holds. If the number of strips, n, increases, the index k increases until it
remains fixed. The optimal path can be computed in Θ(n log n) time and Θ(n)
space.

An algorithm for the L1 problem is given as follows. First, we sort the strips
by their widths. Then starting from i = 1 we distribute ty +

∑i
j=1 wj among

i strips. For an optimal path, P i, for i strips we have |P i
j | = 1

i (ty +
∑i

j=1 wj)
for j = 1, . . . , i. If |P i

i | < wi+1 this path is also optimal for i + 1 (and n)
strips. For |P i

i | > wi+1 we distribute ty +
∑i+1

j=1 wj among i + 1 strips; that is,
|P i+1

j | = 1
i+1 (ty +

∑i+1
j=1 wj) for j = 1, . . . , i+1. We can compute the sum of the

weights successively. For a single step only a constant number of operations is
necessary.

Altogether, if the strips are given by ordered widths, the algorithm runs in
Θ(n) time and space.

5 Conclusion and Future Work

We presented an optimal algorithm that computes the shortest inspection path
for a set of axis-aligned strips which has to be visited in a given order.

The performance of a path P for a single strip Si is given by the time where
the strip is not inspected, i.e. |P | − |Pi|. The maximum value |P | − |Pi| among
all strips gives the performance of the inspection path. In turn, we compute a
path P with minimal performance among all paths in optimal time and space.
The approach works for L1- and L2-metric.

The structural properties of the solution show that a set of strips with increas-
ing widths determines the solution, the remaining strips are of greater widths
and they will be simply passed. This shows that the problem is of LP-Type [14].
The set of strips is the set H and w(G) gives the performance of the optimal
solution for a subset G ⊆ H . Obviously, w is monotone, that is, if we add more
strips the performance of the solution cannot decrease. On the other hand mono-
tonicity holds. If two subsets F ⊆ G ⊆ H have the same performance and adding
an additional strip h ∈ H does not change the performance of F , the strip h can
also not change the performance of G if added. Unfortunately, all strips might
determine the solution. Thus the basis of the problem is not a single constant
and it was worth computing a solution directly.

One might think that a relative performance is more intuitive. That is, for
an inspection path P , |P |

|Pi| defines the performance for a single strip. But for
a single strip it is then optimal to make a large detour inside the strip. This
might also hold for more than one strip. So this measure can be considered to
be counterintuitive.

But there are other extensions which might be interesting to consider. One
could consider axis-parallel rectangles instead of full strips. Or the objects might
be of arbitrary type and even not ordered by Y -coordinate. Furthermore, obsta-
cles could intersect.
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On the other hand, one might consider dynamical versions of the problem.
Consider a set of axis-aligned rectangles which separately move inside the given
strips in a specified direction. Compute an inspection path that takes the move-
ment of the rectangles into account.

Finally, the question of Mark Overmars mentioned in the introduction is still
open. We are searching for a roundtrip so that the maximal time interval where a
point is not seen should be minimized. The main problem is whether subpolygons
induced by reflex vertices have to be visited in an order along the boundary in
the optimal inspection route, see also Dror et al. [7]. Note, that the corresponding
subpolygons might be visited more than once in an optimal inspection route.
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Abstract. Alexandrov’s Theorem states that every metric with the
global topology and local geometry required of a convex polyhedron is
in fact the intrinsic metric of some convex polyhedron. Recent work by
Bobenko and Izmestiev describes a differential equation whose solution
is the polyhedron corresponding to a given metric. We describe an al-
gorithm based on this differential equation to compute the polyhedron
to arbitrary precision given the metric, and prove a pseudopolynomial
bound on its running time.

1 Introduction

Consider the intrinsic metric induced on the surface M of a convex body in R3.
Clearly M under this metric is homeomorphic to a sphere, and locally convex in
the sense that a circle of radius r has circumference at most 2πr.

In 1949, Alexandrov and Pogorelov [1] proved that these two necessary con-
ditions are actually sufficient: every metric space M that is homeomorphic to a
2-sphere and locally convex can be embedded as the surface of a convex body
in R3. Because Alexandrov and Pogorelov’s proof is not constructive, their work
opened the question of how to produce the embedding given a concrete M .

To enable computation we require that M be a polyhedral metric space, lo-
cally isometric to R2 at all but n points (vertices). Now the theorem is that every
polyhedral metric, a complex of triangles with the topology of a sphere and pos-
itive curvature at each vertex, can be embedded as an actual convex polyhedron
in R3. This case of the Alexandrov-Pogorelov theorem was proven by Alexandrov
in 1941 [1], also nonconstructively. Further, Cauchy showed in 1813 [3] that such
an embedding must be unique. All the essential geometry of the general case
is preserved in the polyhedral case, because every metric satisfying the general
hypothesis can be polyhedrally approximated.
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Algorithms for Alexandrov’s Theorem are motivated by the problem of folding
a polygon of paper into precisely the surface of a convex polyhedron. There are
efficient algorithms to find one or all gluings of a given polygon’s boundary to
itself so that the resulting metric satisfies Alexandrov’s conditions [4,9]. But this
work leaves open how to find the actual 3D polyhedra that can be folded from
the polygon of paper.

In 1996, Sabitov [12,11,13,5] showed how to enumerate all the isometric maps
M → R3 for a polyhedral metric M , so that one could carry out this enumeration
and identify the one map that gives a convex polyhedron. In 2005, Fedorchuk
and Pak [6] showed an exponential upper bound on the number of such maps. An
exponential lower bound is easy to find, so this algorithm takes time exponential
in n and is therefore unsatisfactory.

Recent work by Bobenko and Izmestiev [2] produced a new proof of Alexan-
drov’s Theorem, describing a certain ordinary differential equation (ODE) and
initial conditions whose solution contains sufficient information to construct the
embedding by elementary geometry. This work was accompanied by a computer
implementation of the ODE [14], which empirically produces accurate approxi-
mations of embeddings of metrics on which it is tested.

In this work, we describe an algorithm based on the Bobenko-Izmestiev ODE,
and prove a pseudopolynomial bound on its running time. Specifically, call an
embedding of M ε-accurate if the metric is distorted by at most a factor 1 + ε,
and ε-convex if each dihedral angle is at most π + ε. For concreteness, M may
be represented by a list of triangles with side lengths and the names of adjacent
triangles. Then we show the following theorem:

Theorem 1. Given a polyhedral metric M with n vertices, ratio S between
the largest and smallest distance between vertices, and defect (discrete Gaus-
sian curvature) between ε1 and 2π − ε8 at each vertex, an ε6-accurate ε9-
convex embedding of M can be found in time O

(
n913/2S831/(ε121ε445

1 ε616
8 )

)
where

ε = min(ε6/nS, ε9ε
2
1/nS6).

The exponents in the time bound of Theorem 1 are remarkably large. Thankfully,
no evidence suggests our algorithm actually takes as long to run as the bound
allows. On the contrary, our analysis relies on bounding approximately a dozen
geometric quantities, and to keep the analysis tractable we use the simplest
bound whenever available. The algorithm’s actual performance is governed by
the actual values of these quantities, and therefore by whatever sharper bounds
could be proven by a stingier analysis.

To describe our approach, consider an embedding of the metric M as a convex
polyhedron in R3, and choose an arbitrary origin O in the surface’s interior. Then
it is not hard to see that the n distances ri = Ovi from the origin to the vertices
vi, together with M and the combinatorial data describing which polygons on M
are faces of the polyhedron, suffice to reconstruct the embedding: the tetrahedron
formed by O and each triangle is rigid in R3, and we have no choice in how to
glue them to each other. In Lemma 1 below, we show that in fact the radii alone
suffice to reconstruct the embedding, to do so efficiently, and to do so even with
radii of finite precision.
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Therefore in order to compute the unique embedding of M that Alexandrov’s
Theorem guarantees exists, we compute a set of radii r = {ri}i and derive a
triangulation T . The exact radii satisfy three conditions:

1. the radii r determine nondegenerate tetrahedra from O to each face of T ;
2. with these tetrahedra, the dihedral angles at each exterior edge total at most

π; and
3. with these tetrahedra, the dihedral angles about each radius sum to 2π.

In our computation, we begin with a set of large initial radii ri = R satisfying
Conditions 1 and 2, and write κ = {κi}i for the differences by which Condition 3
fails about each radius. We then iteratively adjust the radii to bring κ near
zero and satisfy Condition 3 approximately, maintaining Conditions 1 and 2
throughout.

The computation takes the following form. We describe the Jacobian
(

∂κi

∂rj

)
ij

,

showing that it can be efficiently computed and that its inverse is pseudopoly-
nomially bounded. We show further that the Hessian

(
∂κi

∂rj∂rk

)
ijk

is also pseu-

dopolynomially bounded. It follows that a change in r in the direction of smaller
κ as described by the Jacobian, with some step size only pseudopolynomially
small, makes progress in reducing |κ|. The step size can be chosen online by
doubling and halving, so it follows that we can take steps of the appropriate
size, pseudopolynomial in number, and obtain an r that zeroes κ to the desired
precision in pseudopolynomial total time. Theorem 1 follows.

The construction of [2] is an ODE in the same n variables ri, with a similar
starting point and with the derivative of r driven similarly by a desired path for
κ. Their proof differs in that it need only show existence, not a bound, for the
Jacobian’s inverse, in order to invoke the inverse function theorem. Similarly,
while we must show a pseudopolynomial lower bound (Lemma 11) on the alti-
tudes of the tetrahedra during our computation, the prior work shows only that
these altitudes remain positive. In general our computation requires that the
known open conditions—this quantity is positive, that map is nondegenerate—
be replaced by stronger compact conditions—this quantity is lower-bounded,
that map’s inverse is bounded. We model our proofs of these strengthenings on
the proofs in [2] of the simpler open conditions, and we directly employ several
other results from that paper where possible.

The remainder of this paper supplies the details of the proof of Theorem 1.
We give background in Section 2, and detail the main argument in Section 3.
We bound the Jacobian in Section 4 and the Hessian in Section 5. Finally, some
lemmas are deferred to Section 6 for clarity.

2 Background and Notation

In this section we define our major geometric objects and give the basic facts
about them. We also define some parameters describing our central object that
we will need to keep bounded throughout the computation.
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2.1 Geometric Notions

Central to our argument are two dual classes of geometric structures intro-
duced by Bobenko and Izmestiev in [2] under the names of “generalized convex
polytope” and “generalized convex polyhedron”. Because in other usages the
distinction between “polyhedron” and “polytope” is that a polyhedron is a three-
dimensional polytope, and because both of these objects are three-dimensional,
we will refer to these objects as “generalized convex polyhedra” and “generalized
convex dual polyhedra” respectively to avoid confusion.

First, we define the objects that our main theorem is about.

Definition 1. A metric M homeomorphic to the sphere is a polyhedral metric
if each x ∈ M has an open neighborhood isometric either to a subset of R2 or
to a cone of angle less than 2π with x mapped to the apex, and if only finitely
many x, called the vertices V (M) = {vi}i of M , fall into the latter case.

The defect δi at a vertex vi ∈ V (M) is the difference between 2π and the total
angle at the vertex, which is positive by the definition of a vertex.

An embedding of M is a piecewise linear map f : M → R3. An embedding f
is ε-accurate if it distorts the metric M by at most 1 + ε, and ε-convex if f(M)
is a polyhedron and each dihedral angle in f(M) is at most π + ε.

Definition 2. In a tetrahedron ABCD, write ∠CABD for the dihedral angle
along edge AB.

Definition 3. A triangulation of a polyhedral metric M is a decomposition into
Euclidean triangles whose vertex set is V (M). Its vertices are denoted by V (T ) =
V (M), its edges by E(T ), and its faces by F (T ).

A radius assignment on a polyhedral metric M is a map r : V (M) → R+. For
brevity we write ri for r(vi).

A generalized convex polyhedron is a gluing of metric tetrahedra with a com-
mon apex O. The generalized convex polyhedron P = (M, T, r) is determined
by the polyhedral metric M and triangulation T giving its bases and the radius
assignment r for the side lengths.

Write κi
Δ= 2π−

∑
jk ∠vjOvivk for the curvature about Ovi, and φij

Δ= ∠viOvj

for the angle between vertices vi, vj seen from the apex.

Our algorithm, following the construction in [2], will choose a radius assignment
for the M in question and iteratively adjust it until the associated generalized
convex polyhedron P fits nearly isometrically in R3. The resulting radii will give
an ε-accurate ε-convex embedding of M into R3.

In the argument we will require several geometric objects related to general-
ized convex polyhedra.

Definition 4. A Euclidean simplicial complex is a metric space on a simplicial
complex where the metric restricted to each cell is Euclidean.

A generalized convex polygon is a Euclidean simplicial 2-complex homeomor-
phic to a disk, where all triangles have a common vertex V , the total angle at V
is no more than 2π, and the total angle at each other vertex is no more than π.
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Given a generalized convex polyhedron P = (M, T, r), the corresponding gener-
alized convex dual polyhedron D(P ) is a certain Euclidean simplicial 3-complex.
Let O be a vertex called the apex, Ai a vertex with OAi = hi

Δ= 1/ri for each i.
For each edge vivj ∈ E(T ) bounding triangles vivjvk and vjvivl, construct two

simplices OAiAjilAijk , OAjAijkAjil in D(P ) as follows. Embed the two tetra-
hedra Ovivjvk, Ovjvivl in R3. For each i′ ∈ {i, j, k, l}, place Ai′ along ray Ovi′

at distance hi′ , and draw a perpendicular plane Pi′ through the ray at Ai′ . Let
Aijk, Ajil be the intersection of the planes Pi, Pj , Pk and Pj , Pi, Pl respectively.

Now identify the vertices Aijk, Ajki, Akij for each triangle vivjvk ∈ F (T ) to
produce the Euclidean simplicial 3-complex D(P ). Since the six simplices pro-
duced about each of these vertices Aijk are all defined by the same three planes
Pi, Pj , Pk with the same relative configuration in R3, the total dihedral angle
about each OAijk is 2π. On the other hand, the total dihedral angle about OAi

is 2π − κi, and the face about Ai is a generalized convex polygon of defect κi.

The Jacobian bound in Section 4 makes use of certain multilinear forms described
in [2] and in the full paper [8].

Definition 5. The dual volume vol(h) is the volume of the generalized convex
dual polyhedron D(P ), a cubic form in the dual altitudes h. The mixed volume
vol(·, ·, ·) is the associated symmetric trilinear form.

Let Ei be the area of the face around Ai in D(P ), a quadratic form in the
altitudes within this face. The ith mixed area Ei(·, ·) is the associated symmetric
bilinear form.

Let πi be the linear map πi(h)j
Δ= hj−hi cos φij

sin φij
. so that πi(h) = g(i). Then

define Fi(a, b) Δ= Ei(πi(a), πi(b)) so that Fi(h, h) is the area of face i.

By elementary geometry vol(h, h, h) = 1
3

∑
i hiFi(h, h), so that by a simple com-

putation vol(a, b, c) = 1
3

∑
i aiFi(b, c).

2.2 Weighted Delaunay Triangulations

The triangulations we require at each step of the computation are the weighted
Delaunay triangulations used in the construction of [2]. We give a simpler defi-
nition inspired by Definition 14 of [7].

Definition 6. The power πv(p) of a point p against a vertex v in a polyhedral
metric M with a radius assigment r is pv2 − r(v)2.

The center C(vivjvk) of a triangle vivjvk ∈ T (M) when embedded in R2 is the
unique point p such that πvi(p) = πvj (p) = πvk

(p), which exists by the radical
axis theorem from classical geometry. The quantity πvi(p) = π(vivjvk) is the
power of the triangle.

A triangulation T of a polyhedral metric M with radius assignment r is locally
convex at edge vivj with neighboring triangles vivjvk, vjvivl if πvl

(C(vivjvk)) >
πvl

(vk) and πvk
(C(vjvivl)) > πvk

(vl) when vivjvk, vjvivl are embedded together
in R2.
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A weighted Delaunay triangulation for a radius assignment r on a polyhedral
metric M is a triangulation T that is locally convex at every edge.

A weighted Delaunay triangulation can be computed in time O(n2 log n) by a
simple modification of the continuous Dijkstra algorithm of [10]. The original
analysis of this algorithm assumes that each edge of the input triangulation is
a shortest path. In the full paper [8] we show that the same algorithm works
in time O(Sε−1

8 n2 log n) in the general case. Therefore we perform the general
computation once at the outset, and use the resulting triangulation as the basis
for subsequent runs of the continuous Dijkstra algorithm in time O(n2 log n)
each.

The radius assignment r and triangulation T admit a tetrahedron Ovivjvk

just if the power of vivjvk is negative, and the squared altitude of O in this
tetrahedron is −π(vivjvk). The edge vivj is convex when the two neighboring
tetrahedra are embedded in R3 just if it is locally convex in the triangulation as in
Definition 6. A weighted Delaunay triangulation with negative powers therefore
gives a valid generalized convex polyhedron if the curvatures κi are positive.
For each new radius assignment r in the computation of Section 3 we therefore
compute the weighted Delaunay triangulation and proceed with the resulting
generalized convex polyhedron, in which Lemma 11 guarantees a positive altitude
and the choices in the computation guarantee positive curvatures.

2.3 Notation for Bounds

Definition 7. Let the following bounds be observed:

1. n is the number of vertices on M .
2. ε1

Δ= mini δi is the minimum defect.
3. ε2

Δ= mini(δi − κi) is the minimum defect-curvature gap.
4. ε3

Δ= minij∈E(T ) φij is the minimum angle between radii.

5. ε4
Δ= maxi κi is the maximum curvature.

6. ε5
Δ= minvivjvk∈F (T ) ∠vivjvk is the smallest angle in the triangulation. Ob-

serve that obtuse angles are also bounded: ∠vivjvk < π − ∠vjvivk ≤ π − ε5.
7. ε6 is used for the desired accuracy in embedding M .
8. ε7

Δ= (maxi
κi

δi
)/(mini

κi

δi
) − 1 is the extent to which the ratio among the κi

varies from that among the δi. We will keep ε7 < ε8/4π throughout.
9. ε8

Δ= mini(2π − δi) is the minimum angle around a vertex.
10. ε9 is used for the desired approximation to convexity in embedding M .
11. D is the diameter of M .
12. L is the maximum length of any edge in the input triangulation.
13. � is the shortest distance vivj between vertices.

14. S
Δ= max(D, L)/� is the maximum ratio of distances.

15. d0
Δ= minp∈M Op is the minimum height of the apex off of any point on M .

16. d1
Δ= minvivj∈E(T ) d(O, vivj) is the minimum distance to any edge of T .
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17. d2
Δ= mini ri is the minimum distance from the apex to any vertex of M .

18. H
Δ= 1/d0; the name is justified by hi = 1/ri ≤ 1/d0.

19. R
Δ= maxi ri, so 1/H ≤ ri ≤ R for all i.

20. T
Δ= HR is the maximum ratio of radii.

Of these bounds, n, ε1, ε8, and S are fundamental to the given metric M or the
form in which it is presented as input, and D, L, and � are dimensionful pa-
rameters of the same metric input. The values ε6 and ε9 define the objective
to be achieved, and our computation will drive ε4 toward zero while maintain-
ing ε2 large and ε7 small. In Section 6 we bound the remaining parameters
ε3, ε5, R, d0, d1, and d2 in terms of these.

Definition 8. Let J denote the Jacobian
(

∂κi

∂rj

)
ij
, and H the Hessian(

∂κi

∂rj∂rk

)
ijk

.

3 Main Theorem

In this section, we prove our main theorem using the results proved in the remain-
ing sections. The algorithm of Theorem 1 obtains an approximate embedding of
the polyhedral metric M in R3. Its main subroutine is described by the following
theorem:

Theorem 2. Given a polyhedral metric M with n vertices, ratio S (the spread)
between the diameter and the smallest distance between vertices, and defect at
least ε1 and at most 2π−ε8 at each vertex, a radius assignment r for M with max-
imum curvature at most ε can be found in time O

(
n913/2S831/(ε121ε445

1 ε616
8 )

)
.

Proof. Let a good assignment be a radius assignment r that satisfies two bounds:
ε7 < ε8/4π so that Lemmas 9–11 apply and r therefore by the discussion in
Subsection 2.2 produces a valid generalized convex polyhedron for M , and ε2 =
Ω(ε2

1ε
3
8/n2S2) on which our other bounds rely. By Lemma 6, there exists a

good assignment r0. We will iteratively adjust r0 through a sequence rt of good
assignments to arrive at an assignment rN with maximum curvature εN

4 < ε as
required. At each step we recompute T as a weighted Delaunay triangulation
according to Subsection 2.2.

Given a good assignment r = rn, we will compute another good assignment
r′ = rn+1 with ε4 − ε′4 = Ω

(
ε445
1 ε121

4 ε616
8 /(n907/2S831)

)
. It follows that from r0

we can arrive at a satisfactory rN with N = O
(
(n907/2S831)/(ε121ε445

1 ε616
8 )

)
.

Todo this, letJbe the Jacobian (∂κi

∂rj
)ij andH theHessian

(
∂κi

∂rj∂rk

)
ijk

, evaluated
at r. The goodness conditions and the objective are all in terms of κ, so we choose a
desired new curvature vector κ∗ in κ-space and apply the inverse Jacobian to get a
new radius assignment r′ = r +J−1(κ∗ − κ) in r-space. The actual new curvature
vector κ′ differs from κ∗ by an error at most 1

2 |H||r′−r|2 ≤
( 1

2 |H||J−1|2
)
|κ∗−κ|2,

quadratic in the desired change in curvatures with a coefficient
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C
Δ=

1
2
|H||J−1|2 = O

(
n3/2S14

ε3
5

R23

D14d3
0d

8
1

(
n7/2T 2

ε2ε3
3ε4

R

)2)
= O

(
n905/2S831

ε443
1 ε121

4 ε616
8

)
by Theorems 3 and 4 and Lemmas 7, 6, 11, and 8.

Therefore pick a step size p, and choose κ∗ according to κ∗
i − κi = −pκi −

p
(
κi − δi minj

κj

δj

)
. The first term diminishes all the curvatures together to

reduce ε4, and the second rebalances them to keep the ratios κj

δj
nearly equal

so that ε7 remains small. In the full paper [8] we show that the resulting actual
curvatures κ′ make r′ a good assignment and put ε′4 ≤ ε4 − pε4/2, so long as

p ≤ ε2
1/64π2nε4C. (1)

This produces a good radius assignment r′ in which ε4 has declined by at least

pε4

2
=

ε2
1

128π2nC
= Ω

(
ε445
1 ε121

4 ε616
8

n907/2S831

)
as required.

As a simplification, we need not compute p exactly according to (1). Rather,
we choose the step size pt at each step, trying first pt−1 (with p0 an arbitrary
constant) and computing the actual curvature error |κ′−κ∗|. If the error exceeds
its maximum acceptable value pε2

1ε4/16π2 then we halve pt and try step t again,
and if it falls below half this value then we double pt for the next round. Since
we double at most once per step and halve at most once per doubling plus a
logarithmic number of times to reach an acceptable p, this doubling and halving
costs only a constant factor. Even more important than the resulting simplifica-
tion of the algorithm, this technique holds out the hope of actual performance
exceeding the proven bounds.

Now each of the N iterations of the computation go as follows. Compute the
weighted Delaunay triangulation T t for rt in time O(n2 log n) as described in
Subsection 2.2. Compute the Jacobian Jt in time O(n2) using formulas (14, 15)
in [2]. Choose a step size pt, possibly adjusting it, as discussed above. Finally,
take the resulting r′ as rt+1 and continue. The computation of κ∗ to check pt runs
in linear time, and that of r′ in time O(nω) where ω < 3 is the time exponent of
matrix multiplication. Each iteration therefore costs time O(n3), and the whole
computation costs time O(n3N) as claimed. ��

Now with our radius assignment r for M and the resulting generalized convex
polyhedron P with curvatures all near zero, it remains to approximately embed
P and therefore M in R3. To begin, we observe that this is easy to do given
exact values for r and in a model with exact computation: after triangulating, P
is made up of rigid tetrahedra and we embed one tetrahedron arbitrarily, then
embed each neighboring tetrahedron in turn.

In a realistic model, we compute only with bounded precision, and in any
case Theorem 2 gives us only curvatures near zero, not equal to zero. Lemma 1
produces an embedding in this case, settling for less than exact isometry and
exact convexity.
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Lemma 1. There is an algorithm that, given a radius assignment r for which
the corresponding curvatures κi are all less than ε = O

(
min(ε6/nS, ε9ε

2
1/nS6)

)
for some constant factor, produces explicitly by vertex coordinates in time
O(n2 log n) an ε6-accurate ε9-convex embedding of M .

Proof (sketch). As in the exact case, triangulate M , embed one tetrahedron
arbitrarily, and then embed its neighbors successively. The positive curvature
will force gaps between the tetrahedra. Then replace the several copies of each
vertex by their centroid, so that the tetrahedra are distorted but leave no gaps.
This is the desired embedding. The proofs of ε6-accuracy and ε9-convexity are
straightforward and left to the full paper [8].

A weighted Delaunay triangulation takes time O(n2 log n) as discussed in
Subsection 2.2, and the remaining steps take time O(n). ��
We now have all the pieces to prove our main theorem.

Proof (Theorem 1). Let ε
Δ= O

(
min(ε6/nS, ε9ε

2
1/nS6)

)
, and apply the algorithm

of Theorem 2 to obtain in time O
(
n913/2S831/(ε121ε445

1 ε616
8 )

)
a radius assign-

ment r for M with maximum curvature ε4 ≤ ε.
Now apply the algorithm of Lemma 1 to obtain in time O(n2 log n) the desired

embedding and complete the computation. ��

4 Bounding the Jacobian

Theorem 3. The Jacobian J =
(

∂κi

∂rj

)
ij

has inverse pseudopolynomially bounded

by |J−1| = O
(

n7/2T 2

ε2ε3
3ε4

R
)
.

Proof. Our argument parallels that of Corollary 2 in [2], which concludes that
the same Jacobian is nondegenerate. Theorem 4 of [2] shows that this Jacobian
equals the Hessian of the volume of the dual D(P ). The meat of the corollary’s
proof is in Theorem 5 of [2], which begins by equating this Hessian to the bilinear
form 6 vol(h, ·, ·) derived from the mixed volume we defined in Definition 5. So
we have to bound the inverse of this bilinear form.

To do this it suffices to show that the form vol(h, x, ·) has norm at least
Ω
( ε2ε3

3ε4

n7/2T 2
|x|
R

)
for all vectors x. Equivalently, suppose some x has |vol(h, x, z)| ≤

|z| for all z; we show |x| = O
(

n7/2T 2

ε2ε3
3ε4

R
)
.

To do this we follow the proof in Theorem 5 of [2] that the same form
vol(h, x, ·) is nonzero for x nonzero. Throughout the argument we work in terms
of the dual D(P ).

Recall that for each i, πix is defined as the vector {xij}j . It suffices to show
that for all i

|πix|22 = O

(
n3T 3

ε2
2ε3ε4

R2 +
n2T 2

ε2ε3ε4
R|x|1

)
since then by Lemma 2

|x|22 ≤ 4n

ε2
3

max
i

|πix|22 = O

(
n4T 3

ε2
2ε

3
3ε4

R2 +
n3T 2

ε2ε3
3ε4

R|x|1
)

,
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and since |x|1 ≤ √
n|x|2 and X2 ≤ a + bX implies X ≤ √

a + b, |x|2 =
O
(

n7/2T 2

ε2ε3
3ε4

R
)

. Therefore fix an arbitrary i, let g = πih and y = πix, and we
proceed to bound |y|2.

We break the space on which Ei acts into the 1-dimensional positive
eigenspace of Ei and its (k−1)-dimensional negative eigenspace, since by Lemma
3.4 of [2] the signature of Ei is (1, k − 1), where k is the number of neighbors
of vi. Write λ+ for the positive eigenvalue and −E−

i for the restriction to the
negative eigenspace so that E−

i is positive definite, and decompose g = g+ + g−,
y = y+ + y− by projection into these subspaces. Then we have

G
Δ= Ei(g, g) = λ+g2

+ − E−
i (g−, g−) Δ= λ+g2

+ − G−
Ei(g, y) = λ+g+y+ − E−

i (g−, y−)

Y
Δ= Ei(y, y) = λ+y2

+ − E−
i (y−, y−) Δ= λ+y2

+ − Y−

and our task is to obtain an upper bound on Y− = E−
i (y−, y−), which will

translate through our bound on the eigenvalues of Ei away from zero into the
desired bound on |y|.

We begin by obtaining bounds on |Ei(g, y)|, G−, G, and Y . Since |z| ≥
|vol(h, x, z)| for all z and vol(h, x, z) =

∑
j zjFj(h, x), we have |Ei(g, y)| =

|Fi(h, x)| ≤ 1. Further, det
(

Ei(g, g) Ei(y, g)
Ei(g, y) Ei(y, y)

)
< 0 because Ei has signature (1, 1)

restricted to the (y, g) plane, so by Lemma 3 Y = Ei(y, y) < R2

ε2
.

Now by further calculation and the use of Lemma 4, the theorem follows; the
details are left to the full paper [8] for brevity. ��

Three small lemmas used above follow from the geometry of spherical polygons
and of generalized convex dual polyhedra. Their proofs are left to the full pa-
per [8] for brevity.

Lemma 2. |x|2 ≤ (4n/ε2
3)maxi |πix|2.

Lemma 3. Fi(h, h) > ε2/R2.

Lemma 4. The inverse of the form Ei is bounded by |E−1
i | = O(n/ε4).

5 Bounding the Hessian

In order to control the error in each step of our computation, we need to keep
the Jacobian J along the whole step close to the value it started at, on which
the step was based. To do this we bound the Hessian H when the triangulation
is fixed, and we show that the Jacobian does not change discontinuously when
changing radii force a new triangulation.

Each curvature κi is of the form 2π−
∑

j,k:vivjvk∈T ∠vjOvivk, so in analyzing
its derivatives we focus on the dihedral angles ∠vjOvivk. When the tetrahedron
Ovivjvk is embedded in R3, the angle ∠vjOvivk is determined by elementary
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geometry as a smooth function of the distances among O, vi, vj , vk. For a given
triangulation T this makes κ a smooth function of r. Our first lemma shows that
no error is introduced at the transitions where the triangulation T (r) changes.

Lemma 5. The Jacobian J =
(

∂κi

∂rj

)
ij

is continuous at the boundary between
radii corresponding to one triangulation and to another.

Proof (sketch). The proof, which can be found in the full paper [8], uses elemen-
tary geometry to compare the figures determined by two triangulations near a
radius assignment on their boundary. ��

It now remains to control the change in J as r changes within any particular
triangulation, which we do by bounding the Hessian.

Theorem 4. The Hessian H =
(

∂κi

∂rj∂rk

)
ijk

is bounded in norm by

O
(
n5/2S14R23/(ε3

5d
3
0d

8
1D

14)
)
.

Proof. By direct computation and computer algebra. See the full paper [8] for
the details. ��

6 Intermediate Bounds

Here we bound miscellaneous parameters in the computation in terms of the
fundamental parameters n, S, ε1, ε8 and the computation-driving parameter ε4.

Lemma 6. Given a polyhedral metric space M , there exists a radius assignment
r with curvature skew ε7 < ε8/4π, maximum radius R = O(nD/ε1ε8), and
minimum defect-curvature gap ε2 = Ω(ε2

1ε
3
8/n2S2).

Proof (sketch). Take ri = R for all i, with R sufficiently large. Then each κi

is nearly equal to δi, so that ε7 is small. For the quantitative bounds and a
complete proof, see the full paper [8]. ��

Two bounds on angles can be proven by elementary geometry; details are left to
the full paper [8] for brevity.

Lemma 7. ε3 > �d1/R2.

Lemma 8. ε5 > ε2/6S.

Finally we bound O away from the surface M . The bounds are effective versions
of Lemmas 4.8, 4.6, and 4.5 respectively of [2], and the proofs, left for brevity to
the full paper [8], are similar but more involved.

Recall that d2 is the minimum distance from O to any vertex of M , d1 is the
minimum distance to any edge of T , and d is the minimum distance from O to
any point of M .

Lemma 9. d2 = Ω
(
Dε1ε4ε

2
5ε8/(nS4)

)
.

Lemma 10. d1 = Ω
(
Dε2

1ε
4
4ε

6
5ε

2
8/(n2S10)

)
.

Lemma 11. d0 = Ω
(
Dε4

1ε
9
4ε

12
5 ε4

8/(n4S22)
)
.
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A Scheme for Computing Minimum Covers
within Simple Regions
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Abstract. Let X be a simple region (e.g., a simple polygon), and let
Q be a set of points in X. Let O be a convex object, such as a disk, a
square, or an equilateral triangle. We present a scheme for computing a
minimum cover of Q with respect to X, consisting of homothetic copies
of O. In particular, a minimum disk cover of Q with respect to X, can
be computed in polynomial time.

1 Introduction

Let X be a simple region (e.g., a simple n-gon), and let Q be a set of m points
in X . A disk cover of Q with respect to X is a set D of disks (of variable radii),
such that the union of the disks of D covers (i.e., contains) Q and is contained
in X . In other words, (i) each disk D ∈ D is contained in X , and (ii) each point
q ∈ Q, lies in a disk D ∈ D. A minimum disk cover of Q with respect to X is
a disk cover of Q with respect to X of minimum cardinality. In this paper, we
study the problem of computing such a cover.

The problem of computing a minimum disk cover of a point set Q with respect
to a simple region X arises, e.g., in the following setting. X represents a secured
area, and each point of Q represents a client of a radio network. One must place
the smallest possible number of transmitters, such that each client is served by
at least one of the transmitters (i.e., is within the transmission range of at least
one of the transmitters), and any point outside the area, is outside the range of
each of the transmitters.

Geometric covering problems have been studied extensively. These problems
are instances induced by geometric settings of the well-known set cover problem.
Most of them are known to be NP-hard. Below, we mention several geometric
covering problems that are related to the problems studied in this paper. In
the unit disk cover problem, the goal is to cover a given set of points with the
smallest possible number of unit disks. A polynomial-time approximation scheme
for this problem was given by Hochbaum and Maas [12]. In the discrete version
of this problem, the covering unit disks must come from a given set of unit disks.
This version is apparently more difficult that the non-discrete version, and only
constant-factor approximation algorithms are known; see [2,3,4,22].
� Partially supported by the Lynn and William Frankel Center for Computer Sciences.
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The problem of covering a set Q of points by a single disk that is contained
in X (if possible), arises as a sub-problem in the study of our minimum disk
cover problem. Hurtado et al. [13] studied the related problem of computing
a minimum enclosing disk of a given set of m points, whose center must lie
in a given convex n-gon; they presented an O(m + n) time algorithm for this
problem. The 2-center problem with obstacles was studied by Halperin et al. [11].
In this problem, the goal is to find two congruent disks of smallest radius whose
union covers a given set of m points and whose centers lie outside a given set of
disjoint simple polygons with a total of n edges. They presented a randomized
O(n log2(mn) + mn log2 m log(mn)) expected time algorithm for this problem.
The analogous 1-center problem was studied by Halperin and Linhart [10], who
presented an O((m + n) log(mn)) time algorithm for this problem.

In the context of wireless networks, one often wants to minimize the sum of
the radii (alternatively, the radii to some power α > 1) of the covering disks. Alt
et al. [1] gave exact and approximation algorithms for this problem, where the
centers of the covering disks must lie on a given line.

Although the problem of computing a minimum disk cover with respect to,
e.g., a simple polygon seems quite natural, we are not aware of any previous
work on this problem. In Sect. 2, we describe an algorithm that computes such
a cover in time polynomial in n and m. Our solution uses the “perfect graph
approach.” In the perfect graph approach, first, a graph G corresponding to the
input scene is defined. Next, the following two theorems are proven: (i) there
is a one to one correspondence between a minimum cover of the desired kind
(e.g., disk cover or cover by visibility polygons) and a minimum clique cover of
G, and (ii) G is perfect. Note that the second claim is crucial, since, in general,
minimum clique cover is NP-complete, but is polynomial for chordal and perfect
graphs [7,8,9]. The perfect graph approach was used in the solution of several art-
gallery problems, under restricted models of visibility; see, e.g., [16,17,20,21,23].

In Sect. 3, we extend the results of Sect. 2 to any fixed convex shape. More
precisely, we describe a scheme for computing (in time polynomial in n and m)
a minimum cover of Q with respect to a simple region X , where the covering
objects are homothetic copies of a given convex object of constant description
complexity. This implies, for example, that a minimum cover consisting of axis-
parallel squares or equilateral triangles with a horizontal edge can be computed
in polynomial time.

2 Minimum Disk Cover

Given a simple polygon X and a set Q of points in X , we define the graph
G◦ = 〈V, E〉, such that V = Q, and
E = {(q1, q2) ∈ V × V : there exists a disk D ⊆ X s.t. q1, q2 ∈ D}. Note that
if there exists a disk D ⊆ X covering both q1 and q2, then there also exists such
a disk for which q1 and q2 are on its boundary.

The following lemma is trivially true.
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Lemma 1. Let x, y, z be three points in the plane, and let D be the disk defined
by these points (i.e., x, y, z ∈ ∂D). Then, for any disk D′ such that x, y ∈ ∂D′,
either D′ covers z, or D′ covers the arc �x y of D (that does not include z).

Lemma 2. Let q1, q2, q3 be three points in Q, such that for each pair of them
qi, qj, i < j, there exists a disk Dij ⊆ X with qi, qj ∈ ∂Dij. Then, there exists a
disk D ⊆ X, such that q1, q2, q3 ∈ D.

Proof. If one of the three disks D12, D13, D23 covers all three points, then let D
be this disk and we are done. Otherwise, let D be the disk defined by q1, q2, q3,
and consider its three arcs �q1 q2, �q1 q3, �q2 q3. By Lemma 1, since Dij does not
cover the third point, it must cover �qi qj . Thus, ∂D ⊆ D12∪D13∪D23, and since
X is simple, it follows that D ⊆ X .

Lemma 2 above states that any three points corresponding to a triangle of G◦,
can be covered by a single disk that is contained in X . Lemma 3 below states
that this is also true for cliques of size greater than 3. We use Helly’s Theorem
in order to prove it, but before then we prove a simple claim.

Let c, q be two points in the plane. We denote by Dc(q) the disk centered
at c with q on its boundary. We denote by DC(q) the set of centers of all disks
that are contained in X and cover q. Notice that Dc(q) is contained in all disks
centered at c and covering q, thus DC(q) = {c : Dc(q) ⊆ X}.

Claim. Let q ∈ Q. Then, DC(q) is convex.

b

c

q

Da(q)

Db(q)

Dc(q)

a

Fig. 1. Dc(q) is contained in Da(q) ∪ Db(q).

Proof. Let a, b ∈ DC(q), and let c be any point on the line segment between
a and b. We show that c ∈ DC(q). By definition, Da(q), Db(q) ⊆ X . Consider
the disk Dc(q). Clearly, Dc(q) ⊆ Da(q) ∪ Db(q) ⊆ X (see Fig. 1), and therefore
c ∈ DC(q).

Lemma 3. Let C be a subset of Q corresponding to a clique of G◦. Then, there
exists a disk D ⊆ X, such that C ⊆ D.

Proof. If |C| = 2 or |C| = 3, then the statement is true by definition or by
Lemma 2, respectively. Assume therefore that |C| ≥ 4. Consider the collection
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of all convex sets DC(q), where q ∈ C. We claim that the intersection of any
three sets of this collection is nonempty, and therefore, by Helly’s Theorem, there
exists a point c ∈

�
q∈C DC(q). Now, let q ∈ C be the farthest from c among all

points of C, then the disk Dc(q) is contained in X and contains C.
Indeed, let x, y, z ∈ C. By Lemma 2, there exists a disk D ⊆ X such

that x, y, z ∈ D, and, by definition, D’s center belongs to each of the sets
DC(x),DC(y),DC(z).

Theorem 1. A minimum clique cover of G◦ corresponds to a minimum disk
cover of Q with respect to X.

Proof. Let D be a disk cover of Q with respect to X . Then, clearly, for each
D ∈ D, the subset Q ∩ D corresponds to a clique of G◦.

Now, let C be a clique cover of G◦, and let C ∈ C. By Lemma 3, the subset of
Q corresponding to C can be covered by a single disk D ⊆ X .

Theorem 1 guarantees that finding a minimum clique cover of G◦ is sufficient.
Our next goal is to prove Theorem 2 below that states that G◦ is chordal,
implying that a minimum clique cover of G◦ can be found in time linear in the
size of G◦; see [7,8]. We shall need the following two lemmas, where Lemma 4 is
a more general version of Lemma 1.

Lemma 4. Let a, b, c, d be four consecutive points on a line l, and let D be a
disk whose boundary passes through the middle points b, c. Then, any disk whose

boundary passes through a, d covers at least one of the arcs
�

b c and
�

c b of D.

Proof. Let D′ be a disk whose boundary passes through the points a, d. If D ⊆
D′, then we are done. Otherwise, the boundaries of D and D′ must cross each
other twice, and, since bc ⊆ ad ⊂ D′, these crossing points lie on the same side
of l. Therefore, D′ covers the arc of D on the other side of l.

Lemma 5. Let sa = a1a2 and sb = b1b2 be two segments such that sa ∩ sb �= ∅,
and let Da and Db be disks, such that a1, a2 ∈ ∂Da and b1, b2 ∈ ∂Db. Then, at
least one of the following is true: a1 ∈ Db, a2 ∈ Db, b1 ∈ Da, b2 ∈ Da.

Proof. If one of the four endpoints, e.g., a1, lies on the other segment, then,
a1 ∈ sb ⊆ Db and we are done. Otherwise, put x = sa ∩sb. Clearly, x ∈ Da ∩Db,
since sa ⊆ Da and sb ⊆ Db. Also, since x is not an endpoint of one of the
segments, we know that x is not on Da’s boundary or Db’s boundary. Therefore,
∂Da and ∂Db cross each other twice, and let l be the line through these two
crossing points.

Assume w.l.o.g. that l is vertical, and that Da’s center is to the left of Db’s
center. Assume, e.g., that x lies to the right of l. Then, at least one of sa’s
endpoints lies on the arc of Da that is covered by Db (see Fig. 2); thus, there
exists i ∈ {1, 2} such that ai ∈ Db.
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Da

Db

b1

a1

a2

b2

l

x

Fig. 2. a2 ∈ ∂Da ∩ Db, thus Db covers the points b1, b2, a2

Theorem 2. G◦ is chordal.

Proof. Let 〈0, 1, 2, 3, . . . , k − 1〉 be a cycle of G◦ of length at least 4, and let H
be the subset of Q corresponding to this cycle. There exist disks D0, D1, . . .,
Dk−1, such that Di ⊆ X and i, i + 1(mod k) ∈ ∂Di, for i = 0, 1, . . . , k − 1. If
there exists 0 ≤ i ≤ k − 1 for which Di covers three or more points of H , then
the cycle contains a chord and we are done.

Otherwise, let π be the closed path that is obtained by connecting the point
i with the point i + 1(mod k), for i = 0, 1, . . . , k − 1. We claim that π must be
simple. Otherwise, there are two cases: (i) There exists i ∈ H that lies in the
interior of an edge [j, j + 1] of π (where i �= j, j + 1), but then i ∈ Dj and Dj

covers three points of H . (ii) There exist two edges ei = [i, i+1] and ej = [j, j+1]
of π that cross each other, where i, i+1, j, j+1 are all distinct, and by Lemma 5
we have that either Di or Dj covers at least three of the points i, i + 1, j, j + 1.

Consequently, π defines a simple polygon Pπ ⊆ X (see Fig. 3(a)). Consider
the Delaunay triangulation DT (H) of H . One of the well-known properties of
DT (H) is that (i, j) is a Delaunay edge if and only if there exists a disk D, such

Pπ

(a)

a

bc

Pπ

(b)

Fig. 3. (a) The simple polygon Pπ. Each edge of Pπ is an edge of DT (H). (b) DT (H),
the triangle �abc and its circumcircle.



452 M.J. Katz and G. Morgenstern

that i, j ∈ ∂D and l �∈ D, for any other l ∈ H . Since we are assuming that none
of the disks D0, D1, . . . , Dk−1 covers a third point of H , we conclude that each
edge of Pπ is also an edge of DT (H).

Now, consider any Delaunay triangle �abc ⊆ Pπ. (Such a triangle exists since
all edges of Pπ are also Delaunay edges.) Let Dabc be �abc’s circumcircle, and
consider its three arcs �a b, �b c, and �c a. Since �abc is a Delaunay triangle, Dabc

does not cover any other point of H . Therefore, if one of these arcs crosses an
edge of Pπ , it must cross it twice (otherwise Dabc would contain a vertex of Pπ

other than a, b, c).
The points atwhich ∂Dabc crossesPπ partition the boundary of Dabc into m arcs

(see Fig. 3(b)). An arc that is contained in Pπ is clearly also contained in X . And,
an arc that is contained in the exterior of Pπ has both its endpoints on the same
edge of Pπ, and, by Lemma 4, such an arc is covered by the disk corresponding to
that edge and therefore is also contained in X . We showed that ∂Dabc is contained
in X and therefore, since X is simple, Dabc ⊆ X , and a chord exists.

Theorem 3. Let X be a simple n-gon, and let Q ⊂ X be a set of m points.
Then, a minimum disk cover of Q with respect to X can be computed in time
O(nm2).

Proof. We need to bound the time needed to construct G◦, and the time needed
to compute a disk corresponding to a clique of G◦. Since G◦ is chordal, a mini-
mum clique cover of G◦ can be computed in time O(|V |+|E|) = O(m2); see [7,8].

We shall use the medial axis of X , which can be computed in time O(n);
see [6]. Consider first the task of constructing G◦. For each pair of points in
Q, we need to determine whether there exists a disk contained in X that covers
both points. Let q1, q2 ∈ Q. By the observation just above Lemma 1, it is enough
to determine whether there exists a disk D ⊆ X , such that q1, q2 ∈ ∂D. In other
words, it is enough to determine whether there exists a point c on bisector(q1, q2),
such that the disk centered at c and whose boundary passes through q1 and q2
is contained in X . This can be done in linear (in n) time as follows. The edges
of the medial axis of X partition bisector(q1, q2) ∩ X into O(n) segments. For
each of these segments, one can determine in constant time whether there exists
a point c on it, such that the distance between c and the points q1, q2 is not
greater than the distance between c and the edge of X that is closest to the
segment. Thus, G◦ can be constructed in time O(nm2).

Consider now the task of computing a disk corresponding to a clique of G◦.
Let Q′ be a subset of Q corresponding to a clique of G◦. By Lemma 3, there exists
a disk D ⊆ X , such that Q′ ⊂ D. We now describe how to compute such a disk
in time O(n|Q′|). Notice that we may require that D’s boundary pass through
at least two points of Q′. In other words, we may require that D’s center lie
on an edge of the farthest site Voronoi diagram of Q′. Thus, we compute this
diagram, whose size is O(|Q′|). Each edge of this diagram, is partitioned into
O(n) segments by the boundary of X and by the edges of the medial axis of X .
Let s be one of the O(n|Q′|) resulting segments. Since s is contained in an edge
of the farthest site Voronoi diagram, there exist two points q1, q2 ∈ Q′, such that,
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for any point c on s, dist(c, q1) = dist(c, q2) = maxq∈Q′ dist(c, q). Moreover, since
s is contained in a single cell of the medial axis of X , there exists an edge es of
X , such that, for any point c on s, dist(c, es) = min{dist(c, e) : e an edge of X}.
Thus, one can determine in constant time whether there exists a point c on s,
such that the disk centered at c of radius dist(c, q1) = dist(c, q2) is contained
in X . We conclude that a disk corresponding to Q′ can be computed in time
O(n|Q′|), and therefore a disk cover corresponding to a given clique cover of G◦
can be computed in time O(nm).

3 Minimum O-Cover

Let X and Q be as in Sect. 2. In this section, we show that the main result of
Sect. 2 can be generalized to any convex shape of constant description complex-
ity. More precisely, we show that for any convex object O (of constant description
complexity), one can compute, in polynomial time, a minimum cover of Q, using
only positive homothetic copies of O that are contained in X . (Recall that a
homothetic copy Oh of O is a scaled and translated copy of O.)

Given such a convex object O, we define the graph G∗ = 〈V, E〉, such that
V = Q, and E = {(q1, q2) ∈ V × V : there exists Oh ⊆ X s.t. q1, q2 ∈ Oh}. As
in Sect. 2, we need to prove that (i) a minimum clique cover of G∗ corresponds
to a minimum cover of Q with respect to X , using homothetic copies of O, and
(ii) G∗ is chordal.

It is tempting to try to prove Lemma 7 below (the subset of points corre-
sponding to a clique of G∗ can be covered by a single homothetic copy of O), in
a similar way to the proof of Lemma 3; namely, by applying Helly’s Theorem.
However, this will fail, since, in general, the sets DC(q) are not convex; Fig. 4
shows that the set of all centers of (axis-parallel) squares that are contained in
X and cover q, is not convex. Our proof of Lemma 7 is based on the pseudo-disks
property of the set of all homothetic copies of O. That is, for any pair of ho-
mothetic copies of O, their boundaries are either disjoint, or intersect at exactly
two points, or a few other degenerate cases. This proof also applies to the case
where O is a disk, so it is an alternative proof for Lemma 3.

Before proving Lemma 7, we consider (in Lemma 6 below) the case where a
set C of points cannot be covered by a homothet of O having three points of
C on its boundary; see Fig. 5. Note that there always exists a homothet of O
covering C with two points on its boundary (assuming, of course, that |C| ≥ 2).

Lemma 6. Let C be a set of points in the plane, and let Oh be a homothet of O
covering C and maximizing the number of points of C lying on its boundary. If
|C ∩ ∂Oh| = 2, then any homothet O′

h of O whose boundary passes through the
points of C ∩ ∂Oh, covers C.

Proof. Put C ∩ ∂Oh = {p1, p2}, and assume that there exists a homothet O′
h

of O, such that p1, p2 ∈ ∂O′
h but C �⊆ O′

h. Put C′ = C \ O′
h = {q1, q2, . . . , qk},

and assume, e.g., that Oh covers the portion of ∂O′
h between p1 and p2, moving
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a

b

q

c

X

Fig. 4. There exist two squares centered at a and b, respectively, that cover q and are
contained in X. However, any square centered at c ∈ ab and covers q, is not contained
in X.

p1

p3

p2

Fig. 5. There exist no axis-parallel square or equilateral triangle with a horizontal edge
whose boundary passes through p1, p2, p3

clockwise from p1 to p2. We show that there exists a homothet of O that covers
C and has three points of C on its boundary, a contradiction.

For each 1 ≤ i ≤ k, we have that qi ∈ Oh but qi �∈ O′
h. Also Oh and O′

h

are homothets whose boundaries intersect at p1 and p2, thus, by continuity,
there exists, for each 1 ≤ i ≤ k, a homothet Oi

h such that p1, p2, qi ∈ ∂Oi
h

(i.e., the points p1, p2, qi are “non-collinear”). Consider the set of homothets
{O1

h, O2
h, . . . , Ok

h} (see Fig. 6). This is a set of pseudo-disks, and the boundaries
of each pair of them intersect at p1, p2. For each 1 ≤ i < j ≤ k, we have that
either Oi

h covers qj , or Oj
h covers qi. Moreover, this relation is transitive; that

is, if Oi
h covers qj , then it also covers all points of C′ that are covered by Oj

h.
Thus, there exists 1 ≤ i ≤ k for which Oi

h ⊇ C′, and assume, e.g., that i = 1.
We claim that C ⊆ O1

h. Indeed, on the one hand, we have that since q1 ∈ Oh,
O1

h covers the counterclockwise portion of Oh from p1 to p2, on the other hand,
since q1 �∈ O′

h, O1
h covers the clockwise portion of ∂O′

h from p1 to p2. We conclude
that O1

h covers Oh ∩ O′
h, and, as C \ C′ ⊆ Oh ∩ O′

h, we are done.
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Oh

O′
h p1

p2

q1

q2

q3

O1
hO3

hO2
h

Fig. 6. For each point qi ∈ C′, there exists a homothet Oi
h, such that p1, p2, qi ∈ ∂Oi

h

Lemma 7. Let C be a subset of Q corresponding to a clique of G∗. Then, there
exists a homothet Oh of O, such that C ⊆ Oh ⊆ X.

Proof. The proof is by induction on |C|. If |C| = 2, then the theorem is true
by definition. Assume |C| ≥ 3, and let Oh be a homothet of O that covers C
and maximizes the number of points of C lying on its boundary. By Lemma 6,
if |C ∩ ∂Oh| = 2, then any homothet of O whose boundary passes through the
two points of C ∩ ∂Oh, covers C. In particular, the one that is associated with
these two points by G∗’s construction.

Assume therefore that |C ∩ ∂Oh| ≥ 3, and put C ∩ ∂Oh = {p1, p2, . . . , pk}.
Let Ci = C \ {pi}, for i = 1, . . . , k. By the induction’s hypothesis, there exists
a homothet Oi

h of O, such that Ci ⊆ Oi
h ⊆ X , for i = 1, . . . , k. Denote by �i the

portion of ∂Oh that is between the two points on ∂Oh that are adjacent to pi

(and includes pi). Now, if for some 1 ≤ i ≤ k, �i ⊆ Oi
h, then Oi

h covers pi as well,
and we are done. Otherwise, for each 1 ≤ i ≤ k, we have that Oi

h covers the
complement of �i (including the endpoints of �i). Thus, ∂Oh ⊆

�
1≤i≤k Oi

h, and,
as X is simple, Oh ⊆ X .

Consider now the chordality proof. The proof of Theorem 2 above relies on
two well-known properties of the Delaunay triangulation (the dual graph of the
Voronoi diagram): Let P be a set of points in the plane, and let DT (P ) be its
Delaunay triangulation. Then, (i) pq is an edge of DT (P ) if and only if there
exists a closed disk C, such that p, q ∈ ∂C and C does not cover any other point
of P , and (ii) �pqr is a triangle of DT (P ) if and only if the closed disk defined
by p, q, r does not cover any other point of P . Usually, the Voronoi diagram
is defined under the Euclidean metric (as above), but it can be defined under
any Lp-metric, for 1 ≤ p ≤ ∞; see [14,18,19]. The properties stated above hold
for any 1 ≤ p ≤ ∞, just replace disk by Lp-disk (e.g., diamond for p = 1 and
axis-parallel square for p = ∞).

Chew and Drysdale [5] studied Voronoi diagrams under convex distance func-
tions, and showed that similar properties hold. Let O be a convex object and let
O′ be the reflection of O about its center. Then, the O′-Delaunay triangulation
DT O′(P ) of P has the following properties: (i) pq is an edge of DT O′(P ) if and
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Pπ

(a)

Pπ

a

b

c

(b)

Fig. 7. Analogous to Fig. 3, where O is an equilateral triangle with a horizontal edge

only if there exists a homothetic copy Oh of O, such that p, q lie on its bound-
ary and Oh does not cover any other point of P , and (ii) �pqr is a triangle of
DT O′(P ) if and only if there exists a homothetic copy Oh of O, such that p, q, r
lie on its boundary and Oh does not cover any other point of P .

Thus, one can prove that G∗ is chordal by adapting the proof of Theorem 2.
Disks are replaced by homothetic copies of O, and the standard Delaunay trian-
gulation is replaced by the O′-Delaunay triangulation. (Figure 7 is analogous to
Fig. 3 above, where O is an equilateral triangle with a horizontal edge.) As for the
corresponding versions of Lemmas 4 and 5, note that the existing proofs already
hold for any set of pseudo-disks, and, in particular, for the set of homothetic
copies of O. We conclude that

Theorem 4. G∗ is chordal.

It remains to show how G∗ is constructed, and how a homothetic copy of O
corresponding to a clique of G∗ is found. In principle, we adapt the algorithms
described in the proof of Theorem 3, using appropriate generalizations of the
medial-axis and of the farthest site Voronoi diagram.

Theorem 5. Let X be a simple n-gon, and let Q ⊂ X be a set of m points.
Let O be a convex object of constant description complexity. Then, a minimum
cover of Q with respect to X, using homothetic copies of O, can be computed in
time polynomial in n and m.

4 Additional Remarks

We conclude with two remarks.

Remark 1. Since MAX-CLIQUE (i.e., find a clique of G∗ of maximum size) is
also solvable in time O(|V |+|E|) for chordal graphs [7,8], we obtain the following
corollary. A homothetic copy Oh of O that is contained in X and covers the
largest possible number of points of Q, can be found in polynomial time. (In the
case of L2-disks, the bound implied by Theorem 3 is O(nm2) or O(nm + m2) in
case G◦ is already given).
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Remark 2. We assumed that X is a simple polygon, but, in fact, it could be
defined by any simple closed curve. Moreover, our results also hold if X is a set
of rays or semi-infinite curves. For example, if X is a set of possibly intersecting
rays, then we wish to cover Q with the smallest possible number of disks that
are not intersected by rays in X .
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Abstract. We examine the problem of determining a spanning tree of
a given graph such that the number of internal nodes is maximum. The
best approximation algorithm known so far for this problem is due to Pri-
eto and Sloper and has a ratio of 2. For graphs without pendant nodes,
Salamon has lowered this factor to 7

4
by means of local search. However,

the approximative behaviour of his algorithm on general graphs has re-
mained open. In this paper we show that a simplified and faster version
of Salamon’s algorithm yields a 5

3
-approximation even on general graphs.

In addition to this, we investigate a node weighted variant of the problem
for which Salamon achieved a ratio of 2 ·Δ(G)− 3. Modifying Salamon’s
approach we obtain a factor of 3 + ε for any ε > 0. We complement our
results with worst case instances showing that our bounds are tight.

1 Introduction and Preliminaries

The Maximum Internal Spanning Tree problem (MaxIST) consists in find-
ing a spanning tree of a given graph such that the number of internal nodes is
maximized. MaxIST is a natural optimization version of the Hamiltonian

Path problem and can be motivated by the design of cost-efficient communica-
tion networks [1]. It is closely related to the Minimum Leaf Spanning Tree

problem (MinLST) which asks for a spanning tree with a minimum number of
leaves. Although MinLST and MaxIST lead to the same constructive problem
they have different approximability properties.

Lu and Ravi [2] introduced MinLST and showed that it admits no constant
factor approximation algorithm unless some NP-hard problem can be solved in
deterministic quasi-polynomial time. Flandrin et al. [3] investigated conditions
for the existence of spanning trees with few leaves. Interestingly, the aforemen-
tioned non-approximability result for MinLST does not carry over to MaxIST

since the latter has a different objective function. Indeed, Prieto and Sloper [4]
gave an efficient 2-approximation algorithm for MaxIST based on local search.
Later, Salamon and Wiener [1] developed a simple linear time algorithm, which
is basically a slight modification of depth first search, and showed that it yields
a 2-approximation, too. Moreover, they obtained that MaxIST is approximable
within factors 3

2 and 6
5 on claw-free and cubic graphs, respectively. The fixed

parameter complexity of MaxIST was studied by Prieto and Sloper [4,5]. They

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 459–470, 2009.
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gave an O(k2) kernel which proves that the problem is fixed parameter tractable.
Here, k denotes the number of internal nodes. Fernau et al. [6] presented exact
exponential time algorithms. In particular they gave O∗(3n) and O∗(1.8916n) al-
gorithms for solving MaxIST on general graphs and graphs of maximum degree
three, respectively. Here, the O∗-notation disregards polynomial factors.

The existence of efficient approximation algorithms with a ratio better than 2
has been an open problem so far [1]. Recently some progress was made towards
answering this question: Salamon [7] suggested a local search based algorithm for
MaxIST and proved by means of linear programming techniques that it termi-
nates with a 7

4 -approximation on graphs without pendant nodes (nodes of degree
1). Although this algorithm applies also to arbitrary graphs, its approximative
behaviour has remained open for the general case.

Using a different technique, we will show in this paper that Salamon’s algo-
rithm reaches a 5

3 -approximation even on general graphs. Thereby, we surpass
the approximation ratio of 2 which is often a critical bound for combinatorial
optimization problems. Moreover, it turns out that a substantially smaller neigh-
borhood structure in the local search is sufficient to guarantee the approximation
ratio. This leads to a better running time.

Additionally, Salamon [7] investigated a node weighted version of the problem
(MaxWIST) for which he provided a local search algorithm with an approxi-
mation ratio of 2 ·Δ(G)− 3 where Δ(G) denotes the maximum degree of G. We
will also tackle this case: By extending the neighborhood of Salamon’s algorithm
we are able to approximate MaxWIST within a factor of 3 + ε for any ε > 0.

The paper is organized as follows: In Section 2 we will present our algo-
rithm LOSTlight which constitutes a substantial simplification of the algo-
rithm LOST proposed by Salamon. Section 3 is devoted to the analysis of the
approximation ratio of our algorithm. Here we will prove the factor of 5

3 which
is the heart of this paper. The node weighted version of MaxIST will then be
examined in Section 4. We will complete our results with suitable worst case in-
stances in Section 5 demonstrating that the analyses of our algorithms are best
possible.

Preliminaries. Let G = (V, E) be an undirected, simple graph and G′ be a
subgraph of G. Then we denote by E(G′) the set of edges of G′. We say that v
is a G′-neighbor of u, if u and v are adjacent in G′. If v is not a G′-neighbor of
u then u and v are called G′-independent. By dG′(u) we denote the degree of u
in G′. Let T be a subtree of G. Then any node u with degree dT (u) = 1 is called
a T -leaf or leaf of T . All other nodes of T are referred to as T -internal nodes
or alternatively internal nodes of T . The set of leaves and the set of internal
nodes of T are denoted by L(T ) and I(T ), respectively. By PT (u, v) we denote
the unique path between nodes u, v in T and by u→v the unique T -neighbor of
u on PT (u, v). A T -branching is a node u in T with degree dT (u) ≥ 3. If T is
not a path and l is a leaf of T then b(l) is the unique branching which is closest
to l in T . Moreover, l is is said to be x-supported, if node x does not lie on path
PT (l, b(l)) and x is G-adjacent to l. The length of a path is the number of its
edges.
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If S′ ⊆ S is a subset of an arbitrary set S weighted by a function c : S → Q

then let us use the notation c(S′) :=
∑

s∈S′ c(S′).

Problem Definition. An instance of the Maximum Internal Spanning Tree

problem (MaxIST) is a connected, undirected graph G = (V, E). The goal is to
find a spanning tree T of G such that |I(T )| is maximum among all spanning
trees of G.

An instance of the Maximum Weighted Internal Spanning Tree prob-
lem (MaxWIST) is a connected, undirected graph G = (V, E) whose nodes are
weighted by a function c : V → Q+. The goal is to find a spanning tree T of G
such that c(I(T )) is maximum among all spanning trees of G.

2 The Algorithm

Salamon [7] suggests a local search algorithm, named LOST (locally optimal
spanning tree), for approximating MaxIST. This algorithm maintains a span-
ning tree T which is initialized with a depth-first search tree of the input graph
G = (V, E). Thereafter, it performs a sequence of local improvement operations,
taken from a fixed set of so called rules. Each of these rules consists of a precon-
dition and an action which replaces edges of T with non-tree edges of G. The
algorithm terminates when no more rule is applicable.

Our algorithm LOSTlight applies the same framework but it employs only
five of the 14 rules used by LOST. This is reflected in a running time reduced by
a linear factor. In terms of the worst case ratio, we do not lose anything when
dropping the additional rules of LOST, as we shall see in Section 5.

Let us adopt the following technical conventions: From now on, the notations
u→v and b(l) will always be interpreted with respect to the spanning tree T
maintained by LOSTlight. This is particularly important to avoid confusions,
since later we will also deal with trees different from T such as the global optimum
T ∗. Moreover, we will assume that T is not already a path which ensures that
b(l) is defined for every leaf of T .

LOSTlight uses the following five rules (confer Figure 1):

Rule 1. If there are two G-adjacent leaves l1, l2 in T then add edge (l1, l2) and
remove (b(l1), b(l1)→l1).

Rule 2. If there is an x-supported leaf l in T such that x→l is a branching in
T then add (l, x) and remove (x, x→l).

Rule 3. If there are two T -leaves l1, l2 and a node x such that x→l1 has degree
two in T and edges (l1, x), (l2, x→l1) are in E−E(T ) then add (l1, x) remove
(x, x→l1 ). Afterwards apply Rule 1 to l2 and the new leaf x→l1 .

Rule 4. If there is an x-supported leaf l in T such that b(l)→x is a branching
then add (l, x) and remove (b(l), b(l)→x).

Rule 5. If there is an x-supported leaf l1 and a leaf l2 such that dT (b(l1)→x) = 2
and (l2, b(l1)→x) ∈ E − E(T ) then add (l1, x) and remove (b(l1), b(l1)→x).
Afterwards apply Rule 1 to l2 and the new leaf b(l1)→x.
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b(l)→x

l

x

b(l)

l1 l2
Rule 1 Rule 2

x→l1

Rule 3
l2l1

x

l1
b(l1)

l2

Rule 5

l

xb(l1)

Rule 4

b(l1)→x

b(l1)→l1 x

x→l

Fig. 1. The rules of LOSTlight. Squares represent T -leaves. Thick and dashed
straight lines mark edges of T and non-tree edges, respectively. Wiggly lines depict
paths in T . Note that Rule 3 and 5 first generate constellations with T -adjacent leaves
which allows for the application of Rule 1 afterwards.

It is easy to see that each of the Rules 1–5 increases the number of internal
nodes in T . Thus the algorithm performs at most |V | iterations. Each of the
rules, in turn, can be carried out in O(|V |2) as shown in [7]. We obtain:

Lemma 1. Algorithm LOSTlight runs in time O(|V |3). ��
By comparison, algorithm LOST needs time O(|V |4). This is basically because
some of its additional rules do not discard leaves which may lead to overall
Ω(|V |2) iterations.

Since each of the above rules increases the number of internal nodes they corre-
spond to improvements of the objective function of MaxIST. Thus LOSTlight

may be viewed as an implementation of the well known hill climbing algorithm
where the neighborhood of T consists of all spanning trees obtained by executing
any applicable rule on T .

3 The Analysis

In this section we will analyse the quality of spanning trees generated by LOST-

light. We will show that each spanning tree T , which is locally optimal with
respect to the Rules 1–5, is a 5

3 -approximation. More formally, if T ∗ is globally
optimal then |I(T ∗)| ≤ 5

3 |I(T )| holds.

3.1 Covered and Uncovered Leaves

Let T ∗ be an optimal solution for MaxIST and T an output of LOSTlight.
Let further r be an arbitrary internal node of T and consider T ∗ as rooted at r.
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A T -leaf l is said to be covered, if there is a T -leaf l′ such that l′ is a descendant
of l in T ∗. Otherwise, l is called uncovered. We denote the set of covered and the
set of uncovered leaves by C and U , respectively.

Consider an uncovered leaf l and the subtree T ∗
l of T ∗ hanging from l. Since

l is uncovered, T ∗
l cannot contain any T -leaf except for l itself. Therefore, if

l′ is another uncovered leaf then T ∗
l and T ∗

l′ are disjoint. Since any subtree
hanging from some uncovered leaf contains at least one T ∗-leaf we conclude that
|U | ≤ |L(T ∗)|. Hence

|I(T ∗)| = (|I(T )| + |L(T )|) − |L(T ∗)|
≤ |I(T )| + |L(T )| − |U |
= |I(T )| + |C| .

Dividing both hands by |I(T )| we obtain the following central inequality:

|I(T ∗)|
|I(T )| ≤ 1 +

|C|
|I(T )| . (1)

Inequality (1) says that in order to obtain a good approximation we have to
bound |I(T )| from below in terms of |C|. Indeed, as a result of our analysis, we
will show that |I(T )| ≥ 3

2 |C| which yields the desired approximation ratio of 5
3 .

The central idea of our proof consists in identifying for each covered leaf l a
set I(l) of distinctive internal nodes referred to as companions of l. For technical
reasons we will divide the companions of l into sets Ip(l) and Ia(l) of so called
path companions and auxiliary companions. Showing that the total number of
companions is at least 3

2 |C| we obtain our factor of 5
3 by Inequality (1). The main

difficulty will be that the companion sets I(·) need not be disjoint. To keep the
overall set of companions from collapsing we will bound the frequency of single
companions in the family of companion sets.

3.2 Path Companions

Our first step in identifying distinctive companions for any covered leaf l consists
in assigning to l a unique subpath P (l) of T ∗. We will then single out certain
internal nodes from P (l) forming the set Ip(l) of path companions of l. The path
P (l) will also play a crucial role in the definition of auxiliary companions in the
next section.

Consider an arbitrary covered leaf l. We pick a T -leaf, denoted by c(l), such
that c(l) is a descendant of l in T ∗ and there are no other T -leaves on path
PT∗(l, c(l)) except for l and c(l). We set P (l) := PT∗(l, c(l)). Clearly there may
be more than one T -leaf satisfying the conditions imposed on c(l) but we need
only one of them. For an illustration of this path construction confer Figure 2.

Since Rule 1 is not applicable in T we can state that any pair of distinct
T -leaves is G-independent. Therfore, it is impossible that some P (l) consists of
only one single edge. Moreover, it is easy to see that the union F of the paths
P (·) constitutes a subforest of T ∗ having no F -branchings. We condense the
foregoing considerations in the following lemma:
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l1

c(l3)

l3

l4

c(l2)

c(l1) = l2

c(l4)

r

Fig. 2. Illustration of T ∗ with T -leaves represented by squares. The grey squares
l1, . . . , l4 are the covered leaves. The paths P (li) are marked by thick lines. Grey circles
are path companions.

Lemma 2. Let l and l′ be distinct covered leaves. Then P (l) has always length
at least 2. Moreover, if P (l) and P (l′) share common nodes then either l = c(l′)
or l′ = c(l). ��

We are now ready to define our path companions (confer also Figure 2):

Definition 1 (Path companions). Let l be a covered leaf. The upper path
companion of l is the T ∗-neighbor of l on path P (l). The T ∗-neighbor of c(l) on
P (l) is called lower path companion of l. The set Ip(l) of path companions of l
contains the upper and the lower path companion of l.

Observe that in the above definition the upper and the lower path companion of
a covered leaf may coincide, i. e., a leaf may have only one path companion. As
a byproduct of Lemma 2 we obtain that T is a 2-approximation: Since no Ip(·)
is empty and all those sets are pairwisely disjoint we conclude that there are at
least |C| companions and so |I(T ∗)| ≤ 2 · |I(T )| by Inequality (1).

3.3 Auxiliary Companions

In the sequel we are going to improve the above ratio of 2 by identifying for
each covered leaf l a set Ia(l) of additional companions which we call auxil-
iary companions of l. The definition of auxiliary companions is inspired by the
specific structure of our local optimum T reflected in the following two simple
observations:

Observation 1. Let l be a T -leaf and (l, x) ∈ E − E(T ). Then x→l has degree
two in T and is G-independent from any leaf in L(T ) − l.

Proof. The claim follows immediately since Rules 2 and 3 are not applicable. ��

Observation 2. Let l be an x-supported T -leaf then b(l)→x has degree two in T
and is G-independent from any leaf of T .

Proof. The claim follows immediately since Rules 2,4, and 5 are not applicable.
��
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Both of the above properties predict the existence of certain degree-two nodes
which we will now associate with covered leaves in an (almost) unique way:

Definition 2 (Auxiliary companions). Let l be a covered leaf. Then the set
Ia(l) of auxiliary companions of l consists of the following internal nodes:

(i) Nodes of the form x→l if x is the upper path companion of l but not T -
adjacent to l.

(ii) Nodes of the form x→c(l) if x is the only path companion of l but not
T -adjacent to c(l).

(iii) Nodes of the form b(l)→x if b(l) is the the upper path companion of l, and
l is x-supported.

(i) (ii) (iii)

x→l

b(l)

x xx x→c(l)

b(l)→x

l c(l)l c(l)c(l)l

Fig. 3. Illustration of T with auxiliary companions represented by grey nodes. Thick
and dashed lines mark edges of T and T ∗, respectively. Wiggly lines depict paths of T .

At first glance Definition 2 might appear somewhat confusing. But a closer look
reveals that all auxiliary companions share the following nice properties which
guarantee (confer next section) that they never occur in more than two sets Ia(·).

Lemma 3. Let l be a covered leaf and u ∈ Ia(l) be an auxiliary companion of l.
Then u satisfies the following conditions:

(i) u is not a path companion of l,
(ii) u is G-adjacent to at most one T -leaf, and this is always in {l, c(l)},
(iii) u has degree dT (u) = 2,
(iv) u is T -adjacent to the upper path companion of l.

Proof. Statements (ii) and (iii) are immediate consequences of Observations 1
and 2. Statement (iv) follows immediately from the construction of auxiliary
companions. In order to show statement (i) assume that u is simultaneously
an auxiliary and a path companion of l. Consider first that u complies with
Definition 2 (i), i. e., u equals x→l where x is the upper path companion of l.
Since u cannot equal x it must be the lower path companion of l and therefore be
T ∗-adjacent to c(l). As l is not T -adjacent to x this contradicts Observation 1.
Obviously u cannot comply with Definition 2 (ii) as in this case u is T -adjacent
and therefore not equal to the only path companion of l. Also the remaining
case that u complies with Definition 2 (iii) is easily ruled out with the help of
Observation 2 since u is T ∗-adjacent to some leaf of T . ��
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3.4 Counting the Companions

In this section we will show that there are at least 3
2 |C| companions which implies

the desired approximation factor of 5
3 for LOSTlight.

To this end consider the family I := { Ia(l), Ip(l) | l ∈ C } of all companion
sets Ip(·) and Ia(·). Our goal is to count the number of all companions Ic :=

⋃
I.

Of course it is not sufficient to consider the sum
∑

J∈I |J | of cardinalities of
companions sets since these sets need not be disjoint. In order to overcome these
difficulties, we introduce for each companion u ∈ Ic the frequency freq(u) :=
|{J ∈ I | J � u}| of u within the family I and a weight w(u) := 1

freq(u) . This
weight is extended to covered leaves l by setting w(l) := w(Ip(l) ∪ Ia(l)). The
weight w(l) may be regarded as the contribution of the companions of l to
the total number |Ic| of companions. Indeed, we can express |Ic| as the sum
w(C) =

∑
l∈C w(l) of weighted covered leaves.

In the sequel we will prove a series of lemmas which bound the values freq(·)
and w(·) and form the main ingredients of our final result. We shall distinguish
between covered leaves l for which P (l) has length 2, so called short leaves, and
long leaves where P (l) has length at least 3.

Lemma 4. For any (path or auxiliary) companion u, we have freq(u) ≤ 2.

Proof. Consider first the case u is a path companion of some covered leaf l.
Since the sets Ip(·) are pairewisely disjoint u has no further occurrences as a
path companion in I. So assume that u is an auxiliary companion for covered
leaves l′, l′′. We claim that l′ = l′′: It follows from Lemma 3 (i) that l′, l′′ �= l. Let
us assume further that u is the upper path companion of l. Then u is T ∗-adjacent
to l and hence c(l′) = l = c(l′′) by Lemma 3 (ii). Thus l′ = l′′ by Lemma 2.
If u is the lower path companion of l then u is T ∗-adjacent to c(l) and hence
l′ = c(l) = l′′.

Now consider the case that u is not a path companion. Moreover, let us
assume that u is an auxiliary companion of some covered leaf l. Then u is T -
adjacent to some path companion of l. Since u has degree dT (u) = 2 and the
path companion sets Ip(·) are pairwisely disjoint we deduce that there are at
most two such covered leaves. ��

The following lemma is an immediate consequence:

Lemma 5. For any long leaf l, we have w(l) ≥ 1. ��

Lemma 6. For any short leaf l with path companion u, we have freq(u) = 1
and w(l) ≥ 3

2 .

Proof. Since u is G-adjacent to two T -leaves u cannot be an auxiliary companion
and therefore freq(u) = 1.

We claim that l has at least one auxiliary companion. To this end we assume
first that P (l) is a subpath of T . Since T is not a path u must be a branching.
This implies u = b(l). Let x be the father of l in T ∗. Then l is not T -adjacent to
x as l is a T -leaf with T -neighbor u �= x. Hence u→x is an auxiliary companion
of l and therefore w(l) ≥ 3

2 .
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Consider the case that P (l) is not a subpath of T . Then u is T -independent
from some l′ ∈ {l, c(l)}. But this implies that u→l′ is an auxiliary companion of
l and therefore w(l) ≥ 3

2 . ��
Let us denote by C=α and C≥α the sets of covered leaves l with w(l) = α and
w(l) ≥ α, respectively. Lemma 4 shows that the weights of covered leaves are
always multiples of 1

2 . Since we would like to have w(C) ≥ 3
2 |C|, leaves of weight

w(l) = 1 could be problematic. But fortunately we can show that those light
covered leaves are compensated by heavy ones:

Lemma 7. We have |C=1| ≤ |C≥2|.
Proof. Let l be a covered leaf with weight w(l) = 1. According to Lemma 6 it
must be a long leaf. Since l has two path companions with weight at least 1

2
there can be no auxiliary companion of l. Consider the upper path companion u
of l. If u was not T -adjacent to l then l would have an auxiliary companion due
to Definition 2 (i). We conclude that l is T -adjacent to u. Moreover, w(u) = 1

2 by
premise. This implies that u is auxiliary companion of some covered leaf l′ �= l
and thus l = c(l′) by Lemma 3 (ii). Since u is T -adjacent to leaf l we can rule
out that u complies with Definition 2 (iii). Let x be the upper path companion
of l′. Then either u = x→l′ or u = x→c(l′) according to Definition 2 (i) and (ii).
Since x �= l only the latter case may occur which implies that l′ is a short leaf.

We will now show that w(l′) ≥ 2 which completes the proof since l′ is uniquely
determined by l through the relation c(l′) = l. According to Lemma 6 leaf l′ has
a path companion u′ with weight w(u′) = 1. Since l′ has also the auxiliary
companion u with weight w(u) ≥ 1

2 it suffices to identify a second auxiliary
companion for l′. To this end assume first that l′ is T -adjacent to x (confer
Figure 4 (i)). Then x must be a branching in T , for otherwise, c(l) would be
disconnected from T . Let v be the father of l′ in T . Then (l′, v) /∈ E(T ). Hence
x→v �= u is an additional auxiliary companion of l′. Let us finally assume that
l′ is not T -adjacent to x (confer Figure 4 (ii)). Then x→l′ �= u is an additional
auxiliary companion of l′ and therefore w(l′) ≥ 2. ��
From Lemmas 4–7 we infer immediately:

|I(T )|
Lm. 4
≥ w(C=1) + w(C= 3

2
) + w(C≥2)

≥ |C=1| +
3
2
|C= 3

2
| + 2|C≥2|

= (|C=1| +
1
2
|C≥2|) +

3
2
|C= 3

2
| + 3

2
|C≥2|

Lm. 7
≥ 3

2
|C=1| +

3
2
|C= 3

2
| + 3

2
|C≥2|

=
3
2
|C| .

And finally by Inequality (1):

Theorem 1. LOSTlight is a 5
3 -approximation algorithm for the Maximum

Internal Spanning Tree problem with running time O(|V |3). ��
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l′

v

x→v

x

l′ l = c(l′)

u = x→l x→l′
x

u = x→l

l = c(l′) c(l)c(l)

(ii)(i)

Fig. 4. The illustration shows the two cases for an upper path companion u of a long
leaf where w(u) = 1

2
. Thick and dashed straight lines mark the edges of T and T ∗,

respectively. Wiggly lines depict paths in T .

4 The Weighted Case

In this section we investigate the Maximum Weighted Internal Spanning

Tree problem (MaxWIST). Salamon [7] developed a local search algorithm,
called WLOST, which runs in polynomial time and gives a (2 · Δ(G) − 3)-
approximation for MaxWIST. We will present the first constant-factor approxi-
mation algorithm for this problem. Our result is based on a new
pseudo-polynomial local search algorithm WLOSTadvanced which yields a 3-
approximation for MaxWIST. This result can then be extended to an efficient
(3 + ε)-approximation scheme.

Our algorithm WLOSTadvanced maintains a spanning tree T . Let l be a
T -leaf, u its unique T -neighbor and (l, x) a non-tree edge for some node x. We
introduce the following six rules:

Rule W1. If x→l is a branching then add edge (l, x) and remove (x, x→l).
Rule W2. If x→l has degree 2 and c(x→l) < c(l) then add (l, x) and remove

(x, x→l).
Rule W3. If u and u→x are branchings then add (l, x) and remove (u, u→x).
Rule W4. If u is a branching, u→x has degree 2 and c(u→x) < c(l) then add

(l, x) and remove (u, u→x).
Rule W5. If u→x is a branching, u has degree 2 and c(u) < c(l) then add (l, x)

and remove (u, u→x).
Rule W6. If u and u→x have degree 2 and c(u)+ c(u→x) < c(l) then add (l, x)

and remove (u, u→x).

Again we start with a DFS-tree of the input graph and apply Rules W1–W6
until we reach a local optimum. Similar to LOSTlight all rules of WLOSTad-

vanced improve the objective function c(I(T )). Moreover, all rules can be tested
and performed in O(n2). Multiplying all node weights with the smallest com-
mon denominator we may assume that they are integral. Hence we obtain a
pseudo-polynomial running time O(n2 · c(T )).
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Rule W2Rule W1
l

x

Rule W3
l

x

l

x

x→l x→l

l

x

l

x

Rule W6
l

x

Rule W5Rule W4

u

u→x u→x

u

u→x

u

u→x

u

Fig. 5. The rules of WLOSTadvanced. Thick and dashed lines mark T -edges and
non-tree edges, respectively. Wiggly lines depict paths of T .

We are able to show that WLOSTadvanced terminates with a 3-approxima-
tion. Using recent findings [8] on local search we can extend this to the subsequent
approximability result. The proofs use ideas similar to those of the unweighted
case. Due to space limitations we omit them here.

Theorem 2. MaxWIST can be approximated within a factor of 3 + ε for any
ε > 0 in polynomial time. ��

T ′
k

component 1 component 2 component k. . .
Tk

Fig. 6. Two spanning trees of the same graph Gk. The spanning tree Tk is locally
optimal with respect to LOSTlight and WLOSTadvanced. The tree T ′

k achieves a
deviation close to the upper bounds. In the weighted case the grey nodes are heavy in
comparison to the white ones.
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5 Tight Worst Case Instances

For the unweighted case consider graph Gk in Figure 6 consisting of k compo-
nents. Let T and T ′

k be the two spanning trees depicted. It is easy to verify that
Tk is a DFS-tree which is locally optimal with respect to LOSTlight since none
of Rules 1–5 is applicable. Tk has 3k + 3 internal nodes. On the other hand the
spanning tree T ′

k has 5k + 1 internal nodes. Increasing k we come arbitrarily
close to factor 5

3 . It is worth noting that Tk is even locally optimal for Salamon’s
algorithm LOST. Thus that algorithm does not perform better in the worst case
although it involves far more rules than LOSTlight does.

For the weighted case consider the same graph where each component contains
three grey nodes weighted with a large number Ω. White nodes are unit weighted.
The spanning tree Tk is locally optimal with respect to WLOSTadvanced (and
also with respect to Salamon’s algorithm WLOST). The approximation factor
converges to 3 with increasing Ω and k. We conclude that our analyses of the
algorithms LOSTlight and WLOSTadvanced are best possible.
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Abstract. In this paper, we study the asymmetric traveling salesman
problem (ATSP) with strengthened triangle inequality, i.e. for some γ ∈
[ 1
2
, 1) the edge weights satisfy w(u, v) ≤ γ(w(u, x) + w(x, v)) for all dis-

tinct vertices u, v, x.
We present two approximation algorithms for this problem. The first

one is very simple and has approximation ratio 1
2(1−γ)

, which is better
than all previous results for all γ ∈ ( 1

2
, 1). The second algorithm is more

involved but it also gives a much better approximation ratio: 2−γ
3(1−γ)

+
O( 1

n
) when γ > γ0, and 1

2
(1 + γ)2 + ε for any ε > 0 when γ ≤ γ0, where

γ0 ≈ 0.7003.

1 Introduction

The Traveling Salesman Problem is one of the most researched NP-hard prob-
lems. In its classical version, given a set of vertices V and a symmetric weight
function w : V 2 → R≥0 one has to find a Hamiltonian cycle of minimum weight.
Asymmetric Traveling Salesman Problem (ATSP) is a natural generalization
where the weight function w does not need to be symmetric. Both TSP and ATSP
without additional assumptions do not allow for any reasonable polynomial-
time approximation algorithm, i.e. they are NPO-complete problems. A nat-
ural assumption, ofter appearing in applications, is the triangle inequality, i.e.
w(u, v) ≤ w(u, x)+w(x, v), for all distinct vertices u, v, x. With this assumption,
TSP has a 3/2-approximation by the well-known algorithm of Christofides [5].
On the other hand, no constant-factor polynomial time algorithm is known for
ATSP with triangle inequality and the best algorithm up to date, due to Feige
and Singh [6], has approximation ratio 2

3 log2 n.

1.1 γ-Parameterized Triangle Inequality and Previous Results

The TSP and ATSP problems have also been studied under the γ-parameterized
triangle inequality, i.e. for some constant γ, and for all distinct vertices u, v, and
x,

w(u, v) ≤ γ(w(u, x) + w(x, v)).
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It can be easily seen that only values γ ≥ 1
2 make sense, since otherwise all edge

weights would need to be 0, see e.g. [3]. In the first work on ATSP problem with
the γ-parameterized triangle inequality, Chandran and Ram [3] showed a γ/(1−
γ)-approximation algorithm for any γ ∈ [12 , 1). Note that for any fixed γ the
approximation ratio is bounded. Next, Bläser [1] announced an algorithm with
approximation ratio 1/(1− 1

2 (γ+γ3)), which is an improvement for γ ∈ [0.66, 1).
Later, it was extended by Bläser, Manthey and Sgall [2] to (1 + γ)/(2 − γ − γ3)
which otperforms the earlier algorithms for γ ∈ [0.55, 1). Finally, there is a very
recent algorithm of Zhang, Li and Li [11] which is better than the previous
methods for γ ∈ [0.59, 0.72].

In their work Chandran and Ram [3] were also interested in bounding the
ratio ATSP(G)/AP(G) where ATSP(G) and AP(G) are the minimum weight of a
Hamiltonian cycle in graph G and the minimum weight of a cycle cover in graph
G, respectively. Analysis of their algorithm implies that ATSP(G)/AP(G) ≤
γ/(1 − γ). On the other hand they show an infinite family of graphs for which
ATSP(G)/AP(G) = 1

2(1−γ) .

1.2 Our Results

In Section 2 we describe a very simple algorithm, using methods similar to those
used by Kostochka and Serdyukov [8] for the max-ATSP with triangle inequality.
We show that its approximation ratio is 1

2(1−γ) , which is better than all previous
results for any γ ∈ (1

2 , 1). This result implies that ATSP(G)/AP(G) ≤ 1
2(1−γ)

for any graph G, which is tight.
In Section 3 we present an even more efficent method, which outperforms our

first algorithm for γ ≥ 0.619. There is a constant γ0 ≈ 0.7003, such that for
γ ∈ (γ0, 1) the second method gives the approximation ratio of 2−γ

3(1−γ) + O( 1
n ),

while for γ ∈ [12 , γ0) it can achieve approximation ratio of 1
2 (1 + γ)2 + ε for any

ε > 0 (see Figure 1 for comparison with previous results).
We show that for γ ∈ (γ0, 1) our approximation factor is essentially optimal

w.r.t. the relaxation used.

1.3 Notation

Throughtout the paper, V is the vertex set of the input complete graph and
w : V 2 → R≥0 is a weight function which satisfies the γ-parameterized triangle
inequality and such that w(v, v) = 0 for any v ∈ V . The vertex sets of all the
graphs and multigraphs in the paper are subsets of V and w naturally induces
weights on their edges.

For any (multi)set of edges S we define w(S) =
∑

(x,y)∈S w(x, y). We will also
write w(S) when S is a (multi)graph, a cycle, a walk etc. always meaning the
corresponding (multi)set of edges.

We will say that a directed graph G is connected when the underlying undi-
rected graph is connected. Similarly, a connected component of G is a inclusion-
wise maximal subgraph of G that is connected.
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Fig. 1. Comparision of our methods with previous results

2 A Simple 1
2(1−γ)

-Approximation Algorithm

In this section we give a very simple algorithm that achieves an approximation
ratio of 1

2(1−γ) . Our algorithm starts, as is typical when approximating variants of
TSP, by finding a minimum weight cycle cover of the input graph. Such a cover
can be found in polynomial time. The cycles are then broken and patched to
form a Hamiltonian cycle. The technique we use to guarantee that the patching
edges have low weight is very similar to the one introduced by Kostochka and
Serdyukov [8] for a variant of max-TSP. Interestingly, this technique has not so
far been used to solve min-TSP problems.

2.1 A Randomized Algorithm

We begin by showing a randomized version of our algorithm since it is more
natural this way.

Throughout this paper we will use the following lemma.

Lemma 1. Let W = (v1, v2, . . . , vk, v1) be a closed walk and let x be a vertex
not visited by W . Then,

k∑
j=1

w(vj , x) ≤ γ

1 − γ
w(W ).

Proof. From the γ-parametrized triangle inequality it follows that

w(vj , x) ≤ γ (w(vj , vj+1) + w(vj+1 , x))
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for j = 1, . . . , k (we let vk+1 = v1 to avoid having to consider it separately). By
summing the above inequality over all j = 1, . . . , k, we get

k∑
j=1

w(vj , x) ≤ γ

⎛⎝w(W ) +
k∑

j=1

w(vj , x)

⎞⎠ ,

which easily implies the claim of the lemma. ��

Theorem 1. Let C be a directed cycle of length l, and let P be a path created
by randomly removing a single edge from C. Also let u be the last vertex on P ,
and let v be a vertex not contained in C. Then

E[w(P ) + w(uv)] ≤ l − 1 − (l − 2)γ
l(1 − γ)

w(C),

Proof. Let C = v1v2 . . . vlv1. We have

E[w(P ) + w(uv)] = w(C) − w(C)
l

+
∑l

i=1 w(viv)
l

. (1)

From Lemma 1 we get

E[w(P ) + w(uv)] ≤
(

1 − 1
l

+
γ

l(1 − γ)

)
w(C) =

(
l − 1 − (l − 2)γ

l(1 − γ)

)
w(C). (2)

��

Since l−1−(l−2)γ
l(1−γ) = 1 + 2γ−1

l(1−γ) is a monotonically decreasing function of l, and
l ≥ 2 for all cycles, it follows that

Corollary 1. With C, P , u and v as in Theorem 1, we have

E[w(P ) + w(uv)] ≤ 1
2(1 − γ)

w(C).

We are now ready to present our basic algorithm.

Theorem 2. Let C = {C1, . . . , Ck} be a directed cycle cover of graph G. Then
a Hamiltonian cycle H in G with expected weight E[w(H)] ≤ 1

2(1−γ)w(C) can be
found in polynomial time.

Proof. Remove a random edge from each cycle Ci thus turning it into a directed
path Pi. Connect the last vertex of Pi with the first vertex of Pi+1 for i =
1, . . . , k − 1 and connect the last vertex of Pk with the first vertex of P1. Let H
be the resulting Hamiltonian cycle. We claim that E[w(H)] ≤ 1

2(1−γ)w(C).
Consider any cycle in C, say Ci, and assume that we have already removed

a random edge from all the other cycles, and in particular from Ci+1. Let us
now randomly break Ci (creating Pi) and let ei be the edge connecting the last
vertex of Pi with the first vertex of Pi+1. It follows from Corollary 1 that

E[w(Pi) + w(ei)] ≤
1

2(1 − γ)
w(Ci).
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This holds for cycle Ci regardless of the random choices made for the other
cycles, so it also holds when all cycles are broken randomly. Summing this in-
equality over all cycles proves the theorem. ��

Since the minimum weight of a cycle cover lowerbounds the minimum weight of
a Hamiltonian cycle we get the following.

Corollary 2. For any γ ∈ [12 , 1) there is a randomized polynomial time al-
gorithm for ATSP with γ-parameterized triangle inequality, which has expected
approximation ratio of 1

2(1−γ) .

2.2 A Deterministic Algorithm

The algorithm presented in the previous section can be derandomized using a
generic conditional expected value approach. The resulting algorithm is partic-
ularly simple, but we defer its explicit description to the journal version due to
space limitations.

Here, we give only a deterministic version of Theorem 1 and Corollary 1, as
they will be used in a further section.

Corollary 3. Let C be a directed cycle of length l and let v be a vertex not
contained in C. Then, an edge can be removed from C so that the resulting
directed path P satisfies

w(P ) + w(uv) ≤ l − 1 − (l − 2)γ
l(1 − γ)

w(C),

where u is the last vertex of P . In particular,

w(P ) + w(uv) ≤ 1
2(1 − γ)

w(C).

Proof. Remove an edge that gives the lowest value of w(P ) + w(uv). The first
bound follows easily from Theorem 1. It implies the second one since l ≥ 2. ��

Derandomizing the algorithm of Theorem 2 is a bit harder (we skip it in this
conference version).

Theorem 3. Let C = {C1, . . . , Ck} be a directed cycle cover of graph G. Then,
a Hamiltonian cycle H in G with weight w(H) ≤ 1

2(1−γ)w(C) can be found in
polynomial time.

Remark 1. Note that the above analysis implies that ATSP(G)/AP(G) ≤ 1
2(1−γ)

for any graph G, which is tight by the result of Chandran and Ram [3]. In
particular the approximiation ratio of our algorithm is optimal w.r.t. minimum
weight cycle cover relaxation.
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3 Improved Approximation Using Double Cycle Covers

In the algorithm from Section 2 the 2-cycles are the obvious bottleneck, i.e.
if we were able to find the minimum weight cycle cover with no 2-cycles, the
algorithm would have a significantly better approximation ratio of 2−γ

3(1−γ) (see
Fig 1). Unfortunately, finding such a cover is APX-hard even when w has exactly
two values as shown by Manthey [10], and when these values are 1 and 2γ the γ-
parameterized triangle inequality holds. A similar phenomenon occurs for some
other min-ATSP and max-ATSP variants. Nevertheless, Kaplan, Lewenstein,
Shafrir and Sviridenko [7] obtained a major progress for three ATSP variants and
motivated a series of other improvements (see [6,4,9]) by proving the following.

Theorem 4 (Kaplan et al. [7]). Let G be a directed weighted graph. One can
find in polynomial time a pair of cycle covers C1, C2 such that (i) C1 and C2 share no
2-cycles, (ii) total weight w(C1) + w(C2) of the two covers is at most 2OPT, where
OPT is the weight of the minimum weight Hamiltonian cycle in G.

In this section we will show that the double cycle covers can be also used for
ATSP with γ-parameterized triangle inequality. The resulting algoritm has ap-
proximation ratio of 2−γ

3(1−γ) + O( 1
n ) for γ ∈ (γ0, 1), γ0 ≈ 0.7003.

The sketch of our algorithm is as follows. We begin by finding a pair of cycle
covers C1, C2 described in Theorem 4. The union of these covers corresponds to
a 2-regular directed graph M . We then replace the connected components of M
by paths which eventually form a Hamiltonian cycle. We present two methods
of doing it.

In the first method, each connected component Q of M is replaced by a low-
weight cycle which contains all vertices of Q. These cycles are then joined to
form a single path using the method from Section 2, Corollary 3. This approach
is efficient enough provided that the components are big i.e. they have size at
least f(γ), for certain function f , to be defined later.

For small components we use a different method. Using another deep result
of Kaplan et al. we show that a component Q can be replaced by a collection
of paths of total weight 2−γ

3(1−γ)w(Q), provided that we have |V (Q)| previously
constructed paths to work with. Guaranteeing that is a technical detail, and it
increases the final approximation ratio by O( 1

n ).
In the next two subsections we show how to deal with small and big connected

components of M . Then we give a more detailed decription of the complete
approximation algorithm.

3.1 Dealing with Small Components

A directed graph which is a union of vertex-disjoint paths will be called a path
graph. The following theorem is due to Kaplan et al. [7] (Theorem 5.1).

Theorem 5. Let G be a directed 2-regular multigraph that contains neither two
copies of the same 2-cycle, nor two copies, oppositely oriented, of the same 3-
cycle. Then G is a union of three path graphs, and such a decomposition can be
found in polynomial time.
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We will need the following corollary from Lemma 1.

Corollary 4. Let Q be a 2-regular subgraph in a directed multigraph G and let
x be a vertex not in V (Q). Then,

∑
v∈V (Q)

w(v, x) ≤ γ

2(1 − γ)
w(Q).

Proof. We apply Lemma 1 with W being an Eulerian cycle in Q. Since each
vertex of Q is visited by W exactly twice, the claimed bound follows. ��

Lemma 2. Let Q be a connected component in a directed multigraph G such
that Q is 2-regular and has t vertices, t ≥ 3. Let X be a set of k vertices of
G, disjoint with V (Q), k ≥ t. Then one can find in polynomial time a set of k
vertex-disjoint paths P such that

(i) paths in P end in vertices of X,
(ii) V (P) = V (Q) ∪ X, and
(iii) w(P) ≤ 2−γ

6(1−γ)w(Q).

Proof. We begin by decomposing Q into three path graphs P1, P2 and P3 using
Theorem 5. This is possible unless Q is a union of two oppositely oriented 3-
cycles, in which case we replace the heavier of these cycles by another copy of
the lighter one and then apply Theorem 5. We assume that for each i ∈ {1, 2, 3},
V (Pi) = V (Q). If that is not the case, we add the missing vertices (treated as
paths of length 0).

Consider any vertex v in Q. Since Q is 2-regular, outdegP1
(v)+outdegP2

(v)+
outdegP3

(v) = 2. Hence outdegPi
(v) = 0 for exactly one i ∈ {1, 2, 3}. It follows

that for every vertex v of Q there is exactly one path in P1, P2 and P3 that ends
in v. In particular, graphs Pi contain exactly t paths in total. Now, we are going
to choose a distinct vertex x of X for each such path, and connect its end v to x
by a new edge. In order to guarantee that the total weight of the added edges is
small, we consider t ways of assigning vertices to paths and choose the best one.

More precisely, for each i = 0, . . . , t − 1 we construct three path graphs Pi,1,
Pi,2, and Pi,3, each with the vertex set V (Q)∪X . Let {x0, x1, . . . , xt−1} be a set
of t vertices of X (arbitrarily selected) and let V (Q) = {v0, . . . , vt−1}. For any
i = 0, . . . , t−1, q = 1, 2, 3, the graph Pi,q is obtained from Pq by extending each of
its paths with an edge — if a path ends in vj we extend it with (vj , x(j+i) mod t).

Our algorithm returns the lightest among the path graphs Pi,q. Denote it by
P. Let A = {(vj , x(j+i) mod t) : i, j = 0, . . . , t − 1} be the set of edges added to
the paths of P1, P2 and P3. Then,

w(P) ≤
∑t−1

i=0
∑3

q=1 w(Pi,q)
3t

=
t · w(Q) + w(A)

3t
. (3)
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It suffices to bound w(A). We proceed as follows.

w(A) =
t−1∑
j=0

t−1∑
i=0

w(vj , x(j+i) mod t) =
t−1∑
j=0

t−1∑
	=0

w(vj , x	) =
t−1∑
	=0

t−1∑
j=0

w(vj , x	) ≤

≤
t−1∑
	=0

γ

2(1 − γ)
w(Q) =

tγ

2(1 − γ)
w(Q), (4)

where the ineaquality follows from Corollary 4. After plugging (4) to (3) we get
the claimed bound on w(P). ��

3.2 Dealing with Big Components

An easy proof of the following lemma is deferred to a journal version because of
space limitations.

Lemma 3. For k ≥ 3, let W = (x1, x2, . . . , xk) be a walk such that each vertex
appears at most twice in W . Then,

w(x1xk) ≤ γw(x1x2) + γ2
k−2∑
i=2

w(xixi+1) + γw(xk−1xk).

Lemma 4. Let Q be a connected 2-regular directed multigraph. Then there is a
randomized polynomial time algorithm which finds in Q a Hamiltonian cycle of
expected weight at most 1

4 (1 + γ)2w(Q).

Proof. Let t be the number of vertices in Q. Our algorithm begins by finding an
Eulerian cycle E = (v0, v1, . . . , v2t−1, v0) in Q. For each pair of indices i, j such
that vi = vj , our algorithm chooses one index uniformly at random, and the
chosen index will be called a stop point. Observe that every vertex of Q appears
in E precisely twice, so for each vertex x there is exactly one stop point i such
that vi = x. Let i0, i1, . . . , it−1 be the sequence of stop points such that ij < ij+1
for j = 0, . . . , t − 2. Assume w.l.o.g. that i0 = 0. Finally, the algorithm returns
the Hamiltonian cycle C = vi0 , vi1 , . . . , vit−1 .

Now we are going to bound E[w(C)]. Consider arbitrary choice of stop points.
In what follows, indices at vq and ip are modulo 2t and t, respectively. We have

w(C) =
t−1∑
p=0

w(vipvip+1).

Using Lemma 3 we can bound the values of w(vipvip+1) for p = 0, . . . , t−1. Then
we get

w(C) ≤
2t−1∑
q=0

contrib(vqvq+1)w(vqvq+1),
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where for any q such that ip ≤ q < ip+1

contrib(vqvq+1) =

⎧⎪⎨⎪⎩
1 when both q and q + 1 are stop points ,

γ when exactly one of q, q + 1 is a stop point,
γ2 when neither q nor q + 1 is a stop point.

It follows that

E[contrib(vqvq+1)] ≤
1
4

+
1
2
γ +

1
4
γ2 =

1
4

(1 + γ)2 . (5)

The lemma follows by the linearity of expectation. ��

Note that the algorithm in Lemma 4 can be easily derandomized using the
method of conditional expectation.

Lemma 5. Let Q be as before. Then there is a deterministic polynomial-time
algorithm which finds in Q a Hamiltonian cycle of weight at most 1

4 (1+γ)2w(Q).
��

Lemma 5 and Corollary 3 immediately imply the following.

Corollary 5. Let Q be a connected component in a directed multigraph G such
that Q is 2-regular and has t vertices, t ≥ 3. Let x be a vertex of G which does
not belong to V (Q). Then one can find in polynomial time a path P such that

(i) path P ends in x,
(ii) V (P ) = V (Q) ∪ {x}, and
(iii) w(P ) ≤ 1

4 (1 + γ)2 · t−1−(t−2)γ
t(1−γ) w(Q). ��

3.3 The Complete Algorithm

Now we are going to combine the ingredients developed in the two previous
sections in a complete approximation algorithm. Let K be an integer constant
whose value will be determined later, K ≥ 1. (K depends on the constant γ
only). Intuitively, K is the maximum size of what we call a small component.

Let G be the input complete graph. Our algorithm begins by computing for
each vertex v ∈ V the value of D(v) = maxx∈V w(v, x), i.e. the maximum weight
of an edge in G that leaves v. Let X0 be a set of K vertices of V with smallest
values of D(v). The algorithm finds in G[V \ X0] the two cycle covers described
in Theorem 4. Let M be the corresponding 2-regular multigraph.

Our algorithm builds a collection H of K vertex-disjoint directed paths which
end in the vertices of X0. Initially we put H = X0 (regarded as a collection of
paths of length 0). For each connected component Q of M the algorithm extends
the paths in H using the paths returned by the algorithm from Lemma 2 if Q is
of size at most K or from Corollary 5 otherwise. We use the first vertices of the
paths in H as the set X in Lemma 2, and x in Corollary 5 is the first vertex of
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any of these paths. Note that after each such extension H is still a collection of
K vertex-disjoint paths ending in X0.

After processing all the connected components of M , H is a collection of
vertex-disjoint paths incident to all vertices of V . The algorithm finishes by
patching H arbitrarily to a Hamiltonian cycle H .

It is clear that our algorithm returns a Hamiltonian cycle. Now we are going to
bound its weight. Let H be the collection of K paths just before patching them to
a Hamiltonian cycle. Let Msmall (resp. Mbig) be the union of the components of
M that have size at most K (resp. at least K +1). By Lemma 2 and Corollary 5
we get (recall that t−1−(t−2)γ

t(1−γ) is a decreasing function of t)

w(H) ≤ 2 − γ

6(1 − γ)
w(Msmall) +

1
4
(1 + γ)2

K − (K − 1)γ
(K + 1)(1 − γ)

w(Mbig).

Hence,

w(H) ≤ max
{

2 − γ

6(1 − γ)
,
1
4
(1 + γ)2

K − (K − 1)γ
(K + 1)(1 − γ)

}
w(M). (6)

Now consider a minimum weight Hamiltonian cycle H∗ in G and let OPT =
w(H∗). Let H∗

V \X0
be a minimum weight Hamiltonian cycle in G[V \ X0]. Let

C be a Hamiltonian cycle in G[V \ X0] which visitis vertices of V \ X0 in the
order they appear in H∗. Then,

w(H∗
V \X0

) ≤ w(C) ≤ w(H∗) = OPT, (7)

where the second inequality follows from the γ-parameterized triangle inequality.
Since w(M) ≤ 2w(H∗

V \X0
) by Theorem 4, we get

w(H) ≤ max
{

2 − γ

3(1 − γ)
,
1
2
(1 + γ)2

K − (K − 1)γ
(K + 1)(1 − γ)

}
OPT. (8)

Now it suffices to bound the weight of the edges added during the patching
phase. We use the following lemma (proof deferred to the journal version).

Lemma 6. For any fixed γ ∈ [12 , 1),∑
x∈X0

D(x) = O(K
n OPT)

Note that in our patching phase we use only edges leaving vertices of X0. Hence
using the above lemma we bound their weight by O(K

n OPT). This, together
with (8) gives the following theorem.

Theorem 6. For any integer K ≥ 1 there is a polynomial time algorithm which
finds a Hamiltonian cycle of weight at most[

max
{

2 − γ

3(1 − γ)
,
1
2
(1 + γ)2

K − (K − 1)γ
(K + 1)(1 − γ)

}
+ O(K

n )
]

OPT.
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Corollary 6. There is a constant γ0, γ0 ≈ 0.7003 such that
(i) For any γ ∈ (γ0, 1) there is a polynomial time algorithm for ATSP with γ-

parameterized triangle inequality, which has approximation ratio of 2−γ
3(1−γ)+

O( 1
n ).

(ii) For any γ ∈ [12 , γ0], and for any ε > 0 there is a polynomial time algorithm
for ATSP with γ-parameterized triangle inequality, which has approxima-
tion ratio of 1

2 (1 + γ)2 + ε.

Proof. One can easily check that the inequality in the variable x

1
2
(1 + γ)2

x − (x − 1)γ
(x + 1)(1 − γ)

≤ 2 − γ

3(1 − γ)

has the set of solutions of the form x ≥ f(γ) for some function f , if γ satisfies
the inequality

2 − γ

3
− 1

2
(1 − γ)(1 + γ)2 > 0, (9)

and has no solutions otherwise. Moreover,the set of solutions of (9) that belong
to [ 12 , 1) is of the form γ ∈ (γ0, 1), where γ0 is an irrational number, γ0 ≈ 0.7003.
It follows that for any γ ∈ (γ0, 1) we can put K = "f(γ)# in Theorem 6 and we
obtain an algorithm with approximation ratio of 2−γ

3(1−γ) + O( 1
n ).

For the second claim we know that whenever γ ∈ [12 , γ0], the algortihm from
Thorem 6 has an approximation ratio of 1

2 (1+γ)2 K−(K−1)γ
(K+1)(1−γ) . It is easy to check

that 1
2 (1 + γ)2 + ε upperbounds this for

K ≥
1
2 (1 + γ)2(2γ − 1)

(1 − γ)ε
− 1.

��

3.4 Tightness

As we mentioned earlier, the algorithm from Section 2 is optimal with respect
to the cycle cover relaxation. Recall that for γ ∈ (γ0, 1) the algorithm from
Section 2 has approximation ratio of 2−γ

3(1−γ) + O( 1
n ). In what follows we show

that this ratio is nearly optimal w.r.t. the double cycle cover relaxation of Kaplan
et al. It is also nearly optimal w.r.t. the minimum cycle cover with no 2-cycles.
Let DC(G) be the half of the minimum weight of a pair of cycle covers of G
described in Theorem 4 and let AP3(G) be the minimum weight of a cycle cover
of G with no 2-cycles. The proof of the following theorem is deferred to the
journal version.

Theorem 7. For every γ ∈ [12 , 1), there exists an infinite family of graphs G

such that for every G ∈ G,

ATSP(G)
DC(G)

=
ATSP(G)
AP3(G)

=
2 − γ

3(1 − γ)
.

It is an interesting open problem whether the approximation ratio of 2−γ
3(1−γ) can

be achieved for all γ ∈ [12 , 1).
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1. Bläser, M.: An improved approximation algorithm for the asymmetric tsp with
strengthened triangle inequality. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J.,
Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 157–163. Springer, Hei-
delberg (2003)
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Abstract. We study the problem of computing low-distortion embed-
dings in the streaming model. We present streaming algorithms that,
given an n-point metric space M , compute an embedding of M into an
n-point metric space M ′ that preserves a (1−σ)-fraction of the distances
with small distortion (σ is called the slack). Our algorithms use space
polylogarithmic in n and the spread of the metric. Within such space
limitations, it is impossible to store the embedding explicitly. We bypass
this obstacle by computing a compact representation of M ′, without
storing the actual bijection from M into M ′.

1 Introduction

Over the last few years, computation on large data sets has become an important
algorithmic paradigm with many practical applications. Examples of such data
sets include the web graph, internet traffic logs, click-streams, and genome data.
In many scenarios, the data is only available in the form of a stream of objects.
From an application point of view, we are typically interested in a small summary
rather than the whole raw data. For example, when analyzing internet traffic logs,
we do not want to track every single packet, but we want to have a high-level
view of the data to detect anomalies like denial of service attacks, spreading
viruses, etc., or we simply want to be able to give trustworthy statistics about
network load, packets exchanged with other internet service providers, etc.

One approach to data stream analysis is the development of streaming algo-
rithms, i.e. algorithms that process data sequentially while using only a small
amount of memory compared to the size of the data set. Most of these algo-
rithms can be assigned to two categories: they either maintain specific statistics
of the stream, such as the number of distinct elements or the frequency moments,
or they try to approximate the raw data by a small summary, for example, by
maintaining a histogram or a clustering of the observed data.

In this paper, we give a general approach to the second type of problems. We
consider the case where the data stream is a sequence of points from a metric
space M = (X, D). Our goal is to compute a compact representation of M that
captures the pairwise distances of M well and uses only sublinear space. Unfor-
tunately, unless M is very simple (e.g., X is a multiset with many duplicates),
� Partially supported by DFG grant So 514/1-2.
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one cannot find a sublinear space representation of M , such that all pairwise
distances are preserved. It is not even possible to guarantee that all pairwise dis-
tances are preserved up to any fixed factor. Simply said, it is unavoidable that
we loose some distances in the sense that they can get arbitrarily distorted. The
total loss of information is quantified via the notion of low-distortion embeddings
with slack. A (non-contracting) embedding from a metric space M = (X, D) into
a metric space M ′ = (X ′, D′) is a mapping φ : X → X ′, such that, for every
x, y ∈ X , we have D(x, y) ≤ D′(φ(x), φ(y)). Such an embedding has distortion c
if, for any x, y ∈ X , D′(φ(x), φ(y)) ≤ c · D(x, y). An embedding with distortion
c and slack σ is a mapping that satisfies D(x, y) ≤ D′(φ(x), φ(y)) ≤ c · D(x, y)
for all but a σ-fraction of pairs x, y ∈ X .

Our Results. We initiate the study of streaming algorithms for metric embed-
dings with slack. We obtain the following results:

– There is a streaming algorithm which for any ε, σ > 0, given a dynamic data
stream of insert and delete operations of points from a (possibly high-dimen-
sional) Euclidean space, maintains a point set P ′ in a constant-dimensional
Euclidean space, such that the current input point set P embeds into P ′

with distortion 1 + ε and slack σ.
– We use an embedding technique to show that there is a streaming algo-

rithm that maintains a (1+ ε)-approximation of the Max-Cut problem for a
dynamic data stream of high-dimensional, Euclidean points.

– There is a streaming algorithm which for any ε, σ > 0, given a stream of
points from an n-point metric space M = (X, D) with bounded doubling
dimension, computes an implicit representation of an n-point metric space
M ′ = (X ′, D), such that M embeds into M ′ with distortion 1+ε and slack σ.

– There is a streaming algorithm which for any σ > 0, given a stream of points
from a general n-point metric space M = (X, D), computes an implicit rep-
resentation of an n-point metric space M ′ = (X ′, D′), such that M embeds
into M ′ with O(1) distortion and slack σ.

– Any algorithm that computes with constant probability, for every n-point
metric space M = (X, D), an (implicit or explicit) representation of another
metric space M ′ = (X ′, D′), such that M embeds into M ′ with distortion
less than 2 and slack at most 1/5, requires space Ω(n/ log n + log log Δ),
where Δ is the ratio between the smallest and largest distance in M .

Our Techniques. The construction of the compact representation for Euclidean
metrics is based on a certain quadtree partition of the input space into a few
cells and an elaborate refinement of this partition, where each cell is further
subdivided into a few subcells. The set of points within each subcell is replaced
by a single weighted point, whose weight is determined by the number of points
it replaces. We show that we can use a random sampling technique to estimate
the number of points in every cell. The resulting streaming algorithm works well
for low-dimensional data. In case that the input points are high-dimensional,
we first use a dimension reduction to map the points to a constant-dimensional,
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Euclidean space with distortion 1 + ε and slack σ. Afterwards, we apply our
streaming algorithm on the projected data.

We develop a different approach in order to obtain a constant distortion for
general metrics. In this case, our embedding result is based on the existence of
certain subsets of points called edge-dense nets. Intuitively, an edge-dense net N
of a metric space M = (X, D) has the property that, for a (1−σ)-fraction of pairs
of points x, y ∈ X , the distance between N and both x and y is small compared
to D(x, y). The existence of such nets follows from results on embeddings with
beacons by Kleinberg et al. [12]. After some modifications, this allows us to
compute the embedding with a single-pass streaming algorithm. Our algorithm
resembles the construction of spanners with slack of Chan et al. [5].

Related Work. Kleinberg et al. [12] introduced the notion of embeddings with
slack. Among other results, they obtained, for any σ > 0, a beacon-based em-
bedding of general metric spaces with distortion O(1) and slack σ. For metrics
with bounded doubling dimension, they improved the distortion to 1+ε, for any
ε > 0. Abraham et al. [1] extended these results to arbitrary metric spaces and
for embeddings under any �p norm, p ≥ 1. In [2], the authors considered embed-
dings with low distortion and slack for arbitrary metric spaces that additionally
guarantee constant average distortion. Metric approximation with slack has also
been investigated in the setting of graph spanners. Chan et al. [5] showed that,
for any weighted graph G and any ε > 0, there exists a spanner of G with linear
number of edges achieving stretch O(log (1/ε)) and slack ε. The authors also
gave a spanner construction, which we take as a starting point for our embed-
ding of general metric spaces. In order to transform this construction to the
streaming model, we use a technique that has been earlier applied by Czumaj
and Sohler [6] to achieve 2-pass streaming algorithms for clustering problems.
Embeddings of point sets into trees (via a quadtree partitioning) have been used
by Indyk [10] to obtain approximation algorithms for several geometric prob-
lems. Also, Frahling and Sohler [9] applied a similar quadtree partitioning to
get streaming algorithms for different clustering problems. A somewhat similar
partitioning technique is used for embedding Euclidean metric spaces in this
paper.

2 Preliminaries

An n-point metric space M is a pair (X, D), where X is a set of n points and
D is a symmetric, non-negative mapping D : X × X → � that satisfies the
triangle inequality. Throughout the paper, we assume that the minimum pair-
wise distance in M is at least 1 and the maximum pairwise distance at most
Δ. Furthermore, we assume that each coordinate of a point can be represented
by using one memory cell and, given two point labels, we can compute the dis-
tance between the associated points in a constant number of time units. These
assumptions are commonly made in computational geometry. Thus, unless oth-
erwise stated, we measure the running time of our algorithms in time units und
the space requirement in memory cells.
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We will consider three kinds of metric spaces, namely general metrics spaces,
where the only restrictions on the distance function D are as given above, Eu-
clidean spaces, where D is determined by the L2-norm, and doubling metric
spaces. A metric M = (X, D) is called doubling metric if, for any constant di-
mension λ, each ball with any radius r centered at any point in X can be covered
by 2λ balls each of radius r/2 and centered at a point in X . Given n points of
such metric spaces, our streaming algorithms compute compact representations
that uses only sublinear space. Note that we assume that the parameter n is
known in advance by our algorithms. Besides the space requirement, the quality
of a representation is measured by the quantity of the distortion and the slack.

Definition 1. Given c ≥ 1 and σ > 0, an embedding φ : X → X ′ from a
finite metric space M = (X, D) into a target metric space M ′ = (X ′, D′) has
distortion c and slack σ if D(x, y) ≤ D′(φ(x), φ(y)) ≤ c · D(x, y) is true for all
but a σ-fraction of pairs x, y ∈ X.

Our streaming algorithms for general and doubling metric spaces work in the
insertion-only model, whereas the ones for Euclidean metric spaces work in the
dynamic geometric data stream model. In the first model, the input is a sequence
of insert operations of points. Algorithms are only allowed to perform one se-
quential scan over the data and to use local memory that is polylogarithmic in
the size of the input stream. In our scenario, the available local memory space is
logO(1)(n+Δ), where n is the length of the input stream and Δ is the spread of
the input points. In the latter model, the input is a sequence of m Insert and
Delete operations of points from a discrete, Euclidean space {1, . . . , Δ}d [10].
We assume that the stream is consistent, i.e., no point is removed that is not
present in the current point set, and no point is added twice. We use n as an
upper bound on the size of the current point set. Obviously, we have n = O(Δd).
Algorithms are only allowed to perform one sequential scan over the input stream
and to use local memory space that is polylogarithmic in m, n, and Δ.

3 Embedding Euclidean Metrics

In this section, we consider compact representations of Euclidean metric spaces.
Let M = (P, D) be any given n-point Euclidean metric space. Then, the goal is to
find an embedding φ : M → M ′ with low distortion and low slack, such that M ′

requires only sublinear space. One useful concept is the notion of well-separated
pair decomposition (WSPD) [4].

A WSPD of size t allows all pairwise distances to be compactly summarized
by t distances. Formally speaking, for any constant ε > 0, two point sets A and
B are ε-well-separated if max{diam(A), diam(B)} ≤ ε ·D(A, B), where D(A, B)
is the minimum distance from any point in A to any point in B and diam(A)
and diam(B) is the diameter of A and B, respectively. Based on this definition,
an ε-WSPD for M of size t is a collection of ε-well-separated pairs of subsets
P = {(A1, B1), . . . , (At, Bt)} with Aj , Bj ⊆ P for 1 ≤ j ≤ t, such that every pair
of points (a, b) ∈ P × P , a �= b, lies in Aj × Bj or Bj × Aj for exactly one index
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j, 1 ≤ j ≤ t. The usefulness is now that if we store instead of each pair (Aj , Bj)
a pair of representative points (R(Aj), R(Bj)), such that the maximum distance
from a point in Aj (Bj) to R(Aj) (R(Bj)) is diam(Aj)/2 (diam(Bj)/2), then
D(R(Aj), R(Bj)) is a (1 + ε)-approximation for all the distances between pairs
of points from Aj × Bj .

In general, one assumes that the size of an ε-WSPD is linear in n. Since we
restrict the space requirement of the representation of M to be sublinear in n
and there does not exist an ε-WSPD for any metric M and any constant ε that
has sublinear size, we introduce the notion of slack WSPD.

Definition 2. For any n-point metric M = (P, D), let P be a collection of pairs
of subsets {(A1, B1), . . . , (At, Bt)}, where Aj , Bj ⊆ P for 1 ≤ j ≤ t, and let Iε

be the subset of indices, such that, for all i ∈ Iε, (Ai, Bi) is ε-well-separated. P
is called an ε-WSPD with slack σ for M , if every pair of points (a, b) ∈ P × P ,
a �= b, lies in Aj × Bj or Bj × Aj for exactly one index j ∈ {1, . . . , t} and∑

i∈Iε
|Ai| · |Bi| ≥ (1 − σ) · n2.

3.1 Slack WSPD in Low Dimensions

In order to construct an ε-WSPD with slack σ for any n-point Euclidean space
M = (P, D) with constant dimension d, we impose log2(Δ) + 1 nested squared
grids over P denoted by G(0), G(1), . . . , G(log2(Δ)). The side length of each cell
in grid G(i) is 2i. We say that the grid cells in G(i) are in level i.

In this subsection, we describe the construction without considering stream-
ing. Our algorithm consists of three phases. In the first phase, we compute a
partitioning of the space based on the heavy cells in the grids (see Definition 3).
Then, it follows a refinement phase, where each cell of the space partitioning
is further subdivided into cubelets. In the last phase, we determine a so-called
representative for each cubelet and compute an ε-WSPD with slack σ from the
set of representatives.

Definition 3. We call a grid cell heavy if it contains at least h(σ) · n points
of P , where h(σ) := σ/2d is a function dependent on σ. A grid cell that is not
heavy is light.

Now, we give a detailed description of the three phases. In the first phase, we
build a quadtree partitioning of the point space. We start our construction with
the coarsest grid G(log2(Δ)). We identify every heavy cell in G(log2(Δ)), i.e.
cells containing at least h(σ) · n points. Then, we subdivide every heavy cell C
into 2d equal sized subcells. These subcells are contained in grid G(log2(Δ)−1).
We call C the parent cell of these subcells. If none of the subcells is heavy, we
stop our process. Otherwise, the algorithm recursively subdivides every heavy
cell, such that, at the end of the first phase, we have only light cells in our space
partitioning. The refinement phase consists of three steps. The first refinement is
that we build a so-called balanced or restricted quadtree of the quadtree that we
obtained so far, i.e., the side length of each cell is allowed to differ from the side
lengths of all neighboring cells by a factor of at most 2 [3]. That means that we
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further subdivide every leaf cell C of the quadtree which has a neighboring cell
whose side length is less than half of the side length of C. We say that two cells
are neighbors if they share some part of the boundary. In the second step, every
leaf cell of the balanced quadtree is subdivided into �d equal sized cubes, where
� = 6

√
d. Finally, we subdivide every cube into �∗(ε)d equal sized cubelets, where

�∗(ε) = 2
√

d/ε is a function dependent on ε. Note that we could have merged the
second and third refinement step into one step, but the definition of cubes makes
the analysis easier. For each cubelet C, we replace all the points inside of C by
one representative, which is set in the center of C and weighted by the number
of replaced points. The collection of all representative pairs is our ε-WSPD with
slack σ for M .

Analysis. Let L(i) be the subset of all the leaf cells of the quadtree whose side
length is 2i, i.e. leaf cells in level i, and let L(i) be the set of leaf cells of the
balanced quadtree whose side length is 2i. Furthermore, we define L∗(i) to be
the set of all the cubes contained in a cell in L(i). Finally, we denote the set of
heavy cells in level i that do not have a heavy subcell by H(i). Notice that the
parent cell of any cell in L(i) is in H(i + 1).

The following lemmas give evidence that the collection of all representative
pairs is an ε-WSPD with slack σ for M . Moreover, we show that, for each point
in P , the distances to its σn closest neighbors in P can be arbitrarily distorted,
but the distances to all other points in P are (1 + ε)-preserved.

Lemma 1. If each cube in the set
⋃log2(Δ)

i=0 L∗(i) is divided into �∗(ε)d equal sized
cubelets, where �∗(ε) = 2

√
d/ε, then any two cubelets, which are not contained

in the same cube or in neighboring cubes, are ε-well-separated.

Proof. Let C1 and C2 be any two cubelets, which are not contained in the same
cube or in neighboring cubes. Furthermore, let C1 be in any level i and C2 be
in any level j. We consider the two cases j ∈ {i, i + 1} and j ≥ i + 2.

We start with the case j ≥ i + 2. Due to the balanced quadtree partitioning,
the side lengths of neighboring cells in

⋃log2(Δ)
i=0 L(i) differ at most by a factor of

2. Hence, the distance between any cell in L(i) and any cell in L(j) with j ≥ i+2
is at least

∑j−1
k=i+1 2k = 2j − 2i+1 ≥ 2j−1. Since C1 is contained in a cell in L(i)

and C2 is contained in a cell in L(j), the distance between C1 and C2 is at least
2j−1. Since the diagonal of the bigger cubelet C2 is

√
d · 2j/(� · �∗(ε)) ≤ ε · 2j−1,

the two cubelets C1 and C2 are ε-well-separated.
In the case j ∈ {i, i + 1}, the distance between C1 and C2 is at least 2i/�.

Since the diagonal of C2 is at most ε · 2i/�, C1 and C2 are ε-well-separated. ��

Lemma 2. Let h(σ) = σ/2d and let p1 and p2 be any two points in P . If the
cubelet that contains p1 and the cubelet that contains p2 are not ε-well-separated,
then p2 belongs to the σn closest points of p1.

Proof. At first, we bound the maximum distance D(p1, p2) between p1 and p2.
Let C∗

1 ∈ L∗(i) be the cube that contains p1 and C∗
2 be the cube that contains p2.

Due to Lemma 1, C∗
1 and C∗

2 must be neighbors. Since we use a balanced quadtree
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partitioning, the side lengths of C∗
1 and C∗

2 differ at most by a factor of 2. Since
C∗

1 ∈ L∗(i), the side lengths of C∗
1 is 2i/� with � = 6

√
d. We have to consider the

cases (i) C∗
2 ∈ L∗(i), (ii) C∗

2 ∈ L∗(i+1), and (iii) C∗
2 ∈ L∗(i−1). In case (i), the

maximum distance between p1 and p2 is at most
√

d · (2i/�+2i/�) ≤ 2i−1 −2i/�.
Since the cube C∗

1 is contained in a cell in L(i) and we use a balanced quadtree
partitioning, the side lengths of all neighboring cells of the cell containing C∗

1 is
at least 2i−1. Thus, the ball with center p1 and radius 2i−1 − 2i/� ≥ D(p1, p2) is
covered by at most 2d cells in

⋃log2(Δ)
k=0 L(k). In case (ii), the maximum distance

between p1 and p2 is at most
√

d · (2i/�+2i+1/�) ≤ 2i −2i/�. Furthermore, since
C∗

2 is contained in a cell in L(i + 1), the side lengths of all common neighbors of
the cells containing C∗

1 and C∗
2 is at least 2i. Thus, the ball with center p1 and

radius 2i − 2i/� ≥ D(p1, p2) can be covered by at most 2d cells in
⋃log2(Δ)

k=0 L(k).
Case (iii) is symmetric to case (ii). As a result, in all cases we have to count the
number of points in 2d cells in

⋃log2(Δ)
k=0 L(k). Since the cells in

⋃log2(Δ)
k=0 L(k) are

light cells, each one contains at most h(σ) · |P | points. It follows that the number
of points, whose distance from p1 is at most D(p1, p2), is at most σ · |P |. ��

The complexity of our algorithm is given as follows.

Lemma 3. The space partitioning consists of O(2O(d)·dd·log(Δ)
εdσ

) cubelets and can

be computed in O(n · log(Δ)+ 2O(d)·log2(Δ)
σ ) time and O(n+ 2O(d)·dd·log(Δ)

εdσ ) space.

Due to our construction, the ε-WSPD with slack σ for M can also be seen as an
embedding for M with distortion 1+ε and slack σ. Let R(p) be the representative
of a point p ∈ P , then the embedding is given by R : P → P ′.

Theorem 1. Given any ε, σ > 0, there exists an algorithm that computes for n

points P from a Euclidean space �d a point set P ′ ⊂ �d of size O(2O(d)·dd·log(Δ)
εdσ

),
such that P embeds into P ′ with distortion 1 + ε and slack σ. The algorithm
requires O(n · log(Δ) + 2O(d)·log2(Δ)

σ ) time and O(n + 2O(d)·dd·log(Δ)
εdσ ) space.

3.2 Streaming Algorithm for Slack WSPD

In this subsection, we explain how to compute a compact representation of a
Euclidean metric M = (P, D) given as a dynamic geometric data stream. The
idea is simply to maintain a random sample of the current point set and to
apply the algorithm described in Subsection 3.1 on the sample set. This is done
as follows.

We read the items of the input stream one by one. Each time, we decide
whether we use the associated point for further computations or not. For that
purpose, we use the technique given in [8] to maintain a sample set of the current
point set P with size s = Θ(N log(n)/σ3), where N = O(2O(d) dd log(Δ)/(εdσ))
is an upper bound on the number of cubelets in the space partition (cf. Lemma 3).
We denote this sample set by S. After the sample step, we build the bal-
anced quadtree partitioning for S and perform the refinement into equal sized



490 C. Lammersen, A. Sidiropoulos, and C. Sohler

cubelets as described in Subsection 3.1. For each cubelet C that contains at least⌈
ln(n)/σ2

⌉
sample points, we replace the points in C by one representative. This

point is set to the center of C and weighted by "|C| · n/s#, where |C| denotes the
number of replaced points. To avoid that the total weight of the representatives
differs from n, we sum up all weights and increase or decrease the weight of an
arbitrary representative by the required amount. Finally, the collection of all
representative pairs is our ε-WSPD with slack σ for M .

Analysis. The technique described in [8] allows us to maintain a sample set, such
that every sample point is chosen nearly uniformly at random from P .

Lemma 4 (Frahling et al. [8]). Let δ > 0 be an error probability parameter.
Given a sequence of Insert and Delete operations of points from the discrete,
Euclidean space {1, . . . , Δ}d, there is a data structure that with probability 1− δ
returns s points q0, . . . , qs−1 from the current point set P = {p0, . . . , pn−1}, such
that Pr [qi = pj] = 1

n ± δ
Δd for every j ∈ {0, . . . , n − 1}. The algorithm has

an update time of O((s + log(1/δ)) · d · log(Δ)) and needs a memory space of
O((s + log(1/δ)) · d2 · log2(Δ/δ)).

Due to the fact that we use a sample set to estimate the number of points in a
cubelet, we make an error which increases the slack. The following result can be
obtained by applying Chernoff Bounds.

Lemma 5. Let N be the number of cubelets in the space partitioning. For a
large enough constant c, the number of points in cubelets that contain at most
σn
cN points from P is at most σn. The number of points in cubelets that contain
at least σn

cN points from P can be σ-approximated by S with probability 1 − 1/n.

We summarize our results in the following theorem. The time and memory space
requirement of our algorithm is dominated by the time and memory requirement
needed by the sampling data structure.

Theorem 2. Let ε > 0, σ > 0, and δ > 0. Given a stream of Insert and
Delete operations of points from a discrete, Euclidean space {1, . . . , Δ}d, there
is a streaming algorithm that maintains with probability 1 − δ, for the current
point set P of size n, a point set P ′ ⊂ �d of size O(2O(d)·dd·log(Δ)

εdσ
), such that P

embeds into P ′ with distortion 1 + ε and slack σ. The algorithm has an update
time of O((2O(d)·dd·log(n)·log(Δ)

εdσ4 +log(1/δ)) ·d · log(Δ)) and needs a memory space

of O((2O(d) ·dd·log(n)·log(Δ)
εdσ4 + log(1/δ)) · d2 · log2(Δ/δ)).

3.3 Slack WSPD in High Dimensions

If the points in P have a high dimension, we first use the Johnson-Lindenstrauss
embedding [11] with d(ε, σ) = Θ(1/(ε2σ)) dimensions to get an embedding into
a constant-dimensional space with distortion 1 + ε and slack σ. Afterwards,
we apply the techniques described in Subsections 3.1 and 3.2 on the constant-
dimensional point set. The resulting representation is an 3ε-WSPD with slack
2σ. We get the following result.
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Theorem 3. Let P be a set of n points in �d, ε, σ > 0, and d(ε, σ) = 2/(ε2σδ)
be a function dependent on ε and σ. Then there exists an embedding π : P →
�

d(ε,σ), such that (1 − ε) · D(p, q) ≤ D(π(p), π(q)) ≤ (1 + ε) · D(p, q) is true for
at least (1 − σ) · n2 pairs p, q ∈ P with probability at least 1 − δ.

3.4 Max-Cut in High Dimensions

In this subsection, we show how to embed a set of high-dimensional, Euclidean
points into a constant-dimensional, Euclidean space, such that the sum of the
pairwise distances is (1 + ε)-preserved. Afterwards, we apply our result to the
Max-Cut problem.

Let φ : P → �
d(ε) be the Johnson-Lindenstrauss embedding, where each

point is mapped into a Euclidean space with d(ε) = Θ(1/(ε2δ2)) dimensions.
By using similar techniques as for the proof of Theorem 3, we can show that,
for a pair of points p, q ∈ P , the expected value of |D(φ(p), φ(q)) − D(p, q)| is
δε ·D(p, q) and |D(φ(p), φ(q))−D(p, q)| is concentrated about its expected value
with probability 1 − δ. These facts imply the following lemma.

Lemma 6. Let P be a set of n points in �d, 0 < ε < 1, and d(ε) = 50/(ε2δ2)
be a function dependent on ε. Then there exists an embedding φ : P → �

d(ε),
such that

(1 − ε)
∑

p,q∈P 2

D(p, q) ≤
∑

p,q∈P 2

D(φ(p), φ(q)) ≤ (1 + ε)
∑

p,q∈P 2

D(p, q)

is true with probability at least 1 − δ.

Given any point set P , the embedding described above is useful for all
geometric problems that satisfy the following four properties:

(i) The cost of an optimal solution cost(P ) for P is a function, whose set of
input parameters is a subset of all pairwise distances of P .

(ii) The cost of an optimal solution cost(P ) for P is at least
∑

p,q∈P 2 1/c ·
D(p, q), where c ≥ 1 is any small constant.

(iii) If the distance D(p, q) between any two points p, q ∈ P is increased or
decreased by any value α > 0, then the cost of an optimal solution cost(P )
for P is increased or decreased by at most O(α).

(iv) The complexity of all known (1 + ε)-approximation algorithms depends
exponentially on the dimension of P .

To handle these problems efficiently, we just embed the input points first and
afterwards apply any (1 + ε)-approximation algorithm on the embedded points.

One suitable problem is the Max-Cut problem in the dynamic data stream
model. Here, the goal is to find a partition of a point set P into two subsets
C1 and C2, such that the sum

∑
p,q∈C1×C2

D(p, q) of inter-cluster distances is
maximized. Obviously, the Max-Cut problem satisfies properties (i) and (iii).
Furthermore, the authors of [9] showed that property (ii) is fulfilled for c = 4.
By combining the embedding of Lemma 6 with the approximation algorithm
presented in [9], we obtain the following result.
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Theorem 4. Let ε > 0 be a precision parameter. Given a stream of m Insert

and Delete operations of points from a high-dimensional, discrete, Euclidean
space {1, . . . , Δ}d, there is a streaming algorithm that maintains with probabil-
ity at least 5/8, for the current point set P of size n, a data structure of size
O(log7(Δmn/ε)/εO(1/ε2)) from which an implicit solution for the max-cut prob-
lem can be extracted in poly((1/ε)1/ε2

, log(Δ), log(n), log(m)) time. An update
requires O(log3(Δnm/ε) + d/ε2) time and O(log(d)/ε2) space.

4 Embedding Doubling Metrics

Our approach for Euclidean spaces can be tranfered to doubling metrics. The
idea is just to replace the nested squared grids in Subsection 3.1 by a hierarchical
cut decomposition. Due to space limitations, we only summarize our results.

Theorem 5. Let ε > 0 and σ > 0. Given a stream of points from an n-point
metric M = (X, D) with bounded doubling dimension λ, there exists a streaming
algorithm that maintains with probability 1 − 1/n a metric space M ′ = (X ′, D)
with |X ′| = O(2O(λ) ·log(Δ)

ελσ
), such that X embeds into X ′ with distortion 1 + ε

and slack σ. The algorithm requires O(2O(λ)·log(n)·log(Δ)
ελ·σ4 ) memory space and has

a constant update time. The set X ′ can be extracted in O(2O(λ)·log2(n)·log3(Δ)
ε2λ·σ8 )

time.

5 Embedding General Metrics

In this section, we give a streaming algorithm for embedding a general metric
space M into a metric space M ′ = (X ′, D′) with constant distortion and slack σ
in the insertion-only model. The algorithm relies on techniques developed in [5]
and [6].

Let p = 2m log2(n) log2(Δ)/(σ2n), where m is a constant depending on σ. We
sample each point in the stream with probability p. Let S = s1, . . . , sk be the
set of sampled points. We maintain the distance between each pair of points in
S. Moreover, for each i ∈ [k], we maintain log2(Δ) counters ci,1, . . . , ci,log2(Δ),
which are initially set to 0. For each point x /∈ S, we compute its nearest neighbor
τ(x) = si in S, at the point of time when x appears in the stream, and we
increment ci,j , where j = "log2(D(x, si))#.

By storing the distances between points in S and the counters ci,j , we im-
plicitly store the following metric space M ′. The metric M ′ is the shortest-path
metric of a graph G with vertex set X . For each pair of points si, sj ∈ S, the
graph G contains an edge {si, sj} of length D(si, sj). For each point x /∈ S,
the graph G contains an edge {x, τ(x)}, of length 2
log2(D(x,τ(x)))�. Let ϕ be the
resulting embedding. Note that we do not store the mapping ϕ : X → X ′, since
this would require Ω(n) space.
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Analysis. In order to prove that the embedding has constant distortion and slack
σ, we first show that M contains some small edge-dense net.

Definition 4 ((σ, γ)-Edge-Dense Net). For a metric space M = (X, D), a
subset N ⊂ X is a (σ, γ)-edge-dense net if, for at least a (1−σ)-fraction of pairs
x, y ∈ X, there exist bx, by ∈ N , such that max{D(x, bx), D(y, by)} ≤ γ ·D(x, y).

Lemma 7 (Kleinberg et al. [12]). For any metric space M = (X, D) and for
any slack parameter σ > 0, there exists N ⊂ X with |N | = C(σ), where C(σ)
is a constant depending on σ, such that, for at least a (1 − σ)-fraction of pairs
x, y ∈ X, we have minb∈N{D(x, b), D(y, b)} ≤ D(x, y).

The next lemma follows immediately from Lemma 7 and the triangle inequality.

Lemma 8. For a metric space M = (X, D) and for any σ > 0, there exists
a (σ, 2)-edge-dense net N ⊂ X with |N | = C(σ), where C(σ) is a constant
depending on σ.

Now, let N = {y1, . . . , ym} be a (σ, 2)-edge-dense net for the input metric M and
σ ∈ (0, 1). For each � ∈ [m], let X	 be the set of points in X , for which the nearest
neighbor in N is y	 (breaking ties arbitrarily). Also, for each j ∈ [log2(Δ)], let
X	,j = {x ∈ X	 : D(x, y	) ∈ (2j−1, 2j]}. We say that X	,j is good, if after σ|X	,j |
points from X	,j have appeared in the stream, the set S contains at least one
point from X	,j. Since any X	,j with |X	,j | ≥ nσ

m log2(Δ) is bad with probability

(1 − p)σ|X�,j | < 1/n2, the next lemma follows by a Union bound over all �, j.

Lemma 9. With probability at least 1− 1/n, for each � ∈ [m] and j ∈ [log2(Δ)]
with |X	,j | ≥ nσ

m log2(Δ) , X	,j is good.

Lemma 10. With probability at least 1− 1/n, for at least a (1− 3σ)-fraction of
pairs x, y ∈ X, we have D(x, y) ≤ D′(ϕ(x), ϕ(y)) ≤ 19 · D(x, y).

Proof. The total number of points that are contained in sets X	,j with |X	,j| ≤
σn

m log2(Δ) is at most σn. Now, by Lemmas 7, 8, and 9 and since N is a (σ, 2)-
edge-dense net, it follows with probability at least 1 − 1/n that, for at least a
(1 − 3σ)-fraction of pairs x, y ∈ X , there exist bx, by ∈ N , and x′, y′ ∈ S, such
that:

– x′ and y′ appear in the stream before x and y, respectively,
– D(x, bx) ≤ D(x, y) or D(y, by) ≤ D(x, y),
– max{D(x, bx), D(y, by)} ≤ 2 · D(x, y),
– D(x′, bx) ≤ 2 · D(x, bx), and D(y′, by) ≤ 2 · D(y, by).

Due to our construction and the triangle inequality, for a pair x, y, we get

D′(ϕ(x), ϕ(y)) = D′(ϕ(x), ϕ(τ(x))) + D′(ϕ(τ(x)), ϕ(τ(y))) + D′(ϕ(τ(y)), ϕ(y))
≤ D(x, bx) + D(bx, x′) + D(x′, y′) + D(y′, by) + D(by, y) .

By using the facts above, we can upper bound the last sum by 19 · D(x, y). ��
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Combining Lemmas 8 and 10, we obtain the following result.

Theorem 6. Given any σ > 0 and any n-point metric space M , there exists a
streaming algorithm that computes with probability at least 1 − 1/n an n-point
metric space M ′, such that M embeds into M ′ with distortion O(1) and slack σ.
The space requirement of the algorithm is O(C(σ)·log2(n)·log2(Δ)

σ2 ), where C(σ) is
a constant depending on σ.

6 Lower Bounds

We derive the following lower bound on the space requirement. The proof is
based on the pigeonhole principle.

Theorem 7. Let M = (X, D) be an arbitrary n-point metric space and let
σ ≤ 1/5. Then any algorithm that computes for every input metric space M
with positive probability an (implicit or explicit) representation of another metric
space M ′ = (X ′, D′), such that M embeds into M ′ with distortion less than 2
and slack σ, requires Ω(n/ log n + log log Δ) bits of memory, where Δ is the
spread of the metric M .
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Abstract. In a paper that considered arithmetic precision as a limited
resource in the design and analysis of algorithms, Liotta, Preparata and
Tamassia defined an “implicit Voronoi diagram” supporting logarithmic-
time proximity queries using predicates of twice the precision of the input
and query coordinates. They reported, however, that computing this di-
agram uses five times the input precision. We define a reduced-precision
Voronoi diagram that similarly supports proximity queries, and describe
a randomized incremental construction using only three times the input
precision. The expected construction time is O(n(log n+log μ)), where μ
is the length of the longest Voronoi edge; we can construct the implicit
Voronoi from the reduced-precision Voronoi in linear time.

Keywords: Voronoi diagram, Low-degree primitives, Randomized
algorithm, Robust computation.

1 Introduction
Geometric algorithms that have been proved correct may still fail due to numer-
ical errors that occur because geometric predicates and constructions require
higher precision than is readily available. For example, computing the topolog-
ical structure of the Voronoi diagram of n sites requires four times the input
precision, Voronoi vertices of sites with integer coordinates have rational co-
ordinates of triple precision over double, and testing whether a query point is
above or below a segment joining two Voronoi vertices requires six times in-
put precision. Liotta, Preparata, and Tamassia [1] derived a structure from the
Voronoi diagram that supports logarithmic-time proximity queries for points on
a grid using only two times the input precision. Unfortunately, they report that
computing their diagram requires five times the input precision.

We introduce a structure that similarly supports proximity queries, but is
computed incrementally using at most triple precision in O(n(log n + log μ))
expected time, where μ is the length of the longest Voronoi edge. From our
structure it is easy to obtain the structure of Liotta et al. in linear time.

Computing Voronoi diagrams is a well studied problem and many optimal algo-
rithms have been proposed [2, 3, 4, 5]. Most are designed for a RealRAM or other
computational model in which coordinate computations may be carried out to ar-
bitrary precision, allowing the computer to work with exact Euclidean geometry.
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There are four popular ways to handle the numerical precision issues that arise
when geometric algorithms are implemented on computers with limited precision:
rounding, exact geometric computation, topological consistency, and degree-
driven algorithm design. Rounding to machine precision is simplest, and results
in fast execution, but calculations with incorrect values may cause algorithms to
have unexpected behavior or even fail. The exact geometric computation paradigm
encapsulates the numerical computations in geometric and combinatorial predi-
cates and constructions that are guaranteed to produce correct decisions. These
predicates can be built into libraries, such as CORE [6, 7], CGAL [8] and LEDA [9],
for reuse by many algorithms. These libraries support various techniques for im-
plementing correct predicates, including arbitrary precision in software, which is
slow but always correct, arithmetic filters [10, 11, 12], which use precomputed error
bounds for machine arithmetic so that arbitrary precision is needed only when ma-
chine precision is insufficient, and adaptive predicates [13], which evaluate only to
the precision needed to guarantee a correct solution. Sugihara and Iri [14] suggest
that topological consistency is more important than geometric correctness – that
inaccurate values of coordinates can be tolerated provided that the data structures
satisfy topological invariants needed by algorithms for correct operation. For ex-
ample, a Voronoidiagramalgorithmmaybe allowed to round vertex coordinates so
that the embedding becomes non-planar, but as the graph itself is connected and
planar, a graph-based traversal will at least terminate. Topological consistency
produces correct results when the numerical computation gives correct predicate
decisions, and at least avoids catastrophic failure when one or more predicate deci-
sions are incorrect. Degree-driven algorithm design considers arithmetic precision
as a limited resource that should be optimized along with running time and mem-
ory. Input is assumed to be single precision; often restricted to an integer grid for
convenient analysis. Liotta, Preparata, and Tamassia [1] named this technique in
their work on point location, in which they suggested polynomial degree to capture
the complexity of predicates. The technique has also been applied to computing
segment intersections [15, 16, 17]. Our work described here falls into degree-driven
algorithm design.

2 Geometric Preliminaries and Related Work

The Voronoi diagram is well known in computational geometry, but because
we will be concerned with the precision of input, we start with a restricted
definition and remind the reader of some properties. Assume that we are given a
set of n sites, S = {s1, s2, . . . , sn}, with each si = (xi, yi) having single precision
coordinates and all of them lying in a region of interest in the plane that can be
described with a O(1) coordinate values. (The easiest assumption is that S lay
in a bounded rectangle in the integer grid.) The distance metric is Euclidean.

The Voronoi diagram, VoD(S), is the partition of our bounded rectangle into
maximally connected regions with the same set of closest sites. The partition
includes Voronoi regions closest to one site, Voronoi edges equidistant to two
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closest sites, and Voronoi vertices equidistant to three or more closest sites. The
Voronoi cell VRS(si) is the closure of the region of si:

VRS(si) = {x ∈ R2 | ‖x − si‖ ≤ ‖x − sj‖, ∀sj ∈ S}.
Note that we will suppress the S and write VR(si) when S is clear from the
context. Let bij denote the locus of points equidistant to si and sj, the perpen-
dicular bisector of the segment sisj . Note that as we are interested in a particular
region, we can clip bisectors and Voronoi edges to finite segments.

Aurenhammer surveys [18] properties of the Voronoi diagram. In particular,
we use the following:
– Bisectors are straight lines.
– A Voronoi edge on the boundary of cells VR(si) and VR(sj) lies on the

bisector of si and sj .

– A Voronoi cell is the intersection of closed half planes; this implies that
Voronoi cells are convex.

– A site si is contained in its cell, si ∈ VR(si).
The following properties of the Voronoi diagram are also known, but we state

them in a form that will be helpful for our constructions later in the paper.
Lemma 1. The order in which Voronoi cells intersect a line � is the same as
the order of the corresponding sites orthogonal projection onto �.
For our incremental construction we will need to decide if a new cell intersects a
horizontal or a vertical segment. A corollary of Lemma 1 will give us a convenient
way of making this decision.

Corollary 2. Without loss of generality, consider a horizontal segment σ and the
set of sites S whose Voronoi cells intersect σ. Let q be a new site, and let si, sj be
the sites of S whose projections onto σ form the smallest interval containing the
projection of q; site si or sj can be taken as infinite if no finite interval exists.
To determine if VRS(q) intersects σ, it suffices to test if an endpoint of σ or the
intersection of σ ∩ bij is closer to q than to both si and sj .

Proof. Assume that q is above σ and that we would like to determine if VRS(q)
appears below σ. Let xi < xj , and ci, cj ∈ σ be points in the cells of si and sj

respectively. Consider the point q′ that has the same x coordinate as q, but is
raised to infinity. Now, lower q′ continuously, computing the Voronoi diagram
of σ ∪ {q′} until the cell of q′ intersects σ, and let cq′ be this intersection point.
Lemma 1 tells us that ci < cq′ < cj . In addition, cq′ must be on bij , otherwise cq′

would be in the middle of the cell of si or sj causing the cell to be non-convex.
In fact, cq′ is the point equidistant to si, q

′ and sj . Now, if q′ is above q then
the point equidistant to si, q and sj must be below cq′ so the cell of q must
intersect σ. Alternatively, if q′ is below q then the point equidistant to si, q
and sj is above cq′ so the cell of q is completely above σ and therefore, their
intersection is empty.

Next we show that the intersection of a Voronoi diagram and a convex region is
a collection of trees.
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Lemma 3. Given a set of sites S and a convex region R containing no sites of
S; the edges and vertices of the VoD(S) in R form a forest.

Proof. If R∩VoD(S) contained a cycle then R would contain a Voronoi cell, and
therefore a site. Since R contains no sites, we conclude that R ∩ VoD(S) does
not contain a cycle.

The Voronoi diagram can be used to determine the closest site to a query point
q if we build a point location structure on top of it. The trapezoid method of
point location [2] builds a logarithmic-depth directed acyclic graph (DAG) with
two types of nodes: x-nodes evaluate whether q is left or right of a vertical
line through some vertex v by comparing x coordinates, and y-nodes evaluate
whether q is above or below the line through some edge e.

As suggested in the introduction, Voronoi vertices are rational polynomials in
the input coordinates of degree three over degree two. So to compare x coordi-
nates with a single precision input, it would suffice to clear fractions and evaluate
the sign of a degree three polynomial using triple precision computation. (Triple
precision is also necessary; the polynomial for this predicate is irreducible of
degree three.)

If edge e were defined by two arbitrary Voronoi vertices, then y-node test would
require degree six, but since it is enough to test Voronoi edges, which lie on bi-
sectors, we can compare squared distances to pairs using double precision. Liotta
et al. [1] further observed that when the query points are on a grid, an x-node
can store coordinates of v rounded to half grid points, which reduces the x-node
evaluation to single precision. Thus, they defined their implicit Voronoi diagram,
which stores the topology of VoD(S) as a point location DAG, and for each edge
stores the pair of sites defining the bisector, and for each vertex the Voronoi ver-
tex rounded to a half-integer grid. This has the anomaly that the stored vertices
do not lie on the stored edges. Nevertheless, point location with a grid point q as
input will report the containing cell correctly, and in logarithmic time.

Unfortunately, the only method that Liotta et al. [1] suggest to build their
implied Voronoi diagram is to build the true Voronoi diagram and round, which
they report is a degree five computation. We will reduce this to degree three.

Voronoi diagrams on a pixel grid have been considered in both graphics and
image processing. In graphics, Hoff et al. [19] used the GPU to render an image
of the Voronoi diagram and to recover an approximate Voronoi diagram from
the screen buffer. This method generalizes easily to sites that are segments,
curves, or areas. The work does not consider precision or accuracy guarantees
but discusses errors created from multi-precision distance computations rounded
to machine precision.

In image processing, the distance and nearest neighbor transforms are two op-
erations that can be viewed as querying only at pixels for the distance or name
of the nearest feature pixel. Breu et al. [20] developed a linear-time algorithm
for these transforms by computing the Euclidean Voronoi diagram and querying.
Here, linear is in the number of pixels in the grid; the number of sites may be pro-
portional. They avoid extra logarithmic factors by using the locality of the grid in
point location and in divide and conquer construction. Their algorithm assumes
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a RealRAM and uses at least four times input precision; a divide and conquer
version of our algorithm would reduce the precision of computing distance and
neighbor transforms without sacrificing their worst-case running time.

3 Predicates and Constructions
The traditional measures in the theory of algorithms are asymptotic time and
space, usually described up to a multiplicative constant by big-O notation. Li-
otta et al. [1, 15] suggest that we can analyze the arithmetic precision required
by combinatorial and geometric algorithms, up to an additive constant, by ex-
pressing predicates and constructions as rational polynomial functions of the
input variables and looking only at the polynomial degree.

We assume that input coordinates are single variables, which are degree-one
polynomials. The degree of a monomial is the sum of the degrees of its variables,
and the degree of a polynomial is the maximum degree of its monomials. The
degree of a predicate is the maximum degree of its polynomials, and the degree
of an algorithm is the maximum degree of its predicates.

Bisector Side Predicate: To clarify, we illustrate this concept with a bisectorSide
predicate that determines whether a query point q is closer to site p or site r by
comparing squared distances:

(a1) Evaluate (qx − px)2 + (qy − py)2 � (qx − rx)2 + (qy − ry)2.
(a2) The result < implies that p is closer, > implies r is closer, and = implies q

is on the bisector of p and r.

Since this computation can be performed by evaluating the sign of a degree 2
polynomial, it suffices to use double precision plus a couple of bits for possible
carries. In the rest of this section we briefly define three other predicates or
constructions that operate on bisectors.

Stabbing Order Predicate: Given two bisectors b12, and b34, defined by input
sites, and a vertical grid line � that both bisectors intersect, the stabbingOrder
predicate determines if the intersection b12 ∩ � is above, below or at the same
point as the intersection b34 ∩ �.
Lemma 4. We can determine the stabbingOrder of two bisectors on a grid line
using degree three computation in constant time.
Proof omitted for extended abstract.

Bisector-Segment Intersection Predicate: Given bisector b12 and a non-vertical
segment σ ⊂ b34 with left and right endpoints on horizontal gridlines, �l and �r,
the bisectorSegmentIntersection predicate determines if σ intersects b12.

Lemma 5. We can determine if a bisector intersects a segment whose end points
lay on gridlines with degree three computation in constant time.

Proof. The stabbingOrder of b12 and b34 on �l and �r is different if and only if
we have found an intersection; two stabbingOrder tests suffice.
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Bisector Intersection Construction: Given a bisector b12 that intersects a non-
vertical segment σ as defined for Lemma 5, the bisectorIntersection construction
identifies the grid cell containing the intersection of b12 and σ.
Lemma 6. We can identify the grid cell containing the intersection of a bisector
and a segment whose end points lay on gridlines with degree three computation
in time proportional to log of the length of the segment.

Proof. We can do a binary search on the segment for the grid cell containing the
intersection using the degree three stabbingOrder predicate.

4 The Reduced-Precision Voronoi Diagram
Given a set of n sites S = {s1, s2, . . . , sn}, whose coordinates are b-bit integers,
we define a reduced-precision Voronoi diagram that is intermediate between
the true Voronoi diagram VoD(S) and the implicit diagram of Liotta et al. [1].
Because we use predicates of at most degree three, we cannot know exactly how
bisectors intersect inside of a grid cell. The predicates of the previous section,
however, do provide full information at the grid cell borders. This low level of
information inside of a grid cell gives us a “fuzzy” picture of Voronoi vertices
that we contract to rp-vertices. Since we do however know precise information
at the grid boundaries we maintain rp-edges that keep the same edge ordering
as Voronoi edges entering the grid cell. In this way we keep enough control of
the Voronoi vertices to perform constructions efficiently; in contrast, the implicit
diagram rounds Voronoi vertices off their defining edges.

Let us consider the integer grid G as a partition into grid cells of the form
[i, i + 1) × [j, j + 1) for integers i, j. The rp-Voronoi V̂(S) is the graph with rp-
vertices and rp-edges defined by contracting every edge of the Voronoi diagram
VoD(S) that lies entirely inside some grid cell.

Figure 1(a) depicts and example grid cell G ∈ G and shows the intersection
G ∩ VoD(S), which by Lemma 3 is a forest. In the graph structure of the rp-
Voronoi, V̂(S), we therefore contract each tree of the forest to an rp-vertex.
Edges that leave the grid cell are preserved as rp-edges. Notice that the planar
embedding of the Voronoi VoD(S) gives a natural planar embedding of V̂(S)
in which the ordering of edges entering a grid cell is preserved as the ordering
of edges around the rp-vertex. We find it useful to depict these rp-vertices as
the convex hulls of the intersections of rp-edges, as in Figure 1(b). Although we
never actually compute these convex hulls they bound the locations where the
tree of VoD(S) can lie.

Each rp-vertex v maintains the grid cell Gv containing v, and an list of its
incident rp-edges in counter-clockwise order by their entry to Gv. Each rp-edge e
stores the generator sites s1 and s2 of the corresponding Voronoi diagram edge,
and pointers to its location in the lists of its two rp-vertices. Standard data
structures, like the doubly-connected edge list [2], allow us to maintain the order
in the planar subdivision represented by V̂(S).

Finally we define the boundary of the rp-region of s to be the alternating
sequence of rp-edges storing site s and the connecting rp-vertices that form a
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(a). Voronoi diagram (b). rp-Voronoi diagram

Fig. 1. The Voronoi vertices in a grid cell on the left contract to two rp-vertices,
depicted as gray convex polygons on the right. The ordering of the edges entering the
grid cell is maintained in both diagrams.

cycle. We call the rp-region all the points enclosed in this cycle, and the rp-cell
the union of the rp-region with its boundary.
Observation 7. The number of rp-vertices and rp-edges in the rp-Voronoi dia-
gram of S is less than or equal to the number of Voronoi vertices and Voronoi
edges in the Voronoi diagram of S respectively.
As we will show in Section 5.3, we can retrieve the implicit Voronoi diagram
once we have constructed the rp-Voronoi.

5 Constructing the Reduced-Precision Voronoi Diagram
Next we describe how to construct the rp-Voronoi, analyze the expected time
and space, describe how to use the rp-Voronoi for point location and show how
to convert the rp-Voronoi to the implicit Voronoi diagram.

We create the rp-Voronoi by a randomized incremental construction [2] that
parallels Sugihara and Iri’s method [14]: inserting a new site by “carving” out
the new cell from the previous diagram. Inserting a new site invalidates a sub-
graph of the Voronoi diagram, referred to as the conflict region. Sugihara and
Iri made the observation that the conflict region is a tree, and that by walking
the tree we identify the invalid sub-graph.

Specifically, their method constructs a Voronoi diagram of the first k−1 sites
and then inserts site sk. To start carving, the site si closest to sk is identified
and the bisector bik is traced until it enters the neighboring Voronoi cell, VR(sj).
The bisector bjk is then traced, and the process continues until it returns back
to VR(si). The tracing process requires the identification of the next bisector
intersection with a Voronoi edge. Sugihara and Iri do this by walking around the
cell of sj on the side of the new site sk until the next intersection is found (see
Figure 2a).

Our method does the same computation, but since we restrict ourselves to
degree three, it is too costly to compute and compare coordinates of bisector
interesections.
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sk

si

sj

(a). Voronoi diagram

sk

si

sj

(b). rp-Voronoi diagram

Fig. 2. The cell for the new dark gray site sk is “carved” out of the diagram of light
gray sites. The traced bisectors are emphasized with dotted lines, and the tree walk is
shown with gray arrows.

5.1 Incremental Construction

We initialize the rp-Voronoi diagram with two sites s1 and s2, and use their
bisector b12 to split the initial region of interest (the grid) by using the binary
search of bisectorIntersection.

Now, assume that we have already constructed the rp-Voronoi of k − 1 sites
Sk−1 and that we would like to insert site sk. The rp-Voronoi Update Procedure
takes as input the rp-Voronoi of Sk−1 and a new input site sk and returns the
rp-Voronoi of Sk−1 ∪ {sk}.

rp-Voronoi Update Procedure: We sketch the procedure in this paragraph and
then fill in the details in the remainder of the section. We first locate the site
si ∈ Sk−1 closest to sk, and proceed in two steps. We find the subgraph T that
consists of the set of rp-vertices and rp-edges that are no longer part of the
rp-Voronoi of Sk−1 ∪ {sk}. In the Voronoi diagram, the conflict region is a tree
and the sum of all conflict region sizes is linear in expectation. In the rp-Voronoi
we walk a subset T of the edges of this tree, and their vertices; once we have
identified this subset, we maintain our data structure in time proportional to its
size, which is therefore also linear (see Figure 2b).

To identify T we start by tracing out the si, sk bisector bik. We walk around
the boundary of the region of si until we find the grid cell G containing the
intersection of bik and the boundary of the rp-region of si. As in Sugihara and
Iri’s algorithm, we would like to pick the next bisector to trace, thus, allowing
us to continue our tree walk. To pick the next bisector for the rp-Voronoi with
limited precision there are two cases: one simple and the other interesting.

In the simple case, bik intersects the rp-edge e that stores sites si and sj . This
intersection is determined by applying the bisectorIntersection construction. We
switch to the sk, sj bisector and continue building T by walking around the
boundary of the region of sj on the side of sk.
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In the more interesting case, bik intersects an rp-vertex v. This intersection is
determined by first checking if bik passes through the grid cell containing v. If it
does, we compare the stabbingOrder of bik and the two rp-edges incident on v
of the rp-cell of sk to determine if bik intersects v.

Let GN , GE , GS and GW be the north, east, south and west grid walls, re-
spectively, of G, and without loss of generality, assume that we have entered G
from the south, with si below the bik bisector (see Figure 3).

VR(si)

VR(sk)

bik

GVR(sr)

VR(sp)

Fig. 3. We enter grid cell G from the south while walking the tree of the new site sk

along the si, sk bisector bik in dashed gray. The projections of sites sp and sr onto the
west grid line are directly above and below the projection of sk onto the west grid line
respectively.

Since Voronoi cells are convex, the new cell of sk can intersect each of the
grid cell boundary walls at most twice. This gives us four cases for how the
traced bisectors of the new Voronoi cell enter and exit a grid wall Gx of G (see
Figure 4). Traced bisectors of the new Voronoi cell,

(c1) do not exit through Gx.
(c2) exit through Gx and do not return to G.
(c3) exit through Gx and return through Gx.
(c4) exit through Gx and return through a different grid wall Gy.

First, we determine if the Voronoi cell VR(si) pokes out of the GW grid wall.
We find the two sites sp and sr whose Voronoi cells intersect GW and whose y
coordinate is directly above and below the y coordinate of sk, respectively. We
then determine if VR(si) pokes out by applying Corollary 2.

If VR(sk) does not poke out of GW (case 1) we repeat the process with
GN , followed by GE . If VR(sk) does poke out then there are some points in
the VR(sr) that are now in the VR(sk). Since no site has an empty cell there
must be a Voronoi edge e ∈ VR(sk) that is a subset of the sr, sk bisector. We
trace brk, following the tree, towards bik until we return back to G. Now, we
have identified the next bisector to trace for our tree walk. In addition, we just
walked backwards through a subtree of T , and we continue the procedure by
tracing brk in the opposite direction as before.
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VR(si)

VR(sk)

bik

G

bik

G

bik

G

bik

G

Case 1 Case 2 Case 3 Case 4

VR(si)

VR(sk)

VR(si)

VR(sk)

VR(si)

VR(sk)

Gx Gx Gx Gx

Gy

Fig. 4. Grid cell G with grid walls Gx and Gy as west and north walls respectively. A
bisector enters G through the south wall by tracing the si, sk bisector bik, in dashed
gray. In alternating dashed and dotted gray are the four cases per wall for bisector
tracing.

The other three cases are determined by continuing the walk. Case 3 corre-
sponds to the walk returning back to the grid cell through the same cell wall it
exited. Case 4 occurs when the walk returns back to the grid cell, but through
a different grid wall. This allows us to determine cases 3 and 4 that can cause
multiple rp-vertices to occur in one grid cell.

We continue this process until we have completed the cycle, identified T and
the new rp-vertices and rp-edges. We update the rp-Voronoi of Sk−1 to get the
rp-Voronoi of Sk−1 ∪ {sk}.

Note that if a Voronoi vertex v is outside our region of interest we do not
need to identify the grid cell containing v since it will not be used for proximity
queries. However, to continue with our tree walk we can apply Corollary 2 similar
to the case where a bisector intersects an rp-vertex.

5.2 Analysis

Point location is accomplished by the standard method of maintaining the con-
struction history [4] allowing for point location in expected O(log n) time. To
achieve a degree two algorithm we use grid cells in x-nodes and bisectorSide for
y-nodes, much like the structure in [1]. The incremental construction described
above relies on bisectorSide and bisectorIntersection operations, which are of
degree two and three respectively, as shown in Section 3.

As explained by Observation 7, the rp-Voronoi and Voronoi diagram have
the same combinatorial complexity. The update procedure creates at most as
many rp-vertices as Voronoi vertices. As shown by [2, 4] the number of Voronoi
vertices created is expected linear throughout the algorithm. Furthermore, the
tree walk touches only edges that are modified, and the number of modified
edges is constant in expectation [4].

However, we must pay two additional charges in each update. First there is
an extra O(log μ) charge for finding bisector segment intersections. Secondly, we
must pay an O(log n) to find the upper and lower neighbors when a bisector
intersects an rp-vertex. So we have shown the expected time to insert a new site
into the reduced-precision Voronoi diagram of size n is O(log n + log μ) where μ
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is the length of the longest Voronoi edge, and that this insertion can be done
with degree three predicates. We conclude:

Theorem 8. We can construct a reduced-precision Voronoi diagram of n sites
with a degree three algorithm in expected O(n(log n + log μ)) time where μ is the
length of the longest Voronoi edge.

5.3 Reduced-Precision Voronoi to Implicit Voronoi

Next we describe how to convert the reduced-precision Voronoi to the implicit
Voronoi of [1], described in Section 4. An rp-vertex corresponds to a tree T ,
of Voronoi vertices and Voronoi edges. Some of the Voronoi vertices of T may
be on grid lines and the implicit Voronoi would assign these vertices integer
coordinates. To create the implicit Voronoi we must separate these vertices from
an rp-vertex.

Theorem 9. We can convert the reduced-precision Voronoi diagram to the im-
plicit Voronoi diagram in O(n) time with degree three computations.

Proof omitted for extended abstract.

6 Conclusion and Open problems
To our knowledge, this is the first construction of a proximity query structure
in less than degree four and sub-quadratic time, that allows for logarithmic
query times. In addition, we believe that this is the first construction of the
implicit Voronoi diagram without fully computing the Voronoi diagram. Is there
a reasonable algorithm for creating a proximity query structure with only degree
two predicates? We believe that there is, but perhaps at the cost of an additional
logarithmic factor in space and time.

There is more to discover with respect to restricted predicates for computing
Voronoi diagrams. It is easy to generalize the ideas presented in this paper to
the power diagram, but further investigation is necessary to understand how
these methods effect the complexity of the power diagram, as well as other
generalized Voronoi diagrams with linear bisectors. The basis for the method of
bisector intersection relies on linearity. What if the diagram’s bisectors are more
complicated, such as hyperbolic arcs, as in the Voronoi diagram of disks?

One final observation is the algebraic complexity of standard predicates, such
as orientation and inSphere, increases with dimension. Distance based predicates,
on the other hand, maintain the same algebraic complexity regardless of the
dimension. Our last question is can we compute some form of a Voronoi diagram
with reduced precision in any dimension?
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Abstract. We design approximation algorithms for several NP-hard
combinatorial problems achieving ratios that cannot be achieved in poly-
nomial time (unless a very unlikely complexity conjecture is confirmed)
with worst-case complexity much lower (though super-polynomial) than
that of an exact computation. We study in particular max independent

set, min vertex cover and min set cover and then extend our results
to max clique, max bipartite subgraph and max set packing.

1 Introduction

The two most known paradigms for solving NP-hard problems are either the
exact computation, or the polynomial approximation. Both of them are very
active areas in theoretical computer science and combinatorial optimization.

Dealing with the former, very active research has been recently conducted on
the development of optimal algorithms with non-trivial worst-case complexity.
As an example, let us consider max independent set. It can be optimally
solved with complexity O∗(2n) (where O∗(·) is as O(·) ignoring polynomial fac-
tors), where n is the order of G (i.e, the cardinality of V ) by a trivial algorithm
consisting of exhaustively examining all the subsets in 2V and by taking the
largest among them that forms an independent set. Hence, an interesting ques-
tion is if we can compute a maximum independent set with complexity O∗(γn),
for γ < 2. More about such issues for several combinatorial problems can be
found in the seminal paper by [1]. Recently, this area has gained renewed interest
by the computer science community. This is partly due to numerous pessimistic
results in polynomial approximation, but also due to the fantastic increase of
the computational power of modern computers. On the other hand, dealing with
polynomial approximation, very intensive research since the beginnings of 70’s
has lead to numerous results exhibiting possibilities but also limits to the ap-
proximability of NP-hard problems. Such limits are expressed as statements
that a given problem cannot be approximated within a certain approximation
level (for instance, within a constant approximation ratio) unless a very unlikely
complexity condition (e.g., P = NP) holds. Reference works about this field are
the books by [2,3,4].

This paper combines ideas from exact computation and polynomial approx-
imation in order to devise approximation algorithms for some NP-hard prob-
lems that achieve approximation ratios that cannot be achieved in polynomial
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time, with a worst-case complexity that is significantly lower (though super-
polynomial) than the complexity of an exact computation.

Since the beginning of 90’s, and using the celebrated PCP theorem ([5]),
numerous natural hard optimization problems are proved to admit more or less
pessimistic inapproximability results. For instance, max independent set is in-
approximable within approximation ratio better than nε−1, unless P = NP ([6]).
Similar results, known as inapproximability or negative results, have been pro-
vided for numerous other paradigmatic optimization problems, as min color-

ing, etc. Such inapproximability results exhibit large gaps between what it is
possible to do in polynomial time and what becomes possible in exponential
time. Hence, for the case of max independent set, for example, a natural
question is how much time takes the computation of an r-approximate solution,
for r ∈ [nε−1, 1[? Of course, we have a lower bound to this time (any polynomial
to the size of the instance) and also an upper bound (the running time of exact
computation). But can we devise, for some ratio r, a r-approximate algorithm
with an improved running time located somewhere between these bounds? Is this
possible for any ratio r, i.e., can we specify a global relationship between running
time and approximation ratio?.

Here we try to bring some answers to these questions. The issue we follow
has been also marginally handled by [7] for minimum coloring. Also, a similar
approach has been simultaneously and independently developed by [8]. Moder-
ately exponential approximation has been also handled by [9,10,11], though in
a different setting and with different objectives oriented towards development
of fixed-parameter algorithms. Finally, a different but very interesting kind of
trade-off between exact computation and polynomial approximation is settled
by [12].

In what follows, in Section 2, we give approximation results of a broad class of
maximization graph-problems whose solutions are subgraphs of the input-graph
that satisfy some non-trivial hereditary property1. In Section 3 we develop effi-
cient non-polynomial approximation algorithms for another paradigmatic prob-
lem in combinatorial optimization, the min vertex cover. In Section 4, we
propose randomized approaches that improve complexity results obtained in
Sections 2 (in particular for the case of max independent set) and 3. In Sec-
tion 5, we consider specific classes of graphs where max independent set is
polynomially approximable. We show there how approximation algorithms for
max independent set can be improved in order to guarantee any approxi-
mation ratio with low exponential complexity. In Section 6, we handle min set

cover by devising an approximation algorithm based upon “pruning the search
tree”, a very well known technique in exact computation. This algorithm allows,
for instance, to compute a 7-approximate solution in time O∗(1.0007d), where,
denoting by m the size of the set-system S and by n the size of the ground set C
of the min set cover-instance, d = m + n. Finally, in Section 7, we present

1 A graph G is said to satisfy a hereditary property π if every subgraph of G satisfies π
whenever G satisfies π. Furthermore, π is non-trivial if it is satisfied for infinitely
many graphs and it is false for infinitely many graphs.



Efficient Approximation of Combinatorial Problems 509

approximation results for other combinatorial problems linked to max indepen-

dent set by simple approximation-preserving reductions. In particular, for one
of the problems handled in this section that is max clique, we also produce a
parameterized complexity result that is interesting per se.

Given a graph G(V, E), we denote by n the size of V , by α(G) the size of a
maximum independent set of G and by τ(G) the size of a minimum vertex cover
of G. Also, we denote by Δ(G) the maximum degree of G. Given a subset V ′

of V , G[V ′] denotes the subgraph of G induced by V ′. Sometimes, for a graph G,
we denote by V (G) its vertex-set. Finally, for shortness, we omit proofs of many
of the results claimed as well as definition of the problems handled. Definitions
of the problems handled can be found in [2], while omitted proofs can be found
in [13,14].

2 Maximum Induced Subgraph Problems with
Property π

We handle in this section a large class of graph-problems that is defined as
follows: given a graph G(V, E) and some hereditary property π, find a subset
V ′ ⊆ V , of maximum size, such that the subgraph of G induced by V ′ satis-
fies the property π. For a fixed property π we denote by max hereditary-π
the particular NPO problem resulting when considering π. For instance, if π
is “independent set”, then max hereditary-“independent set” is exactly max

independent set.
The idea of the method proposed consists in splitting the instance into several

subinstances (of much smaller size) and in solving the problem on these subin-
stances using an exact algorithm. The ratio obtained is directly related to the
size of the subinstances, hence to the global running time of the algorithm.

Proposition 1. Fix a hereditary property π and assume that there exists an
exact algorithm A for max hereditary-π with worst-case complexity O∗(γn)
for some γ ∈ R, where n is the order of the input-graph, for max hereditary-

π. Then for any ρ ∈ Q, ρ � 1, there exists a ρ-approximation algorithm for max

hereditary-π that runs in time O∗(γρn).

Proof. Consider a graph G of order n and fix a rational ρ � 1. Since ρ ∈ Q, it
can be written as ρ = p/q, p, q ∈ N, p � q. Run the following algorithm, denoted
by SPLIT and called with parameters G and ρ:

1. arbitrarily partition G into q induced subgraphs G1, . . . , Gq of order (except
eventually for Gq) n/q and build the q subgraphs G′

1, . . . G
′
q that are unions

of p consecutive subgraphs Gi+1, . . . , Gi+p, i = 1, . . . , q (where of course
Gq+1 = G1);

2. optimally solve max hereditary-π in every G′
i, i = 1, . . . , q and output the

best of the solutions computed.

Denote by S the solution returned by Algorithm SPLIT and fix an optimal so-
lution S∗ of G. Then, |S| � (p/q) opt(G) = ρ opt(G). Indeed, let S∗

i = S∗ ∩ Gi.
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Then, by heredity, |S∗
i+1|+ |S∗

i+2|+ . . .+ |S∗
i+p| � opt(G′

i) � |S|. Summing up for
i = 1, 2, . . . , q, we get: p|S∗| = p

∑q
i=1 |S∗

i | � q|S|, that proves the approximation
ratio claimed.

It is easy to see that the above algorithm involves q executions of A (the
exact algorithm for max hereditary-π) on graphs of order roughly pn/q = ρn.
Hence, its complexity is of O∗(γρn), that proves the running time claimed and
the proposition. ��

Note that, hereditary properties as “independent set”, “clique”, “planar graph”,
“bipartite graph”, etc., perfectly fit Proposition 1.

Denote by IS the instantiation of the algorithm above to max independent

set and assume that it is parameterized by two parameters: the input-graph G
and the ratio ρ to be achieved. To the best of our knowledge, the best γ known for
max independent set is 1.18 due to [15]. In Table 1 at the end of Section 4.1,
time-performance of Algorithm IS is shown for some values of ρ.

From Proposition 1 we can note the following two interesting facts: (i) the
algorithm of Proposition 1 can be implemented to use polynomial space provided
that the exact algorithms used do so; (ii) any improvement to the basis γ of the
exponential for the running time of the exact algorithm for max hereditary-π
is immediately transferred to Proposition 1.

3 min vertex cover

min vertex cover is approximable within approximation ratio 2 and one of the
most known open problems in polynomial approximation is either to improve this
ratio, or to prove that such an improvement is impossible until a strong unlikely
complexity condition (e.g., P = NP) holds. A recent result by [16] gives a strong
evidence that the latter alternative might be true.

On the other hand, from an exact computation point of view, the well-known
complementarity relation between min vertex cover and max independent

set has as immediate corollary that an optimal vertex cover can be determined
in time O∗(γn). Furthermore, the following parameterized complexity result is
proved by [17].

Theorem 1. ([17]) There exists a δ such that, for k � n, it takes time O∗(δk)
to determine if a graph G contains a vertex cover of size k or not and, if yes, to
compute it. The best δ actually known is 1.2852.

In what follows, we denote by OPT_VC the algorithm claimed in Theorem 1 and
we assume that it is called with parameters G and k.

Thanks to the seminal result by [18] characterizing the polyhedron of max

independent set (or, equivalently, of min vertex cover), we can assume
that the input graph G verifies α(G) � n/2 (via a polytime preprocessing of the
initial instance). Under this hypothesis, the following lemma holds.

Lemma 1. Let G be a graph where α(G) � n/2. If S is a ρ-approximate inde-
pendent set of G, then V \ S is a (2 − ρ)-approximate vertex cover of G.
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Proposition 1 and Lemma 1 immediately derive the following result.

Proposition 2. For any ρ � 1, min vertex cover is approximable within
ratio 2 − ρ in time O∗(γρn).

In other words, any approximation ratio r ∈ [1, 2[ for min vertex cover can be
attained in O∗(γ(2−r)n) by an algorithm, denoted by VC1, that simply takes as
solution the set V \S, where S is the independent set computed by Algorithm IS.

Proposition 2 can be improved by showing that one can get approximation
ratio ρ, for every ρ > 1, in time smaller than O∗(γ(2−ρ)n). For this, we propose
a method (Algorithm VC2) based upon a tradeoff between the exact algorithm
in time O∗(γn) for max independent set and the fixed-parameter algorithm
in time O∗(δk) for min vertex cover. The idea is the following:

– If α(G) is small then the result of Proposition 2 can be further improved.
More precisely, if, say, α(G) � λn, then C0 = V \ IS(G, μ) where μ =
ρ− ((ρ − 1)/λ) is a ρ approximate vertex cover. This is obtained in running
time O∗ (γμn).

– If α(G) is large, then τ(G) is small and the parameterized algorithm OPT_VC
is efficient. More precisely, we split the instance in subinstances of size (2 −
ρ)n, and find on these subinstances an optimum vertex cover of size at most
(2 − ρ)(1 − λ)n (if it exists). This can be done in time O∗ (δ(2−ρ)(1−λ)n

)
.

Choosing λ such that γ(ρ−(ρ−1/λ)) = δ(1−λ)(2−ρ) (the first increases, while the
second decreases with λ), the following theorem holds.

Theorem 2. For any ρ > 1, min vertex cover can be solved approximately
within ratio ρ and with running time O∗(γ(ρ−(ρ−1)/λ)n), where λ is such that
γ(ρ−(ρ−1)/λ)n = δ(2−ρ)(1−λ)n.

Note that this improvement cannot be transferred to max independent set,
since it is based upon Lemma 1 that does not work in both directions.

Also, using the same technique as in Proposition 1 (up to the facts that the
problem is not hereditary and the algorithm upon which it is based is parameter-
ized) we can extend the result of Theorem 1 by proving that, for every graph G
and for any r ∈ Q, if there exists a solution for minimal vertex cover in G
whose size is less than k, it is possible to determine with complexity O∗(δrk)
a 2 − r-approximation of it. The fixed-parameter approximation algorithm (de-
noted by VC3) doing this consists of splitting the instance and applying OPT_VC
on the subinstances.

More about the running times of Algorithms VC2 and VC3 can be found in
Table 2 (Section 4.2). Throughout the paper, when such running times are given,
they are obtained with γ = 1.18 and (for simplicity) δ = 1.28 (instead of 1.2852).

4 Randomized Algorithms

We give in this section randomized algorithms for max independent set and
min vertex cover that, with probability 1 − exp{−cn}, for some constant c,
turn to efficient approximation algorithms with running-time lower (though ex-
ponential) than the one of the deterministic algorithms seen in Sections 2 and 3.
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4.1 max independent set

In the deterministic algorithm for max independent set seen previously, we
split the instance into subinstances of size rn to get a r-approximation algorithm.
Here, we show that by splitting into subinstances of smaller size βn, with β < r,
we can achieve the same ratio by iterating the splitting a very large (exponential)
number of times. The tradeoff between the size of the subinstances and the
number of times that we iterate splitting to get the ratio, is given in Theorem 3.

Theorem 3. For any ρ < 1 and for any β, ρ/2 � β � ρ, it is possible to find
an independent set that is, with probability 1− exp{−cn} (for some constant c),
a ρ-approximation for max independent set, with running time O∗(Knγβn),
where Kn = nC

n/2
n /(Cρn/2

βn C
(1−ρ)n/2
n−βn ).

Proof (Sketch). As mentioned previously, we can assume α(G)/n � 1/2. Fix
a maximum independent set S∗ of G and consider a subgraph B of G (for
simplicity, denote also by B the vertex-set of B), whose size is βn � ρn/2 �
ρα(G). The probability that B contains ρα(G) vertices from S∗ is given by the
following formula: pβ,α = Pr[|S∗ ∩ B| = ρα(G)] = C

ρα(G)
βn C

(1−ρ)α(G)
n−βn /C

α(G)
n .

If we take at random Kn such different subgraphs Bi, the probability that |S∗∩
Bi| is never greater than ρα(G) is bounded above by Pr[|S∗ ∩Bi| < ρα(G), ∀i �
Kn] � exp{−npβ,α/pβ,n/2}.

We now study pβ,α to show that the the previous probability is bounded by
exp{−cn}. Fix λ = α(G)/n. From Stirling’s formula we get pβ,α = θ(qβ,α/

√
n),

where:

qβ,α =
(

ββ(1 − β)1−βλλ(1 − λ)1−λ

(β − ρλ)β−ρλ(ρλ)ρλ((1 − ρ)λ)(1−ρ)λ(1 − β − (1 − ρ)λ)1−β−(1−ρ)λ

)n

Function f(ρ, λ, β) = − log(qβ,λn)/n. grows with λ, while qβ,λn decreases with λ.
Thus, the minimum for qβ,α is reached for λ = 1/2, and pβ,α/pβ,n/2 > c, for some
constant c. This fact derives that Pr[maxi�Kn |S∗∩Bi| � rm∗] � 1− exp{−cn}.

Run now a straightforward algorithm (denoted by RIS1 and called with pa-
rameters G and ρ), that is the randomized counterpart of Algorithm IS of Sec-
tion 2. It calls an exact algorithm OPT_IS on all the Bi’s (i from 1 to Kn) and
returns the largest independent set found. It is easy to see that the running
time of Algorithm RIS1 is O∗(Knγβn), while the probability that it returns a
ρ-approximate solution is 1 − exp{−cn}. ��

Algorithm RIS1 can be improved in two different ways, leading to
Algorithms RIS2 and RIS3, respectively.

The way the first improvement is obtained (Algorithm RIS2) is somehow
analogous to that of Theorem 2. The basic idea is to show that, informally,
the smaller the independent set, the higher the probability of finding a good
approximation by splitting. In other words, when α(G) is small, a smaller running
time suffices to get the same approximation ratio with high probability, i.e.,
Algorithm RIS1 is more efficient. On the other hand, when α(G) is large, the
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Table 1. Running times of Algorithms IS, RIS1, RIS2 and RIS3 with γ = 1.18

Ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IS 1.017n 1.034n 1.051n 1.068n 1.086n 1.104n 1.123n 1.142n 1.161n

RIS1 1.016n 1.032n 1.048n 1.065n 1.083n 1.101n 1.119n 1.139n 1.159n

RIS2 1.015n 1.031n 1.047n 1.063n 1.080n 1.098n 1.117n 1.136n 1.157n

RIS3 1.013n 1.027n 1.042n 1.057n 1.075n 1.093n 1.115n 1.139n 1.169n

fixed-parameter Algorithm OPT_VC runs fast. Then, Algorithm RIS2 combines
these two algorithms.

The second improvement follows a different approach, based upon an exhaus-
tive lookup of all the candidate values for α(G), and using an exact algorithm
for min vertex cover rather than for max independent set on the subin-
stances considered in the splitting. Informally, the underlying idea for this ap-
proach (leading to Algorithm RIS3) is that randomization allows to split the
input graph into “small” subgraphs, on which a fixed-parameter algorithm can
be efficiently used to reach both a good overall running time and any a priori
fixed approximation ratio. Then, Algorithm RIS3 consists of running Algorithm
OPT_VC on subgraphs of size βn < rn taken at random and for a sufficient num-
ber of times, where β is optimally determined as a function of α(G). Of course,
as we can see in Table 1, this algorithm is especially interesting when we seek
small approximation ratios (subgraphs are very small in this case).

It is important to notice that these two improvements are strongly related
to randomization. In particular, the same ideas cannot be used to improve the
deterministic Algorithm IS.

Comparisons on running times of Algorithm IS, RIS1, RIS2 and RIS3, are
presented in Table 1, for different values of the approximation ratio. For ratios
smaller than 0.75, Algorithm RIS3 hits the other ones, while for ratios greater
than 0.75, it is dominated by Algorithm RIS2 (and even by IS).

4.2 min vertex cover

Obviously, Lemma 1 still holds for randomized algorithms. Hence, the comple-
ments of the solutions provided by Algorithms RIS1, RIS2 and RIS3 are vertex
covers for G achieving ratios 2 − ρ with probability 1 − exp{−cn}. In what fol-
lows, we propose randomized efficient approximation algorithms for min vertex

cover with running times better than those got in Section 4.1. Underlying ideas
are similar to the previous ones but, taking into account once again Lemma 1,
a more involved analysis leads to better results.

We can first simply mix the randomization technique of Algorithm RIS1
and the fixed-parameter approximate Algorithm VC3 to get the following Al-
gorithm RVC1: set C1 = VC3(G, 2− r), C2 = V \ RIS1(G, r) and output C =
argmin{|C1|, |C2|}.

We further improve the above result by another algorithm denoted by RVC2,
devised in the same spirit as Algorithm RIS3: we repeatedly (for a sufficient
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Table 2. Running times of Algorithms VC1, VC2, RVC1 and RVC2 with γ = 1.18 and
δ = 1.28

Ratio 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
VC1 1.017n 1.034n 1.051n 1.068n 1.086n 1.104n 1.123n 1.142n 1.161n

VC2 1.013n 1.026n 1.039n 1.054n 1.069n 1.086n 1.104n 1.124n 1.148n

RVC1 1.013n 1.026n 1.039n 1.053n 1.068n 1.085n 1.102n 1.122n 1.146n

RVC2 1.010n 1.021n 1.032n 1.043n 1.056n 1.069n 1.083n 1.099n 1.127n

number of times) apply the fixed-parameter Algorithm OPT_VC on subinstances
of size βn < rn taken at random. In this way OPT_VC runs fast and guarantees
a good approximation ratio.

In Table 2, the running times of Algorithms VC1, VC2, RVC1 and RVC2 are
shown for some ratio’s values.

5 Approximation of max independent set in Particular
Classes of Graphs

In this section we consider particular classes of max independent set-instan-
ces admitting polynomial approximation algorithms achieving some ratio ρ. For
instance, a notable example of such a class is the class of bounded-degree graphs.
For these graphs, denoting by Δ(G) the bound on the degrees, max inde-

pendent set can be polynomially approximated within ratio ρ = 5/(Δ(G) +
3) ([19]).

Let C be a class of graphs where max independent set is approximable in
polynomial time within approximation ratio ρ by an algorithm called APIS in
what follows. The graph-splitting technique used previously can be efficiently
applied to get interesting tradeoffs between running times and approximation
ratios (greater than ρ) by means of the following algorithm, denoted by EIS1
(where Γ (H) denotes the set of neighbors of H in V \ H): 1. apply step 1 of
Algorithm SPLIT and let V ′

i be the vertex set of G′
i, i = 1, . . . , q; 2. for any V ′

i

and any H ⊆ V ′
i , if H is independent, then S = H ∪ APIS(G[V \ (H ∪ Γ(H))]); 3.

output the best among S’s computed at step 2.

Proposition 3. For any rational r < 1, it is possible to compute, for any graph
G ∈ C, a (r +(1− r)ρ)-approximation of max independent set, with running
time O∗(2rn).

Let us note that Algorithm EIS1 is interesting only if its ratio is better than that
of IS that has the same running time. For instance, for graphs with maximum
degree 3, this means that r + (1 − r)ρ � 0.870.

Result in Proposition 3 can be further improved. Roughly speaking, if S∗ is
not “uniformly” distributed over the G′

i’s, then the ratio improves. If S∗ is not
“uniformly” distributed then, informally, generating only “small” subsets of G′

i’s
is sufficient in this case.



Efficient Approximation of Combinatorial Problems 515

Proposition 4. For any r < 1 and with a suitable choice of β < 1 it is pos-
sible to compute, in any graph G ∈ C, a (r + (1 − r)ρ)-approximation of max

independent set, with running time O∗(2βrn).

6 min set cover

Pruning the search tree is one of the most classical techniques to get exact
algorithms with non trivial exponential complexity. Here, we show that this
technique can be adapted to get approximation algorithms realizing interesting
tradeoffs between time complexity and approximation. The algorithm is based
upon two “speedups” with respect to an exact search tree algorithm. First, since
we only seek an approximate solution, the algorithm may, when branching, make
some “errors” by being “less careful” than an exact one. For instance, if one
wants a 2-approximate solution, each time the algorithm branches on a set, in
the case it puts it in the cover it can add another set (obtaining recursively a
ratio 2): taking this additional set reduces the size of the remaining problem,
thus reducing the complexity of the pruning algorithm. The second improvement
consists of stopping the development of the tree before the end: if at some point
the remaining instance is polynomially approximable within the desired ratio,
there is no need to continue branching.

Considering these two ways of better pruning the search tree, we propose
Algorithm SC1, parameterized by the ratio q we want to guarantee: let p be
the largest integer such that H(p) − 1/2 � q, where H is the harmonic number
sequence. Then SC1 repeats the following four steps until C is covered: 1. if there
exists an item of C that belongs to a single subset S ∈ S, then add S to the
solution; 2. if there exist two sets S, R in S such that S is included into R, then
remove S without branching; 3. if all the residual subsets have cardinality at
most p, then run the algorithm by [20] in order to compute a q-approximation
of the optimal solution in the surviving instance; 4. determine q sets S1, . . . , Sq

from S such that ∪i�qSi has maximum cardinality and perform the the following
branching step: either add every Si to the solution (and remove ∪i�qSi from C),
or remove all of them.

Note that the corresponding best known exact algorithms for min set cover

that we are aware of have complexity O∗(1.23d) ([21]), O∗(2n) ([22]) and O∗(2m)
(brute force algorithm).

Theorem 4. For any integer q � 1, Algorithm SC1 computes with running
time O∗(αd) a q-approximation of min set cover, where α is the solution
of equation xq(2+p) − xq(1+p) − 1 = 0 and p is the largest integer such that
H(p) − 1/2 � q.

Remark that, since at least q sets are removed in each branch, SC1 computes
a q-approximation of min set cover in time O∗(2m/q). Measuring complexity
with m instead of d may be useful if m is “small”, for instance if it is smaller
than n. Table 3 gives complexity of Algorithm SC1 for some values of the ratio q.
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Table 3. Complexity of SC1 for some values of q

Ratio q 1 2 3 4 5 6 7 8
Time(d) 1.380d 1.110d 1.038d 1.014d 1.005d 1.002d 1.0007d 1.0003d

Time(m) 2m 1.414m 1.260m 1.189m 1.149m 1.123m 1.104m 1.091m

7 max set packing, max bipartite subgraph and
max clique

We show in this section that for max set packing, max bipartite subgraph

and max clique, any of the results of the previous sections identically apply
with parameters γ′ and δ′ that depend on those of max independent set and
min vertex cover, respectively. Note that, to the best of our knowledge, all
these problems have not been autonomously studied under the exponential time
hypothesis.

Let us first handle the case of max set packing. An instance I(S, C) of
max set packing with S = {S1, . . . , Sm}, Si ⊆ C, i = 1, . . . , m, and C =
{c1, . . . , cn}, can be transformed into an instance G(V, E) of max independent

set by adding a vertex for each Si and by linking two vertices if and only
if the corresponding sets have non-empty intersection. This classical reduction
makes that for max set packing parameters γ and δ are the same as for max

independent set and min vertex cover, respectively. The exponent for max

set packing is the cardinality m of the set-family S.
Consider now the reduction from max bipartite subgraph to max inde-

pendent set given in [23]. According to this reduction, an instance of size n for
max bipartite subgraph transforms into an instance of size 2n for max inde-

pendent set. So, for max bipartite subgraph, parameters γ and δ of max

independent set and min vertex cover, are transformed into γ2 and δ2

respectively. The exponent for max bipartite subgraph is the size n of the
input-graph. In other words, considering γ = 1.18 and δ = 1.28, the correspond-
ing bases for max bipartite subgraph become 1.39 and 1.64, respectively.

We conclude the paper by handling another famous combinatorial optimiza-
tion problem that is max clique. It is very well known that an independent set
in a graph G becomes a clique of the same size in the complement Ḡ of G. So,
results of previous sections for independent set trivially apply to max clique.
In what follows, we improve these results replacing exponent n, the order of the
input graph G for max clique, by Δ(G), the maximum degree of G.

Consider the following reduction from max clique to max independent

set. Let G(V, E) be the input graph of max clique, V = {v1, . . . , vn} and,
for i = 1, . . . , n, denote by Γ (vi) the neighbors of vi. Build the n graphs Gi =
G[{vi} ∪ Γ (vi)]. Since in any clique of G any vertex is a neighbor of any other
vertex of a clique, any clique is subset of the neighborhood of each of its vertices.
So, a maximum clique is a subset of some graph Gi. For every Gi, build its
complement Ḡi and solve max independent set in Ḡi. Let Si, i = 1, . . . , n,
the independent sets so computed. These sets are cliques of Gi. Then, take
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the largest of these sets as solutions. Obviously, if an exact algorithm for max

independent set is used, then the largest among the sets Si is a maximum
clique in G. By taking into account that the order of any of the graphs Gi is
bounded above by Δ(G)+1, we immediately deduce that computing a maximum
clique in a graph G takes time O∗(nγΔ(G)+1) = O∗(γΔ(G)), where γ is the basis
of the exponential of max independent set.

Discussion just above derives, at very first, the following parameterized com-
plexity result for the exact computation of max clique, interesting per se.

Theorem 5. max clique can be exactly solved in time O∗(γΔ(G)), where Δ(G)
is the maximum degree of the input graph and γ is the basis of the exponential
of max independent set (currently 1.18).

Also, any of the results dealing with max independent set seen in the previous
sections, identically applies to max clique also. So, the following theorem holds
and concludes this section.

Theorem 6. For the efficient approximation of max clique, parameters γ
and δ are the same as max independent set and min vertex cover, re-
spectively. The exponent for max clique is the maximum degree Δ(G) of the
input-graph.
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Abstract. We show that if one can find the optimal value of an inte-
ger linear programming problem in polynomial time, then one can find
an optimal solution in polynomial time. We also present a proper gen-
eralization to (general) integer programs and to local search problems
of the well-known result that optimization and augmentation are equiv-
alent for 0/1-integer programs. Among other things, our results imply
that PLS-complete problems cannot have “near-exact” neighborhoods,
unless PLS = P.

1 Introduction

The following question arises naturally in the study of optimization problems
(see, e.g., [12, Chap. 15.2]): Is computing the value of an optimal solution as
hard as actually finding an optimal solution? Crescenzi and Silvestri [4] initiated
the formal study of the relative complexity of evaluating the optimal cost of an
optimization problem versus constructing an optimal solution, and they provided
sufficient and necessary conditions for the existence of optimization problems for
which obtaining an optimal solution is harder than computing the optimal value.
Ausiello et al. [2] and Johnson [8] pointed out that evaluation is actually as hard
as finding an optimal solution for all optimization problems whose associated
decision problems are NP-complete. Schulz [16] studied the relative complexity of
several problems related to 0/1-integer programming,1 including augmentation,
optimization and evaluation, all of which are polynomial-time equivalent. In this
paper, we prove that evaluation and optimization are polynomial-time equivalent
for all integer linear programming problems. That is, given a matrix A ∈ Zm×n

and a vector b ∈ Zm, a polynomial-time algorithm for finding the optimal value
of min{cx : Ax ≥ b, x ∈ Zn

+}, for any c ∈ Zn, implies the existence of such
an algorithm for finding an optimal solution, arg min{cx : Ax ≥ b, x ∈ Zn

+}. In
fact, our result is slightly stronger than this. As long as we are given bounds
on the values that individual variables may attain, the matrix A and the vector
b need not be known explicitly. An evaluation oracle, which accepts as input

1 In a 0/1-integer programming problem all variables can have values 0 or 1 only.
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any objective function vector c and returns the optimal objective function value,
suffices. Our proof is constructive.

The proof itself gives rise to a new problem, related to questions typically
brought up in postoptimality analysis of optimization problems, which we call
the “unit increment problem:” Given an optimal solution x0 with respect to
an objective function vector c, find an optimal solution for c + ej , where ej is
the j-th unit vector.2 We show that an integer linear program can be solved
in polynomial time if and only if its unit increment problem can be solved in
polynomial time. For 0/1-integer programs, we prove that the unit increment
problem is polynomial-time equivalent to the augmentation problem.3 Hence,
we have a proper generalization (to general integer programs) of a result by
Grötschel and Lovász [6] and Schulz et al. [17], who showed that optimization
and augmentation are polynomial-time equivalent for 0/1-integer programs. A
relaxation to the augmentation problem, the ε-augmentation problem, can be
defined as follows: Given an objective function vector c and a feasible solution
x, find a feasible solution with better objective function value, or assert that x
is ε-optimal. Here, ε > 0, and a solution x is ε-optimal if cx ≤ (1 + ε)cx′ for
all feasible solutions x′. The corresponding unit increment problem, the ε-unit
increment problem, is defined as follows: Given an index j and an ε-optimal so-
lution with respect to an objective function vector c, find an ε-optimal solution
for c + ej. We show that an ε-optimal solution can be obtained in polynomial
time if and only if the ε-unit increment problem can be solved in polynomial
time. Moreover, we show that for 0-1 integer programs, the ε-augmentation
problem and the ε-unit increment problem are polynomial-time equivalent as
well.

The concepts of unit increment and augmentation extend naturally to local
search, with interesting implications. For an integer programming or combinato-
rial optimization problem with a neighborhood function N , the local augmenta-
tion problem, given a feasible solution x and an objective function vector c, asks
for a solution in the neighborhood N(x) of x of better objective function value,
if one exists. The local unit increment problem is defined similarly: Given an
index j and a locally optimal solution x with respect to c, find a locally optimal
solution for c + ej . We show that for a given neighborhood function, a locally
optimal solution can be computed in polynomial time if and only if the local
unit increment problem can be solved in polynomial time. However, in contrast
to the cases of global optimization and ε-optimization, for 0/1-integer programs,
the local unit increment problem and the local augmentation problem are not
known to be equivalent. In fact, it follows from our results that if polynomial
solvability of the local augmentation problem implies the polynomial solvability

2 In this part of the paper we assume, for convenience, that all objective function
coefficients are nonnegative. Most of our results hold true in general, if the unit
increment problem is extended to finding optimal solutions for c ± ej .

3 The augmentation problem is defined as follows: Given a feasible solution and an
objective function vector, find a feasible solution of better objective function value,
if one exists.
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of the local unit increment problem, then all PLS-complete4 problems can be
solved in polynomial time.

A neighborhood function is said to be “exact” if every locally optimal solution
is guaranteed to be globally optimal. A neighborhood function is said to be
“near exact” if the objective function value of any locally optimal solution is no
worse than that of all but a polynomial number of feasible solutions. Near-exact
neighborhoods are related to the domination number of local search heuristics
[7]. We show that, for 0/1-integer programs, polynomial solvability of the local
augmentation problem implies polynomial solvability of the local optimization
problem whenever the corresponding neighborhood is near exact. This implies
that no PLS-complete problem can possess a near-exact neighborhood, unless
PLS = P.

The rest of the paper is organized as follows. In Sect. 2 we establish that opti-
mization and evaluation are polynomial-time equivalent for integer programming
problems. In Sect. 3, we show that the unit increment problem and the optimiza-
tion problem are polynomial-time equivalent. We also give a direct proof that,
for 0/1-integer programming problems, augmentation and unit increment are
polynomial-time equivalent. In Sect. 4 we extend these results to ε-optimization,
ε-augmentation, and ε-unit increment. Section 5 contains our results on local
search; in particular, we show that even for 0/1-integer programs, a local unit
increment oracle is stronger than a local augmentation oracle, unless PLS = P.

2 Evaluation versus Optimization

It is well known (see, e.g. [15, Chap. 17.1]) that if an integer program has a
finite optimum, then it has an optimal solution of size (i.e., encoding length)
polynomially bounded by the size of the input. Hence, instead of considering
min{cx : Ax ≥ b, x ∈ Zn

+}, we may restrict ourselves to solving min{cx : Ax ≥
b, x ≤ u, x ∈ Zn

+}, for a vector u ∈ Zn
+ whose encoding length is polynomial in

that of A, b, and c. From now on, we therefore consider a family F of integer
programming problems that is described as follows. For each instance of the
family we are given a vector u ∈ Zn

+ such that the set X ⊆ Zn of feasible
solutions is contained in {0, 1, . . . , u1} × {0, 1, . . . , u2} × · · · × {0, 1, . . . , un}. We
are also given an evaluation oracle that contains the only additional information
that we have on X .5 (In particular, we do not explicitly need to know a matrix A
and a vector b such that X = {x ∈ Zn

+ : Ax ≥ b, x ≤ u}.) For input vector c ∈ Zn,

4 The complexity classes PLS and PLS-complete were introduced by Johnson et al. [9]
to capture the difficulty of finding local optima. Prominent PLS-complete problems
include the max-cut problem with the flip neighborhood and the graph partitioning
problem with the swap neighborhood [14], the traveling salesman problem with the
k-exchange neighborhood (for sufficiently large, but constant k) [10], and the problem
of finding pure-strategy Nash equilibria in congestion games [5].

5 We may assume, without loss of generality, that there exists a feasible solution, i.e.,
X �= ∅. Otherwise both oracles, evaluation and optimization, would have to detect
infeasibility.
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the oracle returns the optimal objective function value of min{cx : x ∈ X}. The
following is our main result.

Theorem 1. Given a family F of integer programming problems described by
an evaluation oracle, there is an oracle-polynomial time algorithm for solving the
optimization problem.

Proof. Let min{cx : x ∈ X} be the optimization problem to be solved, given
by an evaluation oracle and a vector u ∈ Zn

+ such that X ⊆ {0 ≤ x ≤ u}. The
main idea is as follows. Among all optimal solutions, let x′ be the one that is
lexicographically minimal. We perturb c in such a way that x′ remains optimal
for the perturbed vector c′ and is also optimal for the objective function vectors
c′ + ej, for all j = 1, 2, . . . , n. With n + 1 calls of the evaluation oracle we can
then recover x′ via x′

j = (c′ + ej)x′ − c′x′, for j = 1, 2, . . . , n. If the size of c′ is
sufficiently small, this yields an oracle-polynomial time algorithm.

Here are the details. Let U := max{uj : j = 1, 2, . . . , n} + 1. We define c′ as
follows:

c′j := U2n+1cj + U2(n−j)+1, for j = 1, 2, . . . , n.

Note that the encoding length of c′ is indeed polynomial in that of c and u. We
first show that, (i), every solution x∗ that is optimal for c′ is also optimal for c.
In fact, for any x ∈ X , we obtain that

cx∗ ≤ c′x∗

U2n+1 ≤ c′x
U2n+1 = cx +

∑n
j=1 U2(n−j)+1xj

U2n+1 < cx + 1.

Together with the integrality of c, x∗, and x, this implies that cx∗ ≤ cx, prov-
ing (i). We now show that, (ii), if x is an optimal solution for c that is different
from x′, then c′(x′ − x) ≤ −U . Let i be the first index for which x′

i < xi. Then,

c′(x′ − x) = U2(n−i)+1(x′
i − xi) +

n∑
j=i+1

U2(n−j)+1(x′
j − xj)

≤ −U2(n−i)+1 +
n∑

j=i+1

U2(n−j)+2

≤ −U.

It remains to show that x′ is optimal for c′ + ej , for an arbitrary, but fixed
index j ∈ {1, 2, . . . , n}. So, let x be some feasible solution different from x′. We
distinguish two cases. If x is optimal for c, then, with the help of (ii), we get

(c′ + ej)(x′ − x) = c′(x′ − x) + (x′
j − xj) ≤ −U + U = 0.

If x is not optimal for c, we have

c′(x′ − x) = U2n+1c(x′ − x) +
n∑

j=1

U2(n−j)+1(x′
j − xj)

≤ −U2n+1 +
n∑

j=1

U2(n−j)+2 ≤ −U.
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Hence, (c′ + ej)(x′ − x) ≤ 0. Thus, x′ is optimal for c′ and c′ + ej , and x′
j =

(c′ + ej)x′ − c′x′. In particular, the j-th component of x′ can be computed by
two calls of the evaluation oracle. ��

3 The Unit Increment Problem and Global Optimization

In this section we assume that all objective function vectors are nonnegative, for
convenience. All results can be extended in a straightforward way to arbitrary
objective function vectors. If c is an objective function vector, let C := max{cj :
j = 1, 2, . . . , n} and α := 1 + "log2 C#. Then each cj can be represented as a
binary number using α bits. Let bj = (bj

1, b
j
2, . . . , b

j
α) with bj

i ∈ {0, 1} be this
representation. Moreover, let ck

j be the number represented by the k leading bits
of bj . That is, ck

j :=
∑k

i=1 2k−ibj
i . Thus c1

j ∈ {0, 1}, cα
j = cj , and ck+1

j = 2ck
j +bj

k+1
for all k = 1, 2, . . . , α − 1 and j = 1, 2, . . . , n.

Let min{cx : x ∈ X} with X ⊆ Zn
+ be an instance of the optimization

problem. We assume that an oracle Unit-Inc is available which with input j,
c+ej, and an optimal solution x0 with respect to c, computes an optimal solution
x∗ for min{(c + ej)x : x ∈ X}. We consider the following algorithm.

Algorithm UI

begin
let x0 be any feasible solution
set c∗j := 0 for j = 1 to n
for k = 1 to α do

for j = 1 to n do c∗j := 2c∗j
S := {j : bj

k = 1}
while S �= ∅ do

choose j ∈ S
S := S \ {j}
c∗j := c∗j + 1
If x0

j > 0 then
call Unit-Inc(c∗, x0, x∗, j)
x0 := x∗

endif
endwhile

endfor
output x0

end

Theorem 2. Let a family of optimization problems with linear objective func-
tions be given by a unit-increment oracle. Then algorithm UI computes an
optimal solution in oracle-polynomial time.

Proof. Note that at the end of the k-th iteration of the main loop we have
c∗ = ck. Assume that at the beginning of the k-th iteration of the main loop, x0
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is an optimal solution to min{ck−1x : x ∈ X}. (For convenience, we let c0 = 0.)
Then x0 continues to be an optimal solution if we change the objective function
to 2ck−1. Thus at the end of the while loop, the oracle Unit-Inc guarantees that
x0 is an optimal solution to min{ckx : x ∈ X}. The correctness of the algorithm
follows by induction over k. ��

Hence, if one can find a feasible solution in polynomial time and if one can
solve the unit increment problem in polynomial time, then one can determine an
optimal solution in polynomial time. For the assignment problem on a bipartite
graph on n nodes and m edges, the general algorithm described above terminates
in O(nm log C) time. This is because the unit increment problem for this special
case can be solved in O(m) time. Although there are special-purpose algorithms
with better worst case bounds to solve the assignment problem, it is interesting
to note that the general algorithm UI achieves a good time bound.

Algorithm UI is a generalization of the bit scaling algorithm studied exten-
sively in the network flow literature (see, e.g., [1]) and in the context of 0/1-
integer programming (see, e.g., [16]). The new feature here is the use of the unit
increment oracle. This allows us to compare the computational complexity of op-
timization problems and unit increment problems and also provides a framework
for our study of ε-optimization and local optimization. Theorem 2 establishes
that an optimization problem with linear objective function can be solved in
polynomial time if and only if the corresponding unit increment problem can
be solved in polynomial time. Alternatively, if the optimization problem is NP-
hard, then the corresponding unit increment problem is also NP-hard. Thus the
additional information available for the unit increment problem (i.e., an optimal
solution for the original objective function) is not of much help for NP-hard prob-
lems. This provides additional evidence that postoptimality analysis is typically
hard for NP-hard problems (see, e.g., [3,13,18] for related results).

We now examine the relationship between the unit increment problem and
the augmentation problem.

Lemma 3. Let x0 be an optimal solution to min{cx : x ∈ X}, and let j be a
given index, 1 ≤ j ≤ n. If x ∈ X is a feasible solution, then (c+ej)(x0−x) ≤ x0

j .

Proof. Since x is a feasible solution to min{cx : x ∈ X}, cx0 ≤ cx. Thus (c +
ej)x0 = cx0 + x0

j ≤ cx + x0
j ≤ (c + ej)x + x0

j . ��

The next theorem is, in principle, a consequence of the before-mentioned equiv-
alence between augmentation and optimization for 0/1-integer programs, and
Theorem 2. However, the following proof provides a Karp reduction from the
unit increment problem to the augmentation problem.

Theorem 4. For 0/1-integer programs, the unit increment problem and the aug-
mentation problem are polynomial-time equivalent.

Proof. Assume that X ⊆ {0, 1}n is given by an augmentation oracle. Consider
the instance min{cx : x ∈ X} and its unit increment version min{(c + ej)x : x ∈
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X} together with respective optimal solutions x0 (given) and x∗ (unknown). By
Lemma 3,

(c + ej)(x0 − x∗) ≤ 1. (1)

Since c ∈ Zn, one application of the augmentation oracle starting with x0 either
declares that x0 is optimal for min{(c + ej)x : x ∈ X} or finds an improving
solution which must be optimal for min{(c + ej)x : x ∈ X} in view of (1). The
other direction is implied by Theorem 2. ��

Using Lemma 3 we have the following result for general integer programs. Let
min{cx : x ∈ X} be an instance and x0 be an optimal solution. Let min{(c+ej)x :
x ∈ X} be the corresponding j-th unit increment instance.

Theorem 5. Given x0 ∈ arg min{cx : x ∈ X} and an augmentation oracle,
min{(c + ej)x : x ∈ X} can be solved by O(x0

j ) calls of the augmentation oracle.

Theorems 2 and 5 show that for an integer linear program for which x ≤ u for
all x ∈ X and where the components of u are bounded above by a polynomial of
the remaining input data, the optimization problem can be solved in polynomial
time whenever the augmentation problem can be solved in polynomial time.

4 The Unit Increment Problem and ε-Optimization

In this section we explore the complexity of finding near-optimal solutions if ε-
augmentation or ε-unit increment oracles are available. We need the assumption
that cj ≥ 0 for all j = 1, 2, . . . , n. We also fix ε > 0. Let UI(ε) denote the
variation of the algorithm UI where the oracle Unit-Inc is replaced by ε-Unit-

Inc which takes as input c + ej, an ε-optimal solution x0 of min{cx : x ∈ X},
an index j, and computes an ε-optimal solution x∗ of min{(c + ej)x : x ∈ X}.
Using arguments similar to that in the proof of Theorem 2 one can show the
following result.

Theorem 6. Given an ε-unit increment oracle and an initial feasible solution,
algorithm UI(ε) computes an ε-optimal solution to min{cx : x ∈ X} in oracle-
polynomial time.

Thus if a feasible solution can be computed in polynomial time and the ε-unit
increment problem can be solved in polynomial time, then an ε-optimal solution
can be obtained in polynomial time. Alternatively, an optimization problem
is not approximable if and only if the corresponding unit increment problem
is not approximable. This result is interesting in several ways. For example,
even if we have an ε-optimal solution to the traveling salesman problem, if one
of the edge weights is increased by one, then getting an ε-optimal solution is
still NP-hard. Also, there exists a (fully) polynomial-time approximation scheme
for an optimization problem if and only if there is a (fully) polynomial-time
approximation scheme for the unit increment problem.

Interestingly, we can show that the ε-augmentation problem and the ε-unit
increment problem are equivalent for 0/1-integer programs.
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Theorem 7. For 0/1-integer programs, the ε-augmentation problem and the ε-
unit increment problem are polynomial-time equivalent.

Proof. Assume first that an ε-augmentation oracle and an ε-optimal solution x1

to min{cx : x ∈ X} are given. Consider an instance min{cx : x ∈ X} with
X ⊆ {0, 1}n and its j-th unit increment instance min{(c + ej)x : x ∈ X}. Let
x0 and x∗ be (unknown) optimal solutions of the former problem and the latter
problem, respectively.

If the ε-augmentation oracle declares that x1 is an ε-optimal solution to
min{(c + ej)x : x ∈ X}, we are done. Thus suppose that starting with the
solution x1 to min{(c + ej)x : x ∈ X} the ε-augmentation oracle produces an
improved solution, say x2. We will show that x2 is an ε-approximate solution to
min{(c + ej)x : x ∈ X}. By Lemma 3 we have

(c + ej)x∗ = cx0 or (c + ej)x∗ = cx0 + 1. (2)

Since x1 is ε-optimal for min{cx : x ∈ X},

cx1 − cx0

cx0 ≤ ε.

Case 1: x1
j = 1. In this case (c + ej)x1 = cx1 + 1. Since x2 is an improved

solution for min{(c + ej)x : x ∈ X} obtained from x1, (c + ej)x2 < (c + ej)x1

and hence
(c + ej)x2 ≤ cx1.

From (2) we have (c + ej)x∗ = cx0 or (c + ej)x∗ = cx0 + 1. If (c + ej)x∗ = cx0,
then

(c + ej)x2 − (c + ej)x∗

(c + ej)x∗ ≤ cx1 − cx0

cx0 ≤ ε.

If (c + ej)x∗ = cx0 + 1, then

(c + ej)x2 − (c + ej)x∗

(c + ej)x∗ ≤ cx1 − cx0 − 1
cx0 + 1

≤ cx1 − cx0

cx0 ≤ ε.

Case 2: x1
j = 0. In this case (c + ej)x1 = cx1. We will show that x1 is an

ε-optimal solution to min{(c + ej)x : x ∈ X}. If (c + ej)x∗ = cx0, then

(c + ej)x1 − (c + ej)x∗

(c + ej)x∗ =
cx1 − cx0

cx0 ≤ ε.

If (c + ej)x∗ = cx0 + 1 then,

(c + ej)x1 − (c + ej)x∗

(c + ej)x∗ =
cx1 − cx0 − 1

cx0 + 1
≤ cx1 − cx0

cx0 ≤ ε.

Thus if the ε-augmentation oracle does not declare x1 as ε-optimal, the improved
solution x2 is guaranteed to be ε-optimal for min{(c + ej)x : x ∈ X}.

The converse of the theorem follows from Theorem 6. ��
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One consequence of the above theorem is that a 0/1-integer program has a
(fully) polynomial-time approximation scheme if and only if the corresponding
augmentation problem has a (fully) polynomial-time approximation scheme. The
same result was obtained by Orlin et al. using different arguments [11].

5 The Unit Increment Problem and Local Optimization

In this section we consider the complexity of computing a locally optimal so-
lution with respect to a given neighborhood function N . Recall that the local
augmentation problem has as input a feasible solution x and an objective func-
tion vector c, and it outputs a solution y ∈ N(x) with cy < cx, unless x is
already a local optimum. The local unit increment problem accepts as input an
index j and a locally optimal solution x0 with respect to c, and it returns a
locally optimal solution x∗ with respect to c + ej .

As in the case of (global) optimization and ε-optimization, we first observe
that if a feasible solution can be obtained in polynomial time and the local unit
increment problem can be solved in polynomial time, then a local optimum can
be computed in polynomial time. To establish this, we simply modify algorithm
UI by replacing the unit increment oracle, Unit-Inc, with a local unit increment
oracle, Local-Unit-Inc. We call the resulting algorithm LUI.

Theorem 8. Given a Local-Unit-Inc oracle, algorithm LUI computes a lo-
cally optimal solution in oracle-polynomial time.

The proof of Theorem 8 is similar to that of Theorem 2. Theorem 8 establishes
that the complexity of finding a local optimum is captured by that of the local
unit increment problem.

Unlike the case of optimization and ε-optimization, we are not able to establish
the equivalence of the local unit increment problem and the local augmentation
problem for 0/1-integer programs. In fact, if they are equivalent, then, by Theo-
rem 8, there is a polynomial-time algorithm for finding a local optimum for any
problem in PLS, including PLS-complete problems. In other words, this would
imply PLS = P. However, the two problems are equivalent if the neighborhood is
exact. This follows from Theorem 4. Interestingly, we can show that this is also
true for near-exact neighborhoods. Recall from the introduction that a neigh-
borhood is called near exact if the objective function value of any local optimum
is worse than that of at most a polynomial number of other feasible solutions.

Theorem 9. For 0/1-integer programs with near-exact neighborhoods, a polyno-
mial-time algorithm for local augmentation implies a polynomial-time algorithm
for the local unit increment problem.

Proof. Let x0 be a locally optimal solution with respect to the near-exact neigh-
borhood N and the objective function vector c. As usual, X denotes the set of
feasible solutions.

Since N is near exact, there exists X∗ ⊆ X such that cx0 ≤ cx for all x ∈ X∗

and |X \ X∗| ≤ f(|I|) for some polynomial f . Here, |I| is the size of the input.
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By Lemma 3, (c+ej)(x0−x) ≤ 1 for all x ∈ X∗. Thus in one augmentation step,
starting from x0, we get a solution that is no worse than any solution in X∗ w.r.t
(c + ej). This solution may or may not be a local optimum with respect to N .
But outside X∗ there are only f(|I|) solutions and hence the local augmentation
oracle cannot be called more than f(|I|) additional times before reaching a local
optimum. ��

Corollary 10. If there exists a near-exact neighborhood for a PLS-complete op-
timization problem with linear objective function, then there is a polynomial-time
algorithm that finds a local optimum for all problems in PLS. That is, PLS = P.

However, near-exact neighborhoods are unlikely to exist, at least for the TSP [7].
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Abstract. We consider the pair (pi, fi) as a force with two-dimensional
direction vector fi applied at the point pi in the plane. For a given set
of forces we ask for a non-crossing geometric graph on the points pi

that has the following property: There exists a weight assignment to the
edges of the graph, such that for every pi the sum of the weighted edges
(seen as vectors) around pi yields −fi. As additional constraint we re-
strict ourselves to weights that are non-negative on every edge that is
not on the convex hull of the point set. We show that (under a generic
assumption) for any reasonable set of forces there is exactly one pointed
pseudo-triangulation that fulfils the desired properties. Our results will
be obtained by linear programming duality over the PPT-polytope. For
the case where the forces appear only at convex hull vertices we show
that the pseudo-triangulation that resolves the load can be computed as
weighted Delaunay triangulation. Our observations lead to a new char-
acterization of pointed pseudo-triangulations, structures that have been
proven to be extremely useful in the design and analysis of efficient geo-
metric algorithms.

As an application, we discuss how to compute the maximal locally
convex function for a polygon whose corners lie on its convex hull.

1 Introduction

Let P = {p1, . . . ,pn} be a set of distinct points in the plane in general position
and let F = {f1, . . . , fn} denote a set of two-dimensional vectors. We think of
the pair (pi, fi) as a force in direction fi that is applied at the point pi. The set
of pairs L = {(p1, f1), . . . , (pn, fn)} is called a load. The objects we study in this
paper are geometric graphs G = (P, E) with point set P and edge set E. An
edge of E that is not part of the convex hull of P is considered as interior edge.

A stress is a (symmetric) assignment of scalars to the edges E. Throughout
the paper we denote a stress of G with ω : P → R. We say that a graph resolves
a load L with stress ω, if

∀pi :
∑

(i,j)∈E

ωij(pi − pj) = −fi. (1)
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If there exists some stress ω for which G resolves the load L we say that G resolves
L. Furthermore, if there exists a stress ω, positive or zero on every interior edge,
we say that G resolves L with positive interior stress. Stressed graphs have a
physical interpretation. Their edges can be considered as a system of springs.
Due to Hooke’s law the force induced by a spring is proportional to its length.
Hence the values ωij are the spring constants from this point of view. A negative
spring constant models a rubber band—thus by considering only positive interior
stresses we restrict ourselves to (expansive) springs.

In this paper we study the problem how to find a graph that resolves a given
load with positive interior stress. Figure 1(a) shows a small introductory exam-
ple of a problem instance. A possible solution with the corresponding stress is
depicted in Figure 1(b).

1/4

−3/4

−1/2

−1/2

−3/4

(a) (b)

Fig. 1. A small example

Not all loads can be resolved by a graph. In particular, a load has to contribute
neither a linear momentum (that is

∑
i fi = 0) nor an angular momentum (that

is
∑

i〈fi,p⊥
i 〉 = 0)1. To see this, observe the following: Every geometric graph

with fixed stress can resolve exactly one load. If the graph consists of a single
edge (i, j) it can resolve the load given by fi = ωij(pj −pi) and fj = ωij(pi−pj).
We notice that fi and fj sum up to 0 and that 〈fi,p⊥

i 〉 + 〈fj ,p⊥
j 〉 = 0 holds. A

load resolved by a stressed graph is the composition of these “atomic” forces
induced by single edges. Since the total linear (angular) momentum is the sum
of the linear (angular) momenta of the atomic forces we cannot resolve a load
with non-vanishing linear or angular momentum. In the following we consider
only loads without linear and angular momentum. If we want to emphasize the
absence of a momentum we use the term moment-free for loads.

The load given by fi = 0 for all pi is called zero load. A stress that resolves this
load on G is called equilibrium stress for G. Graphs with equilibrium stresses have
several nice properties. An old results that goes back to James Clerk Maxwell
states that the equilibrium stresses of a planar graph are in one-to-one corre-
spondence with its spatial liftings [16]. Furthermore, the sign of the stress on an
edge indicates the curvature along this edge in the lifting. This observation is
known as the Maxwell-Cremona correspondence.
1 The vector p⊥ := (y,−x)T denotes the rotation of p = (x, y)T by 90 degrees around

the origin.
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Considering positive interior stresses only is also motivated by the construc-
tion of a discrete Laplace-Beltrami operator [25]. There exist different versions of
the discrete Laplace-Beltrami operator, but none can guarantee all properties of
the continuous equivalent [25]. In particular, a discrete Laplace-Beltrami opera-
tor for a triangulated surface mesh should be modeled by an equilibrium stress
(with every vertex incident to at least one non-zero stress) whenever the surface
lies in the plane. On the other hand the edge weights should be non-negative to
guarantee the maximum principle, which is a natural property for the classical
Laplace-Beltrami operator and which should also hold for the discrete version
[5]. As mentioned in [25], the existence of non-regular triangulations makes it
impossible to construct a “perfect” discrete Laplacian. However, it is open how
to fix this inconvenience by local adjustments to the original mesh. A better
understanding how positive equilibrium stresses behave could lead to a solution
for this problem.

We restrict ourselves to a special class of graphs that might resolve a given
load with a positive interior stress. These are the pointed pseudo-triangulations.
A pseudo-triangulation of P is a partition of the convex hull of P into poly-
gons with three corners2 such that every pi is part of some polygon. If every
point is incident to an angle greater than π the pseudo-triangulation is called
pointed. A pseudo-triangulations can resolve any moment-free load with positive
and negative stresses (Streinu [24]). Pseudo-triangulations are related to max-
imal locally convex functions. This relationship was observed by Aichholzer et
al. [2] and was further extended by Aurenhammer and Krasser [3]. Similar to tri-
angulations pointed pseudo-triangulations appear as geometric data structures
and they are used to prove the correctness and efficiency of algorithms. They
find applications in ray shooting [6], motion planning [4], and art gallery type
problems [23]. This list is far from complete, for a comprehensive discussion on
pseudo-triangulations we direct the reader to the survey by Rote, Santos and
Streinu [20].

The reasons why we focus on pointed pseudo-triangulations are the following.
Since they can resolve loads with general stresses, they seem to be powerful
enough. On the other hand, every vertex which is not pointed is in some sense
“over-constrained” to resolve the force (with positive stresses) at this point,
because the effect of at least one stressed edge can be expressed by adjusting the
stresses on two other edges. Moreover, pseudo-triangulations are non-crossing
geometric graphs and therefore easy to understand for the viewer.

Results: As our main result we show that there exists for every moment-free
load L a pointed pseudo-triangulation that can resolve L with positive interior
stress. Moreover, up to degenerate situations, this pointed pseudo-triangulation
is unique. We extend these results to a constrained version of the original prob-
lem. This means, that even if we restrict a certain set of edges to appear in
the solution, we can find a pointed pseudo-triangulation that contains this set
and resolves L with positive stress on the unconstrained interior edges. This

2 A corner is a vertex of a polygon with interior angle smaller than π.
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is true for any constraints that allow the completion to some pointed pseudo-
triangulation. As in the original setting the obtained solution is unique for almost
every load. The constrained and the unconstrained problem can be solved by lin-
ear programming. For the special situation when all forces appear only at convex
hull vertices we provide an algorithm that computes the load resolving pointed
pseudo-triangulation without linear programming.

As application we show how we can compute pointed pseudo-triangulations
that refer to maximal locally convex functions, for polygons whose corners lie
on its convex hull. Our approach combines the load-resolving method with the
Maxwell-Cremona correspondence.

2 Resolving Loads with Pointed Pseudo-triangulations

2.1 General Solution

Let us start with some preliminary observations about pointed pseudotriangu-
lations. In the following we use pointed pseudo-triangulations of point sets and
(later in Section 3) also of simple polygons.

Definition 1. A pointed pseudo-triangulation of a point set P is the partition
of the convex hull of P into polygons with three corners, such that every vertex
in P is incident to an angle greater than π.

A pointed pseudo-triangulation of a polygon P is the partition of P into
polygons with three corners, such that every vertex of P is incident to an angle
greater than π.

There exists a high-dimensional polytope whose corners correspond to the pointed
pseudo-triangulations a point set can have [19]. This polytope is called PPT-
polytope and it is based on the fact that every pointed pseudo-triangulation
has an expansive infinitesimal motion, if one removes a convex hull edge (see
Streinu [24]). The infinitesimal velocities v1, . . . ,vn (each vi is a two-dimensional
vector) act as unknowns in the description of the polytope:

〈vi − vj ,pi − pj〉 ≥ 〈pi,p⊥
j 〉2 ∀i, j ≤ n,

〈vi − vj ,pi − pj〉 = 〈pi,p⊥
j 〉2 for (i, j) ∈ conv(P ),

(2)∑n
i=1 vi = 0, (3)∑n

i=1〈vi,p⊥
i 〉 = 0. (4)

The PPT-polytope is a simple polytope with dimension 2n − 3. Hence, in
each of its vertices 2n − 3 inequalities are tight (including the equations of the
convex hull edges). The pointed pseudo-triangulation that is associated with a
specific vertex of the PPT-polytope is given by the edges induced by its tight
inequalities.

We study the minimization of the function
n∑

i=1

〈vi,−fi〉 (5)
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over the PPT-polytope given by (2–4) (in the following considered as primal
program). As we will see later our choice of the objective function (5) leads to a
solution that is capable to resolve the load L.

The constraints of the corresponding dual program have the following form:

1 ≤ i ≤ n :
n∑

j=1

uij(pi − pj) + t + rp⊥
i = −fi. (6)

The variables t and r correspond to the equations (3) and (4). For every pos-
sible interior edge we obtain by LP duality the dual constraint uij ≥ 0 . By
complementary slackness we deduce that if a constraint is not tight in the pri-
mal solution (there is no edge defined by this inequality), then the corresponding
dual variable uij is zero in the dual solution. Thus, a (non-zero) uij appears only
on the edges of the primal solution.

We observe that the dual variables t and r that come from the conditions (3)
and (4) are the only difference between (6) and (1). Fortunately, we can show
that under our assumptions the variables t and r can only be zero.

Lemma 1. If the load in the primal program is moment-free we have for the
dual variables t = 0 and r = 0.

Proof. Equation (6) denotes n restrictions of the dual program. Adding up all
these equations cancels the uij variables and gives

nt + r
( n∑

i=1

pi

)⊥
= −

n∑
i=1

fi. (7)

Because the objective function is moment-free the last equation equals zero.
Now, we take the scalar product of both sides of equation (6) with p⊥

i . This
gives n equations of the form

−
n∑

j=1

uij〈p⊥
i ,pj〉 + 〈p⊥

i , t〉 + r‖pi‖2 = −〈p⊥
i , fi〉. (8)

If we sum up all these equations, the uij variables cancel, since 〈p⊥
i ,pj〉 =

〈p⊥⊥
i ,p⊥

j 〉 = 〈−pi,p⊥
j 〉 = −〈p⊥

j ,pi〉. We obtain〈( n∑
i=1

pi

)⊥
, t
〉

+ r

n∑
i=1

‖pi‖2 = −
n∑

i=1

〈p⊥
i , fi〉. (9)

The uijs cancel, since 〈pi
⊥,pj〉 = 〈p⊥

i
⊥

,p⊥
j 〉 = 〈−pi,p⊥

j 〉 = −〈p⊥
j ,pi〉. Again

this equation is zero because the objective function is moment-free.
The variables t and r can be computed by solving a homogeneous linear

equation system given by the three equations from (7) and (9). It remains to
show that t = 0 and r = 0 is the only solution of this system. We can rephrase
(7) to express t as

t = − r

n

( n∑
i=1

pi

)⊥
. (10)
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If r = 0 then t = 0 and we get the trivial solution. Therefore, let us assume that
r is nonzero. We plug (10) into equation (9) and obtain

− r

n

〈( n∑
i=1

pi

)⊥
,
( n∑

i=1

pi

)⊥〉
+ r

n∑
i=1

‖pi‖2 = 0.

Further simplifications give

n∑
i=1

‖pi‖2 − 1
n

∥∥∥ n∑
i=1

pi

∥∥∥2
= 0. (11)

Let p̄ := 1
n

∑n
i=1 pi denote the center of gravity of P . We deduce

‖pi‖2 = ‖p̄ + pi − p̄‖2 = ‖p̄‖2 + 2〈p̄,pi − p̄〉 + ‖pi − p̄‖2.

Plugging this equivalence into equation (11) leads to

n∑
i=1

(‖p̄‖2+ 2〈p̄,pi−p̄〉 + ‖pi−p̄‖2) − n‖p̄‖2 = n‖p̄‖2+
n∑

i=1

‖pi − p̄‖2 − n‖p̄‖2,

=
n∑

i=1

‖pi − p̄‖2.

We observe that the last expression is strictly positive as long as not all pi are
the same, which is not allowed in our case. Hence, t = 0 and r = 0 is the only
solution of the homogeneous system and the lemma follows. ��

As consequence of Lemma 1 the dual variables uij define a stress that resolves L
and is positive on every interior edge. Hence, the solution of the primal program
computes a graph with the desired properties. Notice that almost every objective
function has a unique solution, and thus there is for almost every load exactly
one pointed pseudo-triangulation that resolves it with positive interior stress.

Theorem 1 (Main Theorem). For every moment-free load L there exists a
pointed pseudo-triangulation that resolves L with positive interior stress. Up to
degenerate situations this pointed pseudo-triangulation is unique and it is the
solution of the linear program (2–5).

Algorithmically, the computation of the desired pointed pseudo-triangulation
boils down to solving a linear program with 2n variables, whose length is in
O(n2). Various methods and tools are applicable to solve LP programs. The in-
terior point method of Karmarkar [13] runs in O(n3.5K), where K is the number
of input bits.

2.2 The Constrained Problem

We are looking now for a pointed pseudo-triangulation that resolves a load L with
positive interior stress and that contains a prescribed set of edges Ec. Notice that



536 G. Rote and A. Schulz

a set of non-crossing edges that leaves an angle greater than π at every vertex
can always be completed to a pointed pseudo-triangulation [24]. Let us assume
that Ec allows the completion to a pointed pseudo-triangulation on P .

The solution in this constrained setting can be computed with the same
method we used for the general case. Again, we use a linear program to compute
the pointed pseudo-triangulation. But this time we optimize only over a facet of
the PPT-polytope. This facet can be obtained by turning all inequalities of (2)
that refer to edges in Ec into equations:

〈vi − vj ,pi − pj〉 = 〈pi,p⊥
j 〉2, for (i, j) ∈ Ec. (12)

The facet of the PPT-polytope is simple and, more important, it is not empty.
Forcing edges to appear in the graph has the following consequences for our

LP approach: The inequalities of Ec are now equations. Thus, we have no in-
formation about the sign of the corresponding dual variables uij anymore. On
the other hand the dual restrictions (6) are not affected. We have still uij ≥ 0
for every uij that does not refer to an edge in Ec. Notice that Lemma 1 can be
applied in this constrained setting without modifications. As a consequence we
can deduce:

Theorem 2. Let L = P × F be a moment free load and Ec be a set of edges
that allows the completion to a pointed pseudo-triangulation on P . There exists
a pointed pseudo-triangulation that contains Ec and resolves L with a stress that
is positive on every interior edge that is not in Ec. Up to degenerate situations
this pointed pseudo-triangulation is unique and it is the solution of the linear
program given by (2–5) and (12).

2.3 No Interior Forces

Let us assume for this section that fi = 0 for every vertex that is not on the
convex hull of P . Under this assumption, we can find the pseudo-triangulation
that resolves L by geometric methods, without solving a linear program. If we
have no edge constraints, all interior points can simply be ignored: in this setting,
we are looking for a triangulation that resolves forces whose points of application
are in convex position.

Let us assume that the facial structure of a planar graph G is given by some
combinatorial embedding (a planar map), and in addition, the vertices of G are
drawn in the plane and the edges are realized as straight lines (a geometric
graph). Note that the drawing in the plane can have crossings, and is not neces-
sarily related to the facial structure. A height assignment h : P → R is a lifting
of a graph if all vertices that belong to a face lie on a common plane in R3 when
giving pi the additional coordinate zi = h(pi). The relation between liftings of a
planar graph that is drawn as a geometric graph in the plane and its equilibrium
stresses is expressed by the Maxwell-Cremona correspondence [16].

Theorem 3 (Maxwell-Cremona correspondence). For a planar 2-connect-
ed graph G drawn in the plane, with a designated face f̂ , there is a one-to-one
correspondence between
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1. the liftings of G with f̂ in the xy-plane, and
2. the equilibrium stresses on G.

When we apply this theorem in this paper, the lifted surface is usually a poly-
hedral surface that consists of an “upper surface” and a “lower surface” that
are glued together at their common boundary. Each part, when individually
projected to the plane, will yield a planar drawing without crossings, but the
overlay of the two parts will in general have crossings. It is possible that the
lower and the upper surface intersect each other; this is no problem. When G,
or a part of G, is drawn without crossings and the faces of G are the faces of
this drawing, an edge with a positive stress lifts to a convex edge and an edge
with a negative stress a concave edge.

The complete proof of the Maxwell-Cremona correspondence is due to White-
ley [26] A more constructive proof is due to Richter-Gebert [18]. The Maxwell-
Cremona correspondence finds application in polygon unfolding [9] and grid
embeddings of 3-polytopes [17]. Once we have a equilibrium stress, the compu-
tation of the lifting is easy and can be computed face by face, starting with f̂ . For
detailed rules how to compute the lifting we refer to Richter-Gebert’s book [18].

We first discuss the unconstrained load resolving problem. We look for a graph
that resolves LC := {(pi, fi) | pi lies on the convex hull}. But this time negative
stresses on interior edges are allowed. It is known that every triangulation can
resolve LC since it is a so called Laman graph and hence statically rigid [11]. Let
us pick an arbitrary triangulation T of the convex hull. We compute the stress
that resolves LC on T and multiply all stresses by −1. This gives a stressed graph
that “produces” the load LC . The stressed triangulation T combined with the
triangulation T ′ that resolves LC with positive interior stresses yields a planar
graph with equilibrium stress. Thus, by Maxwell-Cremona there is a lifting of this
composition. From this lifting we know the heights of the lifted points, because
every point lies on a face of T and we can compute the lifting partially for the
faces of T , when we choose f̂ as face of T . Since the interior edges of T ′ are
restricted to have a positive stress their curvature in the lifting of T ∪T ′ yields a
convex bending. Therefore, the combinatorial structure of T ′ coincides with the
weighted Delaunay triangulation of conv(P ). The Delaunay-weights are given by
‖pi‖2 − zi for every convex hull vertex pi. The weighted Delaunay triangulation
for convex point sets can be computed in linear time [1].

The stresses of T can be computed with help of an ear decomposition of T .
Let pc be the corner of an ear of T . The force (pc, fc) can be canceled by the
two boundary edges of pc by a unique stress which can be easily computed. We
can update the forces assigned to the neighbors of pc by subtracting the vector
induced by the (newly) stressed edges incident to pc. Now we can eliminate the
ear and continue the ear decomposition in this fashion until we reduced T to a
triangle. Notice that by updating the neighboring forces we deal with a moment-
free load in every step of the ear decomposition. Thus for the final triangle we
have three moment-free forces which can be canceled. The stresses of the final
triangle can be computed by a small linear system. Since the ear decomposition
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clearly runs in linear time we can compute the triangulation that resolves LC

with positive interior stresses in linear time.
For the constrained setting we can use the same ideas. More precisely, we fix

again an arbitrary triangulation T and compute again a stress that resolves L
on T . The heights of the associated lifting can be computed by the Maxwell-
Cremona correspondence. The pointed pseudo-triangulation that resolves LC is
characterized by the polyhedral surface that is convex on every line segment
inside conv(P ) that doesn’t cross a constraint edge. Aichholzer et al. [2] give
an algorithm (not based on linear programming) that computes this polyhedral
surface. Unfortunately, no practical bounds for the running time of this algorithm
are known.

3 Computing Optimal Pointed Pseudo-triangulations of
Polygons

Let P be a polygon with vertex set P = {p1, . . . ,pn} and let Pc denote the
set of corners of P . Furthermore, let h : Pc → R be a height assignment for the
corners of P . We study the maximal function f∗ : P → R that is convex on
every line inside P and that fulfills h(pi) = f∗(pi) for all corners pi ∈ Pc. It
was proved by Aichholzer et al. [2] that f∗ describes a piecewise linear surface,
whose non-linearities project down to a pointed pseudo-triangulation PT h. The
framework of [2] is more general and covers also polygons with additional points
inside. It can also be used to define optimal non-pointed pseudo-triangulations.

We can compute PT h (or f∗) by (i) picking an arbitrary pseudo-triangulation
of P and then (ii) applying a sequence of local adjustments which are called flips.
A flip is a transformation of a pseudo-triangulation that exchanges, inserts or
removes a single edge and produces a new pseudo-triangulation. There exists a
criterion which tells us whether a flip brings us “closer” to PT h or not. Thus,
we can compute PT h by a sequence of such (improving) flips. As a result of
[2, Optimality Theorem] we know that the sequence is finite and terminates at
PT h. For a polygon, an improving sequence can have super-polynomial length
[22] but we can always find a short sequence of O(n2) flips [2, Lemma 7.3].
During the flipping process we must keep track of the heights on all vertices of
P \ PC . Only this information allows us to decide if a flip is improving. It was
noticed in [12, page 55] that the recomputation of the heights can be expressed
by a linear equation system that is based on a planar structure. As mentioned
in [7], the Planar Separator Theorem provides a solution in O(M(

√
n)) time

in this case, where M(n) is the upper bound for multiplying two n × n matri-
ces [14,15]. The current record for M(n) is O(n2.325), which is due Coppersmith
and Winograd [10]. Thus, a flip can be carried out in O(n1.163) time, and the
whole algorithm takes O(n3.163) time.

We give an alternative algorithm how to compute PT h for polygons whose
corners lie on its convex hull. Our approach uses a completely new technique and
is based on the observations of the Maxwell-Cremona correspondence, introduced
in the previous section. Here, in contrast to the previous section, we use a linear
programming approach to solve a geometric problem.
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We first give a high-level description of our method. We construct a poly-
hedron that consists of two shells. Roughly speaking, the upper shell is the
(unknown) surface given by f∗—the lower shell is a cone with apex at the origin
that spans the lifted corners of the polygon. To glue the two shells together, we
have to extend f∗ to the set conv(P ) \ P (the pockets of P). Due to Maxwell-
Cremona, the vertical projection of the polyhedron has an equilibrium stress,
with positive stressed edges on the interior edges of P . Each shell alone pro-
duces a moment-free load that shows up on the convex hull vertices. Since we
know the height and the position of the convex hull vertices we know the geomet-
ric shape of the lower shell. Hence, we can compute all of its (interior) stresses
and therefore the induced moment-free load. The graph that resolves this load
with positive interior stresses gives PT h with triangulated pockets. Of course
we have to enforce the boundary edges of P to appear in our solution, which can
be done by solving the constrained problem as discussed in Section 2.2.

We continue with the detailed construction. Let [i, j, k, l] denote the signed vol-
ume of the tetrahedron spanned by the lifted vertices pi,pj ,pk,pl and let [i, j, k]
be the signed area of the triangle spanned by the (plane) vertices pi,pj ,pk. We
introduce a new vertex p0 = (0, 0)T as the apex of the lower shell. As observed
in [8,22], the corresponding stresses on every edge connecting p0 to a corner pi

can be expressed as

ω0i :=
[0, h, i, j]

[0, h, i][0, i, j]
,

where ph is the left neighbor, and pj is the right neighbor of pi on the convex hull
of P . By construction, the stressed edges incident to p0 sum up to 0. For every
corner pi we obtain a vector fi := ω0i(pi − p0) = ω0ipi. We use the boundary
edges of P as constraints and compute the pointed pseudo-triangulation that
resolves the forces fi.

(a) (b) (c)

Fig. 2. A polygon (a), the induced forces that will yield the lifting to the paraboloid
(b), and the corresponding pointed Delaunay pseudo-triangulation (c)
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(a) (b)

Fig. 3. Construction of a polyhedron whose upper shell gives f∗

We conclude with an example of our method. Figure 2(a) shows a poly-
gon whose corners lie on its convex hull. As height assignment we choose the
paraboloid lifting h(pi) := ‖pi‖2—this lifting gives the pointed Delaunay pseudo-
triangulation of P (see [21]). The induced lower shell is shown in Figure 3(a)
and its induced forces are shown in Figure 2(b). The surface that “fits” into the
lower shell and that fulfills all the requirements is depicted in Figure 3(b). It
gives the pointed pseudo-triangulation PT h of Figure 2(c).

Our method extends the result presented in [21] because it allows the com-
putations for a wider class of polygons. The question how to solve the general
case with the load resolving method is still open but not out of reach. One has
to find a way how to fix the values of the stresses of the edges appearing at the
pockets of P to specify the heights of the corners that are not part of conv(P ).
Our algorithm is slower than the execution of the improving flip sequence of [2].
On the other hand our method allows a very simple implementation with the
help of an LP-solver.
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Abstract. We present the first thorough theoretical analysis of the
Transitivity Editing problem on digraphs. Herein, the task is to per-
form a minimum number of arc insertions or deletions in order to make
a given digraph transitive. This problem has recently been identified as
important for the detection of hierarchical structure in molecular char-
acteristics of disease. Mixing up Transitivity Editing with the com-
panion problems on undirected graphs, it has been erroneously claimed
to be NP-hard. We correct this error by presenting a first proof of NP-
hardness, which also extends to the restricted cases where the input
digraph is acyclic or has maximum degree four. Moreover, we improve
previous fixed-parameter algorithms, now achieving a running time of
O(2.57k +n3) for an n-vertex digraph if k arc modifications are sufficient
to make it transitive. In particular, providing an O(k2)-vertex problem
kernel, we positively answer an open question from the literature. In case
of digraphs with maximum degree d, an O(k · d)-vertex problem kernel
can be shown. We also demonstrate that if the input digraph contains no
“diamond structure”, then one can always find an optimal solution that
exclusively performs arc deletions. Most of our results (including NP-
hardness) can be transferred to the Transitivity Deletion problem,
where only arc deletions are allowed.

1 Introduction

To make a directed graph (digraph for short) transitive by a minimum number
of arc modifications has recently been identified to have important applications
in detecting hierarchical structure in molecular characteristics of disease [3,11].
A digraph D = (V, A) is called transitive if (u, v) ∈ A and (v, w) ∈ A implies
(u, w) ∈ A (also cf. [1, Section 4.3]). Thus, the central problem Transitiv-

ity Editing studied here asks, given a digraph and an integer k ≥ 0, to find
a set of at most k arcs to insert or delete in order to make the resulting di-
graph transitive. We provide a first thorough theoretical study of Transitivity

Editing, complementing previous work that focused on heuristics, integer lin-
ear programming, and simple fixed-parameter algorithms [3,11]. We also study
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the special case when only arc deletions (Transitivity Deletion) are allowed
and restricted classes of digraphs (acyclic and bounded-degree). Note that the
corresponding problem Transitivity Completion (where only arc insertions
are allowed) is nothing but the well-studied problem of computing the transitive
closure of a digraph; this is clearly solvable in polynomial time [13].
Previous work. Transitivity Editing can be seen as the “directed coun-
terpart” of the so far much better studied problem Cluster Editing on undi-
rected graphs (see [2,5,7,8,15]). Indeed, both problems are also referred to as
Transitive Approximation problem on directed and undirected graphs, re-
spectively. Unfortunately, this is perhaps a reason why Transitivity Editing

has erroneously been claimed to be NP-hard [11,3] by referring to work that only
considers problems on undirected graphs, including Cluster Editing. On the
positive side, however, the close correspondence between Cluster Editing and
Transitivity Editing helped Böcker et al. [3] to transfer their previous results
for Cluster Editing [2] to Transitivity Editing, delivering the currently
fastest implementations that exactly solve Transitivity Editing (by means
of integer linear programming and fixed-parameter algorithms). In particular,
their computational experiments demonstrate that their exact algorithms are by
far more efficient in practice than the previously used purely heuristic approach
by Jacob et al. [11].
Our contributions. We eventually prove the so far only claimed NP-hardness1

of Transitivity Editing, also extending this result to Transitivity Dele-

tion. Moreover, we show that both problems remain NP-hard when restricted to
acyclic digraphs or digraphs with maximum vertex degree four (more precisely,
indegree two and outdegree two). To this end, we also make the helpful com-
binatorial observation that if a digraph does not contain a so-called “diamond
structure”, then there is an optimal solution for Transitivity Editing that
only deletes arcs. This observation is also useful for developing more efficient
fixed-parameter algorithms than the ones presented in previous work. First, we
provide a polynomial-time data reduction that yields an O(k2)-vertex problem
kernel for Transitivity Editing and Transitivity Deletion. This answers
an open question of Böcker et al. [3]. In the special case of digraphs with max-
imum vertex degree d, we can actually prove an O(k · d)-vertex kernel. Finally,
exploiting the aforementioned observation on diamond-freeness, we develop an
improved search tree for Transitivity Editing. That is, whereas the fixed-
parameter algorithm of Böcker et al. [3] runs in O(3k · n3) time on n-vertex
digraphs, our new algorithm runs in O(2.57k + n3) time (note that in our algo-
rithm the cubic term n3 has become additive instead of multiplicative due to our
kernelization result). Finally, we mention that Transitivity Deletion can be
solved in O(2k + n3) time. To conclude, note that Gutin and Yeo [9] asked in
their recent survey about parameterized problems on digraphs for extending the
so far small list of fixed-parameter tractability results for NP-hard problems on
digraphs—we hope that our work makes a useful addition to this list. Due to the
lack of space, several details are deferred to a full version of this article.
1 Indeed, all corresponding decision problems are NP-complete.
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2 Preliminaries and a Structural Result

Our algorithmic results are in the context of fixed-parameter algorithms. Pa-
rameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems [4,6,14]. One dimension is the input size n (as
in classical complexity theory), and the other one is the parameter k (usually
a positive integer). A problem is called fixed-parameter tractable (fpt) if it can
be solved in f(k) ·nO(1) time, where f is a computable function only depending
on k. This means that when solving a combinatorial problem that is fpt, the
combinatorial explosion can be confined to the parameter. A core tool in the
development of fixed-parameter algorithms is polynomial-time preprocessing by
data reduction. Here, the goal is for a given problem instance x with parame-
ter k to transform it into a new instance x′ with parameter k′ ≤ k such that the
size of x′ is upper-bounded by some function only depending on k and the in-
stance (x, k) is a yes-instance iff (x′, k′) is a yes-instance. The reduced instance,
which must be computable in polynomial time, is called a problem kernel, and
the whole process is called reduction to a problem kernel or simply kernelization.

A directed graph or digraph is a pair D = (V, A) with A ⊆ V × V . The set V
contains the vertices of the digraph, while A contains the arcs. Throughout
this work, let n := |V |. If V ′ ⊆ V , then D[V ′] := (V ′, A ∩ (V ′ × V ′) denotes the
subgraph of D that is induced by V ′. Furthermore, we write D−u for D[V \{u}].
The symmetric difference of two sets of arcs A and A′ is AΔA′ := (A∪A′)\(A∩
A′). In this work, we only consider simple digraphs, that is digraphs without
self-loops and double arcs. For any u ∈ V , predA (u) := {v ∈ V | (v, u) ∈ A}
denotes the set of predecessors of u with respect to A, while succA (u) := {v ∈
V | (u, v) ∈ A} denotes its successors. The vertices in predA (u) ∪ succA (u) are
said to be adjacent to u.

A digraph D = (V, A) is called transitive if

∀u,v,w∈V ((u, v) ∈ A ∧ (v, w) ∈ A) ⇒ (u, w) ∈ A.

In other words, D is transitive if A is a transitive relation on (V ×V ). The central
problem of this work (formulated as decision problem, but our algorithms can
also solve the corresponding minimization problem) is defined as follows.

Transitivity Editing:
Input: A digraph D = (V, A) and an integer k ≥ 0.
Question: Does there exist a digraph D′ = (V, A′) that is transitive
and |AΔA′| ≤ k?

Analogously, Transitivity Deletion is defined via only allowing arc deletions.
To derive our results, we make use of the fact that transitive digraphs can

be characterized by “forbidden P3s”. Slightly abusing notation, in our setting,
the P3s of a digraph are all vertex triples (u, v, w), such that (u, v) ∈ A, (v, w) ∈
A, and (u, w) �∈ A. We say that the P3 (u, v, w) contains the arcs (u, v) and (v, w)
and the vertices u, v, and w. As also noted by Böcker et al. [3], transitive digraphs
can be characterized as the digraphs without P3s, that is, a digraph is transitive
iff it does not contain a P3.
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u

v

x y

u v x y

u - 0 1 1
v * - * *
x * 1 - *
y * 1 * -

Fig. 1. The diamond structure and its adjacency matrix. In order to meet the defini-
tion, the solid arcs must be present and the dashed arc must be absent. All other arcs
may or may not be present. In the adjacency matrix, for each vertex, the endpoints of
its outgoing arcs are determined by its row. Stars represent wildcards, that is, these
entries do not matter for the definition.

A central tool for our combinatorial studies is based on the consideration of
“diamonds”. The absence of diamonds in a given digraph simplifies the Tran-

sitivity Editing problem. This helps us in proving NP-hardness and in our
algorithmic results. A diamond in a digraph D = (V, A) is a triple (u, {x, y}, v),
where u, x, y, v ∈ V , (u, v) �∈ A, and (u, z), (z, v) ∈ A for z ∈ {x, y} (see Fig. 1).2

If D does not contain a diamond, then it is said to be diamond-free.
A set S ⊆ V × V is called a solution set of Transitivity Editing for the

digraph (V, A) if (V, AΔS) is transitive. A solution set S is optimal if there is
no solution set S′ with |S′| < |S|. For each solution set S we consider its two-
partition S = SDEL'SINS, where SDEL denotes the set of arc deletions and SINS
denotes the set of arc insertions. The following lemma shows that the property
of being diamond-free is preserved by deleting the arcs of a solution set.

Lemma 1. Let D = (V, A) be a diamond-free digraph and let S be a solution
set for D. Then DDEL := (V, AΔSDEL) is diamond-free.

The following important result shows that in order to solve Transitivity Edit-

ing on diamond-free digraphs, it is optimal to only perform arc deletions.

Lemma 2. Let (D, k) with D = (V, A) be a diamond-free input instance of
Transitivity Editing. Then, there is an optimal solution set S for D that
inserts no arc, that is, S = SDEL.

Proof. Let S′ be any optimal solution set for D. By Lemma 1, we can apply
all arc deletions of a given solution set without destroying diamond-freeness.
Hence, we assume the solution set S′ to only consist of arc insertions. We now
construct S from S′:

S := {(a, b) | ∃c∈V (a, c) ∈ S′ ∧ (a, b) ∈ A ∧ (b, c) ∈ A} .

Since D is diamond-free, for each vertex pair (a, c), there is at most one b meeting
the criteria (a, b) ∈ A and (b, c) ∈ A. Hence, for each inserted arc (a, c) in S′,
there is at most one arc (a, b) in S and hence |S| ≤ |S′|.
2 Note that this is not a common definition and should not be mixed-up for instance

with diamonds in undirected graphs.
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Let D′ := (V, A′) with A′ := A\S. We now show that S is a solution set for D
by proving that D′ is transitive: Assume that there is a P3 p = (x, y, z) in D′.
Since S ⊆ A (that is, S contains only arc deletions), we know that (x, y) ∈ A
and (y, z) ∈ A and, since S′ is a solution set for D, we know that p is not a P3
in (V, AΔS′), implying either (x, z) ∈ S′ or (x, z) ∈ S. However, (x, z) �∈ S′,
because otherwise (x, y) ∈ S, contradicting p being a P3 in D′. Hence, (x, z) ∈ A
and (x, z) ∈ S. By definition of S, this implies that there is a vertex v ∈ V
with (z, v) ∈ A and (x, v) ∈ S′. Also, (y, v) �∈ A, since, otherwise, (x, z, v)
and (x, y, v) would form a diamond in D. Hence, q = (y, z, v) is a P3 in D.
As p, also q cannot be a P3 in (V, AΔS′). However, S′ does only contain insert
operations, which implies (y, v) ∈ S′. Since (y, z) ∈ A and (z, v) ∈ A, this
implies (y, z) ∈ S, contradicting p being a P3 in D′. ��

3 NP-Hardness Results

In this section, we prove the NP-hardness of Transitivity Editing and Tran-

sitivity Deletion in degree-four digraphs and in acyclic digraphs. Both results
are derived by a reduction from Positive-Not-all-equal-3SAT, which is an
NP-complete variant of 3SAT [12].

Positive-Not-all-equal-3SAT (PNAE-3SAT):
Input: A Boolean formula ϕ in n variables x0, . . . , xn−1 which is a con-
junction of m clauses Ci, 0 ≤ i < m, each consisting of three positive
literals.
Question: Is there a truth assignment to all n variables such that for
each clause Ci exactly one or two of its variables are assigned true, that
is, for no clause the truth values of its variables are all equal?

First, we show that PNAE-3SAT can be reduced to Transitivity Editing in
degree-four digraphs. To this end, we construct an input instance of Transitiv-

ity Editing from a given input instance of PNAE-3SAT in polynomial time
as follows. For each of the n Boolean variables, we construct a variable cycle,
that is, a directed cycle of length 8m, with m being the number of clauses in
the given formula ϕ. More specifically, for each variable xi, the corresponding
variable cycle consists of the vertices Vi := {i0, . . . , i8m−1}. The vertices in Vi

are connected into a cycle by adding the arcs Ai := {{ip, ip+1} | 0 ≤ p ≤ 8m−1}
(for the ease of presentation, let i8m = i0). The collection of all variable cycles
is then referred to by (V, A) with V :=

⋃n−1
i=0 Vi and A :=

⋃n−1
i=0 Ai. In the fol-

lowing, we refer to the arcs (i0, i1), (i2, i3), . . . , (i8m−2, i8m−1) as even arcs and
to all other arcs in the variable cycle as odd arcs.

Moreover, for each clause Cj = {xp, xq, xr} in ϕ with 0 ≤ j < m, we construct
a clause cycle, that is, a directed length-three cycle between the variable cycles of
its three variables consisting of the arcs A′

j := {(p8j, q8j) , (q8j , r8j) , (r8j , p8j)}.
See Fig. 2(a) for an illustration. This completes the construction.

The set of all arcs in the clause cycles is denoted by A′ :=
⋃m−1

j=0 A′
j . Note that

two vertices of a variable cycle contained in different clause cycles have distance
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p8j

q8j

r8j

xp

xq

xr p8j

q8j

r8j

xp

xq

xr

(a) (b)

Fig. 2. (a): The clause cycle of clause Ci = {xp, xq, xr} connecting the corresponding
variable cycles. Bold arcs are in A′. (b): All P3s containing an arc of the clause cycle
can be destroyed by deleting two arcs if in the variable cycle of xp all odd arcs are
deleted and in the variable cycle of xq all even arcs are deleted. Dashed lines indicate
deleted arcs and exactly one of the two dotted arcs incident to r8j is deleted.

at least 8, which makes it easy to see that the constructed digraph is diamond-
free. Finally, let D := (V, A∪A′) denote the resulting digraph and k := 2m+4mn.
Observe that D is diamond-free and has maximum degree four.

Theorem 1. Transitivity Editing is NP-complete, even if the maximum
degree is bounded by four (indegree two and outdegree two).

Proof. Obviously, one can verify in polynomial time whether a digraph is transi-
tive. This implies that Transitivity Editing is in NP. We now show that it is
NP-hard by reducing from PNAE-3SAT. Let D = (V, A∪A′) be a digraph con-
structed as described above from a given instance ϕ of PNAE-3SAT. We show
that (D, k) with k := 2m+ 4mn is a yes-instance for Transitivity Editing iff
there is a satisfying assignment to the variables of ϕ.

“⇐”: Suppose that there is a satisfying assignment β to the variables of a
PNAE-3SAT input instance ϕ. Then, we can construct a transitive digraph by
modifying D in the following way: First, for each variable xi, we remove all odd
arcs of its variable cycle if β(xi) = true, and all even arcs if β(xi) = false. All in
all, we remove 4m arcs for each of the n variable cycles, which is a total of 4mn
arc deletions. Note that all remaining P3s contain at least one arc of a clause
cycle.

To destroy these P3s, for each clause Cj = {xp, xq, xr}, 0 ≤ j < m, the clause
cycle is modified in the following way: Since β is a satisfying assignment for the
PNAE-3SAT instance, we can assume without loss of generality that β(xp) =
true and β(xq) = false. Hence, we have deleted all odd arcs in the variable cycle
of xp and all even arcs in the variable cycle of xq, that is, the arcs (p8j−1, p8j)
and (q8j , q8j+1) are deleted and the arcs (p8j , p8j+1) and (q8j−1, q8j) are not
deleted. Moreover, observe that deleting the arcs (q8j , r8j) and (r8j , p8j) of the
clause cycle makes p8j a source and q8j a sink. Hence, all P3s containing an
arc of the clause cycle of Cj are destroyed. See Fig. 2(b) for an illustration. For
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all clauses, this requires 2m arc deletions in total. In summary, it is possible to
make D transitive with 2m + 4mn arc deletions.

“⇒”: Suppose that (D, 2m + 4mn) is a yes-instance of Transitivity Edit-

ing. Hence, a solution set S for D exists such that |S| ≤ 2m + 4mn. Since D is
diamond-free we can assume, by Lemma 2, that S ⊆ A∪A′. Let Â := (A∪A′)\S
and D̂ := (V, Â).

Next, we show that S contains exactly two arcs from each clause cycle and 4m
arcs from each variable cycle. First, note that one needs at least two arc deletions
to make a directed cycle of length three transitive. Hence, turning all m clause
cycles transitive requires at least 2m arc deletions. Second, note that making a
variable cycle (which has length 8m) transitive requires at least 4m arc deletions
since it contains 4m arc-disjoint P3s. This implies that S contains exactly two
arcs from each clause cycle and 4m arcs from each variable cycle (note that the
variable and clause cycles are arc-disjoint). Moreover, observe that, to make a
variable cycle transitive by deleting 4m arcs, either all 4m even or all 4m odd
arcs must be deleted (since it is clearly optimal to delete every second arc).

Consider a clause Cj = {xp, xq, xr}, 0 ≤ j < m. We show that for one of the
three corresponding variable cycles all even arcs and for another all odd arcs are
deleted, and, as a consequence, the assignment β with β(xi) := true if all odd
arcs of the corresponding variable cycle are deleted and β(xi) := false, otherwise,
is satisfying. Assume towards a contradiction that there exists a clause Cj =
{xp, xq, xr}, 0 ≤ j < m, such that for all three variables xp, xq , and xr all even
(odd) arcs of the variable cycles are deleted. Recall that for each clause cycle all
but one arc are deleted. Without loss of generality, let (p8j , q8j) be this arc, that
is, (p8j , q8j) ∈ Â. If all even arcs are deleted in the variable cycles, then the odd
arc (p8j−1, p8j ) ∈ Â and (p8j−1, p8j , q8j) is a P3 in D̂. Otherwise, if all odd arcs
are deleted, then the even arc (q8j , q8j+1) ∈ Â and (p8j , q8j , q8j+1) is a P3 in D̂.
Both cases contradict the fact that S is a solution. ��

In the above proof, we never employ arc insertions. This implies that Transi-

tivity Deletion is also NP-complete.

Corollary 1. Transitivity Deletion is NP-complete, even if the maximum
degree is bounded by four (indegree two and outdegree two).

The undirected “sister” problem Cluster Editing becomes polynomial-time
solvable when the input is a tree, that is, acyclic. It is thus natural to study
the complexity of Transitivity Editing on acyclic digraphs. Somewhat sur-
prisingly, we find that Transitivity Editing remains NP-hard for acyclic di-
graphs, unlike for example Disjoint Paths [16] which is NP-hard in general
but polynomial-time solvable on acyclic digraphs. However, we have to give up
the bounded degree constraint.

To show the NP-hardness, we reduce again from PNAE-3SAT. The technical
effort, however, significantly increases. The trickiness of the proof lies in incorpo-
rating an “information feedback” between the variable gadgets while using only
acyclic variable and clause gadgets.



On Making Directed Graphs Transitive 549

Theorem 2. Transitivity Editing and Transitivity Deletion are
NP-complete, even when restricted to acyclic digraphs.

4 Fixed-Parameter Tractability Results

In this section, we complement the NP-hardness results of the previous section
with encouraging algorithmic results. Note that Böcker et al. [3] observed that
“most graphs derived from real-world applications are almost transitive”. Con-
sequently, as Böcker et al., we study how the parameter k (denoting the number
of arc modifications) influences the computational complexity. We deliver im-
proved fixed-parameter tractability results; in particular, we positively answer
Böcker et al.’s [3] question for the existence of a polynomial-size problem ker-
nel. Thus, in what follows, we first develop kernelization results, and then we
present an improved search tree strategy, altogether yielding the so far fastest
fixed-parameter algorithms for Transitivity Editing.

First, observe that Transitivity Editing is fixed-parameter tractable with
respect to the parameter k: The task is simply to destroy all P3s in a given
digraph. Clearly, there are exactly three possibilities to destroy a P3, either by
deleting one of the two arcs or by inserting the “missing” one. This yields a search
tree of size O(3k) (cf. [3]), which indeed can be used to enumerate all solutions
of size at most k because it exhaustively tries all possibilities to destroy P3s.

Kernelization. In the following, we describe a kernelization for Transitivity

Editing. We show a kernel consisting of O(k2) vertices for the general problem
and a kernel of O(k) vertices for digraphs with bounded degree. In the latter
case, already the following data reduction rule suffices.

Rule 1. Let (D = (V, A), k) be an input instance of Transitivity Editing.
If there is a vertex u ∈ V that does not take part in any P3 in D, then remove u
and all arcs that are incident to it.

Lemma 3. Rule 1 is correct and can be exhaustively applied in O(n3) time.

Proof. To prove the correctness, we construct a sequence of arc modifications
that form an optimal solution set. Then, we will prove that, if at some point in
this sequence a vertex u does not take part in any P3, then u does not take part
in any P3 at any later point in the sequence. Thus, removing u never changes
the set of P3s to be destroyed.

Let (D, k) with D = (V, A) denote the given input instance and let S denote
an optimal solution set for D with s := |S| ≤ k and D′ := (V, AΔS). Let Q be
the straightforward search-tree algorithm that searches a P3 in the digraph and
destroys it by branching into all three possibilities of inserting or deleting an arc.
Clearly, Q returns a shortest sequence of digraphs (D = D0, D1, . . . , Ds = D′)
with Di := (V, Ai) and a sequence of arc modifications F1, . . . , Fs with Fi :=
Ai−1ΔAi for each 1 ≤ i ≤ s. We prove the following: For each i ≥ 1, if a
vertex u ∈ V does not take part in any P3 in Di−1, then it does not take part
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in any P3 in Di. Hence, by induction, if u does not take part in any P3 in D0,
then there is no j > 0 such that u takes part in a P3 in Dj . Thus, D and D −
u yield the same sequence of arc modifications F1, . . . , Fs and thus (D, k) ∈
Transitivity Editing ⇔ (D − u, k) ∈ Transitivity Editing.

In the following, we show the contraposition of the claim: For each i ≥ 1, if
a vertex u ∈ V takes part in a P3 p in Di, then it takes part in a P3 q in Di−1.
Let Fi = {(a, b)}. Since Q only inserts or deletes (a, b) to destroy a P3, we know
that there is a P3 r in Di−1 that contains both a and b. Hence, if u = a or u = b,
then q = r and thus u takes part in q. Otherwise, we consider the following cases.
Case 1: (a, b) is inserted.
Clearly, there is a vertex v ∈ V such that (a, v, b) is a P3 in Di−1; hence,
if u = v, then q = (a, u, b). Furthermore, if p �= (a, b, u) and p �= (u, a, b),
then q = p. Otherwise, without loss of generality, assume that p = (a, b, u).
Obviously, (a, u) �∈ Ai. Since (a, u) �∈ Fi, we know that (a, u) �∈ Ai−1. If (v, u) ∈
Ai−1, then q = (a, v, u), otherwise q = (v, b, u).
Case 2: (a, b) is deleted.
Clearly, there is a vertex v ∈ V such that either (a, b, v) or (v, a, b) is a P3
in Di−1; hence, if u = v, then q = (a, b, u) or q = (u, a, b). If u �= v, without loss
of generality assume that (a, b, v) is a P3 in Di−1. Furthermore, if p �= (a, u, b),
then q = p. If p = (a, u, b), then if (u, v) ∈ Ai−1, then q = (a, u, v); otherwise,
q = (u, b, v).

Finally, the running time can be seen as follows. We enumerate all P3s in O(n3)
time, thereby labeling all vertices that are part of a P3. Afterwards, we remove
all unlabeled vertices. ��

Surprisingly, this data reduction rule is sufficient to show a linear-size problem
kernel if the maximum degree of the given digraph is constant.

Theorem 3. Transitivity Editing restricted to digraphs with maximum de-
gree d admits a problem kernel containing at most 2k · (d + 1) vertices.

Proof. Let D = (V, A) be a digraph that is reduced with respect to Rule 1 and
let S be a solution set for D with |S| ≤ k. We show that |V | ≤ 2k(d+1). Consider
the two-partition of V into Y := {v ∈ V | ∃u∈V (u, v) ∈ S ∨ (v, u) ∈ S} and
X := V \Y . Since |S| ≤ k, we have |Y | ≤ 2k. Note that, since D is reduced with
respect to Rule 1, every x ∈ X is contained in a P3 q. It is clear that the other
two vertices of q are in Y and thus every x ∈ X is adjacent to at least one vertex
in Y . However, each vertex in Y has at most d neighbors and thus |X | ≤ d|Y |,
implying |V | = |X | + |Y | ≤ 2k + d2k = 2k(d + 1). ��

The above data reduction also works for Transitivity Deletion:

Corollary 2. Transitivity Deletion restricted to digraphs with maximum
degree d admits a problem kernel containing at most 2k · (d + 1) vertices.

Next, we prove an O(k2)-vertex kernel for general digraphs. The following data
reduction rule roughly follows an idea for Cluster Editing [7]: If there is some
vertex pair (a, b) such that not modifying (a, b) results in a solution size of at
least k + 1, then every solution of size at most k must contain (a, b).
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Rule 2. Let (D = (V, A), k) be an input instance of Transitivity Editing.

1. Let (u, v) ∈ (V × V )\A and Z := succA (u) ∩ predA (v). If |Z| > k, then
insert (u, v) into A and decrease k by one.

2. Let (u, v) ∈ A, Zu := predA (u) \ predA (v) and Zv := succA (v) \ succA (u).
If |Zu| + |Zv| > k, then delete (u, v) from A and decrease k by one.

Lemma 4. Let (D, k) be an input instance of Transitivity Editing. Then,
Rule 2 causes an arc modification iff it destroys more than k P3s in D.

Lemma 4 is decisive for proving the correctness of Rule 2.

Lemma 5. Rule 2 is correct and can be exhaustively applied in O(n3) time.

We now show that the exhaustive application of both rules leads to a problem
kernel of O(k2) vertices.

Theorem 4. Transitivity Editing admits a problem kernel containing at
most k(k + 2) vertices.

Proof. Assume that there is a digraph D = (V, A) with |V | > k(k + 2), D is
reduced with respect to Rules 1 and 2, and it is possible to make D transitive
by applying at most k arc modifications. Let D′ = (V, A′) denote a transitive
digraph obtained by the application of k arc modifications and let S := AΔA′

denote the corresponding solution set. Consider a two-partition (X, Y ) of V ,
where Y := {v ∈ V | ∃u∈V (u, v) ∈ S ∨ (v, u) ∈ S} and X := V \Y . Note that all
vertices in X are adjacent to at least one vertex in Y because D is reduced with
respect to Rule 1. Also note that in order to destroy a P3 p in D, the solution
set S must contain an arc incident to two of the vertices of p, hence for each P3 p
in D at most one of the vertices of p is in X .

Since we assume that D can be made transitive with at most k arc modifica-
tions, we know that |S| ≤ k and consequently |Y | ≤ 2k. Clearly, |V | = |X |+ |Y |,
hence the assumption that |V | > k(k + 2) implies |X | > k2. With the above
observation, it follows that there are more than k2 P3s in D.

For each (a, b) ∈ S, let Z(a,b) := {p | modifying (a, b) destroys the P3 p in D}.
Since there are more than k2 P3s in D, but |S| ≤ k, we know that there is
an (a, b) ∈ S with |Z(a,b)| > k, a contradiction to Lemma 4. ��

The above data reduction works also for Transitivity Deletion:

Corollary 3. Transitivity Deletion admits a problem kernel containing at
most k(k + 2) vertices.

Search Tree Algorithm. As mentioned before, a straightforward algorithm that
finds an optimal solution set for a given digraph branches on each P3 (u, v, w) in
the digraph, trying to destroy it by either deletion of (u, v), deletion of (v, w), or
insertion of (u, w). This directly gives a search tree algorithm solving transi-

tivity Editing on an n-vertex digraph in O(3k ·n3) time (cf. [3]). Note that, to
solve Transitivity Deletion, the search only needs to branch into two cases,
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yielding an algorithm running in O(2k ·n3) time. Indeed, using more clever data
structures, these running times can be improved to O(3k · n log n + n3) and
O(2k · n log n + n3), respectively. Using the so-called interleaving technique [14]
together with the polynomial-size problem kernel results, however, one actually
can achieve running times O(3k + n3) and O(2k + n3), respectively.

In the following, we shrink the search tree size for Transitivity Editing

from 3k to 2.57k by applying our combinatorial result on diamond-freeness.

Theorem 5. Transitivity Editing and Transitivity Deletion can be
solved in O(2.57k + n3) and O(2k + n3) time, respectively.

Proof. Recall from Lemma 2 that in diamond-free digraphs we only need to
consider arc deletions. This helps us to improve the branching strategy. The
modified algorithm employs the following search structure. Upon finding a di-
amond (u, {x, y}, v) in the given digraph D = (V, A), the algorithm recursively
asks whether

1. (V, A\{(u, x), (u, y)}) can be made transitive with ≤ k − 2 operations,
2. (V, A\{(u, x), (y, v)}) can be made transitive with ≤ k − 2 operations,
3. (V, A\{(x, v), (u, y)}) can be made transitive with ≤ k − 2 operations,
4. (V, A\{(x, v), (y, v)}) can be made transitive with ≤ k − 2 operations, or
5. (V, A ∪ {(u, v)}) can be made transitive with ≤ k − 1 operations.

Thus, the search branches into five cases and the recurrence for the corresponding
search tree size reads as Tk = 1 + 4 · Tk−2 + Tk−1, where T0 = T1 = 1. Resolving
this recurrence yields O(2.57k) for the search tree size under the assumption
that the branching is always performed in this way. The correctness of this
branching is easy to check. If there are no diamonds in the input graph, then
the straightforward search tree for Transitivity Deletion is used to solve the
problem, which runs in O(2k ·n3) time. The correctness of the overall search tree
algorithm easily follows.

Applying the interleaving technique [14], and making use of the polynomial-
size problem kernels from Theorem 3 results in the running times O(2.57k + n3)
for Transitivity Editing and O(2k + n3) for Transitivity Deletion. ��

5 Conclusion

Two immediate theoretical challenges (of significant practical relevance) arising
from our work are to find out whether there is an O(k)-vertex problem kernel
for Transitivity Editing in the case of general digraphs (see [5,8] for corre-
sponding results in the case of undirected graphs, that is, Cluster Editing)
or to investigate whether linear-time polynomial size kernelization (so far the
kernelization takes cubic time in the number of vertices) is possible (see [15]
for corresponding results in case of Cluster Editing). Finally, note that we
focused on arc modifications to make a given digraph transitive—it might be of
similar interest to start an investigation of the Transitivity Vertex Dele-

tion problem, where the graph shall be made transitive by as few vertex deletions



On Making Directed Graphs Transitive 553

as possible (see [10] for corresponding results in the case of undirected graphs,
that is, Cluster Vertex Deletion). Finally, from a more general point of
view, there seems to be a rich field of studying further modification problems on
digraphs. For instance, the concept of quasi-transitivity is of considerable inter-
est in the theory of directed graphs (cf. [1]), hence one might start investigations
on problems such as Quasi-Transitivity Editing.
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Abstract. The following tree pattern matching problem is considered:
Given two unordered labeled trees P and T , find all occurrences of P in
T . Here P and T are called a pattern tree and a target tree, respectively.
We first introduce a new problem called the pseudo-tree pattern match-
ing problem. Then we show two efficient bit-parallel algorithms for the
pseudo-tree pattern matching problem. One runs in O(LP ·n·l·� h

W
�) time

and O(n · l ·� h
W

�) space, and another one runs in O((LP ·n+h ·2l) ·�h·l
W

�)
time and O((n+h ·2l) ·�h·l

W
�) space, where n is the number of nodes in T ,

h and l are the height of P and the number of leaves of P , respectively,
and W is the length of a computer-word. The parameter LP , called a re-
cursive level of P , is defined to be the number of occurrences of the same
label on a path from the root to a leaf. Hence we have LP ≤ h. Finally,
we give an algorithm to extract all occurrences from pseud-occurrences
in O(n · LP · l3/2) time and O(n · LP · l) space.

1 Introduction

In recent years, XML has been recognized as a common data format for data
storages and exchanging data over the Internet, and has been widely spread.
The tree pattern matching problem is a central part of XML query problems.
In addition, this problem has a number of applications in the fields of computer
science. Therefore, many researches have been done on developing an efficient
tree pattern matching algorithm. The tree pattern matching problem is as fol-
lows: Given two labeled trees P and T , find all occurrences of P in T . Here P
and T are called a pattern tree and a target tree, respectively. For this problem,
ordered trees and unordered trees have been considered. An ordered tree is a
tree such that the left-to-right order among siblings is significant. Hence, the
order must usually be preserved in the tree pattern matching problem. On the
other hand, an unordered tree is a tree such that any order among siblings is
not defined, and hence the order is not significant in the tree pattern matching
problem.
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For ordered trees, the tree pattern matching problem under the matching
condition preserving parent-child relationship and the position of a child has
been studied. The obvious algorithm runs in O(n · m) time, where n and m are
the number of nodes of a target tree and a pattern tree, respectively. Hoffman and
Donnell [7] proposed several algorithms. Dubiner, Galil and Magen [5] improved
O(n ·m) time and presented an O(n ·

√
m ·polylog(m)) time algorithm. Cole and

Hariharan [3,4] presented O(n log2 m) time tree pattern matching algorithm by
introducing a subset matching problem. Chauve [2] consider a more general
matching condition, and has given an O(n · l) time algorithm, where l is the
number of leaves of a pattern tree.

Several researches on unordered trees have also been done. Kilpeläinen and
Mannila [9] studied the tree inclusion problem, which can be regarded as the
unordered tree pattern matching problem with an ancestor-descendant relation-
ship. They presented O(n · m) time algorithm for ordered trees and showed
NP-completeness for unordered trees. Shamir and Tsur [11] gave an O(n · m3/2

log m)
time algorithm to solve the subtree isomorphism problem, in which unrooted
and unlabeled trees are considered. This algorithm can solve the unordered tree
pattern matching problem with a parent-child relationship. Furthermore several
researches on XML query problems have been done (for example, see [6,12,13])
because the order among siblings is not significant in many practical applications
for querying XML.

In this paper, we are concerned with a tree pattern matching problem on
unordered labeled trees. We here introduce two new notions of a pseudo-tree
pattern matching problem and the recursive level of a labeled tree. A pseudo-
tree pattern matching problem is defined by allowing a many-to-one mapping
from nodes of P to nodes of T . Note that tree pattern matching problems are
normally defined based on a one-to-one mapping. Then the pseudo-tree pattern
matching problem is to find out all pseud-occurrences of P in T . Götz, Koch
and Martens [6] have studied on the tree homeomorphism problem for searching
XML data. This problem can be regarded as a pseudo-tree pattern matching
problem with ancestor-descendant relationship. They gave an O(n · m · h) time
algorithm. The recursive level of a labeled tree is defined to be the maximum
number of occurrences of the same label over a path from the root to a leaf. In
XML applications, a labeled tree with the recursive level 1, called a non-recursive
labeled tree, is well studied (for example see [6,12]). We present two efficient
bit-parallel algorithms for solving the pseudo-tree pattern matching problem as
follows. Here h and l are the height and the number of leaves of P , respectively,
and W is the length of a computer-word, and LP is the recursive level of P . Our
algorithms make use of the Shift-OR technique which has been developed on the
string matching problem [1].

– One algorithm runs in O(LP · n · l · " h
W #) time and O(n · l · " h

W #) space.
– Another one runs in O((LP ·n+h·2l)·"h·l

W #) time and O((n+h·2l)·"h·l
W #) space.

This algorithm consists of two parts a preprocessing part and a matching part.
The preprocessing part, which generates bit-masks from a pattern tree P ,
takes O(h ·2l · "h·l

W #) time and the matching part takes O(LP ·n · "h·l
W #) time.
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Fig. 1. A pseud-occurrence and an occurrence. The dotted arrow indicates a pseud-
occurrence and the solid arrow indicates an occurrence (an exact occurrence).

In general, W is defined as W = O(log n) on conventional computing models.
Hence, if h is at most log n, then the first algorithm runs in O(LP ·n · l) time, and
if h · l is at most log n, then the second algorithm runs in O(LP · n) time. This
time, if LP = O(1), then the second algorithm solves the pseudo-tree pattern
matching problem in O(n) time. Thus our algorithms run faster for pattern trees
with small size.

Finally we give an algorithm to extract occurrences from pseud-occurrences
for the tree pattern matching problem. If there are not any nodes with the
same label among siblings in P , then a pseud-occurrence of P is identical to
an occurrence of P , and hence the bit-parallel algorithms for the pseudo-tree
pattern matching problem solve the tree pattern matching problem. If there are
nodes with the same label among siblings in P , then a pseud-occurrence does
not always become an occurrence. For this case, we can show an algorithm to
obtain all occurrences of P from pseud-occurrences using an algorithm finding a
maximum matching on bipartite graphs. Our algorithm runs in O(n · LP · l3/2)
time and O(n · LP · l) space.

2 Tree Pattern Matching Problem and Related
Definitions

Let Σ be an alphabet. Then we concentrate on a labeled tree such that each
node of the tree is labeled by a symbol of Σ. Let T a labeled tree. For any node
v of T , the children of node v are siblings of each other. If the order among
siblings is significant, then the tree is said to be ordered; otherwise it is said to
be unordered. The height of T is defined as follows. The depth of the root is
defined to be 1. For any node v of T , the depth of v is defined to be the depth
of the parent plus 1. Then the height of T is defined to be the maximum depth
over all nodes of T . We introduce a notion of a recursive level of T . For any
node v of T , the recursive level of v is defined to be the number of occurrences
of the same symbol as v over the path from the root to v. The recursive level of
T is defined to be the maximum recursive level over all nodes of T . In addition,
for any σ ∈ Σ, we define the recursive level of σ to be the maximum recursive
level over all nodes with label σ. We use two orders when traversing over the
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nodes of T . One is preorder, which is recursively defined as follows: First the root
of T is visited. Let T1, . . . , Tt be subtrees rooted by children of the root in the
left-to-right order. Then each Tj is visited in the order from T1 to Tt. Another
one is postorder, in which the leftmost leaf is first visited, and then each node is
visited after having visited all the children of the node.

Let P and T be unordered labeled trees, which are called a pattern tree and
a target tree, respectively. We first define a notion of pseud-occurrence of P in
T and a pseudo-tree pattern matching problem.

Definition 1 (a pseud-occurrence). We say that P nearly matches T at a
node d of T if there is a mapping φ from nodes of P into nodes of T such that

1. the root of P is mapped to d,
2. for any node u of P , there is a node φ(u) of T such that the label of u is

equal to the label of φ(u),
3. for any nodes u, v of P , u is the parent of v if and only if φ(u) is the parent

of φ(v).

We say that d is a pseud-occurrence of P in T .

We give an example of a pseud-occurrence in Fig.1. Note that two nodes with
label b of P are mapped to one node of T , that is, the right-hand child of a
node a. Thus, in the definition of a pseud-occurrence, a mapping φ is allowed
to be many-to-one. The pseudo-tree pattern matching problem is to find out all
pseud-occurrences of P in T . Next we define a tree pattern matching problem,
which is defined based on a one-to-one mapping.

Definition 2 (an occurrence). We say that P matches T at a node d of T if
there is a one-to-one mapping φ from nodes of P into nodes of T such that

1. it satisfies three conditions of the pseud-occurrence,
2. for any nodes u, v of P , if u �= v, then φ(u) �= φ(v).

We say that d is an occurrence (or an exact occurrence) of P in T .

We give an example of an occurrence in Fig.1. Note that the mapping φ is re-
quired to be a one-to-one mapping. The tree pattern matching problem is to
find out all occurrences of P in T . It is clear from the definitions that a pseud-
occurrence implies an occurrence, but the reverse does not always hold. In this
paper, we first discuss the pseudo-tree pattern matching problem and then dis-
cuss the tree pattern matching problem.

3 Algorithms for the Pseudo-tree Pattern Matching
Problem

In this section, we give a bit-parallel algorithm to find all pseud-occurrences
of a pattern tree P in a target T . We make use of a Shift-OR technique on a
string matching problem, which was developed by Baeza-Yates and Gonnet [1].
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Fig. 2. Decomposition of a pattern tree P into path patterns P1, P2 and P3
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Fig. 3. Two problems in BasicTreeMatch

Let Pi be the string consisting of labels on a path from the root to a leaf in P .
Then we call Pi a path pattern and denote by |Pi| the length of path pattern
Pi. We decompose P into path patterns for the Shift-OR technique. If P has l
leaves, then P is decomposed into l path patterns P1, . . . , Pl. We say a node v
of P appears on a path pattern Pi when the label of v appears on Pi. Fig. 2
illustrates an example of path patterns in which P is decomposed into three path
patterns P1 = abc, P2 = abd and P3 = abc. We say that a path pattern occurs at
a node d of T if the path pattern becomes just a prefix of the string consisting
of labels on the path from node d to a leaf.

3.1 Bit-Masks for Path Patterns

To make use of the Shift-OR technique, we generate a bit-mask B[Pi, σ] of h
bits for every path pattern Pi = pi

1 · · · pi
|Pi| and symbol σ, where h is the height

of P . The value of B[Pi, σ] is defined to be a bit sequence b1 · · · bh (bi ∈ {0, 1})
such that for j ≤ |Pi|, bj = 0 if and only if pi

j = σ, and for |Pi| + 1 ≤ j ≤ h,
bj = 0. For instance, bit-masks for three path patterns P1, P2, P3 in Fig. 2 are
defined as follows: B[P1, a] = 011, B[P2, a] = 011, B[P3, a] = 011, B[P1, b] = 101,
B[P2, b] = 101, B[P3, b] = 101, B[P1, c] = 110, B[P2, c] = 111, B[P3, c] = 110,
B[P1, d] = 111, B[P2, d] = 110, B[P3, d] = 111.

3.2 A Basic Algorithm

In this section, we give a simple algorithm BasicTreeMatch(P, T ) using the Shift-
OR technique, which is given in Fig. 4. This algorithm finds all nodes in a target
tree T at which all path patterns of a pattern tree P occurs. We use an array
M [Pi, d] of bit-sequences, called a matching state, whose element is an h-bit
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Algorithm BasicTreeMatch(P , T)

Step 0. /* Initialization */
1. set bit-masks B[Pi, c],
2. for all path patterns Pi, set the initial matching state IM [Pi] to 1|Pi|0h−|Pi |.

Visit each node d of T in postorder and do the following for d.

Step 1. /* This step computes the matching state M [Pi, d] of d from matching states of the children.
Let d1, . . . , dt be children of d. If d is a leaf, then we use IM [Pi] instead. */

For all path pattern Pi,
1. if d a leaf, then M [Pi, d] := IM [Pi];

otherwise M [Pi, d] := M [Pi, d1]& · · ·&M [Pi, dt],
2. M [Pi, d] := (M [Pi, d] << 1) | B[Pi, σ].

Step 2. /* This step determines whether all path patterns occur. */
1. Temp := M [P1, d] | · · · | M [Pl, d],
2. the first bit of Temp, that is, the bit corresponding to the root of P , is 0, then return d.

Fig. 4. The algorithm BasicTreeMatch

sequence b1 · · · bh. While traversing over nodes of T in postorder, we compute
M [Pi, d] for each node d of T . Let Pi = pi

1 · · · pi
|Pi|. This time, for any node d

of T , M [Pi, d] = b1 · · · bh satisfies that for any j ≤ |Pi|, bj = 0 if and only if
pi

j · · · pi
|Pi| occurs at node d. M [Pi, d] is initially set to 1|Pi|0h−|Pi|. The operation

M [Pi, d] << 1 used in the algorithm denotes a shift operation which shifts a
bit-sequence in M [Pi, d] one bit to the left and sets the rightmost bit to 0. In
addition, the operator “|” denotes a bitwise OR, and the operator “&” denotes
a bitwise AND. BasicTreeMatch decomposes a pattern tree P into path patterns
P1, . . . , Pl, and searches for a node of T at which all path patterns occur by
traversing over T in postorder. The following proposition holds.

Proposition 1. Let d be a node of T returned by BasicTreeMatch. Then all
path patterns of P occur at the node d.

The algorithm BasicTreeMatch completely cannot solve the tree pattern match-
ing problem. That is, there are the following two problems: (1) one is that one
node of P may be mapped to two or more nodes of T (see (1) in Fig.3); (2)
another one is that two or more nodes of P may be mapped to one node of T
(see (2) in Fig.3). BasicTreeMatch regards these cases as a match. The first case
can be solved by introducing a notion of synchronization in a matching stage.
Hence the pseudo-tree pattern matching problem can be solved. We will show
this in the rest of this section. The second case will be discussed in Section 5.

3.3 A Pseudo-tree Pattern Matching Algorithm

BasicTreeMatch regards two cases in Fig.3 as a match. In this section, we give
a bit-parallel algorithm which does not regard the case (1) as a match. In (1) of
Fig.3, a node b of P is mapped to two nodes with b of T . Thus two path patterns
bd and bc are separated in T , and hence this does not satisfy the condition of the
pseud-occurrence. Therefore, by solving the case (1), we can solve the pseudo-
tree pattern matching problem. Our algorithm checks whether bd and bc occur
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Algorithm PseudoTreeMatch(P , T)

Step 0. /* Initialization */
1. set bit-masks B[Pi, c],
2. for all path patterns Pi, set the initial matching state IM [Pi] to 1|Pi|0h−|Pi |,
3. for all path patterns Pi and all nodes u of P , set a synchronization bit-mask Syn [Pi, u],
4. for all nodes u of P , set Pu = {Pi1 , . . . , Pie} such that a path pattern Pij

is in Pu if and
only if u appears on Pij

.

Visit each node d of T in postorder and compute the matching state M [P1, d], . . . , M [Pl, d] for d.
Here the label of d is σ.

Step 1. /* This step computes the matching state of d from matching states of the children. Let
d1, . . . , dt be children of d. If d is a leaf, then we use IM [Pi] instead. */

For all path pattern Pi,
1. if d a leaf, then M [Pi, d] := IM [Pi];

otherwise M [Pi, d] := M [Pi, d1]& · · ·&M [Pi, dt],
2. M [Pi, d] := (M [Pi, d] << 1) | B[Pi, σ].

Step 2. /* Synchronization between path patterns */
For lev = 1, . . . , Lσ, /* Lσ denotes the recursive level of symbol σ.*/

for all nodes u other than the root of P such that it has σ and the recursive level lev
1. for Pi ∈ Pu, SYN [Pi] := M [Pi, d] & Syn[Pi, u],
2. SynMask := SYN [Pi1 ] | · · · | SYN [Pie ], where Pu = {Pi1 , . . . , Pie},
3. for Pi ∈ Pu, M [Pi, d] := M [Pi, d] | SynMask .

Step 3. /* This step determines whether a pseud-occurrence occurs.*/
1. Temp := M [P1, d] | · · · | M [Pl, d],
2. the first bit of Temp, that is, the bit corresponding to the root of P , is 0, then return d

as a pseud-occurrence.

Fig. 5. The algorithm PseudoTreeMatch

at the same node in T , and if they occur at the same node, then the algorithm
regards them as a match; otherwise does not so.

For this purpose, we introduce a new bit-mask called a synchronization bit-
mask for any node and path pattern of P . Let u be any node of P with the height
h. Then, for any path pattern Pi, a synchronization mask Syn[Pi, u] = b1 · · · bh

is defined as follows: for any 1 ≤ j ≤ h, if the node corresponding to bj is
just u, then bj = 1; otherwise bj = 0. Thus, in Syn[P1, u], . . . ,Syn[Pl, u], only
the bits corresponding to the node u are set to 1; the other bits are set to
0. For instance, we show synchronization bit-masks for the pattern tree given
in Fig. 2. For nodes u1, u2 and u3, we have the following: Syn[P1, u1] = 100,
Syn[P2, u1] = 100, Syn[P3, u1] = 100, and Syn[P1, u2] = 010, Syn[P2, u2] = 000,
Syn[P3, u2] = 000, and Syn[P1, u3] = 000, Syn[P2, u3] = 010, Syn[P3, u3] = 010.

The algorithm PseudoTreeMatch in given Fig. 5 is constructed by adding the
synchronization stage of Step 2 to BasicTreeMatch; it can find out all pseud-
occurrences of P in T . From Proposition 1, we know that BasicTreeMatch finds
out all nodes in T at which all path patterns occur. We explain how Step 2
works. Let u be a node of P and the depth is j. Then, for any Pi and any node
d of T , the j-th bit bj of M [Pi, d] corresponds to u. Step 2 checks out the bit bj

of M [Pi, d] for all Pi ∈ Pu, and if the bit bj of at least one M [Pi, d] is 1, then
the bits bj of all M [Pi, d] are set to 1. To do this, we first check out the value
of bj in (a) of Step 2 using Syn[Pi, u]. If bj of M [Pi, d] is 1, then the j-th bit of
SYN [Pi] becomes 1. Hence if there is at least one SYN [Pi] such that the j-th
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M[P1,d] M[P2,d] M[Pl,d].  .  .  .  .  

Fig. 6. A packed matching state M [d]

B[a]

B[b]

B[c]

B[d]

011 011 011

101 101 101

111

110 111 111

110 110

Fig. 7. Packed bit-masks of Fig.2

bit is 1, then the j-th bit of SynMask becomes 1 in (b) of Step 2. Finally, in this
case, for all Pi ∈ Pu, the j-bit bj of M [Pi, d] is set to 1 in (c) of Step 2. We have
the following theorem.

Theorem 1. The algorithm PseudoTreeMatch finds all pseud-occurrences of P
in O(LP · n · l · " h

W #) time and O(n · l · " h
W #) space, where n is the number of

nodes of T , LP , h, and l are the recursive level, the height, and the number of
leaves of P , respectively, and W is the length of a computer-word.

3.4 Improving the Algorithm by Packing Bit-Sequences

Let n be the number of nodes of T , and let l and h be the number of leaves
and height of P , respectively. The algorithm PseudoTreeMatch is checking a
matching on each path pattern. Therefore it requires at least n × l time be-
cause there are l path patterns. In this section, we improve this matching pro-
cess by packing path patterns into computer-words. This allows us to carry out
matching processes on path patterns simultaneously. We give the improved algo-
rithm FastPseudoTreeMatch in Fig. 8. In the algorithm, we pack matching states
M [P1, d], . . ., M [Pl, d] into one word M [d] as in Fig. 6 (if the packed bit-sequence
is long, then multiple words are used). We denote by (M [P1, d], . . . , M [Pl, d])
such a packed bit-sequence M [d]. Similarly, we also pack B[P1, σ], . . . , B[Pl, σ]
into B[σ] = (B[P1, σ], . . . , B[Pl, σ]) for each symbol σ as in Fig. 7. By these
packing, we can simultaneously compute the matching state of each node in
Step 1. Let hi = |Pi|. We here use an hi-bit sequence for bit-sequences such
as M [Pi, d] and B[Pi, σ] to make as compact a packed bit-sequence as possi-
ble. In addition, we would like to carry out the synchronization task of Step 2
in PseudoTreeMatch simultaneously. To do this, we pack synchronization bit-
masks into PSyn[σ, lev] as follows, where σ is a symbol and lev is a recursive
level. We classify nodes of P into subsets N(σ,lev) such that N(σ,lev) consists of
all nodes which are labeled by the symbol σ and have the recursive level lev.
Let N(σ,lev) = {u1, . . . , us} for any symbol σ and any recursive level lev. Then
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Algorithm FastPseudoTreeMatch(P , T)

Step 0. /* Initialization */
1. compute bit-masks B[Pi, σ], and set B[c] := (B[P1, σ], . . . , B[Pl, σ]) for each symbol σ in

P ,
2. for all path patterns Pi, set the initial matching state IM [Pi] to 1hi , and then set the

packed initial matching state IM := (IM [P1], . . . , IM [Pl]),
3. for all path patterns Pi and all nodes u of P , compute a synchronization bit-mask

Syn[Pi, u],
4. for all symbols σ and recursive level lev, set the packed synchronization bit-mask

PSyn [σ, lev ] = (PSyn1, . . . , PSynl), where if uj ∈ N(σ,lev) appears on Pi, then PSyni =
Syn[Pi, uj ]; otherwise PSyni = 0hi .

5. SetPSynMask(P ), /* set PSynMask [SYN , lev] for at most h2l distinct values of SYN and
a recursive level lev, */

6. set ZMask := (1h1−10, . . . , 1hl−10) and AccCheck := (01h1−1, . . . , 01hl−1).

Visit each node d of T in postorder and compute the matching state of d as follows.

Step 1. /* Computing the matching state of d from the matching states of the children. Let
d1, . . . , dt be children of d. The label of d is σ. */

1. If d is a leaf, then M [d] := IM ; otherwise M [d] := M [d1]& · · ·&M [dt],
2. M [d] := ((M [d] << 1) & ZMask) | B[σ].

Step 2. /* Synchronization between path patterns */
For lev = 1, . . . , Lσ do /* Lσ denotes the recursive level of σ. */

1. SYN := M [d] & PSyn[σ, lev],
2. M [d] := M [d] | PSynMask [SYN , lev].

Step 3. /* This step determines whether a pseudo-match occurs. */
1. Acc := M [d] | AccCheck,
2. if Acc = AccCheck, then return d as a pseud-occurrence.

Fig. 8. The algorithm FastPseudoTreeMatch

we define PSyn[σ, lev] = (PSyn1, . . . ,PSyn l), where if a node uj (1 ≤ j ≤ s)
appears on Pi, then PSyn i = Syn[Pi, uj]; otherwise PSyni = 0hi.

We introduce an array PSynMask [SYN , lev] of bit-sequences to reflect the re-
sult of a synchronization to a matching state, where SYN = (SYN 1, . . . , SYN l)
and each SYN i corresponds to SYN [Pi] in PseudoTreeMatch. Let us define Pu

to be the set of path patterns Pi such that node u appears on Pi. Then, for any
nodes u, v ∈ N(σ,lev), we have Pu ∩ Pv = ∅. Hence we can represent SYN [Pi]
for all nodes in N(σ,lev) by SYN . The algorithm FastPseudoTreeMatch computes
SYN in one step, while PseudoTreeMatch compute SYN [Pi] for each node of
N(σ,lev). The value of PSynMask [SYN , lev] is defined to be (PSynMask1, . . . ,
PSynMask l), where each PSynMask i corresponds to SynMask computed for Pu

corresponding to u ∈ N(σ,lev). Hence we can update a matching state M [d]
using PSynMask [SYN , lev] in the same way as Step 2 of PseudoTreeMatch.
FastPseudoTreeMatch carries out this task in one step at 2 of Step 2. We com-
pute PSynMask [SYN , lev] in Step 0 by the procedure SetPSynMask(P ) in given
Fig. 9. In SetPSynMask(P ), Kei

j
is defined to be a bit sequence (K1, . . . ,Kl) such

that only the d(ui)-th bit from the leftmost bit of Kei
j

is 1 and all other bits are
0, where Pui = {Pei

1
, . . . , Pei

ti
} for any ui ∈ N(σ,lev) and d(ui) is the depth of

ui. Furthermore we make use of two special bit-masks, ZMask and AccCheck .
ZMask is set to (1h1−10, . . . , 1hl−10) and is used for clearing the rightmost
bit of each matching state in a packed bit-sequence. We need such a clearing
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Procedure SetPSynMask (P )
For all symbols σ which occurs in P , do the following:

Step 1. /* set SubMask [SYN , lev]. */
1. for lev = 1, . . . , LP do
2. for ui ∈ {u1, . . . , us} (= N(σ,lev)) other than the root of P , do
3. TMask := (TMask1, . . . , TMask l), where TMaskk = Syn[Pk, ui],
4. for SYN = K

ei
1
, . . . ,K

ei
ti

do

5. SubMask [SYN , lev] := TMask,
6. end-for
7. end-for
8. end-for

Step 2. /* compute PSynMask [SYN , lev]. */
1. for lev = 1, . . . , LP do
2. IX := 0, Val [0] := 0 and PSynMask [0, lev] := (0h1 , . . . , 0hl ),
3. for k1 = K

e1
1
, . . . ,K

e1
t1

, . . . ,Kes
1
, . . . , Kes

ts
do

4. t := IX ,
5. for k2 := 0, . . . , t do
6. PSynMask [k1 + Val [k2], lev] := PSynMask[Val[k2], lev] | SubMask [k1, lev],
7. IX := IX + 1,
8. Val [IX ] := k1 + Val[k2],
9. end-for

10. end-for
11. end-for

Fig. 9. The procedure SetPSynMask

Algorithm ExactTreeMatch(P , T)

Step 1. Do PseudoTreeMatch(P, T ) or FastPseudoTreeMatch(P, T ).
Step 2. For all pseud-occurrences d of P in T do

if CheckMatch({vP }, d) returns {vP }, then return d as an exact occurrence, where vP is the
root of P .

Fig. 10. The algorithm ExactTreeMatch

process because a shift operation sets the rightmost bit to 0. AccCheck is set to
(01h1−1, . . . , 01hl−1) and is used for checking whether or not a pseud-occurrence
occurs. We have the following theorem.

Theorem 2. FastPseudoTreeMatch can find out all pseud-occurrences of P in
T in O((LP · n + h · 2l) · "h·l

W #) time and O((n + h · 2l) · "h·l
W #) space.

Let m be the number of nodes in P . Then we have h·2l ≤ 2m. Hence if m = log n,
then FastPseudoTreeMatch runs in O(LP ·n ·"h·l

W #) time and space. Furthermore,
if h · l = O(W ) and LP = O(1), then it runs in O(n) time.

4 A Tree Pattern Matching Algorithm

In the previous section, we have given an algorithm to find all pseud-occurrences
of P in T . A pseud-occurrence allows a mapping to map multiple nodes of P
to one node of T , but the condition of an occurrence of P does not. Therefore,
to find out all occurrences of P , we must check whether a pseud-occurrences
satisfies the condition of an occurrence or not.
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Function CheckMatch(G, d)

Step 1. Match := ∅,
Step 2. for all g ∈ G do

1. if g is a leaf of P , then add g to Match;
2. otherwise do the following:

(a) classify children d1, . . . , dt of d into groups Da1 , . . . , Dar such that Daj
(1 ≤ j ≤ r)

consists of all nodes with label aj , and similarly classify children g1, . . . , gt′ of g into
groups Fa1 , . . . , Far in the same way.

(b) for all groups Daj
= Da1 , . . . , Dar do

i. R := ∅,
ii. for all nodes dk ∈ Daj

do

A. compute the set Gj
k consisting of all nodes g′ of P such that g′ is a child of

g and dk becomes a pseud-occurrence of the subtree rooted by node g′ using
the matching state M [dk] of dk.

B. F j
k := CheckMatch(Gj

k, dk),
C. add all pairs (g′, dk) with g′ ∈ F j

k to R,
iii. if ExistMap(Faj

, Daj
, R) = false, then go to next node of G.

(c) add g to Match,
Step 3. return Match.

Fig. 11. The function CheckMatch

4.1 A Special Case

Here let us consider a special case; for any node v of a pattern tree P , all
children of v have distinct labels. If P is the case, then pseud-occurrences become
occurrences of P . Hence, we have the following theorem.

Theorem 3. Let P be a pattern tree such that for any node of P , labels of any
two children of the node are distinct. Then the algorithms PseudoTreeMatch and
FastPseudoTreeMatch can find out all occurrences of P in T .

4.2 A General Case

Let us consider a general case, that is, there are siblings in P such that they have
the same label. The most difficult problem is that two or more nodes of P may
be mapped to one node of T . We extract occurrences from pseud-occurrences by
checking whether or not there is a one-to-one mapping. As in [11], the algorithm
is designed using an algorithm finding a maximum matching on bipartite graphs.
The algorithm ExactTreeMatch in Fig.10 checks whether a pseud-occurrence of
P in T is an occurrence of P using the function CheckMatch given in Fig.11.

Given a node d in T and a subset G of nodes of P such that d becomes a pseud-
occurrence of the subtree rooted by node g ∈ G, the function CheckMatch(G, d)
returns the subset Match of G such that d becomes an occurrence. CheckMatch
recursively checks whether a pseud-occurrence satisfies a one-to-one mapping in
(b) of Step 2. The function ExistMap(Faj , Daj , R) returns true if there is a subset
R′ of R such that (1) for any g ∈ Faj , there is d ∈ Daj with (g, d) ∈ R′, and (2)
for any (g1, d1), (g2, d2) ∈ R′, if g1 �= g2, then d1 �= d2; otherwise returns false. We
can view (Faj , Daj , R) as a bipartite graph having the vertex set Faj ∪ Daj and
the edge set R. This time, ExistMap(Faj , Daj , R) can be implemented using an
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algorithm for a maximum matching on bipartite graphs. For a pseud-occurrence
d of P in T , let Td be the subtree of T such that the root is d and the other nodes
consists of all descendants of d which are at most h away from d. Then we define
Np to be

∑
d |Td|, where d takes all pseud-occurrences of P and |Td| denotes the

number of nodes in Td. Then if we use the algorithm by Hopcroft and Karp [8],
we have the following theorem. Here note that since we have Np ≤ n · LP and
Lp ≤ h, the algorithm runs in O(n · h · l3/2) time and O(n · h · l) space in the
worst case.

Theorem 4. The algorithm ExactTreeMatch can find out all occurrences of P
in T in O(NP · l3/2) time and O(NP · l) space plus the complexity of Pseu-
doTreeMatch or FastPseudoTreeMatch.

Acknowledgments. We are grateful to anonymous referees for many variable
comments, which helped to improve algorithms and the presentation.
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Abstract. In this paper, we propose a new compact and low delay rout-
ing labeling scheme for Unit Disk Graphs (UDGs) which often model
wireless ad hoc networks. We show that one can assign each vertex of an
n-vertex UDG G a compact O(log2 n)-bit label such that, given the label
of a source vertex and the label of a destination, it is possible to com-
pute efficiently, based solely on these two labels, a neighbor of the source
vertex that heads in the direction of the destination. We prove that this
routing labeling scheme has a constant hop route-stretch (= hop delay),
i.e., for each two vertices x and y of G, it produces a routing path with
h(x, y) hops (edges) such that h(x, y) ≤ 3·dG(x, y)+12, where dG(x, y) is
the hop distance between x and y in G. To the best of our knowledge, this
is the first compact routing scheme for UDGs which not only guaranties
delivery but has a low hop delay and polylog label size. Furthermore, our
routing labeling scheme has a constant length route-stretch.

1 Introduction

A common assumption for wireless ad hoc networks is that all nodes have the
same maximum transmission range. By proper scaling, one can model these
networks with Unit Disk Graphs (UDGs), which are defined as the intersection
graphs of equal sized circles in the plane [3]. In other words, there is an edge
between two vertices in an UDG if and only if their Euclidean distance is no
more than one.

Communications in networks are performed using routing schemes, i.e., mech-
anisms that can deliver packets of information from any vertex of a network to
any other vertex. In most strategies, each vertex v of a graph has full knowledge
of its neighborhood and uses a piece of global information available to it about
the graph topology – some “sense of direction” to each destination – stored
locally at v. Based only on this information and the address of a destination
vertex, vertex v needs to decide whether the packet has reached its destination,
and if not, to which neighbor of v to forward the packet. The efficiency of a
routing scheme is measured in terms of its multiplicative route-stretch (or ad-
ditive route-stretch), namely, the maximum ratio (or surplus) between the cost
(which could be the hop-count or the length of a route, produced by the scheme
for a pair of vertices, and the cost of an optimal route available in graph for that

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 566–577, 2009.
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pair. Here, the hop-count of a route is defined as the number of edges on it and
the length of a route is defined as the sum of the Euclidean length of its edges.
Using different cost functions, for a given graph G and a given routing scheme
on G, one can define two different notions of route-stretch: hop route-stretch and
length route-stretch.

The most popular strategy in wireless networks is the geographic routing
(sometimes called also the greedy geographic routing), where each vertex forwards
the packet to the neighbor geographically closest to the destination (see survey
[12] for this and many other strategies). Each vertex of the network knows its po-
sition (e.g., Euclidean coordinates) in the underlying physical space and forwards
messages according to the coordinates of the destination and the coordinates of
neighbors. Although this greedy method is effective in many cases, packets may
get routed to where no neighbor is closer to the destination than the current ver-
tex. Many recovery schemes have been proposed to route around such voids for
guaranteed packet delivery as long as a path exists [4,14,16]. These techniques
typically exploit planar subgraphs (e.g., Gabriel graph, Relative Neighborhood
graph), and packets traverse faces on such graphs using the well-known right-
hand rule. Although these techniques guarantee packet delivery, none of them
give any guaranties on how the routing path traveled is “close” to an optimal
path; the worst-case route-stretch can be linear in the network size.

All earlier papers assumed that vertices are aware of their physical location,
an assumption which is often violated in practice for various of reasons (see
[7,15,21]). In addition, implementations of recovery schemes are either based on
non-rigorous heuristics or on non-trivial planarization procedures. To overcome
these shortcomings, recent papers [7,15,21] propose routing algorithms which
assign virtual coordinates to vertices in a metric space X and forward messages
using geographic routing in X . In [21], the metric space is the Euclidean plane,
and virtual coordinates are assigned using a distributed version of Tutte’s “rub-
ber band” algorithm for finding convex embeddings of graphs. In [7], the graph is
embedded in Rd for some value of d much smaller than the network size, by iden-
tifying d beacon vertices and representing each vertex by the vector of distances
to those beacons. The distance function on Rd used in [7] is a modification of
the �1 norm. Both [7] and [21] provide substantial experimental support for the
efficacy of their proposed embedding techniques – both algorithms are successful
in finding a route from the source to the destination more than 95% of the time
– but neither of them has a provable guarantee. Unlike embeddings of [7] and
[21], the embedding of [15] guarantees that the geographic routing will always
be successful in finding a route to the destination, if such a route exists. Algo-
rithm of [15] assigns to each vertex of the network a virtual coordinate in the
hyperbolic plane, and performs greedy geographic routing with respect to these
virtual coordinates. However, although the experimental results of [15] confirm
that the greedy hyperbolic embedding yields routes with low route-stretch when
applied to typical unit-disk graphs, the worst-case route-stretch is still linear in
the network size.
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In this paper, we propose a new compact and low delay routing labeling
scheme for Unit Disk Graphs. We show that one can assign each vertex of an
n-vertex UDG G a compact O(log2 n)-bit label such that, given the label of a
source vertex and the label of a destination, it is possible to compute efficiently,
based solely on these two labels, a neighbor of the source vertex that heads in
the direction of the destination. We prove that this routing labeling scheme has a
constant hop route-stretch (= hop delay), i.e., for each two vertices x and y of G,
it produces a routing path with h(x, y) hops such that h(x, y) ≤ 3 ·dG(x, y)+12,
where dG(x, y) is the hop distance between x and y in G. To the best of our
knowledge, this is the first compact routing scheme for UDGs which not only
guaranties delivery but has a low hop delay and polylog label size. Furthermore,
our routing labeling scheme has a constant length route-stretch. Note also that,
unlike geographic routing or any other strategies discussed in [4,7,12,14,15,16,21],
our routing scheme is degree-independent. That is, each current vertex makes
routing decision based only on its label and the label of destination, does not
involve any labels of neighbors. The label assigned to a vertex in our scheme
can be interpreted as its virtual coordinates. To assign those labels to vertices,
we need to know only the topology of the input unit disk graph and relative
Euclidean lengths of its edges.

To obtain our routing scheme, we establish a novel balanced separator theorem
for UDGs, which mimics the well-known Lipton and Tarjan’s planar balanced
shortest paths separator theorem. We prove that, in any n-vertex UDG G, one
can find two hop-shortest paths P (s, x) and P (s, y) such that the removal of
the 3-hop-neighborhood of these paths (i.e., N3

G[P (s, x)∪P (s, y)]) from G leaves
no connected component with more than 2/3n vertices. The famous Lipton and
Tarjan’s planar balanced separator theorem has two variants (see [19]). One
variant (called planar balanced

√
n-separator theorem) states that any n-vertex

planar graph G has a set S of vertices such that |S| = O(
√

n) and the removal of
S from G leaves no connected component with more than 2/3n vertices. Another
variant (called planar balanced shortest-paths separator theorem) states that any
n-vertex planar graph G has two shortest paths removal of which from G leaves
no connected component with more than 2/3n vertices. Although the first variant
of the planar balanced separator theorem has an extension to the class of disk
graphs (which includes UDGs) (see [1]), the second variant of the theorem proved
to be more useful in designing compact routing (and distance) labeling schemes
for planar graphs (see [13,22]). To the date, there was not known any extension
of the planar balanced shortest-paths separator theorem to unit disk graphs. The
paper [11] notes that “Unfortunately, Thorup’s algorithm uses balanced shortest-
path separators in planar graphs which do not obviously extend to the unit-disk
graphs” and uses the well-separated pair decomposition to get fast approximate
distance computations in UDGs. We do not know how to use the well-separated
pair decomposition of an UDG G to design a compact and low delay routing
labeling scheme for G. Application of the balanced

√
·-separator theorem of [1]

to UDGs can result only in routing (and distance) labeling schemes with labels
of size no less than O(

√
n log n)-bits per vertex. Our separator theorem allows
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us to get O(log2 n)-bit labels which is more suitable for the wireless ad hoc and
sensor networks where the issues of memory size and power-conservation are
critical.

Our new balanced shortest-paths—3-hop-neighborhood separator theorem al-
lows us to build, for any n-vertex UDG G = (V, E), a system T (G) of at most
2 log 3

2
n + 2 spanning trees of G such that, for any two vertices x and y of G,

there exists a tree T in T (G) with dT (x, y) ≤ 3 · dG(x, y) + 12. That is, the
distances in any UDG can be approximately represented by the distances in at
most 2 log 3

2
n + 2 of its spanning trees. An earlier version of these results has

appeared in [24] (see Section 3.4 and pages 124 and 125 of Section 3.5.5). Taking
the union of all these spanning trees of G, we obtain a hop (3, 12)-spanner H of
G (i.e., a spanning subgraph H of G with dH(x, y) ≤ 3 · dG(x, y) + 12 for any
x, y ∈ V ) with at most O(n log n) edges. There is a number of papers describing
different types of length-spanners and hop-spanners for UDGs (see [2,8,10,17,18]
and literature cited therein). Many of those spanners have nice properties of be-
ing planar or sparse, or having bounded maximum degree or bounded length (or
hop) spanner-stretch, or having localized construction. Unfortunately, neither of
those papers develops or discusses any routing schemes which could translate
the constant spanner-stretch bounds into some constant route-stretch bounds.

2 Notions and Notations

Let V be a set of n = |V | nodes on the Euclidean plane and let G = (V, E) be the
unit disk graph (UDG) induced by those nodes. Let also m = |E|. For each edge
(a, b) of G, by (a, b) we denote also the open straightline segment representing
it, and by |ab| the Euclidean length of the edge/segment (a, b). For simplicity, in
what follows, we will assume that any two edges in G can intersect at no more
than one point (i.e., no two intersecting edges are on the same straight line), and
no three edges intersect at the same point.

For a path P of G, the hop-count of P is defined as the number of edges on
P and the length of P is defined as the sum of the Euclidean length of its edges.
For any two vertices x and y of G, we denote: by dG(x, y), the hop-distance (or
simply distance) in G between x and y, i.e., the minimum hop-count of any path
connecting x and y in G; by lG(x, y), the length-distance in G between x and y,
i.e., the minimum length of any path connecting x and y in G.

A graph family Γ is said (see [20]) to have an l(n) bit (s, r)-approximate
distance labeling scheme if there is a function L labeling the vertices of each
n-vertex graph in Γ with distinct labels of up to l(n) bits, and there exists an
algorithm/function f , called distance decoder, that given two labels L(v), L(u) of
two vertices v, u in a graph G from Γ , computes, in time polynomial in the length
of the given labels, a value f(L(v), L(u)) such that dG(v, u) ≤ f(L(v), L(u)) ≤
s · dG(v, u)+ r. Note that the algorithm is not given any additional information,
other that the two labels, regarding the graph from which the vertices were
taken. Similarly, a family Γ of graphs is said (see [20]) to have an l(n) bit
routing labeling scheme if there exist a function L, labeling the vertices of each
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n-vertex graph in Γ with distinct labels of up to l(n) bits, and an efficient
algorithm/function, called the routing decision or routing protocol, that given
the label L(v) of a current vertex v and the label L(u) of the destination vertex
u (the header of the packet), decides in time polynomial in the length of the
given labels and using only those two labels, whether this packet has already
reached its destination, and if not, to which neighbor of v to forward the packet.

Let R be a routing scheme and R(x, y) be a route (path) produced by R for
a pair of vertices x and y in a graph G. We say that R has: hop (α, β)-route-
stretch if hop-count of R(x, y) is at most α ·dG(x, y)+β, for any x, y ∈ V ; length
(α, β)-route-stretch if length of R(x, y) is at most α·lG(x, y)+β, for any x, y ∈ V .

Let H = (V, E′) be a spanning subgraph of a graph G = (V, E). We say that
H is: hop (α, β)-spanner of G if dH(x, y) ≤ α · dG(x, y) + β, for any x, y ∈ V ;
length (α, β)-spanner of G if lH(x, y) ≤ α · lG(x, y) + β, for any x, y ∈ V .

In Section 6, we will need also the notion of collective tree spanners from [6]. It
is said that a graph G admits a system of μ collective tree (α, β)-spanners if there
is a system T (G) of at most μ spanning trees of G such that for any two vertices
x,y of G a spanning tree T ∈ T (G) exists such that dT (x, y) ≤ α · dG(x, y) + β.

For a vertex v of G, the kth neighborhood of v in G is the set Nk
G[v] =

{u ∈ V : dG(v, u) ≤ k}. For a vertex v of G, the sets NG[v] = N1
G[v] and

NG(v) = NG[v] \ {v} are called the neighborhood and the open neighborhood of
v, respectively. For a set S ⊆ V , by Nk

G[S] =
⋃

v∈S Nk
G[v] we denote the kth

neighborhood of S in G.

3 Intersection Lemmas

In this section we present few auxiliary lemmas. From the definition of unit disk
graphs, we immediately conclude the following (proofs of these lemmas and all
other omitted proofs can be found in the journal version of the paper).

Lemma 1. In an UDG G = (V, E), if edges (a, b), (c, d) ∈ E intersect, then G
must have at least one of (a, c), (b, d) and at least one of (a, d), (c, b) in E.

Let r be an arbitrary but fixed vertex of an UDG G = (V, E), and L0, L1, . . . Lq

be the layering of G with respect to r, where Li = {u ∈ V : dG(r, u) = i}. For
G, using this layering, we construct a layering tree Torig rooted at r as follows:
each vertex v ∈ Li (i ∈ {1, . . . , q}) chooses a neighbor u in Li−1 such that |vu|
is minimum (closest neighbor in Li−1) to be its father in Torig (breaking ties
arbitrarily). Let E(Torig) be the edge set of Torig. This tree Torig will help us to
construct a balanced separator for G. It will be convenient, for each vertex v ∈ V ,
by L(v) to denote the layer index of v, i.e., L(v) = dG(r, v). In what follows, we
will also adopt the following agreements (unless otherwise is specified). When
we refer to any edge (a, b) of Torig, we assume L(a) = L(b) − 1. When we refer
to any two intersecting edges (a, b) and (c, d) of Torig (in that order), we assume
that L(a) ≤ L(c).

Lemma 2. In Torig, no two edges (a, b) and (c, d) with L(a) = L(c) and L(b) =
L(d) can cross.
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Lemma 3. Let (a, b), (c, d) be two edges in Torig that intersect. If L(a) = L(b)−
1, L(c) = L(d) − 1 and L(a) ≤ L(c), then L(a) = L(c) − 1, (a, d) �∈ E and
(b, c) ∈ E.

For an UDG G = (V, E), in what follows, by Gp = (Vp, Ep) we denote the
planar graph obtained from G by turning each edge intersection point in G into
a vertex in Gp. The vertices of Torig (i.e. vertices of G) will be called real vertices,
to differentiate them from imaginary and null points that will be defined later. In
the following, we will use the term “element” as a general name for real vertices,
imaginary points and null points. For any graph G, we will use E(G) to denote
the set of its edges and V (G) to denote the set of its vertices (or elements, if
V (G) contains imaginary or null points). Below, we will create an imaginary
point (details will be given later) at the point where two edges (a, b) and (c, d)
from Torig intersect. Recall that we agreed to assume that L(a) = L(b) − 1,
L(c) = L(d) − 1 and L(a) ≤ L(c). By Lemma 3, we know that L(a) = L(c) − 1.
Now, assuming that the imaginary point is m, we define a(m) = a, b(m) = b,
c(m) = c and d(m) = d.

4 Balanced Separator for Restricted UDGs

In this section, we consider a special unit disk graph, a simple-crossing UDG. On
this simple case, we demonstrate our idea of construction of a balanced separa-
tor. It may help the reader to follow the much more complicated case, where we
construct a balanced separator for an arbitrary UDG. We define a simple-crossing
UDG to be an UDG G = (V, E) with each edge crossing at most one other edge.

In what follows, we will transform tree Torig into a special spanning tree T
for the planar graph Gp. Let T = Torig initially. For each two intersecting edges
(a, b) and (c, d) of Torig (by Lemma 3, we know L(a) = L(c) − 1), we do the
following. Create a vertex ma,b,c,d at the point where (a, b) and (c, d) intersect.
We call ma,b,c,d an imaginary point. Remove edges (a, b), (c, d) from T and add
vertex ma,b,c,d and edges (ma,b,c,d, d), (a, ma,b,c,d) and (b, ma,b,c,d) into T . One
can see that all the descendants of b and d in T find their way to the root via a.

There are two other kinds of edge intersections in G: the intersection between
a tree-edge and a non-tree-edge and the intersection between two non-tree-edges.
We handle them separately. First, assume a tree-edge (u, w) intersects a non-tree-
edge (s, t). We create a new vertex, called a null point, say o, at the point where
(u, w) and (s, t) intersect. We remove edge (u, w) from T and add vertex o and
edges (u, o), (o, w) into T . Now assume two non-tree-edges (a, b) and (c, d) inter-
sect. We create a new vertex, called a null point, say o, at the point where (a, b)
and (c, d) intersect. We add vertex o (as a pendant vertex) and edge (a, o) into T .

It is easy to see that T is a spanning tree for the planar graph Gp. We will need
the Lipton and Tarjan’s planar separator theorem [19] in the following form.

Theorem 1 (Planar Separator Theorem). [19] Let G be any planar graph
with non-negative vertex weights and W be the total weight of G (which is the
sum of the weights of its vertices). Let T be any spanning tree of G rooted at a
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vertex r. Then, there exist two vertices x and y in G such that if one removes
from G the tree-paths connecting in T r with x and r with y, then each connected
component of the resulting graph has total weight at most 2/3W . Vertices x and
y can be found in linear time.

We can apply Theorem 1 to T and Gp by letting the weight of each real vertex
be 1 and the weight of each imaginary or null point be 0 in Gp. Then, there must
exist in T two paths P1 = PT (r, x) and P2 = PT (r, y) such that removal of them
from Gp leaves no connected component with more than 2/3n real vertices.

Using paths P1 = (x0 = r, x1, . . . , xk−1, xk = x) and P2 = (y0 = r, y1, . . . ,
yl−1, yl = y) of Gp (of T ), we can create a balanced separator for G as follows.
(1) Skip all the null points in P1 and P2. (2) Skip every imaginary point in Pi

which is collinear with its two neighbors in Pi (i = 1, 2). (3) For any imaginary
point ma,b,c,d in Pi (i = 1, 2) which is not collinear with its two neighbors in Pi

(the only possible case is where L(a) = L(c) − 1 and imaginary point ma,b,c,d

connects a and d in Pi), replace the subpath (a, ma,b,c,d, d) by either (a, c, d) (if
(a, c) ∈ E) or (a, b, d) (if (b, d) ∈ E). By Lemma 1, (a, c) or (b, d) is in E. Let P ′

i

be the resulting path obtained from Pi (i = 1, 2). It is easy to check that P ′
1 and

P ′
2 are shortest paths in G. Here and in what follows, by a shortest path we mean

a hop-shortest path. We can also show that the union of N1
G[P ′

1] and N1
G[P ′

2] is
a balanced separator for G, i.e., removal of N1

G[P ′
1] ∪ N1

G[P ′
2] from G leaves no

connected component with more that 2/3n vertices. Assume that removal of P1
and P2 from Gp = (Vp, Ep) results in removing a set of edges E′

p from Ep, and
removal of N1

G[P ′
1] and N1

G[P ′
2] from G = (V, E) results in removing a set of

edges E′ from E. It is easy to check that, for any edge e′p ∈ E′
p there exists an

edge e′ ∈ E′ that covers e′p. The latter implies that the union of N1
G[P ′

1] and
N1

G[P ′
2] is a balanced separator for G. A formal proof of this will be presented

in the journal version of the paper.

5 Balanced Separator for Arbitrary UDGs

In an arbitrary unit disk graph G = (V, E), an edge may cross any number of other
edges. Our basic strategy for building a balanced separator for G is similar to one
we used in the case of a simple-crossing UDG, but details are more complicated.
Let T = Torig initially. We will revise T to create a special spanning tree for the
planar graph Gp obtained from G. Then, we will apply the Planar Separator The-
orem from [19] (Theorem 1 above) to Gp and T to get a balanced separator S for
Gp. Finally, we will recover from S the required separator for G.

5.1 Building a Special Spanning Tree T of Gp

In what follows, the edges of the tree Torig will be called original tree-edges.
By Lemma 3, for any two intersecting original tree-edges (a, b) and (c, d) (for
which we assumed that L(a) = L(b) − 1, L(c) = L(d) − 1 and L(a) ≤ L(c)), we
have L(a) = L(c) − 1, (a, d) �∈ E(G) and (b, c) ∈ E(G). We handle this kind of
intersections (between original tree-edges) using PROCEDURE 1.
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PROCEDURE 1. Handle original tree-edge intersections
Input: A layering tree Torig rooted at r.
Output: A tree T where all original tree-edge intersections resolved.
Method: /* Break ties arbitrarily */

(1) Let Li = {v : L(v) = i} and T = Torig;
(2) Let q be the maximum layer number of T ;
(3) FOR i = 1 to q DO
(4) FOR each vertex vj ∈ Li DO
(5) FOR each vertex vk ∈ Li+1 adjacent to vj in T DO
(6) IF there is an original tree-edge intersection on (vj , vk) such that

L(vj) is the SECOND smallest layer index among the layer indices
of all four end-vertices of the two edges giving the intersection

THEN DO
(7) Choose such an original tree-edge intersection closest to vk and

assume it is the intersection between (vj , vk) and (x, y) in T
and between (vj , vk) and (vp, vh) in Torig (i.e., (x, y) ⊆ (vp, vh));

(8) Create an imaginary point mj,k,p,h at the point where (vj , vk) and
(x, y) intersect;

(9) Update T by removing edges (vj , vk) and (x, y), and adding vertex
mj,k,p,h and edges (mj,k,p,h, x), (mj,k,p,h, y), (mj,k,p,h, vk);

(10) RETURN T

Lemma 4. PROCEDURE 1 returns a tree T with all original tree-edge inter-
sections resolved (i.e., edges of T do not cross each other).

In addition, there are two other kinds of intersections remaining: the intersection
between an edge in E(T ) (T -edge) and an edge in E(G) \ E(T ) (non-T -edge),
and intersection between two non-T -edges.

First we handle intersections between T -edges and non-T -edges. They are
resolved the same way as in Section 4. Here, we rephrase the rule. Assume (u, w)
is a T -edge, (s, t) is a non-T -edge. Add a null point, say o, at the point where
(u, w) and (s, t) intersect. Remove edge (u, w) from T and add vertex o and edges
(u, o), (o, w) into T . After resolving all intersections of this kind, T becomes a
subgraph of Gp. Note that it is possible that T does not span yet all elements
of V (Gp). Let name this T as Tsub.

Now, we deal with intersections between two non-Tsub-edges. This is more
complicated than it was in Section 4 for restricted UDGs. We will grow Tsub

to a spanning tree Tspan for Gp (extension Tspan of Tsub will cover all elements
of V (Gp)). We use a procedure similar to one of building a shortest path tree
from a set of vertices. We assign to each vertex in Tsub a weight according to
the following formula. In formula, if v is an imaginary point or a null point, we
assume v is at the intersection between edges (a, b) and (c, d) of G.

weight(v) =
{

0, if v is a real vertex;
min{|av|, |bv|, |cv|, |dv|}, if v is an imaginary or a null point.

To build our spanning tree for Gp, we use PROCEDURE 2. At the beginning,
for any v ∈ V (Gp)\V (Tsub), distance[v] = ∞ and father of v is undefined.



574 C. Yan, Y. Xiang, and F.F. Dragan

PROCEDURE 2. Build a spanning tree for Gp from Tsub

Input: A tree T = Tsub;
Output: A tree Tspan as a spanning tree for Gp.
Method: /* Break ties arbitrarily */

(1) FOR each i in V (T ) DO
(2) FOR each neighbor j ∈ V (Gp)\V (T ) of i DO
(3) tmp := weight[i] + |ij|;
(4) IF tmp < distance[j] DO
(5) distance[j] := tmp;
(6) father[j] := i;
(7) Q := V (Gp)\V (T );
(8) WHILE Q is not empty DO
(9) u :=node in Q with smallest distance[·];
(10) remove u from Q and add u into T ;
(11) FOR each neighbor v ∈ Q of u DO
(12) tmp := distance[u] + |uv|;
(13) IF tmp < distance[v] DO
(14) distance[v] := tmp;
(15) father[v] := u;
(16) RETURN Tspan := T .

It is easy to check that Tspan is a spanning tree of the planar graph Gp.

5.2 Finding a Balanced 2×Shortest-Paths—3-Hop-Neighborhood
Separator for G

Now we can apply Theorem 1 to Gp and Tspan by letting the weight of each real
vertex be 1 and the weight of each imaginary or null point be 0, and get a bal-
anced separator S of Gp. Assume that S is the union of paths P1 = PTspan(r, x)
and P2 = PTspan(r, y). There are three kinds of elements on P1 and P2: real
vertices, imaginary points and null points. Generally, each imaginary point or
null point is adjacent to at most four elements in Gp, and each element in P1
or P2 has the previous element and the next element, except for the root r (it
has only the next element) and elements x and y (they have only the previous
element). Let u be the last real or imaginary point in P1 (or P2). We name all
null points after u in P1 (or P2) as the tail null points. For any element in P1
or P2, there are two possible relations between itself, its previous element and
its next element: the element, its previous element and its next element are on
the same line, which means its previous element and its next element are on the
same edge of G (according to our general assumption that no two edges of G are
on the same line); the element, its previous element and its next element are not
on the same line, which means its previous element and itself are on one edge of
G, and its next element and itself are on another edge of G.

Using paths P1 = (x0 = r, x1, . . . , xk−1, xk = x) and P2 = (y0 = r, y1, . . . ,
yl−1, yl = y) of Gp (of Tspan), We will find the corresponding balanced separator
for G using the following steps. (1) We skip all null points in P1 and P2. Let
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the resulting paths be P ′
1 and P ′

2, respectively. (2) We skip in P ′
1 and P ′

2 each
imaginary point whose previous element and next element are on the same edge
of Torig. For example, let (xf , xi, xj) be a fragment of path P ′

1 or P ′
2, where

xi is an imaginary point and {xf , xi, xj} are collinear, then (xf , xi, xj) will be
replaced with (xf , xj). Let the resulting paths be P ′′

1 and P ′′
2 , respectively. (3)

Replace each remaining imaginary point m in P ′′
1 and P ′′

2 with two vertices: b(m)
followed by c(m) (see end of Section 3 for these notations). For example, let
(xf , xi, xj) be a fragment of path P ′′

1 or P ′′
2 , where xi is an imaginary point and

xf is closest to the root r among {xf , xi, xj}. Then, (xf , xi, xj) will be replaced
with (xf , b(xi), c(xi), xj). Let the resulting paths be P ′′′

1 and P ′′′
2 , respectively.

By Lemma 3, the edge (b(xi), c(xi)) exists in G. It is easy to check that P ′′′
1 and

P ′′′
2 are valid paths in G.
A path P of G is called a 2×shortest path iff for any two vertices x,y in P ,

dP (x, y) ≤ 2dG(x, y).

Theorem 2. P ′′′
1 and P ′′′

2 are 2×shortest paths in G.

We can show also that the union of N3
G[P ′′′

1 ] and N3
G[P ′′′

2 ] is a balanced sepa-
rator for G with 2/3-split, i.e., removal of N3

G[P ′′′
1 ] ∪ N3

G[P ′′′
2 ] from G leaves no

connected component with more than 2/3n vertices. Thus, there exist two paths
P ′′′

1 and P ′′′
2 in G such that they are 2×shortest paths and the union of N3

G[P ′′′
1 ]

and N3
G[P ′′′

2 ] is a balanced separator for G.

5.3 Finding a Balanced Shortest-Paths—3-Hop-Neighborhood
Separator for G

In this section, we will improve the result of Section 5.2. We will show that any
UDG G has two shortest paths P ′′′

1 and P ′′′
2 such that the union of N3

G[P ′′′
1 ] and

N3
G[P ′′′

2 ] forms a balanced separator for G. Recall that, by a shortest path we
mean a hop-shortest path.

Let P1, P2, P ′
1, P ′

2, P ′′
1 and P ′′

2 be the paths defined in Section 5.2. Analogs
of paths P ′′′

1 and P ′′′
2 of Section 5.2 will be obtained from P ′′

1 and P ′′
2 in a more

careful way (than in Section 5.2). We use PROCEDURE 3 for this.

PROCEDURE 3. Handle imaginary points

Input: Path P ∈ {P ′′
1 , P ′′

2 } (containing still some imaginary points).
Output: Path P as a shortest path of G, with all imaginary points resolved.
Method: /* Break ties arbitrarily. The first vertex in P is the root r, a real vertex.*/

(1) Let [v1, · · · , vk] be the imaginary points in P in the order from r;
(2) FOR i = 1 to k DO
(3) IF vertex c(vi) is adjacent to prevP (vi)

(c(vi) is always adjacent to nextP (vi), as it is shown later.)
(4) Replace vi with c(vi) in P ;
(5) ELSE (It implies that vertex b(vi) is adjacent to both prevP (vi)

and nextP (vi), as it is shown later.)
(6) Replace vi with b(vi) in P ;
(7) RETURN P
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We call PROCEDURE 3 for both P ′′
1 and P ′′

2 . Let the resulting paths be P ′′′
1

and P ′′′
2 , respectively. We can show that P ′′′

1 and P ′′′
2 are shortest paths in G.

Now, for these paths P ′′′
1 and P ′′′

2 , we have.

Theorem 3. The union of N3
G[P ′′′

1 ] and N3
G[P ′′′

2 ] is a balanced separator for G
with 2/3-split, i.e., removal of N3

G[P ′′′
1 ] ∪ N3

G[P ′′′
2 ] from G leaves no connected

component with more than 2/3n vertices.

6 Application of Balanced Separators for UDGs

In this section, we show how one can use the above balanced separator theorem
for UDGs to construct for them collective tree spanners with low stretch and to
develop a compact and low delay routing labeling scheme. For this, we combine
strategies used in [5,6,13]. The details can be found in the full version of this
paper. Here we list only the final results.

Theorem 4. Any unit disk graph G with n vertices and m edges admits a system
T (G) of at most 2 log3/2 n + 2 collective tree (3, 12)-spanners, i.e., for any two
vertices x and y in G, there exists a spanning tree T ∈ T (G) with dT (x, y) ≤
3dG(x, y) + 12. Moreover, such a system T (G) can be constructed in O((C +
m) log n) time, where C is the number of crossings in G.

Corollary 1. Any unit disk graph G with n vertices admits a hop (3, 12)-spanner
with at most 2(n − 1)(log3/2 n + 1) edges.

Theorem 5. The family of n-vertex unit disk graphs admits an O(log2 n) bit
(3, 12)-approximate distance labeling scheme with O(log n) time distance decoder.

Theorem 6. The family of n-vertex unit disk graphs admits an O(log2 n) bit
routing labeling scheme. The scheme has hop (3, 12)-route-stretch. Once com-
puted by the sender in O(log n) time, headers never change, and the routing
decision is made in constant time per vertex.

In the journal version of the paper, we show also how to extend this bounded hop
route-stretch routing labeling scheme to a routing labeling scheme with bounded
length route-stretch.
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