Somewhat Non-committing Encryption and
Efficient Adaptively Secure Oblivious Transfer*

Juan A. Garay!, Daniel Wichs?, and Hong-Sheng Zhou®**

LAT&T Labs — Research
garay@research.att.com
2 New York University
wichs@cs.nyu.edu
3 University of Connecticut
hszhou@cse.uconn.edu

Abstract. Designing efficient cryptographic protocols tolerating adap-
tive adversaries, who are able to corrupt parties on the fly as the compu-
tation proceeds, has been an elusive task. In this paper we make progress
in this area. First, we introduce a new notion called semi-adaptive secu-
rity which is slightly stronger than static security but significantly weaker
than fully adaptive security. The main difference between adaptive and
semi-adaptive security is that semi-adaptive security allows for the case
where one party starts out corrupted and the other party becomes cor-
rupted later on, but not the case where both parties start out honest
and become corrupted later on. As such, semi-adaptive security is much
easier to achieve than fully adaptive security. We then give a simple,
generic protocol compiler which transforms any semi-adaptively secure
protocol into a fully adaptively secure one. The compilation effectively
decomposes the problem of adaptive security into two (simpler) problems
which can be tackled separately: the problem of semi-adaptive security
and the problem of realizing a weaker variant of secure channels.

We solve the latter problem by means of a new primitive that we call
somewhat non-committing encryption resulting in significant efficiency
improvements over the standard method for realizing secure channels
using (fully) non-committing encryption. Somewhat non-committing en-
cryption has two parameters: an equivocality parameter ¢ (measuring
the number of ways that a ciphertext can be “opened”) and the mes-
sage sizes k. Our implementation is very efficient for small values ¢, even
when £k is large. This translates into a very efficient compilation of semi-
adaptively secure protocols for tasks with small input/output domains
(such as bit-OT) into fully adaptively secure protocols.

Indeed, we showcase our methodology by applying it to the recent
Oblivious Transfer protocol by Peikert et al. [Crypto 2008], which is only
secure against static corruptions, to obtain the first efficient, adaptively
secure and composable OT protocol. In particular, to transfer an n-
bit message, we use a constant number of rounds and O(n) public key
operations.

* Partial work was carried out when the first author was at Bell Labs and the second
and the third authors were visiting Bell Labs.
** Research supported by NSF grants 0447808 and 0831306.

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 505 2009.
© International Association for Cryptologic Research 2009

506 J.A. Garay, D. Wichs, and H.-S. Zhou

1 Introduction

When defining the security of cryptographic protocols, we generally strive to
capture as wide a variety of adversarial attacks as possible. The most popu-
lar method of doing so is the simulation paradigm [17] where the security of
a real-world protocol is compared to that of an ideal-world (perfectly secure)
implementation of the same task. Within the simulation paradigm there are
several flavors. Firstly, basic simulation only guarantees security for single copy
of a protocol executing in isolation. The Universal Composability (UC) frame-
work [3/4] extends the simulation paradigm and defines security for protocols
executed in arbitrary environments, where executions may be concurrent and
even maliciously interleaved. Secondly, we generally distinguish between static
and adaptive security. Static security protects against an adversary who con-
trols some fixed set of corrupted parties throughout the computation. Adaptive
security, on the other hand, defends against an adversary who can corrupt par-
ties adaptively at any point during the course of the protocol execution For
adaptive security, we also make a distinction between the erasure model, where
honest parties are trusted to securely erase data as mandated by the protocol,
and the non-erasure model, where no such assumptions are made. Traditionally,
the design of protocols in the non-erasure model is viewed as significantly more
difficult. For example, and in contrast to the erasure model, we do not have gen-
eral constant-round protocols for many tasks, and even many simple tasks (e.g.,
encryption) seem to be less efficient in rounds and computation. Nevertheless,
although solutions in the erasure model may in some scenarios be acceptable,
it is both of fundamental interest and practical value to achieve the stronger
security notion whenever possible; this is the subject of this work.

The seminal result of [§] shows that it is theoretically possible to design an
adaptively secure and universally composable protocol for a large class of nat-
ural tasks, assuming the presence of some trusted setup such as a randomly
selected common reference string (CRS). Unfortunately, the final protocol of [§]
should be viewed as a purely theoretical construction, ad its reliance on expen-
sive Cook-Levin reductions precludes a practical implementation. Alternative
efficient approaches to two-party and multi-party computation received a lot of
attention in the recent works of [T3T620/2TI22I2425]. However, all of these re-
sults sacrifice some aspect of security to get efficiency — e.g., they only provide
(stand-alone or UC) static security, or UC adaptive security but only for honest
majority, or UC adaptive security in the erasure model, etc. The recent work
of [20) can provide UC adaptive security for all (well-formed) tasks in constant
rounds assuming the adversary corrupts all but one of the participants, but only
given an efficient adaptively secure Oblivious Transfer (OT) protocol. However,
as we will discuss, no such protocols were known. Lastly, we mention the work of
[5], which gives a generic compiler from static to adaptive security using secure
channels. Unfortunately, this compiler does not provide full adaptive security
(does not allow for post-execution corruptions) and, as was noted in [24], cru-
cially relies on rewinding and hence cannot be used in the UC framework.

Somewhat Non-committing Encryption 507

Indeed, thus far no efficient protocols for general multi-party computation,
or even for many specific two-party function evaluation tasks, achieve adaptive
security. This is not surprising given the difficulty of realizing adaptive secu-
rity for even the most fundamental task in cryptography: secure communication.
As was observed in [6], standard security notions for encryption do not suffice.
Adaptively secure communication schemes, also called non-committing encryp-
tion schemes, were introduced and constructed in [0] and studied further in [TJTT],
but these protocols are fairly complicated and inefficient for large messages.

It turns out that many useful two-party tasks (e.g., Oblivious Transfer, OR,
XOR, AND, Millionaires’ problem, etc.) are strictly harder to achieve than secure
communication, the reason being that these tasks allow two honest parties to
communicate by using the corresponding ideal functionality. For example, using
OT, an honest sender can transfer a message to a receiver by setting it as both of
his input values. Therefore, an adaptively secure OT protocol for the transfer of k
bit messages can be used as a non-committing encryption of a & bit message and
so all of the difficulty and inefficiency of non-committing encryption must also
appear in protocols for tasks such as OT. Further, unlike secure communication,
many tasks also require security against the active and malicious behavior of
the participants. This might lead us to believe that the two difficulties will be
compounded making efficient adaptively secure implementations of such tasks
infeasible or too complicated to contemplate.

Taking Oblivious Transfer as an example, this indeed seems to be the case. The
recent work of [26], proves a (black-box) separation between enhanced trapdoor
permutations (which allow for static OT) and adaptively secure OT, showing that
the latter is indeed “more complex” in a theoretical sense. This complexity is re-
flected in practice as well. We are aware of only two examples (albeit inefficient)
of adaptively secure OT protocols, from [2] and [§]. Both of these works first con-
struct an OT protocol for the honest-but-curious setting and then compile it into
a fully secure protocol using generic and inefficient zero knowledge proofs. In both
constructions, the underlying honest-but-curious OT protocols rely on ideas from
non-committing encryptio and hence inherit its complexity. Since the full con-
structions require us to run zero knowledge proofs on top of the complex under-
lying honest-but-curious protocol, there is little hope of making them efficient by
only using proofs for simple relations. This is in contrast to static security (and
adaptive security in the erasure model) for which we have recently seen efficient
constructions of OT protocols. For example, [T4T621] construct OT protocols by
only using simple and efficient zero-knowledge proofs. Interestingly, Ishai et al. [19]
give the first OT protocol constructions against malicious corruptions without us-
ing zero knowledge proofs; this result was later strengthened in [I8]. Two very re-
cent and efficient concrete protocols not using zero-knowledge proofs are given in
[23128]. The protocol of [28] is particularly exciting since it is a UC-secure proto-
col in the CRS model which runs in two rounds and uses a constant number of

! The protocol of [2] implicitly uses the plug-and-play approach from [I], while the pro-
tocol of [§] uses non-committing encryption in a generic way.

508 J.A. Garay, D. Wichs, and H.-S. Zhou

public key operations. Achieving adaptive security based on these protocols has,
however, remained as an open problem.

Our contributions. In this work we construct the first efficient (constant round,
O(n) public-key operations for the transfer of an n-bit message) adaptively se-
cure Oblivious Transfer protocol in the non-erasure model. Along the way we
develop several techniques of independent interest which are applicable to adap-
tive security in general.

First, we introduce a new notion called semi-adaptive security which is slightly
stronger than static security but significantly weaker than fully adaptive secu-
rity. At a high level, semi-adaptive security allows for the case where one party
starts out corrupted and the other party becomes corrupted later on, but not
the case where both parties start out honest and become corrupted later on. In
particular, a semi-adaptively secure protocol for a task like OT, does not yield a
non-committing encryption scheme and hence does not (necessarily) inherit its
difficulty. We then give a generic compiler which transforms any semi-adaptively
secure protocol into a (fully) adaptively secure protocol. The compiler is fairly
simple: we take the original protocol and execute it over a secure communication
channel (i.e., all communication from one party to another is sent over a secure
channel). The compilation effectively decomposes the problem of adaptive secu-
rity into two (simpler) problems which can be tackled separately: the problem
of semi-adaptive security and the problem of realizing secure channels.

Unfortunately, we saw that the construction of secure-channels is a difficult
problem and existing solutions are not very efficient. Also, as we already men-
tioned, we cannot completely bypass this problem since adaptive security for
many tasks implies secure channels. However, for the sake of efficiency, we would
like to limit the use of secure channels (and hence the use of non-committing en-
cryption) to a minimum. For example, we know that an OT protocol for one-bit
messages implies a non-committing encryption of a one-bit message. However,
to get adaptive security for a bit-OT protocol, our compiler, as described above,
would use non-committing encryption to encrypt the entire protocol transcript,
and hence much more than one bit!

We fix this discrepancy by introducing a new notion called somewhat non-
committing encryption. Somewhat non-committing encryption has two parame-
ters: the equivocality ¢ (measuring just how non-committing the scheme is) and
the message size k. We first observe that somewhat non-committing encryption
is efficient for small values of the equivocality parameter ¢, even when k is large
(i.e., when we encrypt long messages). Secondly, we observe that our compiler
can use somewhat non-committing encryption where the equivocality ¢ is pro-
portional to the size of the input and output domains of the functionality. As
a result, we obtain a very efficient compiler transforming any semi-adaptively
secure protocol for a task with small input/output domains (such as bit-OT)
into a fully adaptively secure protocol. We also show that this methodology can,
in special cases, be applied to tasks with larger domain sizes such as string-OT
with long strings.

Somewhat Non-committing Encryption 509

We apply our methodology to the OT protocol of Peikert et al. [28], result-
ing in the first efficient and adaptively secure OT protocols. Peikert et al. ac-
tually present a general framework for constructing static OT, and instantiate
this framework using the Quadratic Residuocity (QR), Decisional Diffie-Hellman
(DDH), and Lattice-based assumptions. In this work, we concentrate on the QR
and DDH based schemes. We show that relatively small modifications suffice to
make these schemes semi-adaptively secure. We then employ our compiler, using
somewhat non-committing encryption, to convert them into (fully) adaptively
UC-secure OT protocols. As we mentioned previously, the work of [20] shows
how to efficiently realize all (well-formed) m-party functionalities with adaptive
security assuming up to m — 1 corruptions, given and adaptively secure OT pro-
tocol. Therefore, by plugging in our OT protocol construction, we get improved
efficiency in generically compiled protocols for all tasks as above.

Concurrent and independent work. Following the line of work of [I9/18],
the recent result by Choi et al. [9] gives a generic black-box compiler from
semi-honest adaptively secure OT to fully malicious adaptively secure OT, us-
ing cut-and-choose techniques. Although the end result of our work is the same
(adaptively secure OT), the two works take very different approaches which com-
plement each other well: the compiler of [9] transforms semi-honest + adaptive
security into malicious + adaptive security in the special case of OT, while our
compiler is a general transformation from malicious + semi-adaptive security to
malicious + adaptive security. The two starting notions of security (semi-honest
+ adaptive vs. malicious 4+ semi-adaptive) are incomparable and thus both com-
pilers are useful in different scenarios. In particular, our compiler can be used
in conjunction with the OT protocol of [28] and results in an extremely efficient
adaptively secure OT protocol using a constant number of rounds and O(n)
public-key operations to transfer an n-bit stringE In contrast, the compiler of
[9] shows how to base adaptively secure OT on a simulatable cryptosystem in
a black-box way, but at the expense of running 2(\?) copies of the underlying
semi-honest OT protocol, where X is the security parameter, and thus requiring
2(\2n) operations for n-bit OT. Therefore our OT protocol can be significantly
more efficient.

Due to space limitations, proofs, together with background material, full de-
scription of our enhanced version of the QR dual-mode cryptosystem, efficiency
considerations, and our DDH version of adaptively secure bit- and string-OT,
can be found in the full version of the paper [19].

2 Somewhat Non-committing Encryption

2.1 Adaptive Security in Two-Party Protocols

What are some of the challenges in achieving adaptive security for a two-party
protocol? Let’s assume that a protocol m between two parties Py, P; realizes a

2 Technically, if one thinks of n as a function of A, we require O(max(\, n)) operations.

510 J.A. Garay, D. Wichs, and H.-S. Zhou

task F with respect to static adversaries. That means that there is a static simu-
lator which can simulate the three basic cases: both parties are honest through-
out the protocol, exactly one party is corrupted throughout the protocol or both
parties are corrupted throughout the protocol. To handle adaptive adversaries,
we require two more capabilities from our simulator: the ability to simulate a
first corruption (i.e., the case that both parties start out honest and then one of
them becomes corrupted) and simulating the second corruption (i.e., one party
is already corrupted and the other party becomes corrupted as well).

Simulating the first corruption is often the harder of the two cases. The simu-
lator must produce the internal state for the corrupted party in a manner that is
consistent with the protocol transcript so far and with the actual inputs of that
party (of which the simulator had no prior knowledge). Moreover, the simulator
needs to have all the necessary trapdoors to continue the simulation while only
one party is corrupted. Achieving both of these requirements at once is highly
non-trivial and this is one of the reasons why efficient protocols for adaptively
secure two-party computation have remained elusive.

Interestingly, simulating the first corruption becomes much easier if the proto-
col m employs secure channels for all communication between parties. At a high
level, the simulator does not have to do any work while both parties are honest,
since the real-world adversary does not see any relevant information during this
time! When the first party becomes corrupted, we can just run a static simulation
for the scenario in which this party was corrupted from the beginning but acting
honestly and using its input. Then, we can “lie” and pretend that this communi-
cation (generated ex post facto) actually took place over the secure channel when
both parties were honest. The lying is performed by setting the internal state of
the corrupted party accordingly. Since our lie corresponds to the simulation of a
statically corrupted party (which happens to act honestly), all of the trapdoors
are in place to handle future mischievous behavior by that (freshly corrupted)
party. The only problem left is in handling the second corruption — but this is
significantly easier! To formalize this, we will define a notion of semi-adaptive se-
curity where the simulator needs to be able to simulate static corruptions as well
as the case where one party starts out corrupted and the other party becomes
corrupted later on (but not the case where both parties start out honest and may
become corrupted later). The formal notion (with some additional restrictions
imposed on the simulator) appears in Section 2241

Informally, we have argued that if two-party protocol is semi-adaptively
secure, then the protocol is also fully adaptively secure if all communication
between the parties is sent over an idealized secure channel. Unfortunately,
idealized secure channels are hard to achieve physically and implementing such
channels cryptographically in the real world requires the inefficient use of non-
committing encryption [6] to encrypt the entire protocol transcript. Luckily, it
turns out that we often do not need to employ fully non-committing encryption
to make the above transformation hold. Indeed, we define a weaker primitive
called somewhat non-committing encryption and show that this primitive can
be implemented with significantly greater efficiency than (fully) non-committing

Somewhat Non-committing Encryption 511

encryption, and that it is often good emough to transform a semi-adaptively
secure protocol into a fully adaptively secure protocol when the sizes of the
input/output domains are small.

2.2 Defining Somewhat Non-committing Encryption

First recall the notion of non-committing encryption from [6], which is a pro-
tocol used to realize secure channels in the presence of an adaptive adversary.
In particular, this means that a simulator can produce “fake” ciphertexts and
later explain them as encryptions of any possible given message. Several non-
committing encryption schemes have appeared in literature [GIIJTI], but the
main disadvantage of such schemes is the computational cost. All of the schemes
are interactive (which was shown to be necessary in [27]) and the most efficient
schemes require £2(1) public-key operations per bit of plaintext.

We notice that it is often unnecessary to require that the simulator can explain
a ciphertext as the encryption of any later-specified plaintext. Instead, we define
a new primitive, which we call somewhat non-committing encryption, where the
simulator is given a set of £ messages during the generation of the fake ciphertext
and must later be able to plausibly explain the ciphertext as the encryption of
any one of those £ messages. In a sense, we distinguish between two parameters:
the plaintext size (in bits) k and the equivocality ¢ (the number of messages
that the simulator can plausibly explain). For fully non-committing encryption,
the equivocality and the message size are related by ¢ = 2*. Somewhat non-
committing encryption, on the other hand, is useful in accommodating the case
where the equivocality £ is very small, but the message size k is large.

Functionality fé\fc

The ideal functionality F25 interacts with an initiator I and a receiver R. It consists
of a channel-setup phase, after which the two parties can send arbitrarily many mes-
sages from one to another. The functionality is parameterized by a non-information
oracle NV.

Channel setup: Upon receiving (ChSetup, sid, I) from party I, initialize the ma-
chine N and record the tuple (sid,). Pass the message (ChSetup,) to R. In
addition, pass this message to N and forward its output to the adversary S.

Message transfer: Upon receiving (Send, sid, P,n) from party P where P €
{I, R}, find a tuple (sid,N) and, if none exists, ignore the message. Other-
wise, send the message (Send, sid, P,m) to the other party P = {I, R} — {P}.
In addition, invoke N with (Send, sid, P,m) and forward its output to S.

Corruption: Upon receiving a message (Corrupt, sid, P) from the adversary, send
(Corrupt, sid, P) to N and forward its output to S. After the first corruption,
stop the execution of N and give S complete control over the functionality (i.e.,
S learns all inputs and can specify any outputs).

Fig. 1. The parameterized secure-channel ideal functionality, F4%

512 J.A. Garay, D. Wichs, and H.-S. Zhou

It is challenging to define an ideal-functionality for somewhat non-committing
encryption, since the ideal world captures a notion of security which is too
strong. Here, we take the approach of [7] where ideal-world functionalities are
weakened by the inclusion of a non-information oracle which is a PPT TM
that captures the information leaked to the adversary in the ideal world. The
ideal functionality for secure channels, given in Figure[l] is parameterized using
a non-information oracle N' which gets the values of the exchanged messages
m and outputs some side information to the adversary S. The security of the
secure channel functionality fé\é depends on the security properties required
for the machine N and thus we can capture several meaningful notions. Let us
first start with the most secure option which captures (fully) non-committing
encryption.

Definition 1. Let N be the oracle, which, on input (Send, sid, P,m), pro-
duces the output (Send, sid, P,|m|) and, on any inputs corresponding to the
ChSetup, Corrupt commands, produces no output. We call the functionality
fé\g"“, or just Fsc for brevity, a (fully) non-committing secure channel. A real-
world protocol which realizes Fgc is called a non-committing encryption scheme

(NCE).

Above, the oracle NV never reveals anything about messages m exchanged by
two honest parties, even if (both of the) parties later get corrupted. Hence the
functionality is fully non-committing. To define somewhat non-committing en-
cryption we first give the following definitions of non-information oracles.

Definition 2. A machine R is called a message-ignoring oracle if, on any input
(Send, sid, P, m), it ignores the value m and processes only the input (Send, sid, P,
|m|). A machine M called a message-processing oracle if it has no such restric-
tions. We call a pair of machines (M, R) well-matched if no PPT distinguisher
D (with oracle access to either M or R) can distinguish the message-processing
oracle M from the message-ignoring oracle R.

We are now ready to define the non-information oracle used by a somewhat
non-committing secure channel ideal functionality.

Definition 3. Let (M, R) be a well-matched pair which consists of a message-
processing and a message-ignoring oracle respectively. Let N* be a (stateful)
oracle with the following structure.

Upon initialization, N* chooses a uniformly random index i & {1,...,4}.
In addition it initializes a tuple of £ independent TMs: (N1, ..., Ng) where
N = M and, for j # i, the machines N; are independent copies of the
message-ignoring oracle R.

Whenever N receives inputs of the form (ChSetup, sid, P) or (Send, sid, P,m),
it passes the input to each machine N; receiving an output y;. It then outputs
the vector (y1,...,Ye)-

Upon receiving an input (Corrupt, sid, P), the oracle reveals the internal
state of the message-processing oracle N only.

Somewhat Non-committing Encryption 513

For any such oracle N, we call the functionality]—'é\g an f-equivocal non-
committing secure channel. For brevity, we will also use the notation féc to
denote fé\g for some such oracle N*. Lastly, a real world protocol which realizes
Féq is called an l-equivocal non-committing encryption scheme (-NCE).

As before, no information about messages m is revealed during the “send” stage.
However, the internal state of the message-processing oracle N, which is revealed
upon corruption, might be “committing.” Nevertheless, a simulator can simulate
the communication between two honest parties over a secure channel, as modeled
by Fq, in a way that allows him to later explain this communication as any
one of ¢ possibilities. In particular, the simulator creates £ message-processing
oracles and, for every Send command, the simulator chooses ¢ distinct mes-
sages myq, ..., my that he passes to the oracles My, ..., M, respectively. Since
message-processing and message-ignoring oracles are indistinguishable, this looks
indistinguishable from the side information produced by]-"éc. Later, when a cor-
ruption occurs, the simulator can convincingly explain the entire transcript of
communication to any one of the ¢ possible options, by providing the internal
state of the appropriate message-processing oracle M.

2.3 The ¢-NCE Scheme Construction

The construction of ¢-NCE is based on a simulatable public-key system [I1],
wherein it is possible to generate public keys obliviously, without knowing the
corresponding secret key, and to explain an honestly (non-obliviously) gener-
ated public key as one which was obliviously generated. In a similar way, there
should be a method for obliviously generating ciphertexts (without knowing
any plaintext) and to explain honestly generated (non-oblivious) ciphertexts as
obliviously generated ones. Refer to the full version for review of the syntax and
security properties of such a scheme. Our ¢-NCE protocol construction, shown in
Figure 2], uses a fully non-committing secure channel, but only to send a very
short message during the setup phase. In addition, it uses a simulatable public-
key system and a symmetric key encryption scheme where ciphertexts are indis-
tinguishable from uniformly random values (the latter can be constructed from
any one way function). For very long communications and small ¢, our {-NCE
scheme is significantly more efficient than (full) NCE.

Theorem 1. The protocol in Figure[Ais an (-NCE scheme. Specifically, it UC-
realizes functionality Fq in the presence of an active and adaptive adversary.

The main efficiency consideration is the use of fully non-committing encryption
of the index 4 (which is small). We show in the full version that our scheme
uses a total of expected O(log¢) public-key operations, expected O(¢\) com-
munication and expected constant rounds of interaction for the channel setup
phase, where) is the security parameter. Alternatively, if one would like to set
up n = {2(\) channels in parallel, this can be done in strict O(n log ¢) public-key
operations, strict O(nfA) communication and strict constant number of rounds of
interaction. After channel-setup, encryption is non-interactive and requires only

514 J.A. Garay, D. Wichs, and H.-S. Zhou

Let (KG,Enc,Dec) be a simulatable public-key system and IZVG, Enc be the cor-

responding oblivious key generator and oblivious ciphertext generator algorithms.

Further, let (KG®™, Enc™™, Dec™™) be a symmetric-key encryption scheme in which

ciphertexts are indistinguishable from uniformly random values of the same length.

Channel Setup. An initiator I sets up a channel with a receiver R as follows:

1. The initiator I sends a random index i € {1,...,¢} to R over a fully non-
committing secure channel.

2. The initiator I generates ¢ public keys. For 5 € {1,...,¢} \ {i}, the keys
pk; «— KG() are sampled obliviously, while (pk;, sk;) «— KG() is sampled
correctly. The keys pki, ..., pke are sent to R while I stores sk;.

3. The receiver R chooses a random key K « KG¥" and computes C; =
Encpr, (K) correctly. In addition, R samples C; « Encpg, () obliviously for
jeA{1,...,£}\ {i} and sends the ciphertexts C1,...,C¢ to I.

4. The initiator I decrypts the key K « Decgy, (C;). Both parties store (K, 1).

Encryption. An initiator I encrypts a message m to a receiver R as follows:

1. The initiator I computes F; « Enc?" (m) and chooses E; for j € {1,...,¢}\
{i} as uniformly random and independent values of length |E;|. The tuple
(FA, ..., Eq) is sent to R.

2. The receiver R ignores all values other than F;. It computes m «— Dec?ém (Es).

Fig. 2. The ¢-NCE protocol

symmetric-key operations. However, the encryption of a k bit message requires
O(£k) bits of communication.

2.4 The Adaptive Security Protocol Compiler for Two-Party SFE

As an application of /-NCE, we now give a general theorem showing that a
protocol with semi-adaptive security can be compiled into a protocol with (full)
adaptive security when all of the communication is encrypted using ¢-NCE for
some appropriate ¢. However, we must first give a formal definition of semi-
adaptive security.

Definition 4. An adversarial strategy is second-corruption adaptive if either at
least one of the parties is corrupted prior to protocol execution or no party is
ever corrupted. In the former case, the other party can be adaptively corrupted
at any point during or after protocol execution.

Intuitively, we would like to say that a protocol is semi-adaptively secure if it
is secure with respect to second-corruption adaptive strategies. Unfortunately,
there are two subtleties that we must consider. Firstly, we know that most tasks
cannot be realized in the Universal Composability framework without the use of
trusted setup. However, the use of trusted setup complicates our transformation.
The point of using (somewhat) non-committing encryption is that the simulator

Somewhat Non-committing Encryption 515

can lie about anything that occurs while both parties are honest. However, we
often rely on trusted setup in which some information is given to the adversary
even when both parties are honest. For example, the usual modeling of a com-
mon reference string specifies that this string is made public and given to the
adversary even when none of the participants in the protocol are corrupted. In
this case the simulator is committed to such setup even if the parties communi-
cate over secure channels. Therefore we require that, when trusted setup is used,
the semi-adaptive simulator simulates this setup independently of which party
is corrupted. We call this property setup-adaptive simulation.

The second subtlety comes from the following type of problem. As we outlined
in our informal discussion, we wish to run the semi-adaptive simulator once the
first party gets corrupted and then “lie” that the simulated conversation took
place over the secure channel. However, when the first party gets corrupted after
the protocol execution, then the ideal functionality has already computed the
outputs using the honest inputs and will therefore not accept anymore inputs
from the semi-adaptive simulator. Recall that we run the semi-adaptive simulator
with respect to an adversary A which follows the protocol execution using the
corrupted party’s honest input z. If the semi-adaptive simulator extracts the
same input x as the one used by A, then we also know the corresponding output
and can give it to the semi-adaptive simulator on behalf of the ideal functionality.
Therefore it is crucial that the semi-adaptive simulator can only submit the
actual input z. We call this property input-preserving. Putting Definition] and
the above notions together, we are finally ready to define semi-adaptive security.

Definition 5. We say that a protocol w semi-adaptively realizes the ideal func-
tionality F if there exists a setup-adaptive and input-preserving PPT simulator S
such that, for any PPT adversary A and environment Z which follow a second-

corruption adaptive adversarial strateqy, we have REALy 4.z ~ IDFEALF s, =.

Lastly, we define the notion of a well-structured protocol. Since even non-
committing encryption commits the simulator to the lengths of the exchanged
messages, the number of such messages, and the identities of the sender and
receiver of each message, we require that this information is fixed and always
the same any given execution of a protocol. Almost all known constructed pro-
tocols for cryptographic tasks are well-structured and any protocol can be easily
converted into a well-structured protocol.
First we look at the simple compiler using idealized secure channels.

Theorem 2. Let ngE be the two-party ideal functionality which computes some
function f as defined in Figure[3 Assume that a well-structured two-party pro-
tocol T for]—'gFE is semi-adaptively secure. Let ' be the protocol in which the
parties run w but only communicate with each other using non-committing secure
channels as modeled by Fsc. Then 7' is (fully) adaptively secure.

As we already mentioned, this compiler is usually not very efficient because of
its excessive use of secure channels and hence NCE. Recall that secure channels
are employed so that, when both parties are honest, the adversary does not see

516 J.A. Garay, D. Wichs, and H.-S. Zhou

Functionality foFE

The functionality ngE interacts with an initiator I and a responder R.

Input: Upon receiving the input value (Input,, sid, z) from the initiator I, record
the value (I,x;) and send the message (Input,,sid) to the adversary S. Ig-
nore future (Input;,...) inputs. Similarly, upon receiving the input value
(Input g, sid, zr) from the responser R, record the value (R,zr) and send the
message (Inputp, sid) to the adversary S. Ignore future (Inputp,...) inputs.

Output: Upon receiving the message (Output , sid) from the adversary S, if either
(I,xr) or (R,zRr) is not recorded, ignore the message. Else if (yr,yr) is not
recorded, then compute (yr,yr) «— f(zr,zr) and record (yr,yr); send the
output value (Output,, sid, yr) to I. Ignore future (Output,,...) messages from
the adversary. Similarly, upon receipt of (Output z, sid) from the adversary, send
the output value (Output 5, sid, yr) to R. Ignore future (Outputy,...) messages
from the adversary.

Fig. 3. Two-party secure evaluation functionality for f: X; X Xr — Y7 X YR

any useful information and so this case is easy to simulate. Then, when the
first party gets corrupted, our simulator simply makes up the transcript of the
communication that should have taken place ex post facto. This transcript is
generated based on which party got corrupted, what its inputs were and what
its outputs were. However, we notice that for many simple protocols there are
not too many choices for this information. The simulator must simply be able
to credibly lie that the communication which took place over the secure channel
corresponds to any one of these possible choices. Using this intuition, we show
that a more efficient compiler using ¢-NCE (for some small ¢) suffices.

Theorem 3. Let ngE be the two-party ideal functionality computing some func-
tion f : X1 xXgr — YrXYg, as defined in Figure[3. Assume that a well-structured
two-party protocol w for FgFE is semi-adaptively secure. Let ' be the protocol in
which the parties run © but only communicate with each other using {-equivocal
secure channels as modeled by F& where £ = |X||Y1| + | Xr||Yr|. Then 7' is
(fully) adaptively secure.

3 Efficient and Adaptively Secure Oblivious Transfer

We now apply our compiler of Theorem [3] to the concrete problem of bit- and
string-OT, resulting in the first efficient protocols for this task. Refer to [415]
for the specification of an ideal functionality for OT.

3.1 The PVW Oblivious Transfer Protocol

In [28], Peikert et al. construct an efficient OT protocol in the CRS model with
UC security against a malicious but static adversary. They do so by introducing a
new primitive called a dual-mode cryptosystem, which almost immediately yields

Somewhat Non-committing Encryption 517

an OT protocol in the CRS model, and give constructions of this primitive under
the DDH, QR and lattice hardness assumptions. We first present a brief review
of dual-mode encryption as in [28], and then will define a modified version of
this primitive which will allow us to get adaptive security.

A dual-mode cryptosystem is initialized with system parameters which are gen-
erated by a trusted third party. For any choice of system parameters, the cryptosys-
tem has two types of public/private key pairs: left key pairs and right key pairs.
The key-generation algorithm can sample either type of key pair and the user spec-
ifies which type is desired. Similarly, the encryption algorithm can generate a left
encryption or a right encryption of a message. When the key pair type matches the
encryption type (i.e. a left encryption of a message under a left public key) then
the decryption algorithm (which uses the matching secret key) correctly recovers
the message.

As shown in [2§], a dual-mode cryptosystem can be used to get an OT proto-
col, as follows. The receiver chooses to generate a left or right key depending on
his input bit o, and the sender uses left-encryption (b = 0) for the left message
xo and right-encryption for the right message. The receiver then uses the secret
key to correctly decrypt the chosen message.

Security against malicious (static) adversaries in the UC model relies on the
two different modes for generating the system parameters: messy mode and de-
cryption mode. In messy mode, the system parameters are generated together
with a messy trapdoor. Using this trapdoor, any public key (even one which is
maliciously generated) can be easily labeled a left key or a right key. Moreover,
in messy mode, when the encryption type does not match the key type (e.g.,
a left encryption using a right public key) then the ciphertext is statistically
independent of the message. Messy mode is useful to guarantee security against
a corrupt receiver: the messy trapdoor makes it easy to extract the receiver bit
and to create a fake ciphertext for the message which should not be transferred.
On the other hand, in decryption mode, the system parameters are generated
together with a decryption trapdoor which can be used to decrypt both left and
right ciphertexts. Moreover, in decryption mode, left public keys are statistically
indistinguishable from right public keys. Decryption mode is useful to guarantee
security against a corrupt sender: the decryption trapdoor is used to create a
public key which completely hides the receiver’s selection bit, and to compute
a decryption trapdoor and extracting both of the sender’s messages. In each
mode, the security of one party (i.e., the sender in messy mode, and the re-
ceiver in decryption mode) is guaranteed information theoretically. To achieve
security for both parties simultaneously all that is needed is one simple compu-
tational requirement: the system parameters generated in messy mode need to
be computationally indistinguishable from those generated in decryption mode.

3.2 Semi-adaptively Secure OT

In order to make the PVW OT protocol adaptively secure using our methodology,
we need to make it semi-adaptively secure (Section [24]). We do so by a series of
simple transformations.

518 J.A. Garay, D. Wichs, and H.-S. Zhou

First, we observe that in the PVW protocol, the simulator must choose the
CRS crset based on which party is corrupt — i.e. the CRS should be in messy
mode to handle a corrupt receiver or in decryption mode to handle a corrupt
sender. This is a problem for us since the definition of semi-adaptive security
requires that the simulator be setup-adaptive which means that it must simulate
the CRS independently of any information on which parties are corrupted. We
solve this issue by using a coin-tossing protocol to choose the CRS of the PVW
OT protocol. Of course, coin-tossing requires the use of a UC secure commitment
scheme which also needs its own CRS (¢rscom)! However, if we use an (efficient)
adaptively secure commitment scheme (e.g., [I2/T0]) then the simulator’s choice
of ¢rscom can be independent of which party is corrupted. Unfortunately, this
approach only works if the CRS for the OT protocol comes from a uniform
distribution (over some group) and this also is not the case in all instantiations of
the PVW protocol. However, we observe that the CRS of the OT protocol (¢rset)
can be divided into two parts crset = (¢T'Ssys, CT'Stmp), Where a system CRS ¢rsgys
can be independent of which party is corrupted (i.e., can be the same for both
messy and decryption modes) but may not be uniform, while ¢rsgmp determines
the mode and thus needs to depend on which party is corrupted, but this part
is required to be uniform. Therefore we can use an ideal CRS functionality to
choose the setup for our protocol which consists of (¢rScom, ¢7'Ssys) and then run
a coin-flipping protocol to choose the uniform crsimp.

Secondly, we must now consider the cases where one party is corrupted from
the beginning, but the second party becomes corrupted adaptively during the
protocol execution. Let us first consider the case where the sender starts out
corrupted. In this case, to handle the corrupt sender, the simulator needs to
simulate the execution in decryption mode. Moreover, to extract the sender’s
value, the simulator uses the decryption trapdoor to create a dual public key (on
behalf of the receiver) which comes with both a left and a right secret key. Later,
if the receiver becomes corrupted, the simulator needs to explain the randomness
used by the receiver during key generation to create such a public key. Luckily,
current dual-mode schemes already make this possible and we just update the
definition with a property called encryption key duality to capture this.

Now, consider the case where the receiver is corrupted at the beginning but
the sender might also become corrupted later on. In this case the simulator
simulates the execution in messy mode. In particular, the simulator uses the
messy trapdoor to identify the receiver key type (right or left) and thus extracts
the receiver bit. Then the simulator learns the appropriate sender message for
that bit and (honestly) produces the ciphertext for that message. In addition,
the simulator must produce a “fake” ciphertext for the other message. Since, in
messy mode, this other ciphertext is statistically independent of the message,
it is easy to do so. However, if the sender gets corrupted later, the simulator
must ezxplain the fake ciphertext as an encryption of some particular message.
To capture this ability, we require the existence of internal state reconstruction
algorithm which can explain the fake ciphertext as an encryption of any message.

Somewhat Non-committing Encryption 519

Again, we notice that the QR instantiation of the PVW scheme already satisfies
this new notion as well.

We now specify our enhanced version of dual-mode encryption in more detail.
Here we just describe the added features with respect to [28]; refer to [15] for
the full description.

Enhanced Dual-Mode Encryption. A dual-mode cryptosystem for message
space {0,1}™ is defined by the following polynomial-time algorithms:

(crs,7) « PG(1*,). The parameter generation algorithm PG is a random-
ized algorithm which takes security parameter A and mode u € {mes, dec}
as input, and outputs (crs,), where crs is a common reference string and
7 is the corresponding trapdoor information. Note that PG includes two
stages, PGsys and PGymp, i.e., compute (G, crssys, Tys) < PGsys(1*) and
(crStmp, Tomp) “— PGimp (i, G, cTssys, Tsys) Where G is a group with operator
“+7, and set crs «— (Ccrssys, CrStmp) and T «— (Tsys, Temp)- Also note that the
system CRS is independent of mode p.

(pk, sk) «— KG(crs,o); (¢,¢) « Enc(ers,pk,b,m); m «— Dec(crs, pk, sk, ¢);
and p <« Messyld(crs, 7, pk) as in [28].

(¢,w) « FakeEnc(crs, T, pk, p). The fake encryption algorithm FakeEnc is a
randomized algorithm. For the messy branch p, the ciphertext c is faked by
using the trapdoor 7, and some internal information w is saved for recon-
structing the random coins used for encryption.

¢ « Recons(crs, 7, pk, p,c,w,m). The internal state reconstruction algo-
rithm Recons is a deterministic algorithm. When the plaintext m is supplied
for the faked ciphertext ¢ in messy branch p, the algorithm recovers the used
random coins ¢ based on previously generated internal information w.

(pk, sko, sk1) < DualKG(crs, 7). The dual key generation algorithm DualKG
is a randomized algorithm, which based on the trapdoor 7, outputs an en-
cryption key pk, and two decryption keys skq, sk1 corresponding to key type
0 and 1, respectively.

Definition 6 (Enhanced Dual-Mode Encryption). An enhanced dual-mode
cryptosystem is a tuple of algorithms as described above satisfying the following
properties:

COMPLETENESS as in [28].

ENHANCED MODE INDISTINGUISHABILITY: The CRSes generated by PG in
messy mode and in decryption mode are indistinguishable in the sense that
(i) the both system CRSes are identically distributed, and (ii) the two tem-
poral CRSes are computationally indistinguishable from random elements in
group G.

MESSY BRANCH IDENTIFICATION AND CIPHERTEXT EQUIVOCATION: For
every (crs,7) « PG(1*, mes) and every pk, Messyld(crs, T, pk) outputs a
branch wvalue p such that for every m € {0,1}", Enc(crs, pk,p,-) is
stmulatable.

520 J.A. Garay, D. Wichs, and H.-S. Zhou

ENCRYPTION KEY DUALITY: For every (crs,7) «+ PG(1*,dec), there exists
(pk, sko, sk1) <— DualKG(crs, T) such that for every o € {0,1}, (pk, sko) is
statistically indistinguishable from the honestly generated key pair.

Construction. Based on the above transformations, a generic construction for
a semi-adaptively secure OT protocol is given in Figure [It consists of two
phases, the coin tossing phase and the transferring phase (which is separated by
a dot line in the figure). The CRS consists of two pieces: the first piece is a system
CRS denoted as crssys, while the second piece is for an adaptively secure UC
commitment protocol which will be used for constructing a coin tossing protocol.
The UC commitment includes two stages, the commit (to a randomly selected
value r by the receiver) and the open stages, which could be interactive, and is
used to compute a temporal CRS ¢rs¢mp. crsymp together with the system CRS
crssys are used as the CRS for the transferring phase and we denote it as crsqs.
With crset, in hand, we “plug in” the PVW protocol, but based on the enhanced
dual-mode cryptosystem to achieve message transferring.

Theorem 4. Given an adaptively UC-secure commitment scheme and an
enhanced dual-mode cryptosystem as in Definition [@, the protocol in Figure
semi-adaptively realizes Fot in the Fors-hybrid model.

(CTSgyss CTScom, G)

o, T o .
Sender 0’* ! ' Receiver
r& e
CT'Scom T, CTScom
commit
- C
s & G S
open

@

CTStmp <— T+ S T Oy = 77 AF &

Zo, T
Ol !] CTr'Sot CTSot‘ 1’
S pk (pk, sk) — KG(crsot, o) R
for b=0,1
(s, Cy) Enc(crsor, pk, b, 1) Yo, Y1
2o — Dec(cersor, pk, sk, yo)
!
To

Fig. 4. Generic semi-adaptively secure OT protocol

Somewhat Non-committing Encryption 521

By “plugging in” efficient instantiations of the two building blocks above, we
obtain efficient concrete protocols for semi-adaptively secure OT. For exam-
ple, good candidates for adaptively secure UC commitments can be found in
[T0/T2], while a QR-based dual-mode encryption scheme is presented in [28]; in
the full version we show that this scheme also satisfies Definition [(l As men-
tioned in Section [I a semi-adaptively secure OT protocol can also be based
on the DDH assumption. In this case, however, in order to make ciphertext
equivocation possible, we also need an efficient X-protocol for the equality of
discrete logs.

3.3 Efficient and Adaptively Secure OT

We now apply our compiler from Section 2.4 to the protocol in Figured to im-
mediately obtain efficient adaptively secure OT protocols in the UC framework.

Corollary 5. Assume that the DDH, QR, and DCR assumptions hold. Then
there exists an adaptively secure protocol that UC-realizes the bit-OT function-
ality For in the Fcrs-hybrid world, running in (expected) constant number of
rounds and using (expected) constant number of public-key operations.

Justification for the assumptions is as follows: efficient adaptive UC commit-
ments can be realized in the CRS model under the DCR assumption [I2], non-
committing and somewhat non-committing encryption can be constructed under
DDH ([11] and Section [, respectively), while enhanced dual-model encryption
exists under the QR assumption ([28] and Section B.2).

In the full version we also show how to instantiate our framework using the
DDH version of the PVW protocol, resulting in an efficient bit-OT protocol
with similar parameters to the one above based on DCR. Further, we also show
how to use the DDH version of PVW to also efficiently implement string-OT.
This involves the semi-adaptively secure realization of an enhanced, receiver-
committed version of bit-OT, where the receiver is also committed to his bit
under an equivocal commitment scheme (e.g., a Pedersen commitment), as well
as a generalization of our compiler; lastly, we use several copies of the enhanced
bit-OT functionality to construct string-OT for long strings. (See [I5] for details.)
This strategy yields the following theorem.

Theorem 6. Assume that the DDH and DCR assumptions hold. Then there
exists an adaptively secure protocol that UC-realizes the string-OT functional-
ity For in the Fcers-hybrid world, and can transfer an n-bit string in (strict)
constant number of rounds and using (strict) O(n) public-key operations.

Acknowledgements. We thank Ran Canetti, Yevgeniy Dodis, Yuval Ishai, Stas
Jarecki, and Aggelos Kiayias for useful discussions. We also thank the anonymous
referees for their constructive comments.

522

J.A. Garay, D. Wichs, and H.-S. Zhou

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Beaver, D.: Plug and play encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 75-89. Springer, Heidelberg (1997)

Beaver, D.: Adaptively secure oblivious transfer. In: Ohta, K., Pei, D. (eds.) ASI-
ACRYPT 1998. LNCS, vol. 1514, pp. 300-314. Springer, Heidelberg (1998)
Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136-145 (2001)

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (December 2005)

. Canetti, R., Damgard, 1., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus

non-adaptive security of multi-party protocols. J. Cryptology 17(3), 153-207 (2004)
Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639-648 (1996)

Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337-351. Springer, Heidelberg (2002)

Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494-503. ACM, New
York (2002)

Choi, S.G., Dachaman-Soled, D., Malkin, T., Wee, H.: Simple, black-box construc-
tions of adaptively secure protocols. In: Reingold, O. (ed.) TCC. LNCS, vol. 5444,
pp. 387-402. Springer, Heidelberg (2009)

Damgard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: STOC, pp. 426-437 (2003)

Damgard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432-450. Springer, Heidelberg (2000)

Damgard, 1., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581-596. Springer, Heidelberg (2002)
Damgard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247-264. Springer, Heidelberg (2003)

Damgard, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable
oblivious transfer. In: ICISC, pp. 318-335 (2008)

Garay, J., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and ef-
ficient adaptively secure oblivious transfer. Cryptology ePrint Archive: Report
2008/534 (2008)

Garay, J.A., MacKenzie, P., Yang, K.: Efficient and universally composable com-
mitted oblivious transfer and applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 297-316. Springer, Heidelberg (2004)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC, pp. 218-229
(1987)

Haitner, I.: Semi-honest to malicious oblivious transfer — the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412-426. Springer, Heidelberg
(2008)

Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC, pp. 99-108. ACM, New York (2006)

20.

21.

22.

23.

24.

25.

26.

27.

28.

Somewhat Non-committing Encryption 523

Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
— efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572-591.
Springer, Heidelberg (2008)

Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-
ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97-114.
Springer, Heidelberg (2007)

Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin,
M. K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335-354. Springer, Heidelberg
(2004)

Lindell, A.Y.: Efficient fully-simulatable oblivious transfer. In: Malkin, T.G. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 52-70. Springer, Heidelberg (2008)

Lindell, Y.: Adaptively secure two-party computation with erasures. In: Fischlin,
M. (ed.) CT-RSA. LNCS, vol. 5473, pp. 117-132. Springer, Heidelberg (2009)
Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (2007)

Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. In: Reingold, O. (ed.) TCC. LNCS, vol. 5444, pp. 183-201.
Springer, Heidelberg (2009)

Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442 pp. 111-126. Springer, Heidelberg (2002)

Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554-571. Springer, Heidelberg (2008)

	Somewhat Non-committing Encryption and Efficient Adaptively Secure Oblivious Transfer
	Introduction
	Somewhat Non-committing Encryption
	Adaptive Security in Two-Party Protocols
	Defining $Somewhat$ Non-committing Encryption
	The l-NCE Scheme Construction
	The Adaptive Security Protocol Compiler for Two-Party SFE

	Efficient and Adaptively Secure Oblivious Transfer
	The PVW Oblivious Transfer Protocol
	Semi-adaptively Secure OT
	Efficient and Adaptively Secure OT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

