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Abstract. This paper presents the formal Isabelle/HOL framework we
use to prove refinement between an executable, monadic specification and
the C implementation of the seL4 microkernel. We describe the refinement
framework itself, the automated tactics it supports, and the connection to
our previous C verification framework. We also report on our experience
in applying the framework to seL4. The characteristics of this microkernel
verification are the size of the target (8,700 lines of C code), the treatment
of low-level programming constructs, the focus on high performance, and
the large subset of the C programming language addressed, which includes
pointer arithmetic and type-unsafe code.

1 Introduction

The seL4 kernel [10] is a high-performance microkernel in the L4 family [18], tar-
geted at secure, embedded devices. In verifying such a complex and large – 8,700
lines of C – piece of software, scalability and separation of concerns are of the ut-
most importance. We show how to achieve both for low-level, manually optimised,
real-world C code.

Fig. 1 shows the layers and
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proofs involved in the verification
of seL4. The top layer is an ab-
stract, operational specification of
seL4; the middle layer is an exe-
cutable specification derived auto-
matically [8, 11] from a working
Haskell prototype of the kernel;
the bottom layer is a hand-written
and hand-optimised C implemen-
tation. The aim is to connect the
three layers by formal proof in Is-
abelle/HOL [21].
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Previously, we presented a verification framework [5] for proving refinement be-
tween the abstract and executable specifications. This paper presents the frame-
work for the second refinement step: the formal, machine-checked proof that the
high-performance C implementation of seL4 correctly implements the executable
specification.

With these two refinement steps, we manage to isolate two aspects of the
verification of seL4. In the first refinement step, which we call RA, we dealt
mostly with semantic concepts such as relationships between data structures
and system-global conditions for safe execution. We estimate that 80% of the
effort in RA was spent on such invariants. In the second refinement step, RC ,
the framework we present in this paper allows us to reduce our proof effort and
to reuse the properties shown in RA. The first refinement step established that
the kernel design works, the second closes the gap to C.

Paper Structure. We begin with an example that sketches the details of a typ-
ical kernel function. We then explain how the components of the verification
framework fit together, summarising relevant details of our earlier work on
the monadic, executable specification [5], and on our C semantics and mem-
ory model [25,26,27]. In particular, we describe the issues involved in converting
the C implementation into Isabelle/HOL. The main part of the paper shows the
refinement framework with its fundamental definitions, rules, and automated
tactics. We demonstrate the framework’s performance by reporting on our expe-
rience so far in applying it to the verification of substantial parts of the seL4 C
implementation (474 out of 518 functions, 91%).

2 Example

The seL4 kernel [10] provides the following operating system kernel services: inter-
process communication, threads, virtual memory, access control, and interrupt
control. In this section we present a typical function, cteMove, with which we
will illustrate the verification framework.

Access control in seL4 is based on capabilities. A capability contains an object
reference along with access rights. A capability table entry (CTE) is a kernel
data structure with two fields: a capability and an mdbNode. The latter is book-
keeping information and contains a pair of pointers which form a doubly linked
list.

The cteMove operation, shown in Fig. 2, moves a capability table entry from
src to dest. The left-hand side of the figure shows the executable specification in
Isabelle/HOL, while the right-hand side shows the corresponding C code.

The first 6 lines in Fig. 2 initialise the destination entry and clear the source
entry; the remainder of the function updates the pointers in the doubly linked
list. During the move, the capability in the entry may be diminished in access
rights. Thus, the argument cap is this possibly diminished capability, previously
retrieved from the entry at src.
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cteMove cap src dest ≡ void cteMove (cap_t newCap,
do cte_t *srcSlot, cte_t *destSlot){

cte ← getCTE src; mdb_node_t mdb; uint32_t prev_ptr, next_ptr;
mdb ← return (cteMDBNode cte); mdb = srcSlot->cteMDBNode;
updateCap dest cap; destSlot->cap = newCap;
updateCap src NullCap; srcSlot->cap = cap_null_cap_new();
updateMDB dest (const mdb); destSlot->cteMDBNode = mdb;
updateMDB src (const nullMDBNode); srcSlot->cteMDBNode = nullMDBNode;

prev_ptr = mdb_node_get_mdbPrev(mdb);
updateMDB if(prev_ptr) mdb_node_ptr_set_mdbNext(

(mdbPrev mdb) &CTE_PTR(prev_ptr)->cteMDBNode,
(λm. m (| mdbNext := dest |)); CTE_REF(destSlot));

next_ptr = mdb_node_get_mdbNext(mdb);
updateMDB if(next_ptr) mdb_node_ptr_set_mdbPrev(

(mdbNext mdb) &CTE_PTR(next_ptr)->cteMDBNode,
(λm. m (| mdbPrev := dest |)) CTE_REF(destSlot));

od }

Fig. 2. cteMove: executable specification and C implementation

In this example, the C source code is structurally similar to the executable
specification. This similarity is not accidental: the executable specification de-
scribes the low-level design with a high degree of detail. Most of the kernel
functions exhibit this property. Even so, the implementation here makes a small
optimisation: in the specification, updateMDB always checks that the given
pointer is not NULL. In the implementation this check is done for prev ptr
and next ptr – which may be NULL – but omitted for srcSlot and destSlot.
In verifying cteMove we will have to prove these checks are not required.

3 The Executable Specification Environment

Operations in the executable specification of seL4, such as cteMove, are writ-
ten in a monadic style inspired by Haskell. The type constructor ′a kernel is a
monad representing computations returning a value of type ′a; such values can
be injected into the monad using the return :: ′a ⇒ ′a kernel operation. The
composition operator, bind :: ′a kernel ⇒ ( ′a ⇒ ′b kernel) ⇒ ′b kernel, evaluates
the first operation and makes the return value available to the second operation.
The ubiquitous do . . . od syntax seen in Fig. 2 is syntactic sugar for a sequence
of operations composed using bind. There are also operations for accessing and
mutating k-state, the underlying state.

The type ′a kernel is isomorphic to k-state ⇒ ( ′a × k-state) set × bool. The
motivation for, and formalisation of, this monad are detailed in earlier work [5].
In summary, we take a conventional state monad and add nondeterminism and
a failure flag. Nondeterminism, required to model some interactions between
kernel and hardware, is modelled by allowing a set of possible outcomes in the
return type. The boolean failure flag is used to indicate unrecoverable errors and
invalid assertions, and is set only by the fail :: ′a kernel operation. The destructors
mResults and mFailed access, respectively, the set of outcomes and the failure flag
of a monadic operation evaluated at a state.

The specification environment provides a verification condition generator
(VCG) for judgements of the form {|P |} a {|R|}, and a refinement calculus for
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the monadic model. One feature of this calculus is that the refinement property
cannot hold if the failure flag is set by the executable specification, thus RA im-
plies non-failure of the executable level. In particular, this allows all assertions
in the executable specification to be taken as assumptions in the proof of RC .

4 Embedding C

In this section we describe our infrastructure for parsing C into Isabelle/HOL and
for reasoning about the result. The seL4 kernel is implemented almost entirely
in C99 [16]. Direct hardware accesses are encapsulated in machine interface func-
tions, some of which are implemented in ARMv6 assembly. In the verification,
we axiomatise the assembly functions using Hoare triples.

Fig. 3 gives an overview of
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Fig. 3. C language framework

the components involved. The
right-hand side shows our in-
stantiation of SIMPL [23], a
generic, imperative language
inside Isabelle/HOL. The SIMPL
framework provides a program
representation, a semantics, and
a VCG. This language is generic
in its expressions and state space.
We instantiate both components
to form C-SIMPL, with a precise
C memory model and C expres-
sions, generated by a parser. The left-hand side of Fig. 3 shows this process: the
parser takes a C program and produces a C-SIMPL program.

4.1 The SIMPL Framework

SIMPL provides a data type and semantics for statement forms; expressions
are shallowly embedded. The following is a summary of the relevant SIMPL
syntactic forms, where e represents an expression

c � SKIP | ´v :== e | c1 ; c2 | IF e THEN c1 ELSE c2 FI | WHILE e DO c OD
| TRY c1 CATCH c2 END | THROW | Call f | Guard F P c

The semantics are canonical for an imperative language. The Guard F P c
statement throws the fault F if the condition P is false and executes c otherwise.

Program states in SIMPL are represented by Isabelle records. The record con-
tains a field for each local variable in the program, and a field globals containing
all global variables and the heap. Variables are then simply functions on the
state. SIMPL includes syntactic sugar for dealing with such functions: the term
´srcSlot refers to the local variable srcSlot in the current state. For example, the
set of program states where srcSlot is NULL is described by {|´srcSlot = NULL|}.



504 S. Winwood et al.

The semantics are represented by judgements of the form Γ� 〈c,x 〉 ⇒ x ′which
means that executing statement c in state x terminates and results in state x ′;
the parameter Γ maps function names to function bodies. Both x and x ′ are ex-
tended states : for normal program states, Normal s, the semantics are as expected;
abrupt termination states (Abrupt s) are propagated until a surrounding TRY . . .
CATCH . . . END statement is reached; and Stuck and Fault u states, generated
by calls to non-existent procedures and failed Guard statements respectively, are
passed through unchanged. Abrupt states are generated by THROW statements
and are used to implement the C statements return, break, and continue.

The SIMPL environment also provides a VCG for partial correctness triples;
Hoare-triples are represented by judgements of the form Γ�/F P c C ,A, where
P is the precondition, C is the postcondition for normal termination, A is the
postcondition for abrupt termination, and F is the set of ignored faults; if F is
U , the universal set, then all Guard statements are effectively ignored. Both A
and F may be omitted if empty.

4.2 The Memory Model

Our C subset allows type-unsafe operations including casts. To achieve this
soundly, the underlying heap model is a function from addresses to bytes. This
allows, for example, the C function memset, which sets each byte in a region of
the heap to a given value. We use the abbreviation H for the heap in the current
state; the expression H p reads the object at pointer p, while H(p �→ v) updates
the heap at pointer p with value v.

While this model is required for such low-level memory accesses, it is too
cumbersome for routine verification. By extending the heap model with typing
information and using tagged pointers we can lift bytes in the heap into Isabelle
terms. Pointers, terms of type ′a ptr, are raw addresses wrapped by the polymor-
phic constructor Ptr; the phantom type ′a carries the type information. Pointers
may be unwrapped via the ptr-val function, which simply extracts the enclosed
address. Struct field addressing is also supported: the pointer &(p→[f ]) refers to
the field f at the address associated with pointer p. The details of this memory
model are described by Tuch et al [27, 26].

4.3 From C to C-SIMPL

The parser translates the C kernel into a C-SIMPL program. This process gen-
erally results in a C-SIMPL program that resembles the input. Here we describe
the C subset we translate, and discuss those cases where translation produces a
result that is not so close to the input.

Our C Subset. As mentioned above, local variables in SIMPL are represented
by record fields. It is therefore not meaningful to take their address in the frame-
work, and so the first restriction of our C subset is that local variables may not
have their addresses taken. Global variables may, however, have their addresses
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taken. As we translate all of the C source at once, the parser can determine ex-
actly which globals do have their addresses taken, and these variables are then
given addresses in the heap. Global variables that do not have their addresses
taken are, like locals, simply fields in the program state. The restriction on local
variables could be relaxed at the cost of higher reasoning overhead.

The other significant syntactic omissions in our C subset are union types, bit-
fields, goto statements, and switch statements that allow cases to fall-through.
We handle union types and bitfields with an automatic code generator [4], de-
scribed in Sect. 6, that implements these types with structs and casts. Further-
more, we do not allow function calls through function pointers and take care
not to introduce a more deterministic evaluation order than C prescribes. For
instance, we translate the side-effecting C expressions ++ and -- as statements.

Internal Function Calls and Automatic Modifies Proofs. SIMPL does
not permit function calls within expressions. If a function call appears within
an expression in the input C, we lift it out and transform it into a function call
that will occur before the expression is evaluated. For example, given a global
variable x, the statement z = x + f(y) becomes tmp = f(y); z = x + tmp,
where tmp is a new temporary variable.

This translation is only sound when the lifted functions are side-effect free:
evaluation of the functions within the original expression is linearised, making
the translated code more deterministic than warranted by the C semantics. The
parser thus generates a VCG “modifies” proof for each function, stating which
global variables are modified by the function. Any function required to be side-
effect free, but not proved as such, is flagged for the verification team’s attention.

Guards and Short-Circuit Expressions. Our parser uses Guard statements
to force verifiers to show that potentially illegal conditions are avoided. For
example, expressions involving pointer dereferences are enclosed by guards which
require the pointer to be aligned and non-zero.

Guards are statement-level constructors, so whole expressions accumulate
guards for their sub-expressions. However, C’s short-circuiting expression forms
(&&, || and ?:) mean that sub-expressions are not always evaluated. We trans-
late such expressions into a sequence of if-statements, linearising the evaluation
of the expression. When no guards are involved, the expression in C can become
a C-SIMPL expression, using normal, non-short-circuiting, boolean operators.

Example. While we have shown the C implementation in the example Fig. 2,
refinement is proven between the executable specification and the imported
C-SIMPL code. For instance, the assignment mdb = srcSlot->cteMDBNode in
Fig. 2 is translated into the following statement in C-SIMPL

MemGuard &(´srcSlot→[cteMDBNode-C])
(´mdb :== H &(´srcSlot→[cteMDBNode-C]))

The MemGuard constructor abbreviates the alignment and non-NULL conditions
for pointers.
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5 Refinement

Our verification goal is to prove refinement between the executable specification
and the C implementation. Specifically, this means showing that the C kernel
entry points for interrupts, page faults, exceptions, and system calls refine the
executable specification’s top-level function callKernel. We show refinement us-
ing a variation of forward simulation [7] we call correspondence: evaluation of
corresponding functions takes related states to related states.

In previous work [5], while proving RA, we found it useful to divide the proof
along the syntactic structure of both programs as far as possible, and then prove
the resulting subgoals semantically. Splitting the proof has two main benefits:
firstly, it is a convenient unit of proof reuse, as the same pairing of abstract
and concrete functions recurs frequently for low-level functions; and secondly, it
facilitates proof development by multiple people. One important feature of this
approach is that preconditions are discovered lazily à la Dijkstra [9]. Rules for
showing correspondence typically build preconditions from those of the premises.

In this section we describe the set of tools and techniques we developed to
ease the task of proving correspondence in RC . First, we give our definition of
correspondence, followed by a discussion of the use of the VCG. We then de-
scribe techniques for reusing proofs from RA to solve proof obligations from the
implementation. Next, we present our approach for handling operations with no
corresponding analogue. Finally, we describe our splitting approach and sketch
the proof of the example.

5.1 The Correspondence Statement

In practice, the definition of corre-

(s',   rv)
Monadic Operation

C Operation

P

P'
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s

t' xf t'

r

Fig. 4. Correspondence

spondence is more complex than
simply linking related states, as:
(1) verification typically requires
preconditions to hold of the ini-
tial states; (2) we allow early re-
turns from functions and breaks
from loops; and (3) function re-
turn values must be related.

To deal with early return, we
extend the semantics to lists of
statements, using the judgement
Γ � 〈c·hs , s〉 ⇒ x ′. The statement sequence hs is a handler stack ; it collects
the CATCH handlers which surround usages of the statements return, continue,
and break. If c terminates abruptly, each statement in hs is executed in sequence
until one terminates normally.

Relating the return values of functions is dealt with by annotating the cor-
respondence statement with a return value relation r. Although evaluating a
monadic operation results in both a new state and a return value, functions in
C-SIMPL return values by updating a function-specific local variable; because
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local variables are fields in the state record, this is a function from the state. We
thus annotate the correspondence statement with an extraction function xf, a
function which extracts the return value from a program state.

The correspondence statement is illustrated in Fig. 4 and defined below

ccorres r xf P P ′ hs a c ≡
∀ (s , t)∈S. ∀ t ′. s ∈ P ∧ t ∈ P ′ ∧ ¬ mFailed (a s) ∧ Γ � 〈c·hs , t〉 ⇒ t ′

−→ ∃ (s ′,rv)∈mResults (a s).
∃ t ′N . t ′ = Normal t ′N ∧ (s ′, t ′N ) ∈ S ∧ r rv (xf t ′N )

The definition can be read as follows: given related states s and t with the
preconditions P and P ′ respectively, if the abstract specification a does not fail
when evaluated at state s, and the concrete statement c evaluates under handler
stack hs in extended state t to extended state t ′, then the following must hold:

1. evaluating a at state s returns some value rv and new abstract state s ′;
2. the result of the evaluation of c is some extended state Normal t ′N , that is,

not Abrupt, Fault, or Stuck;
3. states s ′ and t ′N are related by the state relation S; and
4. values rv and xf t ′N – the extraction function applied to the final state of c

– are related by r, the given return value relation.

Note that a is non-deterministic: we may pick any suitable rv and s ′. As men-
tioned in Sect. 3, the proof of RA entails that the executable specification does
not fail. Thus, in the definition of ccorres, we may assume ¬ mFailed (a s).
In practice, this means assertions and other conditions for (non-)failure in the
executable specification become known facts in the proof. For example, the op-
eration getCTE srcSlot in the example in Fig. 2 will fail if there is no CTE at
srcSlot. We can therefore assume in the refinement proof that such an object
exists. Of course, these facts are only free because we have already proven them
in RA.

Example. To prove correspondence for cteMove, we must, after unfolding the
function bodies, show the statement in Fig. 5. The cteMove operation has no
return value, so our extraction function (xf in the definition of ccorres above)
and return relation (r above) are trivial. The specification precondition (P above)
is the system invariant invs, while the implementation precondition (P ′ above)
relates the formal parameters destSlot, srcSlot, and newCap to the specification
arguments dest, src, and cap respectively. As all functions are wrapped in a TRY
. . . CATCH SKIP block to handle return statements, the handler stack is the
singleton list containing SKIP.

5.2 Proving Correspondence via the VCG

Data refinement predicates can, in general [7], be rephrased and solved as Hoare
triples. We do this in our framework by using the VCG after applying the fol-
lowing rule
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ccorres (λ- -. True) (λ-. ()) invs
{|´destSlot = Ptr dest ∧ ´srcSlot s = Ptr src ∧ ccap-relation cap ´newCap|} [SKIP]
(do

cte ← getCTE src;
mdb ← return (cteMDBNode cte);
updateCap dest cap;
. . .

od)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

cteMove spec.

(MemGuard &(´srcSlot→[cteMDBNode-C])
(´mdb :== H &(´srcSlot→[cteMDBNode-C]);

MemGuard &(´destSlot→[cap-C])
(´globals :== H(&(´destSlot→[cap-C]) �→ ´newCap);

. . .)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

cteMove impl.

Fig. 5. The cteMove correspondence statement

∀ s. Γ�{t | s ∈ P ∧ t ∈ P ′ ∧ (s, t) ∈ S}
c

{t ′ | ∃ (rv , s ′)∈mResults (a s). (s ′, t ′) ∈ S ∧ r rv (xf t ′)}
ccorres r xf P P ′ hs a c

In essence, this rule states that to show correspondence between a and c, for a
given initial specification state s, it is sufficient to show that executing c results
in normal termination where the final state is related to the result of evaluating
a at s. The VCG precondition can assume that the initial states are related and
satisfy the correspondence preconditions.

Use of this rule in verifying correspondence is limited by two factors. Firstly,
the verification conditions produced by the VCG may be excessively large or
complex. Our experience is that the output of a VCG step usually contains a
separate term for every possible path through the target code, and that the
complexity of these terms tends to increase with the path length. Secondly, the
specification return value and result state are existential, and thus outside the
range of our extensive automatic support for showing universal properties of
specification fragments. Fully expanding the specification is always possible, and
in the case of deterministic operations will yield a single state/return value pair,
but the resulting term structure may also be large.

In the case of our example, the goal produced by the VCG has 377 lines
before unfolding the specification and 800 lines afterward. Verifying such non-
trivial functions is made practical by the approach described in the remainder
of this section.

5.3 Local Variable Lifting

The feasibility of proving RC depends heavily on proof reuse from RA. Consider
the following rule for dealing with a guard introduced by the parser (see Sect. 4.3)

ccorres r xf G G ′ hs a c

ccorres r xf (G ∩ cte-at ′ (ptr-val p)) G ′ hs a (MemGuard (λs. p) c)

This states that the proof obligation introduced by MemGuard at the CTE
pointer p can be discharged, assuming that there exists a CTE object on the
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specification side (denoted cte-at ′ (ptr-val p)); this rule turns a proof obligation
from the implementation into an assumption of the specification. There is, how-
ever, one major problem: the pointer p cannot depend on the C state, because
it is also used on the specification side.

To see why this is such a problem, recall that local variables in C-SIMPL are
fields in the state record; any pointer, apart from constants, in the program will
always refer to the state, making the above rule inapplicable; in the example,
the first guard refers to the local variable ´srcSlot.

All is not lost, however: the values in local variables generally correspond to
some value available in the specification. We have developed an approach that
automatically replaces such local variables with new HOL variables representing
their value. Proof obligations which refer to the local variable can then be solved
by facts about the related value from the specification precondition. We call this
process lifting.

Example. If we examine the preconditions to the example proof statement in
Fig. 5, we note the assumption ´srcSlot = Ptr src and observe that srcSlot
depends on the C state. By lifting this local variable and substituting the as-
sumption, we get the following implementation fragment

MemGuard &(Ptr src→[cteMDBNode-C])
(´mdb :== H &(Ptr src→[cteMDBNode-C]);

. . .

The pointer Ptr src no longer depends on the C state and is a value from the
specification side, so the MemGuard can be removed with the above rule.

Lifting is only sound if the behaviour of the lifted code fragment is indistin-
guishable from that of the original code; the judgement d ′ ∼ d[v/f] states that
replacing applications of the function f in statement d with value v results in
the equivalent statement d ′. This condition is defined as follows

d ′ ∼ d[v/f ] ≡ ∀ t t ′. f t = v −→ Γ� 〈d ,Normal t〉 ⇒ t ′ = Γ� 〈d ′,Normal t〉 ⇒ t ′

This states that d and d ′ must be semantically equivalent, assuming f has
the value v in the initial state. In practice, d ′ depends on a locally bound HOL
variable; in such cases, it will appear as d ′ v.

Lifting is accomplished through the following rule

∀ v . d ′ v ∼ d[v/f ] ∀ v . P v −→ ccorres r xf G G ′ hs a (d ′ v)

ccorres r xf G (G ′ ∩ {s | P (f s)}) hs a d

Note that d ′, the lifted fragment, appears only in the assumptions; proving the
first premise involves inventing a suitable candidate. We have developed tactic
support for automatically calculating the lifted fragment and discharging such
proof obligations, based on a set of syntax-directed proof rules.
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5.4 Symbolic Execution

The specification and implementation do not always match: there may be frag-
ments on either side that are artefacts of the particular model. In our example,
it is clear that the complex function getCTE has no direct analogue; the imple-
mentation accesses the heap directly.

In both cases we have rules to symbolically execute the code using the appro-
priate VCG, although we must also show that the fragment preserves the state re-
lation. On the implementation side this case occurs frequently; in the example we
have the cap null cap new, mdb node get mdbNext, and mdb node get mdbPrev
functions. We have developed a tactic which can symbolically execute any side-
effect free function which has a VCG specification. This tactic also takes advan-
tage of variable lifting: the destination local variable is replaced by a new HOL
variable and we gain the assumption that the variable satisfies the function’s
postcondition.

5.5 Splitting

If we examine our example, there is a clear match between most lines. Split-
ting allows us to take advantage of this structural similarity by considering each
match in isolation; formally, given the specification fragment do rv ← a; b rv
od and the implementation fragment c; d, splitting entails proving a first corre-
spondence between a and c and a second between b and d.

In the case where we can prove that c terminates abruptly, we discard d.
Otherwise, the following rule is used

ccorres r ′ xf ′ P P ′ hs a c ∀ v . d ′ v ∼ d[v/xf ′]
∀ rv rv ′. r ′ rv rv ′ −→ ccorres r xf (Q rv) (Q ′ rv rv ′) hs (b rv) (d ′ rv ′)
{|R|} a {|Q |} Γ�/U R ′ c {s | ∀ rv . r ′ rv (xf ′ s) −→ s ∈ Q ′ rv (xf ′ s)}

ccorres r xf (P ∩ R) (P ′ ∩ R ′) hs (do rv ← a; b rv od) (c; d)

In the second correspondence premise, d ′ is the result of lifting xf ′ in d ; this
enables the proof of the second correspondence to use the result relation from
the first correspondence. To calculate the final preconditions, the rule includes
VCG premises to move the preconditions from the second correspondence across
a and c. In the C-SIMPL VCG obligation, we may ignore any guard faults as
their absence is implied by the first premise. In fact, in most cases the C-SIMPL
VCG step can be omitted altogether, because the post condition collapses to
true after simplifications.

We have developed a tactic which assists in splitting: C-SIMPL’s encoding
of function calls and struct member updates requires multiple specialised rules.
The tactic symbolically executes and moves any guards if required, determines
the correct splitting rule to use, instantiates the extraction function, and lifts
the second correspondence premise.

Example. After lifting, moving the guard, and symbolically executing the getCTE
function, applying the above rule to the example proof statement in Fig. 5 gives
the following as the first proof obligation
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ccorres cmdb-relation mdb (. . .) {. . .} [SKIP]
(return (cteMDBNode cte))
(´mdb :== H &(Ptr src→[cteMDBNode-C])

This goal, proved using the VCG approach from Sect. 5.2, states that, apart
from the state correspondence, the return value from the specification side
(cteMDBNode cte) and implementation side (H &(Ptr src→[cteMDBNode-C])
stored in mdb) are related through cmdb-relation, that is, the linked list pointers
in the returned specification node are equal to those in the implementation.

5.6 Completing the Example

The proof of the example, cteMove, is 25 lines of Isabelle/HOL tactic style proof.
The proof starts by weakening the preconditions (here abbreviated P and P ′)
with new Isabelle schematic variables; this allows preconditions to be calculated
on demand in the correspondence proofs.

We then lift the function arguments and proceed to prove by splitting; the
leaf goals are proved as separate lemmas using the C-SIMPL VCG. Next,
the correspondence preconditions are moved back through the statements us-
ing the two VCGs on specification and implementation. The final step is to solve
the proof obligation generated by the initial precondition weakening: the stated
preconditions (our P and P ′) must imply the calculated preconditions.

The lifting and splitting phase takes 9 lines, the VCG stage takes 1 line, using
tactic repetition, while the final step takes 15 lines and is typically the trickiest
part of any correspondence proof.

6 Experience

In this section we explore how our C subset influenced the kernel implementation
and performance. We then discuss our experience in applying the framework.

We chose to implement the C kernel manually, rather than synthesising it from
the executable specification. Initial investigations had shown that generated C
code would not meet the performance requirements of a real-world microkernel.
Message-passing (IPC) performance, even in the first hand-written version, com-
pleted after two person months, was slow, on the order of the Mach microkernel.
After optimisation, this operation is now comparable to that of the modern,
commercially deployed, OKL4 2.1 [22] microkernel: we measured 206 cycles for
OKL4’s hand-crafted assembly IPC path, and 756 cycles for its non-optimised C
version on the ARMv6 Freescale i.MX31 platform. On the same hardware, our C
kernel initially took over 3000 cycles, after optimisations 299. The fastest other
IPC implementation for ARMv6 in C we know of is 300 cycles.

The C subset and the implementation developed in parallel, influencing each
other. We extended the subset with new features such as multiple side-effect
free function calls in expressions, but we also needed to make trade-offs such
as for references to local variables. We avoided passing large structures on the
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Table 1. Code and proof statistics. Changes for step RC .

Lines Changes

Haskell/C Isabelle Proof Bugs Convenience

Executable specification 5,700 13,000 117,000 8 10
Implementation 8,700 15,000 50,000a 97 34

a With 474 of 518 (91%) of the functions verified.

C stack across function boundaries. Instead, we stored these in global variables
and accessed them through pointers. Whilst the typical pattern was of conflicting
pressures from implementation and verification, in a few cases both sides could be
neatly satisfied by a single solution. We developed a code-generation tool [4] for
efficient, packed bitfields in tagged unions with a clean, uniform interface. This
tool not only generates the desired code, but also the associated Isabelle/HOL
proofs and specifications that integrate directly into our refinement framework.
The resulting compiled code is faster, more predictable, and more compact than
the bitfield code emitted by GCC on ARM.

Code and proof statistics are shown in Table 1. Of the 50,000 lines of proof in
RC , approximately 5,000 lines are framework related, 7,700 lines are automat-
ically generated by our bitfield tool, and the remaining 37,300 lines are hand-
written. We also have about 1,000 lines of tactic code. We spent just over 2
person years in 6 months of main activity on this proof and estimate another
two months until completion. We prove an average of 3–4 functions per person
per week.

One important aspect of the verification effort was our ability to change both
the specification and the implementation. These changes, included in Table 1,
fell into two categories: true bug fixes and proof convenience changes. In the
specification, bug fixes were not related to safety — the proof of RA guaranteed
this. Rather, they export implementation restrictions such as the number of bits
used for a specific argument encoding. Although both versions were safe, refine-
ment was only possible with the changed version. The implementation had not
been intensively tested, because it was scheduled for formal verification. It had,
however, been used in a number of student projects and was being ported to the
x86 architecture when verification started. The former activities found 16 bugs
in the ARMv6 code; the verification has so far found 97. Once the verification is
complete, the only reason to change the code will be for performance and new
features: C implementation defects will no longer exist.

A major aim in developing the framework presented in this paper was the
avoidance of invariant proofs on the implementation. We achieved this primarily
through proof reuse from RA: the detailed nature of the executable specifica-
tion’s treatment of kernel objects meant that the state relation fragment for
kernel objects was quite simple; this simplicity allowed proof obligations from
the implementation to be easily solved with facts from the specification. Further-
more, when new invariants were required we could prove them on the executable
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specification. For example, the encoding of Isabelle’s option type using a default
value in C (such as NULL) required us to show that these default values never
occurred as valid values.

We discovered that the difficulty of verifying any given function in RC was
determined by the degree of difference between the function in C and its exe-
cutable specification, arising either from the control structures of C or its impure
memory model. Unlike the proof of RA, the semantic complexity of the function
seems mostly irrelevant. For instance, the operation which deletes a capability —
by far the most semantically complex operation in seL4 — was straightforward
to verify in RC . On the other hand, a simpler operation which employs an indis-
criminate memset over a number of objects was comparatively difficult to verify.
It is interesting to note that, even here, proofs from RA were useful in proving
facts about the implementation.

An important consequence of the way we split up proofs is that local reasoning
becomes possible. No single person needed a full, global understanding of the
whole kernel implementation.

7 Related Work

Earlier work on OS verification includes PSOS [12] and UCLA Secure Unix [28].
Later, Bevier [3] describes verification of process isolation properties down to
object code level, but for an idealised kernel (KIT) far simpler than modern
microkernels. We use the same general approach — refinement — as KIT and
UCLA Secure Unix, however the scale, techniques for each refinement step, and
level of detail we treat are significantly different.

The Verisoft project [24] is working towards verifying a whole system stack, in-
cluding hardware, compiler, applications, and a simplified microkernel VAMOS.
The VFiasco [15] project is attempting to verify the Fiasco kernel, another vari-
ant of L4 directly on the C++ level. For a comprehensive overview of operating
system verification efforts, we refer to Klein [17].

Deductive techniques to prove annotated C programs at the source code level
include Key-C [20], VCC [6], and Caduceus [13], recently integrated into the
Frama-C framework [14]. Key-C only focuses on a type-safe subset of C. VCC,
which also supports concurrency, appears to be heavily dependent on large ax-
iomatisations; even the memory model [6] axiomatises a weaker version of what
Tuch proves [26]. Caduceus supports a large subset of C, with extensions to han-
dle certain kinds of unions and casts [1, 19]. These techniques are not directly
applicable to refinement, although Caduceus has at least been used [2] to extract
a formal Coq specification for verifying security and safety properties.

We directly use the SIMPL verification framework [23] from the Verisoft
project, but we instantiate it differently. While Verisoft’s main implementation
language is fully formally defined from the ground up, with well-defined Pascal-
like semantics and C-style syntax, we treat a true, large subset of C99 [16] on
ARMv6 with all the realism and ugliness this implies. Our motivation for this is
our desire to use standard tool-chains and compilers for real-world deployment
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of the kernel. Verisoft instead uses its own non-optimising compiler, which in
exchange is formally verified. Another difference is the way we exploit structural
similarities between our executable specification and C implementation. Verisoft
uses the standard VCG-based methodology for implementation verification. Our
framework allows us to transport invariant properties and Hoare-triples from
our existing proof on the executable specification [5] down to the C level. This
allowed us to avoid invariants on the C level, speeding up the overall proof effort
significantly.

8 Conclusion

We have presented a formal framework for verifying the refinement of a
large, monadic, executable specification into a low-level, manually performance-
optimised C implementation. We have demonstrated that the framework
performs well by applying it to the verification of the seL4 microkernel in Is-
abelle/HOL, and by completing a large part of this verification in a short time.
The framework allows us to take advantage of the large number of invariants
proved on the specification level, thus saving significant amounts of work. We
were able to conduct the semantic reasoning on the more pleasant monadic, shal-
lowly embedded specification level, and leave essentially syntactic decomposition
to the C level.

We conclude that our C verification framework achieves both the scalability
in terms of size, as well as the separation of concerns that is important for
distributing such a large proof over multiple people.
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les Cartes à Microprocesseur—Plate-Forme Java Card et Système d’Exploitation.
Ph.D thesis, Université Paris-Sud (March 2006)
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