
On the Amortized Complexity of

Zero-Knowledge Protocols

Ronald Cramer� and Ivan Damg̊ard��

CWI/Leiden University and University of Aarhus

Abstract. We propose a general technique that allows improving the
complexity of zero-knowledge protocols for a large class of problems
where previously the best known solution was a simple cut-and-choose
style protocol, i.e., where the size of a proof for problem instance x and
error probability 2−n was O(|x|n) bits. By using our technique to prove n
instances simultaneously, we can bring down the proof size per instance
to O(|x|+n) bits for the same error probability while using no computa-
tional assumptions. Examples where our technique applies include proofs
for quadratic residuosity, proofs of subgroup membership and knowledge
of discrete logarithms in groups of unknown order, and proofs of plaintext
knowledge for various types of homomorphic encryptions schemes. The
generality of our method stems from a somewhat surprising application
of black-box secret sharing schemes.

1 Introduction

In a zero-knowledge protocol, a prover tries to convince a skeptical verifier that
a certain statement is true. Except with a small error probability, the verifier
should be convinced if and only the statement is indeed true, but should learn
nothing beyond the validity of the assertion. The statement can take the form of
claiming that the input string x is in a given language L (interactive proofs) or
claiming that the prover knows a “witness” w such that (x, w) is in some given
relation R (interactive proofs of knowledge).

Zero-knowledge was introduced in [10], and has been the subject of intense re-
search ever since. Zero-knowlegde protocols are interesting as theoretical objects
in their own right, but are also very useful as building blocks in larger protocols.

The efficiency of zero-knowledge proofs have been studied in many works, and
in some cases, extremely efficient zero-knowledge proofs have been found. For
NP complete problems such as Boolean circuit satisfiability Ishai et al. [12] show
protocols where the proof size (communcation complexity) is O(|x| + poly(k))
where k is a security parameter and |x| is the size of the input x. In prime order
groups, Schnorr’s protocol[13] proves knowledge of a discrete logarithm using a
(honest verifier) zero-knowledge proof of size O(|x| + n) for an error probability

� Supported by NWO VICI.
�� Supported by the Danish Strategic Research Council.

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 177–191, 2009.
c© International Association for Cryptologic Research 2009

178 R. Cramer and I. Damg̊ard

of 2−n. In a practical application, one must expect to have to communicate x to
make the claim in the first place, so this is essentially optimal1.

However, for several interesting problems, such methods for improved zero-
knowledge protocols do not work. This includes, for instance, the very first
problem for which a zero-knowledge protocol was suggested, namely quadratic
residuosity, where one proves on input x, N that x is a square modulo N (and
that the prover knows a square root). The well-known classical protocol for this
has error probability 1/2, and one must repeat it n times for an error probability
of 2−n so that the proof will be of size O(|x|n). No more efficient solution with
unconditional soundness and zero-knowledge was previously known.

The state of affairs is similar for the discrete log problem in groups of unknown
order. Say we are given g, h ∈ Z∗

N for an RSA modulus N , and the prover claims
that h is in the group generated by g, and that he knows the discrete logarithm
of h base g. The best solution we know for this has error probability 1/2, and
again we must repeat the entire protocol to reduce the error. Schnorr’s protocol
cannot be used here since its proof of soundness requires that the group order is
known, and finding the order of Z∗

N is equivalent to factoring N . Even if we were
happy with only a proof of membership in the group generated by g, the error
probability for known solutions would be 1 divided by the smallest prime factor
in the total group order, which is 1/2 for the case of Z∗

N . It should be noted
that Fujisaki and Okamoto[8] have shown how to get around these difficulties,
but only if we are guaranteed to be working in a subgroup of Z∗

N with only large
prime factors in the order, and then only under the strong RSA assumption.

Other examples of a similar nature come from various proposals for homo-
morphic encryption where one uses subgroups of Z∗

N , often with small prime
factors in their order, to make the decryption algorithm efficient[11,6]. In many
applications, one needs a zero-knowledge proof that one knows the plaintext for
a given ciphertext, and we then have all the same problems as described above.

In this paper, we show a general method that applies to all the problems men-
tioned above, and allows us to reduce the proof size in the amortized sense: we
can give a proof for n instances of the problem simultaneously such that the com-
munication complexity per instance proved is O(|x| + n) for an error probabil-
ity of 2−n, thus we are as efficient as the best known unconditional protocols for
any problem. The technique uses no computational assumptions. In all cases, the
computational complexity is also reduced compared to naive repetition of the ba-
sic protocol. Here, the most favorable case is discrete log where computation is
reduced by a factor n, for quadratic residuosity we gain a factor log n.

We emphasize that for the case of proofs for quadratic residues, what we
achieve is different from what can be done using Fiat-Shamir type protocols [9],
although they may seem superficially similar to ours: the Fiat-Shamir protocol
is also efficient, it takes n quadratic residues as input and has an error proba-
bility of 2−n. The difference lies in the type of witness that the prover proves
knowledge of. For Fiat-Shamir, the prover only has to know a product of some

1 Although the proof itself could in principle be even smaller if the associated NP-
witness is smaller than x.

On the Amortized Complexity of Zero-Knowledge Protocols 179

of the square roots of the input numbers. In fact, the prover could know nothing
about the first input number and still survive with probability 1/2. In contrast,
our protocol guarantees that the prover knows all the square roots. It should
also be noted that the construction of zero-knowledge protocols from multiparty
computation in [12] can be adapted to give a protocol for quadratic residuosity
with complexity similar to ours. This requires a computational assumption so
that, unlike our work, either zero-knowledge or soundness will only be compu-
tational. For the other problems we handle in this work, the construction from
[12] either leads to larger complexity than ours, or does not not seem to apply
at all.

We give an abstract framework characterizing the type of problem that our
method applies to, and derive all the examples above as special cases. Basically,
we need a function with certain homomorphic properties on some Abelian groups
and a ring A that acts on the groups in a sufficiently nice way. The generality
of our method comes from a somewhat surprising application of a new result we
show for Black-Box Secret-Sharing. This result allows us to use the integers Z
as the ring A, and since any Abelian group is a Z-module, we immediately get
a general result.

Applications of our result include multiparty computation based on homo-
morphic encryption, where players would supply inputs by sending them in en-
crypted form. To make the overall protocol secure, players must prove that they
know the inputs they supply, and our method can be used to give such proofs
efficiently for a large number of ciphertexts. Note that some computations, such
as certain auctions, do in fact require players to submit large amounts of data as
input. Another application involves proofs of negative statements such as proving
that a number x is not a square modulo N . The classical protocol for this from
[10] uses the proof for quadratic residuosity as a subroutine and has complexity
O(|x|n2). Our method reduces this to O(|x|n) without making any computa-
tional assumptions. The same idea can used to prove for some homomorphic
encryption schemes that a ciphertext contains a non-zero plaintext. Note that
these application are for a single instance proof and so are not of an amortized
nature.

Finally, we note that our construction generally leads to protocols that are
only honest-verifier zero-knowledge(HVZK), as is the case for Schnorr’s protocol.
But in this paper we are generally happy with this property since first, it is of-
ten sufficient when using a protocol as a building block in a larger construction,
and second there are several general techniques that can build zero-knowledge
protocols from HVZK ones without significant loss of efficiency. While these
techniques typically require a complexity assumption, we believe that the tech-
nique by Cramer, Damg̊ard and MacKenzie [2] may lead to a solution with no
assumptions, this will be the subject of an upcoming paper.

2 The Basic Idea

The first zero-knowledge proof ever presented was the well known protocol to
prove quadratic residuosity. We show here a variant related to Goldwasser-Micali

180 R. Cramer and I. Damg̊ard

probabilistic cryptosystem, which we will use as a running example in the follow-
ing. In this cryptosystem, the public key is an RSA modulus N , and we assume
for simplicity that it is chosen such that −1 is not a square modulo N . To
encrypt a bit w with randomness s, we compute EN (w, s) = (−1)ws2 mod N .
The encryption function is homomorphic, that is, it has two properties: first
EN (w, s)EN (w′, s′) mod N = EN (w ⊕ w′, ss′ mod N), and moreover, we can
multiply a known plaintext b “into a ciphertext”, i.e., we have EN (w, s)b =
EN (wb, sb).

Now consider a scenario where the common input to prover P and verifier V
is a pair of numbers N and ciphertext x. Now P claims to know a bit w and
s ∈ Z∗

N such that x = EN (w, s). The protocol goes as follows:

1. P chooses r ∈ {0, 1}, u ∈ Z∗
N at random and sends a = EN (r, u) to V .

2. V chooses a bit b at random and sends it to P .
3. P sends z = r ⊕ bw, v = usb mod N to V , who accepts if and only if

En(z, v) = axb mod N , and u, v are in Z∗
N .

It is well known that this protocol is perfect zero-knowledge and has error
probability 1/2. The reader can easily verify that completeness, soundness and
zero-knowledge of the protocol can be based only on the above homomorphic
properties of EN . While error probability of 1/2 is not sufficient in practice, re-
peating the protocol n times reduces the error probability to 2−n. However, the
size of the entire proof will be roughly n times the size of the problem instance.

In this paper we will be concerned with doing it more efficiently if we are to
give a proof for n instances of a problem simultaneously. So say we are given a
vector x = (x1, ..., xn) of ciphertexts. If we expand the encryption function in a
natural way to vectors by applying it to every entry, we can say that the prover’s
claim now is that he knows vectors w, s such that EN (w, s) = x.

Now, the key idea is to consider w, not just as a bit string, but as an element
in the extension field GF (2n). Since addition in GF (2n) is coordinate-wise xor,
the (expanded) encryption function is still homomorphic. We have

EN (w, s)EN (w′, s′) = EN (w + w′, ss′),

where w+w′ is addition in GF (2n) and s′s is multiplication in the direct product
(Z∗

N)n. We are also able to multiply an element e ∈ GF (2n) “into a ciphertext”.
We can do this by noticing that if we consider GF (2n) as a vector space over
GF (2), multiplication by e is a linear mapping. Taking E to be the matrix of
this mapping, multiplying E on an n-bit vector implements multiplication by e.
Using this, we can define xe ∈ (Z∗

N)n, where x ∈ (Z∗
N)n, namely the i’th entry

in xe is

(xe)i =
n∏

j=1

x
E(i,j)
j mod N,

where E(i, j) is interpreted as a 0/1 integer. The reader can easily verify that
this gives us:

EN (w, s)e = EN (ew, se).

On the Amortized Complexity of Zero-Knowledge Protocols 181

The upshot of this is that since EN satisfies the same homomorphic properties
as before, when seen as a function for encrypting elements in GF (2n), we can do
a proof of knowledge for plaintexts in GF (2n) by mimicking the protocol above:

1. P chooses r ∈ {0, 1}n,u ∈ (Z∗
N)n at random and sends a = EN (r,u) to V .

2. V chooses e ∈ GF (2n) at random and sends it to P .
3. P sends z = r+ew,v = uwe to V , who accepts if and only if En(z,v) = axe,

and all entries in u,v are in Z∗
N .

Note that V now chooses between 2n challenges. In fact one can show that if the
prover could answer correctly two different challenges e, e′, then from the answers
we could efficiently compute valid w, s. The key reason why this is possible is
that e − e′ is invertible because GF (2n) is a field (a detailed proof follows as a
special case of the general framework we present below).

Hence this protocol has error probability 2−n. Note, however, that we only
send a constant number of “compound” ciphertexts to do the protocol. Hence,
compared to iterating the basic protocol n times for all n instances which would
be the naive solution, we have saved a factor n in the size of the proof.

3 A Framework

In this section we show that the idea we just outlined is not tied to encryption
functions over finite fields. All we really need is a function with certain homo-
morphic properties on Abelian groups, and a ring that acts in “nice” way on the
involved groups. To help understand the framework, we use as running example
the protocol from the previous section, and show how it is a special case.

3.1 Set-Up and Assumptions

Consider a function f : R×S → X , where R, S, X are finite Abelian groups. To
make the framework fit with the example instantiations to follow, we will write
R additively and S, X multiplicatively.

In what follows, we will always assume that we can sample efficiently from
all groups that occur, and compute the group operation and inverses efficiently.
We also assume that elements can be communicated in some representation such
that membership in the relevant group can be checked efficiently. We assume f
is “almost” homomorphic, namely it satisfies the following:

f(r, s) · f(r′, s′) = f(r + r, ss′δ(r, r′)) and f(0, s)−1 = f(0, s−1) (1)

for all r, r′ ∈ R, s, s′ ∈ S and where δ(r, r′) ∈ S can be efficiently computed from
r, r′.

To connect the framework to the previous example, one may think of R =
Z2, S = X = Z∗

N and f(r, s) = (−1)rs2 mod N , where N is such that −1 is a
non-square modulo N . Here, of course, we would have δ(r, r′) = 1.

We now assume a commutative ring A with 1 such that R is an A- module
(this will be the case if A = Z, for instance). We assume that A acts on elements

182 R. Cramer and I. Damg̊ard

in X , i.e., given a ∈ A, x ∈ X one can efficiently compute a new element xa ∈ X .
In the running example, we will set A = GF (2), so an element a ∈ A is 0 or
1. We then think of these as the integers 0 or 1, in which case xa ∈ Z∗

N is well
defined.

We assume that the action of A on X respects the structure of A, X to some
extent, more precisely, we assume for all x, y ∈ X, a, b ∈ A that

xaya = (xy)a, x0 = 1, x1 = x, 1a = 1 (2)

To complete this picture, we also need an assumption on expressions of form
xaxb, (xa)b:

xaxb = xa+bf(0, Δ), (xa)b = xabf(0, Γ) (3)

for all x ∈ X, a, b ∈ A, and where Δ, Γ can be efficiently computed from x, a, b.
For our running example, (2) is trivially satisfied. For (3), one has to remember

that the addition in the exponent is in GF (2) and so is actually an xor. Therefore,
the first conditions is satisfied if we set Δ = x when a = b = 1 and Δ = 1
otherwise. The second condition is satisfied by setting Γ = 1 always.

We also make an assumption on the way a ∈ A acts on elements in Im(f) ⊂ X :

f(r, s)a = f(a · r, a(s)) (4)

for all a ∈ A, r ∈ R, s ∈ S. We make no specific assumptions on a(s) ∈ S, other
than it can be computed efficiently from a, s. In our example, (4) is satisfied if
we just set a(s) = sa mod N where, as above, we think of a as an integer in the
natural way.

In the following, we will consider the direct products An, Rn, Sn, Xn for a
natural number n. Our final assumption is that there exist a special subset
Ωn ⊂ An and an efficiently computable mapping ω which for every e ∈ Ωn we
outputs a matrix ω(e) with m rows and n columns and entries in A, where m is
some function of n and furthermore for every pair e, e′ ∈ Ωn where e �= e′, the
matrix ω(e)−ω(e′) is invertible, i.e., there exists an n by m matrix N such that
N(ω(e) − ω(e′)) = In. Values e ∈ Ωn will be used a challenges in our protocols
to follow, and since the error probability will be 1/|Ωn|, we will be looking for
constructions that give us a large Ωn, preferably of size exponentially large in
n. In the following, we will usually use E as shorthand for ω(e).

Definition 1. If f, A and ω satisfy all of the above conditions, we say that f is
ZK-friendly with respect to A and ω.

In our example, we can set Ωn to be all of An = GF (2)n and m = n. Then for
e ∈ Ωn, we let E = ω(e) be the matrix that implements multiplication by e in
the field GF (2n), as in the previous section.

On the Amortized Complexity of Zero-Knowledge Protocols 183

3.2 Notation

We will use r, s to denote column vectors of elements in R, respectively S, and
f(r, s) to denote the result of applying f to each coordinate.

r =

⎛

⎜⎜⎝

r1

r2

· · ·
rn

⎞

⎟⎟⎠ s =

⎛

⎜⎜⎝

s1

s2

· · ·
sn

⎞

⎟⎟⎠ f(r, s) =

⎛

⎜⎜⎝

f(r1, s1)
f(r2, s2)

· · ·
f(rn, sn)

⎞

⎟⎟⎠

Let x be a vector of elements in X , and M is a matrix with entries in A and m
rows and n columns. Then we define:

xM =

⎛

⎜⎜⎜⎝

∏n
i=1 x

M [1,i]
i∏n

i=1 x
M [2,i]
i

· · ·∏n
i=1 x

M [m,i]
i

⎞

⎟⎟⎟⎠ M(s) =

⎛

⎜⎜⎝

∏n
i=1 M [1, i](si)∏n
i=1 M [2, i](si)

· · ·∏n
i=1 M [m, i](si)

⎞

⎟⎟⎠

It is straightforward to verify that our assumptions on the action of A on X
imply that

xBxC = xB+Cf(0n,Δ), (xM)N = xNMf(0n,Γ),

f(r, s)f(r′, s′) = f(r + r′, ss′δ(r, r′)), f(r, s)M = f(Mr, M(r, s))

for matrices B, C, M, N , where vectors Γ,Δ, M(r, s) can be efficiently computed
from the inputs to the operations, and where the function δ : Rn × Rn → Sn is
derived from the original δ in the natural way. Note that 0n denotes the column
vector with n zero-entries.

To compute what M(r, s) should be, one starts from the fact that (f(r, s)M)j

=
∏n

i=1 f(r, s)M [j,i]
i and then use (1) and (2). If f is not 1-1, it may be possible

to get different values for M(r, s) depending on the order in which we compute
the product. But this is not a problem, in the following we only ned that we can
compute some element in M(r, s) ∈ Sn that makes f(r, s)M = f(Mr, M(r, s))
be true.

3.3 Some Σ-Protocols

In this section, we assume throughout that we are given a function f that is
ZK-friendly w.r.t. some A, ω, and then show that we can build a number of
zero-knowledge protocols, more specifically they will be so-called Σ-protocols. A
Σ-protocol for a relation R = {(x, w)} is a 3-move protocol for prover P and
verifier V . x is the common input and P gets w as private input. Conversations
in the protocol have form (a, e, z) where e is a random challenge sent by V . The
standard properties of a Σ-protocol is that it is perfectly complete, honest verifier
zero-knowledge and sound in the particular sense that from x and conversations
(a, e, z), (a, e′, z′) where e �= e′, one can efficiently compute w such that (x, w) ∈
R. This implies that the protocol is a proof of knowledge for R according to the

184 R. Cramer and I. Damg̊ard

standard definition, with knowledge error 1 divided by the number of possible
challenges.

The homomorphic property of f described above already implies that there is a
Σ-protocol with error probability 1/2 for the relation R = {(x, (w, s))| f(w, s) =
x}. Namely P sends a = f(r, u) for random r, u, and V asks P to send a preimage
of either a or xa. This will called Protocol 0 in the following.

We now give a Σ-protocol for a set of n instances, where the public input is
x ∈ Xn, and the prover demonstrates knowledge of w, s such that f(w, s) = x.
In other words, a Σ-protocol for the relation Rf = {(x, (w, s))| f(w, s) = x}
The protocol works as follows:

Protocol 1

1. P chooses vectors r,u of length m at random and sends a = f(r,u) to V .
2. V selects a random element e ∈ Ωn and sends it to P .
3. P sends z = Ew + r and v = E(w, s) · u · δ(Ew, r) to V .
4. V accepts if and only if f(z,v) = xE · a.

In this protocol, as well as in all the following, the verifier should also check
that every communicated group element is in the group it should be in. For
the example from the introduction, this translates to checking that numbers
communicated are relatively prime to the modulus N .

Lemma 1. Protocol 1 is a Σ-protocol for Rf , with error probability 1/|Ωn|. The
protocol is also an interactive proof that each entry in x is in Im(f).

Proof. Completeness is trivial by the homomorphic property of f . For special
soundness, we can assume that we have conversations

(a, e, z,v), (a, e′, z′,v′), such that f(z,v) = xE · a, f(z′,v′) = xE′ · a

and we must compute a valid witness for x. Dividing one equation by the other
and using our assumptions a few times, we can conclude that

f(z − z′,v · v′−1) = xE−E′ · f(0n,Δ)

for some Δ we can compute efficiently. Setting A = E−E′ and moving f(0n,Δ)
to the other side, we see that we can efficiently compute c,d and invertible A
such that

f(c,d) = xA

We then apply the inverse N on both sides, and get

f(N · c, N(c,d)) = (xA)N = x · f(0n,Γ)

for an easily computable vector Γ. Moving f(0n,Γ) to the other side, we can
easily write x as f(r, s) for known r, s, and so we have the required witness.
Since we always obtain something in the preimage of x under f , soundness as a
proof of membership follows as well.

On the Amortized Complexity of Zero-Knowledge Protocols 185

Finally, we have to provide an honest verifier simulator. For this, we simply
choose e, z,v uniformly in their respective domains and let a = f(x,v) · (xE)−1.
This clearly simulates the real conversations perfectly, since z,v are indeed uni-
form in real conversations, and a is fixed when given z,v.

An straightforward specialization of Protocol 1 can be used to show that
x = f(0n, s):

Protocol 1.5

1. P chooses vector u of length m at random and sends a = f(0n,u) to V .
2. V selects a random element e ∈ Ωn and sends it to P .
3. P sends v = E(0n, s) · u · δ(0n, 0n) to V .
4. V accepts if and only if f(0n,v) = xE · a.

Lemma 2. Protocol 1.5 is a Σ-protocol for the relation {(x, s)| f(0n, s) = x}.
One immediate generalization of Protocol 1 assumes we have two functions f, g
that both satisfy our assumptions for the same A, R, S. We can then build a Σ-
protocol for the relation Rf,g = {(x,x′, (w, s, s′))| f(w, s) = x, g(w, s′) = x′},
i.e., the demand is that the same w appears in both preimages. The protocol
works as follows:

Protocol 2

1. Start two instances of Protocol 1, using as input x respectively x′. The prover
sends a,a′, computed using the same value of r in both instances.

2. The verifier sends one challenge e that the prover uses in both instances to
compute the answer.

3. The prover sends z,v, z′,v′, and the verifier accepts if and only if z = z′ and
f(z,v) = xE · a, g(z′,v′) = x′E · a′.

By following through the proof for Protocol 1, one trivially obtains

Lemma 3. Protocol 2 is a Σ-protocol for Rf,g, with error probability 1/|Ωn|.
The protocol is also an interactive proof that each entry in x is in Im(f) and
each entry in x′ is in Im(g).

Protocols assuming R is a ring. We now show that our framework can also
be used to show multiplicative relations among preimages under f . To do this, we
need to assume that the (additive) group R is actually a ring, and furthermore
that we can define an action of R on X and S such that (2), (3), and (4) are
satisfied also if we choose a, b ∈ R.

This allows us to define for x ∈ Im(f) a function

fx(r, s) := xr · f(0, s)

One sees that fx is almost a homomorphism in the same sense as f , our assump-
tions immediately imply that we have fx(r, s)fx(r′, s′) = fx(r + r′, ss′δx(r, r′)),
for some δx(r, r′) that is easy to compute from x, r, r′.

186 R. Cramer and I. Damg̊ard

Now, suppose we have given x, y, z ∈ X where a prover knows a, b, c, sa, sb, sc

such that x = f(a, sa), y = f(b, sb), z = f(c, sc) and where furthermore c = ab.
Following several previous works, we can express the relation a bit differently so
that it becomes something we can prove using essentially just the protocol we
have already.

Notice that if we set s′ = sc · b(sa)−1 · δ(ab, 0)−1, then we have

f(c, sc) = f(ab, sc) = fx(b, s′)

We now consider n instances of such a case, but for a single x and we want a
Σ-protocol for the relation Rmult, defined as:

{((x,y, z), (a,b, c, sa, sb, sc))| x = f(a, sa),y = f(b, sb), z = f(c, sc), a ·b = c}
Then the protocol and lemma below follow immediately:

Protocol 3

1. Run Protocol 0 iterated log |Ωn| times on input x (we can afford to do this
on a single input, as it will have the same complexity as the next step).

2. Exploiting the fact that ab = c, the prover computes s′ as above such that
z = fx(b, s′).

3. Do protocol 2 on input y, z using f, fx as the functions f, g.

Lemma 4. Protocol 3 is a Σ-protocol for Rmult.

As a final example, we show that the framework can be used to show a more
negative kind of statement. We need to assume that r is uniquely determined
from f(r, s), and second that R is a field. Then we can build an interactive proof
system for the language L = {x| x = f(r, s), r �= 0}.
Protocol 4

1. V chooses n-vectors r ∈ Rn, s ∈ Sn at random, and computes g = fx(r, s).
He sends the g to P .

2. V uses Protocol 1 to show that he knows r, s such that g = fx(r, s).
3. If P accepts the proof in the previous step, he computes r and sends it to

V , who accepts if and only if P sent the correct r

Note that P can do the computation i step 3: since if x = f(w, s) for w �= 0, we
have gi = xrif(0, si) = f(wri, ui) for some ui. By assumption wri is determined
from f(wri, ui) and P can divide out w to get ri. In generalP may need large
computing power to find wri, but in some cases P can have a trapdoor allowing
him do to do it efficiently.

On the other hand if w = 0, then g contains no information on r. Neither
does the proof given by V , since it is honest verifier zero-knowledge and hence
witness indistinguishable. Therefore, the prover can do no better than a random
guess, so the error probability is |R|−n. Finally, the protocol is easily seen to be
zero-knowledge by a standard argument: the simulator uses rewinding of V to
extract r and can then send exactly what the prover would have sent. If |R| is a
small constant such as 2, then Protocol 4 gives a way to improve the complexity
over the naive solution where V in step 2 uses Protocol 0 to prove he knows r:
we only need to send O(n) group elements, rather than n2.

On the Amortized Complexity of Zero-Knowledge Protocols 187

3.4 Using Black-Box Secret-Sharing in the Framework

Suppose we are given any function f satisfying (1). Note that if we choose
A = Z, most of the conditions conditions are automatically satisfied, because
any Abelian group is a Z-module. In more concrete terms, it always makes sense
to multiply a group element by an integer if the group is written additively
(or raise it to an integral power if it is written multiplicatively). In fact, one
can easily verify that (2), (3) and (4) are always true if we set A = Z, so the
only missing condition is the existence of the special subset Ωn in Zn and the
mapping ω.

A construction of such a set follows from the black-box secret-sharing scheme
we introduce in the full version of this paper [1]. The construction itself, however,
is easy to understand without this background: recall that Ωn must be a subset
of An = Zn. We choose Ωn to be the set of vectors with entries that are 0 or 1,
thus Ωn has size 2n. We then need to build, from e ∈ Ωn, a matrix ω(e) with
n columns and m rows, where we choose m = 2n − 1, and where e �= e′ implies
that ω(e) − ω(e′) is invertible. We do this as follows: thinking of e as a column
vector, the j’th column of ω(e) starts with j − 1 zeros, followed by e, followed
by n − j zeros.

It is straightforward to show that for any two different e, e′, indeed ω(e)−ω(e′)
has an inverse N such that N(ω(e) − ω(e′)) is the identity matrix. One just
observes that the matrix ω(e)−ω(e′) must always be upper triangular with only
1’s or −1’s on the diagonal. Therefore we have:

Theorem 1. Any f satisfying (1) is ZK-friendly with respect to Z and ω con-
structed as above. In particular, the Σ-protocols 1, 1.5, 2, 3 and 4 will have error
probability 2−n and communication complexity linear in n.

To understand where this construction comes from and why it is connected to
secret sharing, it is instructive to have a look at the classical protocol for discrete
logarithms, where the prover knows w such that h = gw in some finite group.
The prover sends a = gr, the verifier chooses challenge e = 0 or 1, and the
prover returns z = r + ew mod t where t is the order of g. The verifier checks
that gz = a · he.

One can interpret this protocol as being based on a very simple 2 out of
2 secret sharing scheme, where the secret is w, r is the randomness used for
the sharing, and the shares are r and r + w. In this language, the protocol is
that the prover commits to the randomness for the secret sharing by sending
a = gr, and must then reveal the share of the verifiers choice. The verifier’s
check ensures that the correct share is indeed revealed. On one hand, since 2
shares are enough to reconstruct, we can extract the secret from any prover who
can answer 2 different challenges. On the other hand, since one share reveals no
information on the secret, we can simulate the protocol without knowing the
secret.

If the group order t is public and is a prime, we can instead use the obvious
linear 2 out of t secret sharing scheme where there are t shares and the e’th share
is r + ew mod t. If we again build a protocol by asking the prover to commit to

188 R. Cramer and I. Damg̊ard

the randomness by sending gr and then reveal the share of the verifier’s choice,
we get exactly Schnorr’s protocol. From this point of view, the efficiency of this
protocol can be explained from the fact that it is based on a 2 out of t secret
sharing scheme for a very large t.

Our protocols from the previous section can be interpreted in a similar way,
and we if combine this with the idea of using A = Z, we can rephrase our goal
as follows: our protocols work with secrets that are vectors of elements in some
Abelian group. What we want is to construct a 2 out of T secret sharing scheme
(where T can hopefully be chosen very large) which works by acting on the secret
vector by integer matrices, and where shares are vectors that are hopefully not
much longer than the secret vector. Moreover the scheme should work for any
Abelian group. What we are asking for is in fact a novel black-box secret sharing
scheme, a concept which is explained in the full version of this paper, where we
also develop the secret-sharing scheme that underlies the above theorem.

4 Examples

4.1 Quadratic Residuosity

Let N be a composite number, and let y be a non-square mod N . Then we can
set R = GF (2), S = X = Z∗

N , f(r, s) = yrs2 mod N, A = GF (2).
Now, we can let vectors in An = GF (2)n correspond in the standard way to

elements in the extension field GF (2n). Multiplication by an element e ∈ GF (2n)
is a linear mapping, so we set m = n and let E be the matrix of this mapping.
Finally we can set Ωn to be all of GF (2)n since any non-zero element in GF (2n)
is invertible. It is straightforward to check that this satisfies all our assumptions
in the framework. Protocol 1 above now becomes a proof that the prover knows
how to decrypt n ciphertexts in the Goldwasser-Micali cryptosystem.

The computational cost of the protocols are clearly dominated by the cost of
computing the action of E on the vector x. Doing this is equivalent to computing
n products of various subsets of n given elements in Z∗

n. Using a straightforward
variant of the so called 4 Russians algorithm, this can be done using O(n2/ log n)
multiplications modulo N . We therefore have:

Corollary 1. Protocol 1 instantiated for the quadratic residuosity case is a proof
that the prover knows how to decrypt n ciphertexts in the Goldwasser-Micali cryp-
tosystem. It has communication complexity 2n elements in Z∗

N plus 2n bits, error
probability 2−n, and the computational complexity is O(n2/ logn) multiplications
modulo N .

Note that if we wanted to obtain the same error probability using simple repeti-
tion of the standard cut-and-choose protocol, the cost for all n instances would
be 2n2 group elements plus 2n bits and the computational cost O(n2) multipli-
cations modulo N . Protocol 1.5 instantiated for this case is easily seen to be a
proof that n input numbers are all squares modulo N . It may seem that to use
this protocol we need that a non-square y is given, to define the function f , but

On the Amortized Complexity of Zero-Knowledge Protocols 189

this is not the case, since we only need to evaluate f on inputs where the first
component is 0, and we always have f(0, s) = s2 mod N no matter which y we
would use.

Protocol 4 instantiated for this case is a proof that a given number is a non-
square modulo N and this improves the complexity of the classical protocol for
this problem from [10] by a factor of n. Again, one can verify that we do not
need a non-square y given a priori.

Finally, Protocol 3 in this case becomes a protocol proving that encrypted
bit a and encrypted bitstrings b, c satisfy a ∧ b = c, where a ∧ b is the string
obtained by taking the and of a and each bit in b.

4.2 Discrete Log in a Group of Unknown Order

Let N be an arbitrary natural number and g ∈ Z∗
N . Then we will set R = Z, S

to be the trivial group with one element, and X = Z∗
N . We then let f(r, 1) =

gr mod N . We also set A = Z. This does not quite satisfy our framework, since
R is not finite, but we will fix this shortly.

The construction behind Theorem 1 implies that we can satisfy the conditions
in our framework by construct the set Ωn as the subset of Zn consisting of binary
strings.

In this case, protocol 1 has to be tweaked slightly: instead of choosing r
uniformly in Rn, which does not make sense when R is infinite, we choose the
entries as uniform log n + 2k-bit numbers. This choice ensures both that f(r)
will be statistically close to uniform in Im(f)m, and that the entries in z will be
statistically close to uniform log n + 2k-bit numbers. This follows from the fact
that the entries in E · w will be at most log n + k-bit numbers.

The protocol now becomes an interactive proof that the input numbers x1, .., xn

are all in the group generated by g, and it is a proof that the prover knows the dis-
crete logarithms. The protocol will be honest verifier statistical zero-knowledge.

Corollary 2. Protocol 1 instantiated for the discrete log in Zn case is an in-
teractive proof that the input numbers x1, .., xn are all in the group generated
by g, and it is a proof that the prover knows the discrete logarithms. Let k be
the bit length of N . Then the communication complexity is O(kn) bits, the error
probability 2−n, and the computational complexity is O(nk + n2) multiplications
modulo N .

If we wanted to obtain error probability 2−n using simple repetition of the stan-
dard cut-and-choose protocol, the cost for n instances would be communication
O(n2k) bits and also O(n2k) multiplications modulo N . So we see that if we
choose, e.g., n = k, our solution saves a factor k in both the communication and
computational complexity.

4.3 Homomorphic Encryption

We already mentioned earlier how our technique can be used for the Goldwasser-
Micali probabilistic public-key scheme. This generalizes in a very natural way to

190 R. Cramer and I. Damg̊ard

encryptions schemes based on higher degree residuosity, say degree q for q a prime
larger than 2, provided q divides φ(N). The plaintext-space for the encryption
would be R = Zq and one would then define the encryption of plaintext r as
f(r, s) = yrsq mod N where y is not a q-power modulo N . The basic Protocol 0
with A = Zq and Ωn = Zn

q gives a proof of knowlegde of the plaintext for a given
ciphertext with error probability 1/q. Using Protocol 1, this can be amplified to
a proof for n plaintexts with error probability q−n, at cost n times the cost of
Protocol 0.

In [11], a different type of encryption function is proposed, also based on a
composite modulus N and two elements g, h ∈ Z∗

N . The encryption function is
f(m, s) = gmhs mod N . Here m is the message chosen in ZM for a public M
and s is chosen at random in some interval [0..T]. We do not need to go into the
details of the scheme and its security here, it is enough to say that the order of
h has to be secret and one needs to assume for security that a random element
in the group generated by h cannot be efficiently distinguished from a random
element in Z∗

N .
Standard methods for proving in zero-knowledge that you know m, s for a

given ciphertext have error probability 1/2, namely one does the obvious Σ-
protocol with a binary challenge. One cannot do better using Schnorr-like tech-
niques because one would need to know the order of h to do the knowledge
extraction required for soundness. However, the scheme fits in our framework,
by setting R = ZM , S = Z, X = Z∗

N and A = Z. Now, using Theorem 1, Proto-
col 1 shows that we can prove knowledge of n plaintexts with error probability
2−n at cost about 2n times the standard protocol for a single instance.

Finally, we note that if g has order M , R can act on S and X as required
for Protocols 3 and 4. Protocol 3 can be used to show multiplicative relations
among plaintexts, and in case the plaintext space is a field (i.e., if M is a prime).
Protocol 4 can be used to show that a ciphertext contains a non-zero plaintext.

References

1. Cramer, R., Damg̊ard, I.B.: On the Amortized Complexity of Zero-Knowledge
Protocols. Full version of this paper (in preparation)

2. Cramer, R., Damg̊ard, I.B., MacKenzie, P.D.: Efficient Zero-Knowledge Proofs of
Knowledge Without Intractability Assumptions. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)

3. Cramer, R., Fehr, S.: Optimal Black-box Secret Sharing over Arbitrary Abelian
Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 272. Springer,
Heidelberg (2002)

4. Cramer, R., Fehr, S., Stam, M.: Primitive Sets over Number Fields and Black-Box
Secret Sharing. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 344–360.
Springer, Heidelberg (2005)

5. Damg̊ard, I.B., Ishai, Y.: Scalable Secure Multiparty Computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

6. Damg̊ard, I.B., Geisler, M., Krøigaard, M.: Efficient and Secure Comparison for
On-Line Auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 416–430. Springer, Heidelberg (2007)

On the Amortized Complexity of Zero-Knowledge Protocols 191

7. Desmedt, Y., Frankel, Y.: Homomorphic Zero-Knowledge Threshold Schemes over
Any Finite Abelian Group. SIAM J. on Discrete Mathematics 7(4), 667–679 (1994)

8. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1985)

10. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. In: Proceedings of STOC 1985, pp. 291–304 (1985)

11. Groth, J.: Cryptography in Subgroups of Zn. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 50–65. Springer, Heidelberg (2005)

12. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of STOC 2007, pp. 21–30 (2007)

13. Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Cryptology 4(3),
161–174 (1991)

	On the Amortized Complexity of Zero-Knowledge Protocols
	Introduction
	The Basic Idea
	A Framework
	Set-Up and Assumptions
	Notation
	Some σ-Protocols
	Using Black-Box Secret-Sharing in the Framework

	Examples
	Quadratic Residuosity
	Discrete Log in a Group of Unknown Order
	Homomorphic Encryption

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

